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Abstract

Optical imaging plays a central role in basic biological research and clinical prac-
tice because of its rich and versatile contrast and its low implementation cost.
In purely optical imaging, high spatial resolution is limited to shallow depths
due to the intense photon scattering in biological tissues. Optoacoustic imaging
has shattered the resolution barrier of traditional deep tissue optical imaging by
exploiting the optoacoustic e�ect which is the conversion of transient absorbed
photon energy to transient ultrasonic pressure waves. Due to its intrinsically hy-
brid nature, optoacoustic imaging combines the advantages of both energy forms,
i.e. the contrast and the spectroscopic capabilities (known as multi-spectral op-
toacoustic tomography) of optical and the spatio-temporal resolution of ultrasonic
imaging. The unique combination has enabled several novel preclinical applica-
tions in the �elds of cancer, brain, or cardiovascular imaging. Optoacoustic
approaches are also currently translated towards clinical operation for skin or
breast cancer imaging.

In optoacoustic tomography, optical absorption images are formed compu-
tationally from the detected pressure signals. Advanced iterative model-based
image reconstruction methods have been demonstrated to provide superior im-
age quality as compared to analytical approaches. Yet, model-based methods are
orders of magnitude more computationally demanding and thus their applica-
tion is often not feasible for clinical imaging under high-throughput conditions.
The �rst goal of this work was to identify characteristics of the optoacoustic
reconstruction problem that allow to drastically decrease the computational cost
of model-based reconstructions so that routine application in clinical imaging
becomes feasible. The second goal was to abate the need for manual user in-
put in the model-based reconstruction process and develop novel methods that
can automatically and yet e�ciently provide superior image quality especially in
non-ideal clinical imaging scenarios.

For the experimental part, the goal was to contribute to the clinical transla-
tion of optoacoustic imaging and demonstrate the possibility to perform accurate
imaging of the human �nger. The �nger is a�ected by several prevalent periph-
eral vascular diseases such as rheumatoid arthritis or Raynaud's phenomenon.
The intrinsic sensitivity to blood contrast constitutes multi-spectral optoacoustic
tomography a highly promising candidate to overcome the limitations of current
modalities. The third goal of the thesis was to test multi-spectral optoacous-
tic tomography for clinically relevant applications in the �nger and to extract
characteristic anatomical and physiological parameters from the experimental
studies.

For the acceleration of the reconstruction process two transformation-based
approaches have been developed. The �rst exploited tomographic symmetries
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of the acquisition geometry, enabled splitting and subsequent inversion of the
large model matrix, and achieved video-rate high quality reconstructions for the
most common optoacoustic system. The novel method o�ered the possibility of
two orders of magnitude faster image reconstructions than established numerical
approaches. The second approach was based on a sparse problem formulation
rooted on general properties of the optoacoustic reconstruction problem. For
typical experimental data-sets a factor of 40 - 700 x in computation time was
gained over standard iterative reconstructions of similar image quality.

In order to automatically provide superior image quality, noise artifacts in
multi-spectral data-sets were considerably reduced by the development of a state-
of-the-art de-noising algorithm. Furthermore, causes of unphysical negative im-
age values were identi�ed, and a computationally e�cient constrained inversion
method was developed. A residual-based homogeneous auto-focusing method was
shown to successfully resolve even �ne image structures. In �nger imaging how-
ever, a heterogeneous speed-of-sound distribution is bene�cial and a novel signal
domain analysis could retrieve improved acoustic propagation properties and in
addition the outline of the bone.

Using a previously developed optoacoustic tomography scanner enriched by
a custom �nger holder, robust high-resolution anatomical imaging of the �nger
was realized in cross-sectional and volumetric acquisition mode and anatomical
parameters like vessel lumen were extracted. In addition, functional parameters
like the blood oxygenation level were determined for individual arteries and veins
via multi-spectral imaging; artery pulsing and vasoconstriction were visualized
and characterized via temporal imaging. For the �rst time, to the best of knowl-
edge, an indocyanine green contrast agent at clinically relevant concentrations
was detected in humans by means of optoacoustic imaging. Kinetic dynamic
contrast pro�les were resolved on an individual vessel basis and characteristic
time constants of perfusion were successfully extracted.

