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Abstract / Kurzfassung

Abstract

In this thesis, optimal control problems with discrete controls and dependent con-
straints are considered. Many dynamic systems have control inputs which can only
take values from a fixed set. The switching structure of the discrete choices is subject
to optimization. The resulting type of problem is called Mixed-Integer Optimal Con-
trol Problem (MIOCP). Additionally, constraint limits that depend on the optimized
discrete control choice are taken into account. The problems are solved with direct
optimal control methods using gradient based optimization algorithms. Therefore,
discrete controls and constraints have to be reformulated continuously. Different ap-
proaches are stated and compared. In order to minimize the number of switches and
to enforce discrete value feasibility, a novel switching cost penalty formulation is used.
The resulting optimal control problems are solved in MATrix LABoratory (MATLAB)
using the FALCON.m optimal control toolbox. It was developed as part of this thesis
and enables the calculation of analytic derivatives of high fidelity and large scale prob-
lems. This is achieved through a novel derivative generation tool-chain. Furthermore,
a discrete control toolbox extension for FALCON.m is created for user friendly problem
definition. The method and toolbox developed are applied to a minimal lap time race
track optimization with optimal gear switching sequence. Additionally, fuel minimal
approaches subject to the optimal flap positions are solved.

Kurzfassung

In dieser Arbeit werden Optimalsteuerungsprobleme unter Berücksichtigung von dis-
kreten Steuerungen und davon abhängigen Nebenbedingungen gelöst. Viele dynami-
sche Systeme haben Steuergrößen, die nur Werte eines fixen diskreten Sets annehmen
können. Die Schaltstruktur der diskreten Wahlmöglichkeiten wird durch die Optimie-
rung ermittelt. Diese Problemklasse wird auch als ein gemischt ganzzahliges Optimal-
steuerungsproblem bezeichnet. Zusätzlich müssen die Grenzen von Nebenbedingun-
gen, die sich in Abhängigkeit der diskreten Steuergröße ändern, berücksichtigt wer-
den. Die resultierenden Probleme werden mit direkten Methoden und Gradienten ba-
sierten Verfahren gelöst. Deshalb müssen die diskreten Steuerungen und Nebenbe-
dingungen kontinuierlich umformuliert werden. Verschiedene Ansätze werden vor-
gestellt und verglichen. Um die Anzahl der Schaltvorgänge zu minimieren, wird ei-
ne neue Schaltkostenfunktion verwendet. Die Optimalsteuerungsprobleme werden in
MATLAB mit dem FALCON.m Optimalsteuerungs-Werkzeug gelöst. Es wurde als Teil
dieser Arbeit entwickelt und ermöglicht das Lösen von hoch-fidelen und sehr großen
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Optimalsteuerungsproblemen. Dies wird durch einen neue Werkzeugkette zur Ablei-
tungsgeneration bewerkstelligt. Des Weiteren werden die diskreten Steuerungen als
benutzerfreundliche Erweiterung in das FALCON.m Werkzeug integriert. Die vorge-
stellten Methoden und Werkzeuge werden auf eine zeitminimale Rennstreckenopti-
mierung unter Berücksichtigung der Gangschaltung angewendet. Zusätzlich werden
Sprit minimale Anflüge mit Optimierung der Landeklappenpositionen gelöst.
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VAPP Aircraft final approach speed, landing speed. [m/s]

VCAS,max Aircraft maximum calibrated air speed. [m/s]

VCAS Aircraft calibrated air speed. [m/s]

VHW Speed of aircraft head wind. [m/s]

VLS Aircraft minimal selectable speed. [m/s]

VW,Pr Wind speed in the Prandl layer. [m/s]

VW,g Geostrophic wind speed in high altitudes. [m/s]

VW Wind speed at aircraft altitude.

WMTOW Maximum takeoff weight [N ]

αW,0 Angle of the wind rotation in the Ekman layer. [rad]

αmax Aircraft maximum angle of attack. [rad]

α Aircraft angle of attack. [rad]

Ā Index of the rotated aerodynamic reference frame
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q̄ Dynamic pressure. [kg/(m · s2)]

χGK Aircraft kinematic flight path angle [rad]

χW Wind course angle. [−]

δT Thrust lever position. [−]

δHL Aircraft high lift setting. [−]

δLG Aircraft landing gear setting. [−]

δSB Aircraft speed brake setting. [−]

δT,CMD Thrust lever command. [−]

V̇ G
K Time derivative of the aircraft kinematic speed. [m/s]

V̇A Time derivative of aircraft aerodynamic speed. [m/s2]

V̇CAS,nm Aircraft calibrated air speed change w.r.t. nautical mile distance traveled
(Speed change is given in knots). [kts/nm]

V̇CAS Time derivative of aircraft calibrated air speed. [m/s2]

χ̇GK Time derivative of the aircraft kinematic course angle. [rad/s]

δ̇T Time derivative of thrust lever position. [1/s]

γ̇GK Time derivative of the aircraft kinematic climbing angle. [rad/s]

λ̇G Time derivative of aircraft longitude position. [rad/s]

ḣG Time derivative of aircraft altitude above World Geodetic System 1984 ellipsoid.
[m/s]

u̇GA x component of aerodynamic acceleration. [m/s2]

u̇GK x component of kinematic acceleration. [m/s2]

v̇GA y component of aerodynamic acceleration. [m/s2]

v̇GK y component of kinematic acceleration. [m/s2]

ẇGA z component of aerodynamic acceleration. [m/s2]

ẇGK z component of kinematic acceleration. [m/s2]

ηT Air temperature ratio. [−]

ηρ Air density ratio. [−]

ηp Air pressure ratio. [−]

(
~ωEK

)

K
Rotation of the kinematic frame w.r.t. the earth centered earth fixed frame.

Coordinates are given in the kinematic frame. [rad/s]
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(
~ωEO

)

K
Rotation of the north east down frame w.r.t. the earth centered earth fixed

frame. Coordinates are given in the kinematic frame. [rad/s]

(
~ωEO

)

O
Rotation of the north east down frame w.r.t. the earth centered earth fixed

frame. Coordinates are given in the north east down frame. [rad/s]

(
~ωIE

)

E
Rotation of the earth centered earth fixed frame w.r.t. the earth centered inertial

frame with coordinates given in the earth centered earth fixed frame [rad/s]

(
~ωOK

)

K
Rotation of the kinematic frame w.r.t. the north east down frame. Coordinates

are given in the kinematic frame. [rad/s]

(

~̇ωIE
)E

E
Time derivative of rotation of the earth centered fixed frame w.r.t. the earth

centered inertial frame with coordinates given in the earth centered earth fixed
frame [rad/s2]

(

~FG
A

)

A
Aircraft aerodynamic force vector acting in the center of gravity given in the

aerodynamic frame. [N ]

(

~FG
A

)

K
Aircraft aerodynamic force vector acting in the center of gravity given in the

kinematic frame. [N ]

(

~FG
G

)

K
Aircraft gravitational force vector acting in the center of gravity given in the

kinematic frame. [N ]

(

~FG
G

)

O
Aircraft gravitational force vector acting in the center of gravity given in the

north east down frame. [N ]

(

~FG
P

)

A
Aircraft thrust force vector acting in the center of gravity given in the aerody-

namic frame. [N ]

(

~FG
P

)

K
Aircraft thrust force vector acting in the center of gravity given in the kine-

matic frame. [N ]

(

~FG
T

)

K
Aircraft total force vector acting in the center of gravity given in the kinematic

frame. [N ]

(
~rG
)

E
Aircraft center of gravity position vector in the earth centered earth fixed frame

[m]

(
~vGA
)E

O
Aerodynamic speed vector w.r.t. the earth centered earth fixed frame. Coordi-

nates are given in north east down frame. [m/s]

(
~vGK
)E

E
Kinematic speed vector w.r.t. the earth centered earth fixed frame. Coordinates

are given in the earth centered earth fixed frame. [m/s]

(
~vGK
)E

K
Kinematic speed vector w.r.t. the earth centered earth fixed frame. Coordinates

are given in the kinematic frame. [m/s]
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(
~vGK
)E

O
Kinematic speed vector w.r.t. the earth centered earth fixed frame. Coordinates

are given in the north east down frame. [m/s]

(
~vGK
)I

E
Kinematic speed vector w.r.t. the earth centered inertial frame. Coordinates are

given in the earth centered earth fixed frame. [m/s]

(
~vGW
)E

O
Wind speed vector w.r.t. the earth centered earth fixed frame. Coordinates are

given in north east down frame. [m/s]

(

~̇rGK

)I

E
Time derivative of aircraft center of gravity position vector (kinematic) w.r.t.

the earth centered inertial frame with coordinates given in the earth centered
earth fixed frame [m/s]

(

~̇vGA

)EE

O
Time derivative of the aerodynamic speed vector (acceleration). The speed

and acceleration are given w.r.t. the earth centered earth fixed frame. Coordinates
are given in the north east down frame. [m/s2]

(

~̇vGK

)EE

E
Time derivative of the kinematic speed vector (acceleration). The speed and

acceleration are given w.r.t. the earth centered earth fixed frame. Coordinates are
given in the earth centered earth fixed frame [m/s2]

(

~̇vGK

)EE

K
Time derivative of the kinematic speed vector (acceleration). The speed and

acceleration are given w.r.t. the earth centered earth fixed frame. Coordinates are
given in the kinematic frame. [m/s2]

(

~̇vGK

)EE

O
Time derivative of the kinematic speed vector (acceleration). The speed and

acceleration are given w.r.t. the earth centered earth fixed frame. Coordinates are
given in the north east down frame. [m/s2]

(

~̇vGK

)EK

K
Time derivative of the kinematic speed vector (acceleration). The speed is

given w.r.t. the earth centered earth fixed frame. The acceleration is given w.r.t.
the kinematic frame. The coordinates are given in the kinematic frame. [m/s2]

(

~̇vGK

)EO

O
Time derivative of the kinematic speed vector (acceleration). The speed is

given w.r.t. the earth centered earth fixed frame. The acceleration is given w.r.t.
the north east down frame. The coordinates are given in the north east down
frame. [m/s2]

(

~̇vGK

)II

E
Time derivative of kinematic speed vector (acceleration). The speed and accel-

eration are given w.r.t. the earth centered inertial frame. Coordinates are given in
the earth centered earth fixed frame [m/s2]

(

~̇vGK

)II

K
Time derivative of the kinematic speed vector (acceleration). The speed and

acceleration are given w.r.t. the earth centered inertial frame. Coordinates are
given in the kinematic frame. [m/s2]
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(

~̇vGW

)EE

O
Time derivative of the wind speed vector (acceleration). The speed and ac-

celeration are given w.r.t. the earth centered earth fixed frame. Coordinates are
given in the north east down frame. [m/s2]

γGK Aircraft kinematic climbing angle [rad]

γW Wind rotation angle for the rotation matrix. [rad]

κK Kármán constant. [−]

κ Adiabatic exponent. [−]

λG Aircraft longitude position [rad]

(
XG
T

)

K
Aircraft total force x component acting in the center of gravity given in the

kinematic frame. [N ]

(
Y G
T

)

K
Aircraft total force y component acting in the center of gravity given in the

kinematic frame. [N ]

(
ZG
T

)

K
Aircraft total force z component acting in the center of gravity given in the

kinematic frame. [N ]

µA Aerodynamic bank angle. [rad]

µK Kinematic bank angle. [rad]

φG Aircraft latitude position [rad]

ρs Air density at sea level. [kg/m3]

ρ Air density at aircraft altitude. [kg/m3]

~ωIE Rotation of the earth centered earth fixed frame w.r.t. the earth centered inertial
frame [rad/s]

~fx Aircraft model state derivative function

~fy Aircraft model output function

~u Aircraft control vector

~vBADA Aircraft parameter vector

~x Aircraft state vector

~y Aircraft output vector

a0 Speed of sound at sea level. [m/s]

a Speed of sound. [m/s]

a World Geodetic System 1984 semi-major axis [m]

b World Geodetic System 1984 semi-minor axis [m]
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e World Geodetic System 1984 eccentricity [−]

fflow Fuel flow [kg/s]

f Coriolis parameter. [1/s]

f World Geodetic System 1984 flattening [−]

g Gravitational acceleration [m/s2]

hG Aircraft altitude above World Geodetic System 1984 ellipsoid [m]

hE Ekman layer height. [m]

hP Height of the Prandtl layer. [m]

hGL Altitude above ground. [m]

lN World Geodetic System 1984 distance of position from the earth’s rotational axis [m]

m Aircraft mass [kg]

nz Aircraft vertical load factor. [−]

nz,Margin Aircraft load factor margin. [−]

n Polytropic exponent. [−]

ps Air pressure at sea level. [Pa]

p Air pressure at aircraft altitude. [Pa]

rE Earth radius. [m]

trx Intermediate value of translation equations of motion x value

try Intermediate value of translation equations of motion y value

trz Intermediate value of translation equations of motion z value

t Time. [s]

uGA x component of aerodynamic speed. [m/s]

uGK x component of kinematic speed. [m/s]

uGW x component of wind speed. [m/s]

u∗ Shear velocity. [m/s]

vGA y component of aerodynamic speed. [m/s]

vGK y component of kinematic speed. [m/s]

vGW y component of wind speed. [m/s]

wGA z component of aerodynamic speed. [m/s]
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wGK z component of kinematic speed. [m/s]

wGW z component of wind speed. [m/s]

xG x position in north east down frame. [m]

xA x-Axis of the aerodynamic reference frame

xE x-Axis of the earth centered earth fixed reference frame

xI x-Axis of the earth centered inertial reference frame

xK x-Axis of the kinematic reference frame

xO x-Axis of the north east down reference frame

yG y position in north east down frame. [m]

yA y-Axis of the aerodynamic reference frame

yE y-Axis of the earth centered earth fixed reference frame

yI y-Axis of the earth centered inertial reference frame

yK y-Axis of the kinematic reference frame

yO y-Axis of the north east down reference frame

zG z position in north east down frame. [m]

zA z-Axis of the aerodynamic reference frame

zE z-Axis of the earth centered earth fixed reference frame

zI z-Axis of the earth centered inertial reference frame

zK z-Axis of the kinematic reference frame

zO z-Axis of the north east down reference frame

V Velocity [m/s]

χA Aerodynamic course angle [rad]

χ Course angle [rad]

φ̇G Time derivative of aircraft latitude position. [rad/s]

γA Aerodynamic climbing angle [rad]

γ Climb angle [rad]

µ Bank angle [rad]

µ Bank angle [rad]

~x Aircraft position [m]

ny Lateral load factor [−]

nz Vertical load factor [−]
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Splines

Splines

B B-Spline control point or spline function

L Index indication spline for left border of race track

N B-Spline basis function

R Index indication spline for right border of race track

σ Race track width

~η B-Spline position

~η Spline center position

a Spline coefficient

b Spline coefficient

c Spline coefficient

d B-Spline distance

d Spline coefficient

i B-Spline control point iterate

j Spline break iteration parameter

k B-Spline order iterate

n B-Spline number of control points (minus 1)

r B-Spline knot vector

s B-Spline parameter

s Cubic spline parameter

v B-Spline speed

x B-Spline x position

y B-Spline y position

z B-Spline z position

Bi B-Spline control point

ns Number of break point of cubic spline

xs Spline center x position

ys Spline center y position
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Chapter 1

Introduction

In this thesis, a method that can solve large scale optimal control problems with contin-
uous and discrete controls is further developed and applied. Special focus is on finding
the optimal switching sequence for the discrete controls without prior knowledge of
the structure and the elimination of high frequent switches.

An Optimal Control Problem (OCP) aims at determining the optimal state and con-
trol history for a dynamic system in order to minimize a predefined cost function. At
the same time, boundary conditions and other constraints must be fulfilled. Its trajec-
tories are compliant with the system dynamics and exploit its full potential w.r.t. the
cost function. Thus, optimal control theory enables a reduction of operating cost or
performance improvement of existing systems [1]. Many real world problems are for-
mulated as OCP. For instance, the optimal control theory shows that the fuel minimal
trajectory of an aircraft to an airport is a continuous descent approach. Space appli-
cations are another example as minor changes in weight have a huge impact on the
overall mission. For instance, optimal control methods have been used to rotate the
International Space Station (ISS) with a zero-propellant maneuver [2, 3]. Additionally,
space missions using gravity assists are planned with optimal control methods [4].

Other applications are found in chemical engineering or production robots. Opti-
mal control methods are also widely used in competitive applications. For instance,
they are applied to find the time minimal trajectory for a car or plane through a given
race course [5, 6].

1.1 Motivation

Optimal control methods can maximize the performance of a given system. How-
ever, the applicability of the solution is determined by the quality of the mathematical
model that describes the underlying dynamic system. This includes highly non-linear
dynamic models, which can implement large experimental aerodynamic data sets, as
well as discrete control inputs. In the classic optimal control theory, only continuous
controls entering the dynamic system are considered. Examples are the steering wheel
rotation in a car or the thrust lever position in an aircraft. Additionally, many appli-
cations have discrete controls, which can only take values from a finite set. Among
others, this includes the selectable gears in a car, flaps and landing gear on a civil air-
craft, or valves in a process plant. A change in the discrete control introduces a discrete
change in the behavior of the dynamic model.
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1.1 Motivation

For a realistic optimization, these discrete inputs have to be considered. A car on a
race track does not achieve the minimal lap time if the gear is fixed to a single selection.
Since the OCP contains integer decisions, the problems are called Mixed-Integer Opti-
mal Control Problem (MIOCP). Control values that are not part of the discrete set must
not appear in the solution. For instance, a fractional car gear selection has no physi-
cal meaning. Apart from automotive applications [7, 6, 8], MIOCP have been applied
to water treatment plants [9], in biology [10, 11], for distillation processes [12, 13, 14],
and for Air Traffic Management (ATM) operations [15]. In an aircraft, discrete flap set-
tings are used to calculate optimal approach trajectories [16, 17], or to extent the flight
envelope of remotely piloted vehicles [18].

Apart from realistic dynamic models, the constraints that have to be fulfilled shape
the optimal solution significantly. Constraints are required as they ensure that the ob-
tained solution complies with safety specifications, structural limits, or other regula-
tions. Furthermore, they may reduce mechanical wear and thus increase the life-span
of a product. The constraints are dependent on the system’s state and controls. There-
fore, they can depend on a discrete control choice as well. Similarly to the system
dynamics, a switch in a discrete control results in a switch of the discrete control de-
pendent constraint bounds. Alternatively, a constraint may become inactive for certain
discrete conditions. Examples for discrete constraints can be found in the change of
stall and maximum speed with different flap positions on an aircraft [19, 16, 20, 17], or
engine torque and speed limits of a heavy duty truck w.r.t. the gear choice [21].

In order to minimize the cost function, the optimal switching sequence for the dis-
crete control must be determined. Whereas in some cases the optimal switching se-
quence is obvious (e.g. gear selection during straight line acceleration of a car), in
many cases it is not as trivial. For instance, in case the car on a race track enters a turn
it has to decelerate. After the turn, the car should accelerate as fast as possible. The
optimal gear selection depends on the radius of the turn. In an aircraft, the optimal
extraction of the flaps can be calculated during approach. Small unmanned aerial ve-
hicles may use flaps not only for takeoff and landing but also to perform a slow flying
segment within the mission profile.

In general the optimal switching structure for the discrete controls cannot be known
a priori. Therefore, its determination shall be completely subject to the optimization.
At the same time, constraints that depend on the choice of the discrete control have to
be considered. Finally, the number of switches must be limited. For some optimal con-
trol problems, the optimal solution for the discrete control switches an infinite number
of times on an arbitrarily small time scale [22]. Such problems known as ZENO’s phe-
nomenon1 are not desired in real world applications. High frequent switches lead to
increased mechanical wear or are unrealistic for certain applications. Therefore, the
number of switches must be reduced to a reasonable amount.

The aim of this thesis is to further develop the methods that enable the considera-
tion of discrete controls in optimal control problems. They are applied to gear changes
in a car as well as flap and landing gear deployment of an aircraft.

1
Zeno of Elea, Greek philosopher [23]
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1.2 State of the art

In this section, the state of the art regarding OCP and MIOCP is discussed. A special
focus lies on direct optimal control methods. This thesis significantly contributes to the
performance of the Institute of Flight System Dynamics’ FALCON.m optimal control
toolbox. Therefore, automatic derivative generation and optimal control toolboxes are
discussed as well.

1.2.1 Continuous Optimal Control Methods

The OCP defines an optimization problem based on the system dynamics involved.
In addition to the cost function, constraints, and boundary conditions are considered.
Strategies for solving OCPs can be divided into two main categories, namely indirect
and direct methods. In the former case, optimality conditions are derived. These lead
to a two point boundary value problem, which can be solved either analytically or
numerically [24, 25, 26]. However, this approach can become very cumbersome. Espe-
cially for highly nonlinear problems, the conditions of optimality or an analytic solu-
tion may not be found. Therefore, direct methods currently pose the best approach for
realistic applications [27, 28].

In direct methods, the OCP is discretized in time. Thus, the infinite OCP is approx-
imated by a finite parameter optimization problem. At every discretized time step, the
optimal control variables need to be determined. Dependent on the discretization of
the states, the method can be further differentiated. Multiple shooting methods dis-
cretize states at certain points in time called nodes [29, 30, 31] and use simulation to
determine the state history in between. In collocation methods the state is fully dis-
cretized [32]. An optimization variable is introduced for every state at every time step.
Thus, the full discretization enables parallel evaluation in the underlying algorithms.
Due to performance reasons, collocation methods are used in this thesis. However,
similar methods have also been applied to multiple shooting optimal control problems
[16, 33, 21].

The resulting parameter optimization problem is usually referred to as a Non-
Linear Program (NLP) and can be solved with a variety of approaches. Dynamic
programming [8] and genetic algorithms [34] both belong to the non-gradient based
solvers. The latter implements an iterative approach and thus requires a starting point
called the initial guess. However, with increasing problem size, both algorithms suf-
fer from the curse of dimensionality. Gradient based optimization algorithms offer
an alternative. They require the first and sometimes second order derivatives of the
current iteration state to calculate a candidate for the next. Common algorithms are
the Sequential Quadratic Programming (SQP) [31, 35, 36] and the Interior Point (IP)
method [37, 38, 39]. Well known implementations are found with Interior Point OP-
Timizer (IPOPT) [40], Sparse Nonlinear OPTimizer (SNOPT) [41], and We Optimize
Really Huge Problems (WORHP) [42].

1.2.2 Discrete Controls / Mixed Integer Optimal Control

In this thesis, discrete controls are considered in OCPs. Within an OCP there may
exist other state dependent discrete events [6]. These describe changes in the dynamic
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behavior dependent on its state. Examples include contact forces of walking robots
or the landing gears of an aircraft. In chemical reactors, a phase change leads to a
different behavior of the chemical process [43, 44]. Within this thesis, such events are
not considered. The primary focus is on systems where the discrete control influence
enters from the outside.

Discrete Controls

The first MIOCP was solved by Bock [1]. It involved the energy minimal control of
the New York subway, which has different discrete operation modes. As with the
continuous optimal control theory, indirect [1, 45] and direct optimal control strategies
exist. The latter is commonly used to solve these type of problems. Therefore, the
MIOCP is converted to a Mixed-Integer Non-Linear Program (MINLP) by applying
a discretization scheme. Due to the fact that the discrete value enters the dynamics
as a control, it is fully discretized in time. Thus, the resulting optimization problem
contains a large number of discrete variables. Due to their combinatory nature, this
type of problem is extremely hard to solve [46].

Different solution strategies can be applied to MINLP. As before non-gradient based
algorithms such as genetic algorithms [34], or dynamic programming [8] may be used.
Additionally, branch and bound methods are also an option [7, 47, 48]. The main ben-
efit of these algorithms is that they can handle discrete variables well. However, all of
these algorithms suffer from the curse of dimensionality and are thus less suitable for
large scale applications.

Alternatively, gradient based algorithms can be used to solve the MINLP. Due to
the fact that derivatives w.r.t. discrete variables cannot be obtained, the discrete con-
trols need to be reformulated. In [49, 16] the switching structure is fixed and the switch-
ing points are optimized. Alternatively, a time dependent step function can be defined
[16, 17]. In both approaches, the switching sequence is not subject to optimization.

In order to find the optimal switching sequence, [11, 50] relax the discrete control
with a continuous input and use constraints and penalties to ensure discrete control
feasibility. However, this approach has many numerical issues [23]. In the Variable
Time Transformation (VTT) [51, 52] and the control parameter enhancing technique
[53, 54], small time segments are defined, each having a discrete choice associated. The
time segments are scaled using continuous variables. By reducing time segments to
zero, the optimal switching structure can be obtained.

Similar to the VTT, [6, 55, 18, 33, 56, 57] use an Outer Convexification (OC) ap-
proach. All possible discrete choices are evaluated and weighted. The weighting fac-
tors are optimizable and thus the optimal switching structure can be obtained through
optimization.

Discrete Constraints

As mentioned above constraints can be dependent on the discrete control selection.
Either the bounds change or the constraint has to be disabled entirely. As with the
discrete controls, this logical switch must be formulated appropriately for gradient
based optimization algorithms. In the end, all approaches mimic a logical constraint
activation using a continuously differentiable formulation.
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Only few approaches exist that can be used for discrete constraints. In [16] a logical
switch was approximated using the hyperbolic tangent function, but due to large gra-
dient values numerical issues may arise. The most common method used to consider
this type of constraint is by implementing a vanishing constraint. They were first in-
troduced in truss structural optimization [58] and later further developed and adapted
to optimal control [59, 60, 61, 62, 63, 64, 65]. Due to the fact that the default formulation
violates the constraint qualification [60, 66] either a relaxation approach can be used
[18, 21], or the constraint is reformulated entirely [59]. Applications of these vanishing
constraints can be found for instance in automotive applications [21], and aerospace
research [16, 18, 33]. These type of MIOCP is called Mathematical Programm with
Vanishing Constraint (MPVC).

Alternatively, the vanishing constraints can be reformulated as an equality con-
straint [67]. However, the resulting Mathematical Programm with Equilibrium Con-
straints (MPEC) is even harder to solve than the MPVC [59] and thus less applicable.

Switch Limitation And Discrete Control Feasibility

Although the optimal switching sequence shall be subject to optimization, the number
of switches must be reduced to a reasonable amount. Additionally, due to the con-
tinuous reformulation of the discrete controls, the optimal solution may contain non-
discrete selections. Therefore, not only the number of switches but also the discrete
control feasibility (also called integer feasibility) must be enforced.

A limitation of switches and / or integer feasibility can be achieved through ei-
ther constraints or a penalty cost approach. Constraints have been applied by Fisch
[17], who disallows specific sequences of discrete controls using an equality constraint.
However, as stated above, the resulting MPEC is difficult to solve and the approach
does not ensure integer feasibility. Alternatively, a constraint formulation that is only
feasible for the discrete selection may be used [68, 69]. Apart from the disjoint feasi-
ble set, which is introduced in the optimization problem, this approach only ensures
integer feasibility but does not necessarily reduce the number of switches.

Instead of using constraints, penalty cost approaches can be used. The constraint
formulations above can be introduced as penalties in the optimal control problem
[11, 16, 15]. However, these cost approaches normally require some sort of homotopy
approach. A penalty scaling factor is driven to a large value until a certain tolerance
w.r.t. the discrete control feasibility is achieved. This may lead to numerical issues.

In [6], a switching cost penalty approach that uses two adjacent discretization points
is formulated. Switches in the discrete control are penalized. If no switch occurs the
resulting cost is zero. Additionally, this approach generates integer feasibly solutions.
However, this formulation requires that for every discrete choice at every discretiza-
tion time step an additional optimization variable is introduced. Thus, the number of
optimization variables associated with the discrete controls are doubled.

1.2.3 Automatic Differentiation Methods

In this thesis, gradient based optimization algorithms are used. Therefore, the first
and sometimes second order derivatives of the overall OCP have to be passed to the
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optimizer. For efficient gradient calculation, the derivatives of the user supplied func-
tions, namely model dynamics, constraints, and cost functions, are required at some
point. Manual differentiation is tiresome and error prone. Hence, automatic means are
mandatory.

In this thesis, MATLAB is used to solve the OCPs. Therefore, approaches that work
with MATLAB as well as with C/C++ are considered. The latter can be integrated
into MATLAB using MATLAB EXecutable (MEX) files. Finite differences may be used
(forward, backward, central), but they have high computational requirements for rel-
atively low accuracy. Complex step finite differences achieve machine accuracy [70],
but may not be supported in all MATLAB functions .

Automatic Differentiation using Expression Tables (ADEPT) [71] and Automatic
Differentiation by OverLoading in C++ (ADOL-C) [72] are both C++ libraries that
use operator overloading to generate derivatives. Instead of numeric values, class in-
stances are used to evaluate the code. Thus, the derivatives can be traced. ADOL-C
supports the generation of the second order derivatives (Hessian).

In MATLAB, a source code transformation can be carried out using the Symbolic
Math Toolbox [73]. A MATLAB function is evaluated with symbolic variables. The
symbolic representation of the function can be differentiated and written back to code.
The result is an analytic implementation of the derivatives [74]. However, with increas-
ing complexity of the original function, this approach requires long computational
times.

Both, ADigator [75] and ADIMAT [76] implement the operator overloading ap-
proach in MATLAB. Additionally, they create MATLAB files containing the deriva-
tive calculation chain. Thus, they use a hybrid approach of operator overloading and
source code transformation. Both ADigator and ADIMAT require MATLAB features
that are not supported by code generation. Therefore, the execution of the resulting
code cannot be sped up by e.g. compilation.

It was proposed in [77] to split large dynamic systems into smaller subsystems,
which can be differentiated locally. The overall derivatives are joined by the chain
rule in order to obtain the overall derivatives. In [77] the approach is used to reduce
complexity for the manual implementation of analytic derivatives in Simulink.

1.2.4 Optimal Control Toolboxes

The mentioned direct optimal control methods can be automated. As a consequence,
numerous software packages exist helping a user to solve OCPs. Extensive knowledge
of the methods and underlying software architecture is not required. At this point, a
short overview on widely used packages is given.

In MATLAB, which is used in this thesis to solve the OCP, the software packages
DIDO [78] and GPOPS-II [79] are widely used and known. Both offer a flexible problem
formulation and some have unique features. DIDO has the ability to automatically
create initial guesses. GPOPS-II interfaces to the ADigator [75] package in order to
provide automatic derivatives to the solver.

In course of this thesis, an own optimal control toolbox called FALCON.m [80] has
been developed. An own software tool was preferred as a custom implementation al-
lows any arbitrary changes to the software package. FALCON.m is an object oriented
MATLAB toolbox. It implements the collocation method and is able to calculate first
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and second order analytic derivatives of highly generic and modular problem formula-
tions. Many nonlinear optimization algorithms can be interfaced to the software pack-
age (IPOPT [40], SNOPT [41], WORHP [42]) in order to solve the underlying parameter
problem.

1.3 Contribution of this thesis

In this section, the main contributions of this thesis are presented. They extend the cur-
rent state of the art of MIOCP, automatic analytic derivative generation, and optimal
control toolboxes.

Multi Time Switching Cost Approach

A novel switching cost penalty formulation for the OC and VTT approach is presented.
It is especially suitable to generate low frequent switches in the optimal solution. Three
adjacent time discretization points are used implementing a simple assumption. If the
previous and next discretized points have the same choice for the discrete control, the
current shall have the same choice as well. In case no switch occurs, the associated
cost is zero. The formulation removes high frequent switches from the optimal solu-
tions and ensures discrete control feasibility. Additionally, no additional optimization
variables need to be introduced.

Consideration of Multiple Discrete Controls

The classic theory on discrete controls in optimal control problems usually considers
a single discrete control input only. Multiple discrete control inputs are considered by
representing all possible discrete combinations with a single discrete control. However,
in case discrete constraints and switching cost approaches are used, only the participat-
ing discrete controls shall be used. For instance, a switch in one discrete control should
not penalize another discrete control. A mapping method, which allows the consid-
eration of multiple discrete controls is introduced. Discrete constraints and switching
penalties are calculated w.r.t. individual discrete control inputs.

Extension to Vanishing Constraints

Vanishing constraints were originally developed for structural truss optimization. For
better numerical behavior, the formulation is relaxed. This allows for a slight violation
of the physical constraints, which can be mitigated by reducing the relaxation param-
eter. An adaptation of the relaxation approach, which is suitable for the OC approach
is given.

Optimal Control Toolbox FALCON.m

A MATLAB optimal control toolbox aiming at large scale non-linear problems is de-
veloped. The predecessor and the OCP formulation have been developed within the
optimization group. The main contribution is the new development of the derivative

7
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generation and evaluation toolchain. It allows solving high-fidelity large scale optimal
control problems. The individual main contributions of the author are explained in the
following.

FALCON.m Subsystem Derivative Builder: First and Second Order Auto-
matic Analytic Derivatives for High-Fidelity Dynamic Models

The idea of [77] to create subsystem derivatives is applied to MATLAB implemen-
tations of dynamic models, constraints, and cost functions. A tool which automati-
cally calculates the subsystems’ first and second order derivatives using the Symbolic
Math Toolbox is developed. Subsystems can be defined using MATLAB functions,
matlab.System classes, or anonymous functions. A simple modeling language that
enables a user friendly definition of the evaluation chain of subsystems and their inter-
connection is developed. The information is used to fully automate the derivative gen-
eration process and the chain rule application in order to generate the overall deriva-
tives. Extensive consistency checks ensure feasibility.

Outputs of the software are (with intermediate steps) a differentiated MATLAB file,
a C++ coded version of it, and a MATLAB MEX file for multiple time evaluations
(multi-threading capable). To the best of the author’s knowledge it is the first auto-
mated tool that is capable of creating codable analytic derivatives comfortably from
MATLAB. The tool is integrated into FALCON.m and has been successfully applied to
high-fidelity models (e.g. 6 degree of freedom aircraft model with actuator dynamics
[81]). The underlying algorithms are generic and can thus be used in other applications
as well.

FALCON.m Direct Sparsity Sorting: Fast and Memory Efficient Implemen-
tation of Large Scale Jacobian and Hessian of Optimal Control Problems

The derivatives of the user function have to be applied to the derivatives of the overall
OCP. It is required to write the derivative data of the user supplied functions to the
correct position in the problem derivative matrices. For large scale optimal control
problems, dense matrices cannot be used as the memory consumption is too high.

A method is developed and integrated into FALCON.m that writes local dense
derivatives supplied by the user functions into the correct position of the MATLAB
sparse matrix representation. Thus, the whole problem derivative calculation is re-
duced to a linear mapping between two array elements. This enables a memory effi-
cient and high evaluation speed of large problem formulations. The method has been
successfully used to solve problems with more than 600,000 optimization variables and
500,000 constraints in MATLAB on a consumer PC.

FALCON.m Discrete Control Toolbox Extension

The discrete control methods applied in this thesis are implemented in an user friendly
discrete control extension for the FALCON.m optimal control toolbox. It allows for sim-
ple definition of multiple discrete controls, discrete constraints using vanishing con-
strains, and for automated solution of the problem.

8
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1.4 Outline of this thesis

In chapter 2, the fundamental theory of optimal control methods is introduced. Op-
timization methods, indirect / direct optimal control methods, and implementation
aspects are discussed. In chapter 3, the consideration of discrete controls in continu-
ous OCPs is discussed. Different reformulation approaches are introduced and the use
of the OC approach is motivated. Vanishing constraints together with relaxation and
reformulation approaches are stated. A novel switching cost approach is introduced.
Finally, an expansion to multiple discrete controls is explained and the two stage solu-
tion approach for MIOCP is motivated.

Chapter 4 introduces the optimal control toolbox FALCON.m. The basic problem
definition and derivative generation from the user side are explained. Additional in-
formation regarding the interface of the user functions as well as the derivative struc-
ture is given. The implementation of the derivative generation toolchain is explained,
followed by the direct sparsity sorting method. The chapter concludes with the dis-
crete control toolbox extension.

After theory and implementation, two applications are presented. In chapter 5 the
minimal lap time of a car model is determined under the consideration of gear changes.
Additionally, the stability of the switching cost approach w.r.t. various parameters is
shown. Aircraft approach trajectories w.r.t. the flap and landing gear deployment are
optimized in chapter 6. Parameter studies are carried out in order to determine the
influence on the switching sequence.

Chapter 7 concludes the thesis by giving an outlook on future research. Additional
information can be found in the appendix.
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Chapter 2

Theory of Continuous Optimal
Control Problems

The optimal control theory describes methods to find a control law or control history
for a dynamic system that minimizes a cost function while at the same time fulfilling
constraints. These can be boundary conditions or path constraints that act throughout
the whole time interval. There exist many approaches for solving these type of prob-
lems. Detailed description can be found in e.g. [24, 25, 26, 82, 83]. In this thesis, gradi-
ent based numerical methods are used to solve OCPs which require the overall prob-
lem to be at least once continuously differentiable. The infinite OCP is transformed
into a parameter optimization problem through discretization in time.

The following chapter aims at giving an overview how continuous OCPs can be
solved. In the first section 2.1, optimization problems are introduced for the uncon-
strained and constrained case. The conditions for optimality are stated. Additionally,
numerical methods are introduced, for the case that the analytic solution cannot be
derived. Section 2.2 introduces the general OCP in its standard form together with
transformation methods into other formulations. To solve these OCPs section 2.3 de-
scribes the calculus of variation approach to obtain the conditions of optimality. It is
argued that for real world applications analytical solutions are practically impossible
to find. Therefore, in section 2.4 direct methods are introduced together with differ-
ent discretization methods. Finally, section 2.5 discusses important implementation
aspects regarding convergence and performance of the gradient based approaches.

This chapter does not claim to discuss OCPs in all mathematical detail but shall
give a brief overview helpful for the further understanding of the thesis. Non-gradient
based algorithms (e.g. genetic algorithms, dynamic programming) are not discussed
as they are not relevant for this thesis. For more detailed information please refer to
the literature cited above.

2.1 Optimization Problems

As stated above, in direct methods the OCP is discretized to create a parameter opti-
mization problem. In simple cases, these problems can be solved analytically. How-
ever, in general, numerical methods are used. After a brief statement of mathemati-
cal preliminaries, this section introduces the unconstrained optimization problem fol-
lowed by the constrained case. Throughout this section it is assumed that the optimiza-

11
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tion problem is sufficiently often continuously differentiable and at least one minimum
exists.

2.1.1 Mathematical Preliminaries

Let J : R
n → R be a scalar-valued function that is sufficiently often continuously

differentiable and ~z = (z1, z2, . . . , zn)
T ∈ R

n a vector. The gradient and Hessian of J at
the point ~z are defined by:

∇J(~z) =






∂J(~z)
∂z1
...

∂J(~z)
∂zn




 , ∇2J(~z) =






∂2J(~z)
∂z1∂z1

. . . ∂2J(~z)
∂z1∂zn

...
. . .

...
∂2J(~z)
∂zn∂z1

. . . ∂2J(~z)
∂zn∂zn




 (2.1)

The level curve of J is defined by

NJ(c) = {~z ∈ R
n|J(~z) = c} (2.2)

and states all points where the condition J(~z) = c is true. The gradient is always
perpendicular to the level curve (see Figure 2.1) [84].

Let ~q : Rn → R
m be a vector-valued function. The Jacobian of ~q by ~z is given by

~q ′(~z) =






∂~q1(~z)
∂z1

. . . ∂~q1(~z)
∂zn

...
. . .

...
∂~qm(~z)
∂z1

. . . ∂~qm(~z)
∂zn




 (2.3)

where ∇~q(~z)T = ~q ′(~z) holds for the case m = 1.

Throughout this chapter, optimal values are denoted by �̂.

2.1.2 Unconstrained Optimization

Let J : Rn → R be a continuously differentiable function. The unconstrained optimiza-
tion problem is given by

min J(~z), ~z ∈ R
n (2.4)

where it is assumed that J is twice continuously differentiable.

Necessary and Sufficient Conditions

At every local minimum ~̂z of J the necessary condition

∇J(~̂z) = 0 (2.5)

must bed fulfilled [83]. All points ~̂z fulfilling (2.5) are called stationary points. The first
order necessary condition does not determine the type of point (minimum, maximum,
or saddle point). If the second order sufficient condition holds at a stationary point,
a local minimum was found. The condition requires the function to have a positive

definite Hessian ∇2J(~̂z) in the stationary point (i.e. eigenvalues are larger than zero).
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Figure 2.1: Level curve of Himmelblau’s function f = (x2 + y− 11)2 + (x+ y2 − 7)2 with
perpendicular gradient (black).

In case the Hessian is positive semi-definite, ~̂z may be a saddle point, a minimum, or a
maximum [83].

Using the necessary and sufficient conditions stationary points and thus minima
are found analytically. However, for many functions, an analytic solution may not be
possible. In the following, numerical unconstrained optimization are discussed.

2.1.3 Numerical Unconstrained Optimization

Numeric optimization algorithms find stationary points / minima iteratively. There-
fore, they require a starting point called the initial guess. The overall idea of the algo-
rithm is as follows [85]:

1. Set a starting point (initial guess) ~zi and set i = 0.

2. If the stopping criteria is fulfilled: STOP!

3. Calculate a ~zi+1 for which the condition J(~zi+1) < J(~zi) holds.

4. Set i := i+ 1 and continue at (2).

The idea of the algorithm is valid not only for the unconstrained but also for the con-
straint case. Within the algorithm, step (3) is obviously very critical for the perfor-
mance. The calculation of the next iteration point can be achieved in various ways. In
this chapter only gradient based algorithms are discussed which use the first and sec-

ond order derivatives of the function J to calculate a descent direction ~d ∈ R
n. How far
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this descent direction is followed is determined by the step size α ∈]0, 1]. One draw-
back of this approach is that only local minima can be found. To which minimum the
algorithm converges is subject to the initial guess provided (see Figure 2.2).
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Figure 2.2: Convergence area of Himmelblau’s function. For different initial guesses the
algorithm converges to different minima.

Other methods such as genetic algorithms use evolutionary strategies to identify
potential search directions. Thus, they have the ability to find the global minimum
(which is never guaranteed) and can cope with non-differentiable problems. However,
ignoring the gradient of the problem requires evaluating many points during optimiza-
tion [86]. Therefore, the curse of dimensionality becomes prominent immediately. This
makes these methods less suitable for problems that may contain tenths of thousands
of optimization variables.

Descent Direction

As stated above, the descent direction in gradient based algorithms is determined us-
ing the first and second order derivatives. Let J : Rn → R be a scalar function of the

vector variable ~z ∈ R
n. The vector ~d ∈ R

n is a descent direction of J at the point ~z if
there exist an α̂ > 0 with

J
(

~z + α · ~d
)

< J (~z) ∀ 0 < α ≤ α̂. (2.6)

The possible descent directions are between ±90◦ from the negative gradient (see Fig-
ure 2.3) which can be reformulated to the sufficient condition

∇J(~z)T ~d < 0 (2.7)

using the law of cosines. However, this condition fails at stationary points since the
gradient is zero. In this case other strategies need to be used which are discussed in
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[85]. In the following, three methods (steepest descent, Newton, Quasi-Newton) are
presented to determine a descent direction.
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Figure 2.3: Possible descent directions for points in Himmelblau’s function. Negative
gradient displayed in black and valid descent directions in orange.

Steepest Descent Method

The negative gradient points in the direction of the steepest descent (see Figure 2.3).
Therefore, it is a valid idea to always follow this direction

~di = −∇J(~zi). (2.8)

The steepest descent approach converges linearly [83, 85]. A better performance can
be achieved using the Newton method.

Newton Method

The Newton method uses second order derivative information to determine a descent
direction. It can be derived from the quadratic approximation (2nd order Taylor)

J(~r) = J(~z) +∇J(~z)T · (~r − ~z) +
1

2
· (~r − ~z)T∇2J(~z) · (~r − ~z) (2.9)

around the current point ~z where ~r is a value near ~z. The minimum can be found by
solving the linear equation

∇J(~z) +∇2J(~z) · (~r − ~z) = 0 (2.10)
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which determines the point where the gradient of the approximation becomes zero.
The vector from the current point ~zi to the minimum of the approximation is the search
direction of the Newton method:

~di = (~ri − ~zi) = −
(
∇2J(~zi)

)
−1∇J(~zi). (2.11)

A descent direction is found if ∇J(~zi) 6= 0 and ∇2J(~zi) is positive definite. If the
exact Hessian is not positive definite the calculated direction may point to the nearest
saddle point or maximum (see Figure 2.4). In these cases the Hessian matrix needs to
be augmented [85].
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Figure 2.4: Newton descent directions for different points in Himmelblau function.

The main benefit of the Newton method is quadratic convergence near the local
minimum [85]. However, the calculation of the second order derivative may be very
complicated and computationally expensive. Additionally, it may not be positive defi-
nite. Therefore, in many cases the Quasi-Newton method is used instead.

Quasi-Newton Method

The idea of the Quasi-Newton method is to approximate the Hessian of the problem
by a matrix Qi

~di = −Q−1
i ∇J(~zi) (2.12)

in a way that it is always positive definite and the calculated search direction is better
than the one obtained by steepest descent. The approximation matrix is updated after
every iteration using the already calculated search direction and gradient information.
The new iterate of the Hessian approximation Qi+1 shall be positive definite as well.
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There exist many different approaches, but most commonly the well known update
by Broyden-Fletcher–Goldfarb-Shanno (BFGS)

Qi+1 = Qi +
~y · ~yT

~yT · ~d
−

(

Qi · ~d
)

·
(

Qi · ~d
)T

~dT ·Qi · ~d
(2.13)

with ~di = ~zi+1 − ~zi (2.14)

~yi = ∇J(~zi+1)−∇J(~zi) (2.15)

is used [87, 88, 89, 90]. The new matrix iterate will be positive definite if the condition

~dTi · ~yi > 0 (2.16)

holds. Usually, the matrix is initialized with an identity of sufficient size which means
that the first search direction will be the steepest descent. Other approximate Hessian
methods are for instance Davidon-Fletcher-Powell (DFP) [91] and Symmetric Ranke-
One (SR1) [92]. The Quasi-Newton method still converges superlinear [85].

Step Size Selection

The steepest descent method approximates the function J(~z) linearly whereas the (Quasi-
) Newton methods use a quadratic approximation. In case of the Newton method
(exact Hessian) the calculated descent direction points to the minimum of the approx-
imation. Therefore, for quadratic functions

J(~z) = ~zTR~z (2.17)

where R is a constant symmetric positive definite matrix this method converges to the
minimum in a single iteration step.

For other non-linear functions this quadratic approximation may be very poor. Es-

pecially at steep gradients, a descent direction vector ~di may result in a new iteration
point further off the minimum than the previous. This may lead to convergence into
some distant minimum and to situations where the algorithm cannot converge or even

diverges. Therefore, after ~di is calculated it has to be determined how far this direction
is followed. This is called the step size selection. Introducing this step is also called
globalization of the optimization algorithm [24]. It shall increase the convergence area
but must not be mistaken with the search of a global minimum.

The step size αi is a scaling factor for the descent direction

~zi+1 = ~zi + αi · ~di, αi ∈]0, 1] (2.18)

where in case of αi = 1 the current descent direction is fully trusted. The aim of the
step size selection algorithm is to find the step size that leads to a significant descent
in the objective function. If a full step αi = 1 along the descent direction achieves this,
it is accepted. In the other case, (2.6) states that the calculated direction must lead to
a descent. Thus, the step size is reduced iteratively until a reduction in the objective
value is found. Since every evaluation of the objective function J(~z) is computationally
costly, an efficient algorithm is required.
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Different step size selection algorithms exist. Among them the Armijo rule is very
popular. Although it is not the best method regarding efficiency [85], it is simple to
understand and implement. Other methods such as the Wolfe-Powell-Rule [93] or the
Goldstein-Rule [94] can be seen as an extension of this algorithm. The Armijo Rule

J(~zi+1) = J(~zi + α~di) ≤ J(~zi) + σ · αi · ∇J(~zi)T · ~di (2.19)

uses a directional derivative of the current point and a constant σ ∈ [0, 1[ in order to
determine if the new point ~zi+1 meets the required descent performance. It states that
the further away the new iterative point ~zi+1 is, the better the descent in the objective
value must be (see Figure 2.5). The required performance is defined by the gradient at
the point ~zi and by σ. For a σ = 0 (2.19) becomes

J(~zi + α~di) ≤ J(~zi) (2.20)

which means that any descent in the objective value is accepted. In case (2.19) is not
fulfilled, the step size αi is updated by a constant factor β ∈ [0, 1]

αi := αi · β (2.21)

and the condition is reevaluated. Thus, the Armijo algorithm has the following steps:

1. Initialize αi = 1

2. If J(~zi+1) = J(~zi + α~di) ≤ J(~zi) + σ · αi · ∇J(~zi)T · ~di is fulfilled: STOP!

3. Set αi := αi · β and continue at (2)
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Figure 2.5: Visualization of the Armijo rule.

The two constants σ and β influence the performance significantly and have to be
chosen with care. [95] and [96] discuss their selection.
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Stopping Criteria

Due to numerical errors and nonlinearities, it is unlikely that a ~zi is found that fulfills
the necessary condition (2.5) exactly. Therefore, an optimality tolerance ǫopt > 0 is
defined. The necessary condition becomes

‖∇J (~zi)‖ ≤ ǫopt. (2.22)

Additionally, a maximum number of iterations imax is defined

i ≥ imax (2.23)

that stops the optimization algorithm if for instance a solution cannot be obtained.

2.1.4 Constrained Optimization

In the constraint case, the standard optimization problem states to

min J(~z), ~z ∈ R
n (2.24)

subject to the constraints

gj(~z) ≤ 0, j = 1, . . . , m, (2.25)

hk(~z) = 0, k = 1, . . . , p. (2.26)

If an inequality constraint gi < 0 is fulfilled it is regarded to be inactive. Thus, the
active inequality constraints are defined by the active set

A(~z) := {j | gj(~z) = 0, 1 ≤ j ≤ m} . (2.27)

In constrained optimization the Lagrange function

L(~z, l0, ~λ, ~µ) = l0J(~z) + ~λ
T
~g(~z) + ~µT~h(~z) = l0J(~z) +

m∑

j=1

λjgj(~z) +

p
∑

k=1

µkhk(~z) (2.28)

is defined, where l0, ~λ, ~µ are multipliers. Solutions to the constraint optimization prob-
lem need to fulfill the first order necessary condition. The second order conditions can
be found e.g. in [85].

First Order Necessary Condition (Fritz-John)

Let ~̂z ∈ R
n be a local minimum to the standard constrained optimization problem

and the functions J,~g,~h be continuously differentiable. Then, multipliers l0 ∈ R, ~λ ∈
R
m, ~µ ∈ R

p exist with (l0, ~λ, ~µ) 6= 0 that fulfill the following Fritz-John conditions [85]:

1. Sign Condition

l0 ≥ 0, λ̂j ≥ 0, j = 1, . . . , m (2.29)
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2. Optimality Condition

∇zL(~̂z, l0, ~λ, ~µ) = l0∇zJ(~̂z) +

m∑

j=1

λ̂j∇zgj(~̂z) +

p
∑

k=1

µ̂k∇zhk(~̂z) = 0 (2.30)

3. Feasibility

gj(~z) ≤ 0, j = 1, . . . , m (2.31)

hk(~z) = 0, k = 1, . . . , p (2.32)

4. Complementary Condition

λ̂jgj(~̂z) = 0, j = 1, . . . , m (2.33)

The following remarks can be drawn

• In case the constraint gj(~̂z) < 0 is inactive the corresponding multiplier λ̂j has to
be equal to zero to fulfill the complementary condition. Alternatively, in case the

constraint gj(~̂z) = 0 is active the multiplier λ̂j is greater than or equal to zero to
fulfill the optimality condition (2.30).

• For the special case l0 = 1 the Fritz-John condition becomes the Karush-Kuhn-
Tucker (KKT) condition.

• In case the Linear Independence Constraint Qualification (LICQ) is fulfilled in a

local minimum (gradients of the active inequality constraints ∇zgj(~̂z), j ∈ A(~̂z)

and the equality constraints ∇z
~h(~̂z) are linearly independent), then the KKT con-

ditions hold (with l0 = 1). Furthermore, in case the LICQ is fulfilled, the KKT

states that the multipliers ~̂λ and ~̂µ fulfill the optimality condition in an unique
way.

• Assume l0 = 1 and LICQ / KKT are true. From the optimality condition the
geometric representation can be derived

−∇zJ(~̂z) =
m∑

j=1

λ̂j∇zgj(~̂z) +

p∑

k=1

µ̂k∇zhk(~̂z) (2.34)

which states that the negative gradient of the objective function at the local mini-

mum ~̂z is a linear combination of the active inequality and the equality constraint
gradients.

For simple cases, the first order necessary conditions can be used to find solution
candidates of the optimization problem in an analytical way. However, for highly non-
linear optimization problems or if the number of variables is very large, finding an
analytical solution becomes difficult or even impossible. Therefore, numerical algo-
rithms are needed that solve these problems iteratively.
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2.1.5 Numerical Constraint Optimization

For the constraint case, the optimization algorithms follow the same logic as in the
unconstrained case. This means that a descent direction and a step size need to be
calculated at every iteration step. In the following, two very common algorithms, the
Sequential Quadratic Programming (SQP) and the Interior Point (IP) method, are pre-
sented.

Sequential Quadratic Programming

In the SQP algorithm the descent direction is obtained by solving a quadratic problem
at every iteration step. The basic SQP algorithm only supports equality constraints.
An expansion for inequality constraints is given at the end of this section. Assume the
equality constraint optimization problem

min J(~z), ~z ∈ R
n (2.35)

hk(~z) = 0, k = 1, . . . , p (2.36)

is given with the Lagrangian

L = J(~z) +

p
∑

k=1

µkhk (~z) . (2.37)

The KKT (l0 = 1) conditions

∇zL
(

~̂z, ~̂µ
)

= ∇zJ
(

~̂z
)

+

p
∑

k=1

µ̂k∇zhk

(

~̂z
)

= 0 (2.38)

~hk

(

~̂z
)

= 0, k = 1, . . . , p (2.39)

are assumed to hold. Both conditions can be expressed by a system of nonlinear equa-
tions

F
(

~̂z, ~̂µ
)

:=




∇zL

(

~̂z, ~̂µ
)

~h
(

~̂z
)



 = 0 (2.40)

that have to be fulfilled as a necessary condition. Applying the Newton method to
(2.40) of the current iteration i results in a linear system of equations

(

∇2
zzL (~zi, ~µi) ∇z

~h (~zi)

∇z
~h (~zi)

T 0

)(
~di
~νi

)

= −
( ∇zL (~zi, ~µi)

~h (~zi)

)

(2.41)

which has to be solved iteratively to obtain the next iteration

~zi+1 = ~zi + ~di, ~µi+1 = ~µi + ~νi (2.42)

of the optimization variables and multipliers. The search directions of the optimization

variable and the multipliers are given by ~di and ~νi respectively.

In general, the exact Hessian ∇2
zzL is not positive definite and may be very difficult

to calculate. Therefore, in most cases the Hessian is approximated using the BFGS
update method (see 2.1.3).
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The next iteration point ~zi+1, ~µi+1 does not necessarily have to be feasible. Addi-
tionally, the convergence area of a minimum is unknown. Therefore, as in the uncon-
strained case, a step size selection algorithm is used (see 2.1.3). Whether a new point
is better than the previous is quantified by the merit function

Mq (~z, η) = J (~z) + η

(
p
∑

k=1

|hk (~z)|q
)1/q

(2.43)

that decreases in case the objective function or the constraint violation is reduced [97].
The norm type is selected by q and the influence of the feasibility term is set by η. The
merit function presented here is just an example. Other suitable formulations can be
used.

As stated above, the quadratic problem is formulated for equality constraints only.
Inequality constraints are taken into account by introducing the active setA as equality
constraints. During optimization the active set may change. Therefore, an update strat-
egy is needed which is not discussed here (see [24]). A popular SQP implementation
is the SNOPT solver [41, 98].

Interior Point Method

The second approach presented is the IP algorithm. In this method, the inequality
constraints ~g ≤ 0 are transformed to equality constraints

gj (~z) + sj = 0, j = 1, . . . , m (2.44)

hk (~z) = 0, k = 1, . . . , p (2.45)

using slack variables sj . The slack variable is penalized using a barrier function

min J (~z)− η
m∑

j=1

log (sj) (2.46)

where the barrier parameter η continuously tends to zero until convergence is achieved.
The problem can be solved using the SQP method described above. Since all inequality
constraints are transformed into equality constraints, the IP approach does not require
an active set strategy.

The barrier function penalizes constraints that are close to the boundary. Due to the
reduction of the barrier parameter η, only inequality constraints that are very close to
zero remain to have a strong effect on the overall objective value. The heuristics used
to reduce the barrier parameter are discussed in for instance [38, 40].

Since the natural logarithm function is not defined for negative numbers, the initial
guess provided must fulfill the inequality constraints. Some algorithms are capable of
manipulating the initial guess to make it feasible. During optimization, the step size α
is bounded by the maximum step size that is still feasible. A popular implementation
of this algorithm is IPOPT [38, 40].
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Optimality and Feasibility Tolerance

As in the unconstrained case, the necessary condition will not be met exactly and has
to be compared to the optimality tolerance:

∣
∣
∣
∣
∣
∇zJ

(

~̂z
)

+

p
∑

k=1

µ̂k∇zhk

(

~̂z
)
∣
∣
∣
∣
∣
≤ ǫopt. (2.47)

Additionally, a feasibility tolerance
∣
∣
∣~hj

∣
∣
∣ ≤ ǫfeas, j = 1, . . . , p (2.48)

is introduced for the equality constraints. Usually, both can be chosen to the similar
values (e.g. ǫopt = ǫfeas = 1 · 10−6).

