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Abstract

Coronary artery disease (CAD) is a complex disease with a strong genetic component.

A better understanding of the molecular-genetic basis of CAD susceptibility is of vital

importance for better prevention and treatment of this multifactorial and often lethal

disease. The study of human genomes on a genome-wide scale may help to uncover

novel genes involved in the pathophysiology and therefore broaden the knowledge from a

systematic perspective. With the development of genotyping techniques and the progress

of the Human 1000 Genome Project (1000G), quantification of variations on a genome-

wide scale became feasible, which not only provides a powerful molecular repository

for identifying complex genetic architectures of multifactorial diseases but also presents

unprecedented data analysis challenges.

The aim of this thesis was to assess the possible genetic impact on the susceptibility

of CAD using quantitative and statistical genetics research approaches for three aspects:

1. to conduct genome-wide association studies (GWAS) for CAD in the 1000G era; 2. to

contribute to the understanding of the genetic complexity of GWAS signals of CAD; and

3. to detect whether CAD risk is modified by the interaction of different variants.

The first part of my research included GWAS analyses with the aim to uncover

additional risk loci in the 1000G era. Specifically, I performed GWAS analyses after

1000G imputation on four German cohort studies based on the whole autosomal genome

(1000G CAD GWAS), and also on one German cohort focused on the X-chromosome

(1000G CAD X-Chr). The resultant summary statistics of these analyses served as
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valuable components to the CARDIoGRAMplusC4D consortium, which has organized

international collaborative efforts for the meta-analysis of genome-wide associations

studies. So far one such meta-analysis of 1000G CAD GWAS, which was finally based

on more than 185,000 CAD cases and controls and identified 10 novel CAD-associated

loci, has been published. Further publications are under review.

Typically, only the best SNP at each locus from GWAS is reported. However, as

typical for a complex disease, the genetic architecture of CAD is not monogenic. On one

hand, multiple genes/loci are contributing to the CAD susceptibility. Within each of them

there may also exist allelic heterogeneity. On the other hand, the genetic susceptibility

loci to other complex traits may also contribute to CAD risk, due to a potentially shared

genetic and functional background. The second part of my thesis was therefore to

investigate the genetic complexity of GWAS signals of CAD, with the aim to examine

and confirm - based on the individual-level genotype data - both the intra-locus allelic

heterogeneity within known CAD loci and the multi-locus polygenic pleiotropic effect

from susceptible loci of other traits. At known CAD loci, I collected individual-level

genotype data from eight cohorts including over 10,000 cases and 10,000 controls, and

examined the additive effect of multiple alleles, which were found to be independently

associated with CAD risk at the respective locus based on a multi-locus polygenic score

(PGS) approach. Indeed, at some loci multiple independent signals could be recovered

with a combined effect that conferred incremental risk of CAD with the increase of

the number of independent risk alleles. The results improved our understanding of the

allelic structure at known CAD-associated loci, and also highlighted the importance and

complexity of genetic heterogeneity. To investigate the potential pleiotropic effect of

the genetic susceptible loci of other traits on CAD, I further constructed multi-locus

polygenic scores for height and rheumatoid arthritis (RA) based on five and seven

individual-level genotype datasets, respectively, and examined their effect on CAD onset.

The results helped to support the notion that height directly and indirectly affects CAD
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risk, as well as that genetic factors underlying RA carry a low likelihood to affect CAD

risk. My analysis contributed to the respective publications.

GWAS are usually analyzed with the assumption that the genetic variants involved in

a complex disease act independently and that their combined single effects are responsible

for the observed phenotypes. It has now been accepted that epistatic effects, i.e., gene-

gene interactions, may also play a significant role in determining complex traits. Limited

by methodological issues, GWAS signals usually do not cover the higher order genetic

architecture underlying CAD risk. The third part of my thesis was thus dedicated to

detect gene-gene interactions. So far no large-scale systematic investigation of epistasis

had been made in the context of CAD, mainly due to the challenge in both computation

power and sample size. To enable such analysis, I collected individual-level genotype

data of nine cohorts including 27,360 individuals, and, in collaboration with Max Planck

Institute of Psychiatry, implemented the computation with a powerful GPU-based parallel

computing tool. By strategy, I started with a searching space of broad sense CAD

susceptibility regions, and investigated two-variant statistical epistasis assuming all

possible genetic models. For each statistically significant epistasis pair, I subsequently

searched for potential biological epistasis. Finally, I postulated a novel hypothesis on

how genetic loci could convey their epistatic effect, firstly through perturbation of nuclear

protein interactions, and secondly through perturbation of downstream pathways. These

epistasis results make a great extension to our current knowledge of CAD genetics. The

applied scheme and the GPU-based parallel computing tool may also enable researchers

to further explore CAD epistasis at a genome-wide scale in the future.

In summary, the studies in my thesis, including statistical genetics approaches such

as GWAS analyses, polygenic score calculation, and epistasis investigation, made efforts

and contributions to the improvement of our understanding of the genetic etiology of

CAD from several perspectives.
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Chapter 1

Introduction

1.1 Background of statistical genetics research in CAD

1.1.1 CAD is a complex disease with a strong genetic component

Coronary artery disease (CAD) is the most common cause of death globally [12]. The

clinical presentation ranges from asymptomatic lesions in coronary vessels to ischemic

symptoms such as angina pectoris or myocardial infarction, which causes myocardial

damage and/or premature death. The anatomical underpinnings of CAD are atheroscle-

rotic plaques developing throughout life which may finally lead to narrowing of coronary

arteries or atherothrombosis.

CAD is considered as a semi-inherited disease. According to a large epidemiological

survey 35% of the CAD patients have a positive family history [67], which suggests a

strong genetic component in the etiology of the disease. Besides genetics, risk factors

including hypertension, hyperlipidemia, smoking, obesity, diabetes, and sedentary life

style modify the risk of CAD [69].

CAD is rather a complex than a monogenic disease. The high prevalence of patients

with a positive family history suggests the sharing of numerous susceptibility genes.
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Indeed, several genetic variants have been identified to increase the susceptibility of

the disease suggesting a polygenic inheritance [99]. To the current knowledge, some

CAD susceptibility loci show allelic heterogeneity or copy number variation. Some of

the susceptibility loci also imply risk to other traits related to the disease pathogenesis

[80, 102].

In order to improve prevention and treatment of CAD, it is of high importance to

understand the multifactorial genetic basis of disease susceptibility.

1.1.2 Human genetic variations and 1000G project

Human genetic variations refer to genetic differences both within and among popula-

tions. There may be multiple variants of any given gene in a human population. Such

polymorphisms may occur in the coding region – potentially affecting protein structure

and function – or in regulatory regions. However, the vast majority of genetic variants

may be functionally neutral. The study of human genetic variation is of significance for

both, evolutionary and medical research, e.g., some disease-causing alleles occur more

often in people from specific geographic regions [106].

A single nucleotide polymorphism (SNP) is a variation in a single nucleotide be-

tween members of one species. With the development of high-throughput genotyping

techniques, great interest arose to perform case-control studies in order to detect the

genetic variation underlying risk of diseases. These studies focused on the investigation

of SNPs, as they can be easily detected in millions of people scattered throughout the

whole human genome. Recent research on population genetics focused on SNPs that

occur in at least 1% of the population, given that the statistical power to detect effects on

disease risk is dependent on the distribution of alleles. Currently 10 to 30 million human

SNPs have been explored in large genome-wide association studies (GWAS) [13].

The HapMap project, officially started in 2002, was organized as a global collabora-

tion among researchers that aimed to develop a haplotype map (HapMap) to describe
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the common patterns of human genetic variation [76]. This common human sequence

variation database was a major contribution to facilitate large-scale association studies

between genetic variation and human disease [107]. Out of this effort, genotypes at

several hundred thousand chromosomal sites, combined with the knowledge of LD

structure, allow the investigation of the vast majority of common variants with at least

0.5% minor allele frequency (MAF).

The 1000 Genomes Project (1000G) is an international research effort in order to

establish the most detailed catalogue of human genetic variation. It was launched in

2008 with the goal to find genetic variants with frequencies of at least 1% in human

populations [33]. The aim of the 1000 Genomes Project is to discover, genotype and

provide accurate haplotype information on all forms of human DNA polymorphism

in multiple human populations. Specifically, the goal is to characterize over 95% of

variants that are in genomic regions accessible to current high-throughput sequencing

technologies in each of five major population groups (populations in or with ancestry

from Europe, East Asia, South Asia, West Africa, and the Americas). Lower MAF

variants (down towards 0.1%) are also catalogued [33]. The 1000G data provides us with

the most complete catalogue of human DNA variation. By the time I started my thesis,

the latest version - "1000 Genomes Phase I integrated variant (v3)" was released in NCBI

build 37 (hg19) coordinates with reference data for 1,092 individuals [34].

The availability of these large-scale data opened up an exciting era of new oppor-

tunities in the field of human genetics. The high volume data produced by these new

technologies give geneticists the opportunity to study the genome from a broader per-

spectives. To enable the usage of the wealth of genetic information in order to analyze

and understand the nature of complex diseases, new and highly interdisciplinary fields

such as bioinformatics, functional genomics, and systems biology have emerged with the

aim to tackle different aspects of the exploration and analysis of these data.

3



1.1.3 Genotyping arrays

Due to the importance of common human genetic variations in modulating disease risk,

researchers joined in a global team in order to identify a steadily increasing number of

SNPs and to genotype these in individuals of various ancestries. The technical tools for

this endeavor were built by Affymetrix and Illumina which developed high-throughput

genotyping arrays based on the biochemical principle that nucleotide bases in DNA

molecules bind to their complementary partners. The two companies designed different

platforms in order to house hundred thousands of defined polymorphisms for genotyping.

Specialized equipment can produce a measure of the signal intensity associated with

each probe and its target after hybridization. The underlying principle is that the signal

intensity depends upon the amount of target DNA in the sample, as well as the affinity

between target and probe. The raw signal intensity is then converted to genotypes via

computational algorithms provided by the manufacturers. The advent of such high-

throughput technologies largely facilitated genomic research studies [55].

1.2 Genome-Wide Association Studies

1.2.1 What is a GWAS analysis?

Advances in genotyping technologies and the multitude of genetic data available provide

a vast amount of data that enables a better understanding of human genetic diseases by

studying genetic variation. This has particularly led to the development of “hypothesis-

free” experimental approaches such as genome-wide association studies (GWAS). In

fact, these studies test the hypothesis that common variation at any given chromosomal

locus may affect the regulation or function of a gene with subsequent implications for

disease risk. Mainly, the whole genome obtained from groups of affected (cases) and

unaffected (control) individuals is analyzed for differences in genetic variation to detect
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associations with the disease of interest in form of functionally relevant SNPs. Indeed,

this technology has become the most effective approach for identifying genetic variants

that are associated with complex disease risk.

An extension of this approach is to first conduct a GWAS on population-matched

cases and controls using whole genome genotyping arrays and, once significant variants

have been found, to proceed with targeted sequencing or fine-mapping of these regions

to refine the location of the causal variant(s). This process allows researchers to gain the

maximum benefit from both methods and reduce costs since sequencing technology is

still not affordable for large-scale studies.

1.2.2 Previous achievements and open challenges

In the recent years important progress has been made in unraveling the genetics of CAD

through the advancement in both technology and global collaboration. In 2007, three

independent GWASs identified SNPs on chromosome 9p21 as associated with myocardial

infarction (MI) and CAD [39, 68, 89]. Additional successful studies of individual teams

were carried out in 2009 [28, 50, 96]. Since then, further studies were conducted by the

CARDIoGRAM [90] and CARDIoGRAMplusC4D [16] consortia on a large population

scale for meta-analyses of GWAS on CAD patients and controls. The CARDIoGRAM

GWAS was a meta-analysis of 22 GWAS studies of European descent imputed to HapMap

2 involving 22,233 cases and 64,762 controls. The CARDIoGRAMplusC4D GWAS was

a two-stage meta-analysis of Metabochip and GWAS studies of European and South

Asian descent involving 63,746 cases and 130,681 controls. These studies have generated

46 genetic risk variants with confirmed and replicated association with CAD.

Regarding the allelic architecture of complex common disease, a ‘common dis-

ease–common variant’ hypothesis was originated in 1996 [56], stating that if a heritable

disease or trait is common in the population (greater than 1-5 percent life-time preva-

lence), then the causative genetic factors are also likely to be common. The total genetic
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risk must be spread across multiple common genetic factors with small effect. Indeed,

so far the genetic risk variants identified through GWAS studies are usually common.

However, ongoing analyses on the new 1000G reference genomes may help us to further

differentiate this concept.

Another generic feature of the risk loci is that they confer moderate odds ratios,

and thus only a small fraction of risk is conferred by a single locus as compared to

the total disease heritability, which may be substantially larger. Since even the totality

of currently identified SNPs does not fully explain disease risk a so-called "missing

heritability issue" is being considered [64]. With the refined reference genome panels

or even larger case-control samples, hopefully more causal genetic variations will be

identified and thus the knowledge on heritability of CAD can be increased.

There are also open questions independent of the coverage of genotypes. Most of the

risk loci identified so far are located at non-coding regions of the genome, which makes

it difficult to understand their molecular or functional mechanisms.

By method recent meta-analyses of GWAS were based on the assumption that the

genetic variants involved in most complex diseases are acting independently and that

their additive single effects are responsible for the observed phenotypes. Importantly,

this approach precluded detecting the higher order genetic architectures for complex

diseases such as CAD.

1.3 Genetic complexity of GWAS signals of CAD

1.3.1 What is intra-locus allelic heterogeneity?

Allelic heterogeneity is the phenomenon that different variants at the same locus cause a

same or similar phenotype. In the context of GWAS, this is referred to as the presence of

multiple association signals at a single locus.

The primary analysis of GWAS is carried out under the assumption that there is only
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a single common SNP or allele underlying the signal. However, it is highly possible

that multiple independent effects could be present within a gene or gene locus that

is associated with a trait. Indeed, several recent studies have reported the presence

of multiple independent SNPs and genetic heterogeneity in trait-associated loci. For

example, in early years, multiple independent effects were observed in 19 loci associated

with human height [57] and in six loci associated with Crohn disease [32]. In 2012,

Yang et al developed an approximate conditional and joint association approach based

on GWAS summary statistics, which was able to detect multiple additional variants

influencing complex traits such as height [110]. These additional variants at single loci

could explain additional phenotypic variation of common traits, and therefore contribute

as a part of narrow-sense heritability.

1.3.2 What is multi-locus polygenic pleiotropy?

Pleiotropy generally means that a gene or genetic variant affects more than one phenotypic

trait. GWAS studies in the recent years have identified many variants that might affect

multiple distinct traits [91]

Polygenic scores have often been used to summarize and combine genetic effects

among an ensemble of markers into a single score, which could be taken as a surrogate

estimate for the genetic susceptibility of the trait of interest. By associating the polygenic

score of one trait to the susceptibility of another trait, the shared genetic etiology between

traits could be deduced.

1.3.3 Previous achievements and open challenges

In the process of my thesis work, the latest large-scale GWAS meta-analysis of CAD

[77] based on 1000G imputation got published. Ten novel chromosomal regions were

identified as conferring CAD risk, increasing the to-date list of known CAD loci to 56.
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Intra-locus allelic heterogeneity is observed in some 1000G GWAS signals [77]. The

authors of this study performed an approximate conditional and joint association analysis

using GCTA software [110] based on the surroundings of variants that showed suggestive

additive association (p < 5⇥10�5), which brought us to 202 variants with a low false

discovery rate (FDR) (q < 0.05) at 129 loci. Ninety-five variants (explaining 13.3±0.4%

of CAD heritability) mapped to 44 significant CAD loci from GWAS. Thus, GWAS and

fine-mapping of GWAS signals have made large progress in explaining the heritability of

various diseases or traits including CAD. However several areas of uncertainty remain.

For example, recent evidence suggests the existence of intra-locus allelic hetero-

geneity at known CAD loci. However, the exact additive effects at each of these loci

harboring multiple signals on the individual-level data is still unclear, which caught our

interest for further exploration. Furthermore, it is also interesting to examine the extent

by which these multiple independently acting variants increase the accuracy of CAD risk

prediction. Moreover, it remains unclear how pleiotropy affects the polygenic inheritance

patterns of CAD and other traits that are correlated with CAD.

1.4 Epistasis

1.4.1 What is epistasis?

Epistasis, also known as gene-gene interactions, has long been recognized as fundamen-

tally important to understanding the structure and function of genetic pathways and the

evolutionary dynamics of complex genetic systems [81]. Generally there two different

definitions of epistasis: biological epistasis and statistical epistasis.
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Biological epistasis

Early in 1909, William Bateson described the ”masking effect” where a variant or allele

prevents another one from manifesting its effect in a similar manner. It is now more

commonly defined as interactions between genes at different loci, where the effects of an

allele at one locus are masked by an allele at another locus [17].

Biological epistasis has often been presumed to be ubiquitous given that many genes

interact in complex ways with other genes [88]. It also seems to have an evolutionary

role like maintaining deleterious variants under selection [40]. Biological epistasis can

occur in several ways: through the interaction between transcription factors or promoter

sequences, or through enzymes in a metabolic pathway [71]. The effects of epistasis

can be beneficial or harmful in varying degrees. Epistasis is very common in nature and

a key in characterizing the genetic basis of complex diseases. In model organisms, or

agricultural crop, epistasis effects can be studied directly by genetic crosses, transgenes

or DNA editing, or by other experimental approaches [88].

Statistical epistasis

Another definition of epistasis was proposed by Fisher and has been called "statistical

interaction" [17]. Fisher describes the statistical interaction basically as a deviation

from additivity in a linear model in the effect of alleles at different loci with respect to

their contribution to a quantitative trait of a population. Specifically, he partitioned the

genetic variance of a trait into several different components by fitting an additive model

of genotypic values. The variance due to the deviations of each multilocus genotype

from the additive model is the epistatic or interaction variance, which has nowadays been

called statistical epistasis [88].

This definition is not equivalent to Bateson’s 1909 definition, however, epistasis used

in the Fisher sense is closer to the usual concept of statistical interaction: departure from

a specific linear model describing the relationship between predictive factors [17]. In
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human genetics, direct studies on biological epistasis with transgenes or DNA editing, or

by other experimental approaches, are rarely possible [88]. Detecting statistical epistasis

in human populations is helpful to facilitate our understanding in genetic variations and

inferences about biological epistasis.

1.4.2 Previous achievements and open challenges

Identifying epistatic interactions statistically in human genetics is a challenging issue.

The technical difficulties involve – not exclusively – whether the statistical model is

proper, whether the sample size is large enough, whether the significance level is properly

settled, and whether the computation capacity is sufficient. To test the two SNPs epistasis

of a set of N SNPs, the number of SNP combinations would be M = N(N �1)/2 [63].

Several approaches have been used to study epistatic interactions, including re-

gression models, exhaustive search for two-locus versus high-order interactions, data-

mining/machine learning and related approaches, Bayesian model selection approaches,

etc [18]. Nevertheless, the overall success of empirical studies of epistasis in humans is

unclear, as the reproducibility of gene–gene interactions is low [73]. Besides, statistical

interaction does not necessarily imply interaction at a biological level [18].

Moreover, the investigation of interactions in recent genome-wide association studies

has been restricted due to computation issues. So far, prior biological knowledge has

been applied (e.g., known genes of interest, protein-protein interactions, pathways) by

researchers to narrow the search space for potential epistasis effect in order to identify

epistasis for different diseases or traits such as Behcet’s disease, lipids, body-mass index,

breast cancer. However, some of these investigations were either based on limited sample

size (N < 10000), or were not able to identify epistatic SNP-pairs at a proper significance

level [62, 70, 103].

Few studies have examined epistasis in CAD. When I started the work on my thesis,

there was only one reported effort regarding exploration of epistasis at a systematic level.
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In 2012, Lucas et al. performed a hypothesis-based analysis of gene-gene interactions

and risk of myocardial infarction. They have focused their analysis on a set of 242

SNPs, which were selected based on prior knowledge to have suggestive implications

to cardiovascular disease. A sample of 2,967 cases and 3,075 controls was taken into

discovery phase and a sample of 1,766 cases of coronary heart disease and 2,938 controls

was used as replication. However, no statistically significant interaction pairs were

identified [61].

In the process of my thesis work, there has been recent progress in exploration of gene-

gene interactions in relation to CAD. Musameh et al [74] studied a set of 913 common

variants in candidate cardiovascular genes. Following the discover by a sample of 2,101

patients with CAD and 2,426 controls, they studied 2,967 patients and 3,075 controls as

replication cohort. However, none of the interactions was statistically significant after

correction for multiple testing, nor was a secondary exploratory interaction analysis on

11,332 independent common SNPs surviving quality control.

