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Abstract

We investigate transformations which are not symmetries of a theory but nevertheless leave invariant 
the set of all symmetry elements and representations. Generalizing from the example of a three Higgs 
doublet model with �(27) symmetry, we show that the possibility of such transformations signals physical 
degeneracies in the parameter space of a theory. We show that stationary points only appear in multiplets 
which are representations of the group of these so-called equivalence transformations. As a consequence, 
the stationary points are amongst the solutions of a set of homogeneous linear equations. This is relevant 
to the minimization of potentials in general and sheds new light on the origin of calculable phases and 
geometrical CP violation.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Spontaneous symmetry breaking (SSB) is known to describe a wide range of physical phe-
nomena in Nature ranging from solid state physics to the origin of elementary particle masses. 
Independently of the details of a model, the philosophy of SSB is always the same: one demands 
the conservation of a symmetry at a high scale but has some scalar degree of freedom which, at a 
lower scale, obtains a vacuum expectation value (VEV) which does not preserve the symmetry.
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It is conceivable that SSB also plays a vital role for the experimentally verified but poorly 
understood violation of the combined symmetry of charge conjugation and parity (CP) [1]. A par-
ticularly outstanding model of spontaneous CP violation is the so-called geometrical CP violation 
suggested by Branco, Gérard, and Grimus [2]. In their three Higgs doublet model (3HDM) with a 
discrete �(27) symmetry, the CP violating relative phases of VEVs are independent of the exact 
values of couplings and follow, thus, solely from the underlying symmetry of the model.

Even though several efforts have been undertaken to better understand the origin of geometri-
cal CP violation in the original model [3–5], for potentials of higher order [6], and in multi-Higgs 
models [7,8], we think it is fair to say that a complete understanding of the origin of the calcu-
lable phases has not yet been achieved. Nevertheless, there exist models employing geometrical 
CP violation based on �(27) which include also complete quark [9,10] or lepton sectors [11,12]. 
Despite the fact that these models typically have difficulties in producing realistic masses and 
mixing angles [13] we think that, in principle, geometrical CP violation and the origin of calcu-
lable phases is still a feature worth investigating.

Charge conjugation and parity are special because they are not internal symmetries in the 
conventional sense, rather, C and P are outer automorphisms of the symmetries which are present 
in a model. This is true for the Poincaré group [14] as well as for continuous [15] and discrete 
[5] internal symmetries. Thus, understanding outer automorphisms is essential to understand CP. 
For instance, understanding the interrelation of CP and discrete Groups [5,16] has enabled the 
discovery that settings based on certain discrete groups preclude CP symmetries altogether [17]. 
Despite their relevance to Nature, however, outer automorphisms have generally not received 
a lot of attention in the literature. To the best of our knowledge it has, for example, not been 
discussed of what relevance outer automorphisms are that are not C or P transformations.

In general, outer automorphisms are transformations that leave invariant the set1 of all ele-
ments of a given symmetry – without being themselves part of the symmetry. The latter implies 
that outer automorphisms also interchange representations of the symmetry. Hence it is clear that 
for a given model only those outer automorphisms of the symmetry group are relevant which 
leave invariant the set of all present representations. Transformations for which this is true will be 
called equivalence transformations in this work. The set of equivalence transformations contains 
as subsets CP transformations and, as the trivial case, also symmetry transformations. Despite 
that, there may be other non-trivial, non-CP equivalence transformations.

Investigating equivalence transformations, we will show that they relate different regions of 
the parameter space of a theory by isomorphisms. From this we will conclude that whenever a 
theory allows for equivalence transformations, there are different regions in the parameter space 
which give rise to equivalent physical predictions. Furthermore, we will show that stationary 
points of potentials always form multiplets under the group of equivalence transformations. This 
allows us to derive a set of homogeneous linear equations which constrain the form, i.e. the 
direction and phases, of all stationary points.

This work is organized as follows. In Section 2 we review the 3HDM with �(27) symmetry 
of Branco et al. [2] that we use as an example throughout the work. We discuss parameter space 
degeneracies in Section 3 and derive the complete set of all equivalence transformations for 
our example in Section 4. Section 5 contains a proof that CP truly is spontaneously violated in 
the �(27) model. After understanding the action of equivalence transformations on stationary 

1 For clarity, note that leaving invariant a set does not mean leaving invariant each of its parts. Rather, it is also possible 
that the individual parts are permuted.
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points in Section 6, we derive necessary conditions on the stationary points in Section 7. In 
Appendices A–D we give the complete traditional minimization of the �(27) 3HDM potential, 
group theoretical details of �(27) and �(54), as well as some computational details.

2. The 3HDM potential with ���(27) symmetry

Let us discuss the three Higgs doublet model with �(27) symmetry [2,3]. In this model one 
assigns three electroweak Higgs doublets to the three dimensional representation (H1, H2, H3) =
H = 3 of �(27). Due to the continuous symmetries and the representation content of the model, 
the actual discrete symmetry group of the Higgs potential is not �(27) but the larger �(54)

[3,6,18,19]. We will, thus, work with the full discrete symmetry of the potential, G = �(54). 
The conclusions we obtain are, however, completely independent of whether the analysis of the 
potential is based on �(27) or �(54). The reason for this as well as the group theoretical details 
of �(54) are given in Appendix A.

Let us again stress that our aim here is not to provide a realistic model but to use the �(27)

potential as playground to explore the meaning of outer automorphism transformations and the 
origin of geometrical CP violation.

The complete renormalizable scalar potential which is invariant under the given symmetries 
can be written as2

V = V0 + VI

= −m2 H
†
i Hi + λ1

(
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The indices i and j run from 1 to 3 with i �= j . We parametrize the coupling of the phase depen-
dent part of the potential VI as λ̃4 = ei � λ4 with λ4 > 0 and 0 ≤ � < 2π . All other couplings 
are real and chosen such that the potential is bounded below. In our discussion we will always 
assume that the vacuum preserves electric charge and, therefore, parametrize the VEVs as

〈Hi〉 :=
(

0
vi ei ϕi

)
, (2.2)

with vi > 0 and 0 ≤ ϕi < 2π . Details on the allowed parameter regions, the complete analyt-
ical minimization of the potential as well as a proof of validity for the assumption of charge 
conservation are given in Appendix B.

Earlier analyses have shown that this potential gives rise to very specific stationary points, 
henceforth also called VEVs, with discrete physical phases [2,3]. A careful analysis of the po-
tential (2.1) (cf. Appendix B, and also [6,20]) shows that possible VEVs are given by
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1
1

)
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)
, vIII = v

(
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)
, vIV = v

(√
3

0
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)
, (2.3)

where here and in the following we use ω := e2π i/3. Each of these four different VEVs actually 
corresponds to a set of physically equivalent VEVs (a group orbit) which can be obtained by 

2 This is equivalent to [18, Eq. (14)], where the potential is given in a slightly rearranged form.
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Fig. 1. Value of the phase dependent potential VI at the stationary points of types I, II, and III in dependence of � (left). 
For this illustration, we have chosen couplings λ1–4 in a region which excludes global minima of type IV. Note that for 
the values � ∈ {0, 2π/3, 4π/3} there are degenerate global minima of two types, whereas for all other values of � the 
type of the global minimum is unique. Which stationary point is the global minimum depends discretely on � (right).

acting on the given vectors with all available symmetry transformations. In particular, the overall 
phase of each VEV is undefined since it can always be shifted by a global hypercharge rotation.

The presence of CP violating physical phases which are independent of couplings and cal-
culable as a consequence of the assumed symmetries is called geometrical CP violation [2]. In 
the chosen basis one is easily convinced that CP may be violated spontaneously by the relative 
geometrical phases of the Higgs VEVs of types II and III in (2.3). Even though less apparent, in 
Section 5 we will show that also VEVs of the types I and IV can give rise to spontaneous geo-
metrical CP violation. While not being overly important to claim that there is geometrical CPV 
in the first place [2], realizing that there are the four possible types of VEVs stated in Eq. (2.3)
is absolutely necessary for the understanding of its origin, as will become clear at the end of our 
discussion.

Note that the length of the VEV depends on the couplings, v = v(m2, λ1, λ2, λ3, λ4, �), and 
has to be determined for each type of VEV individually (cf. Appendix B). Thus, which of the 
stationary points listed in (2.3) is the global minimum of the Higgs potential depends on the 
specific values of the couplings. For example, keeping the λ� with � = 1, . . . , 4 fixed to values 
such that a VEV of type IV is excluded as global minimum3 (cf. (B.10)), the only parameter 
which determines the direction of the global minimum is �. Whether the global minimum is 
of types I, II, or III then only depends discretely on �. This situation is depicted in Fig. 1. We 
observe that the actual dependence on � is more subtle than only a simple dependence on the 
sign of λ̃4. This clarifies that geometrical CPV also occurs in case � /∈ {0, π}, i.e. for manifestly 
complex couplings. Also, this substantiates the statement that the direction of the VEV, and 
especially the relative phases, are stable under renormalization group (RG) running [2]. The type 
of VEV could only change if the parameter evolution were such that (i) � crossed any of the 
critical values 0, 2π/3, or 4π/3 or (ii) the λ�’s were such that a VEV of type IV becomes the 
global minimum. Since for both of these conditions the parameter evolution would have to cross 
coupling values which give rise to an enhanced symmetry, none of them can be fulfilled and the 
directions of the VEVs are absolutely stable.

