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An optimal control approach to a simplified reaction–diffusion system describing cardiac defibrillation
is proposed that allows for joint optimization of shape and duration of defibrillation pulses. Within the
framework, optimized multi-phasic pulses with low energy, short duration and/or low amplitude can be
designed according to specific needs. The approach is based on a novel time optimal control formu-
lation for the monodomain model, which takes into consideration the dynamical system properties of
the uncontrolled equation. The highly complex dynamics requires a consistent discretization of first- and
second-order information to guarantee effective optimization schemes leading to successful defibrillation.
Numerical examples underline the efficiency of the proposed method.

Keywords: time optimal control; reaction–diffusion equation; monodomain model; PDE-constrained opti-
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1. Introduction and problem formulation

Over the last decades significant progress was made in the numerical treatment of open loop optimal
control problems governed by distributed parameter systems. The techniques that were developed were
adapted for a wide range of important equations, including wave and diffusion equations, the equations
of fluid mechanics and fluid–structure interaction models. In contrast, very little attention was paid to
reaction–diffusion systems, whose dynamical systems behaviour is significantly different from those of
the systems mentioned before. In this paper, we continue our efforts on one particular reaction–diffusion
system, which describes the electrical activity of the heart. Compared with our earlier work we propose
a new choice of cost functionals, which allows a much wider class of optimized trajectories. This is
only possible by using well-conceived numerical optimal control techniques. Due to the rich dynamical
systems behaviour for the problems under consideration, ad hoc techniques will simply fail, especially
for second-order methods.

Let us briefly describe the physiological background for the problem to be investigated. The heart
supplies all organs with blood by rhythmic contractions that are triggered electrically. Disturbances in
the formation and/or propagation of electrical impulses may induce reentrant activation patterns which
lead to a noticeable increase in the hearts activation rate. Such fast rhythms may lead to fibrillation. To
restore a healthy rhythm, the delivery of electrical shocks, referred to as defibrillation, is a reliable ther-
apy. It can be administered by means of implantable cardioverter defibrillators (ICDs), which monitor
the heart rate and deliver a discharge, which acts as a control, to restore a normal rhythm.

The bidomain model is a well-accepted continuous and macroscopic description of the electri-
cal activity of cardiac muscle cells. The model consists of two coupled reaction–diffusion equa-
tions together with an ODE describing the ionic currents associated with the reaction terms; see e.g.
Keener & Sneyd (2009). Assuming the intracellular and extracellular conductivity tensors to be linearly
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TIME OPTIMAL CONTROL OF THE MONODOMAIN MODEL 1665

dependent, the model can be simplified to the monodomain model, which results in a substantial reduc-
tion of computational effort (Potse et al., 2006; Sundnes et al., 2006). Once a model for the physiological
phenomena and their dependence on a control input is fixed, an optimal control approach can be utilized
to decide on the optimal shock delivery.

Due to severe physiological constraints, involving time scales, geometry and multi-physics aspects,
the current optimal control techniques certainly fall short of addressing all relevant aspects. But the
medical technology itself is still changing rapidly, so that certain assumptions, as for instance, the avail-
ability of observations or actuator support which is not too small relative to the overall tissue size, may
become reality. Current technological advances include, for instance, the development of a new type of
ICDs; see e.g. Puri et al. (2013). They consist of flexible arrays of leads which act as sensors, gathering
information on the electrical state of the heart, and as actuator-electrodes, delivering a defibrillation
shock when arrhythmias are detected. In case of a defibrillation therapy, each lead is provided with a
defibrillation pulse that has to be designed appropriately, based on the measured data.

Within the optimal control approach to cardiac defibrillation, pulses are designed by solving an opti-
mal control problem constrained by a reaction–diffusion system. The aims of effective defibrillation and
minimal detrimental side effects to the patient are modelled within the control objective. By adapting
the objective and its parameters, a wide range of goals can be achieved, which makes the optimal con-
trol approach a powerful and flexible tool for defibrillation pulse design. The design of the objective is
of paramount importance and, together with an efficient numerical realization, are the main innovation
of this paper. For the choice of the control objective, several conflicting interests need to be taken into
consideration. They include the behaviour of the unforced dynamical system, which for the simplified
ODE-FitzHugh Nagumo model states that once the state is sufficiently excited, it must necessarily reach
a plateau value before it can return to the stable equilibrium; see e.g. Murray (2002, p. 241f). For the
infinite-dimensional system (1) this behaviour can occur at different times at any point in the spatial
domain. This suggests to use a control objective (defibrillation) which only involves the terminal time
of the control horizon. This leads to a highly ill-conditioned optimal control problem, making exact
computation of gradient and Hessian information indispensable.

The topic of numerical simulation of the electrical activity of the heart has inspired much research,
so that we can only quote selected references (Franzone et al., 2006; Vigmond et al., 2008). The opti-
mal control approach to cardiac defibrillation was previously investigated in Nagaiah et al. (2011) and
Götschel et al. (2013) for the monodomain model, and in Nagaiah et al. (2013) for the bidomain model.
Differently from the present paper, these papers consider the case where the shock length is fixed.
Moreover, the cost functional for the optimal control formulation involves a reference trajectory. As a
consequence, the number of phases of the optimal pulse is determined a priori. The optimal control of
reaction–diffusion systems involving wave phenomena was also the focus of the research in Borzì &
Griesse (2006) and Casas et al. (2013).

The article is organized as follows: the monodomain model is described in Section 2. Section 3
is devoted to the formulation of the optimal control problem. The necessary conditions are obtained
in Section 4. In Section 5, the optimization method is presented, which is based on a bilevel formu-
lation together with a trust region semismooth Newton method. Section 6 introduces the numerical
framework which is chosen in such a manner that discretizations before or after deriving the nec-
essary optimality conditions commute, and lead to a Galerkin discretizations with the exact discrete
derivatives; see Section 6. The proposed techniques are tested by numerical experiments on termina-
tion of reentry waves in Section 7. One of the examples also addresses robustness of the computed
controls.
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1666 K. KUNISCH AND A. RUND

2. The controlled state equation

We investigate a sample of heart tissue described by the domain Ω . The electrophysiology is modelled
by the monodomain equation using the cell model of Rogers & McCulloch (1994), which is a modified
FitzHugh–Nagumo model. For simplicity, we do not consider a conductive bath and therefore model the
heart tissue to stay electrically isolated, leading to homogeneous Neumann boundary conditions. Thus,
the dynamical system is given by the monodomain model

vt + I(v, w) − ∇ · (σ̄i∇v) = Ie a. e. in Q := (0, tf) × Ω , (1a)

wt + G(v, w) = 0 a. e. in Q, (1b)