Turner et al [97] run a statistical epistatic analysis between variants in two genes,

SMAD3 and COL4A2, for which they have previously noticed that the upregulation of

COL4A1/2 is dependent on SMAD3 in a TGF-b signaling pathway. Based on a meta-

analysis of 5 cohorts with 4,956 cases and 2,774 controls, the most significant interaction

was identified at a Bonferroni-corrected p-value 6.9⇥10�3.

1.5 Specific aims

1.5.1 Aims of research

Following the considerations discussed above, the main purpose of my PhD project was

to gain insight into the genetic etiology of CAD by innovative approaches of statistical

genetics. The rationale is to make the most out of existing GWAS data and samples using

different strategies. Specifically, my project is designed to address three issues:
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1. Genome-wide association studies for CAD in the 1000G era

• to improve the understanding of autosomal susceptible CAD loci based on

traditional genotyping arrays

• to investigate possible susceptible CAD loci on the X-chromosome

2. Understanding the genetic complexity of GWAS signals of CAD

• to gain insights about allelic heterogeneity of the biological mechanisms

underlying known CAD loci

• to test and confirm the additive effects of multiple independent genetic vari-

ants within known CAD loci based on the individual-level genotype data

• to investigate the relationship between genetic susceptible loci of other trait

and the risk of CAD

3. Detecting epistasis that underlies CAD

• to establish the feasible data-driven workflow for statistical epistasis identifi-

cation for CAD

• to explore the statistical epistasis effect in CAD

• to explore the biological interpretation for the statistical epistasis effect in

CAD

1.5.2 Structure of contents

In the following chapters of this dissertation I will address the above three issues in

successive chapters by a subset of issues relating to it.

Chapter 2 describes the materials and methods that I have used for research, which

starts with a section for data description, a section for general methods, and follows

with specific methods regarding three parts of research respectively. Chapter 3 describes
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the results that I have generated in respect to the three parts of issues sequentially. In

Chapter 4 I will discuss the results from Chapter 3 in the same order. In Chapter 5 I will

summarize the entire project, including all the findings of my research, and provide the

outlook on future research.
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Chapter 2

Methods

2.1 Cohort description

To achieve the objectives of my thesis, data from multiple CAD case-control cohorts

have been collected and used for analysis.

Briefly, individual level data were obtained from the German Myocardial Infarction

Family Studies (GerMIFS) I, II, III (KORA), IV, and V [16, 28, 51, 89, 90, 95], the

Ludwigshafen Risk and Cardiovascular Heath Study (LURIC)/AtheroRemo [28, 90,

108], Myocardial Infarction Genetics Consortium (MIGen) [28, 90], the Cardiogenics

Consortium [28, 89], and the Wellcome Trust Case Control Consortium (WTCCC)

[89, 90, 104]. All subjects in all studies were Caucasians of European origin and gave

written informed consent before participating. All studies were approved by their local

Ethical Committees.

Genome-wide genotype data and associated phenotype data for GerMIFS I-V were

generated by our group. Data for MIGen were obtained via the database of Genotypes

And Phenotypes [20] (project number 6271). Data for LURIC were obtained via the

eAtheroSysMed consortium [24]. Data for WTCCC and Cardiogenics were obtained via

the Leducq network for CAD genomcis [78].
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GerMIFS-I. Cases: All patients were Caucasians of German descent and selected

from those who had suffered MI prior to the age of 60 years. The majority (>70%)

was recruited in the vicinity of Augsburg and the southern part of Germany (Clinics

in Starnberg/Höhenried, Prien) in the years 1997-2002. If at least one additional first-

degree family member (preferentially a sibling) had suffered from MI or had severe

coronary artery disease (percutaneous transluminal coronary angioplasty [PTCA] or

bypass surgery [CABG]), the family (index patient, available parents and all siblings)

was contacted and invited to participate in the study.Controls: Population-based subjects

from the same area.

GerMIFS-II. Cases: Cases were identified following their admission for acute

treatment of MI or in cardiac rehabilitation clinics, with a validated history of MI before

the age of 60 years for both men and women. A positive family history for CAD was

documented in 59.4% of individuals. Controls: Population-based subjects.

GerMIFS-III. Cases: Non fatal MI in the KORA registry with DNA available.

Hospitalized survivors of MI who are 26 to 74 years of age are routinely entered into this

registry. Controls: Population-based subjects from Augsburg KORA S4/F4 study and

PopGen.

GerMIFS-IV. Cases: Consecutive patients referred for coronary angiography, classi-

fied as CAD or MI cases based on the coronary angiogram (at least a 50% stenosis in one

major coronary vessel) and age of onset (<65 years in males, and <70 years in females).

Controls: Population-based subjects as part of the Berlin Aging Study II (BASE-II).

GerMIFS-V. Cases: Participants of the Munich MI sample included in this study

were consecutively recruited from 1993 to 2002 and examined with coronary angiogra-

phy at Deutsches Herzzentrum Muenchen and 1. Medizinische Klinik rechts der Isar

der Technischen Universitaet Muenchen. The diagnosis of MI was established in the

presence of chest pain lasting >20 minutes combined with ST-segment elevation or

pathological Q waves on a surface electrocardiogram. Patients with MI had to show
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either an angiographically occluded infarct-related artery or regional wall motion abnor-

malities corresponding to the electrocardiographic infarct localization, or both. Controls:

Population-based subjects.

LURIC. Cases: Cases were included as white patients hospitalized for coronary

angiography between June 1997 and May 2001, with angiographically confirmed CAD

(at least one coronary vessel with a stenosis > 50%) Controls: controls were from the

German Blood Service (GerBS) control series that consists of healthy, unrelated blood

donors. They were recruited from the southwestern area of Germany which corresponds

to the geographical origin of the LURIC patients.

Cardiogenics. Cases: Cases from Germany and England were under the age of 65

with a confirmed primary MI within the preceding 3-36 months. Exclusion criteria were

(i) a history of diabetes mellitus based on plasma glucose >7.0 mmol/l or HbA1C > 7.0,

(ii) renal insufficiency, (iii) statin therapy, (iv) CRP level >10mg/dl, (v) fasting at the

time of blood sampling or (vi) smokers. The Paris cohort comprised patients aged 33

to 87, recruited within the BAAAC study with symptoms of acute coronary syndrome

who had one stenosis >50% diagnosed in at least one major coronary artery. Controls:

Population-based subjects who were blood donors (aged 32 to 65 years) recruited as part

of the Cambridge Bioresource in Cambridge.

WTCCC. Cases: Cases were recruited as part of the British Heart Foundation Family

Heart Study and comprised subjects of European ancestry with a validated history of

myocardial infarction or coronary revascularisation (PTCA or CABG) before their 66th

birthday as well as a strong familial basis of CAD. Verification of the history of CAD

was required either from hospital or primary care records. Controls: Controls comprised

an equal number of subjects from the 1958 Birth Cohort and from blood donors recruited

through the UK National Blood Service as part of the WTCCC study.

MIGen. Cases: A collection of early-onset myocardial infarction (in men less than or

equal to 50 years old or women less than or equal to 60 years old) from six international
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sites - Boston and Seattle in the United States as well as Sweden, Finland, Spain and

Italy. MI was diagnosed on the basis of autopsy evidence of fatal MI or a combination

of chest pain, electrocardiographic evidence of MI, or elevation of one or more cardiac

biomarkers (creatine kinase or cardiac troponin). Controls: Population-based subjects.

A brief summary of individual statistics is shown in Table 2.1, and more detailed

cohort descriptions could be sourced from the corresponding references.

2.2 General methods for genotyping array analyses

2.2.1 Quality control

Quality control (QC), that is, to check and clean the raw genotyping data, is always

important prior to all analyses based on genotyping array, in order to reduce false positives

and identify the true association in further analyses. The following criteria [3, 109, 116]

were applied generally to the genotype level QC for all cohort studies.

Call rate

The missing call rate of a variant (genotype-level) is the proportion of individuals whose

genotypes are not called for a given variant. The missing call rate of an individual is the

proportion of variants whose genotypes are not called for a given individual. Low call

rate may be an implication of poor DNA sample quality. Individuals with genotype-level

call rate less than 98% in either cases or controls are filtered out. Likewise, variants with

individual-level call rate less than 95% in either cases or controls are filtered out.

Minor-Allele Frequency

The current genotyping technology is still error-prone to detect loci with minor-allele

frequency (MAF) less than 1%. Variants with MAF<0.01 were thus filtered out.
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Cohort

Name

(Abbr.)

Platform N

Cases

(CAD)

N Con-

trols

Female N

Cases (%)

Female N

Controls

(%)

Reference

GerMIFS-I

(G1)

Affymetrix Mapping 500K

Array Set

634 1608 211 (33.3) 817 (50.8)

[16, 28, 51, 89, 90]
GerMIFS-II

(G2)

Affymetrix Genome-Wide

Human SNP Array 6.0

1207 1288 246 (20.4) 618 (48.0)

GerMIFS-

III

(G3)

Affymetrix Genome-Wide

Human SNP Array 5.0/

Affymetrix Genome-Wide

Human SNP Array 6.0

1060 1467 214 (20.2) 710 (48.4)

GerMIFS-

IV

(G4)

Affymetrix Genome-Wide

Human SNP Array 6.0

998 1147 349 (35.0) 704 (61.4)

GerMIFS-V

(G5)

Illumina

HumanOmniExpress

Omniuni2.5 OmniExpress

2532 1639 640 (25.3) 864 (52.7) [95]

LURIC

(LU)

Affymatrix Genome-Wide

Human SNP Array 6.0

2364 697 596 (25.2) 293 (42.0) [28, 90, 108]

Cardiogenics

(CG)

Illumina

Human660W-Quad

392 410 51 (13.0) 242 (59.0) [28, 89]

WTCCC

(WT)

Affymetrix Mapping 500K

Array Set

1988 3004 406 (20.4) 1532 (51.0) [89, 90, 104]

MIGen

(MG)

Affymatrix Genome-Wide

Human SNP Array 6.0

2967 3075 663 (22.3) 751 (24.4) [28, 90]

Table 2.1: An overview of study cohorts utilized in this thesis
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Departure from Hardy-Weinberg Equilibrium

The assumption of the Hardy-Weinberg equilibrium (HWE) is that the parental alleles in

a heterozygous offspring SNP genotype can be estimated. When the ratios of homozy-

gous and heterozygous genotypes significantly differ from the prediction under HWE

assumptions, it can indicate genotyping errors, batch effects or population stratification.

Checking HWE only in controls is usually recommended, as deviation from HWE in

cases could represent a signal of true association. Variants with a p-value for the HWE

less than 1⇥10�6 in controls were filtered out.

Sex check

Discrepancy of the sex between reported from raw genotyping data or sample records and

the estimated (based on actual X-chromosome genotypes) simply indicates a processing

error. Individuals with discrepancies in sex check were filtered out.

Population stratification and Outliers

Population structure can cause spurious findings in further analysis. Principal component

analysis (PCA) or multidimensional scaling (MDS) are the most popular methods to

capture stratification. The basic idea is to capture the hidden ancestry genetic background

by inferring continuous axes of variation from genotype data. These axes ("PC"s for PCA,

or "dimensions” for MDS) are independent from each other and suggest the variation

from different aspects. The top several continuous axes of variation are then used as

covariates to correct for stratification in the association analysis.

Individuals with the top two PCs deviate by more than 5 SD from the mean were

filtered out during genotype QC.
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Identity by descent

Identity by descent (IBD) means the degree of recent shared ancestry for a pair of

individuals. The expectation is that IBD = 1 for duplicates or monozygotic twins, IBD =

0.5 for first-degree relatives, IBD = 0.25 for second-degree relatives and IBD = 0.125 for

third-degree relatives. Individuals from each pair with an IBD value � 0.25 were filtered

out.

Heterozygosity

Heterozygosity rate for a given individual is the proportion of heterozygous genotypes for

a given individual. Large deviation in heterozygosity is an indication of low chip quality.

An additional heterozygosity F statistic can be calculated with the form |F |= (1�O/E),

where O is the observed proportion of heterozygous genotypes for a given sample and E

is the expected proportion of heterozygous genotypes for a given sample based on the

minor allele frequency across all non-missing SNPs for a given sample. Individuals with

a heterozygosity rate that deviates by more than 3 SD from the mean were filtered out.

Summary of individuals

During my thesis research several different analyses were conducted for different pur-

poses, for which the control for the genotype quality were also slightly different. At

a minimum, all classic QC criteria (meeting the requirement for the 1000G GWAS

analysis) were taken in the collected studies. The final number of individuals included in

the actual analyses was dependent on the criteria of QC. A summary is shown in Table

2.2.
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G1 G2 G3 G4

cases controls cases controls cases controls cases controls

unQCed 634 1608 1207 1288 1060 1467 998 1147

during QC (1000G criteria)

Call rate > 0.95 -1

Sex check -2 -2 -11

Outlier -3 -2 -24 -1

IBD check (pihat<0.25) -6 -1

Heterozygosity -1 -7 -2 -13 -10 0 -8

classic QCed 632 1593 1202 1272 1058 1457 963 1138

during QC (epistasis critera)

Call rate > 0.98 -3 -14 -4

Heterozygosity* -7 -7 -10 -5 -2 -4 -5 -2

IBD check (pihat<0.125) -21 -7 -1 -12 -4

refined QCed 622 1551 1192 1256 1055 1441 954 1136

IBD check (pihat<0.0625) -34 -4 -24 -6 -18 -2 -4

final QCed 622 1517 1188 1232 1049 1423 952 1132

Continued on next page
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Table 2.2 – Continued from last page

G5 LU MG CG

cases controls cases controls cases controls cases controls

unQCed 2532 1639 2364 697 2967 3075 392 410

during QC (1000G criteria)

Call rate > 0.95 -1 -7

Sex check -4 -2 -15 -9 -4

Outlier -57 -17 -19 -5 -2

IBD check (pihat<0.25) -5 -26 -36 -10

Heterozygosity -6 -6 -6 -1 -4 -2

classic QCed 2459 1611 2315 681 2934 3043 383 406

during QC (epistasis critera)

Call rate > 0.98 -6 -8 -12 -4 -2

Heterozygosity* -14 -2 -28 -11 -29 -22 -1 -1

IBD check (pihat<0.125) -8 -29 -29 -14 -1 -1

refined QCed 2437 1574 2250 644 2901 3018 382 404

IBD check (pihat<0.0625) -14 -30 -38 -25 -11 -29 -1

final QCed 2423 1544 2212 619 2890 2989 381 404

Continued on next page
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Table 2.2 – Continued from last page

WT

cases controls

unQCed 1988 3004

during QC (1000G criteria)

Call rate > 0.95 -21 -10

Sex check

Outlier -16 -21

IBD check (pihat<0.25)

Heterozygosity -5 -2

classic QCed 1946 2971

sample list update -27 -42

basic Qced final 1919 2929

during QC (epistasis critera)

Call rate > 0.98 -5 -1

Heterozygosity* -5 -11

IBD check (pihat<0.125) -9 -6

refined QCed 1900 2911

IBD check (pihat<0.0625) -5 -13

final QCed 1895 2898

Table 2.2: Summary of number of individuals at different levels of QC
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2.2.2 Imputation

The purpose of imputation procedure is to infer the genotypes that are not measured by

genotyping arrays by referencing HapMap haplotypes, so that marker density in the final

analysis is increased. That is, the unobserved genotypes in a set of study individuals are

predicted using a set of reference haplotypes and genotypes from a genotyping array.

Imputation also facilitates meta-analyses for results derived from different groups which

had originally been genotyped on different array platforms.

1000G reference panel

The 1000 Genomes Phase I integrated variant (v3) set released in NCBI build 37 (hg19)

coordinates with reference data from March 2012 (updated August 2012) was utilized as

the reference panel for imputation in all analyses in my thesis work.

Pre-imputation

Before imputation but after QC, all variants were updated to the same genome build,

from human genome build 36 to build 37 as the reference genome, with the help of

UCSC liftOver [41]. This was followed by allele flipping, which aligns all variants to the

same positive strand as indicated in the reference genome. This procedure was performed

using PLINK [85].

Pre-phasing

Haplotypes were then pre-phased from genotypes. This was performed with SHAPEIT2

haplotype estimation tool [22], which generates the best guess haplotypes based on the

given genotypes.
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Imputation

Then the best guess haplotypes were forwarded to IMPUTE2 [42]. The whole genome

was splitted into chunks of 5Mb first, to perform imputation. The splitted chunks were

curated and optimized, when the resultant "concordance" criteria, which shows the

concordance between imputed genotypes and original genotypes for one variant, were

low. All imputed chunks were afterwards concatenated together.

For each bi-allelic variant [A/B] for each individual, the main output of IMPUTE2

reported the three genotypes AA, AB and BB in the form of their probabilities accounting

for the genotype imputation uncertainty, instead of giving an fixed designation.

Post-imputation QC

The qualities of imputation were assessed based on quality data given by IMPUTE2

"INFO" metric, which usually ranges between 0 to 1 and represents the imputation

certainty. Variants with INFO < 0.8 in either cases or controls were filtered out in the

downstream analysis.

2.2.3 Association analysis

Genotype coding

For a bi-allelic variation of interest, the common way to treat it in statistical genetics is to

give a numeric value to the genotype effect with regard to its effect allele. The codings

vary depending on the genetic model. Table 2.3 shows an example of typical genetic

effect codings, supposing [G] is the effect allele of interest at a single [A/G] SNP.

Regression analysis

Quantitative traits are generally analyzed using a linear regression model, where the

phenotype of interest is the outcome or the dependent variable (y) and the genotype for a
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AA AG GG

dosage/additive 0 1 2

dominant 0 1 1

heterozygous 0 1 0

recessive 0 0 1

Table 2.3: An Example of typical genetic effect codings for a single [A/G] SNP, assuming

[G] is the effect allele of our interest.

variant (coded) is the predictor or the independent variable (x):

y = b0 +b1x

In the situation of case-control studies, where the outcome of the disease is binary

(i.e., case or control), logistic regression is used. The probability (p) of having the disease

is modeled on a log odds scale:

log(p/(1� p)) = log(Prob(y = 1)/Prob(y = 0)) = b0 +b1x

One can also include two or more predictive variables (e.g. one or two variants plus

other covariates) in the model, as is

log(Prob(y = 1)/Prob(y = 0)) = b0 +b1x1 +b2x2 +b3x3 +b4x4

and an interaction term can be included as well:

log(Prob(y = 1)/Prob(y = 0)) = b0 +b1x1 +b2x2 +b3x1x2

27



2.3 Genome-wide association analysis for CAD in the

1000G era

2.3.1 Autosomal GWAS analysis

Study purpose. The following description refers to methods that were further used

in the autosomal GWAS analysis based on traditional genotyping array, as part of the

efforts contributed to CARDIoGRAMplusC4D for CAD in the 1000G era, which has

been published as [77].

Participants

The individual level genotypes for autosomal GWAS analysis were collected from

GerMIFS-I-IV studies(see Methods 2.1 for cohort descriptions).

Genotype processing

The genotype-level data were provided directly by our collaborator Dr. Christina Wil-

lenborg, from Institut für Integrative und Experimentelle Genomik (IIEG), Universität

zu Lübeck, after QC processing and included 637 cases and 1,644 control individuals

from GerMIFS-I, 1,222 cases and 1,298 control individuals from GerMIFS-II, 1,096

cases and 1,509 control individuals from GerMIFS-III, 1,016 cases and 1,147 control

individuals from GerMIFS-IV. MDS analysis were performed based on these genotype

data to generate the first two dimensions as a capture of genetic population stratification.

The imputation procedures were performed as described previously (see Methods 2.2.2

). The imputation INFO metric was recorded but without filtering, for the purpose of

meta-analysis.
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Association analysis

Logistic regression was performed using SNPTEST2 assuming additive, dominant and

recessive models, with the top two dimensions resultant from autosomal MDS added to

adjust for the population stratification.

As indicated by Pirinen et al [83], and also supported by Sarah Lewington and

Robert Clarke from the CARDIoGRAMplusC4D consortium [15], the inclusion of non-

confounding covariates into logistic regression models for genetic association analysis of

case-control data has a variable impact on power. For the analysis of CAD, conventional

risk factor covariates include age-of-onset of disease (and age-at-sampling for controls)

and gender. These risk factors are usually assumed to be non-confounding with respect

to gene associations. So their omission would not be expected to cause additional over-

dispersion of the test statistics (i.e., inflation of the genomic control ratio), but improve

the power to detect true signals. Therefore, age and gender were not considered in the

adjustment of the association model.

