
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Integrierte Systeme

Image Processing on Heterogeneous

Multiprocessor System-on-Chip using

Resource-aware Programming

Johny Paul

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der

Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr.-Ing. Ulf Schlichtmann

Prüfer der Dissertation:

1. apl. Prof. Dr.-Ing. Walter Stechele

2. Prof. Dr.-Ing. Tamim Asfour

Die Dissertation wurde am 28.02.2017 bei der Technischen Universität München eingereicht und durch

die Fakultät für Elektrotechnik und Informationstechnik am 29.06.2017 angenommen.

To my family.

i

Abstract

Multiprocessor system-on-chip (MPSoC) designs offer a lot of computational power assem-
bled in a compact design. The computing power of MPSoCs can be further augmented by
adding massively parallel processor arrays (MPPA) and specialized hardware with instruction-
set extensions. On-chip MPPAs can be used to accelerate low-level image-processing algo-
rithms with massive inherent parallelism. With the arrival of new heterogeneous MPSoCs,
various applications that run on dedicated compute units on humanoid robots like ARMAR,
can now be combined and executed on a single-chip.

However, the presence of multiple processing elements (PE) with different characteristics
raises issues related to programming and application mapping. The conventional approach
used for programming heterogeneous MPSoCs results in a static mapping of various parts of
the application to different PE types, based on the nature of the algorithm and the structure
of the PEs. Yet, such a mapping scheme independent of the instantaneous load on the PEs
may lead to under-utilization of some type of PEs while overloading others. At the same
time it is difficult to dynamically control and distribute different types of resources among
different applications running on a single chip, achieving high resource utilization under
high-performance constraints.

This thesis focus on investigating the benefits and challenges of using a resource-aware
programming model called Invasive Computing for dynamically mapping image-processing
applications (used on humanoid robots) to different types of PEs available on a heteroge-
neous MPSoC named InvasIC. Different types of computer vision algorithms were investi-
gated and implemented on the heterogeneous MpSoC. Based on the new model, the ap-
plications can dynamically acquire and release hardware resources, considering the level
of parallelism available in the algorithm and time-varying load. Our results indicate that
resource-aware programming helps to improve the performance (throughput and worst ob-
served latency) of various computer vision applications along with better overall workload
distribution within the heterogeneous MPSoC.

iii

Acknowledgment

I would like to express my gratitude to everyone, who have supported me in successfully re-
alizing this thesis. First of all, I want to express my deep gratitude towards my advisor, Prof.
Dr.-Ing. Walter Stechele for his exceptional support throughout my work at LIS, particularly
for the freedom offered to me during my research and also for the constant feedback that I
received. I am also grateful to Prof. Dr.-Ing. Tamim Asfour (our partner from the Karlsruhe
Institute of Technology) for the feedback and suggestions I received during the past 5 years.
Furthermore, I would like to thank Prof. Dr. sc.techn. Andreas Herkersdorf and Dr.-Ing.
Thomas Wild for their guidance, support and suggestions during my work in the project
Invasive Computing.

Finally I want to thank all my colleagues, especially my fellow doctoral candidates Au-
rang Zaib, David May and Ravi Kumar Pujari for the cooperation and fruitful discussion
we had over the past several years. Additionally I would like to thank my colleagues
outside LIS, especially from Karlsruhe Institute of Technology and University of Erlangen-
Nuremberg, for providing necessary support at various levels including hardware and op-
erating system layers. I would also like to thank the students who have contributed to my
work with their Diplom- and master-thesis at LIS. Last but not the least, my gratitude goes
towards my family, for their support during my stay and work in Germany.

Munich, November 2015
Johny Paul

v

Contents

Indexes xi

1. Introduction 1
1.1. Outline of the Thesis . 2
1.2. Image Processing on Humanoid Robots . 3
1.3. Multiprocessor System-on-Chip (MPSoC) Designs 5
1.4. Benefits of using MPSoCs on Robots . 5
1.5. Potential Challenges in using MPSoCs on Robots 7
1.6. Resource-aware Programming . 8

2. Related Work 11
2.1. Various MPSoC Platforms . 11
2.2. Programming Models for MPSoCs . 16

3. Invasive Computing 19
3.1. Basic Principles . 19
3.2. InvasIC - Hardware Architecture . 21

3.2.1. InvasIC - Memory Hierarchy . 21
3.2.2. RISC Processors (LEON3) . 22
3.2.3. Invasive Cores (i-Core) . 23
3.2.4. Tightly Coupled Processor Array (TCPA) 25

3.3. OctoPOS - A Resource-aware Operating System 29
3.3.1. The Invasive Programming Model . 31
3.3.2. OctoPOS - Design Principles . 32
3.3.3. OctoPOS - Architectural Overview . 33

4. Computer Vision Algorithms for Humanoid Robots 35
4.1. Object Recognition . 35

4.1.1. Harris Corner Detection . 37
4.1.2. SIFT Feature Extraction . 39
4.1.3. SIFT Feature Matching . 40

4.2. Optical Flow . 43

vii

Contents

5. Resource-Aware Algorithms 45
5.1. Resource-Aware Corner Detectors . 48

5.1.1. Conventional Approach Towards Faster Corner Detection 49
5.1.2. Extension to a Resource-Aware Model 49
5.1.3. Resource Allocation and Workload Distribution 52
5.1.4. Results . 56

5.2. Resource-Aware KD-Tree Search . 60
5.2.1. Conventional Approach for Accelerating NN-Search on KD-Trees . . . 60
5.2.2. Challenges with conventional kd-tree search on shared MPSoC 61
5.2.3. Nearest-Neighbor Search on KD-Trees 63
5.2.4. Resource-Aware Nearest-Neighbor Search Algorithm 67
5.2.5. Evaluation & Results . 71
5.2.6. Conclusion . 74

6. Accelerating Image Processing using Specialized Hardware 75
6.1. InvasIC - Programmer’s View . 75
6.2. Harris Corner Detection on Tightly Coupled Processor Array 77

6.2.1. Conventional Approach . 77
6.2.2. Implementation on InvasIC . 78
6.2.3. Results . 82

6.3. SIFT Feature Matching on i-Core . 82
6.3.1. Algorithm . 82
6.3.2. Accelerated Implementation on i-Core 83
6.3.3. Results . 87

6.4. Optical Flow Computation on Tightly Coupled Processor Array 91
6.4.1. MPPAs for Optical Flow Computation 91
6.4.2. Various Stages in Optical Flow Algorithm 92
6.4.3. Optical Flow in Invasive Notation . 97
6.4.4. Implementation . 99
6.4.5. Results . 104

6.5. Conclusion . 109

7. Object Recognition on Heterogeneous MPSoC 111
7.1. Hardware Prototype . 112
7.2. Evaluation Models . 113

7.2.1. Homogeneous vs. Heterogeneous Implementation 114
7.2.2. Multiple Applications on Heterogeneous MPSoC 115
7.2.3. Heterogeneous MPSoC with Resource-aware Mapping 117

7.3. Conclusion . 120

8. Conclusion and Outlook 123

A. Hardware Monitoring Framework for InvasIC 127
A.1. Hardware Monitor Design . 128

A.1.1. Performance Counters in Hardware . 128

viii

Contents

A.1.2. Interface and Data Exchange . 130
A.1.3. Visualization . 130

A.2. Stack and Heap Mapping using Hints from Hardware Monitors 131
A.3. Application Analysis using Hardware Monitors 134

A.3.1. Evaluation Techniques . 134
A.3.2. Results . 138

A.4. Conclusion . 139

B. Own Publications 141

Bibliography 143

ix

List of Figures

1.1. The humanoid robot ARMAR-III with 43 degrees of freedom. The robot con-
sists of an active head with cameras for vision, two arms and two five-fingered
hands, a torso and a holonomic mobile platform [1] 3

1.2. Compute units on the ARMAR-III robot [1] . 6
1.3. Compute units used on the ARMAR-4 robot [2] 7

2.1. Block diagram of the TILE64 processor [3] . 12
2.2. Simplified hardware architecture of the SCC, displaying the arrangement of

the cores and the contents of a tile [4] . 13
2.3. AMD’s fusion APU (Llano) [5] . 14
2.4. Block diagram of the Xetal-II architecture [6] 15

3.1. Structure of an invasive program . 20
3.2. Structure of an invasive program . 20
3.3. InvasIC - a heterogeneous MPSoC with tiled architecture 21
3.4. LEON3 Processor [7] . 23
3.5. i-Core consisting of adaptive Microarchitecture and reconfigurable fabric [8] . 24
3.6. Structure of a processing element within the TCPA 26
3.7. Tightly Coupled Processor Array (TCPA) Architecture [9] 28
3.8. Various possible invasions within a shared TCPA for image filtering application 29
3.9. Invade and retreat operations inside the TCPA 30
3.10. Various layers forming Invasive Computing programming model 31
3.11. Application flow in an invasive program (left) and assort phase with a hetero-

geneous claim (right) [8] . 31
3.12. Architectural overview of the invasive hardware/software stack [10] 33

4.1. Humanoid robot ARMAR recognizing objects around it 35
4.2. Harris SIFT object recognition [11] . 36
4.3. Data Flow . 37
4.4. Output from Harris Corner detection algorithm (detected corners are high-

lighted using green dots) . 38
4.5. Computation of SIFT descriptor from sampled pixels 40
4.6. Construction of KD-Tree (recursively build a kd-tree in the right half-space by

picking the some point and splitting the data horizontally through it) 41
4.7. A completely constructed KD-Tree . 41
4.8. Result from Harris-SIFT based object recognition technique 42
4.9. Optical flow definition . 43
4.10. Census transformation . 44
4.11. Output from Optical flow algorithm . 44

xi

List of Figures

5.1. Conventional compute units used on the ARMAR robot (left) and the newly
proposed MPSoC architecture (right) . 45

5.2. Various algorithms combined to perform object grasping 46
5.3. Evaluation model for Harris Corner detection with dedicated HW (left) vs.

shared HW (right) . 47
5.4. Variation in available resources for Harris Corner detection [12] 48
5.5. Variation in processing interval based on available resources [12] 48
5.6. Structure of an invasive program . 48
5.7. Harris corner detection (foreground and background pixels) 50
5.8. Pruning technique used in resource-aware Harris Corner detection 50
5.9. Snapshots of the video sequences used for evaluation [10] 51
5.10. Effects of pruning on execution time and accuracy for Harris detector [10] . . 52
5.11. Resource usage based on scene type (Harris detector using a threshold of 4) [10] 53
5.12. Flow diagram for the resource-aware corner detector [10] 53
5.13. Efficiency map for resource-aware Harris Corner detection on target HW [10] 54
5.14. Image samples demonstrating the pruning effect [10] 55
5.15. Flow diagram for threshold estimation based on available resources [10] . . . 56
5.16. Comparison between the conventional and resource-aware models [10] 57
5.17. Execution time for NN-search (static allocation) [13] 61
5.18. Dynamic resource usage during NN-search [13] 62
5.19. Execution time for NN-search (dynamic allocation) [13] 62
5.20. Kd-tree search algorithm . 63
5.21. Match candidates for kd-tree search . 64
5.22. Feature correspondences after the NN-search [11] 64
5.23. Variation in execution time vs. leaf nodes visited for NN-search [13] 65
5.24. Search quality vs. leaf nodes visited for NN-search [13] 65
5.25. Conventional vs. threshold-based kd-tree search 66
5.26. Efficiency graph for NN-Search on MPSoC hardware [13] 68
5.27. Flow diagram for resource-aware NN-search [13] 70
5.28. Comparison between resource-aware and threshold-based NN-search [13] . . 72
5.29. Image(a): single object . 72
5.30. Image(b): multi-objects . 72
5.31. Comparison between iterative and resource-aware NN-search [13] 73

6.1. Heterogeneous architecture of InvasIC with its tile internal structure 76
6.2. Evaluation setup . 78
6.3. Flow diagram showing the interaction between various systems involved in

Harris corner detection . 79
6.4. Architecture of a TCPA tile. The abbreviations AG, GC, and IM stand for

address generator, global controller and invasion manager [9] 80
6.5. Harris Corner detection on TCPA (application mapping). The abbreviations

AG, GC, and IM stand for address generator, global controller and invasion
manager. 81

6.6. Flow diagram showing the various stages in the object recognition algorithm
and pseudo code for SIFT feature matching . 83

6.7. Flow diagram showing the interaction between various systems involved in
the SIFT feature matching . 84

xii

List of Figures

6.8. Architecture of an i-Core tile [8] . 85
6.9. Schedule of the siftmatch SI [8] . 85
6.10. Internal structure of the i-Core tile . 87
6.11. Case-1: Evaluation model (SIFT feature matching on LEON3) 88
6.12. Case-2: Evaluation model (SIFT matching on i-Core using LEON3-TLM) . . . 89
6.13. Case-3: Evaluation model (SIFT matching on i-Core using i-Core-TLM) 89
6.14. SIFT matching, a comparison between three cases (time in milliseconds) . . . 90
6.15. Results from optical flow algorithm . 91
6.16. Modeling optical flow on TCPA using the simulation framework 93
6.17. Basic image filtering on a TCPA [14] . 94
6.18. TCPA processing multiple windows simultaneously [14] 95
6.19. Signature generation technique [14] . 95
6.20. Mapping scheme for signature generation [14] 96
6.21. Sample signature image . 96
6.22. Flow vector generation logic [14] . 97
6.23. Vision assisted grasping by ARMAR III humanoid robot 98
6.24. Resource aware 2D invasions on TCPA . 99
6.25. TCPA Configuration for image smoothening 100
6.26. Discard operation . 100
6.27. Variation in execution time for image filtering application based on window

size and invasion depth . 101
6.28. TCPA configuration for signature and vector generation 102
6.29. Flow diagram showing various stages involved in vector matching 104
6.30. Clocks/pixel Vs Invasion Depth (IMF: image filtering, SG: signature genera-

tion, VG: vector generation) . 105
6.31. Invasion Depth Vs Acceleration (IMF: image filtering, SG: signature genera-

tion, VG: vector generation) . 106
6.32. A comparison between different architectures 107

7.1. Heterogeneous queuing (hQ) on AMD APU 112
7.2. Setup for evaluation [8] . 113
7.3. Object recognition on heterogeneous MPSoC [8] 114
7.4. Object recognition on homogeneous MPSoC (LEON3 PEs) [8] 115
7.5. Multiple applications executing concurrently on our heterogeneous MPSoC

with conventional mapping scheme [8] . 116
7.6. Self adaptive Harris Corner detection algorithm running on InvasIC 117
7.7. Self adaptive SIFT feature matching algorithm running on InvasIC 118
7.8. Flow diagram for resource-aware object recognition [8] 119
7.9. Multiple applications on heterogeneous MPSoC using resource-aware map-

ping [8] . 120

A.1. Various hardware blocks affecting the performance of a CPU-instruction in a
multi-tile MPSoC . 127

A.2. Implementation of the hardware monitor (inside each tile) 129
A.3. CAPIM module used to interface the HW monitors to the UMR bus 130
A.4. Hardware monitor design . 131
A.5. Various blocks involved in the visualization of monitoring data 132

xiii

List of Figures

A.6. Execution profile for Harris Corner Detection 133
A.7. Busload distribution . 133
A.8. External memory access (before and after using SPM) 136
A.9. Bus load distribution for SIFT feature extraction 136
A.10.Bus load distribution for audio processing . 137
A.11.Bus-load distribution for contrast enhancement 138

xiv

List of Tables

5.1. Comparison between conventional and resource-aware corner detectors [10] . 58
5.2. Time taken for various stages in the resource-aware corner detection [10] . . . 58
5.3. Comparison between resource-aware and threshold-based NN-search (FP: Feature-

point, PR:Processed, DR:Dropped, TR:Threshold-based search, RA:Resource-
aware search) [13] . 73

6.1. Acceleration achieved for SIFT matching using i-Core (in milliseconds) 87
6.2. Simulation results . 105
6.3. Comparison between the optical flow implementation on different platforms 106
6.4. Configuration bit stream sizes (bits) for the three parts of the optical flow as

well as the configuration latency Ccon f , where a 32-bit bus is used to load each
configuration to the PEs (50 MHz clock frequency). 108

6.5. Hardware cost and performance comparison (time in seconds for fully pro-
cessing one image frame) for the optical flow application implementation on
a LEON3, 5×5 TCPA, and a custom FPGA implementation. All architectures
operate at 50 MHz clock frequency and have been prototyped on a Xilinx
Virtex-5 FPGA [14] . 108

7.1. Object recognition: homogeneous vs. heterogeneous [8] 115
7.2. Object recognition: single vs. shared, conventional mapping scheme [8] . . . 117
7.3. Object recognition: conventional vs. resource-aware [8] 120

A.1. Using SPM for Harris Corner detection . 135
A.2. Using SPM for SIFT feature extraction . 137
A.3. Using SPM for audio processing . 138
A.4. Execution time for contrast enhancement with & without SPM 138
A.5. Summary of overall benefits . 139

xv

Index of Algorithms

5.1. Differential image . 53
5.2. Integral histogram . 53

xvii

1. Introduction

Robotics, especially humanoid robotics is a challenging research field, which has received
great attention during the past decade and will continue to play a central role in the 21st
century. Humanoid robots can perform several tasks resembling humans. The technological
progress in the fields of computational power and mechatronics has led to the development
of humanoid robots which are rich in sensory and motor capabilities and hence provide a
platform to study emergent cognitive capabilities in artificial systems. Cognitive humanoid
robots will be able to operate in an autonomous way, interacting naturally with the world
and with human users, and be self-adaptive to changing situations and contexts. This in-
cludes assisting humans in the day-to-day work, as helpers in natural disasters or as enter-
tainment robots such as soccer players. Under the hood, the robotic system are typically
complex with sensors to gather data, processing systems which analyze the input data and
enables the robot to made decisions followed by the motors and actuators to put the decision
into actions.

Humanoid robots are designed to operate in little or unknown environments. A detailed
understanding of these environments is required to navigate through them. Information
about the environment could be provided by a computer vision system, acting as a vision
sensor, providing high-level information about the environment. The data processing sys-
tems used in today’s humanoid robots consists of several industrial PCs, dedicated DSP-
s/FPGAs, etc. Such a complex and elaborate system is necessary to handle the complex
computer vision algorithms that exists today.

The availability of new processor designs with higher and higher computing power (com-
putational density) has helped the robot designers to handle more complex tasks thereby
improving the performance and behavior of robots. Take the clock rate, for instance: the In-
tel 4004 micro-processor ran at a clock frequency of 108KHz. In a mere eight years, the Intel
8088 could run at 5MHz, almost 50× speed boost. A modern 3GHz CPU has a clock rate
around 30, 000× faster than the 4004 microprocessor. The increase in the transistor count,
another factor indicating the CPU power, has been even more spectacular. The Intel 4004
contained just about 2,300; the 8088 with more than 29,000; and a modern high-end Intel
Xeon chip with transistor count more than 2 billion: a million times more than that of the
first CPU [15].

This trend is expected to continue, providing integration capacity of billions of transistors
on to a single chip. Until now, Moore’s Law continued with technology scaling, improving
transistor performance to increase frequency, increasing transistor integration capacity to
realize complex architectures and reducing energy consumed per logic operation to keep
power dissipation within limit. However, the semiconductor technology has already hit
the power wall and is not far away from hitting the utilization wall [16]. These effects are
caused by shrinking technology, which continuously leads to higher energy densities. Thus,

1

1. Introduction

these days, energy efficiency has become more important than pure computing power. This
means that in order to scale computing performance in the future, energy efficiency has to
be significantly improved.

Moreover, the performance increase by micro-architecture alone is governed by Pollack’s
Rule, which states that performance increase is roughly proportional to square root of in-
crease in complexity [17]. In other words, if the logic in a processor core is doubled, it can
deliver only 40% more performance. A multi-core micro-architecture, on the other hand, has
potential to provide near linear performance improvement with complexity and power. Two
smaller processor cores, instead of a large monolithic processor core, can potentially provide
70-80% more performance, as compared to only 40% from a large monolithic core [18]. Mul-
tiprocessors have several other benefits as each processor core can be individually turned
on or off, thereby saving power. New technology allows each processor core to be run at its
own optimized supply voltage and frequency, thereby saving power. It is also easier to load
balance among processor cores to distribute heat across the die and can potentially produce
lower die temperatures improving reliability and leakage.

Computer-vision algorithms can highly benefit from processor architectures with numer-
ous processing elements as they are compute-intensive and typically expose massive inher-
ent parallelism. Multiprocessor system-on-chip (MPSoC) designs offer a lot of computa-
tional power assembled in a compact design. In mobile robotic applications, they offer the
chance to replace several dedicated computing boards by a single processor, which typically
leads to a significant acceleration of the computer-vision algorithms employed. This enables
robots to perform more complex tasks at lower power budgets, less cooling overhead and,
ultimately, smaller physical dimensions. MPSoC designs can achieve higher energy effi-
ciency and performance scalability by increasing or decreasing the number of cores in use
according to processing requirements. In addition to homogenous processors, the design of
heterogeneous hardware with customized resources, such as accelerators dedicated for one
application domain, is a promising solution to address the challenges in the field of robotics.
Because of these features, MPSoCs are ideal for advanced embedded applications requiring
minimal power consumption, including robotics.

1.1. Outline of the Thesis

This thesis is organized as follows. Chapter 1 presents the humanoid robot ARMAR, with
focus on computer vision algorithms, compute units, etc. This chapter also describes the
potential challenges and expected benefits in using a heterogeneous MPSoC like InvasIC, on
a humanoid robot. Chapter 2 describes some of the existing homogeneous/heterogeneous
MPSoCs and explores some of the conventional techniques used for application mapping on
such architectures. This is followed by Chapter 3 which describes the proposed resource-
aware programming model named Invasive Computing and the architecture of the hetero-
geneous MPSoC named InvasIC. The novel operating system for InvasIC is also described in
this chapter. Chapter 4 describes the algorithms behind three widely used computer vision
algorithms including Harris Corner detection, SIFT feature extraction and matching and op-
tical flow. These algorithms are later used as candidates for evaluating the resource-aware
programming model.

2

1.2. Image Processing on Humanoid Robots

Chapter 5 presents two novel computer vision algorithms developed as part of this thesis,
based on the resource-aware programming model. The results point to the benefits of using
Invasive Computing on a homogeneous instance of InvasIC. Chapter 6 demonstrates how
the algorithms described in Chapter 4 can be accelerated using specialized PEs available on
InvasIC, followed by Chapter 7 describing the execution of an object recognition application
on a heterogeneous MPSoC using the resource-aware model, presented in Chapter 3. Finally,
Chapter 8 concludes the thesis with a outlook into the phase-II of the Invasive Computing
project.

1.2. Image Processing on Humanoid Robots

Robots will have a broad impact across many existing and emerging markets, which belong
to the industrial, service, domestic, security and space robotics sector [19]. However, for
building robotic computer architectures, usually only off-the-shelf hardware components
are used, which do not result in dedicated solutions in terms of efficiency, on-board compu-
tational power, memory organization, miniaturization, communication and multi-purpose
I/Os.

Computer architectures in humanoid robots are often based on standard embedded indus-
trial PCs, PC/104 systems for high-level tasks and dedicated DSP/FPGA units for low-level
control (see, e. g., [20, 21, 22, 23, 24, 25, 26, 27, 28]). The work presented in [27, 28] described a
control architecture for the humanoid robot ARMAR-III (Figure 1.1) developed at KIT and its
hardware implementation with embedded Industrial PCs, PC/104 systems and DSP units.
Using these compute units, several sophisticated interactive service tasks have been realized
as described in [28, 29, 30].

Figure 1.1.: The humanoid robot ARMAR-III with 43 degrees of freedom. The robot consists
of an active head with cameras for vision, two arms and two five-fingered hands,
a torso and a holonomic mobile platform [1]

Regarding computer vision, although a broad variety of computer vision algorithms ex-
ists today [31, 32, 33], they are mostly not optimized for real-time embedded systems. Many
robotic platforms use FPGAs even though microcontrollers can successfully implement any
digital logic function. FPGAs offers massive parallelism and can accelerate compute inten-
sive tasks which cannot be efficiently handled by today’s single/multi-core processors. On
FPGAs, an algorithm can be implemented sequentially or completely in parallel, depending

3

1. Introduction

on the performance requirements. A completely parallel implementation is faster but con-
sumes more FPGA resources. However, microcontrollers are easy to program and debug,
well suited to control applications, especially with widely changing requirements.

Similar to the FPGAs, a lot of interest has been rising on Graphics Processing Units (GPU)
[34, 35, 36]. While GPUs have been used traditionally to accelerate computer games, their
massively parallel and light weight execution resources can be exploited in many computer
vision applications, thus challenging the domain of FPGAs for hardware acceleration. In
[34, 36], various case-studies have been presented comparing GPU vs. FPGA implemen-
tations. There seems to be no “one fits all” solution, but the benefits and drawbacks are
manifold: GPUs benefit from higher clock frequencies than FPGAs, due to their custom lay-
out. GPU programming does not require VHDL experience, but can be done by software
developers, instead. On the other hand, programming GPUs efficiently can be as tedious
as hardware development in VHDL. FPGAs offer a higher degree of freedom in optimizing
memory architectures, data types and pipeline structures. However, the core problem re-
mains for both GPU and FPGA: How to exploit parallelisms in the algorithm and distribute
computations and data access on available resources?

In addition to FPGAs and GPUs, DSPs also offer certain benefits in the field of robotics.
DSP is a type of flexible and reliable microprocessor - one that is incredibly fast and pow-
erful, it can process data in real time, its real-time capability and high-speed computing
architecture is an optimal alternative for sophisticated control algorithms. So, the integra-
tion of FPGA and DSP can perform a lot of computing-intensive and time-critical tasks such
as information acquisition and data procession in robot control applications [37]. A high per-
formance DSP/FPGA controller has been used in the implementation of the DLR dexterous
robot hand [38].

In brief, the computer vision algorithm can benefit from various types of processing units
including CPUs, FPGAs, GPUs and DSPs. In case of conventional robots, this leads to a com-
plex processing hierarchy with separate boards for each type of compute unit. The use of
multiple compute units results in high power consumption and low interconnect bandwidth,
and occupies a large amount of space in the robot. The data exchange between compute
units make the overall implementation complex and each unit with its own power supply
also consume significant fraction of the power budget. Moreover, in the current implemen-
tation with multiple CPU-boards, it is not possible to migrate tasks from on CPU to the other.
This means that the vision algorithm will not be able to use the processing units dedicated
for motion planning or audio processing, even when the motion planning or audio process-
ing systems are in an idle state. Such a mapping scheme often leads to under utilization of
the available computing resources. Similar problems arise in modern computer architectures
(Cell-Blade from IBM) that have been investigated for robotic vision applications by the pro-
posers. Efficient low-level vision algorithms could be be implemented on such architectures.
However, robotics applications include a wide variety of such low-level algorithms, which
require higher degree of reconfigurability concerning load balancing, communication paths
and bandwidth, as well as memory access.

4

1.3. Multiprocessor System-on-Chip (MPSoC) Designs

1.3. Multiprocessor System-on-Chip (MPSoC) Designs

As technology scales further, transistor performance will not increase at the historic rates,
due to excessive sub-threshold leakage current and supply voltage scaling slowing down
[39]. This means that the path of multi-core evolution by integrating multiple complex cores
on a die will not be as easy as it used to be. Integrating lots of smaller cores, where each small
core delivers lower performance than a large complex core, can lead to a higher compute
throughput for the entire system. The performance of a smaller core reduces as square-root
of the size (inverse Pollack’s rule), but power reduction is linear, resulting in smaller perfor-
mance degradation with much larger power reduction. Overall, the compute throughput of
the system, increases almost linearly with the larger number of small cores. Based on this
idea, several multiprocessor systems-on-chips (MPSoCs) have started to enter the market-
place over the past several years and are expected to be available in even greater variety
over the next few years. Examples include Tilera’s 64-core processor [6], Ambric (with 336
32-bit RISC processors) [40], an 80-core Intel prototype processor [41], Xetal-II [6] (a SIMD
processor with 320 processing elements). In MPSoCs, a spatial choice is added to the tempo-
ral choice of resources; applications can share a resource and wait on each other, or they can
run simultaneously with independent resources.

An MPSoC system does not necessarily have to be symmetric or homogenous. An asym-
metric system may have a few large cores that can deliver higher single-thread performance,
but will predominantly have large number of small cores. Such a heterogeneous system can
even integrate diverse special purpose cores for hardware acceleration like graphic engines
(GPUs), CPUs with hardware extensions which can be accessed using special instructions,
mixed-signal circuits, etc., to provide a complete integrated system. AMD’s Accelerated Pro-
cessing Unit (APU) [42] is an example for heterogeneous MPSoC which combine GPU and
CPU on a single chip. The low-level pixel-processing algorithms (with regular loops operat-
ing on a stream of pixel data) can be mapped to the GPU while the CPU can post-process the
results computed by the GPU. Static mapping of sub-algorithms on architectures like ADM
APU seems feasible, but compilation support for future massively parallel MPSoCs is not in
sight under hard performance/power/area constraints.

1.4. Benefits of using MPSoCs on Robots

Humanoid robots are required to handle various tasks like vision, motion planning, speech
recognition, or speech synthesis. To be autonomous, humanoid robots should be able to
learn to operate in the real world and to interact and communicate with humans. They have
to model and reflectively reason about their perceptions and actions in order to learn, act,
predict and react appropriately. Performing these tasks in the real world, especially in real-
time, demands not only substantially high computing power but also concurrent hardware
and software architectures that support situation-dependent context switching between dif-
ferent applications such as natural dialogue management, visual perception of the environ-
ment, situation interpretation and motion planning, as well as action execution. Such archi-
tectures should allow to process the large amount and variety of sensory data in parallel and
allocate resources appropriately.

5

1. Introduction

Task Planning

• GlobalAmodels
• Fileserver

Task Execution

• PositionAcontrol
• TorqueAcontrol
• MovementA

coordination

Task Coordination
• PlatformAcontrol
• Localization
• CollisionAavoidance

• SpeechArecognition
• SpeechAsynthesis
• AcousticAlocalization

• Vision
• Tracker
• Object recognition

1.6AGHzA
IPC

933AMHzA
PC/104

933AMHzA
PC/104

2AGHzA
PC/104

1.6AGHzA
IPC

Figure 1.2.: Compute units on the ARMAR-III robot [1]

Usually, on a humanoid robot, the workload is spread across multiple industrial CPU
boards. For example, on the ARMAR-III robot [43], data from the sensors flows into the
respective processing system, each dedicated to a different task, like computer vision, low-
level control, high-level control or speech processing, as shown in Figure 1.2.

Similar to the ARMAR-III design, there are three PC/104 computers in the ARMAR-4
robot (the next generation of the humanoid robot following ARMAR-3) [2]. Two are posi-
tioned in the torso and one in the head. The PC/104 in the head is equipped with an Intel
Core2Duo processor and a combined audio and Firewire board, as shown in Figure 1.3. It is
used for computer vision and sound processing. In the torso there are two PC/104s. One is
equipped with an Intel Core i7 processor and is performing the high level planning and con-
trol, the other one is equipped with an Intel Core2Duo processor and a PCI/104 10 channel
CAN interface board, running a real time operating system and is used for low level control
and communication with the sensors and motor controllers [2]. Other examples with a sim-
ilar architecture include the humanoid robot Asimo [44], HRP-4C [45] and the Hand Arm
System from DLR [46].

Substituting the numerous processing systems with a single heterogeneous MPSoC can
bring in several benefits. The heterogeneous MPSoC with its massive computing power can
handle the entire workload previous handled by several independent processing units. This
means the various applications that, on a conventional robot, run on dedicated compute
units can now be combined and executed on a single-chip. The GPU friendly algorithms
can be mapped to the on-board GPU while algorithms with huge number of mathematical
operations can be mapped to special hardware with support for special instructions. For
example, the specialized hardware units (like on board GPUs) can be used to accelerate
low lower pixel processing algorithms like Harris corner detector and audio filtering. As
all applications now run on a unified platform with several cores, load balancing becomes

6

1.5. Potential Challenges in using MPSoCs on Robots

PC/104
Core2Duo

(Head)

PC/104
Core2Duo

(Torso)

PC/104
i7

(Torso)

Gigabit
Ethernet

PCI/104

Elmo Whistle
Servo Drive

Elmo Whistle
Servo DriveElmo Whistle

Servo Drive

Audio & 2ch Firewire
Board

PCI/104

Camera

Firewire Hub

Firewire Hub

Camera

Camera

Camera

Gigabit
Ethernet

Head Motor
Controller

CAN

CAN

CAN

F/T Interface
Board

F/T Interface
Board

Head Motor
Controller

Elmo Whistle
Servo Drive

Hand
Controller

Toe Controller
Foot Sensor

Board

IMU (Hip)USB

IMU (Head)

Elmo Whistle
Servo DriveElmo Whistle

Servo Drive
CAN

WLAN

CameraMicrophones

USB

Arms (x2)

Legs (x2)

Head

Torso

10
ch

 C
A

N
 B

o
ar

d

Gigabit Ethernet

Figure 1.3.: Compute units used on the ARMAR-4 robot [2]

easier. The tasks can easily migrate from one core to the other. For example, the cores used
for audio processing or motion planning can be used for vision algorithms when the audio
or motion planning is in a idle state. Such a scheme also helps to save space on the robot as
multiple CPU boards can be replaced with a single board.

Various compute units on the MPSoC are interconnected using a Network-on-Chip (NoC)
interconnect, which offers significant bandwidth for data exchange. Such a high bandwidth,
low latency interconnect structure is important to ensure that the data can flow easily and
without delay from one algorithmic stage to the next. Moreover, an MPSoC with advanced
power management scheme can shutdown its compute/communication/memory resources
when its not in use. This helps to reduce power consumption of the entire processor and
thereby reducing the cooling costs and saves valuable battery power in case of untethered
robots.

1.5. Potential Challenges in using MPSoCs on Robots

On account of their immense computational power assembled in a compact design, the het-
erogeneous MPSoCs can bring in several benefits to the field of robotics, as described in

7

1. Introduction

Section 1.4. However, in a heterogeneous systems the resource allocations becomes even
more complex. Each application has a preferred type of resource on which it ideally should
be mapped. But it can, if necessary, run with another type of resource as well. Hence, a full
design-time exploration is not even possible, since not all software a user may run on a sys-
tem is known at design-time. Moreover, the mapping of various tasks onto a unified MPSoC
automatically results in sharing of physical resources like processing elements (PEs) and in-
terconnect/memory bandwidth between the once separated tasks. Applications like pattern
recognition, motion planning, speech synthesis, etc. have varying demands on computing
power, depending on the situation the robot is facing or interacting with. These applications
create dynamically changing load on the processor based on what the robot is doing at the
current point in time. For instance, the speech-recognition application is activated whenever
the user speaks to the robot and the motor control is activated when the robot has to move
or grasp an object that it recognized.

As stated by the Intel fellow Shekhar Borkar, "The software has to also start following
Moore’s Law, software has to double the amount of parallelism that it can support every
two years"’, in order to make efficient use of the future multi-core designs. A conventional
operating-system (OS) scheduler schedules the numerous threads of each application con-
sidering the overall system load. As a result, the resources available to each application may
vary over time, leading to a further issue of guaranteed execution quality. For example, the
object recognition algorithm is programmed to run at 25 frames per second (fps) and needs
a minimum of 16 PEs on the MPSoC. However, at various points in time, fewer PEs were of-
fered by the runtime system, leading to frame drops as the algorithm is running on real-time
video input. Frame drops may reduce the overall accuracy of the algorithm.

Restricted power budgets have made researchers aware of the problem of dark silicon
which implies that only a certain percentage of the available processors may be active at
the same time. Hence, it is essential to make the best use of the available PEs on the het-
erogeneous processor. For example, the low level pixels processing algorithms like Harris
corner detector may run more efficiently on a graphics processor when compared to its CPU
counterpart, thereby reducing the overall power consumption of the entire chip. Another
scenario arises if the graphics processor is heavily loaded and the Harris corner algorithm
cannot wait indefinitely for the resources to be available. How to make these algorithm
adapt at run-time so that they can choose the best available resources at any instance in
time? Hence, programming such large-scale processor systems is also a nightmare if re-
source awareness is a must.

1.6. Resource-aware Programming

Robotic computer vision needs high performance computing power in low cost embedded
systems. Future MPSoCs may offer 100s of CPUs and on-chip GPUs, but in order to exploit
this computing power, central management concepts might meet their limits. In order to
address the various challenges posed by the heterogeneous MPSoCs, related to resource-
utilization, application mapping and to ensure certain quality of the obtained results, a
resource-aware programming model has been proposed in [47]. In contract to the conven-
tional programming model, on a resource-aware program can specify how many resources

8

1.6. Resource-aware Programming

are essential for the application to meet its quality/throughout requirements, in addition
to the degree of parallelism. Based on the above inputs, the runtime-system can allocate as
many exclusive resources, in order to guarantee a certain quality of execution; for example in
terms of processing speed. Such a programming model is currently out of reach in any type
of available multi-core systems. Yet, predictability of execution qualities will be of utmost im-
portance for all kinds of embedded, mixed-critical, and non-best-effort types of applications
which shall benefit from the abundance of processors in future MPSoC designs.

