RESEARCH PAPER

The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses

Michaël Quentin¹,*, Isabelle Baurès¹,*, Caroline Hoefle²,*, Marie-Cécile Caillaud³,†, Valérie Allasia¹, Franck Panabières¹, Pierre Abad¹, Ralph Hückelhoven², Harald Keller¹,‡ and Bruno Favery¹,‡

¹ INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
² Lehrstuhl für Phytopathologie, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
³ The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

* These authors contributed equally to this work.
† Present address: CNRS, INRA, ENS Lyon, Université Claude Bernard Lyon 1, Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France.
‡ Correspondence: favery@sophia.inra.fr or keller@sophia.inra.fr

Received 6 October 2015; Accepted 16 December 2015

Editor: Katherine Denby, University of Warwick

Abstract

The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection.

Key words: Cytoskeleton, fungus, microtubules, mildew, oomycete, plant defense, salicylic acid.

Introduction

The microtubule (MT) cytoskeleton is a highly flexible and dynamic polar structure of the plant cell, assembled from tubulin heterodimers. It is involved in nuclear and cell division, in cell morphogenesis and expansion, and in intracellular transport (Wasteneys and Galway, 2003; Wasteneys, 2004; Hamada, 2014). MTs also play a role in plant responses
to biotic and abiotic stress exposure, and their rearrangements accompany both defense and successful infection by symbiotic and pathogenic microbes (Schmidt and Panstruga, 2007; Hardham, 2013). MT re-arrangements occur during arbuscular mycorrhizal (Genre et al., 2008a; de Almeida Engler and Favery, 2011), following virus attack (Martinière et al., 2009), or following infection by filamentous oomycetes or fungi (Kobayashi et al., 1994; Baluska et al., 1995; Cahill et al., 2002; Takemoto et al., 2003; Hardham et al., 2008; Hoefle et al., 2011). Microtubule-associated proteins (MAPs) and their regulatory kinases and phosphatases are instrumental for microtubule dynamics (Wasteneys, 2004; Gardiner, 2013; Hamada, 2014). They, and the small Rho of Plants (ROP) GTPases that regulate the MT cytoskeleton (Mucha et al., 2011), have been shown to determine plant susceptibility to viruses and fungi (Kragler et al., 2003; Oko et al., 2010; Hoefle et al., 2011; Poraty-Gavra et al., 2013). We previously identified the Arabidopsis thaliana MAP65-3 (AtMAP65-3) as a critical module for root-knot nematode-induced feeding, giant cell ontogenesis, and for successful pathogen development (Caillaud et al., 2008b).

Plant MAP65s are involved in the spatially and temporally regulated binding and bundling of MTs (Chan et al., 1999; Hamada, 2014). In A. thaliana, nine members of this family were identified (Hussey et al., 2002) and individual members have particular functions with respect to different MT arrays. AtMAP65-3 is only associated with mitotic MT arrays (Müller et al., 2004; Caillaud et al., 2008b; Ho et al., 2011). Here, the protein organizes both spindle morphogenesis and phragmoplast expansion (Müller et al., 2004; Caillaud et al., 2008b; Ho et al., 2011). Consequently, AtMAP65-3 loss-of-function mutants are dwarf, with both shoots and roots being stunted, and polynucleate, hypertrophied cells with aberrant cell wall stubs occur frequently (Müller et al., 2004; Caillaud et al., 2008b; Ho et al., 2011).

Plants protect themselves against pathogenic microorganisms by combining constitutive and induced defense mechanisms. The induction of plant defenses involves the recognition of compounds derived from the pathogen, called pathogen-associated molecular patterns (PAMPs). Pattern-triggered immunity (PTI) results from PAMP perception, which leads to the activation of signaling cascades, and the subsequent induction of defense-related genes (Zipfel et al., 2004; Jones and Dangl, 2006). Pathogens are able to suppress these defenses by secreting effector proteins that manipulate host cell functions. In turn, plants evolved resistance proteins, which allow recognition of these effectors or their activities. This leads to effector-triggered immunity (ETI) and activation of the hypersensitive response (HR). The HR involves local programmed cell death that prevents pathogen spreading within the plant (Zipfel et al., 2004; Jones and Dangl, 2006). Both PTI and ETI/HR involve mitogen-activated protein kinase (MAPK) cascades, the production of reactive oxygen species (ROS), and the transcriptional activation of genes, which, among others, encode antimicrobial pathogenesis-related (PR) proteins. The signaling pathways of PTI or ETI are fine-tuned by plant signaling molecules such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) (Glazebrook, 2005; Pieterse et al., 2012).

The hormone SA plays a major role in plant resistance to (hemti-)biotrophic pathogens (Pieterse et al., 2012). In A. thaliana, SA synthesis occurs in plastids via isochorismate synthase 1 (ICS1 or SID2) and is triggered by pathogens. SA can be exported to the cytosol by the transporter enhanced disease susceptibility 5 (EDS5). SA accumulated in the cytoplasm can be converted to SA glucoside (SAG), which is stored in the vacuole and hydrolyzed back to SA when needed. Elevated levels of total SA (free SA plus SAG) have been correlated with the induction of defense gene expression and enhanced plant resistance (Pieterse et al., 2012). In addition, SA is a key regulator of plant immunity through its antagonistic interaction with ET and JA pathways (Glazebrook, 2005). Different from SA, JA and ET accumulate mainly in response to necrotrophic pathogens.