3 This is the case which implicitly has been assumed in the analyses of earlier works [2,3].
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3. Identifying redundant parameter regions

In the following, we want to go beyond the straightforward but rather tedious manual min-
imization of the potential and discuss the discrete dependence on couplings from a somewhat 
different point of view.

For this, note that the parameter space of the potential is partitioned into several regions which 
differ by the type of VEV which constitutes the global minimum. The apparently different types 
of VEVs, however, all conserve subgroups which are isomorphic. This is true not only for the 
continuous and discrete internal symmetries of the potential but also with respect to potential 
(generalized) CP symmetries as we will see. We will show that this is not a coincidence but 
actually a consequence of the fact that all different parameter regions are redundant in their 
phenomenology and, thus, can be considered physically equivalent – in a sense that we will 
specify.

Before we generalize our discussion, let us provide an explicit example to illustrate our point.
The potential (2.1) is, in general, a function of field variables and couplings, V = V (H, λ), 

where H denotes the fields and λ ≡ {m,λ1, λ2, λ3, λ4,�} the couplings, respectively. The func-
tional form of V is fixed by the form of all symmetry elements ρ(g) with g ∈ G, since it is 
required to fulfill V (ρ(g)H, λ) = V (H, λ). In our particular case, this function V (H, λ) has in 
addition the striking property that certain transformations performed on either the field variables 
H or on the parameters λ give rise to the same result.4 Consider for example a transformation 
on the Higgs triplet H 
→ U1H with the unitary matrix

U1 =
(

ω 0 0
0 1 0
0 0 1

)
. (3.1)

Performing this transformation on the potential does not change the functional dependence of V
on H , i.e. it does not change the form of any of the present operators. In particular, H 
→ U1H

leaves invariant the mass term, the quartic operators with coupling λ1, λ2, and λ3, as well as 
the value of λ4. The only effect of the transformation is a shift of the parameter � to a value 
� + 2π/3. Therefore, this transformation has the only effect of moving the theory to a different 
point in parameter space, or formally written

V (H ′, λ) = V (H,λ′) , (3.2)

where we use H ′ = U1H and λ′ to denote the shifted fields and parameters, respectively. It is 
crucial here that the respective functional dependences of V on H and on H ′ are exactly the 
same.

The striking consequence of the existence of the transformation H 
→ U1H is that the a priori 
completely unrelated potentials V (H, λ) and V (H, λ′) = V (H ′, λ) make exactly the same phys-
ical predictions; in the first case with respect to H and in the second case with respect to H ′.5
This particularly includes all possible CP transformations and possible residual symmetries after 
the spontaneous breaking of the original symmetry.

In the sense that they make the same physical predictions but for two differently defined sets 
of fields, we say that the theory V (H, λ) is equivalent to the theory V (H, λ′). Any transforma-

4 We explicitly talk about the limited set of scalar parameters λ here, so this is no general basis transformation.
5 This conclusion has also been reached in [21].
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tion U , which relates two – in this sense equivalent – parameter regions, is termed equivalence 
transformation.

We see that equivalence transformations can be used to relate different regions of parameter 
space. For the complete discussion of the physical phenomenology of a model it is, thus, suffi-
cient to consider only a confined region of the parameter space which is related to the complete 
parameter space by equivalence transformations.

Even though it is always possible to perform the according field redefinitions we think 
a comment is in order. Since it is, in principle, possible to distinguish the different compo-
nents of a triplet, say Hi and Hj �=i , from one another by appropriate measurements with re-
spect to subgroups of �(54), it is also possible to distinguish Hi from a corresponding state 
H ′

i = (UH)i [22]. Therefore, the equivalence property of V can be used to reduce the size of 
the parameter space only if one does not insist on a relation between physical states and field 
operators to begin with. For example, if one is to determine the parameter � by a measurement 
one can either start by defining the state H1 and then has to allow for all values of � or choose 
to describe the measurement within a confined region of the parameter space, say � ∈ [

0,2π/3), 
but then has to relabel the states according to the measured result. With an appropriate labeling 
of states it will never be necessary to leave the constrained parameter range.

For clarity, let us also comment on the relation of equivalence transformations to (Higgs-)basis 
changes, which are also sometimes called reparametrization transformations [21,23,24]. Since 
the physical results of a theory do, of course, not depend on the specific way the Lagrangean is 
expressed, it is always possible to perform a field redefinition, i.e. to rewrite the Lagrangean in 
terms of new fields H̃ = UH with an arbitrary unitary matrix U . The resulting potential

Ṽ (H̃ , λ) := V (U−1H̃ , λ) , (3.3)

however, is in general a different function of its arguments than V . Consequently it is, in general, 
impossible to pass on the difference in the functional dependence of Ṽ in comparison to V
to the couplings λ = {m,λ1, λ2, λ3, λ4,�}. This is possible if and only if U is an equivalence 
transformation, in which case we have

Ṽ (H̃ , λ) = V (H̃ , λ̃) . (3.4)

As just pointed out, the crucial point for any equivalence transformation is that it does not 
change the functional form of V . Because the form of V , as discussed above, is fixed by the form 
of all the symmetry elements, this is equivalent to saying that an equivalence transformation 
must leave invariant the set of all symmetry elements, i.e. in our case the set of all matrices of 
the triplet representation of �(54) generated by {A, B, C}. Since this is achieved only by trans-
formations which are automorphisms of the total symmetry group of the potential G, it is clear 
that equivalence transformations have to be automorphisms of G. Since inner automorphisms are 
by definition induced by the symmetry elements themselves, they act trivially on the couplings. 
Therefore, we conclude that all non-trivial equivalence transformations are outer automorphisms 
of G. Conversely, which of the outer automorphisms of G are equivalence transformations criti-
cally depends on which representations of G are present in a specific model.

In general, for an outer automorphism which acts as u : g 
→ u(g) and maps a representation 
r to a representation r ′, the explicit representation matrix U is given by the solution to

Uρr ′(g)U−1 = ρr(u(g)) , ∀g ∈ G , (3.5)
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where ρr(g) denotes the matrix representation of r .6 Hence, it is possible, that certain outer 
automorphisms leave invariant the set of all representation matrices present in a given theory.

This is easily confirmed for the example given above, where U1 in (3.1) is the explicit rep-
resentation of the automorphism (A,B,C) 
→ (BAB,B,C) acting on, and leaving invariant, the 
set of all triplet representation matrices. More generally, consider the case that the symmetry 
group of a specific model allows for an outer automorphism which maps r 
→ r for all represen-
tations present without being a symmetry of the theory. Then such a model will unavoidably face 
degeneracies in the parameter space due to this equivalence transformation.

Another example is a (possibly generalized) CP transformation for which all representations 
of G that are used in a model are mapped to their complex conjugate representations r 
→ r∗.7 If 
this transformation is not a symmetry, it is well-known that it will map the theory to a different 
spot in the parameter space. The resulting theory is equivalent to its pre-image in the sense that 
it describes the same dynamics as before but for the CP conjugate set of fields. Whether we 
describe the underlying physics with fields or their respective conjugates, however, is completely 
arbitrary at the level of our example potential, such that we may as well work within a restricted 
region of the parameter space and decide the latter a posteriori. As soon as we have defined a 
measurement to tell apart fields from their CP conjugates, however, we would have to consider 
the complete parameter space.

Note that the only difference between the first and the second example is that in the first case, 
H and UH transform in the same representation with respect to any further symmetries, whereas 
in the second case H and UH ∗ will, in general, transform in complex conjugate representations 
of any further symmetries. Thus, the difference between H and UH ∗ may be defined from 
elsewhere, whereas the distinction of H and UH can only be made with respect to subgroups of 
G itself.

4. Equivalence transformations and the ���(54) potential

Let us now perform a detailed analysis of the �(54) Higgs potential considering the complete 
outer automorphism group. It is most convenient to investigate the action of the outer automor-
phism group on the potential in a parametrization which is derived directly from the G-invariant 
contractions in the chosen basis. Furthermore, we will neglect the mass term because it is invari-
ant under all outer automorphisms and focus only on the quartic couplings of the triplet of Higgs 
doublets H . The contraction (3 ⊗ 3) ⊗ (3 ⊗ 3) gives rise to five independent invariants which are 
given by[(

H
†
3

⊗ H3

)
⊗

(
H

†
3

⊗ H3

)]
10

= a0

[(
H † ⊗ H

)
10

⊗
(
H † ⊗ H

)
10

]
+ a1√

2

[(
H † ⊗ H

)
21

⊗
(
H † ⊗ H

)
21

]
10

+ a2√
2

[(
H † ⊗ H

)
23

⊗
(
H † ⊗ H

)
23

]
10

6 Note that, therefore, the matrices U are always defined only up to a phase which is consistent with the fact that a 
global rephasing of any state cannot matter physically.