2.3.2 X chromosome GWAS analysis

Study purpose. The following description refers to methods that were further used in

the X chromosome GWAS analysis, as part of the efforts contributed to CARDIoGRAM-

plusC4D for CAD in the 1000G era, which has been summarized in the manuscript [59].

Participants

The individual level genotypes for X chromosome GWAS analysis were collected from

GerMIFS-V cohort (see Methods 2.1 for cohort descriptions).

Genotype processing

The following pre-imputation QC criteria (classic QCed, Table 2.2) were taken:
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Individual call rate >= .95

SNP call rate > .98

MAF >= 0.01

Sex check

Population outliers excluded (deviate beyond mean±5⇥ sd for top two dimensions)

IBD < 0.25 ( individuals distant away than second-degree relatives )

Heterozygosity within mean±3⇥ sd

Hardy-Weinberg p > 1⇥10�6

Both autosomal and X chromosomal genotypes underwent the above QC. After all

quality control criteria, 2,459 cases and 1,611 controls from GerMIFS-V were taken

into the analysis. The top two dimensions resulting from autosomal MDS analysis were

used for adjusting the population stratification in the downstream association models.

The imputation procedures were performed as formerly described (see Methods 2.2.2

). Additional options (-chrX ) in IMPUTE2, which is specific for imputation the non-

pseudo-autosomal regions of chromosome X, was utilized. The imputation INFO metric

was recorded but without filtering, for the purpose of meta-analysis. With the 1000G

imputation, 957,983 X-chromosome variants were imputed and 315,957 SNPs remained

after filtering out non-SNP variants and INFO  0.5. Finally, 220,458 SNPs were

available before the central post-imputation QC.

Association analysis

The specific point to be noted for loci on the X chromosome is the inactivation issue

(also called lyonization), a process by which one of the two X chromosomes in female

mammals is inactivated. Since it is not known which loci are inactivated in females and

to what degree, a combination of four different models was applied [60]. The association
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analyses were performed in R in the four following models (model Ia, Ib, IIa, IIb):

glm(pheno ⇠ dosea + sex+C1+C2, f amily = binomial)

glm(pheno ⇠ doseb + sex+C1+C2, f amily = binomial)

glm(pheno ⇠ dosea ⇤ sex+C1+C2, f amily = binomial)

glm(pheno ⇠ doseb ⇤ sex+C1+C2, f amily = binomial)

where

dosea: Assuming no inactivation of the locus in females [115]. With the standard coding

in females with 0, 1, and 2 risk alleles; males are coded as 0 and 1 if carrying no or one

risk allele, respectively.

doseb: Assuming inactivation of the locus in females [11]. With the standard coding in

females with 0, 1, and 2 risk alleles; males are coded as 0 and 2 if carrying no or one risk

allele, respectively.

The adjustment for sex was added to the model to assure that type one error levels are

not increased under unbalanced sample designs and sex-specific alelles frequencies [60].

The top two dimensions resulting from autosomal MDS were also added to adjust for the

population stratification.

Effect estimates and standard errors from the above models were then submitted to

CARDIoGRAMplusC4D [15] for further meta-analyses.
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2.4 Understanding the genetic complexity of GWAS sig-

nals of CAD

2.4.1 Intra-locus allelic heterogeneity

Study purpose. The following description refers to methods that were further used in

the intra-locus allelic heterogeneity analysis, as part of the efforts contributed to the

manuscript [112].

Participants

Specifically for examination of intra-locus allelic heterogeneity, the individual level

genotypes were collected from eight cohorts: GerMIFSI-V, LURIC, Cardiogenics and

WTCCC-CAD (see Methods 2.1 for cohort descriptions).

Genotype processing

Refined QC (Table 2.2) and imputation procedures were performed as described previ-

ously (see Methods 2.2.2), resulting in 21,709 individuals in total.

SNP selection

A list of suggestive CAD risk variants was obtained from Supplementary Table 6 of the

1000G CAD GWAS publication [77], where the authors have generated a list of 202

variants and their corresponding effect sizes and p-values from conditional and joint

analyses. Each of these variants was first annotated to their physically closest gene

using Annovar [101], and then mapped to the known CAD loci, which were defined

as the names that had been reported in either [16] or [77]. Independent variants within

2 centiMorgen (cM) distance (the flanking search space as recorded in the discovery

procedure in [77]) were assigned to the known loci. Subsequently a list of known CAD
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loci with more than one independent signal was compiled. The genotype data for the

variants prepared above were then extracted from the genome-wide imputed data from

the above described studies.

Polygenic score (PGS) calculation

I applied an intra-locus polygenic score to evaluate the combined effect of loci harboring

multiple independent signals. At each locus, a weighted polygenic score was calculated

by summarizing the number of risk alleles for each SNP (the posterior probabilities

from imputation, a value from 0 to 2) and weighting the SNPs by their effect size (beta)

reported in the conditional and joint analyses. The method is similar to the traditional

polygenic score calculation, except that all the variants are located within a single locus.

For comparison, a second weighted genetic score was calculated simply based on

the number of risk allele for the lead SNP and weighted by its corresponding effect size.

Lead SNPs at each locus were defined as the SNP with the most significant p-value

among all available SNPs in the dataset.

Evaluation of combined effects

Logistic regression was performed to evaluate the effect size of the polygenic scores

(PGS) in each study. To consider all these PGSs on the same scale, they were modeled

as a continuous variable and standardized into Z-scores (centered and scaled to have a

mean of 0 and SD of 1). To adjust for the possible presence of population stratification,

all analyses were adjusted with the top two dimensions resulting from autosomal MDS

analysis, which were calculated with PLINK. A Nagelkerke’s pseudo-R2 was calculated

to infer variance explained by the model.

The regression was performed for each study separately and afterwards a fixed-effect

meta-analysis was performed to combine the effects across all studies. A combined

p-value and R2 were calculated via a weighted Z-score based on sample size of each
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study.

I assessed the improvement in risk discrimination by comparing the area under the

receiver operator characteristic (ROC) curves (AUC) in multi- versus lead- variant PGS.

Evaluation of relative effects

For loci harboring multiple independent signals, I grouped all individuals by the number

of intra-locus risk alleles. The genotypes were assigned according to the largest posterior

probabilities, and the dosage for the risk allele was rounded to a discrete value of 0 / 1 /

2 and the presence of CAD. Logistic regression was performed for each study separately

based on the number of risk alleles as a categorical variable relative to the reference

group. In order to achieve a better effect estimation, the group for the number of risk

alleles which the majority of individuals carry was taken as the reference. The relative

effect size of each group of individuals was evaluated in comparison with the majority

group and was only computed when there were at least 5 cases and 5 controls in the

group. The Cochran–Armitage test was performed to test the additive trend of CAD odds

ratio with the incremental increase of risk alleles.

Afterwards, a fixed-effect meta-analysis was performed to combine the effects. A

combined p-value and R2 were calculated via a weighted Z-score based on sample size.

2.4.2 Multi-locus pleiotropy

Genetic association between height and CAD

Study purpose. The following description refers to methods that were further used in

the multi-locus genetic risk score analysis between height and CAD, as part of the efforts

contributed to the publication [75].

Participants. To investigate the association between height and CAD, the individual

level genotypes were collected from five cohorts, GerMIFS-I-V (see Methods 2.1 for
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cohort descriptions).

Genotype processing. Classic QC (Table 2.2) and imputation procedures were

performed as described previously (see Methods 2.2.2), resulting in 13,385 individuals

in total.

Polygenic Score Calculation. Based on 180 height-associated genetic variants [57],

a weighted genetic risk score was calculated. For every SNP for each individual, the score

was calculated on the basis of the sum of the dosage (posterior probabilities generated

from imputation, a continuous value between 0 to 2) of the height-increasing allele and

multiplied by the effect size observed for height. I then totaled these values across all

SNPs for each individual, and the individuals were then grouped into quartiles.

Genetic association between rheumatoid arthritis (RA) and CAD

Study purpose. The following description refers to methods that were further used in

the multi-locus genetic risk score analysis between RA and CAD, as part of the efforts

contributed to the manuscript [46].

Participants. To investigate the association between RA and CAD, the individual

level genotypes were collected from 7 cohorts, GerMIFS I-V, Cardiogenics and WTCCC

(see Methods 2.1 for cohort descriptions).

Genotype processing. Refined QC (Table 2.2) and imputation procedures were

performed as described previously (see Methods 2.2.2 ), resulting in 18,815 individuals

in total.

Polygenic Score Calculation. Based on 61 reported RA-associated SNPs [29], a

weighted genetic risk score was calculated. For each individual, we summed the dosage

of RA risk alleles for each SNP (posterior probabilities generated from imputation, a

continuous value between 0 to 2) and weighted the SNPs by their reported estimated

effect size on RA.

The average genetic RA-risk score between CAD cases and controls was compared
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using a two-sided T-test between CAD cases and controls in each study. Then a combined

p-value was calculated via a weighted Z-score based on sample size.

Afterwards I analyzed association between CAD and tertiles of PGS using logistic

regression adjusted for population stratification. Each cohort was analyzed separately, and

the estimates weighted on the inverse of their square of standard errors were combined

across cohorts with fixed effects meta-analysis. A combined p-value was calculated via a

weighted Z-score based on sample size.

2.5 Detecting epistasis that underlies CAD

Study purpose. The following description refers to methods that were further used in

the epistasis analysis of CAD, as part of the efforts contributed to the manuscript [113].

2.5.1 Participants

Individual level genotypes specifically for examination of intra-locus allelic heterogeneity

were collected from nine cohorts: GerMIFS I-V, LURIC, Cardiogenics, WTCCC-CAD

and MIGen (see Methods 2.1 for cohort descriptions).

2.5.2 Genotype processing

The following pre-imputation QC criteria (final QCed, Table 2.2) were taken:

Individual call rate >= .98

SNP call rate > .98

MAF > 0.01

Sex check

Population outliers excluded (deviate beyond mean±5⇥ sd for top two dimensions)

IBD < 0.0625 ( individuals distant away than fourth-degree relatives )
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Heterozygosity rate within mean±3⇥ sd; F-statistic within mean±4⇥ sd

Hardy-Weinberg p > 1⇥10�6

which resulting in 27,370 individuals in total. The imputation procedures were

performed as formerly described (see Methods 2.2.2 ).

The following post-imputation QC criteria were taken:

SNP call rate > .98

MAF > 0.05

Hardy-Weinberg p > 1⇥10�5

2.5.3 Heritability estimation

The lead-variants at the 46 loci reported from [16] and the 10 novel loci reported from [77]

were collected from the main table of the original publications. The imputed individual-

level data were merged from nine studies and only variants available in all studies were

included. All variants in the flanking region around the lead-variants at these 56 known

loci were extracted from the merged imputed genotype data. For variants that were not

available in all studies, a proxy variant was resorted for each of them as the one having

highest LD r2 within a ±200kb distance to it. The genetic kinship matrix was then

calculated based on using LDAK with LD-adjustment [92]. The narrow-sense heritability

of CAD was then estimated in the measure of the total variance in liability (assuming the

prevalence of CAD as 5%) explained by all variants together, which was calculated via

REML algorithm incorporated in the software GCTA [111].

2.5.4 GLIDE implementation

GLIDE is a high-performance GPU-based tool for detecting epistasis systematically

based on regression analysis [48]. For instance, GLIDE enables to conduct a systematic

epistasis search on the GWAS data published by the Wellcome Trust Consortium in
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about 6 h per data set using a relatively inexpensive setup of 12 GPUs. This is a huge

speed upgrade in comparison to a single-core CPU-based setup, where a similar approach

would take roughly 1 year to be completed [48]. This speed upgrade is achieved via GPU

threads cooperation and parallel computation. For an epistatic interactions matrix of size

n⇥n to be computed, it is divided into chunks of size nGPU ⇥nGPU . The chunks are

computed sequentially. Each chunk is divided into blocks of the size BS⇥BS. Each of

those blocks is computed in parallel by BS⇥BS threads [48]. In collaboration with the

Max Planck Institute of Psychiatry, where a high-performance GPU cluster has been set

up, we were able to search for epistasis with GLIDE implementation.

2.5.5 Genotype coding

For each pair of variants to test, all 4 genotype codings in Table 2.3 were applied,

resulting in 4⇥4 combinations of possible genotypic effect patterns.

2.5.6 Statistical epistasis test for CAD

We explored the statistical epistasis in two steps (Figure 2.1): step I served as a pri-

mary filtering of potential candidates and step II served as main screening and final

confirmation.

At step I, we searched for pairwise epistasis for all variants located physically at a

broad-sense of a CAD susceptibility region and with LD-pruned r2 < 0.5 from each other

(n =8,068 SNPs in total). Logistic regression (Eq. 2.1) was first performed with GLIDE

for all 16 possible genotypic effect patterns for each study, and then a fixed-effect meta-

analysis was performed to estimate the effect size and standard error. A meta-analysis

p-value was also calculated via a weighted Z-score based on the sample size. For all

resulting pairs from all 16 genotypic models from GLIDE, those that passed a loose and

arbitrary meta-analysis p < 1⇥10�8 were taken as potential candidates and chosen for
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Figure 2.1: Scheme of statistical epistasis test for CAD
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the subsequent step II analysis.

At step II, we searched for pairwise epistasis for all variants within the full LD-

expanded region of the potential candidate pairs from step I analysis (n =7,579 SNPs

in total). In order to calculate a proper significance level, LD-based clumping was

performed via PLINK [85] to determine the total number of independent SNPs, which

gave us a number of n =4,654. In this way a final significance level was calculated with

Bonferroni adjustment 0.05/(n⇥ (n�1)/2) = 4.618⇥10�9.

Logistic regression was performed with GLIDE in the same way as in step I (Eq. 2.1).

For those pairs that passed the significance level, further regression analyses including

population covariates (Eq. 2.2) were performed with R [86] based on the same genetic

model. For those pairs still passing the significance level, further regression analyses

including the nearest CAD lead-SNPs were performed with R again to confirm the source

of effect (Eq. 2.3).

log(Prob(y = 1)/Prob(y = 0)) = b0 +b1x1 +b2x2 +b3x1x2 (2.1)

log(Prob(y = 1)/Prob(y = 0)) = b0 +b1x1 +b2x2 +b3x1x2+

b4C1 +b5C2 +b6C3...+b13C10

(2.2)

log(Prob(y = 1)/Prob(y = 0)) = b0 +b1x1 +b2x2 +b3x1x2+

b4C1 +b5C2 +b6C3...+b13C10 +b14z1 +b15z2

(2.3)

where, y is the binary status of CAD (y = 1 if case; y = 0 if control), x1 and x2 are

genotype codings for the two variants in the test, and the covariates C1 to C10 are the

top 10 dimensions resulting from autosomal MDS were to adjust for the population

stratification. z1 and z2 are genotype codings for the two CAD lead-SNPs closest to the

two variants in the test, b1 reports the main effects of the coded variables of variant 1.
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b2 reports the main effects of the coded variables of variant 2. b3 reports the interaction

effects of the coded variables of variant 1 and 2.

2.5.7 Statistical epistasis test for gene expression

Part of the individuals in Cardiogenics (see Methods 2.1 for cohort descriptions) were

also investigated with transcript abundance via gene expression microarray for monocytes

and macrophages from blood samples.

The individuals with both genotypes and gene expression data available were ex-

tracted and categorized into six sample groups: (i) CAD cases with gene expression data

available in monocytes, (ii) CAD-free controls with gene expression data available in

monocytes, (iii) all individuals (regardless of CAD onset or not) with gene expression

data available in monocytes, (iv) CAD cases with gene expression data available in

macrophages, (v) CAD-free controls with gene expression data available in macrophages,

and (vi) all individuals (regardless of CAD onset or not) with gene expression data

available in macrophages.

Both linear regression (Eq. 2.4) and ANOVA analyses (Eq. 2.5) were performed for

each gene on the microarray and for each of the 6 sample groups, to test whether the

CAD epistatic pair also shows an epistatic effect on any gene expression level.

y = b0 +b1x1 +b2x2 +b3x1x2 +b4C1 +b5C2 +b6C3...+b13C10 (2.4)

y = b0 +b1x1l +b2x2l +b3xil +b4C1 +b5C2 +b6C3...+b13C10 (2.5)

where, y is the normalized gene expression for each gene. x1 and x2 are genotype

codings for the two variants in regression. x1l and x2l are genotype levels for the

two variants in ANOVA, and xil is the genotype level for any of the 3⇥ 3 genotype
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combinations of the two variants. The covariates C1 to C10 are the top 10 dimensions

resulting from autosomal MDS were to adjust for the population stratification.

The p-values for the effect of the interaction term b3 for each test were recorded as

the observed p-values. To adjust for multiple testing, 1000x Permutation were performed

at first by scrambling 1000x the indexes of the samples for the gene expression matrix

to destroy the true genotype-expression relationship, and generating 1000x the pseudo

effects and p-values. Finally, an exact p-value was calculated according to [82].

2.5.8 Correlation between gene expression and CAD

For each of the 3⇥3 = 9 genotype combinations according to the pair of epistatic SNPs,

a putative CAD odds ratio (putative OR-CAD) was calculated based on the pooled (all

9 studies) number of individuals of CAD cases and controls. In this way a putative

OR-CAD could be assigned to each individual according to its genotype combination

of the epistatic SNP pair. Pearson correlation test was performed for each gene on

the microarray to test the linear correlation between gene expression and the log scale

putative OR-CAD across the individuals.

2.5.9 Statistical epistasis test for clinical traits

Several basic traits and CAD-related traits are also available from the GerMIFS-I,

GerMIFS-II, GerMIFS-V and LURIC studies, including, body-mass index, total choles-

terol, LDL cholesterol, HDL cholesterol, and triglycerides. Triglyceride levels are

typically skewed, which was also the case in our data, thus they were converted into the

log scale. For the epistasis SNP-pair of interest, a similar statistical epistasis test was

performed for each of these available traits. Linear regression analysis (Eq. 2.4) was

performed (here, y is the trait value) to test whether the CAD epistatis pair also shows

an epistatic effect on any of the above five CAD-related traits (outliers (out of range
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mean±5⇥ sd) were excluded). Subsequently a combined p-value was calculated via a

weighted Z-score based on sample size of each study.

2.5.10 Motif enrichment

For all transcripts having expression data available, the DNA sequences were extracted

from UCSC Genome Browser [49], at the flanking 2kb of transcriptional starting site

(TSS), except for genes with multiple non-unique TSS. These TSS±2kb DNA sequences

were taken as putative gene promoter sequences and divided into two sets: set-a for genes

associated with the epistatis pair; set-b for genes not associated with the epistatis pair.

Motif enrichment analyses were performed with MEME–Suite 4.11 [5]. MEME

was first applied to search for ungapped motifs enriched in the sequence set-a, relative

to (i) random sequences simulated with base-pair frequencies same as set-a, and (ii)

set-b sequences. The resultant enriched motifs were followed with CentriMo, which

tests whether the motif has a particular location preference in the input sequences. The

enriched motifs were also forwarded to TOMTOM, by which an alignment to the known

transcription factor binding motifs was produced. The JASPAR 2016 core vertebrates

database [66] was taken as the known motif database.
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Chapter 3

Results

3.1 Genome-wide association analysis for CAD in the

1000G era

3.1.1 Autosomal GWAS analysis

Study purpose. The following description refers to results that were generated in the

autosomal GWAS analysis based on traditional genotyping array, as part of the efforts

contributed to CARDIoGRAMplusC4D for CAD in the 1000G era, which has been

published in 2015 [77].

Single-study analysis

We investigated the genome-wide association for the autosomal genomes in German

MI Family studies I-IV. The association analyses were performed assuming additive,

dominant, or recessive models. Based on summary statistics for the additive model in

all studies analyzed, the most significant signals were reached at 9p21 locus (Figure

3.1), which is the best replicated genetic susceptibility locus for CAD. The p-values for

GWAS studies ranged from 1.39⇥10�5 in GerMIFS-I to 6.33⇥10�11 in GerMIFS-II.
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Figure 3.1: The y axis shows the log10 P values of all variants within the region

±400kb of SNP rs1333049 under the additive genetic model, and the x axis shows their

chromosomal positions. Panels (a-d) present the results for GerMIFS I-IV, respectively.
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The summary statistics for the association studies assuming additive, dominant, or

recessive models were submitted to the statistical team of the CARDIoGRAMplusC4D

consortium [15] for further post-imputation QC and meta-analyses.

Meta-analysis

The meta-analysis for 1000G CAD autosomal GWAS was performed by the statistical

team of the CARDIoGRAMplusC4D consortium [77], with 60,801 cases and 123,504

controls from 48 studies. The meta-analysis results have been published by Nikpay et

al [77].