ν · σ̄i∇v = 0 on Σ := (0, tf) × ∂Ω , (1c)

v(x, 0) = v0(x), w(x, 0) = w0(x) a. e. in Ω . (1d)

The independent variables are x ∈ Ω ⊂ R
d , d = 2, and time t ∈ (0, tf) with the terminal time tf > 0; Ω

is a bounded domain with Lipschitz continuous boundary ∂Ω and unit outer normal ν. The functions
v(t, x), w(t, x) denote the transmembrane electric potential and the gating or recovery variable. The
intercellular conductivity tensor σ̄i ∈ L∞(Ω , Rd×d) is assumed to be symmetric and uniformly elliptic.
The extracellular stimulation current Ie depends on the defibrillation pulse, which has to be controlled.
The ionic current I(v, w) and G(v, w) are given as

I(v, w) = η0v

(
1 − v

vth

)(
1 − v

vpk

)
+ η1vw, (2a)

G(v, w) = η2

(
η3w − v

vpk

)
, (2b)

with η0, η1, η2, η3 ∈ R
+. A cell is excited if the transmembrane potential exceeds the threshold potential

vth > 0. Further, vpk > vth is the peak potential. The initial conditions v0(x) ∈ L2(Ω), w0(x) ∈ L4(Ω)

describe a fibrillatory situation.
The geometric setting represents a layer of heart muscle tissue modelled as a 2D domain Ω . A

finite number of electrode plates Ωcon,k , k = 1, . . . , Ne, are pasted on top. In the common setting, this
would just be a pair; alternatively, it can be an array of plates in case of a flexible sensor array. For
simplicity, the electrodes are assumed to be homogeneous and perfectly connected to the tissue. For
the monodomain model, each electrode is assigned an independent defibrillation pulse uk(t), whereas a
compatibility condition would be needed for bidomain modelling. The extracellular stimulation current
Ie is therefore modelled as

Ie(t, x) =
Ne∑

k=1

uk(t)χΩcon,k (x), (3)

where χΩcon,k (x) denotes the characteristic function of electrode plate k, uk(t) the corresponding pulse
and u(t) = (u1(t), . . . , uNe(t)) the control vector.
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TIME OPTIMAL CONTROL OF THE MONODOMAIN MODEL 1667

3. The optimal control problem

Here, defibrillation will be posed as an optimal control problem. The aim consists in influencing the
extracellular stimulation current Ie(t, x) in such a way that the tissue changes to a state where fibrilla-
tory propagation is hindered. Additionally, side effects on the tissue should be kept small. While this
description is clear, its particular modelling is involved. We first discuss the choice of the time horizons
and then define the optimal control problem.

3.1 Modelling the time horizon

After a defibrillation shock has been applied successfully, the heart muscle tissue needs a certain amount
of time to reach a non-fibrillatory state, especially in the presence of complicated patterns of reentry
waves. Therefore, a successful defibrillation can only be confirmed at a time tf with tf � T , where T is
the end time of the defibrillation shock. There are several ways how one might incorporate this fact into
the optimal control problem.

Nagaiah et al. (2013) propose a formulation with a short fixed time horizon [0, T] and enforce
the defibrillation on the basis of a tracking functional using a desired trajectory given by an a priori
known defibrillation pulse, which brings the tissue to a non-excited state at tf � T . Post-optimally, the
simulation on (T , tf) is continued to confirm successful defibrillation.

Here, we propose a formulation which is different in several ways. First, we do not rely on a desired
trajectory; secondly, the shock duration itself is optimized. Thirdly, defibrillation is quantified in the cost
by demanding that at some final time of simulation tf the electric potential is small throughout Ω . Thus,
the optimization problem is posed on some fixed horizon [0, tf] at the end of which defibrillation must be
achieved. The defibrillation pulse is applied on the first part [0, T], with T being part of the optimization.
Compared with Nagaiah et al. (2013), this gives an increased flexibility in how the defibrillation is
achieved. In particular the number of phase changes is part of the optimization and is not aligned with
some desired trajectory. In addition, for successful defibrillation the system is monitored throughout the
time interval [0, tf], rather than only on [0, T].

From the point of view of numerical optimization, this problem is significantly more challenging,
since the elimination of the use of a desired trajectory leads to a drastically reduced coercivity of the
optimal control formulation. Our approach will lead to different optimal controls that deliver less energy
to the tissue, since the optimal control formulation is more flexible in choosing the pulses.

3.2 Defibrillation as optimal control problem

For effective defibrillation at time tf, we aim at bringing as much tissue to the resting state as possible.
Then, the next natural activation given by the sinoatrial node or by a pacemaker should be able to
reestablish the normal heart rhythm. How to model this terminal condition? The goal is realized by a
terminal penalty term.

To model negative side effects of the applied shock Ie, three different quantities are considered: the
duration, the energy and the amplitude of the pulse. Since the exposure of the patient is related to the
duration of the electrical shock, we aim at minimizing the duration T . Moreover, the energy of the pulses
‖u‖2

2 has to be minimized. Additionally, we restrict the amplitudes by imposing inequality constraints
umin � uk(t) � umax, since too large amplitudes would result in a local damage to the tissue adjacent to
the electrodes.
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1668 K. KUNISCH AND A. RUND

These considerations suggest the following optimal control problem:

min
0�T�tf, u(t)∈Uad

J(v, u, T) := T + μ

2
‖v(·, tf)‖2

L2(Ω) + α

2

Ne∑
k=1

‖uk‖2
L2(0,T), (4a)

subject to (1) with Ie =
Ne∑

k=1

uk(t)χΩcon,k (x)χ(0,T)(t), (4b)

with weighting parameters μ > 0, α > 0. The amplitude of the controls are bounded via the set of admis-
sible controls:

Uad := {u ∈ U : umin(t) � uk(t) � umax(t) for a. a. t ∈ (0, tf), k = 1, . . . , Ne}, (4c)

where umin, umax ∈ L∞(0, tf) and U := L2(0, tf; R
N
e ). Equation (4) constitutes a time optimal control

problem with a non-linear ODE–PDE system as constraints. The objective (4a) is a scalarized multi-
objective formulation favouring successful defibrillation for large μ, small energy inputs for large α and
short pulses for small α and μ.

3.3 Existence

At first, we recall the existence and regularity results for the solutions of the monodomain model, which
are defined next. We introduce Q = (0, tf) × Ω and the Sobolev space V := H1(Ω) with its dual V ∗.
The duality pairing between V and V ∗ is denoted by 〈·, ·〉V ∗,V .

