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The smallest sets of points not determined by their X-rays

Andreas Alpers and David G. Larman

Abstract

Let F be an n-point set in K
d with K ∈ {R,Z} and d � 2. A (discrete) X-ray of F in direction

s gives the number of points of F on each line parallel to s. We define ψ
Kd(m) as the minimum

number n for which there exist m directions s1, . . . , sm (pairwise linearly independent and
spanning R

d) such that two n-point sets in K
d exist that have the same X-rays in these directions.

The bound ψ
Zd(m) � 2m−1 has been observed many times in the literature. In this note, we show

ψ
Kd(m) = O(md+1+ε) for ε > 0. For the cases K

d = Z
d and K

d = R
d, d > 2, this represents the

first upper bound on ψ
Kd(m) that is polynomial in m. As a corollary, we derive bounds on

the sizes of solutions to both the classical and two-dimensional Prouhet–Tarry–Escott problem.
Additionally, we establish lower bounds on ψ

Kd that enable us to prove a strengthened version
of Rényi’s theorem for points in Z

2.

1. Introduction

The problem of reconstructing point sets from their X-rays has a long history; perhaps the
1952 paper [20] by Rényi represents one of the first works in this field. Of special interest
are questions of uniqueness. Two sets with the same X-rays are said to be tomographically
equivalent [8, 9]; the sets are also commonly referred to as switching components [13, 22] or
ghosts [12, Section 15.4]. In [15], Matoušek, Př́ıvětivý, and Škovroň show that almost all sets
of m directions (in the sense of measure) allow for a unique reconstruction of 2Cm/ log(m)-point
sets in the real plane (here C > 0 is a constant and the result holds for large m). For almost
all choices of m directions, there thus exist only superpolynomial size switching components.
By a careful selection of directions, however, we can reduce them to a polynomial size.

To make this precise, let F be an n-point set in K
d with K ∈ {R,Z} and d � 2. A (discrete)

X-ray of F in direction s gives the number of points of F on each line parallel to s. We define
ψKd(m) as the minimum number n for which there exist m directions s1, . . . , sm (pairwise
linearly independent and spanning R

d) such that two different n-point sets in K
d exist that

have the same X-rays in these directions. We derive lower and upper bounds on ψKd .
Two constructions are known to yield upper bounds on ψKd . The first construction is based

on regular polygons. The two disjoint m-point sets of alternate vertices of a regular 2m-gon in
R

2 yield ψR2(m) � m. This cannot be transferred to Z
d as any (planar) regular polygon with

integer vertices must have 3, 4, or 6 vertices [3, 21]. The functions ψR2 and ψZ2 are, in fact,
different functions as we show ψZ2(m) � m+ 1 if m = 5 or m > 6 (see Theorem 2.2). From
this, we derive a strengthened version of Rényi’s theorem (see Theorem 2.1 and Corollary 2.3
in Section 2).

The second well-known construction for upper bounds on ψKd is based on two-colourings of
the unit cube [0, 1]m in Z

m. More precisely, two different sets with equal X-rays in coordinate
directions are obtained as the two disjoint sets of 2m−1 alternate vertices of [0, 1]m. By
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projecting into Z
d, the bound ψZd(m) � 2m−1 is obtained. This construction seems to be due

to Lorentz [14]; see also [2; 5, Lemma 2.3.2; 7, Theorem 4.3.1]. As Z
d ⊆ R

d, this, of course,
yields also ψRd(m) � 2m−1.

Our main observation is contained in the statement of Theorem 3.3, where we prove
ψZd(m) = O(md+1+ε) for ε > 0. This is, to our knowledge, the first upper bound on ψKd(m)
that is polynomial in m. Our proof is non-constructive.

We conclude in Section 4 by stating some remarks and consequences that relate our bounds
to the Prouhet–Tarry–Escott problem (PTEr) from number theory (see, for example, [10,
Section 21.9]).

Throughout the paper, ζ is the Riemann zeta function, m and n denote natural numbers,
and Z, R, N = {1, 2, . . . } are, respectively, the sets of integers, reals, and natural numbers.
We use the notation N0 = N ∪ {0}, [n] = {1, . . . , n}, and 2Z = {2z : z ∈ Z}. With Gd

n = [n]d,
we denote the set of d-tuples of positive integers less than or equal to n. If ξ ∈ R, then �ξ�
denotes the smallest integer greater than or equal to ξ. The symbol O has the usual meaning:
f(m) = O(g(m)) means that f(m)/g(m) is bounded as m→ ∞. A property is said to hold for
large m if that property holds for all m larger than some m0.

2. Lower bounds

In this section, we derive lower bounds on ψKd . The key ideas are not new, but appear scattered
and isolated in different contexts in the literature (see [20] and [1, Proof of Theorem 2.2]).

Theorem 2.1. For every d � 2, we have ψKd(m) � m.

