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Abstract— In order to achieve fully autonomous humanoid
navigation, environment perception must be both fast enough
for real-time planning in dynamic environments and robust
against previously unknown scenarios. We present an open
source, flexible and efficient vision system that represents dy-
namic environments using simple geometries. Based only on on-
board sensing and 3D point cloud processing, it approximates
objects using swept-sphere-volumes while the robot is moving. It
does not rely on color or any previous models or information.
We demonstrate the viability of our approach by testing it
on our human-sized biped robot Lola, which is able to avoid
moving obstacles in real-time while walking at a set speed of
0.4m/s and performing whole-body collision avoidance.

I. INTRODUCTION

One of the main incentives behind the development of
humanoid robots is the natural advantage of these machines
over wheeled platforms in uneven terrain. Having a machine
that can walk autonomously in a cluttered environment
becomes even more important in hazardous areas (e.g. a
nuclear power plant after an accident) that were designed
for humans but cannot be accessed by them.
One of the challenges to achieve real autonomy in unknown
dynamic scenarios is to recognize and model the environment
in a certain way that the robot can adapt its movements in
real-time. Stereo-solving algorithms and 3D computer vision
methods are usually computationally very expensive (see
[1]), which complicates the application on mobile robots
due to the dynamics of these fast machines. In recent
years small and inexpensive RGB-D sensors, which provide
direct 3D information, became available (notably the systems
developed by PrimeSense, e.g. Kinect [2]). Although not
exempt from certain flaws (e.g. a low precision and poor
outdoors performance [3]), they facilitate the implementation
of complex navigation tasks.
Our work focuses on the autonomous real-time navigation
of biped robots in unknown environments. As a step towards
that goal, we present an approach for 3D object recognition
and modelling that is both efficient enough to work in real-
time during walking and sufficiently detailed for complex
obstacle avoidance strategies (walking speed is set at 0.4m/s,
which is relatively fast for a biped robot). It is based only
on on-board sensing, providing a high degree of autonomy.
Our system allows our full-sized humanoid robot Lola to
avoid previously unknown dynamic obstacles during walk-
ing, using a standard RGB-D sensor. Our obstacle avoidance
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strategy was initially presented in [4], where obstacle approx-
imations were manually sent to the system and no perception
was involved. It was extended in [5] to use a more general
A*-based solution in a framework that admits perception
information. It made use of a simple vision system based
on height-maps, which was not presented. In this work we
present a new, more complex vision system which admits a
full 3D representation of the environment, generates better
and more complex approximations and can track moving
objects. It is integrated with our planning system [5] to
autonomously navigate in cluttered, dynamic scenarios. Its
main characteristics are:
• Based on point cloud processing, easily adaptable to

other sensors and even other robots.
• No external sensors. All sensing and processing is

performed on-board.
• No reliance on identifiers such as color, form or texture.
• Objects are approximated using simple geometries for

fast distance calculation.
• Highly efficient. Can be used in real-time applications

(each frame is processed in 20-120ms).
• Tracks moving objects.
• Designed to operate while the robot is moving. It

enables Lola to perceive, model and avoid unknown
objects during continuous walking.

• Open source1.
This paper is organized as follows: in sec. II we give
an overview of related work. In sec. III we present our
humanoid robot Lola and hardware. Our vision system is
presented in detail in sec. IV, while in sec. V we briefly
describe our control system and our motion planning and
collision avoidance system. Sec. VI includes our results and
experimental validation of our system. The conclusion and
outline of future work is presented in sec. VII.

II. RELATED WORK

In this section we review related work on the
approximation of obstacles for biped navigation. As
we assume no information about the environment, we do
not focus on work based on techniques which involve some
kind of learning or previous assumptions about the objects.
One of the most common environment modelling strategies
for autonomous navigation consists of a two-dimensional
height-map or 2.5D map, as introduced by Movarec [6].