2.2 Optimal Control Problem

An optimal control problem (OCP) can be regarded as an optimization problem where

~x represents a state trajectory of a dynamic system ~̇x = ~f(~x, ~u) over time. In essence,
the solution of the optimal control problem is the optimal control history that produces
the optimal state trajectory that minimizes a given cost function. Therefore, the optimal
control problem is stated as follows:

Find the optimal state history ~x(t), control history ~u(t), and parameters ~p

~xlb ≤ ~x(t) ≤ ~xub, ~ulb ≤ ~u(t) ≤ ~uub, ~plb ≤ ~p ≤ ~pub (2.49)

as well as initial time t0 and final time tf

t0,lb ≤ t0 ≤ t0,ub, tf,lb ≤ tf ≤ tf,ub (2.50)

that minimize a cost function

J =M (~x0, t0, ~xf , tf , ~p) +

tf∫

t0

L (~x(t), ~u(t), t, ~p) dt (2.51)

subject to the system dynamics

~̇x(t) = ~f (~x(t), ~u(t), t, ~p) , (2.52)

constraints
~glb ≤ ~g(~x(t), ~u(t), t, ~p) ≤ ~gub, (2.53)

and initial and final boundary conditions

~xlb,0 ≤ ~x(t0) ≤ ~xub,0, ~xlb,f ≤ ~x(tf ) ≤ ~xub,f . (2.54)

The cost function displayed in (2.51) is called the Bolza cost function and consists of
two parts. Within the integral, the Lagrange cost function L is integrated over time. If
the cost function is only dependent on the initial or final state of the OCP it is called a
Mayer cost function M .
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2.2.1 System Dynamics

The system dynamics are given by a set of ordinary differential equations

~̇x =








ẋ1
ẋ2
...
ẋnx







=








f1 (~x (t) , ~u (t) , t, ~p)
f2 (~x (t) , ~u (t) , t, ~p)

...
fnx (~x (t) , ~u (t) , t, ~p)







= ~f (~x (t) , ~u (t) , t, ~p) (2.55)

in explicit first order form. States, controls and parameters

~x =








x1
x2
...
xnx







∈ R

nx×1, ~u =








u1
u2
...
unu







∈ R

nu×1, ~p =








p1
p2
...
pnp







∈ R

np×1 (2.56)

are vectors entering the differential equations.

2.2.2 Different Formulations

An OCP may appear in different formulations. The OCP shown at the beginning of
the section is user-friendly since all constraints are formulated as box constraints. In
mathematics, the following formulation is used most commonly [99, 100]

Minimize J =M (~x(t0), ~x(tf )) +

tf∫

t0

L (~x(t), ~u(t), t) dt (2.57)

s.t. ~̇x = f (~x(t), ~u(t), t) (2.58)

~ψ (~x(t0), ~x(tf )) = 0 (2.59)

~g (~x(t), ~u(t), t) ≤ 0 (2.60)

~h (~x(t), ~u(t), t) = 0 (2.61)

~u(t) ∈ U, t ∈ [t0, tf ] (2.62)

where U is the control range and ~ψ the boundary state condition for the initial and

final state. The constraints are divided into equality ~h and inequality constraints ~g. In
the following, transformations are stated to show that the different variations of the
optimal control problem can be transformed back to the standard case.

Transformation of box constraints

All constraints are formulated as equality or inequality constraints. Box constraints

~xlb ≤ ~x ≤ ~xub → ~x− ~xub ≤ 0, ~xlb − ~x ≤ 0 (2.63)

can be converted to inequality constraints which are less or equal to zero.
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Transformation of Lagrange cost to Mayer cost

Any Lagrange cost function

JL =

tf∫

t0

L (~x(t), ~u(t), t) dt (2.64)

can be converted to a Mayer cost function by introducing an additional ”Lagrange”
state

ẋL(t) = L (~x(t), ~u(t), t) , xL(t0) = xL,0 (2.65)

which is integrated alongside the dynamics [99]. In return, Mayer costs can be con-
verted into Lagrange cost functions

LM =
d

dt
M (~x0, t0, ~xf , tf) (2.66)

by differentiating with respect to time.

Transformation of free end time to fixed end time

If the dynamic system is not dependent on time explicitly, it is called autonomous.
However, every non-autonomous dynamic system can be easily converted to an au-
tonomous one by introducing the time

ẋt = 1 (2.67)

as an additional state [99]. Furthermore, the whole integration can be transformed to
normalized time

τ =
t− t0
tf − t0

(2.68)

which removes the initial and final time

J =M (~x0, t0, ~xf , tf) +

1∫

0

(tf − t0) · L (~x(τ), ~u(τ ), τ · (tf − t0) + t0) dτ (2.69)

from the integral. This transformation is used in approaches that solve optimal control
problems numerically. Since the integration time is divided by the duration to normal-
ize it, the Lagrangian and model dynamics need to be scaled by the duration:

~̇x (τ) = (tf − t0) · ~f (~x(τ ), ~u(τ), τ · (tf − t0) + t0) . (2.70)

Transformation of inner point conditions

Optimal control problems usually have state conditions that happen within the trajec-
tory at some time ts ∈ ]t0, tf [. To account for these inner state conditions, the OCP is
split into two integrations with a new boundary condition

~ψs (~x(ts), ts) = 0 (2.71)

in between [99].
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2.3 Indirect Methods

2.3 Indirect Methods

Using indirect methods, it is possible to find the analytic solution to an OCP. However,
for realistic and nonlinear problems an analytic solution becomes extremely hard to
obtain. Therefore, these methods are not used in this thesis and thus only described
briefly.

2.3.1 Calculus of Variations

The determination of the analytic solution of optimal control problems has its origins
in the calculus of variations. The Brachistochrone problem, posed by BERNOULLI, can
be regarded as the first variation problem ever discussed. It poses the question how a
curve that carries a point mass frictionless in minimal time from one point to another
with gravity would look like.

W.r.t. optimal control, the calculus of variations can be regarded as the determina-
tion of the state trajectory of a dynamic system that minimizes a certain performance
measure. However, the inclusion of controls is done below.

In the calculus of variations a function ~x(t) shall be determined that minimizes a
functional

J (~x) :=

tf∫

t0

L
(

t, ~x(t), ~̇x(t)
)

dt (2.72)

subject to initial and final boundary conditions

~x(t0) = ~x0, ~x(tf) = ~xf . (2.73)

Similar to the derivative of a function w.r.t. its argument, the variation represents a
linear approximation of the functional J w.r.t. its function ~x(t). In the extrema the
variation must vanish. This main necessary condition from the calculus of variations
is the Euler-Lagrange Function (derived e.g. in [25] chapter 4)

∂L

∂~x
(~̂x(t),

˙̂
~x(t), t)− d

dt

[
∂L

∂~̇x
(~̂x(t),

˙̂
~x(t), t)

]

= 0, (2.74)

which has to be fulfilled by the optimal function ~̂x(t) throughout the time interval
t ∈ [t0, tf ] regardless of the boundary conditions. Using the necessary condition, the
problem is converted into a two point boundary value problem. This can be solved
either analytically or numerically.

2.3.2 Calculus of Variations and Optimal Control

In the following, the calculus of variations is applied to the standard optimal control
problem in (2.57). For simplicity, no mathematical derivation is made and only the
results are presented for optimal control problems without state constraints. A detailed
explanation can be found in [26, 25].
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The augmented functional results in

JC =M (~x0, t0, ~xf , tf) + ~νT ~ψ (~x0, t0, ~xf , tf)

+

tf∫

t0

[

L (~x(t), ~u(t), t) + ~λ
T
(t)
[

~f (~x(t), ~u(t), t)− ~̇x
]]

dt (2.75)

where the boundary conditions and the system dynamics are introduced as adjoint

terms with multipliers ~λ(t) and ~ν. Since ~λ(t) is now a function over time, it is named
co-state. Applying the variational approach gives the following necessary conditions
[101]:

• state equation
˙̂
~x = ~f

(

~̂x(t), ~̂u(t), t
)

(2.76)

• co-state equation
˙̂
~λT = −∂L

∂~̂x
− ~̂λT

∂ ~f

∂~̂x
= −∂H

~̂x
(2.77)

• stationary condition

0 =
∂L

∂~̂u
+ ~̂λT

∂ ~f

∂~̂u
=
∂H

~̂u
(2.78)

• boundary conditions

~̂λ(̂tf)
T =

∂M

∂~̂x(̂tf)
+ ~̂νT

∂ ~ψ

∂~̂x(̂tf)
(2.79)

~̂λ(̂t0)
T =

∂M

∂~̂x(̂t0)
+ ~̂νT

∂ ~ψ

∂~̂x(̂t0)
(2.80)

0 =
∂M

∂t̂f
+ ~̂νT

∂ ~ψ

∂t̂f
+H (̂tf) (2.81)

0 =
∂M

∂t̂0
+ ~̂νT

∂ ~ψ

∂t̂0
+H (̂t0) (2.82)

where H is called the Hamiltonian

H = L+ ~λ
T · ~f. (2.83)

The general solution strategy is the following:

1. Evaluate the necessary conditions for optimality.

2. Solve (2.78) for ~u(~λ, ~x) and replace it in the dynamic model and the co-state equa-
tion (2.77).

3. Solve the two point boundary value problem to obtain ~̂x(t) and ~̂λ(t).
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2.3.3 Equality and Inequality Constraints

In the previous section, the optimal control problem has been solved for the uncon-
strained case. However, in realistic applications limitations arise that can be translated
to state, control, or mixed constraints.

In general, equality constraints can be introduced as adjoint terms in the Hamil-
tonian. However, inequality constraints must only be taken into consideration if the
constraint is active. If a bound is reached the optimality conditions change. Thus, the
two point boundary value problem is transformed into multi-point boundary value
problem.

The structure where inequality constraints are active is unknown. The number of
active constraints and their locations need to be known a priori. Therefore, these prob-
lem types are extremely hard to handle [24]. Additionally, it is generally not possible
to solve the problem unconstrained and to saturate the controls and states once the
bounds are reached [25].

State-only inequality constraints are difficult to handle since it is unclear how the
state constraint influences the optimal control history. To take these constraints into ac-
count [101] suggests a differentiation in time which generates state derivatives. These
are replaced by the system dynamics. The process is repeated until a control depen-
dency is found.

In this thesis, the switching structure and switching times of discrete controls and
their constraints are subject to the optimization. Therefore, the fact that for indirect
methods the structure needs to be known in advance stands in contradiction to the
aim of this thesis.

Overall, it can be seen that for real world applications these conditions become
highly nonlinear with an unknown structure in the inequality constraints. In general,
such problems can only be solved using numerical algorithms. Therefore, in the course
of this thesis, indirect methods are omitted in favor of direct methods.

2.4 Direct Methods

In the indirect methods, the optimality conditions for the OCP were formulated and
the solution strategy for the two-point boundary value problem was introduced. If the
solution cannot be derived analytically, numerical methods have to be used to solve the
boundary problem. Therefore, the indirect process is usually described by ”optimize
then discretize”.

Flipping the two stages of the process gives the direct methods ”discretized then
optimize”. In [24] the process is defined as:

1. Convert the infinite optimal control problem into an ordinary optimization prob-
lem (Discretization)

2. Solve the resulting parameter optimization problem with a NLP solver (Opti-
mize)

3. Assess the accuracy of the obtained solution and repeat the process if necessary

To achieve the discretization different transcription methods can be used which are
discussed in this section.
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2.4.1 General Aspects

The time interval t ∈ [t0, tf ] is divided into nh intervals where

t0 ≤ t1 ≤ t2 ≤ ti ≤ · · · ≤ tnh
= tf , i = 0, . . . , nh (2.84)

hi = ti+1 − ti (2.85)

define the discretized time points ti and step sizes hi of the grid. In the optimal control
theory using direct methods, the problem’s solution of states ~x(t) and controls ~u(t)
is given at the discretized points. Intermediate values are calculated by applying an
interpolation scheme. At every time step of (2.84) a discretized control is introduced
as an optimization variable. Dependent on the discretization method the number of
introduced state optimization variables varies. They are either discretized fully on the
time grid (2.84), or only at specific points of grid. The discretized states and controls
make up the optimization variable vector

~Z = [t0, tf , ~x0, . . . , ~xnh
, ~u0, ~u1, . . . , ~unh

]T (2.86)

where the initial and final time are introduced as additional variables in case they are
optimizable. Every optimization variable has a lower and upper bound

~Z lb ≤ ~Z ≤ ~Zub. (2.87)

It is important to notice that ~Z is a vector containing all discretized variables. The op-
timizer used in the OCP does not have any information about their physical meaning.

The interpretation of ~Z and the evaluation of the model dynamics, constraints, and cost
functions are subject to the optimal control software interfacing with the optimizer.

Constraints

Constraints in an optimal control problem can appear in two locations. Either in the

optimization vector ~Z described above, or in another vector called the constrained

vector ~F .

Box constraints of optimization variables are directly considered in the lower and

upper bound of the ~Z vector (2.87). All controls on the time grid (2.84) are intro-

duced as optimization variables. Therefore, control bounds are considered by ~Z lb and
~Zub. Since the initial state is always introduced as an optimization variable, the initial

boundary condition is usually considered in the ~Z bounds as well. The same holds for
other optimization parameter (e.g. final time).

All other constraints that are either dependent on the right hand side of the dynam-
ics or combine multiple optimization variables must be considered in the constraint

vector ~F . Path constraints act along the whole time interval t ∈ [t0, tf ] but are only
evaluated w.r.t. a single point in time ti on the time discretization grid (2.84). The
bounds of the path constraints are constant

~glb ≤ ~gi(~xi, ~ui, ti, ~p) ≤ ~gub, i = 0, . . . , nh. (2.88)

Dependent on the discretization, the final state may not appear in the optimization

vector. The consideration of the final boundary condition in the ~Z or ~F is dependent on
the discretization scheme used. Additionally, the transcription scheme used specifies
whether the feasibility w.r.t. the system dynamics is ensured through simulation or by
introducing additional equality constraints called defects in the constraint vector.
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Normalized Time

As discussed in section 2.2.2, the time in the optimal control problem can be normal-
ized. This transformation is used in direct methods as well. Thus, the discretization is
given in normalized time

0 = τ 0 ≤ τ 1 ≤ τ 2 ≤ τ i ≤ · · · ≤ τnh
= 1, τ i =

ti − t0
tf − t0

, i = 0, . . . , nh (2.89)

hτ ,i =
ti+1 − ti
tf − t0

. (2.90)

This formulation has two main benefits:

• The initial and final times are removed from the integration limits. As discussed
above (see section 2.2.2), the model dynamics are scaled with the duration of
the real time integral. Thus, derivatives w.r.t. the initial and final times can be
formulated more easily.

• Due to the normalization, the normalized time grid τ i and the normalized step
size hτ ,i are constant and do not change in case a time parameter is optimizable.
Thus, the algorithm becomes easier to implement and more stable [24].

Multiple Phases

The time interval t ∈ [t0, tf ] together with the boundary conditions and constraints
define a so-called phase in an optimal control problem. In case of interior point condi-
tions

ts ∈]t0, tf [ (2.91)

such as waypoints, it is suggested in section 2.2.2 to split the integration. Therefore, in
direct optimal control, multiple phases are introduced and the interior point condition
is transformed into an initial or final boundary condition (see Figure 2.6).

t0

~ψ0

ts

~ψs

tf

~ψf

t0

~ψ0

ts

~ψs
~ηs

tf

~ψf

Figure 2.6: Multiple phases in direct optimal control with phase defect.

All phases in an optimal control problem are independent. Therefore, to ensure
continuity in the states, phase defects

~ηs = ~xf,j − ~x0,j+1 = 0, j = 1, . . . , nph − 1 (2.92)

have to be introduced in the ~F vector, where nph is the number of phases in the optimal
control problem. Due to the phase defect, the interior point boundary condition must
be applied to a single phase only.
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Derivatives

The derivatives of the cost function and the constraint vector

∇ZJ =
∂J

∂ ~Z
, ∇Z

~F =
∂ ~F

∂ ~Z
(2.93)

need to be provided to the optimizer. The information is used inside the solver to gen-
erate a suitable descent direction (see 2.1.3). Exact knowledge of the non-zero elements
as well as the analytic derivative of the overall problem derivatives (2.93) is crucial for
a good performance.

Usually, the Hessian of the OCP is approximated using the BFGS rule. However,
some optimization algorithms (e.g IPOPT) allow the use of the Newton method and
require the exact Hessian

∇ZZL = ∇ZZJ +
∑

k

λk · ∇ZZgk (2.94)

of the problem. However, calculating the second derivative may become very compli-
cated.

The calculation of the derivatives of the optimal control toolbox FALCON.m used in
this thesis is explained in chapter 4. Furthermore, a highly efficient algorithm for the
OCP’s Jacobian and Hessian is given.

Toolbox Implementation

One of the main benefits of direct optimal control is the fact that the optimality condi-
tions of the Hamiltonian do not need to be calculated. Evaluating the stationary con-
dition (2.78) and thus deriving a formulation for the optimal control ~u is not required
[24]. The OCP is represented by a parameter optimization problem and therefore its
conditions for optimality are used (see section 2.1). This enables the implementation
of a software kit that solves optimal control problems for any kind of model and con-
straints. The software developed and used in this thesis FALCON.m is presented in
chapter 4.

2.4.2 Single Shooting

The shooting method comes from the idea that the two point boundary value problem
can be expressed by an initial value problem

~x(t) = ~x0 +

tf∫

t0

~f(~x(t), ~u(t), t, ~p)dt (2.95)

where the final condition
~ψf = ~x(tf )− ~xf = 0 (2.96)

is introduced as a constraint. In numerical optimal control, the integration occurs on
the discretized grid

~xi+1 = ~xi + ~Ψ(~xi, ~ui, ti, ti+1, ~p) (2.97)
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and the Final Boundary Condition (FBC) is introduced as a constraints of the last dis-

cretized state. The function ~Ψ represents an arbitrary explicit integration scheme.

The process above is called single shooting. It has its name from the idea that shoot-
ing a cannon can be regarded as a two point boundary value problem. The inclination
angle and the amount of black powder act as the optimization variables. In order to hit
a target at a certain distance with minimal amount of black powder, both parameters
must be optimized.

The single shooting method has some advantages. The dynamics are integrated
and thus automatically fulfilled. Regarding the discretization, only the first state needs
to be discretized. All other states are obtained through integration (see Figure 2.7).
Thus, the number of optimization variables is reduced. For an example discretization
with nh = 9, the optimization vector and constraint vector with path constraint are
given as follows

~Z =
[
tf , ~x

T
0 , ~u

T
0 , ~u

T
1 , ~u

T
2 , ~u

T
3 , ~u

T
4 , ~u

T
5 , ~u

T
6 , ~u

T
7 , ~u

T
8 , ~u

T
9

]T
(2.98)

~F =
[

~gT0 , ~g
T
1 , ~g

T
2 , ~g

T
3 , ~g

T
4 , ~g

T
5 , ~g

T
6 , ~g

T
7 , ~g

T
8 , ~g

T
9 ,
~ψ
T

f

]T

(2.99)

~x ∈ R
3, ~u ∈ R

2, ~g ∈ R
2 (2.100)

where it is assumed that the initial time t0 is fixed.

t

x

x0,lb

x0,ub

xf,lb

xf,ub

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 2.7: Single shooting discretization method.

However, there are also some drawbacks. First of all, the formulation is numerically
less stable. As in the cannon example, a small change in the initial variables may have a
huge influence on the final distance. The same behavior can be seen in OCP if nonlinear
or unstable dynamics are involved. Second of all, the Jacobian of the OCP becomes a
dense lower triangular matrix (see Figure 2.8). This reflects the fact that optimization
variables at the beginning of the time interval have an influence on the final state.
Optimization algorithms are usually optimized for sparse matrices. Therefore, large
single shooting methods with are more difficult to solve.

2.4.3 Multiple Shooting

In order to stabilize the optimization and to increase the sparsity, the multiple shooting
method is introduced [30]. The integration is split into multiple parts. In the optimiza-

tion vector ~Z, a set of initial states are introduced

X̄ = {~̄x0, ~̄xk, . . . } k ⊂ i = 0, 1, . . . , nh − 1 (2.101)
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Figure 2.8: Single shooting sparsity pattern.

that must contain the first state at t0. The initial states are called multiple shooting
nodes and can be chosen at any point in time on the discretization grid. The resulting
integration intervals

~x(t) =

t∫

tk

~f(~x(ξ), ~u(ξ), ξ, ~p)dξ + ~̄xk, t ∈ [tk, tk+1] (2.102)

are called segments.

t

x

x0,lb

x0,ub

xf,lb

xf,ub
η3

η7

~̄x3

~̄x7

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 2.9: Multiple shooting discretization method.

Figure 2.9 shows that the multiple shooting segments are independent and produce
discontinuities in the states history. These multiple shooting defects must vanish in the
optimal solution. Therefore, they are introduced as constraints

~ηk = ~xk − ~̄xk = 0 (2.103)
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in the ~F vector, where ~xk is the final state of the previous multiple shooting segment
and ~̄xk the initial state of the following segment. Thus, the optimization and constraint
vectors have the following structure:

~Z =
[
tf , ~x

T
0 , ~u

T
0 , ~u

T
1 , ~u

T
2 , ~x

T
3 , ~u

T
3 , ~u

T
4 , ~u

T
5 , ~u

T
6 , ~x

T
7 , ~u

T
7 , ~u

T
8 , ~u

T
9

]T
(2.104)

~F =
[

~gT0 , ~g
T
1 , ~g

T
2 , ~η

T
3 , ~g

T
3 , ~g

T
4 , ~g

T
5 , ~g

T
5 , ~η

T
7 , ~g

T
7 , ~g

T
8 , ~g

T
9
~ψ
T

f

]T

(2.105)

~x ∈ R
3, ~u ∈ R

2, ~g ∈ R
2. (2.106)

In the example additional multiple shooting nodes are introduced at the discretization
step k = 3 and k = 7.

While the number of optimization variables increases slightly, the sparsity of the
Jacobian is improved drastically (see Figure 2.10). Since the shooting segments are
independent, their evaluation can be parallelized and thus improve the computational
performance. The distribution of the multiple shooting is subject to the user.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Path Constraint
Multiple Shooting Defect
Final Boundary Condition

~ F

~Z

Figure 2.10: Mulitple shooting sparsity pattern.

2.4.4 Comparison of Single Shooting and Multiple Shooting

It is stated above that the multiple shooting approach is more stable regarding the
convergence than single shooting. Due to the integration, initial states or controls have
an influence on the trajectory at the end. This is described by the so-called sensitivity
which quantifies state trajectory changes w.r.t. a variable deviation. The sensitivity
equations are derived in section 2.5.2.

Figure 2.11 shows the altitude trajectory of an aircraft. The OCP was solved with
single and multiple shooting. Both produced the same result (black line). Additionally,
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Figure 2.11: Single shooting and multiple shooting sensitivity comparison.

the influence of a change in the initial climbing angle on the altitude trajectory is shown
for single shooting (blue) and multiple shooting (red). Since the state is discretized at
several times in the multiple shooting approach, multiple initial climbing angles exist,
each having their own sensitivity influence (fishbone structure). The changes in the
trajectory are shown for a deviation in the initial climbing angle of ±10◦. The following
can be observed:

• In single shooting, the altitude trajectory is very sensitive to the initial value of
the climbing angle. A small change by the solver during the optimization will
produce significant changes in the following trajectory. In the example above,
the influence even changes its sign. If the system in question is unstable, the
sensitivity can diverge [24].

• In multiple shooting, the sensitivity is accumulated over shorter time intervals
producing an almost linear influence. At every state discretization point the sen-
sitivity is reset. Overall, the influence stays in a more compact band around the
optimal solution.

• In shooting methods, the sensitivity results are used to calculate the analytic

derivatives of the constraints in the ~F vector. In single shooting, the Jacobian and
Hessian of the optimal control problems will contain entries with many different
orders of magnitude. Therefore, the overall OCP becomes badly conditioned.
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2.4.5 Integration Methods

In (2.97) the function ~Ψ was introduced as a placeholder for a generic increment func-

tion. The exact solution of ~Ψ in continuous time

~xi+1 = ~xi +

ti+1∫

ti

~f(~x(t), ~u(t), t, ~p)dt (2.107)

≈ ~xi + ~Ψ(~xi, ~ui, ti, ti+1, ~p) (2.108)

is the integral of the model dynamics between the discretized points in time. The
analytic solution is approximated by a numerical integration scheme.

In this thesis, Runge Kutta [102] methods are used for numerical integration. The
integration time step

hi = ti+1 − ti (2.109)

is divided into substeps

δij = ti + hi · cj, 1 ≤ j ≤ m, 0 ≤ c1 ≤ c2 ≤ · · · ≤ cm ≤ 1 (2.110)

at which the dynamic model is evaluated. Thereby, m represents the number of evalu-
ation stages for the integration step. The Runge Kutta integration scheme

~xi+1 = ~xi + hi · ~̇xK = ~xi + hi ·
m∑

j=1

bj · ~Kj (2.111)

~Kj = ~f

(

~xi + hi ·
m∑

l=1

ajl · ~K l, ~u(δij), δij, ~p

)

(2.112)

weights intermediate model evaluations ~Kj with the constant vector elements bj . The

result is a combined state derivative ~̇xK used for the propagation (2.111). Similar to

~̇xK , the states used for the intermediate model evaluations are calculated by weighting

the intermediate evaluations ~K l with ajl. The controls are interpolated using a suitable
interpolation scheme [99].

The coefficients / weights a, b and c are usually represented in the so-called Butcher
tableau

c1 a11 . . . a1m
...

...
. . .

...
cm am1 . . . amm

b1 . . . bm

(2.113)

which can be created for different number of stages m. A scheme has the order q if
the accuracy is of O(hq). In general q the order increases with the number of stages m
[99, 103].

A Runge Kutta method is called explicit if the matrix is strictly lower triangular:

ajl = 0, l ≥ j. (2.114)

In this case, the calculation of the intermediate states for the model evaluation (2.112)
does not require unknown future model evaluations.
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If ajl is not strictly lower triangular, the Runge Kutte method is called implicit.
Implicit schemes have superior numerical stability especially for stiff dynamic systems
[100]. However, when integrating an initial value problem, a system of non-linear
equations has to be solved at every integration step. For this reason, implicit methods
are usually not applied in shooting methods.

In (2.115) to (2.120) commonly used butcher tableaus are shown. (2.115) to (2.117)
are explicit whereas (2.118) to (2.120) are implicit. Implicit methods can be used in
collocation approach described in the following.

Euler Forward
0 0

1
(2.115)

Heun
0 0 0
1 1 0

1/2 1/2
(2.116)

Classic Runge Kutta

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

(2.117)

Euler Backward
1 1

1
(2.118)

Trapezoidal
0 0 0
1 1/2 1/2

1/2 1/2
(2.119)

Hermite-Simpson

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

(2.120)

2.4.6 Collocation

The previous section showed that increasing the number of multiple shooting nodes
stabilizes the OCP. Discretizing the states at every time step yields the collocation
method [104, 105]. The actual integration consists of only one step, which can be refor-
mulated as a constraint

~ηi = ~xi+1 − ~xi − ~Ψ(~xi, ~xi+1, ~ui, ~ui+1, ti, ti+1) = 0 (2.121)

named collocation defect (see Figure 2.12). Here, the generic integration step function
~Ψ includes states and controls of the current time step ti and next time step ti+1. Since
the state is fully discretized, future state values are known in the evaluation. This
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enables the use of implicit integration schemes in the collocation defect. This is one of
the benefits of using collocation instead of shooting.

t

x

x0,lb

x0,ub

xf,lb

xf,ub

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 2.12: Collocation discretization method.

Another benefit is that time step evaluations of the model dynamics and conse-
quently the evaluation of the collocation defects are completely independent. Thus,
the code implementing the collocation method can be highly parallelized. Addition-

ally, the final boundary condition can be taken into account in the ~Z vector.

Due to the full discretization of the state and the collocation defects on the time grid

(2.84), the vectors ~Z and ~F

~Z =
[
tf , ~x

T
0 , ~u

T
0 , ~x

T
1 , ~u

T
1 , ~x

T
2 , ~u

T
2 , ~x

T
3 , ~u

T
3 , . . . , ~x

T
9 , ~u

T
9

]T
(2.122)

~F =
[
~gT0 , ~η

T
0 , ~g

T
1 , ~η

T
1 , ~g

T
2 , ~η

T
2 , ~g

T
3 , ~η

T
3 , . . . , ~g

T
8 , ~η

T
8 , ~g

T
9

]T
(2.123)

~x ∈ R
3, ~u ∈ R

2, ~g ∈ R
2 (2.124)

become much larger. Thus, the size of the Jacobian increases significantly compared
to the shooting case (see Figure 2.13). Although the Jacobian is increased in size, it is
much sparser than in the shooting method. This has two benefits. First, most of the
optimization algorithms are optimized for sparse matrices. Second, [24] states that es-
pecially with nonlinear models the complexity of the constraints is reduced. Therefore,
the FALCON.m optimal control framework presented in chapter 4 implements this dis-
cretization method.

2.5 Function Generator

An OCP solution approach with direct methods mainly consists of 3 parts (see Fig.
2.14):

Model/Constraints/Cost User supplied information of the OCP.

Parameter Optimizer Optimization algorithm that solves the parameter optimiza-
tion problem. Usually, an off-the-shelf optimizer is used.

Transcription Toolbox Discretizes the OCP and interfaces the user supplied func-
tions with the optimization algorithm. Often, multiple optimizers are interfaced
and supported. Additionally, the toolbox needs to provide the derivatives (Jaco-
bian and sometimes Hessian) of the OCP to the solver.
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Figure 2.13: Collocation sparsity pattern.

Based on information provided by a setup script, the transcription toolbox pre-
pares the problem for the optimization step once upon program start in a processing
step. After it is prepared, the toolbox calls the NLP optimizer with the initial guess of

the optimization parameter vector ~Zini. During the optimization loop, the optimizer
calls the toolbox to obtain the current cost, constraint values, and their derivatives.
The toolbox function that provides this information to the NLP optimizer is called the
Function Generator [24] (see Figure 2.15).

Within the function, the states, controls, and parameters contained in the current

optimization vector ~Z are extracted and used to call the user supplied functions. The
returned values are used to calculate the cost, constraints, and derivatives of the OCP.
The Function Generator is very crucial for the overall performance. Especially, the
calculation of the derivatives must be efficient. For large OCPs, this is not a trivial task.

Apart from an efficient calculation, [24] states that the function generator must be

consistent and accurate. This means that for every ~Z evaluated (iteration), the same
arithmetic operations must be performed. This is especially important for the deriva-
tives. They must resemble the exact operations that were used to determine the con-

straints ~F and the cost J . For instance, if the model is evaluated with a variable step
size integrator, but the gradients are calculated on a fixed step, the derivatives are not
consistent to the model evaluation. This slight deviation from the exact derivatives can
degrade the convergence significantly or the optimization could even fail completely
[24]. In case the derivatives are calculated using e.g. finite differences, a suitable accu-
racy needs to be ensured.

39



2.5 Function Generator

ToolboxOptimizer User Functions

~Z

J, ~F

~x, ~u, tf

J, ~̇x,~g

Problem Structure Definition

~Zini

~Zopt

Figure 2.14: General interface of optimal control toolbox.
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2.5.1 Scaling and Offset

States, controls, and other parameters may have different orders of magnitude. For
instance, an aircraft’s mass range is 50.000-70.000 kilogram (A320) but the course an-
gle is given in radians. This introduces values with different orders of magnitudes in
the OCP’s Jacobian and Hessian. In addition, the feasibility and optimality tolerance
become difficult to fulfill.

Assume the feasibility tolerance is ǫfeas = 1 · 10−6 and an equality constraint is
imposed on the mass of the aircraft. Thus, the optimization algorithm has to fulfill the
mass constraint to microgram accuracy. This unrealistic accuracy request makes the

problem much harder to solve. Therefore, the vectors ~Z, ~F , and their derivatives need
to be scaled. The scaled values contained in the vectors no longer have their physical

meaning. For this reason, in the beginning of the Function Generator the input ~Z is
de-scaled to regain the physical values (see Figure 2.15). After the evaluation of the
cost function and the constraints, the outputs of the Function Generator are scaled for
the optimizer.

Nearly all optimization algorithms offer an automatic scaling feature. However,
the scaling will normally occur with a constant factor on the overall derivatives and
does not solve the issues described above. Therefore, the scaling of the optimization
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variables ~Z, the cost function J , and the constraint values ~F

~̃Z = TZ ·
(

~Z − RZ

)

(2.125)

J̃ = T J · (J − RJ) (2.126)

~̃F = T F ·
(

~F −RF

)

(2.127)

is done element-wise, where the tilde (�̃) denotes the scaled case seen by the optimizer,
T is an diagonal scaling matrix, and R is an offset vector. The scaled Jacobian is thus
given by

∂J̃

∂ ~̃Z
=

∂

∂ ~Z
[T J · (J − RJ)] ·

∂ ~Z

∂ ~̃Z
(2.128)

= T J ·
∂J

∂ ~Z
· T−1

Z (2.129)

∂ ~̃F

∂ ~̃Z
=

∂

∂ ~Z

[

T F

(

~F −RF

)]

· ∂
~Z

∂ ~̃Z
(2.130)

= T F · ∂
~F

∂ ~Z
· T−1

Z (2.131)

where the inverse of diagonal matrix TZ can be calculated by inverting the diagonal
elements. The scaled Hessian

∂2L̃
∂ ~̃Z2

=

[

T J ·
∂2J

∂ ~Z
2 +

nF∑

i=1

λi · TF,i ·
∂2Fi

∂ ~Z
2

]

·
(
T−1
Z

)2
(2.132)

of the Lagrangian

L̃ = J̃ + ~λ
T · ~̃F (2.133)

is calculated in a similar manner. Here, nF is the number of constraints and T F,i the ith

element on the diagonal. Compared to the problem Jacobian, the scaling of the Hessian
has to be done during the summation.

The choice of the scaling diagonal matrix T and the offset vector R is relatively

simple. Each entry in the ~Z and ~F vectors represents a parameter, state, control, defect,
constraint, or cost. Therefore, for each of the variables introduced, a scaling and offset
is defined. The aim is to achieve a unified range of every variable and constraint in the
overall OCP [24]. For the defects, the scaling of the states can be used.

2.5.2 Derivative Calculation and Sparsity

The performance of the overall NLP solver is determined by the quality of the Jacobian
(and sometimes Hessian) returned by the Function Generator. It has three contribution
factors:

• Accuracy of the derivative values: analytic, finite differences

• Structure of the resulting matrix that exactly determines the potential non-zero
elements (sparsity)
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• The implementation of the algorithm

All of these influences are crucial for the overall performance. In the following, the
factors are discussed in more detail.

Quality of the Derivatives

Derivatives are either analytical, representing the actual values, or an approximation
derived by other numerical means (e.g. finite differences). The former are still widely
used in many applications. Although there are situations in which finite differences
are a good choice (e.g. black box functions) sometimes they are used for convenience.
The result is an easily implemented code, but at the cost of accuracy and a significant
performance reduction.

In order to calculate the Jacobian of the OCP problem with forward finite differ-
ences,

∂ ~F

∂ ~Z
≈

~F (~Z +∆Z)− ~F (~Z)

∆~Z
(2.134)

the routine calculating J and ~F must be called nz + 1 times for a single iteration step.

The achieved accuracy is dependent on the deviation ∆~Z and is usually much lower
compared to analytical means. Thus, the convergence of the OCP becomes degraded
[24] and may only be achieved for larger optimality tolerances ǫopt. A more detailed
evaluation of the accuracies can be found in section 4.5.1. The calculation of the OCP
Hessian with finite differences does not apply for real world applications due to bad
conditioning [85]. Therefore, it is better to obtain the derivatives in an analytical way.

Analytic Derivatives

For the analytic Jacobian and Hessian of the OCP, the corresponding derivatives of
the cost function and constraints must be determined. The actual analytic calculation
is dependent on the discretization method used. Therefore, first the derivatives for
the shooting method are discussed followed by collocation. For simplicity, only the
Jacobian calculation is shown.

As introduced above (2.103), the multiple shooting defect is defined as

0 = ~ηk = ~xk − ~̄xk (2.135)

where ~xk represents the final state of the previous segment and ~̄xk the initial state of the
following segment. Taking the Jacobian of ~̄xk with respect to all optimization variables

∂~̄xk

∂ ~Z
=

[

0, . . . , 0,
∂~̄xk

∂~̄xk
, 0, . . . , 0

]

= [0, . . . , 0, I, 0, . . . , 0] (2.136)

gives the identity at a certain point in the Jacobian. All other entries are zero. However,
the Jacobian for the final state ~xk of the previous segment is unknown. The derivative
is dependent on the initial state of the previous segment and on all controls of the
integration.

To resolve this issue it is necessary to obtain the derivative of the states w.r.t. the op-
timization variables over time. As the states are integrated on the discretized time grid,
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the derivatives shall be obtained in a similar manner. Thus, the sensitivity differential
equation is motivated. As mentioned in 2.2.2 and 2.4.1, the derivative calculation be-
comes much easier to handle if the integration is normalized in time. The normalized
time model is used

~̇x(τ ) = tf · ~f (~x(τ ), ~u(τ)) , (2.137)

where for simplicity the initial time t0 is set to zero and the system is assumed to be
autonomous.

The sensitivity is defined

S(τ ) =
∂~x(τ)

∂ ~Z
(2.138)

as the Jacobian of the state ~x w.r.t. the optimization variables ~Z at a given time τ . In
order to obtain a differential equation, the definition is differentiated w.r.t. time

Ṡ(τ) =
d

dτ
(S(τ )) =

∂~̇x

∂ ~Z
(2.139)

and the time derivative is applied to the state. Inserting the system dynamics

∂~̇x

∂ ~Z
=

∂

∂ ~Z

[

tf · ~f (~x(τ), ~u(τ))
]

(2.140)

=
∂tf

∂ ~Z
· ~f + tf ·

∂ ~f

∂~x
· ∂~x
∂ ~Z

+ tf ·
∂ ~f

∂~u
· ∂~u
∂ ~Z

(2.141)

gives a differential equation for the sensitivity matrix. The definition of the sensitivity
(2.138) reappears on the right hand side. Additional sensitivity matrices

Stf =
∂tf

∂ ~Z
, Su =

∂~u

∂ ~Z
(2.142)

are defined. Together with the Jacobians of the model dynamics

Jx =
∂ ~f

∂~x
, Ju =

∂ ~f

∂~u
(2.143)

they give the sensitivity differential equation

Ṡ(τ) = ~f(~x, ~u) · Stf + tf · Jx · S(τ) + tf · Ju · Su(τ), S(τ0) = S0. (2.144)

where S0 is the initial sensitivity (analogous to the initial state). The initial state sensi-
tivity can easily be determined since it represents the derivative of the initial state w.r.t.
the optimization variables. Since the initial state is discretized, S0 is a zero matrix with
the identity at the place of the discretized initial state.

The additionally introduced sensitivities have the following meanings: Stf ∈ R
1×nz

represents the final time sensitivity and is constant. The control sensitivity Su ∈ R
nu×nz

can be regarded as a ”control input” to the sensitivity differential equation and is vari-
able over time. The matrix is discretized on the time grid and interpolated with the
same interpolation method as the controls. An example for the sensitivity matrices can
be found in appendix A.1.
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Using the sensitivity matrix, the Jacobian of the state w.r.t. the optimization vari-
ables is known at every discretized point in time. Usually, the sensitivity matrix is
integrated alongside the system dynamics. Due to the fact that the control sensitivity
is variable over time, every time step introduces additional non-zero elements in the
state sensitivity. Thus, the triangle shape in the gradient sparsity is explained (see Fig-
ure 2.8). Despite the matrix operations involved, the sensitivity approach is still much
faster than finite differences. Additional performance can be achieved by reducing the

sensitivity matrices on the relevant ~Z subset.

In the collocation method, the state is fully discretized. The derivative of the collo-
cation defects

~ηi = ~xi+1 − ~xi − ~Ψ(~xi, ~xi+1, ~ui, ~ui+1, ti, ti+1) = 0. (2.145)

can thus be calculated much easier. As an example the trapezoidal step

~ηT,i = ~xi+1 − ~xi − tf ·
τ i+1 − τ i

2
·
(

~f(~xi+1, ~ui+1) + ~f(~xi, ~ui)
)

= 0 (2.146)

is used. The derivatives

∂~ηT,i
∂~xi

= −I − tf ·
τ i+1 − τ i

2
· Jx,i,

∂~ηT,i
∂~ui

= −tf ·
τ i+1 − τ i

2
· Ju,i (2.147)

∂~ηT,i
∂~xi+1

= I − tf ·
τ i+1 − τ i

2
· Jx,i+1,

∂~ηT,i
∂~ui+1

= −tf ·
τ i+1 − τ i

2
· Ju,i+1 (2.148)

∂~ηT,i
∂tf

= −τ i+1 − τ i
2

·
(

~f(~xi+1, ~ui+1) + ~f(~xi, ~ui)
)

(2.149)

depend only on the two time steps involved and are constructed with identity and
Jacobian matrices. Therefore, the overall structure of the problem Jacobian can be de-
termined more easily.

Sparsity and Structure of Derivatives

The sparsity of the Jacobian and Hessian is very crucial. All modern NLP solvers ex-
pect information about the non-zero elements in the derivatives when called. This
enables the algorithm to exploit the structure of the gradient and results in much faster
solution of the quadratic problem (2.41). During optimization, only the non-zero ele-
ments are expected from the Function Generator. For instance, the MATLAB interface
of IPOPT [40] requires the Jacobian as a sparse matrix and the Hessian as a lower trian-
gular sparse. SNOPT [41] requires the non-zero elements of the Jacobian as row column
pair vectors in the optimizer call. During optimization, only the vector containing the
values of the non-zero elements is required. Since MATLAB stores sparse matrices in
rcv format (row, column, value), both formulations are equivalent (see Figure 2.16).

Apart form the better performance, the use of the sparse formulation greatly re-
duces the memory consumption. The sparsity

ζ =
Number of Zero Elements

Number of Elements
(2.150)

of the Jacobian using the collocation discretization is usually higher than ζ ≥ 95%.
Thus, storing the full matrix results in a much higher memory consumption and con-
tains mostly zero values compared to the sparse approach. Due to the fact that the
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M =









5 0 0 0 0
1 0 2 0 0
0 0 1 4 9
3 2 0 0 7
0 1 8 5 0









r =
[
1 2 4 4 5 2 3 5 3 5 3 4

]

c =
[
1 1 1 2 2 3 3 3 4 4 5 5

]

v =
[
5 1 3 2 1 2 1 8 4 5 9 7

]

︸ ︷︷ ︸

MATLAB sparse matrix format

Figure 2.16: Sparse matrix example using row r, column c and value v format.
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Figure 2.17: Block and template sparsity of a constraint Jacobian.

sparsity of the derivatives usually increases with finer discretization, the sparse imple-
mentation becomes especially important for large OCPs.

The sparsity calculation can be divided into two contributing factors, namely the
block sparsity and the template sparsity (see Figure 2.17). From the location of a con-

straint in the ~F vector and the constraint relevant values from the ~Z vector the potential
non-zero blocks in the Jacobian and Hessian can be determined. Thus, the block spar-
sity is defined. Additionally, a constraint may not be dependent on every input. Hence,
a local sparsity template can be generated. By imposing this on the blocks in the OCP
derivatives, the exact sparsity is calculated. Dependent on the problem, the template
sparsity may lead to a significant reduction of non-zero elements [24].

Implementation of Derivatives

The time required for the evaluation of the first and second order derivatives of an
OCP is crucial for the overall performance. It is influenced mainly by the dimension
of the problem derivatives and by the non-linearity of the model and the constraints
involved. Since realistic applications are usually extremely non-linear and produce
large problem formulations efficient algorithms are mandatory. Two questions arise:

• How can the analytic first and second order derivatives of the high-fidelity mod-
els and constraints be evaluated without having to compromise on computa-
tional performance or difficult implementation on the user side?
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• How can the derivatives required by the solver be calculated in the correct target
format (sparse matrices)? This is especially important for large optimal control
problems.

Both questions are answered in chapter 4 that introduces the optimal control frame-
work FALCON.m [80]. FALCON.m is able to calculate first and second order analytic
derivatives of the optimal control problem very fast. Additionally, the exact template
sparsity of the constraint derivatives are calculated. The highly efficient function gen-
erator enables FALCON.m to solve large high fidelity optimal control problems on a
consumer PC or laptop. In this thesis, discretized optimal control problems with 600k
optimization variables and 500k constraints have been successfully solved. Addition-
ally, FALCON.m is able to cope with an extremely flexible problem formulation includ-
ing:

• Controls and states can be discretized independently. The same applies for mul-
tiple controls, which may have independent discretization as well. However,
controls must always be a subset discretization of the states.

• Controls and other parameters can be fixed to remove them from the optimiza-
tion problem. Constraints can be deactivated. The sparsity of the problem Jaco-
bian and Hessian is adapted automatically. This allows the user to test different
scenarios without having to rewrite the OCP. Additionally, optimization prob-
lems with fixed constraints can be used for parameter identification purposes
[81].

• Constraints that combine arbitrary discretized points within the OCP.
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Chapter 3

Theory of Mixed Integer Optimal
Control Problems

In the previous chapter the continuous OCP with solution strategies and implemen-
tation aspects was introduced. However, the real world is not always continuous. In
many applications discrete decisions are involved. In this case there exists only a set
of options rather than a continuous choice between a minimum and maximum bound.
Common examples are the gears in a car, the flaps and the landing gear on an aircraft
or valves in a plant. A switch between the discrete options changes a system’s behav-
ior instantly. In this thesis, these decisions are modeled as discrete control inputs of
the dynamic system. The optimal selection of the discrete control choices is subject to
optimization.

Additionally, constraints in the OCP may be dependent on the discrete controls.
Therefore, a change in the discrete value results in a switch on the discrete control
dependent constraint bounds. These constraints must be considered in the OCP in
oder to avoid infeasible discrete control selections and cannot be imposed afterwards.
Furthermore, the optimal value for a discrete control may be between two available
choices or the optimal solution contains frequent switches. In many applications, this
behavior or non-feasible choices must be mitigated. Therefore, constraints or penalties
must be introduced in the problem formulation.

In the following chapter, discrete controls are introduced in OCPs. Section 3.1 in-
troduces the OCP with discrete controls. To solve these problems with the methods
already presented in chapter 2, it is necessary to reformulate the discrete controls in
the continuous domain. In section 3.2, different transformation approaches are in-
troduced. Their applicability is discussed. Section 3.3 introduces reformulations for
the discrete control dependent constraints. Their formulation depends on the discrete
control transformation method. In order to avoid frequent switching, section 3.4 intro-
duces formulations of switching cost. In section 3.5 an expansion to multiple discrete
controls is made. Finally, a solution strategy for these type of problems is introduced
in section 3.6.
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3.1 Mixed-Integer Optimal Control Problem

The standard OCP (2.57) introduced in 2.2.2 is expanded

Minimize J =M (~x(t0), ~x(tf)) +

tf∫

t0

L (~x(t), ~u(t), t, ~v(t)) dt (3.1)

s.t. ~̇x = ~f (~x(t), ~u(t), t, ~v(t)) (3.2)

~ψ (~x(t0), ~x(tf)) = 0 (3.3)

~g (~x(t), ~u(t), t, ~v(t)) ≤ 0 (3.4)

~h (~x(t), ~u(t), t) = 0 (3.5)

~u(t) ∈ U, t ∈ [t0, tf ] (3.6)

~v(t) ∈ V = {~v1, ~v2, . . . , ~vnv} (3.7)

to include the discrete control ~v which can only have values from a fixed set V (see
equation (3.7)). These type of optimal control problems are called Mixed-Integer Op-
timal Control Problem (MIOCP) as the choice of a value from the discrete set can be
interpreted as an integer selection. The discrete control can appear in the cost function,
in the system dynamics, and in the inequality constraints. As boundary conditions
and Mayer cost functions are usually state dependent, the discrete control is not intro-
duced there. The formulation of the discrete constraints assumes inequality constraints
involved. Therefore, the discrete control does not appear in the equality constraints.
They can be considered using e.g. two inequality constraints [11].

For now, only a single discrete input ~v with nv discrete choices is assumed. Multiple
discrete controls can always be taken into account by treating all possible combinations
as a single discrete control. This will be further discussed in section 3.5 of this chapter.
Discrete controls usually influence the dynamics by replacing certain parameters (e.g.
aerodynamic coefficients on an aircraft, gear transmission ratio in a car). Therefore,
these inputs can appear as scalars, vectors, or even matrices.

As in the continuous case, the MIOCP is discretized in time to transform it into a
parameter optimization problem. Since it contains discrete parameters it is called a
Mixed-Integer Non-Linear Program (MINLP). Due to the fact that the discrete choice
acts as a control, the number of discrete parameters is dependent on the control dis-
cretization. Therefore, the high number of discrete optimization variables make these
problems hard to solve [59].

There exist some algorithms and approaches that are able to handle MINLP directly,
namely branch & bound [7], dynamic programming [8], genetic algorithms [34], or
full enumeration (evaluating every possible combination) [23]. A description of the
methods and a detailed discussion of these on MINLP can be found in [23]. However,
due to the large number of discrete parameters involved, these approaches suffer from
the curse of dimensionality. For instance, [11] states that branch & bound methods
are currently less applicable to be applied to non-convex MINLP as the search effort
is too expensive. Therefore, in the following, methods are presented to transform the
discrete control parameters into continuous ones. The following limitations must be
considered:

• The overall model interface structure must remain. The number and size of the
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input variables must not change. States are continuous and must not vanish de-
pendent on the discrete control selection.

• Logical decisions such as path or runway selection cannot be considered by this
approach as they do not represent a discrete control.

3.2 Discrete Controls Continuous Reformulation

In this section, methods are presented to transform the MIOCP into a continuous OCP
that can be solved with the approaches explained in chapter 2. Requirements to the
reformulation are discussed. Afterwards, different approaches are presented. Some
relax the problem in a way that non-discrete values may occur. This is a result of the
transformation into the continuous domain. Mitigation of invalid values is discussed
later in sections 3.3 and 3.4. Finally, the consideration of multiple discrete controls (3.5)
and a solution strategy (3.6) are presented.

3.2.1 Evaluation Criteria

The discrete control reformulation approaches are evaluated w.r.t. the following crite-
ria:

• The switching sequence of the discrete controls shall be determined automati-
cally. Not only the times at which a switch occurs shall be optimizable, but also
the number of switches and the discrete choice that is switched to.

• Multiple discrete controls shall be optimizable independently. Many dynamic
systems have multiple discrete controls that are completely or at least partially
independent.

• Usually, a switch in a discrete control is modeled as an instantaneous switch.
However, in some applications, this switch from one discrete value to the next
is performed continuously (e.g. linear change in the aircraft flap position). Ad-
ditionally, a shift may introduce a dead time (e.g. no engine torque during a car
gear shift).

• As some reformulation approaches relax the discrete choice during the optimiza-
tion, non-discrete values may appear in the model dynamics. As non-discrete
values may lead to unrealistic behavior, they must not appear in the final solu-
tion.

• Ideally, the discrete control can be optimized in a single optimization step. How-
ever, some approaches require a multi-stage homotopy approach. It is desired to
have as little stages as possible.

3.2.2 Division into Multiple Phases

The simplest reformulation approach divides the optimal control problem into multi-
ple phases [17, 16]. In this Multiple Phases (MP) approach a discrete choice is assigned
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to each phase. Thus, the discrete control is transformed to a phase constant. This is a
viable choice if the optimal switching structure is known. The resulting multi-phase
problem can be solved with existing methods.

However, if the switching structure is not known, a guess is required. This becomes
extremely hard if multiple discrete inputs exist in the dynamic model. The situation
becomes even more difficult if the OCP contains interior point conditions (see section
2.2.2). There exist approaches where different switching structures are evaluated [106,
107]. The number of switches and their respective order is iterated until there is no
significant decrease in the objective function. However, these approaches require to
solve many OCPs.

In case the selected switching structure is not correct, the optimization algorithm
may reduce the phase duration to zero. In this case, the dynamics of the phase become
singular introducing numerical issues in the optimization algorithm [11].

3.2.3 Hyperbolic Tangent Function

The Hyperbolic Tangent (HT) approach exploits the fact that the hyperbolic tangent
function resembles a step shape that changes from −1 to 1. Therefore, it can be used to
model discrete changes over time

~̃v = ~v0 +
n−1∑

k=1

(~vk − ~vk−1) · [tanh (a · (t− tk)) + 1] /2 (3.8)

where n is an arbitrary number of discrete changes and a a steepness factor. The hyper-
bolic tangent function is transformed in such a way that at every time tk the difference
~vk − ~vk−1 to the next discrete choice is added (see Figure 3.1). Additionally, the con-
straints

tk+1 − tk ≥ 0 (3.9)

are introduced in the OCP. The order of the switches must not change as otherwise
values that do not appear in the discrete set are created.

As with the MP approach, the switching structure of the discrete control must be
known. However, multiple discrete controls can be considered independently. Addi-
tionally, this approach does not conflict with interior point conditions. Besides, elimi-
nating a discrete choice by the optimization algorithm

tk+1 = tk (3.10)

does not introduce numerical issues.

However, this approach has some drawbacks. The model becomes time dependent.
Although this is not unusual, it may not be desired and has to be addressed in the
OCP. In case the optimal control toolbox does not support time dependencies, the time
transformation described in section 2.2.2 can be used.

Since the discrete control usually influences model parameters (e.g. aerodynamic
coefficients), these become time dependent. An adaptation of the model may involve
significant implementation changes. Due to the fact that the hyperbolic tangent func-
tion changes between discrete values continuously, the model must be able to handle
intermediate variables.
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Figure 3.1: Discrete switches over time using the hyperbolic tangent function approach
for different steepness factors.

In the actual optimization, the gradient of the hyperbolic tangent function is diffi-
cult to handle as well. In case an instant switch is required, the steepness factor a is
chosen to a sufficiently large value (see Figure 3.1). Thus, the gradient of the switching
function (3.8) w.r.t. time is very high at the switching instances tk and almost zero in
between. This leads to a badly conditioned gradient matrix. In many applications it
can be found that the switching times may not be changed during the optimization
at all. In order to resolve this, a homotopy approach needs to be used where a small
value for a is chosen in the beginning [16]. In successive optimizations a is gradually
increased. The number of steps, initial and final value of a is subject to the user.

3.2.4 Relaxation or Inner Convexification

In this approach, the discrete control is relaxed

ṽ ∈ [min(V ),max(V )], V = {v1, v2, . . . , vnv} (3.11)

by omitting the discrete choices in the optimization variable. The NLP can choose the
variable continuously at every discretized point in time. Using constraints and penal-
ties, discrete choices are enforced. In theory, this approach has the ability to find the
optimal switching sequence. Multiple independent discrete controls can be consid-
ered. This approach is also referred to as the Inner Convexification [6].

In practice, this approach shows some issues. As before, intermediate (non-discrete)
values are allowed in the optimization. The model has to be able to handle these val-
ues. Additionally, enforcing the discrete values during optimization remains an issue.
In order to argue that this approach is not the ideal choice, it shall be discussed here in
more detail.

A trivial method to enforce discrete values is by introducing a constraint

0 = (ṽ − v1) · (ṽ − v2) · . . . · (ṽ − vnv) (3.12)
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as discussed in [68, 69]. However, it can easily be seen that such an approach produces
a disjoint feasible set which makes the problem extremely hard to solve [11].

To mitigate this issue, a slack variable κmay be introduced. It transforms the equal-
ity constraint

− κ ≤ (ṽ − v1) · (ṽ − v2) · . . . · (ṽ − vnv) ≤ κ (3.13)

into an inequality box constraint. Then, in multiple optimization stages, the slack vari-
able κ is slowly driven to zero [69].

Due to the difficulties with the constraints, [69] also proposes the use of a penalty
approach. For a simple binary example V = {0, 1}, which is often used, the cost

JP = α · ṽ · (1− ṽ) (3.14)

can be easily formulated. Here, α represents a scaling factor that is increased in a
homotopy approach. In case there are more than two discrete choices, the constraint
function

JP = α · (ṽ − v1)
2 · (ṽ − v2)

2 · . . . · (ṽ − vnv)
2 (3.15)

is squared. In both penalty formulations, only non-discrete values contribute to the
penalty cost. However, it can be seen that this approach introduces strong additional
local minima in the NLP.

Although the homotopy approach may lead to a solution in both cases, the choice
of κ or α is not trivial. Due to the fact that polynomials start to oscillate with the
number and distribution of the discrete choices, a selection may be difficult. Overall,
this approach is less suited for OCPs discussed in this thesis and is thus no longer
considered.