7 CP transformations are representations of the outer automorphism group of a discrete symmetry [5] which map all 
present representations to their complex conjugate representation [17].
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+ a3√
2

[(
H † ⊗ H

)
24

⊗
(
H † ⊗ H

)
24

]
10

+ a4√
2

[(
H † ⊗ H

)
22

⊗
(
H † ⊗ H

)
22

]
10

, (4.1)

where the ak for k = 0, . . . , 4 denote five coupling parameters which can be chosen real since all 
of the contractions are real themselves. This parametrization can be compared with the one given 
in (2.1) and we obtain

3λ1 = a0 + a4 , 3λ2 = 2a0 − a4 , 3λ3 = a1 + a2 + a3 ,

3λ4 =
∣∣∣a1 + ω2 a2 + ωa3

∣∣∣ , and � = arg
(
a1 + ω2 a2 + ωa3

)
. (4.2)

Of course, the parameters ak are subject to constraints due to the physicality of the potential and 
the form of the vacuum we want to obtain completely analogous to the constraints on λ� (cf. 
(B.1) and (B.11)).

The complete outer automorphism group of �(54) is S4, the permutation group of four ele-
ments. This group can be generated8 by two outer automorphisms of order two and three which 
fulfill9

t3 = s2 =
(
t−1 ◦ s

)4 = id , (4.3)

and act on the doublet and triplet representations of �(54) as

t : (A,B,C) 
→ (A,ABA,C)�

⎛⎜⎝
21
22
23
24

⎞⎟⎠ 
→
⎛⎜⎝

21
24
22
23

⎞⎟⎠ , 3i 
→ Ut 3i , (4.4a)

s : (A,B,C) 
→ (AB2A,B,C) �

⎛⎜⎝
21
22
23
24

⎞⎟⎠ 
→
⎛⎜⎝

S2 24
S2 22

23
S2 21

⎞⎟⎠ , 3i 
→ Us 3∗
i , (4.4b)

with representation matrices which are given by

S2 =
(

0 1
1 0

)
, Ut = i√

3

( 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

)
, Us =

(
ω2 0 0
0 0 1
0 1 0

)
. (4.5)

All other elements of the outer automorphism group can be generated as compositions of t and s.
With respect to any of the three-dimensional representations, the outer automorphism group 

of �(54) splits into two kinds of transformations:

(i) Transformations that send 3 → 3.
(ii) Transformations that send 3 → 3∗.

8 Elements of the outer automorphism group are by definition not automorphisms but cosets of automorphisms. To 
generate the group we therefore have to choose one representative of a coset (all other elements of the coset can be 
obtained by composition with an inner automorphism). The results must not depend on the particular choice.

9 Note that “id” here is not strictly the identity map but may also be an inner automorphism, i.e. an element out of the 
symmetry group �(54). This is indeed the case here and (t−1 ◦ s)4 = conj(C) only closes to conjugation with the group 
element C.
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We find that there are 12 possible transformations of the first kind (three of order two, eight of 
order three and the identity, i.e. all even permutations) and 12 possible transformations of the 
second kind (six of order two and six of order four, i.e. all odd permutations). The results for 
the second case are in accordance with the findings of [25]. Note that any transformation (i), 
if conserved, would increase the linear symmetry of the theory whereas any transformation (ii) 
would warrant CP conservation (it might, in addition, increase the linear symmetry, too). If not 
conserved, both transformations map the theory to different points in parameter space and, hence, 
are equivalence transformations on an equal footing. Thus, in our example model the group of 
equivalence transformations is the complete available outer automorphism group.

From the generators it is straightforward to obtain the corresponding transformations of the 
couplings. Let us illustrate this with a few examples.

We start with transformations of type (i). Take, for example, the transformation t . Acting with 
it on the triplet in (4.1) is equivalent to the parameter mapping

(a1, a2, a3, a4) 
→ (a1, a3, a4, a2) . (4.6)

This result can be cross-checked also in the conventional form of the Lagrangean (2.1). The 
parametrization in form of the derived invariants (4.1) is clearly advantageous since the transfor-
mation of the parameters can easily be obtained from the transformation of the doublets in (4.4). 
The theory with parameters (a1, a2, a3, a4), hence, is equivalent in the above sense to a theory 
with (a1, a3, a4, a2).

The transformation (3.1), which we have used as an example before, is given by s ◦ t−1 ◦ s ◦ t

(modulo an inner automorphism with the element C) and is equivalent to the parameter mapping

(a1, a2, a3, a4) 
→ (a2, a3, a1, a4) , (4.7)

which, if applied to (4.2), confirms that � 
→ � + 2π/3. Again, this transformation identifies 
parameter regions which are equivalent in the above sense.

Let us now discuss potential CP transformations (ii). A priori, all transformations which map 
3 to 3∗ are possible physical CP transformations because each – if conserved – ensures that all 
CP violating (basis-)invariants vanish. Taking, for example, the explicit action of s, it is straight-
forward to confirm that this transformation is equivalent to the map

(a1, a2, a3, a4) 
→ (a3, a2, a1, a4) . (4.8)

This implies that theory with parameters (a1, a2, a3, a4) describes, with respect to H , precisely 
the same dynamics as a theory with parameters (a3, a2, a1, a4) with respect to UsH

∗. Therefore, 
s is a CP symmetry of the theory if and only if the couplings fulfill the relation a1 = a3. Requiring 
this relation in (4.2) implies that � ∈ {π/3, 4π/3}, i.e. the phase of the complex coupling is fixed 
to very specific values – just as one would naively expect from a CP transformation.

Another example one might be interested in is what in our basis could be called the canonical 
CP transformation.10 This transformation acts on the triplets as 3 
→ U3∗ with U = 1 and is 
given by s ◦ t−1 ◦ s ◦ t ◦ s. This is equivalent to the map

(a1, a2, a3, a4) 
→ (a1, a3, a2, a4) , (4.9)

10 Note that none of the order two CP transformations here is distinguished with respect to the other order two CP 
transformations. It is rather a matter of basis choice which CP transformation one would call canonical and which one 
would call generalized.
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implying � ∈ {0, π} if this CP transformation is to be conserved. The absence of any phases in 
the Lagrangean is, of course, what one would naively expect if CP is conserved. Nevertheless, as 
seen above (see also [5,20]) this is not the only way in which CP can be conserved physically. 
Indeed, CP is conserved whenever two of the four parameters (a1, a2, a3, a4) are equal.

Taking together all possible equivalence transformations, the Higgs potential with �(54) sym-
metry and a given set of parameters is equivalent to every potential which can be obtained by any 
permutation of the four parameters a�. This equivalence can be made explicit by a field redef-
inition for all even permutations and a complex field redefinition, i.e. a CP transformation, for 
all odd permutations of the a�, respectively. It is noteworthy that the action of these equivalence 
transformations in the conventional parametrization (2.1) may not always be as simple as just a 
shift in the phase �, as in our example, but can also affect the other parameters.

As a result of this discussion the potential can be analyzed within a restricted region of the 
parameter space without missing any of its phenomenological features. In case CP is broken ex-
plicitly, a possible choice for a non-degenerate parameter space is a1 < a2 < a3 < a4. In case 
an order two CP symmetry is required to be conserved initially, a possible choice for the re-
stricted parameter region is a1 < a2 < a3 = a4 or a3 = a4 < a1 < a2, where in the first case 
CP is conserved before and after the spontaneous breakdown of G, while in the second case 
CP is spontaneously violated. All parameter regions that can be obtained from the three given 
ones by any permutation of the four couplings are equivalent in the above sense and therefore 
not explicitly stated. In contrast, requiring that more than two parameters are equal leads to an 
enhancement of the linear symmetry of the model.11

5. Spontaneous (geometrical) CP violation

Having at hand the complete automorphism group including all possible CP transformations, 
let us comment on the phenomenon of spontaneous geometrical CP violation first described in 
[2].

Since there has been no discussion of any process which makes the violation of CP tangible, 
the question is whether CP really can be violated physically if H assumes any of the VEVs given 
in Eq. (2.3). In order to confirm that this is indeed the case, let us assume that a CP transformation 
acting on the Higgs fields as H → UH ∗ with an arbitrary U is a symmetry of the Lagrangean. 
Although �(27) does not allow for CP transformations in a generic setting [17], imposing such a 
transformation here is possible because the model contains only triplet representations. In order 
for the chosen CP transformation to be spontaneously broken by the Higgs VEV, the condition

〈H 〉 = U 〈H 〉∗ (5.1)

must be violated. However, in order to claim that CP is really violated physically by 〈H 〉, we 
have to make sure that there is no other CP transformation which is fulfills (5.1) for the corre-
sponding U , while at the same time being a symmetry of the Lagrangean.