Following the idea of resource-aware programming, the main goal of this work is to en-
hance the existing algorithms and develop resource-aware computer vision algorithms for
the ARMAR robot, especially the algorithms with high computational requirements like
computer vision. The goal is to explore techniques of self-organization to efficiently allo-
cate available resources for the timely varying requirements of robotic applications. The
programming model named Invasive Computing which is based on resource-aware program-
ming model was explored. The benefits and restrictions of invasive architectures in chal-
lenging real-time embedded systems and in particular in humanoid robotics. Invasive Com-
puting will provide the required self-organizing behavior to spread computations, variables
and communications by the algorithms themselves. For example, planning collision-free
motions for object grasping results in a varying demand on computing power, depending
on the requested task. Since the search for collision-free trajectories in cluttered environ-
ments is known to be a PSPACE-hard problem, probabilistic approaches are commonly used
for planning problems covering many degrees of freedom. The variety of tasks and setups,
from footstep to reach and grasp planning, results in different sets of joints which are used
for planning. For example, a grasping motion may cover the hip, the arm and the finger
joints of a humanoid robot. An adaptive motion planning scheme dynamically changes the
considered subsystems during the planning process (see [29]). Therefore, the complexity of
the planning problem adaptively varies from three to up to twenty degrees of freedom. Due
to the inherent flexibility and adaptivity as well as reconfigurability of Invasive Comput-
ing, the multi-level planning concepts can be implemented in a way that, depending on the
current planning stage, a dynamic allocation of computing resources can be performed.

Using dynamically changing requirements of typical robot scenarios, as described above;
this work demonstrate how such enhancements and adaptions can help the vision algo-
rithms to achieve better quality results and higher throughput. Our experiments on a het-
erogeneous MPSoC named InvasIC, show that such a resource-aware methodology is often
essential to satisfy the computing power requirements of robots and this also helps to re-
duce the interference between the various applications, so that algorithms in each step can
produce consistent results regardless of the behavior of the other parts of the system.

9

2. Related Work

This chapter describes some of the well known multi-core/MPSoC systems available to-
day. Section 2.1 describes the state-of-the-art MPSoC hardware while Section 2.2 describes
various programming models developed to improve the resource utilization on the future
MPSoCs.

2.1. Various MPSoC Platforms

With ongoing technology progress and as a consequence of the power wall, processors do
not scale any more towards higher frequencies. Instead, the major trend goes towards the
integration of more and more processor cores per chip. Miniaturization in the nano era
makes it possible already now to implement billions of transistors, and hence, massively
parallel computers on a single chip with typically 100s or 1000s of processing elements. Dif-
ferent many-core architectures have already been developed, including Tilera [48], Intel’s
TeraFlop [49] or Single-chip Cloud Computer (SCC) [50]. Some of these architectures are
homogeneous comprising of uniform standard components, while the others are built using
special hardware accelerators forming heterogeneous platforms.

Tilera TILE64 The Tile Processor Architecture consists of a 2D grid of identical compute
elements, called tiles. Each tile is a powerful, full-featured computing system that can in-
dependently run an entire operating system, such as Linux. Likewise, multiple tiles can be
combined to run a multiprocessor operating system such as SMP Linux. Figure 2.1 is a
block diagram of the 64-tile TILE64 processor. The perimeters of the mesh networks in a Tile
Processor is connect to I/O and memory controllers, which in turn connect to the respective
off-chip I/O devices and DRAMs through the chip’s pins. Each tile combines a processor and
its associated cache hierarchy with a switch, which implements the Tile Processor’s various
interconnection networks. Specifically, each tile implements a three-way very long instruc-
tion word (VLIW) processor architecture with an independent program counter; a two-level
cache hierarchy and a 2D direct memory access (DMA) subsystem.

Intel SCC is another such example of a homogeneous 48 cores architecture [50]. In this
architecture 24 tiles comprising of pentium dual core processors are connected in a mesh
network over a standard NoC. It supports formation of special voltage and frequency op-
eration domains, comes with configurable memory access range, and inter-tile communica-
tion is performed using dedicated hardware message buffers. Applications from the areas
of computer vision, high-performance computing (HPC) domain, etc., can make use of such
homogeneous architectures and exploit their parallelism.

11

2. Related Work

Figure 2.1.: Block diagram of the TILE64 processor [3]

IBM Cell Broadband Engine incorporates synergistic processing elements (SPE) and a
master power processors (PPE) connected over a bus [51]. The first-generation Cell processor
combines a dual-threaded, dual-issue, 64-bit PPE with eight newly architected SPEs, an on-
chip memory controller, and a controller for a configurable I/O interface. These units are
interconnected with a coherent on-chip element interconnect bus (EIB). The Cell processor
uses a SIMD organization in the vector unit on the PPE and in the SPEs, as SIMD units have
been demonstrated to be effective in accelerating multimedia applications.

AMD Accelerated Processing Units (APU) combines the general-purpose x86 cores of
a CPU with programmable vector-processing engines of a GPU onto a single silicon die.
Evaluation show that the fused CPU+GPU cores enable better performance than a discrete
GPU and even traditional multi-core CPU processors by reducing the parallel overhead of
PCIe data transfers. In this case, the compute unit is known as a SIMD engine and contains
several thread processors, each containing four stream cores, along with a special-purpose
core and a branch execution unit. The special-purpose core is designed to execute certain
mathematical functions in hardware, for example, math functions like sin(), cos() and tan().
Since there is only one branch execution unit for every five processing cores, any branch in
the program incurs some serialization to determine the path each thread should take. The
execution of divergent branches is performed in lock-step manner for all the cores present
in a compute unit. In addition, the processing cores are vector processors, which means that
using vector types can produce material speedup on AMD GPUs.

AMD’s Fusion APU, code-named Llano [5], is a heterogeneous multicore processor con-
sisting of x86-64 CPU cores and a Radeon GPU, with an architecture as shown in Figure 2.3.
The CPU and GPU cores have different virtual address spaces, but they can communicate

12

2.1. Various MPSoC Platforms

Figure 2.2.: Simplified hardware architecture of the SCC, displaying the arrangement of the
cores and the contents of a tile [4]

via regions of physical memory that are pinned in known locations. The chip has a uni-
fied Northbridge that, under some circumstances, facilitates coherent communication across
these virtual address spaces. Llano supports multiple communication paradigms. First,
Llano permits the CPU cores and the GPU to perform coherent DMA between their virtual
address spaces. In a typical OpenCL program, the CPU cores use DMA to transfer the in-
put data to the GPU, and the GPU’s driver uses DMA to transfer the output data back to
the CPU cores. Although the DMA transfers are coherent with respect to the CPU’s caches,
the load/store accesses by CPU cores and GPU cores between the DMA accesses are not
coherent. Second, Llano allows a CPU core to perform high-bandwidth, uncacheable writes
directly into part of the GPU’s virtual address space that is pinned in physical memory at
boot. Third, Llano introduces the Fusion Control Link (FCL) that provides coherent com-
munication over the Unified NorthBridge (UNB) but at a lower bandwidth. With FCL, the
GPU driver can create a shared memory region in pinned physical memory that is mapped
in both the CPU and GPU virtual address spaces. Assuming the GPU does not cache this
memory space, then writes by the CPU cores and the GPU cores over the FCL are visible to

13

2. Related Work

Figure 2.3.: AMD’s fusion APU (Llano) [5]

each other, including GPU writes being visible to the CPU’s caches. A GPU read over the
FCL obtains coherent data that can reside in a CPU core’s cache.

Ambric offers a highly unconventional architecture with over 300 processors, taking ad-
vantage of the large area now available to chip designers. The design consists of relatively
simple processors, instantiating a large number of them in a 2D mesh. These processors are
also very different to conventional CPUs, with only a few kilo-bytes of RAM per processor
for instructions and data, and only basic integer addition and multiplication. The two types
of processors used in the AM2045 [40] are the SR and SRD, both processors are very simple
in-order 32-bit RISC processors, with the SR designed for extremely simple operations such
as generating address streams and routing data around the device, while the SRD is more
complex, with a large register set and an integer multiply-accumulate unit. Both processors
execute most instructions with a throughput and latency of 1 cycle, with no stalls due to
standard register usage. Ambric CPUs communicate with each other over channels, which
are self-synchronizing uni-directional FIFOs, allowing producers and consumers to operate
at different clock-rates in a GALS (globally asynchronous, locally synchronous) fashion. An
implementation of the optical flow algorithm on Ambric [52] shows that massively parallel
processor arrays (MPPA) can achieve real-time performance for computationally intensive
algorithms with a physical and power footprint appropriate for embedding in autonomous
systems such as unmanned vehicles, robots, etc., and that it competes well against a Virtex-4
FPGA implementation in both power consumption and throughput.

Xetal-II is a single-instruction multiple-data (SIMD) processor which delivers a peak per-
formance of 107 GOPS on 16-bit data while dissipating 600 milliwatts (mw) of power [6]. As
shown in Figure 2.4, the processing array (LPA) consisting of 320 PEs and a 10 Mbit on-chip
frame memory handles the compute-intensive data processing. The data input processor
(DIP) and data output processor (DOP) provide interfaces to three independent video chan-
nels, each with 10-bit resolution and carrying up to 80 Mpixels/s. A global control processor

14

2.1. Various MPSoC Platforms

(GCP) manages the operation of the IC. The chip is programmable in a subset of C extended
with a vector data type. The adopted MP-SIMD processing paradigm provides high com-
putational efficiency (MOPS/W) because of the good match with the parallelism inherently
present in the algorithms and the data. Most image and video processing algorithms consist
of many small kernels (such as convolution and edge detection) that operate on all data ele-
ments alike. This makes MP-SIMD processing a natural choice with computational efficiency
originating from the reduced overhead of control operations. Since the architecture allows
exploiting data-level parallelism present in most video processing applications and keeps
the control and address decoding overhead low, a power-efficient operation is possible. In
addition to facilitating inter and intra-frame processing for video scene analysis applications,
the large on-chip frame memory enables low-power operation by avoiding high-speed off-
chip memory access. This work also shows that utilizing the advantages of modern silicon
technology, advanced video processing tasks, such as real-time full-frame video analysis,
become feasible for portable consumer applications [6].

Figure 2.4.: Block diagram of the Xetal-II architecture [6]

Similarly, the Xeon is a brand of x86 microprocessors designed and manufactured by Intel
Corporation, targeted at the non-consumer workstation, server, and embedded system mar-
kets. Primary advantages of the Xeon CPUs are their multi-socket capabilities, higher core
counts, and support for ECC memory. Intel Xeon Phi features up to 61 cores each support-
ing 4 hardware threads with 512-bit wide SIMD registers achieving a peak theoretical per-
formance of 1T op/s in double precision. In [53], the authors investigated the performance
of the Xeon Phi coprocessor for sparse matrix multiplication kernels with very promising
results.

Low power MPSoCs are highly suitable for mobile platforms. This includes the Kalray [54],
an MPPA which integrates 256 user cores and 32 system cores on a chip with 28nm CMOS

15

2. Related Work

technology. Each core implements a 32-bit 5-issue VLIW architecture with the cores dis-
tributed across 16 compute clusters. The communication and synchronization between the
clusters is ensured by data and control Networks-On-Chip (NoC). Each cluster contains 16
processing engine (PE) cores, one resource management (RM) core, a shared memory, a
direct memory access (DMA) engine responsible for transferring data between the shared
memories or within the shared memory. The compute cluster shared memory architecture
optimizes a trade-off between area, power, bandwidth, and latency. The work presented
in [54] demonstrates that this architecture is effective on two different classes of applications:
embedded computing, with the implementation of a professional H.264 video encoder that
runs in real-time at low power and in high-performance computing, with the acceleration of
a financial option pricing application.

Tegra [55] is a system on a chip series developed by Nvidia for mobile devices such as
smartphones, personal digital assistants, and mobile Internet devices. The Tegra integrates
an ARM architecture central processing unit (CPU), graphics processing unit (GPU), and
memory controller onto one package. Early Tegra SoCs are designed as efficient multimedia
processors, while more recent models emphasize gaming performance without sacrificing
power efficiency.

The Snapdragon [56] is a suite of system-on-chip semiconductor products designed and
marketed by Qualcomm for mobile devices. The Snapdragon’s CPU uses the ARM RISC
instruction set, and a single SoC may include multiple CPU cores, a graphics processing unit
(GPU), a wireless modem, camera, gesture recognition, etc. Snapdragon semiconductors are
widely used in embedded systems (Google Android and Windows Phone devices). They are
also used in cars, wearable devices, etc.

Similarly special DSP engines are incorporated in TI’s DaVinci [57] architecture which
comes along with an ARM core and peripherals. Such architectures are specially suited for
multimedia and embedded applications. Designers can use the range of flexible IP blocks to
tailor a SoC to meet the target video-equipment requirements.

2.2. Programming Models for MPSoCs

A major challenge associated with the MPSoCs and MPPAs described in Section 2.1 is the
question on how to program such systems to make best use of their computing power. The
work published in [58] compared different platforms for parallel computing like multi-core
CPUs, GPUs, MPPAs, FPGAs, etc., and the results indicate that each platform require a dif-
ferent approach even for simple algorithms like random number generation. The case study
also showed that the methods which are highly efficient in scalar oriented CPUs do not work
well in wide issue GPUs, nor in memory limited MPPAs. Moreover, the emergence of many-
core architectures necessitates a redesign of operating systems, including the interfaces they
expose to an application. The new programming models and operating systems should be
able to provide better support for parallel applications while the kernel itself should be scal-
able to hundreds of cores.

ROS - Resource-aware Operating System [59], has been developed for many-core hard-
ware with support for parallel applications and a scalable kernel. ROS offers a resource-

16

2.2. Programming Models for MPSoCs

management scheme based on resource provisioning which enables system-wide, efficient
accounting and utilization of resources. Resources, such as cores and memory, are explicitly
granted and revoked. The kernel exposes information about a process’s current resource
allocation and the system’s utilization, and allows the process to make requests based on
this information. A process will not lose a core (or other granted resource) without being
informed. Exposing information about a process’s current resource allocation and the sys-
tem’s utilization, allows the application programs to make resource requests based on this
information. These resources can be partitioned in both space and time, allowing processes
to declare their resource needs in both dimensions. As an example, a process might indicate
that it needs exclusive access to 25 cores 50% of the time, or that it requires 75% of the on-chip
memory bandwidth 25% of the time. In this model, resource partitions serve to provision a
set of resources to a group of processes rather than allocating them to a particular process. A
process can always request more resources than have been provisioned for them, but there
is no guarantee that they will be able to hold onto those resources if the system becomes
over-provisioned. Treating resource partitions in this way leads to better utilization of sys-
tem resources and reduces the hard problem of deciding when to revoke a resource from a
process to the simpler problem of deciding which processes are allowed to create a resource
partition in the first place. However, scheduling policy decisions such as which process to
revoke a resource from, or how to discourage applications from hoarding resources is not
explained in [59].

Tessellation [60] is another resource-aware many-core operating system that provides
guaranteed fractions of system resources (such as processors, cache, network or memory
bandwidth) to application programs. Tessellation uses an adaptive resource-allocation ap-
proach to provide quality of service (QoS) guarantees to applications while maximizing ef-
ficiency in the system. The resource allocation is handled by the Resource Allocation Broker
(RAB), a service that distributes resources to cells while attempting to satisfy competing
system-wide goals, such as deadlines met, energy efficiency, and throughput. The status of
an application is monitored through performance counters and heartbeats. When an appli-
cation is started, it provides its QoS requirements to the RAB Service in the form of target
performance goals, such as desired frame-rates. The RAB Service continuously monitors
the applications performance and compares it to target rates, adjusting resource allocations
as required. To do this, the RAB Service utilizes two sources of information; the periodic
performance reports (heartbeats) containing application-specific performance metrics and
the system-wide performance counter values, such as cache-miss statistics and energy mea-
surements. [61] shows how heartbeats can be used within an application to help a real-time
H.264 video encoder maintain an acceptable frame rate by adjusting its encoding quality to
increase performance. A heartbeat is registered after each frame is encoded and when the
application checks its heart rate, it looks to see if the average over the last 40 frames was
less than 30 beats per second (corresponding to 30 frames per second). If the heart rate is
less than the target, the application adjusts its encoding algorithms to get more performance
while possibly sacrificing the quality of the encoded image.

Autonomic Operating System project AcOS [62] enhances commodity operating systems
with an autonomic layer that enables self-X properties through adaptive resource allocation.
They aim at enabling users to state Service-Level Objectives (SLOs) and to automatically
tune resource allocations in order to meet these user-specified SLOs, while enforcing system-
level constraints, such as maximum processor temperature.

17

2. Related Work

A further related approach is SEEC [63]. The goal of SEEC is to reduce the programming
effort in multi-core systems. The idea is to (1) have application programmers in charge of
specifying goals and progress and (2) enjoin on system programmers the specification of
system-level actions that can affect application-level processes. Based on these specifications,
the SEEC runtime system then attempts to optimize resource allocations using an adaptive
control system that learns application and system models on-line. Regarding the constructive
approach, SEEC is implemented as a runtime system and a set of libraries for Linux. In this
sense, it shares the same approach with AcOS, as it cannot directly control the hardware to
provide for the strict guarantees that are needed to separate different applications from each
other.

Overall, we are moving from multi-core architectures towards multi-processor system on
chip (MPSoC) designs. These devices will be heterogeneous in terms of on-chip processors,
communication facilities and memory organization. In the future, shared and distributed
memory will coexist on a single chip. At a certain level, cache coherence is no longer imple-
mented in hardware analog to Intel’s single-chip cloud computer (SCC). Future MPSoCs are
expected to have numerous cores available on a single chip, so that every single thread will
be able to run on his own private core. This calls for a radical change in the way operating
systems manage processors; it also calls for programming and system paradigms suited for
very fine-grained parallelism.

18

3. Invasive Computing

Decreasing transistor size have already led to a rethinking on how to make efficient use
of multimillion transistor on system-on-a-chip designs. With ongoing technology progress
and as a consequence of the power wall, processors do not scale any more towards higher
frequencies. Instead, the major trend goes to the integration of more and more processor
cores per chip. Different many-core architectures like Tilera’s TILE64 processor, Intel’s Ter-
aFlop or SCC have already emerged. From a CMOS technology perspective, the integration
of several hundreds of cores will be feasible in the foreseeable future. The most important
problem, however, related to massively parallel MPSoCs is how to efficiently exploit the
abundantly available processing power, is still unsolved. This thought has opened a new
way of thinking about parallel algorithm design.

One way of how to manage and control the parallel execution on such MPSoCs would
obviously be to give the power to manage resources, to the programs themselves and thus,
have the running programs manage and coordinate the processing resources themselves to
a certain degree and in context of the state of the underlying compute hardware. Through
such techniques, the new programming paradigm named Invasive Computing will provide
scalability, higher resource utilization numbers and, also performance gains by adjusting the
amount of allocated resources to the temporal needs of a running application.

The main aim of this work is to demonstrate how Invasive Computing can solve many
of the challenges faced by today’s massively parallel and heterogeneous MPSoCs, by in-
corporating principles of self-organization various computer vision algorithms used on the
ARMAR robot. The expected benefits includes a gain in computational efficiency and per-
formance, self-adaptive applications which can optimize itself for optimum resource utiliza-
tion.

3.1. Basic Principles

The name Invasive Computing stems from the notion that applications can dynamically
invade (exclusively acquire) resources according to their needs for computation power, com-
munication bandwidth/latency or memory size. The main idea behind invasion is to add
to each application the ability to explore and claim resources in a certain neighborhood and
to copy its configuration code, program, and possibly data to such places in a phase of in-
vasion, and then to execute the given problem in parallel based on the available (invasible)
region of processing resources. In such a system, applications compete with each other for
a share of the hardware resources. Through invasion, an application will thus be able to
spread its computations for parallel execution based on the availability and the actual state
of processing resources. For execution phases with reduced degree of available application

19

3. Invasive Computing

parallelism, the application may itself perform a retreat to free occupied resources so to op-
timally exploit all resources and make them available for other applications.

The chart depicted in Figure 3.1 shows the typical state transitions that occur during the
execution of an invasive program. This process starts with the construction of an initial claim
which holds a set of resources that the application can use for its parallel execution. The claim
construction is performed by issuing a call to invade. Resource allocation is followed by an
infect call which is used to start the actual application code on the previously allocated re-
sources (within the claim). The actual application code that is spread onto infected resources
for subsequent parallel execution is called i-let. Once the execution on all PEs finishes, the
number of PEs inside the claim can be altered by calling invade or retreat to either expand or
shrink the application’s claim. In case of retreat, the processing elements are cleaned up from
the i-let entities that have been setup by infect. Alternatively, if the degree of parallelism
does not change, it is also feasible to dispatch a different program onto the same set of PEs
by issuing another call to infect. If a call to retreat leaves the claim empty, there are no com-
puting resources left for further execution of the program, hence it terminates its execution
and exits.

start invade infect retreat exit

Figure 3.1.: Structure of an invasive program

In contrast to mere allocation of a fixed amount of resources, invasion can lead to over- or
under-fulfillment of the application’s requirements, depending on the current state of the
system. As a consequence, applications are required to be adaptable, because the result
of an invasion may not fully meet their original demand. However, once an application
acquires a set of resources, it gains exclusive access to them. This allows the application
to tune its algorithms and distribute its workload depending on the amount of resources
actually received from the system. The resource guarantees in turn ensure that decisions
taken during program tuning and workload distribution remain valid until the application
releases the resources back to the system. The modified flow diagram with an additional
stage to adapt the workload, is shown in Figure 3.2.

start invade workload
distribution

infect retreat exit

Figure 3.2.: Structure of an invasive program

20

3.2. InvasIC - Hardware Architecture

3.2. InvasIC - Hardware Architecture

An incarnation of a hardware architecture supporting Invasive Computing is referred to as
InvasIC. Heterogeneity is an important attribute of the InvasIC architecture, to exploit both
loop level and thread level parallelism in applications. The heterogeneous tile-based MPSoC
architecture consists of different types of processing elements, memory and input/output
devices. The processing elements include loosely coupled RISC processors, Tightly-Coupled
Processor Arrays (TCPAs) adapted to data driven applications and dynamically reconfig-
urable, application specific instruction set extensions(i-Cores). All tiles are connected by the
invasive network on chip (i-NoC) in a 2D mesh topology. The invasive network adapter
(i-NA) is the interface between the tile local bus and the i-NoC routers. All aspects of the
architecture are designed with focus on scalability and decentralized resource management.
The components within a RISC compute tile communicate using standard buses whereas the
tile-external communication is performed via an i-NoC. Additionally on-chip memory tiles,
off-chip memory tiles (accessible via memory controllers) and I/O tiles for interfacing with
the peripherals are also provided.

Memory

TCPA

MemoryI/O
CPU CPU

CPU

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

NoC
Router

NA

i-Core i-Core

i-Corei-Core

i-Core i-Core

Figure 3.3.: InvasIC - a heterogeneous MPSoC with tiled architecture

3.2.1. InvasIC - Memory Hierarchy

The InvasIC offers a distributed shared memory architecture. Processes running on cores
within one compute tile communicate using shared memory regions such as the Tile Local
Memory (TLM) or external memory (DDR-II). These different memory sub-components are
physically distributed and are accessed over bus and i-NoC, hence represent a non-uniform

21

3. Invasive Computing

memory access (NUMA) architecture. Details of the InvasIC cache and memory hierarchy
are provided below:

• Each PE has its own L1 cache and a shared L2 cache, within each tile.

• L1 instruction and data caches with cache coherence among cores within the same tile.

• No cache coherence between the tiles.

• Scratchpad memory (optional) is private to the core, provisions fast access and is not
cached.

• The Tile Local Memory (TLM) is accessible by all cores within a tile over the bus.

• The TLM of other tiles can be addressed from each tile directly.

• Shared on-chip memory constitutes one or more memory tiles accessible over the i-
NoC.

• External memory is accessible via memory controllers on I/O tiles, via the i-NoC.

Various components constituting the heterogeneous MPSoC architecture are described
below.

3.2.2. RISC Processors (LEON3)

The LEON3 is a synthesisable VHDL model of a 32-bit processor compliant with the SPARC
V8 architecture and are available as part of GRLIB [7]. LEON3 cores are used in the InvasIC
architecture as they are light weight and suitable for general purpose computations. The
LEON3 processor has the following features:

• SPARC V8 instruction set with V8e extensions

• Advanced 7-stage pipeline

• Hardware multiply, divide and MAC units

• High-performance, fully pipelined IEEE-754 FPU

• Separate instruction and data cache (Harvard architecture) with snooping

• Local instruction and data scratchpad RAM, 1 - 512 Kbytes

• Advanced on-chip debug support with instruction and data trace buffer

• Symmetric Multi-processor support (SMP)

• Power-down mode and clock gating

A block diagram of the LEON3 processor is shown in Figure 3.4.

LEON3 cores were selected for use within the InvasIC architecture due to their low com-
plexity and open source availability as part of the GRLIB. The full source code is available
under the GNU GPL license, allowing free and unlimited use for research and education.
Moreover, it is highly configurable and particularly suitable for system-on-a-chip (SoC) de-
signs. Conceptually speaking, other cores, such as ARM [64] or Intel cores [65] could also be
employed. Another benefit from using the GRLIB is the availability of an AMBA bus system
and numerous components, such as memory controllers or I/O interfaces, as well as debug
support.

22

3.2. InvasIC - Hardware Architecture

Figure 3.4.: LEON3 Processor [7]

3.2.3. Invasive Cores (i-Core)

Embedded processors are the key in rapidly growing application fields ranging from image
processing, automotive, entertainment, to name just a few. In the early 1990s, the term ASIP
(Application Specific Instruction-set Processors) has emerged denoting processors with an
application-specific instruction set. They are more efficient in one or more design criteria like
’performance per unit area’ and ’performance per watt’ compared to mainstream processors.

Following this methodology, the i-Core (Invasive-Core) is a reconfigurable RISC core based
on the LEON3 SPARC V8 architecture. It combines concepts for an adaptive micro-architecture
and fine-grained reconfiguration to instantiate application-specific accelerators [66]. A re-
configurable processor consists of a regular processor core coupled with a reconfigurable
fabric, allowing application-specific accelerators to be loaded at runtime. The processor core
can be implemented as an ASIC and the fine-grained reconfigurable fabric as an embedded
FPGA. This brings in a high degree of freedom in accelerator design and enables applica-
tions from different domains to be run at a high performance, on the same reconfigurable
processor. To speed up execution of computationally intensive kernels, applications can use
accelerators on the FPGA fabric via Special Instructions (SIs), which are extensions of the
instruction set architecture (ISA) of the processor core.

In order to build an adaptive micro-architecture, the LEON3 design was extended to sup-
port reconfiguration of the processor pipeline, run-time configuration of cache-parameters
and the branch prediction unit, as shown in Figure 3.5. This enables to adapt the micro-
architecture to the requirements of the applications using it. The fine-grained reconfigurable

23

3. Invasive Computing

Memory
Arbiter

3
2

…

…

R
e

co
n

fi
g.

C

o
n

ta
in

e
r

Inter-
con-
nect

Load /
Store
Units

Inter-
connect

R
e

co
n

fi
g.

C

o
n

ta
in

e
r

Inter-
con-
nect

ME

XC

WB

EX

RA

DE

FE

D
E/

R
A

Adaptive Cache

i-Core Tile Local Memory

1
2

8

1
2

8

32

128

128

 S
ys

te
m

 B
u

s
3

2

LEON3

i-Core
Extensions

A
d

ap
ti

ve
 B

ra
n

ch
 P

re
d

ic
to

r

32

32

SI
 E

xe
cu

ti
o

n
 C

o
n

tr
o

lle
r

iNoC Adapter,
CIC, L2 Cache, …

Core1, Core2, …

Bitstream Loader

i-Core
Management

Interface

Tile

Reconf.
Fabric

Figure 3.5.: i-Core consisting of adaptive Microarchitecture and reconfigurable fabric [8]

accelerator of the i-Core relies on an FPGA fabric that is loosely connected to the proces-
sor pipeline. This allows low-latency access to the fabric and therefore the ability to attain
speedup even for applications consisting of kernels with short durations (e.g. in the range
of 10 to 100 cycles when executed on the fabric) [67].

The reconfigurable fabric has a dedicated high-bandwidth connection to a fast on-chip
memory. In order to use the fabric for an accelerator, it is configured using a partial config-
uration bitstream from a library. This reconfiguration is triggered by an additional instruc-
tion implemented in the adapted LEON3 design. The accelerator is used after configuration
by executing special instructions on the LEON3 core. This approach exceeds the concept
of state-of-the-art ASIPs, as it adds flexibility and additionally enables dynamic run-time
adaptation towards the executing application to increase the performance.

However, in contrast to the adaptive micro-architecture, the reconfigurable fabric can only
be used if this is supported by the binary of the application. The speedup that can be attained
by executing an SI on the fabric instead of executing the equivalent ISA instructions on the
pipeline, depends on the inherent parallelism of the respective kernel and the amount of
fabric used for its implementation. The i-Core uses a dedicated connection to its tile local
memory, using two 128-bit ports to provide a high memory bandwidth to expedite the exe-
cution of special instructions.

The implementation of a particular ISE may adapt during run-time. These adaptations
correspond to ISA-dependent adaptations at the micro-architecture level. Depending on the
executing i-lets and their specific ISE requirements, the reconfigurable fabric is invaded to re-
alize a certain subset of the requested ISE. Note that it is typically not possible to fulfill all ISE
requests, depending on the size of the available reconfigurable fabric and the requirements
of the i-lets. The concepts of Invasive Computing are used to manage the competing requests
of different tasks. In the scope of reconfigurable processors this means that each task speci-
fies the SIs that it uses. Additionally, each task provides information on what performance

24

3.2. InvasIC - Hardware Architecture

improvement (speedup) can be expected, depending on the size of the reconfigurable fabric
that is assigned to it. A run-time system then decides which task obtains what share of the
reconfigurable fabric.

The reconfigurable fabric is shared among several tasks and thus, the ISE of a partic-
ular task has to cope with an at compile-time unknown size of the reconfigurable fabric.
The approach of so-called modular SIs allows for providing different trade-offs between the
amount of required hardware and the achieved performance by breaking SIs into elemen-
tary reconfigurable data paths (DPs) that are connected to implement an SI. A SI may be
realized by multiple SI implementations, typically differing in their hardware requirements
and their performance. Modular SIs are composed of DPs, where typically multiple DPs
are combined to implement an SI. Depending on the provided amount of DPs, the SI can
execute in a more or less parallel way. When more DPs are available, then a faster execution
is possible (that corresponds to a different implementation of same SI). Dynamically chang-
ing between these different performance-levels of an SI implementation allows reacting on
changing application requirements or changing availability of the reconfigurable fabric.

To request a share of the reconfigurable fabric, the task issues an invade call. This selects
a share of a resource and grants it to the task. A part of reconfigurable fabric of the i-Core
is assigned to the task. The size of the assigned fabric depends on the speedup that the ap-
plication is expected to exhibit. Generally, the more fabric is available to the task, the higher
the speedup, but the expected speedup for a given amount of fabric is task-specific. During
execution of invade, the run-time system will use the speed-up information provided, to de-
cide which share of the fabric will be granted to the task. In the worst case, the application
will receive no fabric at all (due to heavy load from other tasks).

After the run-time system has decided which SI implementations to use, the application
can start using the accelerators on the reconfigurable fabric by issuing the infect call. Recon-
figuration of the FPGA fabric occurs in parallel to the task execution, allowing the applica-
tion to continue processing without waiting for the fabric to finish loading. After completing
execution of a particular kernel, an entirely different set of SIs may be executed on the same
share of the fabric attained by the task during its initial invade call. The fabric must, however,
be prepared for execution of the new SIs. The presence of an adaptive instruction set archi-
tecture and adaptive micro-architecture allows optimizing performance relevant character-
istics of the i-Core to task-specific requirements. This makes the i-Core especially beneficial
in multi-tasking scenarios, where different tasks compete for the available resources.

3.2.4. Tightly Coupled Processor Array (TCPA)

Computer vision applications require high computing power to deal with the increasing
complexity of the algorithms and the high pixel rates [68]. Moreover, it is important to
process the input data and analyze the results in real-time, due to an uncontrolled and con-
tinuously changing environments, for e.g. robotic maneuver. One way to achieve better per-
formance is to implement them on Massively Parallel Processor Arrays (MPPAs) rather than
on conventional general-purpose cores like LEON3. Low level pixel processing algorithms
with massive inherent parallelism highly benefit from such massively parallel architectures
and consequently the processing time can be significantly reduced [52].

25

3. Invasive Computing

It is expected that the number of cores on an MPPA will continue to double every 18
months. It can be foreseen that MPPAs in the year 2020 and beyond can incorporate 1000s
of processing elements (PE) on a single chip [69]. Tightly coupled processors arrays (TCPA)
are highly parametrized coarse-grained processor array templates, which can be used in
multimedia and wireless applications that require real-time or near real-time processing
speeds [70]. TCPAs consist of an array of tightly-coupled lightweight processor elements [71].
The main advantage of the TCPA architectures is the possibility of partial and differential re-
configuration. Instruction level parallelism is employed by a VLIW architecture as shown
in Figure 3.6. The next level of parallelism consists of multiple processing elements (PEs)
working together. Such architectures are well suited as domain-specific companions in an
MPSoC for acceleration of nested loop programs from digital signal processing and multi-
media applications. Different configurations can be loaded (both program and interconnect)
in the configuration memory and a reconfiguration manager can configure the array at run-
time. Different application can be executed on the same array.

���

�
��

��
	

�
�

�
�
�
��
��

�
��	
�

�
��
��

�
�

� �����
�� ��

� 	���

�� ��� ��� �

� ��
����� � � ��

�����	
��

�
�

�

�
��

��
	

�
�

���

� ���� 	
� �

�
�

�

�
���� 	

� �

� � �

� ��� � � ��� � � ��� ���� ���������
����� ��

��� �� � � ��� ���� �� ���� � ��������
����� ��

�
��

�
�

��
��

�
�

��
�
��

��
�

��
��

��
��

��
��

��
�

�

��

�
�����

�

��

�����
��������
�������

� ��
����� � � ��
� � ��� ��� �
 ����
� ����

� ���

��� �� � ����
�� � ��
���

��!! ��!" ��!# ��!$

��"! ��"" ��"# ��"$

��#! ��#" ��## ��#$

��$! ��$" ��$# ��$$

Figure 3.6.: Structure of a processing element within the TCPA

The TCPA may consist of heterogeneous PEs. For instance, some of the processors at the
borders might include extra functionality for the purpose of address generation. The PEs
in the array are interconnected by a circuit-switched mesh-like interconnect with a very low
latency, which allows data produced in one PE to be used already in the next cycle by a
neighboring PE.

An interconnect wrapper encapsulates each PE and is used to describe and parameterize
the capabilities of switching in the network. The wrappers are arranged in a grid fashion
and may be customized at compile time to have multiple input/output ports in the four
directions, that is, north, east, south, and west. Using these wrappers, different topolo-
gies between the PEs like grid and other systolic topologies, but also (higher-dimensional)
topologies such as torus or 4D hypercube can be implemented and changed dynamically.
To define all possible interconnect topologies, an adjacency matrix is given for each inter-

26

3.2. InvasIC - Hardware Architecture

connect wrapper in the array at compile time. Each matrix explains how the input ports
of its corresponding wrapper and the output ports of the encapsulated PE are connected to
the wrapper output ports and the PE input ports, respectively. If multiple source ports are
allowed to drive a single destination port, then a multiplexer with an appropriate number of
input signals is generated. The select signals for such generated multiplexers are stored in
configuration registers and can therefore be changed dynamically. By changing the values
of the configuration registers in an interconnect wrapper component, different interconnect
topologies can be implemented and changed at runtime [71]. Two different networks, one
for data and one for control signals, can be defined by their data width and number of ded-
icated channels in each direction. For instance, two 16-bit channels and one 1-bit channel
might be chosen as data and control network respectively. Note that the data and control
path width for the other architectural components such as functional units and registers is
deduced from the selected channel bit widths.

As shown in Figure 3.6, a PE itself is again a highly parameterizable component with a
VLIW (Very Long Instruction Word) structure. Here, different types and numbers of func-
tional units (e.g., adders, multipliers, shifters, logical operations) can be instantiated as sepa-
rate functional units which can work in parallel. The size of the instruction memory and reg-
ister file is also parameterizable. The processing elements are weakly programmable since
the functional units have only a reduced instruction set that is domain specific, tailored for
one field of application. Additionally, the control path is kept very simple (no interrupt
handling, multithreading, instruction caching, etc.), and only single-cycle instructions and
integer arithmetic are considered. Consequently, no interrupt, exception, data or instruction
cashes, and multi-threaded execution is supported by PEs. A highly parameterizable reg-
ister file for each PE is provided to store data and control signals and also the results from
various functional units. Furthermore, the register file contains input FIFO buffers in order
to store incoming data and control signals to the PE. Using the run-time reconfigurable in-
terconnect structure, different user-defined interconnection topologies can be implemented
between PEs. The interconnection structure is made of point-to-point connections among
PEs which allows them to pass data and control signals without communication delay. In
order to optimize the configuration periods of an array, a set PEs sharing a same property
for their program and interconnection configuration may be grouped into one domain.

In order to feed the data, array consists of in/out buffers/FIFOs at the four sides of the
array, as shown in Figure 3.7. Address generators are used to fetch the correct data from the
main memory and load it to the buffers. A Global controller takes care of the execution of
the loop program by sending different control signals to the array.

Typically, applications are statically mapped in a spatially or temporally partitioned man-
ner on such array processors. To overcome this rigidity, the TCPA support at hardware level
the ideas of Invasive Computing such as resource exploration and management. For this
purpose, new controllers were integrated in each PE of a TCPA to enable extremely fast
and decentralized resource allocation [72]. Additionally, these invasion controllers enable
hierarchical power management in TCPAs [73].

In a typical invasion scenario, an application which has started on an MPSoC system can
use the TCPA to execute loop programs. During this process, the application can claim
(invade) available PEs and execute (infect) the program and release (retreat) the PEs after exe-
cution.

27

3. Invasive Computing

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

CPU

iCore

MemoryMemoryMM

TCPA

CPU

CPU

NoC

Router

NoC

Router
NoC

Router

NoC

Router

NoC

Router

NoC

Router

NoC

Router
NoC

Router

NoC

Router

N
A N

A Memory
N
A

N
A

N
A

N
A

N
A Memory

N
A

N
A

AHB

Conf. & Com.
Processor
(Leon3)

IRQ
Ctrl.

