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Antibacterial efficacy 
of titanium‑containing alloy 
with silver‑nanoparticles enriched diamond‑like 
carbon coatings
Norbert Harrasser1, Sebastian Jüssen1, Ingo J. Banke1, Ralf Kmeth2, Ruediger von Eisenhart‑Rothe1, 
Bernd Stritzker2, Hans Gollwitzer1,3 and Rainer Burgkart1*

Abstract 

Silver ions (Ag+) have strong bactericidal effects and Ag-coated medical devices proved their effectiveness in reduc‑
ing infections in revision total joint arthroplasty. We quantitatively determined the antimicrobial potency of different 
surface treatments on a titanium alloy (Ti), which had been conversed to diamond-like carbon (DLC-Ti) and doped 
with high (Ag:PVP = 1:2) and low (Ag:PVP = 1:10 and 1:20) concentrations of Ag (Ag-DLC-Ti) with a modified tech‑
nique of ion implantation. Bacterial adhesion and planktonic growth of clinically relevant bacterial strains (Staphylo-
coccus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa) on Ag-DLC-Ti were compared to untreated 
Ti by quantification of colony forming units on the adherent surface and in the growth medium as well as semiquan‑
titatively by determining the grade of biofilm formation by scanning electron microscopy. (1) A significant (p < 0.05) 
antimicrobial effect could be found for all Ag-DLC-Ti samples (reduced growth by 5.6–2.5 logarithmic levels). (2) The 
antimicrobial effect was depending on the tested bacterial strain (most for P. aeruginosa, least for S. aureus). (3) Antimi‑
crobial potency was positively correlated with Ag concentrations. (4) Biofilm formation was decreased by Ag-DLC-Ti 
surfaces. This study revealed potent antibacterial effects of Ag-DLC-Ti. This may serve as a promising novel approach 
to close the gap in antimicrobial protection of musculoskeletal implants.
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Introduction
With a constantly rising demand for orthopedic surgery 
with approximately 2.6 million orthopedic implants per-
formed annually in the United States, the frequency of 
associated infections is bound to increase (Liu et al. 2012; 
Zimmerli and Ochsner 2003; Kurtz et al. 2008). Preven-
tion of periprosthetic joint infections (PJI) has therefore 
an important impact not only on patient morbidity but 
also on the cost effectiveness of hospital care (Gosheger 
et  al. 2004). Management of PJI often requires multiple 

staged surgeries and the use of antibiotics as a support-
ive therapy (Giulieri et  al. 2004; Zimmerli and Ochsner 
2003). A major problem in septic revision surgery is the 
formation of biofilm on implanted foreign materials 
(Schrenzel et al. 2004). These biofilms contain 5–50 µm 
thick glycoprotein matrices that protect the bacteria 
through a diffusion limitation process, and increase their 
resistance to antibodies, macrophages, and antibiotics 
(Ceri et  al. 1999). Once a significant amount of biofilm 
has formed, eradication of infection is nearly impossible 
without removing the implant (Zimmerli and Ochsner 
2003).