An increasing number of mutants with reduced susceptibility to plant pathogens are described, and breeding for loss of susceptibility becomes a new strategy to achieve disease resistance (de Almeida-Engler et al., 2005; Dangl et al., 2013; Hückelhoven et al., 2013). Loss of disease susceptibility is frequently caused by a deregulation of SA- or JA-dependent plant defense signaling, by the impairment of cellular rearrangements, or by the limitation of nutrient supply for the pathogen (Dangl et al., 2013; Hückelhoven et al., 2013; Lapin and Van den Ackervelen, 2013; Van Schie and Takken, 2014).

In this study, we show that expression of the gene encoding AtMAP65-3 is strongly induced in A. thaliana upon infection by two biotrophic filamentous pathogens, the oomycete Hyaloperonospora arabidopsidis (Hpa) and the powdery mildew fungus Erysiphe cruciferarum (Ec). Both pathogens develop haustoria inside host cells that constitute the feeding structures for nutrient supply (O’Connell and Panstruga, 2006). We show that plants mutated in AtMAP65-3 are impaired in their susceptibility to both filamentous pathogens. Mutants accumulate increased levels of SA, and constitutively express genes encoding PR proteins in the leaves. Increased SA accumulation is not responsible for the mutant dwarfism, indicating that AtMAP65-3 exerts a dual role in positively regulating plant growth and development, and in negatively regulating plant defense responses.

Materials and methods

Plant material and growth conditions

Arabidopsis lines used for the experiments were from the Wassilewskija (WS-4) and Columbia (Col-0) wild-type (Wt) genetic background. The map65-3 T-DNA mutant (dy2383), the complemented line Cpmap65-3 (map65-3 expressing the AtMAP65-3 gene under the control of its native promoter), and plants expressing the β-glucuronidase (GUS) reporter gene under the control of the AtMAP65-3 promoter have been described previously (Caillaud et al., 2008b). Arabidopsis plants expressing the GFP–TUA6 (green fluorescent protein-tagged α-tubulin) (Ueda et al., 1999) and sid2.1 mutant were used (Nawrath and Métraux, 1999). For in vitro culture, plants were grown in growth chambers at 20 °C with a 12 h photoperiod on Murashige and Skoog (MS) medium (Duchefa Biochemie),
supplemented with 1% sucrose and 0.7% plant cell culture-tested agar (Sigma Aldrich). When necessary, 15-day-old plants were further transferred to soil and grown in growth chambers at 22 °C under a 16 h day/8 h dark photoperiod. For pathogen assays with E. c, plants were grown directly on soil at 22 °C, 65% relative humidity, and a 10 h day/14 h dark photoperiod for 4–5 weeks before inoculation.

Transgenic plants, crossings, and genotyping

The vector carrying the 35S::NahG construct (Delaney et al., 1994) was transformed via Agrobacterium tumefaciens strain GV3101 into homozygous map65-3 Arabidopsis plants using the dipping method (Clough and Bent, 1998), and selected on MS medium containing 5 mg 1⁻¹ phosphinothricine. Transformed plants were transferred to soil, and seeds were collected. For each construct, 10 independent primary T1 transformants were verified by PCR, and T2 plants were obtained for subsequent analysis. To eliminate SA completely while minimizing catechol-related NahG effects, plants homozygous for the map65-3 mutation with NahG were crossed with the sid2.1 mutant. The map65-3 plants were also crossed with the GFP–TUA6 transgenic line. For T2 progeny genotyping, genomic DNA extraction and PCR amplifications were performed using the REDExtract-N-Amp™ Plant PCR Kit (Sigma) according to the manufacturer’s instructions. For genotyping the sid2.1 mutation, SID2 amplicons obtained from genomic DNA were digested with Msel, allowing discrimination of homozygous mutant lines as described elsewhere (Nawrath and Métraux, 1999). The TUA6 lines were further selected for expression of the fluorescent marker. Primers used for genotyping are listed in Supplementary Table S1 at [JXB](http://jxb.oxfordjournals.org/online).

Pathogen assays

The Hpa isolates Emw1 and Waco9 were transferred weekly onto the genetically susceptible Arabidopsis accessions WS (Emw1 and Waco9) or Col-0 (Waco9). Plants were cultivated on soil in growth chambers at 16 °C with a 12 h photoperiod, and infections and pathogenicity assays were performed as described previously (Quentin et al., 2009; Caillaud et al., 2012). Arabidopsis plants were infected with E. c as described previously (Hoelle et al., 2011). Susceptibility to E. c was scored by visual examination 7, 9, and 11 days after inoculation (dai). Plants were distributed in three categories of susceptibility with 0–30%, 30–60%, and >60% diseased leaf area.

Histological analysis

GUS activity was analyzed histochemically as described (Quentin et al., 2009). To monitor progression of plant infection by Hpa, cotyledons or young leaves of Arabidopsis were fixed in 1% glutaraldehyde (v/v), 4% (v/v) formaldehyde in phosphate buffer 0.1 M, pH 7 and de-stained in an ethanol dilution series. Finally, the auto-fluorescence of the oomycete was visualized with a confocal microscope (excitation 488 nm). Lactophenol–trypan blue staining of Hpa was performed, on tissue fixed as described above, according to Parker et al. (1997). For callose visualization, infected tissues were fixed as described above, bleached in a series of increasing ethanol concentration, and stained with 0.005% aniline blue in 0.07 M sodium phosphate buffer pH 7.2 (w/v) before observation under an Axiosplan fluorescence microscope (Zeiss). Images were acquired with a Zeiss AxioCam camera and analyzed with Zeiss Axiovision digital image-processing software, version 4.4.