GC

AG GC

AG

GC

AG GC

AG

C
o

n
fi

g
u

ra
ti

o
n

 M
a

n
a

g
e

r PE

B
u

ff
e

rs

B
u

ff
e

rs

Buffers

Buffers

PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Figure 3.7.: Tightly Coupled Processor Array (TCPA) Architecture [9]

3.2.4.1. Application mapping on TCPA

TCPA can be shared by various applications as shown in Figure 3.8. In this example an image
filter application shares the processor array with three other applications. The PEs free for
invasion are colored in white. The image filter (green colored region) can choose different
regions within the TCPA as shown in Figure 3.8, based on its computing requirements.

Any application running on the TCPA, begins its execution on a single PE as in a single-
core processor. As it reaches a stage for parallel execution, the application starts looking
for more resources in the neighborhood with the help of resource exploration controller,
embedded within its PE (master PE). Based on the resource requirements a certain amount
of resources will be acquired (invaded) by this PE. It then proceeds execution in parallel
on the invaded PEs. Finally when the operation completes the master PE releases (retreat)
the invaded resources allowing other applications to use those PEs, if required. The idea of
Invasive Computing is demonstrated using Figure 3.9. Figure 3.9(a) represents an invasion
carried out by an application running on a single PE, which is in need for 8 other PEs to
spread its computations. This figure also represents a 2nd application which was already
running on the TCPA.

Figure 3.9(b) shows the resources invaded by the first application and a retreat operation
by the 2nd application, as no more parallelism is available within that application. Later
the first application performs a retreat upon completing its parallel execution, as shown in
Figure 3.9(c). Subsequently, this application once more requests for more resources as shown
in Figure 3.9(d), but with greater resource requirements this time. Thus through Invasive

28

3.3. OctoPOS - A Resource-aware Operating System

PEs invaded for Image filtering

Other unknown applications

Figure 3.8.: Various possible invasions within a shared TCPA for image filtering application

Computing the applications release resources immediately after parallel execution, enabling
resource sharing across various applications running on the TCPA.

3.3. OctoPOS - A Resource-aware Operating System

To support this idea of self-adaptive and resource-aware programming, not only new program-
ming concepts, languages, compilers, and operating systems need to be developed, but also
revolutionary architectural changes in the design of MPSoCs (multiprocessor systems-on-a-
chip) to efficiently support invasion, infection, and retreat operations. OctoPOS [74] is an
operating system (see Figure 3.10) specifically designed to support Invasive Computing, is
presented in this section.

29

3. Invasive Computing

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

(a) Invasion stage-1

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� ��

�� �� ��

�� �� ��

(b) Invasion stage-2

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

��

��

�� ��

�� �� ��

�� �� ��

(c) Invasion stage-3

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

��

��

(d) Invasion stage-4

Figure 3.9.: Invade and retreat operations inside the TCPA

30

3.3. OctoPOS - A Resource-aware Operating System

LEON3 TCPA

ApplicationsInvasive SW

OctoPOS

Agents

(Resource
Manager)iRTSS

CiC Monitorsi-NoC
Invasive HW

i-Core

Figure 3.10.: Various layers forming Invasive Computing programming model

3.3.1. The Invasive Programming Model

In Invasive Computing, parallelism is expressed in the form of i-lets: light-weight units of
execution which consist of a snippet of code that can be executed in parallel to other i-lets,
and the data on which it operates. Compared to classical threads, i-lets are significantly more
efficient to create and dispatch, and can implement parallelism in a far more fine-grained
way.

hints.add(scalabilityCurve())

hints.add(PECount(4))

claim = invade(hints)

n = claim.numberOfPEs

input[n] = splitInput(n)

for (i in 0..n) {

 ilet.setData(input[i])

 ilet.setCode(doWork)

 team.add(ilet)

}

claim.infect(team)

team.await()

collectResults()

claim.retreat()

invade

assort

infect

await

retreat

tcpaData = splitData(TCPA,

 numberOfTCPAsInClaim)

iCoreData = splitData(iCore,

 numberOfiCoresInClaim)

tcpaTeam.setType(TCPA)

foreach numberOfTCPAsInClaim {

 t_ilet.setData(tcpaData[i])

 t_ilet.setCode(tcpaDoWork)

 tcpaTeam.add(t_ilet)

}

iCoreTeam.setType(iCore)

foreach numberOfiCoresInClaim {

 i_ilet.setData(iCoreData[i])

 i_ilet.setCode(iCoreDoWork)

 iCoreTeam.add(i_ilet)

}

assort

Figure 3.11.: Application flow in an invasive program (left) and assort phase with a hetero-
geneous claim (right) [8]

Figure 3.11 shows an exemplary application flow in an invasive program. First, during the
invade phase, the application expresses a request for a set of resources through hints given to
the runtime system. In the example, it specifies that it would like to acquire four processing

31

3. Invasive Computing

elements, and give an estimate as to how well it would scale if it were to receive fewer or
more processing elements. The system then decides, according to the global system state,
which resources to assign to the application, and returns a claim describing these resources.

In the assort phase that follows, the application adapts itself according to the contents of
the claim by assorting a so-called team of i-lets. In a simple scenario, the application creates
at least one i-let for each reserved processing element to provide maximal system utilization.

The resources of the claim can then be infected with the assorted team, leading to the
execution of the team’s i-lets. Once the execution has finished, the results can be collected
and merged. The application may subsequently either reuse and adapt the claim for further
computations or retreat from it, releasing the associated resources.

The application can request different types of resources, such as LEON3, i-Core or TCPA,
in the invade phase. Depending on the structure of the application and its hints, a claim
can consist of one or more resource types. With multiple resource types assigned to the
application’s claim, the assort phase becomes more complex. In order to deal with the claim’s
heterogeneity, the application assorts different teams for each resource type. It splits the
input data depending on the proportion of each resource type in the claim and the expected
performance gain.

3.3.2. OctoPOS - Design Principles

OctoPOS [74] provides the necessary OS-level primitives and a scalable, efficient, low-overhead
execution environment for invasive-parallel applications. The primary raison d’être of OctoPOS
is the insight that, in practice, the multi-threading model implemented by contemporary op-
erating systems is far from light-weight: Performing a context switch already takes thou-
sands of CPU cycles, and creating a new thread even wastes tens of thousands of cycles. In
contrast, the goal of OctoPOS is to build a tailored operating system that cuts down on these
costs.

OctoPOS is designed for maximum scalability. On the one hand, this means being scalable
to systems with hundreds or even thousands of processing elements, on the other hand
scalability also has to encompass the application itself: OctoPOS has to be able to execute
applications that dynamically create lots of potentially parallel tasks on large many-core
systems. We tackle these requirements by employing the following design principles.

On a coarse level, scalability is achieved by composing the overall system out of several
independent OS instances. With respect to the invasive hardware architecture described in
Section 3.2, each tile of the many-core system runs its own OctoPOS instance. This approach
somewhat resembles the Multikernel presented in [75], but OctoPOS goes one step further
and does not rely on global cache coherency between instances. This increases scalability es-
pecially for large many-core systems, where cache coherency is getting increasingly difficult
to implement, becoming a bottleneck in the whole system. Instead, the operating-system
instances communicate with each other using special operations provided by the network-
on-chip that connects the different tiles.

Inside the OS instances, OctoPOS strives to improve scalability by relying solely on non-
blocking synchronization for implementing the key components of the application runtime

32

3.3. OctoPOS - A Resource-aware Operating System

TileBA

Hardware

Dispatcher

Application

OctoPOS

invade (...);
assort (...);
infect (...);
retreat (...);

Dispatcher

invade/retreat

Resource
manager

Execution
manager i-let

invade (...);
assort (...);
infect (...);
retreat (...);

invade/retreat

Resource
manager

Execution
manageri-let

TileBB

CPU
B0

CPU
BN-1

CPU
B0

CPU
BN-1

i-let i-let

NoCNoC

Figure 3.12.: Architectural overview of the invasive hardware/software stack [10]

environment. This includes, but is not limited to, all facilities that deal with resource alloca-
tion, task creation, execution and their synchronization.

Another constructive measure towards scalability is the tailoring of operating-system
functionality to the needs of the application, since providing superfluous features often leads
to unnecessary overhead during execution. One example of this is the preemption of run-
ning control flows: Invasive applications can have exclusive access to the hardware they
reserve, for example the processing elements. If this is the case, temporal isolation through
preemption mechanisms (for example, in order to prevent CPU monopolization by an appli-
cation) becomes superfluous.

3.3.3. OctoPOS - Architectural Overview

The overall system design of OctoPOS is depicted in Figure 3.12, exemplarily showing two
instances of OctoPOS running on two compute tiles.

The resource manager implements the basic invasive functions invade and retreat that are
used to create, manage and destroy claims containing processing elements on local or re-
mote tiles. The claims and the actual user program supplied to the execution manager as a
team of i-lets are then used as an input to infect to start execution. To provide an efficient ex-
ecution environment, i-lets are regarded as mostly run-to-completion functions that can run
in parallel. They are represented as a pair of pointers, one for the function to be executed
and one for the input data. Due to its run-to-completion semantics, an i-let leaves no runtime
state on the stack after it has terminated. The i-let descriptors are stored in processor-local
i-let queues and can be executed by the dispatcher like normal functions one after another on
the same execution context, without the need for an expensive context switch in between.
However, in the exceptional case that an i-let executes a blocking OS function (i.e., does not

33

3. Invasive Computing

run to completion), OctoPOS moves the current context to a waiting queue and transparently
provides a new execution context for the following i-lets.

Data dependencies between i-lets are expressed implicitly by means of synchronization
primitives in the code. These synchronization operations come in two variants:

• Blocking primitives use the above mechanism to stall the calling i-let as long as the
waiting condition holds.

• Infecting primitives schedule a new i-let as soon as the waiting condition is no longer
satisfied.

Programming errors or malicious code can lead to deadlocks or infinite loops, and there
are no guarantees that an application will terminate and release its resources. This can be
countered by assigning time budgets to applications and enforcing them using a watchdog
timer. However, dealing with misbehaving applications is not considered in the first phase
of the Invasive Computing project.

To cross tile boundaries, the network-on-chip provides dedicated operations which were
co-designed with the operating system. These operations allow OctoPOS to start i-lets on
a different OctoPOS instance residing on another tile, or to copy a block of data from one
tile to another. Applications can use these services via specific system calls to communicate
across cache-coherency boundaries.

In summary, OctoPOS is a scalable operating system that provides an efficient execution
environment for applications following the paradigm of Invasive Computing. OctoPOS was
used as a basis for the implementation of the resource-aware image-processing algorithms
described in Chapter 4.

34

4. Computer Vision Algorithms for

Humanoid Robots

In order to make robot autonomous, it is important that the robots can perceive the world
around them. Computer vision is interesting in this context as it provides a large set of
information about the changing environment. Through computer vision, the robot control
systems generate plans for the robot to evolve in the environment and search or manipulate
objects. Two different computer vision algorithm were used in this work to demonstrate
the benefits and restrictions of Invasive Computing. The first algorithm used is the object
recognition (described in Section 4.1) followed by optical flow algorithm (described in Sec-
tion 4.2).

4.1. Object Recognition

Figure 4.1.: Humanoid robot ARMAR recognizing objects around it

Object recognition is the task within computer vision of finding and identifying objects in
an image or video sequence. Object recognition in unstructured scenes is a challenging area
of ongoing research in computer vision. One important application lies in robotics, where
the ability to quickly and accurately identify objects of interest, is crucial for general-purpose
robots to perform tasks in unstructured everyday environments such as households and of-

35

4. Computer Vision Algorithms for Humanoid Robots

fices. Real world environments are highly cluttered, contain many occlusions and frequently
contain five or ten different objects in the same scene. Robots must often manipulate objects
in their environment, for example, grasping a juice bottle. This means that a robotic percep-
tion system needs to accurately localize objects after detecting them. Figure 4.1 shows the
humanoid robot ARMAR robot operating in such a cluttered environment. Additionally, for
a robot to react quickly to changes in its environment, a robotic perception system needs to
operate in real-time.

The development of image matching by using a set of local key-points can be traced back
to the work of Moravec [76]. He defined the concept of "points of interest" as being distinct
regions in images that can be used to find matching regions in consecutive image frames.
The Moravec operator was further developed by Harris and Stephens [77] who made it more
repeatable under small image variations and near edges. Schmid and Mohr [78] used Harris
corners to show that invariant local features matching could be extended to the general im-
age recognition problem. They used a rotationally invariant descriptor for the local image
regions in order to allow feature matching under arbitrary orientation variations. Although
it is rotational invariant, the Harris corner detector is however very sensitive to changes
in image scale so it does not provide a good basis for matching images of different sizes.
Lowe [79, 80, 81] overcome such problems by detecting the points of interest over the image
and its scales through the location of the local extrema in a pyramidal Difference of Gaus-
sians (DOG). The Lowe’s descriptor, which is based on selecting stable features in the scale
space, is named the Scale Invariant Feature Transform (SIFT). Mikolajczyk and Schmid [82]
experimentally compared the performances of several currently used local descriptors and
they found that the SIFT descriptors to be the most effective, as they yielded the best match-
ing results. Due to the high effectiveness of the SIFT descriptor, it has been used on the
ARMAR robot for object recognition. Experiments shows that the SIFT key-points features
are highly distinctive and invariant to image scale and rotation providing correct matching
in images subject to noise, viewpoint and illumination changes.

A technique to minimize the computational time of the SIFT algorithm was presented
in [11]. The algorithm in [11] computes features with high repeatability and very good
matching properties in real-time. Object recognition is performed by comparing the features
from the reference image with real-time input from a camera. The objects to be recognized
at run time are known beforehand and their features are stored in a database. At runtime,
the algorithm looks for matching features in the input frame to detect objects as shown in
Figure 4.2.

Figure 4.2.: Harris SIFT object recognition [11]

36

4.1. Object Recognition

The left sub-image is the real-time input from the camera mounted on the ARMAR-III
robot head [83], while the template stored in the database is shown on the right. In this
work, the object recognition algorithm (based on Harris corner detector and SIFT) presented
in [11] was used to analyze the performance benefits offered and challenges posed by the
heterogeneous MPSoC presented in Section 3.2.

CAM
Harris3
Corner

SIFT3Feature3
Extraction

SIFT3Feature3
Matching

Final3
Results

Frame3
Buffer

Stage-1 Stage-2 Stage-3

FPGA

Figure 4.3.: Data Flow

As shown in Figure 4.3, the algorithm in [11] consists of three main stages. The Harris
corner detection is used as the first stage, where a set of corner points are detected in the in-
put image (captured by the camera mounted on the robot). The coordinates of the detected
corners are then passed on to the second stage of the algorithm to extract SIFT features. In
this step, a SIFT feature is computed for every corner point in the input image. Finally the
SIFT features extracted from the image and compared to the SIFT features from the train-
ing image. In order to increase the speed of SIFT feature matching, a method based on
K-Dimensional Tree (kd-tree) has been used. A match count above a threshold value indi-
cates that the target object has been detected within the input image. The remainder of this
chapter explains the details of each stage within the object recognition algorithm, used on
the ARMAR robot.

4.1.1. Harris Corner Detection

Corner detection is an approach used within computer vision systems to extract certain
kinds of features and infer the contents of an image. A corner is the intersection of two
edges in an image. Since it is the intersection of two edges, it represents a point in which the
directions of these two edges change. Hence, the gradient of the image (in both directions)
have a high variation, which can be used to detect it. Corner detection is frequently used
in motion detection, image registration, video tracking, image mosaicing, panorama stitch-
ing, pattern recognition, etc. Corners are also used as robust image representation when
combined with feature descriptors for object recognition.

A fundamental step in these applications is the detection of corners which represent iden-
tifiable anchor points in the image. Several corner detectors exist today in literature and
comparative evaluations have shown that the Harris [77] (see Figure 4.4) and Shi-Tomasi [84]
detectors achieve some of the best results. Also, a wide range of real-time applications [85]
[86] [87] [88] have used Harris and Shi-Tomasi detectors.

37

4. Computer Vision Algorithms for Humanoid Robots

Figure 4.4.: Output from Harris Corner detection algorithm (detected corners are high-
lighted using green dots)

4.1.1.1. Basics of Corner Detection

This section provides a brief overview of the Harris and Shi-Tomasi corner detectors. To
detect corners, both algorithms test each pixel in the image by considering how similar a
patch centered on the pixel is to nearby, largely overlapping patches. If the pixel is in a
region of uniform intensity, then the nearby patches will look similar. If the pixel is on an
edge, nearby patches in a direction perpendicular to the edge will look different, but parallel
to the edge will result only in a small change. If the pixel is on a feature with variation in all
directions, then none of the nearby patches will look similar. The calculation is based on the
local auto-correlation function that is approximated by matrix M over a small window w for
each pixel p(x, y):

M =

[
∑w W(x)I2

x ∑w W(x)Ix Iy

∑w W(x)Ix Iy ∑w W(x)I2
y

]
=

[
a b
c d

]
(4.1)

Ix and Iy are horizontal and vertical intensity gradients, respectively, and W(x) is an aver-
aging filter that can be a box or a Gaussian filter. The eigenvalues λ1 and λ2 (where λ1 ≥ λ2)
indicate the type of intensity change in the window w around p(x, y):

1. If both λ1 and λ2 are small, p(x, y) is a point in a flat region.

2. If λ1 is large and λ2 is small, p(x, y) is an edge point.

3. If both λ1 and λ2 are large, p(x, y) represents a corner point.

Shi-Tomasi directly computes the smaller eigenvalue λ2 as its corner measure C as shown
in Equation (4.2):

C = λ2 =
(a + c)−

√
(a− c)2 + 4b2

2
(4.2)

38

4.1. Object Recognition

Harris combines the eigenvalues into a single corner measure R as shown in Equation (4.3),
which avoids the explicit computation of eigenvalues (k is an empirical constant with value
0.04 to 0.06).

R = λ1λ2 − k · (λ1 + λ2)
2 = (ac− b2)− k · (a + c)2 (4.3)

Once the corner measure is computed for every pixel, a threshold is applied on the corner
measures to discard the obvious non-corners. The rest of the pixels are then ranked in the
descending order of the corner measure. After applying the non-maximal suppression, the
pixels with the highest corner measures are then selected as corners.

4.1.2. SIFT Feature Extraction

This section describes the SIFT Feature Extraction algorithm used on the ARMAR robot.
As stated in [11], the SIFT descriptor is a very robust and reliable representation for the
local neighborhood of an image point. However, the scale-space analysis required for the
calculation of the SIFT feature point positions is too slow for visual servoing applications.
One of the main strengths of the SIFT features are their scale-invariance. This is achieved by
analyzing and processing the images at different scales. For this, a combination of Gaussian
smoothing and a re-size operation is used. Between two so-called octaves, the image size
is halved, i.e. re-sized to half width and half height. The different scales within an octave
are produced by applying a Gaussian smoothing operator, and the variance of the Gaussian
kernel is chosen in a way that the last scale of one octave and the first scale of the next octave
correspond to each other. Since the scale space analysis performed by the SIFT features
for calculating the feature point positions is the by far most time-consuming part, the idea
presented in [11] is to replace this step by a faster method, namely an appropriate corner
detector.

The Harris corner detector is a suitable starting point for the computation of positions
of scale and affine invariant features. At each interest point as obtained above, an image
descriptor is computed. The SIFT descriptor proposed by Lowe (1999, 2004) can be seen
as a position-dependent histogram of local gradient directions around the interest point.
To obtain scale invariance of the descriptor, the size of this local neighborhood needs to
be normalized in a scale-invariant manner. Now an orientation is assigned to each key-
point to achieve invariance to image rotation. A neighborhood is taken around the key-point
location depending on the scale, and the gradient magnitude and direction is calculated in
that region. An orientation histogram with 36 bins covering 360 degrees is created. The
highest peak in the histogram is taken and any peak above 80% of it is also considered to
calculate the orientation. It creates key-points with same location and scale, but different
directions.

Figure 4.5 illustration of how the SIFT descriptor is computed from sampled values of the
gradient orientation and the gradient magnitude over a locally adapted grid around each
interest point, with the scale factor determined from the detection scales of the interest point
and the orientation determined from the dominant peak in a gradient orientation histogram
around the interest point. In this example, a 16x16 neighborhood around the key-point is

39

4. Computer Vision Algorithms for Humanoid Robots

Figure 4.5.: Computation of SIFT descriptor from sampled pixels

taken. It is divided into 16 sub-blocks of 4× 4 size. For each sub-block, 8 bin orientation
histogram is created. So a total of 128 bin values are available. It is represented as a vector
to form key-point descriptor.

To obtain contrast invariance, the SIFT descriptor is normalized to unit sum. In this way,
the weighted entries in the histogram will be invariant under local affine transformations of
the image intensities around the interest point, which improves the robustness of the image
descriptor under illumination variations.

The SIFT descriptors computed using the above technique are invariant to image scaling,
rotation, change in illumination and camera viewpoint. They are well localized in both the
spatial and frequency domains, reducing the probability of disruption by occlusion, clutter,
or noise. SIFT descriptors have been shown to be well suited to image matching and recog-
nition as well as to many applications as they are robust to occlusion, background clutter
and other content changes.

4.1.3. SIFT Feature Matching

For object recognition, every SIFT feature extracted from the real-time input image (captured
by the camera mounted on the head of the robot) has to be compared with the SIFT features
extracted from the training image. The number of SIFT features in the real-time input image
may vary from time to time based on the nature of the objects present in the frame. In a
typical application, a large number of SIFT descriptors extracted from one or many images
are stored in a database. Generally it varies from few hundred features to thousand or more
features in a cluttered scene. A query usually involves finding the best matched descriptor
vector(s) in the database to a SIFT descriptor extracted from a query image. Comparing each
SIFT feature (from the real-time input) with every feature in the training image is an ex-
tremely compute intensive process. In order to increase the speed of SIFT feature matching,
a method based on KD-tree has been presented in [89]. KD-tree (which is a form of balanced
binary search tree) is a useful data-structure for finding nearest-neighbors of various image
descriptors.

A kd-tree is a binary tree in which every node is a k-dimensional point. Every non-leaf
node generates a splitting hyperplane that divides the space into two subspaces. Points left

40

4.1. Object Recognition

y ≥ y
1

y < y
1

Figure 4.6.: Construction of KD-Tree (recursively build a kd-tree in the right half-space by
picking the some point and splitting the data horizontally through it)

to the hyperplane represent the left sub-tree of that node and the points right to the hyper-
plane by the right sub-tree. The hyperplane direction is chosen as follows: Every node split
to sub-trees is associated with one of the k-dimensions, such that the hyperplane is perpen-
dicular to that dimension vector. For example, if a particular split the x-axis is chosen, all
points in the sub-tree with a smaller x value than the node will appear in the left sub-tree
and all points with larger x value will be in the right sub-tree (see the example shown in
Figure 4.6). The canonical method of kd-tree construction has the following constraints:

1. As one moves down the tree, one cycles through the axes used to select the splitting
planes.

2. Points are inserted by selecting the median of the points being put into the sub-tree,
with respect to their coordinates in the axis being used to create the splitting plane.

This method leads to a balanced KD-tree (as shown in Figure 4.7), in which each leaf node
is about the same distance from the root.

Figure 4.7.: A completely constructed KD-Tree

41

4. Computer Vision Algorithms for Humanoid Robots

Figure 4.8.: Result from Harris-SIFT based object recognition technique

4.1.3.1. Nearest Neighbor Search Algorithm

In order to find matching SIFT features a technique known as Nearest neighbor search is
used. Nearest neighbor search is an important component in many computer vision appli-
cations. At the first level (root) of the tree, the data is split into two halves by a hyperplane
orthogonal to a chosen dimension at a threshold value. Generally, this split is made at me-
dian in the dimension with the greatest variance in the data set. By comparing the query
vector with the partitioning value, it is easy to determine to which half of the data the query
vector belongs. Each of the two halves of the data is then recursively split in the same way
to create a fully balanced binary tree. At the bottom of the tree, each tree node corresponds
to a single point in the data set; though in some implementation, the leaf nodes may contain
more than one point. The height of the tree will be log2 N, where N is the number of points
in the data set. Given a query vector, a descent down the tree requires log2 N comparisons
and leads to a single leaf node. The data point associated with this first node is the first
candidate for the nearest neighbor. The first candidate will not necessarily be the nearest
neighbor to the query vector; it must be followed by a process of backtracking, or iterative
search, in which other cells are searched for better candidates. The recommended method is
priority search in which the cells are searched in the order of their distance from the query
point. This may be accomplished efficiently using a priority tree for ordering the cells; in
which the cells are numbered in the order of their distance from the query vector. The search
terminates when there are no more cells within the distance defined by the best point found
so far. In high dimensions to find the nearest neighbor may require searching a very large
number of nodes. This problem may be overcome at the expense of an approximate answer
by terminating the search after a specified number of nodes are searched (or earlier if the
search terminates).

A sample output from the algorithm mentioned above is shown in Figure 4.8. The in-
put image contains three different object and a cluttered background resulting in numerous
Harris corners (marked in green). SIFT descriptors were computed at every corner point and
matched with the descriptors extract from the training image. The matched descriptors are

42

4.2. Optical Flow

circled in blue. A match count above the threshold value leads to a positive result and the
detected object is marked using a bounding box.

In addition to the object recognition algorithm, this work also utilize another algorithm
called optical flow to demonstrate the befits of Invasive Computing. The details of the optical
flow algorithm is presented in Section 4.2.

4.2. Optical Flow

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in
a visual scene caused by the relative motion between an observer (an eye or a camera) and
the scene. Currently, optical flow plays an increasingly important role in the robotics domain
where Optical flow techniques can be used for motion detection, object segmentation, time-
to-collision and focus of expansion calculations, motion compensated encoding, obstacle
avoidance [90], etc.

Figure 4.9.: Optical flow definition

Optical flow determine the correspondences between consecutive images as shown in
Figure 4.9. In other words, pixels from frame (t) have to be identified in frame (t + 1) and si-
multaneously where they are changed. From the original coordinates (xa, ya) to the changed
coordinates (xb, yb) a vector can be drawn, defined as motion vector.

The optical flow computation can be done in different ways. One of them is using census
transformation as described in [91]. The optical flow computation using census transfor-
mation involves two stages. To obtains the information about pixel motion between two
consecutive frames, a signature is generated for every pixel in frame (t). The signatures
are generated by comparing the pixel value of the current pixel to every other pixel in the
neighborhood, as shown in Figure 4.10.

43

4. Computer Vision Algorithms for Humanoid Robots

frame 1 (t=0 ms): frame 2 (t=32 ms) :

>

< <

<<

x

Pixel-Index:

11000010

x> <

> < <

01110100

Pixel-Index:

Figure 4.10.: Census transformation

Figure 4.11.: Output from Optical flow algorithm

Then the signatures of pixel p in frame (t) is compared to signature of pixels in frame
(t+1). Two pixels (one from frame (t) and another from frame (t+1)) correspond to each
other if their signatures match. In that case, one pixel is known as the correspondence of
the another one. Figure 4.11 shows a sample output from optical flow algorithm. The flow
vectors around the moving car indicates its velocity. The flow vectors on the background are
just dots representing zero motion (static camera).

44

5. Resource-Aware Algorithms

Humanoid robots fulfill many different tasks during operation including recognizing ob-
jects, navigating towards a goal region, avoiding collisions, maintaining balance, planning
motions, having conversations, and many more. Additionally they have to work in a highly
dynamic and ever changing human centered environments. Taking a closer look, all of these
tasks have different requirements depending on their objectives. Some tasks are computa-
tionally or data-flow intensive and some are control flow intensive. Some are continuously
running at a specific frequency while others are doing their work asynchronously triggered
by external events.

Robot-specific tasks need to be executed on the hardware built into the robot. Current
humanoid robot control architectures share similar hardware setups consisting of one or

Task Planning Task Execution

Task
Coordination

1.6 GHz
IPC

933 MHz
PC/104

933 MHz
PC/104

2 GHz
PC/104

1.6 GHz
IPC

Figure 5.1.: Conventional compute units used on the ARMAR robot (left) and the newly pro-
posed MPSoC architecture (right)

45

5. Resource-Aware Algorithms

more industrial PCs equipped with single- or dual-core processors, as shown in Figure 5.1.
Timely execution of tasks is guaranteed as the underlying hardware is selected to be able
to cope with worst case requirements. Usually tasks are distributed and mapped onto a
number of PCs, making migration of tasks between PCs difficult. Each compute unit is used
only when the robot performs a task mapped to that compute unit or CPU.

Merging the various tasks on to a unified computing platform like an MPSoC (as shown
in Figure 5.1) can offer several advantages including easy task migration, better communica-
tion bandwidth between processing units, reduced power consumption by avoiding off-chip
interconnects, etc. Furthermore, in order to leverage the capabilities of today’s robots it is
desirable to make use of the abundant computing power offered by MPSoCs by executing
many independent tasks in parallel. On the other hand, however, the mapping of various
tasks onto a unified MPSoC automatically results in sharing of physical resources like PEs
and interconnect/memory bandwidth between the once separated tasks. A common prac-
tice as of now is to do static resource allocation at compile time as described in [92]. How-
ever, static allocation schemes does not achieve the best resource utilization as the applica-
tions cannot share compute resources. Here, often changing requirements lead to under-
utilization since resources are often occupied while not performing any work.

Another approach to distribute the workload onto the numerous available resources is
to use an operating systems with support for symmetric multiprocessing (SMP), like on the
Intel’s SCC. However, they need very complex and sophisticated application mapping and
thread scheduling algorithms in order to achieve good performance figures and tend to face
scalability issues [93]. Another disadvantage is the required hardware homogeneity (no
specialized hardware possible).

For a humanoid robot like ARMAR, various applications have to run on the MPSoC in
order to achieve a complex task. For example, the various algorithms combined to perform
an object grasping is shown in Figure 5.2.

Object Grasping

Speech recognition

Motion planning Speech Synthesis

Object recognition

Figure 5.2.: Various algorithms combined to perform object grasping

Each algorithm has its own computing power requirements to produce results within a
specified time and to ensure a smooth operation of the robot. Sharing of resources amoung

46

various applciation running concurrently may lead to unpredictable execution time and
poor quality results. This issue is demonstrated below using the example of Harris Corner
detection algorithm.

Corner detection is often employed as the first step in computer-vision applications with
real-time video input. Hence, the application has to maintain a steady throughput and good
response time to ensure quality results. However, the presence of other high-priority tasks
may alter the behavior of the corner-detection algorithm. To evaluate such a dynamically
changing situation, we analyzed the behavior of the conventional Harris detector on an MP-
SoC with 32 PEs. In the first model (Figure 5.3, left) the Harris Corner detection algorithm
was scheduled statically on 9 PEs. A video input with 640 × 480 pixels at 10 frames per
second was used, with the test running for 20 seconds.

HCD:
Conventional,

Static Mapping

Conventional OS

Many-core HW

HCD:
Conventional,

Dynamic Mapping

Conventional OS

Many-core HW

Audio

Figure 5.3.: Evaluation model for Harris Corner detection with dedicated HW (left) vs.
shared HW (right)

In order to evaluate the impact of other applications running concurrently on the MP-
SoC system, an audio processing application was used, as shown on the right hand side
in Figure 5.3. The audio processing application creates dynamically changing load on the
processor based on what the robot is doing at that point in time. For instance, the speech-
recognition application is activated when the user speaks to the robot. The conventional
OS scheduler schedules the threads of the applications based on the overall system load.
Figure 5.4 shows the number of PEs allocated to the Harris Corner detection application at
runtime. Sharing of available resources resulted in the execution-time profile shown in Fig-
ure 5.5. It can be seen that the execution time varies from 0 to 430 milliseconds, based on the
load condition. A lack of sufficient resources leads to very high processing intervals or frame
drops (a processing interval of zero represents a frame drop). The number of frames dropped
during this evaluation is as high as 20% and the worst-case latency increased by 4.3× (100
milliseconds to 430 milliseconds). Frame drops reduce the quality of the results and the

47

5. Resource-Aware Algorithms

robot may lose track of the object if too many consecutive frames are dropped. Figure 5.5
shows the execution-time profile based on the resource allocation scheme in Figure 5.4.

0

4

8

12

16

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

C
o

re
 c

o
u

n
t

Frame No.

Static

Dynamic

Figure 5.4.: Variation in available resources for Harris Corner detection [12]

0

100

200

300

400

500

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

Ex
ec

u
ti

o
n

 t
im

e

Frame no.

Static

Dynamic

Figure 5.5.: Variation in processing interval based on available resources [12]

Within the resource-aware application model, every application program perform the
steps as shown in Figure 5.6 in order to spread its computations to neighboring PEs and to
achieve its throughput constrains like frames-processed/second (fps). As a results every ap-
plication program knows in advance (after the invade phase and before the infect phase), the
amount of computing resources (for example the number of PEs) allocated by the OctoPOS
for that invade request. This information may be used by the application program to adapt
its workload at runtime. The rest of this section explores the possibilities, benefits and re-
strictions of extending conventional algorithms like Harris Corner detection, SIFT feature
matching, etc., into resource-aware models. The following sections also demonstrate how
the resources are claimed and how the processing interval can be constrained to guarantee
consistent throughput and processing intervals.

start invade infect retreat exit

Figure 5.6.: Structure of an invasive program

5.1. Resource-Aware Corner Detectors

Corner detection is a fundamental step in various computer vision applications as the de-
tected corners represent identifiable anchor points for further processing. Corners are also

48

5.1. Resource-Aware Corner Detectors

used as robust image representation when combined with feature descriptors for object
recognition. Several corner detectors exist today in literature and comparative evaluations
have shown that the Harris [77] and Shi-Tomasi [84] detectors achieve some of the best re-
sults. Also, a wide range of real-time applications [85] [86] [87] [88] have used Harris and
Shi-Tomasi detectors. A brief overview of the corner detection algorithm is available un-
der 4.1.1.1.

5.1.1. Conventional Approach Towards Faster Corner Detection

Independent of the algorithm used, corner detection is a compute-intensive step. Two dif-
ferent approaches have been used to increase the throughput of corner detection. The first
approach focuses on hardware accelerators or graphics processing units (GPUs) to acceler-
ate the conventional algorithm while the second employs algorithmic techniques to reduce
the computational complexity. A high throughput can be guaranteed using hardware ac-
celerators based on field-programmable gate arrays (FPGAs). However, FPGAs offer rather
little flexibility and require very high effort in terms of design, implementation and verifica-
tion. GPUs, on the other hand, are very powerful and provide significant acceleration over
small multi-core processors, but they consume very high power and require data transfers
between the processor and the hardware accelerator, which increases overall latency.

Hence, a more suitable approach is algorithmic optimization, which includes a pruning
technique based on gradient magnitude that selects pixels with a high gradient magnitude as
corner candidates for the Shi-Tomasi and Harris algorithms [94]. Another pruning technique
to reduce the computational complexity of the conventional Harris detector is described
in [95]. This technique relies on the fact that in most situations, the obvious non-corners
constitute a large majority of the image. Hence the corner detectors incur a lot of redundant
computations as they evaluate the entire image for a high corner response. Such a scenario
is depicted in Figure 5.7 where the background wall does not contain an corners while the
foreground has several corners. The conventional Harris Corner detection algorithms does
not distinguish between plain and cluttered region and hence they encounter redundant
computations. Section 5.1.2 describes how the conventional corner detectors were extended
to resource-aware models making use of the Invasive Computing methodology.

5.1.2. Extension to a Resource-Aware Model

The threshold-based pruning technique in [94] was extended to a resource-aware pruning
technique in order to control the workload for the corner detection based on available re-
sources on the MPSoC. In the first step, the algorithm considers the corner point as the junc-
tion of two or more edge lines. One important property of such a point is that it has a high
gradient change in more than one direction. A corner response (CR) function can be defined
from the above property as:

CR =
(
|Ix| ·

∣∣Iy
∣∣) (5.1)

49

5. Resource-Aware Algorithms

Region with corners

Region without corners

Figure 5.7.: Harris corner detection (foreground and background pixels)

where Ix and Iy are the horizontal and vertical pixel-intensity derivatives. If CR is greater
than a predefined gradient threshold, the pixel is a corner candidate and should be retained
for processing in the subsequent steps. This pruning technique is visualized in Figure 5.8,
where the image on the left is a preprocessed image where every pixel is computed using
Equation (5.1). Applying a threshold on the CR values results in the image on the right
(Figure 5.8). Any pixel with value above the threshold is set to a value of "255" (white) and
the remaining pixels gets the value "0" (black). The resulting image can now be used as a
mask for the rest of the harris-map computations.

Before threshold After threshold

Region with corners

Region without corners

Figure 5.8.: Pruning technique used in resource-aware Harris Corner detection

50

5.1. Resource-Aware Corner Detectors

This technique ensures that the non-corner pixels are removed prior to more intensive
processing. From (4.3), R is most influenced by the term (ac − b2) as the two (a + c) terms
cancel out. For a good corner, R needs to be a large value. Therefore, maximizing (ac− b2)
can select good corners without explicit eigenvalue computation. Hence, the new algorithm
successively reduces the number of candidate corners at every step to minimize the compu-
tational effort. In the next step, an intermediate corner non-maxima suppression is applied
to reduce the effect of false corners caused by multiple responses of the gradient operator.
All candidate corners from the previous steps are further assessed through computing the
eigenvalues as in the conventional Harris (4.3) or Shi-Tomasi detector (4.2). Finally, a non-
maxima suppression is applied to suppress the corners that are close to each other.

Some of the challenges posed by the conventional corner detector on an MPSoC can be
resolved using the pruning technique described above. The main idea and novelty of the
resource-aware corner detector is that the threshold for pruning is based on the available re-
sources. This means that the new detector can control the workload by changing the thresh-
old. In situations where the system is under-utilized, the threshold can be reduced, whereby
more pixels will be processed and a higher accuracy will be achieved. On the other hand,
increasing the threshold can prune away more pixels when the processing system is heavily
loaded by other high-priority tasks.