1Published under the terms of the MIT License, see https://
opensource.org/licenses/MIT



This compact representation of a non-horizontal terrain is
computationally very efficient, therefore it was used in most
early works on autonomous navigation, as well as in our
previous implementation [5].
In 2003 Kagami et al. [7] used stereo cameras to create
a height-map of the terrain, from which they could also
extract walkable planar surfaces. Assuming a sufficiently
structured environment, their H7 robot was able to plan
and navigate collision-free trajectories. In 2004 Cupec and
Schmidt [8] used a 2D classification of the environment to
allow the robot Johnnie to walk on different surfaces and
over obstacles, which had previously defined geometries.
Gutmann et al. [9], [10] used a combination between a
3D occupancy grid and height-map to navigate between
obstacles and climb stairs with Sony’s QRIO robot. The
vision system, based on stereo cameras, classified the
environment into obstacles and walkable surfaces but relied
on textured surfaces and assumed quasi-static obstacles.
In one of the few works dealing with dynamic environments,
Chestnutt et al. [11] managed to navigate between previously
known, moving obstacles. In [12] they used a height-map
representation of a previously unknown environment using
an on-board laser scanner. By extracting planes and labeling
other regions as obstacles their biped robot was able to
walk over obstacles and onto platforms. The pivoting
laser scanner on the waist provided very accurate distance
information but could not be easily applied in dynamic
environments as it had a scanning time of 1s [13]. More
recently, Maier et al. [14], [15] used first an RGB-D sensor
and then a laser range finder to create a 3D representation
of the environment using octrees, which was classified
according to texture and color information for collision-free
navigation.
The representation of the environment via height-maps has
certain limitations, and prevents the exploitation of the
robot’s capabilities in complex environments. In all works
mentioned above the obstacles are either approximated using
certain assumptions and previously known information or
simply represented by a grid-based map. This results
in numerous distance calculations, which complicates
online collision checking if the robot moves relatively
fast. Therefore they only avoid collisions by checking safe
footstep positions and without taking the whole body motion
into account.
A different approach was taken by Buschmann et al. [16],
who used a stereo camera to test proposed trajectories for
viability in unknown environments checking collisions in
2D. The method allowed fast movements and collision-free
trajectories in non-static environments, but prevented
stepping over obstacles.
In the recent DARPA Robotics Challenge2, different robots
tried to solve tasks inspired by a nuclear plant disaster.
The completion of the tasks, however, relied strongly on
teleoperation. To the author’s knowledge, none of the

2The DARPA Robotics Challenge (DRC): http://www.
theroboticschallenge.org/

x y

z

Joint DoF
Head 2
Shoulder 2
Elbow 1
Pelvis 2
Hip 3
Knee 1
Ankle 2
Toe 1
Total 24

Fig. 1. Photo and kinematic structure of the humanoid robot Lola with the
RGB-D sensor mounted on top. The right side shows the joint distribution
and the used world coordinate system.

participating teams performed completely autonomous
environment modeling and obstacle avoidance.
In contrast to the methods presented above, we propose
a strategy for the efficient detection and representation
of obstacles which greatly reduces the cost of collision
checks and doesn’t depend on any previous information
or identifiers. Instead of using a reduced, height-map
representation of the environment we perform direct
3D point cloud processing, which is computationally more
challenging but allows for more complex scenarios. By using
the same representation for the environment and the robot,
we are able to perform autonomous whole-body collision
avoidance online during walking. A full 3D representation
of the environment allows for complex obstacle avoidance
3D motions like stepping over or swinging sideways (see
[4]). Additionally, this representation does not assume
a static environment and our robot is able to step over
previously unknown moving obstacles.
In a related subject, different approaches have been taken
for autonomous navigation of vehicles, where conditions
and collision avoidance strategies greatly differ from the
ones considered here. A thorough review of the subject is
outside the scope of this paper and most results belong
to private companies and are not openly published. Still,
some examples show the detection and tracking of dynamic
objects (see [17], [18]), but are usually based on learned
features of the environment and determined kinds of objects
(e.g. cars or pedestrians), which are approximated with
simple bounding boxes. These methods are not adequate for
our application due to the complex motions of humanoid
robots.

III. HUMANOID ROBOT LOLA

The presented vision system has been tested on the robot
Lola. It is an electrically actuated humanoid robot which
weights approximately 60 kg and is 180 cm tall. Lola has 24
position controlled joints. The left hand side of Fig.1 shows
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Fig. 2. Structure of our Vision System. Operations inside the blue area
are performed independently for every frame.

a photo of Lola and the right hand side of Fig.1 gives a
detailed view of the kinematic configuration. A more precise
introduction to the hardware can be found in [19]. Located on
Lola’s head, our RGB-D sensor Asus Xtion PRO LIVE3 can
be seen. It was calibrated using a simplified method based
on the works of [20], [21] (a detailed description is outside
the scope of this paper). The vision system runs on a parallel
on–board computer with an Intel Core i7-4770S@3.1 GHz
(4x) processor and 8GB RAM and communicates with our
control computer via Ethernet using UDP.