Without loss of generality12 we may focus on the CP transformation induced by the automor-
phism s, which acts on the Higgs triplet with the matrix Us given in Eq. (4.5). This transformation 

11 In case we have two pairs of equal parameters or three (or more) equal parameters the discrete symmetry of the 
potential is enhanced from �(54) to G̃ := ((Z3 ×Z3)�Z3) � Z4 ∼= SmallGroup(108, 15) or to a continuous group, 
respectively, in agreement with the maximal realizable symmetry 
(36) ∼= G̃/Z3 found in [18,19].
12 As the CP transformations are mapped onto each other under the action of the equivalence transformations, all order 
two CP transformations are equivalent at the level of the potential.
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is a symmetry of the Lagrangean if and only if � ∈ {π/3, 4π/3} (corresponding to a1 ≡ a3) as 
discussed after Eq. (4.8). Depending on the values of the other parameters, the VEV can be of 
any types I–IV. It is straightforward to check that (5.1) with U = Us is fulfilled for VEVs of the 
types II and IV and violated for VEVs of the types I and III, respectively. Thus, in order for Us

to be spontaneously broken, we require that the global minimum is either of type I or of type III
which can only be the case if � is 4π/3. In order to claim that this also implies the sponta-
neous violation of CP, however, we have to ascertain that there is no other CP symmetry of the 
Lagrangean which solves (5.1). In the case at hand, it is straightforward to check that all other 
possible CP transformations are broken explicitly if we do not allow for any further parameter 
relations. In turn, if we allowed for any additional parameter relation, the linear (i.e. non-CP) 
symmetry of the potential would unavoidably be enhanced as well (cf. the discussion in foot-
note 11). Therefore, not allowing for an enhancement of the discrete symmetry �(54), we have 
shown that there is physical CP violation with calculable phases from the spontaneous breaking 
of the CP symmetry s. As the source of CP violation we identify quadratic and cubic couplings 
of the Higgs potential after the SSB.

In particular for VEVs of the types I and IV the fact that CP can be violated geometrically may 
appear surprising because none of the Higgs VEVs assumes a complex phase. That our statement 
is nevertheless correct can be understood by noting that the corresponding CP transformation 
matrices, in the above example Us , carry discrete phases which also enforce discrete non-trivial 
values of �, i.e. give rise to calculable discrete phases in the Lagrangean. Alternatively, one 
can also use a basis change to bring Us to the canonical form, thereby shifting the geometrical 
phases to the VEVs. In general, the origin of complex phases in matrices which represent outer 
automorphisms, and in particular CP transformations, can be tracked back to the necessarily 
complex Clebsch–Gordan coefficients of the symmetry group �(54) [17].

Let us note that from the relation a1 ≡ a3 it follows immediately that vacua I and III are energy 
degenerate. This is also clear because the vacua are part of the same group orbit with respect to 
the broken CP symmetry generated by Us . Since the two vacua are in principle distinguishable, 
there are domain walls present after the spontaneous breaking, where the different domains then 
have different properties also with respect to CP.

Let us also comment on the situation that we introduce other sectors, such as Yukawa cou-
plings to fermions, to a model. If the new sector does not obey the full symmetry group of the 
Higgs potential but only a smaller group, the discussion of equivalence and CP transformations 
obviously has to be based on the outer automorphisms of that group. But even if the symme-
try is not reduced, the presence of fields in representations other than the Higgses’ typically 
reduces the number of available equivalence and CP transformations. This is because some of 
the equivalence transformations are rendered impossible by the fact that they imply mappings of 
representations onto other representations which are not present in the model, i.e. the correspond-
ing transformations are broken explicitly and maximally. Therefore, it may happen that VEVs, 
which are equivalent at the level of the Higgs potential, have different physical implications on 
masses, mixings, and CP violation in the additional sectors. This is the case in models which 
employ the �(27) potential for the explanation of fermion mixing patterns or masses [9–12].13

Even though in this case the complete set of all equivalence transformations may not be useful 

13 Contrary to a statement made in [9] it is completely arbitrary which one-dimensional representations of �(27) are 
chosen for the matter content of their model. This is because we can always find a valid CP transformation among the 
outer automorphisms of �(27) as long as the model contains only one kind of non-trivial singlet representation and its 
complex conjugate.
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to identify equivalent parameter regions of the full theory, it is still a powerful tool to analyze the 
Higgs potential, i.e. to obtain all possible VEVs, as we will show in the following.

6. Action of equivalence transformations on VEVs

Let us discuss the action of equivalence transformations on the VEVs of a potential. For this, 
assume that the potential V (H, α) has a VEV φ(α) := 〈H 〉 which is, in general, a continuous 
function of the couplings α ≡ (m, a0, a1, a2, a3, a4). It is well-known that the action of symmetry 
transformations on a given VEV gives rise to physically equivalent VEVs, which are distinct 
from the original one if the corresponding symmetry transformation is spontaneously broken. 
All VEVs which are related by the action of a symmetry transformation are said to lie on a 
so-called group orbit.

In close analogy to symmetry transformations, the characteristics of equivalence transforma-
tions imply that VEVs of the potential are related by certain transformations. More specifically, 
it is possible to obtain new VEVs from known ones simply by taking

φ′ (α) =
{

U φ
(
α′) , or

U
(
φ

(
α′))∗

,
(6.1)

where U is the representation matrix of an equivalence transformation, α′ the correspondingly 
transformed couplings, and φ′(α) denotes a new VEV of the original potential V (H, α). The first 
line holds if U represents an equivalence transformation which maps the representation of H to 
itself, whereas the second line refers to transformations which map the representation of H to its 
complex conjugate. A proof of (6.1) is given in Appendix C.

In case U is a non-trivial equivalence transformation (i.e. not a symmetry transformation), the 
VEVs φ′(α) and φ(α), which are related by (6.1), are, in general, not part of the same symmetry 
group orbit. Therefore, orbits of VEVs under the action of non-trivial equivalence transforma-
tions are ‘perpendicular’ to the group orbits in the sense that φ′(α) cannot be obtained from φ(α)

by a symmetry transformation. Hence, (6.1) can be used to obtain new minima from known ones 
beyond the group orbit. For example could one have simply guessed the first VEV in Eq. (2.3) and 
obtained all other VEVs of Eq. (2.3) by the application of equivalence transformations, thereby 
avoiding tedious manual computations. Also, this shows that stationary points are transformed 
among themselves via equivalence transformations, i.e. they always appear in complete multi-
plets of the available group of outer automorphisms. The consequences of this insight will be 
elucidated in the following.

7. A necessary condition on the VEVs

In the previous section we have established that VEVs do not only form orbits under the 
symmetry group G but also orbits under the full group of equivalence transformations E, which 
also contains certain outer automorphisms of the symmetry group.

Let us in the following put aside the existence of the U(1)Y symmetry, i.e. the fact that our 
VEVs can be re-phased continuously, and focus on the orbits under the discrete equivalence 
transformations of the potential. The maximal number of distinct VEVs that can be obtained 
from a given VEV by equivalence transformations, i.e. the maximal orbit length, is then given by 
the number of possible discrete transformations |E| = |G| × | Out(G)|.
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However, due to the fact that the VEVs here are, by definition, solutions to a well-behaved 
system of coupled polynomial equations,14 their number is strictly bounded above (cf. e.g. [26]). 
If the maximal orbit length |E| exceeds the number of possible solutions, all VEVs have to be 
fixed points of at least one equivalence transformation and possibly of several more. This in turn 
can be used to set up a necessary condition on the VEVs which restricts their possible directions 
and phases.

We will now use our example model to illustrate this method. However, it can, of course, be 
adapted to any other potential and we will comment on this below. In our example model, the 
group of equivalence transformations E, which describes the complete orbit of stationary points, 
can be presented by the five generators {A,B,C,S,T} with the relations

T3 = S2 = (
T−1S

)4 = e ,

T A T−1 = A , S A S−1 = AB2A ,

T B T−1 = ABA , S B S−1 = B ,

T C T−1 = C , S C S−1 = C , (7.1)

in addition to the relations for �(54) given in (A.1). In the SmallGroup catalogue of GAP [27], 
E is given by SG(1296, 2891) and has order |E| = |G| × | Out(G)| = 1296 as expected.

The number of VEVs, however, is strictly bounded above by 36 = 729 [26]. This number 
is obtained from the fact that, with respect to the discrete symmetries, H consists of a triplet 
of complex scalars and the potential is renormalizable, thus yielding VEVs which have to be 
solutions to a system of six coupled polynomial equations of degree three.