Figure 5.10 shows the relation between the threshold and the processing interval (pixels
processed). The results were captured by applying the pruning technique on six different
video sequences as shown in Figure 5.9 (each video sequence consists of 200 frames).

Bricks Kitchen Corridor

Window Bunny Cereal

Figure 5.9.: Snapshots of the video sequences used for evaluation [10]

In order to evaluate the impact of pruning on the accuracy of detected corners, we use
the metrics named precision and recall as proposed in [96]. Results indicate that the effects of
pruning vary based on the scene. For instance, the speedup achieved (using the same thresh-
old) is low for cluttered scenes like Bricks while the majority of the pixels can be pruned away
for scenes with plain backgrounds (e.g., the moving cereal box). Figure 5.10 also shows the

51

5. Resource-Aware Algorithms

relation between threshold and accuracy (average of precision and recall rates) for all six
video sequences, plotted independently of each other. Hence, the amount of computing re-
sources required to perform the corner detection will vary from one scene to another based
on the nature of the foreground, background, and so on. Therefore, the resources have to
be allocated on a frame-to-frame basis, based on the scene captured. Section 5.1.3 explains
the technique used to estimate resource demands based on application requirements, how
to allocate and release these resources at runtime, and how to adapt to available resources at
runtime.

0

20

40

60

80

100

0 5 10 15 20 25

Ex
ec

-t
im

ey
(m

ill
is

ec
o

n
d

s)

Threshold

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15 20 25

A
cc

u
ra

cy

Threshold

Brick

Bunny

Corridor

Kitchen

Cereal

Window

Figure 5.10.: Effects of pruning on execution time and accuracy for Harris detector [10]

5.1.3. Resource Allocation and Workload Distribution

The first step within the algorithm is to allocate sufficient resources to perform corner detec-
tion within the interval specified by the user. As shown in Figure 5.10, a threshold around
4 offers a significant speedup without much loss in accuracy. This region is interesting for
most mobile platforms as the number of computations and hence power consumption can
be reduced by operating in this range.

Choosing a threshold of 4 means that the computing resources (PEs) needed by the algo-
rithm will vary over time. Figure 5.11 shows the PEs required for Harris Corner detection
with a pruning threshold of 4. As the percentage of pixels that can be pruned depends on
the nature of the scene, each scene type requires a different set of PEs. In some cases the PE
count varies within the scene type due to minor changes within the video sequences. For
example, as the object in the Kitchen scene moves towards the camera, the scene becomes
more cluttered, the algorithm cannot prune away as many pixels as in the previous frame
and hence to meet the deadline of 10 fps, the application has to invade more PEs.

The resource-aware corner-detection algorithm is structured as follows. The core algo-
rithm consists of five stages as shown in Figure 5.12. The first stage is called a resource-
estimation stage, where the image is pre-processed (differential-image and integral-histogram
computation) to estimate the PEs needed based on the scene type and the user-specified
deadline.

The analysis starts with the generation of a differential image, where each pixel is com-
puted using (5.1). In order to speed up the pruning logic within the algorithm, an integral
histogram is computed from the differential image as described in Algorithms 5.1 and 5.2,

52

5.1. Resource-Aware Corner Detectors

0

1

2

3

4

5

6

7

8

9

1 21 41 61 81 101 121 141 161 181

P
Eh

co
u

n
th

Framehno.

Brick

Bunny

Corridor

Kitchen

Cereal

Window

Figure 5.11.: Resource usage based on scene type (Harris detector using a threshold of 4) [10]

Resource
estimation

Workload
distribution

Corner
detection

invade

infect

retreat

Figure 5.12.: Flow diagram for the resource-aware corner detector [10]

where n is the total number of pixels to be processed, Idi f f is the differential image, dx and
dy are the horizontal and vertical pixel-intensity derivatives, limit is the maximum possible
value generated by (5.1) and H is the integral histogram computed from differential image.

Algorithm 5.1 Differential image

1: i← 0
2: h← 0
3: while i < n do
4: Idi f f (i)← |dx(i) · dy(i)|
5: h(Idi f f (i))← h(Idi f f (i)) + 1
6: i← i + 1
7: end while

Algorithm 5.2 Integral histogram
1: i← 0
2: H ← 0
3: while i < limit do
4: k← i
5: while k < limit do
6: H(i)← H(i) + h(k)
7: k← k + 1
8: end while
9: i← i + 1

10: end while

Once the integral histogram is computed, the values in the bin represent the number of
pixels to be processed by the algorithm when the threshold is set to histogram-bin-index.

In the next stage, an invade request is raised to allocate sufficient PEs using Equation (5.2):

Npe ≥
(n · Tprn) + (Ppix(th) · Tcd)

Texe · η(Npe)
(5.2)

53

5. Resource-Aware Algorithms

where Npe is the number of PEs needed for the computation, Tprn is the processing time per
pixel until the end of the pre-processing stage, Ppix is the number of pixels to be processed by
the upcoming stages (as computed by the pruning algorithm as a function of the threshold
value th), Tcd is the time to compute the final corner measure for pixels with corner response
(CR) above threshold and Texe is the processing interval. η(Npe) represents the algorithm’s
efficiency as a function of degree-of-parallelism or available resources. This term helps to
increase the accuracy of the resource-estimation model, as the execution time for corner de-
tection application does not decrease linearly with increasing degree of parallelism. This is
due to the fact that some parts of the algorithm (workload distribution, merging final re-
sults, etc.) are performed by a single i-let, in a sequential manner. Moreover, additional i-lets
created by the application also creates additional load on the external memory and shared
communication interfaces, limiting the scalability.

An analysis conducted on the proposed InvasIC hardware resulted in an efficiency graph
as depicted in Figure 5.13. From the graph it can be seen that when the number of i-lets is
increased from 1 to 2, the execution time does not improve by 2x, instead by 2×0.98 (98%),
that is, 1.96x. Using this graph, the efficiency factor for various levels of parallelism can
be computed. The values shown here are applicable only for the Harris Corner detection
implementation used in this work and may vary based on how the original algorithm is
implemented.

60
70
80
90

100

1 3 5 7 9 11 13 15Ef
fi

ci
en

cy
 (
�

)

PE Count

Efficiency

Figure 5.13.: Efficiency map for resource-aware Harris Corner detection on target HW [10]

For best results, the threshold value th can be set to zero, so that the algorithm will at-
tempt to process all pixels in the image. It should be noted that Tprn and Tcd may vary
depending on the actual implementation and the processor architecture. Hence these values
were estimated by profiling the application on the target platform. Once sufficient resources
are invaded, the workload-distribution stage can split the total workload into N i-lets (where
N = Npe) and move the individual workload data to the target tiles, through DMA opera-
tions over the i-NoC. This is followed by the infect operation which send the i-lets to perform
the corner detection based on the pre-calculated threshold value. The i-lets are scheduled
on the invaded PEs by OctoPOS. Each i-let computes the corner measure using (4.2) or (4.3),
depending on which type of corner detection algorithm is being used. Only those pixels
with corner response (CR) above the threshold value are processed by i-lets. The results
computed by each i-let is stored in local TLM and copied back to the source tile’s TLM, once
the entire workload is processed. Upon completion, the application can release the allocated
PEs (retreat) and retain execution on a single PE or perform a new invade request to allocate
PEs for the next frame.

Considering the current system load, OctoPOS makes a final decision on the number of
PEs to be allocated to the application. The PE count may vary from zero (if the system is too
heavily loaded and no further resources can be allocated at that point in time) to the total

54

5.1. Resource-Aware Corner Detectors

number of PEs requested (provided that a sufficient number of idle PEs exist in the system
and the current power mode offers sufficient power budget to enable the selected PEs). This
means that under numerous circumstances the application may end up with fewer PEs and
has to adapt itself to the limited resources offered by the runtime system. This is achieved
by increasing the threshold value th until the condition in (5.3) is satisfied.

Ppix(th) ≤
Npe · Texe · η(Npe)− (n · Tprn)

Tcd
(5.3)

Figure 5.14 shows the effect of increasing the threshold on a sample image (top left corner).
The pixels pruned away are represented using black color and the processed pixels in white.
As the pruning threshold is increased, more pixels are pruned away and hence more and
more regions in the resultant image turn black. This example also shows that the pruning
technique eliminates regions without corners (e.g., wall regions) while the regions with high
gradient values are retained for further processing.

Threshold = 32Threshold = 16Threshold = 8

Threshold = 4Threshold = 2Original Image

Figure 5.14.: Image samples demonstrating the pruning effect [10]

The modified flow diagram is depicted in Figure 5.15, where a new stage (adaptive thresh-
old calculation) is added after the resource-allocation stage. This stage helps the algorithm
to adapt to the available resource so that the probability of frame drops can be reduced even
when sufficient resources are not available.

The results from the resource-aware model are presented in Section 5.1.4, where the con-
ventional algorithm is compared against the resource-aware model.

55

5. Resource-Aware Algorithms

Resource
estimation

Workload
distribution

Corner
detection

Adaptive
threshold

calculation

retreat

invade

infect

Figure 5.15.: Flow diagram for threshold estimation based on available resources [10]

5.1.4. Results

This section presents the results obtained using the resource-aware corner-detection algo-
rithm and also provides a comparison with the conventional model. The conventional and
the resource-aware models were evaluated on the MPSoC hardware described in Section 3.2.
To analyze the problems arising from resource sharing, we examined the behavior of the
conventional Harris [77] and Shi-Tomasi [84] corner detectors on a MPSoC with a total of 16
PEs. A sequence of 200 VGA frames (640 x 480 grayscale) were processed by the application.
To evaluate the impact of other applications running concurrently on the MPSoC, we used
applications like audio processing or motor control. These applications create dynamically
changing load on the processor based on what the robot is doing at the current point in time.
For instance, the speech-recognition application is activated whenever the user speaks to the
robot and the motor control is activated when the robot has to move or grasp a recognized
object. A conventional operating-system (OS) scheduler schedules the threads of each ap-
plication considering the overall system load. As a result, the resources available to each
application may vary over time.

A fixed resource-allocation scheme was used, as shown in Figure 5.4, to ensure a fair
comparison. The corner-detection algorithm is programmed to run at 10 frames per second
(fps) and needs a minimum of 9 PEs. However, at various points in time, fewer PEs were
offered by the runtime system, leading to frame drops as the algorithm is running on real-
time video input. Frame drops reduce the overall accuracy of the corner-detection algorithm.
In order to evaluate the impact of frame drops on the accuracy of detected corners, we use
the metrics named precision and recall as proposed in [96]. The value of recall measures
the number of correct matches out of the total number of possible matches, and the value
of precision measures the number of correct matches out of all matches returned by the
algorithm. Results were captured for both Harris and Shi-Tomasi detectors and the variation
in accuracy values due to sharing of available resources is shown in Figure 5.16, with the
accuracy values computed using (5.4):

Ac(n) =

n
∑

i=1
Pr(n) +

n
∑

i=1
Re(n)

2n
(5.4)

Ac represents the average accuracy for n frames, Pr represents the precision and Re rep-
resents the recall values. The value of accuracy at any point is the average of the precision
and recall until that point in time.

56

5.1. Resource-Aware Corner Detectors

0.6

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141 161 181

A
cc

u
ra

cy
-(

A
c)

Frame-no.

Harris-conventional

Shi-Tomasi-conventional

Harris-resource-aware

Shi-Tomasi-resource-aware

Figure 5.16.: Comparison between the conventional and resource-aware models [10]

For the initial few frames, the accuracy stays at the maximum value of 1. However, for
the conventional mode, lack of sufficient resources results in an accuracy drop as shown
in Figure 5.16. At some instances, the overall accuracy reaches a very low value of 0.73 for
the Shi-Tomasi and 0.76 for the Harris detector. The lack of sufficient resources also resulted
in an overshoot in execution time, where, based on the load conditions, the execution time
increased by a factor of up to 4.3, as the processing of a single frame now takes 430 millisec-
onds (ms) instead of 100 ms. The number of frames dropped during the evaluation period
was as high as 22 percent. The overall accuracy dropped to 79 and 81 percent for Shi-Tomasi
and Harris detectors, respectively. This is a significant loss in accuracy for many real-world
applications of corner detection, like object recognition. Object recognition heavily relies on
the results of corner detection; the robot may lose track of the object if too many consecutive
frames are dropped.

This evaluation also showed that the adaptations made by the resource-aware model
helped to avoid frame drops. No frames were dropped during the evaluation and the accu-
racy values improved significantly over the conventional approach. The resource-aware and
the conventional algorithms resulted in the same accuracy value when sufficient resources
were available. In the case of resource shortage, however, the resource-aware model adapted
its workload by increasing the pruning threshold. A slight drop in accuracy caused by the
pruning of pixels is visible in Figure 5.16. However, the overall accuracy has improved sig-
nificantly over the conventional approach. Moreover, this helped to avoid an overshoot in
execution time and thus to eliminate frame drops, so that the results are consistently avail-
able within the predefined deadline.

An overall comparison between the two models is available in Table 5.1, where throughput
is represented by the percentage of frames processed and accuracy is measured using Ac
presented in Equation (5.4).

In brief, the resource-aware corner detector can operate very well under dynamically
changing conditions by adapting the workload and thus avoiding frame drops and improv-
ing the detection accuracy [10]. When compared to the conventional detectors, the overall ac-
curacy values for the Shi-Tomasi detector remain below the Harris detector as the Shi-Tomasi
algorithm involves additional computations (additional square-root and division operation
in Equation (4.2)) while the resource-allocation pattern remained unchanged. However, the

57

5. Resource-Aware Algorithms

Algorithm Throughput Accuracy

Harris conventional 81% 0.81
Harris resource-aware 100% 0.98
Shi-Tomasi conventional 78% 0.78
Shi-Tomasi resource-aware 100% 0.98

Table 5.1.: Comparison between conventional and resource-aware corner detectors [10]

resource-aware versions of both algorithms resulted in an almost equal accuracy as the prun-
ing was more effective for the Shi-Tomasi detector due to the higher computation demand
after the pruning stage.

Table 5.2 shows the profiling results for each stage within the resource-aware Harris corner
detector. These experiments involved an invade request for 8 PEs spread across the 4 tiles on
the evaluation platform.

Stage Time (ms)

Resource estimation 12
Resource allocation (invade) 0.26
Adaptive threshold calculation 0.8
Workload distribution 2.4
Corner detection 97
Resources de-allocation (retreat) 0.01

Total 112.5

Table 5.2.: Time taken for various stages in the resource-aware corner detection [10]

As the execution time for corner detection varies based on the actual workload, it is dif-
ficult to provide a precise number for this stage. The value provided in Table 5.2 is for
zero threshold, meaning that all pixels were processed. It can be seen that the time spent
for resource allocation and release is below 0.5 percent, while the additional logic for re-
source awareness resulted in approximately 12 percent overhead. However, results com-
puted within this stage can be reused in the corner-detection stage, resulting in a reduced
overhead for the corner detection. The time for infect is only a small fraction of the workload-
distribution stage, as most of the time is consumed by loading and transferring the large
image blocks across tiles.

Regarding scalability towards larger architectures, two effects come into play. First, with
an increasing number of tiles, communication latency over the i-NoC rises, as packets have
to traverse more hops to reach their destination. For our prototype’s N × N meshed grid
network, the maximum number of traversed hops equals

√
N, which means that maximum

latency scales better than linearly with an increasing number of tiles. Second, when targeting
larger platforms with more tiles and PEs, more messages need to be send both for acquiring
and releasing resources via invade and retreat, and for dispatching i-lets via infect to do the
actual computation. For invade and retreat, it is necessary to send more messages to address
more tiles. However, once the request messages are out, the operations complete in paral-

58

5.1. Resource-Aware Corner Detectors

lel on all affected tiles. The same holds for dispatching i-lets via infect. Therefore, on the
one hand with increasing architecture sizes we incur an additional overhead for initiating
invade, infect and retreat operations, but on the other hand we leverage the increased parallel
processing power to complete all operations in parallel.

59

5. Resource-Aware Algorithms

5.2. Resource-Aware KD-Tree Search

In computer science, a k-dimensional tree or kd-tree is a space-partitioning data structure for
organizing points in a k-dimensional space. In other words, kd-trees are a special case of
binary space-partitioning trees, where every node is a k-dimensional point. Kd-trees are
useful data structures for several applications such as range searches and nearest-neighbor
searches (NN-searches). The NN-search algorithm aims to find the point in the tree that is
nearest to a given input point. An efficient search can be implemented by taking advantage
of the kd-tree properties leading to a quick search-space reduction. Further speedups can
be achieved by using an approximation algorithm. For example, an approximate NN-search
can be achieved by simply setting an upper bound on the number of points to examine in
the tree, or by interrupting the search process based on a real-time clock (which may be
more appropriate in HW implementations). Approximate nearest-neighbor search is useful
in real-time applications such as robotics due to the significant speedup achieved by not
searching for the best point exhaustively.

The NN-search problem arises in numerous fields of application including computer vi-
sion, pattern recognition, statistical classification, computational geometry, data compres-
sion, DNA sequencing, cluster analysis, etc. In the context of 3D vision, NN-search is fre-
quently used in 3D point-cloud registration. A comparison between these techniques is
available in [97]. However, the registration of large data sets is computationally expensive.
As an example, the humanoid robot ARMAR-III [1] is capable of recognizing and tracking
textured objects. The recognition algorithm uses a combination of Harris Interest Points and
SIFT feature descriptors as described in [11]. Features extracted from the scene are matched
against a pre-computed object database using a heuristic NN-search. This enables the pro-
cessing of large numbers of features on every object to be recognized and tracked. A high
recognition frame rate is achieved by using the best-bin-first search algorithm [98].

The compute-intensive nature and the high degree of inherent parallelism in the NN-
search algorithm makes it suitable for implementation on an MPSoC. However, the available
resources on an MPSoC (processing elements (PE), memories, interconnects, etc.) have to be
shared among various applications running concurrently, which leads to unpredictable exe-
cution time or frame drops during NN-search. To address these challenges, a novel resource-
aware NN-search algorithm for kd-trees has been developed. Based on the new algorithm,
this chapter describes how to distribute the huge workload during the NN-search on the
massively parallel PEs for best performance, and how to generate results on time (avoiding
frame drops) even under varying load conditions.

5.2.1. Conventional Approach for Accelerating NN-Search on KD-Trees

NN-search on kd-trees is a compute-intensive task with a high degree of inherent paral-
lelism, and can be accelerated using multi-core CPUs or GPUs. Studies conducted in the past
suggested performing NN-search on the GPU using the basic brute-force technique [99]. The
brute-force search is a simple search technique that compares one element with every other
element in the database. GPUs have impressive brute-force search performance. However,
GPU architecture makes efficient data-structure design quite difficult. In particular, GPUs
are vector-style processors with limited branching ability. Hence, conditional computation

60

5.2. Resource-Aware KD-Tree Search

typically under-utilizes these devices seriously [100]. Brute-force search on the GPU is still
much faster than it is on the CPU, but not much faster than a kd-tree-based NN-search on a
CPU [101]. Because of the ubiquity of the NN-search problem, a huge variety of data struc-
tures and algorithms have been developed to accelerate this process. Cayton et al. [101]
introduced a simple data structure for NN-search on the GPU, with search and build algo-
rithms that are efficient on parallel systems. However, the authors state that a significant
effort was required to develop the GPU software in comparison to the well-known and sim-
ple NN-search on a CPU.

Novel architectures like Intel’s Single-Chip Cloud Computer [50] or Tilera’s 64-core pro-
cessor [102] offers massive computing power and are suitable for implementing highly par-
allel algorithms like NN-search. Such architectures can overcome the limitations imposed
by multi-core platforms with a limited number of cores, and the high degree of parallelism
within the HW can lead to a significant acceleration of the conventional and simple NN-
search algorithm for kd-trees [100].

5.2.2. Challenges with conventional kd-tree search on shared MPSoC

For applications like real-time object recognition and tracking, the NN-search algorithm has
to complete the search process within a predefined time. For fast-moving objects the search
interval has to be reduced so that the object can be tracked accurately. This can be achieved
by using more PEs on the MPSoC. The actual duration of the search depends on the size of
the data set to be processed and the size of data set depends on the number of objects present
in the scene, the nature of the background, lighting conditions, etc. Figure 5.17 shows the
variation in execution time when the NN-search is performed on a kd-tree of SIFT features
(used by the ARMAR robot to recognize objects).

200

300

400

500

600

1 11 21 31 41 51 61 71 81 91

M
ill

is
e

co
n

d
s

Frame No.

Figure 5.17.: Execution time for NN-search (static allocation) [13]

In this case the application is statically scheduled on 16 concurrent PEs to ensure that
the available computing power does not vary over time. A sequence of hundred different
scenes were processed by the algorithm and the size of the data set for kd-tree search varies
in every scene. It can be seen that the execution time varies between 200 and 600 millisec-
onds, based on the size of the input data set. However, this evaluation is not complete as
the static resource allocation is not a recommended approach, and results in poor resource
usage. This is evident from Figure 5.17 where the resources were allocated such that the
application can process one frame every 300 milliseconds (represented by the dotted line).
However, the NN-search duration falls below or above the deadline based on the number

61

5. Resource-Aware Algorithms

of features to be processed. Points where the execution time falls below the deadline rep-
resent under-utilization of allocated resources, while those above the line indicate a lack of
sufficient resources.

0

8

16

24

32

1 11 21 31 41 51 61 71 81 91

C
o

re
s

U
se

d

Frame No.

Figure 5.18.: Dynamic resource usage during NN-search [13]

The execution time can be equalized by adding more cores to the application when higher
computing power is required and vice versa. Furthermore, the impact of other applications
running concurrently on the MPSoC system (audio processing, robot control, etc.) has to be
considered. These applications create dynamically changing load on the processor based on
what the robot is doing at that point in time. For instance, the motion planning gets sched-
uled when the robot is moving or when the robot has to grasp an object. The conventional
OS scheduler partition the available resources to different application considering the overall
system load. As a result, the PEs allocated to each application may vary from time to time,
leading to an overshoot in the execution time. Such a situation is depicted in Figure 5.18,
where the y-axis represents the number of PEs allocated to the NN-search application for
each frame, for a total of 100 frames.

0

400

800

1200

1600

2000

1 11 21 31 41 51 61 71 81 91

M
ill

is
e

co
n

d
s

Frame No.

Figure 5.19.: Execution time for NN-search (dynamic allocation) [13]

The resulting execution time is depicted in Figure 5.19 and the results indicate very high
jitter in the execution time. This evaluation reveals the highly unpredictable search duration
for NN-search on today’s MPSoC. Prolonged search durations would lead to frame drops
and tracking errors. The number of frames dropped during this evaluation was as high as
44%. The robot may even lose track of the object if too many consecutive frames are dropped.

62

5.2. Resource-Aware KD-Tree Search

In order to overcome these challenges, a novel algorithm for the NN-search was devel-
oped, where the application program can request for resources on an MPSoC and adapt
the current workload based on the available resources. The upcoming sections demonstrate
how the resources are claimed and how the search interval is constrained to guarantee better
response time, compared to conventional MPSoC systems. The results indicate a significant
improvement in overall performance of the recognition process when the NN-search is per-
formed on the new resource-aware platform.

5.2.3. Nearest-Neighbor Search on KD-Trees

The object-recognition process used on the ARMAR robot consists of two steps. In the first
step, the robot is trained to recognize the object. A training data set consisting of SIFT fea-
tures is created for every object to be recognized. To speed up the nearest-neighbor compu-
tation, a kd-tree is used to partition the search space; one kd-tree is built for each object. The
second step in the recognition process has real-time requirements as it helps the robot to in-
teract with its surroundings (by recognizing and localizing various objects) in a continuous
fashion. In this step, a set of SIFT features, extracted from the real-time image, is compared
(using NN-search) with the pre-loaded data set (kd-tree).

Figure 5.20.: Kd-tree search algorithm

The nearest-neighbor look-up works as follows. In Figure 5.20 assume that the star indi-
cates a SIFT feature (called the test point) from the real-time input image, which has to be
compared with the SIFT features from the training image (arranged in the form of a kd-tree).
Given a kd-tree and a point in space (the test point), the aim of the nearest neighbor search
algorithm is to find which point in the kd-tree is closest to the test point. The point in the
data set closest to the test point is called its nearest neighbor. For example, suppose for the
test point (indicated by the star) the nearest neighbor could be the point connected to the star
by the dashed line. In general, if there is a point in this data set that is closer to the test point
that the current guess, it must lie in the circle centered at the test point that passes through
the current guess. This circle is shown in Figure 5.21

63

5. Resource-Aware Algorithms

Figure 5.21.: Match candidates for kd-tree search

Although in this example this region is a circle, in three dimensions it would be a sphere,
and in general it is called a candidate hypersphere. The circle helps to prune which parts of
the tree might hold the true nearest neighbor.

The computation of the nearest neighbor for the purpose of feature matching is the most
time-consuming part of the complete recognition and localization algorithm. This algorithm
performs a heuristic search and only visits a fixed number of leaves resulting in an actual
nearest neighbor, or a data-point close to it. Figure 5.22 shows the result of the recognition
process, where the real-time image captured by the robot head is on the left and the training
image on the right.

Figure 5.22.: Feature correspondences after the NN-search [11]

For the NN-search algorithm, the number of kd-tree leaves visited during the search pro-
cess determines the overall quality of the search process. Visiting more leaf nodes during the
search leads to a higher execution time. The search duration per SIFT feature can be calcu-
lated from Figure 5.23. The values were captured by running the NN-search application on
a single PE using a library of input images covering various situations encountered by the
robot.

64

5.2. Resource-Aware KD-Tree Search

0

5

10

15

20

25

1 21 41 61 81 101 121

M
ill

is
e

co
n

d
s

Leafs Visited

Figure 5.23.: Variation in execution time vs. leaf nodes visited for NN-search [13]

From this graph it is clear that the search interval varies linearly with the number of leaf
nodes visited during the search. Moreover, the relation between quality (i.e. the number of
features recognized) and leaf nodes is shown in Figure 5.24. The quality of detection falls
rapidly when the number of leaf nodes is reduced below 20 and increases linearly in the
range between 20 and 120.

Region
(B)

Region
(A)

0

30

60

90

120

150

1 21 41 61 81 101 121

N
o

. o
f

fe
at

u
re

s
re

co
gn

iz
e

d

Leafs Visited

Default value

Figure 5.24.: Search quality vs. leaf nodes visited for NN-search [13]

At a further higher leaf count, the quality does not improve significantly as the best possi-
ble matches were already found. In the conventional algorithm used on CPUs, the number
of leaf nodes visited is set statically such that the search process delivers results with suffi-
cient quality for the specific application scenario. Using the results from this evaluation, the
overall search duration can be predicted based on the object to be recognized, the number
of features to be processed and the number of PEs available for NN-search. The first two
parameters are decided by the application scenario while the PE count is decided by the
runtime system based on the current load situation. As shown in Figure 5.18, the resources
allocated to the application may vary from time to time, leading to highly unpredictable
search durations and frame drops. Two different techniques can be applied to the conven-
tional algorithm to constrain the execution time, as described below.

65

5. Resource-Aware Algorithms

5.2.3.1. Threshold-Based Search

In order to avoid frame drops and to improve the tracking accuracy, the conventional NN-
search can be modified to process the SIFT features based on their quality. The number of
leaf nodes visited is fixed (to the default value) and once the deadline is hit, the algorithm
can drop the remaining low-quality features and move on to the next frame. This technique
is relatively simple, easy to implement and works on any single-/many-core platform. The
algorithm would perform well in scenarios where the scene contains only the object to be
recognized and all the detected features belong to the same object. The results deteriorate
when there are more objects in the frame and also in scenes with cluttered background;
this is because some of the high-quality SIFT features may belong to other objects or to the
background. Therefore, the features dropped by the algorithm may belong to the target
object, leaving it undetected.

Such a scenario is show in Figure 5.25 where the image on top shows the results of SIFT
feature matching based on the conventional search algorithm. In this case, sufficient re-
sources were available and the algorithm could process all features within the specified time
frame. The processed features are marked in green and the features which were success-
fully matched are circled in blue. The image at the bottom (Figure 5.25) shows the results
from the threshold-based search operation. Sufficient amount of resources (PEs) were not
available in this case and the algorithm dropped significant number of features (marked in
red) when the deadline was hit. It could be seen that the total number of matches (circled in
blue) has decreased when the threshold-based search is used without sufficient resources in
a cluttered scene.

C
o

n
ve

n
ti

o
n

al
 s

ea
rc

h
Th

re
sh

o
ld

-b
as

ed
 s

ea
rc

h

Figure 5.25.: Conventional vs. threshold-based kd-tree search

66

5.2. Resource-Aware KD-Tree Search

5.2.3.2. Iterative Search

An alternative approach to overcome the problems in the threshold-based search is to mod-
ify the conventional NN-search to proceed in an iterative manner. This means that the search
process starts with the first feature and performs a search until the first leaf node is reached.
The results are saved and the algorithm moves on to the next feature and repeats the same
process again. Thus, every feature in the data set is processed once (to the first leaf node)
and then the algorithm returns to first feature again to continue the search from the first leaf
node to the second. This process continues until a default number of leaf nodes is visited or
until the next frame is available, whichever occurs first. In this manner, when the deadline
is hit, the algorithm will have performed an equal search for all the features in the data set
and none of the features will be dropped. However, the overall quality of the NN-search
will be significantly affected, if the search process stops half-way without reaching the de-
fault leaf count, as shown in Figure 5.24. Detailed evaluation were performed to compare
the results from the threshold-based and iterative NN-search and the findings are provided
in Section 5.2.5.

5.2.4. Resource-Aware Nearest-Neighbor Search Algorithm

Sections 5.2.2 and 5.2.3 described the conventional algorithm, its limitations, and also pre-
sented two modified algorithms for object tracking on conventional MPSoC platforms. This
section describes the novel approach towards NN-search using the idea of resource-aware
programming based on Invasive Computing on the MPSoC architecture InvasIC. The main
idea and novelty of the new algorithm is that the workload is calculated and distributed
taking into account the available resources (PEs) on the MPSoC.

5.2.4.1. Adaptive workload distribution

The first step in the resource-aware nearest neighbor search algorithm is to allocate sufficient
resources to perform a parallel search. The resource-allocation is based on various aspects
as listed below:

• The number of SIFT features to be processed, which in turn depends on:

– The nature and number of objects present in the frame.

– The nature of the background, foreground, etc.

• The size of the kd-tree.

• The available search interval.

The number of SIFT features varies from frame to frame based on:

The size of the kd-tree is decided by the texture pattern on the object to be recognized and
tracked. The search interval or the frame rate is decided by the context where the NN-search
is employed (for example, if the robot wants to track a fast-moving object, the frame rate has
to be increased or the execution time has to be reduced).

67

5. Resource-Aware Algorithms

Equation (5.5) represents this relation and can be used to compute the number of PEs (Npe)
required to perform the NN-search on any frame within the specified interval Tsearch. N f p is
the number of SIFT features to be processed and Tf p is the search duration per SIFT feature, a
function of the number of leaf nodes visited, as described in Figure 5.23. The initial resource
estimate is based on the default leaf count (Nlea f _best), as described in Section 5.2.3.

Npe ≥
N f p × Tf p(Nlea f _best)

Tsearch
(5.5)

Note that the function Tf p(Nlea f _best) is different for every object to be recognized and
tracked by the robot, as this is dependent on the number of features forming the kd-tree, the
shape of the tree, etc.

5.2.4.2. Efficiency Graphs

Equation (5.5) assumes that the search interval decreases linearly with increasing PEs. Such
an assumption does not hold, considering the limited parallelism within the application
program. For example, the NN-search algorithm is highly parallel during the search process.
However, the overall execution time also includes the time to load the kd-tree to on-chip
memory (TLM) via i-NoC, combine the results from individual i-lets, filter the best matches,
etc. Furthermore, every additional i-let created by the NN-search algorithm also creates an
additional load on the external memory and shared communication interfaces like AHB Bus,
i-NoC, TLM, etc., limiting the scalability. Our analysis of NN-search on the proposed MPSoC
hardware resulted in an efficiency graph as shown in Figure 5.26. From the graph it can be
seen that when the number of i-lets is increased from 1 to 2, the execution time does not
improve by 2x, instead by 2×0.98 (98%), i.e. 1.96x. Using this graph, the efficiency factor
for various levels of parallelism can be computed. The values shown here are applicable
only for the NN-search implementation used in this work and may vary based on how the
original algorithm is implemented.

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Ef
fi

ci
e

n
cy

 in
 %

Core count

Figure 5.26.: Efficiency graph for NN-Search on MPSoC hardware [13]

In order to increase the accuracy of the resource-estimation model, an application-specific
efficiency factor or scalability information can be added to (5.5). The enhanced model is rep-
resented by (5.6), where η(Npe) represents the algorithm’s efficiency as a function of degree-
of-parallelism or available resources (Npe).

68

5.2. Resource-Aware KD-Tree Search

Npe ≥
N f p × Tf p(Nlea f _best)

Tsearch × η(Npe)
(5.6)

Using the new model, the application raises a request to allocate PEs (Npe), which is then
processed by the OctoPOS. Considering the current system load, the OctoPOS makes a final
decision on the number of PEs to be allocated to the NN-search algorithm. The PE count may
vary from zero (if the system is too heavily loaded and no further resources can be allocated
at that point in time) to the total number of PEs requested (provided that there exists a
sufficient number of idle PEs in the system and the current power mode offers sufficient
power budget to enable the selected PEs). This means that under numerous circumstances
the application may end up with fewer PEs and has to adapt itself to the limited resources
offered by the runtime system.

5.2.4.3. Resource-Aware Workload Distribution

In constrained scenarios as explained above, the application has to re-balance the workload
in order to complete the NN-search within the search interval specified by Tsearch. This is
achieved by recalculating the number of leaf nodes (Nlea f _adap) to be visited during the NN-
search such that the condition in (5.7) is satisfied.

Tf p(Nlea f _adap) ≤
Npe × Tsearch × η(Npe)

N f p
(5.7)

The algorithm can use the new leaf count for the entire search process on the current
image. However, it can be seen from Figure 5.24 that the quality drops significantly if the
number of leaf nodes calculated in (5.7) is too low (between 0 and 20, for the particular object
used in our evaluation). This region is marked as region(A) in the figure. This issue can be
resolved by preventing the leaf count from falling below the minimum leaf count (Nlea f _min)
or the estimated leaf count should fall within the region(B) as shown in Figure 5.24. Under
most circumstances the application can process all the features by adapting the leaf count.
However, if there are a large number of features to be processed using too few PEs, the leaf
count calculated may fall below the minimum limit. In this case, the NN-search will drop a
few low-quality SIFT features to complete the search within the predefined search interval.

It should be noted that the resource-allocation process operates once for every frame.
Upon completion, the application releases the resources and waits for the next frame to
arrive. Therefore, the core algorithm for NN-search retains its simple structure in contrast
to the complex iterative search algorithm described in Section 5.2.3.2. The flow diagram in
Figure 5.27 describes the entire process of resource allocation and workload calculation for
resource-aware NN-search.

In contrast to the threshold-based search described in Section 5.2.3.1, the resource-aware
NN-search can process all features, in most circumstances and hence overcome the chal-
lenges raised by scenes with multiple objects or cluttered backgrounds. As the available
resources are known in advance, the application can make an early decision on the num-

69

5. Resource-Aware Algorithms

Infect Phase

Retreat Phase

Invade Phase

�����_����

<
�����_���

AllocateIresourcesI(���):

��� ≥
��� ∗ ��� �����_����

������ℎ∗ �(���)

ComputeI�����_����

based on available PEs

Recalculate ��� :

��� ≤
��� ∗ ������ℎ ∗ � ���

���(�����_���)

n <I���

Continue?IRelease PEsStop

n = 0

n = n +I1

���
availableI?

yes

yes

yes

no

no

no

Start

yesno

NN-SearchIforI��ℎ

SIFTIfeatureI

Figure 5.27.: Flow diagram for resource-aware NN-search [13]

70

5.2. Resource-Aware KD-Tree Search

ber of leaf nodes to be visited during NN-search and can avoid the additional complexity
encountered by the iterative approach described in Section 5.2.3.2.

5.2.5. Evaluation & Results

This section describes the results obtained from the resource-aware NN-search along with
a comparison with the conventional search techniques like threshold-based and iterative
search, on a massively parallel MPSoC. A set of 100 different scenes was used for evalua-
tion, where each frame contains the object to be recognized and localized along with few
other objects and changing backgrounds. The position of the objects and their distance from
the robot were varied from frame to frame to cover different possible scenarios. Evalua-
tions were conducted on the FPGA-based hardware prototype of InvasIC. As a single FPGA
cannot hold the large MPSoC design (with 32 LEON3 cores, external memory controllers,
multiple debug and I/O interfaces, on-chip memories, NoCs, etc.) a multi-FPGA prototyp-
ing platform from Synopsys called CHIPit System [103] was used. This system consists of
six Xilinx FPGAs (Virtex-5 XC5VLX330) with a total capacity of 12 million ASIC gates. The
design operates at a frequency of 25 MHz. Although the operating frequency of the hard-
ware prototype is relatively low compared to an ASIC implementation, it does not affect
the evaluation process as all three versions of the algorithm were tested on the same FPGA
platform and the results are compared in terms of the quality of the detection process with a
fixed search interval.

All three flavors of the NN-search algorithm were tested using the same set of input im-
ages for a search interval of 300 milliseconds per frame (3.3 frames per second). Figure 5.28
shows a comparison between the resource-aware and the threshold-based NN-search, with
the number of features recognized (quality of detection) on the y-axis and the frame num-
ber on the x-axis. In order to maintain equality in the evaluation process, the number of
PEs allocated to the applications was equalized. The PE distribution varies from frame to
frame as shown in Figure 5.18. The remaining resources were either idle or allocated to other
audio/video or motion-control applications running on the robot.