IV. VISION SYSTEM

Our Vision System is based mainly on the open source
Point Cloud Library (PCL4). For further information about
its basic principles and algorithms, see [22], [23].
As explained before, the vision system runs parallel to the
main control on our robot’s on-board computer. It constantly
receives updated kinematic data from the walking control
system and sends back updated obstacle information. In Fig.
2 the main structure is shown.
Our program is not based on any kind of environment map.

Instead, at each cycle, it takes the latest frame from the
sensor and the kinematic information as input to create a
homogeneous point cloud (PC). This PC is then segmented
to extract objects from the environment. Each of these objects
(or sub-PCs) is approximated by one or more swept-sphere-
volumes (SSVs) (in order to have an accurate approximation
of complex objects, their corresponding PCs are split into
more sub-PCs). These geometries, previously introduced for
self-collision avoidance [24], have the main advantage of
making distance calculations simple and efficient. By using
the same representation for the robot and the environment
we can integrate both self-collision and obstacle avoidance in
one module running in real-time. It enables a more complex

3See https://www.asus.com/de/Multimedia/Xtion_PRO_
LIVE/

4See http://pointclouds.org/

Fig. 3. Geometries used by the vision system for the approximation of
objects: point-SSVs (left) and line-SSVs (right)

representation of the environment than height maps which
is used for real-time 3D collision avoidance (see [4]). The
environment is approximated using point- and line- SSVs,
which can be seen in Fig.3. In this paper we don’t take
into account planar surfaces as ramps or stairs where the
robot could step on, but avoid collision with every detected
object. We are already working on an extension to include
these cases as well and perform more complex navigation
strategies.
The Approximation procedure consists of the Identification,

Splitting and Fitting steps and creates a list of SSVs which
is matched to a pool of previously detected objects. In the
following, each of these steps is explained in detail.

A. Pre-Processing

On the walking control system we run a service that
continuously updates the kinematics transformation from the
camera to a reference world coordinate system (W ), fixed
to the ground at the starting position of the robot. By
transforming the incoming point cloud (PC) from the camera
coordinate system into W , we can successfully track objects
despite the robot’s motion. It is worth noting that this is not
intended as a SLAM strategy, as we don’t update a map
of the environment but always analyze each incoming PC
separately. W will be affected by inaccuracies in the robot’s
motion (e.g. sliding on the ground) and will change slowly
with time, but that is not relevant for our application as W
is only used to match objects between consecutive frames
(see IV-F). As the point cloud is obtained with the on-board
camera, updated obstacle locations are always correct with
respect to the robot, regardless of W .
We also apply a simple voxelization of the PC into a 3D grid
with 1cm size to have a homogeneous PC in the following
steps. Note also that this is the only process that depends on
our particular robot and sensor, and it can be easily adapted
to other systems just by keeping a similar coordinate system
and density.

B. Segmentation

Several standard segmentation techniques were tested with
different scenarios and obstacles. In our implementation,
planes are removed using PCL’s Sample Consensus Segmen-
tation (based on RANSAC) and remaining PCs are clustered
using PCL’s Euclidean Cluster Extraction5. This proved to be
fast enough (see sec.VI) for our purposes and robust against

5See http://docs.pointclouds.org/



different scenarios. Other algorithms tested (i.e. Depth-map-
based, Normal-based, Global-plane) were either slower or
failed to extract some of the objects tested.