In order to decrease the infection and especially rein-
fection rate several methods have been developed, at 
which rising occurrences of antibiotic resistances among 
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bacteria make antibiotic-based strategies more and more 
questionable (Jamsen et  al. 2010; Schmidmaier et  al. 
2006; Hetrick and Schoenfisch 2006; Poelstra et al. 2000). 
In this context alternative methods are favored. Promis-
ing could be the use of non-antibiotic “active” antibacte-
rial coatings which release antibacterial agents, e.g. silver 
ions (Ag+) (Gosheger et al. 2004; Hardes et al. 2007; Har-
rasser et al. 2015), copper ions (Cu++) (Shirai et al. 2009; 
Baena et  al. 2006), nitric oxide (Holt et  al. 2011; Nablo 
et al. 2005), chlorhexidine/chloroxylenol (Darouiche et al. 
1998) or chitosan (Bumgardner et al. 2003). Compared to 
antibiotics these agents act more broadly against a wide 
range of bacteria. In addition, at least proven for the use 
of silver (Ag), microbes without intrinsic resistance can-
not gain resistance (Lee et al. 2005). Information on the 
use of these bactericidal coatings on wear surfaces and 
direct bone contact is lacking since Ag-coatings have 
been used so far only on surfaces without direct bone 
or joint contact. This fact is important, given that, e.g. 
in total knee replacement roughly 50 % of the surface is 
exposed to synovial fluid and in main parts tribologically 
active. On the other hand, revision prostheses are usually 
composed of large stems applied intramedullary which 
additionally represent a vulnerable surface area for bac-
terial contamination. To summarize, in septic revision 
surgery a relevant portion of the susceptible prosthesis is 
not protected against bacterial reinfection. Antibacterial-
agent-enriched diamond-like carbon (DLC) coatings may 
solve this dilemma. The term DLC is used to describe 
hydrogen-free carbon solids that contain an amorphous 
network of tetrahedrally and trigonally hybridized car-
bon atoms with physical properties tending to be inter-
mediate between those of graphite and those of diamond 
(Dearnaley 1993). DLC is an ideal surface coating for 
prosthetic joints, because it is wear resistant, atomi-
cally smooth, and corrosion resistant, has a low friction 
coefficient, and is immune to scratching by third body 
wear particles (Morrison et  al. 2006). Therefore, if DLC 
coating is applied on titanium (Ti), a material not used 
for wear surfaces due to its high sensitivity to contact 
wear and fretting corrosion, it improves its wear resist-
ance and makes it suitable for tribologically loaded joint 
parts (Firkins et al. 1998). Additionally, DLC coating can 
improve the osseointegration of titanium making it even 
more valuable for orthopedic applications (Mändl et  al. 
2001). Another property of this coating is the ability to 
use it as a carrier for ions, e.g. Ag+. By release of Ag+, 
DLC coatings on Ti can act as local antibacterial agents, 
and therefore extend its medical implications to septic 
revision surgery (Cloutier et al. 2014; Katsikogianni et al. 
2006; Dwivedi et al. 2013). DLC coatings are not without 
limitations since structural properties can vary widely 
depending on the deposition techniques employed. One 

of the greatest challenges of DLC technology is adhesion 
and internal stresses (Xu and Pruitt 1999). Several DLC 
technologies are described, at which DLC films usually 
are deposited on surfaces. The bonding strength between 
coating and surface seems to be the weakest point (Wal-
ter et al. 1997). If the DLC layers tend to dissolve from the 
surface positive tribological features can quickly deterio-
rate leading to high grade wear (Roy and Lee 2007). This 
could be conflicting if DLC coated Ti was used on wear 
surfaces. On the other hand, methods of DLC coating 
with strong linking to the sample surface are described 
(Liu et al. 2004). Thus, the risk of detachment of the DLC 
coating from the surface, even under shear forces is mini-
mized (Schwarz and Stritzker 2010; Popa et  al. 2013). 
In this context, among the techniques described for the 
synthesis of DLC coatings a modified method of plasma 
immersion ion implantation (PIII) has proven promising 
advantages (Schwarz and Stritzker 2010).

We have used a new technique to incorporate silver 
(Ag) DLC thin films on Ti samples (Ag-DLC-Ti) in order 
to provide these otherwise inert medical-devices with 
antimicrobial properties. Bactericidal potency is stud-
ied on the sample’s surface and the surrounding growth 
medium. This study provides valuable information for 
determining the suitability of Ag-DLC-Ti as antibacterial 
materials for septic revision implants.

Methods
Study substrates
We used cylindrical substrates (diameter: 10  mm, 
height: 2  mm) of corundum-blasted medical TiAl6V4 
(Ra  ~  5  µm; Goodfellow GmbH, Nauheim, Germany). 
The samples were coated with Ag-doped DLC, incu-
bated for 24 h and afterwards tested for their antimicro-
bial effects on the surface (bacterial sessile growth) and 
the surrounding growth medium (bacterial planktonic 
growth).