Proof. This is a reformulation of Rényi’s theorem (proved in [20] and generalized to
arbitrary dimensions by Heppes [11]), which states that any n-point set in K

d is uniquely
determined by its X-rays from n+ 1 different directions. For completeness, we reproduce a
short proof. Suppose that there are two sets F, F ′ with equal X-rays in m+ 1 directions, each
set containing at most m points. Without loss of generality, there exists a point p ∈ F \ F ′.
Since F and F ′ have equal X-rays, there needs to be a point of F ′ on each of the m+ 1 lines
through p. This implies that F ′ contains at least m+ 1 points, a contradiction.

The bound is tight for m ∈ {1, 2, 3, 4, 6} and K
d = Z

2; examples showing this for m =
1, 2, 3, 4, 6 are, respectively, provided by any two 1-point sets in Z

2, two-colourings of the
unit cube in Z

2, the sets F = {(0, 0), (1, 2), (2, 1)}, F ′ = {(1, 0), (0, 1), (2, 2)}, and the examples
shown in [7, Figures 4.3 and 4.5]. For the remaining cases, however, we can improve the bound
as stated in the following result.

Theorem 2.2. If m = 5 or m > 6, then ψZ2(m) � m+ 1.

Proof. Let m = 5 or m > 6, and suppose that there exist different n-point sets F, F ′ ⊆ Z
2

with equal X-rays in m � n directions. Without loss of generality, we can assume that F ∩ F ′ =
∅. The convex hull P of F ∪ F ′ is a non-degenerate polygon with at most 2n vertices. Parallel
to each of the m directions, there are two lines that support P with each line containing a
single point from F and F ′, respectively (since otherwise one of F and F ′ contains more than
n points). Since this implies that P has at least 2m edges, we conclude that at least 2m of the
elements of F ∪ F ′ are vertices of P (that is, n = m), proving that F ∪ F ′ is the set of vertices
of the non-degenerate convex 2m-gon P . Since F and F ′ have the same X-rays, P has the
property that any line through a vertex of P in any of the m directions meets another vertex
of P . Such polygons are known as lattice U -gons with U denoting the set of m directions.
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They, however, do not exist for m > 6 (see [6, Theorem 4.5]). As is shown in [6, Proof of
Theorem 4.5] or (more simply) in [1, Theorem 6], there are also no lattice U -gons for exactly
five directions. In other words, we have ψZ2(m) > m for m = 5 or m > 6.

The bound is tight for m = 5. For this, consider the 6-point sets

F = {(0, 2), (1, 4), (2, 2), (3, 0), (4, 3), (5, 1)} and F ′ = {(0, 3), (1, 1), (2, 4), (3, 2), (4, 0), (5, 2)}.
It is easily verified that F and F ′ have the same X-rays in the five directions

S = {(1, 0), (0, 1), (1, 1), (1,−1), (−2, 1)}.
A reformulation of Theorem 2.2 provides a strengthened version of Rényi’s theorem for Z

2.

Corollary 2.3. Any n-point set in Z
2 with n = 5 or n > 6 is uniquely determined by its

X-rays taken from at least n different directions.

3. Upper bounds

In this section, we prove a polynomial upper bound on ψKd . As a prelude, we prove an upper
bound on the number of lines parallel to a given direction that intersect points of Gd

n. This is
followed by a lemma that asserts the existence of certain coverings of a specified finite part of
the integer lattice by m families of parallel lines.

Lemma 3.1. For any relatively prime d-tuple s = (σ1, . . . , σd) ∈ N
d
0 \ {0} with d � 2, there

are at most dnd−1 · max{σ1, . . . , σd} lines parallel to s that intersect Gd
n.

Proof. For each line � parallel to s = (σ1, . . . , σd) that intersects Gd
n, there is a unique point

p ∈ � ∩Gd
n for which p− s �∈ Gd

n. The point p− s needs to have a non-positive component, that
is,

p ∈ Vi = {(ξ1, . . . , ξd) ∈ Gd
n : 1 � ξi � σi}

for an i ∈ [d]. As the number of points in
⋃d

i=1 Vi is clearly bounded by dnd−1 · max{σ1, . . . , σd},
we obtain the claimed result. (Tight bounds can be obtained similarly via the inclusion–
exclusion principle, but they are not needed in the present context.)

Lemma 3.2. Let ε > 0, m ∈ N, d � 2, and n ∈ {�m1+(1+ε)/d�, �m1+(1+ε)/d� + 1}. Then, for
large m there is a set S = {s1, . . . , sm} ⊆ Z

d with the property that

(i) the elements of S are pairwise linearly independent spanning R
d;

(ii) the total number l of lines that are parallel to a direction in S and intersect Gd
n is

bounded from above by 21+1/ddnd−1m1+1/d.

Proof. For the number R(p, d) of relatively prime d-tuples in Gd
p, p ∈ N, it holds by [17]

that

lim
p→∞

R(p, d)
pd

=
1

ζ(d)
.

As ζ decreases for values larger than 1 and since ζ(2) = π2/6 < 2, we have

R(p, d) > pd/2

for large p.
Setting q = �(2m)1/d�, we note that q � 2(2m)1/d and q � n for m � 2. For large m, we have

R(q, d) > qd/2 � m,
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so for our set S we can select m elements from Gd
q ⊆ Gd

n. We can assume that the elements of S
span R

d since otherwise we replace d of the directions by the standard unit vectors. Property (i)
is thus fulfilled (note that the elements of S are relatively prime d-tuples).