3.2.5 Outer Convexification

While the Inner Convexification relaxes the actual discrete control input, the Outer
Convexification (OC) applies a relaxation method around the original model. This
approach is discussed in [6, 23, 11]. For every discrete choice ~vk

~v ∈ V , V = {~v1, ~v2, . . . , ~vk, . . . , ~vnv} (3.16)

a weighting factor

~wi =








wi,1
wi,2

...
wi,nv







, wi,k ∈ [0, 1], k = 1, . . . , nv (3.17)

is created. Overall, they make up a selection vector ~wi of the current discretized time
step i. A discrete choice is selected by setting the corresponding weight to one. Every
wi,k can be seen as an additional control variable over time. Thus, the optimization

vector ~Z grows significantly.

Instead of one evaluation per time step i, the model dynamics are evaluated for all
discrete control choices

~̇xi =
nv∑

k=1

wi,k · ~fk (~xi, ~ui, ~vk) (3.18)
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and weighted using the multipliers wi,k. The weighted state derivative ~̇xi is then used
in the model simulation. Additionally, at every time step i, the summation constraint

nw∑

k=1

wi,k = 1 (3.19)

must be fulfilled. The weights make the switching structure subject to optimization. If
a discrete choice is optimal, the optimizer can set the corresponding weight wi,k to one.
All other weights at the current time step have to be zero.

In the OC, the model dynamics are always evaluated using the original discrete
control values ~v ∈ V . Due to the reformulation, all ~vk choices become a constant in the
overall OCP. Thus, potential issues with intermediate variable do not arise.

Although the weights are relaxed in the optimal solution, all weights should belong
to the set

wi,k ∈ {0, 1} . (3.20)

Fractional values of wi,k occur if the optimal solution for a discrete control lies between
two discrete values. A similar problem arises in case the optimal switch occurs be-
tween two discretization steps. Therefore, penalty approaches have to be applied (see
section 3.4). [11] proves that a binary solution of the relaxed / convexified problem has
the same optimal solution as the original MINLP.

One major drawback of this approach is the number of additional optimization
variables that are introduced in the NLP. Dependent on the number of discrete control

choices, the number of optimization variables in the ~Z vector can easily be doubled.
Therefore, an efficient optimal control toolbox is mandatory.

3.2.6 Variable Time Transformation

The Variable Time Transformation (VTT) introduced by [51] is very similar to the OC.
It is also known as the control parameter enhancing technique [53, 54, 108]. As before,
the weights wi,k for every discrete option are created and the summation constraint
(3.19) must hold at every time step. Both methods differ in the evaluation of the model
dynamics. Whereas the OC weights the model evaluations per time step, the VTT
scales sub grid intervals in an integration.

Each step in the state discretization (major grid)

ti+1 = ti + hi (3.21)

is divided into nv sub steps

δi,k = ti + (k − 1) · h
nv
, k = 1, . . . , nv (3.22)

resulting in the minor grid. Each minor grid step δi,k is assigned to a discrete control
~vk (see Figure 3.2a).

The system dynamics are integrated on the minor grid

~̇xi,k = wi,k · ~f (~xi,k, ~ui, ~vk) (3.23)
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Figure 3.2: Variable time transformation.

where wi,k scales the sub integration time intervals. For a value of wi,k = 0 the minor
grid interval is reduced to zero. Thus, it deactivates the discrete control in the major
grid step. In case of wi,k = 1 all other discrete choices have to be zero and the discrete
control is stretched over the whole time interval (see second major grid step in Figure
3.2). Due to the time transformation of the minor integration steps, the choice of the
discrete control is subject to optimization.

3.2.7 Comparison and Remarks

Table 3.1 compares the different approaches w.r.t. the evaluation criteria explained
above (see section 3.2.1). The multi-phase approach as well as the Inner Convexifica-
tion are both less viable choices for complex OCPs. Reasons have been discussed in
the respective sections above. The HT approach can be used if the switching structure
is well known [16, 20]. Furthermore, it can be used to formulate a continuous change
between two discrete variables. Both OC and VTT are viable choices. In this thesis,
the OC is used. The reasons for this choice are outlined in the following together with
further remarks.

Binary Feasibility

As already mentioned, the OC as well as the VTT relax the weights on the interval
wi,k ∈ [0, 1]. Therefore, non-binary choices may appear in the optimal solution.
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Table 3.1: Comparison of discrete control reformulation approaches.

MP HT IC OC/VTT

Automatic Switching Sequence X X

Independent Discrete Controls X X X

Instant / Continuous Switch instant continuous instant instant
Discrete Values Feasibility in Dynamics X X

Required Optimization Stages 1 mutliple multiple few

In most cases, a valid binary choice is found by the optimization, especially if the
choices of the discrete control have a significant impact on the over cost. However, at
switching points where the optimal solution switches to another discrete value, frac-
tional values for wi,k may occur. In the following, these effects are mitigated by two
influences.

The discrete constraints, which are introduced in section 3.3, eliminate infeasible
discrete choices since constraints of the system dynamics must be fulfilled. Addition-
ally, switching costs are introduced in section 3.4 mitigating remaining fractional so-
lutions by enforcing a binary selection. Both approaches have a great impact on the
solution of the OCP and must be chosen with care.

Realistic switches

The OC as well as the VTT implement instant switches. In reality, the change may be
continuous from one discrete value to the next. The flaps on an aircraft can be regarded
to change their setting linearly. Additionally, during an automotive gear change, the
torque flow from the engine is disconnected from the wheels. Such dead times cannot
be modeled with the approaches presented above.

A continuous change may be modeled by the HT approach. Alternatively, it would
be possible to add dynamics to the system equations to implement continuous changes
between discrete choices. However, in this case the optimization can exploit the dy-
namics to maintain a non-discrete value with periodic switching. Furthermore, the
intermediate values have to be supported by the system dynamics. In the applications
discussed in this thesis, the switching duration can be neglected w.r.t. the overall time
frame. Therefore, this matter is not discussed further.

Variable Time Transformation vs. Outer Convexification

Due to the fact that the VTT approach integrates the dynamics along the minor grid it
has the ability to model a switch in between two discretization time steps. However,
this works only in the direction the discrete control selections are ordered on the minor
grid interval. As shown in Figure 3.3, a switch in the ordered direction results in a
switch within the major grid interval. In the opposite direction a non-realistic double
switch occurs.

In this thesis, the OC approach is used in favor to the VTT for two reasons. Firstly,
the discrete constraints and the switching cost approaches aim at producing integer
solutions wi,k ∈ {0, 1} on the weights. In the binary feasible case, both approaches
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Figure 3.3: Switching direction of variable time transformation.

produce similar results. Secondly, the OC is much easier to implement in existing
optimal control toolboxes.

Elimination of the Summation Equality Constraint

The last discrete control weight wi,nv

wi,nv = 1−
nv−1∑

k=1

wi,k ≥ 0 (3.24)

can be calculate dependent on the others [23]. Thus, the number of optimization vari-
ables is reduced and the equality constraint

1 =

nv∑

k=1

wi,k (3.25)

is replaced by the inequality constraint (3.24). Although the problem size is reduced,
the sparsity is decreased. Every constraint dependent on the last weight wi,nw becomes
dependent on all discretized weights. Thus, the dependencies become slightly more
complex.

In this thesis, the full discretization is used in order to maintain the sparsity. Ad-
ditionally, discretizing the weights fully is easier to implement as fewer special cases
have to be considered.

3.3 Discrete Constraints Reformulation Methods

In an OCP containing discrete controls, there may be constraints that depend on the
choice of the discrete controls. These are called mixed integer constraints or discrete
constraints. They become active in an OCP if the corresponding discrete control is
selected but must not influence the OCP in the other case. On an aircraft the gear or
high lift dependent speed bounds are an example.

As with the discrete controls, these types of constraints introduce discontinuities
in the OCP. Therefore, a continuous reformulation is necessary. This formulation is
in turn dependent on the modeling approach used for the discrete controls. In the
following, discrete constraints w.r.t. to OC and VTT are discussed. A formulation for
the HT approach can be found in appendix A.2.
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Apart from a continuous differentiable formulation of the discrete constraints, there
is one other criterion. Even for smaller values of the weights wi,k the constraint must
have a significant influence on the OCP. The ideal constraint

~g (~x(t), ~u(t), t, ~v(t)) ≤
{

0 wi,k > 0
inf wi,k = 0

(3.26)

is discontinuous and therefore must be approximated as closely as possible.

In the following the Vanishing Constraint approach is presented. Another formula-
tion that was initially tried by the author can be found with the Stretching Constraints
[16]. However, due to the fact that a parameter has to be driven to a large value this
approach is less suitable for the approaches discussed in this thesis.

3.3.1 Vanishing Constraints

This approach was first introduced by Achtziger [58] as a Mathematical Programm
with Vanishing Constraint (MPVC) and is used in many different applications [33, 109,
62, 66, 64]. Achtziger applied the vanishing constraints to a structural problem where a
truss layout was optimized [58]. In case a connection was not needed, its correspond-
ing constraints should vanish from the optimization problem as well, thus giving the
name. Vanishing constraints can also be applied to optimal control problems.

The Vanishing Constraint

H(~z) ·G(~z) ≤ 0, H(~z) ≥ 0 (3.27)

formulates a constraint where the inequality constraint G must be fulfilled in case a
control function H is greater than zero. For H = 0 the constraint GH is automatically
fulfilled. The inequality constraint G becomes unbounded and thus vanishes from the
optimization problem.

This formulation is ideal for the OCP and VTT approaches, as the weights wi,k can
be used as the control function H . Thus, the vanishing constraint considered in this
thesis can be formulated to

wi,k · ~g(~x, ~u, t, ~p, ~vk) ≤ 0, wi,k ≥ 0 (3.28)

where the discrete control set variable ~v remains a constant of the OCP. The constraint
is only considered if the corresponding discrete control is selected. It can easily be
seen that (3.27) and (3.28) are both similar. For better readability, in the following the
notation of (3.27) is used.

Figure 3.4 shows the feasible set of the vanishing constraint (3.27). The set is clearly
non-convex and violates most constraint qualifications at the origin [66, 64]. Thus, the
KKT conditions cannot be used to determine optimality. Therefore, a relaxation or
a reformulation for the vanishing constraint is proposed. Both are discussed further
below.

MPVC are very similar to Mathematical Programm with Equilibrium Constraints
(MPEC) [11, 6] where the equality constraint

H(~z) ·G(~z) = 0, H(~z) ≥ 0 (3.29)

forces at least one of H(~z) or G(~z) to zero. Apart from the fact that these type of con-
straints are much harder to solve [23, 66], they are not within the scope of this thesis
and thus not further discussed.
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Figure 3.4: Feasible set of vanishing constraints.

3.3.2 Vanishing Constraint Relaxation and Reformulation

In the following, the relaxation and reformulation approach for the vanishing con-
straints are presented.

Relaxation Approach

Due to the violation of the constraint qualification of the vanishing constraints, [62]
proposes a relaxed formulation

H(~z) ·G(~z) ≤ κ, κ ≥ 0 (3.30)

where κ is a small value greater than zero. Thus, the feasible set at the origin becomes
rounded off (see Figure 3.5a). The constraint formulation remains non-convex, but the
constraint qualification is no longer violated.

G

H

H ·G ≤ κ

κ

H = 1

(a) Classic relaxation approach.

G

H

H · (G+ κ) ≤ κ

H = 1

(b) Corrected relaxation approach.

Figure 3.5: Relaxation of vanishing constraints feasible set.
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The relaxation parameter κ is subject to the application involved. In this thesis,
values at around κ ≈ 1 · 10−3 are used. Due to the relaxation, the physical constraint

~g(~x, ~u, t, ~p, ~vk) ≤ κ, wi,k = 1 (3.31)

may be violated by κ. In the optimization problem discussed in this thesis, such a
violation can be neglected. In case this violation must be prohibited, the reformulation

H(~z) · (G(~z) + κ) ≤ κ (3.32)

is proposed (see Figure 3.5b). The relaxation of the vanishing constraint was applied
in [16, 18, 33].

Reformulation Approach

The vanishing constraint can also be reformulated [66, 109]. It is approximated by an
inequality constraint

ϕκ(G,H) :=
1

2

(

GH +
√

G2H2 + κ2 +
√

H2 + κ2 −H
)

≤ κ, κ > 0 (3.33)

where κ is a relaxation parameter. The feasible set structure is very similar to 3.5a.

3.3.3 Slack Variable Expansions

As was stated above, all formulation approaches of the discrete constraints require a
relaxation variable. The difficulty that arises is how the value is chosen. Ideally, for
the vanishing constraints and the reformulation, it should be very small in order to
approximate the original formulation. A trade-off has to be made to avoid numerical
difficulties.

To bypass this problem, the relaxation parameter κ can be introduced as an addi-
tional slack control

κu ∈ [κu,min, κu,max], 0 ≤ κu,min ≤ κu,max (3.34)

in the optimization problem. It is discretized on the same grid as the vanishing con-
straint. Additionally, it is introduced as a penalty cost

JP =
∑

i

(κu,i − κu,min) (3.35)

which is added to the overall cost function. The slack control is initialized with a
suitable value (e.g. κu = κu,max = 1·10−3). If the discrete choice is clear, the optimization
algorithm can reduce the corresponding κu to its lower bound (e.g. zero). In case the
choice of discrete control is still unclear, the slack variable can be set to a higher value
to relax the constraint. Thus, a higher relaxation variable may be used in the OCP.
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3.4 Minimization of Switches and Binary Feasibility

If the switching structure is subject to optimization, the optimal solution may switch
at every discretized point. There exist even discrete optimal control problems where
the analytical solution switches infinite number of times on any arbitrary small time
scale [22]. In many applications, the number of switches must be limited. Reasons
may include mechanical wear, comfort, or other limitation by the dynamic system or
process considered.

In order to limit the number of switches, additional constraints, or costs are intro-
duced in the OCP. The formulation of these is dependent on the reformulation ap-
proach used for the discrete controls. Therefore, in this section, the OC and the VTT
approach are considered.

Apart from the minimization of switches, the binary feasibility w = {0, 1} shall be
ensured. In this section, a novel approach, which performs both tasks at the same time,
is presented.

3.4.1 Switching Constraints and Rounding Approaches

In this section, existing approaches are discussed. These include constraints, roundig
approaches as well as penalty formulations.

Switching Constraints

In order to ensure binary feasibility of the weights w a simple suggestion is to include
a constraint of the form

w · (1− w) = 0 (3.36)

which is fulfilled for the binary case [68, 69]. The main problem of this approach was
already discussed with the Inner Convexification approach (see 3.2.4). The feasible set
is non-convex and disjoint making the OCP hard to solve. Additionally, this approach
only targets binary feasibility but does not penalize discrete control switching.

Another possible constraint formulation

wi,k1 · wi+1,k2 = 0, k1 6= k2 (3.37)

prevents switches of a discrete control in certain directions (e.g. from k1 to k2) [17].
However, the constraints are of type MPEC and are thus hard to solve [66].

Rounding

Another idea is to optimize the problem with the OC approach and to apply a rounding
strategy afterwards. This idea was suggested and successfully used by [11, 23, 56]. This
so-called ”sum-up-rounding” approach efficiently reduces the number of switches and
ensured binary feasibility. However, due to the fact that the control history is altered,
the augmented solution of the OCP may no longer be feasible. An additional optimiza-
tion with fixed discrete controls may even fail. Therefore, the application of rounding
schemes is still subject of research. Recent advances can be found in [110].
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In this chapter, a novel switching cost penalty is introduced that reduces the num-
ber of switches and ensures binary feasibility. Therefore, rounding strategies are not a
focus of this thesis.

3.4.2 Existing Penalty Approaches

All penalty approaches introduce local minima in the optimal control problem. It is the
only way a binary feasible switching structure can be enforced during the optimiza-
tion. Therefore, these penalty approaches have a huge impact on the optimal solution.
In the following, cost penalty approaches shall be discussed that ensure binary feasi-
bility and / or minimize the number of switches. All have been applied to MIOCP
successfully but have different drawbacks.

Binary Penalty

A simple way to ensure binary feasibility of the discrete control weights is by imposing
the penalty

JP = α ·
∑

i,k

wi,k · (1− wi,k) (3.38)

where α is a scaling factor. This penalty approach was used by [11, 68]. Although the
formulation has been successfully used it has some drawbacks:

• Only the current time discretization point is considered in the penalty formula-
tion. Therefore, this approach may only ensure binary feasibility of wi,k but does
not reduce the number of switches.

• The formulation is similar to the switching constraint introduced above. It is re-
formulated as a cost penalty in order to avoid the disjoint feasible set. The trade-
off is that local minima are introduced on every wi,k (see Figure 3.6). This effect
is mainly influences by the magnitude of the scaling parameter. For large values,
a binary feasible initial guess will most likely not be altered during optimization.
This penalty formulation figuratively ”freezes” the switching structure in place.

• In order to improve the local minima situation, [11] suggests the use of a homo-
topy approach. Multiple optimal control problems are solved where the penalty
scale α is gradually increased from a small value to a large value of suitable mag-
nitude. However, the selection of these and the number / distribution of the
homotopy steps are unclear and subject to the specific application.

• Binary feasibility can only be ensured for α approaching infinity. This is not pos-
sible in practical applications as it introduces bad scaling in the problem gradient.

Another similar penalty approach that targets binary feasibility is used by [15]. The
weights w ∈ [0, 1] are replaced by β ∈ [−1, 1] with a linear transformation

w =
1

2
(1− β) . (3.39)
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0 1 wi,k

JP i,k

Figure 3.6: Binary penalty approach.

Additionally, a penalty cost is formulated

JP = α ·
∑

i,k

l (|βi,k|) (3.40)

where l : [0, 1] → R represents a strictly monotone decreasing function with l(1) = 0
(e.g. linear). Apart from the fact that this penalty formulation is not continuously
differentiable, the same issues as above can be expected.

Discrete Constraint Dependent Switching Cost

As with the binary feasibility, the switching constraint can be reformulated as a penalty
cost

JP = α ·
∑

i

wi,k1 · wi+1,k2 k1, k2 ∈ {1, . . . , nv}. (3.41)

Thus, a switch from the discrete control selection k1 to k2 between the time steps ti and
ti+1 is penalized. Obviously, the equation above must be expanded to account for other
switching combinations and enables to formulate switching costs dependent on the
direction of a switch. Although the idea of this approach was successfully applied [16]
it requires the consideration of many different combinations. However, it is possibly a
good choice to introduce additional penalties in order to prevent certain switches.

Switching Cost Penalty by Kirches

An application independent formulation of switching cost was proposed by [23]. It
combines two adjacent time discretization points of the discrete control weights,

JP = (2 · γi,k − 1) · (wi,k + wi+1,k − 1) + 1, γi,k ∈ [0, 1] (3.42)

where γi,k represents a slack value that is introduced as an additional optimization
variable. Dependent on the sum of both adjacent weights wi,k + wi+1,k the optimal
value for γi,k changes:

wi,k + wi+1,k < 1 γi,k → 1 (3.43)

wi,k + wi+1,k = 1 γi,k = free (3.44)

wi,k + wi+1,k > 1 γi,k → 0. (3.45)

Figure 3.7 shows a visual representation of this approach. The cost formulation
formulates a plane that changes its optimal tilt γi,k dependent on the sum wi,k +wi+1,k.
Thus, the optimal solution is either wi,k = wi+1,k = 0 or wi,k = wi+1,k = 1 resulting in
zero cost and binary feasibility. A switch in the discrete control is penalized.
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Figure 3.7: Visual representation of the switching cost approach introduced by [23].

This approach was successfully used in [23, 21, 18, 33]. However, for every dis-
crete control weight an additional optimization variable must be introduced. Thus, the
number of variables accounting for the discrete controls are doubled, having a huge
impact on the overall, already large, problem size.

3.4.3 Multi-Time Switching Cost Penalty

The Multi-Time Switching Cost approach, initially presented by the author of this the-
sis in [111], is a novel formulation that aims at low frequent switches in the discrete
controls. It is based on a simple assumption. Assume the current time step (ti) has to
adjacent time steps (ti−1, ti+1) with the same discrete choice. Then, the discrete choice at
the current time (ti) step shall be forced to the same selection. Thus, imaginary springs
are introduced in the optimal control problem (see Figure 3.8).

~v1, w1

~v2, w2

~v3, w3

ti−2 ti−1 ti ti+1 ti+2

Figure 3.8: Multi-Time switching cost idea.
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The following description is partially taken from the author’s publication [111]. A
switching penalty is created

JSC,i,k = wi−1,k + wi,k · (1− 2 · wi−1,k) + wi+1,k + wi,k · (1− 2 · wi+1,k) (3.46)

which uses the three adjacent discretized points in time (previous i − 1, current i and
next i + 1) of the discrete control weights. The cost function is evaluated for every
discrete control control choice k at every discretized point in time i. It can be split into
two influences, namely the influence of the previous and of the following discretized
time point. Both adjacent weights control the pitch of a linear function pivoting around
the point (0.5, 0.5) (see. Figure 3.9). The linear function is evaluated at the current
discretized point in time wi,k. Thus, deviations between the weights are penalized.
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Figure 3.9: Multi-Time switching cost pivot function.

In Figure 3.10 the cost function is evaluated for different value combinations

wi−1,k, wi+1,k = {0, 0.25, 0.5, 0.75, 1} (3.47)

of the previous wi−1,k and next wi+1,k discretized point in time. In the blue plots, the
partial influence is shown, the red plots show the combined cost. In all cases, the cost
values are plotted over the current discretized weight wi,k ∈ [0, 1]. It can be seen that if
one of the adjacent weights is closer to the desired binary choice,

wi+1,k + wi−1,k > 1 ⇒ wi,k → 1 (3.48)

wi+1,k + wi−1,k < 1 ⇒ wi,k → 0 (3.49)

then, due to the cost function, the optimal value for the current weight wi,k becomes
the closer binary choice. If the sum of the adjacent weights is equal to one

wi+1,k + wi−1,k = 1 (3.50)

the resulting line is flat. In this case the decision is solely dependent on the discrete
control’s influence on the cost function J .

This approach has the following benefits: Only the discrete control weights w con-
tribute to the cost. Therefore, the approach can be applied to MIOCP of different ap-
plications. In case no switch occurs, the resulting penalty cost is zero. Any fractional
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Figure 3.10: Multi-Time switching cost combination evaluation. All plot axes range from
−1 to 1 and all x-axis represent wi,k. The y-axis represent the respective
colored penalty.

solution of the weights w results in a positive contribution to the penalty that the op-
timizer will try to eliminate. Additionally, no slack variables are required and the
problem size remains the same.

If desired, a slack variable δ can be introduced in the penalty formulation

JSC,i,k = [wi−1,k + wi,k · (1− 2 · wi−1,k) + wi+1,k + wi,k · (1− 2 · wi+1,k)] · (1− δi), (3.51)

δi ∈ [0, 1[. (3.52)

It enables the optimization algorithm to reduce the impact of the switching cost locally.
Additionally, the slack variables are introduces as an additional cost penalty

JP =
∑

i

δi (3.53)

in the overall cost function. Note that only one slack variable is introduced per time
step. Thus, the number of optimization variables does not increase as drastically com-
pared to [23].
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3.5 Multiple Discrete Controls

Many dynamic systems may have multiple discrete control inputs. Regarding the OC
approach, multiple discrete controls can always be considered by creating a set of com-
binations (Cartesian product). Let ~v and ~η be two discrete controls with their respective
sets {~v1, . . . ~vnv} and {~η1, . . . ~ηnη

}. The cartesian product of both is given by

{~v1, . . . ~vnv} × {~η1, . . . ~ηnη
} =







(~v1, ~η1) . . . (~v1, ~ηnη
)

...
. . .

...
(~vnv , ~η1) . . . (~vnv , ~ηnη

)







(3.54)

which is represented in a matrix for better readability. It contains all possible combina-
tions as tuples and can thus be regarded as a single discrete control. The process can
be repeated to account for additional discrete controls.

Applying the outer convexification results in a matrix of weights

W ~v,~η =






w~v1,~η1 . . . w~v1,~ηnη

...
. . .

...
w~vnv ,~η1 . . . w~vnv ,~ηnη




 (3.55)

which is used in the evaluation of the dynamics. It is clear, that the number of op-
timization variables increases drastically. In some cases unrealistic combinations can
be omitted. Additionally it can be seen, that the sum of rows and columns repre-
sent the summed weights for the individual discrete values of ~v ∈ {~v1, . . .~vnv} and
~η ∈ {~η1, . . . ~ηnη

}. A row or column sum gives the weight the discrete control would
have if it entered the dynamic system alone. Thus, the summed weight can be used
to formulate discrete constraints and switching cost independent of other discrete con-
trols and combinations. In the following, the matrix W ~v,~η is rewritten as a vector

~w~v,~η = vec (W ~v,~η) (3.56)

where the columns of W ~v,~η are stacked vertically below each other.

Mapping

In order to generalize the example above, a mapping matrix M is defined for each
discrete control






w~v1
...

w~vnv




 =M~v · ~w~v,~η (3.57)






w~η1
...

w~ηnη




 =M~η · ~w~v,~η (3.58)

that maps the discrete control combination vector ~w to the weights of the individual
sets of each discrete control. The mapping matrices are constant and the vector ~w is
a column vector representation of matrix W . Additionally, it is possible to define a
mapping for any logical combination of discrete controls.
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Reverse Mapping

The mapping of the discrete controls is used in section 3.6 to alter the optimal solution.
Therefore, it is necessary to define a reverse mapping

~w~v,~η =

[
M~v

M ~η

]”−1”

·













w~v1
...

w~vnv

w~η1
...

w~ηnη













(3.59)

to the discrete control weights of the Cartesian product. However, as the combined
mapping matrix does not have full rank, this operation cannot be carried out directly.

Due to the fact that the weight wi must be greater than or equal to zero, the reverse
mapping is unique and can be solved with a non-negative least square problem:

min
~w~v,~η

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

[
M~v

M ~η

]

· ~w~v,~η −













w~v1
...

w~vnv

w~η1
...

w~ηnη













∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

, ~w~v,~η ≥ 0. (3.60)

3.6 Solution Strategies

This section discusses aspects of the solution strategies for MIOCP. In general, it is not
possible to solve such problems in a single optimization step. Therefore a two stage
approach is used.

3.6.1 Two-Stage Optimization

As discussed above, all switching cost approaches introduce local minima in the OCP.
This fact prevents the optimization algorithm to find the optimal switching sequence.
In practice, this means that the optimal solution found remains close to the initial guess
provided by the user. A strategy is required that finds the optimal switching sequence
even for primitive / bad initial guesses of the discrete controls.

In this thesis, a two staged optimization strategy is used (see Figure 3.11). In the
first stage, the OCP is solved with disabled switching cost:

J = Jcost + 0 · JP . (3.61)

Thus, the optimization algorithm can find the optimal discrete control setting at every
time step individually. The first optimization stage can also be regarded as an initial
guess generation for the optimal switching sequence. In areas of the solution where
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one discrete control choice is clearly optimal, binary feasibility will appear automati-
cally. However fractional values may occur, especially around switches. These have to
be mitigated by the switching cost.

In the second stage, the switching costs are activated

J = Jcost + α · JP (3.62)

by setting the penalty scaling parameter to a suitable value. It shall be chosen in a
way that the switching cost adds a significant contribution to the overall cost function.
As a good starting point 20% to 40% of the main cost function may be chosen but in
practice different choices must be tested. However, in section 5.3.1 it is shown that the
multi-time switching cost formulation produces stable results over several magnitudes
of α.

With the switching cost activated, the optimization algorithm is warm-started with
the previous solution. Therefore, the solution and the constraint multipliers of the first
optimization stage must be saved. Many solvers, such as IPOPT [40], offer special
warm start features.

Due to the two-stage approach it is possible to augment the intermediate solution
(see Figure 3.11). Thus, influences that are undesired can be removed. Such may be
spikes in the optimal solution that may not be removed by the second optimization
stage. This issue and the removing algorithm is explained in the section 3.6.3.

Optimization without
Switching Penalty

Augment
Intermediate
Solution

Optimization
with Switching

Penalty
Solution

Figure 3.11: Discrete control two-stage solution approach with intermediate augmenta-
tion.

3.6.2 Step Representation

The discrete control weights of the OC are not intuitive in case a visual representation
of the discrete control choice is required. Therefore, a transformation

σi =
[
1 2 . . . nv

]
·






wi,1
...

wi,nv




 (3.63)

is used that maps the weights into an step shaped integer representation (see Figure
3.12).

The transformation assumes, that all weights are binary feasible. Thus, in the trans-
formed form, the step representation is more meaningful than the weights alone. In
case intermediate values are involved, the result represents a continuous change be-
tween two discrete values. The mapping is assumed to be applied to independent
discrete control sets and not the Cartesian product. The step representation is not only
used for visual purposes but also to allow manipulations of the switching sequence in
the intermediate step (see section 3.6.3).
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Figure 3.12: Step transformation of discrete control weights.

Since the intermediate solution is altered in the intermediate step, a back transfor-
mation is necessary. The weights are calculated

wk = k + 1− σ, wk+1 = σ − k, σ ∈ [k, k + 1] (3.64)

using the distances of the step representation to the neighboring integer values. All
other weights are zero.

The step representation assumes that the discrete choices represent some sort of
linear selection (gear changes, flap positions, etc.) and not independent sets. Addition-
ally, the reverse transformation may introduce intermediate discrete control selections
in case multiple discrete choices are skipped (gear change from 5th to 1st gear) and the
change is continuous. However, these effects are eliminated by the multi-time switch-
ing penalty approach.

3.6.3 Spike Removal

The Multi-Time switching cost approach is able to remove high frequent switches from
the optimal solution. However, there are situations where the discrete control switches
to a setting for multiple discretization steps, yet remains much shorter than anticipated
by realistic application (e.g. car switches gear for 0.2 seconds). Especially, discrete
choices that overshoot the general selection may be undesired in the final solution (see
Figure 3.13).

Dependent on the influence on the cost function and the fact that all switching
cost approaches introduce local minima in the OCP, this unwanted discrete control
selection may not be removed. Therefore, in this section, a filter algorithm is presented
that eliminates short overshooting spikes in the optimal solution by manipulating the
discrete control weights.

The algorithm uses the integer step representation explained in previous section.
It is evaluated at the points in time t, t + ∆t giving the values σ(t), σ(t + ∆t). They
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Figure 3.13: Overshooting spikes in step representation.

are used to define a box in the discrete control step history (see Figure 3.14). All step
values that are outside are limited to the box bounds.
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Figure 3.14: Box limit in the integer step representation.

The box filter is evaluated in the time interval [t0, tf −∆t]. The width of the box is
a user specified time which can be used to define the width of the switches that shall
be eliminated by this approach. After the filter processing, the resulting step history is
transformed back to the OC weight representation.

It has to be noted that this filter approach is only suitable for discrete controls that
are switched in a low frequency. Additionally, there is no guarantee that the undesired
switch will not occur in the solution of the second optimization stage. The augmen-
tation may only contribute an influence to a different local minimum. Furthermore,
it cannot be stated in general how a removal of a high frequent switch influences the
cost function. However, it can be seen in 5.3 that the intermediate augmentation of the
solution improves the consistency within parameter studies involving many optimiza-
tions.
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Chapter 4

Implementation of Optimal Control
Framework FALCON.m

In this chapter, the FALCON.m optimal control toolbox, developed in course of this the-
sis, is introduced. It implements the collocation discretization method and is optimized
for high-fidelity large scale optimal control problems.

Rather than using a commercial or free optimal control software suite, a new tool
was developed. This enables more control in the development process of solution
strategies. Especially for optimal control problems with discrete controls, a tool is
required that is able to solve large optimal control problems with 60k to 600k opti-
mization variables. FALCON.m is able to calculate the sparse analytic first and second
order gradients of such problems on a consumer PC.

The chapter is organized as follows: Section 4.1 restates the optimal control prob-
lem that is implemented by FALCON.m. Section 4.2 explains the problem definition
from the user side. This is complemented by a user guide providing more detail in-
formation. In section 4.3 the automatic analytic derivative generation of models, con-
straints and cost functions is explained from the user side. Section 4.4 explains the
interface between user functions (dynamic models, constraints, and cost functions)
and the FALCON.m toolbox. Afterwards, implementation details are discussed. Sec-
tion 4.5 explains the toolchain behind the automatic analytic derivative generation of
the user functions. The calculation of the overall sparse analytic problem derivatives
is explained in section 4.6. The chapter closes in section 4.7 with an explanation of a
discrete control extension to FALCON.m. It enables an user friendly approach to im-
plement discrete controls in optimal control problems.

It is important to note that the development of FALCON.m was partially collabora-
tive work. The user friendly definition of an optimal control problem in FALCON.m
was designed among the team members of the trajectory optimization group (see sec-
tion 4.2). The author of this thesis is responsible for the overall toolchain that calcu-
lates the analytic derivatives of user functions and the optimal control problem. This
includes the definition of high fidelity models and user functions, the overall analytic
derivative generation process of these as well as the calculation of the sparse analytic
Jacobian of large scale optimal control problems. The problem Hessian calculation
is based on the Jacobian algorithm. However, the implementation was collaborative
work. Additionally, authorship is claimed for the implementation of the discrete con-
trol extension.
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4.1 Optimal Control Problem

In this section, the optimal control problem implemented by FALCON.m is introduced.
It is similar to the problem discussed in chapter 2. The problem is stated as follows:
Minimize the cost function

J =M (~y(t0), ~x(t0), t0, ~y(tf), ~x(tf ), tf , ~p,~c, . . . ) +

tf∫

t0

L (~y(t), ~x(t), ~u(t), ~p,~c, . . . ) dt (4.1)

subject to the model dynamics

~̇x = ~fx (~x(t), ~u(t), ~p,~c, . . . ) (4.2)

~y = ~fy (~x(t), ~u(t), ~p,~c, . . . ) (4.3)

where ~x is the state vector, ~u the control vector, ~p the parameter vector, and ~c multiple
constant inputs entering the model or cost functions. All optimizable variables are
limited by lower and upper bounds

~xLB ≤ ~x(t) ≤ ~xUB, ~uLB ≤ ~u(t) ≤ ~uUB, ~pLB ≤ ~p(t) ≤ ~pUB. (4.4)

Additionally to the state derivatives, the model calculates an optional output vector ~y.
It contains additional or intermediate values that are calculated within the equations
of the dynamic model. Similarly to the optimization variables, box constraint limits

~yLB ≤ ~y(t) ≤ ~yUB (4.5)

can be defined for the model outputs. They enable a simple implementation of path
constraints. For more complex cases, path constraints

~gLB ≤ ~g (~y(t), ~x(t), ~u(t), ~p,~c, . . . ) ≤ ~gUB (4.6)

can be defined enabling any mathematical constraint formulation. The initial and final
boundary conditions for the states

~x0,LB ≤ ~x(t0) ≤ ~x0,UB, ~xf ,LB ≤ ~x(tf ) ≤ ~xf,UB (4.7)

and times
t0,LB ≤ t0 ≤ t0,UB, tf,LB ≤ tf ≤ tf,UB (4.8)

are set using box constraints as well. Equality constraints are considered by setting the
lower and upper bounds to the same value.

The optimal control problem in FALCON.m may contain multiple phases (e.g. to
introduce interior point constraints). By default all phases are independent. Model
dynamics, constraints, boundary conditions, and cost functions can be defined for each
phase individually. The state history of two phases is connected with a phase defect
constraint

~xt0,k1 − ~xtf ,k2 = 0 (4.9)

where k1 and k2 represent the phase indices. Since the phase defect is not bound to
consecutive phases, periodic optimization problems can be formulated.
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The phase defect is an example for a point constraint

~hLB ≤ ~h(~yk1(t), ~xk1(t), ~uk1(t), ~yk2(t), ~xk2(t), ~uk2(t), . . . , ~p,~c, . . . ) ≤ ~hUB (4.10)

spanning multiple phases. This constraint type enables a constraint formulation be-
tween any multiple points of the optimal control problem. This includes phase data
(outputs ~y, states ~x, and controls ~u) at various discretized time points, and additional
parameters.

4.2 Problem Definition

This section gives an overview of the problem definition in FALCON.m regarding the
most common usage. First, for better understanding, an overview about the general
implementation and ideas of the toolbox is given. Afterwards, the problem definition
is explained for the most common usage. Detailed information can be found in the
official documentation [80].

4.2.1 General Principles

Before the problem setup in FALCON.m is described, this section shall give an overview
on how the data is stored and handled within the optimal control toolbox. This in-
cludes, the definition of variables as well as their bounds, scaling, and offset. Time
histories of variables are achieved through grids. The time discretization used in FAL-
CON.m is introduced. Finally, a brief overview of the derivative handling with the
toolbox is given.

Basic Implementation Idea

The FALCON.m optimal control toolbox is implemented as a library of MATLAB classes.
For problem setup only a few classes are required. In order to sort classes and functions
of the toolbox in hierarchical order, MATLAB namespaces are used. This has multiple
benefits as it gives the tool a clear structure and only a single folder needs to be added
to the MATLAB path. Furthermore, duplicate definitions by other toolboxes can be
avoided easily since all functions and classes are referenced through the namespace
falcon .

Problem definition is achieved through classes only. All parts that make up an opti-
mal control problem such as models, constraints, or cost functions are implemented in
their own respective class. Thus, a highly modular approach, which enables fast and
efficient implementation of new features, is achieved. This modularity allows for high
flexibility. Hence, a practically unlimited number of model inputs, phases, constraints,
and cost functions can be used. It has to be noted that all cost functions are added
together to become a single cost function. Due to efficient implementation of the core
algorithms, even consumer PCs allow the solution of large optimal control problems.

All module classes belong to a single optimal control problem (falcon.Problem ).
As each child is instantiated by its parent, the factory method design pattern is imple-
mented. Therefore, a new phase of type falcon.core.Phase is instantiated by the
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problem using the method falcon.Problem.addNewPhase() instead of a stand-
alone instantiation. This principle is used throughout FALCON.m as many user caused
problem definition errors can be avoided automatically.

Data Storage

As introduced in chapter 2, all variables in the optimization vector and the constraint
vector have a lower and upper bound. Additionally, the gradient matrix must be scaled
in order to make it numerically well formed. Betts [24] suggests that a scaling for each
state, control, etc. is defined. These scalings are used to scale the overall derivatives of
the optimal control problem.

In FALCON.m, classes store this information for states (falcon.State ), controls
(falcon.Control ), parameters (falcon.Parameter ), and for path / point con-
straints (falcon.Constraint ). Their constructor has the following interface

state = falcon.State( ’Name’ , LowerBound, UpperBound, Scaling, Offset)
control = falcon.Control( ’Name’ , LowerBound, UpperBound, ..)
constraint = falcon.Constraint( ’Name’ , LowerBound, UpperBound, ..)

setting the following properties:

Name All optimization variables are identified using their names in FALCON.m. Two
class instances of e.g. falcon.State with equal names will be identified as the
same variable. Therefore, in each array of variables (e.g. state array), all names
must be unique.

Lower and Upper Bound Unscaled lower and upper bound defining the box con-
straint:

xLB ≤ x ≤ xUB. (4.11)

Scaling and Offset Used to bring the optimal control problem in a scaled state. The
scaling S and offset r are applied to value and bounds

x̃ = (x− rx) · Sx (4.12)

x̃LB = (xLB − rx) · Sx (4.13)

x̃UB = (xUB − rx) · Sx (4.14)

resulting in their scaled version denoted by a �̃.

Each parameter in FALCON.m refers to a scalar variable. Compared to the other
classes above, the parameter class holds the actual optimization variable directly. There-
fore, the interface of the constructor

param = falcon.Parameter( ’Name’ , Value, LowerBound, UpperBound,
Scaling, Offset)

requires an initial guess for the parameter value. Parameters and all other classes pre-
sented above can be used multiple times in different parts of a FALCON.m optimal
control problem. As an example, the initial and final times of a phase are implemented
by the parameter class. In a multi-phase problem, the final time of the previous phase is
reused as the initial time of the following connected phase. Due to the fact that parame-
ters in FALCON.m store the optimization value directly, multiple falcon.Parameter
instances with the same name are not allowed. Otherwise, an unique identification of
parameters is not possible.
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Discretization Density and Data Sorting

Time history data (e.g. of states) is not stored in the corresponding class but in time
grids. As mentioned in chapter 2, all data is stored w.r.t. normalized time. Each grid
has two main properties, the datatype (e.g. falcon.State ) and a normalized time
discretization. Thus, a matrix is spanned, where the number of rows represent the
datatype (e.g. states) and the number of columns the discretized time steps. All grids
are created by FALCON.m automatically.

The main grid is the so-called StateGrid which holds the discretization of states.
It implements the ”smallest common denominator” of the discretized time of all other
grids. Controls and constraints may be defined on a more sparse grid as the state grid.
Additionally, multiple control grids can be defined each having a unique discretiza-
tion (see Figure 4.1). For simulation, missing values in control grids are interpolated
(linear, previous). FALCON.m automatically uses the state grid discretization in case
no normalized time is provided by the user. All discretized states and controls as well
as the constraints are sorted w.r.t. their normalized time. Thus, the general structure of
the OCP derivatives resembles diagonal matrices.

StateGrid
τ = 0 τ = 1

Control Grid 1

...

Control Grid n

Figure 4.1: Different discretization densities of stategrid and control grids.

User Function Derivatives

FALCON.m uses gradient based optimizers and thus requires the derivatives (prefer-
ably analytic) of all user functions. Since manually calculating the first and second
order derivatives may be very tiresome and error-prone, automatic methods are pro-
vided. In normal operation, the derivative calculation and handling is not visible to
the user.

FALCON.m expects all user functions to return their local derivatives. Otherwise
they cannot be used in FALCON.m. All user functions have to undergo a preparation
step that generates their derivatives. This step has to be done once. Afterwards, they
are referred to as differentiated or prepared. There are multiple ways to achieve the
preparation, allowing a user to have much control over the derivative generation pro-
cess.

In the following sections, for simplicity, it is assumed that all user functions have
been prepared and thus implement the derivatives. An explanation on the derivative
generation from the user side is given in section 4.3. The behind the scene derivative
generation toolchain is described in section 4.5.
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4.2.2 Problem

As mentioned above, the problem class (falcon.Problem ) is the main class of the
optimal control problem implementation. Figure 4.2 displays the problem class with
important properties and methods. It holds all phases of the optimal control problem
as well as information that references information from multiple phases. Therefore,
point constraints and Mayer cost functions are found here. Additionally, a list of all
optimizable parameters of the optimal control problem exists. This is important as a
single parameter may be used in different phases, models, or constraints.

falcon.Problem

Parameters

Phases

PointConstraintFunctions

MayerCostFunctions

addNewPhase()

addNewPointConstraint()

addNewMayerCost()

Figure 4.2: FALCON.m problem class important properties and methods.

4.2.3 Phases

The falcon.core.Phase class holds all phase relevant information such as the state
grid, the control grids, the simulation model, the path constraints, and Lagrange cost
functions (see Figure 4.3).

A new phase is added to the FALCON.m problem with the method

phase = problem.addNewPhase(@modelhandle, States, Tau, S tartTime,
FinalTime)

where a function handle to the model dynamics, a vector of state objects ~x, the nor-
malized time array τ , the start time t0, and the final time tf are required. FALCON.m
automatically creates a StateGrid from this information. The real time

t = τ · (tf − t0) + t0 (4.15)

is available as a property in the phase. In case the phase model requires controls, a new
control grid can be added

controlgrid = phase.addNewControlGrid(Controls, Tau)

specifying the controls ~u and the normalized time τ . The method may be called mul-
tiple times in order to have multiple control grids. The interpolation method for the
control can be set using the method:

controlgrid.setInterpolationMethod(method).
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falcon.Phase

StartTime

FinalTime

RealTime

Model

StateGrid

ControlGrids

PathConstraintFunctions

LagrangeCostFunctions

addNewControlGrid()

addNewPathConstraint()

addNewLagrangeCost()

setInitialBoundaries()

setFinalBoundaries()

Figure 4.3: FALCON.m phase class important properties and methods.

Model

With the addNewPhase method, FALCON.m creates a model instance in the back-
ground. It is available as the Model property in the phase and calls the model dy-
namics (prepared user function). The results are stored in the StatesDotGrid and in
the ModelOutputGrid (see Figure 4.4).

falcon.core.Model

StatesDotGrid

ModelOutputGrid

ModelParameters

addConstants()

setModelParameters()

setModelOutputs()

Figure 4.4: FALCON.m model class properties and methods.

If the model implements parameters or has additional constants, they can be set
using the methods setModelParameters and addConstants respectively. The
model outputs are limited by setting constraints (falcon.Constraint ) for each out-
put with the setModelOutputs method.
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Boundary Conditions and Duration

For each phase, the initial and final boundary conditions can be set using the meth-
ods setInitialBoundaries and setFinalBoundaries respectively. There are
several ways the bound may be set

phase.setInitialBoundaries(equalbound)
phase.setInitialBoundaries(lowerbound, upperbound)
phase.setInitialBoundaries(states, equalbound);
phase.setInitialBoundaries(states, lowerbound, upperb ound);

allowing for the formulation of equality or inequality conditions. Bounds may be set
for specific states by passing the relevant state objects to the method. States without a
boundary condition keep their state object boundaries. The set methods may be called
multiple times for an individual setting of the boundaries.

Apart from the initial and final boundaries, the duration ∆t of the phase is limited.
The bounds

0 ≤ ∆tLB ≤ tf − t0 ≤ ∆tUB (4.16)

are set using the setDurationLimit method. Additionally to the bounds, a scaling
and an offset may be defined. By default, the duration must be positive 0 ≤ tf − t0.

In multi phase optimal control problems, a phase defect is required for continuity
in the state history. By default, all phases are independent, meaning no phase defects
exist. In FALCON.m, two phases are linked by setting the ConnectedPhase property
to the next phase. This is achieved by the phase method

phase1.ConnectToNextPhase(phase2)

which requires the next phase as an input parameter. Using the problem method

problem.ConnectAllPhases()

all phases can be connected automatically.

Integration Methods

In FALCON.m, the collocation discretization scheme is implemented. Therefore, the
collocation defects (2.121) must be implemented as constraints. FALCON.m imple-
ments different discretization schemes, namely trapezoidal, backward Euler, and oth-
ers as classes in the falcon.discretization namespace. The default discretization
is trapezoidal. Another discretization method is chosen by providing the class instance
to setDiscretizationMethod . During optimization, the defect values are stored in
the DefectGrid of the phase. At the end of a successful optimization, this grid con-
tains only zero values within the feasibility tolerance.

4.2.4 Constraints and Cost Functions

The quality of the solution of the optimal control problem is driven by imposing real-
istic constraints. A simple way to set constraints is by setting the bounds of the states,
controls, and parameters. Additional model outputs can be limited in a similar way.

FALCON.m allows the definition of nonlinear path and point constraints (see Figure
4.5). Path constraints formulate limits that need to be met at every discretized point in
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time (similar to output limits). A single constraint between any multiple points in the
OCP can be achieved by a point constraint. The latter allows for extremely complex
constraint formulation.

Point Constraint

Phase 1

Path Constraint

Phase 2

Path Constraint

Phase 3

Path Constraint

Figure 4.5: Difference between path and point constraints.

Only the variables required for the evaluation enter the user function that calculates
the constraints. This reduces the complexity for the user and improves the overall
performance in the gradient calculation. In order to achieve this, the constraints store
which data they require and communicate this information to FALCON.m. Therefore,
in the derivative generation step explained in section 4.5, the information required
by the constraint is stored in the prepared file that implements the derivatives. This
information is communicated to FALCON.m using a struct interface described in
4.4.2.

The main benefit of this approach is that the constraint formulation becomes inde-
pendent of the model formulation. Due to the fact that constraints communicate the
data they require, the correct information will always be provided by FALCON.m. In
case an additional state is added to the model or the order of the states is changed, the
constraint does not need to be adapted.

In the following, important aspects of the path and point constraints are discussed.
Additionally, Mayer and Lagrange cost functions that are based on both constraint
types are explained.

Path Constraint

A path constraint is evaluated on the time discretization of the phase but calculates
its constraint values w.r.t. a single time step. As mentioned above, only information
required by the path constraint user function enters it, thus defining a subset of the
phase variables. Therefore, the inputs are the subset outputs ~yc ⊆ ~y, the subsets states
~xc ⊆ ~x, and the subset controls ~uc ⊆ ~u. The parameters of a constraint ~pc are indepen-
dent on the model parameters ~p, but may have some values in common. Thus, the path
constraint interface is given by

~g (~yc, ~xc, ~uc, ~pc,~c, . . . ) (4.17)

where ~c represents an arbitrary number of constant inputs. Data that is not required
by the path constraint does not appear in the interface (e.g. no parameters ~pc = ∅ or
controls ~uc = ∅). The path constraint is added to the phase using

pathcon = phase.addNewPathConstraint(@pathhandle, cons traints, tau)

where a handle to the prepared path constraint function is given. Additionally, the
constraint objects specifying the bounds and the normalized time on which the path
constraint is evaluated must be provided.
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Point Constraint

A point constraint combines information at different times and phases of an optimal
control problem into a single value. As with the path constraints, the prepared user
function implementing the point constraint communicates to FALCON.m which data it
requires. However, in this constraint, values from different phases have to be obtained.
Each participating phase k provides a set of model outputs ~yk, states ~xk, and controls
~uk. For each phase, the set of required data by the point constraint may be different.
A custom input set is defined for every phase. During run-time, this data is requested
from the optimal control problem by the prepared point function. Thus, the requested
data from for instance two phases k1 and k2 is

~yc,k1 ⊆ ~yk,1, ~xc,k1 ⊆ ~xk,1, ~uc,k1 ⊆ ~uk,1 (4.18)

~yc,k2 ⊆ ~yk,2, ~xc,k2 ⊆ ~xk,2, ~uc,k2 ⊆ ~uk,2 (4.19)

whereas some of the subsets may be empty (e.g. ~xc,k2 = ∅). Empty sets do not appear
in the function interface.

Each phase input may have multiple time instances. Therefore, each set of inputs
~yc,k, ~xc,k, ~uc,k represents a matrix with nh columns. Additionally to the phase input sets,
parameters and an arbitrary number of constants enter the point constraint. Thus, the
possible function interface becomes

~h (~yc,k1, ~xc,k1, ~uc,k1, ~yc,k2, ~xc,k2, ~uc,k2, . . . , ~pc,~c, . . . ) , (4.20)

which allows for a highly flexible problem formulation without having to compromise
on the performance.

Similar to the path constraint, the point constraint communicates to FALCON.m
which data it requires. Within the point constraint, the phase input sets (variable
types and number of time steps), the required parameters, and constants are stored.
However, it is not defined which phase and actual time steps the data originates from.
Therefore, when a point constraint is added to the problem

pointcon = problem.addNewPointConstraint(@pointhandle , ...
constraints, phase_1, tau_1, phase_2, tau_2, ..)

the phase and time discretizations must be provided. Splitting the time information
from the function evaluation enables more flexibility and re-usability of point func-
tions.

Cost Functions

There are two types of cost functions that can be implemented in a FALCON.m optimal
control problem, namely Mayer and Lagrange cost functions.

Regarding the implementation, the Lagrange cost function and the path constraints
have similar features. Therefore, the methods to prepare path functions can be used to
create a function suitable for a Lagrange cost function as well. The same holds for the
Mayer cost function which resembles the point constraint definition.

Lagrange cost functions are phase dependent and are thus created by the phase

phase.addNewLagrangeCost(@lagrangehandle, cost, tau).
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They have a similar interface to the path constraint. The integration for the Lagrange
cost functions is carried out using the trapezoidal approach. The Mayer cost function
may span over multiple phases and is thus created by the problem

problem.addNewMayerCost(@mayerhandle, cost, ...
phase_1, tau_1, phase_2, tau_2, ..).

The method implements a similar interface to the point constraint. Instead of con-
straints, the cost functions require cost objects:

cost = falcon.Cost(Name, Scaling, Offset).

Since the cost function is unbounded, these classes implement the scaling and offset
functionality only.

4.2.5 Solving Problems

Once a problem is fully defined, it can be solved. The solution process consists of three
steps: building the problem, calling the nonlinear solver, and evaluating the Function
Generator. In the following, these steps are explained in more detail. By default, a
user is just required to call the problem.Solve method, which carries out all relevant
steps automatically.

Bake / UnBake

Before the problem can be solved, the optimal control problem formulation must be
transformed into a parameter optimization problem. This is achieved by the Bake
method in the falcon.Problem class. After its evaluation, the problem can no longer
be changed. Any attempts to do so will cause a run-time error.

falcon.Problem.Bake()

1. Check Consistency

2. Calculate Indices

3. Fill Vectors

4. Calculate Sparsity

Figure 4.6: FALCON.m optimal control problem Bake process.

Figure 4.6 shows the principal baking process. It starts with a problem consistency
check that shall determine if the problem formulation is valid. These checks include the
availability of user functions and data, as well as dimension checks. During run-time,
no further checks are required. Thus, performance and code readability are improved.

The Calculate Indices step is carried out after the consistency checks. Since the
optimal control problem is discretized into a parameter optimization problem, all opti-
mization variables are stored in a vector ~z and all user function dependent constraints

are stored in a vector ~f . In order to have simple read and write access to the vectors,
indexing matrices are created.
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Once the indices are calculated, in the third step, the vectors

~zini, ~zLB, ~zUB, Sz, ~rz, ~fLB,
~fUB, Sf , ~rf (4.21)

are filled with data. The vector ~zini represents the initial guess provided to the opti-

mizer. Additionally, the lower / upper bounds ~zLB, ~zUB, ~fLB, ~fUB, the diagonal scaling

matrices Sz, Sf , and the offset vectors ~rz, ~rf are created. As the constraint vector ~f is
dependent on ~z, it requires no initial vector. All data is taken from the variable classes
described in section 4.2.1. Before the optimizer is called, the vectors have to be scaled

~̃zini = Sz · (~zini − ~rz) , ~̃zLB = Sz · (~zLB − ~rz) , ~̃zUB = Sz · (~zUB − ~rz) , (4.22)

~̃fLB = Sf ·
(

~fLB − ~rf

)

, ~̃fUB = Sf ·
(

~fUB − ~rf

)

, (4.23)

where �̃ denotes the scaled vectors.

In the last step of the building process, the sparsity structure of the Jacobian and
optionally of the Hessian is calculated. This step is crucial for the overall optimization
performance especially for large derivative matrices where memory consumption has
a huge impact. The idea behind the sparsity calculation is explained in section 4.6.

Solvers

FALCON.m uses ”off-the-shelf” NLP optimizers to solve the optimal control problems.
As every solver has a unique interface, a custom interface wrapper is required that
communicates between both is required. At the moment, interfaces for three solvers
IPOPT [40], SNOPT [41], and WORHP [42] are implemented. In the following, the
FALCON.m derivative interface is explained. Thus, additional optimizers can be inter-
faced.

The Function Generator that evaluates the optimal control problem for a current

scaled optimization state ~̃z is implemented in the DiscretizationMethod class.
This class is found as property of the falcon.Problem instance and has two meth-
ods called OptiFunc and OptiFuncHess . The first method calculates the scaled cost

value J̃ , the scaled constraint vector ~̃f , and the scaled Jacobian of both w.r.t. the given

~̃z vector. The function has two return arguments

~̃fJ =

[

J̃

~̃f

]

, ∇z̃
~̃fJ =

∂ ~̃fJ

∂~̃z
=






∂J̃

∂~̃z

∂ ~̃f

∂~̃z




 (4.24)

where the cost value J̃ and the constraint vector ~̃f are stacked to create the com-

bined vector ~̃fJ . The non-zero elements of the Jacobian ∇z̃
~̃fJ are returned as a col-

umn vector. The assignment of the non-zero values is found in the column vectors
problem.iGfun and problem.jGvar whic represent non-zero row and column in-
dices respectively. Thus, the interface of the function OptiFunc is the following:

[F_scaled, dFdZ_scaled_vec] = ...
problem.DiscretizationMethod.OptiFunc(z_scaled).
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The function OptiFuncHess calculates the scaled Hessian of the Lagrangian

L = l0 · J̃(~̃z) +
∑

i

λi · f̃ i (4.25)

which is used in e.g. IPOPT to calculate a descent direction with the Newton
method. Input argument to the function are the current multipliers for the cost func-

tion l0 and constraints ~λ stacked in a single vector:

~σ =

[
l0
~λ

]

. (4.26)

Thus, the interface of the function OptiFuncHess is the following:

[H_scaled] =
problem.DiscretizationMethod.OptiFuncHess(sigma_sca led).

Please note that OptiFuncHess does not expect a current ~̃z vector. During the eval-
uation of the OptiFunc method, the user functions return their local Hessians. This
information is stored and extracted in OptiFuncHess . Therefore, OptiFunc must
always be called beforehand. As with the Jacobian, the Hessian is returned as a vector
containing the non-zero elements only. The assignment of the non-zero values is found
in the vectors problem.iHvar and problem.jHvar representing non-zero row and
column indices respectively.

4.2.6 Usability Features

Apart from the basic implementation of the optimal control toolbox, FALCON.m offers
some unique features that enable a wide range of applications and flexibility. Ad-
ditionally, the usability is enhanced especially for users who are unfamiliar with the
toolbox.