Genome-wide associations were scanned for both additive and non-additive models.

Based on the summary statistics of meta-analysis results for the additive genetic model,

47 out of the 48 loci previously reported as CAD susceptibility loci were recovered

with nominally significance. The only exception was the lead SNP of a region, which

had been previously detected as being specific for Han Chinese. In total 2,213 variants

showed significant associations with CAD (p<5⇥10�8) with a low false discovery rate

(FDR q value < 2.1⇥10�4) assuming the additive model [77], which represented eight

novel regions at genome-wide levels of significance. In addition, based on the summary

statistics for the recessive model, two novel recessive susceptibility loci were identified.

For the dominant model, multiple strong associations were also identified, all of which

overlapped with loci that had already been identified in the additive model [77]. All these

ten newly identified CAD associations are represented by risk alleles with a frequency

of >5%. Figure 3.2 displays a summary of the 1000G CAD GWAS results in a circular

Manhattan plot.

FDR and heritability analysis

Based on variants around each lead-variant showing suggestive additive association in

the meta-analysis, the statistical team of the CARDIoGRAMplusC4D consortium [77]
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were strikingly under-represented (6.9% ver-
sus 29.0%; P = 4.9 × 10−12), which may reflect 
on the statistical power to detect the modest 
effects associated with these variants.

Annotation and ENCODE analysis
Functional annotations were assigned to 
the 9.4 million variants studied in the CAD 
additive meta-analysis using ANNOVAR 
software18 (Supplementary Table 8). The 
202 FDR variants were depleted in intergenic 
regions (P = 2.5 × 10−7) and enriched in introns 
(P = 0.00035). Variants were also assigned 
to three sets of ENCODE (Encyclopedia of 
DNA Elements) features, namely histone/chromatin modifications 
(HMs), DNase I–hypersensitive sites (DHSs) and transcription factor  
binding sites (TFBSs) (Supplementary Table 9). The FDR variants 
showed independent enrichment across 11 cell types for the HM  
(P = 2.8 × 10−6) and DHS (P = 0.0003) ENCODE feature sets and  
with genic annotation status (P = 0.0013) (Supplementary Tables 10  
and 11). These associations were also evident in three cell types 
selected for maximal CAD relevance, with a 2.6-fold enrichment 
for DHSs, a 2.2-fold enrichment for HMs and a 1.6-fold enrichment  
for genic status (Supplementary Tables 12 and 13). These findings 
suggest that the 202 FDR variants are enriched for functional variants 
with potential relevance to CAD pathogenesis.

Post-hoc power calculations
Of the 9.4 million variants analyzed, 8.2 million (87%) were highly 
powered (>90%) to detect an OR 1.3 (Supplementary Table 7). The 
number of variants with power of 90% to detect associations varied 
systematically with allele frequency and imputation quality (results 
for OR = 1.3 shown in Supplementary Fig. 4); 1.5 million of the  
2.7 million (55%) low-frequency variants (0.005 < MAF < 0.05) in the 
meta-analysis were adequately powered to detect an OR 1.3, as most of 
these variants were accurately imputed (median imputation quality = 0.94,  
interquartile range = 0.88–0.98). Of the more common variants (MAF 
> 0.05), almost all (99.8%) were highly powered to detect an OR 1.3. 
However, in terms of total coverage of low-frequency variation, only 
15.3% of the 9.3 million low-frequency variants (0.005 < MAF < 0.05)  
in the 1000 Genomes Project phase 1 v3 training set met the 

 allele frequency and imputation quality entry criteria in the 60% of the 
studies required for inclusion in the meta-analysis and were predicted 
to be adequately powered to detect significant associations; 100% of 
these variants were highly powered (>90%) to detect an OR 3.15.

Interrogation of ten newly identified additive and recessive loci
We examined whether there were any expression quantitative trait loci 
(eQTLs), associations with known cardiovascular risk factors or prior 
evidence of the involvement of genes with atherosclerotic processes 
in each of the newly identified loci to define putative mechanisms by 
which the loci might affect risk of CAD.

At the chromosome 4q12 (REST-NOA1) locus, the lead SNP 
rs17087335 lies within an intron of the NOA1 gene (nitric oxide– 
associated 1); 23 SNPs in LD (r2 > 0.8) showed CAD associations  
(P < 1 × 10−6) across the NOA1 and REST (repressor element-1  
silencing transcription factor) genes (Fig. 4a). NOA1 encodes a 
GTP-binding protein involved in the regulation of mitochondrial 
respiration and apoptosis19. REST encodes a transcription factor that 
suppresses the expression of voltage-dependent sodium and potassium 
channels20; it has been shown to maintain vascular smooth muscle  
cells (VSMCs) in a quiescent, non-proliferative state and is itself 
downregulated in neointimal hyperplasia21. SNP rs17087335 showed 
a cis-eQTL signal for REST in lung22 (Supplementary Table 14).

At the chromosome 7q36.1 (NOS3) locus, the lead SNP rs3918226 
(MAF = 0.07) lies in the first intron of NOS3 (nitric oxide synthase 3) 
(Fig. 4b). This SNP was tentatively associated with CAD (OR = 1.14,  
P = 1.4 × 10−4) in a candidate gene meta-analysis based on 15,600 

Figure 2 A circular Manhattan plot  
summarizing the 1000 Genomes Project  
CAD association results. The meta-analysis 
statistics were adjusted for overdispersion 
(before applying double genomic control,  
 = 1.18); overdispersion is predicted to be 

a regular feature in GWAS under a polygenic 
inheritance model60. The association statistics 
were capped at P = 1 × 10−20. Genome-wide 
significant variants (P < 5 × 10−8) are indicated 
by red triangles. New CAD-associated loci are 
indicated by red text (Table 1). Previously 
reported loci showing genome-wide significant 
association are indicated by black text, and 
those showing nominal significance (P < 0.05) 
in our meta-analysis are indicated by blue 
text (Supplementary Table 2). The inner track 
shows the imputation quality scores of the 
lead variants in the new loci. The middle track 
shows numbered chromosome ideograms with 
centromeres represented by pink bars.

Figure 3.2: (taken directly from the publication Nikpay et al [77]) A circular Manhattan

plot summarizing the 1000G Genomes Project CAD association results. Red text: ten

new CAD-associated loci. Black text: previously reported loci showing genome-wide

significant association. Blue text: previously reported loci showing nominal significance

(p < 0.05). Inner track: the imputation quality of the lead variants in the new loci. Middle

track: numbered chromosome ideograms with centromeres represented by pink bars.
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further performed conditional and joint analysis, by which 202 FDR variants (median

MAF = 0.22) were identified (FDR q value < 0.05). Fifteen low-frequency (MAF < 0.05)

variants explained only 2.1±0.2% of CAD heritability, and all were either a lead variant

or were jointly associated (q value < 0.05) with a common variant. Ninety-five variants

(explaining 13.3±0.4% of CAD heritability) mapped to 44 significant loci from GWAS,

suggesting the presence of multiple independent signal at a single locus.

3.1.2 X chromosome GWAS analysis

Study purpose. The following description refers to results that were generated in the

X chromosome GWAS analysis, as part of the efforts contributed to CARDIoGRAM-

plusC4D for CAD in the 1000G era, which has been summarized in the manuscript Loley

et al [59].

Single-study analysis

We investigated the genome-wide association for the non-pseudo-autosomal region

of chromosome X in the GerMIFS-V study. The association analysis was performed

assuming no inactivation and no sex interaction (model Ia), with inactivation and no

sex interaction (model Ib), no inactivation and with sex interaction (model IIa), and

with both inactivation and sex interaction (model IIb). Our single study resulted in 77

variants reaching genome-wide significance (p < 5⇥10�8) in any of the models out of

all 195,102 variants with good imputation quality (INFO > 0.8). The effect estimates

and standard errors from four different models assuming X-inactivation status were

submitted to the statistical team of the CARDIoGRAMplusC4D consortium [15] for

further post-imputation QC and meta-analyses.
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Meta-analysis

The meta-analysis for 1000G CAD X-chromosome GWAS was performed by the sta-

tistical team of the CARDIoGRAMplusC4D consortium [59], with about 200,000 X

chromosomal SNPs after QC and 43,120 cases with CAD and 58,291 controls from 35

studies in total. The results have been submitted and are under review [59].

The meta-analysis with random effect models were calculated for each of the four

models (i.e., Ia, Ib, IIa, IIb). The meta-analyses on the effect estimates for the SNP-sex

interaction were also performed in the same way. As a result, none of the statistical

models used for meta-analysis revealed genome-wide significant association with CAD

for any SNP, even with stricter quality control or excluding non-European individuals

[59].

3.2 Understanding the genetic complexity of GWAS sig-

nals of CAD

3.2.1 Multiple independent signals at known CAD susceptibility loci

Study purpose. The following description refers to results that were generated in

the intra-locus allelic heterogeneity analysis, as part of the efforts contributed to the

manuscript [112].

Known CAD loci harboring multiple independent signals

From all the suggestive CAD susceptibility I compiled variants reported in the conditional

and joint analysis results of the 1000G CAD GWAS [77]. For each variant the risk allele

was defined as the one with positive beta from the joint analysis. For each locus, the lead

variant was defined as the one with the most significant p-value from the joint analysis
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that was also available in our datasets. In total we obtained a list of 80 variants at 25 loci

(Table 3.1).

Known Locus SNP Chr Risk/

Other

Allele

(C/J)

RAF beta

(C/J)

p (C/J) Avail-

ability

Lead-

SNP

PPAP2B rs9970807 1 C/T 0.92 0.13 2.12E-15 1 1

PPAP2B rs61772626 1 G/A 0.12 0.08 3.76E-07 1 0

SORT1 rs7528419 1 A/G 0.79 0.08 4.88E-08 1 1

SORT1 rs1277930 1 A/G 0.74 0.07 4.08E-06 1 0

SORT1 chr1:110299165:I 1 D/I 0.63 0.07 1.21E-10 0 0

IL6R rs6689306 1 A/G 0.45 0.06 2.61E-09 1 0

IL6R rs72702224 1 A/G 0.4 0.08 3.11E-12 1 1

MIA3 rs67180937 1 G/T 0.66 0.09 3.37E-16 1 1

MIA3 rs75082168 1 A/T 0.04 0.15 4.75E-06 1 0

ABCG5/ABCG8 rs13420649 2 C/T 0.21 0.08 1.30E-08 1 1

ABCG5/ABCG8 chr2:44074126:D 2 I/D 0.74 0.14 7.41E-19 0 0

VAMP5/VAMP8/GGCX rs11126366 2 C/G 0.81 0.09 1.50E-08 1 1

VAMP5/VAMP8/GGCX rs11126387 2 C/T 0.45 0.07 1.00E-07 1 0

ZEB2/ACO74093.1 rs7564469 2 C/T 0.2 0.06 2.71E-06 1 0

ZEB2/ACO74093.1 rs17678683 2 G/T 0.09 0.09 6.20E-08 1 1

ZEB2/ACO74093.1 rs2252654 2 A/G 0.31 0.05 2.01E-06 1 0

WDR12 rs7559543 2 T/C 0.18 0.06 2.16E-06 1 1

WDR12 chr2:203828796:I 2 I/D 0.11 0.15 7.91E-21 0 0

EDNRA rs4593108 4 C/G 0.8 0.1 1.83E-15 1 1

EDNRA rs6842241 4 A/C 0.17 0.09 5.63E-12 1 0

GUCY1A3 chr4:156366138:I 4 D/I 0.96 0.21 1.12E-12 0 0

GUCY1A3 rs13140296 4 G/A 0.53 0.06 2.22E-09 1 0

GUCY1A3 rs1001037 4 T/C 0.85 0.07 7.72E-08 1 0

Continued on next page
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Known Locus SNP Chr Risk/

Other

Allele

(C/J)

RAF beta

(C/J)

p (C/J) Avail-

ability

Lead-

SNP

GUCY1A3 rs72685791 4 G/A 0.8 0.08 9.81E-11 1 1

PHACTR1 chr6:12619932:D 6 I/D 0.37 0.05 2.84E-06 0 0

PHACTR1 rs9349379 6 G/A 0.43 0.18 0.00E+00 1 1

TCF21 rs12202017 6 A/G 0.7 0.06 1.80E-10 1 1

TCF21 rs2327433 6 G/A 0.14 0.07 6.08E-07 1 0

SLC22A3/LPAL2/LPA rs9364537 6 G/A 0.32 0.09 2.63E-15 1 0

SLC22A3/LPAL2/LPA chr6:160265331:D 6 I/D 0.98 0.25 8.62E-09 0 0

SLC22A3/LPAL2/LPA rs6932293 6 C/T 0.04 0.22 3.59E-06 1 0

SLC22A3/LPAL2/LPA rs624249 6 C/A 0.63 0.06 8.49E-09 1 0

SLC22A3/LPAL2/LPA chr6:160776695:I 6 I/D 0.01 0.43 3.13E-09 0 0

SLC22A3/LPAL2/LPA rs9457927 6 G/A 0.02 0.43 4.77E-24 1 1

SLC22A3/LPAL2/LPA rs55730499 6 T/C 0.06 0.19 7.67E-09 1 0

SLC22A3/LPAL2/LPA rs12201989 6 A/T 0.83 0.08 1.14E-06 1 0

SLC22A3/LPAL2/LPA rs56393506 6 T/C 0.16 0.12 6.77E-14 1 0

SLC22A3/LPAL2/LPA rs1998043 6 G/A 0.16 0.09 3.19E-09 1 0

SLC22A3/LPAL2/LPA rs6935921 6 T/C 0.65 0.07 2.48E-10 1 0

SLC22A3/LPAL2/LPA rs186696265 6 T/C 0.01 0.35 5.47E-12 1 0

SLC22A3/LPAL2/LPA rs75176946 6 T/C 0.01 0.24 3.21E-06 0 0

SLC22A3/LPAL2/LPA rs112215831 6 G/A 0.9 0.1 6.00E-07 1 0

9p21 rs13301437 9 C/T 0.14 0.08 1.37E-06 1 0

9p21 rs7855162 9 C/T 0.04 0.16 4.17E-09 1 0

9p21 rs1970112 9 C/T 0.49 0.12 4.50E-22 1 0

9p21 rs62555370 9 G/A 0.88 0.09 1.99E-07 1 0

9p21 rs1333046 9 A/T 0.5 0.12 1.41E-22 1 1

Continued on next page
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p (C/J) Avail-

ability

Lead-

SNP

KIAA1462 rs7917431 10 C/T 0.66 0.05 1.24E-06 1 0

KIAA1462 rs2487928 10 A/G 0.42 0.06 7.83E-11 1 1

CXCL12 rs58030109 10 A/G 0.02 0.17 3.14E-06 1 0

CXCL12 rs11238720 10 G/C 0.13 0.1 1.71E-09 1 0

CXCL12 rs1870634 10 G/T 0.64 0.07 4.68E-13 1 0

CXCL12 rs1746050 10 C/A 0.85 0.12 6.38E-16 1 1

CYP17A1/CNNM2/NT5C2 rs11191416 10 T/G 0.87 0.09 5.97E-11 1 1

CYP17A1/CNNM2/NT5C2 rs11813268 10 C/T 0.83 0.07 1.38E-07 1 0

SWAP70 rs4627080 11 G/T 0.1 0.07 2.40E-06 1 0

SWAP70 rs10840293 11 A/G 0.55 0.06 4.74E-09 1 1

SH2B3 rs7967514 12 A/G 0.06 0.13 1.03E-06 1 0

SH2B3 rs4766578 12 T/A 0.43 0.09 7.39E-15 1 1

COL4A1/A2 rs11617955 13 T/A 0.89 0.1 1.39E-09 1 0

COL4A1/A2 rs4773141 13 G/C 0.36 0.08 1.78E-10 1 0

COL4A1/A2 rs11838776 13 A/G 0.26 0.07 8.86E-11 1 1

COL4A1/A2 rs9515203 13 T/C 0.76 0.07 1.08E-08 1 0

COL4A1/A2 rs34905765 13 T/C 0.1 0.08 6.41E-07 1 0

COL4A1/A2 rs56003851 13 C/A 0.8 0.08 1.97E-10 1 0

COL4A1/A2 rs61969072 13 G/T 0.17 0.06 2.87E-06 1 0

ADAMTS7 rs11635330 15 C/T 0.6 0.05 3.30E-07 1 0

ADAMTS7 rs4887109 15 C/T 0.68 0.08 4.46E-11 1 1

ADAMTS7 rs4468572 15 C/T 0.59 0.06 1.67E-08 1 0

BCAS3 rs7212798 17 C/T 0.15 0.1 9.51E-12 1 1

BCAS3 rs2270114 17 C/G 0.65 0.06 2.01E-07 1 0

Continued on next page
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ability

Lead-

SNP

LDLR rs12979495 19 G/A 0.75 0.05 6.97E-07 1 0

LDLR rs56289821 19 G/A 0.9 0.11 2.45E-10 1 1

LDLR rs6511721 19 G/A 0.48 0.06 4.59E-07 1 0

APOE/APOC1 rs118147862 19 G/A 0.97 0.17 9.84E-08 1 0

APOE/APOC1 rs405509 19 T/G 0.5 0.06 1.45E-09 1 1

APOE/APOC1 rs4420638 19 G/A 0.17 0.08 2.08E-09 1 0

APOE/APOC1 chr19:45801579:D 19 D/I 0.38 0.05 2.02E-07 0 0

KCNE2 rs28451064 21 A/G 0.12 0.12 3.08E-12 1 1

KCNE2 rs7280276 21 A/G 0.24 0.06 9.98E-07 1 0

Table 3.1: Known CAD loci harboring multiple independent signals

The number of multiple independent signals was highest at the LPA locus (14 vari-

ants), followed by COL4A1/A2 (7 variants) and the 9p21 locus (5 variants) (Table 3.2).

Three loci (ABCG5/ABCG8, WDR12, PHACTR1) were reported to harbor two inde-

pendent variants, but only one of the variants at each of these loci was available in the

individual-level genotypes after QC. The MIA3 locus was also reported to harbor two

independent variants, but due to the low risk allele frequencies of one of them (0.03) the

data were inconclusive in most samples. Therefore, these four loci were filtered out in

further examination.

Combined effect of loci harboring multiple independent signals

First, I aimed to examine whether the combined analysis of variants at loci with multiple

independent signals would give stronger effects on CAD risk than effects that had been
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Known Locus No. Independent Signals

SLC22A3/LPAL2/LPA 14

COL4A1/A2 7

9p21 5

APOE-APOC1 4

CXCL12 4

GUCY1A3 4

ADAMTS7 3

LDLR 3

SORT1 3

ZEB2/ACO74093.1 3

ABCG5/ABCG8 2

BCAS3 2

CYP17A1/CNNM2/NT5C2 2

EDNRA 2

IL6R 2

KCNE2 (gene desert) 2

KIAA1462 2

MIA3 2

PHACTR1 2

PPAP2B 2

SH2B3 2

SWAP70 2

TCF21 2

VAMP5/VAMP8/GGCX 2

WDR12 2

Table 3.2: Number of independent signals at known CAD loci. The list were compiled

based on the conditional and joint analysis results of 1000G CAD GWAS [77].
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reported for the lead SNPs in our individual-level genotype analysis. For each of the 21

loci, two measures were calculated: one score based only on a lead variant (lead-variant

PGS), which served as a baseline effect of the known locus in our individual genotype

data; another score based on multiple independent variants at a locus (multi-variant PGS)

and the risk of CAD for comparison. A basic logistic regression model was applied for

lead- and multi- variant PGS.

The reported risk loci for CAD were robust in our individual level datasets for all

21 loci considered to harbor multiple signals, as the positive effect could be observed

for almost all the lead-variant PGS, despite the possible sampling difference (Table 3.3).

The only exception is at the VAMP5/VAMP8/GGCX locus, which obtained a negative

effect for the multi-variant PGS. For 14 out of the 21 loci, the lead-variant PGS showed

a marginally associated trend (meta-analysis p-value<0.05), and for 17 out of 21 loci, the

multi-variant PGS was associated (meta-analysis p-value<0.05) with CAD.

A combined effect was observed for most of the loci, which was measured as the odds

ratio for each SD of the polygenic scores. When comparing the effect of scores based on

multiple variants versus that of the single lead variant for each of the 21 loci, two-third

of them showed a larger effect and explained more variance (Figure 3.3). Nevertheless,

the improvements of fit for additional variance explained at a single locus were all very

slight, ranging from 0.02% (LDLR) to 0.24% (COL4A1/A2). The only exception was

at the APOE locus, which had additional 4.367% of variance explained. However, the

p-value indicated non-significance for both PGS (p>0.2) (Table 3.3). The remaining

one-third of the 21 loci did not show a larger effect or more variance explained, only to a

slight degree as well (Table 3.3, Figure 3.3).

