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Abstract

Motivation: Machine learning may be the most popular computational tool in molecular biology.

Providing sustained performance estimates is challenging. The standard cross-validation protocols

usually fail in biology. Park and Marcotte found that even refined protocols fail for protein–protein

interactions (PPIs).

Results: Here, we sketch additional problems for the prediction of PPIs from sequence alone. First,

it not only matters whether proteins A or B of a target interaction A–B are similar to proteins of

training interactions (positives), but also whether A or B are similar to proteins of non-interactions

(negatives). Second, training on multiple interaction partners per protein did not improve perform-

ance for new proteins (not used to train). In contrary, a strictly non-redundant training that ignored

good data slightly improved the prediction of difficult cases. Third, which prediction method ap-

pears to be best crucially depends on the sequence similarity between the test and the training set,

how many true interactions should be found and the expected ratio of negatives to positives. The

correct assessment of performance is the most complicated task in the development of prediction

methods. Our analyses suggest that PPIs square the challenge for this task.

Availability and implementation: Datasets used in our analyses are available at https://rostlab.org/

owiki/index.php/PPI_challenges

Contact: rost@in.tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Prediction is the acid test for understanding
Machine learning appears to be easily applicable through tools such

as Weka (Hall et al., 2009). As opposed to standard statistical ana-

lyses, its ability to predict allows distinguishing ‘true understanding’

from ‘rationalization given the fact’. However, if we choose more

free parameters than supported by the evidence, we easily over-train

or over-optimize, i.e. predictions drop to the descriptive level of

statistics, instead of being the acid test for understanding. Cross-

validation (CV) and testing on new data are supposed to prevent

such a failure.

1.2 Refined CV
Standard CV proceeds as follows. Given a set of observations S to

machine learn: split S into two sets Strain (to optimize parameters)

and Stest (to assess performance). Even better: split S into m different

sets and use one for testing and the other m�1 for training, essen-

tially creating m different solutions to the problem. Many refined

versions of the above protocol have been implemented (Kohavi,

1995). However, after several decades of applying machine learning

to computational biology, we observe that the above procedures do

not suffice to generate sustained performance estimates. Several re-

finement steps are needed. First, we need to reduce the redundancy
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between Strain and Stest. What exactly constitutes redundancy is not

trivial to define, but if we can infer that test protein A has feature X

only because it is sequence similar to a training protein A’ with fea-

ture X (homology-based inference), redundancy is too high (Rost,

1999; Rost and Sander, 1993). In this case, even simple statistics can

mislead (Rost, 2002). Second, we need to split S into three, not two

types of sets: training, cross-training and testing (also termed train-

ing, testing, hold-out). The cross-training set will be used to decide

which method to choose in the end: if you developed two methods

m1 and m2 and could only publish one, you cannot use the test set

for both, optimizing the choice ‘m1 versus m2’ and estimating

performance. Data used for method optimization no longer provides

independent performance estimates. For this, you need the cross-

training complication.

1.3 Refined CV fails for machine-learning PPIs
Park & Marcotte have demonstrated that the above refined CV still

fails for the prediction of protein–protein interactions (PPIs) (Park

and Marcotte, 2012). For each test interaction A–B between pro-

teins A and B they distinguished three cases: C1 if both A and B, but

not the interaction A–B, were used for training, C2 if this was the

case for either A or B and C3 if neither A nor B were used for train-

ing. By a great margin, all methods performed best for C1 and worst

for C3, i.e. for the prediction of proteins without any experimental

annotation. Arguably, such new proteins are most interesting to

predict.

Here, we present findings that expand on this theme that ma-

chine-learning PPIs requires much more careful data set preparations

than other applications. Ultimately, PPIs appear to square the noise

and the complexity of reducing it, similar to the effect overrepre-

sented protein families had on the prediction of protein function

(Rost, 2002).

2 Methods

2.1 Data
2.1.1 Human PPIs

The Hippie database (Schaefer et al., 2012) collects human PPIs

with experimental annotations. A reliability score grades each inter-

action according to the trust in the annotation. We followed the

Hippie procedure and reduced version 1.2 (Aug 2011) to the top

10% highest scoring interactions to obtain a high-quality subset

(HumanHQ). It contained 7237 PPIs from 3915 unique proteins.

We applied the same procedure to Hippie version 1.6 (Nov 2013)

and used the difference between both sets to test (HumanHQ_new;

7201 new PPIs in 3877 proteins; 1561 of these 3877 proteins were

new).