Control Fixing and Constraint Deactivation

In FALCON.m, controls and parameters can be fixed so that they can no longer be
optimized. Additionally, constraints can be deactivated. These options can either be
set in the constructor or by using the appropriate set method:

control = falcon.Control(Name, ’Fixed’ , true);
control.setFixed(true);

constraint = falcon.Constraint(Name, LowerBound, UpperB ound,
’Active’ , false);

constraint.setActive(false);

Thus, it is possible to assess the impact of a constraint on the solution without having
to adapt the constraints in the source code. Besides, fixing the controls enables the
utilization of FALCON.m for parameter identification purposes [81]. Fixed controls
and parameters are automatically removed from the ~z vector. Inactive constraints no

longer appear in the constraint vector ~f . The calculation of the derivatives is adapted
accordingly.
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Listing 4.1: Invoke automatic function interface creation PT1.

x = falcon.State( ’value’ );
u = falcon.Control( ’cmd’ );

problem = falcon.Problem( ’PT1’ );
phase = problem.addNewPhase(@dynmodel, x, 101, 0, 10);
phase.addNewControlGrid(u);

problem.Bake();

Listing 4.2: Automatic function interface of PT1.

function [states_dot] = dynmodel(states, controls)
% model interface created by falcon.m

% Extract states
value = states(1);

% Extract controls
cmd = controls(1);

% ------------------------ %
% implement the model here %
% ------------------------ %

% implement state derivatives here
value_dot = ;
states_dot = [value_dot];

end

Automatic Interface Generation

For problem setup and structure definition in FALCON.m, usually a MATLAB script
is used. Additionally, the user needs to provide MATLAB functions which implement
the model dynamics, the constraints, and the cost functions. In order to simplify the
creation of these user functions, FALCON.m creates templates based on the problem
definition.

In order to use this feature, e.g. for model interface generation, instead of passing
a handle to a prepared model function, a handle to a non-existent function is passed
to the addNewPhase method (see Listing 4.1). In the Bake method, FALCON.m auto-
matically detects that the function is not available and prompts a message to the user
whether an interface shall be auto-generated. FALCON.m creates a function template
for the model interface (see Listing 4.2) in the current working directory. This feature
works in the same way for path / point constraints and thus for cost functions as well.
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Automatic Initial Guess Creation

Any iterative optimization algorithm requires a starting point, called an initial guess,
from which it starts its iterations. For the discretized optimal control problem a guess
must be provided as well. The FALCON.m optimal control toolbox offers a simple au-
tomatic initial guess generation. It uses the boundary conditions and bounds of the
states and controls to approximate suitable values for an initial guess. This algorithm
requires no information regarding the model dynamics. Although in many cases a suit-
able initial guess is obtained, there is not guarantee that it leads to an optimal solution.
Additionally, initial guesses for parameters must always be provided.

The algorithm works as follows: In case a boundary condition for a state exists,
the mean value is taken respectively. Otherwise, the lower and upper bounds of the
states are used to calculate a mean value. If a lower or upper bound is infinite, the
non-infinite bound is used. If both bounds are infinite, the state is initialized with zero.
The initial and final state guesses are used for a linear interpolation over time. For the
controls, no boundary conditions exists. However, the lower and upper bounds are
used to calculate a constant mean over time.

Post Processing

After a successful optimization, it is possible to apply post processing filters to the
results. The post processing is designed for measurements and calculations that are
required for plotting or further analysis, but not during the optimization. Thus, the
calculation overhead is reduced. No derivatives are calculated for the post processing
values.

A post processing step is added with the method

problem.addPostProcessingStep(funcHandle, inargscell , calcValues)

where funcHandle is a function handle, inargscell an input argument cell array
using the FALCON.m data objects, and calcValues represents an array of value ob-
jects (falcon.Value ) of suitable size for the return values. falcon.Value outputs
of a post processing step may be used as inputs in a successive step.

The post processing step calculation is applied to all phases automatically. Us-
ing the data objects (e.g. falcon.State ) the relevant data is extracted from the
phases. In case data is not available in the phase it is replaced by nan (not a num-
ber) values. All post processing steps can be removed from a problem using the
problem.clearPostProcessing method. The results are stored in the phase prop-
erty PostProcessingGrid .

Data Plotting and Export

A visual representation helps to evaluate the quality of a solution obtained by the op-
timization. In FALCON.m a plotting tool is integrated which enables a user to create
custom plots. It can be opened using the problem.PlotGUI . Further information can
be found in the documentation [80].

Apart from plotting features, it is possible to export the data in two ways: The
problem.ToStruct method creates a struct representation from the problem instance.
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This struct can for instance be used in the plotting tool. Additionally, a time series
representation of the results can be obtained with the getTimeSeries method. It au-
tomatically concatenates all phases in order of appearance. The resulting time series
object may be used in Simulink for further analysis.

4.3 User Function Derivatives

FALCON.m uses gradient based optimization algorithms to solve the optimal control
problems. Therefore, the first order and sometimes the second order derivatives of the
user functions are required to build the overall problem derivatives. As these deriva-
tives shall not be provided by the user, automatic methods have to be applied.

All user functions are preprocessed to include analytic derivatives. FALCON.m uti-
lizes the MATLAB’s Symbolic Math Toolbox for the differentiation requiring no or little
user input. Since the model and path constraints are evaluated at multiple points in
time, user functions and their derivatives are compiled into MEX files using MATLAB
Coder. This enables very fast evaluation that supports multi-threading.

In case either the Symbolic Math Toolbox or the MATLAB Coder are not available,
FALCON.m automatically switches to a compatibility mode. Then, finite forward dif-
ferences or evaluations in MATLAB are used respectively. However, these modes are
not discussed in this thesis.

All models / constraints and cost functions are created using builder classes in
FALCON.m:

falcon.SimulationModelBuilder for dynamic models

falcon.PathConstraintBuilder for path constraints and Lagrange cost functions

falcon.PointConstraintBuilder for point constraints and Mayer cost functions

In this section, the derivative calculation is explained from the user’s point of view.
The implementation is described in section 4.5. Derivatives for all user functions may
be generated with one of the following two modes:

Function Mode Calculates the derivatives of a single MATLAB source function for
the dynamic model, constraint, or cost function. It is the preferred way as the ac-
tual user implementation is very simple. However, dependent on the complexity
of the source function at hand, the calculation of the derivatives may fail. This is
mainly due to computational limits of MATLAB’s symbolic math engine. In this
case, the subsystem mode must be used.

Subsystem Mode Is used if the Symbolic Math Toolbox cannot calculate the analytic
derivatives for a whole user function directly. This situation occurs mainly in the
following (but not exclusive) situations:

• multiple matrix vector multiplications

• multiple high order polynomials

• non-continuities such as lookup tables

• derivatives contain imaginary numbers
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There is no clear rule when the symbolic differentiation fails. However, difficul-
ties in the source code transformation are recognizable by the required time (e.g.
longer than 30 seconds). In this case, the user function can usually be split into
smaller subsystems, which can be differentiated locally (see Figure 4.7), giving
the subsystem mode its name. The local derivatives are automatically recom-
bined via the chain rule to include the overall user function derivatives.

In the following, both modes are explained in more detail.

Derivative Builder

~̇x~x

~u ~y

~̇x,∇~x~̇x~x

~u ~y,∇~x~̇y

Figure 4.7: Subsystems of a user model function.

4.3.1 Function Mode

The function mode is invoked by passing the function handle to the builder in the
constructor. In this case, the builder requires the interface of the input arguments and
output arguments. From this information, symbolic variables are created. These are
used to call the user function. Thus, the function is available as a symbolic representa-
tion in the MATLAB workspace. The derivatives are generated and written to MATLAB
code. The differentiated function is compiled to MATLAB MEX file for fast evaluation.

In section 4.2.6 the automatic interface generation is presented. FALCON.m creates
an interface for a not yet existing user function. Once it is implemented by the user,
FALCON.m is linked to the source user function which does not implement the deriva-
tives. In this case, FALCON.m automatically uses the function mode derivative gener-
ation in the background. The resulting file is stored in the current working directory
using the name of the function handle preceded by fm mex.

4.3.2 Subsystem Mode

More complicated user functions cannot be differentiated by the symbolic math tool-
box directly. Therefore, FALCON.m offers the subsystem mode for the derivative gen-
eration. The basic idea is that the user splits the dynamic model, constraint, or cost
function into simple subsystems which are implemented as MATLAB functions. FAL-
CON.m automatically creates the derivatives for each and calculates the derivatives for
the overall user function by applying the chain rule. In the following, the principles of
the subsystem mode and the method provided by the builder classes are described.
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Listing 4.3: Minimal subsystem mode example.

states = [falcon.State( ’x’ ), falcon.State( ’y’ )];
controls = [falcon.Control( ’V’ ), falcon.Control( ’alpha’ )];

mdl = falcon.SimulationModelBuilder( ’myModel’ , states, controls);
mdl.addSubsystem(@myfunc, ... % Subsystem Function Handle

{ ’x’ , ’y’ , ’V’ , ’alpha’ }, ... % Inputs to Subsystem
{ ’xdot’ , ’ydot’ }) % Outputs of Subsystem

mdl.setStateDerivativeNames({ ’xdot’ , ’ydot’ });
mdl.Build();

For simplicity, the explanation will be given with an application to a dynamic model
in mind as it is usually the most complex part of the derivative generation. All princi-
ples and methods described can be transfered to constraints and cost functions too.

Principles

Apart from the subsystems themselves, the user needs to define how these are con-
nected. In FALCON.m every signal / variable is represented by a unique string. For
every variable available in the model, FALCON.m stores its size (number of rows and
columns).

In Listing 4.3, the states and controls are defined by an array of data objects which
are passed to the constructor of the builder instance. Additionally, the name of the final
prepared derivative function is given. In the example the name is myModel .

Within the builder, all states and controls will be registered as individual scalar
variables. Then, an arbitrary number of subsystems can be added to the model. For
every subsystem, the source function (first argument), input arguments (second argu-
ment), and the output arguments (third argument) must be specified. Input and out-
put arguments of a subsystem are specified using cell arrays of strings. The method
setStateDerivativeNames sets the variable names that hold the state derivative
information. The order must match the states specified in the constructor. Finally,
Build method invokes the derivative generation process.

In the example above only states and controls enter the model. Additional inputs
may be a set of parameters or a series of constants.

Constants

There are three ways how constants can be used in the subsystem mode. As a re-
minder, no derivatives are calculated w.r.t. constants. In the following, mdl represents
an arbitrary derivative builder instance.

addConstantInput This method

mdl.addConstantInput( ’name’ , [m,n])

expects the name of the input as well as its size. This way, an additional, constant
input is added to the model. This method is also available in the function mode.
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addConstant Adds an internal constant to the list of variables that cannot be altered
after the construction of the model. The method

mdl.addConstant( ’name’ , value)

requires the name of the constant as a string as well as its value. This approach
may be used in case a constant is used multiple times within the model dynamics.

Numeric Value Apart from strings, subsystem inputs can also be numeric variables
(see Subsystems section below). This approach may be used instead of the con-
stant that is represented by a string. In case it contains many zero elements, the
analytic derivative generation can exploit the structure resulting in faster evalu-
ations during run-time. The derivatives must be recalculated in case the numeric
constant is changed.

Subsystems

Subsystems are added to a model using the

mdl.addSubsystem(subsystem, inputs, outputs)

method. All subsystems are evaluated in the order they are added to the builder.
Therefore, it is crucial that all required input data is available. FALCON.m checks the
feasibility of the subsystem call and throws an error if conditions are not met. A sub-
system can be of the following types:

function A function handle to a MATLAB function. This is the simplest and recom-
mended option.

matlab.System An instance of a matlab.System class. The main benefit of this
subsystem is that it can be re-used in the Simulink environment.

anonymous function Ideal for small computations that fit in a single line of code (e.g.
a summation).

MATLAB builtin functions, nested functions or local functions (e.g. below class defini-
tion) are not supported. However, they can always be included by calling them from
another supported subsystem type (e.g. anonymous function).

During the build process FALCON.m creates the derivatives of the source functions.
For every subsystem source function a hash value is generated that is stored if the dif-
ferentiation of the subsystem was successful. Thus, already differentiated subsystems
are skipped. This speeds up the derivative generation process if a small change was
made and a reconstruction is necessary. The hash value is calculated only for the top-
level function, meaning any changes in called subfunctions are not detected. In order
to force a new generation of all derivatives, the fm models and fm constraints
folders in the current working directory can be deleted.

Inputs to the subsystem are defined as a cell array of strings where each entry rep-
resents an input. A cell array with one entry expects the subsystem to have a single
input. The number of inputs is not limited. Each input is identified by the string name.
Additionally, an input entry may be a numeric value. In case all inputs are constants or
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numeric values, FALCON.m will not create derivatives. The outputs of the subsystem
will be regarded as constant as well.

Similar to the inputs, the outputs are defined as a cell array of strings. For each
output, a name has to be defined. The output sizes are automatically determined. All
outputs are added to a list of variables currently available and can thus be used in
following subsystem calls. An output can be omitted by setting a tilde (’˜’ ) as the
output string. Listings 4.4 shows some example subsystem calls.

Listing 4.4: Input and output examples of a subsystem call.

mdl.addSubsystem(@system, { ’in1’ }, { ’out2’ })
mdl.addSubsystem(@system, { ’in1’ , value, ’in3’ }, { ’˜’ , ’out2’ })

Additionally to the derivatives, FALCON.m calculates the sparsity patterns of the
outputs Jacobian/Hessian w.r.t. the subsystem inputs. Constant inputs are not consid-
ered in the pattern. Let

f(x, y, z) =

[
x2 + cos(z)
exp(x) + y

]

(4.27)

be an exemplary subsystem function. If all inputs (x, y, z) are derived from optimizable
model inputs, the Jacobian and Hessian

∂f

∂[x, y, z]
=

[
2 · x 0 − sin(z)

exp(x) 1 0

]

,
∂2f

∂[x, y, z]2
=











2 0 − cos(z)
0 0 0

− cos(z) 0 0
exp(x) 0 0

0 0 0
0 0 0











(4.28)

as well as their sparsity patterns

{
∂f

∂[x, y, z]
6= 0

}

=

{
1 0 1
1 1 0

}

,

{
∂2f

∂[x, y, z]2
6= 0

}

=







1 0 1
0 0 0
1 0 0
1 0 0
0 0 0
0 0 0







(4.29)

can be calculated. In case y represents a constant, the calculated derivatives and thus
the sparsity patterns are reduced:

∂f

∂[x, z]
=

[
2 · x − sin(z)

exp(x) 0

]

,

{
∂f

∂[x, z]
6= 0

}

=

{
1 1
1 0

}

, (4.30)

∂2f

∂[x, z]2
=







2 − cos(z)
− cos(z) 0
exp(x) 0

0 0






,

{
∂2f

∂[x, z]2
6= 0

}

=







1 1
1 0
1 0
0 0







. (4.31)

Similar to the calculation of the overall model derivatives from the local ones, the local
sparsity patterns are used to calculate the overall sparsity pattern of the model output
arguments w.r.t. the model input arguments. The sparsity pattern is used to calcu-
late the sparsity pattern of the overall optimal control problem. The structure of the
Jacobian and Hessian is explained in more detail in section 4.5.
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In order to calculate analytic derivatives of the subsystems, all calculations have
to be supported by MATLAB’s symbolic math engine. Thus, conditions and loops are
generally not supported. The optimal control theory states that all functions must be
continuously differentiable. In case a function is defined piecewise or a look-up-table
is used it may be continuously differentiable but the symbolic math engine is unable to
handle the differentiation. The issue can be resolved by using a derivative subsystem.

Derivative Subsystems

Derivative Subsystems are used in case a subsystem cannot be differentiated analyti-
cally by the symbolic math engine (e.g. table data, piecewise defined functions). By
using the

mdl.addDerivativeSubsystem(subsystem, inputs, outputs )

method it is possible to add any kind of subsystem to the model. However, in this case,
the derivatives need to be supplied by the user. As subsystems are much smaller than
whole dynamic models, these can usually be differentiated by the user. In all other
cases approximation of derivatives such as finite differences may be used.

The builder method works in the same way as addSubsystem , but automatic
derivatives will not be calculated. Additionally, only function handles are supported.
The output sizes as well as the sparsities of the derivatives are determined automati-
cally using a ”not-a-number call” with suitable input sizes to the supplied subsystem
handle. In case the subsystem does not support ”not-a-number” calls, the output sizes
as well as the sparsities can be set manually using MATLAB Name-Value pairs.

The return arguments of a differentiated subsystem have a certain order. All output
values are returned, followed by a Jacobian for every output w.r.t. the subsystem input
variables. In case the Hessians are required one for each output must be returned
after the Jacobians. Thus, a subsystem having three inputs x, y, z and two individual
outputs a, b has the following interface

[a, b, j_a, j_b, h_a, h_b] = subsystem(x,y,z)

where the preceding j and h are used to denote the Jacobian and Hessian. Please note
that the names of the Jacobians and the Hessians must not appear in the output cell
array of the addDerivativeSubsystem method. They are automatically assumed
by FALCON.m. The derivatives provided by the user must match the input arguments.
Additionally, derivatives of constant inputs must not appear in the provided deriva-
tives. The structure of the derivatives is explained in section 4.5.2.

Variable Manipulation

It often occurs that individual values are required, but the variable is only available
as a vector. On the other hand, sometimes variables need to be stitched together (e.g.
to form a matrix or a vector). For these cases, the subsystem derivative builder in
FALCON.m offers two methods:

SplitVariable splits a variable into multiple parts.

CombineVariables combines variables to a single new variable.
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Multiple variables are combined using the method

mdl.CombineVariables( ’name’ , cellarr)

that requires a name for the new variable. Additionally, a cell array of strings is pro-
vided. It holds the names of the variables to be stitched together. The method may
be used to concatenate variables to vectors or matrices. Therefore, the layout of the
cell matrix is considered. The sizes of the individual variables must support a con-
catenation to a two dimensional rectangle (see Figure 4.8). Additionally, all variables
must either be constant or dependent on the model inputs. Mixing both constant and
derivative variables is currently not supported.

Combine

Split

Figure 4.8: Combining and splitting of variables.

A vector or matrix can be split into multiple variables with the

mdl.SplitVariable( ’name’ , cellarr)

method. It requires the name of the variable to be split and a cell array of names for
the generated parts. In the split variable method two cases have to be considered. In
case the variable is split into scalar parts, the cell array of strings must have the same
size as the variable. FALCON.m thus creates a new scalar variable for each.

If a variable is split into multiple matrices, the size of the cell array does not match
the variable size. In this case, the column and row splitting vectors

mdl.SplitVariable( ’name’ , cellarr, ...
’RowSplit’ , rows, ’ColSplit’ , cols)

must be specified. They define how many rows and columns are assigned to each row
and column of the cell array matrix. The sum of the splitting vectors must match the
size of the original variable. For example, the variable A has the size [6, 5]. Using the
command

mdl.SplitVariable( ’A’ , { ’a’ , ’b’ , ’c’ ; ’d’ , ’e’ , ’f’ }, ...
’RowSplit’ , [2,4], ’ColSplit’ , [2,1,2])

it is split into 6 new variables

A ∈ R
6×5 → [a ∈ R

2×2] [b ∈ R
2×1] [c ∈ R

2×2]
[d ∈ R

4×2] [e ∈ R
4×1] [f ∈ R

4×2]
(4.32)

of different sizes. The combining and splitting may be compared to mux / demux
block in Simulink. Both methods do not remove their source variables as just new
onces are created.

In order to avoid cluttering of variables, it is possible to combine and split variables
directly in the subsystem call. The combine on input feature enables a user to concate-
nate variables in the input argument call. Instead of passing a variable string for the
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input argument, a cell array of strings is used. The concatenation occurs in the same
way as with the combine variables method but no new variable is created.

Similar to combine on input, the split on output feature splits a subsystem return
variable into scalar entries. It is invoked by passing a cell array of strings instead of a
string for the output considered. The cell array must match the return size. A splitting
to a block of matrices is not supported.

The combine on input feature can be applied to both subsystem methods. However,
the split on output feature is not supported by the derivative subsystem method, as
otherwise the user supplied derivatives must be altered. Listing 4.5 shows an example
of both convenience features.

Listing 4.5: Combine on input and split on ouput.

mdl.addSubsystem(@system, ...
{ ’in1’ , { ’a’ , ’b’ ; ’c’ , ’d’ }, ’in3’ }, ... % Combine on Input
{ ’out1’ , { ’x’ ; ’y’ ; ’z’ }}); % Split on Output

Additional Remarks

In the following, some additional remarks are given:

• Global variables may be used in subsystems. However, in case the analytic deriva-
tives are calculated, the current value will be hard coded into the derivative func-
tion. Furthermore, this code is compiled to a MEX file. In case finite differences
with evaluation in MATLAB are used, the original source function is linked. Thus,
the global variable will persist in the model. It is recommended to avoid global
variables as the behavior may become unpredictable.

• Constant inputs of user functions may have a variable size. A dimension of vari-
able size is specified by setting it to infinity. Thus, e.g. look-up-table data can
be replaced without having to regenerate the model. However, as the symbolic
math toolbox does not support variable size data, a derivative subsystem must
be used.

• In subsystem mode, the names of the return variables of models, constraints,
or cost functions must be specified to the builder instance. Each builder in-
stance supplies a method where the variable names can be specified. For ex-
ample, the builder instance creating the dynamic model supplies the method
setDerivativeNames , see Listing 4.3.

4.3.3 Derivative Builder Classes

FALCON.m implements specialized derivative builders for every user function type.
Thus, derivatives of these can be created with just a few lines of code. In the following,
the builder classes are explained in more detail. All of them support both the function
and the subsystem mode.
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Simulation Model Builder

The falcon.SimulationModelBuilder is used to differentiate dynamic models.
As described in section 4.1, the dynamic models in FALCON.m implement the state
derivatives and an optional output. In the constructor

mdl = falcon.SimulatioModelBuilder(ProjectName, States , Controls, ...
Parameters, Handle)

the states, controls, and parameters are defined. These can either be an array of FAL-
CON.m data objects or a number specifying the length of the input vector. The latter
is only supported in the function mode. If the model does not implement controls or
parameters, the input is set to zero or empty ([] ). The ProjectName input argument
specifies the filename of the prepared function that implements the derivatives. In
case the optional Handle parameter is set the function mode is invoked. In this case,
all subsystem mode methods are disabled. Constant inputs are added to the model
using the addConstantInput method which can be called multiple times.

Model outputs are set by calling the

mdl.setOutputs(outputs)

method. Inputs to the method can either be an array of falcon.Constraint objects
or the number of outputs. The latter is only supported in function mode.

In subsystem mode, the variable names of the state derivatives must be specified.
This is achieved with the setStateDerivativeNames method. Additionally, all
other subsystem features are available.

The model is differentiated using the Build command. The resulting prepared
model function has the following interface

[xdot, y, jxdot, jy, hxdot, hy] = model(x,u,p,c1,c2,..)

where the values of state derivatives xdot and outputs y are followed by their Ja-
cobians and Hessians. The input arguments (states x , controls, u, parameters p, and
constants c ) are dependent on the inputs specified in the constructor. If the model does
not implement outputs or does not require all inputs (e.g p=[] ),

[xdot, jxdot, hxdot] = model(x,u,c1,c2,..)

the interface is reduced accordingly.

Path Constraint Builder

Path constraints and Lagrange cost functions are differentiated using instances of the
falcon.PathConstraintBuilder class. It is created in a similar manner as the
model builder

mdl = falcon.PathConstraintBuilder(ProjectName, Output s, States, ...
Controls, Parameters, Handle)

where the model outputs act as an additional input. In case the subsystem mode is
used, the setConstraintValueNames method must be used to specify the names of
the return variables. The possible function interface is given by

[v, jv, hv] = pathconstraint(y,x,u,p,c1,c2,..)
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where compared to the model dynamics an additional input argument for the outputs
y exists. The constraint value vector v is returned together with its Jacobian jv and
Hessian hv .

Point Constraint Builder

Point constraints and Mayer cost functions can span over multiple phases. Thus, the
falcon.PointConstraintBuilder differs from the other builders. In the con-
structor

mdl = falcon.PointConstraintBuilder(ProjectName, Handl e)

merely the name of the derivative function as well as the optional handle for the func-
tion mode are expected. In this builder, for each phase that participates, a so-called
phase input is added using the

mdl.addPhaseInput(Outputs, States, Controls, NumTimeSt eps)
mdl.addPhaseInput(Outputs, NumTimeSteps)
mdl.addPhaseInput(States, Controls)

method. As with the other builders, it expects an array of data objects or the num-
ber specifying the size of an input. Only required inputs have to be specified. The
NumTimeSteps input argument tells the builder the number of time steps that can be
expected for all phase inputs. The default value is one time step. In case of multiple
time steps the column vectors entering the point function become matrices. Only the
information and the expected number of time steps are defined, but not the phase and
the time steps which the data actually comes from. The number of phase inputs is not
limited.

Additionally to the phase inputs, optimizable parameters can be added to a point
constraint using the setParameters method. As with the other builders, constant
inputs can be added as well. All inputs to a point constraint are optional. Thus, it is
possible to define constraints and cost functions that only depend on parameters.

In the interface of the derivative point constraint

[v, jv, hv] = pointconstraint(y1,x1,u1,y2,x2,u2,..,p,c1 ,c2,..)
[v, jv, hv] = pointconstraint(y1,u1,u2,..,p,c1,c2,..)
[v, jv, hv] = pointconstraint(p,c)

the phase inputs are expected in the order of definition followed by the constraint
parameters and the list of constant inputs. Additionally, other possible interfaces are
shown.

In case the subsystem mode is used, the variable names must be associated with a
phase input block. As multiple phase inputs may have the same name for e.g. states,
variables must be clearly identifiable. For each phase input a group index, starting at
1, is assigned. Every variable of the phase input is suffixed by g# where # represents
the group index. Thus, a state named ’speed’ entering with the second phase input
block will have the variable name ’speed g2’ . If the phase input has multiple time
steps, the variable will be a row vector of the time step length. As before, the constraint
value names have to be specified using setConstraintValueNames .
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Name-Value Pairs

All builder classes offer an additional set of MATLAB Name-Value pairs that can be
used to influence the derivative generation process. These options can be set in the
constructor or in the build method. In the constructor of a builder, the following op-
tions are available:

DerivativeMode Flag that defines whether the derivatives are calculated analytically
(analytic ) or using forward finite differences (finite difference ). The lat-
ter is automatically selected in case the Symbolic Math Toolbox ist not available.
The default setting is analytic .

Optimize Sets the code optimization option when writing the analytic derivatives to
a MATLAB function. This feature is only available in MATLAB 2014b or later
and if the DerivativeMode is analytic . In earlier versions of MATLAB, this
option is fixed to true . Dependent on the subsystem or user function size, code
optimization can yield a significant speed improvement during run-time but may
take much longer during the derivative generation process. The default option is
false for function mode and true for subsystem mode.

DoDependencyCheck Setting this flag to true causes FALCON.m to check whether
a user function or subsystem depends on any other non-built-in functions. As
these will not be considered in the hash value check, potential changes will not
be detected. An update of the derivatives does not occur in this case. This option
merely displays a warning if dependencies are found. However, since this check
requires a significant amount of time in MATLAB, this option is set to false by
default.

DoHessian Specifies whether the Hessian of the user function is calculated. The de-
fault value is false . This option is not available if the DerivativeMode is set to
finite difference .

ParentDirectory The preparation of the derivatives requires the generation of tem-
porary files and data. These are stored in a subfolder which has the same name
as the derivative function (ProjectName ). This option specified where the par-
ent directory of this folder is found. By default, the temporary folders for models
and constraints are stored in the fm models and fm constraints respectively.
Both folders are found in the current working directory of MATLAB and are cre-
ated automatically during the build process. These folders can be deleted as the
information is temporary. However, in this case all derivatives must be regener-
ated if the project is rebuilt.

With the call of the build method the following options can be set:

EvaluationProvider Flag specifying whether the differentiated user function shall
be evaluated in MATLAB (matlab ) or in a compiled MEX file (mex). FALCON.m
automatically switches to MATLAB evaluation in case the MATLAB Coder is not
available. The default option is mex.
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MultiThreading Model and path constraint user functions are evaluated at multiple
points in time. Due to the collocation method, all of these evaluations are inde-
pendent. Therefore, this process can be highly parallelized. Setting the multi-
threading option to true enables parallelized evaluation in the compiled MEX
files. The OpenMP compiler options are used. This option is deactivated by de-
fault as not all compilers support this framework. A parallelized evaluation in
the matlab EvaluationProvider option is currently not considered.

OutputFolder Specifies where the final prepared user function is stored. The default
location is the current work directory.

Discrete Control Support

In this thesis, discrete controls are considered in optimal control problems. The Outer
Convexification was introduced in chapter 3. The OC reformulates the discrete controls
in continuous form. Thus, these types of problems can be solved with existing methods
for continuous optimal control problems.

However, the OC requires the evaluation of all discrete control combinations at
every time step. All evaluations are weighted

~̇x =
∑

k

wk · ~fx (~x(t), ~u(t), ~p, ~vk,~c, . . . ) (4.33)

~y =
∑

k

wk · ~fy (~x(t), ~u(t), ~p, ~vk,~c, . . . ) (4.34)

∑

k

wk = 1, wk ∈ [0, 1] (4.35)

to create a combined state derivative and output. The original discrete control values
becomes a constant in the optimal control problem but changes with the choice of the
discrete control. In order to avoid complicated creations of models, the OC approach
is implemented directly into the derivative generation tool-chain.

A discrete control is added to the simulation model builder instance with the

mdl.addDiscreteControl(Name, Size)

method that expects the variable name of the discrete control and its size. As stated
above, the discrete controls enter the model dynamics as a constant matrix. Every
column is assumed to represent a discrete control choice. The number of columns is
variable and depends on the number of discrete choices during run-time. Therefore,
the specified size of the discrete control must represent a column vector.

An unlimited number of discrete controls may be added to the model dynamics.
Each discrete control acts as separate input. Please note that the simulation model
builder does not evaluate all possible discrete control combinations automatically. The
differentiated user function merely evaluates the combinations passed to it and applies
the OC.

If discrete controls are involved, the function interface of the differentiated model
dynamics

[xdot,y,jxdot,jy,hxdot,hy] = model(x,u,p,v1,v2,..,c1, c2,..,alpha,w)
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slightly differs from the nominal case. The discrete control value inputs (v1,v2,... )
are expected between the model parameters and the constants. The discrete control
weights w are the last input. Within the optimal control problem they are considered
as additional controls. The alpha input parameter is an additional input that can be
used to augment the derivatives by specifying additional of zero columns and rows
(e.g. to account for slack variables not considered in the model dynamics). This is e.g.
required for the switching cost approach by [6]. The derivative structure of a model
with discrete controls is shown in the next section.

As the FALCON.m optimal control problem does not support discrete controls, the
prepared discrete control model cannot be used in FALCON.m directly. Instead, a wrap-
per function must be used. Section 4.7 describes how discrete controls and vanishing
constraints are considered in the optimal control toolbox.

4.4 Interfaces and Advanced Options

In this section, the interface between the FALCON.m optimal control toolbox and the
differentiated user functions is explained in more detail. Although this information
is not required for the default usage of FALCON.m, it is nevertheless a good idea to
understand the underlying structure. Furthermore, there may be situations in which a
user function cannot be differentiated by the derivative builder classes. For instance, a
struct is used within the user function which is not supported as input argument. In
this case, a manually written function may be used instead.

4.4.1 Derivative Structure

In the previous section, the derivative builder was introduced. Prepared user functions
do not only return values but also the derivatives w.r.t. the inputs. In the following,
the structures of the user function derivatives are explained.

In FALCON.m, all derivatives are returned in matrices containing the Jacobian and
Hessian w.r.t. all inputs. In case a user function is evaluated at multiple time steps
(such as dynamic models and path constraints), each time step is a page in the third di-
mension. The number of pages in the third dimension equals the number of evaluated
time steps nt.

Dynamic Models

Dynamic models return not only the state derivatives but also additional model out-
puts. Therefore, a dynamic model in FALCON.m may have two return arguments and
thus provides a Jacobian and a Hessian for each argument.

Figure 4.9a shows the structure of the Jacobian. The derivatives are stored in in-
put blocks with the order states ~x, controls ~u, and parameters ~p. The third dimension
represents the number of time steps nt.

Similarly, the Hessians of the dynamic model are shown in Figure 4.9b. The Hes-
sians for each entry of the return parameters are stacked vertically. In the figure, the
Hessians for the first entries are shown. Each Hessian block can be split into multiple
sub-blocks that represent the different derivative combinations.
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(b) Hessian layout of state derivatives and outputs of dynamic models.

Figure 4.9: Dynamic model derivative structure without discrete controls.

Dynamic Models with Outer Convexification

In case the dynamic model implements the OC of the discrete controls, the return
derivative structure is expanded. In Figure 4.10, the structures are shown for the state
derivatives. It can be seen that additional dependencies are introduced. These depen-
dencies are the discrete control weights ~w and additional slack control variables ~α.

It may not be visible directly, but the derivative structure does not match the one ex-
pected by FALCON.m. As the slack variables and the discrete control weights represent
controls in the optimal control problem, the derivative order should be

~x, ~u, ~α, ~w, ~p. (4.36)

This is not met in case the model implements parameters which is an issue that was
not accounted for during development. The C++ code that generates the extended
derivatives does not have any information on the order or type of the derivatives.
It merely appends the OC to the derivative blocks. In case the model implements
parameters, the rows and columns must be shifted (see red arrows in Figure 4.10).
This shift is performed by the FALCON.m discrete control extension which is described
in section 4.7.

The appended derivatives of the OC are not calculated by the differentiated model
but are implemented in the MEX file that wraps the original non-discrete model. The
derivatives can be derived from the definition of the OC:

~̇x =
∑

k

wk · ~fx (~x, ~u, ~p, ~vk) . (4.37)

As the model state derivatives are weighted by ~w, the corresponding Jacobian and
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(a) Jacobian layout of outer convexification approach.
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(b) Hessian layout of outer convexification approach.

Figure 4.10: Jacobian and Hessian layout of dynamic model derivatives implementing
discrete controls and outer convexification.

Hessian blocks

∂~̇x

∂[~x, ~u, ~p]
=
∑

k

wk ·
∂ ~fx

∂[~x, ~u, ~p]
(~x, ~u, ~p, ~vk) (4.38)

∂2~̇x

∂[~x, ~u, ~p]2
=
∑

k

wk ·
∂2 ~fx

∂[~x, ~u, ~p]2
(~x, ~u, ~p, ~vk) (4.39)

are weighted in the same way. The derivatives w.r.t. the discrete control weights ~w are
basically a re-sorting of the values and Jacobians of the state derivatives for different
discrete control evaluations. In the Jacobian, the derivatives w.r.t. the discrete control
weights

∂~̇x

∂ ~w
=
[

~fx (~x, ~u, ~p, ~v1) . . . ~fx (~x, ~u, ~p, ~vnv)
]

(4.40)

are the state derivative columns for each discrete control combination concatenated to
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a matrix. Similarly, the Hessian of an entry is created by stacking the Jacobians

∂2ẋ1
∂ ~w∂[~x, ~u, ~p]

=

(
∂2ẋ1

∂[~x, ~u, ~p]∂ ~w

)T

=






∂fx,1
∂[~x,~u,~p]

(~x, ~u, ~p, ~v1)
...

∂fx,1
∂[~x,~u,~p]

(~x, ~u, ~p, ~vnv)




 (4.41)

of a state derivative entries vertically. It can easily be seen that the Hessian

∂2ẋ1

∂ ~w2 = 0 (4.42)

is equal to zero. Due to the fact that the slack controls ~α bypass the model, any partial
derivatives are zero.

Path Constraints and Lagrange Cost Functions

The structures of the path constraint and Lagrange cost function derivatives are very
similar to the dynamic models. Figure 4.11 shows the derivative structure for the Ja-
cobian and Hessian. There exists an additional dependency, which are the model out-
puts. Thus, the order of derivatives blocks are outputs ~yc, states ~xc, controls ~uc, and
parameters ~pc. As stated in section 4.2.4, all constraint inputs may be a subset of the
available data in the phase. The parameters ~pc may be partially common with model
input parameters ~p.
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Figure 4.11: Jacobian and Hessian layout of path constraint and Lagrange cost function.

Vanishing Constraints

Vanishing constraints are not supported by the derivative builder as a generalized for-
mulation cannot easily be written in C/C++ code. Therefore, the augmentation of the
vanishing constraints is done in MATLAB and implemented in the FALCON.m discrete
control extension (see section 4.7). Here, the vanishing constraint derivative structure
of the Jacobian and the Hessian is explained. For simplicity, a scalar vanishing con-
straint is assumed. A vectorized evaluation is achieved by applying the presented
formulas to all entries of the constraint vector.
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The vanishing constraint is defined by a function

ψ(g, wc, κ) ≤ 0, g ≤ 0, wc ∈ [0, 1], κ ≥ 0 (4.43)

where g is a user defined path function that shall be used in the vanishing constraint,
and where wc ⊆ ~w is an entry of all discrete control weights. The relaxation parameter
κ ⊆ ~α is an entry in the slack variable vector. In this example, the relaxation parameter
is assumed to be optimizable.

As introduced in section 3.3.1, the vanishing constraint can be relaxed

ψ(g, wc, κ) = wc · (g + κ)− κ ≤ 0 (4.44)

or reformulated

ψ(g, wc, κ) =
1

2

(

gwc +
√

g2wc2 + κ2 +
√

wc2 + κ2 − wc

)

− κ ≤ 0 (4.45)

to make it numerically easier to solve.
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(a) Jacobian layout of vanishing constraint.
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(b) Hessian layout of a vanishing constraint.

Figure 4.12: Jacobian and Hessian layout of a vanishing constraint.
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Figure 4.12 shows the Jacobian and Hessian structure of the vanishing constraint
that needs to be returned to FALCON.m. The path constraint that is used in the vanish-
ing constraint formulation is assumed to be an already prepared user function. How-
ever, it returns the local values, Jacobian, and Hessian w.r.t. its inputs. For the vanish-
ing constraint, the return data must be augmented.

The chain rule for the Jacobian is applied to the vanishing constraints w.r.t. the path
constraint

∂ψ

∂[~yc, ~xc, ~uc, ~pc]
=
∂ψ

∂g
· ∂g

∂[~yc, ~xc, ~uc, ~pc]
, (4.46)

as well as the discrete control weight and the slack variables:

∂ψ

∂κ
,

∂ψ

∂wc
. (4.47)

The latter two do not have any further dependencies. Therefore, the local derivatives
can be used in the Jacobian directly.

In the Hessian calculation, the chain rule for the path constraint dependency

∂2ψ

∂[~yc, ~xc, ~uc, ~pc]2
=

(
∂g

∂[~yc, ~xc, ~uc, ~pc]

)T

· ∂
2ψ

∂g2
· ∂g

∂[~yc, ~xc, ~uc, ~pc]
+
∂ψ

∂g
· ∂2g

∂[~yc, ~xc, ~uc, ~pc]2
(4.48)

is given as well as the dependencies to the slack variable and the discrete control
weights:

∂2ψ

∂κ∂[~yc, ~xc, ~uc, ~pc]
=

∂2ψ

∂κ∂g
· ∂g

∂[~yc, ~xc, ~uc, ~pc]
, (4.49)

∂2ψ

∂wc∂[~yc, ~xc, ~uc, ~pc]
=

∂2ψ

∂wc∂g
· ∂g

∂[~yc, ~xc, ~uc, ~pc]
. (4.50)

Both the Hessian and the Jacobian calculations include derivatives

∂2ψ

∂wc2
,

∂2ψ

∂κ2
,

∂2ψ

∂g2
, (4.51)

∂2ψ

∂wc∂κ
=

(
∂2ψ

∂κ∂wc

)T

,
∂2ψ

∂wc∂g
=

(
∂2ψ

∂g∂wc

)T

,
∂2ψ

∂κ∂g
=

(
∂2ψ

∂g∂κ

)T

(4.52)

which are dependent on the vanishing constraint formulation. The derivatives for the
relaxation approach (4.44) are given by:

∂ψ

∂g
= wc,

∂ψ

∂wc
= g + κ,

∂ψ

∂κ
= wc − 1, (4.53)

∂2ψ

∂g2
= 0,

∂2ψ

∂g2
= 0,

∂2ψ

∂κ2
= 0, (4.54)

∂2ψ

∂g∂wc
=

∂2ψ

∂wc∂g
= 1,

∂2ψ

∂g∂κ
=

∂2ψ

∂κ∂g
= 0,

∂2ψ

∂wc∂κ
=

∂2ψ

∂κ∂wc
= 1. (4.55)
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In case the reformulation approach (4.45) is used, the derivatives are more compli-
cated:

∂ψ

∂g
=

1

2
·
(

wc +
gwc

2

√

g2wc2 + κ2

)

, (4.56)

∂ψ

∂wc
=

1

2
·
(

g +
g2wc

√

g2wc2 + κ2
+

wc√
wc2 + κ2

− 1

)

, (4.57)

∂ψ

∂κ
=

1

2
·
(

κ
√

g2wc2 + κ2
+

κ√
wc2 + κ2

)

− 1, (4.58)

∂2ψ

∂g2
=

1

2
· κ2

(g2wc2 + κ2)3/2
, (4.59)

∂2ψ

∂wc2
=

1

2
·
(

κ2

(g2wc2 + κ2)3/2
+

κ2

(wc2 + κ2)3/2

)

, (4.60)

∂2ψ

∂κ2
=

1

2
·
(

g2wc
2

(g2wc2 + κ2)3/2
+

wc
2

(wc2 + κ2)3/2

)

, (4.61)

∂2ψ

∂g∂wc
=

∂2ψ

∂wc∂g
=

1

2
·
(

1 +
g3wc

3 + 2gwcκ
2

(g2wc2 + κ2)3/2

)

, (4.62)

∂2ψ

∂g∂κ
=

∂2ψ

∂κ∂g
= −1

2
· g2wc

2κ

(g2wc2 + κ2)3/2
, (4.63)

∂2ψ

∂wc∂κ
=

∂2ψ

∂κ∂wc
= −1

2
·
(

g2wcκ

(g2wc2 + κ2)3/2
+

wcκ

(wc2 + κ2)3/2

)

. (4.64)

Point Constraints and Mayer Cost Functions

As point constraints and Mayer cost functions span across multiple phases, the deriva-
tive structure must account for any type of dependency. In 4.13 the structures of the
Jacobian and of the Hessian are given. As before, the parameters are independent of
the phase. It can be seen that in the Jacobian all phase derivatives are independent,
whereas in the Hessian they may be coupled in an arbitrary way.

The derivatives w.r.t. a phase are depicted by a phase input

~zp =





~yc
~xc
~uc



 (4.65)

that consists of optional outputs ~yc, states ~xc, and controls ~uc. The Jacobian structure of
a phase input block is shown in Figure 4.14. Within the point constraint a phase input
can have multiple time steps. Thus, a matrix enters the point constraint rather than a
vector. In the derivatives, these matrices are considered

~yc = [~yc,1, ~yc,2, . . . ] → ~yc :=






~yc,1
~yc,2

...




 (4.66)

by stacking the columns and thus create a single vector.
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Figure 4.13: Jacobian and Hessian layout of path constraint and Lagrange cost function.

~zp,k1 ~yc ~xc ~uc

~h ~h=∂~h
∂~zp,k1

∂~h
∂~yc

∂~h
∂~xc

∂~h
∂~uc

Figure 4.14: Phase input block.

4.4.2 Derivative Builder Info Struct

Every user function of FALCON.m which is differentiated by the derivative builder im-
plements an info struct interface. This allows the user function to tell FALCON.m which
information is required for the evaluation. Thus, the implementation complexity is re-
duced for the user since only necessary information enter the constraints. Additionally,
it can be checked whether the user function and the problem definition coincides.

Figure 4.15 shows the info struct layout. The fields have the following meaning and
relevance:

input / output Struct array specifying the input and output information of the user
function. An entry in the respective array is made for every input and output.

m / n Dimension of the input where m states the number of rows and n the
number of columns. Vectors that are evaluated at multiple time steps (e.g.
state input in a path constraint) return n equal to one. FALCON.m knows
that certain input types require multiple time evaluations.

name Name of the input which is created internally during derivative genera-
tion process. It is the name of the input argument of the intermediate MAT-
LAB user function that implements the derivatives (see Derivative Function
Interface in 4.5.3). No check is made w.r.t. this field.

argnames Names of the FALCON.m data objects used to specify the inputs of
e.g. a path constraint. Using this cell array of strings, FALCON.m is able to
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User Function Info Struct
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Figure 4.15: User function info struct interface.

extract the relevant information from the optimal control problem. In case
the names are unknown, only the size of the input will be checked. In this
case, the size has to match the corresponding data in the problem definition.

type Specifies the type of data required or returned. Valid keys for inputs are
OUTPUT, STATE, CONTROL, PARAMETER, CONSTANT, and DISCRETE. For
outputs, the possible keys are VALUEfor constraints and cost functions as
well as STATEDOT, and OUTPUTfor simulation models.

groupindex Index of a phase input entering a point constraint starting at 1. Pa-
rameters and constants have a group index of 0. In all other cases (path
constraints, Lagrange cost functions, and dynamic models) this field is irrel-
evant.

jac sparsity / hess sparsity Template sparsity of output calculated by the deriva-
tive builder. In case no hessian is supplied by the user function, the corre-
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sponding sparsity field is empty.

info Struct containing additional information about the user function.

date Date the user function was created / differentiated.

computer Name of computer the user function was created on.

matlab MATLAB version used for the creation.

hessian Logical flag specifying whether the user function supports Hessian cal-
culation.

name Name of the user function that coincide with the file name. Name is used to
check whether multiple definitions exist in the MATLAB path. In case multiple
definitions a warning is printed.

type Type of user function. It is used check correct attachment to the problem. Valid
keys are SIMULATION MODELfor dynamic models, PATHFUNCTIONfor path
constraints and Lagrange cost functions, and POINT FUNCTIONfor point con-
straints and Mayer cost functions.

The info struct is returned by the user function if a single output argument is ex-
pected but no input arguments are passed. In case this evaluation fails but the function
exists, FALCON.m automatically assumes that the function has not been differentiated
yet. The corresponding derivative builder is automatically evaluated in function mode.
This way, the automatic function templates are created and differentiated (see section
4.2.6).

4.4.3 Custom User Functions

All builder instances in FALCON.m require that the size and number of input optimiza-
tion variables are fixed. This is necessary, as otherwise the derivatives cannot be calcu-
lated. If the input situation changes, a reconstruction of the derivatives is required.

There may be situations where the input situation changes for every optimization.
Therefore, a reconstruction in this case may not be desired. For instance, the summa-
tion constraint of the outer convexification approach

nv∑

k=1

wk = 1 (4.67)

is dependent on the number of discrete choices nv. If nv changes, the corresponding
builder must be re-evaluated which may be a major drawback. As this is not desired,
the issue can be resolved by providing FALCON.m with custom user function that ac-
cepts variable inputs. In this case, the derivatives and the info struct interface must be
custom written. Here, the best practice approach is stated.

In the example Listing 4.6, the summation constraint is implemented. The function
expects the discrete control weights was a matrix for all time steps.

Additionally, the input controls wis an array of falcon.Control objects repre-
senting the weights of the discrete controls expected by the path constraint. The array
is used to return the correct input / output sizes and names to FALCON.m if the info
struct is requested. The first input is hidden from FALCON.m
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Listing 4.6: Manual written user function that conforms with the FALCON.m info struct
interface.

function [ val, jval, hval ] = pathfunc_dcdc(controls_w, w)
% Calculates the summation constraint of discrete controls

nw = numel(controls_w);

if nargin <= 1
% Input
struc.input(1).m = nw;
struc.input(1).n = 1;
struc.input(1).name = ’controls’ ;
struc.input(1).type = ’CONTROL’;
struc.input(1).groupindex = 0;
struc.input(1).argnames = {controls_w.Name}.’;

% Output
struc.output(1).m = 1;
struc.output(1).n = 1;
struc.output(1).name = ’constraint’ ;
struc.output(1).argnames = {};
struc.output(1).type = ’VALUE’ ;
struc.output(1).jac_sparsity = ones(1, nw);
struc.output(1).hess_sparsity = zeros(nw,nw);

% Other
struc.info.hessian = true;
struc.name = ’pathfunc_dcdc’ ;
struc.type = ’PATH_FUNCTION’ ;

val = struc;
return

end

val = sum(w,1);
jval = ones(1, nw, size(w,2));
hval = zeros(nw, nw, size(w,2));

end
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controls_w = [falcon.Control( ’dc_1’ ); falcon.Control( ’dc_2’ )];
phase.addNewPathConstraint( ...

@(varargin)pathfunc_dcdc(controls_w, varargin{:}))

using an anonymous function. Thus, in case the info struct is requested the user func-
tion is called without input arguments. Using the varargin keyword, anonymous
functions support a variable number of input arguments. In the custom implementa-
tion, a single input is provided instead of two. This is detected by the if statement
which invokes the return of the info struct. During run-time, the values, Jacobian, and
Hessian of the constraint are returned with the correct size. The correct implementa-
tion of derivatives is checked using derivative check methods in the falcon.Problem
implementation (falcon.Problem.CheckGradient /CheckHessian ).

4.5 Subsystem Derivative Builder

In section 4.3, the derivative construction in FALCON.m was described from a user
point of view. This included the different builder instances for dynamic models, con-
straints, and cost functions. Additionally in section 4.4, the interface between the user
function and the optimal control toolbox was discussed. In this section, the internal
structure of the derivative generation toolchain is explained. As the derivatives are
constructed using multiple subsystems, this part of FALCON.m is referred to as the
Subsystem Derivative Builder (SDB) [112].

The SDB algorithm calculates the derivatives of all subsystems and combines them
using the chain rule. Additionally, the sparsity (template sparsity) and the info struct
interface are created. Internally, the SDB algorithm is generic and therefore interfaced
by the user function builder instances of section 4.3.

The section is organized as follows. Section 4.5.1 lists currently available differen-
tiation methods together with requirements for derivatives in direct optimal control
methods using collocation. In section 4.5.2, the subsystem derivative method is intro-
duced. Implementation details and a comparison to other derivative approaches are
given in sections 4.5.3 and 4.5.4.

4.5.1 Existing Derivative Methods

All differentiation methods may be distributed in two main categories: manual and
automatic. Calculating the derivatives by hand is associated to the first category. This
approach is error prone by nature and not applicable for any serious / large scale
applications. Therefore, it is not discussed further.

Automatic differentiation methods offer many benefits. Only the source function /
dynamic model has to be defined. The calculation of the derivatives (1st , 2nd or higher
order) is a completely automated process. User interaction during or a validation of
the results after differentiation is (ideally speaking) not required.

There are many algorithms or toolboxes that offer automatic differentiation. A de-
tailed list can be found on the web [113] sorted by target programming languages. In
the following, different automatic methods are discussed.
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Finite Differences

Finite Differences (FD) can be regarded as a ”brute force” approach to differentiation
which in many situations is not the ideal choice. However, this method is still used in
many applications as it is simple to implement. There are several methods available

∂f

∂x
= lim

h→0

f(x+ h)− f(x)

h
(4.68)

∂f

∂x
= lim

h→0

f(x)− f(x− h)

h
(4.69)

∂f

∂x
= lim

h→0

f(x+ h)− f(x− h)

2h
(4.70)

namely Forward Finite Differences (FFD) (4.68), Backward Finite Differences (BFD)
(4.69), and Central Finite Differences (CFD) (4.70). f represents a scalar function, x a
scalar value and h > 0 the deviation used by the finite difference. The main benefit
of FD is that they always return a derivative approximation, regardless whether the
function is differentiable or not. This benefit is also their greatest weakness since the
derivatives will always be just an approximation. Two errors influence the accuracy
of the derivative [114]. Truncation error appear due to the Taylor approximation from
which the method can be derived from. Additionally, roundoff errors due to machine
accuracy influence the resulting derivatives.

In terms of computational cost, FD require additional function evaluations. Let ~x
be a vector of size n. In this case, n + 1 function evaluations are necessary. According
to [114], the central finite differences approach has a higher accuracy at the cost of even
more evaluations (2 · n+ 1).

Additionally to the FD approaches presented above, a numeric gradient can be
calculated using a complex step [70]. The definition of the numeric derivative

∂f

∂x
= lim

h→0

Im [f(x+ ih)]

h

does not involve any subtraction error. In fact, the complex step method converges
to machine precision for h → 0 [70]. Therefore, it has a clear advantage compared to
the other methods. The only drawback is that f must be analytic (differentiable in the
complex plane) which is not supported by all functions (e.g. atan2 in MATLAB).

To compare the FD methods, an arbitrary example function

f(x) = sin2(5 · x)

is defined and evaluated at 1000 equidistant points on the interval x(t) ∈ [0, 10]. At
every evaluation point the analytic- gana and the numeric gradient gnum are calculated.
The maximum relative error

erel,max = max
|gnum − gana|

|gana|
(4.71)

is obtained. Figure 4.16 plots the maximum relative error for different step sizes h.
It can be seen that the complex step approach produces the best result and converges
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Figure 4.16: Error comparison of numerical derivatives.

to the machine accuracy1 ǫ. The central differences approach initially produces similar
accuracy as the complex step approach. For very small h, the relative error lies at
around the same order of magnitude as the forward and backward finite differences
approaches. All three converge to erel = 1 due to machine accuracy. The best accuracy
for forward and backward finite differences lies at around h =

√
ǫ · |x| which is often

stated as a good approximation for the optimal step size [114]. In practice, the step size
is lower bounded (h =

√
ǫ ·max (|x| , 1)).

Operator Overloading

Another way to automatically calculate the derivatives of a source function with ma-
chine accuracy is by operator overloading. This method follows the assumption, that
every calculation performed on a computer can be represented by a set of principal
operations (∗, /,+,−, . . . ). The derivative rules for these operations are known (e.g.
chain rule, product rule,. . . ).

Instead of using numeric values for the function call, a class which holds not only
the value but also the derivatives w.r.t. the independent variables is used. Within the
class, the operators for all principle operations and commonly used math functions
(trigonometric, exponential) are implemented.

Operator overloading can be applied to the source code as it is, even loops and
conditions can be evaluated. In many cases, only the data type has to be replaced.

1Evaluated on Core i5-4260U @ 1.4GHz running Windows 8.1 64bit with a MATLAB 2015b given
machine accuracy of ǫ = 2.22 · 10−16
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However, this method has some drawbacks as well.

First of all, since the original data types are replaced by classes, compilers cannot
perform code optimization during compilation. Thus, it can be expected that these
algorithms run slower than the source function or analytic implementations of deriva-
tives.

Second of all, operator overloading has to be supported by the programming lan-
guage it is used in. A list of software packages can be found in [113] for all common
programming languages. In this thesis, only MATLAB and C++ implementations are
relevant. For C++, which can be interfaced to MATLAB through MEX files, widely used
implementations are Automatic Differentiation using Expression Templates (ADEPT)
[71] and Automatic Differentiation by OverLoading in C++ (ADOL-C) [72]. The latter
has been successfully applied to flight trajectory optimization [33]. MATLAB based
approaches use a hybrid approach of operator overloading and source code transfor-
mation which is discussed below.

Source Code Transformation

In this method, the original source code is interpreted as a symbolic expression. The
derivatives are calculated and written to code in the original programming language.
Apart from the generation, there are no dependencies on external libraries during run-
time. The code containing no derivatives is transformed to a code which includes them.
Since both the function and the derivative calculation are evaluated at the same time,
source code transformation has a high code optimization potential. Additionally, as
there are no operator overloading classes, the compiler can perform code optimization
as well.

MATLAB itself offers a source code transformation tool with the Symbolic Math
Toolbox. Instead of numeric values, symbolic variables which can be used to call a
MATLAB function are created. Thus, the function output becomes a symbolic expres-
sion. Afterwards, the first and second order derivatives can be calculated using the
MATLAB commands jacobian and hessian . As a result, the original function and
its derivatives are available as symbolic expressions in the MATLAB workspace. The
command matlabFunction writes these expressions into a source file. Listing 4.7
gives a code example for a simple case. The resulting MATLAB file contains optimized
code and is no longer ”human friendly” to read.

Although this method offers analytic derivatives in pure MATLAB code it has some
limitations and drawbacks. The functions to be transformed must be differentiable.
This means it must not contain any conditional statements (if , else or switch ),
loops (for or while ) and other discontinuities. However, these are the same require-
ments that need to be fulfilled for general optimal control problems.

The actual drawback of this approach is the amount of function complexity that
can be handled. While writing the symbolic expression into code MATLAB tries to op-
timize the output. For complex functions, e.g. the aircraft model of section 6.1, this
process takes impractically long (approximately 9 hours). The generation time can be
significantly reduced to a 10-20 minutes by setting the optimization option to false
(see Listing 4.7). However, for the aircraft dynamics introduced in section 6.1 the gen-
erated code is faulty and produces imaginary outputs where the source function re-
turns the true results. Therefore, the symbolic source code transformation can only be
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Listing 4.7: Example Code Analytic Gradients with Symbolic Toolbox

% Create symbolic variables
x = sym( ’x’ , [5,1]);
y = sym( ’y’ , [5,1]);

% Call source function to get symbolic expression
f = func(x,y);

% Create vector of independent variables
z = [x;y];
% ... and create symbolic derivatives
j_z = jacobian(f,z);
h_z = hessian(f,z);

% Write to matlab file
matlabFunction(f, j_z, h_z, ’Vars’ , {x, y}, ...

’File’ , ’gfunc’ , ’Optimize’ , true)

applied to functions of manageable complexity.