The proposed reconstruction acceleration techniques are expected to facili-
tate the long-standing challenge of video-rate, model-based live previews in 2-D
imaging; in 3-D, they are expected to establish accurate model-based optoacous-
tic reconstructions of high computational e�ciency like needed for volumetric
handheld probes or dermal microscopy. The image enhancement strategies will
become standard tools whenever robust auto-focusing or noise reduction is re-
quired and the signal domain analysis might be translated to similar imaging
settings such as dermal microscopy or breast cancer imaging. The demonstrated
high image quality in the initial �nger imaging studies will be the basis for future
work involving patients su�ering from Raynaud's phenomenon to study signi�-
cant di�erences compared to a control group of healthy volunteers. Most impor-
tantly, the ability to detect indocyanine green is anticipated to allow for early
phase rheumatoid arthritis detection by means of optoacoustic imaging. Higher
quanti�cation accuracy is expected by using the signal domain analysis and per-
forming pharmakinetic modeling. The diagnostic value of optoacoustic imaging
for arthritis imaging will be further evaluated by cross-validation with established
modalities. Furthermore, the potential for optoacoustic pulse oxymetry will have
to be tested and compared with established, purely optical methods.
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Zusammenfassung

Optischer Bildgebung kommt auf Grund des reichhaltigen und vielfältigen Kon-
trastes und der niedrigen Kosten eine zentrale Rolle in der biologischen Grund-
lagenforschung und in der klinischen Praxis zu. Höchste Au�ösungen mit rein
optischer Bildgebung sind auf Grund der starken Lichtstreuung im Gewebe auf
ober�ächennahe Bereiche beschränkt. Optoakustische Bildgebung hat die Grenze
von geringer Au�ösung in Millimeter- und Zentimetertiefe unter Ausnutzung des
optoakustischen E�ektes, der Umwandlung von absorbierter transienter Photo-
nenenergie in transiente Ultraschallwellen, durchbrochen. Die immanent hybride
Technologie vereint die Vorzüge beider Energieformen, d.h. den Kontrast und die
spektroskopischen Möglichkeiten (bekannt als multi-spektrale optoakustische To-
mographie) der optischen Bildgebung und die hohe räumlich-zeitliche Au�ösung
der Ultraschallbildgebung. Diese einzigartige Kombination hat neuartige präkli-
nische Anwendungsfelder in Bereichen wie beispielsweise der Krebsforschung,
der neuronalen Bildgebung oder der kardiovaskulären Diagnose ermöglicht. Op-
toakustische Methoden werden neuerdings auch für den klinischen Alltag getes-
tet, wie für Brustkrebsdiagnose oder Dermatologie.

Bei der optoakustischen Tomographie wird die Verteilung der absorbierten
Lichtenergie computergestützt aus den gemessenen akustischen Signalen berech-
net. Moderne iterative, modellbasierierte Bildrekonstruktionsmethoden können
bessere Bildqualitäten im Vergleich zu analytischen Verfahren erreichen. Jedoch
sind solche Algorithmen um Gröÿenordnungen langsamer und daher ist ihre An-
wendung im klinischen Umfeld mit hohen Durchsatzraten oft nicht möglich. Die
erste Zielsetzung der vorliegenden Arbeit war es, Charakteristika des optoakus-
tischen Rekonstruktionsproblemes zu ermitteln, die eine drastische Reduzierung
des Rechenaufwandes modellbasierter Rekonstruktionen erlauben und die damit
einen routinemäÿigen Einsatz in der klinischen Bildgebung möglich machen. Die
zweite Zielsetzung der vorliegenden Arbeit war es, manuelle Benutzereingaben
für modellbasierte Rekonstruktionen zu vermeiden und neue Methoden zu ent-
wickeln, die automatisch und doch e�zient eine verbesserte Bildqualität speziell
für nicht-idealisierte klinische Anwendungssituationen bereitstellen können.

Im experimentellen Teil sollte ein Beitrag zur klinischen Translation op-
toakustischer Bildgebung geleistet werden und das Potential für akkurate Mes-
sungen im Finger evaluiert werden. Finger sind von zahlreichen prävalenten
periphärvaskulären Krankheiten wie rheumatoider Arthritis oder dem Raynaud-
Syndrom betro�en. Der hohe intrinsische Hämoglobinkontrast macht die multi-
spektral optoakustische Tomographie zu einem vielversprechenden Ansatz, um
die Einschränkungen der bestehenden Modalitäten zu überwinden. Die dritte
Zielsetzung dieser Arbeit war daher, die Eignung der multi-spektralen optoakus-
tischen Tomographie für klinisch relevante Anwendungen im Finger zu testen

V



und charakteristische anatomische und physiologische Parameter zu extrahie-
ren.

Zur Beschleunigung des Rekonstruktionsprozesses wurden zwei auf Trans-
formationen beruhende Methoden entwickelt. Der erste Ansatz nutzte die tomo-
graphische Symmetrie der Detektionsgeometrie aus, ermöglichte das Aufspalten
und anschlieÿende Invertieren der groÿen Systemmatrix und erreichte mehr als
25 hochau�ösende Rekonstruktionen in einer Sekunde für das am häu�gsten
gebrauchte optoakustische Bildgebungssystem. Dies entspricht einer Steigerung
um zwei Gröÿenordnungen gegenüber bestehenden numerischen Methoden. Der
zweite Ansatz beruhte auf einer Neuformulierung des Problems mit dünn be-
setzten Matrizen, die auf generellen Eigenschaften des optoakustischen Rekon-
struktionsproblemes basierte. Im Vergleich zu gebräuchlichen Verfahren wurde
für typische experimentelle Datensätze eine Verbesserung der Rekonstruktions-
zeiten um einen Faktor von 40 - 700 bei vergleichbarer Bildqualität erreicht.