DLC doping with Ag was carried out with polyvi-
nylpyrrolidone (PVP) as a stabilizing agent. The first 
testing series was conducted with high concentrations 
of Ag within the DLC coating (Ag:PVP = 1:2) and three 
different bacterial strains (Staphylococcus epidermidis, 
Staphylococcus aureus, Pseudomonas aeruginosa). For 
reduction of potential toxic side-effects of Ag on eukar-
yotic cells a reduction of Ag+ would be advantageous 
(Hardes et  al. 2007). Hence, detection of minimal nec-
essary Ag+ concentration in DLC-Ti samples was evalu-
ated in a further testing series with low concentrations 
of Ag within the DLC coating (Ag:PVP = 1:10 and 1:20). 
This series was only conducted with the most resistant 
strain against Ag from testing series one (S. aureus). 
Sample features and used bacterial strains are summa-
rized in Table 1.
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DLC film deposition
DLC-processing of all plates was performed at the 
department of experimental physics IV (University of 
Augsburg, Germany) according to a modified technic 
of ion irradiation of polymers. The coating process is 
described fully elsewhere (Schwarz and Stritzker 2010). 
Briefly summarized, an ethanol-based solution of sil-
ver nitrate, benzoin and polyvinylpyrrolidone (PVP) 
was prepared and exposed to UV light to initiate pho-
tochemical reduction. This results in a colloidal solution 
of silver nanoparticles stabilized by PVP, with amount 
and size of the particles depending on the initial PVP-Ag 
and Ag-Benzoin ratios. The solution was then applied to 
the substrate via dip-coating. The resulting silver nano-
particle-containing polymer layer is subsequently trans-
ferred to amorphous carbon by plasma immersion ion 
implantation (PIII). A big advantage of this procedure is 
the fact that setting of amount and size of silver nano-
particles is independent from DLC-formation. In sum-
mary, the following surfaces have been investigated: Ti 
(untreated) = corundum-blasted medical TiAl6V4 alloy; 
DLC-Ti = corundum-blasted medical TiAl6V4 with DLC 
surface coating; Ag-DLC-Ti = corundum-blasted medical 
TiAl6V4 with DLC surface coating containing nanocol-
loidal silver in different molar ratios (high concentrated: 
Ag:PVP  =  1:2; low concentrated: Ag:PVP  =  1:10 and 
1:20; Note: Amount of Ag+ is higher in 1:10 compared to 
1:20). A TEM (transmission electron microscopy)-image 
of the Ag-DLC coating on Ti is given in Fig. 1.

Sterilization of samples and sealing of uncoated surface 
with paraffin wax
Samples were rinsed with distilled water for 10 min, air-
dried in a laminar flow cabinet and thereafter sterilized 
with gamma-beam with the dose of 26.5  kGy (Isotron 
Deutschland GmbH, Allershausen, Germany). All manip-
ulations of the samples were conducted by holding the 
lower surface. As a consequence these parts of the sam-
ples were not surface treated and needed protection from 
the testing environment. Hence, paraffin wax was first 

autoclaved in a glass container with 120  °C for 20  min 
(Varioklav®, H+P Labortechnik, H+P Labortechnik AG, 
Oberschleißheim, Germany), the samples’ lower sur-
faces were then dip-coated in the solvent paraffin wax so 
that a thin protection layer was formed. Specimens were 
then placed in 24-well culture plates (Fig. 2a, b). Pretest-
ing with paraffin wax revealed no intrinsic antimicrobial 
potential and was therefore appropriate as a mechanical 
sample stabilizer.

Bacterial strains and preparation of inocula
Bacterial strains (LGC Standards GmbH, Wesel, Ger-
many) selected in the study for determination of surface 
and planktonic growth were the most common causa-
tive pathogens associated with PJI, namely S. epidermidis 
(ATCC35984), S. aureus (ATCC25923) and P. aeruginosa 
(ATCC 27835) (Zimmerli and Moser 2012; Darouiche 
et al. 1998; Zimmerli and Ochsner 2003). S. epidermidis 
(RP62a), as a strong slime producing variant, was used 
for SEM (scanning electron microscopy)-evaluation of 
biofilm formation on the samples. Test strains were rou-
tinely cultured in Columbia Agar with 5  % sheep blood 
(Becton–Dickinson, Heidelberg, Germany) at 37 °C over-
night before testing. Bacteria were then harvested by 
centrifugation, rinsed, suspended, diluted in sterile phos-
phate buffered saline (PBS) and adjusted by densitometry 
to a MacFarland 0.5 standard (MacFarland Densimat™, 
BioMérieux, Marcy l’Etoile, France) up to a CFU count 
of 1 ×  105  CFU/ml. To control bacterial concentration, 
100 μl of each suspension was again cultured for 24 h at 
37 °C. After 24 h serial dilutions of this suspension were 
plated on Colombia-Agar. The colonies were counted and 
colony numbers calculated accordingly. For the study 
every suspension with its known bacterial concentra-
tion was diluted with DMEM +  10  % FCS to reach the 
targeted value for bacterial concentration (105 CFU/ml). 
Sample plates with paraffin-coated lower surfaces were 
placed in 24-well culture plates and 1 ml of 105 CFU/ml 