Among all these loci, four achieved genome-wide significance (p < 5⇥10�8) with

multi-variant PGS, including three loci that did not achieve the same significance level

for the lead-variant PGS (the SLC22A3/LPAL2/LPA locus, the COL4A1/A2 locus, and

the KCNE2 (gene-desert) locus), and the 9p21 locus, which already shows a high effect
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by only the lead-variant itself. All these four loci presented a combined effect of OR >

1.09 for one standard deviation increase of multi-variant PGS, as well as a goodness of

fit measure R2 > 10% (Table 3.3).

Prediction evaluation

To further explore the utility of a PGS approach in predicting CAD risk, we selected two

loci with the potentially largest predictive value for this investigation, i.e., SLC22A3/LPAL2/LPA

and COL4A1/A2. The two loci were the only ones that not only achieved genome-wide

significance, but also showed a much larger additional R2 compared to others. Also,

they were reported to harbor the largest number of independent signals (14 at LPA; 7

at COL4A1/A2) . We therefore performed ROC analysis to compare the discriminatory

ability of the regression model based on multi-variant PGS versus lead-variant PGS.

However, neither of the two loci showed satisfactory AUC (above 0.8) in any study.

The AUC of multi-variant PGS range from 0.52 (LURIC) to 0.77 (Cardiogenics) for LPA;

and from 0.54 (LURIC) to 0.77 (Cardiogenics) for COL4A1/A2. the measure of AUC,

based on paired T-test for the AUC values for all eight studies, the PGS was significantly

but only slightly better in discriminating CAD patients from controls at the LPA locus,

and below the marginal significance level (0.05) at the COL4A1/A2 locus (Figure 3.4).

Intra-locus allelic heterogeneity

For the four loci showing the largest multi-variant effects (the SLC22A3/LPAL2/LPA

locus, the COL4A1/A2 locus, and the KCNE2 (gene-desert) locus , and the 9p21 locus), I

further interrogated the distribution of multiple variants among the individuals.

I grouped all individuals by the number of risk alleles and calculated an relative odds

ratio based on individual counts in CAD cases and controls. For all of these four loci

an incremental increase in the odds ratios was observed with increasing numbers of

risk alleles. Comparing individuals with the highest number of risk alleles with those
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Known Locus
Lead-variant PGS Multi-variant PGS

Additional R2(%)

OR .95CI P R2(%) OR .95CI P R2(%)

SLC22A3/LPAL2/LPA 1.09 [1.06,1.13] 2.86E-07 10.07 1.14 [1.11,1.17] 4.44E-16 10.3 0.23

COL4A1/A2 1.04 [1.01,1.07] 9.19E-02 9.83 1.099 [1.07,1.13] 1.50E-08 10.08 0.241

KCNE2 1.09 [1.06,1.12] 6.43E-07 10.07 1.096 [1.06,1.13] 3.93E-08 10.11 0.039

CXCL12 1.07 [1.04,1.1] 8.64E-05 9.93 1.087 [1.06,1.12] 8.76E-07 9.99 0.062

BCAS3 1.05 [1.02,1.08] 2.37E-04 9.92 1.055 [1.02,1.09] 2.68E-05 9.95 0.031

PPAP2B 1.06 [1.03,1.09] 5.20E-03 9.9 1.076 [1.04,1.11] 6.10E-05 9.95 0.049

EDNRA 1.05 [1.02,1.08] 4.88E-02 9.86 1.058 [1.03,1.09] 2.00E-04 9.92 0.067

LDLR 1.06 [1.03,1.1] 1.94E-03 9.94 1.067 [1.04,1.1] 5.33E-04 9.96 0.02

CYP17A1/CNNM2/NT5C2 1.06 [1.03,1.09] 3.53E-03 9.91 1.065 [1.03,1.1] 1.12E-03 9.93 0.021

ADAMTS7 1.05 [1.02,1.08] 1.01E-01 9.9 1.063 [1.03,1.09] 6.21E-03 9.95 0.043

IL6R 1.04 [1.01,1.07] 7.14E-02 9.9 1.054 [1.02,1.08] 1.10E-02 9.94 0.04

GUCY1A3 1.03 [1,1.06] 6.38E-01 9.81 1.051 [1.02,1.08] 5.38E-02 9.87 0.054

ZEB2/ACO74093.1 1.02 [0.99,1.05] 5.57E-01 9.8 1.046 [1.02,1.08] 5.78E-02 9.85 0.045

APOE/APOC1 1.02 [0.99,1.06] 2.79E-01 5.54 1.044 [1.01,1.07] 2.83E-01 9.91 4.367

9p21 1.2 [1.16,1.23] 2.05E-31 10.67 1.193 [1.16,1.23] 6.98E-31 10.66 -0.006

SORT1 1.09 [1.06,1.13] 3.78E-07 10.07 1.094 [1.06,1.13] 7.57E-07 10.06 -0.005

KIAA1462 1.06 [1.03,1.09] 1.18E-04 10.02 1.043 [1.01,1.07] 4.98E-05 10.01 -0.01

SH2B3 1.06 [1.03,1.09] 1.56E-04 9.99 1.062 [1.03,1.09] 2.95E-04 9.98 -0.005

TCF21 1.06 [1.03,1.09] 1.76E-05 9.95 1.059 [1.03,1.09] 4.30E-03 9.9 -0.056

SWAP70 1.03 [1,1.06] 8.48E-03 9.9 1.034 [1,1.06] 2.64E-02 9.87 -0.027

VAMP5/VAMP8/GGCX 1.01 [0.99,1.04] 3.20E-01 9.82 0.997 [0.97,1.03] 5.86E-01 9.81 -0.01

Table 3.3: Combined effect of loci harboring multiple independent signals. For each

locus both, lead-variant PGS and multi-variant PGS were calculated. Logistic regression

was performed to estimate the effect of two PGS. R2 represents the Nagelkerke’s R2.
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Figure 3.4: ROC plot for multi-variant PGS. (a) the LPA locus, (b) the COL4A1/A2 locus.

carrying the lowest number of risk alleles, the relative odds ratio of CAD ranged from

0.93 (nRA=6) to 2.06 (nRA=15) at the LPA locus, from 0.87 (nRA=3) to 1.50 (nRA=11)

at the COL4A1/A2 locus, from 1 (nRA=0) to 1.52 (nRA=4) at the KCNE2 (gene desert)

locus and from 0.87 (nRA=0) to 1.23 (nRA=7) at the 9p21 locus, as shown in Figure 3.5.

3.2.2 Polygenic score of other traits in relation to CAD

Inverse genetic association between height and CAD

Study purpose. The following description refers to results that were generated in the

multi-locus genetic risk score analysis between height and CAD, as part of the efforts

contributed to the publication Nelson et al [75].

I applied a weighted multi-locus polygenic score to represent the genetic risk for

height based on the reported height increasing variants from GWAS studies [57]. Subse-

quently all individuals were categorized into quartiles corresponding to four grades of the

genetic increase in height. Table 3.4 shows a graded trend (p = 1.14⇥10�11) between
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(d) KCNE2 (gene desert)

Figure 3.5: Incremental increase of risk with additive load of risk alleles. Barplot:

Relative frequency distributions of number of risk alleles in CAD patients and controls,

respectively. CI-lines: Relative CAD log(odds ratios) and 95% confidence intervals for

individuals in each group with the incremental increases of number of risk alleles in

comparison with the most majority group as the reference group. P-value: Cochrane-

Armitage test for increase trend of the odds ratio. (a) the 9p21 locus, (b) the LPA locus,

(c) the COL4A1/A2 locus, (d) the KCNE2 (gene desert) locus.

61



the presence of an increased height PGS and a reduced ratio of CAD cases in the five

GerMIF studies.

Study Abbr. Quartiles of Height PGS Q1 Q2 Q3 Q4

G1
N cases (CAD) 111 151 162 208

N controls (CAD) 445 405 394 349

G2
N cases (CAD) 324 307 304 267

N controls (CAD) 295 311 314 352

G3
N cases (CAD) 356 272 253 177

N controls (CAD) 273 356 376 452

G4
N cases (CAD) 200 246 248 269

N controls (CAD) 325 279 277 257

G5
N cases (CAD) 708 641 610 500

N controls (CAD) 310 376 407 518

Table 3.4: Number of individuals in each category of PGS quartiles for height

These results were sent to our collaborator Christopher Nelson at University of

Leicester, where the genetic score based on WTCCC cohort was integrated. Afterwards,

regression analysis was performed to model the multi-locus polygenic scores for height

to estimate the combined odds ratios for CAD, which have been published in the process

of my thesis work [75]. An inverse association between height and CAD was confirmed,

with odds ratio 0.74; 95% CI, 0.68 to 0.84 for height quartile 4 versus quartile 1 (P <

0.001) [75]. Figure 3.6 is taken from the original publication, which presents the results

of association analysis performed by Nelson et al based on the integrated individuals of

both our five GerMIFS cohorts and the WTCCC cohorts (Figure 3.6).
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A key advantage of using a genetic approach 
over a traditional epidemiologic approach to in-
vestigate an association such as that between 
height and CAD is that genotypes (because they 
are randomly distributed at birth) are unlikely to 
be confounded by lifestyle or environmental fac-
tors. Regardless of whether such factors are 
known (e.g., poor nutrition or socioeconomic 
conditions during childhood) or unknown, they 
can independently affect achieved height and the 
risk of CAD and lead to a spurious association 
between them (Fig. 3). It is nonetheless possible 
that the genetic variants themselves affect height 
and CAD risk through entirely different mecha-
nisms. However, given the large number of vari-
ants that we included in the analysis, all of 
which were selected only because of their asso-
ciation with height, it is likely that at least some 
of the processes are shared. This hypothesis is 
supported by the finding from the individual-
level analysis of genetic risk score showing a 
direct correlation between the presence of an 
increasing number of height-related alleles and a 
reduction in the risk of CAD (Fig. 2).

A genetic approach also offers novel methods 
to explore potential mechanisms linking shorter 
height with an increased risk of CAD (Fig. 3). In 
this context, we performed two analyses. First, 
we applied the same genetic approach to inves-
tigate the association between height-related 
genetic variants and several established and po-
tential cardiovascular risk factors. Notable nega-
tive findings here include the lack of an overall 
effect of height-associated SNPs on body-mass 
index. This suggests that the association be-

Table 2. Biologic Pathways Identified by Means of IPA of Height-Associated Variants.*

Canonical Pathways in IPA Q Value† Ratio‡ Proteins in Pathway

Factors promoting cardiogenesis  
in vertebrates

0.003 0.07 NKX2–5, BMP2, TGFB2, MEF2C, BMP6, PRKCZ, NOG

Growth hormone signaling 0.03 0.06 SOCS2, IGF1R, GH1, SOCS5, PRKCZ

Axonal guidance signaling 0.03 0.06 FGFR4, SOCS2, IGF1R, INSR, SOCS5

STAT3 pathway 0.03 0.03 SLIT3, PAPPA2, PAPPA, RHOD, ADAM28, GNA12, 
BMP2, PTCH1, HHIP, NFATC4, BMP6, PRKCZ

BMP signaling pathway 0.03 0.06 NKX2-5, RUNX2, BMP2, BMP6, NOG

TGF-β signaling 0.04 0.05 NKX2-5, AMH, RUNX2, BMP2, TGFB2

IGF-1 signaling 0.049 0.05 SOCS2, IGF1R, IGFBP7, SOCS5, PRKCZ

* BMP denotes bone morphogenetic protein, IGF-1 insulin-like growth factor 1, IPA Ingenuity Pathway Analysis, STAT3 
signal transducer and activator of transcription 3, and TGF-β transforming growth factor β.

† The Q value was calculated with the use of the Benjamini–Hochberg method for determining the false discovery rate.
‡ The ratio is the proportion of the genes in the IPA that were part of the input list for the height-related genes.
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Figure 2. Analysis of the Association between the Pres-
ence of an Increasing Number of Height-Related Al-
leles and the Risk of CAD, According to Quartile of Ge-
netic Risk Score (GRS).

The analysis was performed in 18,249 samples (including 
8240 obtained from patients with CAD) with the use of 
individual-level genotype data. Shown are odds ratios 
and 95% confidence intervals. Participants were divided 
into quartiles on the basis of the number of height- 
increasing alleles that were present, with quartile 1 
(reference quartile) carrying the fewest.

Figure 3.6: (taken directly from the original publication Nelson et al [75]). Inverse genetic

association between height and CAD. Analysis of the association between the presence

of an increasing number of height-related alleles and the risk of CAD, according to

quartile of genetic risk score. Points and Lines: odds ratios and 95% confidence intervals.

Quartile 1 (reference) were participants carrying the fewest number of height-increasing

alleles.
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No association between genetic risk variants of rheumatoid arthritis and CAD

Study purpose. The following description refers to results that were further used in the

multi-locus genetic risk score analysis between rheumatoid arthritis (RA) and CAD, as

part of the efforts contributed to the manuscript [46].

I applied a weighted multi-locus polygenic score to represent the genetic risk for RA,

based on all genetic variants known to affect RA risk [29]. No difference was noticed

between the RA-PGS in CAD cases and controls (p = 0.26). Then, all individuals

were categorized into tertiles corresponding to three grades of genetic risk for RA, and

logistic regression was performed to estimate the association between CAD and tertiles

of multi-locus RA PGS. A non-significant result was obtained (p = 0.21) (Table 3.5 ,

Figure 3.7). Table 3.5 shows the number of individuals in each category of PGS tertiles

for RA, the median number of RA risk alleles in each category as well as the standard

error. An odds ratio relative to the lowest RA risk groups was also calculated. No specific

trend was noticed comparing CAD cases and controls (Figure 3.7).

Study
Tertiles of RA PGS

Q1 Q2 Q3

G1

N cases (CAD) 183 221 218

N controls(CAD) 541 503 507

N Risk Alleles (RA) Median 50 54 57

N Risk Alleles (RA) Se 0.098 0.075 0.1

CAD log(OR) vs Q1 0 0.262 0.24

G2

N cases (CAD) 394 404 394

N controls(CAD) 422 412 422

N Risk Alleles (RA) Median 50 54 57

N Risk Alleles (RA) Se 0.126 0.11 0.119

CAD log(OR) vs Q1 0 0.049 0

Continued on next page
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Table 3.5 – Continued from last page

Study
Tertiles of RA PGS

Q1 Q2 Q3

G3

N cases (CAD) 367 352 336

N controls(CAD) 465 480 496

N Risk Alleles (RA) Median 51 54 58

N Risk Alleles (RA) Se 0.119 0.107 0.11

CAD log(OR) vs Q1 0 -0.073 -0.153

G4

N cases (CAD) 311 322 321

N controls(CAD) 386 374 376

N Risk Alleles (RA) Median 51 54 58

N Risk Alleles (RA) Se 0.134 0.113 0.127

CAD log(OR) vs Q1 0 0.066 0.0578

G5

N cases (CAD) 796 804 837

N controls(CAD) 541 533 500

N Risk Alleles (RA) Median 50 54 58

N Risk Alleles (RA) Se 0.096 0.089 0.094

CAD log(OR) vs Q1 0 0.025 0.129

WT

N cases (CAD) 610 619 671

N controls(CAD) 994 984 933

N Risk Alleles (RA) Median 50 54 57.5

N Risk Alleles (RA) Se 0.086 0.078 0.086

CAD log(OR) vs Q1 0 0.025 0.16

Continued on next page
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Table 3.5 – Continued from last page

Study
Tertiles of RA PGS

Q1 Q2 Q3

CG

N cases (CAD) 131 130 121

N controls(CAD) 131 132 141

N Risk Alleles (RA) Median 49 54 58

N Risk Alleles (RA) Se 0.167 0.139 0.187

CAD log(OR) vs Q1 0 -0.015 -0.153

Table 3.5: Number of individuals in each category of PGS tertile for RA
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Figure 3.7: Odds ratio of CAD for each category of PGS tertiles for RA

3.3 Detecting epistasis that underlies CAD

Study purpose. The following description refers to methods that were generated in the

epistasis analysis of CAD, as part of the efforts contributed to the manuscript [113].
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3.3.1 Broad-sense of CAD susceptibility region

Knowing that multiple independent signals at the surrounding region of known CAD

lead-SNPs could explain additional heritability to CAD, we aimed to define a broad-sense

of CAD susceptibility region, on which basis we perform the epistasis analysis. For

this purpose, we physically expanded progressively the region of the known CAD loci

at a certain flanking range, so that growing numbers of variants within the expanded

region could provide additional heritability. To decide a proper threshold for the flanking

range, we calculated the narrow-sense heritability for all variants at the expanded step

from ±100kb to ±1mb surrounding each CAD lead-SNP at the known risk loci. An

incremental increase in the heritability could be observed with enlargement. However,

a plateau was achieved at approximately ±500kb surrounding the lead-SNPs (Figure

3.8). The additional increase was then more of moderate nature. Therefore, we decided

on ±500kb as the surrounding region to expand the searching space. Accordingly, all

independent (LD-pruned r2 < 0.5) variants within this region were picked for downstream

analyses.

3.3.2 Significant trans-epistatic SNP pair for CAD

We explored the statistical epistasis in two steps, as shown in Figure 2.1. The primary

filtering step was to find potential epistasis candidates out of all independent (LD-pruned

r2 < 0.5) variants within the broad-sense CAD susceptibility regions (n = 8,068). And

then in the main screening step we included all variants without LD-pruning for fine-

mapping of the epistasis candidates.

As a result, there was one SNP-pair which passed filtering. The two SNPs, rs71524277

[T/C] on chromosome 7 (effect allele frequency (EAF) C = 0.07) and rs679958 [T/C] on

chromosome 13 (EAF T = 0.27), showed a statistical significant trans-epistasis effect

on CAD (meta-analysis p-value = 3.06⇥10�11). Both SNPs were well-imputed in our
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Figure 3.8: Increased variance explained with physically expansion for CAD lead-SNPs.

All variants in the flanking region around the lead-variants at these 56 known loci were

extracted from the merged imputed data for all studies. The LD-adjusted kinship matrix

was calculated with LDAK [92] and forwarded to GCTA [111] to estimate the narrow-

sense heritability of CAD in the measure of the total variance in liability (assuming the

prevalence of CAD as 5%) explained by all variants together.
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datasets, with mean INFO score of 0.95 (minimum of 0.866) for rs71524277 in all studies

and mean INFO 0.96 (minumum 0.86) for rs679958.

The genetic epistasis model suggested both SNPs were heterozygous for the epista-

sis. Although the epistasis effect was also identified between rs71524277-C-dominant

and rs679958-T-heterozygous (meta-analysis p-value = 1.35⇥ 10�10), and between

rs71524277-C-dosage and rs679958-T-heterozygous (meta-analysis p-value = 2.46⇥

10�9), but not as significant as the model for both SNPs being heterozygous. Figure

3.9 shows the study-wise effect for the epistasis SNP pair in a forest plot, where a very

consistent effect across all studies was observed, with the meta-analysis effect for the

interaction term beta as 0.58[0.41,0.75].

Study

GerMIFSI
GerMIFSII
GerMIFSIII
GerMIFSIV
GerMIFSV
LURIC
WTCCC
MIGen
Cardiogenics

Summary

beta

0.35
1.00
0.42
0.79
0.72
0.33
0.40
0.57
0.14

0.58

lo95CI

−0.4600
 0.5034
−0.2163
 0.1912
 0.2836
−0.2542
−0.0071
 0.2290
−0.8579

0.41

hi95CI

1.15
1.51
1.06
1.40
1.16
0.92
0.80
0.92
1.14

0.75

p−value

3.99e−01
8.56e−05
1.96e−01
9.85e−03
1.24e−03
2.67e−01
5.42e−02
1.09e−03
7.84e−01

3.06e−11

1 2 3 4 5

Odds Ratio

rs71524277_Het_C  rs679958_Het_T

Figure 3.9: Effects of the epistatic SNP-pair across studies.

Rs71524277 is located in the intergenic region between gene FERD3L and TWISTNB.