2.1.2 Yeast PPIs

Reliable, manually curated yeast PPIs were in the core data set of

the Database of Interacting Proteins [YeastHQ; Apr 2014;

(Salwinski et al., 2004)]. It contains 4796 PPIs among 6434 pro-

teins. Due to slow growth, we could not compile a large enough

‘new’ test data set.

2.1.3 Redundancy reduction

We reduced redundancy of both, HumanHQ and YeastHQ, by

excluding sequence-similar interactions as follows. We considered

proteins X to be sequence similar to X0 if their HSSP value (HVAL)

was greater than 20 (Mika and Rost, 2003; Rost, 1999; Sander and

Schneider, 1991). This corresponds to �40% pairwise sequence

identity for 250 aligned residues. When we included an interaction

A–B in the non-redundant set, we excluded all interactions A0–C

and B0–D (A0 similar to A; B0 similar to B). Put differently: A and B

were sequence dissimilar to any other protein in the data set. We

refer to both sets as HumanHQ_nr (842 PPIs) and YeastHQ_nr

(746 PPIs).

2.1.4 CV and testing (C1, C2, C3)

Here, we introduce ‘generalized’ Park-Marcotte classes C1–C3.

Proteins of a test interaction only need to be similar

(HVAL(X,X0)>20), not identical, to proteins of the training set to

be in class C1 or C2. We randomly split each non-redundant set of

PPIs (HumanHQ, YeastHQ) into 10 partitions, using nine to train

and one to test. All test cases belonged to class C3, because neither

A nor B of a test interaction A–B had HVAL>20 to any protein in

the training set. The non-redundant C2 test set first contained each

PPI A–B of the full PPI set (HumanHQ or YeastHQ) if exactly one

protein (A or B) had HVAL>20 to any protein in the training set.

We redundancy reduced this C2 test set internally in the same way

as the full HQ sets before. The C1 test set was created in analogy to

C2, except that both proteins A and B needed to have HVAL>20

to proteins in the training set. We repeated this 10 times so that each

of the 10 partitions was the test set exactly once. Classes C1, C2 and

C3 contained 1825, 2046 and 842 PPIs for human and 1636, 1663

and 746 for yeast. We applied the same procedure to the time differ-

ence test, with the full redundancy reduced HumanHQ as the train-

ing set and test sets C1–C3 created from HumanHQ_new (C1: 392,

C2: 580 and C3: 218 PPIs).

2.1.5 Negative interactions

Given a positive training set (known PPIs), our definitions of C1–C3

classified each protein pair AB in an organism (none (C3), one (C2)

or both (C1) of the proteins A and B have HVAL>20 to proteins in

the training set). Hence, we sampled negatives (non-interactions)

randomly for each class C1–C3 from all protein pairs in that class.

For example, all the C1 negatives of one training test set combin-

ation were sampled from all pairs that were classified as C1 with re-

spect to this particular training set (See Supplementary Material

S1.1). All proteins of an organism were given by the EBI Reference

Proteomes (Dessimoz et al., 2012) and filtered so that no protein

was shorter than 50 or longer than 5000 residues. The number of

negatives was set to be 10 times higher than the number of positives

in each training and test set. We always removed negatives listed as

positive in the full Hippie 1.2 database, i.e. including low-quality ex-

perimental evidence.

2.1.6 Data set modifications

The setup described so far was the default for training and compar-

ing different PPI prediction methods. In the following, we describe

modifications. Modification 1: No sequence similarity between

negative training and testing. We tested the effect on performance in

class C3 when sequence-similar negatives were removed between

training and test sets. To this end, we sampled negatives as before

from all C3 pairs in an organism, but made sure that no protein of a

negative training interaction had HVAL>20 to a protein of a nega-

tive test interaction. Modification 2: Bringing redundancy back.

PPIs can be redundant on the level of interaction partners and on the

level of sequences. We explored the impact of both types in the

training set (keeping test and negative training sets the same; see

Supplementary Material S1.2). Redundant interactions were added

from the full HQ data set (HumanHQ or YeastHQ).
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For redundancy on the level of interaction partners, we took the pro-

teins of all positive PPIs in a redundancy-reduced training set and

added all PPIs between them (2.5 6 0.1x more PPIs for human,

3.1 6 0.1x for yeast). Sequence redundancy was added by including

all PPIs in the training set that did not violate the sequence similarity

constraints to the respective test sets C1–C3 (4.9 6 0.2x more PPIs

for human, 4.3 6 0.1x for yeast). We obtained similar results for

both types of redundancy. For simplicity, we only show those for

interaction partner redundancy in the main text (See Supplementary

Material S4.2 for others).