For microscopic analysis of the powdery mildew development, leaves were harvested 48 hours after infection (hai), bleached in ethanol/acetic acid (6:1, v/v), and fungal structures were stained with acetic Blue ink (15% acetic acid/blue ink 9:1, v/v).

Confocal laser scanning microscopy

High-resolution images of GFP fluorescence, and of autofluorescence of oomycete hyphae, were obtained with a confocal laser scanning microscope (Axiovert 200 M, LSM510 META, Zeiss, Jena, Germany; or Leica SP5, Leica, Mannheim, Germany). GFP was excited with an argon laser at 488 nm, and fluorescence was recorded in a window ranging from 505 nm to 530 nm. Confocal images were processed using the Zeiss LSM Image Browser or Leica Application Suite.

RNA isolation and quantitative real-time PCR (qRT-PCR) analysis

Infected and non-infected plantlets were harvested, frozen in liquid nitrogen, and stored at −80 °C until use for RNA extraction. Total RNA was extracted from A. thaliana seedlings using TRIZOL Reagent (Invitrogen) following the instructions of the manufacturer. DNA was degraded using RNase-free DNase from Ambion. A 1 μg aliquot of RNA was reverse transcribed using the iScript cDNA Synthesis Kit (Biorad). Amplification and detection were performed in the Opticon 2 system (MJ research Biorad). Reactions were in a final volume of 15 μl containing 10 μl of qPCR MasterMix Plus For SYBRGreen 1 No Rox (Eurogentec), 0.5 mM of each primer, and 8 ng of cDNA template. PCR conditions were as follows: 95 °C for 15 min, followed by 40 cycles of 95 °C for 15 s, 56 °C for 30 s, and 72 °C for 30 s. At the end of the program, a melting curve (from 60 °C to 95 °C, read every 0.5 °C) was determined to ensure that only single products were formed. Ubiquitin-specific protease 22 (UBP22, At5g10790) and Oxidase Assembly 1 (OX1, At5g62050) expression was used to normalize the transcript level in each sample (Quentin et al., 2009). Raw data were treated using the MJ OpticonMonitor Analysis software (version 3.1, Biorad). Relative quantifications were made with the modified ΔCT method employed by the qBase 1.3 software. qBase was also used to determine the stability of reference genes. Coefficients of variation of 32.65% and 27.34% for OX1 and UBP22, respectively, as well as geNorm stability M-values of 0.8487 for both genes indicated stable expression under our experimental conditions (Hellemans et al., 2007). Primers used for qRT-PCR analyses are listed in Supplementary Table S1.

Microarray and microarray data analysis

For whole-genome transcript profiling, RNA from cotyledons of the different lines and from two independent biological replicates was extracted 3 d after water treatment or Hpa inoculation, and submitted to analysis on Affymetrix ATH1 arrays, which were operated by the NASC Affymetrix service. Background adjustment, quantile normalization, and probe set summarization were performed with the Affymetrix Power Tools APT1.4.4 software package. Normalized data obtained for all probe sets were then compared, and log2 ratios from all comparisons were submitted to a replicate control. Values were considered as not being relevant when the difference between replicate ratios was higher than 0.75% of the mean log2 ratio, and were eliminated. Gene expression was considered as being different between treatments and backgrounds when mean log2 signal ratios were ≥ 1 or ≤ –1. The functional classification of the genes was performed according to the tair10 Gene Ontology (GO). Over-representation of GO terms was analyzed using the VirtualPlant 1.3 Online analysis tool at www.virtualplant.org (Katarí et al., 2010). Data from the transcriptome analyses were deposited at the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) and assigned the identifier GSE73551.

SA quantification

SA was extracted from three independent biological replicates of 10-day-old Wt, map65-3, and Cmap65-3 seedlings, 4 d after treatment with water or Hpa, and quantified according to Meuwly and Metraux (1993) with some modifications. Briefly, harvested seedlings were ground in a mortar under liquid N₂, and tissue powder corresponding to 250 mg FW was extracted with 1 ml of ethanol containing 300 mg of o-anisic acid as internal standard. After centrifugation for 5 min at 10 000 g, the supernatant was recovered and the...
pellet re-extracted with 2 ml of aqueous methanol (90% v/v). After centrifugation, the supernatants from both extractions were pooled and the volume was reduced in a Speed Vac concentrator to 50 µl. Before 500 µl of ethyl acetate:cyclohexane (1:1, v/v) and 200 µl of trichloroacetic acid (5%, w/v) were added. The mixture was vortexed for 30 s and centrifuged at 10,000 g for 5 min. The aqueous phase was re-extracted with 500 µl of ethyl acetate:cyclohexane (1:1, v/v). The aqueous and the organic fractions from both extractions were pooled. The organic fraction containing non-conjugated SA was brought to dryness in a Speed Vac concentrator and resuspended in 100 µl of aqueous methanol (10%, v/v) supplemented with 0.1% trifluoroacetic acid (v/v). The aqueous fraction was hydrolyzed in 4 M HCl at 80 °C for 1 h, supplemented with the internal standard, and submitted to organic solvent extraction, concentration, and resuspension, as described above. All samples were separated on an Inertsil 5ODS3 C18 column (5 µm, 250 × 4.6 mm i.d.; Interchim, Montlucon, France) in a linear methanol gradient from 10% to 82% aqueous methanol (v/v) over 30.4 min, using a Shimazu LC20A HPLC system with fluorometric detection (excitation at 305 nm; emission at 407 nm and 365 nm for SA and o-anisic acid, respectively). The quantities were determined with a standard curve established for authentic SA (Sigma).