The nearest known CAD lead-SNP is rs2023938 in HDAC9, but the two SNPs are
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independent regarding LD (r2 < 0.0125). Rs679958 is located in the intronic region

of COL4A1. The nearest but also LD-independent (r2 < 0.0035) CAD lead-SNP is

rs4773144 located in the intronic region of COL4A2. Conditional logistic regression

(Eq. 2.3) adjusting the effect of these two lead-SNPs still gave a significant epistasis

effect (conditional analysis p-value = 6.05⇥10�11). According to the summary statistics

from the 1000G CAD GWAS [77], the two SNPs themselves do not have a univariate

association signal in an additive model, with a beta of -0.02 and p-value of 0.3 for

rs71524277-C (Figure 3.10a), and beta of 0.01 and p-value of 0.3 for rs679958-T (Figure

3.10b).
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Figure 3.10: Relative log (odds ratio) for genotypes of each single SNP in the epistasis

pair. Red: The log odds ratio (beta) with standard error (se) error-bars based on the

reported summary statistics from the 1000G CAD GWAS assuming the additive model

for rs71524277 T in (a) and rs679958 C in (b) [77]. Blue: The log odds ratio (beta) with

standard error (se) error-bars based on all individuals used in the epistasis analysis for

each of the 3 genotypes. Reference group: rs71524277 T/T in (a) and rs679958 C/C in

(b).

Figure 3.11 displays the relative effect for the 9 combinations of genotypes for the

epistasis pair, where the odds ratio of CAD for the majority group, rs71524277 T/T and
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Figure 3.11: Relative log (odds ratio) for the 9 combinations of genotypes for the epistasis

pair. The log odds ratio (beta) with standard error (se) error-bars based on all individuals

available in the epistasis analysis for each of the 9 genotype combinations are displayed.

Reference group: rs71524277 T/T and rs679958 C/C.
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rs679958 C/C, is set as the baseline for comparison. A cross over of the effect trend

could be observed when both SNPs displayed a heterozygous genotype, which is the

deviation from expected and was the interaction item being tested.

3.3.3 Potential genes intermediate between epistasis pair and CAD

In order to interpret the identified statistical epistasis, we examined whether the same

epistasis effects could be recovered on the expression level of some genes, which might

play an intermediate role in modulating CAD risk.

For this purpose we utilized the parallel genotype and gene expression data from the

Cardiogenics study (see Methods 2.1 for cohort description), where gene expression data

from monocytes and macrophages was available for part of the genotyped individuals.

The gene expression datasets were pre-processed and underwent QC by our collaborator,

Veronica Codoni, at INSERM. After adjustment for batch effect and normalization,

15,539 probes in 684 macrophage samples and 849 monocyte samples were available for

gene expression analysis. The numbers of individuals with both genotype data and gene

expression data available are shown in Table 3.6.

Monocytes Macrophages

CAD cases 354 303

CAD-free controls 389 301

All 743 604

Table 3.6: Number of individuals with both genotype and gene expression data in

Cardiogenics

First I looked at the univariate eQTL effect of single SNPs. A previous eQTL

analysis has been performed by the INSERM institute for both cis and trans eQTLs
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in these two tissues, from which we have requested the summary statistics through

the Leducq Consortium CADgenomics. Rs71524277 did not show a single eQTL

effect. For rs679958, one trans-eQTL effect with the gene SP3 in macrophages exists

(p = 1.76⇥10�6), but with a FDR of 0.52.

Therefore, we performed a specific statistical epistasis test to identify genes affected

by the epistasis pair. For gene expression in either monocytes or macrophages and sample

groups with any status of CAD cases (Table 3.6), linear regression was performed (Eq.

2.4), followed by ANOVA test (Eq. 2.5) to analyze if any gene expression level shows

difference at different genotype combinations according to the epistasis pair. Furthermore,

Pearson correlation tests were performed to identify genes whose expression level were

also correlated with the putative CAD odds ratio. As a result, 111 genes were identified

as significantly associated with the epistasis pair in any sample group (1000x permutation

p < 5⇥10�3 for both linear regression and ANOVA, and p < 5⇥10�3 for correlation) .
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Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

TMEM176B mac cases 6.90E-05 0.002496 3.52E-05 0.002496 1.63E-06

TMEM176A mac cases 1.32E-04 0.001501 7.99E-05 0.001501 5.55E-06

ATP5F1 mon all 2.46E-03 0.002496 2.34E-03 0.002496 1.20E-05

TMEM176A mon cases 1.36E-03 0.000581 8.92E-04 0.000581 1.24E-05

THAP10 mon controls 1.69E-03 0.002496 8.33E-04 0.000581 1.38E-05

TMEM176B mon cases 1.55E-03 0.001501 1.08E-03 0.000581 3.73E-05

GTF2A2 mon controls 3.27E-03 0.003496 1.88E-03 0.003496 9.27E-05

C20orf24 mon all 1.01E-03 0.001501 6.98E-04 0.001501 1.02E-04

LARGE mon cases 2.11E-03 0.001501 1.52E-03 0.001501 1.15E-04

SIGLEC1 mon controls 4.59E-03 0.003496 3.32E-03 0.001501 1.32E-04

RHOQ mon controls 1.19E-04 0.000581 7.60E-05 0.000581 1.52E-04

SPTBN2 mon all 1.70E-03 0.000581 1.20E-03 0.000581 1.87E-04

UTP23 mon cases 1.45E-03 0.001501 1.30E-03 0.001501 2.10E-04

NLRP3 mon all 2.19E-03 0.001501 8.98E-04 0.000581 2.11E-04

SPTAN1 mon cases 1.38E-04 0.000581 3.17E-04 0.000581 2.17E-04

PPP2R5A mac all 1.85E-06 0.000581 4.31E-06 0.000581 2.26E-04

PPP2R5A mac controls 1.54E-04 0.000581 1.22E-04 0.000581 2.28E-04

PDE8A mac all 3.40E-05 0.000581 1.20E-05 0.000581 2.30E-04

PGD mon all 5.96E-04 0.000581 3.44E-04 0.000581 2.57E-04

RARB mon cases 2.50E-03 0.001501 4.31E-03 0.001501 2.91E-04

Continued on next page
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Table 3.7 – Continued from last page

Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

SIGLEC10 mac all 2.10E-04 0.000581 4.10E-04 0.000581 2.96E-04

PIBF1 mon controls 1.37E-03 0.002496 2.25E-03 0.003496 3.05E-04

SDC1 mon all 5.79E-04 0.000581 3.59E-04 0.000581 3.14E-04

SEC22C mon all 3.31E-03 0.002496 2.45E-03 0.002496 3.51E-04

PSRC1 mon controls 1.98E-03 0.002496 8.46E-04 0.001501 3.56E-04

ZCRB1 mon controls 5.13E-04 0.001501 3.46E-04 0.001501 3.57E-04

PLXNA3 mon cases 3.85E-03 0.003496 4.41E-03 0.004495 3.83E-04

SSSCA1 mon all 1.48E-03 0.002496 9.31E-04 0.001501 4.63E-04

Table 3.7: Potential genes intermediate between epistasis pair and CAD. The tissues are

either monocytes (mon) or macrophages (mac); the individual groups are CAD cases,

controls, or both combined. P-values for linear regression (lm) and ANOVA test (anova)

are listed both as original (p) and as permutation adjusted (p.perm); p-values for the

correlation test (p.cor) <5⇥10�4 between the expression level and the putative CAD

odds ratio are listed here.

Most of these 111 genes only showed association in specific tissues and sample

groups. Only 14 of them displayed association (1000x permutation p<0.05) in at least

three sample groups. Table 3.7 displays the list of associated genes with p < 5⇥10�4

for correlation between expression level and the estimated odds ratio of CAD deduced

by the epistasis pair. The full list of 111 genes is available in Table A.1. However, no

gene ontology, functional categories, or pathways could be enriched based on DAVID

Bioinformatics Resources 6.8 [44] (Benjamini adjusted p-value > 0.05).
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Nevertheless, two transmembrane protein coding genes, TMEM176A and TMEM176B,

still caught our attention, as both of them showed repetitive significance (Table 3.8) based

on expression epistasis results in CAD cases in both monocytes and macrophages. The

expression levels were highly associated not only with the epistasis pair, but also with the

putative CAD odds ratio (Figure 3.12). However, the association could not be recovered

in CAD-free control samples.

Gene Tissue CAD p (lm) p.perm (lm) p (anova) p.perm (anova) p.cor

TMEM176A

mon

cases 1.40E-03 0.00058 8.90E-04 0.00058 1.20E-05

controls 8.00E-01 0.77373 7.60E-01 0.74475 5.80E-01

all 5.40E-02 0.04346 3.50E-02 0.02248 7.30E-04

mac

cases 1.30E-04 0.0015 8.00E-05 0.0015 5.60E-06

controls 9.50E-01 0.94156 8.80E-01 0.87962 3.40E-01

all 1.20E-02 0.00949 1.00E-02 0.00849 1.20E-04

TMEM176B

mon

cases 1.50E-03 0.0015 1.10E-03 0.00058 3.70E-05

controls 9.20E-01 0.91858 8.90E-01 0.87363 4.70E-01

all 4.70E-02 0.04446 3.00E-02 0.02947 8.70E-04

mac

cases 6.90E-05 0.0025 3.50E-05 0.0025 1.60E-06

controls 9.80E-01 0.97452 8.40E-01 0.83167 3.50E-01

all 7.50E-03 0.00849 5.90E-03 0.00449 6.10E-05

Table 3.8: Potential genes TMEM176A and TMEM176B intermediate between epistasis

pair and CAD. The tissues are either monocytes(mon) or macrophages(mac); the individ-

ual groups are CAD cases, controls, or both combined. P-values for linear regression

and ANOVA test are listed both as original and as permutation adjusted; p-values for the

correlation test between the expression level and the putative CAD odds ratio are also

listed.
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Figure 3.12: TMEM176A/B expressions at different genotype combinations based on the

epistasis SNP-pair (rs71524277-C-heterozygous and rs679958-T-heterozygous). In either

monocytes or macrophages from CAD case individuals, the expression of TMEM176A/B

is correlated with the putative CAD odds ratio according to the groups of epistatic

genotypes (which is displayed in Figure 3.11 ). 77



3.3.4 No epistasis effect on other CAD-related traits

In order to investigate the possibility that the epistasis pair conveys its association with

CAD via other CAD-related traits, we performed a similar statistical epistasis tests on the

expression of body-mass index, total cholesterol, LDL cholesterol, HDL cholesterol, and

triglycerides. Information on these traits was available in 7,932 individuals, 579 from

GerMIFS-I, 791 from GerMIFS-II, 3,252 from GerMIFS-V, and 3,310 from LURIC.

However, none of them have reached a marginal significance level (Table 3.9).

Study Abbr. BMI Cholesterol LDL HDL log(TG)

G1 0.21 0.67 0.58 0.3 0.39

G2 0.5 0.44 0.44 0.92 0.78

G5 0.89 0.17 0.45 0.66 0.22

LU 0.31 0.24 0.19 0.47 0.26

meta-analysis 0.6 0.16 0.26 0.7 0.22

Table 3.9: P-value for the association between the epistasis SNP-pair and five CAD-

related traits. Linear regression analysis in each study to test whether the CAD epistasis

pair (rs71524277-C-heterozygous and rs679958-T-heterozygous) also shows an epistasis

effect on any of the above five CAD-related traits. A combined p-value was calculated

via a weighted Z-score based on sample size of each study.

3.3.5 Motif enrichment with intermediate genes

The large number of genes likely to be affected in their expression by the epistasis pair

led to the assumption that the genes with these expression patterns may be co-regulated

by a common transcriptional factor. Therefore, we further investigated the putative

promoter regions (TSS±2kb DNA sequences) for the 111 genes whose expression were
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significantly associated with the epistasis pair. The DNA sequences for these 111 genes’

promoters were compared to (i) normal mode: the random sequences simulated with

same base-pair frequencies, and (ii) discriminative mode: the promoter sequences for all

other genes available on the gene expression array (see Methods 2.5.10 ).

MEME (no SSC) 19.06.16 05:56

0

1

2

b
it

s

1

T

A
G

C

2

A

T

G
C

3

G

T
A
C

4

T
C
G

5

A

G
C

6

T

A
G
C

7

G
C

8
T
G
C

9

A

T
G
C

1
0

C

A

T

G

1
1

A
T
G
C

1
2

T

A
G

C

1
3

G

T

C

1
4

A

G
T
C

1
5

T
G
C

1
6

G
C

1
7

T

G
C

1
8

T

A

G

C

1
9

A

T

C
G

2
0

A

T
G
C

2
1

A

G
T
C

2
2

A

C
T
G

2
3

G
C

2
4

T

G

C

2
5

T

C
G

2
6

T

A

G
C

2
7

G

T
C

2
8

T
C
G

2
9

A
T
G
C

(a) Normal

MEME (no SSC) 19.06.16 06:34

0

1

2

b
it

s

1

A

G
C

2

T
C
G

3

G
T
A
C

4

T
G
C

5

A
G
C

6

A

T
G
C

7

G
C

8

G
T
C

9

A

G
T
C

1
0

G

A

C

T

1
1

G

A
T
C

1
2

T

A
G

C

1
3

A

T

G
C

1
4

G
T
C

1
5

T
G
C

1
6

G
C

1
7

T
G
C

1
8

T

A

G

C

1
9

A

T

G
C

2
0

A

T
G
C

2
1

A

T
G
C

2
2

T
C
G

2
3

G
C

2
4

A

G

T

C

2
5

C
G

2
6

T

A

G
C

2
7

G
T
C

2
8

T
C
G

2
9

G

A

T
C

(b) Discriminative

Figure 3.13: Enriched DNA motif sequence based on the potential genes intermediate

between epistasis pair and CAD. (a) The top enriched motif resulting from normal mode

of MEME enrichment analysis. (b) The top enriched motif resulting from discriminative

mode of MEME enrichment analysis.

As a result, the normal mode of MEME enrichment analysis indicated one top

significant GC-rich motif with MEME E-value at 1.5⇥ 10�106 (Figure 3.13a). The

number of sequences contributing to the construction of this top motif was up to 73

(out of 105 putative promoter sequences in total). The best site for the enriched motif

predicted by Centrimo was just around the center of our given sequences, which was

actually the TSS site of our input sequences. This further supports the possibility of a

common transcriptional factor binding for the epistasis pair (Figure 3.14). The most

centrally enriched transcriptional factor binding matrix was predicted as SP2. With motif

similarity searching for the top motif using TOMTOM, several motifs from C2H2 zinc

finger transcription factors turned out to be in high similarity, headed with MA0516.1
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(SP2), MA0162.2 (EGR1), MA0528.1 (ZNF263) and MA0079.3 (SP1) (Table 3.10).

Figure 3.14: Position of the best sequence enriched site predicted by Centrimo. MEME

1 is the top enriched motif resultant from MEME (Figure 3.13a). The transcription factor

binding motifs for SP2 (MA0516.1) and EGR1 (MA0162.2) are also displayed. The

p-values represent the expected number of motifs that would have at least one region as

enriched for best matches to the motif as the reported region.

The discriminative mode provided us with similar results. The top enriched motif

deduced by MEME was also a GC-enrich sequence with an E-value=7.9⇥10�107 and the

number of sequences contributing up to 72 (out of 105 sequences in total) (Figure 3.13b).

TOMTOM predicted that the top enriched motif was highly similar to the binding motifs

of several C2H2 zinc finger transcription factors such as MA0162.2 (EGR1), MA0516.1

(SP2) and MA0528.1 (ZNF263), followed by several AP2/ERF domain transcription

factors, such as MA0992.1 (ERF4) and MA0975.1 (CRF2) (Table 3.10).

We took the top enriched motif from MEME and the aligned known motifs with

E-value < 0.05 in both the normal and discriminative analyses as putatively confident

co-regulators for the potential intermediate genes (Table 3.10) and searched for further ev-

idence. Among these motifs MA0516.1 (SP2), MA0162.2 (EGR1) and MA0079.3 (SP1)

80



MEME mode

Top enriched motif for

the 111 significantly asso-

ciated genes

TOMTOM alignment to the known transcription factor binding motifs

Target ID Putative TF (JASPAR) p-value E-value Target consensus

Normal

CCCGCCCCCGCC CCC-

CCCGCCGCCG CCGC

MA0516.1 SP2 3.72E-07 0.00019 GCCCCGCCCCCTCCC

MA0162.2 EGR1 8.10E-07 0.00042 CCCCCGCCCCCGCC

MA0528.1 ZNF263 1.30E-05 0.00674 TCCTCCTCCCCCTCCTCCTCC

E-value = 1.5E-106 MA0079.3 SP1 2.97E-05 0.01543 GCCCCGCCCCC

Discriminative

CGCCCCCCCTCCC CC-

CCCCCCGCCG CCGC

MA0162.2 EGR1 9.94E-07 0.00108 CCCCCGCCCCCGCC

MA0516.1 SP2 2.61E-06 0.00282 GCCCCGCCCCCTCCC

MA0528.1 ZNF263 6.93E-06 0.0075 TCCTCCTCCCCCTCCTCCTCC

MA0992.1 ERF4 1.76E-05 0.01903 CCGCCGCC

E-value = 7.9E-107 MA0975.1 CRF2 2.62E-05 0.02839 CCGCCGCC

Table 3.10: Alignment of the top enriched DNA motif sequence with known transcrip-

tional factor binding motifs

belong to the human transcription factor class three-zinc finger Krüppel-related factors,

which is known for sequence-specific interactions with GC-rich promoter elements.

3.3.6 High nuclear lamina contacts at the rs71524277 genomic re-

gion

The nuclear lamina (NL) is a structure near the inner nuclear membrane and the peripheral

chromatin [37]. The role of the nuclear lamina is not restricted to the maintenance of

nuclear shape and structure. Through direct binding of the lamina to both, chromatin

and a range of nuclear envelope proteins and transcription factors, it also play a role in

regulating transcription, controlling differentiation and organizing chromatin [9].

In 2015 Kind et al. have developed a method based on DamID technology to map

NL contacts genome-wide in single human cells. For each cell, they binned the whole-

genome in 100-kb contiguous genomic segments and then calculated for each segment
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an observed over expected (OE) score to indicate whether there is more Dam-LmnB1

methylation than may be expected randomly.

On a genome-wide scale, they reported that only about 15% of the segments have

stable contact (CF >80%). We extracted the OE values for the loci where our epistatic

SNP rs71524277 is located, i.e., chromosome 7 region [19200001,19300000](GRC37)

and counted contact frequency (CF) based on the OE values as described by Kind et al.

A cutoff of 1 was applied to the OE score to suggest that loci were either in a "contact"

or "no-contact" state [52]. As a result, 88.98% of CF was obtained in this region for the

118 single cells in their experiments, suggesting the high possibility that this locus might

be located at the NL.
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Chapter 4

Discussion

4.1 Genome-wide association analysis for CAD in the

1000G era

Large-scale meta-analyses of GWAS for CAD had already successfully identified 46

CAD risk loci based on HapMap imputation training sets or tagging SNP arrays. With

the update of the 1000 Genomes Project, which has considerably expanded the coverage

of human genetic variation, a new avenue for GWAS analyses in CAD has been enabled.

Aiming to uncover additional risk loci in the 1000G era, the CARDIoGRAMplusC4D

consortium has led the effort to collect multiple studies and performed large-scale meta-

analyses, including both the whole autosomal genome (1000G CAD GWAS) and the

X-chromosome (1000G CAD X-Chr).

4.1.1 Autosomal GWAS

The meta-analysis of the 1000G CAD GWAS has been published in the process of my

thesis work [77].

The 1000G CAD GWAS has taken advantage of the progress from the 1000 Genomes
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Project, which provided a substantial upgrade of the genotype imputation panel in terms

of coverage of lower-frequency variants and the integration of indel polymorphism. Ten

novel CAD risk loci have been identified according to the final results of the meta-

analysis [77]. The lead SNPs for four of the ten newly identified CAD loci were either

absent or imperfectly tagged (r2 < 0.8) in the HapMap 2 training set, which demonstrated

that the power of GWAS to investigate the genetic architecture of complex traits is further

enhanced by the 1000 Genomes Project.

The 1000G CAD GWAS meta-analysis included ⇠185,000 CAD cases and controls,

thus provided more statistical power to detect CAD susceptibility signals. For example,

only based on the results from single GerMIF studies the signal at the 9p21 locus could

also be recovered, but could not necessarily reach the genome-wide level of significance

(p < 5⇥ 10�8), while in the meta-analysis it was shown to be highly significant and

robust (P < 3.8⇥10�93). According to the post-hoc power calculation for the 1000G

CAD GWAS meta-analysis, 93.3% of common variants (MAF>0.05) with OR>1.15, and

88.3% low frequency variants (0.005 < MAF < 0.05) with OR>1.5 could be detected

with predicted power >90% at p = 5⇥10�8 [77], which strongly demonstrates the need

for large-scale studies in genome-wide genetic association analyses.