2.1.7 Evaluation

All prediction methods that we assessed can be retrained with cus-

tom PPIs and provide a score for each test PPI. We could therefore

calculate standard recall-precision curves. To minimize sampling

noise, we repeated every experiment above ten times from the begin-

ning (e.g. we performed ten times 10-fold CVs) and averaged over

10 curves. The curves in the Results correspond to the difference

between two such average curves, because we measured the change

in precision when applying the modifications described before. They

were calculated by subtracting the precision values of one curve

from those of another curve.

2.1.8 Prediction methods

Park and Marcotte (Park and Marcotte, 2012) established PIPE2

(Pitre et al., 2008) and SigProd (Martin et al., 2005) as the top two

methods that predict PPIs from sequence alone and that have al-

ready been published. We used those two along with the lower per-

forming but methodologically distinct AutoCorrelation (Guo et al.,

2008) and a new in-house method named PPI-PK (Protein-Protein

Interaction Profile Kernel; unpublished). The latter encodes a PPI as

pairs of k-mers that are conserved in the evolutionary profiles of the

two sequences and then uses SVMs for prediction. PIPE2 was

the only method that did not use negative PPIs during training. The

other details did not matter with respect to the results we report, be-

cause we confirmed similar findings for several, very different meth-

ods developed in-house over the last years (data not shown).

3 Results and Discussion

Sequence similarity has not played a crucial role in the evaluation of

PPIs predictions. One reason may be that homology-based inference

of PPIs works reliably only for high levels of similarity (Mika and

Rost, 2006). Park and Marcotte discovered that the accuracy of pre-

dicting a new target interaction between proteins A and B depends

crucially on whether both A and B (C1), any of the two (C2) or nei-

ther (C3) have been used for training (Park and Marcotte, 2012).

Here, we have investigated three important questions that arose

from this discovery. Firstly, can we improve methods by using non-

interacting pairs (negative PPIs) that are sequence-similar between

training and testing? Secondly, how does data redundancy in the

training set affect the three classes (C1–C3)? Thirdly, which predic-

tion method is best and can we actually determine real-world predic-

tion accuracy?

3.1 Sampling of negatives crucial for optimal

performance
The work by Park and Marcotte suggests that higher sequence simi-

larity between training and test sets improves performance. This

might also pertain to negatives (non-interacting protein pairs),

which have exclusively been sampled from proteins of the positive

training interactions in (Park and Marcotte, 2012). We increased

similarity by sampling negative PPIs separately for each class C1–C3

from all the respective class-specific protein pairs in an organism

(See Section 2). This procedure made negative test PPIs highly se-

quence-similar to negative training PPIs and sampled all negatives

from the same population (See Supplementary Material S1.1).

We measured the effect of this increased sequence similarity with

high-quality data sets and several prediction methods. We trained

and evaluated models twice: First, all negatives were chosen ran-

domly from all C3 pairs of an organism. Then we did the same, but

proteins had to be sequence-dissimilar between training and test sets

(See Section 2; Fig. 1). For all data sets, sequence similarity between

negative PPIs yielded higher performance for three of the four meth-

ods tested (human CV: Fig. 2A, other results and details in

Supplementary Material S4.1). PIPE2 (Pitre et al., 2008) was the ex-

ception as it did not use negatives for training. Its differences re-

sulted from a different protein background population from which

negative PPIs were sampled. This might indicate that the test set was

more difficult, thus emphasizing the performance gain of the other

methods. The same conclusions hold for yeast and new human PPIs,

but the effect of the background population was weaker.

AutoCorrelation performed only slightly better than random in C3,

so that the differences were not as pronounced as for the other

methods.

3.2 Challenging predictions not improved by sampling

many PPIs per protein
In machine learning, good training data is equally important to

choosing the right learning method. One frequent problem is redun-

dancy. It may carry important signals, but also ‘mislead the learner’

to focus on less relevant aspects. PPI data sets can have two types of

redundancy: overrepresented protein families and overrepresented

interaction partners. For example even if all proteins are pairwise

dissimilar, one protein may still have many more interaction part-

ners than others. On the other hand, proteins may still be sequence

similar even if every protein has only one interaction partner. Most

developers have not redundancy reduced PPI data sets at all; very

Fig 1. Flow chart of data preparation. Starting with all redundant positive PPIs

(upper left), we created two data sets (Variant 1 and Variant 2) which differ

from a third Baseline data set in terms of redundancy amongst positive train-

ing PPIs and sequence similarity between negative training and test PPIs. We

compared the PPI prediction performance achieved with each variant to the

performance of the baseline (Fig. 2)
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few did it on the level of sequences. Supposedly, interaction modes

are so diverse that additional PPIs always add knowledge. Also, dif-

ferent proteins can use the same mechanism of interaction (e.g. SH2/

3 domains). Thus, more PPIs should also help predicting interactions

between so far unseen proteins.