Definition 1 For Ie ∈ L2(0, tf, V ∗) and (v0, w0) ∈ L2(Ω) × L2(Ω), a pair (v, w) is called a weak solu-
tion to (1) if (v, w) ∈ L2(0, tf; V) ∩ C([0, tf]; L2(Ω)) ∩ L4(Q) × C1([0, tf]; L2(Ω)), vt ∈ L2(0, tf; V ∗) +
L4/3(Q), and for a.a. t ∈ (0, tf) and all ϕ ∈ V ,⎧⎪⎨

⎪⎩
d

dt

∫
Ω

v(t)ϕ dx + ∫
Ω

σ̄i∇v(t)∇ϕ dx + ∫
Ω

I(v(t), w(t))ϕ dx = 〈Ie(t), ϕ〉V ∗,V ,

wt(t) + G(v(t), w(t)) = 0 a.e. in Ω ,

where the time derivative is to be understood in the distributional sense.

Existence and uniqueness results for the bidomain equations are considered in e.g. Bourgault et al.
(2009) and Nagaiah et al. (2011). Since we restrict ourselves to the monodomain equation here and since
we use a simple form for G, only minor modifications in the proof of these results imply the following
proposition, which holds in dimensions 2 and 3; see also Kunisch & Wagner (2011) for the monodomain
equation.

Proposition 3.1 Let Ie ∈ L2(0, tf, V ∗) and (v0, w0) ∈ L2(Ω) × L2(Ω). Then System (1) admits a weak
solution. Furthermore, there exists a constant C, such that

‖v‖2
C([0,tf];L2) + ‖v‖2

L2(0,tf;V) + ‖v‖4
L4(Q) + ‖vt‖4/3

L4/3(Q)+L2(0,tf;V ∗) + ‖w‖2
C1([0,tf];L2)

� C(1 + ‖v0‖2
L2(Ω) + ‖w0‖2

L2(Ω) + ‖Ie‖2
L2(V ∗)).

If additionally Ie ∈ L∞(0, tf; V ∗) and w0 ∈ L4(Ω) holds, then the weak solution is unique.
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TIME OPTIMAL CONTROL OF THE MONODOMAIN MODEL 1669

This proposition applies in particular to the choice of Ie made in (4b). In the following, we prove the
existence of a global minimizer of the time optimal control problem (4).

Proposition 3.2 Problem (4) admits a solution (v∗, w∗, u∗, T∗).

Proof. Let {(un, Tn)}∞n=1 denote a minimizing sequence. This sequence is bounded and hence there
exists a subsequence, denoted by the same symbols, and (u∗, T∗) such that (un, Tn) ⇀ (u∗, T∗) weakly
in L2(0, tf; R

N
e ) × R with u∗ ∈ Uad.

Let (vn, wn) = (v(un), w(un)) denote the associated states of the monodomain model. By Proposi-
tion 3.1 there exists a subsequence of (vn, wn) denoted by the same indices, and (v̄, w̄) ∈ L2(0, tf; V) ∩
L4(Q) × W 1,2(0, tf; L2(Ω)) with v̄t ∈ L4/3(Q) + L2(0, tf; V ∗) such that vn ⇀ v̄ weakly in L2(0, tf; V) ∩
L4(Q), (vn)t ⇀ v̄t weakly in L4/3(Q) + L2(0, tf; V ∗) and wn ⇀ w̄ weakly in W 1,2(Q). This puts us in a
position to use the arguments in (Bourgault et al., 2009, Section 5.2.3) to argue that we can pass to
the limit in the state equations so that (v̄, w̄) = (v(u∗), w(u∗)) satisfy (1). The argument in Bourgault et
al. (2009) is carried out for the bidomain equations and equally applies for the monodomain equation.
Since {vn} is bounded in L2(0, tf; V) and {vn

t } is bounded in L4/3(V ∗), it follows that, possibly on a further
subsequence, vn(tf) → v∗(tf) strongly in V ∗; see e.g. Constantin & Foias (1988, p. 71). Since {vn(tf)} is
bounded in L2(Ω), we also have that vn(tf) ⇀ v∗(tf) weakly in L2(Ω). Now we can pass to the limes
inferior in

inf
0�T�tf,u∈Uad

J(v, u, T) = lim
n→∞

(
Tn + μ

2
‖v(·; un, tf)‖2

L2(Ω) + α

2

Ne∑
k=1

‖un
k‖2

L2(0,Tn)

)

� T∗ + μ

2
‖v(·; u∗, tf)‖2

L2(Ω) + α

2

Ne∑
k=1

lim
n→∞

‖un
k‖2

L2(0,Tn).

To treat the last term, we define

ũn
k =
{

un
k on (0, Tn)

0 on (Tn, tf)
, ũ∗

k =
{

u∗
k on (0, T∗)

0 on (T∗, tf).

It is simple to verify that ũn
k ⇀ u∗

k weakly in L2(0, tf). Therefore,

lim
n→∞

∫ Tn

0
|un

k |2 = lim
n→∞

∫ tf

0
|ũn

k |2 �
∫ tf

0
|ũ∗

k |2 =
∫ T∗

0
|u∗

k |2,

consequently
inf

0�T�tf,u∈Uad

J(v, u, T) � J(v∗, u∗, T∗),

and thus, (u∗, T∗) is a solution to (4). �

4. Necessary conditions

The numerical realization of (4) is based on first-order necessary optimality conditions that an optimal
solution (ū, v̄, w̄, T̄) has to fulfil. Applying a formal Lagrangian approach with p(t, x) and q(t, x) as
the Lagrange multipliers associated to the parabolic PDE and the ODE, one can proceed in a by now
standard manner to obtain the first-order necessary system; see e.g. Tröltzsch (2010), for problems
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1670 K. KUNISCH AND A. RUND

with fixed time horizon and Ito & Kunisch (2010) for time optimal control problems. The first-order
necessary system consists of the state equations (1), the adjoint equations (5), the optimality conditions
(6) and a transversality condition (7) for the optimal free time T̄ .