It is clear from Figure 5.28 that the resource-aware NN-search algorithm outperforms the
conventional algorithm using the same amount of resources. This is because the resource-
aware model is capable of adapting the search algorithm based on the available resources
compared to the conventional algorithm with fixed thresholds. However, the resource-aware
algorithm results in the same number of matched features as the conventional algorithm in
some frames. This is because there were a sufficient number of idle PEs and the runtime sys-
tem allocated sufficient resources to meet the computing requirements of the conventional
algorithm and hence the conventional algorithm did not drop any SIFT feature. On the con-
trary, when a frame contains large number of SIFT features and the processing system is
heavily loaded by other applications, the conventional algorithm dropped too many SIFT
features, thereby resulting in a low overall detection rate (matched features). This behav-
ior is depicted in Figure 5.29 and Figure 5.30. Figure 5.29 contains the object to be recog-
nized along with a tiny cup and plain background. Hence the features dropped were the
low-quality features on the target and most of the high-quality features were still retained,
resulting in a comparable detection rate with threshold-based and resource-aware search
algorithms. However, in Figure 5.30, additional objects and complex background resulted

71

5. Resource-Aware Algorithms

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91

M
at

ch
e

d
 f

e
at

u
re

s

Frame No.

Resource-aware

Threshold-based

Figure 5.28.: Comparison between resource-aware and threshold-based NN-search [13]

in dropping high-quality features on the target leading to poor overall detection rate using
threshold-based search. More details regarding these two test images can be found under
Table 5.3. This result points to the ability of the resource-aware application to adapt itself to
changing load conditions and generate better results in tightly constrained situations.

Figure 5.29.: Image(a): single object Figure 5.30.: Image(b): multi-objects

When compared to the threshold-based search, the iterative search algorithm offers im-
proved results in some frames and equal or deteriorated results in other frames. A detailed
analysis shows that under circumstances where a large number of features have to be pro-
cessed using few PEs, the threshold-based model outperforms the iterative model. This is
because the iterative model tries to perform a search without dropping any features in a sce-
nario described above and the total number of leaf nodes visited during the search process
may drop to very low values (see region(A) in Figure 5.24). Hence the overall quality can
be too low as the NN-search may result in poorly matched candidates. The iterative model
performs well compared to the threshold-based model in other situations as this model can
avoid dropping features using the adaptive techniques described in Section 5.2.3.2.

A comparison between the resource-aware and the iterative NN-search is provided in Fig-
ure 5.31, where the resource-aware algorithm outperforms the iterative search in numerous

72

5.2. Resource-Aware KD-Tree Search

Image(a) Image(b)

PE count (alloc / required)
TR 12 / 23 14 / 31
RA 12 / 23 14 / 31

FPs on object (PR / DR)
TR 177 / 320 88 / 217
RA 320 / 320 217 / 217

FPs on others (PR / DR)
TR 21 / 42 143 / 284
RA 42 / 42 284 / 284

Total FPs recognized
TR 108 60
RA 111 115

Table 5.3.: Comparison between resource-aware and threshold-based NN-search (FP:
Feature-point, PR:Processed, DR:Dropped, TR:Threshold-based search,
RA:Resource-aware search) [13]

scenarios. The reason for this is the increased complexity within the iterative search resulting
from the enhancements described in Section 5.2.3.2. The added logic to process the features
in an iterative fashion results in higher complexity, leading to higher overall execution time.
Moreover, the iterative model has to load every SIFT feature multiple times into the on-chip
memory or data cache during the NN-search while the resource-aware model loads each
feature once during the entire search process. This means, the iterative search algorithm
creates a higher load on the external memory, TLM, AHB Bus, i-NoC, etc., which reduces
its scalability and efficiency during execution. As a result, the iterative model cannot pro-
cess as many features as the resource-aware model within a fixed interval, reducing the total
matched features or the quality of the algorithm.

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91

M
at

ch
e

d
 f

e
at

u
re

s

Frame No.

Resource-aware

Iterative

Figure 5.31.: Comparison between iterative and resource-aware NN-search [13]

73

5. Resource-Aware Algorithms

5.2.6. Conclusion

With their immense computational power, MPSoCs provide the means to consolidate the
whole computing system in mobile robotic applications onto a single chip instead of relying
on separate physical computing units. With the case-study evaluating two widely used algo-
rithms (Harris Corner detection and NN-search), this work demonstrated accuracy loss on
a conventional MPSoC hardware due to resource sharing and thus, running once-separated
applications on a unified hardware poses major problems.

As a way to overcome these challenges, this chapter presented novel resource-aware algo-
rithms for Harris Corner detection and NN-search on kd-trees. This work also showed how
to estimate the resources required for a specific task based on the scene (nature of the objects,
number of objects present, type of background, the texture of the object to be recognized,
etc.) Both the Harris and Shi-Tomasi corner detectors were enhanced to a resource-aware
model by extending the already existing pruning techniques. Such enhancements enabled
the corner-detection algorithms to recalculate its workload at runtime, based on the cur-
rently available resources on the MPSoC [10]. The ability of the applications to bargain for
resources and adapt to available resources helped them to avoid frame drops and to com-
plete the processing within the specified search interval. Our experiments show that incor-
porating resource-awareness into the conventional Harris Corner detection and NN-search
algorithm can improve the quality of the object recognition process significantly. Evaluation
showed that the adaptations made at runtime, made significant improvements in the per-
formance of corner detection algorithms. The results showed up to 22 percent improvement
in throughput and up to 20 percent improvement in accuracy. The results indicate that the
use of resource-aware programming will allow migration of various applications mapped
to multiple industrial CPU boards on conventional robot, to a single-chip MPSoC design,
without suffering quality loss [13].

Detailed evaluations were conducted on an FPGA-based hardware prototype to ensure
the validity of the results. Though the evaluations were conducted using the OctoPOS op-
erating system and the InvasIC hardware, the benefits are expected to be visible on any
resource-aware platform including ROS [59]. The newly proposed algorithms are simple
and retains all the characteristics of the conventional algorithms. The resource allocation
and release happens once per frame and the additional overhead in execution time is negli-
gible when compared to the time taken by Harris Corner detection or NN-search, to process
thousands of pixels or features in every frame. Profiling results based on an FPGA proto-
type indicate that the overhead from resource allocation and release can be kept very low by
employing a specialized operating system and suitable hardware support.

74

6. Accelerating Image Processing using

Specialized Hardware

Robot-specific tasks need to be executed on the hardware built into the robot. Timely ex-
ecution of various tasks are guaranteed by providing the robots with sufficient underlying
hardware (processing units) necessary to cope with worst case scenarios. Figure 6.1 show the
architecture of InvasIC, an MPSoC if used, can handle the entire workload previous handled
by several independent processing units on the ARMAR robot. The specialized PE types
(i-Core, TCPA, etc.) can be utilized by some of the computer vision applications to achieve
better performance when compared to the homogeneous counterparts.

This chapter describes how image processing algorithms can be accelerated using the het-
erogeneous processor InvasIC, the challenges involved in mapping application programs
on to a heterogeneous processor, advantages and limitation of the proposed hardware ar-
chitecture, etc. The case-study involves mapping of three different applications on the In-
vasIC. Section 6.2 describes Harris Corner detection implementation on TCPA and LEON3,
Section 6.3 describes the implementation of SIFT feature matching on i-Coreand LEON3 fol-
lowed by an optical flow implementation on the TCPA in Section 6.4. Each section describes
the application mapping, data flow and performance benefits obtained using the heteroge-
neous design in comparison to the homogeneous model.

6.1. InvasIC - Programmer’s View

As shown in Figure 6.1, the various PEs within the InvasIC are organized into tiles. PEs
within the tile are interconnected using an AMBA (Advanced Microcontroller Bus Architec-
ture) AHB (Advanced High-performance Bus). In addition to the PEs, each tile also contains
a high speed on-chip memory (TLM), L2 cache and a network-adapter (NA). The applica-
tions may use the TLM to store frequently accessed data and it offers quick (tile-local) access
to any data stored inside the TLM. The NA offers necessary features to copy data from the
local TLM to the TLM of other tiles or to the external DDR-II memory (inside memory tile).
The L1 cache maintains cache coherence (within the tile) by using the data snooping fea-
ture of the AHB Bus. Any data read/written from/to external memory or remote TLMs
are cached by the L2 cache. The L2 cache is not coherent, hence the programmer has to take
special care to ensure data consistency across tiles. In addition to the TLM, the InvasIC archi-
tecture also offers local scratchpad memories for each LEON3 core. The scratchpad memory
can be accessed only by the core to which it is connected.

75

6. Accelerating Image Processing using Specialized Hardware

An application program running on the InvasIC has to make use of the distributed mem-
ory layout in order to achieve the best performance. This includes copying the frequently
accessed data and data-structures from the external DDR-II memory to the TLM or scratch-
pad memories. If needed, the application programs can also make copies of the data within
one TLM to other TLMs using the fast Direct-Memory-Access (DMA) feature offered by the
i-NoC.

In addition to the homogeneous LEON3 cores, the InvasIC architecture also offers het-
erogeneous PEs as shown in Figure 6.1. On account of their immense computational power
assembled in a compact design, the heterogeneous MPSoCs can bring in several benefits to
the field of robotics. For example, the low level pixel processing algorithms can be accel-
erated using the TCPA [104] (within its massively parallel array of processing elements) or
using special instructions offered by an i-Core. The entire design is prototyped on multiple
FPGAs (Synopsys CHIPit System [103] consisting of six Xilinx Virtex-5 XC5VLX330 FPGAs)
and runs at a frequency of 25MHz.

Memory

TCPA

MemoryI/O
CPU CPU

CPU

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

CPU CPU

CPU

TLM

NoC
Router

NA

i-Core i-Core

i-Corei-Core

i-Core i-Core

i-Core

Figure 6.1.: Heterogeneous architecture of InvasIC with its tile internal structure

76

6.2. Harris Corner Detection on Tightly Coupled Processor Array

6.2. Harris Corner Detection on Tightly Coupled Processor Array

This Section describes the implementation of Harris Corner detection algorithm on a vari-
ant of the InvasIC, as shown in Figure 6.1. Each tile can contain I/O units, loosely coupled
LEON3 CPUs or TCPA. TCPAs consists of numerous light weight PEs and they offer sig-
nificant acceleration to image processing algorithms with regular loops for pixel processing.
Loosely coupled processors on the other hand can be used extensively for post-processing
of the initial features computed by TCPAs.

6.2.1. Conventional Approach

For corner detection, many studies have been proposed in literature with the purpose to
reduce the computational complexity or to accelerate their execution. In [105], the authors
reduced the complexity of corner detection by using a novel non-maximum suppression
strategy. In [106], a fast corner detection algorithm is proposed to achieve real-time pro-
cessing. In this work, the authors explore a highly parallel implementation on a Graphics
Processing Unit (GPU). Reconfigurable architectures acting as coprocessor for real-time fea-
ture detection are described in [107] and [108]. Hosseini et al. [109] presents a highly parallel
implementation of Harris Corner detection on SIMD (single instruction, multiple data) ar-
chitectures. The architecture consists of 96 processing elements (PEs). In the initialization
phase, the PEs are idle for a considerable time. This fact could be optimized utilizing differ-
ent mechanisms to fetch the data from external memory. In addition, the approach utilizes
a redundant external memory access that further decreases the performance of the system
because of under-utilization of the available bus bandwidth.

Heterogeneous MPSoCs can offer significant performance boost when compared to their
counterparts with off-chip GPUs. One main aspect that limits the performance of off-chip
GPU is the bottleneck on the PCI Express (PCIe) used for data exchange between the CPU
and GPU. With the emergence of heterogeneous computing architecture that fuse the func-
tionality of CPU and GPU onto the same die, the problems with communication band-
width is expected to be resolved. The AMD Fusion, an Accelerated Processing Unit (APU)
or Intel’s Knights ferry are examples of such heterogeneous architectures. To reduce the
thread scheduling latencies, the AMD Fusion APUs have dedicated hardware scheduler for
handling threads assigned to the GPU. Furthermore, automatic task scheduling based on
OpenCL for APUs has been explored in [110]. This work presents a work-pool-based task
queuing extension for OpenCL that allows programmers to easily harness the power of het-
erogeneous computing environments. This work also shows that there is a high potential for
using the CPUs as compute devices, provided that there are sufficient CPU-based compute
units available within the system.

However, differently from the aforementioned works, the InvasIC offers a highly recon-
figurable architecture. Each PE within the TCPA has the flexibility to be programmed in
real-time and efficiently utilize the resources (like TLM) inside the architecture, eliminating
the need for redundant external memory access as well as the need to store multiple copy of
the data between different partitions.

77

6. Accelerating Image Processing using Specialized Hardware

6.2.2. Implementation on InvasIC

The conventional Harris Corner detection has two main stages as described in Section 4.1.1.
The algorithm used is based on the implementation from the Integrating Vision Toolkit (IVT)
library [111]. The application program running on the CHIPit system is only responsible for
the computation of corner points using the Harris Corner detection algorithm. The camera
interface, pre-processing (color to gray-scale conversion), results visualization, etc., are han-
dled by a host-PC connected to the CHIPit system. The setup used for evaluations is shown
in Figure 6.2 and the various stages in the execution of the Harris Corner detection is shown
in Figure 6.3.

Camera

Figure 6.2.: Evaluation setup

The video frames from the camera are stored in the host-PC until the application pro-
gram running on the CHIPit (on a LEON3 core) makes a function call to received the data
over the Ethernet interface connecting the CHIPit and the host-PC. The Harris Corner de-
tection application initiate this process by allocating sufficient memory in the TLM (size of
the allocated memory should match the size of the input image). If the memory allocation
is successful, the application program opens a channel between the CHIPit and the host-PC
using the eth_open function as shown below. Once the Ethernet connection is established,
the resource-aware application waits for the input image by calling the eth_receive function,
where the imgAddr specifies the location for storing the image and i-let indicates the code/-
function to execute once the data transfer has completed.

• eth_open(HCD_CNTRL_CHNL, ETH_MODE_READ);

• eth_receive(Channel_ID, imgAddr, sizeOfImg, i-let);

The OctoPOS schedules the application once again upon receiving the input image and
the next step is to transfer the input image to the TCPA tile for computation of harris-map.
Any pre-processing, if needed, can be performed by the LEON3 core at this stage. Harris-
map is the first stage in the Harris Corner detection algorithm and it involves computation
of intensity gradients based on a sliding window. As the algorithm for harris-map is highly
regular and compute intensive, its mapped to the highly parallel TCPA PEs on the heteroge-
neous MPSoC.

The computation of harris-map on the TCPA tile is initiated using some special function
calls, as described below. At the application level, the execution starts with an invade request
to allocate a sufficient number of PEs to perform the harris-map computation. The invade
request is processed by the runtime system (OctoPOS), which checks for the availability

78

6.2. Harris Corner Detection on Tightly Coupled Processor Array

Perform Harris-
map on TCPA

Fetch input
frame

Received frame
over Ethernet

Host-PC LEON3-Tile TCPA-Tile

Camera

Invade TCPA

Infect TCPA

Retreat TCPA

Filter corners and return
results over Ethernet

Visualize corners
on the input

image
Display

Figure 6.3.: Flow diagram showing the interaction between various systems involved in Har-
ris corner detection

of resources on the TCPA tile. If sufficient resources are available, the resulting claim is
immediately returned for executing the Harris Corner detection algorithm.

Subsequently, the application program performs exactly one infect call per image frame to
be worked on. In the process, an input frame is copied from the local TLM into the TLM of
the invaded TCPA tile. The function call InfectTCPA is used to pass the input image address
and its size to the the TCPA tile. This is followed by CaptureResultTCPA which will perform
the harris-map computations on the TCPA.

• InfectTCPA(tcpaClaim, &infectFut, imgAddr, imgSize);

• nCorners = CaptureResultTCPA(tcpaClaim, &infectFut, listOfCorners, maxCornerCount);

Within the TCPA tile, the fetched image frame is split into smaller chunks which are pro-
cessed in parallel by the claimed processor array. After finishing the computations of each
chunk, a buffer controller generates an interrupt, requesting the next data transmission.
Here, each data transmission includes filling the TCPA input buffer and writing back the
output buffers to the TLM. Once the whole frame is processed, the TCPA tile sends back
the position of the detected corners to the TLM of the tile that raised the invade request. Fi-

79

6. Accelerating Image Processing using Specialized Hardware

nally, when the entire frames has been processed, the Harris Corner detection application
terminates by issuing a retreat command that releases the claimed PEs.

6.2.2.1. Application Mapping on TCPA

Figure 6.4.: Architecture of a TCPA tile. The abbreviations AG, GC, and IM stand for address
generator, global controller and invasion manager [9]

The heart of the accelerator tile comprises of a massively parallel array of tightly coupled
VLIW (very long instruction word) PEs as shown in Figure 6.4; complemented by peripheral
components such as I/O buffers as well as several control, configuration, and communica-
tion companions [104]. A TCPA can exploit the parallel and direct PE-to-PE communication,
where data is streaming from the surrounding buffers through the array. Through the VLIW
nature of each PE and the parallel and synchronous execution of loop iterations assigned by
the compiler to each PE, a TCPA nicely exploits both instruction- and loop-level parallelism.

On the processor array, the Harris Corner detection algorithm may be implemented on
four PEs as shown in Figure 6.5. The first PE, which is normally one of the PEs on the border
of the array, receives the pixel intensities from a TCPA buffer bank connected to it. This
PE calculates the partial derivatives for Harris Corner detection. The results are sent to the
other three PEs to identify the corner pixels. Thus, the full processing can be performed by
using four processing elements. Finally, the corner position for each pixel are stored into the
TCPA output buffer. The OctoPOS internally reserve the resources, so that the Harris Corner
detection algorithm gains exclusive access to the PEs during the harris-map computations.

In this example, a complete (fully overlapping) implementation of the Harris Corner de-
tection algorithm could be achieved by using four PEs. However, depending on the number

80

6.2. Harris Corner Detection on Tightly Coupled Processor Array

…

…3x33x33x33x33x33x33x33x3

AMBA busAMBA bus

Conf. & Com.

Proc. (LEON3)

Conf. & Com.

Proc. (LEON3)
MemoryMemory

IM GC

AG

IM

GC

AG

IMGC

AG

IM

GC

AG

C
o

n
fi

g
u

ra
ti

o
n

 M
a

n
a

g
e

r

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

PU

iCtrl

I/
O

 B
u

ff
e

rs
I/

O
 B

u
ff

e
rs

I/
O

 B
u

ff
e

rs
I/

O
 B

u
ff

e
rs

I/O BuffersI/O Buffers

I/O BuffersI/O Buffers

Figure 6.5.: Harris Corner detection on TCPA (application mapping). The abbreviations AG,
GC, and IM stand for address generator, global controller and invasion manager.

of processor elements allocated for computation, two other mapping schemes are possible:
non-overlapping or partial-overlapping, if two or three PEs are used, respectively. In both
cases, one processor element calculates the partial derivatives and the corner pixels are com-
puted on the remaining PEs. Thus, the accelerator offers different levels of quality chosen by
the application according to its needs. To increase the algorithm throughput, a partitioning
strategy over the input picture may be applied by adopting a locally serial globally parallel
(LSGP) partitioning scheme. Latency-optimal schedules for the pixel computations on the
PEs may be derived independent of the size of the image and claim, obtained using a new
technique called symbolic scheduling [112].

In [113] the authors present a comparative case study on the accuracy and performance of
implementing computationally intensive image processing algorithms, i.e., the Harris corner
detector on TCPAs. The accuracy of the fixed-point computation on a TCPA architecture
is compared against OpenCV (an image processing library for real-time computer vision),
using 64-bit floating-point precision. Considering a set of input images, the presented case

81

6. Accelerating Image Processing using Specialized Hardware

study shows a maximum error of 3.5% in terms of corner detection while achieving a much
higher performance in comparison with a state-of-the-art digital signal processors.

The second stage of Harris Corner detection involves filtering the pixels with high inten-
sity gradients based on a threshold. The pixels with intensity gradients above threshold are
declared as corner points. Those corner points are then sorted in such a way that the points
with very high intensity gradients appear on top of the list. Such a filtering and sorting
process is more suitable for a CPU-based architecture and hence mapped to a LEON3 PE.

Finally the function eth_send is used to return the detected corner coordinates to the host-
PC. The host-PC is responsible for visualizing the detected corners on the output image.

• eth_send(Channel_ID, resultAddr, sizeOfResults, i-let);

6.2.3. Results

The overall goal of the evaluation model was to achieve a frame rate of 10 fps on the FPGA
demonstrator. Profiling on the FPGA prototype (25MHz) indicates that 4 PEs on the TCPA
are necessary to perform the corner detection at 10 frames-per-second (fps) or 100 millisec-
onds per frame. The algorithm, if mapped to the LEON3-based CPU units would require 10
PEs to handle the same workload at 10 fps. Therefore, the TCPA offers a higher performance
(2.5×) compared to the general purpose LEON3 PE. The TCPA is also more efficient in com-
puting harris-map as it can stream the pixel data through the PEs, reducing the data access
latencies significantly. On the other hand, the LEON3 PEs spent significant amount of time
in reading/writing data from/to the memory over the AHB Bus.

6.3. SIFT Feature Matching on i-Core

At each interest point detected by the Harris corner algorithm, a SIFT descriptor has to be
computed. In order to recognize an object, the SIFT descriptors extract from the real-time
input is then compared with the SIFT descriptors extracted from the training image. The
SIFT descriptor matching is the final step in the object-recognition process, as shown in Fig-
ure 6.6. Figure 6.7 presents a time-line demonstrating the interaction between various sys-
tems involved in the SIFT descriptor matching. The algorithm for SIFT descriptor matching
is explained in Section 6.3.1 followed by the description of the i-Core implementation in
Section 6.3.2. Finally Section 6.3.3 provides some insight into the results and performance
improvements achieved when compared to a pure software implementation on a LEON3
processor.

6.3.1. Algorithm

For matching, the SIFT features extracted at every feature point in the input image have to
be compared against the set of SIFT features obtained from the reference (training) image.
Each SIFT feature, computed as described in Section 4.1.3, comprises of 128 floating-point

82

6.3. SIFT Feature Matching on i-Core

Harris Corner
Detection

SIFT Feature Extraction

SIFT Feature Matching

Visualize

Start

Stop

for(k = 0; k < nDimension; k++)
{

v = pQuery[k] – pData[k] ;
sum += v * v;

}

Euclidean distance

Distance between p and q

Figure 6.6.: Flow diagram showing the various stages in the object recognition algorithm and
pseudo code for SIFT feature matching

numbers. In order to compare two SIFT features~a and~b, the squared euclidean distance d is
used, as shown in Equation (6.1).

d(~a,~b) =
128

∑
i=1

(ai − bi)
2 (6.1)

Figure 6.6 shows the equivalent implementation in C/C++. The matching process in-
volves thousands of floating-point subtractions and multiplications. The complex datapaths
required for floating-point arithmetic and the memory-bound characteristic make this kernel
a good candidate for an implementation on the reconfigurable fabric of the i-Core.

6.3.2. Accelerated Implementation on i-Core

An i-Core (shown in Figure 6.8) is an extension of a general-purpose processor (LEON3)
with a reconfigurable fabric, which allows loading application-specific accelerators at run-
time. An application can use the fabric to speed up its computationally intensive kernels
by loading the appropriate accelerators and then using special instructions (SIs), which are
an extension of the instruction-set architecture of the processor (SPARC-V8 for the LEON3).
Kernels often involve use of multiple accelerators, thus SIs are usually multi-cycle instruc-
tions.

Apart from dedicated fine-grained reconfigurable accelerators (embedded FPGAs), the
fabric contains an interconnect for (i) data transfer from/into the fabric and (ii) transfer of

83

6. Accelerating Image Processing using Specialized Hardware

Perform SIFT
matching on i-Core

Fetch input
frame

Received frame
over Ethernet

Host-PC LEON3 Tile i-Core Tile

Camera

Harris Corner detection
and SIFT feature

extraction on LEON3

Infect i-Core

Retreat i-Core

Filter matches and return
results

Visualize
matched features

on input image
Display

Invade i-Core

Figure 6.7.: Flow diagram showing the interaction between various systems involved in the
SIFT feature matching

intermediate results between accelerators. Two memory ports provide a high-bandwidth
connection (2×128 bits) to the tile-local memory. All components of the fabric can be used in
parallel, allowing interleaved processing of the current data in the accelerators and prefetch-
ing of the next data using the memory ports. When an SI is decoded in the i-Core pipeline,
control is transferred to the fabric controller, which reads the micro-program [114] for the
requested SI from the SI micro-program memory and uses it to configure the interconnect,
memory ports and accelerator modes of the fabric in each cycle. Once the micro-program is
finished, the fabric controller transfers control back to the i-Core pipeline.

In the invasive programming model, once an i-let is running on the i-Core, it issues an
invade call to claim a number of reconfigurable accelerators. The number of invaded accel-
erators depends on the current utilization of the fabric (for example on the i-lets running on
other cores in the same tile [115]). After that, the infect call is used to reconfigure the invaded
accelerators as required by the SIs of the i-let.

The siftmatch SI was designed to accelerate SIFT Feature Matching (as described in Sec-
tion 6.3.1) on the i-Core. siftmatch requires reconfigurable accelerators of the type FMAV
(floating-point multiply-accumulate – vector) to be loaded on the fabric. FMAV accelera-

84

6.3. SIFT Feature Matching on i-Core

T
ile

 B
us

reconf. fabric

ca
ch

e
co

nt
ro

lle
r

F
ab

ric
 C

on
tr

ol
le

r

Tile-Local Memory

i-Core

Memory
Ports

Network
Adapter

Fabric
Interconnect

LEON3 Core

LEON3 Core

LEON3 Core

SI micro-program
memory

Accelerator
Loader

Legend

i-Core
components

compute tile
components

reconfigurable
accelerators

LE
O

N
3

pi
p

el
in

e

Figure 6.8.: Architecture of an i-Core tile [8]

Control Step

Accelerators
Pipeline Stage 2

Memory Port
Activity

Initial-
ize

Accelerators
Pipeline Stage 1

LOAD LOAD LOAD

ADD2

x 29

RESADD2

0 1 2 3 4 7 8 67 68 69 70 71 72 73

LOAD

5 6

SUBSUBSUBSUBSUB

SUBSUBSUBSUBSUB

SUBSUBSUBSUBSUB

SUBSUBSUBSUBSUB

SQASQASQASQASQA
SUBSUBSUBSUB

SQASQASQASQASQA
SUBSUBSUBSUBSUB

SQASQASQASQASQA
SQASQASQASQASQA

SQASQASQASQASQA
SQASQASQASQASQA

ADD1ADD1ADD1

ADD1ADD1ADD1

Compute differences:
cn...n+3 = an...n+3 - bn...n+3

SUBLoad Feature Data: an...an+3, bn...bn+3LOAD

SQA
Square and accumulate differences:
R0...3 = cn...n+3

2 + R0...3

ADD1
Aggregate subresults:
d0 = (R0 + R1), d2 = (R2 + R3)

RES Transfer result d from fabric to pipeline

Legend

ADD2
Aggregate final result:
d = d0 + d2

Accelerator Modes

Figure 6.9.: Schedule of the siftmatch SI [8]

85

6. Accelerating Image Processing using Specialized Hardware

tors are multi-purpose accelerators that work on single-precision floats and allow 12 modes
(out of which three modes are used for siftmatch, see upper right part of the Legend in
Figure 6.9), which are combinations of multiplication/addition/subtraction with optional
storing of the result in an accelerator-internal register. Due to the long critical path resulting
from some of the FMAV modes (for example, multiply→ add→ store in internal register),
the accelerators use a two-stage pipeline in order to not reduce the fabric frequency.

To compute the difference of two feature vectors, the siftmatch SI utilizes the fabric
memory ports and FMAV accelerators in a schedule consisting of multiple control steps that
depend on the number of utilized accelerators. The schedule for four FMAV accelerators has
74 control steps and is shown in Figure 6.9. First, four elements from each vector are loaded
(an, ..., an+3, bn, ..., bn+3 using the two 128-bit memory ports (designated LOAD operation
in the figure). Next, the four differences cn, ..., cn+3 are computed in parallel on the four
independent FMAV accelerators (SUB mode of the FMAV accelerators in the figure). Control
step 3 shows the first pipeline stage of this operation and control step 4 shows the second
pipeline stage of the very same operation. At the same time, the memory ports load the
next four elements from both input vectors. Then the differences need to be squared and
added (accumulated) to the internal registers R of the FMAV accelerator (SQA mode of the
FMAV accelerators in the figure). Even though the input data for the first SQA operation
would be available in control step 5, the operation is performed in control steps 6 and 7
(first and second pipeline stage), as the FMAV accelerators are already used in control step
5 to calculate the differences of the second LOAD operation. Control steps 7 and 8 show
the steady state, which is repeated until all 128 elements are processed. Finally, the internal
registers R of all four FMAVs are added (ADD1/ADD2 mode of the FMAV accelerators in
the Figure) and the result d is transferred from the fabric to the pipeline (designated RES in
the figure).

The special instruction supported by the i-Core, is as shown below and can be used within
a C/C++ application as inline assembly. The special instruction for feature matching has
two inputs and one output. Each SIFT feature to be compared consists of 128 floating point
values. The address to the SIFT feature is passed along with the special instruction, as shown
below, where src_matrix0 and src_matrix1 represents the starting address of each SIFT feature.
The result will be stored in the location pointed by res_matrix

• asm volatile (" sigrp 0x0, %%g0, %%g0; " : :);

• asm volatile (" sift %[_src_matrix0], %[_src_matrix1], %[_res_matrix], %[_agu] "
: [_agu] "r" (span_skip_stride),
: [_src_matrix0] "r" (matrix0),
: [_src_matrix1] "r" (matrix1),
: [_res_matrix] "r" (dest_matrix)
);

Figure 6.10 shows the internal structure of the i-Core tile with i-Core, LEON3, i-Core-
TLM (8KB), normal LEON3-TLM (8MB), NA, etc. As described in Section 6.3.2, the SIFT
feature matching using special instruction on i-Core achieves the best performance when
the features to be compared are stored in the i-Core-TLM. This is because the i-Core can
access the data stored in the i-Core-TLM using the dedicated high-speed 128 bit interface as
shown in Figure 6.10.

86

6.3. SIFT Feature Matching on i-Core

i-Core

L1

LEON3

L1

LEON3

L1

LEON3

L1

i-Core TLM
(128 KB)

TLM
(8MB)

NA

Figure 6.10.: Internal structure of the i-Core tile

The entire process for SIFT feature matching on i-Core can be summarized as follows:

1. Copy a set of SIFT features (generated by the previous stage) from the LEON3-TLM to
the i-Core-TLM.

2. Initiate a feature comparison using the special instructions described above.

3. Copy the result back from the i-Core-TLM to the LEON3-TLM

4. Repeat steps 1 to 3 until all features are compared.

Section 6.3.3 provides insight into the acceleration offered by the i-Core special instruction
and also describes some of the limitations of the current InvasIC hardware which prevent
the application program from achieving the best possible results.

6.3.3. Results

Table 6.1 shows the execution time for SIFT feature matching when performed on an i-Core,
compared to a standard LEON3 with Gaisler FPU-Lite. It can be seen that the i-Core SI offers
a 10.5× speedup when compared to the LEON3 cores. For this evaluation process, the SIFT
features for comparison were stored in the i-Core-TLM.

LEON3 i-Core
(with FPU-Lite) SI

SIFT feature matching 0.095 0.009

Table 6.1.: Acceleration achieved for SIFT matching using i-Core (in milliseconds)

However, in a real-word situation, when the input data (SIFT features) is generated by
LEON3 cores, they are stored in the LEON3-TLM (8MB) as it offers sufficient space to store

87

6. Accelerating Image Processing using Specialized Hardware

hundreds of features at the same time. This means that the SIFT features have to copied
from the LEON3-TLM to the i-Core-TLM before performing a matching operation using the
i-Core’s SI. One of the restrictions of the InvasIC hardware (at the time of writing this thesis)
is that the NA does not support intra-tile DMA operation. This means that there is no DMA
support to transfer data from the LEON3-TLM to the i-Core-TLM. Hence the LEON3/icore
has to reply on laod/store instructions to copy the SIFT features. Under situations when
large number of features have to be processed, the data copy may consume a significant
fraction of the execution time affecting the overall performance. In order to clarify and isolate
this problem, the evaluation process was performed using three different configurations, as
described below:

1. LEON3 performing SIFT feature matching from LEON3-TLM

2. i-Core performing SIFT matching from LEON3-TLM

3. i-Core performing SIFT matching from i-Core-TLM (this involves data copy from/to
i-Core-TLM)

The results from all three different evaluations models are provided below. For case-1 the
input data (SIFT features) is stored in the LEON3-TLM and the results are written to the
same TLM, as shown in Figure 6.11. This approach helps to avoid any data copy overhead
and this resulted in an execution time of 0.095 milliseconds per SIFT feature.

TLM

AHB Bus

LEON
Core

Figure 6.11.: Case-1: Evaluation model (SIFT feature matching on LEON3)

In case-2 the matching processes is accelerated using the special instruction available on
the i-Core. The input and output data is stored in the LEON3-TLM (similar to case-1) and
the data flow is as shown in Figure 6.12. Even though the special instruction can finish its
operation within 0.009 milliseconds (see Table 6.1), the data access (load/store operations)
from/to LEON3-TLM over the shared AHB bus consumes significant amount of time. The
additional overhead reduced the overall benefits achieved by using the special instruction
available on the i-Core. The average processing time per SIFT feature in this case was mea-
sured to be 0.051 milliseconds or 1.9× speedup compared to the LEON3 version (case-1).

In case-3 the matching processes is accelerated using the special instruction available on
the i-Core, just like in case-2. However, the input data is copied from the LEON3-TLM to the
i-Core-TLM before execution of the SIFT special instruction and the results are copied back

88

6.3. SIFT Feature Matching on i-Core

i-Core

TLM

AHB Bus

Figure 6.12.: Case-2: Evaluation model (SIFT matching on i-Core using LEON3-TLM)

after the execution of the special instruction as shown in Figure 6.13. This resulted in a sig-
nificant acceleration as shown in Table 6.1. However, this execution time (0.009 milliseconds
/ SIFT feature) is only for the special instruction and it does not include the time needed to
copy the SIFT features from the LEON3-TLM to the i-Core-TLM. The entire processing in-
terval was measured to be 0.072 milliseconds per SIFT feature (speedup of 1.3×), including
the data copy.

i-Core

TLM

i-Core
TLM

AHB Bus

LEON
Core

Figure 6.13.: Case-3: Evaluation model (SIFT matching on i-Core using i-Core-TLM)

Figure 6.14, shows the relation between the execution times as measured using the three
cases mentioned above. As expected the case-1 offers the worst case execution time as the
LEON3 processor handles the matching process using standard SPARC-V8 instructions. The
execution time may be improved further using a faster FPU, instead of the FPU-Lite version
used in this evaluation. Case-2 resulted in a significant improvement in execution time due
to the use of special instructions available on the i-Core. Finally, case-3 resulted in a longer
execution time compared to case-2, where the additional delay from the data copy using
load/store instructions over the AHB bus significantly affected the expected benefits. More-

89

6. Accelerating Image Processing using Specialized Hardware

over, it should be noted that an i-Core is significantly bigger than a standard LEON3 core
(approximately 2× bigger, depending on the size of the reconfigurable fabric).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Case 1 Case 2 Case 3

Total computation time

Figure 6.14.: SIFT matching, a comparison between three cases (time in milliseconds)

The results clearly point to the need for a DMA engine within the tile to handle intra-tile
DMA transfers. With the help of such a DMA engine, the execution time can be brought
down significantly (very close to the value of 0.009 milliseconds per SIFT feature), as shown
in Table 6.1.

90

6.4. Optical Flow Computation on Tightly Coupled Processor Array

6.4. Optical Flow Computation on Tightly Coupled Processor

Array

Optical flow algorithm has been used widely in autonomous systems where it can be used to
extract important features from the environment to serve as navigational cues and to provide
guidance during motion. Figure 6.4 represents optical flow, where the orientation of the flow
fields (vectors) indicates the direction of motion and the length of the vector represents the
relative speed at which the objects are moving.

(a) Forward motion (b) Sideways motion

Figure 6.15.: Results from optical flow algorithm

This section describes how the optical flow algorithm can be accelerated using the mas-
sively parallel TCPA available on InvasIC. Various stages within the algorithm and their
mapping on the TCPA are explained in Section 6.4.2. The results section (Section 6.4.5)
presents the performance improvements achieved when compared to a conventional im-
plementation on the LEON3 cores.

6.4.1. MPPAs for Optical Flow Computation

An efficient computation of optical flow using the census transform was published in [116]
and an FPGA implementation of this algorithm was published in [117]. In addition to FP-
GAs, MPPAs can be used to accelerate image processing algorithms. The use of MPPAs
for signal and image processing has received a lot of research interest over the past few
years. Ambric (with 336, 32-bit RISC processors) [40], Xetal-II [6] (a SIMD processor with
320 processing elements), etc. are some of the MPPAs available today. Significant reduction
in processing time for various applications could be achieved in the past using such MPPA
architectures. For example an optical flow implementation on Ambric AM2045, running
in real-time at 37 frames per second (fps) on an image stream with a resolution of 320x240
pixels, is described in [52]. The performance of this system running at 300 MHz is quite
comparable to the state of the art FPGA implementation in [117]. This implementation as-
sumes a fixed frame rate and resolution and with the algorithm statically mapped to the PEs,
it consumed about 60% of the PEs on AM2045. Such implementations are not always flexi-
ble enough to handle the time-varying requirements from a realistic scenario as explained in

91

6. Accelerating Image Processing using Specialized Hardware

Section 1.2, under widely varying processor load. Moreover due to the limitations in the I/O
interfaces of Ambric the PEs were stalled for more than 70% of the time, waiting for inputs.