The results of this comprehensive analysis strongly supported the common dis-

ease–common variant hypothesis. Despite the possibility and power to detect the as-

sociations for low-frequency variants owing to the 1000G reference genome and the

large-scale meta-analysis, all ten newly identified CAD associations found in the present

analysis, as well as all but one of the previously identified loci, were represented by risk

alleles with a frequency of >5%. In addition, from the conditional and joint analysis

where more suggestive susceptibility variants were identified, fifteen low-frequency

(MAF < 0.05) variants explained only 2.1±0.2% of CAD heritability, and all were either

a lead variant or were jointly associated (q value < 0.05) with a common variant [77].

Our group conducted further analyses to see whether the common lead variants on the
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array, or other, rare variants at these loci are responsible for the strongest signals of

significance. Such explorations revealed that low-frequency variants do not explain a

significant portion of the missing heritability at a population-based level [93].

4.1.2 X-chromosome

The meta-analysis of the 1000G CAD X-Chr has been completed and summarized in a

manuscript by the CARDIoGRAMplusC4D consortium (Loley et al [59]).

Previously, little was known about the role of X-chromosomal variants in CAD,

mainly due to the sex-specific data structure of chromosome X which requires special

test statistics and statistical models other than the routine GWAS analyses. The meta-

analysis included more than 43,000 CAD cases and 58,000 controls from 35 international

study cohorts, which makes it, with the inclusion of more than 100,000 individuals, the

to date largest study compared to all current GWAS reported on the X chromosome

(<50,000 individuals, according to the NHGRI GWAS catalog [105] reports on more

than 600 traits available). Regarding the statistical model, four possible models assuming

any combination of X chromosome inactivation and sex interaction were investigated.

Therefore, the 1000G CAD comprehensive X-chromosome meta-analysis by itself has

provided a thorough investigation for the possible associations of genetic variants and

CAD.

The meta-analysis revealed that no significant signals were identified at genome-wide

significance level. Even stricter quality control and exclusion of non-European studies

demonstrated that there is no univariate association between any genetic variants at

X-chromosome and CAD susceptibility [59]. Although several variants reached the level

of genome-wide significance in our single study (GerMIFS-V), the same signal was not

captured anymore in the final meta-analysis [59]. This is probably due to limited sample

size and sampling heterogeneity. The negative result could also be due to the suboptimal

statistical model or biological assumptions. Nevertheless, considering the complex
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of genetic architecture underlying complex diseases, it is also highly possible that X-

chromosomal variants may affect CAD susceptibility in a non-univariate way, such as

cis-epistasis between X-chromosomal variants, trans-epistasis between X-chromosomal

and autosomal variants, or gene-environment interactions on the X chromosome, all of

which have not been investigated yet in the context of CAD.

4.2 Understanding the genetic complexity of GWAS sig-

nals of CAD

4.2.1 Intra-locus allelic heterogeneity at known CAD loci

For complex diseases as CAD, it is important to refine known loci to comprehensively

identify and understand the genetic architecture. The authors of the 1000G CAD GWAS

meta-analysis [77] performed an approximate conditional and joint association analysis

based on the suggestive additive association region surrounding (2cM) the variants with

p < 5⇥ 10�5. As a result, 95 variants (explaining 13.3± 0.4% of CAD heritability)

mapping to 44 significant CAD loci identified by GWAS were detected suggesting that

multiple independent signals could be recovered at the surrounding regions of known

CAD loci.

Here, based on individual-level genotype data from eight CAD case-control cohorts,

we applied a weighted intra-locus polygenic scores (PGS) approach to estimate and

compare the combined effect of multiple variants versus that of the lead variant only.

The weight we used was the effect size reported from the conditional and joint analysis,

with the assumption that the effect could be estimated more precisely due to large sample

sizes. Weighted scores may increase statistical power compared to unweighted scores,

provided that the weights are accurately determined [8]. The effects we reported for

the PGS were per standard deviation, so that the scales of effects could be comparable
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between the multi-variant and lead-variant PGS. While on the other hand, the odds ratio

for PGS was then not easy to interpret as it was not comparable with the odds ratio for

the risk allele (which is reported by most GWAS the odds ratio for the additive genetic

model).

We observed that larger effect and more variance explained could be recovered

on our individual-level genotypes for two-thirds of the loci identified as known loci

harboring multiple independent signals for multi-variant PGS than that for lead-variant

PGS. However, the improvements of fit for additional variance explained at single loci

were all very slight. We also observed that four loci presented genome-wide significant

combined effect for multi-variant PGS. These results supported the overall combined

effects of multiple signals at single loci.

However, for one-third of the variants no improvement of fit for multi-variant PGS,

compared to the lead-variant PGS, was detected, not even for the 9p21 locus, which

had a genome-wide significant effect for multi-variant PGS. One reason could be the

inaccurate estimate of the effect in the joint analysis, which was performed based on the

summary statistics of the GWAS meta-analyses with the reference genome to deduce

the LD structure of the whole genotype data. Thus, there could be sampling genetic

heterogeneity between our genotype datasets and the datasets included in the GWAS

meta-analysis. Additionally, there could be multicollinearity between multiple variants.

Indeed, when we looked for the effect of each single variant in the additive univariate

GWAS for 9p21, one of the SNPs (rs7855162) had a negative effect (b =�0.04) for the

risk allele according to the joint analysis (b = 0.16), which supports the possibility of

collinearity.

Regarding predictive power for CAD based on PGS, we demonstrated that even for

the top two loci (i.e., SLC22A3/LPAL2/LPA and COL4A1/A2, which not only achieved

genome-wide significance but also showed a much larger additional R2 compared to

other loci), no significant improvement in prediction could be achieved. This further
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implies that although the conditional and joint analysis could provide additional variants

independent in the sense of conditional analysis, predictions based on variants at single

loci still require effort for better prioritization for both, the variants and the prediction

model.

Despite the observation that the PGS for a single locus could not present much

total predictive power for CAD, even with combined effects of multiple signals, the

observation that multi-variant PGS presented per SD higher odds ratio as well as more

variance explained than the lead-variant PGS still supports the existence of intra-locus

allelic heterogeneity. For the four loci showing the largest multi-variant PGS effects

we observed that incremental increases in the odds ratios were accompanied by increas-

ing numbers of risk alleles, which further supports the existence of intra-locus allelic

heterogeneity. However, closer investigation at each locus is needed to provide more

knowledge about the functional mechanisms influencing the genetic etiology of CAD.

The current conditional and joint analyses by the GWAS meta-analysis were per-

formed only based on summary statistics, with the reference panel taken into account to

derive the LD structure [77]. For many of the known CAD loci, the density of variation

probes of the traditional GWAS array is not as high as the Metabochip genotyping array,

which may affect the power to identify all the independently associated signals at single

loci. This raises the hope that more intra-locus allelic heterogeneity probably could be

uncovered with the coming results of fine-mapping GWAS meta-analysis.

4.2.2 Multi-locus pleiotropy

It has been shown that there is a large degree of polygenic overlap between CAD

and cardiovascular risk factors, which underlines the shared polygeneticity of these

phenotypes and also promotes our understanding of genetic background underlying

CAD [58]. Accumulating information about multiple SNPs with a small effect into a

single genetic risk score, has become a useful tool to examine the cumulative predictive
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ability of genetic variation at known loci on cardiovascular disease outcome and other

related phenotypes.

Risk prediction based on common genetic variation has gained widespread attention

in the last years. Multi-locus polygenic scores are usually constructed to estimate the

combined effect in order to investigate the correlation between different diseases or traits

and to explore novel shared or unshared genetic information.

Here, we applied the multi-locus polygenic score approach to test possible associ-

ations between the risk of CAD and adult height as well as rheumatoid arthritis (RA).

Multi-locus polygenic scores were constructed combining the effects of height-increasing

alleles and RA risk alleles, respectively. After modeling these multi-locus polygenic

scores into logistic regression to estimate combined odds ratios for CAD, an interesting

inverse genetic association was noticed between height and CAD. However, no associa-

tion between RA and CAD was detected. These results provide better understanding of

the shared and unshared genetic background between CAD and height, and the unshared

genetic background between CAD and RA.

It is noteworthy that the results from the polygenic score analysis do not disclose the

causal role of these risk factors. The variants used in the score calculation were picked

from the literature based on results from corresponding GWAS analyses. However, the

variants identified by GWAS are not necessarily causal but can nevertheless be in in LD

with one or more causal variants. Regarding complex diseases, it is also likely that the so

far identified genetic loci from GWAS do not cover the complete genetic spectrum. In

addition, the clinical utility of polygenic scores need further validation. As the individual

samples in the original GWAS analyses could be largely different compared to our test

samples, the effect sizes estimated in the original analyses might lead to a bias for the

polygenic score prediction in the test datasets.
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4.3 Detecting epistasis that underlies CAD

It is now widely accepted that multiple genes influence many complex diseases such as

CAD. The exploration of epistasis in CAD, however, is still at the beginning. The aim of

this work was to make a first large-scale exploration not only of the statistical epistasis

of CAD but also to narrow down the gap between statistical epistasis and biological

interpretation. In line with this, we also aimed to establish a workflow for further epistasis

research in the future.

The GPU-based GLIDE epistasis computation tool helped us to handle the computa-

tion burden of epistasis which is challenging using normal CPU-based computing clusters.

With the aim to scan a rather large genomic region without losing the high-potential

susceptibility region for a pilot study, we started our analysis searching for pair-wise

epistatis effects in a broad-sense of CAD susceptibility regions. The searching space of

our current study set was not restricted to the known lead-SNPs, as most of the included

variants actually did not show significant associations in GWAS and were not in LD

with the known CAD lead-SNPs. Nevertheless, the searching space was still restricted

to certain regions of the genome. Thus, our results can only describe a part of CAD

epistasis. Further expansion of a similar pipeline to a genome-wide search scale, as well

as including the search for all three-way or four-way or any higher level interactions,

may finally help us identifying a landscape of epistasis activity in CAD genetics.

Traditional GWAS, or so-far reported, epistasis analyses have mainly focused on

additive, dosage, or dominant models for genetic variations. The heterozygous or

recessive model has often been ignored. Here, we made a thorough search for the

4(dosage,dominant,heterozygou,recessive)⇥4 genetic model combinations for a pair

of variants. For statistical epistasis we applied a two-step approach with the aim to both,

enhance the speed and the chance of positive finding: In the first step we tried to discover

all possible candidate pairs in high speed by taking the advantage of the GLIDE software.

Only LD-independent variants were tested and no covariates were included in the model,
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we just applied a loose significant threshold for primary filtering. In the second step we

performed a careful screening with the aim to assure the positive finding. Therefore, all

variants in the full LD block were tested and up to ten genetic covariates were included

in the model. A Bonferroni significance level was also carefully calculated for multiple

testing correction.

The significant epistasis pair we identified is composed of one variant in an intergenic

region (rs71524277) and the other variant in an intronic region (rs679958). This also

highlights the important role of the non-coding parts of the genome, which are also

the major source of the thus far by traditional GWA studies identified common genetic

variants [26].

In order to interpret the identified epistasis pair, we went on to analyze gene expres-

sion and clinical trait data to elucidate the disease mechanism. However, we did not

find significant association between the epistasis pair and other CAD-related traits, e.g.,

body-mass index, total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides.

This indicated that the identified epistasis pair could be directly associated with CAD

rather than intermediate with CAD-related traits.

On the other hand, we could identify 111 genes, significantly associated with both,

the epistasis pair and the odds ratio for CAD. However, no enriched functional categories

could be identified only with this group of genes, and these genes presented significant

association almost exclusively in specific tissue-phenotype sample groups. The genes

presented the largest cross-tissue-phenotype consistency for the epistasis pair were

TMEM176B and TMEM176A, in their expressions in monocytes and macrophages of

CAD cases. These two genes encode membrane proteins associated with the immature

state of dendritic cells, which play a central role in the induction and maintenance

of immune tolerance [14]. Furthermore they were shown to have a similar mRNA

expression patterns among various murine tissues [14]. The inconsistent association

across different tissue and disease status for the 111 genes implies the possibility that
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they could be co-regulated via a common upstream regulator, which plays a cellular

context-specific regulatory role in cells and CAD disease status.

The non-enrichment of functions of these genes also implies the possibility that the

monocytes and macrophages that we investigated may not be the major tissue where the

upstream regulator conducts its functional role in the pathological pathway. The gene

expression dataset we used in our analysis had a small size (less than 800 samples) and

was also tissue restricted (monocytes and macrophages), which by itself is a limitation.

Larger sample sizes as well as gene expression data from multiple tissues might provide

the possibility of replication and validation of the functional role of the genes that are

associated with the epistasis pair and CAD.

Interestingly, these genes, which were significantly associated with both the epistasis

pair and the odds ratio for CAD, were highly enriched in GC-rich motif patterns in their

putative promoter regions based on two different motif enrichment computations. The

corresponding TFs (SP2, EGR1) predicted to bind to these motifs repetitively occurred in

both computations. Indeed, SP2, EGR1 and SP1 have been frequently reported to share

overlapping promoter binding sites [2, 4, 100, 114]. Interestingly, the only trans-eQTL

gene to SNP rs679958 in macrophages, SP3, although with high FDR, also belongs to

the Sp-family. Regarding promoter binding activity, Sp2 has been reported to carry the

least conserved DNA-binding domain among Sp-family members and binds poorly to

a subset of target DNA sequences bound by other family members and has little or no

capacity to stimulate transcription of promoters that are potently activated by Sp1 or

Sp3 [72]. Sp1, Sp3, and Egr1 have been reported to compete for their DNA-binding

sites [43, 72].

Testing of statistical epistasis rather than biology epistasis has the advantage that

even if two molecules are not physically interacting with each other, it could also be

captured in the statistical epistasis [25]. Indeed, in molecular biology it happens that two

physically irrelevant proteins may be involved in the same pathway, cause different but
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dependent cascading events or regulate different but context-dependent pathways, thus

together affecting disease susceptibility. All these possibilities could be hypothesized

from statistical epistasis but would probably be missed from biological epistasis analysis.

We hypothesize that the epistatic pair (rs71524277-rs679958) may perturb the func-

tion or regulation of the transcription factor Sp-family and EGR1, thus further causing

the corresponding change in the gene expression for a group of genes.

The observation that the putative Sp-family transcription factors and EGR1 them-

selves are not among the 111 genes, thus showing statistically intermediate associations

between the epistasis pair and CAD, led to the thought that dysregulation of Sp proteins

due to the epistasis pair is not caused by their disruption at mRNA level but rather at the

protein level, e.g., alteration of protein structure, post-translation modification, or altered

domain-binding activity affected by cellular microenvironment.

Mammalian chromosomes are spatially organized inside interphase nuclei, the con-

tact frequency with the NL is locus specific. Only about 15% of the human genome

have stable contact (CF>80%) with NL, which are usually extremely gene poor and

suggesting a structural role [52]. The rs71524277 flanking genomic region has high

contact frequency (88.98% of CF, which was much higher than the 80% threshold for

stable contact given by Kind et al [52]) with the nuclear lamina. Besides, this variant

itself is located in the intergenic region, suggesting the high possibility that the variant

and its flanking region could be NL-linked.

SP1, SP2, and SP3 are nuclear proteins, by their subcellular localization. Sp2

preferentially localizes to subnuclear foci associated with the nuclear matrix and it

has been speculated that this subcellular localization plays an important role in the

regulation of Sp2 function [72]. Furthermore, both, SP1 and SP3 are bound to the nuclear

matrix with different nuclear matrix-associated sites [38]. We therefore hypothesize

that the epistatic pair (rs71524277-rs679958) may convey its genetic effect through the

perturbation of the interplay between nuclear matrix proteins and the nuclear lamina
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(Figure 4.1).
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Figure 4.1: Hypothesized mechanism for the epistasis pair underlying CAD. The epistasis

pair (rs71524277-rs679958) may convey its genetic effect first through the perturbation

of the interplay between nuclear matrix proteins and nuclear lamina and then through the

downstream perturbation on the TGF-b signaling pathway.

Interestingly, Sp-family transcription factors as well as EGR1 are all tightly linked

to the transforming growth factor beta (TGF-b ) - SMAD signaling pathway, which is

associated with a series of cardiovascular diseases, including atherosclerosis, hyperten-

sion, restenosis and heart failure [6, 7, 36, 87]. SP1 has been reported to cooperate with

SMAD complexes to mediate the TGF-b signaling in different cell types [30, 47, 84].

SP1 and SP3 together have been reported to collaborate with SMAD3 in the TGF-b

signaling pathway [19]. Furthermore EGR1 has been reported to interact physically and
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functionally with SMAD3 in promoter-specific fashion [31].

EGR1 and SP1 were also identified as the potential transcriptional regulators of

TGFB1 in human atherosclerotic arteries through computational methods. Interestingly

in the same study, the authors also identified ZNF263, which was also a putative tran-

scription factor (TF) with significant enriched motif in our study, as a regulator in the

fine-tuning of TGFB1 expression in atherosclerosis [23]. Further experimental validation

by the authors in cultured human vascular smooth muscle cells showed that inhibition of

the activity of SP1 and EGR1 induced a comparable decrease in the expression of some

tightly co-expressed genes of the TGFB1 cluster.

Besides these links from the TFs, putatively affected by the espistasis pair, to TGF-b

signaling, rs679958, one of the SNPs of the epistasis pair, is by itself located at the

intronic region of the gene coding for COL4A1, which directly interacts with bone

morphogenic protein (BMP) to modulate TGF-b regulation [53].

Taken together, for the epistasis SNP-pair that we have identified, we hypothesize

that the two variants may convey its genetic effect firstly through the perturbation of the

interplay between nuclear matrix proteins and nuclear lamina, and, secondly, through the

downstream perturbation of the TGF-b signaling pathway (Figure 4.1). However, further

efforts need to be made in order to understand the exact biological mechanisms.

A recent study by Turner et al. suggested a statistical epistatic interaction effect

on CAD risk between rs72655775 at the COL4A1/COL4A2 locus and rs12441344 at

the SMAD3 locus based on a meta-analysis of 5 cohorts with 4,956 cases and 2,774

controls [97]. We made efforts replicate this pair in our 9 cohorts testing all the variants

within the ±500kb flanking region of the reported SNP with all 16 models. However, the

epistatic effect between COL4A2 and SMAD3 could not be replicated with our samples.

It is possible that this discrepancy is due to genomic heterogeneity between the study

samples. It is also possible that the sample size in the analyses of Turner et al (N<10,100)

was not powerful enough to get conclusive results.
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On the other hand, as already indicated translating the statistical epistasis in biological

epistasis can be challenging. The complexity of biological systems usually cause the

need of organisms to interact with their environment to adjust, acclimatize, or maintain

homeostasis, which may result in negligible levels of statistical epistasis even when

the biological epistasis is pervasive [88]. Nevertheless, systematically characterizing

statistical epistasis and proposing and validating hypotheses, would largely improve our

chance of identify unbiased and unknown epistasis.
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Chapter 5

Conclusion and Outlook

5.1 Summary

The aim of my dissertation was to improve the understanding of CAD through statistical

genetics approaches. My work includes three research parts addressing the complex

genetic architecture from different aspects: 1. Genome-wide association studies for CAD

in the 1000G era; 2. Understanding the genetic complexity of regional GWAS signals of

CAD; 3. Detecting epistasis underlying CAD.

5.1.1 Genome-wide association analysis for CAD in the 1000G era

I investigated the univariate effects of genetic variants in a genome-wide scale. The

GWAS approach has the advantage of hypothesis-free, such that all variants on the

genome are investigated and the results are thus not biased towards the prior knowledge. I

performed analyses based on traditional genotyping array data on four cohort studies with

the aim to add further knowledge to the genetic loci affecting CAD risk. Subsequently,

I analyzed traditional genotyping array data on one cohort study to identify potential

genetic susceptible loci on the X-chromosome.
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The analyses conducted by me were limited to render the full spectrum of genetic

causes of CAD, mainly due to the fact that the study samples were of limited size and

thus did not provide enough power for detecting significant new loci on a genome-

wide scale. Nevertheless, all of my findings served as valuable components for the

CARDIoGRAMplusC4D consortium, where a meta-analysis was conducted.

So far one such meta-analysis was published [77] based on a whole collection

of ⇠185,000 CAD cases and controls, and 10 novel CAD-associated loci could be

identified. Findings from the 1000G GWAS meta-analysis results support the common

disease–common-variant hypothesis for CAD.

The meta-analysis of the 1000G CAD X-Chr has been completed based on more than

43,000 CAD cases and 58,000 controls, and summarized in a manuscript by Loley et

al [59]. Findings from the 1000G X-Chromosome meta-analysis revealed that there was

no genome-wide significant X-chromosomal variants associated with the risk of CAD.