Therefore, any E-orbit of VEVs under the (left-)action of E must be of size smaller than 
729 and, hence, smaller than |E|. This implies that for any VEV φ there must be a non-trivial 
subgroup of E, denoted by Eφ , which leaves φ invariant. This is a direct consequence of the 
orbit-stabilizer theorem (e.g. [28, p. 80]).

In case there are several distinct orbits of VEVs under the action of E they are disjoint. There-
fore, we can consider each orbit separately. Let us denote by 
 an orbit of VEVs corresponding 
to φ, i.e. 
 := {pφ | p ∈ E} ≡ Eφ. Using the fact that, by construction, G is a normal subgroup 
of E, one can show (e.g. [29, p. 12]) that 
 has the structure


T =
(

← Gφ1 → , ← Gφ2 → , · · · , ← Gφn →
)

, (7.2)

where the boxes denote equally-sized blocks which contain G-orbits of VEVs Gφi ≡ {gφi | g ∈
G}. The individual blocks have size r := |G|/|G ∩Eφ | and the number of blocks is given by n :=
|E||G ∩ Eφ|/ 

(|G||Eφ |). The orbit-stabilizer theorem guarantees that |
| = |E|/|Eφ | = r · n.
Under the action of elements in G, the VEVs are permuted transitively only within the individ-

ual blocks, whereas under the action of elements in E which are not in G the blocks themselves 
are permuted transitively. This is what we mean by calling the G-orbits ‘perpendicular’ to the 
outer automorphism orbits in Section 6.

Let us now investigate in detail how 
 transforms under E. On the one hand, the explicit 
action of E on the triplet VEVs φ is given by the representation matrices obtained from Eq. (3.5). 
On the other hand, it is clear that this action must transform each φ ∈ 
 to another VEV of 
the same orbit and, thus, must be given by a permutation of the components of 
. Because E

14 ‘Well-behaved’ here is used in the mathematical sense meaning that the system of equations consists of as many 
equations as variables and has only a finite number of solutions.



M. Fallbacher, A. Trautner / Nuclear Physics B 894 (2015) 136–160 149
acts transitively on 
, this permutation can be shown to be equivalent to the permutation of 
the elements of the coset space E/Eφ under the action of E by left-multiplication (e.g. [28, 
p. 80]).15 The possible sets of VEVs 
 are, therefore, constrained to the possible permutation 
representations of E/Eφ (under left-action of E) for all possible subgroups Eφ . The fact that 
the explicit action of E on 
 must correspond to one of these possible permutations imposes 
a necessary condition on all VEVs with non-trivial stabilizer. Due to the upper bound on the 
number of VEVs presented above, all VEVs have a non-trivial stabilizer in our case.

Let us explicitly derive these necessary conditions. Instead of working with the five generators 
of (7.1) it is more convenient to work with a minimal set of generators of E which can be obtained 
with GAP and is given by {P, Q} with

P := T , and Q := (T S)2 (T−1 S)2 C (T−1 S)2 C A (T−1 B−1 T B A)4 , (7.3)

where the action on the triplet representation is given by

P = i√
3

( 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

)
and Q = i√

3

(
ω2 ω ω2

ω ω 1
1 ω ω

)
. (7.4)

For convenience, let us work with the representation 6 = 3 ⊕ 3. This is advantageous because we 
can simply multiply together 6-plet matrices without having to pay special attention to transfor-
mations which involve complex conjugation of the triplet. Elements of the 6-plet which involve 
the complex conjugation of the triplet (e.g. S,Q) are simply represented by matrices which have 
non-zero blocks only on the anti-diagonal, whereas all other elements (e.g. A,B,C,T ≡ P) have 
a block-diagonal structure (cf. e.g. [5]). The representation matrices of the minimal generating 
set for the 6-plet representation are

P6 =
(

P 0
0 P

)
and Q6 =

(
0 Q

Q 0

)
. (7.5)

Next, we want to obtain the permutation representation of the set of VEVs 
, for which it 
is required to assume a certain stabilizer subgroup Eφ . The minimal generating set of the corre-
sponding permutation matrices, which we denote by �P and �Q, can for example be obtained 
via GAP [27], see Appendix D.

For consistency now, the direct action of an element of E on each φ ∈ 
 must have the same 
effect as the corresponding permutation acting on the whole set 
. The representation matrices 
for these two actions on 
 are given by

P
 :=
r·n⊕
i=1

P6 , and Q
 :=
r·n⊕
i=1

Q6 , (7.6)

for the direct transformation of the VEVs and by

�

P := �P ⊗ 16 , and �


Q := �Q ⊗ 16 , (7.7)

for the permutation, respectively. Here ⊕ denotes the matrix direct sum and ⊗ the Kronecker 
product of matrices. Consistency now requires that

15 The same mathematical equivalence is used in the construction of effective Lagrangeans in presence of sponta-
neously broken continuous symmetries, where, however, only the action of the symmetry group is considered in order to 
parametrize the vacua [30,31].
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(
P
 − �


P

)

 = 0 , and

(
Q
 − �


Q

)

 = 0 . (7.8)

These two homogeneous linear equations are fulfilled by the orbit 
 of any VEV φ with stabi-
lizer Eφ . Turning this around, it is possible to find candidates for VEVs by assuming a certain 
Eφ and then checking for possible solutions to (7.8). Depending on the specific subgroup that is 
assumed, the combined rectangular matrix

M :=
(

P
 − �

P

Q
 − �

Q

)
(7.9)

may either have rank(M) = 6 |
|, implying that there is only the trivial solution for 
, or 
rank(M) < 6 |
|, implying that there is a non-trivial solution for 
. In the first case, VEVs 
which conserve the assumed subgroup Eφ cannot exist, whereas in the second case, the solutions 
to (7.8) are candidates for orbits of non-trivial VEVs.

Note that the only information used up to this point is the discrete symmetry group of the 
potential and the group of available equivalence transformations, i.e. information about the rep-
resentation content of the model. Therefore, our constraint on the VEVs is independent of the 
precise form of the potential and simply reveals what (orbits of) VEVs are possible in princi-
ple.16 In order to check which of the non-trivial solutions to (7.8) really is a stationary point of 
the potential and to fix remaining free parameters, one still has to plug an element of 
 into the 
gradient of the potential.

Performing a scan over all subgroups of E while checking for non-trivial solutions of (7.8), 
we find that, up to conjugation,17 the largest subgroups of E which allow for a non-trivial 

are two groups of order 18 (SG(18, 4) and SG(18, 3)) and a group of order 48 (SG(48, 29)). Of 
course, also the subgroups of these groups allow for non-trivial solutions to (7.8) which, however, 
are less restrictive on 
. We will discuss this issue below. The permutation representations of 

corresponding to the largest subgroups are labeled as 721, 722, and 27, and the corresponding 
generators can be found in Appendix D.

Explicitly solving (7.8) for the representation 721 results in


T
72 =

(
Gφ1 , Gφ2 , Gφ3 , Gφ4

)
, (7.10)

where φ1–4 are representatives of the different blocks, for example, given by

(φ1, φ2, φ3, φ4) =
((−ω

−ω

−ω

)
v1,

(−ω

−1
−1

)
v2,

(
ω

ω2

ω2

)
v3,

( iω
√

3
0
0

)
v4

)
. (7.11)

Modulo a global re-phasing, which is allowed because of the so-far neglected U(1)Y, this pre-
cisely reproduces the four types of VEVs I–IV (2.3) found in the conventional way. The func-
tions v�, as well as the type of the VEVs, then can easily be obtained by plugging the φ� into 
the gradient of the potential. We find that, for certain parameter regions, all these VEVs are local 
minima with

16 In case the orbit of VEVs is allowed to be of the full length |E|, one may assume a set 
 with a trivial stabilizer 
subgroup. In this case, the solution to (7.8) has as many free parameters as φ has components such that our equations do 
not impose any constraint on the VEVs.
17 It is sufficient to limit the scan to conjugacy classes of subgroups due to the fact that stabilizer subgroups of points 
on the same orbit are conjugate to each other.
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|v�| = m√
2 (a0 + a�)

, for � = 1, ..,4 , (7.12)

in agreement with the result of the classical minimization (cf. Appendix B).
The analogous computation for the representation 722 yields a result which differs from (7.11)

only by a global phase and thus gives no new VEVs if we take into account the freedom of a 
global U(1)Y re-phasing.