C. Identification

Obstacles are approximated with one or more point- or
line-SSVs in order to ensure efficiency in distance calcula-
tions [24]. This approach does not create the best possible
approximation but one that runs in real-time during walking
while being safe and detailed enough.
In the Identification step, each incoming PC is analyzed to
determine if it will be approximated by a single SSV (and in
that case, by which), or if and where it is necessary to split
it into smaller PCs which will be analyzed in turn. Naturally,
the splitting process usually generates better approximations
but at an additional computational cost. In our procedure, a
PC is split unless it meets one of the following conditions
(cond.):

1) It “resembles” a perfect point-SSV.
2) It “resembles” a perfect line-SSV.
3) The distance to the robot is bigger than a certain

threshold dmin.
4) Its volume is smaller than a certain threshold Vmin.
5) It is the result of a certain number of “splitting steps”

nsteps.
These conditions have the purpose of using more detailed
representations of obstacles only when they are needed.
They keep the necessary number of SSVs to represent the
environment at a minimum, thus reducing the computational
cost of the step-planner and collision avoidance modules.
This hierarchical strategy only improves the approximation
of objects that are relevant to the robot’s navigation. Objects
that resemble ideal geometries don’t need a more detailed
approximation. In fact, in these cases the splitting operation
can be counterproductive, as shown in Fig.4. Objects that
are too far away don’t have a big influence in the planning
and with objects that are too small compared to our robot
a detailed approximation is irrelevant. Cond. 5 limits the
number of splitting steps (therefore the total cycle time).
If the PC meets one of these conditions it is sent to the Fitting
step to be approximated by a line-SSV in case of cond. 2 or
by a point-SSV in every other case, because of the smaller
computational cost.
For cond. 1 and 2 we use invariants similar to those used by
Ditrich et al. to fit PCs using prisms or superellipsoids [25],
[26]. Our heuristic approach is based on the inertia matrix of
the incoming PC I(PCi). Let Imax, Imid , Imin be the eigenvalues
of I(PCi) | Imax ≥ Imid ≥ Imin (principal moments of inertia).
The quotients ξ1 =

Imin
Imax

and ξ2 =
Imid
Imax

are invariants, as they
don’t depend on the scale of PCi. If we consider ideal PCs
of our geometric approximations:
• A point-SSV has ξ1 = ξ2 = 1
• A line-SSV has ξ1 < ξ2 = 1

In our application, however, PCs are noisy, hollow and
incomplete as we have only one sensor. Our final cond. 1
and 2 differ from the ideal ones as they were established

Fig. 4. Approximation of point clouds. From left to right: a picture of
the object, the point cloud (black) and SSV approximation (pink) without
splitting, after 1 splitting step, after 2 splitting steps. In the second example,
it can be seen that the splitting operation can result in worse approximations
for some objects.

empirically by testing several objects and adjusting the range
values of ξ1 and ξ2 (see sec.VI).
The distance of the PC to the robot in cond. 3 is estimated
as the projected ground distance between the PC’s centroid
and the origin of the robot’s local coordinate system, located
at the “toe” of the current stance foot. The PC’s volume in
cond. 4 is estimated as the volume of the PC’s bounding
box in W . Our final values for all condition parameters are
shown in sec.VI.

D. Splitting

We split PCi using a plane ψ that goes through the PC’s
centroid (or center of mass) p(PCi). Thus, each of the resulting
sub-PCs PCi1 and PCi2 will have approximately the same
number of points. In order to choose ψ it is useful to look
at the following example:
Let PCs be a PC point symmetric to p, i.e. ∀ point pn ∈ PCs
∃ pm ∈ PCs | (

pn− p(PCs)
)
=−

(
pm− p(PCs)

)
(1)

We define the coordinate system S (x,y,z) coincident with
the eigenvectors of I(PCs) (principal axes of inertia) and its
origin in p(PCs). If we choose ψ as the x− y plane we can
split PCs into two identical sub-PCs PCs1 and PCs2 (if there
were any points ∈ψ we don’t take them into account). PCs1
and PCs2 are symmetrical with respect to the planes x− z
and y− z, so their principal axes of inertia are parallel to the
axes of S (x,y,z). Applying Steiner’s Parallel Axis Theorem,

I(PCs)
i j = 2

[
I(

PCs1)
i j +m(PCs1)

(
∑
k

a2
kδi j−aia j

)]
(2)

where

• I(PCx)
i j is the point cloud’s PCx inertia tensor

• i, j,k ∈ {1,2,3}
• m(PCs1) is the number of points (mass) of PCs1
• δi j is the Kronecker-delta
• The vector a = (a1,a2,a3)

ᵀ = p(PCs)− p(PCs1)



Because of our choice of ψ , a1 = a2 = 0.