− pt − ∇ · (σ̄i∇p) + Iv(v̄, w̄)p + Gvq = 0 in Q, (5a)

− qt + Iw(v̄, w̄) · p + Gw · q = 0 in Q, (5b)

ν · σ̄i∇p = 0 on Σ , (5c)

p(tf) = μv̄(tf), q(tf) = 0 in Ω . (5d)

(αū(t) + B∗p(t)) · (u(t) − ū(t)) � 0 a.a. t ∈ (0, T̄) ∀u ∈ Uad. (6)

0 = 1

T̄

∫ T̄

0

(
1 + α

2
‖ū‖2

2 + 〈Ie(ū) + ∇ · (σ̄i∇v) − I, p〉 − 〈G, q〉
)

dt

− 1

tf − T̄

∫ tf

T̄
(〈∇ · (σ̄i∇v) − I, p〉 − 〈G, q〉) dt. (7)

Here Iv, Iw, Gv, Gw denote the partial derivatives of the model functions (2) and B∗ : L2(Q) → U ,
B∗p := (χ(0,T̄)(t)

∫
Ωcon,k

p(t, x)dx)k=1,...,Ne . For the derivation of the transversality condition by a time
transformation, we refer the reader to Kunisch et al. (2014).

To apply the semismooth Newton method later on, we first reformulate (6) using the projection
operator Pad : L2(0, tf; R

N
e ) → L2(0, tf; R

N
e ), Pad(y) = min(umax, max(umin, y)) resulting in

ū(t) = Pad

(
− 1

α
B∗p

)
a.a. t ∈ (0, T̄). (8)

Secondly, we introduce artificial optimization variables

z ∈ U , z := (zk) = − 1

α
B∗p

and parametrize the controls as u = Pad(z). Hence, we shift the non-smooth projection operator to the
state equation and the objective. Thus, the first-order necessary conditions are equivalent to (1), (5), (7)
with eliminated control u = Pad(z) and

0 = F(z) := αz + B∗p a.a. t ∈ (0, T̄). (9)

5. Methods

Time optimal control problems are challenging numerically. To partially appreciate this fact, we note
that by means of a time transformation, time optimal problems can be transformed to a fixed time
interval, at the expense of an additional non-linearity in the dynamical system. We want to avoid such
a new non-linearity since already (1) is known to be rich in structure, allowing wave-like and reentry
phenomena, for example.
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TIME OPTIMAL CONTROL OF THE MONODOMAIN MODEL 1671

Therefore, we propose a bilevel approach for solving (4), separating T and the controls u by treating
T as parameter in the lower-level problem (LLP):

min
0�T�tf

⎛
⎝ min

u∈Uad
s.t. (4b)

J(v, u; T)

⎞
⎠ . (10)

Obviously, this problem has the same solution as the time optimal control problem (4). For each fixed
T the LLP constitutes a terminal tracking problem for a coupled ODE–PDE system with controls acting
on a fixed part of the time interval. An alternative all-at-once approach was developed in Kunisch et al.
(2014).

The bilevel problem will be solved by an iterative method, where the LLP is solved by a semis-
mooth Newton method (TR-SN). It consists of a combination of the reduced Newton method of Hinze
& Kunisch (2001) with a globalization based on Steihaug-CG (Steihaug, 1983). The extension to semis-
mooth Newton methods to allow for the control constraints u(t) ∈ Uad will be explained in the next
section. The method is matrix-free, i.e. the Hessians are not set up explicitly, but we compute only the
action of the Hessians and resort to Krylov methods. All forward and backward systems are solved
efficiently with time-stepping methods; see Section 6. A globally convergent (derivative-free) direct
search method is used for the upper-level minimization problem avoiding the transversality condition
(7), which is checked a posteriori.

Before we describe the TR-SN, we note that with the technique of the proof of Proposition 3.2 it is
simple to argue the following result.

Lemma 5.1 The LLP has an optimal solution for every T > 0.

The optimality conditions for the LLP consist of (1), (5) and (8) with a fixed current guess for T̄ ,
and follow from the results in Kunisch & Wagner (2011).

5.1 Trust region semismooth Newton method for solving the LLP

In the following, we describe the solution of the LLP using a trust region semismooth Newton method
introduced in Pieper (2015); see also Kunisch et al. (2014). Globally convergent semismooth Newton
methods can be found, e.g. in Ulbrich (2011), where a step of a first-order method is applied in case the
Newton step has to be rejected. In contrast, here a trust region approach inspired by Steihaug (1983) is
used, which tries to provide a more gradual transition between a first-order and a second-order method.
The method is known to be globally convergent in the unconstrained case; see Steihaug (1983). In the
constrained case the update of the trust region radius is currently done heuristically, which performs
well in numerical experiments. A proof of global convergence (under possible modifications) is not yet
available. Though global convergence for a closely related first-order method (with a fixed step-size)
was proved in Pieper (2015, Theorem 3.27).

First, we describe the matrix-free semismooth Newton method. Therefore, we treat all state and
adjoint variables as functions of z (as solutions of (1) and (5)), and we define the reduced objective
w.r.t. u as j(u) = J(v(u), u; T). Consequently, the reduced optimality condition is 0 = F(z) with F from
(9). Here, F is non-smooth, but it allows for the application of a semismooth Newton method. Using
the semismoothness calculus in Banach spaces from, e.g. Ito & Kunisch (2008) or Ulbrich (2011), we
introduce the generalized differential of the projection operator Pad(y)

DPad(z)(h) = χI h, (11)
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1672 K. KUNISCH AND A. RUND

where χI h := (χI k hk)k and χI k denotes the indicator function of the inactive set I k = {t ∈ (0, T) |
umin(t) < zk(t) < umax(t)} of component uk . The generalized derivative of F at point zn in the direction
δz is then given by

H(zn)(δz) = αδz + B∗δp(δz). (12)

To compute δp(δz), first the tangent equation depending on δz and incorporating χI k is solved for δv,
δw forward in time, and then the second adjoint equation is solved for δp, δq backward in time, see the
end of Appendix A.

Taken together we can formulate the semismooth Newton iteration

H(zn)(δz) = −F(zn), zn+1 = zn + δz. (13)

While the operator H is in general non-symmetric, it is symmetric with respect to the L2-inner product
of the inactive set (a, b)I :=∑Ne

k=1

∫ T
0 χI k akbkdt. Therefore, we compute d by solving (13) with the

CG method using (·, ·)I as inner product. By this, we obtain a solution of (13) on the inactive set, i.e.
χI (Hd + F) = 0. Afterwards, a solution of the full system (13) is obtained by updating the components
on the active set according to

δz = d − 1

α
(F(zn) + H(zn)d). (14)

We note that, for Uad = U , the semismooth Newton method coincides with the well-known matrix-free
Newton method of Hinze & Kunisch (2001).

For globalization, the method is embedded into a trust region framework analogously to
Steihaug (1983). Therefore,we note that the CG method with (·, ·)I computes a particular solution
of the quadratic problem

min
h∈U

ϕzn(h) := (h, F(zn))I + 1
2 (h, H(zn)h)I .