We put this hypothesis to the test. First, we performed CVs with

the non-redundant data sets used before. We considered test classes

C1–C3. Then we compared these results to those obtained after add-

ing all interactions back to the training sets and repeating the experi-

ments (See Section 2; Fig. 1). For both yeast and human, we found

significant differences in performance for classes C1 and C2 in 15

out of 16 experiments, but virtually no difference for C3 (Fig. 2B for

human CV; others in Supplementary Material S4.2). For the lowest

levels of recall, the non-redundant training sets even performed

slightly better. Adding even more redundancy strengthened the

trends (Supplementary Material S4.2).

Our observations were puzzling. A PPI may be more likely to be

predicted if similar proteins in the training data have many inter-

action partners. This would explain some of the difference that we

observed in C1–C2. However, it does not explain how a fraction of

the input data can achieve the same or even better performance than

the full data. We additionally suspect a distinction between signals

that act on the level of particular family pairs (interologs) and those

that are universally valid among all proteins. For C1 and C2, a new

PPI can use the signals specific for at least one of its families, which

may be learned if multiple interaction partners for each protein are

allowed. For C3 pairs, neither protein can ‘hook’ to a family and

universally valid motifs might dominate.

3.3 Best method lies in the eye of the beholder
If we zoom into the comparison of two methods, e.g. PIPE2 and

SigProd, we see that test classes C1–C3 impact the methods differ-

ently and even change which method is perceived as better

(Supplementary Material S4.3). For human C1, e.g. PIPE2 outper-

forms SigProd up to �51% recall and becomes worse than SigProd

for higher recalls. The latter regime is relevant for finding many

interactions with as few wet-lab experiments as possible. The preci-

sion of PIPE2 in C2 was reduced and lower than SigProd starting at

much lower recall levels than in C1. In C3, SigProd consistently out-

performed PIPE2. This was the same for all data sets (HumanHQ,

YeastHQ and HumanHQ_new).

What is considered the best method to predict PPIs from se-

quence depends on the sequence similarity between training and test

sets, on how many true PPIs should be found (recall) and hence also

on the ratio of positives to negatives. The latter has been estimated

for human and yeast several times, but keeps changing (Rajagopala

et al., 2014; Sambourg and Thierry-Mieg, 2010; Stumpf et al.,

2008; Venkatesan et al., 2009). Its effect on precision can be esti-

mated quite precisely (Supplementary Material S2), but classes

C1–C3 further complicate matters. For C1, e.g. the ratio might be

much lower than for C3 as we may have already found many PPIs

experimentally (Supplementary Material S3). In practice, this could

turn the intuition that C1 is ‘easier’ than C2 or C3 on its head. The

best C1 predictions may actually contain fewer true interactions

than the best C2 or C3 predictions. One may also challenge the bio-

logical relevance of the remaining C1 interactions.

4 Conclusions

Our results prove that the determination of performance of PPI pre-

diction methods is even more complicated than anticipated. They

also stress the importance of data preparation when machine-

learning PPIs. Just as the choice of the method, the best preparation

depends on the objective. The latter is largely defined by the se-

quence similarity between targets and templates (class C1 or C3?).

The levels of similarity that are important depend on many param-

eters, including model organism and amount of experimental data.

This is different for cross- and interspecies predictions. For optimal

performance, we may also need to trade-off data quality with prote-

ome coverage. Lastly, the sequence similarity threshold that defined

classes C1–C3 was arbitrary (HVAL>20). All trends that we

observed here will most likely be reinforced when pushing it to the

upper or lower limits. Clearly, much remains to be improved for

sequence-based PPI predictions.
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Fig. 2. Cross-validation results on human data. (A) Increase in precision when allowing sequence similarity between negative training and test interactions.

We tested four PPI prediction methods (PPI-PK, SigProd, PIPE2 and AutoCorrelation). Positive values on the y-axis indicate that precision increased by that

amount when proteins of negative interactions were similar between training and test sets. Negative values indicate decrease in precision. All test cases be-

longed to difficulty class C3. (B) Increase in precision when allowing more than one interaction partner per protein in the positive training sets. The left plot shows

results for C1, the right plot for C3 test cases. The meaning of the y-axis is analogous to (A)
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