∴ I(
PCs1)

i j =


1
2

(
I(PCs)
i j −m(PCs)a2

z

)
: i = j = 1,2

1
2

(
I(PCs)
i j

)
: i = j = 3

0 : i 6= j

(3)

If we suppose that PCs doesn’t resemble a point- or line-SSV
and the corresponding axes to Imax, Imid , Imin are the same
for PCs1 as for PCs, we obtain the relationships shown in
Table I. Out of these relationships we can conclude that, in

TABLE I
CHOOSING THE SPLITTING PLANE

z corresponds to Imin z corresponds to Imid

ξ
(PCs1 )
1 > ξ

(PCs)
1 ξ

(PCs1 )
1 < ξ

(PCs)
1

ξ
(PCs1 )
2 < ξ

(PCs)
2 ξ

(PCs1 )
2 > ξ

(PCs)
2

this example, splitting a PC through a plane perpendicular
to the axis corresponding to Imin or Imid results in sub-PCs
having a closer resemblance to point-SSVs or line-SSVs
respectively. That means, these splitting strategies would
favor reaching cond. 1 or 2 respectively. Although PCs are
rarely symmetrical, experiments with several objects and
scenarios showed a similar trend. Regardless of the chosen
strategy, a safe approximation is assured later by the Fitting
step.

E. Fitting

In this step we fit the corresponding SSV to each incoming
point cloud PCi based on its inertial parameters. We cover
the potential collision region by including all points in the
SSV. This is especially relevant as it guarantees a safe
approximation, regardless of the identification and splitting
parameters.

1) Fitting a point-SSV with center o and radius r:

o = p(PCi) (4)

r = max
(∣∣∣p− p(PCi)

∣∣∣) (5)

2) Fitting a line-SSV with centers o1 and o2 and radius r:

o1 = p(PCi)+λ1w (6)

o2 = p(PCi)+λ2w (7)

r = max
(∣∣∣(p− p(PCi)

)
×w

∣∣∣) (8)

where
• w is the directional vector of the principal axis of

inertia corresponding to Imin

• λ1 = max
((

p− p(PCi)
)
·w
)

• λ2 = min
((

p− p(PCi)
)
·w
)

• max and min functions are evaluated ∀point p ∈ PCi

F. Obstacle Updating

As stated before, objects are tracked and filtered before
being sent to the motion planning system. We create a
local pool of objects that not only helps reducing noise
and inaccuracies in the objects’ location, but also provides
coherent information to the step-planner by keeping track of
objects between frames. The pool (set old) comprises of the
following sub-sets:
• Phantom: Each detected object is first defined as phan-

tom. If a phantom object fails to be detected in a future
frame (before becoming real), it is removed from the
sub-set as it could be caused by noise.

• Real: If a phantom object has been detected more
than a certain number of cycles nocreal in a row, it
becomes real. These are sent to the motion planning
system, becoming the robot’s environment model. If a
real object hasn’t been seen for a number of cycles
nocdie it is removed from the whole set.

At each cycle, the detected set of objects new is matched
against the old set. Each object in the new set new [i] is
recognized as an old object old [k] if the distance between
them is minimal and smaller than a certain threshold εmax:

∀new [i] ∈ new, match(i) = k |{
dist (i,k) = min(dist (i, j)) ∀old [ j] ∈ old
dist (i,k)< εmax

(9)

where dist (i, j) =
∣∣∣p(new[i])− p(old[ j])

∣∣∣. This matching algo-
rithm results in an effective tracking of moving objects in
the scene. Note that, as W is “fixed” to the ground, objects
with a speed smaller than

vob j,max '
εmax

max
(
t f rame−acquisition, t f rame−processing

) (10)

will be successfully tracked, independently of the robot’s
motion.
The algorithm may, in theory, match two different objects (in
new) against the same object (in old), if both their distances
to the old object are smaller than εmax. This, however, is rare
in practice as εmax is chosen relatively small respect to the
object’s dimensions and they would have to overlap.
After matching, old objects are updated to the new ap-
proximation by low-pass filtering their coordinates. The
new approximation is displaced by the vector rdisp =

ρ

(
p(old[k])− p(new[i])

)
, with 0 ≤ ρ ≤ 1. This results in an

improved estimation of the object’s location and better results
from the real-time planning system. As a consequence,
vob j,max gets multiplied by (1−ρ) (by varying ρ , vob j,max
can be improved at the cost of lower precision). The main
objective of this post-processing step is to reduce noise and
compensate various sources of errors to get more stable
and accurate approximations. Thus, vob j,max is limited in our
implementation (see VI). In the future, we plan to integrate a
state estimator to filter both the object’s position and velocity
and handle faster moving objects.