Table 1  Features of the different testing groups

Testing group Ag:PVP Bacterial strain

Ag-concentration 
of Ag-DLC-Ti: 
High

1:2 Staphylococcus epidermidis (ATCC35984)
Staphylococcus aureus (ATCC25923) Pseu-

domonas aeruginosa (ATCC 27835)

Ag-concentration 
of Ag-DLC-Ti: 
Low

1:10
1:20

Staphylococcus aureus (ATCC25923)

SEM-evaluation 1:2 Staphylococcus epidermidis (RP62a)

Fig. 1  Transmission electron microscopy (TEM) image of silver 
nanoparticles of AG-DLC-Ti (note: major nanoparticles are marked 
with arrows)
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bacterial suspensions were added. Incubation of the well 
plates was conducted for 24 h at 37 °C.

Analysis
Bacterial surface adhesion was evaluated by determining 
bacterial concentration on the specimen. Bacterial plank-
tonic growth was measured in the growth medium. For 
every group four independent testing runs with four dif-
ferent samples were conducted. Therefore, altogether 16 
samples were tested for every group.

Determination of bacterial growth on sample surfaces
Colonized sample plates were removed from the wells 
with a sterile forceps, carefully rinsed twice with sterile 
PBS, transferred to vials containing 3  ml of sterile PBS 
and sonicated for 7 min (Elmasonic S60H, Elma, Singen, 
Germany) to remove adhering bacteria. 100 μl of the fluid 
were aspirated, plated on Colombia Agar at 37 °C for 24 h 
and quantified after incubation (CFU/ml).

SEM-analysis was conducted semiquantitatively to 
evaluate inhibition of biofilm formation. SEM-images 
were compiled of native Ti, DLC-Ti and Ag-DLC-Ti 
(Ag:PVP  =  1:2). Biofilm formation was quantified in 
five categories: (1) no biofilm formation, (2) biofilm cov-
ering less than 25  % of the surface, (3) biofilm covering 
between 25 and 75 % of the surface, (4) biofilm covering 
more than 75 % of the surface, (5) biofilm formation cov-
ering the entire surface.

Determination of bacterial planktonic growth
A 700-μl volume of each well was supplemented with 
700 μl neutralizing solution as described by Tilton (Tilton 
and Rosenberg 1978) (1.0 g sodium thioglycolate + 1.46 g 
sodium thiosulfate in 1000 ml deionized water). The neu-
tralizing solution acts as an inhibitor for reminiscent 
metal toxicity on bacteria. The suspension was plated 
on Columbia Agar after serial dilutions and incubated 

at 37  °C for 24  h. Thereafter, CFU were quantified and 
extrapolated to CFU/ml.

Statistics
All results are presented as mean  ±  standard devia-
tion. Statistical significance was computed using non-
parametric methods and the method of closed testing 
procedure (Kruskal–Wallis and Mann–Whitney U test). 
P < 0.05 was considered statistically significant. Statisti-
cal tests were performed with use of SPSS (version 20.0; 
Chicago, Illinois). Statistical analysis was conducted per 
consultation with the Institute of Medical Statistics and 
Epidemiology (Klinikum rechts der Isar, Technische Uni-
versität München, Munich, Germany).

Results
Antimicrobial effect of high concentrated (Ag:PVP = 1:2) 
Ag‑DLC‑Ti on S. epidermidis ATCC35984, S. aureus 
ATCC25923 and P. aeruginosa ATCC27835
Average viable counts of bacteria recovered from the 
samples and in the supernatant growth medium are sum-
marized in Table 2.

Analysis of bacterial surface adhesion showed strain 
dependent differences in growth in the absence of Ag. On 
untreated Ti plates on average 2.1 ×  105 CFU of S. epi-
dermidis, 7.3 × 106 CFU of S. aureus and 1.6 × 106 CFU 
of P. aeruginosa adhered after 24 h of incubation (Fig. 3). 
Compared to native plates, DLC-Ti samples showed 
not significant strain dependent changes of bacterial 
amounts. On all Ag-DLC-Ti surfaces (Ag:PVP  =  1:2), 
compared to native plates, a significant reduction of bac-
terial amount was detected.