Hybrid Approaches

In MATLAB, the software packages A MATLAB Automatic Differentiation Tool (ADi-
Gator) [75] and Automatisches Differenzieren für Matlab (ADiMat) [76] both use an
operator overloading approach to generate a source code transformed output file. It is
a MATLAB function implementing the derivatives. Whereas ADiGator is open source,
ADiMat requires a connection to a code transformation server. Although both ap-
proaches implement source code transformation, MATLAB features are required that
are not supported by code generation (sparse matrices, cell arrays, anonymous func-
tions). Therefore, these approaches currently cannot be sped up through compilation.

Practical Requirements for Optimal Control

All automatic derivative methods presented above have benefits and drawbacks. In
the following, a list of requirements to the derivative calculation for optimal control
problems in MATLAB is given:

• Analytic derivatives of the source functions for first and second order must be
created. Additionally, the derivatives shall be transformed into MATLAB code
and implement the source function and derivatives.

• For fast evaluation, the transformed code shall be compiled to a MEX file. There-
fore, any dependencies to code that is not supported by the code generation al-
gorithm of MATLAB Coder must not appear.

• Multiple input and output arguments, which may have matrix dimension, must
be supported. For each input, it can be defined whether it is an independent
variable (w.r.t. which derivatives need to be calculated) or a constant.
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• The source function provided by the user (e.g. dynamic model) evaluates a sin-
gle time step only. Vectorized evaluation of multiple steps is not required. Es-
pecially if matrix calculations are involved, vectorized evaluations become three
dimensional and thus difficult to handle. However, the generated function with
derivatives must be able to handle multiple time steps due to the nature of the
collocation method.

• Analytic gradients for high fidelity models must be supported. The generation of
the derivatives must be successful on a common consumer PC within reasonable
time (e.g. within a few minutes).

• Multi-Threading for multiple time evaluations should be supported since all com-
mon consumer PCs have multiple CPUs available.

• The Outer Convexification approach shall be supported by the model generation
approach, as it is needed for this thesis.

4.5.2 Subsystem Derivative Method

As discussed in the previous section, it is desired to obtain the analytic derivatives of a
source function / model using source code transformation. In FALCON.m, this trans-
formation is achieved with the derivative builders introduced in 4.3.3. Complicated
user functions can be differentiated using the subsystem mode. In this section, the
underlying algorithm is explained in more detail.

As mentioned, every complex system can usually be divided into multiple simple
subsystems [77]. Although the overall user-function is non-trivial, local derivatives for
individual subsystems are in most cases simple enough to be calculated by the source
code transformation. Since the connection of the subsystem is known, the derivatives
w.r.t. the user function inputs are calculated by applying the chain rule. Thus, an over-
all function that calculates the 1st and 2nd order derivatives can be created. Afterwards,
the function is compiled to a MEX file for fast execution in MATLAB. The derivative
generation process consists of two steps:

1. Create Derivative Function

(a) Division into subsystems (manually by user)

(b) Subsystem local gradient calculation using source code transformation

(c) Construction of function derivatives using chain rule (1st and 2nd order)

2. Create Evaluation Function (e.g. support for collocation requirements)

(a) Wrap derivative function for e.g. multiple time evaluations

(b) Mex compilation for fast / multi-core execution

This method can be applied to all user supplied functions of an optimal control
problem where gradients are required (e.g. models, constraints, and cost functions). In
the following, the method is presented with the dynamic model in mind.
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Subsystem Derivatives

The first step of the subsystem derivative method is the differentiation of the individual
subsystems w.r.t. their inputs. All subsystems must be differentiable in real space. This
means that loops, conditions, or any logical assignments are not allowed.

A subsystem may contain multiple inputs and outputs which at the same time can
be a scalar, a vector, or a matrix. Thus, the derivatives of the subsystem outputs have
to be calculated w.r.t. multiple inputs. At the same time, a matrix differentiated by
another matrix is also very common. Therefore, the structure of the derivatives has to
be defined. In [115], multiple definitions are discussed. However, it is argued that only
one definition is suitable. It is used in this thesis and described in the following.

For the definition of the derivatives, the following notation is used [115]. An m× n
matrix contains m rows and n columns. Thus, the size of a real matrix is given by
A ∈ R

m×n. The transposed of a matrix A is given by AT . The size of a vector ~v is given
by ~v ∈ R

n which is analog to ~v ∈ R
n×1. The identity matrix of size n× n is given by In

or In×n. Similarly, a zero matrix is given by 0n or 0n×n. Finally, if A is a m × n matrix,
vec(A) stacks the columns of A to create a mn× 1 vector.

In order to understand the matrix by matrix derivative, a simple example is stated.
Assume φ is a differentiable scalar function and ~x a vector of size n × 1. Then, the
derivative

Dφ(~x) =
∂φ(~x)

∂~xT
(4.72)

is a row vector of 1 × n. If φ is replaced by a vector function ~f(~x) of size m × 1, the

derivatives of the elements of ~f can be stacked vertically

D~f(~x) =






Df 1(~x)
...

Dfm(~x)




 =

∂ ~f(~x)

∂~xT
(4.73)

to create the Jacobian matrix of ~f . This concept can be further generalized

F (X) , F ∈ R
m×p, X ∈ R

n×q (4.74)

for a matrix function F of a matrix variable X . In this case, the derivative

DF (X) =
∂ vec (F (X))

∂ (vec (X))T
(4.75)

can be expressed by a mp× nq Jacobian matrix. It can be seen that the vec() command
is used to transform the function (4.74) to a vector function of a vector argument. Thus,
the derivative definition of (4.73) can be used.

Apart from the first order derivatives, the second order derivatives (Hessian) have
to be defined. Using the definition from the scalar function φ(~x) above, the Hessian

D2φ(~x) =
∂2φ(~x)

∂(~xT )2
(4.76)

is a n × n matrix. In case of the vectorized function ~f(~x) the similar stacking of the
derivatives

D2 ~f(~x) =






D2f1(~x)
...

D2fm(~x)




 =

∂2 ~f(~x)

∂(~xT )2
(4.77)
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G(Y ) R(G)X Y F

Figure 4.17: Example subsystem used for explanation of chain rule connection.

can be applied resulting in a mn× n Hessian matrix. Finally, the Hessian of (4.74)

D2F (X) =
∂2 vec (F (X))

∂
(

(vec (X))T
)2 (4.78)

is an mpnq × nq matrix.

The Jacobian (4.75) and Hessian (4.78) above have been defined for functions with a
single input and output argument. In general, subsystems may contain multiple input
and output arguments which have to be accounted for in the derivative formulation.

In (4.75) and (4.78) the vec() operator is used to convert matrices or row vectors
into column vectors for the derivative definition. In case a function has multiple in-
put arguments, the input column vectors can be stacked vertically to create a function
with a single input. Thus, the derivative definitions above can be used. The same
approach can be applied in case the subsystem has multiple output arguments. How-
ever, outputs of a subsystem may enter different subsystems. In this case, outputs and
derivatives need to be split. Therefore, the Jacobian and Hessian are calculated for
every output argument individually.

Although the subsystem derivatives can become large, the structure is now well
defined. According to [115], this definition retains the mathematical meaning of the
Jacobian and Hessian. More importantly, a suitable chain rule, which enables the con-
nection of the derivatives in the next section, exists.

Subsytem Connection

The model is divided into multiple subsystems and the analytic derivatives are calcu-
lated w.r.t. the subsystem’s input arguments. Therefore, after every call of a subsystem,
the chain rule is applied to calculate the subsystem derivatives w.r.t. the model input
arguments.

For the description of the chain rule, a matrix function and a single matrix input
are assumed for model and subsystems (see Figure 4.17). By applying the definitions
above, all matrices are transformed into a vector using the vec() operator to formulate
the derivatives. Multiple inputs can be included in the same way.

LetF (X) define the overall dynamic model to be differentiated with F (X) ∈ R
mF×nF
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and X ∈ R
mX×nX . The overall model Jacobian and Hessian are given by:

DF (X) =
∂ vec (F (X))

∂ vec (X)T
∈ R

mFnF×mXnX , (4.79)

D2F (X) =
∂2 vec (F (X))

∂
(

vec (X)T
)2 ∈ R

mFnFmXnX×mXnX . (4.80)

Let G(Y ) define a subsystem within the model with G(Y ) ∈ R
mG×nG and Y ∈

R
mY ×nY . The Jacobian and Hessian of the subsystem w.r.t. its inputs

jG = DG(Y ) =
∂ vec (G(Y ))

∂ vec (Y )T
∈ R

mGnG×mY nY (4.81)

hG = D2G(Y ) =
∂2 vec (G(Y ))

∂( vec (Y )T )2
∈ R

mGnGmY nY ×mY nY (4.82)

are represented by jG and hG respectively. The derivatives of the subsystem G with
respect to the model inputs

j̃G = DG(X) =
∂ vec (G(X))

∂ vec (X)T
∈ R

mGnG×mXnX (4.83)

h̃G = D2G(X) =
∂2 vec (G(X))

∂( vec (X)T )2
∈ R

mGnGmXnX×mXnX (4.84)

are assumed to be known and expressed by a �̃.

Let R(G) ∈ R
mR×nR be a subsystem with local derivatives

jR = DR(G) =
∂ vec (R(G))

∂ vec (G)T
∈ R

mRnR×mGnG (4.85)

hR = D2R(G) =
∂2 vec (R(G))

∂( vec (G)T )2
∈ R

mRnRmGnG×mGnG (4.86)

that is dependent on the output of subsystem G(Y ). Overall, it is assumed that j̃G, h̃G,
jR, and hR are known. From [115], the chain rule for the Jacobian

j̃R = jR · j̃G (4.87)

= DR(X) =
∂ vec (R(X))

∂ vec (X)T
∈ R

mRnR×mXnX (4.88)

maps the derivatives of subsystem R to the model inputs X . To obtain the chain rule
for the Hessian

h̃R =
(
ImRnR ⊗ j̃TG

)
· hR · j̃G + (jR ⊗ ImXnX

) · h̃G (4.89)

= D2R(X) =
∂2 vec (R(X))

∂( vec (X)T )2
∈ R

mRnRmXnX×mXnX (4.90)

(4.87) is differentiated w.r.t. the model inputs. The derivation of this chain rule is
explained in section B.1.
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User Function Definition

Finite DifferencesDerivative StepAnalytic

Derivative Function Interface

MATLABEvaluation StepMEX

Prepared User Function

Figure 4.18: Workflow of the subsystem derivative builder.

As can be seen from the chain rule, the derivatives of subsystem G that enter the
subsystem R are already given w.r.t. the model inputs. Therefore, after the chain rule
update is calculated, the output derivatives of the subsystem R are given w.r.t. the
model inputs as well. This ensures that the overall derivative calculation remains rel-
atively simple. If this process is automated, the derivatives of the model inputs w.r.t.
themselves are required. These are identity and zero matrices

j̃X = jX = ImXnX , h̃X = hX = 0mXnX×nX (4.91)

of suitable size.

4.5.3 Implementation

The subsystem derivative method is implemented in MATLAB classes that fully auto-
mate the derivative calculation process. The algorithms require the toolboxes MAT-
LAB, Symbolic Math Toolbox (for derivative calculation), and MATLAB Coder (for
MEX file generation). Additionally, a supported C++ Compiler has to be installed on
the machine (e.g. Visual Studio). In case a toolbox is missing, a compatibility work-
flow is provided. It uses finite differences and multiple time evaluation in MATLAB.

Fig. 4.18 depicts the schematic work-flow of the Subsystem Derivative Builder. The
process can be divided into five main steps. As before, the process can be applied to
constraints and cost functions as well. For simplicity, the description is given with a
dynamic model in mind.

User Function Definition This is the only step that is visible to the user who has
to provide a build script. In FALCON.m this step is wrapped by the builder in-
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Analytic/MEX Finite Differences/MEX Analytic/MATLAB Finite Differences/MATLAB

Figure 4.19: Possible workflow paths of the subsystem derivative builder.

stances (see section 4.3). Name, inputs and outputs of the model must be stated.
All subsystems are defined in the order of appearance as well as their intercon-
nection. This is referred to as the Build Trace (BT) which is explained further
below. The BT does not only store the order of subsystems, but also split and
combine commands (see section 4.3.2).

Derivative Step Generates the gradients for the dynamic model. Here, the Subsys-
tem Derivative (SD) method introduced in section 4.5.2 is used. This step re-
quires the Symbolic Math Toolbox. For compatibility, a FFD implementation is
provided.

Derivative Function Interface Output of the derivative step is a function that im-
plements the model as well as its derivatives. It is implemented in pure MATLAB
code without any external dependencies and supports code generation. How-
ever, at this state, the values and derivatives are calculated for a single evaluation
in time.

Evaluation Step Wraps the derivative function to allow multiple time evaluations
for the collocation method. The model is coded to C++ and compiled to MEX
using MATLAB Coder and a supported compiler. A MATLAB wrapper is used in
compatibility mode.

Prepared User Function Final result of the subsystem derivative builder work-flow
and ”ready-to-use” for optimization in FALCON.m.

Due to the fact that the Derivative Function Interface is a common intermediate
step in the work-flow, there are four possible ways a user function can be prepared for
evaluation in FALCON.m (see Figure 4.19). A performance benchmark of the different
combinations is done in section 4.5.4. In the following, the steps of the derivative
generation process are discussed in more detail. All classes and functions described
below are found in the namespace falcon.core.builder . To allow for a better
readability, the namespace is omitted in the following text.

User Function Definition

In FALCON.m, the derivative builder classes are used to differentiate the user func-
tions. Figure 4.20 shows the builder classes with their parent class. The usage of the

119



4.5 Subsystem Derivative Builder

falcon.core.builder.BaseBuilder

falcon.SimulationModelBuilder
falcon.PathConstraintBuilder
falcon.PointConstraintBuilder

Figure 4.20: User function derivative builder classes and their parent class.

falcon.core.builder.DerivativeBuilder

falcon.core.builder.AnalyticDerivative
falcon.core.builder.FiniteDifferenceDerivative

Figure 4.21: Derivative builder classes for analytic and finite differences generation to-
gether with parent class.

FALCON.m derivative builders is explained in section 4.3. Internally, the builder classes
do not perform any differentiation. Instead they call the SDB instance that carries out
the actual calculations. The SDB is written in a generic form and does not require any
information concerning the user function involved.

Derivative Step

Figure 4.21 shows the classes that define the derivative generation algorithm. The
class AnalyticDerivative handles the SD method and transforms the subsystems
into MATLAB functions with derivatives. Finite differences are provided by the class
FiniteDifferenceDerivative , which does not generate any derivatives for the
subsystems, but ensures that the overall model fulfills code generation requirements.
For instance, this requires anonymous functions to be transformed into ”normal” MAT-
LAB functions. The finite difference are calculate w.r.t. the overall model.

Both classes are inherited from DerivativeBuilder which implements shared
functionality as inputs, outputs, and variable tracking. Within the class, all inputs,
outputs, and intermediate variables are tracked using strings. In the following, an
instance of the subsystem derivative builder is used to explain the underlying features.
A new instance is created by calling the constructor

builder = falcon.core.builder.AnalyticDerivative(Proj ectName);
builder = falcon.core.builder.FinitDifferenceDerivati ve(ProjectName);

where ProjectName is the name of the prepared function that shall be created.

Model Inputs The interface of the Derivative Function Interface and the final eval-
uation function is defined by the input and output arguments. Multiple input and
output arguments are supported.

A new input is created using the method

builder.addInput(Name, VarDim, varargin)

which requires the name and the size (VarDim ) of the input. The size can either be
defined by a matrix (e.g. [5,2] ) or by a cell array of strings (e.g. {’x’; ’y’; ’z’ }).

120



Chapter 4: Implementation of Optimal Control Framework FALCON.m

The first case is used to specify a constant input, the second to define an input vector
of FALCON.m data objects.

Setting inf in any of the dimensions will create a variable-sized input along the
dimension specified. However, some limitations hold true in this case. They are ex-
plained below. In the latter case, the size of the cell array is used to determine the
input size. Additionally, it is assumed that every entry is a scalar. Other settings for an
input are the following:

DoDerivative In case this flag is set to true, the input is regarded as an inde-
pendent input variable. Derivatives must be calculated w.r.t. this input.
Otherwise, the input is regarded as a constant. The default value for this
flag is true .

MutlipleTimeEval This information is relevant only for the evaluation step and
states that this variable varies with time. States and controls have different
values for different discretized times. For parameters and constants, the
same variable is used for all points in time. The default value for this flag is
true .

DiscreteControl Flag used in this thesis to specify a discrete control input. The
input represents the actual discrete value used in the dynamics. In case
this option is set on at least one input, the evaluation function interface is
adapted (see section 4.3.3). The default value for this flag is false .

EntrySizes In case the input size is specified by a cell array of strings, all entries
are assumed to be scalar. This option allows to specify the size of each entry
individually. This feature is used by the point constraint builder to account
for multiple time step inputs. The default input is empty and assumes scalar
entry sizes.

The options allow for a very flexible input definition independent on the function
type (simulation model, constraint, cost function). However, concerning the inputs
there are some limitations.

• Variable sized data must be a constant and can neither be evaluated at multiple
time steps nor be taken into account as a discrete control. The main reason for this
is that the number of independent variables must remain constant. Additionally,
the Symbolic Math Toolbox does not support variable sized data. Variable-sized
constants can only be used with derivative subsystems. This is a drawback com-
pared to other methods (e.g. operator overloading). However, the local deriva-
tives are usually relatively simple and can be provided if required

• Inputs that are evaluated at multiple time steps must be a column vector. In the
evaluation function these inputs are treated as a matrix

[~vt1 , ~vt2 , . . . , ~vtN ]

where each column represents a time slice. The evaluation code can thus be kept
more simple. Within the FALCON.m optimal control problem, time dependent
inputs (e.g. controls) are column vectors anyway.
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• Discrete controls must be a column vector since each column represents a discrete
choice. Additionally, it must be a constant input and cannot have the multiple
time step evaluation flag set to true. As stated above, a discrete control input
represents the actual discrete value used in the dynamic model.

Model Outputs A new output is defined by the method

builder.addOutput(Name, EntryNames)

where only the name of the output (string, e.g. statesdot) and the names of the
entries have to be provided (cell array of strings). The entries are concatenated in the
two dimensional space. Thus, the overall variable size and derivative sparsity pattern
(template sparsity) of the output is determined. Matrix type outputs are supported.

Input and output information is stored in the InputTable and the OutputTable .
Additionally, the AvailableVariableTable exists.

Available Variable Table The AvailableVariableTable contains information
about all variables that are currently available in the derivative generation process.
Initially, this table is filled with the information of the model inputs. With every call of
a subsystem or a split/combine command, the newly generated outputs are added to
the table. The following information about the variables is stored:

Name String identifier of the variable.

Size Two dimensional size of variable [m,n] .

DoDerivative Flag that determines if the variable is dependent on any indepen-
dent input variables. If this is the case, derivatives w.r.t. this variable are
calculated as well.

Jacobian/Hessian Sparsity pattern of the Jacobian or Hessian. In case the Hes-
sian is not calculated, the value is set to nan .

During the derivative generation, this table fulfills several objectives. Before a sub-
system is called for derivative generation, the availability of the required input vari-
ables is tested. This check is performed by the CheckInputs method. Thus it can be
assured that the resulting model remains feasible. Additionally, the size of the inputs is
determined. Using the DoDerivative flag, the SDB determines the independent in-
put variables of the subsystem. W.r.t. these variables, local derivatives are calculated.
Finally, the sparsity patterns of the inputs are used to generate the sparsity patterns of
the outputs. For this, the input sparsities and local sparsities are combined using the
chain rule (see section 4.5.2).

Build Trace As was mentioned before, all subsystem and variable manipulations
(split/combine) are stored in the build trace in the sequence they are added. Defini-
tions of subsystems and variable manipulations on the subsystem derivative builder
level work in the same way as described in section 4.3. In fact, the user function
builders pass the information directly to the subsystem derivative builder instance
without any changes.
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Listing 4.8: Example call of differentiated subsystem and implementation of the Jacobian
chain rule.

%% Call differentiated subsystem "subsys"
[a, b, j_a, j_b] = subsys(x,y,z);

% Gather input derivatives
j_subsys_inputs = vertcat(j_x, j_y, j_z);

% Perform chain rule (override local derivatives)
j_a = j_a * j_subsys_inputs;
j_b = j_b * j_subsys_inputs;

Once the build process is invoked, a MATLAB file is created. This file implements
the derivative function interface. First, the function header as well as the initializa-
tion data are written. This includes the extraction of values from the inputs and the
initialization of the input Jacobians and Hessians. Additionally, internal constants are
written.

Afterwards, all entries of the build trace are evaluated in sequence. Within the
derivative function file, the calls to the differentiated subsystems, chain rule calcula-
tions, as well as the variable manipulations are written.

Subsystem In case a new subsystem is added to the derivative function by the
build trace, the following steps are conducted:

1. Gather subsystem input information and perform input consistency check using
the method CheckInputs .

2. Generate the local derivatives of the subsystem using the Symbolic Math Toolbox.
The differentiation is carried out by the CreateGradient function.

3. In the MATLAB file that implements the derivative function interface, add a call
to the differentiated subsystem.

4. Gather the derivatives of the subsystem inputs in temporary variables. After-
wards, carry out the chain rules for Jacobian and Hessian.

5. Calculate the sparsity of the subsystem outputs.

6. Add the subsystem outputs to the list of available variables.

In Listing 4.8 an exemplary call to a differentiated subsystem as well as the chain
rule for the Jacobian are shown. The Hessian chain rule is calculated in a similar man-
ner. In case a derivative subsystem is added to the derivative builder instance, the
second step is skipped.

SplitVariable and CombineVariables Variable manipulations do not require
the generation of a derivative subsystem. However, as new variables are created, they
have to be added to the table of available variables as well as to the MATLAB function
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Listing 4.9: Call derivative subsystem and implement chain rule

%% Combine Variables
x = [a; b; c];

% Combine Jacobians
j_x = vertcat(j_a, j_b, j_c);

%% Split Variable
y = x(1:2,:);
z = x(3,:);

% Split Jacobians
j_y = j_x(1:2,:);
j_z = j_x(3,:);

falcon.core.builder.DerivativeEvaluator

falcon.core.builder.DerivativeCoder
falcon.core.builder.DerivativeMatlab

Figure 4.22: Classes for evaluation of user function derivatives.

that implements the derivative function interface. In Listing 4.9 an example imple-
mentation of the variable manipulations is given. Although the example is relatively
simple, it states the general required steps.

Derivative Function Interface

After the build chain is evaluated, the output values and derivatives are collected.
Internally, the CombineVariables method is used. The resulting function is written
entirely in pure MATLAB code and supports code generation.

Listing 4.10: Derivative Model Function Interface

[x_dot, y, j_x_dot, j_y, h_x_dot, h_y] = model(x,u)

Listing 4.10 shows the interface of the generated derivative function for a model
featuring states x, controls u, and additional model outputs y. The interface resembles
that of the derivative subsystems. Therefore, it is possible to reuse a model within an-
other subsystem derivative generation process, allowing e.g. to implement a hierarchy.

Evaluation Step

The file implementing the derivative function interface calculates the analytic deriva-
tives for a dynamic model. However, the derivatives are implemented for the evalu-
ation of a single time step. For direct optimal control using the collocation method,
multiple independent time evaluations are required.

Since the derivative model function cannot handle vectorized evaluation, a loop
has to be used. There are two ways the multiple time evaluation wrapper is generated.

124



Chapter 4: Implementation of Optimal Control Framework FALCON.m

First of all, the MATLAB function is coded into C/C++ code which is then compiled
into a MEX file. This method is implemented by the DerivativeCoder class (see
Figure 4.22). In case the MATLAB Coder Toolbox is not available, DerivativeMatlab
implements a MATLAB wrapper for the multiple time evaluations. Both classes are
derived from DerivativeEvaluator which implements common tasks.

For simple user functions, the MATLAB loop can be sped up by the just in time
compiler of the MATLAB engine. In case a more complicated user function is used, this
may not work and the performance becomes slow. Therefore, the only viable option is
to compile the function to a MEX file.

Additionally to the DerivativeCoder class, the C/C++ code workflow path re-
quires the class DerivativeWrapper which automatically creates a user function
specific MEX file wrapper. It implements common tasks but specific wrapper aspects
are implemented by DerivativeWrapperCol for the default collocation method and
DerivativeWrapperColDC in case the Outer Convexification is required. The cre-
ated MEX file wrapper is written in C++ and implements the multiple time evaluations
with optional multi-threading. It is compiled to a MEX file using the mex command.

Code Generation

As written above, C/C++ code is generated from a MATLAB user function which in
turn is wrapped with a custom wrapper for multiple time evaluations. Alternatively, it
is possible to write the multiple time wrapper in MATLAB and use the codegen com-
mand with MEX file configuration to compile to MEX directly from MATLAB. How-
ever, this approach is not used for the following reasons:

• MATLAB code can be compiled with multi-threading if the code uses parfor loops
and the openMP compiler option is set. However, for large dynamic models,
the compilation process sometimes fails. In these cases, the openMP compiler
option has to be deactivated. This problem does not present itself if the wrapper
is custom build.

• Due to the fact that the prepared user function must handle an unknown num-
ber of time steps, certain dimensions (number of columns for states and controls)
have to be variable sized. Since the MATLAB compiler does not know any condi-
tions between inputs, the code cannot be fully optimized. For instance, the code
generation algorithm does not know that the number of columns for states and
controls have to be the same. Thus, potential overhead which reduces evaluation
performance is generated.

• The number of threads used by openMP can be set individually.

Overall, a custom build MEX wrapper interface is better tailored to the optimal control
application. Therefore, the derivative model function is transformed into C++ code us-
ing the codegen command and the exe coder configuration. From the default coder
configuration, the following alterations are made. The target language is changed to
C++ since the discrete control approach requires dynamically generated intermediate
variables. As the exe file is not necessary, the generate code only flag is set to true .
Support of non-finite numbers is set to false since it is not needed. Additionally, the
generated code shall be implemented in a single C++ header (* .h ) and code (* .cpp )
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file. After the code is generated, a wrapper that implements the MEX interface is writ-
ten.

Mex File Wrapper

The MEX file wrapper has several purposes. First, it implements the multiple time
evaluation for the collocation approach. The framework openMP can be used to sup-
port multi-threading with minimal effort. Thus, fast evaluation speeds are achieved.

Second, the wrapper performs an input check to ensure that MATLAB does not
crash due to an invalid call to the MEX file. The number of input arguments and their
dimensions are checked. For all inputs that are evaluated at multiple time steps, the
number of columns must match. The same holds true for the discrete inputs. In case
an incorrect input is found a meaningful error message is thrown.

Finally, the info struct interface is implemented (see section 4.4.2). It is requested
by calling the MEX with an output argument but without any input arguments.

After all input checks are passed, the MEX wrapper calls the C++ coded deriva-
tive function for all time steps and stores the returned values, Jacobian, and Hessian
outputs of appropriate size. If the multi-threading option is set, the subsystem deriva-
tive builder will automatically implement the necessary openMP declarations. For the
multi-threading evaluation, the number of threads used is set to be one less than avail-
able. If all available threads are used for the evaluation, the thread running MATLAB
is slowed down. This decreases the overall performance.

In case the dynamic model incorporates discrete controls, the MEX wrapper is
adapted automatically to include the Outer Convexification. This evaluation requires
the blas.h library which is linked automatically. The C++ code of the derivative
model function does not need to be adapted for this purpose.

After the MEX interface wrapper is written, it is compiled using the mex command.
The resulting MEX file is ready to be used in FALCON.m.

4.5.4 Example and Performance Comparison

In this section, the performance of the subsystem derivative builder is evaluated. The
SD approach is compared against other free public available automatic derivative meth-
ods. This thesis is concerned with the solution of optimal control methods in MATLAB.
Therefore, only methods which can be interfaced from MATLAB directly are used.
These include either MATLAB based or C/C++ approaches which can be compiled
into a MEX file. Additionally, the different workflow pathes available in FALCON.m
subsystem derivative builder are compared.

The result of a performance comparison depends on the model complexity in-
volved. Thus, for a very simple model, the performance comparison does not resemble
that of a high fidelity model. To address this, three models of increasing complexity
are compared. The simple and moderately complex models are introduced in section
B.2. The BADA Family 4 model introduced in section 6.1 is used as the high fidelity or
large model. Additionally to the performance comparison, the different methods are
compared w.r.t. the derivative construction time.
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Table 4.1: Derivative generation time of different approaches in seconds.

Simple [sec] Moderate [sec] BADA4 [sec]

SYM OPT 4.16 148.27 -
SYM NO 2.28 126.43 -
ADOLC 2.77 2.96 9.44
ADEPT 2.71 2.96 4.27
FFD 1.74 2.00 2.74
CFD 1.84 1.94 2.66
FALCON.m 6.65 8.40 28.76

Performance Comparison to Other Methods

The following methods are compared

• Direct source code transformation (analytic derivatives) by Symbolic Math Tool-
box with optimization (SYM OPT) and without optimization (SYM NO)

• Operator overloading in C++ using Automatic Differentiation by OverLoading
in C++ (ADOL-C) and Automatic Differentiation using Expression Templates
(ADEPT)

• Numerical derivatives with Forward Finite Differences (FFD) and Central Finite
Differences (CFD)

• Subsystem derivatives by FALCON.m.

All approaches are compiled to a MEX file since the code runs much faster than any
similar MATLAB approach. For better comparability, all MEX files run on a single
thread. For the approaches SYM OPT and SYM NO, source code transformation is
applied to generate the derivatives in MATLAB. Similarly, the loops that calculate the
finite difference approaches (FFD and CFD) are implemented in MATLAB. Afterwards,
the MATLAB functions are coded to C++ code which is compiled to a MEX file using a
custom MEX interface wrapper.

In the operator overloading approaches (ADOLC and ADEPT), the source model
function is directly coded to C++ since the derivative calculation is implemented there.
Again, the MEX file is compiled using a custom wrapper. Finally, the FALCON.m sub-
system derivative approach model is generated with the toolbox described above.

Figure 4.23 and Table 4.1 shows the creation time for the different approaches2. In
the figure the times are normalized to FALCON.m and the bars are displayed on a log-
arithmic scale. In the subsystem derivative approach the dynamic model is split into
subsystems. Therefore, the Symbolic Math Toolbox must be called multiple times and
the creation of the derivative model function in MATLAB requires some time. The finite
difference and operator overloading approaches only require the code generation and
compilation. Additionally, the compilation of the operator overloading approaches re-
quires a slightly higher time since classes instead of floating point values are involved.

2Intel Core i5-4670 CPU @ 3.40GHz, Windows 10 64bit, MATLAB 2015a
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Creation Time Normalized to SD [-]
10-2 10-1 100 101 102

BADA4

Moderate

Simple

SYM OPT
SYM NO
ADOLC
ADEPT
FFD
CFD
FALCON.m

Figure 4.23: Comparison of derivative generation for different model complexities.

Comparing the SYM OPT and SYM NO approaches it can be seen that the code
optimization results in a longer creation time. Additionally, with increasing complex-
ity of the model, the derivative creation for the entire model becomes much slower
compared to the other approaches. For the BADA4 model, the creation succeeds but
the created MATLAB function produces complex results. Additionally, the calculation
time for the SYM OPT approach is approximately 9 hours. In case of turned off code
optimization only 15 minutes are required for the differentiation of the model, but the
MATLAB file has a size of 15 MBwhich is very large for a plain text file. Therefore,
these results are not practical thus not shown.

Fig. 4.24 shows the performance comparison of the generated mex files. The test
was carried out for 1 million evaluations. Table 4.2 shows the calculation times in sec-
onds. It can be seen that for moderate and complex models FALCON.m is the fastest.

Table 4.2: Derivative calculation time for one million evaluations of different approaches
in seconds.

Simple [sec] Moderate [sec] BADA4 [sec]

SYM OPT 0.50 7.43 -
SYM NO 0.73 15.58 -
ADOLC 12.09 15.01 31.40
ADEPT 2.70 5.02 17.94
FFD 1.46 2.20 14.34
CFD 2.48 4.13 26.86
FALCON.m 0.84 1.67 5.27
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Evaluation Time Normalized to SD [-]
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Figure 4.24: Evaluation comparison of different derivative approaches for one million eval-
uations.

The difference becomes more visible with increasing model complexity. For very sim-
ple models, FALCON.m is not the fastest approach. Compared to the symbolic ap-
proach, the model was divided into multiple subsystems. Therefore, the overhead
created in the code reduces the performance. The whole model can be implemented as
a single subsystem (function mode).

Comparing the Symbolic Math Toolbox approaches (SYM OPT and SYM NO), it
can be seen that the MATLAB code optimization drastically improves the performance.
However, for more complex models the performance is reduced. In these cases, it
seems that MATLAB is unable to perform a suitable code optimization. Thus, the com-
putational time increases.

The approaches which implement the operator overloading produce good results.
Compared to FALCON.m, the computational time of ADEPT is slightly higher. A
slower performance of the operator overloading approaches is expected since C++
classes instead of numeric values were used in the computation. Thus, the compiler
is not able to perform code optimization. The implementation of ADEPT seems to be
much faster than ADOL-C.

Finally, the finite difference approaches have a good performance as well. As ex-
pected, the forward finite difference approach is around twice as fast as the central
finite difference approach.

Workflow Path Comparison

Here, the different model generation options of the FALCON.m subsystem derivative
builder are compared. User functions can be differentiated either analytically or using
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Table 4.3: Time for 100,000 evaluations in seconds of derivative builder workflow pathes.

Simple Moderate BADA4
[sec] [sec] [sec]

Analytic MEX (ANA/MEX) 0.09 0.17 0.46
Analytic MATLAB (ANA/MAT) 21.52 32.33 72.72
Finite Differences MATLAB (FFD/MAT) 80.75 133.17 273.08
Finite Differences MEX (FFD/MEX) 0.15 0.24 1.50

finite differences. The evaluation for multiple time steps can be achieved by using a
MATLAB loop or by compilingn to a MEX file with a C/C++ loop. Thus, the perfor-
mance is compared for four possible combinations.

The comparison is carried out with the same dynamic models as in the previous
comparison. All prepared user functions are evaluated with 100k time points. Table
4.3 and Figure 4.25 show the evaluation times in seconds. As expected, compiled an-
alytic derivatives are the fastest followed by compiled forward finite differences. The
evaluation in MATLAB is much slower compared to the MEX file execution.

Evaluation Time on Logarithmic Scale [sec]
10-2 10-1 100 101 102 103

BADA4

Moderate

Simple

ANA/MEX
ANA/MAT
FFD/MAT
FFD/MEX

Figure 4.25: Evaluation comparison of derivative builder workflow paths.

4.6 Problem Derivative Calculation

The gradient based optimization algorithms that interface with FALCON.m require the
derivatives of the optimal control problem. In this section, the algorithm that calcu-
lates the OCP Jacobian and Hessian from the user function derivatives is presented.
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Both derivatives are calculated in an analytic way by assuming the the user functions
provide analytic derivatives themselves. Although the implementation for large scale
optimal control problems becomes complicated, the overall speed improvement is sig-
nificant.

As was mentioned in chapter 2, fast and efficient derivative calculation in numeric
optimal control methods is driven by three main factors:

• calculation of analytic derivatives,

• exact knowledge of the non-zero elements (sparsity),

• and implementation of the algorithms.

The calculation of the analytic derivatives is discussed in the previous section with
the subsystem derivative builder. In this section, the calculation of the problem spar-
sity and the implementation are discussed.

As was stated by [24], the full exploitation of the problem sparsity down to the
user function level has superior computational performance, especially for large op-
timal control problems. The subsystem derivative builder provides the user function
template sparsity to FALCON.m. From the position of constraints and optimization
variables in their respective vectors, block structures can be identified in the problem
derivatives which are potentially non-zero (block sparsity, see Figure 4.26). Superpos-
ing the template sparsity to the block sparsity gives the actual non-zero elements of the
constraint.

Block Sparsity
Template

Sparsity

~Z

~F

=





1 0 1 0
0 1 0 1
0 1 1 0





Figure 4.26: Block and template sparsity of Jacobian.

Efficient means are required to calculate the sparsity structure of the OCPs deriva-
tives. This is especially important for large scale optimal control problems, as the spar-
sity cannot be constructed on a dense matrix. In FALCON.m, the non-zero positions
in the derivatives are stored as row and column indices which are then used to con-
struct a sparse matrix representation. In the following, the principles of the derivative
calculations in FALCON.m are explained, followed by implementation aspects on the
construction of the problem Jacobian and Hessian.
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4.6.1 Direct Sparsity Sorting

The evaluation of the OCP’s Jacobian and Hessian is highly time consuming. Since the
derivatives have to be evaluated in every iteration at least once, their calculation is a
major driver of the overall optimization performance.

All optimizers which currently interface with FALCON.m require the derivatives to
be returned as a sparse matrix in the row column value format (rcv). In this storage
type, non-zero elements are stored in three vectors (row index, column index, value).
During optimization, both index vectors remain constant, but the value vector changes
with every iteration. An efficient way to fill this value vector is provided by the direct
sparsity sorting algorithm.

Value Vector

User Function Derivative

Figure 4.27: Idea of the direct sparsity sorting algorithm.

The idea is to sort the derivative values of the user functions directly at the correct
position in the value vector (see Figure 4.27). Every value of the Jacobian and Hessian
provided by the user function is indexed linearly. For every value, a second linear
index determines where it has to be stored in the value vector. The whole derivative
calculation is thus transformed into a linear indexing operation which executes very
fast during runtime. This holds true for all constraints of the optimal control problem.
In some cases, calculations have to be made (chain rule for model output dependen-
cies, defect calculation). These are carried out in small and dense matrices. Overall,
the method avoids large scale matrix evaluations and ensures a minimal memory con-
sumption and computational overhead. For instance, the Jacobian of an optimal con-
trol problem solved in this thesis is spanned by 427, 056 optimization variables and
363, 003 constraints. Due to a very high sparsity, the number of non-zero elements is
4, 782, 909 which translates to a memory consumption of merely 38.3 megabytes for the
value vector (114.8 megabytes for the full rcv representation). In contrast, storing the
full matrix would require 1155 gigabytes of memory.

In the following, the linear index construction for the Jacobian and Hessian sparsity
sorting is explained. The algorithm is able to handle FALCON.m specific features such
as:

• user function template sparsity,
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• fixed optimization variables and inactive constraints,

• and multiple control grids with independent discretization and interpolation meth-
ods.

The calculation is carried out with the path constraint in mind. The principles can
be translated to collocation defects and point constraints. Aspects introduced in the
Jacobian calculation are not repeated in the Hessian calculation.

4.6.2 Jacobian Calculation

In this section, the Jacobian calculation using the path constraint implementation is
explained. As mentioned earlier in section 4.2.4, the inputs entering the path constraint

~yc ⊆ ~y, ~xc ⊆ ~x, ~uc ⊆ ~u (4.92)

are a subset of the phase data. If a constraint is dependent on model outputs, the chain
rule

∂j~g
∂[~x, ~u, ~p]

=
∂j~g
∂~yc

· ∂~yc
∂[~x, ~u, ~p]

(4.93)

has to be applied. Thus, the path constraint is no longer purely dependent on the sub-
set of the phase inputs but also on the phase data which the model outputs dependent
on. Additionally, parameters entering the constraint may overlap with the model pa-
rameters or be exclusive. In the Jacobian calculation, the direct dependency on the path
constraint inputs and the model dependency through outputs can be superposed. In
the following, the direct dependency is shown. The application of the method to the
result of the chain rule is analogous.

Linear Indexed Jacobian and Reduction

The implemented and differentiated user path function returns a three-dimensional
Jacobian matrix (see. Figure 4.28). For the direct sparsity sorting algorithm, this matrix
is indexed linearly. Afterwards, the matrix is split into dependency blocks for states,
controls, and parameters entering the constraint. The linear index block for the output
dependency can be omitted as the chain rule has to be applied first. For every block,
the rows corresponding to inactive constraints are eliminated (see red lines). Depen-
dencies to fixed controls or fixed parameters are removed as well.

Analogous to the linear index matrix, the sparsity structure of the Jacobian returned
by the path constraint is split into dependency blocks as well. The sparsity structure
of the model output dependency is retained as it is used to calculate the sparsity struc-
ture of the chain rule result. Inactive constraint rows and fixed optimization variable
columns are removed.

State Dependency

In order to find the non-zero elements of the path constraint state dependencies in the
overall problem Jacobian, the discretization indices of the states in the ~z vector and of
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Figure 4.28: Linear indexing of the user function Jacobian.
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Figure 4.29: Extraction of the non-zero state dependency elements of the path constraint
in the problem Jacobian.

the path constraint in the ~fJ vector must be extracted. Both index sets have already
been calculated in the indexing step of the problem build process (see section 4.2.5).

Figure 4.29 shows an example sparsity pattern together with the indexing matri-
ces. From the state template sparsity block, the row and column pairs representing
non-zero entries are obtained. Using the resulting row and column vectors, the corre-

sponding rows in the ~fJ and ~z index matrices are extracted. Thus, the non-zero entries
of the state dependency in the problem Jacobian are calculated.

Additionally, the template sparsity is applied along the third dimension of the lin-
ear indexed user function Jacobian to find the indices which contribute to the non-zero
elements. Therefore, for each linear index of the user function Jacobian, a row / column
pair in the problem Jacobian exists.

Parameter Dependency

The parameter dependency calculation is analogous to the one of the states. The only
difference is the fact that parameters are a vector of scalar values and not defined on
a grid. Thus, the ~z vector indices have to be copied as often as the path constraint is
evaluated.
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Control Interpolation

Before the control dependency can be stated, further explanation on the control inter-
polation is required. As already mentioned, FALCON.m allows a user to define mul-
tiple control grids which may have a subset discretization w.r.t. the state grid. For
the path constraint evaluation, all control grids have to supply control values on the
state grid discretization. Thus, an interpolation method must be used. Linear or
previous interpolation methods are currently supported. The interpolation maps the
discretized controls in the optimization vector to the interpolated controls used in the
constraints and model evaluations. All values, Jacobians, or Hessians returned by the
user functions are mapped to the state grid discretization.

Dependent on the used interpolation scheme, the influence of the discretized con-
trols on the interpolated controls changes. Additionally, in linear interpolation, the an
interpolated control value is dependent on both neighboring discretized controls.

In order to store the mapping, for each control grid an interpolation gradient

∂η

∂η~z
(4.94)

is created where η represents the state discretization and η~z the discretized controls.
Figure 4.30 shows the control interpolation gradient for an example discretization situ-
ation for the linear and previous case. The rows represent the state grid discretization
and the columns the discretized controls. The entries of the matrix give the weights
each discretized control contributes to the interpolated controls. Other interpolation
algorithms may be implemented as well, as long as their interpolation mapping is con-
stant and not dependent on the actual discretized control values.
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Figure 4.30: Interpolation of control grid values.

In the following, the interpolation gradient is used to extract the discretized controls
for every time step in the control dependency calculation.
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Control Dependency

The control dependency is calculated applying the chain rule

∂~g

∂~u~z
=
∂~g

∂~u
· ∂~u
∂~u~z

(4.95)

to map the path constraint evaluations to the actual discretized controls. The matrix

∂~u

∂~u~z
=






∂u1
∂u1,z

0 0

0 ∂u2
∂u2,z

0

0 0
. . .




 (4.96)

has a block diagonal structure. For each control at a certain time step, the specific
non-zero interpolation values of the interpolation gradient are stored. These are the
non-zero elements of a row in the interpolation gradient. In case a control is fully
discretized or the current time step is a discretization time step of the control, the re-
spective mapping is equal to one. Due to the independent discretization of the controls
w.r.t. the states, this matrix cannot be assumed to be constant and has to be created for
every discretized time step. As this calculation is done once during the construction
of the OCP and not during the optimization loop, the runtime performance is not de-
graded.

Apart from the interpolation values, the ~z vector indices of the relevant discretized
controls must be stored. Additionally, for each control, the number of discretized con-
trols involved in the interpolation is stored.

Multiplying matrix (4.96) with the sparsity matrix of the control dependency gives
a matrix which resembles the sparsity structure, but may contain fractional values from
the control interpolation gradient. Using the number of discretized controls involved
for each control, a block matrix structure can be extracted which has the same size as
the original sparsity pattern.

In order to explain the last step in more detail, the example sparsity structure and
discretized mapping control matrix

{
∂~g

∂~u
6= 0

}

=

[
1 1 1
1 0 1

]

,
∂~u

∂~u~z
=





1 0 0 0 0
0 0.2 0.8 0 0
0 0 0 0.5 0.5



 (4.97)

are assumed. Both the second and third control depend on two discretized controls.
The multiplication results in fractional values

∂~g

∂~u~z
=

[
1 0.2 0.8 0.5 0.5
1 0 0 0.5 0.5

]

=

[ [
1
] [

0.2 0.8
] [

0.5 0.5
]

[
1
] [

0 0
] [

0.5 0.5
]

]

(4.98)

which can be rewritten as multiple block matrices concatenated together.

Similar to the methods before, the non-zero row and column indices for the tem-
plate sparsity block are calculated. These are used to extract the respective row and
column entries in the overall problem Jacobian. However, there are a few differences

• The index calculation must be carried out for every time step individually.
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• As a control at a time step may depend on multiple discretized controls, it gets
the same number of ~z indices assigned. Thus, the corresponding linear Jacobian

indices and the ~fJ index must be copied.

• The discretized controls may have a partial influence at a current time step. There-
fore, the direct sparsity sorting contains weights which are found in the concate-
nated block matrices (4.98).

Problem Sparsity Structure

Above, the method to calculate the non-zero elements of a path constraint was intro-
duced. A similar method is applied to all other constraints, defects, and cost functions.
The results for each are row / column index pairs that specify the non-zero elements
in the problem Jacobian.

~ F

~Z

Figure 4.31: Problem Jacobian sparsity structure calculated by FALCON.m.

All non-zero entries combined give the overall sparsity structure (see Figure 4.31).
Since the structure is known, a sparse matrix can be created. MATLAB automatically
sorts and combines dublicate entries. From the sparse matrix representation, the sorted
constant row and column vectors of the non-zero elements can be extracted. Figure
4.32 shows the extracted vectors for a small example matrix Jacobian. Additionally,
all non-zero entries are linearly indexed. Each index represents the linear index in the
value vector of the sparse matrix representation. Additionally, the row and column
index vectors are extracted.

Value Vector Linear Mapping

At this point, the linear index of the user function Jacobian, the location of the corre-
sponding non-zero elements in the problem Jacobian, and the overall problem sparsity
structure are calculated. For the direct sparsity sorting, the linear index in the value
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[
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]

Figure 4.32: Problem Jacobian sparsity structure calculated by FALCON.m.

vector is still missing. In the global sparsity structure, all non-zero entries are linearly
indexed. These indices resemble their linear index position in the value vector.

The indexed sparsity matrix is passed to every constraint and cost function in the
FALCON.m OCP. Using their non-zero row and column indices, the linear index in
the value vector is extracted. Thus, the two index sets required for the direct sparsity
sorting method are created.

4.6.3 Hessian Calculation

The Hessian of the Lagrangian (2.37) is calculated using the sparsity sorting method.
However, the generation of the indices is more difficult. While in the Jacobian all de-
pendencies (w.r.t. states, controls,. . . ) could be regarded as independent, this is no
longer possible in the Hessian calculation. Here, the derivatives may be coupled be-
tween any two participating inputs. Additionally, the set of model parameters and
constraint parameters must be unified. Finally, FALCON.m features such as multiple
independent discretized control grids must be considered.

Due to the fact that in the Lagrange Hessian calculation all constraint Hessians are
summed up, the scaling of Hessian has to be considered directly in the summation.
The scaling cannot be imposed later by a matrix transformation. In order to reduce
complexity, scaling is not considered in this explanation.
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Mapping of Model Output Dependency Hessian to Common Representation

In case outputs are present in the path constraint, the chain rule for the Hessian has to
be applied. For this reason, the chain rule function for the Hessian from 4.5 is used.
Both the dynamic model and the path function are regarded as subsystems where re-
sults of the model enter the path function. Figure 4.33 depicts the information flow
through both subsystems. For the Hessian structure calculation, the chain rule method
is applied to the sparsity matrices. The same calculation applies for the actual compu-
tation during run-time.

Model

~x

~u

~p

~̇x

~y

Path
Constraint

~yc

~xc

~uc

~pc

~g

Figure 4.33: Reduced input set and output dependency of path function.

The chain rule formula is given by

h~g =
(
In~g ⊗ jT~gm

)
· h~g · j~gm +

(
j~g ⊗ In~zm

)
· h~gm (4.99)

where a �̃ represents derivatives w.r.t. the model input states ~x, controls ~u, and the
unique parameter set ~pgm. The combined vector of the overall input variables is repre-
sented by

~zm =





~x
~u
~pgm



 . (4.100)

In the chain rule equation, In~g and In~zm are identity matrices with the size number of
path constraints n~g and number of combined vector variables n~zm . The Jacobian and
Hessian of the path constraint w.r.t. their own inputs are given by j~g and h~g respec-
tively. The Hessian chain rule calculates the Hessian h~g of the path constraint w.r.t. ~zm.
Additionally, the matrices

j~gm =








∂~yc
∂~x

∂~yc
∂~u

∂~yc
∂~pgm

∂~xc
∂~x

0 0
0 ∂~uc

∂~u
0

0 0 ∂~pc
∂~pgm







, h~gm =









∂2~yc
∂~z2m
∂2~xc
∂~z2m
∂2~uc
∂~z2m
∂2~pc
∂~z2m









=







∂2~yc
∂~z2m

0
0
0







(4.101)

represent the Jacobian and Hessian of the path constraint inputs w.r.t. ~zm. The first row
of derivative blocks in both matrices represents the output derivatives of the dynamic
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model. As the other constraint inputs (subset states, controls, and parameters) are a
subset of the combined vector, the resulting block derivatives

∂~xc
∂~x

,
∂~uc
∂~u

,
∂~pc
∂~pgm

(4.102)

are trivial. Similar to the Jacobian the matrix h~g of the chain rule is indexed linearly.
Inactive constraints as well as fixed inputs are removed.

Path Constraint Hessian Sparsity Structure

In the following, the unified and reduced Hessian matrix is used to calculate the non-
zero row and column indices in the OCP’s Lagrange Hessian. This requires the inter-
polated controls to be mapped to the discretized controls. Therefore, a similar mapping
matrix to (4.96) is reused. As inputs may be coupled, the mapping has to be applied
on the combined vector ~zm

∂~zm
∂~zm~z

=










I 0 0 0 0
0 ∂u1

∂u1,z
0 0 0

0 0 ∂u2
∂u2,z

0 0

0 0 0
. . . 0

0 0 0 0 I










(4.103)

where ~zm~z represents the discretized optimization variables. The block diagonal ma-
trix (4.96) is expanded by identity matrices of suitable size for the state and parameter
dependencies. This matrix is not constant over time and has to be generated for ev-
ery time step. Additionally, the indices in the ~z vector and the number of discretized
controls must be stored.

Applying the discretized mapping matrix as a transformation to the chain rule spar-
sity

(
∂~zm
∂~zm~z

)T

· {h~g 6= 0} · ∂~zm
∂~zm~z

(4.104)

gives a weight matrix for the Hessian. It can be associated to the entries by dividing it
into blocks associated to h~g (see equation (4.98)).

Finally, the non-zero row and column index pairs of the chain rule sparsity Hessian
are extracted and used to find the corresponding row and column indices of the path
constraint in the Hessian of the Lagrangian. The construction of the problem Hessian
sparsity as well as the linear value vector mapping occur in the same way as for the
Jacobian.

4.7 Discrete Controls in FALCON.m

This section explains the implementation aspects of the discrete controls in the FAL-
CON.m optimal control toolbox. As presented in 4.3.3, the model derivative builder
class supports the use of discrete control inputs using the outer convexification ap-
proach. The necessary discrete control weights w must be introduced as additional
controls in the optimal control problem.

140



Chapter 4: Implementation of Optimal Control Framework FALCON.m

In order to reduce the internal complexity of the optimal control toolbox, the nec-
essary augmentation of the optimal control problem is achieved by a discrete control
extension during the Bake process. This approach ensures that the toolbox core struc-
ture remains unaffected. In the following, the extension idea is presented. Afterwards,
the discrete control extension that allows simple access to optimal control problems
with discrete controls is presented.

4.7.1 FALCON.m Extensions

The extension possibility of the FALCON.m optimal control toolbox shall allow a user to
write custom augmentation of the optimal control problem. The extension possibilities
are developed with the discrete controls feature in mind. Other extensions may be
written in a similar way. Extensions can be added to a phase or the main problem.

Phase Extension

A phase extension must be inherited from the falcon.ext.PhaseExtension class.
It is added to a phase using the

phase.addPhaseExtension(extension)

method. Multiple extensions may be added, but it has to be noted that the extensions
are not instantiated by the phase itself. Augmentation changes to a phase must be per-
formed in the Bake process before the phase conducts its consistency check. Therefore,
the OnPreCheckConsistency method of the phase extension is called beforehand.

Problem Extension

A problem extension must be inherited from the falcon.ext.ProblemExtension
class. It is added to a problem using the

problem.addProblemExtension(extension)

method. Tshe extension is not created by the problem itself. Multiple extensions may
be added. The problem extension can augment the problem during the Bake process
in the CheckConsistency call. It is called twice with the OnPreCheckConsistency
and the OnPostCheckConsistency methods. In between those methods, the phase
extensions perform their augmentation. Both methods are called before the consistency
check of the problem.

4.7.2 Discrete Controls and Discrete Control Sets

The discrete control extension implements the Outer Convexification

~̇x =
∑

k

wk · ~f (~x, ~u, ~p, ~vk) ,
∑

k

wk = 1 (4.105)

approach presented in chapter 3. It supports a theoretical arbitrary number of inde-
pendent discrete controls. The combinatory set (cartesian product) is calculated auto-
matically (see section 3.5). Invalid combinations specified by the user are automatically
removed. In the following, the creation of the discrete controls and their sets in FAL-
CON.m is explained.

141



4.7 Discrete Controls in FALCON.m

falcon.ext.dc.DiscreteControl

A discrete control is created using

dc = falcon.ext.dc.DiscreteControl(Name, CellSet);
dc = falcon.ext.dc.DiscreteControl(.., ’DiscreteSetNames’ ,

CellSetNames).

It requires the name of the discrete control input (acting as identifier) and the discrete
control set as a cell array of numeric values. A discrete control must be a column
vector. Additionally, the names for the entries of the set can be specified by a cell array
of strings using a parameter input. The data specified in the constructor are available
in the class as properties (see Figure 4.34).

falcon.ext.dc.DiscreteControl

Name

DiscreteSet

DiscreteSetNames

Figure 4.34: FALCON.m extension discrete dontrol class.

falcon.ext.dc.DiscreteControlManager

Handles mutliple discrete controls by calculating the valid combinatory set. It is in-
stantiated

dcManager = falcon.ext.dc.DiscreteControlManager(dc1, dc2, ..);

with a list of discrete control objects. s The manager instance has the following prop-

falcon.ext.dc.DiscreteControlManager

DiscreteControls

InvalidCombinations

CombinationCount

addInvalidCombination()

CalculateCombinations()

Figure 4.35: FALCON.m extension Discrete Control Manager class.

erties and methods (see Figure 4.35):

DiscreteControls Discrete controls instances are added to the manager using the con-
structor. All instances are stored in the DiscreteControls property.

CombinationCount / CalculateCombinations The manager calculates all possible
combinations of the discrete controls. The number of valid combinations is stored
in the CombinationCount property.
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InvalidCombinations / addInvalidCombination Invalid discrete control combina-
tions are specified using the addInvalidCombination method

dcManager.addInvalidCombination( ...
dcName1, dcSet1, ...
dcName2, dcSet2,..).

This requires the discrete control names and their relevant subsets that make up
the invalid combination. The discrete control is identified by the object instance
or the name. Its relevant subset is specified by the set names using a cell array of
strings or the index of the discrete control value in the set.

An example helps to better understand the functionality of the discrete control set
calculation. Two discrete controls

dcFlap = falcon.ext.dc.DiscreteControl( ’Flap’ , {0,1,2,3,4,5});
dcGear = falcon.ext.dc.DiscreteControl( ’Gear’ , {0,1});

are created that specify six flap positions and two landing gear positions. The discrete
set values represent placeholders that have to be replaced by the actual values (e.g.
aerodynamic parameters).

Both discrete controls are added to the manager class instance:

dcManager = falcon.ext.dc.DiscreteControlManager(dcFl ap, dcGear);

The landing gear may only be deployed in the last two flap positions. Therefore,
for all lower flap settings the invalid combination is added to the manager

dcManager.addInvalidCombination(dcFlap, 1:4, dcGear, 2 )
dcManager.CalculateCombinations();

This must be done before all possible combinations are calculated. The invalid sets are
automatically excluded. In the example, eight valid combinations are calculated.

4.7.3 Dynamic Model

If a dynamic model with discrete controls is created, the interface of the prepared user
function

[xdot,y,jxdot,jy,hxdot,hy] = model(x,u,p,v1,v2,..,c1, c2,..,alpha,w)

is slightly different to the default case. The interface was already introduced in 4.3.3
and places the discrete control inputs between the parameters and constants. Addi-
tionally, two inputs are added at the end. The alpha input introduces additional zeros
in the Jacobian and Hessian (e.g. to account for slack variables that are not considered
by the dynamic model). The last input w expects the discrete control weights for the
Outer Convexification. The number of columns for each discrete control and the num-
ber of rows of the discrete control weights must coincide. The number of columns for
the discrete control weights must equal the number of time steps.