Furthermore, solving (7.8) for the permutation representation 27 results in


T
27 =

(
Gφ27

)
, (7.13)

which only has a single block of which a representative is given by

φ27 =
( 0

−i
+i

)
v27 . (7.14)

Plugging φ27 into the gradient of the potential we find that it is a stationary point if

|v27| = m
√

3√
4a0 + a1 + a2 + a3 + a4

, (7.15)

in agreement with the result obtained in the conventional way (cf. Appendix B).
So far we have only investigated the largest subgroups of E that allow for a non-trivial solution 

of (7.8). In general, however, also subgroups of these subgroups allow for non-trivial solutions 
of (7.8), which can be less constraining, i.e. allow for more free parameters in 
. We find that 
this is only the case if the corresponding subgroup is in the intersection of two or more larger 
subgroups of E that allow for non-trivial solutions. This effect is, of course, to be expected 
because the corresponding solution 
sub has to accommodate all otherwise mutually exclusive 
solutions 
parent by fixing the additional parameters. If, instead, the subgroup is only contained 
in one larger group with non-trivial solution, we find that there are no additional parameters, i.e. 
the solution for the subgroup is identical to the solution of the parent group.

In our case, the potential only allows for precisely those VEVs which conserve the maximal 
possible subgroups of E that allow for a non-trivial solution of Eq. (7.8). All possible solutions 
with additional parameters retreat to the VEVs obtained from 
27 or 
72 when being plugged 
into the potential. Due to the fact that the number of VEVs is bounded above, we can be sure to 
have found all VEVs of the potential once we have scanned over all non-trivial subgroups of E.

Note, that our method does not provide us with an explanation of why our potential realizes 
precisely those VEVs which preserve the largest subgroups of E. In fact, our method does not 
provide any more information on the possible VEVs than what could be obtained by decompos-
ing the representation of H with respect to a particular subgroup and looking for trivial singlets. 
What is new, however, is the insight that the corresponding subgroup is not only a subgroup of the 
symmetry group of the potential but, in fact, a subgroup of the complete group of all equivalence 
transformations. This provides us with more details regarding the structure of the VEVs.

Indeed, there is an interesting observation regarding the structure of the orbits of the sta-
tionary points. The 721-plet 
72 (and equivalently 722) decomposes under G as 721 = 181 ⊕
182 ⊕183 ⊕184, where 18� are permutation representations of G corresponding to the individual 
blocks in 
72. The set of 18-plets does transform as a 4-plet under the action of the outer auto-
morphism of G, Out(G) = S4. Note, that this is the same transformation behavior as that of the 
four couplings a�. As such, we observe that the stationary points 
72 do transform in the same 
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representation as the couplings under the group of outer automorphisms, while the stationary 
points 
27 transform as a trivial singlet. The fact that VEVs under all allowed outer automor-
phisms either are invariant or transform in the same representation as the couplings themselves, 
holds true for all cases that we have investigated (see below). Based on this observation we con-
jecture that this might be true in general. In case this were true in general, this would constitute 
a remarkably easy method to calculate stationary points of potentials with outer automorphisms.

Let us comment on the applicability of our method to obtain the VEVs of other potentials. It is 
clear that VEVs of any potential with a discrete symmetry or a discrete outer automorphism are 
solutions to consistency equations analogous to (7.8). The explicit equations can, as in our case, 
be derived directly from the underlying symmetry group and the available outer automorphism 
transformations, where the latter depends on the representation content of a model as described 
in Section 3. We have checked and confirmed that our method also enables us to find the VEVs of 
other potentials such as the pure �(27) potential without any other symmetries, which contains 
an additional cubic contraction of the triplets. Applying our method to the 3HDM potential with 
A4 symmetry [4,20] which allows for a Z2 outer automorphism, only rough bounds on the form 
of the VEVs can be obtained. If the outer automorphism group is trivial, as for instance in the 
3HDM with S4 symmetry, our method does not provide us with new constraints on the VEVs.

Since one of our motivations for this work was to study the origin of geometrical CP viola-
tion let us also comment on this. In the case of our example, the calculability of the direction 
and phases of the VEVs is clearly attributed to the fact that the potential chooses the highest 
symmetric point not only with respect to the symmetry group but also with respect to the outer 
automorphism group. Even though we are not able to give sufficient conditions for the appear-
ance of geometrical CP violation in general, in our perception two conditions are necessary for 
the appearance of calculable phases. Firstly, it seems necessary that the VEVs depend only on a 
small number of parameters, which is equivalent to M in Eq. (7.9) having close to maximal rank. 
In this way it is guaranteed that we can bring any VEV to the form (v, 0, 0) by a (Higgs-)basis 
rotation that is independent of the couplings. Secondly, in this new basis, there needs to be a CP 
transformation with fixed complex phases which is broken by this VEV. Both of these condi-
tions favor a large outer automorphism group. Furthermore, the appearance of complex entries 
in the representation matrices of outer automorphisms is deeply related to the complexity of 
the Clebsch–Gordan coefficients of a group such that this consideration favors type I groups, 
according to the classification of [17].

8. Summary and conclusions

We have shown that outer automorphisms of the symmetry group of a model are relevant also 
beyond the usually considered C and P transformations. For a given model, only those outer 
automorphisms are possible which leave invariant the set of all present representations. We have 
termed those transformations equivalence transformations. All other outer automorphisms are 
broken explicitly and maximally. As subsets, equivalence transformations contain C, P, or CP 
transformations and, as the trivial case, also symmetry transformations.

We have shown that the effect of non-trivial equivalence transformations on a theory is to map 
couplings to different values, i.e. the theory to a different point in the parameter space. This may, 
for example, manifest itself as a permutation of couplings. Moreover, it implies that the accord-
ing field redefinitions have the same effect as a shift of the couplings. Because field redefinitions 
cannot matter physically we see that the respective transformations of the couplings cannot mat-
ter physically. For the complete discussion of the physical phenomenology of a model it is, thus, 
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sufficient to consider only a restricted region of the parameter space which is related to the com-
plete parameter space by equivalence transformations. Stated in other terms, the possibility of 
equivalence transformations signals physical degeneracies in the parameter space of a theory.

Moreover, we have shown that stationary points always transform in certain representations of 
the group of equivalence transformations. Thus, given a stationary point one may employ outer 
automorphism transformations to obtain others. Exploiting this further, we were able to derive 
a set of homogeneous linear equations which constrain the phases and directions of stationary 
points. Curiously, for all examples that we have investigated, we find that stationary points either 
are invariant or transform in the same representation as the couplings themselves. We conjecture 
that this might be true in general. Proven true, this could explain why minima of potentials often 
are located at symmetry enhanced points. In this respect, we think that a deeper investigation of 
the subject from a more mathematical point of view would certainly be worthwhile.

For the three Higgs doublet model with �(27) symmetry we have derived the complete group 
of equivalence transformations and explicitly confirmed that for a suitable choice of parameters 
CP is spontaneously violated by the VEVs of the Higgs fields. The parameter independent di-
rections and relative phases of the VEVs can be understood to originate from two facts. Firstly, 
the homogeneous linear equations derived from the symmetry group and representation content 
of the potential are so restrictive on the most symmetric VEV candidates as to completely fix 
their direction and relative phases. Secondly, the potential realizes precisely those, most sym-
metric VEVs. We have found that all stationary points which can be the global minimum of the 
potential are part of a quadruplet under the outer automorphism transformations. As such, all 
possible VEVs conserve isomorphic subgroups of the symmetry group and of the group of outer 
automorphisms. To be clear, this implies that VEVs of the form v (1, 0, 0) are not distinguished 
in their phenomenology, e.g. concerning the geometrical violation of CP, from VEVs of the form 
v (ω, 1, 1). Their physical implications only become different if the equivalence transformations 
which relate them are prohibited explicitly. This can only happen if a sector with fields in addi-
tional representations, for example �(54) doublets, is included in the model.

Even though we are not able to formulate generally valid necessary and sufficient conditions, 
we argue that the appearance of geometrical CP is favored by groups with complex Clebsch–
Gordan coefficients and a large outer automorphism group.

Furthermore, we think that it would be interesting to explore the implications of equivalence 
transformations on the shape of the so-called “orbit space” [4,24] (not to be confused with the 
orbits used in Section 7) which has been used to minimize potentials in a geometrical way.

Finally, let us remark that our discussion is, in principle, not limited to discrete groups. As 
such it would certainly be worthwhile to investigate what other theories allow for non-trivial 
equivalence transformations.
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Appendix A. Group theory of ���(27) and ���(54)

In this appendix we gather the group theory relevant to the present work. Details on the group 
�(27) can be found in [17] from which we also adopt the notation and basis convention. �(27)

and �(54) are included in the catalogue of GAP [27] as SG(27, 3) and SG(54, 8), respectively.
A possible presentation for the group �(54) is given by the operations A, B, and C, where

A3 = B3 = C2 = (A B)3 = (A C)2 = (B C)2 = e . (A.1)

The conjugacy classes are given by

C1a : {e} ,

C3a : {A,A2,BAB2,B2AB,BA2B2,B2A2B} ,

C3b : {B,B2,ABA2,A2BA,AB2A2,A2B2A} ,

C3c : {AB2,A2B,BA2,B2A,ABA,BAB} ,

C3d : {AB,BA,A2B2,B2A2,AB2A,A2BA2} ,

C2a : {C,AC,A2C,BC,B2C,ABAC,BABC,A2BA2C,AB2AC} ,

C6a : {BAC,A2BC,AB2C,B2A2C,B2ABC,BA2B2C,ABA2C,A2B2AC,AB2ABAC} ,

C6b : {ABC,BA2C,B2AC,A2B2C,A2BAC,BAB2C,AB2A2C,B2A2BC,BA2BABC} ,

C3e : {AB2ABA} , C3f : {BA2BAB} . (A.2)

The non-trivial irreducible representations consist of the real representations 11 and 2i (with 1 ≤
i ≤ 4) and the complex representations 31 and 32 and their respective conjugates. The character 
table is given in Table A.1.