Analysis of planktonic growth in the growth medium 
showed, in accordance to the results of surface growth, 
strain dependent differences. Initial bacterial con-
centration (t  =  0) of all strains was approximately 
1 × 105 CFU/ml and increased in the absence of Ag after 

Fig. 2  Sample preparation; ion irradiation of samples with missing irradiation of the sample’s lower surfaces (a), placement of samples in well 
culture plates with paraffin wax (arrow) covering the sample’s lower surface (b)



Page 5 of 11Harrasser et al. AMB Expr  (2015) 5:77 

24  h of incubation on average up to 4.5 ×  105  CFU/ml 
for S. epidermidis, 1.1 ×  108  CFU/ml for S. aureus and 
2.4 × 108 CFU/ml for P. aeruginosa (Fig. 4). Compared to 
native plates, DLC-Ti samples led to slight strain depend-
ent changes of bacterial concentration which were only 

significant for S. epidermidis. Equally to the reduction of 
bacterial adherence on Ag-DLC-Ti samples a significant 
reduction of bacterial planktonic growth in the superna-
tant medium was observed for all strains in the presence 
of Ag.

Table 2  Amount/concentration. changes (log-levels/%) and  p values (<0.05: significant) of  CFU of  different bacterial 
strains on Ti samples with high and low concentrated Ag-DLC

CFU colony forming units, SD standard deviation
a  log-levels = bacterial counts calculated as shown in following equation: log-levels = log10(CFU of Ag-DLC-Ti) − log10(CFU of untreated Ti)
b  Positive values (log-levels/%) express increased bacterial growth on DLC-Ti/Ag-DLC-Ti compared to untreated Ti, negative values express reduced bacterial growth 
on DLC-Ti/Ag-DLC-Ti compared to untreated Ti

High concentrated Ag-DLC-Ti Ti (untreated) DLC-Ti Ag-DLC-Ti (Ag:PVP 1:2)

S. epidermidis

 Surface adhesion

 CFU ± SD 2.1 × 105 ± 7.6 × 104 3.3 × 105 ± 2.4 × 105 8.1 × 100 ± 1.9 × 101

 Changes compared to Ti (log-levels/%)a,b +0.2/+57 % −4.4/−99.9 %

 p values 0.149 <0.05

 Growth in surrounding medium

 CFU/ml ± SD 4.5 × 105 ± 2.8 × 105 1.0 × 106 ± 4.0 × 105 3.4 × 102 ± 1.1 × 103

 Changes compared to Ti (log-levels/%)a,b +0.3/+122.2 % −2.8/−99.9 %

 p values <0.05 <0.05

S. aureus

 Surface adhesion

 CFU ± SD 7.3 × 106 ± 3.1 × 106 7.8 × 106 ± 2.4 × 106 1.7 × 104 ± 3.1 × 104

 Changes compared to Ti (log-levels/%)a,b +0.03/+6.8 % −2.6/−99.9 %

 p values 0.428 <0.05

 Growth in surrounding medium

 CFU/ml ± SD 1.1 × 108 ± 4.1 × 107 8.4 × 107 ± 6.1 × 107 3.6 × 105 ± 5.4 × 105

 Changes compared to Ti (log-levels/%)a,b −0.1/−23.6 % −2.5/−95.9 %

 p values 0.213 <0.05

P. aeruginosa

 Surface adhesion

 CFU ± SD 1.6 × 106 ± 7.7 × 105 1.3 × 106 ± 5.7 × 105 3.8 × 100 ± 1.5 × 101

 Changes compared to Ti (log-levels/%)a,b −0.09/−18.6 % −5.6/−99.9 %

 p values 0.533 <0.05

 Growth in surrounding medium

 CFU/ml ± SD 2.4 × 108 ± 3.8 × 107 2.1 × 108 ± 2.7 × 107 7.4 × 102 ± 1.6 × 103

 Changes compared to Ti (log-levels/%)a,b −0.06/−12.5 % −5.5/−99.9 %

 p values 0.161 <0.05

Low concentrated Ag-DLC-Ti Ti (untreated) DLC-Ti Ag-DLC-Ti

Ag:PVP 1:10 Ag:PVP 1:20

S. aureus

 Surface adhesion

 CFU ± SD 6.8 × 105 ± 7.6 × 104 9.7 × 105 ± 2.4 × 104 5.9 × 103 ± 4.9 × 103 1.3 × 104 ± 5.2 × 103

 Changes compared to Ti (log-levels/%)a,b +0.2/+57 % −1.1/−91.8 % −0.7/−81.9 %

 p values 0.149 <0.05 <0.05

 Growth in surrounding medium

 CFU/ml ± SD 3.1 × 105 ± 1.8 × 105 5.5 × 105 ± 2.0 × 105 5.2 × 104 ± 3.8 × 104 1.4 × 105 ± 5.4 × 104