Ein zum Zwecke der automatischen Verbesserung der Bildqualität entwickel-
ter Algorithmus konnte Rauschartefakte in multi-spektralen Datensätzen deutlich
reduzieren. Auÿerdem wurden Ursachen für unphysikalische negative Bildinten-
sitäten identi�ziert und eine e�ziente Inversionsmethode mit Nebenbedingungen
entwickelt. Eine auf dem Residuum basierte Autofokussierung konnte im homo-
genen Fall auch kleinste Bilddetails au�ösen. Bei der Bildgebung von Fingern ist
jedoch eine heterogene Verteilung der Schallgeschwindigkeit vorteilhaft. Durch
eine neuartige Signalanalyse konnte diese Verteilung aufgefunden, verbesserte
Bilder erzeugt und zusätzlich der Knochen im Finger lokalisiert werden.

Durch Erweiterung eines bestehenden optoakustischen Tomographen um einen
selbstentwickelten Fingerhalter konnten hochau�ösende anatomische
Schnittbilder und Volumendarstellungen des Fingers erzeugt und anatomische
Parameter wie das Gefäÿlumen daraus extrahiert werden. Zusätzlich konnte die
Sauersto�sättigung einzelner Arterien und Venen mit Hilfe des multi-spektralen
Ansatzes bestimmt werden. Das Pulsieren einer einzelnen Arterie oder die Va-
sokonstriktion der Fingervaskulatur konnten zeitaufgelöst dargestellt und cha-
rakterisiert werden. Zum ersten Mal überhaupt - nach unserem Wissensstand
- konnte das Kontrastmittel Indocyaningrün in klinisch relevanten Dosen im
Menschen mittels optoakustischer Methoden nachgewiesen werden. Die Kinetik
des dynamischen Kontrastes konnte für einzelne Blutgefäÿe bestimmt und die
Zeitkonstanten des Perfusionsprozesses konnten erfolgreich extrahiert werden.

Mit Hilfe der vorgeschlagenen Methoden zur Rekonstrutionsbeschleunigung
könnte das seit langem bestehende Ziel von modellbasierten Echtzeit-Rekonstruk-
tionen in 2-D erreicht werden; in 3-D könnten genauere, modellbasierte Rekon-
struktionen mit hoher E�zienz bereitgestellt werden wie sie z. B. für portable
volumetrische Geräte oder in der dermatologischen Mikroskopie benötigt werden.
Die beschriebenen Bildverbesserungsstrategien könnten zu Standardwerkzeugen
zur zuverlässige Fokussierung oder zur Rauschunterdrückung werden. Die Bild-
optimierung per Signalanalyse könnte auf ähnliche Bereiche wie z.B. dermato-
logische Mikroskopie oder Brustkrebsscreening übertragen werden. Die gezeigten
ersten Studien im Finger könnten die Basis für weitere Studien mit Patienten,
die am Raynaud-Syndrom leiden, darstellen. Als wichtigste Folge aber könnte
die Fähigkeit, Indocyaningrün nachzuweisen, eine Diagnose von rheumatoider
Arthritis in der Frühphase mittels optoakustischer Tomographie ermöglichen.
Eine höhere Genauigkeit der Quanti�zierung wird durch Methoden wie die der
Signalanalyse und die der pharmakinetischen Modellierung erwartet.
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Chapter 1

Introduction

1.1 Motivation: Multi-Spectral Optoacoustic To-
mography as an Emerging Clinical Imaging
Modality

In our aging society, health care is playing an increasingly important role. In
this context, clinical imaging has emerged as a versatile tool for gaining new
insights in biomedical research as well as one of the key factors for successful
diagnosis, treatment planning, and post-treatment control [1]. Biomedical imag-
ing has probably been one of the fastest growing �elds in clinical routine over
the last decades, owing to the rapid progress in instrumentation and computa-
tion technologies. The use of imaging technology is highly attractive because
it can visualize anatomy and molecular processes non-invasively with relatively
short acquisition times and it is highly cost-e�cient [2].