We replace this problem by the trust region problem

min
h∈U

ϕzn(h) s.t. ‖h‖I � Δn,

with trust region radius Δn > 0 and ‖h‖I = √
(h, h)I . It is solved with Steihaug-CG (Steihaug, 1983,

Section 2) using the inner product (·, ·)I . The update (14) is done only for a fully converged CG
method, hence not for the cases when negative curvature or a large step is encountered. For practical
realization the update (14) should be replaced by minimizing the residual in the direction of r = −F −
Hd according to

δz = d + θr with θ ∈ R, θ = arg min(‖H(d + θr) + F‖L2(0,T ;RN
e )), (15)

in order to make the procedure more robust w.r.t. rounding errors.
The update of the trust region radius Δn and the decision of accepting or rejecting a step are done

analogously to Steihaug (1983); see the full algorithm in Appendix A. Additionally, we modify the trust
region method to be monotone, i.e. accepted steps will always yield a decrease in the objective.

5.2 Direct search method for the upper-level problem

The upper-level problem is solved with a globally convergent derivative-free optimization method based
on bisection. It is assumed that the optimal values G(T) of the LLP are continuous w.r.t T . We start
from a triple L < M < R with G(M ) < G(L) and G(M ) < G(R), i.e. we assume that a minimizer is
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contained in [L, R]. Then both intervals are bisected by P := (L + M )/2 and Q := (M + R)/2 and G(P),
G(Q) are computed. Next, we choose M as minimizer in {M , P, Q}, tighten both intervals and iterate.
Additionally, we skip the computation of G(Q) if G(P) < G(M ) holds.

6. Discretization

We give a brief description of the discretization of the LLP. To combine the advantages of First-
Discretize-Then-Optimize (FDTO) methods and First-Optimize-Then-Discretize (FOTD) methods, we
choose a Galerkin Finite Element (FE) method in space together with a Petrov–Galerkin method in
time, which allows for exact discrete derivatives and a natural translation of the optimality conditions
from the continuous to the discrete level; see Becker et al. (2007). Hence, FDTO and FOTD commute
and coincide within our framework, which is very important for trust region Newton methods.

In particular, we choose Lagrange Q1 elements on a quadrilaterally structured grid for spatial and the
Crank–Nicolson method in the cG(1)-scheme for temporal discretization; for the latter see e.g. Eriksson
et al. (1996). Since the spatial discretization is straightforward, we defer it to Appendix B. However,
the time discretization is important to gain exact discrete derivatives and decoupling. Therefore, the
essential parts are presented in the following, concentrating on the semidiscretization in time.

We aim for an efficient decoupling method to solve the ODE and PDE variables independently per
time step. Therefore, we utilize a decoupling of the ODE from the PDE by taking the gating variable
explicitly in the PDE. By working thoroughly through the Lagrangian calculus, we reestablish the exact
discrete derivatives respecting the decoupling.

A time grid t0 < · · · < tN with step-sizes τm := tm − tm−1 is chosen. The state variables are semidis-
cretized in time as continuous piecewise linear functions with values V m(x) = v(tm, x), m = 0, . . . , N
and analogously for w; see Fig. 1. The adjoint and control variables are piecewise constant in time
with values Pm(x). Hence we have p(t, x) =∑N

m=1 Pm(x)χ(tm−1,tm](t), and analogously for q(t, x) and
uk(t) =∑N

m=1 um
k χ(tm−1,tm](t).

Therefore, the semidiscrete Lagrangian L can be expressed as

L(. . . ) := T + μ

2

∫
Ω

(V N )
2

dx + α

2

Ne∑
k=1

N∑
m=1

τm(um
k )

2 −
N∑

m=1

∫
Ω

τm

2
∇Pm · σ̄i∇(V m + V m−1)

+ Pm

[
V m − V m−1 − τm

Ne∑
k=1

χΩcon,k u
m
k + τm

2
I(V m, W m−1) + τm

2
I(V m−1, W m−1)

]
dx

−
N∑

m=1

∫
Ω

Qm
[
W m − W m−1 + τm

2
G(V m + V m−1, W m + W m−1)

]
dx,

where we leave the inequality constraints as explicit constraints. We again emphasize the decoupling of
w at I(V m, W m−1), which later results also in an adapted decoupling in the adjoint and tangent equations.
Therefore, the ODE can generally be solved efficiently in a matrix-free manner.

Next, the well-known Lagrange formalism yields a consistent semidiscretization of the tangent,
adjoint and second adjoint equation. A subsequent spatial discretization with FE is straightforward and
results in the equations in Appendix B.

The FE calculations are done with deal.II (Bangerth et al., 2007). The non-linear systems in
each time step of the state equation are solved with Newton’s method, and the linear systems are solved
directly with UMFPACK.

 at T
echnical U

niversity M
unich on O

ctober 14, 2016
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


1674 K. KUNISCH AND A. RUND

uk(t)

t

v(x0,t)

t0 t1 t2 t3

Fig. 1. Ansatz space in time for state (upper curve), control and adjoint variables (lower curve).

7. Numerical experiments

In the following, the proposed formulation and method are tested on several examples. The choice
of parameters is inspired by Franzone et al. (2006), where one can also find the aforegoing non-
dimensionalization. The following parameters are fixed throughout all examples:

η0 η1 η2 η3 vth vpk σ̄i

1.5 4.4 0.012 1.0 13 100 diag(3 · 10−3, 3.1525 · 10−4)

The geometry is set to be a rectangle Ω = (0, 2) × (0, 0.8) of size 2 cm × 0.8 cm, which is discretized
into 128 × 64 cells. All computations were done with an equidistant time discretization with step size
τ = 0.04 (ms). The stopping criteria are set to ‖Fn‖ < min(10−5, 10−5‖F0‖) for the (trust region) New-
ton method—where the gradient Fn is the discretization of (9)—and ‖rk‖ < 10−5‖r0‖1.3 for the residual
of the Steihaug-CG method.

The initial condition (v0, w0) describes a reentry wave of the ‘figure of eight’ type. It is constructed
by the usual S1–S2-protocol as follows. Starting by exciting the lower edge v(x, 0) = 101 if x2 � 1/160
and 0 otherwise, w(x, 0) = 0, we integrate the uncontrolled solution until t = 130 using a fixed step size
τ = 0.1. The solution describes a planar wave front travelling from the bottom up. As soon as the centre
gets excitable again, a second stimulus is based on a circle around the midpoint with radius 0.3 for
2 ms, i.e. Ie = 200χΩS2(x)χ[130,132](t) with ΩS2 = B0.3(1, 0.4). We carry on the simulation without any
further stimulus up to t = 217 and save both states v(x, 217), w(x, 217) as future initial conditions for
the optimization. The timing and radius of the second stimulus are crucial. For different domains or
parameters, one has to adapt it by trial and error; otherwise a reentry wave will not evolve.