 Changes compared to Ti (log-levels/%)a,b +0.3/+122.2 % −0.8/−98.3 % −0.3/−54.8 %

 p values <0.05 <0.05 <0.05
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Antimicrobial effect of low concentrated (Ag:PVP = 1:10 
and 1:20) Ag‑DLC‑Ti on S. aureus ATCC25923
Analysis of bacterial growth showed significantly 
decreased bacterial concentrations of S. aureus on the 
surface and in the growth medium for reduced Ag con-
centrations of Ag-DLC-Ti (Table 2; Fig. 5).

Surface biofilm formation (S. epidermidis RP62a) 
in SEM‑images
Biofilm formation was ubiquitous and graded type 5 
on all untreated Ti and DLC-Ti samples without Ag 
incorporation covering the entire specimen surfaces 
with thick layers of S. epidermidis. Ag-DLC-Ti samples 

Fig. 3   Bacterial growth of tested strains on the sample surfaces (Ti, DLC-Ti, and high concentrated Ag-DLC-Ti); t = 0: before incubation; t = 24 h: 
after incubation
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(Ag:PVP = 1:2) on the other hand showed biofilm inhib-
iting effects with at the most rare spot-like biofilm forma-
tion graded type 3 (Fig. 6a, b).

Discussion
In the present study, the results from in vitro assays dem-
onstrated that Ag-DLC-Ti effectively prevented bacterial 
adherence and biofilm formation (Table  2). In addition, 

we also found significant antibacterial activity in the sur-
rounding environment of the tested samples showing 
release of embedded bactericidal agents from the DLC 
coating. In this context main properties of the tested 
coatings could be identified:

1.	 Antimicrobial effectiveness increased with higher 
concentrations of Ag in DLC-Ti (Ag:PVP =  1:2 vs. 

Fig. 4  Bacterial growth of tested strains in the nutrient solution (Ti, DLC-Ti, and high concentrated Ag-DLC-Ti); t = 0: before incubation; t = 24 h: 
after incubation
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Ag:PVP =  1:10 and 1:20) and was still present with 
low concentrated Ag-DLC-Ti samples. From a physi-
cal point of view this is not surprising since high ion 
concentrations determine a higher rate of Ag disso-
lution from the nanoparticles into the surrounding 
medium. This “wash-out” effect of DLC surfaces on 
ions implanted with high concentrations has already 
been described in the literature in other materi-
als (Furno et  al. 2004). Several studies confirmed 

the bactericidal effect of Ag-DLC coatings of differ-
ent materials (Soininen et al. 2011; Kwok et al. 2007; 
Baba et al. 2013; Katsikogianni et al. 2006; Marciano 
et  al. 2009). However, to our best knowledge, our 
presented evaluation of different concentrations of 
Ag-DLC-Ti manufactured by dip-coating and PIII is 
the first described so far. In the study of Baba et  al. 
Ag-DLC coating was achieved by a combination of 
magnetron sputtering and plasma source ion implan-

Fig. 5  Bacterial growth of S. aureus on the surface and in the nutrient solution (Ti, DLC-Ti, and low concentrated Ag-DLC-Ti); t = 0: before incuba‑
tion; t = 24 h: after incubation