In order to consider the discrete controls in FALCON.m phase, the model dynamics
need to be wrapped. The falcon.ext.dc.PhaseExtension class performs this
task. It is inherited from the falcon.ext.PhaseExtension class. It is instantiated
by
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phaseExtension = falcon.ext.dc.PhaseExtension(dcManag er);

where the discrete control manager dcManager needs to be passed to the constructor.
The extension is added to the phase using the

phase.addPhaseExtension(phaseExtension);

method. The handle to the prepared dynamic model is added to the phase as usual.
During the phase consistency check, the extension augments the phase. This changes
are explained in the following.

Control Grids for Discrete Control Weights

Base on the information in the discrete control manager class, a new control grid for the
discrete control weights is created. It is discretized with the same discretization density
as the state grid. The last time step τ = 1 is not included. The interpolation method
is set to previous. A custom discretization can be set using the setDiscretization
method.

An initial guess for the discrete controls can be set using the setInitialGuess
method

phaseExtension.setInitialGuess(dc1, values1, dc2, valu es2, ..)
phaseExtension.setInitialGuess(tau, dc1, values1, ..)
phaseExtension.setInitialGuess(treal, dc1, values1, .. , ...

’RealTime’ , true)

which expects pairs of discrete control identifiers and their respective discrete value
selection. If a time vector is specified, the number of discrete set values must match
the time grid. Otherwise, the discrete control is assumed to be constant throughout
the whole time interval. The initial guess is interpolated using the previous command.
In case no initial guess is provided, all discrete control weights are initialized with a
fraction of the discrete control combinations.

Slack Variables

Slack variables can be used by the Vanishing Constraints and the switching cost ap-
proaches to relax the overall optimal control problem. These require that additional
controls are created, which are bypassed around the model dynamics. This bypassing
is achieved by the alpha parameter in the prepared dynamic model function.

A new slack variable is requested from the phase extension by calling the

idx = phaseExtension.addNewSlackVariable();

method. It does not return a FALCON.m control object but the index of new control
variable in the discrete control stack grid (DiscreteControlSlack ) which is a prop-
erty of the phase extension. All slack variables are bounded between 0 and 1.

Summation Constraint of Discrete Control Weights

In order to fulfill the discrete control weight summation constraint
∑

k

wk = 1 (4.106)
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ModelHandle
(

Phase Data

Phase Extension

~uall =

[
~u
~w

]

~x , ~u , ~p , ~v1, . . . , ~c1, . . . , ~α , w
)

Figure 4.36: Information flow in the discrete control model wrapper.

a path function is added to the phase. It is evaluated on the same discretization
grid as the discrete control weights. The ”user-function” is handled by the internal
falcon.ext.dc.PhaseExtension.SummationConstraint function which is sim-
ilar to the implementation shown in 4.4.3.

Wrapping of Model Handle

In order to wrap the model dynamics for the FALCON.m toolbox, the handle to the
model in the Model class is redirected to the DiscreteModelHandle method of the
phase extension. The original handle to the prepared user function file of the derivative
builder is stored.

During the consistency check, the model info struct is requested by FALCON.m.
This request is handled by the wrapper function using the following alterations:

1. The number of controls expected by the model is increased by the number of
valid discrete control combinations and slack variables.

2. All inputs that have the DISCRETEtype are removed from the input list of the
struct interface. FALCON.m is not able to handle the identifier for the discrete
controls. Therefore, the discrete inputs are hidden from the toolbox. A consis-
tency check for the discrete controls regarding the name and size is performed by
the phase extension.

3. The Jacobian and Hessian sparsity structure is adapted to account for the dis-
crete control weights and slack variables. As the number of valid combinations
is unknown during derivative generation, this information cannot be stored in
the info struct. The structure of the returned Jacobian and Hessian is explained
in 4.4.

During evaluation, the information provided by the phase as well as the discrete
control data is sorted and the original model handle is called (see Figure 4.36). The
controls provided by the phase ~uall are split into the continuous controls ~u and the
discrete control weights w.

4.7.4 Vanishing Constraints

The Vanishing Constraints in FALCON.m offer a high flexibility and user friendliness.
A path constraint

gLB ≤ g (~yc, ~xc, ~uc, ~pc,~c, . . . ) ≤ gUB (4.107)
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is applied, only in case a certain discrete control choice ~vk is selected (the corresponding
weight wk is greater than zero). From the user side, a simple path constraint has to be
defined. Additionally, the active condition as well as the corresponding bounds have
to be specified. The definition is transformed

wk · g(~x, ~u, ~p, ~vk) ≤ 0, wk ≥ 0, g(~x, ~u, ~p, ~vk) ≤ 0 (4.108)

to the vanishing constraint. Internally, the relaxed

wk · (g(~x, ~u, ~p, ~vk) + κ)− κ ≤ 0 (4.109)

or the reformulation

1

2

(

gwk +
√

g2w2
k + κ2 +

√

w2
k + κ2 − wk

)

− κ ≤ 0, κ ≥ 0 (4.110)

approach are used. The approach type can be set using the

vanishingConstraint.setType(type)

method that expects a string (RELAXEDor REFORMULATED).

A new Vanishing Constraint is added to the phase using the

vanishingConstraint =
phaseExtension.addNewVanishingConstraint(handle, nor malizedTime);

method of the phaseExtension instance. It requires a handle to the prepared user
function as well as the normalized time steps it is evaluated on. The handle must be a
prepared path constraint that implements the derivatives and supports the info struct
interface.

Conditions

Once a Vanishing Constraint is added, it has to be specified under which conditions it
has to be active. Therefore, a new condition

condition = vanishingConstraint.addNewCondition(const raint, ...
dc1, set1, dc2, set2, ..);

is created which requires the following inputs:

constraint Array of falcon.Constraint objects which is used to specify the lower
and upper bounds as well as the scaling of the path constraint. The number of
constraints must match the number of constraints calculated by the path con-
straint handle. Lower and upper bound limits are transformed to fulfill the ≤ 0
condition. Bounds that are inf are ignored.

dc/set Pairs of discrete control and set identifiers defining the conditions under which
the Vanishing Constraint is active. A dc can either be a DiscreteControl in-
stance or its name identifier. The set is either an index array or a cell array of
names of the set.

With the addNewCondition method it is possible to define multiple discrete con-
trol sets. The sets define when the path constraint must be considered. A vanishing
constraint may be desired to be active if all or at least on of the condition pairs is ful-
filled. Therefore, the condition method
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condition.setLogicalCombine(combineType) % ’AND’, ’OR’

allows to define how the sets are logically combined. The default setting is AND.

For each condition added to the vanishing constraint, custom bounds can be spec-
ified via the constraint. Thus, it is possible to change bounds on the discrete control
selection. Additionally, it is possible to change constant inputs to the path constraint
dependent on the condition. In order to use this feature, the names of the constants
that shall be provided by the conditions

vanishingConstraint.setConditionConstantNames(name1 , name2, ..)
condition.setConstants(c1, c2, ..)

must be specified in the vanishing constraint. Additionally, the values of the constants
must be set in the condition.The order must coincide with the names provided.

Slack Variables

As mentioned in section 3.3.3, it is possible to extent a vanishing constraint by using
slack variables. In this case, the relaxation parameter κ becomes optimizable and is
driven to zero by an additional cost function:

JP =
∑

i

κi. (4.111)

This feature is disabled by default and can be enabled by passing a true flag to the

vanishingConstraint.setUseSlackVariable(flag)

method. The initial relaxation slack parameter κ (and thus its upper bound) is specified
by

vanishingConstraint.setRelaxVariable(value)

In case the slack variable feature is not used the relaxation parameter acts as a constant.
The default value is arbitrarily set to 0.001. Additionally, it is possible to define a lower
bound for the relaxation slack variable

vanishingConstraint.setRelaxVariableLowerBound(valu e)

which has a default value of zero.

Wrapping of Vanishing Constraint

During the optimization of the optimal control problem, the vanishing constraints are
evaluated using the information flow scheme in Figure 4.37. As with the dynamic
model, during optimization, the data provided by the phase is sorted and the original
path constraint handle is called. The controls are split into the continuous controls,
the slack variable, and the discrete control weights. Constants may be provided by the
phase or the vanishing constraint. After the evaluation, the results are passed to the
conditions which calculate the vanishing constraint.
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=~g, j~g, h~g

Figure 4.37: Information flow in the vanishing constraint wrapper.

4.7.5 Switching Costs

The switching cost approach spans across multiple phases and hence must be imple-
mented on the problem level. This is achieved with a ProblemExtension . This
extension is added to the problem with the

problemExtension = falcon.ext.dc.ProblemExtension();
problem.addProblemExtension(problemExtension);

method. Thus, the problem extension automatically implements switching costs for all
discrete controls that are found in the problem.

Bake Augmentation

During the bake process the following augmentations are made to the problem:

1. Find all phases that implement discrete controls. Extract sequences of connected
phases using the ConnectedNextPhase property.

2. For every set of connected phases:

(a) Find a unique set of discrete controls.

(b) For each discrete control found:

i. Find a unique set of discrete control set values. It may be possible that
two phases have the same discrete control but with varying sets.

ii. For each entry of the unique discrete control set: Find the connected
phases and implements the switching cost approach.

Influencing Switching Costs

Although the switching cost functions are created by the problem extension automati-
cally, they can be influenced. By default, all switching costs have a penalty multiplier
of 0.05. This scaling is stored in the DefaultPenaltyScaling property and can be
set using the method:
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problemExtension.setDefaultSwitchingPenalty(default SwitchingPenalty);

Individual penalties for certain discrete controls can be set with

problemExtension.setSwitchingPenalty( ...
dc1, penalty1, dc2, penalty2, ..);

which expects pairs of discrete controls and penalties. In order to disable the switch-
ing cost in the first optimization stage, the PenaltyMultiply property exists. It is
applied to all switching costs and has a default value of zero. Thus, all switching costs
are disabled. This is required in the first stage of the two stage solution approach. The
value can be changed with the method

problemExtension.setPenaltyMultiply(multiplyValue);

which expects a value between zero and one. Slack variables can be used for the
switching cost approach, too. The use of a slack variable (for all switching cost func-
tions) is enabled using

problemExtension.setUseSlackVariable(flag);

The upper bound of the slack variable is set with the setSlackUpperBound method.

Solve

In order to solve problems with discrete controls at least two optimization stages are
required. The two stage solution approach was introduced in 3.6 and implements a
first optimization stage without switching cost and a second with switching costs. It is
conducted automatically by calling the

problemExtension.Solve(solver);

method of the problem extension. The solve method expects a FALCON.m optimizer
instance.

As mentioned in 3.6.3, the intermediate switching structure may be augmented by
the box filter. The filter option is disabled by default and is enabled with the

problemExtension.setIntermediateAugmentation( ...
dc1, duration1, dc2, duration2, ..)

method. It expects pairs of discrete controls and duration parameters. Thus, the min-
imum duration is specified the discrete control must have. Only specified discrete
controls will be augmented.

149





Chapter 5

Application to Automotive Race
Track Optimization

In this chapter, the developed toolbox is applied to calculate the minimal lap time of a
car through a race course. The optimal trajectory is subject to the model dynamics. The
state and control histories are optimized. Additionally, the gear selection is introduced
as a discrete control.

There are several publications that are concerned with time minimal lap times
through a race circuit. Good results are obtained by [116] who calculates the mini-
mal lap time under the consideration of the Kinetic Energy Recovery System (KERS).
[117] evaluates time minimal cornering of a 180 degree turn for combinations of road
surfaces and transmission layouts (rear/front wheel drive). However, in most publica-
tions, discrete decisions such as gear changes are not considered. [7] optimizes the full
dynamic model with gear changes through a lane changing maneuver. In [6] a simi-
lar dynamic model is used to calculate the minimal lap time trajectory through a race
course. The results presented in this chapter are comparable to [6] regarding the for-
mulation of the discrete controls using OC. Therefore, the results are primarily used to
show the behavior of the novel cost function formulation as well as the solution strat-
egy. A single track model is used for the optimization [7]. Although the results show
a realistic driving strategy, the optimal solution for a high fidelity model may differ
significantly. The simple model is chosen as it was previously used in other MIOCP
and thus can be regarded as an established test model. Early results of this chapter
have been published in [111].

The chapter is organized as follows. In section 5.1 the car model, the race track
formulation, and the constraints considered in the optimization are presented. Three
optimizations are carried out in section 5.2. The first two show the structure of the
solution without and with the intermediate spike removal. Additionally, the gas and
brake pedal are introduced as discrete controls in the third optimization. In the last
section 5.3, the discrete control formulation is tested against various user parameters
to show the stability and consistency of the approach.

5.1 Problem Setup

This section discusses the general problem setup of the track optimization. First the
formulation of the race track with variable width is introduced, followed by a descrip-
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5.1 Problem Setup

tion of the single-track car model. Additionally, it is stated how the track and other
constraints are considered within the car model. Finally, the solution strategy is pre-
sented. The problem description is partially taken from the author’s publication [111].

5.1.1 Track Model

In order to consider the race track in the OCP, a mathematical representation of it is
required. Here, the track is modeled with two cubic splines. The first spline calculates
the center line position

~η(s) =

[
xs(s)
ys(s)

]

(5.1)

w.r.t. to the spline parameter s. The second spline calculates the half width of the track

σ(s) (5.2)

w.r.t. to the same spline parameter s. Both splines share the same break parameters

sj = s1, s2, . . . , sns , j = 1, . . . , ns (5.3)

at which the discretized center line waypoints and track half width

xsj, ysj, σj (5.4)

are defined. In between the break points, the spline is interpolated

~ηj(s) = ~aη,j +~bη,j · (s− sj) +~cη,j · (s− sj)
2 + ~dη,j · (s− sj)

3 (5.5)

σj(s) = aσ,j + bσ,j · (s− sj) + cσ,j · (s− sj)
2 + dσ,j · (s− sj)

3 (5.6)

sj ≤ s ≤ sj+1, j = 1, . . . , ns − 1 (5.7)

where the coefficients a, b, c and d are calculated beforehand for each polynomial of the
spline. The breaks may be any strict monotone increasing sequence of real numbers.
Here, they are chosen

sj = sj−1 +

√
(
xsj − xsj−1

)2
+
(
ysj − ysj−1

)2
, s1 = 0, j = 1, . . . , ns (5.8)

to be the accumulated distance over the discretized waypoints.

In the following, the generation of the center line and width of the track is ex-
plained. For the race track, the Nürburgring grand prix circuit is chosen, as it has a
variety of turns with different radii and straights of various lengths. The method de-
scribed here can be applied to any other circuit. To generate the splines, the left L and
right R boundaries of the track are traced in e.g. Google Earth. The results are two
sequences of Global Positioning System (GPS) positions that are transformed into local
cartesian coordinates using an arbitrary reference point. For each sequence, a spline is
generated

~ηL(sL) =

[
xsL(sL)
ysL(sL)

]

, ~ηR(sR) =

[
xsR(sR)
ysR(sR)

]

. (5.9)
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Centerline
βL βR

~ηL ~ηR

sL sR

Figure 5.1: Spline opposite side condition βL = βR for left and right track borders in
order to determine spline for center line and half width.

In order to generate the center line and half width, the spline breaks of one side
are taken as the reference. Then, for each spline break, the corresponding position and
spline parameter value of the other spline need to be found. The condition

(
~ηN,R(sR)− ~ηN,L(sL)

)T · ∇sL~ηN,L(sL) =
(
~ηN,L(sL)− ~ηN,R(sR)

)T · ∇sR~ηN,R(sR) (5.10)

has to be fulfilled, where all vectors

~ηN,L(sL) =
~ηL(sL)

‖~ηL(sL)‖2
∇sL~ηN,L(sL) =

∇sL~ηL(sL)

‖∇sL~ηL(sL)‖2
(5.11)

~ηN,R(sR) =
~ηR(sR)

‖~ηR(sR)‖2
∇sR~ηN,R(sR) =

∇sR~ηR(sR)

‖∇sR~ηR(sR)‖2
(5.12)

are normalized. The angle between the line connecting both spline points and the
spline direction (gradient) must have the same angle (see Figure 5.1). The condition
can be formulated as an unconstrained optimization problem.

Using the results

~̂ηR = (ŝR), ~̂ηL = (ŝL), (5.13)

the center points

~η =
~̂ηR + ~̂ηL

2
, (5.14)

and the half widths

σ =
1

2
·
∥
∥
∥~̂ηR − ~̂ηL

∥
∥
∥
2

(5.15)

of the race track are calculated. The breaks of the center line are calculated with (5.8)
using the obtained center points. Figure 5.2 shows the result for the Nürburgring grand
prix circuit.

5.1.2 Car Model

In this section, the car model is described. It is a single track car model taken from
[23, 7]. Rolling and pitching behavior are not considered.

Figure 5.3 displays the coordinates, forces, and other entities of the car model. The
states and controls are stated in Tables 5.1 and 5.2 respectively. The equations of motion
are described by a set of ordinary differential equations which are explained in the
following.
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Start / Finish

Figure 5.2: Nürburgring track represented as cubic splines. Dark and light gray lines show
the track border and centerline. The spline breaks are shown by black lines.
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Figure 5.3: Single track car model with distances, angles and forces.

The kinematic state derivatives are given by

ẋ = v · cos (ψ − β) (5.16)

ẏ = v · sin (ψ − β) (5.17)

δ̇ = wδ (5.18)

ψ̇ = wz (5.19)

which include the position propagation as well as the integration of the steering angle
δ and yaw angle rate wz. The remaining state derivatives depend on the forces acting
on the car. The acceleration of the Center of Gravity (CG)

v̇ =
(Flr − Fax) · cos β + Flf · cos (δ + β)− (Fsr − Fay) · sin β − Fsf · sin (δ + β)

M
(5.20)

is determined using the sum of forces acting in the slip direction. The slip angle time
derivative

β̇ = wz −

(Flr − Fax) · sin β + Flf · sin (δ + β)

+ (Fsr − Fay) · cos β + Fsf · cos (δ + β)

M · v (5.21)

is influenced by the yaw angle rate wz as well as the forces acting perpendicularly to
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Table 5.1: States of the single track car model.

Name Description Unit

x x-position [m]
y y-position [m]
v Speed [m/s]
δ Steering wheel angle [rad]
β Side slip angle [rad]
ψ Yaw angle [rad]
wz Yaw angle rate of change [rad/s]

Table 5.2: Controls of the single track car model.

Name Description Bounds Unit

wδ Steering angle rate of change [−0.5, 0.5] [rad/s]
ξ Normalized brake pedal position [0, 1] [−]
φ Normalized accelerator pedal position [0, 1] [−]
iG Gear Discrete [−]

the slip direction. The yaw angle time derivative is given by

ẇz =
Fsf · lf · cos δ − Fsr · lr − Fay · esp + Flf · lf · sin δ

Izz
(5.22)

where lr and lf are the rear and front distances to the CG. The moment of inertia is
given by Izz and the distance of the aerodynamic drag point to the CG by esp.

Forces

The forces can be divided into the following groups. Side and longitudinal forces (sub-
script s and l) act on the front and rear wheel (subscript f and r) in the respective local
coordinate system. Additionally, the aerodynamic forces (Fax and Fay) are stated in the
car fixed coordinate system. The values for all coefficients and parameters are given in
table 5.3 at the end of this section.

The side forces of the front and rear wheel

Fsf = Df · sin (Cf · arctan (Bf · αf − Ef · (Bf · αf − arctan (Bf · αf)))) , (5.23)

Fsr = Dr · sin (Cr · arctan (Br · αr −Er · (Br · αr − arctan (Br · αr)))) (5.24)

are calculated using the PACEJKA magic formula [118]. In agreement with the author
of [7] the peak values of Df and Dr are doubled. Otherwise the side friction of the
model would be too low. The magic formula is dependent on the tire’s slip angle. The
slip angles of the front and the rear tire are given by

αf = δ − arctan

(
lf · wz − v · sin β

v · cos β

)

, (5.25)

αr = arctan

(
lr · wz − v · sin β

v · cos β

)

. (5.26)
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The forces acting on the tires in their longitudinal direction

Flf = −FBf − FRf , (5.27)

Flr = FMr − FBr − FRr (5.28)

consist of multiple influences. For the front tire, the total force is composed of the brake
force as well as the roll friction. As the car model is assumed to be rear wheel drive,
the rear tire force has an additional term for the motor force.

The total brake force commanded using the brake pedal is distributed between the
front and the rear wheel

FBf =
2

3
· FB · ξ, (5.29)

FBr =
1

3
· FB · ξ (5.30)

unevenly, since front brakes are usually more effective.

The speed dependent roll friction is given by

fR = 9 · 10−3 + 7.2 · 10−5 · v + 5.038848 · 10−10 · v4 (5.31)

which is distributed between the front and rear wheel

FRf = fR ·M · g · lr
lf + lr

, (5.32)

FRr = fR ·M · g · lf
lf + lr

(5.33)

using the loads on the respective axes. The weight of the car is given by Mg and lf , lr
represent the distances of the front and rear tires to the CG.

The motor force on the rear tire

FMr =
iG · it
R

·Mmot (5.34)

is dependent on the wheel radius R, the transmission ratios of gear iG (which is intro-
duced as a discrete control) and the engine torque transmission ratio it. The engine’s
torque

Mmot = f1 · f2 + (1− f1) · f3 (5.35)

is a function of three coefficients. These are calculated using

f1 = 1− e−3·φ, (5.36)

f2 = −37.8 + 1.54 · wmot − 0.0019 · wmot2, (5.37)

f3 = −34.9− 0.04775 · wmot (5.38)

and are dependent on the accelerator pedal position as well as the engine’s rotation
speed

wmot =
iG · it
R

· v. (5.39)
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Table 5.3: Parameters and coefficients of car model. Data taken from [7]. The half car
width parameter lw is arbitrarily chosen to a realistic value. It is used to
account for the width of the car in the track constraint.

Symbol Description Value Unit

A Effective flow surface 1.437895 [m2]
Bf Front tire stiffness factor 10.96 [−]
Br Rear tire stiffness factor 12.67 [−]
Cf Front tire shape factor 1.3 [−]
Cr Rear tire shape factor 1.3 [−]
Df Front tire peak value 9120.80 [−]
Dr Rear tire peak value 7895.62 [−]
Ef Front tire curvature factor −0.5 [−]
Er Rear tire curvature factor −0.5 [−]
Izz Moment of inertia 1752 [kg ·m2]
R Wheel Radius 0.302 [m]
cw Air drag coefficient 0.3 [−]
esp Distance drag mount to CG 0.5 [m]
g Gravitational acceleration 9.81 [m/s2]
iG Gear transmission ratios {3.91, 2.002, 1.33, 1.0, 0.805} [−]

1st to 5th gear
it Engine transmission ratios 3.91 [−]
lf Distance front wheel to CG 1.19016 [m]
lr Distance rear wheel to CG 1.37484 [m]
M Car mass 1239 [kg]
ρ Air density 1.249512 [kg/m3]
FB Maximum brake force 1.5 · 104 [N ]
lw Half car width 0.8 [m]

Finally, the aerodynamic forces

Fax =
1

2
· cw · ρ · A · v2, (5.40)

Fay = 0 (5.41)

are calculated with a simple drag equation dependent on the drag coefficient cw, the air
density ρ, the projected reference areaA, and the car’s speed v. The lateral aerodynamic
force is assumed to be small and is therefore ignored.

5.1.3 Constraints

In the following, the constraints that are considered in the optimal control problem are
explained.

Track Constraint

As mentioned above, the race track is formulated as a cubic spline that gives the track’s
center line and the half width w.r.t. the spline parameter s. In the optimization, a
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track constraint that keeps the car within the bounds of the track must be formulated.
Therefore, the spline parameter s that represents the closest point on the spline to the
car (foot point) needs to be determined (see Figure 5.4).

~η(s)
∇s~η(s)

~r
~̇r

s

Figure 5.4: Car position with foot point on spline.

The following approach is based on the formulation used by [77] where the spline
parameter was introduced as an additional state which is integrated alongside the dy-
namics. The spline state derivative

ṡ =
~̇rT · ∇s~η

(∇s~η)
T · ∇s~η − (~r − ~η)T · ∇2

ss~η
, ~r =

[
x
y

]

, ~η =

[
xs
ys

]

(5.42)

depends on the car position ~r, speed vector ~̇r, as well as the spline position ~η and the
first and second order derivatives w.r.t. to the spline parameter. The differential equa-
tion gives the propagation of the spline parameter state s. The spline position of the
integrated spline parameter remains a foot point to the car. Although this formulation
works well for splines with few nodes, it has some drawbacks.

• The initial spline parameter must be a foot point to the initial position of the
dynamic system. Therefore, a perpendicularity constraint for s(t0) must be con-
sidered.

• The breaks of the spline used for the interpolation must be the actual spline
lengths from the initial position. Otherwise a drift in the foot point may occur
with the result that the perpendicularity is no longer given.

• Although the differential equation provides a simple way to calculate the foot
point, the additional dynamics are difficult to fulfill in numerical optimization.
The formulation tends to be numerically unstable. Especially on strong changes
in the curvature (sharp turns), the discretization density may be insufficient. This
results in an integration error that ultimately leads to a drift of the assumed foot
point. This drift remains for the rest of the trajectory and cannot be compensated.

Therefore, in this thesis, the spline parameter is introduced as an additional control
us. Thus, the spline foot point calculation becomes decoupled from the system dynam-
ics. In this case, not only the distance to the spline must be constrained but also the
perpendicularity of the foot point.

As the whole car has to stay within the track it is insufficient to consider the center
point only. Therefore, the car is expanded by a width parameter lw which represents
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Track Border

Track Centerline ~η

s

~η(srr)
~η(srl)

~η(sfr)
~η(sfl)

~r

~rrr

~rrl

~rfr

~rfl

lw

lr

lf

Figure 5.5: Consideration of car corners in optimal control problem.

the half width of the car (see Figure 5.5). Thus, for instance, the position of the front
right wheel of the car is calculated by

~rfr = ~r +

[
cosψ − sinψ
sinψ cosψ

]

·
[
lf
lw

]

(5.43)

for which the footpoint ~ηfr w.r.t. the spline parameter sfr needs to be determined. The
same holds true for the other wheel ~rfl, ~rrr, ~rrl and spline positions

~ηfl = ~η(sfl), ~ηrr = ~η(srr), ~ηrl = ~η(srl). (5.44)

For simplicity, only the front, right wheel is considered in the following.

In order to determine the correct footpoint ~ηfr to the wheel position ~rfr, the spline
control sfr must fulfill the perpendicularity

(~rfr − ~η(sfr))
T · ∇s~η(sfr) = 0 (5.45)

equality constraint at every time step.

Due to the changing width σ(sfr) of the race track, the centerline distance constraint

0 ≤ (~rfr − ~η(sfr))
T · (~rfr − ~η(sfr))

σ2(sfr)
≤ 1 (5.46)

is normalized. Please note that the physical constraint is squared as the actual distance
(using the square root)

∂

∂sfr





√

(~r − ~η(sfr))
T · (~r − ~η(sfr))

σ(sfr)



 (5.47)
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would introduce infinite values in the derivatives in case the car is on the center line.

Engine Rotation Speed Constraint

The motor frequency is transformed to revolutions per minute

nmot = wmot ·
60

2 · π (5.48)

and is limited to a maximum of 6500rpm. Thus, switches to low gear selections at high
speeds are prevented.

Periodic Phase Defect

Finally, the problem is set up as a periodic OCP. The initial and final states

~x0 − ~xf = 0 (5.49)

must coincide and thus the optimal solution represents the car’s time minimal trajec-
tory through the course. Please note that the cars yaw angle may have

ψ0 −
(
ψf − k · 2π

)
= 0, k ∈ N (5.50)

an offset of multiple revolutions.

5.1.4 Solution Strategy

The MIOCP is solved with the solution strategy presented in section 3.6. In the first
stage, the optimal control problem is solved without switching costs in order to gener-
ate an initial guess for the discrete controls. Afterwards, in the second and final stage,
the switching cost is activated and the solution process is warm-started. The switching
cost penalty is scaled by 0.05 and the multi-time switching cost function is formulated
using a slack variable bounded between [0, 0.9]. The feasibility and optimality toler-
ance are set to 1 · 10−5. Furthermore, the following topics are considered.

Track Constraint Scaling

Due to the fact that the perpendicularity track constraint is hard to fulfill by the opti-
mization algorithm, the scaling of the corresponding constraints is set to 0.001. This re-
duces the required accuracy from 10−5 to 10−2. The resulting angle error lies at around
0.6 degrees.

Initial Guess

The initial guess is provided in a very simple way. For the states only the position,
speed, and orientation of the car are initialized. Using the discretization density of
τ , the position of the car is initialized on the centerline for a full lap. Additionally, a
constant speed of 25m/s (90km/h) is assumed. The yaw angle / orientation of the car
is calculated from the spline first order derivative. All other states are set to zero.
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All physical car controls ξ, φ, wδ are initialized to zero. The spline controls are set
to spline parameter values that match the car’s position initialization. The gear is as-
sumed to be in the third position. The initial guess for the car is very simple to provide
and requires little to no input to the optimal trajectory.

5.2 Single Optimization Results

In this section, single optimization results are shown. In the first optimization the
problem is solved with the solution strategy introduced above. The optimal solution is
explained. Afterwards, the same OCP is solved using the intermediate spike removal
(see section 3.6.3). The differences to the first optimization results are discussed. Fi-
nally, the gas and brake pedals are modeled as additional discrete controls. Thus, the
problem is solved with three discrete controls.

All problems are discretized in time with 3001 equally distributed points resulting
in 60016 optimization variables and 51018 constraints for the first two optimization
problems. The sparsity of the Jacobian is 99.9781%. Due to the discrete control mod-
eling in the third optimization, the last problem contains more optimization variables.
The scaling of the switching cost is set to 0.05. The main lap time cost function is scaled
with 0.01.

5.2.1 Without Spike Removal

Here, the OCP is solved without the intermediate spike removal. The optimal solution
is retrieved within 33.9 minutes, where the first optimization stage required 4.0 min-
utes and the second (with switching cost) 29.9 minutes1. Early results of this section
have been published in [111].

Start / Finish

Gear 1
Gear 2
Gear 3
Gear 4
Gear 5

Figure 5.6: Gear switching solution of Nürburgring Grand Prix circuit (without spike
removal).

Figure 5.6 shows the optimal trajectory through the circuit with colors indicating
the different gear choices. Low gear choices are found in the turns and high gear
choices are found in the straight segments of the track. The minimal lap time obtained
by the optimal solution is 132.265 seconds. The full width of the track is exploited

1Intel Core i7-930 CPU @ 2.80GHz, Windows 8 64bit, MATLAB 2015a
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resulting in a realistic time minimal track for the model used. In Figure 5.7 the time
history for various data is displayed. In each plot, the results from the intermediate op-
timization step without switching cost (orange), and the final solution with switching
cost (blue) are shown.
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Figure 5.7: Time history of various data for solution of Nürburgring Grand Prix circuit.

In the final solution, the gear selection contains sharp immediate switches whereas
in the intermediate solution the results are more continuous. Especially during down-
shifts before the car enters a turn, fractional values for the discrete controls are found.
Additionally, a switch to low gears increases the Revolutions Per Minute (RPM) of the
motor drastically (see wmot plot) and enables the car to use the resulting negative en-
gine torque as an additional brake (see correlation between motor torque Mmot and the
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brake ξ). Due to the fact that the discrete control weights are relaxed and the absence
of the switching costs, the optimizer exploits this degree of freedom by introducing
fractional values. Thus, the gears become weighted and result in a continuous change.
Additionally, the RPM becomes weighted and stays at its upper limit during decelera-
tion. Thus, the magnitude of the deceleration is driven by the RPM limit.

In the second optimization step, switching costs are considered in the OCP. The
discrete control weights must become binary feasible. Thus, the optimizer is forced to
find an actual switch in the discrete control history. This introduces several changes in
the optimal solution.

The minimal lap time duration is slightly increased. Therefore, the time histories
of the data displayed drift to later times. Fractional values and high frequent switches
are mitigated in the gear switching plot. Especially at downshifts a clear switch to
lower gears is found. As mentioned above, the deceleration of the car is driven by
the engine’s RPM limit. Since the gear changes are no longer continuous, the car has to
perform earlier and longer break maneuvers in order to maintain the limit. This change
can be seen in the brake and speed plots. Additionally, compared to the intermediate
solution, the RPM is reduced until a switch to a lower gear becomes feasible. In many
cases, the RPM jumps to the upper bound after the switch.

Overall, this change of the solution requires many iterations and hence explains
the high computational time for the second step. Additionally, it can be seen that the
optimal gear switching solution contains short spikes to the highest gear selection. This
behavior does not seem to be optimal and is addressed in the following.

5.2.2 With Spike Removal

Start / Finish

Gear 1
Gear 2
Gear 3
Gear 4
Gear 5

Figure 5.8: Gear switching solution of Nürburgring Grand Prix circuit with spike removal
between the optimization stages.

In order to remove the spikes to the fifth gear, the spike removal algorithm from sec-
tion 3.6.3 is applied. Spikes with a duration of less than two seconds are removed from
the intermediate solution. The augmentation of the discrete control weights is written
to the optimal ~z vector of the previous optimization stage. The overall optimization
required 35 minutes to solve and is thus approximately the same as before.

Figure 5.8 shows the gear switching trajectory on the Nürburging with the inter-
mediate spike removal augmentation. It can be seen that the switches to the fifth gear
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are removed. Instead, they are replaced by step-wise downshifting of the gear. This
behavior seems to be more realistic. In Figure 5.9, the switching structures of both
approaches are compared. The solution with the spike removal algorithm (orange) fol-
lows the intermediate / continuous switching structure (gray) very closely. Significant
differences to the previous solution (blue, without spike removal) are found only at the
downshift points. Otherwise, the gear switching solution is very similar. Finally, the
solution without spike removal contains fewer switches.
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Figure 5.9: Comparison of switching structure without (blue) and with (orange) spike
removal. Intermediate Solution shown in gray.

The time histories of the states and the continuous controls remain almost unaf-
fected and are thus not shown. The minimal time for the spike removal solution is
132.2475 seconds and thus even slightly faster than the previous result of 132.2650 sec-
onds. It becomes clear that switching cost approaches introduce many additional local
minima in the optimal solution which are very sensitive to the provided solution.

5.2.3 Multiple Discrete Controls

As can be seen in the previous solutions, the gas and the brake pedal have a bang-bang
optimal solution structure. Therefore, in this section, they are implemented as discrete
controls in order to test the multiple discrete control capability. Thus, three discrete
controls enter the dynamic model. The brake and throttle may not be active or inac-
tive at the same time. After removing the invalid cases, 10 discrete control combina-
tions remain. Compared to the previous optimizations, the number of discrete control
weights is doubled. Two continuous controls are removed. Thus, the OCP has 69013
optimization variables representing an increase of 15%. The number of constraints and
the discretization density remain the same.

Minor adaptations to the dynamic model and the generation of the initial guess are
required. The former continuous controls gas pedal φ and brake pedal ξ now enter as
separate discrete controls

φ = {0, 1}, ξ = {0, 1}. (5.51)

Furthermore, the initial guess for the discrete control is set to be in the third gear, full
throttle and no brakes. The spike removal is applied to gear selection in the intermedi-
ate optimization stage. Spikes with a duration shorter than 2 seconds are removed. The
gas and brake pedal switching structure is not augmented. For all discrete controls, the
switching cost penalty is scaled by 0.05. Otherwise, the OCP remains the same.
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Figure 5.10: Solution comparison of continuous gas/brake pedal to discrete control intro-
duced gas/brake pedal.

The obtained minimal lap time for the discrete gas and brake pedal is 133.0 sec-
onds. In Figure 5.10, the optimization result is shown. It is compared to the solution
with continuous throttle and brake from 5.2.2 (with spike removal augmentation). The
solution with multiple discrete controls is similar to the continuous case. However, it
can be noted that the obtained lap time is slightly slower. In the throttle and brake
history it can be seen that the number of brake points is removed. Instead, the maxi-
mum throttle is retained. In order to maintain the track, higher side slip angles β are
produced through strong steering angles. The strong drifting of the car reduces the
car’s speed leading to a reduced lap time. Although the results are good, it can be seen
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that discrete controls are much harder to consider than continuous ones.

5.3 Switching Cost Formulation Stability

In this section, the robustness of the multi-time switching cost approach and of the
solution strategy are discussed. Therefore, the user-selected parameters are varied over
a range of values. These include the scaling of the switching penalty, the discretization
density, and the initial guess for the discrete controls. Since only a single parameter is
varied, all other settings are the same as in the optimizations of the previous section.

5.3.1 Penalty Scaling

The first user parameter that is varied is the scaling of the switching cost penalty α. It
shall determined if and how the structure of the gear selection changes with a variation
of the penalty scaling. The scaling factor is logarithmically spaced from 1·10−6 to 100 in
81 steps. Thus, the considered range spans over eight magnitudes. All optimizations
are started with the same initial guess. As expected, all intermediate solutions are
exactly the same. First, the optimizations are executed without augmentation between
the optimization stages. Afterwards, the same optimizations are carried out with the
spike removal algorithm.

Without Spike Removal

Figure 5.11 displays an overview of the penalty scaling study. The tracks of the car for
all 81 optimizations are shown. Below, different data is plotted over the penalty scaling
on a logarithmic axis. The scaled lap time is plotted together with the switching cost
penalty. Please note that for this plot, the vertical axis is logarithmic as well. Addition-
ally, the real lap times are plotted. Finally, the computational times of the second stage
in minutes are shown. The computational time for the first stage is not shown as it is
the same for all optimizations.

In the track plot, the ground tracks for the different switching penalties do not
match. The optimizations converge to different local minima. The reasons are dis-
cussed further below. In the plots below, four different sections on the penalty axis
(x-axis) can be identified (indicated by green separation lines). For each of these sec-
tions, Figure 5.12 shows a zoomed section of the trajectory (red box in Figure 5.11) as
well as the gear switching structures of the optimizations.

At first, the switching penalty scale parameter is very small and has significant
impact on the optimal solution. Approximately in the middle of the first subrange,
the influence by the optimization algorithm becomes noticeable. This is indicated by
the sudden increase in the CPU time. The long computational times are an indicator
that the optimization runs into the maximum number of 6000 iterations. Unsuccessful
optimizations are indicated by a red cross in the CPU plot. Additionally, it can be seen
in Figure 5.12 that the switchings structure is not changed significantly. Merely some
minor spikes in the solution have been removed.

In the second subrange, the influence of the switching penalty becomes more promi-
nent and the lap time starts to increase. In the trajectory plot of this subrange, the so-
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Figure 5.11: Car tracks, scaled lap time, and switching cost functions, real lap time, and
computational Central Processing Unit (CPU) time over different switching
cost penalties. Optimizations that did not converge are indicated by red
crosses.

lution converges to many different minima. This behavior is also visible in the gear
switching structures. The increase in the switching cost gradually enforce binary feasi-
bility on the discrete control weights. Some solutions begin to show a clear switching
structure. However, the solution seems to be very sensitive to the penalty scale param-
eter. As a reminder, all solutions from the first stage are exactly the same.

The third subrange starts shortly before the switching cost becomes higher than the
scaled lap time. Additionally, a general decrease in CPU becomes visible. The switch-
ing structure shows clear switches over the whole subrange. Additionally, markers
are used to show the fractional value at the switching instances. For integer feasible
values, a marker is not shown (the tolerance is 1 · 10−2). Although the solutions con-
tain fractional values, the effect is irrelevant for practical applications as the switching
times of the discrete control are clearly visible. The tracks for the optimizations of this
subrange of penalty scaling parameters is very consistent.

Finally, the last subrange is indicated by the drop in computational time and the
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Figure 5.12: Track and switching structures for different subranges of the penalty scale
parameter.

drop in the switching cost. In the gear switching structure plots of this subrange, frac-
tional values for the discrete control are mitigated. The binary feasibility for the dis-
crete control weights is much stronger enforced due to the large impact on the overall
cost function. Thus, the overall switching cost is reduced.

With Spike Removal

In the following, the spike removal augmentation is enabled between both optimiza-
tion stages. As can be seen in Figure 5.13, the results of the optimization are much
more consistent. Even for very small scalings of the switching penalty, the impact is
more gradual and the computational efforts are significantly reduced in some parts.
Additionally, the track plot shows a high consistency of the race lines.

In Figure 5.14, the same penalty subranges are plotted as before (see Figure 5.13).
The behavior w.r.t. to the switching penalty is very similar to that without the interme-
diate augmentation. The influences however seem to be more gradual and consistent
over the change of the penalty scaling.

As before, in the first subrange, the smallest penalty scaling parameters show no in-
fluence in the optimal solution. Additionally, there is no increase in the computational
time, since most of the spikes in the solution have already been removed by the inter-
mediate step. At some, point the lap time increased. This indicates that the switching
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Figure 5.13: Car track, scale lap time and switching cost functions, real lap time and
computational CPU time over different switching cost penalties with inter-
mediate step spike removal.

cost begins to have a significant influence. Compared to the previous parameter study,
the penalty scaling shows earlier effect. Overall, the CPU seem to be much lower, es-
pecially for small scalings. In the first plot row of Figure 5.14, no discrete switching
structure is found.

In the second subrange, the discrete value feasibility is gradually enforced. This can
be seen in the gradual and steady increase of the lap time. As before, the gear switching
structure still varies and converges to different local minima. However, compared to
the previous parameter study, the results are much more consistent. This is especially
true for the track plots.

In the last to subranges, the behavior is analogous to the case without spike re-
moval. Discrete value feasibility is enforced, except at the switching instances. With
higher switching cost, this fractional values are mitigated.
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Figure 5.14: Track and switching structures for different subranges of the penalty scale
parameter with intermediate step spike removal.

5.3.2 Discretization Density

In this study, the discretization density is varied from 1, 001 up to 30, 001 equidistant
points. Thus, the optimization is solved for a relatively coarse discretization up to a
very fine discretization. The number of optimization variables ranges from approxi-
mately 20, 000 to 600, 000 optimization variables. Similarly, the number of constraints
ranges from approximately 17, 000 to 510, 000. All optimizations were solved success-
fully.

In the following, the optimizations are carried out with switching penalty scaling
of 0.05. As before, the optimization is carried out with and without the spike removal
augmentation.

Without Spike Removal

Figure 5.15 shows the time minimal lap trajectories, the switching penalties, the lap
times and the computational times. The data is plotted w.r.t. the logarithmic discretiza-
tion density (number of points).

The switching penalty increases slightly with finer discretization. With a higher
discretization density, the optimization algorithm is enabled to perform more switches
in the optimal solution. Thus, the switching penalty increases slightly. However, this
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Figure 5.15: Car track, switching cost penalty, lap time and computational time over
different discretization densities.

effect is only visible at lower discretization densities. Afterwards, the overall switching
cost remains around the same size hinting at a constant number of switches. Therefore,
it is not necessary to formulate the switching cost approach as an integral Lagrange
function.

In the third plot, the minimal lap time over the discretization density is displayed.
The final solution is shown in blue and the intermediate solution is plotted in red.
For the final results, the optimal solutions can be divided into two groups. Almost
everywhere, a very similar optimal lap time is obtained. However, in a few cases,
the optimal solution is worse and shows that gradient based optimization algorithms
converge to local minima. In contrast, the intermediate lap time is constant w.r.t. the
discretization density. Therefore, it becomes clear that the second optimization stage
with switching cost introduces significant local minima in the overall optimal control
problem.

In the last plot, the overall computation time in hours w.r.t. discretization density
is shown. As expected, the CPU increases with the number of optimization variables.
The longest optimization required more than a day to find the optimal solution. Al-
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Figure 5.16: Gear selections for the minimal lap time and other solutions.

though the same lap time is obtained in many cases, the require computational time
may vary up to 20 hours (for comparable discretization densities).

Figure 5.16 shows the switching sequence for all optimizations. The two plots dif-
ferentiate between the best local minimum and all other solutions. For the same local
minium, the results seem to fit very well. In all other solutions, apart from a few excep-
tions, almost the same gear switching structure is found. In a few cases, the optimal
solution switches to the first gear. The time history is mainly scaled due to longer lap
times.

With Spike Removal

In Figure 5.17, the same discretization densities are used but with spike removal aug-
mentation. As before, the same overall behavior regarding the slight increase in the
switching penalty as well as longer computational times with finer discretization can
be seen. However, due to the spike removal, the results are much more consistent.
Also, the number of other minima found is drastically reduced (spikes in the lap time
plot). However, the required computational time still varies extremely.

The switching structures for the gear choices with spike removal are shown in Fig-
ure 5.18. The switching structure of the gears is very similar for all optimizations that
converged to the lowest obtained lap time. Even the optimizations that resulted in
longer lap times show the same switching structure. It appears that the switching
structure is merely scaled by time. Since the lap times in the intermediate solution
show no deviations, the switching costs are the reason for the local minima.

As was seen in the penalty scaling study, the spike removal between both opti-
mization stages increases the consistency of the switching structure. Therefore, for the
following optimization study, only the solution with the intermediate augmentation is
shown.
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Figure 5.17: Car track, switching cost penalty, lap time and computational time over
different discretization densities with spike removal.

5.3.3 Discrete Control Initial Guess

In the previous optimizations, the discrete control is initialized in the third gear. Within
this subsection, it shall be evaluated whether the optimized switching structure changes
w.r.t. the provided initial guess. Therefore, for each gear selection the optimization is
started. Additionally, an optimization is carried out where the discrete control weights
are initialized evenly. Since the example consists of five possible gear choices, in the
evenly distributed case the weights are initialized with wi,k = 0.2. The optimization is
carried out with the spike removal augmentation.

Figure 5.19 shows the result of the different initial guesses for the gear selection.
The tracks of all six solutions fit almost perfectly. Additionally, the switching penal-
ties, the lap times, as well as the CPU times are plotted w.r.t. the initial guess provided.
The integer numbers represent the gear choice. The 1/nv tick label indicates evenly
initialized weights. In the plots, the results are very consistent. A slightly higher lap
time is obtained in case the gear is initialized in the fifth gear. Additionally, the com-
putational time varies significantly.
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Figure 5.18: Gear selection for the minimal lap time and other solutions with spike re-
moval.

In Figure 5.20, the obtained switching structure after the first optimization stage as
well as the final switching structure are shown. As can be seen from the intermediate
switching structure which is not yet binary feasible, all first optimization stages are
able to find a continuous solution for the gear selection. In general, this assumption
cannot be made. Since the intermediate solutions are very similar, it can be expected
that the results after the spike removal and the second optimization stage are similar
as well.
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Figure 5.19: Car track, switching cost penalty, lap time, and computational time over
different discrete control initializations with spike removal.
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Figure 5.20: Gear selection of intermediate and final solutions for different discrete control
initializations with spike removal.

175





Chapter 6

Application to Aircraft Approach
Optimization

In this chapter, the discrete high lift devices as well as the landing gear of a civil aircraft
are optimized in an approach scenario. As before, the full state and control histories
are optimized and the switching sequences of the discrete controls are subject to opti-
mization. Additionally, the discrete control dependent constraints are considered. The
maximum speed limit is dependent on the high lift configuration. Furthermore, the
minimum speed limit is influenced by both the high lift and the landing gear selection.

The chapter is organized as follows. In section 6.1, the aircraft model is introduced.
The kinematic equations of motions for a Three-Degree Of Freedom (3DOF) point mass
model are derived. Additionally, the forces acting on the aircraft are introduced. Con-
straints that are considered in the optimization are described in section 6.2. These in-
clude continuous and discrete constraints as well as operational constraints for a safe
approach. The actual aircraft approach problem on runway 26R of Munich airport and
the solution strategy are explained in section 6.3. Afterwards, in section 6.4, a single
approach optimization is solved. Its solution is used to explain the structure of the time
histories. In section 6.5, several parameter studies are carried out. They shall determine
the influence of aircraft initial approach parameters (mass, altitude, and speed) , wind
(speed, direction), and offsets from the standard atmosphere (temperature, pressure)
on the solution of the switching structure. The chapter closes with a comparison to a
real flight in section 6.6.

6.1 Aircraft Dynamics

The aircraft model used is taken from the Base of Aircraft Data (BADA) Family 4 by
Eurocontrol [19]. It is a Three-Degree Of Freedom (3DOF) point mass dynamic model
with sophisticated aerodynamic (flap and landing gear dependent), propulsion, and
fuel flow characteristics. Additionally, it contains constraints for various configura-
tions (flaps, landing gear).

Table 6.1 defines the states, controls, and outputs that are used by the BADA 4.0
Family model. Additionally to the states and controls entering the dynamics

~̇x = ~fx (~x, ~u,~vBADA) (6.1)

~y = ~fy (~x, ~u,~vBADA) (6.2)
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Table 6.1: States, Controls and Outputs for BADA 4.0 Family Model. Limits considered
through a vanishing constraint do not have constant bounds and are indicated
by VC.

Name Symbol Unit Limit

States

Latitude (WGS84) φG [rad]
Longitude (WGS84) λG [rad]
Altitude (WGS84) hG [m]
Speed (kinematic) V G

K [m/s]
Course Angle (kinematic) χGK [rad]
Climb Angle (kinematic) γGK [rad]
Mass m [kg]
Thrust Lever Position δT [−] [0, 1]

Controls

Lift Coefficient CL [−] VC
Bank Angle (aerodynamic) µA [rad] [−30, 30] · π/180
Thrust Lever Position Command δT,CMD [−] [0, 1]

Outputs

Mach Number M [−]
Load Factor (vertical) nz [−]
Aerodynamic Speed VA [m/s] VC
Calibrated Air Speed VCAS [m/s] VC

Time Derivative Calibrated Air Speed V̇CAS [m/s2] [−∞, 0]

the vector ~vBADA represents aircraft specific data (aerodynamics, propulsion, and fuel
flow). By exchanging the vector, different aircraft types can be simulated. In this thesis,
the ~vBADA vector is used as a discrete control input.

6.1.1 Coordinate Systems

To describe the motion of the aircraft in a correct manner, multiple coordinate sys-
tems have to be considered. In the following, the coordinate systems required for this
work are presented together with transformation between them. As a 3DOF model is
used, e.g. the body fixed coordinate system is not considered. Coordinate systems and
nomenclature are adapted from [119].

Mathematical Preliminaries

A position is given by the vector
(
~rP
)

A
(6.3)

where P represents a point and A the coordinate system the position is given relative
to. In case the position is differentiated in time w.r.t. another coordinate systemB, then

178



Chapter 6: Application to Aircraft Approach Optimization

the speed is given by
(
d

dt

)B
(
~rP
)

A
=
(
~vPK
)B

A
(6.4)

where the coordinates are given in the A frame. Additionally, K indicates the value
type, in this case a kinematic speed. Other type indicators may be A for aerodynamic
data, P for propulsion, G for gravitational, and T for total. A derivative may be w.r.t.
multiple coordinate systems. For instance, the acceleration is given by

(
d

dt

)C
(
~vPK
)B

A
=
(
~aPK
)BC

A
(6.5)

where the speed is relative to the B frame and the acceleration relative to the C frame.

The angular speed
(
~ωAB

)

C
(6.6)

states the rotation of the B frame relative to the A frame. The coordinates are given in
the C frame. The aerodynamic (A) Force

(

~F P
A

)

B
(6.7)

acts in the point P and is given in the B frame. Finally, the transformation matrix
(
~rP
)

A
=MAB ·

(
~rP
)

B
(6.8)

transforms a vector from the B frame to the A frame.

Earth Centered Inertial (ECI)

The aircraft dynamics are derived by the conversion of momentum principle. It can
only be applied in a non-accelerated inertial reference coordinate system. Here, the
Earth Centered Inertial (ECI) frame is used. This frame’s origin is fixed to the earth’s
center but does not rotate with it (see Fig. 6.1). The xI axis points to the vernal equinox,
the zI axis lies in the earth’s rotational axis with positive direction to geographic north,
and the yI axis completes the right hand coordinate system. Strictly speaking, this
frame moves around the sun and with the solar system. However, these effects are
very small and thus neglected. All variables given w.r.t. the ECI frame are denoted by
the index I.

Earth Centered Earth Fixed (ECEF)

The Earth Centered Earth Fixed (ECEF) purpose is for positioning w.r.t to the earth.
This coordinate system has the same origin as the ECI frame but is fixed to the earth
and thus rotates with it (see Fig. 6.1). The xE axis lies in the equatorial plane and points
to the Greenwich meridian. The zI ,zE axes of ECI and ECEF are identical. As before,
the yE axis completes the right hand coordinate system. The angular speed is given by

(
~ωIE

)
=





0
0

7292155.0 · 10−11




rad

s
≈





0
0
2·π

24·3600




rad

s
(6.9)

and results in one revolution in 24 hours. The ECEF frame is denoted by the index E.
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Figure 6.1: Earth centered inertial and earth centered earth fixed frames.

Table 6.2: Defining parameters of the World Geodetic System 1984 [120].

Parameter Symbol Value Unit

Semi-major Axis a 6378137.0 m
Reciprocal of Flattening 1/f 298.257223563 −
Angular Velocity of the Earth ~ωIE 7292115.0× 10−11 rad/s
Earth’s Gravitational Constant GM 3986004.418× 108 m3/s2

World Geodetic System 1984 (WGS84)

The World Geodetic System 1984 (WGS84) was introduced as a common position sys-
tem on earth published by National Imagery and Mapping Ageny (NIMA) [120]. Apart
from gravitational information, WGS84 defines a reference ellipsoid used for naviga-
tion (e.g. Global Positioning System (GPS)). The WGS84 position system is defined by
four parameters as shown in Table 6.2.

From the basic parameters, others can be derived. The semi-minor axis

b = a · (1− f) (6.10)

defines the radius of the ellipsoid at the poles. Another important constant is the ec-
centricity

e =

√

1− b2

a2
(6.11)

which defines the distance of the ellipse’s focal points from the center. Since for plane-
tary examples b is always smaller than a the eccentricity is a real value.

A position in the WGS84 frame is given by the latitude φG, the longitude λG, and the
altitude hG. It is defined relative to the ECEF frame. Figure 6.2 shows the ECEF frame
together with the WGS84 position. The longitude λG is the angle between the zero-
meridian plane and the meridian plane of a point P measured in the equatorial plane.
The latitude is measured in the meridian plane as the angle between the equatorial
plane and the surface normal of a point P . Due to the fact that the ellipsoid is not a
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Figure 6.2: Reference frame of the World Geodetic System 1984.

sphere, the surface normal does not necessarily pass through the ellipsoid’s center. The
altitude is given as the height above the reference ellipsoid along the surface normal.

The side-view of Figure 6.2 shows two additional measurements. The distance per-
pendicular from the ellipsoids surface (point Q) to the interception with the polar axis
zE is given by

Nφ =
a

√

1− e2 · sin2 φG
(6.12)

which is dependent on the latitude. The radius

Mφ = Nφ ·
1− e2

1− e2 · sin2 φG
(6.13)

describes a circle that has the same curvature as the ellipsoid in pointQ in the meridian
plane. These two distances are relevant for position propagation in the WGS84 frame
(see section 6.1.4)

North-East-Down (NED)

The North-East-Down (NED) frame is used to determine the orientation of the aircraft
and is denoted by the index O. The frame’s origin is attached to the reference point
of the aircraft. Since the aircraft model considered in this thesis is a 3DOF model,
the reference point is the center of gravity G. As the name suspects, the frame axes
are oriented w.r.t. the directions of the reference ellipsoid where the xO axis points
to geographical north, the yO to the east, and the zO axis points perpendicular to the
ground. Figure 6.3 shows the alignment of the NED frame. To maintain the NED
orientation while the aircraft position changes, this reference frame rotates with the
so-called transport rate

(
~ωEO

)

O
=





λ̇G · cos φG
−φ̇G

−λ̇G · sinφG





O

. (6.14)
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Figure 6.3: North east down reference frame w.r.t. the ECEF frame.

The orientation of the NED frame is dependent on the current latitude φG and lon-
gitude λG. Therefore, the axis transformation from the ECEF frame to the NED frame

MOE =





− sin φG · cosλG − sinφG · sinλG cosφG

− sin λG cosλG 0
− cosφG · cosλG − cos φG · sinλG − sinφG



 (6.15)

is calculate using these angles. The first rotation occurs around the zE axis with the
angle λG. The second rotation is achieved around the yO axis with the angle φG + π

2
.

Kinematic Frame

The kinematic frame (denoted by K) is used to describe the aircraft’s velocity and has
its origin in the center of gravity G of the points mass. This frame is aligned with the
velocity vector of the aircraft (see Figure 6.4) where the xK axis points in the direction
of the current velocity, zK points downward perpendicular to xK in the plane that is
spanned by the xK axis, and the zO axis. yK fulfills the right hand rule.

The orientation of the kinematic frame w.r.t. the NED frame is described by two
angles. The kinematic course angle χGK states the direction the aircraft is traveling.
The inclination of the flight path is given by the kinematic climb angle γGK . Thus, the
transformation of the NED frame (O) to the K frame is given by

MKO =





cosχGK · cos γGK sinχGK · cos γGK − sin γGK
− sinχGK cosχGK 0

cosχGK · sin γGK sinχGK · sin γGK cos γGK



 . (6.16)

It combines the first rotation around the zO axis by χGK and the second rotation around
the yK axis by γGK . The rotation of the kinematic frame w.r.t. the NED frame is stated
by

(
~ωEO

)

K
=





−χ̇GK · sin γGK
γ̇GK

χ̇GK · cos γGK



 . (6.17)
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Figure 6.4: Kinematic reference frame w.r.t. the NED frame [119].