In the examples which follow, we address the different demands for optimized pulses, looking for: a
short pulse with restricted amplitude in Example 1, a low norm ‖u‖ in Example 2 and a robust optimized
pulse w.r.t. the tensor data in Example 3.

7.1 Example 1: symmetric defibrillation of a reentry wave

We start with an axially symmetric problem, where it is possible to defibrillate with just one control
pulse, i.e. Ne = 1. The geometry of the control domain is Ωcon,1 = [0, 0.25] × [0.3, 0.55] ∪ [1.75, 2] ×
[0.3, 0.55]; see Fig. 2. The bilevel method was started on the interval [L, R] = [30, 40] and conver-
gence was reported for |R − L| < 4 × 10−2. The parameters were tf = 64, α = 10−3, μ = 1000 and
umax = −umin = 100. The initial control is set to u1

0 = u0 = −50 for the first LLP with T1 = 40. All
other LLPs for k � 2 were warm-started with the optimal control of the former LLP ūk−1 restricted to
the current interval [0, Tk] or expanded with zero, e.g. uk

0(t) = ūk−1(t)χ[0,min(Tk ,Tk−1)](t). An alternative
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t
tf fixed0 T

trackingcontrol

2cm

0.
8c

m

Wcon,1

Wcon,1

Fig. 2. Time domain, geometry and initial condition of Example 1.

Table 1 TR-SN method for the first LLP with T = 40

n j(un) ‖F(un)‖ #CG |I |
0 38,118 8.3 × 101 1000
5 538 6.9 × 100 2 555
10 327 1.8 × 100 1 738
15 262 6.5 × 10−1 2 837
20 244 1.6 × 10−2 13 915
21 244 1.9 × 10−3 13 915
22 244 1.3 × 10−4 14 915

procedure to obtain the new initial control uk
0(t) is to linearly map ūk−1 from [0, Tk−1] to [0, Tk] by

uk
0(t) = ūk−1(t(Tk−1/Tk)).

The direct search method in the upper level needs 16 function evaluations to converge at T̄ = 34.12
with J̄ = 238.786, i.e. 16 LLPs were solved in total. We note that this is not the shortest pulse that
effectively defibrillates, since we are facing a multi-objective formulation with three goals. It is an
optimal compromise between short duration and low energy. The total number of state, gradient and
Hessian evaluations throughout the bilevel run are 78, 71 and 658, respectively. We see that 7 of the 62
TR-Newton steps are rejected. The total number of 559 CG steps yields ≈ 9 CG steps per Newton step;
excluding the globalization steps, we observe ≈ 14 CG steps per fully converged CG call.

Typically, the most CPU work is required for the first LLP with T = R = 40, since it is not warm-
started (see Table 1). The TR–SN method needs 22 steps to converge, reducing the objective from
j(u0) = 38118 to j(u22) = 244 and reducing the first-order optimality ‖F(un)‖ significantly. The last two
columns show the number of CG iterations and the number of inactive time points |I |. All subse-
quent LLP solves show a fast convergence of the TR–SN method, see e.g. the second LLP solve with
T = L = 30 in Table 2. Due to the warm-start, only a few globalization steps are needed, where Steihaug-
CG is stopped due to too large steps (flag 1) or negative curvatures (flag 2). Afterwards, the CG is fully
solved (flag 0) and the number of inactive time points |I | converges. Superlinear convergence of the
objective j is observed from sn := (j(un) − j(un−1))/(j(un−1) − j(un−2)) in the last column.

The time optimal control ū(t) is depicted as the second curve in both graphs of Fig. 3. Additional
curves show the time optimal controls for different control bounds umax (left) and different cost param-
eters α (right). Apparently, all time optimal controls differ to a large extent from the initial control
u0(t) = −50χ[0,40](t), in particular the shape, the duration and the switching structure. Consequently,
the corresponding trajectories behave qualitatively different. While the initial control only counteracts
the wave propagation due to u0 � 0, we observe a speed-up of the wave propagation at certain points
for the time optimal control, since it features positive values, too.
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Table 2 TR-SN method for the second LLP with T = 30

n j(un) ‖F(un)‖ #CG Flag |I | sn

0 255.744 6.2 × 10−1 0 665
1 254.084 4.3 × 10−1 2 1 663
2 254.084 4.3 × 10−1 8 2 663
3 253.574 4.7 × 10−2 7 1 577 0.31
4 253.533 2.0 × 10−3 14 0 570 0.08
5 253.533 1.9 × 10−5 14 0 569 0.00
6 253.533 7.3 × 10−11 15 0 569 0.00

Fig. 3. Time optimal controls for different umax = −umin with α = 10−3 (left) and different α with umax = 100 (right).

Table 3 Optimal value J̄ , pulse length T̄ and norm of the time optimal pulse for
different umax with α = 10−3 (left) and for different α with umax = 100 (right)

umax J̄ T̄ ‖ū(t)‖U α J̄ T̄ ‖ū(t)‖U

∞ 130 31 329 10−2 501 33.9 206
100 239 34 334 10−3 239 34.1 334
40 2167 39 217 10−4 173 35.1 436

According to the left plot and Table 3, a lower-bound umax leads to an increase in the optimal pulse
length T̄ and the optimal value J̄ , since the effectivity of the control decreases. On the other hand,
reducing the cost parameter α results in a smaller optimal value, a slightly increased pulse length and a
larger energy of the optimal pulse.

For a verification we compute the transversality condition (7) both for the initial guess (u1
0, T1) and

the optimal pair (ū, T̄), which yields −1660 and −0.1, respectively. The comparison shows a relative
decrease of 6 × 10−5 in this optimality condition, which underlines the optimality of the computed time
optimal control.

7.2 Example 2: asymmetric defibrillation of a reentry wave

The second example considers two independent electrode plates with Ie = χ[0,T](t)(u1(t)χΩcon,1(x) +
u2(t)χΩcon,2(x) in an asymmetric setting Ωcon,1 = [0, 0.25] × [0.4, 0.55], Ωcon,2 = [1.75, 2] × [0.35, 0.4];
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t

tf fixed0 T

trackingcontrol

0.
8c

m

2cm

Wcon,1

Wcon,2

Wcon,1 Wcon,2

W

Fig. 4. Time domain, geometry and initial condition v(0, x) of Example 2.