Results

Infection with Hpa and Ec stimulates transcription of AtMAP65-3 in Arabidopsis

The expression profile of AtMAP65-3 was analyzed using transgenic plants expressing the GUS reporter gene under the control of the AtMAP65-3 promoter (Caillaud et al., 2008b). In 2-week-old plantlets, GUS staining was not observed in non-infected cotyledons (Fig. 1A). At 4 dai with Hpa, GUS staining was observed in cells from cotyledons and young leaves that were in contact with the growing hypha (Fig. 1B, C). This localization of AtMAP65-3 expression appeared to be restricted to cells harboring haustoria (Fig. 1D). In contrast to intercellular growing hyphae of Hpa, the mycelium of Ec does not enter the plant tissues, but remains on the leaf surface, driving haustoria into epidermis cells. When rosette leaves from plants of the AtMAP65-3 reporter line were inoculated with Ec conidia, GUS activity was revealed at veins, 16–48 hai (Fig. 1F). No staining was observed in non-infected rosette leaves (Fig. 1E). In cotyledons and leaves, AtMAP65-3 is thus stimulated by infection with both mildews.

Absence of AtMAP65-3 reduces susceptibility to filamentous biotrophs

To investigate further the contribution of AtMAP65-3 to the interaction between Arabidopsis and Hpa, map65-3 mutants (Caillaud et al., 2008b) and Wt plants (ecotype WS) were inoculated with the Hpa isolate Emwa1. According to the general criterion for analyzing plant susceptibility and resistance to Hpa (Kwon et al., 2008), we determined the asexual sporulation rates at 7 dai. We found that AtMAP65-3 was significantly less susceptible to Hpa than the Wt, and that sporulation was reduced by ~50% on the map65-3 mutants (Fig. 2A). This decreased susceptibility phenotype was fully complemented by expressing AtMAP65-3 in the map65-3 mutant background (Ctnm65-3 line; Caillaud et al., 2008b; Fig. 2A). Our data thus indicate that AtMAP65-3 contributes to downy mildew susceptibility of Arabidopsis, and that its absence increases resistance.

We further analyzed whether the infection-responsive transcription of AtMAP65-3 upon inoculation with Ec reflects a role in the interaction with powdery mildew. We challenged plants from the Wt and the map65-3 mutant line with Ec conidia, and analyzed macroscopic disease symptoms from 7 to 11 dai (Fig. 2B). The map65-3 mutant appeared visibly more resistant to the fungus than the Wt. On the mutant, disease extended to <30% of infected leaf areas in >70% of all inoculated plants. In contrast, the leaves of >70% of the Wt plants presented disease symptoms that covered areas between 30% and 100% of total leaf surfaces (Fig. 2B).

The map65-3 mutation does not affect haustoria-mediated structural rearrangements in host cells

AtMAP65-3 binds and bundles MTs. We thus suspected that the observed up-regulation of AtMAP65-3 upon infection with Hpa and Ec might reflect a role for the protein in organizing MTs during compatible interactions with filamentous pathogens. To verify this hypothesis, we inoculated Hpa on plants from a transgenic Arabidopsis line expressing
GFP-tagged α-tubulin 6 (GFP–TUA6) (Ueda et al., 1999), and from a cross between this line and the map65-3 mutant. MT arrays in cells harboring haustoria were then analyzed using in vivo confocal microscopy. As in non-inoculated plants, GFP–TUA6 fluorescence was associated with cortical MT arrays and from a complemented line (Cpmap65-3). Data represent means ±SE for 20 samples. Asterisks indicate a significant difference (t-test, P<0.01). This experiment was conducted three times with similar results. (B) Disease symptoms on rosette leaves from the Wt (WS) and the map65-3 mutant upon infection with Ec. Disease symptoms were scored after visual inspection of the whole plant 7, 9, and 11 dai. Infected leaves were classified in three categories with <30%, 30–60%, and >60% of diseased leaf area. Data are means ±SD from three independent biological replicates, each composed of the analysis of 10 individual plants.

MAP65-3 negatively regulates SA signaling | 1735

Fig. 2. The expression of AtMAP65-3 determines susceptibility of Arabidopsis to biotrophic filamentous pathogens. (A) Hpa conidiospore production on cotyledons from the Wt (WS), from the map65-3 mutant, and from a complemented line (Cpmap65-3). Data represent means ±SE for 20 samples. Asterisks indicate a significant difference (t-test, P<0.01). This experiment was conducted three times with similar results. (B) Disease symptoms on rosette leaves from the Wt (WS) and the map65-3 mutant upon infection with Ec. Disease symptoms were scored after visual inspection of the whole plant 7, 9, and 11 dai. Infected leaves were classified in three categories with <30%, 30–60%, and >60% of diseased leaf area. Data are means ±SD from three independent biological replicates, each composed of the analysis of 10 individual plants.

Fig. 3. Knocking out AtMAP65-3 does not affect microtubule rearrangements that are associated with Hpa haustoria development and Ec penetration. (A, B) GFP-labelled MTs embed Hpa-induced haustoria (arrowhead) in cotyledon mesophyll cells from both the Wt (A) and the map65-3 mutant (B). (C–F) GFP-labeled MT rearrangements at the Ec infection site (arrows) in epidermal cells of the Wt (C) and the map65-3 mutant (E). (D) and (F) Bright-field images corresponding to confocal images (C) and (E), respectively, and showing Ec conidium (c) and appressorium (a) on the epidermal cell surface. MTs were observed by confocal microscopy in transgenic Arabidopsis plants expressing GFP-tagged α-tubulin 6 (GFP–TUA6) in the Wt or map65-3 backgrounds. Scale bars=15 µm (A and B), 13 µm (C–F). (This figure is available in colour at JXB online.)

after inoculation (Fig. 3C). However, we did not observe any obvious differences between the Wt (Fig. 3C) and the map65-3 mutant (Fig. 3E), when comparing the patterns of GFP–TUA6 signals at Ec penetration sites.