Aerodynamic Frame

This frame (denoted by A) has its origin in the center of gravity G and is used to calcu-
late aerodynamic forces. The orientation is given relative to the NED frame as shown
in Figure 6.5. The xA axis points in the direction of the aerodynamic flow, the zA axis
points downwards perpendicular to xA in the plane that is spanned by the xA and the
zO axes. yA fulfills the right hand rule. It has to be noted that the directions of yA and
zA are only correct for an aerodynamic bank angle of µA = 0. In case of µA 6= 0, the
aerodynamic frame is rotated a third time around the axis xA by the angle µA.

Thus, the transformation from the NED frame into the A is similar to the kinematic
case but with an additional rotation by µA around the xA axis. The transformation is
given by

MAO =





cχ · cγ sχ · cγ −sγ
cχ · sγ · sµ − sχ · cµ sχ · sγ · sµ + cχ · cµ cγ · sµ
cχ · sγ · cµ + sχ · sµ sχ · sγ · cµ − cχ · sµ cγ · cµ



 (6.18)

where placeholders

sχ = sinχA sγ = sin γA sµ = sinµA

cχ = cosχA cγ = cos γA cµ = cosµA

are used to bring the matrix into a single line. The coordinate systems and their rota-
tions are now used to derive the point mass equations of motion.

6.1.2 Equations of Motion

In this section, the translation equations of motion of the point mass model are derived.
Detailed information can be found for instance in [119, 121, 122]. The derivation of the
equations of motion begins with NEWTON’s second law [123]. It describes the formula

~F = m · ~a (6.19)
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Figure 6.5: Aerodynamic reference frame w.r.t. the NED frame [119].

which states that the acceleration ~a of an object in the inertial frame is equal to the

sum of forces ~F acting on the object divided by its mass m. In more general terms,
this equation can be expanded to include mass changes [124] . This leads to the time
derivative of the momentum p of a mass

~F =

(
d

dt

)I

(p)I =

(
d

dt

)I [

m ·
(
~vGK
)I
]

(6.20)

where the derivative is taken w.r.t. the inertial frame I (here ECI).
(
~vGK
)I

states the
kinematic velocity of the mass in I . For aircraft, the change of mass is usually very
small. Additionally, the mass flow leaving the aircraft is included into the propulsion
force. Thus, it can be omitted from (6.20)

∑(

~FG
T

)

= m ·
(

~̇vGK

)II

(6.21)

leading back to (6.19). Two variables need to be determined. The sum of forces acting
on the aircraft will be discussed further below (see section 6.1.3). The derivation of the
acceleration w.r.t. the inertial ECI frame is subject of this section.

Since the derivation incorporates different coordinate systems, the EULER differen-
tiation is used [119]. Assuming a time derivative of a vector ~r w.r.t. a coordinate system
A shall be computed

(
d

dt

)A

(~r)B (6.22)

but the coordinates are given w.r.t the coordinate system B. Then, the derivative

(

~̇r
)A

B
=
(

~̇r
)B

B
+
(
~ωAB

)

B
× (~r)B (6.23)

is calculated by dividing it into two parts. The original vector ~r is differentiated w.r.t.
the coordinate system B. Additionally, a cross product is added where

(
~ωAB

)

B
states

184



Chapter 6: Application to Aircraft Approach Optimization

the rotation of the B frame w.r.t. the A frame with coordinates given in the B frame.
The equation (6.23) is derived in C.2.

To obtain the point mass acceleration in the inertial frame, the position has to be
differentiated w.r.t. time twice. The equation of motion itself is independent from the
aircraft type and can be used for other applications as well. All forces are aircraft /
application dependent.

It is assumed that the point mass position
(
~rG
)

E
(6.24)

is given in the ECEF frame. The translation equation of motion can be derived without
a reference to a coordinate system in which the variables are stated. This assump-
tion holds due to the fact that the derived formulas can always be transformed into
any desired coordinate system. However, since the aircraft position is normally given
w.r.t. the earth coordinate system (6.24) this is a plausible assumption. Additionally, it
is easier to follow the derivations since the EULER differentiation approach is strictly
applied. A similar derivation can be found in [119].

The speed of the point mass is calculated by taking the first time derivative of the
position within the inertial reference frame ECI

(
d

dt

)I
(
~rG
)

E
=
(

~̇rGK

)I

E
=
(
~vGK
)I

E
=
(
~vGK
)E

E
+
(
~ωIE

)

E
×
(
~rG
)

E
. (6.25)

The first term gives the velocity vector w.r.t. the earth fixed coordinated system. The
EULER part accounts for the velocity induced due to the earth rotation.

Since the second derivative (acceleration) in the inertial reference frame is required,
(6.25) is differentiated a second time:

(
d

dt

)I
(
~vGK
)I

E
=
(

~̇vGK

)II

E
=

(
d

dt

)I [(
~vGK
)E

E
+
(
~ωIE

)

E
×
(
~rG
)

E

]

. (6.26)

The derivative of (6.26) can be split into three parts
(
d

dt

)I
(
~vGK
)E

E
=
(

~̇vGK

)EE

E
+
(
~ωIE

)

E
×
(
~vGK
)E

E
(6.27)

[(
d

dt

)I
(
~ωIE

)

E

]

×
(
~rG
)

E
=

[(

~̇ωIE
)E

E
+
(
~ωIE

)

E
×
(
~ωIE

)

E

]

×
(
~rG
)

E
(6.28)

(
~ωIE

)

E
×
[(

d

dt

)I
(
~rG
)

E

]

=
(
~ωIE

)

E
×
(
~vGK
)E

E
+
(
~ωIE

)

E
×
[(
~ωIE

)

E
×
(
~rG
)

E

]
(6.29)

if the product rule is applied for the cross product. Please note that the cross product
does not fulfill the associative property. For the description of the aircraft dynamics it
can be assumed that the rate of change of the earth rotation

(

~̇ωIE
)E

E
= ~0 (6.30)

is equal to zero. Additionally, the cross product of
(
~ωIE

)

E
×
(
~ωIE

)

E
equals zero as well.

Thus, (6.26) becomes
(

~̇vGK

)II

E
=
(

~̇vGK

)EE

E
+ 2 ·

(
~ωIE

)

E
×
(
~vGK
)E

E
+
(
~ωIE

)

E
×
[(
~ωIE

)

E
×
(
~rG
)

E

]
(6.31)
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which includes the formulation of the local acceleration, the CORIOLIS acceleration,
and the centripetal acceleration.

In (6.25) the speed was derived w.r.t. the ECEF frame. The acceleration of the
aircraft shall be given w.r.t. to the kinematic frame. This makes it easier to formulate
the differential equation for the kinematic variables. To achieve this, (6.31) has to be
transformed

(

~̇vGK

)II

K
=
(

~̇vGK

)EE

K
+MKE

[

2 ·
(
~ωIE

)

E
×
(
~vGK
)E

E
+
(
~ωIE

)

E
×
[(
~ωIE

)

E
×
(
~rG
)

E

]]

(6.32)

into the kinematic frame using the transformation matrix

MKE =MKO ·MOE. (6.33)

Additionally, the acceleration w.r.t. the earth frame is reformulated

(

~̇vGK

)EE

K
=
(

~̇vGK

)EK

K
+
(
~ωEK

)

K
×
(
~vGK
)E

K
(6.34)

by applying the EULER differentiation. Furthermore, the rotation of the K frame rela-
tive to the E frame

(
~ωEK

)

K
=
(
~ωEO

)

K
+
(
~ωOK

)

K
(6.35)

is split into two rotations. The local acceleration is reformulated to

(

~̇vGK

)EE

K
=
(

~̇vGK

)EK

K
+
(
~ωEO

)

K
×
(
~vGK
)E

K
+
(
~ωOK

)

K
×
(
~vGK
)E

K
(6.36)

which is resubstituted into (6.32):

(

~̇vGK

)II

K
=
(

~̇vGK

)EE

K
+MKE

[

2 ·
(
~ωIE

)

E
×
(
~vGK
)E

E
+
(
~ωIE

)

E
×
[(
~ωIE

)

E
×
(
~rG
)

E

]]

=
(

~̇vGK

)EK

K
+
(
~ωEO

)

K
×
(
~vGK
)E

K
+
(
~ωOK

)

K
×
(
~vGK
)E

K
(6.37)

+MKE

[

2 ·
(
~ωIE

)

E
×
(
~vGK
)E

E
+
(
~ωIE

)

E
×
[(
~ωIE

)

E
×
(
~rG
)

E

]]

.

Thus, a relation between the point mass acceleration in the inertial frame I and the
acceleration in the kinematic frame K where the speed is given w.r.t. the earth fixed
frame E is created.

The derived acceleration (6.37) is inserted into Newton II (6.21)

1

m

∑(

~FG
T

)

K
=
(

~̇vGK

)II

K
(6.38)

=
(

~̇vGK

)EE

K
+MKE

[

2 ·
(
~ωIE

)

E
×
(
~vGK
)E

E
+
(
~ωIE

)

E
×
[(
~ωIE

)

E
×
(
~rG
)

E

]]

=
(

~̇vGK

)EK

K
+
(
~ωEO

)

K
×
(
~vGK
)E

K
+
(
~ωOK

)

K
×
(
~vGK
)E

K
+MKE [. . . ]

and the equation is rearranged:

(

~̇vGK

)EK

K
+
(
~ωOK

)

K
×
(
~vGK
)E

K
=

1

m

∑(

~FG
T

)

K
−
(
~ωEO

)

K
×
(
~vGK
)E

K
−MKE [. . . ] . (6.39)

186



Chapter 6: Application to Aircraft Approach Optimization

If the left hand side of (6.39) is expanded with the actual entries

(

~̇vGK

)EK

K
+
(
~ωOK

)

K
×
(
~vGK
)E

K
=





V̇ G
K

0
0





EK

K

+





−
(
χ̇GK
)
· sin

(
γGK
)

(
γ̇GK
)

(
χ̇GK
)
· cos

(
γGK
)





K

×





V G
K

0
0





E

K

=







(

V̇ G
K

)EK

(
χ̇GK
)
· cos

(
γGK
)
·
(
V G
K

)E

−
(
γ̇GK
)
·
(
V G
K

)E







K

(6.40)

a formulation which includes the time derivatives for the kinematic speed, course an-
gle, and climb angle is found.

The right hand size of (6.39) states the forces acting on the point mass and the cor-
rection due to the transport rate of the NED frame. This correction is reformulated

(
~ωEO

)

K
×
(
~vGK
)E

K
=MKO ·

[(
~ωEO

)

O
×
(
~vGK
)E

O

]

(6.41)

to calculate the cross product in the NED reference frame. Thus, the equations of mo-
tion







(

V̇ G
K

)EK

(
χ̇GK
)K · cos

(
γGK
)
·
(
V G
K

)E

−
(
γ̇GK
)K ·

(
V G
K

)E







K

=
1

m

∑





XG
T

Y G
T

ZG
T





K

−MKO ·
[(
~ωEO

)

O
×
(
~vGK
)E

O

]

(6.42)

+MKE

{

2 ·
(
~ωIE

)

E
×
(
~vGK
)E

E

}

+MKE

{(
~ωIE

)

E
×
[(
~ωIE

)

E
×
(
~rG
)

E

]}

are given w.r.t. to the inertial frame I . However, in this thesis some simplifications are
made. The time horizon on which the aircraft is simulated is relatively short. Since the
earth angular speed is small, the influence in the equation of motion can be neglected.
Thus, the point mass translation equations of motions become:







(

V̇ G
K

)EK

(
χ̇GK
)K · cos

(
γGK
)
·
(
V G
K

)E

−
(
γ̇GK
)K ·

(
V G
K

)E







K

=
1

m

∑





XG
T

Y G
T

ZG
T





K

−MKO ·
[(
~ωEO

)

O
×
(
~vGK
)E

O

]

. (6.43)

The round earth notation is still used due to the fact that real word applications use
WGS84 coordinates. The next section introduces the forces acting on the aircraft.

6.1.3 Aircraft Forces

In the previous section, the equation of motion were derived. These are the same for
any type of aircraft. For the resulting equation (6.43), the total aircraft specific force is
required. Common forces for a fixed wing aircraft are:

• aerodynamic forces
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L Resulting Aerodynamic Force

DαVA

Figure 6.6: Lift and Drag Aerodynamic Forces

• propulsion forces

• gravitation force

• ground forces acting on the landing gear

In course of this thesis the aircraft is regarded to be ”in the air”. Therefore, ground
forces are not considered. The aircraft model used is the Base of Aircraft Data (BADA)
Family 4 from Eurocontrol [19]. Although the model is popular, the mathematical
formulations of the forces as well as the model parameters are not open to the general
public. Therefore, for more information please refer to Eurocontrol.

Aerodynamic Force

As the aircraft moves through the air, the flow of air around the wings and fuselage
create forces that act on it. The aerodynamic force is described in the aerodynamic
coordinate system A. Since the forces for the equations of motions are required in the
kinematic frame, a coordinate transformation

(

~FG
A

)

K
=MKO ·MAO

T ·
(

~FG
A

)

A
(6.44)

is applied. Aerodynamic forces

(

~FG
A

)

A
=





−D
Q
−L



 = q̄ · Sref ·





−CD
CQ
−CL





A

(6.45)

are usually modeled using force coefficients (CD, CQ, CL) which are unit-less. The ac-
tual forces are recalculated with the reference wing area Sref and the dynamic pressure

q̄ =
1

2
· ρ · VA2 (6.46)

that depends on the current air density ρ and aerodynamic speed VA.

Figure 6.6 shows the main aerodynamic forces acting on the aircraft’s wing. By
manipulation of the wing’s pitch angle, the aircraft changes the angle of attack α. It
describes the angle between the wing’s x-axis and the aerodynamic airflow. The angle
of attack influences how the air flows around the wing and thus force acting on it. This
force can be distributed into a lift component and a drag component (see Figure 6.6).
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Figure 6.7: Lift and Drag Coefficients [119]

The lift coefficient CL mainly depends on the angle of attack. For smaller values of
α the relationship

CL = CL0 + CL,α · α (6.47)

can be assumed to be linear. Fig. 6.7 shows the lift coefficient over the angle of attack.
For higher angles of attack, the relationship becomes nonlinear. Above αmax, the lift
decreases resulting in an aircraft stall. The maximum lift coefficient CL,max is increased
by deploying the high lift devices. The BADA Family 4 model does not include a
formula for (6.47). However, for the different high lift configurations, the maximum
lift coefficients are stated. Therefore, in this thesis, the lift coefficient acts as an input to
the dynamic model.

The drag coefficient CD mainly depends on the current lift. A common relationship
used in simple aerodynamic models is the quadratic polar

CD = CD,0 + CD,2 · (CL − CL0)
2 (6.48)

that approximates the drag of the aircraft with a parabola as shown in figure 6.7. The
drag can be distributed into two main components. The zero lift drag coefficient CD,0
accounts for the direct drag of the aircraft due to the cross-section area that faces the
airflow. This component is dependent only on the current high lift setting and does
not change with the lift. On the other hand, the induced drag coefficient CD,2 depends
on the current lift coefficient. The BADA Family 4 includes a aerodynamic model for
the drag. The drag coefficient

CD = f (CL,M, δHL, δLG, δSB) (6.49)

is not only dependent on the current lift coefficient CL but also on the mach number
M , the high lift δHL, the landing gear δLG, and the speed brakes δSB .

Propulsion

The engine’s thrust is necessary to oppose the drag of the aircraft. For traditional fixed
wing aircraft, the engines are aligned with the longitudinal axis of the aircraft. The
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thrust vector is approximately parallel to it as well. Since the longitudinal aircraft axis
almost aligns with the x-axis of the aerodynamic frame, the thrust vector

(

~FG
P

)

A
=





T
0
0





A

(6.50)

is assumed to point in the direction of the aerodynamic speed. The BADA Family 4
model includes a highly sophisticated and complex thrust model

T = WMTOW · ηp · CT , CT = f(M, δT ) (6.51)

which is dependent on the maximum takeoff weight WMTOW , the pressure ratio ηp, the
Mach number M , and the throttle position δT . CT is a thrust coefficient that is used in
the fuel flow calculation as well.

As with the aerodynamic forces, the propulsion force must be transformed into the
kinematic frame K. Thus, the transformation via the NED frame

(

~FG
P

)

K
=MKO ·MAO

T ·
(

~FG
P

)

A
(6.52)

is applied.

Gravitation

The third force that acts on the aircraft is the gravitation force. It acts along the z-axis
of the NED frame

(

~FG
G

)

O
=





0
0

m · g





O

. (6.53)

The gravitational acceleration g is assumed to be constant since location changes of the
aircraft in this thesis are assumed to be small. The gravitational force is transformed

(

~FG
G

)

K
=MKO ·

(

~FG
G

)

O
. (6.54)

into the kinematic frame using the transformation matrix MKO.

6.1.4 Aircraft Dynamics Subsystems

In this section, the formulas used for the description of the dynamic model are pre-
sented. The subsystem derivative approach requires the model to be split into mul-
tiple subsystems. Therefore, every subsystem is introduced separately. Some of the
subsystems can be combined to a single subsystem. However, they were designed to
be reusable for other aircraft models.
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Subsystem Kinematic Speed

The speed of the aircraft w.r.t. the earth is given in the Kframe

(
~vGK
)E

K
=





V G
K

0
0





E

K

(6.55)

which is transformed to the NED frame




uGK
vGK
wGK





E

O

=
(
~vGK
)E

O
=MKO

T
(
~vGK
)E

K
(6.56)

=





V G
K · cosχGK · cos γGK
V G
K · sinχGK · cos γGK
−V G

K · sin γGK





E

O

(6.57)

using the transformation matrix

MKO =





cosχGK · cos γGK sinχGK · cos γGK − sin γGK
− sinχGK cosχGK 0

cosχGK · sin γGK sinχGK · sin γGK cos γGK



 . (6.58)

Subsystem WGS84 Position Propagation

The position propagation in the WGS84 frame is dependent on the current position
and the object’s speed relative to the ECEF frame. Figure 6.8 show the frame with
the current position. The position G represents the point mass position longitude λG,
latitude φG, and altitude hG. The time derivative of the WGS84 coordinates can be
derived by geometrical understanding. Since the z-axis of the NED frame points down
to the ellipsoid surface perpendicularly, the time derivative of the altitude

ḣG = −wGK (6.59)

is given by the negative kinematic speed in z-direction w.r.t. the ECEF frame in NED
coordinates.

Both the time derivatives of the latitude φ̇G and longitude λ̇G can be derived by
simple circular motion

v = ω · r (6.60)

using the relationship between the angular rotation speed ω, the radius of a circle r,
and the speed at the circle’s radius v. In north direction, the aircraft travels along a
circle with radius Mφ + hG (see Figure 6.8). Using (6.60), the time derivative of the
latitude

φ̇G =
uGK

Mφ + hG
. (6.61)

is dependent on the kinematic speed in the north direction uGK , the current altitude hG,
and Mφ (dependent on the latitude φG). Similarly, the time derivative of the longitude

λ̇G =
vGK

(Nφ + hG) · cosφ (6.62)
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Figure 6.8: Position propagation in WGS84 coordinates.

is defined by a circular motion parallel to the equatorial plane. The radius

lN =
(
Nφ + hG

)
· cosφ (6.63)

of the circle is shown in Figure 6.8. Thus, the subsystem position propagation in
WGS84 coordinates is given by





λ̇G

φ̇G

ḣG



 =







vGK

(Nφ+hG)·cosφG
uGK

Mφ+hG

−wGK






. (6.64)

Subsystem Wind

In order to calculate the aerodynamic speed and angles, the wind acting on the aircraft
is required. The wind is influence by three main forces. The difference between areas
of high and low air pressure, the Coriolis force, and the friction forces close to ground
[125]. The wind speed at the ground is zero (due to friction) and increases with altitude.
In the following, the atmospheric boundary layer is discussed.

In high altitudes (e.g. higher than 1000 . . . 2000m above ground level), only the pres-
sure and Coriolis forces are relevant. The resulting force yields a wind parallel to the
isobars of the pressure field (see Figure 6.9a) [125]. The flow orientation is dependent
on the north or south side of the globe. The wind is called geostrophic and its speed
VW,g is approximately constant w.r.t. altitude.

With decreasing altitude, the friction increases acting opposite the wind flow direc-
tion. The wind speed is decreased until it reaches zero at the ground altitude. Since the
Coriolis force is dependent of the speed, its impact becomes smaller as well. Thus, the
wind vector rotates in the direction of the pressure force (see Figure 6.9b). The angle
between the wind directions close to the ground and in the geostrophic layer is given
by αW,0 which is dependent on the ground type. The deflection over water is relatively
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H

L

(a) In high altitudes, the geostrophic
wind flows parallel to the isobars.

H

L

(b) Due to influence of ground friction
at lower altitudes the wind turns in
the direction of the pressure gradi-
ent.

Figure 6.9: Wind directions between areas of high (H) and low (L) pressure on northern
hemisphere in high an low altitudes. Black lines indicate the areas of equal
pressure (isobars) and red arrows depict the wind direction.

small (approx 10◦) and may reach up to 45◦ in mountainous areas [126]. Airport run-
ways, which usually can be represented by a grassy landscape have a deflection of
approximately 30◦.

Close to the ground, the speed is much smaller and thus the Coriolis force can
be neglected [125]. The wind speed still decreases with decreasing altitude but the
direction no longer changes. This so-called Prandtl layer is approximately 20 . . . 100m
thick hP . It is described by the logarithmic speed profile

VW,Pr =
u∗

κK
· ln
(
(hG − hGL)

h0

)

(6.65)

where u∗ represents the shear velocity, κK ≈ 0.41 the Von Kármán constant [125], hGL
the ground altitude, and h0 the surface roughness (h0 ≈ 0.01 for short grass).

Above the Prandtl layer the already discussed rotation of the wind occurs. This
layer is also called the Ekman layer (or Ekman spiral). It is named after the oceanog-
rapher Ekman who first mathematically described the flow direction change of water
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Figure 6.10: Ekman spiral for a geostrophic wind of 10m/s. The wind deflection in the
boundary layer is 45◦.

currents in the boundary layer. The horizontal speed components

u(hG) = VW,g ·
[

1− exp

(

−h
G

D

)

· cos h
G

D

]

(6.66)

v(hG) = VW,g · exp
(

−h
G

D

)

· sin h
G

D
(6.67)

can be derived from the Navier Stokes equation (see [125]) where

D =

√

2 · Km

f
(6.68)

is the Ekman length. Km represents the diffuse coefficient and f the Coriolis parameter.
For both

Km = 5m2s−1, f = 1 · 10−4s−1 (6.69)

usual values are given [125]. Figure 6.10 shows the Ekman spiral for a geostrophic
wind speed VW,g = 10m/s by plotting the wind components with altitude. At the
ground altitude, the wind speed is zero and converges to the geostrophic wind speed
for infinite altitude. The first crossing of the spiral with the ū axis approximates the
height of the Ekman layer

hE = πD (6.70)

and can be derived by setting (6.67) to zero. The deflection of the wind direction in the
Figure is 45◦ and is constant for all Ekman spirals. However, smaller deflection angles
occur in reality.

In order to model smaller wind angle defections αW,0 [125] combines both the Prandtl
and the Ekman layers. In the Prandtl layer (0 ≤ hG − hGL ≤ hP ) the wind components
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are given by

u(hG) =
u∗

κK
· ln
(
(hG − hGL)

h0

)

· cosαW,0, (6.71)

v(hG) =
u∗

κK
· ln
(
(hG − hGL)

h0

)

· sinαW,0, (6.72)

and in the Ekman layer (hG − hGL ≥ hP ) by

u(hG) = VW,g ·
[

1−
√
2 · exp

(

−HW

D

)

· sinαW,0 · cos
(
HW

D
+
π

4
− αW,0

)]

, (6.73)

v(hG) = VW,g ·
√
2 · exp

(

−HW

D

)

· sinαW,0 · sin
(
HW

D
+
π

4
− αW,0

)

, (6.74)

HW = hG − hGL − hP . (6.75)

The equations must be adapted to account for the NED frame. Additionally, apart
from the wind deflection in the Ekman layer, the general wind direction χW can be set.
Since the wind direction is usually measured close to the ground (e.g. 10m), χW states
the wind direction in the Prandtl layer. Therefore, the components above have to be
rotated by the matrix

MW =





cos γW sin γW 0
− sin γW cos γW 0

0 0 1



 (6.76)

where
γW =

π

2
− αW,0 − χW (6.77)

defines the rotation angle. Thus, the wind components in the NED frame are given by

(
~vGW
)E

O
=MW ·





v(hG)
u(hG)
0



 (6.78)

and are displayed in Figure 6.11 For the time derivative of the calibrated air speed,

the time derivative of the wind speed
(

~̇vGW

)EE

O
is required. Although the wind field is

constant w.r.t. time, an altitude rate induces a perceived time derivative in the wind. It
is derived by differentiating (6.78) w.r.t. hG:

(

~̇vGW

)EE

O
=
∂
(

~̇vGW

)EE

O

∂hG
· ḣG. (6.79)

Subsystem Aerodynamic Speed

In the NED frame, the kinematic speed and the wind vector are subtracted using the
superposition principle. The aerodynamic speed

(
~vGA
)E

O
=





uGA
vGA
wGA





E

O

=





uGK
vGK
wGK





E

O

−





uGW
vGW
wGW





E

O

(6.80)
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Figure 6.11: Combined Prandtl and Ekman layers for a geostrophic wind of 2m/s. The
wind deflection in the boundary layer is 30◦.

is calculated in the NED frame. From the components, the absolute aerodynamic speed

VA =

√

(uGA)
2
+ (vGA)

2
+ (wGA)

2
, (6.81)

the aerodynamic course angle

χA = arctan

(
vGA
uGA

)

, (6.82)

and the aerodynamic climb angle

γA = − arctan




wGA

√

(uGA)
2
+ (vGA)

2



 (6.83)

are calculated.

Subsystem Aerodynamic Transformation

The calculated aerodynamic angles (χA, γA) together with the aerodynamic bank angle
µA control input are used to create the transformation matrix MAO introduced in (6.18).
This matrix is moved into a separate subsystem to ensure that it can be differentiated
by the Symbolic Math Toolbox.
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Figure 6.12: International Standard Atmosphere (ISA) defined by ICAO.

Subsystem Atmosphere

The International Standard Atmosphere (ISA) was introduced by the International
Civil Aviation Organisation (ICAO) as an idealized atmospheric description model
[127]. The ISA atmosphere is defined up to the altitude of 80km. Figure 6.12 shows
the air density and temperature for the troposphere, lower stratosphere and upper
stratosphere. Since typical civil aircraft reach around 10km altitude in cruise and this
thesis covers approach trajectories, the dynamic model implements the troposphere
only.

In order to simulate a gravitational decrease with increasing altitude, the ISA uses
the geopotential altitude

HG =
hG · rE
hG + rE

(6.84)

that is calculated from the geometric altitude hG and the earth radius rE . The temper-
ature ratio

ηT =
T

Ts
= 1− n− 1

n
· g

R · Ts
·HG (6.85)

states the quotient of the temperature T at a certain altitude and the temperature at sea
level Ts. A description of symbols and their values is found in Table 6.3. Similar to this,
the ratios for air density

ηρ = [ηT ]
1

n−1 (6.86)

and air pressure

ηp = [ηT ]
n

n−1 (6.87)

are calculated. The temperature T , the density ρ, and the pressure p at the altitude hG

are calculated

T = ηT · Ts, ρ = ηρ · ρs, p = ηp · ps (6.88)
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Table 6.3: Symbols International Standard Atmosphere (ISA) defined by ICAO

Description Symbol Value Unit of measurement

Gravitational Acceleration g 9.80665 m/s2

Universal Gas Constant R 287.05287 J/(K · kg)
Polytropic Exponent n 1.235 −
Air Pressure at Sea Level ps 101.325× 103 Pa
Air Temperatur at Sea Level Ts 288.15 K
Air Density at Sea Level ρs 1.225 kg/m3

Earth Radius rE 6371 km

using their ratios and values at sea level. The sea level values for the temperature Ts,
the density ρs, and the pressure ps are defined for a reference case. However, with
changing weather conditions, the atmosphere model might be unrealistic. Therefore,
it is possible to define offsets for the sea level temperature ∆T and pressure ∆p. Thus,
the sea level values are redefined

Ts := Ts +∆T (6.89)

ps := ps +∆p (6.90)

and the value for the air density at sea level is determined using the ideal gas equation

ρs =
ps

R · Ts
. (6.91)

Additionally, the atmosphere subsystem returns the speed of sound a and the Mach
number M

a =
√
κ · R · T , M =

VA
a

(6.92)

where κ = 1.4 is the adiabatic exponent.

Subsystem Propulsion Force

In this thesis, a point mass model is considered. Therefore, it is assumed that the thrust
force acts along the x-axis of the kinematic frame. This assumption is fair to make, since
for commercial aircraft the angles between the thrust vector and the kinematic velocity
vector are very small. Thus, the propulsion subsystem calculates the thrust vector

(

~FG
P

)

A
=





T
0
0





A

(6.93)

subject to the thrust formulation in the BADA 4 model (6.51).

Subsystem Propulsion in Kinematic System

The propulsion force cannot be transformed into the K frame directly. Therefore, as an
intermediate step, the NED frame

(

~FG
P

)

K
=MKO ·MAO

T ·
(

~FG
P

)

A
(6.94)
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is used. Both transformation matrices have already been differentiated in previous
subsystems, this multiplication can be handled by the symbolic math toolbox.

Subsystem Thrust Dynamic

In the BADA 4 model no dynamics for the aircraft thrust are considered. In order to
simulate a latency in the response, a PT1 element is used

Tδ · δ̇T + δT = Kδ · δT,CMD (6.95)

where Kδ = 1 is a gain and Tδ a time constant. It is stated in [128] that the time from
idle to 95% percent rated takeoff power shall be no more than 5 seconds. Using the
analytic solution of the step response

δT (t) = 1− e
−

t
Tδ (6.96)

the time constant for δT (5s) = 0.95 is determined to be

Tδ = − 5

ln 0.05
s ≈ 1.67s. (6.97)

Subsystem Gravitation Force

As mentioned above, the gravitational force in the NED frame

(

~FG
G

)

O
=





0
0
mg





O

(6.98)

is transformed into the K frame

(

~FG
G

)

K
=MKO ·





0
0
mg





O

=





−mg · sin γGK
0

mg · cos γGK





K

(6.99)

with the already familiar axis transformation MKO (6.58).

Subsystem Aerodynamic Force in Aerodynamic System

In section 6.1.3 the lift and drag are introduced. Thus the aerodynamic force

(

~FG
A

)

A
=





−D
0
−L





A

(6.100)

is formulated. The drag calculation is subject to the BADA 4.0 Family model that de-
fines a detailed formulation. Since the analytic derivative needs to be calculated w.r.t.
the subsystem’s input variables, the transformation to the kinematic frame is moved
into a separate subsystem.
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Subsystem Aerodynamic Force in Kinematic System

The aerodynamic force cannot be transformed into the K frame directly. Therefore, as
an intermediate step, the NED frame

(

~FG
A

)

K
=MKO ·MAO

T ·
(

~FG
A

)

A
(6.101)

is used. Both transformation matrices have already been differentiated in previous
subsystems, this multiplication can be handled by the symbolic math toolbox.

Subsystem Total Force in Kinematic System

As shown in (6.43), the total force acting on the point mass w.r.t. the K frame is re-
quired. Since all forces are transformed into the kinematic frame, the total force

(

~FG
T

)

K
=
(

~FG
A

)

K
+
(

~FG
P

)

K
+
(

~FG
G

)

K
(6.102)

is a simple superposition.

Subsystem Fuel Flow

During flight the aircraft’s mass is gradually decreased due to fuel burn. There are
many different ways to approximate the fuel consumption. In this thesis, the fuel flow
model from the BADA 4.0 Family is used [19]. The change of mass is equivalent to the
negative fuel flow

ṁ = −fflow = −WMTOW · a0
LHV

· ηp
√
ηT · CF (6.103)

where WMTOW specifies the maximum takeoff weight and a0 the speed of sound at sea
level. The fuel flow coefficient

CF = f(M,CT ) (6.104)

is subject to the thrust coefficient CT from the propulsion calculation and the current
Mach number M . The equation of CF in the BADA 4.0 Family is not subject to public
domain.

Subsystem Load Factor

Load factor limits have to be met in order to meet structural limitations and passenger
comfort. Therefore, the vertical load factor

nz =
L

mg
(6.105)

is calculated. It is defined as lift L divided by weight mg.
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Subsystem Translation Round Earth

The translation equation of motions for a point mass model on a round earth was
introduced in (6.43). Now that all forces are calculated, the state derivatives of the
kinematic speed

V̇ G
K =

(
XG
T

)

K

m
− trx, (6.106)

the kinematic course angle

χ̇GK =

(
Y G
T

)

K

m · cos γGK · V G
K

− try
cos γGK · V G

K

, (6.107)

and the kinematic climb angle

γ̇GK = −
(
ZG
T

)

K

m · V G
K

+
trz
V G
K

(6.108)

are calculated in this subsystem. In the equations above,




trx
try
trz





K

=MKO ·
[(
~ωEO

)

O
×
(
~vGK
)E

O

]

(6.109)

represent the components of the transport rate correction in the kinematic frame.

Subsystem Kinematic Speed Derivative

The time derivative of the kinematic speed is required for a subsystem below that
calculates the calibrated air speed. The differentiation of the kinematic speed

d

dt

(
~vGK
)E

O
=
(

~̇vGK

)EE

O
=
(

~̇vGK

)EO

O
+
(
~ωEO

)

O
×
(
~vGK
)E

O
(6.110)

is done in the NED-frame using the Euler differentiation. The direct derivative of the
kinematic speed w.r.t. the NED-frame

(

~̇vGK

)EO

O
=





u̇GK
v̇GK
ẇGK





EO

O

(6.111)

is obtained

u̇GK = V̇ G
K · cosχGK · cos γGK

− V G
K · sinχGK · cos γGK · χ̇GK (6.112)

− V G
K · cosχGK · sin γGK · γ̇GK

v̇GK = V̇ G
K · sinχGK · cos γGK

+ V G
K · cosχGK · cos γGK · χ̇GK (6.113)

− V G
K · sinχGK · sin γGK · γ̇GK

ẇGK = −V̇ G
K · sin γGK (6.114)

− V G
K · cos γGK · γ̇GK

by differentiating (6.57).
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Subsystem Aerodynamic Speed Derivative

Additionally to the kinematic speed derivative, the time derivative of the calibrated
air speed requires the time derivative of the aerodynamic speed as well. To calculate
it, the change of wind needs to be taken into account. This derivative is zero only for
a constant wind field (location and time). A static but position dependent wind field
introduces a time dependency due to the aircraft motion. Both the current wind speed
vector and its time derivative are calculated by the wind subsystem above.

The aerodynamic speed of the aircraft in the NED frame is given by
(
~vGA
)E

O
=
(
~vGK
)E

O
−
(
~vGW
)E

O
. (6.115)

Thus, the time derivative of the aerodynamic speed vector




u̇GA
v̇GA
ẇGA





EE

O

=
(

~̇vGA

)EE

O
=
(

~̇vGK

)EE

O
−
(

~̇vGW

)EE

O
(6.116)

can be calculated. The absolute aerodynamic time derivative is calculated using

V̇A =
uGA · u̇GA + vGA · v̇GA + wGA · ẇGA

VA
. (6.117)

Subsystem Calibrated Air Speed

The calibrated air speed
VCAS = VA · √ηρ (6.118)

is calculated using the square root of the density ratio ηρ. For the optimization, the
time derivative of the calibrated air speed is required. Therefore, (6.118) needs to be
differentiated (

d

dt

)

VCAS = V̇A ·
√

ρ

ρs
+ VA ·

(
d

dt

)√
ρ

ρs
. (6.119)

The time derivative of the aerodynamic speed is taken from the previous subsystem.
For the time derivative of the density ratio, the ISA atmosphere equations need to be
differentiated. The resulting derivative simplifies to

ρ̇

ρs
= −

(

1− (n− 1) · rE · hG
rE + hG

) 2−n
n−1

·
(

g

n · R · Ts

) 1

n−1

· rE

(rE + hG)2
· ḣG (6.120)

where the used symbols are described in the ISA atmosphere subsystem description.

6.2 Aircraft Constraints

The constraints imposed in the optimal control problem determine the quality of the
obtained solution. In this section, the constraints used in the approach optimization
are explained. These may be flight envelope constraints of the aircraft or operational
constraints ensuring save air traffic. Path constraints may be purely continuous or
dependent on the choice of a discrete control. Additionally, event constraints (modeled
as point constraints) have to be considered. The constraints considered are compliant
with the ICAO PANS-OPS rules.
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Figure 6.13: Aircraft ground speed in knots w.r.t. track distance from runway decision
altitude.

6.2.1 Continuous Path Constraints

The continuous path constraints are not dependent on the flap / landing gear selection
and are imposed at every time step.

Approach Deceleration Limit

During approach, the aircraft must reduce the speed continuously until the landing
speed, also known as final approach speed, is reached. Usually, the deceleration of the
calibrated air speed in knots

V̇CAS,nm =
V̇CAS · 3600

VCAS
(6.121)

is given w.r.t. the distance in nautical miles. As the flap positions mainly influence
the aircraft speed, the deceleration bounds have a great impact on the optimal so-
lution as well as the optimal switching structure. Therefore, proper bounds need to
be determined. [129] states a deceleration of 15kts/nm. The airbus flight operation
briefing notes [130] suggest 10 − 15kts/nm in level flight (with approach flaps) and
10− 20kts/nm on the glide slope with flaps to landing and gear down.

Overall, the approach deceleration limit is not strictly defined and mostly subject
to the air traffic control. Therefore, radar data from FlightRadar 24 is used to obtain
typical approach speeds at Munich airport. Flights with a maximum flight distance
of 800km are selected. This shall ensure that short-range aircraft are considered only.
Otherwise, the flight selection is arbitrary.

Figure 6.13 shows the aircraft ground speed in knots during runway approach. The
vertical red line indicates the approximate position of the glide slope intercept. In
Figure 6.14, the deceleration in knots per nautical mile w.r.t. the track distance from
the runway is shown.The strongest deceleration is achieved during the final approach
to the runway.

Table 6.4 shows the deceleration limits used in the approach optimization of this
chapter. In the approach section where a clean configuration is used, the aircraft may
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Figure 6.14: Aircraft ground speed deceleration in knots per nautical mile w.r.t. track
distance from runway decision altitude. The speed data from Figure 6.13 is
smoothed before the differentiation is performed.

Table 6.4: Approach deceleration limits.

Approach Section Lower Limit [kts/nm] Upper Limit [kts/nm]

Clean Approach -10 0
Glideslope -15 -2
Fully Stabilized -3 0

maintain the speed. On the glide slope a minimum deceleration of 2kts/nm is enforced.
In the final approach, after the aircraft is fully stabilized, the aircraft speed shall be con-
stant. However, in order the have an overlap to the previous limit, a small deceleration
is still allowed.

Maximum Rate of Descent

The closer an aircraft comes to the ground, the smaller the rate of descent must be.
The rate of descent is limited step-wise w.r.t the Above Ground Level (AGL) (see Table
6.5). However, this limitation is never reached in the optimizations. Additionally, the
aircraft must not climb during approach:

ḣG ≤ 0. (6.122)

6.2.2 Discrete Path Constraints

The aircraft speed limits are mainly driven by the flap and landing gear settings of an
aircraft. In the optimization, these constraints are considered by vanishing constraints.
For simplicity, the speed constraints are not stated w.r.t. a discrete control. All con-
straints presented here are reformulated as lower than or equal to zero constraints in
order to comply with the vanishing constraints.
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Table 6.5: Maximum rate of descent limit during approach.

Condition Max. Rate of Descent [ft/min]

> 5000ft 5000
> 4000ft 4000
> 3000ft 3000
> 2000ft 2000
> 1000ft 1500
< 1000ft 1000

Maximum Speed Limit

The maximum speed is dependent on the current flap setting and shall avoid structural
damages to the high lift components. In the BADA Family 4 model, the calibrated air
speed is limited:

VCAS ≤ VCAS,max. (6.123)

Minimum Speed Limit

Dependent on the flap and landing gear setting, the BADA Family 4 specifies maxi-
mum lift coefficients. Thus, the stall speed for a stationary horizontal flight

VA,stall =

√

2 ·m · g
ρ · Sref · CL,max

(6.124)

can be calculated. However, for save flight operations, a safety margin to the stall limit
must be kept in order to motivate the minimal selectable speed VLS . Usually, a 0.3g
buffet margin has to be kept [131]. Thus, an aircraft stall is avoided in case vertical and
lateral corrections during approach have to be made:

VLS =

√

2 ·m · g · nz,Margin

ρ · Sref · CL,max
, nz,Margin = 1.3. (6.125)

Hence, the speed limit
VA ≥ VLS (6.126)

is considered in the optimization.

Load Factor Limit

The load factor limit

nz =
L

m · g (6.127)

is dependent on whether the high lift or the landing gear is extracted [132]. In the clean
configuration, the limits are

− 1 ≤ nz ≤ 2.5 (6.128)

whereas in all non-clean configurations, the limit becomes

0 ≤ nz ≤ 2. (6.129)
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Due to a continuous glide in the approach optimization, this limit is never reached. For
passenger comfort, discrete control independent limits

0.8 ≤ nz ≤ 1.2 (6.130)

are used.

6.2.3 Operational Constraints

For save final approach and landing, the aircraft must meet many operational con-
straints. They influence the trajectory and thus ultimately the switching of the high lift
devices.

Final Approach Speed / Landing Speed

The final approach speed VAPP is the safest landing speed of the aircraft [133]. It is de-
pendent on multiple factors such as aircraft weight, wind conditions, high/lift config-
uration, aircraft failure status, icing conditions, and autothrust/autoland usage. Here,
only the weight and wind conditions are considered.

Table 6.6: Calculation of lowest selectable speed for A320 family based on the aircraft
mass [133].

Mass [1000 kg] 52 56 60 64 68 72 76 80 84 88 92 94

VLS FULL [kts] 116 121 125 129 133 137 141 144 148 151 155 157
VLS 3 [kts] 121 125 130 134 138 142 146 150 154 157 161 163

For the calculation of the final approach speed, first the lower selectable speed must
be calculated. Table 6.6 shows how this speed is calculated [133]. Using the maximum
lift coefficient of the A320 landing configuration, the table can be approximated using

VLS = 1.205 · VStall,1g = 1.205 ·
√

2 ·m · g
ρ · Sref · CL,max,LDG

(6.131)

where 1.205 is an arbitrary fit parameter. The table data as well as the approximating
formula are shown in Figure 6.15.

Apart from the minimum selectable speed, the headwind VHW must be determined.
As runway operations are always in the direction the wind originates from, tailwind
conditions usually do not appear. Using both values, the final approach speed

VAPP = VLS +max

{

5kts,min

{

15kts,
1

3
VHW

}}

(6.132)

is calculated [133]. This speed is used in the final boundary condition in the last phase.
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Figure 6.15: Comparison table data and approximation formula for lowest selectable
speed.
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Figure 6.16: Point constraints on the glide slope (not to scale).
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6.3 Problem Definition

Glide Slope Point Constraints

The following constraints have to be met while on the glide slope. The minimum ab-
solute intercept altitude must be 5000ft. Additionally, the calibrated air speed must
be below 160kts at the outer marker as otherwise deceleration to the final approach
speed may not be possible [134]. The outer marker is 6nm from the runway threshold
and correlates to 2000ft above ground level. At this altitude, the landing gear must be
deployed as well. Additionally, the aircraft must be close to approach speed, fully sta-
bilized and in landing configuration (flaps at landing) before the 1000ft above ground
level is passed [135]. Therefore, in the optimization, the full configuration is enforced
at 1200ft above ground. Additionally, at this altitude, the aircraft calibrated air speed
must be below VAPP + 1kts.

Glide Slope Constraint

During final approach, the aircraft has to follow the 3◦ glide slope to the runway of
Munich Airport. This constraint is imposed on the kinematic climbing angle. How-
ever, imposing an equality constraint on a state reduces the degree of freedom of the
dynamics. Thus, the optimal control problem becomes hard to solve. Additionally,
since the glide slope must be intercepted, the initial glide slope constraint must have
wider bounds than close to the runway. Therefore, a box constraint for the kinematic
climbing angle is defined. Dependent on the distance from the decision altitude, the
lower and upper bounds approach the 3◦ glide slope. The same holds for the aircraft
course angle.

In the optimization, the glide slope tolerance is continuously reduced. The bounds
on the kinematic angles changes linearly from ∆χGK = ∆γGK = ±2◦ at the glide slope
intercept down to ∆χGK = ∆γGK = ±0.15◦ at the decision altitude. Therefore, the glide
slope tolerance

∆t =
∆tI −∆tD
dI − dD

· (d− dD) + ∆tD (6.133)

is dependent on the great arc distance d from the runway threshold. The distance is
calculated using the haversine formulation

d = 2 · (rE + hRW ) · arcsin
√

sin2

(
∆φ

2

)

+ cosφG · cosφRW · sin2

(
∆λ

2

)

(6.134)

∆φ =
∣
∣φG − φRW

∣
∣ (6.135)

∆λ =
∣
∣λG − λRW

∣
∣ (6.136)

which is good conditioned for small distances [136]. In the equation φRW , λRW repre-
sent the latitude and longitude of the runway threshold. The airport altitude is given
by hRW .

6.3 Problem Definition

In this section, the approach optimal control problem as well as the solution strategy
are presented.
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Figure 6.17: Approach optimal control problem mission layout.

6.3.1 Approach Optimal Control Problem

For the fuel minimal approach problem, runway 26R from Munich Airport is chosen.
The approach starts at the initial approach fix ROKIL and ends on the glide slope at the
decision altitude 200ft above the ground level of runway 26R [137]. In Figure 6.17,
the approach mission layout is shown where the aircraft flies a downwind segment
and turns right for alignment with the runway and final approach. The aircraft passes
through various navigation aids (waypoints) for which the locations are shown [138].

In the optimal control problem, every segment between two navigation aids is rep-
resented by a phase. In order to reduce the number of optimization variables and thus
the problem size, not all phases are optimized with discrete controls. In Figure 6.17,
the blue line indicates the phases where the flaps can be chosen subject to optimiza-
tion. In the red phases, the flap setting is fixed. Therefore, the initial approach until
the alignment with the glideslope is flown in the clean configuration. Furthermore,
below 1200ft, the high lift and gear are fully extracted. Additionally, below 2000ft, the
discrete control selectable options are reduced to the last two high lift settings with the
gear extracted.

6.3.2 Solution Strategy

Due to the fact that the aircraft model is significantly more complicated than the car
model from chapter 5, the solution strategy is expanded. The two stage approach
is still used. However, the generation of the initial guess for the optimization is ex-
tended. First, an initial guess for all states and constraints is calculated using an in-
verse dynamic BADA 4 model. This initial guess is used in a clean optimization where
the maximum lift coefficient and other discrete constraints are not considered. From
this initial solution, an intial guess for the discrete optimization is constructed. In the
following, the solution strategy is explained in more detail:

1. A smooth trajectory through all waypoints is constructed using a B-Spline (see
Figure 6.17). For every waypoint, the position in WGS84 coordinates, the flight
directions, as well as a guessed speed are provided. The speeds are calculated by
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linear interpolation between the initial approach speed (boundary condition) as
well as the final approach speed (calculated using (6.132)). The geodetic coordi-
nates are transformed into local NED where the runway threshold represents the
origin. Using the B-Spline calculation presented in C.1, time derivatives of the
position and kinematic speed are calculated. This information is used to recon-
struct kinematic angles χGK , γGK , µK as well as the WGS84 position.

2. The kinematic data obtained in the previous step is used to calculate the con-
trol inputs to the dynamic model. This is achieved with inverse formulation of
the BADA 4 model of section 6.1. Thus, the required lift coefficient CL and the
thrust lever position δT are obtained. The thrust lever command control is set
to δT,CMD = δT and the aerodynamic bank angle µA is set to the kinematic bank
angle from the previous step.

3. A clean optimization is carried out for the approach. Boundary conditions re-
garding maximum lift coefficients and other discrete control dependent constraints
are ignored. This step shall provide a solution that is better suited than the B-
Spline interpolation.

4. The clean optimization solution is used to calculate an initial guess for the dis-
crete OCP. The switching structure of the discrete control is determined depen-
dent on the violation of the discrete constraints. Additionally, regulation con-
straints such as gear down and full landing configuration are considered.

5. Discrete OCP is solved without switching cost. The slack variables for the van-
ishing constraint relaxation have an upper bound of 0.01. The resolution of the
time discretization is chosen to approximately 0.2 seconds. Additionally, an arti-
ficial high lift cost is added to the problem that penalizes higher flap and landing
gear selections. The necessity is argued in the beginning of the section 6.5.

6. The solution is augmented by removing spikes shorter than 2 seconds from the
solution (see section 3.6.3).

7. Finally, the discrete OCP is solved with switching cost. The slack variable for
the switching cost approach has an upper bound of 0.9 (see section 3.4.3) and the
penalty scaling is set to 5.

6.4 Single Optimization

In this section, a single approach optimal control problem is solved. It is used as ref-
erence for the parameter studies and to explain the structure of the obtained solution.
Boundary conditions, environmental factors, and possible discrete control selections
are found in Table 6.7. The problem consists of 76, 787 optimization variables, 92, 585
constraints, and has a sparsity of 99.98%. Initial guess generation as well as the clean
optimization need just a few seconds. The actual optimization with discrete controls
requires approximately 1231 seconds1. The first stage is calculated in 1147 seconds

1Intel Core i5-4670 CPU @ 3.40GHz, Windows 10 64bit, MATLAB 2015a
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Table 6.7: Aircraft settings, initial conditions, and environmental conditions for approach
mission.

Name Value Unit

Aircraft A320.05 -232
High Lift Position (Flaps) [0, 1, 2, 3, 4, 5]
Landing Gear Positions [0, 1]
Initial Speed (rokil) 250 [kts]
Initial Mass (rokil) 63 [t]
Initial Alitude (WGS84 at rokil) 4000 [m]
Wind Speed (at reference Altitude) 0 [m/s]
Wind Reference Altitude (above ground level) 10 [m]
Wind Direction (delta from aligned runway) 0 [deg]

whereas the second optimization stage with switching cost has a CPU time of 84 sec-
onds. The minimum fuel was determined to be 386.2kg with additional 6.0 (pseudo-
kilogram) as switching cost. All other cost accounted for the slack variables result in
9.9 (pseudo-kilogram).

In Figure 6.18, the obtained optimal solution of various data is shown w.r.t. real
time. The switching structure of the flaps δHL as well as the landing gear δLG are plot-
ted. Below, the altitude hG history which contains the ground altitude as well as gear
down and full configuration altitudes (black and gray horizontal lines) are shown. In
the plot displaying the calibrated air speed VCAS, the maximum speed is shown as
a red line. The aerodynamic stall speed and the minimum selectable speed VLS are
converted to calibrated air speed. The lines are shown in red and green respectively.
Furthermore, the lift coefficient CL, the thrust lever position δT , the aerodynamic bank
angle µA, and the vertical load factor nz are displayed.

In the solution, the aircraft remains at the initial approach altitude until a contin-
uous descent begins. This descent is carried out until the decision altitude. At first,
the initial speed which requires a certain amount of thrust is kept. However, at some
point the thrust is set to idle. This reduces the speed and increases the required lift
coefficient until the descent begins. At this point, the calibrated air speed remains con-
stant. Shortly after the turn (visible in the bank angle plot) and the alignment with
the glide slope, the aircraft decelerates and the required lift coefficient is increased fur-
ther. The first flap configuration is selected while the thrust lever remains in the idle
position. Once the aircraft reaches 2000ft above ground level, the gear is deployed.
This is immediately followed by a thrust increase. Dependent on the deceleration,
the thrust requirement changes. At 1200ft above ground, the full configuration is en-
forced. Additionally, the aircraft must have almost reached the final approach speed
VAPP . Therefore, the thrust requirement increases further.

The switching of the flaps to the first non-clean selection is driven by the lift re-
quirement and thus the minimum selectable speed of the current high lift configura-
tion. Both later switches are mainly driven by operational requirements to ensure a safe
approach. The deployment of the flaps increases the drag on the aircraft. The opera-
tionally required switches in the flaps and landing gear are immediately followed by a
thrust increase from idle to approximately 40%. This results in a higher fuel consump-
tion. Therefore, regarding fuel efficiency, the deployment of the flaps is not desired.
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Figure 6.18: Solution of fuel minimal approach optimization under consideration of dis-
crete controls and constraints.
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The switch to the first non-clean flap position was mainly used for deceleration and
thus a switch subject to the optimization.

6.5 Influence Study

In this section, the initial condition (speed, altitude, mass) as well as the wind condi-
tion (speed, direction) are varied. The influence of the parameter on the optimal flap
switching structure is evaluated. However, in order to improve the consistency of the
solution, an artificial penalty cost must be added to the high lift selection. In the pre-
vious section, the switch from the clean configuration to the first non-clean flap setting
occurs while the thrust lever is in idle position. Therefore, the change increases the
drag which is used for deceleration. However, since the thrust is at idle, the switch
does not have a significant influence on the minimal fuel cost function. In case pa-
rameter studies are carried out the optimizations converge to different minima with
similar cost values.

In order to improve the consistency in the parameter study solutions, an artificial
high lift penalty is added. All non-clean high lift selections and landing gear positions
are penalized using a simple cost function:

Jp,HL = 0.05 ·
∑

k

(k − 1) · wk. (6.137)

The penalty increases with the aircraft’s high lift and ensures that a deployment of the
flaps always has a small negative impact on the cost function. A comparison to the
case without this additional high lift penalty is given in the appendix C.3. The artificial
high lift penalty is used in the previous single optimization as well.

6.5.1 Initial Aircraft Mass

In this section, the influence of the initial approach mass on the trajectory and thus on
the flap switching structure is evaluated. Therefore, the aircraft mass is varied from
50t to 66t in 500kg steps. It is considered in the optimal control problem as the initial
boundary condition of the mass state. Otherwise, boundary conditions and wind situ-
ations remain the same (see Table 6.7). The landing speed is adapted dependent on the
considered weight (see section 6.2.3).

In Figure 6.19, multiple plots are shown. The fuel consumption is plotted w.r.t. the
initial aircraft mass together with the switching cost and the artificial high lift cost. All
penalties are added to the fuel consumption in order to make the plots better compara-
ble. Additionally, the altitude profile as well as the calibrated air speed are displayed
w.r.t. time backwards from the decision altitude. Thus, all optimizations are aligned at
their final boundary condition. In both plots, the colors range from dark blue to green.
The colors represent the initial aircraft masses ranging from 50t to 66t.

In the last subplot, the switching structure dependent on the aircraft mass is shown.
Horizontal gray lines indicate the aircraft time frame. As with the plots before, they
are aligned w.r.t. their final time. Switches are indicated by colored lines. Additionally,
the magenta line indicates the alignment with the runway during approach. It is the
point in time where the aircraft completes its final turn and is on direct approach to
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Figure 6.19: Fuel minimal discrete control approach optimization with varying initial air-
craft mass.
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the runway. Within the optimal control problem, it is the point from which the discrete
controls are considered.

The fuel consumption increases almost linearly with the initial mass. Contributions
of the penalties to the overall fuel cost are relatively small. Compared to the car op-
timization, the contribution of the switching cost is much lower. Therefore, it shows
that the selection of a suitable penalty scale parameter is dependent on the application
involved.

For all aircraft masses, the initial altitude is maintained until the continuous descent
begins. Lighter aircraft begin their descent earlier. The speed profile chosen for the
approach is dependent on the aircraft mass. However, all profiles are very similar.
Heavier aircraft maintain the initial speed whereas lighter aircraft decelerate until an
optimal cruising speed is reached. Afterwards, the speed profile follows the same
strategy as in the single optimization case described above. Additionally, the aircraft
mass dependent final landing speed VAPP can be seen.

It the last subplot which contains the switching structure, it can be seen that lighter
aircraft require longer approaches. Additionally, lighter aircraft perform two discrete
switches. The first deploys the landing gear and switches the flaps to the fourth config-
uration at 2000ft above ground. The full flap configuration is selected once the 1200ft
above ground level is reached. Therefore, both switches are enforced by operational
constraints. As the initial aircraft mass becomes heavier (approximately 54t), an addi-
tional switch which moves to earlier points in time emerges. This switch is subject to
the discrete control optimization. Overall, the obtained switching structure and time
histories are very consistent within the parameter study.

6.5.2 Initial Altitude

In this parameter study, the influence of the initial approach altitude on the optimal
solution is determined. The initial altitude is varied from 3000m to 5000m altitude in
steps of 100m. The initial aircraft mass is set to 63t. All other boundary conditions as
well as the wind situation remain the same as in the single optimization (see Table 6.7).

In Figure 6.20, the results from the initial altitude optimizations are shown. The lay-
out of the subplots is the same as in the mass study. The initial mass axes are replaced
by the initial altitude in kilometers.

The required full consumption decreases with an increase in altitude. This can be
explained by the higher potential energy. The relationship is almost linear. As before,
the switching cost and the artificial high lift penalty have only a minor contribution to
the overall cost value.