Fig. 5. Snapshots of the uncontrolled wave (above line) compared with the controlled wave (below line). Depicted are snapshots
of the v(t, x) at times t = 0, 0.12, 6 (upper row) and t = 16, 48, 65 (lower row).

see Fig. 4. The parameters are tf = 65, α = 1 · 10−5, μ = 100 and Uad = U , i.e. the LLP method coin-
cides with a trust region Newton method.

The bilevel method was started on the interval [L, R] = [27.5, 37.5] with u0 = −50 and convergence
was reported for |R − L| < 4 × 10−2. We observe again global convergence of the bilevel method and
locally superlinear convergence of each LLP. Figure 5 depicts snapshots of the transmembrane voltage
v(t, x) for six different times t, both for the uncontrolled evolution of the reentry wave (above line) and
the optimally controlled wave (below line). The uncontrolled wave (u ≡ 0) exhibits a periodic behaviour
with a period around 75. The controlled wave is influenced heavily at the very beginning of the time
horizon. The positive part of the pulses act on the excitable part of the tissue adjacent to the wave front,
bringing it to a non-excitable state (see the second plot for t = 0.12). Thus, the wave cannot progress
upwards, falls apart and leaves the domain. At the terminal time, not a single part of the tissue is excited,
which confirms a successful defibrillation.

For checking the gradient and Hessian consistency, we verify the derivatives given by the adjoint
calculus via a comparison with finite differences in Table 4 using the initial control u = −50 and
d = −F(z). For the gradient, the absolute difference abs = C − (g, d) and the relative difference
rel = abs/C are computed using the central difference C = (j(u + εd) − j(u − εd))/2ε. For the Hes-
sian, the differences are abs = C − (d, Hd), rel = abs/C with C = (j(u + εd) − 2j(u) + j(u − εd))/ε2.
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Table 4 Verification of the gradient and Hessians against finite
differences with Uad = U

Gradient Hessian

ε abs rel abs rel

1.0e+01 7.9e+03 1.0e+00 1.6e+03 1.0e+00
1.0e+00 5.4e−01 1.7e−02 2.0e−01 2.9e−02
1.0e−01 5.2e−03 1.6e−04 1.9e−03 2.8e−04
1.0e−02 5.2e−05 1.6e−06 1.9e−05 2.8e−06
1.0e−03 5.8e−07 1.8e−08 8.8e−06 1.3e−06
1.0e−04 1.2e−07 3.6e−09 1.4e−03 2.1e−04
1.0e−05 4.6e−07 1.4e−08 1.3e−01 2.0e−02

Fig. 6. Time optimal controls ū1(t) and ū2(t) for different α = 10−5, 10−3, 100 with corresponding norms ‖u‖U = 2195, 442, 121.

All columns confirm a quadratic convergence of the finite differences to the adjoint-based values
of the first and second derivatives, as well as a very high precision of the gradient and Hessian code.
This is crucial for the success of the optimization since optimal control problems with only terminal
observation are known to be highly ill-conditioned.

To find time optimal control pulses with consideration for small energy, we successively increase
α and depict the corresponding time optimal controls and their energy in Fig. 6. The required energy
decreases from 2195 to 121 while maintaining an effective defibrillation pulse. With an increase in α

the optimal duration increases as well.

7.3 Example 2: a robust design

In the next example, we take into account some uncertainty in the conductivity tensor data,
reflecting the fact that they may vary heavily between different settings. As an example, we set
σ̄i = diag(σ × 10−3, 3.1525 × 10−4) and assume that σ ∈ R

+ is a random variable. By extending (Boyd
& Vandenberghe, 2009, Secttion 6.4) to optimal control problems, the expectation value of the tracking
term enters the objective. Thus we replace J by

JE = T + μ

2
E(‖v(x, tf; σ)‖2) + α

2
‖u‖2

U . (16)

Together with the constraints (1) and u ∈ Uad, this constitutes a stochastic robust control problem, which
in general is computationally demanding. Therefore, we restrict ourselves to the case where σ takes only
a finite number of values {σ 1, . . . , σ r} with probabilities P1, . . . , Pr � 0,

∑r
k=1 Pk = 1. Consequently, the
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Fig. 7. ‖v(tf + 4, x)‖L2(Ω) for different values of σ , both for the optimal pulse u1 and the robust optimal control ur.

objective, the reduced gradient and Hessian change to

Jr = T + μ

2

r∑
k=1

Pk‖v(x, tf; σ
k)‖2 + α

2
‖u‖2 =

r∑
k=1

PkJ(v, u, T ; σ k), (17a)

Fr =
r∑

k=1

PkF(z; σ k), Hr(z)δz =
r∑

k=1

PkH(z; σ k)δz. (17b)

We see that each call to the objective, the gradient and the Hessian has to be split into r calls to the
existing solvers (with different σ̄i) followed by a weighted mean. This would allow a parallelization of
the code, which, however, is not pursued here.

To investigate the effect of the robustness approach, we compare an optimal control (for fixed σ = 3)
to a robust optimal control in the following. To facilate this comparison, we fix the pulse length T = tf,
i.e. we compute only one LLP for both settings. Thus, we compute the solution u1 of the LLP with
fixed σ = 3 on the one hand, and the robust counterpart ur, which minimizes the LLP incorporating the
changes from (17), on the other hand.

We investigate the reentry setting with an electrode placement different from above:
Ωcon,1 = [0.05, 0.5] × [0.45, 0.55], Ωcon,2 = [1.8, 1.9] × [0, 0.45]. The parameters are set to α = 10−2,
μ = 1000 and tf = 86. As an example, we test a uniform distribution for σ ∈ {2, 4, 6, 8, 10}, i.e.
pj = 1/r ∀j with r = 5.

The optimization yields a robust pulse at the expense of a higher norm: ‖ur‖ = 713 compared with
‖u1‖ = 189. To inspect the robustness of the two pulses, we test them for different values of σ = 1 +
n/5, n = 0, . . . , 50. For each value of σ , the monodomain model is solved and successful defibrillation
is confirmed at tf and a later time t = tf + 4, to exclude regeneration of a reentry wave. Figure 7 shows
the norm ‖v(x, tf + 4)‖L2(Ω) over σ . The zero set of the curves corresponds to a successful defibrillation.
While ur defibrillates for all σ ∈ [2, 10], the pulse u1 is found to be successful only for σ ∈ [2.8, 3], and
by chance also for σ ∈ [9.8, 11]; see Fig. 7.