5.1.2 Understanding the genetic complexity of GWAS Signals of

CAD

Intra-locus allelic heterogeneity

With the aim to study additive effects of risk alleles as well as their impact on risk

prediction, I have assessed the effect of multiple independent signals at 25 known CAD

loci on 8 cohorts of individual-level genotype datasets for the suggestive SNPs derived

from 1000G GWAS meta-analysis.

Typically for GWAS results only the best SNP at each locus is reported. However,

a single SNP may not capture the overall amount of variation at a locus because there

may be multiple causal variants. By conditional analysis the 1000G CAD GWAS meta-

analysis [77] allowed the identification of multiple independently associated alleles

at known loci, which increases the total contribution of the respective loci to genetic
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variance of CAD.

My investigation went specifically into 8 cohorts with individual-level genotype data

and examined the additive effects of multiple associated alleles at locus basis. Indeed,

for some of the loci the combined effect of loci harboring multiple independent signals

could be recovered, and the incremental effect on the association with CAD is also

noticed with the increase of the number of independent alleles. The results improve our

understanding of the allelic structure of these individual CAD-associated loci. It also

highlights the importance and complexity of the issue of genetic heterogeneity. Moreover,

these findings demonstrate that the functional contribution of the mechanisms affected

by a locus (or a given gene) may go beyond the odds ratios reported for the lead SNP.

Multi-locus polygenic pleiotropy

The genetic architecture for complex diseases is usually complex as well. It happens

often that both polygenic (one phenotype can also be caused by multiple genes/loci) and

genetic pleiotropy (one gene/locus causes multiple phenotypes) exist. With the popularity

of large-scale GWAS analyses, genetic variants identified to be associated with different

complex traits could be utilized to explore the shared genetic background for traits of

interest. When individual-level genotype data is available, a multi-locus polygenic score

(PGS) technique is often further applied to assess the potential risk prediction value

based on the shared genetic loci.

My investigations on the relationship between genetic susceptible loci of height

and rheumatoid arthritis (RA) and the risk of CAD based on multiple individual-level

genotype datasets have helped to support the notion that height affects directly and

indirectly CAD risk, as well as the notion that genetic factors underlying RA carry a low

likelihood to affect CAD risk.
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5.1.3 Detecting Epistasis that Underlie CAD

The genetic architecture of complex traits are considered to be much more complex than

an independent additive model. Epistasis has been suggested to be important for complex

disease [64, 81, 117], however, no large-scale systematic investigation has been made in

the context of CAD.

To our current knowledge, our investigation at meta-analysis level with 27,360

individuals and with the searching space of 8,068 SNPs is by far the largest scale for

CAD epistasis. Besides, assuming the 4⇥4 epistasis model allowed us to detect the

potential epistasis effect unbiased towards any genotype models.

One statistical trans-epistatic SNP-pair (rs71524277-rs679958) has been first identi-

fied at a p-value of 3.06⇥10�11. Furthermore, the same epispastic effect for the lead

pair has also been identified at the gene expression level. Finally, the biological interpre-

tation underlying this trans-epistasis pair has been postulated, which proposes a novel

hypothesis on how genetic loci could interact between each other to affect the risk of

CAD. We hypothesize that the epistasis pair may convey its genetic effect first through

the perturbation of the interplay between nuclear matrix proteins and nuclear lamina and

then through the downstream perturbation on the TGF-b signaling pathway, which is a

great extension to our current knowledge of the CAD genetics.

The success with our approach also supports the potential to further explore epistasis

affecting CAD risk at a genome-wide scale.

5.2 Outlook

Despite the all the efforts and success from all kinds of statistical genetic studies such

as GWAS analyses, polygenic score calculation, epistasis investigation, as well as the

genetic etiology of complex diseases, CAD is still far from being completely understood.
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5.2.1 Missing heritability

By referring to missing heritability for a trait in a population, researchers now focus

on the missing gap between the narrow-sense heritability, which is the additive genetic

portion of the phenotypic variance explained by a set of known genetic variants [117]

and the total heritability, which is estimated via comparison the phenotypic concordance

of monozygotic (MZ, identical) twins versus dizygotic (DZ, fraternal) twins.

The unexplained heritability has long been an unsolved question in statistical genetic

research in complex diseases. Different reasons for the missing heritability have been

proposed. These include large numbers of variants of smaller effect size that yet need to

be found, structural variants poorly captured by the existing array technology, low power

to detect gene-gene interactions, and inadequate accounting for shared environment

among relatives [27, 64].

According the current result of GWAS meta-analysis, all the current known CAD

loci can only explain a limited proportion of total heritability of CAD. Nevertheless,

GWAS may probably still be an efficient way of investigating missing heritability, with

the development of improved genotyping arrays, methods for imputation, next generation

sequencing, and advanced statistical methods, the numbers as well as the regions (from

single nucleotide polymorphism to long structural variants) of loci found to be associated

with diseases will hopefully continue to expand. By the end of my thesis work, the 1000

Genomes Project has released the latest version of the Phase 3 reference genome. The

final data set contains data from 2,504 individuals from 26 populations. Low coverage

exome sequence data are present for all of these individuals, 24 individuals were also

sequenced at high coverage for validation purposes [35, 94]. This new reference panel

will be a valuable source for future exploration.

The multiple independent variants within known CAD loci could be another source

of add-on explanation for the heritability. As suggested by the conditional and joint

analysis from the 1000G GWAS meta-analysis, the ninety-five variants mapped to 44
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known CAD loci from GWAS could explain 13.3±0.4% of CAD heritability. Besides

the above evidence, as a part of pre-analysis for epistasis project (see Results 3.3.1),

additive variance was observed when we estimated the narrow-sense heritability around

the 56 known CAD ris loci. All these data have suggested that for loci that have already

been identified, a further mining into depth may still be a possible way to uncover part of

the missing heritability.

Epistasis, although it is a capture of non-additive effects by definition, has also been

shown to contribute to the narrow-sense heritability. This may be due to statistical

illusion of additive variance, but it could be due to real additive variation as marginal

effects from higher order genetic interaction [40]. By future exploration into the CAD

epistasis, the extent to which epistasis could contribute to the missing heritability may be

further elucidated.

5.2.2 Understanding the complex genetic architecture

As multiple independent variants exist within known CAD loci, it may be important to

systematically identify instances of allelic heterogeneity and to examine the extent to

which additional SNPs can help to shed light on the functional basis of genetic variations

in CAD. With the rapid growth of next-generation-sequencing data, the allelic structure

of disease-associated loci could be more refined.

Dissecting the allelic heterogeneity on a locus-by-locus basis to closely examine the

patterns/existence of dependencies and additive or interactive effects may expand our

knowledge of the general genetic mechanisms of complex diseases. For example, Kuo et

al. have used a series of Col4a1 and Col4a2 mutant mouse lines to investigate the allelic

heterogeneity of COL4A1/A2 in ocular dysgenesis, myopathy and brain malformations

[54]. They observed that different Col4a1 and Col4a2 mutations had distinct effects on

COL4A1 and COL4A2 biosynthesis and distinct molecular consequences that lead to

ocular, cerebral and myopathic phenotypes of variable severity and penetrance, which
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reflected the mechanistic heterogeneity.

In atherosclerotic plaques substantial clinical heterogeneity can be observed in mor-

phological differences [98] which could be due to differences in the genetic suscep-

tibilities. There is no doubt that in the context of CAD further investigation into the

functional mechanisms underlying the allelic heterogeneity at each locus would not

only enhance our understanding of the CAD genetic and molecular etiology, but also

offer more knowledge for the potential possibility in the development of therapeutic

interventions.

Nowadays it has been widely accepted that exploring epistasis is likely to be crucial to

understand complex diseases [63]. By design, the GWAS approach ignores the interaction

information, which involves multiple genetic variants and interactions. The development

and improvement on the methods to handle the statistical and computational challenges

will largely promote the identification of more statistical epistasis, and thus provide us

with new opportunities to understand how naturally occurring genetic variants jointly

act to modulate disease risk. Further efforts in narrowing the gap between statistical

epistasis and biological epistasis and in functional validation and elucidation of the exact

epistasis mechanism, will provide valuable insights into the complexities of the genetic

architecture and molecular mechanisms of CAD.

Besides epistasis or gene-gene interaction, gene-environment interactions may also

play a significant role in determining complex diseases [45]. The onset of CAD has

been know to be affected by a large number of environmental factors, such as smoking,

obesity, diabetes and sedentary life style. However, little is known how various types

of environment factors interact with the genetic variations and co-affect the disease

susceptibility.
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5.2.3 Clinical implications

Recent advances in genome-wide association studies have stimulated interest in per-

sonalized medicine, where genetic information together with clinical information could

be used to predict the individuals’ disease risk. Thereby, preventive measures, focused

diagnostic procedures or early interventions may be facilitated [10].

Current genetic risk prediction approaches are mostly based on the information

combining the lead-SNPs reported by GWAS analysis. For example, the NHGRI GWAS

Catalog [105] is a popular repository for researcher to collect disease-associated SNPs-

However, usually only the top SNP reported in the original literature is listed. Previous

efforts in the multi-locus polygenic risk score prediction of CAD and cardiovascular

disease have mostly indicated that multi-locus PGSs are not particularly successful at

predicting the incidence of CAD events [21, 79].

While the detection of multiple independent variants at single CAD risk locus is

encouraging, it also highlights the limitations of current genetic risk score approaches.

Although prediction based on variants at single loci still requires effort to better prioritize

for both, the variants and the prediction model, the information from allelic heterogeneity

or additive SNPs at known loci may have the potential to serve a better basic feature set

than only the lead-SNPs and may finally lead to a better prediction with proper genetic

risk score modeling. Further elucidation of the possible distinct biological consequences

of multiple variants at single loci would be valuable as genetic counseling information to

improve the accuracy of prognoses.

The accuracy of genetic predictive models may also be facilitated with the identi-

fication of disease-associated statistical epistasis. Despite the difficulty in translating

the statistical epistasis into biological mechanisms, the effect estimates derived from

population-level studies by themselves would be informative for risk prediction. Recently,

methods about the integration of epistasis information into the genetic risk prediction

models have been explored [1, 65]. This provides us with the plausible outlook, that
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epistasis could bring potential benefit in personalized medicine for CAD.
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Appendix A

Supplementary Tables

Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

TMEM176A mon cases 0.00136 0.000581 0.000892 0.000581 1.24E-05

RHOQ mon controls 0.000119 0.000581 7.60E-05 0.000581 0.000152

SPTBN2 mon all 0.0017 0.000581 0.0012 0.000581 0.000187

SPTAN1 mon cases 0.000138 0.000581 0.000317 0.000581 0.000217

PPP2R5A mac all 1.85E-06 0.000581 4.31E-06 0.000581 0.000226

PPP2R5A mac controls 0.000154 0.000581 0.000122 0.000581 0.000228

PDE8A mac all 3.40E-05 0.000581 1.20E-05 0.000581 0.00023

PGD mon all 0.000596 0.000581 0.000344 0.000581 0.000257

SIGLEC10 mac all 0.00021 0.000581 0.00041 0.000581 0.000296

SDC1 mon all 0.000579 0.000581 0.000359 0.000581 0.000314

RFPL3S mon all 0.00516 0.000581 0.00783 0.002496 0.000592

STK32C mac controls 0.000354 0.000581 0.00019 0.000581 0.000728

Continued on next page
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Table A.1 – Continued from last page

Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

SPTBN2 mon cases 0.000747 0.000581 0.00124 0.001501 0.000786

C15orf48 mac controls 0.00233 0.000581 0.00647 0.003496 0.000794

SNX13 mon all 0.00118 0.000581 0.0021 0.000581 0.000953

C14orf1 mon cases 0.000138 0.000581 0.000158 0.000581 0.000957

GSG1 mon controls 0.000698 0.000581 0.00105 0.000581 0.00137

PMPCA mon controls 3.00E-04 0.000581 0.000256 0.000581 0.00149

DIRC2 mon controls 0.000179 0.000581 0.000175 0.000581 0.00159

FHIT mac cases 0.000374 0.000581 0.000484 0.000581 0.00185

SLC9A8 mac controls 0.000541 0.000581 0.000192 0.000581 0.00209

ATG2B mac controls 0.000581 0.000581 0.000729 0.000581 0.00247

KLF1 mon controls 0.000422 0.000581 0.000686 0.000581 0.00283

CD69 mac cases 0.000774 0.000581 0.000347 0.000581 0.00298

TPRKB mon cases 0.000397 0.000581 0.000191 0.000581 0.00301

MAP2K7 mac controls 0.00164 0.000581 0.000962 0.000581 0.00341

PEBP1 mac controls 0.000217 0.000581 0.000179 0.001501 0.00342

VPS13A mon controls 0.00131 0.000581 0.00162 0.001501 0.00384

UBE2H mon all 0.000921 0.000581 0.0011 0.000581 0.00388

EPB41 mon controls 0.000959 0.000581 0.00181 0.004495 0.00461

TMEM176A mac cases 0.000132 0.001501 7.99E-05 0.001501 5.55E-06

TMEM176B mon cases 0.00155 0.001501 0.00108 0.000581 3.73E-05

Continued on next page
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Table A.1 – Continued from last page

Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

C20orf24 mon all 0.00101 0.001501 0.000698 0.001501 0.000102

LARGE mon cases 0.00211 0.001501 0.00152 0.001501 0.000115

UTP23 mon cases 0.00145 0.001501 0.0013 0.001501 0.00021

NLRP3 mon all 0.00219 0.001501 0.000898 0.000581 0.000211

RARB mon cases 0.0025 0.001501 0.00431 0.001501 0.000291

ZCRB1 mon controls 0.000513 0.001501 0.000346 0.001501 0.000357

ABL2 mon controls 2.37E-05 0.001501 1.31E-05 0.001501 0.000527

TNXB mac all 0.00309 0.001501 0.00428 0.002496 0.000689

NUCB2 mac controls 0.00111 0.001501 0.00135 0.001501 0.00081

MAEA mon all 0.00332 0.001501 0.0017 0.000581 0.000929

CDC7 mac controls 0.000802 0.001501 0.000774 0.002496 0.0012

EIF2C4 mac all 0.00084 0.001501 0.000372 0.000581 0.00122

PSMA1 mon all 0.00259 0.001501 0.00398 0.002496 0.0013

FLJ11795 mon all 0.000553 0.001501 0.000416 0.002496 0.00131

RIT1 mon all 0.00389 0.001501 0.0031 0.001501 0.00132

GPR139 mac cases 0.00454 0.001501 0.00597 0.001501 0.00141

MGC18216 mac controls 0.000399 0.001501 0.000635 0.000581 0.00144

PGBD4 mon controls 0.00163 0.001501 0.00217 0.002496 0.00155

SCNM1 mac cases 0.00221 0.001501 0.00181 0.001501 0.00161

THUMPD3 mac controls 0.000786 0.001501 0.000913 0.002496 0.00247
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Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

NAIP mon all 0.00107 0.001501 0.0014 0.001501 0.00253

PADI4 mac all 0.00064 0.001501 0.000869 0.001501 0.00262

PROK1 mon all 0.00281 0.001501 0.0032 0.002496 0.00283

C19orf15 mon controls 0.00239 0.001501 0.00308 0.002496 0.00285

WTAP mon all 0.000973 0.001501 0.000736 0.001501 0.00301

UBFD1 mon all 0.000856 0.001501 0.00099 0.001501 0.00306

PROCR mac controls 0.00272 0.001501 0.00138 0.000581 0.00321

MT1M mac all 0.00245 0.001501 0.00142 0.000581 0.0033

MURC mac all 0.00299 0.001501 0.00304 0.003496 0.00332

C20orf197 mon all 0.00158 0.001501 0.00281 0.002496 0.00406

MOV10 mon all 0.00174 0.001501 0.0018 0.001501 0.00454

TMEM176B mac cases 6.90E-05 0.002496 3.52E-05 0.002496 1.63E-06

ATP5F1 mon all 0.00246 0.002496 0.00234 0.002496 1.20E-05

THAP10 mon controls 0.00169 0.002496 0.000833 0.000581 1.38E-05

PIBF1 mon controls 0.00137 0.002496 0.00225 0.003496 0.000305

SEC22C mon all 0.00331 0.002496 0.00245 0.002496 0.000351

PSRC1 mon controls 0.00198 0.002496 0.000846 0.001501 0.000356

SSSCA1 mon all 0.00148 0.002496 0.000931 0.001501 0.000463

ZNF280C mon all 0.00111 0.002496 0.000458 0.001501 0.000567

LACTB mac cases 0.00223 0.002496 0.00162 0.002496 0.000757
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Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

STXBP1 mon cases 0.00119 0.002496 0.00118 0.002496 0.000818

GAPDH mon cases 0.00276 0.002496 0.00146 0.002496 0.000833

SYNJ2BP mon controls 0.00747 0.002496 0.00548 0.002496 0.000936

TNFRSF10A mac cases 0.00353 0.002496 0.00132 0.000581 0.00104

PDE8A mac cases 0.0014 0.002496 0.00089 0.001501 0.00199

CCM2 mon all 0.000587 0.002496 0.000588 0.002496 0.00215

PRKCE mac all 0.00118 0.002496 0.000813 0.002496 0.00225

C14orf129 mon all 0.00346 0.002496 0.00241 0.002496 0.00251

CCNF mon cases 0.00103 0.002496 0.000786 0.001501 0.00274

C21orf66 mon controls 0.00214 0.002496 0.00187 0.002496 0.00291

LEO1 mon all 0.00656 0.002496 0.00617 0.002496 0.00305

ZNF10 mac controls 0.00126 0.002496 0.000827 0.002496 0.00311

NHEDC2 mac all 0.00342 0.002496 0.00425 0.002496 0.00423

PRKCZ mon cases 0.00523 0.002496 0.00519 0.003496 0.00469

GTF2A2 mon controls 0.00327 0.003496 0.00188 0.003496 9.27E-05

SIGLEC1 mon controls 0.00459 0.003496 0.00332 0.001501 0.000132

PLXNA3 mon cases 0.00385 0.003496 0.00441 0.004495 0.000383

CD160 mac cases 0.00246 0.003496 0.00388 0.003496 0.000626

TNPO1 mac all 0.00193 0.003496 0.00108 0.001501 0.000673

MSRA mon all 0.00279 0.003496 0.00234 0.003496 0.000737
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Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

GZMB mac controls 0.00311 0.003496 0.00235 0.003496 0.000893

DLD mon all 0.00437 0.003496 0.00373 0.003496 0.00123

XAF1 mon all 0.00577 0.003496 0.00297 0.001501 0.00199

TBC1D22B mon all 0.0054 0.003496 0.00583 0.003496 0.00231

ABCC12 mon controls 0.0038 0.003496 0.00231 0.001501 0.00251

SEC22C mon all 0.00163 0.003496 0.00104 0.001501 0.00257

GNAS mac all 0.00343 0.003496 0.00145 0.001501 0.00282

C10orf4 mac cases 0.00499 0.003496 0.00534 0.004495 0.00315

CDC42EP3 mon cases 0.005 0.003496 0.00296 0.002496 0.00323

TMEM185B mon controls 0.00212 0.003496 0.00155 0.001501 0.00344

IFIH1 mac controls 0.00229 0.003496 0.00264 0.002496 0.00371

CPEB2 mac cases 0.00215 0.003496 0.00178 0.003496 0.00375

MBNL3 mon cases 0.00468 0.003496 0.00193 0.002496 0.00379

PHF11 mon controls 0.0102 0.003496 0.00705 0.002496 0.00451

TNKS1BP1 mon all 0.00221 0.004495 0.00154 0.003496 0.00102

IL19 mon controls 0.00347 0.004495 0.00282 0.003496 0.00118

BNC1 mon all 0.0105 0.004495 0.0042 0.002496 0.00119

PDE8A mon all 0.00277 0.004495 0.00292 0.004495 0.00131

CLN8 mac all 0.00351 0.004495 0.00109 0.001501 0.00138

FGFBP2 mon all 0.00505 0.004495 0.00307 0.003496 0.00209
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Gene Tissue CAD p (lm) p.perm

(lm)

p

(anova)

p.perm

(anova)

p.cor

C4orf18 mon cases 0.00556 0.004495 0.00274 0.001501 0.00227

PLD1 mac all 0.00218 0.004495 0.00122 0.001501 0.00246

JAZF1 mon controls 0.00323 0.004495 0.00101 0.000581 0.00294

C17orf64 mon all 0.00287 0.004495 0.00375 0.003496 0.00456

Table A.1: Potential genes intermediate between epistasis pair and CAD. The tissues

are either monocytes(mon) or macrophages(mac); the individual groups are CAD cases,

controls, or combined them all. P-values for linear regression and ANOVA test are listed

both as original and as permutation adjusted; p-values for the correlation test (<5⇥10�3

) between the expression level and the putative CAD odds ratio are listed here.
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