The entries of the elements in S are bounded by q, so by Lemma 3.1 we have at most

mdnd−1q � 21+1/ddnd−1m1+1/d

lines parallel to a direction in S that intersect Gd
n.

Theorem 3.3. For every ε > 0 and d � 2, it holds that ψZd(m) = O(md+1+ε).

Proof. We assume that m is large enough that the set S from Lemma 3.2 exists. We
set n = {�m1+(1+ε)/d�, �m1+(1+ε)/d� + 1} ∩ 2Z and k = 1

2n
d. Note that k ∈ N, k = O(md+1+ε),

and that we can assume that n � 4.
Let li, i ∈ [m], denote the number of lines parallel to si that intersect Gd

n. The X-ray in
direction si of a set in Gd

n with cardinality k gives a weak k-composition of li, that is, a
solution to ξ1 + · · · + ξli = k in non-negative integers [23, p. 15]. (The converse is generally
false, because the corresponding X-ray lines may intersect Gd

n in fewer points than provided
by a weak k-composition of li.) The number of weak k-compositions of li is given by

N(k, li) =
(
k + li − 1
li − 1

)
and thus represents an upper bound for the number of different X-rays of k-point subsets of
Gd

n in the direction si.
With l = l1 + · · · + lm, we thus obtain the following upper bound on the number of different

X-rays (for the directions in S) that can originate from a subset of Gd
n with cardinality k:

m∏
i=1

N(k, li) �
m∏

i=1

(
nd/2 + li

li

)
�

m∏
i=1

(
(nd/2 + li)e

li

)li

=
m∏

i=1

(
nde

2li
+ e

)li

� (ne+ e)l � n2l;

here the inequalities (from left to right) follow from N(k, li) � N(k, li + 1), a standard
inequality for binomial coefficients (see, for example, [18, Equation (4.9)]), li � nd−1, and
n � 4, respectively.

There are (
nd

nd/2

)
� 2nd/2

subsets of cardinality k in Gd
n. We claim that

n2l < 2nd/2

holds for large m, which, by the pigeonhole principle, concludes the proof as it implies the
existence of two sets in Gd

n with cardinality k and equal X-rays in the directions in S.
For the claim, we first note that

m1+(1+ε)/d � n � 3m1+(1+ε)/d (1)

holds as m1+(1+ε)/d � 1. It is easy to see that limx→∞ xa/2xb

= 0 for a, b > 0. Thus for large m
and C = 23+1/dd, we have

3CmC(1+(1+ε)/d) < 2mε/d

,

which, by (1) and Property (ii) of Lemma 3.2, gives

nC < 2mε/d ⇒ nCm1+1/d

< 2n ⇒ nCnd−1m1+1/d

< 2nd ⇒ n4l < 2nd

,

proving the claim.
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4. Remarks and consequences

The previously mentioned regular 2m-gon construction in R
2, together with the inequality

ψRd(m) � ψZd(m) for d � 2, yields the following corollary to Theorem 3.3.

Corollary 4.1. For every ε > 0 and d ∈ N, it holds that

ψRd(m) =

{
m if d = 2,
O(md+1+ε) if d > 2.

In [1], the general PTEr problem was introduced: Given k, n, r ∈ N, find two different multi-
sets {x1, . . . , xn}, {y1, . . . , yn} ⊆ Z

r where xi = (ξi1, . . . , ξir), yi = (ηi1, . . . , ηir) for i ∈ [n] such
that

n∑
i=1

ξj1
i1 ξ

j2
i2 · · · ξjr

ir =
n∑

i=1

ηj1
i1η

j2
i2 · · · ηjr

ir

for all non-negative integers j1, . . . , jr with j1 + · · · + jr � k. The parameter k is called the
degree and n the size of the solution. Tracing back to works of Euler and Goldbach [4,
p. 705], the Prouhet–Tarry–Escott problem (PTE1) is an old and largely unsolved problem
in Diophantine analysis. The following corollary sharpens the bound of [1, Theorem 12] on the
size of solutions, which for (PTE1) is due to Prouhet [19].

Corollary 4.2. For every ε > 0, there exists a constant C > 0 such that there are
solutions of (PTE2) of degree k and size bounded by Ck3+ε.

Proof. In [1, Theorem 8], it was shown that tomographically equivalent sets in Z
2 for m

directions yield (PTE2) solutions of degree m− 1. This and Theorem 3.3 for d = 2 imply the
statement of this corollary.

Remark 4.3. As the products cancel, it is evident that solutions of (PTE1) can be obtained
by applying to (PTE2) solutions a suitable linear functional that maps (ξ1, ξ2) ∈ Z

2 to α1ξ1 +
α2ξ2 where α1, α2 ∈ Z are suitably chosen. The current best bounds for (PTE1) are quadratic
in k (see [16, 24]); the bound from Theorem 3.3 is in this case weaker.
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