We further analyzed the morphology of hypha and haustoria from Hpa, which colonizes either the Wt or the map65-3 mutant. Plants were inoculated and autofluorescence of the oomycete was visualized at 4 dai using a confocal microscope. In both Wt and map65-3 plants, Hpa hyphae developed intercellularly once the oomycete had entered the cotyledon, branched, and formed haustoria inside host cells. Confocal microscopy showed that haustoria exhibited a characteristic shape with no obvious difference between the Wt and map65-3 plants (Supplementary Fig. S1).

MTs also participate in the deposition of callose in Arabidopsis cells (Cai et al., 2011). Callose biosynthesis and deposition is a typical plant defense response aimed at reinforcing the cell wall as a physical barrier against penetration (Ellinger and Voigt, 2014). However, both Hpa and Ec require the deposition of callose around the haustorial neck as a scaffold for stabilizing haustoria, and thus for successful infection (Jacobs et al., 2003; Nishimura et al., 2003). The map65-3
mutation had no effect on the typical callose ring deposition at the neck of *Hpa* haustoria, as confirmed using aniline blue staining and fluorescent microscopy (Supplementary Fig. S1).

AtMAP65-3 determines the penetration efficiency of *Hpa* and *Ec*

A notable phenotype we observed was that penetration efficiency of the filamentous pathogens was strongly reduced on *map65-3* plants. *Hpa* spores germinate on leaf surfaces and form appressoria, enabling infection pegs to overcome the cuticle. Once inside the leaf, the intercellularly growing hyphal branch, and establish an expanding network. The infection cycle is achieved with the formation and subsequent propagation of asexual conidiospores through stomatal openings (Koch and Slusarenko, 1990). To identify which stage of the *Hpa* infection cycle is impacted by AtMAP65-3, infected cotyledons from the Wt and the mutant were stained with trypan blue at 4 dai and scored for the presence of intercellular hyphae and the production of conidiophores. About 80% of inoculated cotyledons from the *map65-3* mutant did not present intercellular hyphae and conidiophores (i.e. no symptoms of infection), whereas only 10% of cotyledons from the Wt were free from *Hpa* (Fig. 4A). In contrast, only 10% of *map65-3* cotyledons contained hyphae undergoing sporulation, whereas *Hpa* was completing the infection cycle in ~80% of Wt cotyledons (Fig. 4A). The mutants thus exhibited a significantly higher proportion of uninoculated tissues. However, cotyledons that were successfully infected contained hyphal networks of similar appearance in the Wt and the mutant (Fig. 4B). These findings indicate that AtMAP65-3 determines oomycete penetration into plant tissues.

The *map65-3* mutant plants also exhibited enhanced penetration resistance to the powdery mildew fungus. *Ec* conidia germinate on the plant surface, and host penetration depends on the formation of an appressorium and a penetration peg, allowing the physical barrier of wax, cuticle, and cell wall to be overcome. The fungus then forms haustoria in intact epidermal cells that constitute sinks for water, minerals, and nutrients, allowing further hyphal growth on the cuticular surface (O’Connell and Panstruga, 2006). Microscopic inspections showed that powdery mildew succeeded better in establishing a compatible interaction on the Wt than on the *map65-3* plants. *Ec* formed significantly fewer high-order hyphae (>4), 48h after inoculation, on leaves from the mutant than on those from the Wt (Fig. 4C). This observation is indicative of reduced success in fungal establishment. Congruently, we observed a significant increase in the number of appressoria without formation of epicuticular hyphae on leaf surfaces of *map65-3*. This observation is indicative of failed powdery mildew attempts to penetrate rosette leaves (Fig. 4C).

Taken together, our observations strongly suggest that AtMAP65-3 exerts a function which favors the penetration of filamentous biotrophs into leaves and cotyledons.

Absence of AtMAP65-3 primes Arabidopsis for SA-dependent defenses

The decreased infection success on *map65-3* mutants might result either from a gain of resistance or from a loss of
susceptibility. To test this, we first compared the expression levels of the defense-related genes PR1 and PDF1.2b between plants from the map65-3 mutant and the Wt. PR1 and PDF1.2b are common markers for activated SA- and JA-dependent defense signaling pathways, respectively (Pieterse et al., 2012). qRT-PCR analysis showed that both genes encoding PR1a and PDF1.2b were constitutively over-expressed in map65-3, when compared with the Wt (Fig. 5A). Upon infection with Hpa, PR1 transcript levels increased more strongly in map65-3 than in the Wt, whereas the amount of mRNA encoding PDF1.2b was reduced in the mutant when compared with the Wt (Fig. 5B, 5C). Interestingly, the overexpression of defense-related genes in map65-3 was only observed in aerial parts of the plant, and was never detected in roots. In the absence of inoculation, PR1a and PDF1.2b transcripts were barely detectable in roots by qRT-PCR (Ct values >36.5 and 34.5, respectively).