Due to the limited bandwidth, every 3 cycles the Real sub-
set of objects is sent to the walking control system, updating
its environment model.

V. INTEGRATION IN WALKING CONTROLLER

The walking control system of the robot Lola follows
a hierarchical approach, which is outlined in Fig. 5. It is
presented in more detail in [27]. Once before each step
cycle a planning unit is called. It generates a desired walking
pattern based on joystick or GUI input, taking into account
an advanced three-mass-model. The desired walking pattern
is used as set-points for feedback control which is called in a
cycle time of ∆t = 2 ms. The feedback control stabilizes the
robot using a hybrid force/position control approach, which
modifies the ideal walking pattern. Joint trajectories are
calculated based on the modified walking pattern. It solves
the redundancy problem while tracking the robot’s center of
mass trajectory and while minimizing an optimization criteria
dedicated to self-collision-avoidance, joint-limit-avoidance
and angular-momentum-minimization [24], [28]. The key
idea for collision avoidance in real-time is the use of a
collision model based on SSVs representing the robot as well
as the environment throughout the walking controller. The
integration of collision avoidance in the walking controller
follows the hierarchical approach: A step-planner based
on an advanced A*–Algorithm reacts to high-level user
commands like desired velocity and direction within less
than a step. Instead of investigating only the footholds, an
articulated SSV-based 3D approximation of the lower leg and
the foot is considered to find feasible and optimal footstep
locations. Additionally, it provides an initial solution for
the swing-foot movement. It is denoted as Step planning
and trajectory adaptation in Fig.5. Based on the initial
solution the Trajectory optimization unit produces optimized
collision-free trajectories using a full-body collision model
of the robot. In the feedback control layer the Trajectory
optimization takes into account collisions as well as self-
collisions by optimizing all the foot’s degrees of freedom.
Details are presented in [4], [5].

VI. IMPLEMENTATION & RESULTS

In this section we present the details of our implementation
and some first experimental results on Lola. In future work,
after extending our system to include the detection and
handling of walkable surfaces, we plan to evaluate the
performance of the algorithm more thoroughly: against ideal
scenarios (using artificial point clouds), as well as in more
complex and varied experiments.

A. Parameter Definitions

The approximation parameters shown in Table II roughly
define the size of the approximation geometries and have
been adjusted based on Lola’s size and speed. They permit
adjusting the desired level of detail of the approximation
geometries (at worst, they could be chosen for a conservative
approximation of obstacles, which is safer for the robot’s
navigation). Additionally, the geometric invariants ξ1 and ξ2

Walking pattern generation

Trajectory optimization

Hybrid force/position control
& Inverse kinematic

Position controlled robot

Step planning and
trajectory adaptation

Vision system

Obstacle
approximation

Fig. 5. Integration of Vision System in Lola’s real-time walking control
system.

were analized for a series of objects resembling point- and
line-SSVs. They differ from the ideal values due to the point
clouds being hollow, incomplete and noisy. Based on results
of these PCs, we defined:
• cond.1 = (ξ1 > 0.8)∩ (ξ2 > 0.1)
• cond.2 = (ξ2 < 0.25)

For our splitting strategy, we choose the splitting plane ψ

perpendicular to the principal axis of inertia corresponding
to Imid . Note that a safe approximation of any object is
guaranteed by our fitting strategy, while these criteria only
affect how well the approximations fit certain objects.
The obstacle updating parameters (also shown in Table II)
define the post-processing filtering and have been chosen
based on the sensor’s noise. Another limitation of the sensor
for this application is its relatively small field of view. In
our configuration, we are only able to detect objects that are
between approximately 0.8 and 3.5m in front of the robot. As
the robot gets closer, objects start to leave the field of view
and appear gradually smaller before finally disappearing. To
prevent their removal from the robot’s environment model,
we stop updating them once they are less than 1m away.
This configuration is used throughout all experiments.