In order to be able to flexibly run a wide range of signal and image processing algorithms
as fast as possible, different kinds of reconfigurable multiprocessor-on-a-chip architectures
have been developed. Examples of such architectures are DRP [118], PACT XPP [119] and
ADRES [120]. The processor array of these architectures can be switched between multi-
ple contexts by performing run-time configurations that are scheduled statically. The level
of concurrency in TRIPS [121] may range from running a single thread on a logical pro-
cessor composed of many distributed cores to running many threads on separate physical
cores. In the CAPSULE project [122], the authors describe a component-based program-
ming paradigm combined with hardware support for processors with simultaneous multi-
threading in order to handle the parallelism in irregular programs. Authors in [123] have in-
troduced an approach based on integer linear programming for loop level task partitioning,
task mapping and pipeline scheduling, while taking the communication time into account
for embedded applications. Although all the above mentioned architectures have the po-
tential capability of exploiting different level of parallelism, they all perform static resource
allocation and hence the degree of parallelism for the applications are defined at compile-
time.

Under the Invasive Computing programming methodology, we try to address the above
mentioned issues by allowing the parallel programs to temporarily request and acquire com-
puting resources in its neighborhood according to its computing requirements and release
the resources after performing a parallel execution. This approach enables applications to
self-explore the degree of parallelism available and to exploit dynamic resource require-
ments while avoiding fully centralized control of execution. Each PE within the TCPA ar-
chitecture, presented in [71], is equipped with a hardware-based resource exploration con-
troller that enables the processing element to explore the resource availability in its neighbor-
hood [124]. The mentioned work established a platform to map such programs in a way that
they can adapt themselves to the available degree of parallelism, with the help of resource
exploration controller.

6.4.2. Various Stages in Optical Flow Algorithm

Details about the optical flow implementation on the TCPA is provided in this section with
emphasis on image buffering and output generation. In addition to the computations per-
formed inside the PE, the pattern in which the input pixels are buffered has a significant
impact on performance. Inefficient buffering techniques may lower the performance due to
the limited memory bandwidth on MPPAs.

This optical flow algorithm consists of three main stages (sub-algorithms) as listed below:

1. Noise reduction on the input image using a low pass filter.

2. Census signature generation for every image pixel based on its neighborhood.

3. Computing flow vectors through signature matching, within its neighborhood.

Each sub-algorithm by itself is computationally demanding and has to be performed con-
tinuously, once per video frame. Also the computing requirements of the algorithm might

92

6.4. Optical Flow Computation on Tightly Coupled Processor Array

vary from time to time based on the application scenario. For example, when the robot is
dealing with fast moving objects, the search region has to be widened significantly while it
can be compressed when the robot is moving inside a building with slow moving objects
around it. Such a change in behavior also makes optical flow an ideal candidate to demon-
strate the concept of Invasive Computing.

Programming
Elements (PE’s)

Data Channels

Control
Channels

TCPA
Configuration

Programming

Figure 6.16.: Modeling optical flow on TCPA using the simulation framework

The optical flow algorithm was modeled on the TCPA using a cycle accurate simulator
with an interface as shown in Figure 6.16. Using this graphical interface, the size of the array
can be defined, the interconnects (data and control) between PEs can be configured and the
instructions to be executed on each PE can be loaded.

6.4.2.1. Noise Reduction

As the first pre-processing step, image smoothing (using a low pass filter) is required to
reduce noise in the input image. A noisy image will significantly reduce the number of pos-
sible flow vectors in the final output [117]. Noise reduction is a pixel-based operation, where
each pixel is transformed based on the value of its neighboring pixels, using Equation (6.2),
where P(x, y) is the value of the pixel at location (x, y) and W(x, y) is the corresponding
weight.

Ps(x, y) =
∑x+w/2

x1=x−w/2 ∑
y+w/2
y1=y−w/2 P(x, y) ∗W(x, y)

∑ W(x, y)
(6.2)

93

6. Accelerating Image Processing using Specialized Hardware

The window size is represented by w (set to a value of 3) and Ps(x, y) is the resulting pixel.
The pixels within the neighborhood as defined above, form a 2D window with P(x, y) at
the center. The window then slides over the complete image generating Ps(x, y) for every
possible value of x and y within the image boundary.

The input buffers (RAM) of the TCPA serve as line buffers, with each buffer storing one
complete row of the input image. The buffer controller handles the data fetch operations as
explained in [125]. The PEs along the periphery of TCPA have direct RAM access and they
access the pixel data as shown in Figure 6.17. It should be noted that each PE processes only
a single row within the 2D window and the individual results from PEs has to be combined
to get the final resultant pixel.

w

w

RAMRAM

RAMRAM

RAMRAM

window 1

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

PE

PE

PE

Figure 6.17.: Basic image filtering on a TCPA [14]

After processing one complete row of the window, every PE outputs its result to the next
PE and the final result is computed by the bottom PE, according to the mapping scheme
in Figure 6.17. When the output buffer is full an interrupt is raised and the results are moved
to the external memory by the DMA controller which is part of the TCPA architecture as
explained in [125]. A detailed explanation of the TCPA memory architecture and external
bus interface is beyond the scope of this thesis.

According to this mapping scheme, the size of the window (w) decides the number of PEs
required for program execution. It is interesting to note that for a sliding window approach,
[(w− 1)× (w)] pixels of any window is also part of the nearest neighboring window. Hence
a second column of PEs if available, can process the second window by reusing the [(w −
1) × (w)] pixels read for the first window along with an extra w pixels which is specific
to the neighboring window. This leads to an acceleration of the overall algorithm as more
windows are now processed simultaneously, as shown in Figure 6.18.

94

6.4. Optical Flow Computation on Tightly Coupled Processor Array

window 1 window 2 window 3

RAMRAM

RAMRAM

RAMRAM

RAMRAM RAMRAM RAMRAM

RAMRAM RAMRAM RAMRAM
Outputs

RAMRAM

RAMRAM

RAMRAM

w w

w

PE PE PE

PE PE PE

PEPE PE

w

Figure 6.18.: TCPA processing multiple windows simultaneously [14]

6.4.2.2. Census Signature Generation

After image filtering, the next step is to generate census signatures from the filtered image.
For this step, a technique described in [117] is used and it is briefly explained in Figure 6.19.

Signature : 0101222110002012

=

<

=

>

>

=

>

=

X

<

>

>

<

<

=

=

<

Figure 6.19.: Signature generation technique [14]

A unique signature is calculated for every pixel in the frame by comparing its value
(marked by ’x’) with its neighboring pixels located within its window region. The result of
each comparison consists of 2 bits and is calculated using an ε value as shown in Figure 6.19.
Unlike image filtering, only a subset of the neighboring pixels are required for signature
generation. Those pixels are marked by the symbols (<,=,>) and the symbol indicates the
relation of the central pixel with the neighbor at that particular location.

95

6. Accelerating Image Processing using Specialized Hardware

From Figure 6.19 it is clear that the maximum number of pixels to be processed per col-
umn is five and this occurs at the center of the window. Hence within the TCPA, five PEs
per column are required for computing the signature. The filtered image (input image) is
buffered in a similar fashion as in case of image filtering. Moreover, the signature genera-
tion stage of the algorithms also involves a sliding window and hence the processing can be
accelerated using multiple columns of PEs as shown in Figure 6.20.

According to the mapping scheme in Figure 6.20, all the pixels within a window are
buffered in the RAMs on the west side while only the center pixel is buffered into the RAM
on the north side of the array. More information related to this buffering scheme is pro-
vided under Section 6.4.4. Similar to the approach adopted for image filtering, the results
are propagated through the PEs to the RAMs located at the bottom of the array. A unique
signature is thus generated for each pixel in the input frame, forming a signature image as
shown in Figure 6.21 and this is used for computing the flow vectors as explained in the next
section.

3 adjacent windows from

censusimage (t)

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM RAMRAM RAMRAM

RAMRAM RAMRAM RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

RAMRAM

window 1 window 2 window 3

Outputs

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PE

PEPE

PE PE

w

w

w

w

Figure 6.20.: Mapping scheme for signature
generation [14] Figure 6.21.: Sample signature image

6.4.2.3. Flow Vector Generation

Flow Vector Generation is the final stage of the optical flow computation which generates
flow vectors representing the relative motion between the camera and the objects in the
frame. For vector generation two consecutive signature images are required (from frames (t-
1) and (t)). As explained before, a signature represents the relation of the current pixel with
its neighborhood. Thus, if the signature of a pixel match with the signature of same/another
pixel in the next consecutive frame, then the pixel is said to have moved from its primitive
location in frame (t-1) to the new match location in frame (t).

96

6.4. Optical Flow Computation on Tightly Coupled Processor Array

In order to understand this process, consider a window of size [w× w] centered at coor-
dinates (x, y) in the signature image (t). A signature at location (x, y) in the frame (t-1) is
compared with every signature within its window in the next frame (t). This is explained
using the Figure 6.22. If a unique match is found (e.g., at location (xi, yi)) then a vector can
be established connecting location (x, y) and location (xi, yi). This operation is repeated for
every pixel in frame (t-1), using a sliding window, generating flow vectors wherever possi-
ble.

Unique

match?=

Add Vector

Discard Vector

Center signature Y

N

Signature Image (t-1)

..

Signature Image (t)

.

1011002101100121

1011002101100121

1011102101110121

1021101101120101

1011002121101121

2011002101100121
1011002101100121

225

w

w

w

w

Figure 6.22.: Flow vector generation logic [14]

To start vector generation, the signature image computed in Section 6.4.2.2 is buffered into
the TCPA in a very similar fashion as explained for signature generation, with a difference
that no rows/columns are skipped. The size of the window (w) decides the search region.
Larger the value of w, longer the vectors and hence fast camera motion or fast moving objects
could be detected. But this also means that more pixels has to be processed per window,
leading to higher computing requirements. The output buffering remains exactly same as
in the previous stages of the algorithm. A sample output with ARMAR-III robot attempting
for object grasping is shown in Figure 6.23.

6.4.3. Optical Flow in Invasive Notation

As the optical flow algorithm has three main stages, three phases of invade and retreat oper-
ations has to be carried out one after the other. This ensures that the application does not

97

6. Accelerating Image Processing using Specialized Hardware

Figure 6.23.: Vision assisted grasping by ARMAR III humanoid robot

hold the resources unnecessarily, leading to higher resource utilization. Processing starts on
a single PE (LEON3) where it calculates the amount of resources required to meet the ap-
plications real-time constraints under a particular frame rate and resolution. For example
to meet the real-time constrains under a high frame rate, the application can raise an invade
request for a [3× 3] array of PEs for image filtering. If a set of [3× 3] is not available, the
operation can continue with a PE array of size [3 × id], where id is called invasion depth.
The value of id can vary from one to window size (w). In general, based on the computing
requirements, the value of id can be calculated and an invasion request can be raised by the
seed PE, with the help of the invasive co-processor. It can be shown that the overall process-
ing time decreases with increase in value of id. After the invasion, an infect stage begins by
loading the predefined instructions and interconnect structure into the invaded PEs.

After completing image filtering the PEs are released through a retreat operation. This
is followed by a second invade for a PE array of size [5× id], where id varies from one to
five. In a similar fashion, the vector generation stage use an array of size [w× id] where w
is the window size or search region. It should be noted that multiple invasions can happen
simultaneously as shown in Figure 6.24. Such invasions can handle image filtering and sig-
nature generation simultaneously, reducing the external memory bandwidth requirement
and thereby the overall processing time, as the temporary results need not be written back
to the external memory. Figure 6.24 shows an example scenario for resource-aware comput-
ing, where there is an application already running on the TCPA and two other applications
try to invade from two different seed points. Due to their real-time requirements they de-
cided to set their id values to the maximum possible value (3 and 5 respectively). The arrows
represent the direction of invasions. After invasion, it could be seen that the image filter ap-

98

6.4. Optical Flow Computation on Tightly Coupled Processor Array

plication could obtain an id of three, equal to its target, while the id for signature generation
was limited to four, due to the presence of a 3rd application. Such a flexible implementa-
tion allows the signature generation to continue with its operation rather than waiting for
remaining PEs to be released by the 3rd application.

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

�� �� ��

�� �� ��

�� �� ��

�� �� ��

��

�� ��� � 	
� � �

�� ��� � 	
� � �

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

�� �� ��

�� �� ��

�� �� ��

�� �� ��

��

����
��� 	
� � �

� � ��
��� 	
� � �

�� ��

�� �� ��

�� �� ��

�� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� ���� ��� �
��� � �
��� �� �� ���� �� �
�� � �� ��� �
�� �
��

Figure 6.24.: Resource aware 2D invasions on TCPA

6.4.4. Implementation

This section describes the programming aspects and interconnect configuration for various
stages of the optical flow algorithm on TCPA.

6.4.4.1. Noise Reduction

For noise reduction a low pass filter of size [3× 3] with weights as described in [117] is used.
The weights are power of two and hence all the operations can be carried out using logical
shift operations. To begin image filtering, an invasion is carried out for a 2D region of PEs,
defined as [3× id], so that it can process id number of windows simultaneously. Based on
the reply from the invasion controller, the application then fixes its final id value and starts
the image filtering operation. A new configuration is now loaded into each PE, where each
PE is configured to have two input and two output ports. The ports inp0 and inp1 of each PE
along the periphery are connected to the RAMs while the ports inp0 and inp1 of remaining

99

6. Accelerating Image Processing using Specialized Hardware

PEs are connected to the output ports of the periphery PEs, as shown in Figure 6.25. This
interconnect structure helps the PEs (without direct RAM access) to access the data in the
RAM.

�� �� �� �

���	

��
�
�

 � ���

�� �� �	 �

���	

��
�
�

 � ���

�� �	 �� �

���	

��
�
�

 � ���

�� �	 �	 �

���	

��
�
�

 � ���

�� �� ��� ��� ��

�
��
�
�
�

��
��

�
��

	

�
��

	

�
��

	

�
��

	

Figure 6.25.: TCPA Configuration for image
smoothening

�� ��� ���

� �� �	
 �� �
�
 �	������

� �
�	� �
 � � �
�	� �
�� �

Figure 6.26.: Discard operation

After an invade operation, the PEs start pixel processing where each PE processes one
complete row of the current window and the result is sent to the PE located below, through
its output port outp0. The neighboring PE then adds its own result to the result coming from
its neighbor above and transfers it to the next PE. Thus the final result is computed by the
3rd PE, for a window size of [3× 3]. Each PE now flushes its internal registers and contin-
ues processing the upcoming windows, in a similar fashion as explained before. Figure 6.26
explains the input data flow (with the invasion depth set to a value of 2), processing two
windows simultaneously. Because of the TCPA architecture, only the PEs along the periph-
ery can access the RAM. If other PEs want to access the RAM data, this has to be read by
the periphery PE and any data read by the periphery PE is automatically available to other
PEs in that row through the special interconnect configuration. Hence to process two win-
dows simultaneously, an additional column of pixels has to be read by the periphery PE,
beyond its own window region. Thus the actual window size is now increased to [3× 4] or
[w× (w + id− 1)] in general. This additional set of pixels belong to window 2, and will be
discarded by PEs processing window 1 and vice versa.

Number of clocks required to produce one smoothed pixel is given by Equation (6.3),
where CPP is clocks/pixel, id is the invasion depth, w is window size, Cp is the number
of clock cycles for processing one pixel within the current window, Cd is the number of
clock cycles for the discard operation, and Cconst is the time for resetting the registers after
processing one window and move on to the next. After processing all the pixels in the
current frame, the PEs are released through a retreat operation.

CPP =

{
(Cp∗w)+(id−1)Cd+Cconst

id , id 6= w
(Cp∗w)+Cconst

id , id = w
(6.3)

100

6.4. Optical Flow Computation on Tightly Coupled Processor Array

Figure 6.27 provides some data indicating how the clocks-per-pixel value varies with win-
dows size and invasion depth. These results are based on the cycle accurate TCPA simulator.

Figure 6.27.: Variation in execution time for image filtering application based on window
size and invasion depth

6.4.4.2. Signature Generation

As described in Section 6.4.2.2, signature generation requires a sliding window of [9 × 9]
pixels where the maximum number of pixels to be processed per column is five (see Fig-
ure 6.19). Hence the processing starts by invading a [5× id] region inside the TCPA. Once
the invasion is complete, the id value is fixed and the infect stage starts loading the new
program and a new interconnect configuration as shown in Figure 6.28.

The center pixel is buffered through the port inp2 of PE[0,0] to PE[0,id] and this input port
is also connected to the input port of the next PE (in that column) through output port outp1.
This means the value reaches all PEs in the same column at the same clock. The remaining
pixels within the window are buffered through the input port inp0 and hence available to
all PEs in the same row. Each PE upon receiving the inputs, performs a comparison between
two inputs as explained in Figure 6.19. It then performs the same operation on the next set
of inputs and concatenates the results to form a signature. Once a complete row within the
current window is processed, each PE outputs its partial signature on its output port outp0.
Now the partial signatures need to be combined to generate a 32 bit complete signature and
this is handled by the PE at the bottom of the invaded region (accumulator PE). Hence the
individual results are propagated downward through the other PEs (through their outp0
port) and collected by the PE at the bottom. The final 32 bit signature is obtained at outp0 of
the accumulator PE.

101

6. Accelerating Image Processing using Specialized Hardware

�� �� �� �

���	
��

�
�

 � ��	

�� �� ��� ��� ��

����

 � ���

�� �� �	 �

���	

��
�
�

 � ��	

����

 � ���

�� �	 �� �

���	

��
�
�

 � ��	

����

 � ���

�� �	 �	 �

���	

��
�
�

 � ��	

����

 � ���

�� �� ��� �

���	

��
�
�

 � ��	

����

 � ���

�� �	 ��� �

���	

��
�
�

 � ��	

����

 � ���

�� �� �� �

���� ���	

 � ���

�� �� �	 �

����

 � ���

�� �� ��� �

���� ���	

 � ���

���	

�
��
�
�
�

��
��

���� � � � � ����� �� �
 � ��� � � � � ����� ���	 �
 � ��� � � � � ����� ���� �

Figure 6.28.: TCPA configuration for signature and vector generation

As compared to image filtering in Section 6.4.4.1, the signature generation involves an ad-
ditional propagate operation for sending the individual results to the accumulator PE. This
can be avoided by connecting each of the PEs performing signature generation, individually
to the accumulator PE. But this leads to complex routing schemes and hence this is not a
preferred option for large windows. Therefore the results are propagated through the PEs
and this leads to an additional factor in the performance figures as shown in Equation (6.4),
where w is the window size (equal to 9), wact is the maximum number of active pixels to
be processed within any column in the window (equal to 5) and Cs is the clocks required to
propagate one result from a PE’s input port to its output port.

CPP =

{
(Cp∗w)+(wact−1)Cs+(id−1)Cd+Cconst

id , id 6= w
(Cp∗w)+(wact−1)Cs+Cconst

id , id = w
(6.4)

The PEs operating in this stage can be classified into two categories or domains (pixel com-
parison domain or domain-I and result accumulation domain or domain-II). All the shaded
PEs form domain-II while the remaining PEs form domain-I, as shown in Figure 6.28. PEs
in the domain-II are pipelined to the PEs in domain-I. Moreover, domain-II requires less

102

6.4. Optical Flow Computation on Tightly Coupled Processor Array

number of clocks to complete its computation, as the accumulation operation performed
by domain-II is a simple operation compared to signature generation by domain-I. Hence
domain-II is not considered in Equation (6.4). For more information on PE domains, please
refer to [71].

From Equation (6.4), it is clear that the performance of the system is dependent on id
(when w is fixed) and that the CPP value does not scale linearly with id, due to the presence
of id in the numerator. During the discard cycle, each PE waits (for a specific number of clock
cycles) for an input pixel to arrive and then discards it. The number of discard operations
is proportional to id, which leads to a saturation in performance figures over the range of
values of id.

In order to resolve this issue a new mode of operation was developed such that the system
can perform the propagate and discard operations simultaneously. Such an approach is
realistic because the number of input discard operations is always less than or equal to the
number of result propagation operations. With this modification Equation (6.4) reduced to
Equation (6.5) where the performance scales linearly with id when the window size is fixed.
The graphs in Section 6.4.5 shows the performance impact of the new model.

CPP =
(Cp ∗ w) + (wact − 1)Cs + Cconst

id
(6.5)

6.4.4.3. Vector Generation

The vector generation stage is described here with the details about the interconnect struc-
ture and operations inside the invaded PEs. For detecting fast movements, a wider search
region is necessary. Hence, based on the scenario, the seed PE fixes the invasion depth and
begins invasion, with a request to invade [w× id] region of the TCPA array. As described in
case of image filtering, each PE processes its corresponding row within a 2D window. An
incoming signature from frame (t-1) has to be matched with signatures from frame (t). As
explained in Figure 6.22, in case of unique match, a vector is generated with its endpoints
extending from center of the window to the location of the matching signature.

As one PE processes only a section of a complete window, the results are not final and
have to be compared with results of other PEs for multiple match condition. The intercon-
nect structure for vector generation is same as the one used for signature generation (see
Figure 6.28). The signatures within the first window of frame (t) is buffered into the TCPA
through inp0 of PEs on the west periphery. The central signature from frame (t-1) is buffered
into the TCPA through inp2 of the PEs along the north periphery.

Each PE performs a signature matching between the central signature and the signatures
from the corresponding row within the window and outputs the result in the form of (x,y)
coordinates and match count to the neighboring PE below it. The various steps involved in
signature matching together with the instructions used in each step, is shown in Figure 6.29.
Similar to signature generation, the individual results are propagated to the accumulator
PE through the other PEs. The accumulator PE is programmed to receive the (x,y) coor-
dinates from all other PEs along with their match count. It then decides if there was a

103

6. Accelerating Image Processing using Specialized Hardware

Figure 6.29.: Flow diagram showing various stages involved in vector matching

unique/multiple/no-match and then outputs the vector in the proper format through its
outp0. The accumulator PEs have a different interconnect and program domain. The two
domains work in a pipelined fashion to improve the overall throughput. The vector gener-
ation also involves discard and propagate operations similar to signature generation stage
and hence the clocks/pixel values can be calculated using the Equations (6.4) and (6.5), with
a difference that (w = wact) as all the signatures within the window are active this time.

6.4.5. Results

The performance benefits of the optical flow implementation based on Invasive Comput-
ing on TCPA is evaluated in this section, using clocks/pixel (CPP) value as an index for
comparison. A low CPP value indicates low execution time or low power consumption (by
reducing the operating frequency). Figure 6.30 and Figure 6.31 show various graphs indi-
cating the performance of the algorithm running on TCPA. These graphs were plotted using
Equations (6.3), (6.4) and (6.5), for a fixed window size. The dotted lines indicate the results
from sequential discard and propagate operation (represented by (a)) and the continuous

104

6.4. Optical Flow Computation on Tightly Coupled Processor Array

lines indicate the scenario with simultaneous propagate and discard (represented by (b)).
Note that the result propagation is not required in case of image filtering as each PE com-
bines its own result to the result from the neighbors and output just one value. Hence there
exists only one scenario for image filtering.

The values for Cp, Cs, Cd and Cconst were obtained through simulation using a cycle accu-
rate simulator published in [126] and are listed under Table 6.2. The time for TCPA reconfig-
uration (Ccon f) is also listed under Table 6.2. However, the value of Ccon f is not considered
in the performance graphs, as its values become insignificant considering the fact that the
configuration is done only once for processing a VGA frame (640× 480 pixels).

Stage Cp(a) Cs(a) Cd(a) Cconst(a) Cp(b) Cs(b) Cconst(b) Ccon f
Filter 2 - 1 1 - - - 42
Signature 2 1 2 8 2 2 9 105
Vector 2 2 2 4 2 2 4 101

Table 6.2.: Simulation results

Graph in Figure 6.30 indicates variation in CPP value against id, for all three stages of
the algorithm. The graph clearly shows that the CPP value decreases with an increase in
invasion depth. Also it can be seen that for large values of id for vector generation, approach
(b) offer a better performance. This is because the number of discard operations is propor-
tional to invasion depth and for large values of id the time for discard operation becomes a
dominant factor compared to processing time and reduces the overall performance.

1

11

21

31

41

51

61

1 3 5 7 9 11 13 15

C
lo

ck
s/

p
ix

e
l

(c
p

p
)

Invasion depth (id)

IMF SG(a) VG(a) SG(b) VG(b)

Figure 6.30.: Clocks/pixel Vs Invasion Depth (IMF: image filtering, SG: signature generation,
VG: vector generation)

Figure 6.31 shows the acceleration achieved using the new implementation. These graphs
were obtained by taking the ratio [CPP(id=1) : CPP(id=n)]. The obtained accelera-
tion tends to saturate in case of approach (a) and this is clear from Equation (6.4), due to
the increasing number of discard operations with invasion depth. This problem is fixed in

105

6. Accelerating Image Processing using Specialized Hardware

approach (b) and the performance doubled while changing from an invasion depth of one
to two. Moreover, the acceleration is consistent over the range of values for id, as discard
operation is performed simultaneously with result propagation.

1

2

3

4

5

1 2 3 4 5

a
cc

e
le

ra
ti

o
n

Invasion depth (id)

IMF SG(a) SG(b)

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15

a
cc

e
le

ra
ti

o
n

Invasion depth (id)

VG(a) VG(b)

Figure 6.31.: Invasion Depth Vs Acceleration (IMF: image filtering, SG: signature generation,
VG: vector generation)

Table 6.3 makes a comparison between the optical flow implementations on various ar-
chitectures including an FPGA implementation at 100MHz [117], Ambric MPPA at 300 MHz
processing QVGA frames at 37 fps [52] and a pure software implementation on Intel Core 2
Duo processor running at 1.86GHz [117]. The FPGA implementation is capable of process-
ing one complete window per clock cycle, for various stages from the image filtering to the
vector generation. Moreover the FPGA implementation has a pipelined structure for image
filtering and signature generation and hence it does not consume any extra clock cycles for
the image filtering.

Platform execution time image resolution operating frequency
FPGA 9.87 ms 640×480 100 MHz
TCPA 13.72 ms 640×480 300 MHz
Ambric 27.03 ms 320×240 300 MHz
Intel Core 2 Duo 40.55 ms 640×480 1.86 GHz

Table 6.3.: Comparison between the optical flow implementation on different platforms

Figure 6.32 makes a comparison between the optical flow implementation on TCPA with a
pure hardware implementation on FPGA [117] as well as a pure software implementation of
an Intel Core 2 Duo processor (P8700, 32 bit) using clocks/pixel as an index for comparison.
The CPP values are plotted on the y-axis on an exponential scale. The image filtering stage
is pipelined with signature generation and hence does not take any extra clocks. For this
reason the CPP for image filtering is not show in the graph.

Even though the FPGA implementation is designed for a CPP value equal to one, the
system operates at an actual CPP value above one, due to the memory bandwidth bottleneck
created by the external memory controller. Using a similar approach, the TCPA execution
time will not be constrained by the external memory controller, because the best case CPP
(when id = w) values from TCPA is slightly above the corresponding CPP values from FPGA

106

6.4. Optical Flow Computation on Tightly Coupled Processor Array

1.3 1.82

9 76

254
140

1

10

100

1000

Image filter Signature generation Vector generation

FPGA TCPA Dual Core

Ex
ec

ut
io

n
Ti

m
e

(c
lk

/p
ix

el
)

Figure 6.32.: A comparison between different architectures

and therefore the bottleneck will not be memory controller any more. The execution time of
our implementation running at 300 MHz (with w = id) is close to the FPGA implementation
and better than the Ambric implementation. The Ambric implementation used about 200
PEs for processing frames with 320×240 pixels while our implementation used about 225
PEs for processing 640×480 pixels, with a search window of size [15× 15].

Equation (6.5) indicates the variation in CPP value for the vector generation stage of the
optical flow algorithm. As explained in Section 6.4.4.3, a wider search region or window
size is needed for detecting fast moving objects. But an increase in window size leads to
an exponential increase in the number of pixels within the window. Such an increase in
computing requirements can be met by invading more PEs, keeping processing time almost
the same. This result proves that through Invasive Computing, time critical applications can
attain more computing power and constrain their processing time effectively to meet their
real-time requirements. Moreover additional resources were acquired by the application
only when parallelism exists.

For a complete high speed implementation with a search region of [15× 15] and window
size equal to invasion depth, the complete execution involves mapping of 259 threads across
the processor array. All these threads were mapped to neighboring PEs by the application
running on the seed PE and hence eliminates the need for an external thread scheduler. Also
such schedulers if used, cannot completely understand the requirements of the application,
leading to inefficient resource utilization or high idle times for the PEs.

The performance figures also indicate that the overhead from dynamic resource allocation
(Ccon f) is negligible compared to overall execution time. This is because the TCPA architec-
ture supports resource exploration and dynamic reconfiguration in hardware and any MPPA
with similar features incorporated into its architecture can archive similar flexibility and re-
source awareness of invasive computing.

Next, we compare the execution time of our approach with the FPGA-based implementa-
tion as well as a pure software implementation on a soft RISC processor (LEON3), Table 6.5
shows the results of this performance comparison as well as hardware cost comparison.

107

6. Accelerating Image Processing using Specialized Hardware

Image Signature Vector
Filter Generation Generation

Configuration size (bits) 1 344 3 360 3 232
Configuration latency (ns) 840 2 100 2 020

Table 6.4.: Configuration bit stream sizes (bits) for the three parts of the optical flow as well
as the configuration latency Ccon f , where a 32-bit bus is used to load each config-
uration to the PEs (50 MHz clock frequency).

Architecture Hardware cost Performance
slice regs LUTs BRAMs (s)

FPGA 26 114 32 683 81 0.048
5×5 TCPA 35 707 105 799 85 0.427
LEON3 28 355 42 210 65 7.589

Table 6.5.: Hardware cost and performance comparison (time in seconds for fully processing
one image frame) for the optical flow application implementation on a LEON3,
5×5 TCPA, and a custom FPGA implementation. All architectures operate at 50
MHz clock frequency and have been prototyped on a Xilinx Virtex-5 FPGA [14]

The hardware costs are reported for a Xilinx Virtex5 synthesis and the performance is
reported in terms of the overall application computation time per frame. For the TCPA
architecture, the configuration used consisted of a 5×5 array in order to show the achievable
performance of TCPAs, having a hardware cost close to one LEON3. In order to exploit the
full processing capacity of the TCPA, each part of the application is assumed to allocate the
whole array. This is enabled by fast coarse-grained reconfiguration capabilities of TCPAs,
where context switches of the array are performed at the nanosecond scale (see Table 6.4).

Although using more resources than the FPGA-based implementation and consequently
achieving lower performance, TCPA architectures have the great advantage to be programmable
and able to adapt itself regarding to different quality/performance requirements. The LEON3
is configured with 4 KB on-chip RAM, 32 KB data cache, and 16 KB instruction cache. The
evaluation considered only the pure execution time of the application by assuming the input
data already being loaded into the data cache of the LEON3 and input buffers of the TCPA,
respectively. Therefore, the timing overhead of the communication between peripherals,
bus, and the memory access are ignored in each case. In terms of execution time, the LEON3
needs 1 244 clock cycles to generate one signature and to compute a match. Consequently, it
takes approximately 7.6 seconds to process one VGA frame, when running at 50 MHz. This
implementation would therefore provide no more than 0.13 frames per second (fps).

At the same clock frequency, the 5× 5 TCPA configuration achieves approximately 2.35
fps. However, the size of the processor array could be further increased to increase the per-
formance. The total area needed to implement the 5×5 TCPA, i. e., 25 processing elements is
practically equal to the area requirements of a single LEON3. But, the overall execution time
achieved by our solution outperforms that of the LEON3 by a factor of 18, and even faster
than the Ambric MPPA implementation [52], where in case of Ambric the system operates
at 300 MHz frequency and processes 320×240 images and obtains 37 fps performance. With
the same system setup, the TCPA would reach a frame rate of 55.2 fps.

108

6.5. Conclusion

6.5. Conclusion

This chapter focused on evaluating the benefits of specialized PEs like i-Core and TCPA,
available on the InvasIC architecture. Various algorithms like Harris Corner detection, SIFT
feature matching, optical flow, were mapped to different types of PEs. The performance
benefits achieved from the use of heterogeneous PEs were studied and the results were pre-
sented in Sections 6.2.3, 6.3.3 and 6.4.5.

The application mapping schemes are highly flexible and the processing time can be ma-
nipulated by varying the amount of acquired resources. We believe that the concepts devel-
oped during this work is not just limited to optical flow, Harris Corner detection and SIFT
feature matching; but in general can be applied to a wide range of image processing appli-
cations. The novel TCPA implementation could bring down the execution time for optical
flow algorithm [14], close to pure hardware implementations and far below the execution
time of similar MPPA implementation, with algorithm statically mapped to PEs. Also it
should be noted that the TCPA is a processor array and can be programmed using a high
level language. This means that TCPA offers great deal of flexibility in design and would
help to reduce the design, implementation and verification time compared to FPGA imple-
mentations.

The resource-aware implementation acquired resources based on the computing require-
ments and this helped to reduce the chance for stalling of PEs which was the major bottle-
neck with the implementation in [52]. In our implementation, the memory bandwidth is
kept to the lowest possible figures, by reading no pixels more than once from external mem-
ory. This is critical for any data intensive algorithm especially in image processing and this
enable our design to operate with low speed memory controllers as in [117].

The SIFT feature matching using special instructions on i-Core could achieve significant
speedup when compared to the conventional general purpose LEON3 PE. The absence of
the DMA controller (for data transfers within tile boundary) has brought in some perfor-
mance issues which can be fixed by adding an intra-tile DMA feature into the network
adapter. Moreover the PEs were released immediately after a parallel execution, thereby
enabling other applications to use them whenever required. This work also showed that
time critical computer vision algorithms benefit from specialized PEs with special instruc-
tions and stream processors like TCPA. Moreover, the applications like optical flow also
benefit from self-organizing and resource-aware programming which can be achieved using
the new paradigm called Invasive Computing. The combined system (with LEON3, i-Core
and TCPA) offers great prospects in future, especially in the areas of computer vision.

109

7. Object Recognition on Heterogeneous

MPSoC

Conventional multi-core processors with identical cores are becoming inefficient due to their
large area (from complex processor pipeline, caches, etc.), relatively high power consump-
tion, etc. On the other hand, simple micro-architectures offers smaller area and better power
efficiency. However, such designs offer poor single thread performance. Therefore, the het-
erogeneous systems achieve best of both worlds. The paradigm shift from multicore pro-
cessors (with few identical cores) towards heterogeneous MPSoCs (with 100s of cores with
different characteristics) bring in benefits and new challenges as described in Sections 1.4
and 1.5.

In the past, the CPU would have to perform a calculation, save it to memory, and then tell
the GPU that the data was ready to be used. At thsi point, the GPU would have to copy the
data from main system RAM into its own memory, perform some calculation, and output it
to the display. With HSA 2.0 and HUMA, available on the APU, this process is massively
simplified. There is only one pool of RAM, and the CPU can just pass a memory pointer
directly to the GPU, allowing the GPU to very quickly pick up where the CPU left off. The
on-chip interconnect allows to transfer data at a much faster rate between CPU and GPU
blocks and therefore reducing the delay experienced on a conventional system where the
CPU and GPU are interconnected using a PCIe. The thread scheduling across different types
of PEs ((heterogeneous queuing on an AMD APU) is shown in Figure 7.1. Software can
decide to use the GPU instead of the CPU, without worrying about additional complexity,
latency, and so on.

Even thought the heterogeneous architecture like AMD APU are relatively new, the ap-
proach towards application mapping and thread scheduling follows a conventional strat-
egy. Each application program is examined (profiled) to identify the parts of the application
which can be accelerated using a GPU or a specialized PE. Once the parts for acceleration
are identified, the application program is restructures in a way that the GPU friendly parts
are mapped to the GPU. The high level control still remains under the CPU and they gen-
erate workload which gets scheduled on the GPU units. Even though this approach results
in significant acceleration for the application program, such a static mapping of application
parts to different PE types may lead to considerable performance loss and load imbalances
on the heterogeneous MPSoC.

This chapter try to address such challenges, using the resource-aware programming model
of Invasive Computing, for mapping the application program to various types of PEs avail-
able on the heterogeneous MPSoC called InvasIC, based on the instantaneous load on the

111

7. Object Recognition on Heterogeneous MPSoC

Heterogeneous Queueing (hQ)

CPU GPU

Figure 7.1.: Heterogeneous queuing (hQ) on AMD APU

PEs. All evaluations were performed of a FPGA prototype of the heterogeneous MPSoC to
ensure the validity of the results.

7.1. Hardware Prototype

This section presents the prototype used for evaluation, as shown in Figure 7.2. Different
configurations of the heterogeneous MPSoC can be modeled on the CHIPit system [103], a
multi-FPGA platform from Synopsys. The prototype of the InvasIC design used for evalu-
ations used a clock frequency of 25 MHz. The setup used consisted of a camera, monitor,
host-PC, the CHIPit system, etc., were connected as shown in Figure 7.2.

Input frames captured by the camera (four frames per second, 640× 480 pixels per frame)
are stored in an input frame buffer within the host-PC that is configured to hold one frame at
a time. The input images and final results are transferred in and out of the InvasIC prototype
(on CHIPit) using an Ethernet interface. All three stages of the object-recognition algorithm
run on the FPGA prototype of the heterogeneous MPSoC. The input frames are read (from
the frame buffer) by the object-recognition, whenever it is ready to accept new input data.
Upon completion of Harris corner detection, the results are passed to the next stage, and
application waits for the next frame. All three stages within the object recognition were
implemented in a pipelined manner and a new image frame will be available every 250
milliseconds. The results are returned to the host PC for comparison and visualization on
the monitor.