These results suggested a role for AtMAP65-3 in the regulation of plant defense responses, and that gain of defense was responsible for the interaction phenotype of the mutant. This suggestion was confirmed by full-genome transcriptome analyses using Affymetrix ATH1 microarrays, in which we compared the responses that occurred 3 dai with Hpa or water treatment between the map65-3 mutant and Wt plants (Fig. 6A). The direct comparison between water-treated plants from the Wt and the mutant (comparison a1, Fig. 6B) revealed that 152 and 76 genes were constitutively up- and down-regulated, respectively, in map65-3 with a log2 ratio >1 (Supplementary Tables S2, S3). The direct comparison between Hpa-inoculated plants from the Wt and the mutant (comparison a2, Fig. 6B) showed that a further 302 and 52 genes were up- and down-regulated, respectively, in an infection-responsive manner in map65-3 (Supplementary Tables S4, S5). Overall, 454 and 128 genes were at least 2-fold (log2 ratio >1) up- and down-regulated in the mutant, respectively, when compared with the Wt (Fig. 6B). We then compared the infection responsiveness between the mutant and Wt transcriptomes (Fig. 6A, C, comparison b1 with b2). While Hpa infection up- and down-regulates 394 and 20 genes in the Wt, the same treatment up- and down-regulates 739 and 71 genes in the mutant, respectively, with a log2 ratio >1 (Fig. 6C).

When the expression ratio between Hpa-infected and water-treated Wt plants was subtracted from the expression ratio between Hpa-infected and water-treated mutant plants, 191 and 36 genes had 2-fold stronger up- and down-regulation ratios in map65-3 (Supplementary Tables S6, S7). We submitted these genes to GO assignments (Katari et al., 2010) for the term ‘Biological Process’. We found that a significant over-represented number of genes involved in SA-associated defenses, including those involved in SA synthesis, signaling (ICS1, SARD1, PAD4, NIM11, and EDSS), and responsiveness (PR1, PAD3, chitinases, and glucanases) (Shah, 2003), were up-regulated in the mutant. In contrast, a significant over-represented number of JA-responsive genes (PDF1.2b or PR4) (Glazebrook, 2005) were down-regulated in map65-3 (Fig. 6; Supplementary Tables S8, S9). These findings support that the mutation in AtMAP65-3 accounts for a strong induction of SA-dependent defenses, and for the antagonistic inhibition of JA-dependent responses.

Gain of defense, but not map65-3-associated dwarfism, depends on SA

To confirm that up-regulated SA-dependent responses were responsible for reduced susceptibility of map65-3, we first determined the levels of free SA and its glycosylated storage form SAG in map65-3, following or not the infection with Hpa. Both SA and SAG were 2.5-fold more abundant in uninfected map65-3 plants when compared with the Wt (Fig. 7A). Following infection with Hpa (3 dai), SA and SAG accumulated to >10- and 4-fold higher concentrations, respectively, in map65-3 than in the Wt (Fig. 7A). The increased accumulation was restored to Wt levels in the complemented mutant (Fig. 7A). These results strongly correlate with our transcriptomics data, and further suggest that decreased susceptibility of map65-3 to filamentous biotrophs is governed by up-regulated SA synthesis and accumulation.

To confirm this statement, we generated a line (map65-3/NahG×sid2.1), in which SA signaling is completely abolished. We crossed the map65-3 mutant expressing the bacterial NahG gene encoding salicylate hydroxylase, which converts SA to catechol thus preventing its accumulation (Delaney...
et al., 1994), with a sid2-1 mutant impaired in SA biosynthesis (Nawrath and Métraux, 1999). qRT-PCR analysis for PR1a transcripts showed that the map65-3-dependent over-expression of the SA marker gene is absent from the map65-3/NahG×sid2-1 line (Supplementary Fig. S2). Plants from the Wt, the map65-3 mutant, and the SA-deficient map65-3 mutant line were then analyzed for their susceptibility to the Hpa isolate Waco9. A strong reduction in Hpa sporulation (>50%) in the map65-3 background was confirmed following inoculation of Arabidopsis leaves (Fig. 7B). Preventing SA synthesis and accumulation fully rescued map65-3 susceptibility to Hpa (Fig. 7B).

Aberrant SA accumulation and the constitutive activation of defense affect plant growth (Huot et al., 2014). We thus analyzed whether the described dwarf phenotype of map65-3 (Caillaud et al., 2008a) is a direct consequence of SA
accumulation and defense activation. The abolishment of SA synthesis and signaling was unable to rescue the dwarf phenotype of the map65-3 mutant, and plants from the map65-3/NahG/xid2 line exhibited smaller rosettes (Fig. 7C) and shorter roots (Fig. 7D), when compared with the Wt. It is noteworthy that the map65-3/NahG/xid2 line showed similar susceptibility to Hpa as the Wt control despite this dwarf phenotype. Increased SA accumulation and defense signaling thus cause mildew resistance of map65-3 mutants, but not the developmental phenotype, which was associated with a defect in cytokinesis (Müller et al., 2004; Caillaud et al., 2008b).