For the triplets 31,2 we use the representation matrices

A =
(0 1 0

0 0 1
1 0 0

)
, B =

(1 0 0
0 ω 0
0 0 ω2

)
, C = ±

(1 0 0
0 0 1
0 1 0

)
, (A.3)

and for 31,2 the respective complex conjugate matrices. We have checked explicitly that this is 
the correct form for C contrary to earlier statements in the literature.

The group �(27) is a normal subgroup of �(54) which can be obtained by dropping the 
generator C. The restriction of the conjugation map conj(C) from �(54) to �(27) leads to an 
outer automorphism of �(27), which acts as an exchange of all singlet representations with 
their respective complex conjugates.18 The real �(54)-doublets thus can be obtained from the 
pairs of mutually complex conjugate one-dimensional representations of �(27) as 21 = (11, 12), 
22 = (13, 16), 23 = (14, 18), and 24 = (15, 17). The triplet representation is sent to itself under 
the automorphism with a matrix representation of C acting on the triplet as C, given in (A.3). 
Therefore, all outer automorphisms of �(27) are also available at the level of �(54), where the 
ones related to C, however, are inner automorphisms and, therefore, automatically realized.

18 Since the Higgs potential (4.1) is built only out of contractions which are symmetric under this exchange, the sym-
metry of the Higgs potential is not �(27) but �(54).
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Table A.1
Character table of �(54). We define ω := e2π i/3. The conjugacy classes (c.c.) are labeled by the order of their elements 
and a letter. The second line gives the cardinality of the corresponding c.c. and the third line gives a representative of the 
c.c. in the presentation specified in the text.

�(54) C1a

1
e

C3a

6
A

C3b

6
B

C3c

6
ABA

C3d

6
AB

C2a

9
C

C6a

9
ABC

C6b

9 
BAC

C3e

1
AB2ABA

C3f

1
BA2BAB

10 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 −1 −1 −1 1 1
21 2 2 −1 −1 −1 0 0 0 2 2
22 2 −1 2 −1 −1 0 0 0 2 2
23 2 −1 −1 2 −1 0 0 0 2 2
24 2 −1 −1 −1 2 0 0 0 2 2
31 3 0 0 0 0 1 ω2 ω 3ω 3ω2

31 3 0 0 0 0 1 ω ω2 3ω2 3ω

32 3 0 0 0 0 −1 −ω2 −ω 3ω 3ω2

32 3 0 0 0 0 −1 −ω −ω2 3ω2 3ω

The Clebsch–Gordan coefficients of �(54) relevant to this work are given by(
x2i

⊗ y2i

)
10

= 1√
2

(x1 y2 + x2 y1) ,(
x3i

⊗ y3i

)
10

= 1√
3

(x1 y1 + x2 y2 + x3 y3) ,(
x3i

⊗ y3i

)
21

= 1√
3

(
x1 y2 + x3 y1 + x2 y3
x2 y1 + x1 y3 + x3 y2

)
,(

x3i
⊗ y3i

)
22

= 1√
3

(
x1 y1 + ωx2 y2 + ω2 x3 y3
x1 y1 + ω2 x2 y2 + ωx3 y3

)
,(

x3i
⊗ y3i

)
23

= 1√
3

(
x2 y3 + ωx3 y1 + ω2 x1 y2
ωx2 y1 + x3 y2 + ω2 x1 y3

)
,(

x3i
⊗ y3i

)
24

= 1√
3

(
ω2 x2 y1 + x3 y2 + ωx1 y3
x2 y3 + ω2 x3 y1 + ωx1 y2

)
. (A.4)

CGs for other contractions can be found in [32], but one should be aware of the fact that we use a 
different labeling for the representations. As one can check by computing the twisted Frobenius–
Schur indicators for all automorphisms, �(54) is of type I according to the classification of [17].

Appendix B. Minimization of the potential

We want to give details of the traditional minimization procedure of the Higgs potential in 
this appendix. In order to have a potential which is bounded below the parameters have to satisfy 
the conditions

0 < λ1 and 0 < λ1 + λ23 + 2λ4 cos
[
2π/3 + (� mod 2π/3)

]
, (B.1)

where λ23 := λ2 + λ3. The VEVs are solutions to

0
!= ∂ V

∂|H |
∣∣∣∣ and 0

!= ∂ V

∂ϕ

∣∣∣∣ , (B.2)

i Hi=〈Hi 〉 i Hi=〈Hi 〉
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where we assume that parameters are such that the (electric) charge is conserved and parametrize 
the VEVs as in (2.2). This will be justified a posteriori, cf. Appendix B.1. Among the solutions 
to (B.2) there are all types of stationary points and the true global minima have been identified 
by explicitly computing the value of the potential at the stationary points, as outline below.

Let us first focus on the magnitude of the stationary points. Defining

θi := −2ϕi + ϕj + ϕk + � , for i �= j �= k �= i = 1,2,3 , (B.3)

the first condition of (B.2) leads to

0
!= −m2 v1 + 2λ1v1

3 + λ23v1

(
v2

2 + v3
2
)

+ λ4 v2 v3
[
2v1 cos θ1 + v2 cos θ2 + v3 cos θ3

]
, (B.4)

and two more equations obtained by cyclic permutation of the indices of vi and θi . In order to 
determine vi we have to solve this system of three coupled cubic equations. There are at most 
27 real solutions for |〈H 〉| = (v1, v2, v3). Because the equations have the permutation symmetry 
stated above, also the possible solutions will obey this symmetry and we only have to investigate 
a substantially smaller set of solutions. Also, one should keep in mind that we are interested only 
in real and positive solutions.

The solutions split in four categories. The trivial solution |〈H 〉| = h(0) := (0, 0, 0) is always a 
local maximum of the potential. Furthermore, there are 6 (= 3 permutations × 2 possible signs) 
solutions of the type h(1) := (v(1), 0, 0), 3 × 22 = 12 solutions of the type h(2) := (v(2), v(2), 0)

and 1 × 23 solutions of the type h(3) := (v(3), v(3), v(3)). All these possibilities, if simply im-
posed as an Ansatz, can be shown to be solutions to the extremization condition. Since all the 
possibilities sum up to 27, we can be sure that no solutions have been missed.

The respective magnitudes of the solutions are given by

v(1) =
√

m2

2λ1
, v(2) =

√
m2

2λ1 + λ23
, and

v(3) =
√

m2

2

[
λ1 + λ23 + 2λ4 cos θ1

]−1/2
. (B.5)

The dependence on one particular θi in the last relation should not lead to confusion. We will 
show below that in case of h(3) the phase dependent potential warrants that θ1 = θ2 = θ3 =[
2π/3 + (� mod 2π/3)

]
at the stationary point.

In the case of h(2), one of Eq. (B.4) gives a condition on the possible phases of the VEV, 
constraining the relative phase between the two entries to be ±π/3 or π .

Let us now investigate the stationary points of the phase dependent potential VI . The second 
condition of (B.2) leads to

0
!= λ4 v1 v2 v3

[
2v1 sin θ1 − v2 sin θ2 − v3 sin θ3

]
, (B.6)

and two more equations which are again obtained by cyclic permutation of the indices of vi

and θi . Obviously, for the stationary points of the form h(1) and h(2) all three equations are 
trivial and hence there is no constraint on the possible phases from (B.6).

In contrast to that, we will see that in the case of h(3) possible (relative) phases of the VEVs 
will be fixed to discrete values. In order to investigate this case, we take v1 = v2 = v3 and there-
fore obtain from (B.4) and (B.6) the relations
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Table B.1
List of stationary points of the phase dependent potential VI (ϕi , �) in dependence of ϕ1 and ϕ2 relative to ϕ3. The third 
column gives the multiplicity of the stationary point (for permutations of the value of ϕ1 and ϕ2). In the fourth, fifth, 
and sixth column we list the value of θ1 = θ2 = θ3 at the stationary point, the corresponding value of the potential, as 
well as an example for the phases of the complete Higgs triplet VEV, respectively. The last column gives the region in 
�-parameter space in which the stationary points of the respective type are the global minima of the potential (cf. Fig. 1).