The heterogeneous variant of the InvasIC architecture under evaluation consists of six
tiles (five compute tiles): Tile-0 consists of three LEON3 PEs and one i-Core, tile-1 is a TCPA
tile and tiles-2, -3 and -5 consist of four LEON3 PEs. Tile-4 is an I/O tile which is used to
transfer the audio/video data in and out of the FPGA platform. The homogeneous variant

112

7.2. Evaluation Models

Ethernet
Camera

Monitor

PC
Ethernet

Synopsys CHIPit Platform
HDMI

Figure 7.2.: Setup for evaluation [8]

used for comparison, has a similar configuration but with the TCPA and i-Core replaced by
conventional LEON3 PEs.

7.2. Evaluation Models

The entire evaluation process is divided into three different steps. The first step demon-
strates how the threads from various stages of the application program are scheduled on to
different types of PEs available on the heterogeneous MPSoC. It also compares the hetero-
geneous version of the object recognition with its homogeneous implementation (with all
three stages of the algorithm mapped to LEON3 PEs), in terms of flexibility, performance
obtained, etc. The next step analyzes the performance degradations in a dynamic scenario
where the PEs are shared by multiple applications running concurrently. Together with the
object recognition, audio filtering and matrix multiplication were used as additional appli-
cations competing with each other for various resources. Finally, step three, demonstrates
how the resource-aware programming paradigm of Invasive Computing can improve the

113

7. Object Recognition on Heterogeneous MPSoC

performance of the application program by adapting itself to the available resources on a
heterogeneous MPSoC, at runtime.

The results from different evaluations are compared in terms of throughput (frames pro-
cessed per second) and worst observed latency (WOL), where latency is defined as the time
elapsed from the task dispatch until the availability of results. The WOL values presented in
the results section is based on the evaluation model described above and it may vary based
on the load generated by other applications, application scheduling patterns, etc.

7.2.1. Homogeneous vs. Heterogeneous Implementation

As described in Section 4.1, the object recognition algorithm consists of three main stages.

1. Harris Corner detection

2. SIFT feature extraction

3. SIFT feature matching

Figure 7.3 shows the execution-time profile and scheduling scheme on the heterogeneous
MPSoC for all three stages of the object recognition. The algorithm starts with the Harris
Corner detection on TCPA. The implementation used here is similar to the one described in
Section 6.2, with the difference that a 2-PE model was used instead of the 4-PE model.

0 200 400 600 800 1000 1200 1400

Time (ms)

HCD-TCPA SIFT-Extr-LEON3

TCPA

i-Core

LEON3

SIFT-Match-i-Core

Frame 1
Frame 2

Frame 3

Figure 7.3.: Object recognition on heterogeneous MPSoC [8]

The Harris Corner detection is followed by the SIFT feature extraction. The algorithm for
SIFT feature extraction has to operate at different feature points detected by Harris Corner
detection algorithm. The distribution of the feature points typically depends on the nature
of the input image and the location of various object within the frame. Hence, the algorithm
incorporates rather thread-level than loop-level parallelism as exploitable on a TCPA. The
SIFT feature extraction can be implemented on i-Core with special instructions. However,
this would result in multiple special instructions as the algorithm consists of several different
stages. Hence, the algorithm was mapped to the the loosely coupled LEON3 PEs, which
can execute the conventional algorithm from the Integrated Vision Toolkit library [111], in a

114

7.2. Evaluation Models

multi-threaded environment. Finally the SIFT feature matching is performed on the i-Core,
using the special instructions described in Section 6.3.

The homogeneous implementation, on the other hand, has all three stages of the object
recognition algorithm mapped to the general purpose LEON3 PEs. In order to keep the
execution-time profile comparable to the heterogeneous model, the Harris Corner detection
algorithm was mapped to four LEON3 PEs. The SIFT feature extraction uses four LEON3
PEs in both homogeneous and heterogeneous models. Finally the SIFT feature matching
uses seven LEON3 PEs in order to achieve the same performance as a single i-Core. The
execution-time profile for the homogeneous variant is shown in Figure 7.4.

0 200 400 600 800 1000 1200 1400

Time (ms)

HCD-LEON3

SIFT-Extr-LEON3

SIFT-Match-LEON3
TCPA

i-Core

LEON3

SIFT-Match-i-Core

Frame 1
Frame 2

Frame 3

Figure 7.4.: Object recognition on homogeneous MPSoC (LEON3 PEs) [8]

The entire evaluation process consists of 100 frames and takes about 25 seconds on the
FPGA prototype (with a 25MHz clock). As it is difficult to show the scheduling pattern for
all 100 frames, the overall results are presented in table format (see Table 7.1). Remapping
the Harris corner and SIFT feature matching to TCPA and i-Core helped to reduce the overall
load on the LEON3 PEs.

Load on
LEON3

Load on
TCPA

Load on
i-Core

Throughput WOL
(msec)

Homogeneous 59.16% 0.0% 0.0% 97 frames 732
Heterogeneous 23.03% 62.17% 72.41 % 97 frames 683

Table 7.1.: Object recognition: homogeneous vs. heterogeneous [8]

7.2.2. Multiple Applications on Heterogeneous MPSoC

This section demonstrates the challenges and performance issues encountered by applica-
tion programs on a conventional heterogeneous platform. In order to evaluate a situation

115

7. Object Recognition on Heterogeneous MPSoC

where multiple applications compete for resources, additional applications such as audio
filtering and matrix multiplication (an application that is widely used in computer graph-
ics) were used. The audio-filtering application is capable of processing thousands of audio
samples by filtering the samples to eliminate unwanted noise signals. As audio filtering
belongs to the class of streaming applications, it can be performed efficiently on the TCPA.
This application is scheduled on the TCPA at regular intervals of 1000 milliseconds and each
run takes approximately 500 milliseconds to process all audio samples assigned for that run.
Similarly, matrix multiplication is used to inject additional load on the i-Core. This appli-
cation is capable of multiplying large 2D matrices, scheduled at regular intervals of 3000
milliseconds and each run takes approximately 440 milliseconds.

The above mentioned applications (audio processing and matrix multiplication) were al-
lowed to run concurrently with the object-recognition application. The available resources
were shared between these applications. All applications maintain equal priority and were
scheduled on a first-come-fist-served basis on the TCPA, i-Core and LEON3 PEs. As a result,
under some circumstances the object recognition application has to wait until the audio-
processing application finishes its current task on the TCPA or the matrix multiplication has
completed execution on the i-Core. This is depicted in Figure 7.5, where the label (a) indi-
cates the expected time for Harris Corner detection (frame-2) could begin on TCPA. How-
ever, this was delayed until label (b) as the TCPA was loaded with audio-processing tasks. A
similar situation occurred between labels (c) and (d), where the SIFT matching was delayed
as the i-Core was loaded with matrix multiplication.

0 200 400 600 800 1000 1200 1400

Time (ms)

Audio-TCPA

MatrixMul-iCore

HCD-TCPA

HCD-LEON3

SIFT-Extr-LEON3

SIFT-Match-iCore

SIFT-Match-LEON3

TCPA

i-Core

LEON3

(c)

(a)

SIFT-Match-i-Core
MatrixMul-i-Core

(b)

(d)

Frame 1
Frame 2

Figure 7.5.: Multiple applications executing concurrently on our heterogeneous MPSoC with
conventional mapping scheme [8]

The results from this evaluation are provided in Table 7.2, which indicates a reduction
in overall performance of the object-recognition application. The overall throughput (frame
count) was reduced from 97 frames to 72 frames during the entire evaluation. The reduced
throughput leads to a low load situation on the LEON3 PEs. Also, the prolonged wait time
leads to a higher worst observed latency (WOL) as shown in Table 7.2.

116

7.2. Evaluation Models

Load on
LEON3

Load on
TCPA

Load on
i-Core

Throughput WOL
(msec)

Obj-Recog only 23.03% 62.17% 72.41 % 97 frames 683
All three apps 17.48% 95.77% 67.32% 72 frames 1400

Table 7.2.: Object recognition: single vs. shared, conventional mapping scheme [8]

7.2.3. Heterogeneous MPSoC with Resource-aware Mapping

This section demonstrates the benefits achieved by using the resource-aware programming
model for the object-recognition application on the heterogeneous architecture. Among the
three different stages forming the object recognition, the Harris Corner detection and the

Perform Harris-
map on TCPA

Fetch input frame

Received frame
over Ethernet

Host-PC LEON3-Tile TCPA-Tile

Camera

Invade TCPA Infect TCPA

Filter corners and return
results over Ethernet

Visualize corners
on the input

image

Display

Invade LEON3

Infect LEON3

Retreat LEON3

Perform Harris-
map on LEON3

Retreat TCPA

Success

Failed
Copy input image

to TCPA tile

Copy results to the
LEON3 tile

Figure 7.6.: Self adaptive Harris Corner detection algorithm running on InvasIC

117

7. Object Recognition on Heterogeneous MPSoC

SIFT feature matching were designed to run on different types of PEs, on InvasIC. The TCPA
implementation (used for this evaluation) achieved an equivalent performance compared to
an implementation of Harris Corner detection on four LEON3 PEs. However, under circum-
stances as demonstrated in Section 7.2.2, when the TCPA is occupied by the other applica-
tions like audio filtering, the resource-aware modeling enabled the object-recognition appli-
cation to adapt itself and remap its workload to the freely available LEON3 PEs. The new
flow diagram of the resource-aware Harris Corner detection algorithm is depicted in Fig-
ure 7.6.

At each interest point detected by the Harris Corner detection, a SIFT descriptor is com-
puted. This algorithm was mapped to the the loosely coupled LEON3 PEs (as its not suitable
for TCPA not i-Core), which can execute the conventional algorithm from the Integrated Vi-
sion Toolkit library [111], in a multi-threaded environment.

SIFT matching on
i-Core

Fetch input frame

Received frame
over Ethernet

Host-PC LEON3 Tile i-Core Tile

Camera

Harris Corner detection and
SIFT feature extraction on

LEON3

Infect
i-Core

Filter matches and return
results

Visualize matched
features on input

image
Display

Invade
i-Core

Invade LEON3

Retreat
i-Core

Infect LEON3

Retreat LEON3

Infect LEON3Infect LEON3SIFT matching on
LEON3

Success

Failed

Figure 7.7.: Self adaptive SIFT feature matching algorithm running on InvasIC

118

7.2. Evaluation Models

Finally, the SIFT feature matching can be mapped on to an i-Core or to the conventional
LEON3 PEs based on their instantaneous availability. The new flow diagram of the resource-
aware SIFT feature matching is depicted in Figure 7.7.

The three individual algorithms as described above can be combined to form a resource-
aware object recognition algorithm with the resulting flow diagram as shown in Figure 7.8.
The corresponding execution time profile and scheduling pattern are shown in Figure 7.9.

Harris Corner
on TCPA

TCPA
Available

?

Harris Corner
on LEON3

SIFT Feature
Extraction on LEON3

i-Core
Available

?

SIFT Feature
Matching on i-Core

SIFT Feature
Matching on LEON3

Start

Stop

Yes

YesNo

No

Figure 7.8.: Flow diagram for resource-aware object recognition [8]

Labels (e) and (f) in Figure 7.9 indicate two different instances where the Harris corner de-
tection could not be performed on TCPA as the TCPA was occupied by the audio-processing
application. The resource-aware modeling enabled the application program to remap the
Harris-corner algorithm on to the available LEON3 PEs. Subsequently, the Harris Corner
detection algorithm for frame-4 was scheduled on the TCPA, as indicated by label (g). A
similar situation for the SIFT feature matching is indicated by labels (h) and (x), where the
i-Core was occupied by the matrix multiplication. The SIFT feature-matching algorithm
could recover its execution on i-Core from frame-3, indicated by label (y). In contrast to the
scheme in Section 7.2.2, the application adapts itself at runtime to use the available PEs.

Table 7.3 compares the conventional model with the resource-aware model in terms of
throughput, WOL and resource utilization. It can be seen that the throughput has increased
to 98 frames, almost equivalent to the scenario in Section 7.2.1, where the entire hardware
was dedicated for the object-recognition algorithm. The results prove that the WOL (reduced
to 705 milliseconds) can be regulated. The higher throughput and dynamic adaptations
lead to a higher load on the LEON3 PEs. There is a marginal decrease in the load on the

119

7. Object Recognition on Heterogeneous MPSoC

0 200 400 600 800 1000 1200 1400

Time (ms)

Audio-TCPA

MatrixMul-iCore

HCD-TCPA

HCD-LEON3

SIFT-Extr-LEON3

SIFT-Match-iCore

SIFT-Match-LEON3

TCPA

i-Core

LEON3

MatrixMul-i-Core
SIFT-Match-i-Core

Frame 1

Frame 2
Frame 3

Frame 4

(e) (f)

(g)

(h) (x)

(y)

Figure 7.9.: Multiple applications on heterogeneous MPSoC using resource-aware map-
ping [8]

TCPA, as the Harris corner algorithm was often remapped to the LEON3 PEs. The load on
the i-Core increased slightly, as the SIFT feature-matching algorithm often managed to run
on the i-Core within the long intervals (lasting about 2560 milliseconds), where the matrix-
multiplication application remains idle. The results in Table 7.3 show that the resource-aware
programming model enabled the object-recognition application to improve its performance
by adapting itself to the available resources at runtime.

Load on
LEON3

Load on
TCPA

Load on
i-Core

Throughput WOL
(msec)

Conventional 17.48% 95.77% 67.32% 72 frames 1400
Resource-aware 38.26% 79.93% 74.79% 98 frames 705

Table 7.3.: Object recognition: conventional vs. resource-aware [8]

7.3. Conclusion

In chapter focused on exploring the benefits of the Invasive Computing methodology, on a het-
erogeneous platform InvasIC. The flexibly configurable tiled architecture used for the case
study comprised several SPARC-V8 LEON3 cores, massively parallel processor arrays (TC-
PAs) and processors with configurable instruction sets (i-Cores). The case study was based
on the widely used object-recognition algorithm. Various stages within the algorithm were
analyzed and mapped to different types of PEs based on their computational requirements.

120

7.3. Conclusion

However, the presence of multiple processing elements with different characteristics raises
issues related to programming and application mapping [8].

The case study using the various statges within the object-recognition algorithm showed
that the applications may suffer performance loss and a higher worst observed latency
(WOL) when the PEs on the heterogeneous processor are shared between different appli-
cations. As a remedy,the resource-aware programming paradigm called Invasive Computing
enabled the application program to adapt itself to the available resources at runtime. Such
adaptations were shown to help the object-recognition application to improve its through-
put by 36% and its WOL to be reduced from a factor of 2.05x to 1.03x (close to the ideal value
of 1.0x). The overhead from resource allocation and release was kept very low by employing
a specialized operating system called OctoPOS and through special hardware support [8].

121

8. Conclusion and Outlook

Multi-Processor System-on-chip (MPSoC) designs are gaining increasing interest in the field
of embedded computing and robotics, due to their enhanced performance capabilities. Sig-
nificant reduction in processing time, for computer vision applications, could be achieved
using homogeneous MPSoC architectures like Tilera [48], Intel’s Single-chip Cloud Com-
puter (SCC) [50] or heterogeneous architectures like AMD’s Fusion APU [5]. Experiments
conducted on the AMD’s APU shows that addition of massively parallel processor arrays
(MPPA) or GPU units can lead to significant improvement in overall performance. Despite
the emergence of new heterogeneous architecture, the approach towards application map-
ping and thread scheduling follows a conventional strategy, where each application program
is examined (profiled) to identify the parts of the application which can be accelerated using
specialized PEs. Such a static implementation is not flexible enough to handle dynamically
changing requirements of robotic applications.

In this context, the novel programming methodology based on Invasive Computing was
introduced which enabled the application program with the power to manage and coordi-
nate various processing resources by themselves, in a decentralized manner. This approach
enabled various applications to self-explore the degree of parallelism available and to exploit
dynamic resource requirements while avoiding fully centralized control of execution.

This research work mainly investigated the principles of Invasive Computing for com-
puter vision algorithms used on the humanoid robot ARMAR [1], which has to deal with
various tasks like stereo vision, object recognition, object grasping, obstacle detection, au-
tonomous navigation, etc. The scientific contribution of this thesis, as described in Chapters
5, 6 and 7, can be summarized as follows:

Chapter 5 presented the challenges faced by image processing algorithms like Harris Cor-
ner detection and Nearest-neighbor search on kd-trees, on a shared homogeneous MPSoC.
Using real-world experiments, this thesis demonstrated an accuracy loss on a conventional
MPSoC hardware, due to resource sharing. As a way to overcome these challenges, this
chapter presented novel resource-aware algorithms for Harris Corner detection and NN-
search on kd-trees which can estimate the resources required for a specific task based on
the scene (nature of the objects, number of objects present, type of background, the texture
of the object to be recognized, etc.). The experiments showed that incorporating resource-
awareness into the conventional Harris Corner detection and NN-search algorithm can im-
prove the quality of the object recognition process with up to 22 percent improvement in
throughput and up to 20 percent improvement in accuracy.

Chapter 6 focused on evaluating the benefits of specialized PEs like i-Core and TCPA,
available on the InvasIC architecture. Various algorithms including Harris Corner detection,
SIFT feature matching and optical flow, were implemented on i-Core and TCPA. The per-
formance benefits achieved from the use of heterogeneous PEs were studied and the results

123

8. Conclusion and Outlook

were presented. The SIFT feature matching using special instructions on i-Core achieved
significant speedup when compared to the conventional general purpose LEON3 PE. More-
over, the PEs were released immediately after a parallel execution, thereby enabling other
applications to use them whenever required. This work also showed that time critical com-
puter vision algorithms benefit from specialized PEs with special instructions and stream
processors like TCPA. The combined system (with LEON3, i-Core and TCPA) offers great
prospects in future, especially in the areas of computer vision.

Chapter 7 demonstrated the challenges involved in programming and mapping vision
application on a heterogeneous design with multiple processing elements with different
characteristics. The case study showed that the applications may suffer performance loss
and a higher worst observed latency (WOL) when the PEs on the heterogeneous processor
are shared between different applications. Adapting to a different type of processing ele-
ment based on the load conditions helped the object-recognition application to improve its
throughput by 36% and its WOL to be reduced from a factor of 2.05x to 1.03x (close to the
ideal value of 1.0x).

The work carried out in this thesis should be considered as the first significant step to-
wards the migration of various applications mapped to multiple industrial CPU boards on
conventional robot, on to a single-chip MPSoC design, without suffering quality loss. The
unified processing system will make task migration and load balancing easier and also offers
better communications bandwidth between PEs. Lat but not the least, the used of MPSoCs
also help to reduce power consumption and occupy less space on the robot.

Suggestions on Future Work

As a future work, the runtime system could be extended so that the information provided by
the application layer (resource requirements) can be used to improve the overall efficiency
of the system. For instance, the runtime system may shut down PEs if they are not claimed
by any application, and wake up PEs only when necessary. Additionally, the resource-aware
model could be extended to more robotic applications, perform evaluations on the complete
chain of algorithms, and also develop prediction models within the applications so as to
foresee the resource requirements. Additional focus on techniques to efficiently allocate re-
sources like communication bandwidth (over i-NoC), on-chip memory (TLM) and AHB Bus;
among various applications running on the MPSoC may lead to better performance and re-
source utilization numbers. Moreover, the runtime system (OctoPOS) could be extended to
allow the applications to allocate (temporal) fractions of a PE and to migrate running appli-
cations to different tiles if needed. Another aspect which can reduce the programming effort
on MPSoCs like InvasIC is to offer an optional inter-tile cache-coherence mechanism where
an application program, spread across multiple neighboring tiles, can request the underlying
hardware to provide a temporary cache-coherence across the tiles.

124

Acknowledgement

This work was supported by the German Research Foundation (DFG) as part of the Transre-
gional Collaborative Research Centre Invasive Computing (SFB/TR 89).

125

A. Hardware Monitoring Framework for

InvasIC

In addition to the contribution on the vision algorithms, this thesis also contributed to the
development of the hardware monitors (performance counters) used in InvasIC. The design,
implementation and application of the hardware monitors is described in this section.

On a large MPSoC design like InvasIC, numerous factors influence the performance of an
application program. This includes the size of data/instruction caches, floating point unit
(FPU), bus interconnects, network-on-chip, on-chip, off-chip memories, etc. Various blocks
deciding the performance (execution time) of a CPU instruction is shown in Figure A.1. Each

NoC

AHB Bus

TLM
External
Memory

NoC

AHB Bus

CPU
Instruction

L1-Inst-Cache

TLM

L1-Data-Cache

L2-Cache

AHB Bus

NoC

FPU

Tile “N”

Tile “N+1” Tile “N+2”

Figure A.1.: Various hardware blocks affecting the performance of a CPU-instruction in a
multi-tile MPSoC

127

A. Hardware Monitoring Framework for InvasIC

of these blocks are configurable from the design point of view, leading to several possible
MPSoC configurations. In order to achieve a balance in the design and to avoid bottlenecks
during the design phase of InvasIC, detailed evaluations using real-world applications were
necessary. In order to facilitate the design process and to avoid bottlenecks, certain perfor-
mance counter or hardware monitors were built into the design. The design and application
of such hardware monitors are described in this appendix section.

A.1. Hardware Monitor Design

The hardware monitor design involves the design of three major blocks, as listed below:

• Performance counters to count various events within the MPSoC

• Interface to send the performance data to the host-PC in a non intrusive way

• Visualization modules to capture and display the monitoring data, gathered by perfor-
mance counters

The techniques used in the design and implementation of each of the above blocks are
described in the upcoming sections.

A.1.1. Performance Counters in Hardware

Performance counters are useful hardware mechanisms which can provide insight into the
performance of various hardware blocks. Difference types of performance counter devel-
oped for InvasIC are listed below:

• Processor monitors to estimate the performance of the CPU during the execution of
various different applications. The processor monitors include:

– Instruction monitors to count the number of instructions executed by the CPU.
This counter increments its value each time an instruction is executed by the CPU.

– FPU monitors to measures the utilization rate of FPU unit, if present. The aim of
the FPU monitor is to count the number of clock cycles, the FPU is busy and thus
providing useful information to the programmer. This information could be used
by the programmer to include an FPU as a constrain during the invade operation.

• Cache/Memory monitors to model the behavior of the cache memories and on-chip/off-
chip memory blocks like TLM or DDR-II.

– TLM utilization monitors to measure the usage of TLM. This is performed by
counting the number of cycles bus is in non-idle state due to TLM accesses.

– L1 and L2 utilization monitors to measure the cache-miss latency during program
execution (number of cycles to retrieve the data from external memory) and thus
provide profiling information to the programmer.

AHB Bus monitor: Analyze the AMBA AHB bus load and estimate the bus bandwidth
utilization. The job of the bus monitor is to calculate the number of non-idle cycles on

128

A.1. Hardware Monitor Design

the bus and generate bus utilization numbers. This is done by monitoring the type of
transaction on the bus.

i-NoC monitors: Monitors the i-NoC router parameters i-NoC monitor can track two
parameters on each i-NoC router, the link utilization and the reserved channels.

– Link utilization counts the number of cycles the i-NoC link is busy. The counter
is incremented each clock cycle when the i-NoC link is busy (utilized).

– Reserved channel monitor counts the average number of channels reserved dur-
ing the measuring interval.

• In order to quickly assign numerous i-lets to various types of PEs on the MPSoC, the
OctoPOS is assisted by a special hardware mechanism named Core i-let Controller
(CiC). The CiC can analyze the requirements specified my the application program
and can assist and accelerate the infect process. The performance of the CiC can also
be measured using the performance counters. Various counters used for this purpose
includes:

– The arrival rate of i-lets, in CiC.

– The CiC’s FIFO fill levels (CiC uses one FIFO per core to store the i-lets).

– The dispatch rate of i-lets, by CiC.

Monitoring mechanism described above are completely implemented in hardware in a
non-intrusive manner, so that the application programs running on InvasIC does not en-
counter a performance impact. Moreover, any application program can be profiled without
inserting special instructions, in contrast to some of the conventional profiling methods. A
monitor block with the performance counters described above, is built into each tile and they
analyze the predefined set of signals from various PEs, as shown in Figure A.2.

L2

AHB Bus

CPU CPU CPU CPU

L1 SPM L1 SPM L1 SPM L1 SPM

TLM HW MonitorNA

In
si

d
e

th
e

In
va

sI
C

 t
ile

FIFO

CAPIM

Performance
Counters

FSM

Trigger signals

UMR Bus UMR Bus

Inside HW-Monitor

Figure A.2.: Implementation of the hardware monitor (inside each tile)

129

A. Hardware Monitoring Framework for InvasIC

A.1.2. Interface and Data Exchange

The data captured by the monitors is organized into packets (marked by tile-ID, core-ID, etc.)
and the information is then transmitted over the Synopsys Universal Multi Resource Bus
(UMR Bus). The UMR Bus is a high-speed communication interface designed into the CHIPit
system to enable workstation-based access to the FPGA-based prototype. The UMR Bus
offers up to 400MB/s host connection sufficient for most applications. The interface between
the monitor and the UMR Bus is based on the CAPIM module, as shown in Figure A.4.

do
wr

di
rd

intr
inta
inttype

UMRBus

UMRBus

32

32

16

Client
Application

Interface
Module

CAPIM

CAPI

clk

reset

umr_in_valid

umr_in_en

umr_out_dat

umr_out_valid

umr_out_en

umr_in_dat
N

N

N=1, 2, 4, 8, 16 or 32

Figure A.3.: CAPIM module used to interface the HW monitors to the UMR bus

The CAPIM module offers a simple and easy to use interface to exchange data with the
UMR Bus. The UMR Bus runs through every FPGA/tile in the system and collects the mon-
itoring data. The collected data is then transferred to the host-PC using a dedicated cable
provided as part of the CHIPit system.

A.1.3. Visualization

During the design of InvasIC, it was essential to analyze the performance of PEs, their load
conditions, AHB Bus load, link utilization over the i-NoC, etc. In order to easily interpret
the monitoring data, a real-time visualization of the monitoring data was necessary. Such a
visualizer should be able to visualize the data from the sensors listed in Section A.1.1, in the
form of line/bar graphs. As the amount of data capture from the MPSoC is of the order of
Mbytes/sec, the visualization software has to be fast enough to handle it. A visualization
system based on C++ QT framework, was developed for this purpose, with focus on:

• Techniques to visualize the large amount of data from numerous monitors, in a com-
pact way.

• Necessary optimizations to enable real-time processing

• Features to log the monitor data for offline analysis.

The entire setup used is shown in Figure A.5.

130

A.2. Stack and Heap Mapping using Hints from Hardware Monitors

L2

AHB Bus

CPU CPU CPU CPU

L1 SPM L1 SPM L1 SPM L1 SPM

TLM HW MonitorNA

UMR
Interface

U
M

R
 B

u
s

In
si

d
e

th
e

In
va

sI
C

 t
ile

M
u

lt
i-

ti
le

 I
n

va
sI

C
 d

es
ig

n

Figure A.4.: Hardware monitor design

Section A.3 describes an application of the hardware monitoring system described above,
a novel methodology for mapping stack and heap data structures based on the self adaptive
principles of Invasive Computing.

A.2. Stack and Heap Mapping using Hints from Hardware

Monitors

MPSoC designs are widely used today as they offer significant performance boost at lower
power consumption, by running each PE at a lower frequency compared to the conventional
single core designs operating at very high frequencies. However, the number of PEs on such

131

A. Hardware Monitoring Framework for InvasIC

UMR
Interface

Camera

Monitor

PC

Synopsys
CHIPit Platform

HDMI

Driver

UMR Interface

SW FIFO

Data Processing

Data Visualizer
(QT based)

V
isu

alizatio
n

Figure A.5.: Various blocks involved in the visualization of monitoring data

designs are often limited by the bandwidth of the shared bus, ring or a NoC. A bottleneck
on the bus/NoC may prevent the data intensive video application from scaling beyond few
PEs, since the shared interconnect is heavily loaded as more threads starts to run in parallel.

For example, Intel’s SCC does not offer cache coherency over the whole chip, as maintain-
ing such a coherence, will lead to heavy data exchange (cache coherence data) over the NoC.
This will reduce the overall efficiency of the NoC and also lead to higher power consump-
tion. In contrast to SCC, Tilera [3] supports cache coherency over the whole chip. This comes
with additional costs of an enhanced multi-layer NoC which has dedicated NoC layers for
cache coherent data traffic resulting in more complex HW in terms of interconnect and tran-
sistor count as well as development costs. On the other hand it keeps the system fully cache
coherent making programming easier as the programmer does not have to write additional
code to maintain data consistency across threads running on different cores.

Performance results (see Figure A.6) from Harris Corner detection demonstrates the above
mentioned scalability problem on a single tile, within the InvasIC. In a bus based system,
cache coherency is maintained using various snooping techniques, with bus snooping being

132

A.2. Stack and Heap Mapping using Hints from Hardware Monitors

a widely used one nowadays, due to its implementation simplicity. The system consists of a
write through L1 cache where each L1 update triggers a bus access to update the data in the
L2 cache. The L2 cache is write back, the data is written back to DDR memory only when
there is a read or write miss. The write-through nature on the L1 cache creates a significant
load over the bus and limits the scalability of the system.

0

20

40

60

80

100

1 2 4 6 8 10

Exec time Inst Exec Bus Load

P
er

ce
nt

ag
e

(%
)

Core Count:

Figure A.6.: Execution profile for Harris Corner Detection

To ensure scalability in the HCD application (algorithmically), the input image is split
into many small blocks of pixels which can be processing independently by each i-let/PE.
The application is structured to scale almost linearly with the number of PEs. However,
Figure A.6 shows that the application does not scale linearly with increasing parallelism due
to the heavy bus load. Figure A.7 shows a more detailed view of the data traffic on the
bus, and also indicates what percentage of the traffic results from input and output data,
shared data-structures and i-let local data. Some data structures in the heap are i-let local
(heap local), while others can be accessed and updated by other i-lets (heap shared). Input
& output refer to the input and output data of the application program (it is assumed that
input data is always read from and output data written to external memory). It can be seen
clearly that approximately 40% of the bus load is created by read and write operations on
the stack or local variables within the i-lets. It should be noted that this traffic is completely
unnecessary as the stack of an i-let is local to the i-let and hence cache coherence is not
required. Nevertheless, cache coherence is maintained over the complete data-set by the
write through L1 cache since it does not distinguish between i-let local and shared data.

0% 20% 40% 60% 80% 100%

Input & Output

Heap Local

Heap Shared

Stack

Figure A.7.: Busload distribution

133

A. Hardware Monitoring Framework for InvasIC

An alternative solution which has been applied widely in the past is to include scratch-
pad memories (SPM) in the design. SPM are high-speed on-chip RAM blocks and are tightly
coupled to a PE, in contrast to the TLM, which is shared between PEs on a tile. For exam-
ple, the IBM Cell Processors [127] offer such on-chip buffers for each of its slave processing
elements. Prefetched input data and intermediate results can be placed in these buffers and
final results can be written back to external memory, thus reducing traffic on the bus, NoC
and external memory.

A.3. Application Analysis using Hardware Monitors

The analysis starts with profiling the existing multi-threaded application using the perfor-
mance counters within the monitoring system. The memory access profile is visualized on a
display and analyzed by the programmer to understand the bottlenecks in the system. For
example, if the CPI value of the core is high and there is significantly high access to stack
data, the programmer can remap the stack of the thread to local-SPM. If stack access is not
significantly high but access to the heap needs to be optimized, the programmer can use
malloc to map the data structure to the SPM. It should be noted that data structures being
accessed by more than one thread concurrently, cannot be mapped to SPM, but instead to
shared TLM. Once the application code is adapted based on its memory access pattern, it is
re-evaluated. The process completes if significant improvement is observed. In some cases
the heap mapping might require multiple iterations as various malloc calls might exists in the
program and the programmer may want to evaluate them one at a time or in combination
based on nature of the algorithm implemented.

Various mapping schemes (for both stacks and heaps) were analyzed for a variety of ap-
plications. The upcoming sections demonstrate how the new scheme can lead to better per-
formance and scalability on an MPSoC like InvasIC. Each core has a dedicated SPM of 8 KB
size. A TLM (attached to the AHB Bus) of 64 KB size, was used for mapping shared data-
structures. L1 & L2 caches are both 4-way set-associative with a size of 32 KB and 256 KB
respectively.

A.3.1. Evaluation Techniques

This section demonstrates the effectiveness of the new technique using four different ap-
plication, as described below. As the evaluation were performed in a early phase of the
project, a multi-tile InvasIC design was not available for evaluation. Hence the evaluation
performed in this section were based on a single tile implementation with 10 LEON3 PEs.
In the first step the conventional multi-threaded application is used on the InvasIC design
(single tile) without using SPMs or TLMs. In the second step the multi-threaded model is
adapted by remapping stacks and heaps as mentioned before. This enables the applications
to use SPMs and TLMs and to evaluate this model against the initial model for performance
improvements, scalability, energy consumption, etc.

134

A.3. Application Analysis using Hardware Monitors

A.3.1.1. Harris Corner Detection

The Harris Corner Detection algorithm used for evaluation is based on the Integrating Vision
Toolkit (IVT) library [111]. The sequential application code from the IVT was first converted
into a multi-threaded model. The algorithm consists of three main stages. First stage is called
harris-map which creates a signature for every pixel in the image based on its neighbors, us-
ing a 2D sliding window over the complete image. This is followed by a quick-sort to sort
and filter the best corner points followed by a spatial filtering technique to remove corners
too close to each other. Both harris-map and spatial filtering stages were converted to multi-
threaded models and the quick-sort stage remains sequential as the time taken for sorting is
negligibly low and does not offer a significant benefit when converted to a parallel model.
The execution profile of the multi-threaded model was already explained in Figure A.6. It
can be seen that the application is highly scalable as the execution time is reduced to half
when two threads execute in parallel compared to the single threaded model. From Fig-
ure A.6, it is clear that the application continue to scale well up to 6 cores Beyond this point
the performance does not improve significantly due to heavy bus load. Furthermore, the
execution time increases slightly when executed on 10 cores as compared to 8, as the bus is
almost saturated during this transition.

Table A.1.: Using SPM for Harris Corner detection
Core count 1 2 4 6 8 10

Time(ms)
B 2406 1220 634 459 415 427
A 2270 1149 590 415 335 294

Busload (%)
B 15 33 60 80 86 95
A 6 9 23 40 50 62

Mem access
B 980 1810 2650 3320 4200 5460
A 910 1550 2010 2450 3020 3810

The hardware monitoring system was used to captured the bus load information for Har-
ris Corner detection (see Figure A.7). This profile clearly shows that stack access (read &
write) accounts for 40% of the overall busload while input output data constitute only for
33% and heap (local + shared) constitute up to 27%. This clearly indicates that mapping the
stack to a core local SPM would lead to significant reduction in busload and better perfor-
mance as data is available locally. Based on this information, the stack for Harris Corner
detection is mapped to a core local SPM. Resulting execution time profile is shown in Ta-
ble A.1. Comparing the two scenarios, without SPM (before scenario, represented by B) and
with SPM (after scenario, represented by A), it is clear that the execution time improved by
31% while running on a multi-core hardware with 10 PEs.

The external memory access was reduced by 30% (for 10 cores, see Figure A.8) and consid-
ering the fact that external memory access is heavily power consuming (almost an order of
magnitude more expensive), the power consumed by the additional memory blocks (SPMs)
can be overlooked. The load on the bus is reduced by more than 50% in all combinations
which leads to better scalability for the overall system.

135

A. Hardware Monitoring Framework for InvasIC

0

1000

2000

3000

4000

5000

6000

(b) before

(a) after

30%

Time (sec)

ac
ce

ss
 /

m
se

c

Figure A.8.: External memory access (before and after using SPM)

A.3.1.2. SIFT Feature Extraction

SIFT(Scale Invariant Feature Transform) is a widely used algorithm in the areas of robotics
for object recognition. SIFT features are computed for specific points in the image and later
compared to reference features extracted from the object to be recognized. The SIFT algo-
rithm is computationally intensive due to the large number of floating-point operations to be
performed during the SIFT feature extraction process. As a result the algorithm does not sat-
urate the AHB bus (even while running in parallel on 10 cores) and is therefore an example
to evaluate how compute bound applications behave under the new memory management
scheme presented in this work. Figure A.9 shows the bus load distribution for stacks and
heaps during the execution of the SIFT application.

0% 20% 40% 60% 80% 100%

Input & Output

Heap Local

Heap Shared

Stack

Figure A.9.: Bus load distribution for SIFT feature extraction

Similar to the Harris Corner detection, the SIFT application is evaluated in two steps. At
first, a multi-threaded model of the application was developed where each core processes
a specific set of features. This model is highly scalable as any feature in the image can be
processed independent of others. The second model is an enhanced version of the first, with
techniques to remap stack and heap data. From Figure A.9, it can be seen that stack data
leads to a significant load over the bus and hence suitable for mapping on to the the local
SPM. In case of heap, the heap local data points to data structures allocated by the thread
for storing temporary results. As the stack space required by the SIFT application is quite
low (less than 2 KB) some of the heap local data structures could also be mapped to the SPM.
The shared heap contains data structures which mainly constitute input data to the thread
(which feature point to operate on, where to store results etc.) Such data structures were
mapped to TLM as they need to be accessed by all concurrently running threads.

Looking at Table A.2, it can be seen that the new approach significantly reduced bus load
and external memory access. External memory access was reduced by up to 74% when

136

A.3. Application Analysis using Hardware Monitors

Table A.2.: Using SPM for SIFT feature extraction
Core count 1 2 4 6 8 10

Time(ms)
B 1359 764 429 325 266 237
A 1352 757 422 318 258 225

Busload (%)
B 15 20 28 35 43 48
A 8 10 12 14 17 20

Mem access
B 870 1600 3050 3400 3800 4200
A 780 800 855 890 1030 1100

all cores were active. Correspondingly, bus load was reduced by 58% which offers space
for adding more cores into the design. The execution time did not improve significantly
as in case of Harris Corner detection. This is because of the compute bound nature of the
application which did not saturate the bus, even when all cores where used.