8. Conclusion and outlook

It was demonstrated that the choice of cost functional reflecting the system dynamics and incorporat-
ing time-optimality for the joint optimization of the shape and the duration of defibrillation pulses is
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effective for the optimal control of the monodomain model. Certainly it would be of interest to extend
the proposed methods to the bidomain equations, to realistic geometries and to more complex ionic
models.
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Appendix A. Optimization algorithm TR-SN

1. Initialize z0, maximal radius Δmax > 0, initial radius 0 < Δ0 � Δmax and set n = 0.

2. Solve state and adjoint equations for zn , set up gradient F(zn) from (9) and determine inactive
sets I k = {t ∈ (0, T) | umin(t) < zn

k(t) < umax(t)}.
3. Compute d from (13) by Steihaug-CG using the L2-inner product on the inactive set (·, ·)I .

4. If Steihaug-CG is fully converged (i.e. Steihaug, 1983, (2.3) is fulfilled), then compute δz accord-
ing to (14). Otherwise set δz = d.

5. Calculate j(Pad(zn + δz)) and �n := �act/�pred = (j(Pad(zn)) − j(Pad(zn + δz)))/−ϕzn(δz).

6. Update z:

zn+1 :=
{

zn + δz, if �n > α2 and �act > ε (accept),

zn, otherwise (reject).

7. update radius Δn:

Δn+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min(2‖δz‖I , Δmax), if �n ∈ [0.7, 1.3] (model good)

0.25Δn, elseif �act � ε (no decrease)

0.5‖δz‖I , elseif �n �∈ [0.25, 1.75] (model bad)

Δn, else.
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8. If stopping criteria are not fulfilled, set n = n + 1 and goto 2.

Each Hessian evaluation in 3. is carried out by the following steps.

1. Solve the tangent equation with δz and corresponding states (vn, wn) for un = Pad(zn)

δvt − ∇ · (σ̄i∇δv) + Iv(vn, wn) δv + Iw(vn) δw

=
Ne∑

k=1

χΩcon,k (x)χI k (t)δzk(t)χ(0,T)(t) in Q,

δwt + G(δv, δw) = 0 in Q,

ν · σ̄i∇ δv = 0 on Σ ,

δv(x, 0) = 0, δw(x, 0) = 0 in Ω .

2. Solve the second adjoint equation with pn the adjoint to (vn, wn)

− δpt − ∇ · (σ̄i∇δp) + Iv(vn, wn)δp + Gvδq = −Ivv(vn)pnδv − Ivwpnδw in Q,

− δqt + Iw(vn)δp + Gwδq = −Ivwpnδv in Q,

ν · σ̄i∇δp = 0 on Σ ,

δp(x, tf) = μδv, δq(x, tf) = 0 in Ω .

3. Evaluate (12).

Appendix B. Discretization formulas for state, adjoint and second-order solvers

The space is discretized with a FE-Galerkin method using Lagrange-Q1 elements {ϕi(x), i = 1, . . . , Nx}.
Hence, we search for FE-coordinates vm := (vi

m)i=1,...,Nx with v(tm, x) = V m(x) =∑Nx
i=1 vi

mϕi(x) and anal-
ogously for w, δv, δw, p, q, δp, δq.

As matrices we define the mass matrix M := (
∫

Ω
ϕiϕjdx)i,j, the negative stiffness matrix Δσ :=

−(
∫

Ω
∇ϕσ̄i∇ϕjdx)i,j and the Jacobian Jm,n = (

∫
Ω

(∂I/∂v)(vm(x), wn(x))ϕi(x)ϕj(x)dx)i,j. Further we
define the vectors �χk := (

∫
Ωcon,k

ϕj dx)j and Im,n := (
∫

Ω
I(vm(x), wn(x))ϕj(x) dx)j. v0, w0 are the FE coor-

dinates of the initial states v0(x), w0(x). The index m passes through 1, . . . , N for state and tangent
equations, and through 1, . . . , N − 1 for adjoint (adj.) and second-adjoint equation.

state:
[
M − τm

2
Δσ

]
vm + τm

2
Im,m−1 =

[
M + τm

2
Δσ

]
vm−1 − τm

2
Im−1,m−1

+ τm

Ne∑
k=1

um
k �χkχ(0,T)(tm),

[
1 + τm

2
Gw

]
Mwm =

[
1 − τm

2
Gw

]
Mwm−1 − τm

2
GvM (vm + vm−1),
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adj.: qN = 0,
[
M − τN

2
Δσ + τN

2
JN ,N−1

]
pN = μMvN ,[

M − τm

2
Δσ + τm

2
Jm,m−1

]
pm =

[
M + τm+1

2
Δσ − τm+1

2
Jm,m

]
pm+1

− Gv

2
M (τmqm + τm+1qm+1),[

1 + τm

2
Gw

]
Mqm =

[
1 − τm+1

2
Gw

]
Mqm+1 − τm+1

2

∫
Ω

Iw(V m+1 + V m)Pm+1ϕjdx,

tangent: δv0 = 0, δw0 = 0,[
M − τm

2
Δσ + τm

2
Jm,m−1

]
δvm =

[
M + τm

2
Δσ − τm

2
Jm−1,m−1

]
δvm−1

− τm

2

∫
Ω

Iw(V m + V m−1)δW m−1ϕjdx + τm

Ne∑
k=1

χI k (tm)χ(0,T)(tm)δzm
k �χk ,

[
1 + τm

2
Gw

]
M δwm =

[
1 − τm

2
Gw

]
M δwm−1 − τm

2
GvM (δvm + δvm−1),

2nd adj.: δqN = 0,[
M − τN

2
Δσ + τN

2
JN ,N−1

]
δpN = −τN

2

∫
Ω

PN [Ivv(V
N )δV N + IvwδW N−1]ϕjdx + M δvN ,

[
M − τm

2
Δσ + τm

2
Jm,m−1

]
δpm =

[
M + τm+1

2
Δσ − τm+1

2
Jm,m

]
δpm+1

− 1

2
GvM (τmδqm + τm+1δqm+1) − 1

2

∫
Ω

{τmPm[Ivv(V
m)δV m + IvwδW m−1]

+ τm+1Pm+1[Ivv(V
m)δV m + IvwδW m]}ϕjdx,[

1 + τm

2
Gw

]
M δqm =

[
1 − τm+1

2
Gw

]
M δqm+1

− τm+1

2

∫
Ω

[δPm+1Iw(V m+1 + V m) + Pm+1(δV m+1 + δV m)Ivw]ϕj dx.

All solves with a pure mass matrix are avoided by directly updating wm, respectively, δwm and by storing
Mqm resp. M δqm.
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