In the altitude and speed plots, the colors range from blue (3000m) to green (5000m).
The initial altitude is always maintained until the point for the continuous descent
approach is reached. Lower altitudes converge to the same descent profile as higher
ones. Before the continuous descent begins, the speed is reduced to an optimal value.
It is approximately the same for all optimizations. The final landing speed VAPP is not
influenced by the initial altitude.

The switching structure is constant throughout the initial altitude parameter study.
This can be explained by the fact that all optimizations have the same final approach
for altitude and speed. All difference are found in the clean initial approach segment
and the flight duration increases slightly with the initial altitude.
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6.5.3 Initial Speed

In this section, the influence of the initial approach speed on the switching structure
is determined. The initial calibrated air speeds range from 200kts to 320kts in 10kts
steps. Obviously, some initial speeds violate the regulation that below FL100 a maxi-
mum speed of 250kts must not be exceeded. Therefore, these optimizations have to be
regarded as an extension. The initial altitude is set to 4000m. All other boundary and
wind conditions are the same as in the single optimization (see Table 6.7).

In Figure 6.21, the results of the initial calibrated air speeds are shown. The fuel
consumption decreases with an increase in the initial speed as more kinetic energy is
available. As before, the influence of the penalties is small compared to the fuel cost.
The slowest initial speed 200kts results in a higher fuel consumption. This is due to
the convergence to another minimum which is explained below. The initial altitude is
maintained for all initial speeds until the continuous descent approach begins. All op-
timizations follow the same altitude profile. The calibrated air speed plot shows that
slower aircraft have longer fuel minimal approaches. High initial speeds (above ap-
proximately 250kts) decelerate to an optimal speed for the given altitude. Afterwards,
they decelerate further to the optimal descent speed. The fact that the initial altitude
is maintained as long as possible shows that the potential energy is a far better energy
storage than the kinetic energy.

For an initial speed of 200kts, the solution is significantly different. This is due to
the fact that this initial speed is below the optimal descent speed. An acceleration dur-
ing the approach is not allowed in the optimization. Therefore, the result is a different
speed profile. In the switching structure plot, the flaps are extracted much earlier com-
pared to the other solutions. Since all initial calibrated air speeds above 200kts follow
the same final approach, the switching structure is constant.

6.5.4 Wind Speed

In this and the following section, the wind influence on the fuel minimal approach
solution is evaluated. Therefore, first the influence of the wind speed is discussed.
The profile of the Prandtl layer is aligned with the runway (see Figure 6.22). The
geostrophic wind speed ranges from 0m/s to 30m/s in 2m/s steps. These wind speeds
are equivalent to 0 . . . 11 on the BEAUFORT scale [139]. Therefore, calm conditions up
to strong high winds are taken into account. Negative winds are not considered as
this normally leads to a direction change in runway operations. Otherwise, boundary
conditions are the same as in the single optimization (see Table 6.7).

In Figure 6.23, the results from the wind speed study are shown. The structure of
the plots is very similar to that of the previous studies. Two additional subplots are
added. In the first new subplot, the aerodynamic and kinematic speeds are plotted
together. Color coding is used to differentiate low from high wind speeds. The kine-
matic speed plots range from black to copper colors whereas the aerodynamic speed
plots range from blue to green. Additionally, the bank angle over time is shown.

With higher wind speed, the fuel consumption increases significantly. The reason
lies in longer flight times at low aerodynamic speed (this is explained below). The
impact of the switching cost and artificial high lift cost is relatively small compared to
the overall fuel consumption.
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Figure 6.21: Fuel minimal discrete control approach optimization with varying initial cal-
ibrated air speed.
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Wind Field

Figure 6.22: Wind speed with respect to runway alignment.

In the altitude plot, the initial altitude is maintained. With increasing wind speed,
the beginning of the continuous descent moves to earlier points in time. The calibrated
air speed is decreased during the downwind segment. At higher wind speeds, the
initial speed is slightly reduced.

Due to the tail wind in the downwind part of the approach, the kinematic speed
is increased significantly and therefore the turn occurs much earlier at higher wind
speeds. After approximately half of the turn to runway alignment, the aircraft has
headwind and thus the kinematic speed drops below the aerodynamic speed. With
higher winds, the kinematic speed becomes relatively small. Therefore, these flight
segments become much longer compared to the downwind segments. As it was shown
in the single optimization, the deployment of landing gear and landing configuration
required the thrust to be increased. Together with the longer flight times in the head-
wind approach segment, the increase in the fuel consumption can be explained.

In the last subplot, the discrete control switching structure is shown. With higher
wind speeds, the fuel minimum flight time increases as well. Although the initial ap-
proach is flown with tailwind, the final approach has much slower kinematic speeds
and thus significantly higher flight times. The discrete control switches and the run-
way alignment move to earlier points in time.

The ground tracks for the different wind speeds are shown in Figure 6.24. With
increased headwind speed, the turn of the aircraft is drawn further outwards. Addi-
tionally, it becomes more focused towards the middle. This reflects the stronger drop
in the kinematic speed shown in Figure 6.23.

6.5.5 Wind Direction

In this section, the influence of the wind direction on the fuel minimal approach so-
lution is evaluated. The geostrophic wind speed is set to 10m/s and the wind angle
relative from the runway ranges from −90◦ to 90◦ in 15◦ steps. The wind direction rel-
ative to the runway is shown in the Figure 6.25. The boundary conditions remain the
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Figure 6.23: Fuel minimal discrete control approach optimization with varying wind
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Figure 6.24: Ground track of approach optimimization with varying wind speeds.
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Figure 6.25: Wind direction with respect to runway alignment.
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same as in the previous or single optimization case (see Table 6.7).

In Figure 6.26, the solutions of the fuel minimal approaches for different wind di-
rections are shown. As with the wind speed, the plot is expanded by aerodynamic and
kinematic speeds as well as the aerodynamic bank angle.

The fuel consumption is lowest for a runway cross wind of 90◦ as the turn is flown
in downwind conditions. At a relative wind direction of approximately −30◦, the fuel
consumption is highest. The altitude and speed profiles only show a slight variation.
During the turn, dependent on head- or tailwind conditions, the kinematic speed either
drops or increases significantly. The calibrated air speed is not allowed to increase
in the optimization. Where the wind direction is almost perpendicular to the flight
direction, the kinematic speed becomes almost the same as the aerodynamic speed.
The kinematic speed is lower than the aerodynamic speed after the turn to the final
approach.

In case of +90◦ relative wind direction the Ekman wind rotation causes the air-
craft to fly the beginning of the final approach in tailwind conditions. Therefore, the
kinematic speed remains higher than the aerodynamic speed. Once the aircraft has
descended further, the directions becomes perpendicular to the runway. Then, the
kinematic speed approaches the aerodynamic speed. A similar behavior is visible in
the initial approach segment where, due to the Ekman wind rotation, the aircraft has a
slight tailwind (relative wind angle +90◦). Finally, in Figure 6.27, the ground tracks for
the different wind directions are shown.

6.5.6 Sea Level Temperature Delta

The ISA atmospheric model defines a reference temperature and pressure at sea level.
Therefore, in this and the next section, the influence of temperature and pressure offsets
are evaluated. The default ISA temperature is T = 288.15K which is T = 15◦C. This
study ranges the temperature delta ∆T from −20K to 20K in 2K steps. In Celsius, the
temperature range is from −5◦C to 35◦C. Otherwise, the settings are as in the single
optimization case.

Figure 6.28 shows the results of the study. The layout of the plots is similar to the
studies before. An additional subplot showing the aircraft drag is added. In the first
subplot, a slight drop of the fuel consumption with increasing temperature is visible.
High temperatures lead to a higher optimal approach speed (see VCAS subplot). The
drag increases with the temperature as well. However, overall the flight time is re-
duced which has a higher impact and thus the fuel consumption decreases. In the
altitude subplot, no significant differences are visible.

As already mentioned, the flight duration decreases with increased temperature.
Additionally, the first flap position moves to earlier points in time. The switch is mainly
motivated by the minimal speed limitation in the clean configuration. Due to the fact
the a temperature increase decreases the air density, the lift is reduced. Therefore, the
aircraft has to deploy the flaps earlier.

6.5.7 Sea Level Pressure Delta

The ISA atmosphere’s default pressure at sea level is 1013.25hPa. According to [140]
the sea level pressure approximately ranges from 985hPa in low pressure areas up to
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Figure 6.26: Fuel minimal discrete control approach optimization with varying wind di-
rection.
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Figure 6.27: Ground track of approach optimimization with varying wind directions.

1035hPa in high pressure areas. This leads to a ISA pressure offsets ∆p from −2825Pa
to 2175Pa. The optimizations are carried out in 200Pa steps. Otherwise, the settings
are as in the single optimization case.

Figure 6.29 shows the results of the optimizations. It can be seen that the fuel con-
sumption remains almost constant with a tendency to lower fuel consumptions with
higher air pressures. With an increase in pressure, the air density increases. In the
switching structure plot, the first flap position shifts to later points in time. Addition-
ally, the optimal calibrated air speed is reduced. The aircraft drag is slightly reduced
with higher air pressures. The flight time increases slightly. Overall, this leads to an
almost constant fuel consumption.

6.6 Comparison to Real Approach Trajectory

In this section, the approach optimization is compared against a real flight trajectory.
For this purpose, a flight trajectory from a foreign airline is taken. The scenario consid-
ers an approach of an A319 aircraft. All data is taken from the Quick Access Recorder
(QAR) that stores various data during flight. Before the flight data can be used it has to
be preprocessed. Afterwards an optimization is carried out to match the BADA4 sim-
ulated trajectory to the real flight. Thus, it can is assessed whether the BADA4 model
can reproduce the real trajectory with sufficient detail. Finally, several fuel minimal ap-
proaches are carried out. These include free final time and fixed final time conditions.
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Figure 6.28: Fuel minimal discrete control approach optimization with varying sea level
temperature delta.
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Figure 6.30: GPS track of the approach. Colors indicate the different high lift settings.
Additionally, the initial approach fix as well as the runway layout is shown.

6.6.1 Preprocessing of Flight Data

In order to use the QAR data in the further process of this section, it has to be pre-
processed. The considered section the flight is shortly before the initial approach fix
down to the decision altitude (see Figure 6.30). Actual flight time is approximately 10
minutes.

The QAR data includes the position φG, λG, hG, the kinematic speed V G
K , the kine-

matic angles χGK , γ
G
K , the calibrated air speed VCAS, the aircraft mass m, and the fuel

flow fflow. Additionally, the aircraft roll angle is used to approximate the bank angle µ.
During flight, the aircraft approximates the wind speed VW and direction χW (where
the wind originates from). Finally, the angles of the slats and flaps are stored. In the
data at hand, the standard atmosphere offsets ∆T and ∆p are not available. Therefore,
both values are set to zero.

Data Smooting

In order to save memory, most of the QAR data is stored with low frequency and a
reduced number of significant digits. Therefore, high frequent influences such as tur-
bulences are not recorded with sufficient resolution. Additionally, turbulences are not
considered in the aircraft model. For these two reasons, the QAR data is smoothed by
applying a moving average algorithm. This shall ensure that the noise in the measured
data is reduced.

As mentioned, the wind calculated by the aircraft is stored as the wind speed and
direction the wind originates from. In Figure 6.31 the both data are plotted w.r.t. the
aircraft altitude. The noise is significant and increased with lower altitudes. Addition-
ally, the plots show the smoothed data for both measurements. The smoothed data is
used in the optimization. Furthermore a spline for the aerodynamic dataset is created
w.r.t. the aircraft altitude. Additionally to the wind data, the kinematic course angle
χGK , the kinematic climb angle γGK , and the bank angle µ are smoothed.
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Figure 6.31: Measure wind speed and wind direction w.r.t. altitude and smoothed wind
data.

Fuel Flow and Aircraft Mass

In order to fit the BADA4 model to the real flight data, the initial mass of the aircraft
is required. Although it is theoretically possible that the aircraft mass is determined
through optimization, practically this is difficult. At lower aircraft masses, the con-
trols will always have a better effectiveness on the aircraft movement. Therefore, the
optimization algorithm is always motivated to reduce the aircraft mass to the lower
possible value.

The QAR data at hand stores two time histories related to the aircraft mass. Fuel
flow measurements from both engines are available. Both are combined to obtain the
overall fuel flow fflow. Additionally, the current aircraft mass is guessed during flight.
Due to the fact that this value is stored with very low frequency, the first mass data
point before the initial approach fix is used as starting point for the scenario and as the
initial aircraft mass.

In Figure 6.32 the aircraft fuel flow and mass are shown w.r.t. time. Additionally
to the aircraft mass, the fuel flow was integrated to generate a mass history with a
higher density. The integrated mass as well as the guessed measurements show a
relatively good match. However, the integrated mass is always slightly lower than
the mass guessed by the aircraft. In the fuel flow plot, a significant increase is located
at approximately 100 seconds. This increased fuel consumption is directly visible in
the integrated aircraft mass history but not in the QAR data. In the following, the
integrated aircraft mass is used as reference. Additionally, it is assumed that the QAR
data used as initial aircraft mass is sufficiently accurate.
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Figure 6.32: Approach aircraft fuel flow and aircraft mass. Fuel flow is integrated to
determine more accurate mass history.

Table 6.8: Angles of the high lift configurations for the Airbus A319.

High Lift Setting Slat Angle [deg] Flap Angle [deg]

UP / CLEAN 0◦ 0◦

FLAPS 1 18◦ 0◦

FLAPS 1+F 18◦ 10◦

FLAPS 2 22◦ 15◦

FLAPS 3 22◦ 20◦

FLAPS FULL 27◦ 35◦

Flap Settings

In this chapter, the high lift and gear selections are optimized. Therefore, the data
is extracted from the QAR. In the data not the actual pilot selection is stored but the
current position of the flaps and slats (high lift devices at the front and the back of the
wing). Figure 6.33 shows the time history for the both high lift devices as well as the
aircraft altitude above ground. The high lift data should represent the deflection angle
in radians. However, there seems to be an scaling factor involved which is currently
not known. Since high lift and gear settings are extracted from the changes rather than
the actual values this is not an issue.

In Table 6.8 the slat and flap angles for the different high lift selection are shown
[134]. Since most of the times only a change either in the slap or the flap angle occurs,
the information can be used to extract the actual high lift setting selected by the pilot.

Comparing Figure 6.33 with Table 6.8 gives the following high lift selections. At
first, the clean configuration is selected. Afterwards, the slat angle changes but the flap
position stays at the same value. This indicates the selection of the FLAPS 1 config-
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Figure 6.33: Flap and slat setting for approach. Changes in both flaps and slats are used
to determine the selected high lift configuration.

uration. The second switch changes the slat and flap position at the same time rep-
resenting a switch to FLAPS 2. It occurs shortly before the 2000ft AGL altitude is
passed. Therefore, it can be assumed that the gear is deployed at the same time. The
last switch occurs at the 1000ft AGL altitude. Since only the flap angle is changed the
FLAPS 3 configuration is selected by the pilot. Thus, the aircraft lands in the FLAPS 3
configuration rather than in the full flaps configuration.

From the data above it is determined that the aircraft deploys the landing gear with
the selection of the FLAPS 2 configuration. Unfortunately, the BADA 4 Family does
not provide aerodynamic data for the FLAPS 2 configuration with extended landing
gear. Therefore, the data must be approximated. The following configuration (FLAPS
3) includes aerodynamic data for both the gear down and gear up case. Using the delta
of the drag coefficients of this configuration the FLAPS 2 gear down drag coefficients
are approximated.

6.6.2 Fitting the BADA4 Model

In order to determine if the BADA4 model reproduces the fuel consumption of the
real flight, it has to follow the recorded trajectory. For this reason an optimal control
problem is setup in FALCON.m that performs a least square fit w.r.t. the flight data.
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Figure 6.34: Fitted trajectory of BADA4 model with the real flight data using a least
square optimization.
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ḣG − ḣGREF
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is set up for various aircraft data where �REF represents the real flight data. Due to the
fact that all data have different order of magnitudes, each deviation has to be scaled
individually. The scaling data chosen for this optimization are shown in the equation.
It is important to note that the fuel flow or the aircraft mass are not considered in the
cost function. The optimization is carried out with a fixed final time.

Figure 6.34 shows the fitted result. Both the QAR data as well as the simulated
BADA4 data show a very good fit. Although not taken into account in the cost func-
tion, both the fuel consumption and the aircraft mass match very well. The final aircraft
weight is approximately the same as the integrated aircraft mass from the real flight
data. In the following, the fitted BADA4 trajectory is considered as the reference flight
trajectory.

6.6.3 Optimized Approach

The approach is now optimized for minimal fuel consumption. As can be seen in
Figure 6.35, the aircraft does not exactly passes through the initial approach fix. There-
fore, the initial boundary condition for the optimized approach remains the initial real
aircraft position. In order to force the aircraft on the same trajectory as before, two ad-
ditional waypoints are created that define the entry and the exit of the turn. From the
runway orientation and Jeppesen flight charts the waypoints for the glide slope inter-
cept (minimum altitude 3000ft) can be calculated. The gear has to be deployed 2000ft
AGL and the full flaps stabilized approach must be achieved by 1000ft. As before, the
optimization ends 200ft AGL on the glide slope.

All constraints are set up in the same way as in the previous section (see section
6.2). The solution process is shortened as the initial guess for the discrete control op-
timization is already calculated through the fit of the BADA4 model to the real flight
data.

The fuel minimal trajectory may have a different final time. Therefore, all optimiza-
tions are carried out with free and fixed final time. Please note that in the fixed final
time case some constraints are removed in order to ensure feasibility. The constraint
that the aircraft speed at the full flaps point must be 1kts above the landing speed is
removed. Additionally, the deceleration constraint no longer forces an active decelera-
tion but ensures that in the stabilized configuration phase a maximum deceleration of
2kts/nm is not exceeded.
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Figure 6.35: Approach optimization scenario with navigation aids and additional way-
points. Colors indicate the high lift and landing gear selection of the refer-
ence flight.

Table 6.9: Fuel savings of optimized approach w.r.t. the reference for different final high
lift settings as well as fixed and final time. Additionally, the fuel savings for
landing in the FLAPS 3 configuration instead of full flaps are shown.

Flaps 3 Full Flaps Flaps 3 Compared to Full

Free Final Time 15.2%[32.4kg] 11.1%[23.5kg] 4.7%[8.9kg]
Fixed Final Time 12.4%[26.3kg] 8.1%[17.1kg] 4.7%[9.2kg]

In the preparation of the flight data it was determined that the aircraft lands in
the FLAPS 3 configuration rather than deploying the high lift devices fully. Therefore,
the fuel minimal approach optimization is also carried out with both allowed landing
configurations. Thus, overall four optimizations are carried out.

Figure 6.36 shows the results of all four optimizations. It can be seen that the track
is identical for all solutions. The altitude and calibrated air speed profiles mainly differ
for the fixed time and free time cases. This is also visible in the plot displaying the air-
craft mass. It also shows the expected result that landing in the FLAPS 3 configuration
reduces the fuel consumption further. The fuel savings as well as a comparison of the
final high lift configuration are shown in Table 6.9.
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Figure 6.36: Optimal trajectory of BADA4 model for the approach. The fitted flight
trajectory is shown as reference.
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Chapter 7

Conclusion and Outlook

7.1 Summary and Conclusion

In this thesis, methods to consider discrete controls and discrete constraints in optimal
control problems were stated and further developed. The switching sequence of the
discrete controls was subject to optimization. The resulting large scale optimal con-
trol problems (direct methods) were solved with a newly developed optimal control
toolbox FALCON.m.

In chapter 2, the continuous optimal control problem was introduced. First, uncon-
strained and constrained optimization problems were discussed together with numeric
gradient based solution approaches. Second, the continuous Optimal Control Problem
(OCP) was stated. It was discretized in time and thus transformed into a finite parame-
ter optimization problem, also called Non-Linear Program (NLP). Different discretiza-
tion methods (single shooting, multiple shooting, collocation) were introduced. The
resulting NLP was solved with gradient based approaches. Additionally, implementa-
tion aspects such as gradient calculation and scaling were discussed.

Chapter 3 introduced discrete controls into the OCP, which can only take values
from a fixed set. These problems are also called Mixed-Integer Optimal Control Prob-
lem (MIOCP). Using direct methods, the problem was transfered to a Mixed-Integer
Non-Linear Program (MINLP). Discrete controls were considered using Outer Convex-
ification (OC). Weights were introduced for every discrete choice at every discretized
point in time making the switching structure subject to optimization. Discrete control
dependent constraints were reformulated using Vanishing Constraints. A relaxation
method suitable for the OC method was introduced. Thus, the discrete optimal con-
trol problem was continuously reformulated. Binary feasibility for the discrete control
weights and a minimization of discrete switches were enabled by a novel penalty cost
approach. A two stage solution strategy was presented. In the first stage, an opti-
mization without switching cost was carried out to find a suitable initial guess for the
switching structure. Afterwards, the second stage enabled the switching cost approach
to obtain a discrete value feasible switching structure. In between both steps, the dis-
crete control weights were augmented by pre-eliminating high frequent spikes in the
solution. Thus, the stability of the overall process was improved. Multiple indepen-
dent discrete controls were considered by calculating all feasible permutations. The
weights of individual discrete controls were calculated with mapping matrices.

In case realistic dynamic models with discrete controls were considered, large scale
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high fidelity OCPs were created. Chapter 4 introduced the FALCON.m optimal con-
trol framework that is able to calculate the analytic first and second order derivatives
(Jacobian and Hessian) of such problems. The problem definition from the user side
was explained. It was followed by a description of the derivative generation toolchain
that consists of two parts, namely the differentiation of user supplied functions (dy-
namic models, constraints, cost functions) and the construction of the overall problem
derivatives (Jacobian, Hessian). User functions were differentiated using the subsys-
tem derivative builder. This FALCON.m sub-toolbox is able to differentiate high fi-
delity user functions by applying source code transformation. The user functions were
divided into more manageable subsystems which were differentiated using the MAT-
LAB Symbolic Math toolbox. The chain rule was automatically applied to calculate
the overall derivatives. Thus, analytic derivatives for complicated high fidelity models
could be created. The interface and communication of the differentiated user functions
with the FALCON.m optimal control framework were explained. Jacobian and Hessian
information was used to create the overall problem derivatives. User function deriva-
tive values were directly sorted to the correct position of the sparse row column value
vector representation. Thus, high memory consumption was avoided and the problem
derivative generation was reduced to a linear index mapping. The algorithms for the
Jacobian and the Hessian calculation were explained. Discrete controls in FALCON.m
were considered through a user friendly toolbox extension. Two selected problems
were solved automatically with the methods used in this thesis.

The minimal lap time for a car through a race circuit was determined in chapter 5.
As discrete control, the gear transmission was introduced. The Nürburgring race track
was modeled as a cubic spline for the center line and the width. All four car wheel
positions were considered via constraints. The engine rotation speed was limited as
well. First, a few single optimizations were carried out to explain the solution. The
problem was solved with and without the spike removal algorithm between the two
optimization stages. The latter yields a better lap time. Additionally, gas and brake
pedals were introduced as discrete controls. Similar results compared to the contin-
uous case were obtained. Second, the stability of the switching cost formulation was
evaluated. It produced consistent results over a wide range of penalty scalings as well
as the number of discretization points. It was shown that the intermediate augmenta-
tion of the discrete control switching structure improved the consistency between the
solutions. Additionally, the minimal lap time problem was solved for different initial
guesses for the discrete gear choice.

In chapter 6, aircraft approach trajectories were optimized under the consideration
of discrete high lift and landing gear changes. The 3DOF BADA4 aircraft model which
supplies discrete control dependent aerodynamics as well as flight envelope limits was
used. Additionally, approach relevant constraints were stated and considered. The
fuel minimal approach trajectories were calculated for the runway 26R of Munich air-
port. A single optimization was performed to explain the structure of the solution.
Afterwards, parameter studies for initial aircraft mass, initial approach speed, initial
approach altitude, wind speed, and wind direction were carried out to determine their
influence on the gear switching structure. The obtained results showed a high con-
sistency. The influence of the initial aircraft mass on the discrete control switching
structure was particularly prominent.

The methods presented in this thesis were successfully applied to two different ap-
plications. It was shown that no initial knowledge on the optimal switching structure
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is required. Multiple independent discrete controls can be handled as well. The num-
ber of switches was efficiently reduced and discrete value feasibility was ensured using
a novel switching cost approach. Its formulation is application independent and can
thus be used in other optimal control problems with discrete controls. The resulting
large optimal control problems were solved with the FALCON.m software. It is able to
calculate analytic derivatives for high fidelity models and implements an efficient way
to calculate derivatives of large problems. FALCON.m is available as a free software
from www.falcon-m.com .

7.2 Outlook

In this section, potential future work for the consideration of discrete controls and
improvements on the FALCON.m optimal control toolbox are discussed.

Discrete Controls

The applications of this thesis showed that the used approaches are able to find realistic
and consistent solutions for large problem formulations as well as realistic dynamic
models. Discrete control optimization problems can usually be solved in two stages.
Particularly, augmenting the intermediate discrete control switching structure seems
to be a promising approach to achieve consistency in the optimization results. In this
thesis, a spike removal augmentation was applied. Additionally, a smoothing of the
results as well as rounding approaches may be used.

Dependent on the application, the second optimization stage with switching cost
may require a high number of iterations. Especially in the car optimization example
many changes were required in the second stage. The high number of iterations lead to
long CPU times. Currently, the penalty cost function is formulated between multiple
time steps but for each discrete control weight individually. Performance improve-
ments may be achieved by introducing an additional penalty term between all discrete
controls weights at each discretized point.

Within interior point methods, a barrier parameter is used to account for inequality
constraints. During optimization, it is slowly driven to zero. The slack variables of
the vanishing constraints and the penalty scaling of the switching cost may become a
function of this parameter. Once the optimization algorithm approaches the minimum,
the discrete controls and minimization of switches are gradually enforced. Thus, it may
be possible to solve the discrete control optimization problem in a single stage. In case
the IPOPT solver is used, a custom MATLAB interface would be required as currently
only the C++ version has access to the barrier parameter.

Overall, the switching cost approach introduced in this thesis is able to find low
frequent switching structures for the discrete controls. Dependent on the application,
the required CPU time drops below the time range considered in the OCP. Therefore,
the method may also be applicable for close to real time applications.
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Optimal Control Toolbox

Although the FALCON.m toolbox is able to calculate the cost function, constraints, and
their derivatives quickly, certain aspects may be improved in future versions. These
enhancements are discussed in the following.

The subsystem derivative builder creates differentiated user functions that return
the Jacobian and Hessian as dense 3D matrices. Especially, Hessian matrices may con-
tain many zero elements and thus lead to unnecessary memory consumption. There-
fore, it is proposed that differentiated user functions return the potentially non-zero
elements only. The struct interface must be adapted accordingly.

The chain rule within the subsystem derivative generation uses dense matrix mul-
tiplications as well. Similarly to the output derivatives, these may contain many zero
entries. Currently, in the Hessian chain rule, multiplications with full zero matrices
(e.g. input Hessians) are not written to code. This approach could be expanded to
calculate the chain rules only for the non-zero entries. Thus, only multiplications that
will lead to actual non-zero values could be carried out. Initial tests show that the
derivative evaluation speed can be improved notably. However, the resulting MAT-
LAB code becomes significantly longer and increases code generation and compilation
time. Therefore, further tests have to be made before an implementation becomes rea-
sonable.

For most OCP in this thesis, the issues discussed above currently do not impact
the performance significantly. However, they may become relevant in case dynamic
models with a larger number of states and controls (e.g. higher than 50) are considered.

Currently, most of the OCP in FALCON.m are solved with the IPOPT optimizer.
The MATLAB interface of the solver expects MATLAB sparse matrices during runtime.
MATLAB sparse matrices sort the non-zero elements by row indices and then by col-
umn indices. From the C++ interface, it can be determined that IPOPT expects the
elements to be sorted the other way round. Additionally, on the IPOPT website it is
stated that the sparse matrix implementation in MATLAB is difficult to handle. Non-
zero elements that are zero during runtime are potentially removed from the internal
storage by MATLAB. The structure of the vectors therefore changes. Since FALCON.m
stores the sparse matrices in vectors of fixed structure and length, a custom IPOPT
interface may lead to better runtimes.

In the preprocessor step that discretizes and builds the OCP in FALCON.m, the
index sets for the direct sparsity sorting algorithm are created. During runtime, most
of the derivative calculations require linear indexing to copy data between different
array elements. Therefore, the information calculated by FALCON.m can be used to
export C/C++ code that can run within other programs or embedded platforms.

Applications

In the car optimization, a relative simple model was used. More realistic trajectories
may be obtained with a two track model implementing full body motion and advanced
tire dynamics. In case a realistic model is available, a benchmark against the real race
time could be performed. Additionally to the selection of the gear, track specific op-
timal transmission ratios might be determined by the presented methods. With in-
creasing significance of autonomous driving, the minimal lap time trajectories could
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be used as references for a controller in autonomous racing.

In the approach optimization problem, further optimizations can be made for con-
tinuous descent approaches from the top of descent as well as for full flight optimiza-
tion. With increased significance of unmanned aerial vehicles, discrete flap settings
may also be used in flight. Additionally, the presented methods could be applied to
vertical takeoff and landing systems that switch to a traditional configuration during
flight.

Apart from the presented applications, discrete controls may be used for optimiza-
tions in other fields. Discrete changes in air traffic control may be modeled as a discrete
control. Discrete controls also appear in chemical processes, pipe networks, power dis-
tribution, and logistics. Additionally, an adaptation of the switching cost formulation
may be used to solve combinatorial problems. An example is the gate scheduling at an
airport.
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[76] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild, “Combining
source transformation and operator overloading techniques to compute deriva-
tives for matlab programs,” in Proceedings of the Second IEEE International Work-
shop on Source Code Analysis and Manipulation (SCAM 2002), (Los Alamitos, CA,
USA), pp. 65–72, IEEE Computer Society, 2002.

[77] F. Fisch, Development of a Framework for the Solution of High-Fidelity Trajectory Op-
timization Problems and Bilevel Optimal Control Problems. PhD thesis, Technische
Universität München, München, 2011.

[78] I. M. Ross, “A beginner’s guide to dido: A matlab application package for solv-
ing optimal control problems,” 2007.

[79] M. A. Patterson and A. V. Rao, “Gpops-ii,” ACM Transactions on Mathematical
Software, vol. 41, no. 1, pp. 1–37, 2014.
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ropéenne de mécanique numérique, vol. 17, no. 1-2, pp. 103–126, 2008.

[87] C. G. BROYDEN, “The convergence of a class of double-rank minimization al-
gorithms 1. general considerations,” IMA Journal of Applied Mathematics, vol. 6,
no. 1, pp. 76–90, 1970.

[88] R. Fletcher, “A new approach to variable metric algorithms,” The Computer Jour-
nal, vol. 13, no. 3, pp. 317–322, 1970.

[89] D. Goldfarb, “A family of variable-metric methods derived by variational
means,” Mathematics of Computation, vol. 24, no. 109, p. 23, 1970.

[90] D. F. Shanno, “Conditioning of quasi-newton methods for function minimiza-
tion,” Mathematics of Computation, vol. 24, no. 111, p. 647, 1970.

[91] W. C. Davidon, “Variable metric method for minimization,” SIAM Journal on Op-
timization, vol. 1, no. 1, pp. 1–17, 1991.

[92] A. R. Conn, N. I. M. Gould, and P. L. Toint, “Convergence of quasi-newton ma-
trices generated by the symmetric rank one update,” Mathematical Programming,
vol. 50, no. 1-3, pp. 177–195, 1991.

[93] P. Wolfe, “Convergence conditions for ascent methods,” SIAM Review, vol. 11,
no. 2, pp. 226–235, 1969.

[94] A. A. Goldstein, “On steepest descent,” Journal of the Society for Industrial and
Applied Mathematics Series A Control, vol. 3, no. 1, pp. 147–151, 1965.

[95] W. Alt, Nichtlineare Optimierung: Eine Einführung in Theorie, Verfahren und Anwen-
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Appendix A

Continuous and Mixed-Integer
Optimal Control

This appendix chapter contains extensions to chapters 2 and 3.

A.1 Sensitivity Equation Example

Here, an example for the sensitivity equation

Ṡ(τ) = ~f(~x, ~u) · Stf + tf · Jx · S(τ) + tf · Ju · Su(tτ), S(τ0) = S0. (A.1)

introduced in section 2.5 is presented. For the example, it is assumed that there are

~x =





x1
x2
x3



 , ~u =

[
u1
u2

]

, (A.2)

three states (nx = 3), two controls (nu = 2), and the time interval [0, tf ] contains 6
discretized points (nh = 5). Assuming the single shooting discretization methods gives
the following optimization vector

~Z = [tf , x1,0, x2,0, x3,0, u1,0, u2,0, u1,1, u2,1, u1,2, u2,2, u1,3, u2,3, u1,4, u2,4, u1,5, u2,5]
T (A.3)

where the first index is the determines the state or control and the second the time step.
Overall there are n~Z = 16 optimization variables. The variables in equation (A.1) have
the following dimensions

Jx ∈ R
nx×nx , Ju ∈ R

nx×nu , Stf ∈ R
1×n~Z , S0 ∈ R

nx×n~Z , Su ∈ R
nu×n~Z , (A.4)

and the final time tf is scalar. As already mentioned

Stf =
[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
(A.5)

is a constant row vector which has a single entry of one and zero otherwise. The initial
state sensitivity

S0 =





0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



 (A.6)
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A.2 Hyperbolic Tangent Discrete Constraint

is the identity matrix at the point where the initial state is discretized in the ~Z vector.
Finally, the control sensitivity matrix

Su,0 =

[
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

]

(A.7)

Su,1 =

[
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

]

(A.8)

Su,2 =

[
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

]

(A.9)

Su,3 =

[
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

]

(A.10)

Su,4 =

[
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

]

(A.11)

Su,5 =

[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

]

(A.12)

is time dependent. In (A.7) through (A.12), the matrix is given at the discretization
points where the identity matrix shifts to the control of the current discretized time. In
between the same interpolation methods as for the controls ~u is used.

A.2 Hyperbolic Tangent Discrete Constraint

The hyperbolic tangent approach is a viable choice if the switching structure of the
discrete controls is known. In case constraints are dependent on the discrete choice,
the constraints can be formulated in a similar manner as the discrete controls itself.

Assume the box constraint

glb (~v(t)) ≤ g (~x(t), ~u(t), t, ~v(t)) ≤ gub (~v(t)) (A.13)

where the lower and upper bound is dependent on the discrete choice nv(t). Due to the
fact that the constraint bounds in numeric optimization algorithms must not change
during optimization, the constraint is normalized

0 ≤ g − glb
gub − glb

≤ 1. (A.14)

Both the lower and upper bound are transformed to a function w.r.t. time

glb(t) = glb,0 +
n−1∑

k=1

(glb,k − glb,k−1) · [tanh (a · (t− tk)) + 1] /2 (A.15)

gub(t) = gub,0 +
n−1∑

k=1

(gub,k − gub,k−1) · [tanh (a · (t− tk)) + 1] /2 (A.16)

with the number of steps n, switching times tk, and the steepness factor a. This formu-
lation was used successfully in [16].
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Appendix B

FALCON.m Optimal Control
Framework

B.1 Derivation Hessian Chain Rule Equation

In the following, the Hessian chain rule formula is derived. Assume the two functions

R(Y ) ∈ R
nR×1, Y (X) ∈ R

nY ×1, X ∈ R
nX×1 (B.1)

where X is an independent variable. Applying the Hessian chain rule equation from
4.5.2 gives

∂2R

∂X2 =

(

InR
⊗
(
∂Y

∂X

)T
)

· ∂
2R

∂Y 2 · ∂Y
∂X

+

(
∂R

∂Y
⊗ InX

)

· ∂
2Y

∂X2 (B.2)

where Ix represents an identity matrix of size x. The equation can easily be derived for
the scalar case

r(y) ∈ R, y(x) ∈ R, x ∈ R (B.3)

by differentiation of the Jacobian Chain rule equation:

∂

∂x

(
∂r

∂x

)

=
∂

∂x

(
∂r

∂y
· ∂y
∂x

)

(B.4)

∂2r

∂x2
=
∂2r

∂y2
·
(
∂y

∂x

)2

+
∂r

∂y
· ∂

2y

∂x2
. (B.5)

In the general case, the chain rule requires Kronecker products that expand the
derivatives to match the required dimensions. In the following, their appearance is
explained through logical conclusion. As all matrices are vectorized for derivative
formulation using the vec transformation (see section 4.5.2), the formulation is general
enough for the purpose of this thesis. As stated by [115], the Hessian chain rule can
be derived. However, to the best of knowledge, a derivation or the actual formula was
not found in any public literature.

Assume the case

R(Y ) ∈ R
4×1, Y (X) ∈ R

2×1, X ∈ R
3×1 (B.6)
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B.1 Derivation Hessian Chain Rule Equation

n
R
n
X

nX

∂
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R

∂X2

=
n
X

nY

(

∂Y

∂X

)

T

n
R
n
Y

nY

∂
2
R

∂Y 2

n
Y

nX

∂Y

∂X

+ n
R

nY

∂R

∂Y

∂R1

∂Y 1

∂R1

∂Y 2

∂R2

∂Y 1

∂R2

∂Y 2

∂R3

∂Y 1

∂R3

∂Y 2

∂R4

∂Y 1

∂R4

∂Y 2

n
Y
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nX

∂
2
Y

∂X2

Figure B.1: Hessian chain rule layout without Kronecker products.

which is general enough to show the necessity of the Kronecker products. The derived
chain rule without the products

∂2R

∂X2 =

(
∂Y

∂X

)T

· ∂
2R

∂Y 2 · ∂Y
∂X

+
∂R

∂Y
· ∂

2Y

∂X2 (B.7)

is visualized in Figure B.1. For each block, the derivative and its size are specified.
Solid lines divide the square Hessian blocks and the dotted lines show the actual size of
each derivative. A dimension mismatch appears at two points of the equation, namely

(
∂Y

∂X

)T

· ∂
2R

∂Y 2 , and
∂R

∂Y
· ∂

2Y

∂X2 . (B.8)

The first mismatch can be resolved easily. In case R is scalar, the mismatch disap-
pears. As each entry of R is differentiated w.r.t. all Y entries, this specific part of the
chain rule (

∂Y

∂X

)T

· ∂
2Rj

∂Y 2 · ∂Y
∂X

, j = 1, . . . , nR (B.9)

has to be applied block-wise. Using the Kronecker product,
[

InR
⊗
(
∂Y

∂X

)T
]

· ∂
2R

∂Y 2 · ∂Y
∂X

(B.10)

the calculation is generalized for vector cases ofR. The brackets create a block diagonal
matrix with copies of the transpose Jacobian (see Figure B.2a).

The second mismatch disappears in case the X is scalar. In order to fulfill the chain
rule correctly, each entry of ∂R

∂Y
must be multiplied with the corresponding Y Hessian

block of ∂2Y
∂X2 . Thus, the entries of the Jacobian act as a scaling to the Hessian blocks. In

the general case this can be achieved by
[
∂R

∂Y
⊗ InX

]

· ∂
2Y

∂X2 (B.11)
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[

InR
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∂X
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T
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(a) Multiplying transposed Jacobian
block-wise to the Hessian.
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(b) Scaling Hessian for every element of
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Figure B.2: Kronecker adaptations of chain rule.

where the Kronecker product constructs a scaling matrix with size [nX , nX ] for each
entry of the Jacobian (see B.2b).

The Hessian chain rule equation was successfully implemented in the subsystem
derivative builder. However, due to the Kronecker products, many zero entries are
created which reduce the performance significantly (approx. 50%) compared to the
element-wise explanation above.

B.2 Simplified Aircraft Dynamics

Section 6.1 introduced the dynamic model used in the optimization. This model in-
cludes sophisticated aerodynamics, propulsion, and fuel flow characteristics which
cannot be handled by the MATLAB Symbolic Math Toolbox. Therefore, a much sim-
pler Three Degree of Freedom (3DOF) dynamic model is introduced which uses simple
aerodynamics and propulsion. The earth is regarded flat and the mass is assumed to
be constant. This model is used in the simple and moderate case. The latter takes
into account wind influences and the model receives an additional input for the wind.
This input is regarded to be constant and derivatives w.r.t. it are not calculated. On
the other hand the simple model ignores wind influences thus making the dynamics
much easier to differentiate.

The states and controls used in this section are show in Table B.1. It can be seen that
the position is given in Cartesian coordinates of a local NED frame. The kinematics are
stated in the kinematic frame K. Additionally, the model has three outputs. It is noted
that for the simple case without wind influence, the aerodynamic bank angle µA be-
comes the kinematic bank angle µK . Since the subsystem derivative method splits the
dynamic model into multiple subsystems which is resembled in the equations below.
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B.2 Simplified Aircraft Dynamics

Table B.1: States, Controls and Outputs for Simple Aircraft Dynamics

Name Symbol Unit

States

x-Position (ned) xG [m]
y-Positon (ned) yG [m]
z-Position (ned) zG [m]
Speed (kinematic) V G

K [m
s
]

Course Angle (kinematic) χGK [rad]
Climb Angle (kinematic) γGK [rad]

Controls

Lift Coefficient CL [−]
Bank Angle (aerodynamic) µA [rad]
Thrust Lever Position δT [−]

Outputs

Mach Number M [−]
Load Factor (vertical) nz [−]
Calibrated Air Speed VCAS [m

s
]

Subsystem M KO and Position Propagation

The coordinate transformation form the NED frame O to the kinematic frame K is
given by

MKO =





cosχGK · cos γGK sinχGK · cos γGK − sin γGK
− sinχGK cosχGK 0

cosχGK · sin γGK sinχGK · sin γGK cos γGK



 . (B.12)

Thus the position propagation




uGK
vGK
wGK





O

=
(
~vGK
)O

O
=MKO

T ·





V G
K

0
0





K

(B.13)

in NED can be calculated. Please note that the kinematic speeds in the NED frame are
equivalent





ẋG

ẏG

żG



 ≡





uGK
vGK
wGK



 (B.14)

to the state derivative for the position.

Subsystem Aerodynamic Speed and M AO

In case of the moderately complex model the wind influences needs to be taken into
account. The superposition of the wind





uGA
vGA
wGA





O

=
(
~vGA
)O

O
=
(
~vGK
)O

O
−
(
~vGW
)O

O
=





uGK
vGK
wGK





O

−





uGW
vGW
wGW





O

(B.15)
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gives the aerodynamic speed components in the NED frame. From these, aerodynamic
value such as speed, course angle and climb angle

VA =

√

(uGA)
2
+ (vGA)

2
+ (wGA)

2
(B.16)

χA = arctan

(
vGA
uGA

)

(B.17)

γA = − arctan




wGA

√

(uGA)
2
+ (vGA)

2



 (B.18)

are calculation. Additionally, the matrix MAO (see 6.18) gives the transformation form
the aerodynamic frame A to the NED frame O.

Subsystem Atmosphere

In order to calculate the aerodynamic forces the current air density (dependent on the
altitude)

ρ = ρs ·
[

1− n− 1

n
· g

R · Ts
·HG

] 1

n−1

HG =
rE · hG
rE + hG

h = −z (B.19)

is required. It is calculated using ISA where n is the polytropic exponent, Ts, ρs the air
temperature and density at sealevel, R the universal gas constant and rE the radius of
the earth. Additionally to the density the mach numer M and the calibrated air speed
VCAS are calculated.

Subsystem Aerodynamic Forces

The aerodynamic forces

(

~FG
A

)

A
=





−ρ
2
VA

2 · Sref · CD
0

−ρ
2
VA

2 · Sref · CL



 (B.20)

are calculated using a simple quadratic drag polar

CD = CD,0 + CD,2 · CL2 (B.21)

where S represents the surface area of the wing. Please note for the simple model the
aerodynamic speed VA is equivalent to the kinematic speed V G

K .

Subsystem Gravity and Propulsion

The gravitational force is transformed into the K-frame using MKO

(

~FG
P

)

K
=





Tmax · δT
0
0





K

(

~FG
G

)

K
=MKO ·





0
0

m · g





O

(B.22)

where m represents the aircraft mass and g the gravity constant. Additionally, the
propulsion is assumed to act along the x-axis of the kinematic frame.
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B.2 Simplified Aircraft Dynamics

Subsystem Total Force

The total sum of force acting on the point mass is given by

(

~FG
T

)

K
=





(
XG
T

)

K(
Y G
T

)

K(
ZG
T

)

K





K

=
(

~FG
A

)

K
+
(

~FG
P

)

K
+
(

~FG
G

)

K
. (B.23)

If wind is considered the aerodynamic force in the K-frame is calculated

(

~FG
A

)

K
=MKO ·MAO

T ·
(

~FG
A

)

A
(B.24)

using the transformations matrices MKO and MAO (see 6.18). In the wind free case the
aerodynamic force needs to be transformed from the A to the Ā

(

~FG
A

)

K
=MĀA ·

(

~FG
A

)

A
(B.25)

where the rotation matrix is given by

MĀA =





1 0 0
0 cosµA − sinµA
0 sin µA cosµA



 . (B.26)

Subsystem Translation Equation of Motion

Thus, the translation equations of motion

V̇ G
K =

(
XG
T

)

K

m
(B.27)

χ̇GK =

(
Y G
T

)

K

m · V G
K · γGK

(B.28)

γ̇GK =

(
ZG
T

)

K

m · V G
K

(B.29)

can be calculated.
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Appendix C

Optimization

In this chapter of the appendix additional information is given regarding chapters 5
and 6. The aircraft initial guess generation as well as B-Spline calculation are explained.
Regarding the aircraft kinematics, the EULER differentiation is derived. Finally, the
initial mass influence study of 6.5.1 is carried out with and without the artificial high
lift penalty.

C.1 B Spline Initial Guess

The initial guess in aircraft optimization chapter is generated using a B-Spline. The pri-
mary goal is the creation of a smooth trajectory. Feasibility is not guaranteed and will
be ensured by the optimization algorithm. In the following, the B-Spline is introduced.
For detailed information please refer to detailed literature (e.g. [141]).

In a B-Spline there exist n+ 1 control points

B1, B2, . . . , Bn+1 (C.1)

where each control point is multiplied with a basis function N i,k(s)

B(s) =

n+1∑

i=1

Bi ·N i,k(s) (C.2)

giving the overall interpolate. The order of a spline is k resulting in a degree of k − 1.
The minimum value for the order is k = 2 which represents a linear interpolation. The
basis function is defined recursively

N i,k(s) =
s− ri

ri+k−1 − ri
N i,k−1(s) +

ri+k − s

ri+k − ri+1
N i+1,k−1(s) (C.3)

N i,1(s) =

{
1, ri ≤ s < ri+1

0, otherwise
(C.4)

and can be interpreted as a linear interpolation of a linear interpolation a.s.o. It is
dependent on the current order k and a knot vector

r1, r2, . . . , rk+(n+1), ri ≤ ri+1 (C.5)
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Waypoints
Intermediate Points
B-Spline

Figure C.1: Intermediate positions added to spline.

that defined a monotone increasing sequence. In this thesis, the spline shall pass
through the first and last point. Therefore, an open uniform knot vector is used.

ri = r1, i ≤ k (C.6)

ri+1 − ri = constant, k ≤ i < n+ 2 (C.7)

ri = rk+n+1, i ≥ n+ 2. (C.8)

In the following, the required input data to the initial guess calculation is explained
and how the spline is created from it. Afterwards the 1st, 2nd and 3rd time derivative
of the spline is calculation. This information is used to reconstruct kinematic values
such as climb or bank angle.

C.1.1 Input Data

In order to generate an initial guess, the Cartesian position, the kinematic speed and the
kinematic course / climb angle at certain waypoints are required. This information is
used to generate a sequence of points that are fitted with a B-Spline. The interpolation
order for the position interpolation and speed interpolation are given by

k~x = 5, kV = 3 (C.9)

but other values may be chosen. To account for the flight direction and climbing angle,
intermediate positions are added (see Figure C.1). These are added in direction and
inclination of the provided point with a distance of 1/3 of the connected arc length.
The speed is weighted in the same way.

Using the intermediate points for the position and speed, the B-Spline is calculated.
The final result are a spline for the position and the speed

~η =





x(s)
y(s)
z(s)



 , v(s) (C.10)
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formulating a smooth trajectory that can be used to calculate kinematic values. A dif-
ferentiation w.r.t. time is required which will be presented in the next sections together
with the kinematic value calculation.

C.1.2 Derivative Calculation

The kinematic value reconstruction requires the 1st 2nd and 3rd time derivative of the
position. Additionally, the acceleration along the spline is required. In this section, the
values are derived from the spline representation. Therefore, the following derivatives
w.r.t. the spline parameter are created

x,
∂x

∂s
= x′,

∂2x

∂s2
= x′′,

∂3x

∂s3
= x′′′ (C.11)

y,
∂y

∂s
= y′,

∂2y

∂s2
= y′′,

∂3y

∂s3
= y′′′ (C.12)

z,
∂z

∂s
= z′,

∂2z

∂s2
= z′′,

∂3z

∂s3
= z′′′ (C.13)

v,
∂v

∂s
= v′,

∂2v

∂s2
= v′′ (C.14)

where the spline distance derivative

∂d

∂s
=
√

x′2 + y′2 + z′2 (C.15)

is obtained by the position derivatives. Additionally, the distance derivative w.r.t. time

∂d

∂t
= v (C.16)

gives the speed along the trajectory.

1st Time Derivatives

The first order time derivative of the speed

v̇ =
∂v

∂t
=
∂v

∂s
· ∂s
∂d

· ∂d
∂t

(C.17)

is expanded with the spline parameter s and the distance on the spline d. Using the
derivatives above

v̇ = v′
v

√

x′2 + y′2 + z′2
(C.18)

the time derivative is calculated. The position rates represent the velocity components

ẋ = x′
v

√

x′2 + y′2 + z′2
, ẏ = y′

v
√

x′2 + y′2 + z′2
, ż = z′

v
√

x′2 + y′2 + z′2
(C.19)

are calculated analogous. Obviously, the absolute of the velocity vector gives the speed
v.
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2nd Time Derivatives

The second time derivative is analogous for all components. The derivation is given
for the x component. The final result is stated for all components below.

To obtain the second time derivative (acceleration) of the position, (C.19) is differ-
entiated w.r.t. time

ẍ =
∂2x

∂t2
=

∂

∂t
· ∂x
∂t

=
∂

∂t

(

x′ · v
√

x′2 + y′2 + z′2

)

. (C.20)

Expanding the time derivative with the spline distance d and the spline parameter s

ẍ =
∂

∂s

(

x′ · v
√

x′2 + y′2 + z′2

)

· ∂s
∂d

· ∂d
∂t

(C.21)

and conducting the differentiation gives the result:

ẍ =
(x′′v + x′v′) ·

√

x′2 + y′2 + z′2 − x′v · x′x′′+y′y′′+z′z′′√
x′2+y′2+z′2

x′2 + y′2 + z′2
· v
√

x′2 + y′2 + z′2
. (C.22)

This result is further simpified to give the acceleration is all three components:

ẍ =
x′′v2 + x′v′v

x′2 + y′2 + z′2
− x′v2 · (x′x′′ + y′y′′ + z′z′′)

(x′2 + y′2 + z′2)2
(C.23)

ÿ =
y′′v2 + y′v′v

x′2 + y′2 + z′2
− y′v2 · (x′x′′ + y′y′′ + z′z′′)

(x′2 + y′2 + z′2)2
(C.24)

z̈ =
z′′v2 + z′v′v

x′2 + y′2 + z′2
− z′v2 · (x′x′′ + y′y′′ + z′z′′)

(x′2 + y′2 + z′2)2
(C.25)

3rd Time Derivative

The third time derivative is not absolutely required to compute the basic kinematic val-
ues. However, due to completeness purposes and for future applications, the deriva-
tive is stated. As before, the 3rd time derivative is analogous for all components x, y
and z. The derivation is given for the x component.

The second time derivative is differentiated w.r.t. time

...
x =

∂ẍ

∂t
=
∂ẍ

∂s
· ∂s
∂d

· ∂d
∂t

(C.26)

and expanded by the spline distance d and spline parameter s. It can be seen that the
derivative

...
x =

[
∂

∂s

(
(x′′v2 + x′v′v)

x′2 + y′2 + z′2

)

− ∂

∂s

(
x′v2 · (x′x′′ + y′y′′ + z′z′′)

(x′2 + y′2 + z′2)2

)]

· ∂s
∂d

· ∂d
∂t

(C.27)

will no longer fit on paper in a readable format. In the following, the derivative is split
into two parts which are differentiated individually. For simplicity, only the derivative
for the x component is stated. In order to generate the third derivatives for the other
components y and z the bold written symbols shall be replaces appropriately.
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For the first part
∂

∂s

(
x
′′v2 + x

′v′v

x′2 + y′2 + z′2

)

=
∂

∂s

(
A

B

)

(C.28)

can be reformulated as a quotient with

A = x
′′v2 + x

′v′v, B = x′2 + y′2 + z′2. (C.29)

Using the differentiation rules the result is

∂

∂s

(
A

B

)

=
∂A
∂s

· B − A · ∂B
∂s

B2
(C.30)

with the parts

∂A

∂s
= x

′′′v2 + 3x′′v′v + x
′v′′v + x

′v′2 (C.31)

∂B

∂s
= 2 · (x′x′′ + y′y′′ + z′z′′) . (C.32)

For the second part of the derivative, the term is divided into three parts

∂

∂s

(
x
′v2 · (x′x′′ + y′y′′ + z′z′′)

(x′2 + y′2 + z′2)2

)

=
∂

∂s

(
A · C
B

)

(C.33)

with
A = x

′v2, B = x′x′′ + y′y′′ + z′z′′, C = x′2 + y′2 + z′2. (C.34)

The resulting derivative is

∂

∂s

(
A · C
B

)

=

(
∂A
∂s

· C + A · ∂C
∂s

)
·B −A · C · ∂B

∂s

B2
(C.35)

with

∂A

∂s
= x

′′v2 + 2x′v′v (C.36)

∂B

∂s
= x′′2 + x′x′′′ + y′′2 + y′y′′′ + z′′2 + z′z′′′ (C.37)

∂C

∂s
= 4 ·

(
x′2 + y′2 + z′2

)
· (x′x′′ + y′y′′ + z′z′′) . (C.38)

C.1.3 Kinematic States Reconstruction

The time derivatives of the B-Spline can be used to calculate kinematic states of the
aircraft. The kinematic climb and course angle as well as their derivatives

γGK = − arctan

(

ż
√

ẋ2 + ẏ2

)

γ̇GK = −
z̈
√

ẋ2 + ẏ2 − ż ẋẍ+ẏÿ√
ẋ2+ẏ2

ẋ2 + ẏ2 + ż2
(C.39)

χGK = arctan

(
ẏ

ẋ

)

χ̇GK =
ÿẋ− ẏẍ

ẋ2 + ẏ2
(C.40)

are calculated using simple geometry. The kinematic bank angle is calculated using:

µA = arctan

(
ny
nz

)

, ny =
V G
K χ̇

G
K cos γGK
g

, nz =
V G
K γ̇

G
K

g
+ cos γGK . (C.41)
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C.2 Euler Differentiation

As can be seen in the section, the description of the aircraft dynamics require differ-
ent coordinate system. In order to derive the differential equation for the dynamic
model, vectors and matrices have to be differentiated w.r.t. certain coordinates, but
their values given in other coordinates. For this reason the Euler Differentiation [119]
is introduced. Assuming the a vector r given in the B

(~r)A =MAB · (~r)B (C.42)

is transformed into the A frame using the transformation matrix MAB . Taking the time
derivative on both sides w.r.t. A

(
d

dt

)A

(~r)A =

(
d

dt

)A

[MAB · (~r)B] (C.43)

results in the following

(

~̇r
)A

A
= ṀA

AB · (~r)B +MAB ·
(

~̇r
)B

B
. (C.44)

If the time derivative w.r.t. A is desired in theB frame, a multiplication with the matrix
MBA

MBA ·
(

~̇r
)A

A
=MBA · ṀA

AB · (~r)B +MBA ·MAB
︸ ︷︷ ︸

=I

·
(

~̇r
)B

B
(C.45)

results in the transformed derivative
(

~̇r
)A

B
=
(

~̇r
)B

B
+
(
ΩAB

)

BB
· (~r)B (C.46)

where
MBA · ṀA

AB =
(
ΩAB

)

BB
. (C.47)

The formulation
(
ΩAB

)

BB
· (~r)B =

(
~ωAB

)

B
× (~r)B (C.48)

is equivalent to a cross product which yields the

(

~̇r
)A

B
=
(

~̇r
)B

B
+
(
~ωAB

)

B
× (~r)B (C.49)

Euler vector differentiation formula.

C.3 Artificial High Lift Penalty Cost Comparison

In this section, the results of the initial aircraft mass influence study of section 6.5.1
re-generated. However, this time, the artificial high lift penalty is not taken into con-
sideration.

In Figure C.2 the high lift and landing gear switching structure are stated for both
cases. It clearly can be seen that the results become inconsistent in case the high
lift penalty is not taken into consideration. Additionally, the fuel consumptions and
switching costs for both cases are displayed. Both costs without high lift penalty are
always higher or equal to the high lift penalty case.
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Figure C.2: Comparison of mass influence parameter study with and without the artificial
high lift penalty.
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