Fig. 6  Biofilm formation on different Ti surfaces. Homogenous biofilm grade 5 after incubation with S. epidermidis on native Ti (a), reduced biofilm 
grade 3 on high concentrated Ag-DLC-Ti (b)
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tation. Different concentrations of Ag were used, but 
no significant differences of bactericidal effects from 
high and low concentrated Ag-DLC coatings were 
found (Baba et al. 2013). This emphasizes the impor-
tance of the manufacturing process of DLC onto the 
dissolution of Ag+ from the coating. Nevertheless, 
bactericidal effects can also be explained by inter-
actions of bacteria with the surface and not only by 
release of silver-nanoparticles. Contradicting state-
ments exist whether DLC coating alone exhibits bac-
tericidal effects or not. Marciano et al. (2009) found a 
significant bactericidal potency of DLC, other inves-
tigators found no antibacterial effect (Soininen et al. 
2011; Baba et  al. 2013). In our study DLC coating 
alone had no significant bactericidal effect compared 
to untreated Ti. Similar to the findings of Soininen 
et al. (2011), who used the same bacterial strains, S. 
epidermidis’ and S. aureus’ adhesion on DLC coat-
ings were slightly higher compared to uncoated Ti 
samples (0.2 and 0.03 log-levels; p > 0.05). Adhesion 
of P. aeruginosa on the other hand was slightly lower 
(0.09 log-levels; p > 0.05). This proves the statement 
that bactericidal effects in the present study derived 
mainly from the release of Ag+ from the coating.

2.	 Another main finding of our study is the differ-
ent susceptibility against Ag-doped DLC coatings 
depending on the bacterial strain. P. aeruginosa 
showed the highest susceptibility (reduced surface 
growth by 5.6 log-levels; p < 0.05) followed by S. epi-
dermidis (reduced surface growth by 4.4 log-levels; 
p  <  0.05) and S. aureus (reduced surface growth by 
2.6 log-levels; p  <  0.05). In general, several studies 
confirmed higher bactericidal potency of Ag against 
Gram-negative compared to Gram-positive strains 
(Flores et  al. 2013; Taglietti et  al. 2012; Kim et  al. 
2007). Ag acts by binding to membranes, enzymes 
and nucleic acids. Consequently the respiratory chain 
is inhibited and therefore the aerobe metabolism of 
microorganisms disturbed (Gosheger et  al. 2004). 
Bacteria are quite susceptible to Ag with only neg-
ligible possibility of intrinsic resistance (Kumar and 
Munstedt 2005). Nevertheless, the effect observed 
in the present study is not fully understood. Differ-
ent cell morphology or generation time of the bacte-
ria may only be two of several reasons for our find-
ings (Morones et  al. 2005). However, this finding is 
important for the future use of Ag-doped DLC sur-
faces since PJI involve a variety of different bacterial 
strains with different susceptibilities against Ag.

This study involves several limitations. Ion concentra-
tions of Ag in the surrounding medium were not assessed. 
Antibacterial effects in the surrounding medium and on 

the sample surface could be caused or at least supported 
by antiadhesive surface features of DLC alone. Even 
though, compared to untreated Ti, no significant reduc-
tion of growth of S. aureus in the growth medium and 
P. aeruginosa on the surface and in the growth medium 
was detected for DLC-Ti, a tendency to diminished bac-
terial amounts of these bacteria was observed (Table 2). 
Another limitation is that only S. aureus was investigated 
for low concentrated Ag-DLC-Ti. It can be estimated that 
the bactericidal effect on P. aeruginosa and S. epidermidis 
would be also evident if low concentrated Ag-DLC coat-
ings were used, since S. aureus was the least susceptible 
strain of the three in the high concentrated testing group. 
Additionally, no influence of Ag-DLC-Ti on osseointe-
gration was investigated. It is known, that DLC coat-
ing of Ti can lead to increased osseointegration (Mändl 
et al. 2001). If this effect of DLC coatings is inhibited in 
the presence of Ag is unknown. Further investigations 
are needed in order to clear whether the concentration 
and duration of delivery of the released Ag+ of DLC coat-
ings is sufficient to avoid implant infection in  vivo and 
how they interact with eukaryotic cells. However, this 
was not the scope of this proof of principle investigation. 
Lastly, we did not evaluate the tribological behavior of 
this coating. DLC coatings of Ti exhibited good results in 
experimental wear studies, if Ag-DLC coatings do also is 
unknown (Xu and Pruitt 1999; Brizuela et al. 2002) but is 
the aim of further studies.

In summary, our findings show that Ag-DLC-Ti manu-
factured by a modified technique of dip-coating and ion 
implantation has considerable effects as an antibacterial 
coating. Thus, Ag-DLC-Ti can be considered a promis-
ing material for next generation orthopedic devices. The 
suitability of this coating for biomedical applications will 
be confirmed by wear tests and in vitro biocompatibility 
assessments.
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