TABLE II
IMPLEMENTATION PARAMETERS

Approximation Obstacle Updating
dmin Vmin nsteps
1.5m 0.003m3 2

nocreal nocdie εmax ρ

5 10 0.05m 0.5

B. Experimental Results

We tested our system on our humanoid robot Lola by
giving simple walking commands to the robot in a scene with
objects of different shape, color, size and texture in front of it.
The objective was to move in the desired direction avoiding
collision with the objects in the scene, some of which were
moving. Two experiments are described in the following (see



Fig. 6. Point clouds and object approximations obtained during walking
in first (up) and second (bottom) experiments respectively (the RGB view
from the robot is shown as reference on the left). Point-SSVs are shown in
orange and line-SSVs in green

also accompanying video), where Lola manages to step over
obstacles that had been moving previously:
In the first experiment, we place several big objects on the
sides and in front of Lola, including a chair on top of a
platform to show different types of object approximations.
After a simple command to start walking forward, Lola
continuously adapts its trajectory to advance in the desired
direction while an object is being removed from the way
and a person places a different object in its path. All objects
(including the person) are recognized and the approximations
improve as they get nearer.
In the second experiment, a better performance of the system
is shown by using smaller objects and removing the points
outside the lab area. The walking command is faster (0.4m/s)
and includes walking forward, turning around and walking
forward again without stopping. While Lola advances, the
objects are replaced by a chair and a new moving obstacle.
Lola succeeds by taking steps to the side and stepping over
both a static object and the obstacle that was moving.
In Fig.6 a reference view from each experiment is shown, to-
gether with the corresponding PC and SSV approximations.
In Figs. 7, 8 we show the vision system’s performance during
walking for both experiments. Note that the performance
of the Pre-Processing step is approximately constant (as
expected), while the total cycle time is strongly correlated
with the number of objects in the scene. As predicted, the
program performs best during the second experiment, due
to the small number of SSVs needed to approximate the
scene. While Lola is turning, no object is detected (due to
the removal of the points outside the lab area) and the cycle
time drops. In the end, although not visible in the video, the
system recognizes the control desk and computers, therefore
the number of SSVs (and the cycle time) increases. During
both experiments, the total cycle time is always lower than
120ms and the maximum trackable object speed vob j,max
varies between 0.2 and 0.75m/s.
The video of the described experiments is attached to the
present paper. A scene of the second experiment, where Lola

0
20
40
60
80

100
120

0 20 40 60 80 100 120 140 160

Ti
m

e
[m

s]

2
4
6
8

10
12
14

0 20 40 60 80 100 120 140 160

O
bj

ec
ts

D
et

ec
te

d

Frame Number

Fig. 7. First experiment. Top: calculation time of the pre-processing step
(red) and total time performance of the vision system (green). Bottom:
number of objects in the real set.

0
20
40
60
80

100
120

0 200 400 600 800 1000 1200

Ti
m

e
[m

s]

0
2
4
6
8

10
12

0 200 400 600 800 1000 1200

O
bj

ec
ts

D
et

ec
te

d

Frame Number

Fig. 8. Second experiment. Top: calculation time of the pre-processing
step (red) and total time performance of the vision system (green). Bottom:
number of objects in the real set.

steps over an object, is shown in Fig.9.

VII. CONCLUSION & FUTURE WORK

An efficient vision system that identifies and approximates
objects was presented. Its performance was tested using the
incoming point cloud from a low-cost RGB-D sensor and
integrating it into our humanoid robot Lola to perform fast
and autonomous whole-body collision avoidance. It is robust
against different kinds of obstacles and, depending on the
number of objects, it can process each frame in 20-120ms in
our experiments. That is sufficient to track moving objects
and perform complex obstacle avoidance motions (stepping
over or walking sideways) in real-time.
In the near future, we plan to extend the system to more
dynamic scenarios (by estimating the objects’ velocities) and
add surface detection capabilities to also recognize walkable
areas (e.g. stairs, ramps).
Our program is completely modular, making it very flexible



Fig. 9. Top: Lola steps over an obstacle with a set walking speed of 0.4m/s.
Bottom: collision model of the robot (blue) and the obstacle (blue with red
border)

and adaptable to other systems and applications. It can be
found at http://github.com/am-lola/lepp3.
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