A.3.1.3. Audio Processing

To show the benefits of using the new technique for audio processing, a multi-channel au-
dio equalizer was used. The equalizer can process up to six audio channels with an input
sampling rate of 96 kHz/channel. Each channel is processed independently, limiting the
scalability to a maximum of 6 threads. At first, each channel is filtered into 10 different
bands using a bandpass IIR filter. A unique gain value is then applied to each band based on
the current equalizer setting and then combined to form a single output channel. Figure A.10
shows the bus load distribution. The stack space required for the audio application is quite
low (less than 1 KB) which gives ample space for local heap data structures to be mapped
to the SPM. Shared data structures (heap-shared) are mapped to the TLM (including the
address where the raw audio samples are stored, equalizer inputs etc.).

0% 20% 40% 60% 80% 100%

Input & Output

Heap Local

Heap Shared

Stack

Figure A.10.: Bus load distribution for audio processing

Table A.3 lists the benefits of using the new technique on the audio equalizer application.
The results show a significant reduction in external memory access and bus load.

A.3.1.4. Contrast Enhancement (AIVHE)

Contrast enhancement is a well known technique widely used in image processing. In this
evaluation an advanced algorithm for contrast enhancement called AIVHE (Adaptive His-
togram Equalization) [128] is used. This technique results in high quality results with low
noise as compared to the standard algorithm. The process starts by building a histogram of

137

A. Hardware Monitoring Framework for InvasIC

Table A.3.: Using SPM for audio processing
Core count 1 2 4 6

Time(ms)
B 1140 585 297 200
A 1030 520 262 175

Busload (%)
B 21 48 53 65
A 5 10 23 38

Mem access
B 2500 4950 7340 8700
A 2080 2450 3130 3960

the input image (gray scale 8 bit image was used) resulting in a histogram with 256 bins.
This histogram is then converted to an equalized histogram using the technique described
in [128]. In the last step, each pixel in the input image is read again and updated with the
new value based on the new equalized histogram. Therefore the input image gets loaded
twice from external memory resulting in an application where most of the time is spend on
reading and writing data, as shown in Figure A.11.

0% 20% 40% 60% 80% 100%

Input & Output

Heap Local

Heap Shared

Stack 8

Figure A.11.: Bus-load distribution for contrast enhancement

As input & output data always flow over the bus (from external memory). Hence, this
algorithm does not show a significant improvement through stack and heap relocation to
SPMs and TLMs. Access to the stack and heap data structures are quite low and hence this
application shows least improvement in terms of execution time as shown by Table A.4.
Therefore, applications which mostly spend time on reading and writing data from external
memory may not benefit much form the technique described in this chapter.

Table A.4.: Execution time for contrast enhancement with & without SPM
Core Count 1 2 4 6 8 10

No SPM(ms) 100.2 50.5 26.3 21.8 20.6 20.0
With SPM(ms) 99.1 49.0 25.0 19.7 18.8 18.0

A.3.2. Results

Table A.5 contains a summary of the overall benefits with the numbers indicating an overall
reduction in external memory access, execution time and bus load, when executed on a
multi-core platform with 10 Leon3 PEs.

It can be seen that a few modifications to the existing multi-threaded application can result
in significant improvement in performance and power consumption.

138

A.4. Conclusion

Table A.5.: Summary of overall benefits
Application Memory-access Execution-time Bus-load

Harris Corner 30% 31% 33%
SIFT Feature Ext. 74% 5% 58%
Audio Equalizer 55% 13% 27%

A.4. Conclusion

On a large MPSoC design like InvasIC, several factors including caches, FPU, bus intercon-
nects, network-on-chip, on-chip and off-chip memories etc., influence the performance of
the application program. In order to facilitate the MPSoC design process and to avoid bot-
tlenecks, performance counter or hardware monitors were built into the design. The design
(hardware, interface for data exchange and visualization software) were described in Sec-
tion A.1.

Sections A.2 and A.3 presented some applications of the hardware monitors in real-world
situations, by remapping stacks and heaps to various on-chip memories on a cache coherent
multi-core design. The hardware monitoring system described in Section A.1 was used to
extract highly accurate information related to memory access made by each application pro-
gram. Case studies were conducted on an FPGA based hardware prototypes to ensure the
validity of results. Different video and audio applications were used to validate effectiveness
of this approach. Reducing the cache coherent traffic reduced the bus load leading to higher
scalability or better performance. The present version of the operating system is based on
a run to completion model. Hence, the results do not include the overhead to backup and
restore data from local-SPM. This assumption remains valid for numerous video and au-
dio applications as processing starts after the data is available and the massive parallelism
allows threads to complete processing without blocking each other.

139

B. Own Publications

1. Resource Awareness on Heterogeneous MPSoCs for Image Processing [8]

2. Self-adaptive corner detection on MPSoC through resource-aware programming [10]

3. Self Adaptive Harris Corner Detection on Heterogeneous Many-core Processor [129]

4. Resource-Aware Programming for Robotic Vision [130]

5. Improving Efficiency of Embedded Multi-core Platforms with Scratchpad Memories [131]

6. Resource-Aware Harris Corner Detection based on Adaptive Pruning [12]

7. A Resource-Aware Nearest Neighbor Search Algorithm for K-Dimensional Trees [13]

8. Potentials and Challenges for Multi-Core Processors in Robotic Applications [132]

9. RTL Simulation of High Performance Dynamic Reconfiguration: A Video Processing
Case Study [133]

10. Acceleration of Optical Flow Computations on Tightly-Coupled Processor Arrays [14]

11. Invasive Computing for Robotic Vision [134]

12. FPGA-based Real-time Moving Object Detection for Walking Robots [135]

13. Real-Time Motion Detection Based On SW/HW- Codesign for Walking Rescue Robots [136]

141

Bibliography

[1] T. Asfour, K. Regenstein, P. Azad, et al. ARMAR-III: An integrated humanoid plat-
form for sensory-motor control. In 6th IEEE-RAS International Conference on Humanoid
Robots. IEEE, 2006.

[2] Tamim Asfour, Julian Schill, Heiner Peters, Cornelius Klas, Jens Bucker, Christian
Sander, Stefan Schulz, Artem Kargov, Tino Werner, and Volker Bartenbach. Armar-
4: A 63 dof torque controlled humanoid robot. In Humanoid Robots (Humanoids), 2013
13th IEEE-RAS International Conference on, pages 390–396. IEEE, 2013.

[3] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.C.
Miao, J.F. Brown, and A. Agarwal. On-chip interconnection architecture of the tile
processor. Micro, IEEE, 27(5):15–31, 2007.

[4] Philipp Gschwandtner, Thomas Fahringer, and Radu Prodan. Performance analysis
and benchmarking of the intel scc. In Cluster Computing (CLUSTER), 2011 IEEE Inter-
national Conference on, pages 139–149. IEEE, 2011.

[5] Denis Foley, Maurice Steinman, Alex Branover, Greg Smaus, Antonio Asaro, Swamy
Punyamurtula, and Ljubisa Bajic. Amd’s llano fusion apu. In IEEE/ACM Symposium
on High Performance Chips (HOTCHIPS), 2011.

[6] A.A. Abbo, R.P. Kleihorst, V. Choudhary, et al. Xetal-II: A 107 GOPS, 600 mW mas-
sively parallel processor for video scene analysis. IEEE Journal of Solid-State Circuits,
43(1):192–201, 2008.

[7] Jiri Gaisler. GRLIB IP Library User’s Manual (Version 1.1. 0). Gaisler Research, 2010.

[8] Johny Paul, Benjamin Oechslein, Christoph Erhardt, Jens Schedel, Manfred Kröhn-
ert, Daniel Lohmann, Walter Stechele, Tamim Asfour, Wolfgang Schröder-Preikschat,
ÉR Sousa, Vahid Lari, Frank Hannig, and Jürgen Teich. Resource awareness on het-
erogeneous mpsocs for image processing. Journal of Systems Architecture, 2015.

[9] Frank Hannig, Moritz Schmid, Vahid Lari, Srinivas Boppu, and Jürgen Teich. System
integration of tightly-coupled processor arrays using reconfigurable buffer structures.
In Proceedings of the ACM International Conference on Computing Frontiers, page 2. ACM,
2013.

[10] Johny Paul, Benjamin Oechslein, Christoph Erhardt, Jens Schedel, Manfred Kröhnert,
Daniel Lohmann, Walter Stechele, Tamim Asfour, and Wolfgang Schröder-Preikschat.
Self-adaptive corner detection on mpsoc through resource-aware programming. Jour-
nal of Systems Architecture, 2015.

[11] P. Azad, T. Asfour, and R. Dillmann. Combining Harris interest points and the SIFT
descriptor for fast scale-invariant object recognition. In Intelligent Robots and Systems,
2009. IROS 2009. IEEE, 2009.

143

Bibliography

[12] Johny Paul, Walter Stechele, Manfred Kröhnert, Tamim Asfour, Benjamin Oechslein,
Christoph Erhardt, Jens Schedel, Daniel Lohmann, and Wolfgang Schröder-Preikschat.
Resource-aware harris corner detection based on adaptive pruning. In Architecture of
Computing Systems–ARCS 2014, pages 1–12. Springer, 2014.

[13] Johny Paul, Walter Stechele, Manfred Kroehnert, Tamim Asfour, Benjamin Oechslein,
Christoph Erhardt, Jens Schedel, Daniel Lohmann, and Wolfgang Schroder-Preikschat.
A resource-aware nearest-neighbor search algorithm for k-dimensional trees. In Design
and Architectures for Signal and Image Processing (DASIP), 2013 Conference on, pages 80–
87. IEEE, 2013.

[14] ÉR Sousa, Alexandru Tanase, Vahid Lari, Frank Hannig, Jürgen Teich, Johny Paul,
Walter Stechele, Manfred Kröhnert, and Tamin Asfour. Acceleration of optical flow
computations on tightly-coupled processor arrays. In Workshop on Parallel Systems and
Algorithms (PARS), 2013.

[15] Paul S Segerstrom. Intel economics*. International Economic Review, 48(1):247–280, 2007.

[16] Nathan Goulding-Hotta, Jack Sampson, Steven Swanson, Michael Bedford Taylor,
Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Po-Chao Huang, Manish Arora,
Siddhartha Nath, et al. The greendroid mobile application processor: An architecture
for silicon’s dark future. IEEE Micro, pages 86–95, 2011.

[17] Jonathan Dorn, Robbie Hott, and Michelle McDaniel. Exploring performance and
power scaling in multi-core processors, 2011.

[18] Shekhar Borkar. Thousand core chips: a technology perspective. In Proceedings of the
44th annual Design Automation Conference, pages 746–749. ACM, 2007.

[19] CARE: The Coordiantion Action for Robtics in Europe. Robotics visions – to 2020 and
beyond: The strategic research agenda for robotics in europe, 2009.

[20] S. Sakagami, T. Watanabe, C. Aoyama, S. Matsunage, N. Higaki, and K. Fujimura. The
Intelligent ASIMO: System Overview and Integration. In iros, pages 2478–2483, 2002.

[21] K. Akachi, K. Kaneko, N. Kanehira, S. Ota, G. Miyamori, M. Hirata, S. Kajita, and
F. Kanehiro. Development of Humanoid Robot HRP-3. In humanoids, pages 2471–
2478, 2005.

[22] Fujitsu, humanoid robot hoap-2, www.automation.fujitsu.com, 2003.

[23] Hiroyasu Miwa, Tetsuya Okuchi, Hideaki Takanobu, and Atsuo Takanishi. Develop-
ment of a new human-like head robot WE-4. In iros, volume 3, pages 2443–2448, 2002.

[24] L. Aryananda and J. Weber. MERTZ: a quest for a robust and scalable active vision
humanoid head robot. In humanoids, pages 513–532, 2004.

[25] G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin, W. Scroggin, and
S. C. Jacobsen. CB: a humanoid research platform for exploring neuroscience. Advanced
Robotics, 21(10):1097–1114, 2007.

[26] G. Sandini, G. Metta, and D. Vernon. RobotCub: An open framework for research in
embodied cognition. In iros, pages 13–32, 2004.

[27] T. Asfour, K. Regenstein, P. Azad, J. Schröder, N. Vahrenkamp, and R. Dillmann.
ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control. In hu-
manoids, pages 169–175, Genova, Italy, December 2006.

144

Bibliography

[28] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke, J. Schröder,
and R. Dillmann. Toward Humanoid Manipulation in Human-Centred Environments.
Robotics and Autonomous Systems, 56:54–65, January 2008.

[29] N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez, T. Asfour, and R. Dillmann. Visual
Servoing for Humanoid Grasping and Manipulation Tasks. In humanoids, pages 406–
412, Daejeon, Korea, December 2008.

[30] N. Vahrenkamp, C. Böge, K. Welke, T. Asfour, J. Walter, and R. Dillmann. Visual ser-
voing for dual arm motions on a humanoid robot. In humanoids, pages 208–214, Paris,
France, December 2009.

[31] A. Benhimane and E. Malis. Homography-based 2d visual tracking and servoing. In
Special Joint Issue IJCV/IJRR on Robot and Vision. Published in The International Journal of
Robotics Research, volume 26, pages 661–676, July 2007.

[32] C. Connaire, E. Cooke, N. O’Connor, N. Murphy, and A.F. Smeaton. Background mod-
elling in infrared and visible spectrum video for people tracking. In International Con-
ference on Computer Vision and Pattern Recognition, pages 20–25, 2005.

[33] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. In Journal of Computer Vision, volume 47, pages 7–42, 2002.

[34] B. Cope, P.Y.K Cheung, W. Luk, and S. Witt. Have GPUs made FPGAs redundant in the
field of video processing. In International Conference on Field Programmable Technology
(FPL), pages 111–118, 2005.

[35] Sh. Che, J. Li, J.W. Sheaffer, K. Skadron, and J. Lach. Accelerating compute-intensive
applications with GPUs and FPGAs. In Symposium on Application Specific Processors
(SASP), pages 101–107, 2008.

[36] K. Keutzer. Mapping applications onto manycore. In Design Automation Conference
(DAC), 2009.

[37] Zbigniew Bielewicz, Leszek Debowski, and Eugieniusz Lowiec. A dsp and fpga based
integrated controller development solutions for high performance electric drives. In
Industrial Electronics, 1996. ISIE’96., Proceedings of the IEEE International Symposium on,
volume 2, pages 679–684. IEEE, 1996.

[38] Ping He, MH Jin, Lei Yang, R Wei, YW Liu, HG Cai, Hong Liu, Nikolaus Seitz, Jörg
Butterfass, and Gerd Hirzinger. High performance dsp/fpga controller for implemen-
tation of hit/dlr dexterous robot hand. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, volume 4, pages 3397–3402. IEEE, 2004.

[39] Shekhar Borkar. Design challenges of technology scaling. Micro, IEEE, 19(4):23–29,
1999.

[40] B. Nelson, S. West, R. Curtis, et al. Comparing fine-grained performance on the Ambric
MPPA against an FPGA. In International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2009.

[41] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, et al. An 80-tile 1.28 TFLOPS
network-on-chip in 65nm CMOS. In Solid-State Circuits Conference, 2007, pages 98–589.
IEEE, 2007.

145

Bibliography

[42] Mayank Daga, Ashwin M Aji, and Wu-chun Feng. On the efficacy of a fused
CPU+GPU processor (or APU) for parallel computing. In Application Accelerators
in High-Performance Computing (SAAHPC), 2011 Symposium on, pages 141–149. IEEE,
2011.

[43] T. Asfour, K. Regenstein, P. Azad, J. Schroder, et al. ARMAR-III: An Integrated Hu-
manoid Platform for Sensory-Motor Control. In Humanoid Robots, 2006 6th IEEE-RAS
International Conference on, pages 169 –175, Dec 2006.

[44] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, et al. The intelligent ASIMO:
system overview and integration. In Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, volume 3, pages 2478 – 2483, 2002.

[45] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita. Cybernetic
human HRP-4C. In Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International
Conference on, pages 7 –14, Dec 2009.

[46] Stefan Jorg, Mathias Nickl, Alexander Nothhelfer, et al. The computing and communi-
cation architecture of the dlr hand arm system. In Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on, pages 1055–1062. IEEE, 2011.

[47] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang
Schröder-Preikschat, and Gregor Snelting. Invasive computing: An overview. In Mul-
tiprocessor System-on-Chip, pages 241–268. Springer, 2011.

[48] Anant Agarwal. The tile processor: A 64-core multicore for embedded processing. In
Proceedings of HPEC Workshop, 2007.

[49] Sriram R Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson, James
Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra Jain, et al. An 80-tile sub-
100-w teraflops processor in 65-nm cmos. Solid-State Circuits, IEEE Journal of, 43(1):29–
41, 2008.

[50] T.G. Mattson, M. Riepen, et al. The 48-core scc processor: the programmer’s view. In
Proceedings of the 2010 ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–11. IEEE Computer Society, 2010.

[51] TR Maeurer and D Shippy. Introduction to the cell multiprocessor. IBM journal of
Research and Development, 49(4):589–604, 2005.

[52] B. Hutchings, B. Nelson, S. West, et al. Optical flow on the ambric massively par-
allel processor array (MPPA). In 17th IEEE Symposium on Field Programmable Custom
Computing Machines. IEEE, 2009.

[53] Erik Saule, Kamer Kaya, and Ümit V Çatalyürek. Performance evaluation of sparse
matrix multiplication kernels on intel xeon phi. In Parallel Processing and Applied Math-
ematics, pages 559–570. Springer, 2014.

[54] Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, Patrice
Couvert, Benoit Ganne, Pierre Guironnet de Massas, Frederique Jacquet, Simon Jones,
Nicolas Morey Chaisemartin, Frédéric Riss, et al. A clustered manycore processor
architecture for embedded and accelerated applications. In High Performance Extreme
Computing Conference (HPEC), 2013 IEEE, pages 1–6. IEEE, 2013.

[55] Nvidia tegra, 2015.

146

Bibliography

[56] Qualcomm snapdragon, 2015.

[57] Deepu Talla and Jeremiah Golston. Using davinci technology for digital video devices.
Computer, pages 53–61, 2007.

[58] David Barrie Thomas, Lee Howes, and Wayne Luk. A comparison of cpus, gpus, fpgas,
and massively parallel processor arrays for random number generation. In Proceedings
of the ACM/SIGDA international symposium on Field programmable gate arrays, pages 63–
72. ACM, 2009.

[59] Kevin Klues, Barret Rhoden, Y Zhu, Andrew Waterman, and Eric Brewer. Processes
and resource management in a scalable many-core OS. HotPar10, Berkeley, CA, 2010.

[60] Juan A Colmenares, Gage Eads, Steven A Hofmeyr, Sarah Bird, Miquel Moretó, David
Chou, Brian Gluzman, Eric Roman, Davide B Bartolini, Nitesh Mor, et al. Tessellation:
refactoring the os around explicit resource containers with continuous adaptation. In
DAC, page 76, 2013.

[61] Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio, Jason E Miller, and Anant
Agarwal. Application heartbeats: a generic interface for specifying program perfor-
mance and goals in autonomous computing environments. In Proceedings of the 7th
international conference on Autonomic computing, pages 79–88. ACM, 2010.

[62] Davide B Bartolini, Riccardo Cattaneo, Gianluca C Durelli, Martina Maggio, Marco D
Santambrogio, and Filippo Sironi. The autonomic operating system research project:
achievements and future directions. In Proceedings of the 50th Annual Design Automation
Conference, page 77. ACM, 2013.

[63] Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and Anant
Agarwal. Seec: A framework for self-aware management of multicore resources. Tech-
nical Report MIT-CSAIL-TR-2011-016, Computer Science and Artificial Intelligence
Laboratory, MIT, March 2011.

[64] Stephen Bo Furber. ARM system-on-chip architecture. pearson Education, 2000.

[65] Jason Howard, Saurabh Dighe, Sriram R Vangal, Gregory Ruhl, Nitin Borkar, Shailen-
dra Jain, Vasantha Erraguntla, Michael Konow, Michael Riepen, Matthias Gries, et al.
A 48-core ia-32 processor in 45 nm cmos using on-die message-passing and dvfs for
performance and power scaling. Solid-State Circuits, IEEE Journal of, 46(1):173–183,
2011.

[66] Jörg Henkel, Lars Bauer, Michael Hübner, and Artjom Grudnitsky. i-core: A run-time
adaptive processor for embedded multi-core systems. In International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA 2011), 2011.

[67] Artjom Grudnitsky, Lars Bauer, and Jörg Henkel. Corefab: concurrent reconfigurable
fabric utilization in heterogeneous multi-core systems. In Proceedings of the 2014 Inter-
national Conference on Compilers, Architecture and Synthesis for Embedded Systems, page 5.
ACM, 2014.

[68] A. Downton and D. Crookes. Parallel architectures for image processing. Electronics &
Communication Engineering Journal, 10(3), 1998.

[69] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, et al. The
landscape of parallel computing research: A view from berkeley. Technical report,

147

Bibliography

Citeseer, 2006.

[70] Shravan Muddasani, Srinivas Boppu, Frank Hannig, Boris Kuzmin, Vahid Lari, and
Jürgen Teich. A prototype of an invasive tightly-coupled processor array. In Design
and Architectures for Signal and Image Processing (DASIP), 2012 Conference on, pages 1–2.
IEEE, 2012.

[71] Dmitrij Kissler, Frank Hannig, Alexey Kupriyanov, and Jurgen Teich. A highly param-
eterizable parallel processor array architecture. In Field Programmable Technology, 2006.
FPT 2006. IEEE International Conference on, pages 105–112. IEEE, 2006.

[72] Vahid Lari, Andriy Narovlyanskyy, Frank Hannig, and Jiirgen Teich. Decentralized
dynamic resource management support for massively parallel processor arrays. In
Application-Specific Systems, Architectures and Processors (ASAP), 2011 IEEE International
Conference on, pages 87–94. IEEE, 2011.

[73] Vahid Lari, Shravan Muddasani, Srinivas Boppu, Frank Hannig, Moritz Schmid, and
Jürgen Teich. Hierarchical power management for adaptive tightly-coupled processor
arrays. ACM Transactions on Design Automation of Electronic Systems (TODAES), 18(1):2,
2013.

[74] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars Bauer, Jörg Henkel, Daniel
Lohmann, and Wolfgang Schröder-Preikschat. OctoPOS: A parallel operating system
for invasive computing. In Proceedings of the International Workshop on Systems for Future
Multi-Core Architectures (SFMA). EuroSys, 2011.

[75] Andrew Baumann, Paul Birham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The Mul-
tikernel: A new OS architecture for scalable multicore systems. In Proceedings of the
22nd ACM Symposium on Operating System Principles (SOSP 2009), October 11–14, 2009,
Big Sky, MT, USA, pages 29–44, New York, NY, USA, 2009. ACM Press.

[76] Hans P Moravec. Rover visual obstacle avoidance. In IJCAI, pages 785–790, 1981.

[77] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, page 50. Manchester, UK, 1988.

[78] Cordelia Schmid and Roger Mohr. Local grayvalue invariants for image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(5):530–534, 1997.

[79] David G Lowe. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2,
pages 1150–1157. Ieee, 1999.

[80] David G Lowe. Local feature view clustering for 3d object recognition. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, volume 1, pages I–682. IEEE, 2001.

[81] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[82] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local de-
scriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615–
1630, 2005.

148

Bibliography

[83] T. Asfour, K. Welke, P. Azad, A. Ude, and R. Dillmann. The Karlsruhe Humanoid
Head. In humanoids, pages 447–453, Daejeon, Korea, December 2008.

[84] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on,
pages 593–600. IEEE, 1994.

[85] Daniel J Mirota, Masaru Ishii, and Gregory D Hager. Vision-based navigation in
image-guided interventions. Annual review of biomedical engineering, 13:297–319, 2011.

[86] Shoaib Ehsan and Klaus D McDonald-Maier. On-board vision processing for small
uavs: Time to rethink strategy. In Adaptive Hardware and Systems, 2009. AHS 2009.
NASA/ESA Conference on, pages 75–81. IEEE, 2009.

[87] Adam Schmidt, Marek Kraft, and Andrzej Kasiński. An evaluation of image feature
detectors and descriptors for robot navigation. In Computer Vision and Graphics, pages
251–259. Springer, 2010.

[88] Steffen Gauglitz, Tobias Höllerer, and Matthew Turk. Evaluation of interest point de-
tectors and feature descriptors for visual tracking. International journal of computer vi-
sion, 94(3):335–360, 2011.

[89] Minjie Li, Liqiang Wang, and Ying Hao. Image matching based on sift features and
kd-tree. In 2010 2nd International Conference on Computer Engineering and Technology,
volume 4, 2010.

[90] Kahlouche Souhila and Achour Karim. Optical flow based robot obstacle avoidance.
International Journal of Advanced Robotic Systems, 4(1):13–16, 2007.

[91] Fridtjof Stein. Efficient computation of optical flow using the census transform. In
Pattern Recognition, pages 79–86. Springer, 2004.

[92] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406–471,
1999.

[93] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): the case for
a scalable operating system for multicores. ACM SIGOPS Operating Systems Review,
43(2):76–85, 2009.

[94] S Alkaabi and F Deravi. Candidate pruning for fast corner detection. Electronics Letters,
40(1):18–19, 2004.

[95] Meiqing Wu, Nirmala Ramakrishnan, Siew-Kei Lam, and Thambipillai Srikanthan.
Low-complexity pruning for accelerating corner detection. In Circuits and Systems (IS-
CAS), 2012 IEEE International Symposium on, pages 1684–1687. IEEE, 2012.

[96] Jonathan Klippenstein and Hong Zhang. Quantitative evaluation of feature extractors
for visual slam. In Computer and Robot Vision, 2007. CRV’07. Fourth Canadian Conference
on, pages 157–164. IEEE, 2007.

[97] Jan Elseberg, Stéphane Magnenat, Roland Siegwart, et al. Comparison of nearest-
neighbor-search strategies and implementations for efficient shape registration. Jour-
nal of Software Engineering for Robotics, 3(1):2–12, 2012.

[98] J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbour search
in high-dimensional spaces. In IEEE Computer Society Conference on Computer Vision

149

Bibliography

and Pattern Recognition, 1997.

[99] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search
using gpu. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08.
IEEE Computer Society Conference on. IEEE, 2008.

[100] Lawrence Cayton. Accelerating nearest neighbor search on manycore systems. In
Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
402–413. IEEE, 2012.

[101] Lawrence Cayton. A nearest neighbor data structure for graphics hardware. Proceed-
ings of ADMS, 2010.

[102] S. Bell, B. Edwards, J. Amann, et al. Tile64-processor: A 64-core soc with mesh inter-
connect. In Solid-State Circuits Conference, 2008. Digest of Technical Papers, pages 88–598.
IEEE, 2008.

[103] Synopsys. http://www.synopsys.com/Systems/FPGABasedPrototyping/CHIPit/
CapsuleModule/CHIPit_platinum_Edition.pdf, 2009.

[104] Frank Hannig, Vahid Lari, Srinivas Boppu, Alexandru Tanase, and Oliver Reiche.
Invasive tightly-coupled processor arrays: A domain-specific architecture/compiler
co-design approach. ACM Transactions on Embedded Computing Systems (TECS),
13(4s):133:1–133:29, 2014.

[105] Pradip Mainali, Qiong Yang, Gauthier Lafruit, Rudy Lauwereins, and LV Gool. Lo-
coco: Low complexity corner detector. In Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, pages 810–813. IEEE, 2010.

[106] Lucas Teixeira, Waldemar Celes Filho, and Marcelo Gattass. Accelerated corner-
detector algorithms. In BMVC, pages 1–10, 2008.

[107] Miguel Arias-Estrada and Eduardo Rodríguez-Palacios. An fpga co-processor for real-
time visual tracking. In Field-Programmable Logic and Applications: Reconfigurable Com-
puting Is Going Mainstream, pages 710–719. Springer, 2002.

[108] Marek Kraft, Adam Schmidt, and Andrzej J Kasinski. High-speed image feature de-
tection using fpga implementation of fast algorithm. VISAPP (1), 8:174–9, 2008.

[109] Fouzhan Hosseini, Amir Fijany, and Jean-Guy Fontaine. Highly parallel implementa-
tion of harris corner detector on csx simd architecture. In Euro-Par 2010 Parallel Pro-
cessing Workshops, pages 137–144. Springer, 2011.

[110] Enqiang Sun, Dana Schaa, Richard Bagley, Norman Rubin, and David Kaeli. Enabling
task-level scheduling on heterogeneous platforms. In Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing Units, pages 84–93.
ACM, 2012.

[111] Pedram Azad. Integrated Vision Toolkit (IVT), 2011.

[112] Jürgen Teich, Alexandru Tanase, and Frank Hannig. Symbolic mapping of loop pro-
grams onto processor arrays. Journal of Signal Processing Systems, 77(1–2):31–59, 2014.

[113] Éricles R. Sousa, Alexandru Tanase, Frank Hannig, and Jürgen Teich. Accuracy and
Performance Analysis of Harris Corner Computation on Tightly-Coupled Processor
Arrays. In Proceedings of the Conference on Design and Architectures for Signal and Image
Processing (DASIP), pages 88–95. IEEE, October 2013.

150

http://www.synopsys.com/Systems/FPGABasedPrototyping/CHIPit/CapsuleModule/CHIPit_platinum_Edition.pdf
http://www.synopsys.com/Systems/FPGABasedPrototyping/CHIPit/CapsuleModule/CHIPit_platinum_Edition.pdf

Bibliography

[114] Artjom Grudnitsky, Lars Bauer, and Jörg Henkel. Partial online-synthesis for mixed-
grained reconfigurable architectures. In Proceedings of Design, Automation and Test in
Europe Conference (DATE), pages 1555–1560, 2012.

[115] Artjom Grudnitsky, Lars Bauer, and Jörg Henkel. COREFAB: Concurrent reconfig-
urable fabric utilization in heterogeneous multi-core systems. In International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Systems (CASES), 2014.

[116] Fridtjof Stein. Efficient computation of optical flow using the Census Transform. In
Carl Edward Rasmussen, Heinrich H. Bülthoff, Bernhard Schölkopf, and Martin A.
Giese, editors, DAGM-Symposium, volume 3175 of Lecture Notes in Computer Science,
pages 79–86, Tübingen, Germany, 2004. Springer.

[117] Christopher Claus, Andreas Laika, Lei Jia, and Walter Stechele. High performance
FPGA-based optical flow calculation using the census transformation. IEEE Intelligent
Vehicle Symposium, June 2009.

[118] M. Motomura. A dynamically reconfigurable processor architecture. In Microprocessor
Forum, 2002.

[119] Volker Baumgarte, Gerd Ehlers, Frank May, Armin Nückel, Martin Vorbach, and
Markus Weinhardt. PACT XPP - a self-reconfigurable data processing architecture.
The Journal of Supercomputing, 26:167–184, 2003.

[120] Frank Bouwens, Mladen Berekovic, Bjorn De Sutter, and Georgi Gaydadjiev. Archi-
tecture enhancements for the ADRES coarse-grained reconfigurable array. In 3rd in-
ternational conference on High performance embedded architectures and compilers(HiPEAC),
pages 66–81, 2008.

[121] Karthikeyan Sankaralingam, Ramadass Nagarajan, Robert McDonald, Rajagopalan
Desikan, Saurabh Drolia, M. S. Govindan, Paul Gratz, Divya Gulati, Heather Han-
son, Changkyu Kim, Haiming Liu, Nitya Ranganathan, Simha Sethumadhavan, Sadia
Sharif, Premkishore Shivakumar, Stephen W. Keckler, and Doug Burger. Distributed
microarchitectural protocols in the TRIPS prototype processor. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
480–491, Washington, DC, USA, December 2006. IEEE Computer Society.

[122] Pierre Palatin, Yves Lhuillier, et al. Capsule: Hardware-assisted parallel execution of
component-based programs. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 2006.

[123] Ying Yi, Wei Han, et al. An ILP formulation for task mapping and scheduling on
multi-core architectures. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), April 2009.

[124] Vahid Lari, Frank Hannig, and Jürgen Teich. Distributed resource reservation in mas-
sively parallel processor arrays. In Proceedings of 18th Reconfigurable Architectures Work-
shop (RAW), Anchorage, USA, May 2011.

[125] V. Lari, F. Hannig, and J. Teich. System integration of tightly-coupled reconfigurable
processor arrays and evaluation of buffer size effects on their performance. In Proceed-
ings of the International Conference on Parallel Processing Workshops, pages 528–534. IEEE,
2009.

151

Bibliography

[126] Alexey Kupriyanov, Dmitrij Kissler, Frank Hannig, and Jürgen Teich. Efficient Event-
driven Simulation of Parallel Processor Architectures. In Proceedings of the 10th Interna-
tional Workshop on Software and Compilers for Embedded Systems (SCOPES), pages 71–80.
ACM Press, 2007.

[127] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication network:
Built for speed. Micro, IEEE, 26(3):10–23, 2006.

[128] C.H. Lu, H.Y. Hsu, and L. Wang. A new contrast enhancement technique by adaptively
increasing the value of histogram. In Imaging Systems and Techniques, 2009. IST’09. IEEE
International Workshop on, pages 407–411. IEEE, 2009.

[129] Johny Paul, Walter Stechele, Ericles Sousa, Vahid Lari, Frank Hannig, Jurgen Teich,
Manfred Krohnert, and Tamim Asfour. Self-adaptive harris corner detector on hetero-
geneous many-core processor. In Design and Architectures for Signal and Image Processing
(DASIP), 2014 Conference on, pages 1–8. IEEE, 2014.

[130] Johny Paul, Walter Stechele, Manfred Kröhnert, and Tamim Asfour. Resource-aware
programming for robotic vision. arXiv preprint arXiv:1405.2908, 2014.

[131] Johny Paul, Walter Stechele, Manfred Kroehnert, and Tamim Asfour. Improving ef-
ficiency of embedded multi-core platforms with scratchpad memories. In ?1st Inter-
national Workshop on Multi-Objective Many-Core Design (MOMAC), in conjunction with
Architecture of Computing Systems (ARCS), 2014 27th International Conference on, pages
1–8. VDE, 2014.

[132] Andreas Herkersdorf, Johny Paul, Ravi Kumar Pujari, Walter Stechele, Stefan Wal-
lentowitz, Thomas Wild, and Aurang Zaib. Potentials and challenges for multi-core
processors in robotic applications. In GI-Jahrestagung, pages 2749–2764, 2013.

[133] Lingkan Gong, Oliver Diessel, Johny Paul, and Walter Stechele. Rtl simulation of high
performance dynamic reconfiguration: A video processing case study. In Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 106–113. IEEE, 2013.

[134] Johny Paul, Walter Stechele, Manfred Kröhnert, Tamim Asfour, and Rüdiger Dillmann.
Invasive computing for robotic vision. In Design Automation Conference (ASP-DAC),
2012 17th Asia and South Pacific, pages 207–212. IEEE, 2012.

[135] Andreas Laika, Johny Paul, Christopher Claus, Walter Stechele, Adam El Sayed Auf,
and Erik Maehle. Fpga-based real-time moving object detection for walking robots. In
Safety Security and Rescue Robotics (SSRR), 2010 IEEE International Workshop on, pages
1–8. IEEE, 2010.

[136] Johny Paul, Andreas Laika, Christopher Claus, Walter Stechele, Adam El Sayed Auf,
and Erik Maehle. Real-time motion detection based on sw/hw-codesign for walking
rescue robots. Journal of real-time image processing, 8(4):353–368, 2013.

152

	Indexes
	Introduction
	Outline of the Thesis
	Image Processing on Humanoid Robots
	Multiprocessor System-on-Chip (MPSoC) Designs
	Benefits of using MPSoCs on Robots
	Potential Challenges in using MPSoCs on Robots
	Resource-aware Programming

	Related Work
	Various MPSoC Platforms
	Programming Models for MPSoCs

	Invasive Computing
	Basic Principles
	InvasIC - Hardware Architecture
	InvasIC - Memory Hierarchy
	RISC Processors (LEON3)
	Invasive Cores (i-Core)
	Tightly Coupled Processor Array (TCPA)

	OctoPOS - A Resource-aware Operating System
	The Invasive Programming Model
	OctoPOS - Design Principles
	OctoPOS - Architectural Overview

	Computer Vision Algorithms for Humanoid Robots
	Object Recognition
	Harris Corner Detection
	SIFT Feature Extraction
	SIFT Feature Matching

	Optical Flow

	Resource-Aware Algorithms
	Resource-Aware Corner Detectors
	Conventional Approach Towards Faster Corner Detection
	Extension to a Resource-Aware Model
	Resource Allocation and Workload Distribution
	Results

	Resource-Aware KD-Tree Search
	Conventional Approach for Accelerating NN-Search on KD-Trees
	Challenges with conventional kd-tree search on shared MPSoC
	Nearest-Neighbor Search on KD-Trees
	Resource-Aware Nearest-Neighbor Search Algorithm
	Evaluation & Results
	Conclusion

	Accelerating Image Processing using Specialized Hardware
	InvasIC - Programmer's View
	Harris Corner Detection on Tightly Coupled Processor Array
	Conventional Approach
	Implementation on InvasIC
	Results

	SIFT Feature Matching on i-Core
	Algorithm
	Accelerated Implementation on i-Core
	Results

	Optical Flow Computation on Tightly Coupled Processor Array
	MPPAs for Optical Flow Computation
	Various Stages in Optical Flow Algorithm
	Optical Flow in Invasive Notation
	Implementation
	Results

	Conclusion

	Object Recognition on Heterogeneous MPSoC
	Hardware Prototype
	Evaluation Models
	Homogeneous vs. Heterogeneous Implementation
	Multiple Applications on Heterogeneous MPSoC
	Heterogeneous MPSoC with Resource-aware Mapping

	Conclusion

	Conclusion and Outlook
	Hardware Monitoring Framework for InvasIC
	Hardware Monitor Design
	Performance Counters in Hardware
	Interface and Data Exchange
	Visualization

	Stack and Heap Mapping using Hints from Hardware Monitors
	Application Analysis using Hardware Monitors
	Evaluation Techniques
	Results

	Conclusion

	Own Publications
	Bibliography