Discussion

We show that AtMAP65-3 promoter activity is induced upon infection with Hpa and Ec, and that disruption of the AtMAP65-3 gene decreases susceptibility to these biotrophic pathogens. Obligate biotrophic leaf pathogens, such as Hpa and Ec, are successful in colonizing plant tissues only when they are able to avoid defense responses and to reprogram the host for nutrient supply. Both Hpa and Ec must establish haustoria to withdraw nutrients and water from host cells and to sustain growth of hyphae and reproduction. Haustoria formation in host plant cells requires a rapid growth of membrane surfaces and the creation of the extrahaustorial matrix, a new apoplastic compartment (O’Connell and Panstruga, 2006). As previous studies demonstrated the implication of MTs of the host cell in the development of intracellular structures induced by biotrophs (Schmidt and Panstruga, 2007; Hoefle et al., 2011; Hardham, 2013), we investigated whether AtMAP65-3 contributes to the reorganization of MTs in cells bearing haustoria of Hpa and Ec. Using GFP–TUA6 fusions, we confirmed that MT restructuring is associated with Hpa haustoria development, and that MT arrays encase the oomycete feeding site. MT reorganization was also observed at Ec penetration sites in Arabidopsis epidermal cells, as described previously for Blumeria graminis in barley (Kobayashi et al., 1994; Hoefle et al., 2011). However, the presence or absence of AtMAP65-3 did not obviously influence MT dynamics during Hpa and Ec invasion and haustorium development. AtMAP65-3 plays a critical role during assembly of mitotic MT arrays and during cytokinesis in dividing cells from roots and shoots (Müller et al., 2004; Caillaud et al., 2008b). We did not find such a function for AtMAP65-3 in MT bundling in non-dividing plant cells, such as haustoria-harboring cells from cotyledons or leaves, which are colonized by Hpa and Ec. It is thus unlikely that AtMAP65-3 directly serves the demands of the pathogens during haustorium formation or nutrient acquisition. Our findings show rather that AtMAP65-3 plays a role as a negative regulator of defenses against cell wall penetration by filamentous pathogens and post-penetration defense gene expression.

Defense-related genes are mostly down-regulated during the early steps of compatible, biotrophic interactions between Arabidopsis and oomycetes or fungi (Chandran et al., 2009; Hok et al., 2011). Here, we demonstrate that map65-3 mutants accumulate SA, and that they are primed for enhanced defenses against biotrophic leaf pathogens. We thus conclude that AtMAP65-3 negatively regulates SA-dependent plant immunity, and that Hpa and Ec activate the transcription of AtMAP65-3 to repress plant defenses and promote infection. Mutants with constitutively activated SA-dependent defenses often show a dwarf phenotype (Huot et al., 2014; Janda and Ruelland, 2014). The association of constitutive defense activation with dwarfism is subject to discussion. It might result from the reallocation of resources for growth
and reproduction to SA-mediated responses (Heidel et al., 2004), or be a direct consequence of the repression of auxin signaling by antagonistic SA (Naseem et al., 2015). However, our studies show that dwarfism of the map65-3 mutant is not a consequence of aberrant SA accumulation and defense activation, as eliminating SA from the mutants restores Wt susceptibility, but not Wt growth. AtMAP65-3 thus has either independent roles for cytokinesis and defense activation, or SA accumulation and defense activation are a consequence of cytokinesis defects. A prominent example for a protein involved in the regulation of both the cell cycle and plant immunity is constitutive pathogen resistance5, CPR5 (Bowling et al., 1997; Kirik et al., 2001; Yoshida et al., 2002). Like map65-3, cpr5 mutants are constitutively activated for defense responses, and show a dwarf phenotype. Similar to what we found for map65-3, blocked SA accumulation in cpr5 suppresses the disease resistance phenotype, but not the stunted growth morphology, thus placing cpr5 either upstream of SA synthesis, or independent from it (Wang et al., 2014). CPR5 is a nuclear envelope protein and associates with the cyclin-dependent kinase inhibitors (CKIs), SIAMESE (SIM) and SIAMESE-RELATED1 (SMR1). This association is essential for maintaining defense responses repressed in the normal (non-infected) state of Arabidopsis. When immune responses are triggered, the CKIs are released from CPR5 to cause overactivation of cell cycle regulators from the E2F family. sim, smr1, and e2fabc mutants are compromised in immune responses, showing that CPR5 acts upstream of SA, and indicating that the CKIs and E2Fs constitute functional links between CPR5 and downstream SA signaling (Wang et al., 2014). It is noteworthy that the map65-3 mutation does not affect the transcriptional regulation of SIM, SMR1, and E2Fa, b, and c (compare Supplementary Tables S2–S7), suggesting that MAP65-3 interferes with SA-mediated defenses independent of these regulators of the cell cycle signaling pathway.

MAPKs are essential for innate immune signal transduction (Zipfel et al., 2004). There is growing evidence that MAPKs also regulate the activity of MAP65 proteins (Komis et al., 2011; Šašeková et al., 2013), and AtMAP65-3 was shown to be a substrate for the MAPK, AtMPK4 (Kosetsu et al., 2010; Beck et al., 2011; Sasabe et al., 2011). Similar to map65-3, mpk4 mutants show defects in cytokinesis, and have a stunted growth phenotype (Kosetsu et al., 2010; Beck et al., 2011). In addition, AtMPK4 negatively regulates plant defense responses, and mpk4 mutants accumulate increased amounts of SA (Petersen et al., 2000; Brodersen et al., 2006). The absence of MPK4 from Arabidopsis and soybean leads to enhanced penetration resistance to filamentous pathogens (Petersen et al., 2000; Liu et al., 2011). Also similar to what we show for map65-3, the growth defect of mpk4 mutants is independent of SA accumulation (Gawroński et al., 2014). Further studies have to show whether AtMAP65-3 is a substrate for AtMPK4 in a signaling cascade, which determines both cytokinesis and pathogen defense.