(ϕ1, ϕ2) # θi=1,2,3 VI (�)/v(3)4 〈H 〉/v(3) Global min. for

Type I (0,0) 1 � ∝ cos� (1,1,1)T 2π
3 ≤ � ≤ 4π

3(
2π
3 , 4π

3

)
2

Type II
(

0, 2π
3

)
2 2π

3 + � ∝ cos
(

2π
3 + �

)
(ω,1,1)T 0 ≤ � ≤ 2π

3(
4π
3 , 4π

3

)
1

Type III
(

0, 4π
3

)
2 4π

3 + � ∝ cos
(

4π
3 + �

)
(ω2,1,1)T 4π

3 ≤ � ≤ 2π(
2π
3 , 2π

3

)
1

cos θ1 = cos θ2 = cos θ3 and sin θ1 = sin θ2 = sin θ3 , (B.7)

which imply that θ1 = θ2 = θ3. To obtain the respective values for the ϕi it is convenient to fix 
ϕ3 = 0. This is always possible since the phases ϕi are meaningful only relative to each other 
because an overall global phase of 〈H 〉 can always be removed by a global hypercharge rotation. 
Doing this, we obtain the relation

ϕ1 = ϕ2 = 0 mod 2π/3 . (B.8)

This implies that here are nine possible combinations of discrete phases each corresponding to 
one stationary point. In Table B.1 we list all the possibilities for ϕi , the corresponding value of θi

and the value of the potential at the stationary point. Which stationary point is a global minimum 
critically depends on the value of � as also depicted in Fig. 1.

We find that the nine stationary points may be classified into three types I, II, and III. Depend-
ing on the value of � the potential can have exactly six energy-degenerate global minima which 
are of types I and II (� = 2π/3), types I and III (� = 4π/3), or types II and III (� = 0). For all 
other values of �, there are exactly three energy-degenerate minima of the same type, where the 
type is determined by the tertial in which � lies. The stationary points of each type are physically 
equivalent because they are part of the same group orbit.

From the preceding discussion it follows that at the minimum of the potential we can always 
write

θi = 2π/3 + (� mod 2π/3) . (B.9)

Using this in Eq. (B.5) and comparing the value of the overall potential at the stationary points 
we find that in case

2λ1 > λ23 + 2λ4 cos
[
2π/3 + (� mod 2π/3)

]
, (B.10)

the global minima of the potential is given by VEVs of the form h(3) with possible phases de-
termined by the value of �. If (B.10) is violated, the global minima will be of the form h(1). 
The stationary points h(2) will never be global minima of the potential, even though in the case 
λ4 �= 0 they can be local ones.
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A comment is in order regarding the two different parameterizations used in this work. Using 
(4.2) one can show with some trigonometry that the conditions (B.1) coincide with

0 < a0 + a� , for � = 1, . . . ,4 , (B.11)

which one would obtain from (7.12). The same is true for the magnitude of the stationary points, 
Eqs. (B.5) and (7.12) or (7.15), respectively.

B.1. Charge-breaking and charge-conserving vacua

Unlike in the case of models with one or two Higgs doublets, where an existing charge-
conserving vacuum is automatically also the global minimum of the potential [33,34], in a three 
Higgs doublet model it has to be checked explicitly whether the global minimum of the potential 
is really charge-conserving [35].

In case of a type IV global minimum, only one of the doublets acquires a VEV and, hence, 
it is always possible to show that there cannot be any lower-lying charge breaking global mini-
mum [35]. The fact that VEVs of types I–III are, at the level of the potential, equivalent to the 
VEV of type IV implies that any of the VEVs can be brought to the form IV by an appropriate 
basis rotation. Again following the argumentation of [35], this shows that also global minima of 
the types I–III are charge conserving.

Appendix C. Proof of Eq. (6.1)

Let us assume that the potential V (H, α) has a stationary point φ(α) := 〈H 〉, that is

∂ V (H,α)

∂ Hi

∣∣∣∣
H=φ(α)

= ∂ V (H,α)

∂ H ∗
i

∣∣∣∣
H=φ(α)

= 0 ∀ i . (C.1)

Also, we assume that the potential allows for equivalence transformations, i.e. it fulfills the rela-
tion

V (H ′, α) = V (H,α′) , (C.2)

where we denote by α′ the transformed parameters, and by H ′ = UH or H ′ = UH ∗, depending 
on the case at hand, the equivalence transformed fields. In order to prove (6.1), we have to show 
that

∂ V (H,α)

∂ Hi

∣∣∣∣
H=U φ(α′)

= ∂ V (H,α)

∂ H ∗
i

∣∣∣∣
H=U φ(α′)

= 0 ∀ i (C.3)

or

∂ V (H,α)

∂ Hi

∣∣∣∣
H=U (φ(α′))∗

= ∂ V (H,α)

∂ H ∗
i

∣∣∣∣
H=U (φ(α′))∗

= 0 ∀ i , (C.4)

respectively.
Let first H ′ = UH . Then

0
(C.1)= ∂ V (H,α′)

∂ Hi

∣∣∣∣
H=φ(α′)

(C.2)= ∂ V (UH,α)

∂ Hi

∣∣∣∣
H=φ(α′)

= ∂ V (H,α)

∂ Hj

∣∣∣∣ ′
· Uji , (C.5)
H=U φ(α )
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where the last equality follows from the chain rule. Together with the analogous equation for the 
derivative with respect to the conjugate field, and by noting that U is invertible, this proves the 
assertion for the first case.

The second case is only slightly more involved because one has to take care of the complex 
conjugation. Let now H ′ = UH ∗. Then

0
(C.1)= ∂ V (H,α′)

∂ Hi

∣∣∣∣
H=φ(α′)

(C.2)= ∂ V (UH ∗, α)

∂ Hi

∣∣∣∣
H=φ(α′)

= ∂ V (H,α)

∂ Hj

∣∣∣∣
H=U (φ(α′))∗

· 0 + ∂ V (H,α)

∂ H ∗
j

∣∣∣∣∣
H=U (φ(α′))∗

· U∗
ji , (C.6)

where the last equality follows from the chain rule (for complex derivatives). Together with the 
analogous equation for the derivative with respect to the conjugate field, and by noting that U∗
is invertible, this proves the assertion for the second case.

Appendix D. Permutation representations

Let E be a group with subgroup Eφ . Let the group act via left-multiplication on the coset 
E/Eφ . This defines a permutation representation. The explicit permutation matrix (�P)−1 of a 
group element P ∈ E in this representation can be computed with the following GAP [27] code:

action:=ActionHomomorphism(E,RightCosets(E,E_phi),OnRight);;
Pi_P_inverse:=Image(action,P);

Using this, the minimal generating set of the permutation representation 721 (in cycles) is given 
by

(�
721
P )−1 := (2,9,5)(4,13,33)(6,17,14)(7,19,15)(8,22,47)(10,26,24)(11,28,53)

(12,31,55)(16,38,58)(18,40,59)(20,42,60)(21,44,62)(23,46,65)

(25,49,66)(27,51,67)(29,45,64)(30,54,69)(32,57,35)(37,52,68)

(43,61,71)(48,56,70)(50,63,72) ,

(�
721
Q )−1 := (1,59,8,56,26,72,37,44)(2,33,18,63,36,68,30,46)

(3,60,25,38,9,64,35,61)(4,42,19,70,11,40,17,58)

(5,62,12,28,41,67,48,22)(6,65,29,52,7,69,50,32)

(10,53,20,45,34,57,23,54)(13,39,55,16,49,24,71,27)

(14,47,21,51,15,66,43,31) . (D.1)

The minimal generating set of the permutation representation 722 is given by

(�
722
P )−1 := (2,9,5)(4,13,33)(6,17,14)(7,19,15)(8,22,47)(10,26,24)(11,28,54)

(12,31,55)(16,38,58)(18,40,59)(20,42,60)(21,44,63)(23,48,66)

(25,50,67)(27,52,68)(29,45,64)(30,46,65)(32,57,35)(37,53,69)

(43,61,71)(49,56,70)(51,62,72) ,
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(�
722
Q )−1 := (1,58,29,53,23,54,42,18)(2,63,22,55,33,62,31,26)

(3,47,17,52,4,71,37,49)(5,60,21,68,24,38,27,61)

(6,56,13,57,15,64,48,41)(7,59,30,36,8,72,35,32)

(9,50,12,70,34,46,20,51)(10,40,25,44,14,67,45,43)

(11,66,19,65,28,69,16,39) . (D.2)

The minimal generating set of the permutation representation 27 is given by

(�27
P )−1 := (1,4,12)(2,8,20)(3,9,21)(5,15,24)(6,16,11)

(7,17,19)(10,23,25)(13,27,14)(18,22,26) ,

(�27
Q )−1 := (1,8,25,24,14,27,26,13)(2,22,15,9,11,19,16,4)

(3,10,21,12,20,17,5,6)(18,23) . (D.3)
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