The dwarf phenotype of map65-3, which is independent of SA accumulation, might be explained by the mitotic and cytokinetic defects previously described for this mutant (Müller et al., 2004; Caillaud et al., 2008b). We show that SA signaling and PRI transcript accumulations are induced in leaves and cotyledons of the map65-3 mutant, but not in roots. A difference between shoots and roots with respect to SA-mediated signal transduction has previously been reported for other SA-accumulating Arabidopsis mutants such as cpr1 (affected in an F-Box protein that targets resistance proteins and negatively regulates defense responses; Wubben et al., 2008) or p44kIL313P2 (phosphatidylinositol-4-kinases; Šašek et al., 2014). Differences between shoots and roots in perception and response to SA remain, however, unexplained.

The role of MTs in induced plant immunity most probably relies on their action in driving vesicular trafficking, allowing host-secreted molecules (e.g. cell wall components, antimicrobial molecules, or callose) to accumulate in the extracellular space and to contribute to the control of plant invasion by pathogens (Hardham, 2013). MTs and MAPs probably also participate in the earlier responses to biotic factors that are initiated at the plasma membrane, downstream of PAMP perception. As an example, the phospholipases D (PLDs), that bind to cortical MTs, and the PLD-derived phosphatic acid (PA) play a key role in early steps leading to defense responses (Zhao, 2015). PLDs and PLDα1-derived PA were shown to bind to cortical MTs and MAP65-1, respectively, thus regulating MT polymerization and bundling under salt stress (Dhonukshe et al., 2003; Zhang et al., 2012). Pharmacological attempts to destabilize MT assembly often alter plant susceptibility to pathogens (reviewed by Hardham, 2013). In barley, ROP GTPase-regulated MT reorganization is involved in penetration resistance and susceptibility to invasion by the powdery mildew fungus Blumeria graminis f.sp. hordei (Hoefle et al., 2011; Dörmann et al., 2014). Some pathogen-secreted effectors also target MTs for suppressing host defenses. Examples are the effectors HopZ1a and AvrBST from the phytopathogenic bacteria Pseudomonas syringae and Xanthomonas campestris, respectively. HopZ1a is an acetyltransferase that binds and acetylates plant tubulin, thus causing the destruction of MTs, the inhibition of MT polymerization and bundling under salt stress (Dhonukshe et al., 2003; Zhang et al., 2012). Pharmacological attempts to destabilize MT assembly often alter plant susceptibility to pathogens (reviewed by Hardham, 2013). In barley, ROP GTPase-regulated MT reorganization is involved in penetration resistance and susceptibility to invasion by the powdery mildew fungus Blumeria graminis f.sp. hordei (Hoefle et al., 2011; Dörmann et al., 2014). Some pathogen-secreted effectors also target MTs for suppressing host defenses. Examples are the effectors HopZ1a and AvrBST from the phytopathogenic bacteria Pseudomonas syringae and Xanthomonas campestris, respectively. HopZ1a is an acetyltransferase that binds and acetylates plant tubulin, thus causing the destruction of MTs, the inhibition of MT polymerization and bundling under salt stress (Dhonukshe et al., 2003; Zhang et al., 2012). Pharmacological attempts to destabilize MT assembly often alter plant susceptibility to pathogens (reviewed by Hardham, 2013).
Supplementary data

Supplementary data are available at JXB online.

Table S1. Oligonucleotides used in this study.

Table S2. Genes that are constitutively more expressed in map65-3 than in the Wt (≥2-fold).

Table S3. Genes that are constitutively less expressed in map65-3 than in the Wt (≥2-fold).

Table S4. Genes that are more expressed in map65-3 than in the Wt upon Hpa infection (≥2-fold).

Table S5. Genes that are less expressed in map65-3 than in the Wt upon Hpa infection (≥2-fold).

Table S6. Infection-responsive genes that are ≥2-fold more expressed in map65-3 than in the Wt.

Table S7. Infection-responsive genes that are ≥2-fold less expressed in map65-3 than in the Wt.

Table S8. Over-represented genes that are ≥2-fold more expressed in map65-3 than in the Wt upon infection.

Table S9. Over-represented genes that are ≥2-fold less expressed in map65-3 than in the Wt upon infection.

Figure S1. Morphogenesis of Hpa haustoria is not affected in the map65-3 mutant.

Figure S2. Relative gene expression of PR1a and PDF1.2b in shoots of the Wt (WS×Col0), of the map65-3 mutant (map65-3×Col0), and on the map65-3/NahG×sid2.1 line.

Acknowledgements

The construct carrying the 35S::NahG construction was a kind gift from Dr L’Haridon (Fribourg University). The sid2-1 and GFP-TUA6 were kindly provided by Dr A. Attard (INRA Sophia Antipolis, France) and Dr Hashimoto (Nara, Japan), respectively. We thank Benoit Industri and Michel Ponchet (INRA Sophia Antipolis, France) for providing us a SA quantification protocol, and discussing the results. This work was supported by INRA and by the French Government (National Research Agency, ANR) through the ‘Investments for the Future’ LABEX SIGNALIFE [program reference #ANR-11-LABX-0028-01], by the ANR/Génoplasme program SCRIPS [ANR-08-GENMN-014], and by the German Research Foundation [grant number #DFG FOR666, DFG SFB924]. MCC received support from an MC P7-People-2009-IEF fellowship and BBRC-UK grant [BB/K009176/1].

References

Takemoto D, Jones DA, Hardham AR. 2003. GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. The Plant Journal 33, 775–792.

Wubben MJE, Jin J, Baum TJ. 2008. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Molecular Plant Microbe Interactions 21, 424–432.