The family of established clinical imaging modalities has continuously grown
and enabled novel visualization of a variety of anatomical structures and phys-
iological processes [3]: Magnetic resonance imaging provides volumetric, high-
resolution images with excellent soft tissue contrast and is able to determine
for example brain connectivity maps [4]; X-ray computed tomography results
in detailed reconstructions of bone anatomy or enables rapid angiography in
interventional medicine aided by contrast agents [5]; ultrasound imaging can
provide anatomical images as well as quantitative measurements of blood �ow
[6]; nuclear imaging methods visualize molecular and metabolic processes such
as the energy uptake of certain regions in the brain or tumors [7].

Despite of the merits of each single modality in enabling speci�c applica-
tions, there is no single all-purpose modality. Each modality has its associated
drawbacks and limitations. Consequently each application requires a speci�c
imaging modality and often new imaging approaches have to be developed in
order to facilitate certain applications. Each of the established modalities is
associated with certain drawbacks such as providing low soft tissue contrast or
low spatio-temporal resolution, or being carcinogenic, bulky, or costly.

Optical imaging methods are particularly attractive because of their ex-
cellent soft tissue contrast based on the distinct spectral pro�les of various
molecules, because of the non-carcinogenic nature of the low energy radiation,
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because of the extraordinary spatio-temporal resolution possible, and because
optical imaging technology is typically inexpensive and table top sized [2, 8].
For centuries the microscope has been and still is the standard tool for biolog-
ical observations and recent developments such as 2-photon, confocal, or super-
resolution imaging have pushed its limits even further [9]. In gastrointestinal
applications, optical endoscopes are the gold standard for examinations. Optical
imaging contrast is rooted on a broad variety of molecules, ranging from intrin-
sic chromophores such as hemoglobin, over systemically administered contrast
agents and histological staining, to genetically engineered �uorophores [10, 11].
Although light can penetrate up to several centimeters depth, optical imaging
is mostly restricted to super�cial imaging of a few hundreds of micrometers at
most because of the strong photon scattering in biological tissues that eliminates
all phase information of the photons after propagating through bulky tissue [8].
Deep tissue optical imaging is made possible aided by computational recon-
struction methods. Nevertheless it comes with the disadvantage of considerably
degraded resolution in the millimeter range.

Optoacoustic imaging (OA, also known as photoacoustic) has shattered the
frontier of limited spatial resolution in deep tissue optical imaging and con-
sequently facilitated a broad range of novel applications [12, 13]. As an in-
trinsically hybrid imaging modality it is based on the conversion of absorbed
transient photon energy to ultrasonic pressure waves [14]. In this way, the spa-
tial resolution of OA imaging is insensitive to strong photon scattering while
maintaining optical contrast. Thus, the merits of optical and ultrasonic imag-
ing, i.e. excellent contrast and high spatio-temporal resolution, are combined in
this hybrid modality. OA tomography is able to provide spatially resolved maps
of photon absorption by capturing the pressure waves around the imaged object
and performing a subsequent reconstruction process. In addition, it is capable
of providing video-rate images in two or three spatial dimensions. Especially
the multi-spectral optoacoustic tomography (MSOT) technology is able to pro-
vide a spectral distinction of di�erent absorbing molecules. OA imaging may
simultaneously render anatomical, functional, and molecular images: Structures
ranging from single red blood cells [15], over capillaries and blood vessels [16, 17],
to whole brains and mouse torsos have been visualized [18, 19]; functional pro-
cesses could be monitored from slow, longitudinal processes like tumor growth
and pharmakinetics [20, 21], over hemodynamic responses and organ perfusion
[22, 23], to heartbeat and even neuronal activation [24, 25]; molecular imaging
studies based on OA imaging could visualize blood oxygenation saturation and
glucose metabolism [26, 27], targeting of tumor and apoptotic cells [28, 29], as
well as gene expression [20, 30].

The unique imaging performance of OA imaging has also led to several clin-
ically relevant or translational animal model imaging studies [31], mostly ad-
dressing the two major causes of mortality, cardiovascular diseases and cancer.
Cardiovascular imaging studies have revealed arterial plaques or hypoxic regions
[32, 33], visualized stroke or perfusion [34, 35], or measured the cardiac output
[24]. In OA imaging of cancer, tumor margins and angiogenesis of tumor vascu-
lature could be visualized [36], hypoxia and metabolism studied [33], and tumor
growth and treatment tracked [20, 29]. In addition, management of multiple
other diseases might bene�t from the advantages of OA imaging, such as gas-
trointestinal endoscopy [37], sentinel lymph node imaging [38], ophthalmology
[39], or needle biopsy guidance [40]. Reported studies of in vivo OA imaging in
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humans have been relatively rare to date, due to safety and legal regulations,
lack of clinically approved contrast agents, or challenges in the translation from
animal models to patients. But the maturity of OA instrumentation, processing,
and image acquisition strategies promotes an increasing number of such studies.
Among the reported studies in humans are breast cancer imaging towards OA
mammography [41, 42], angiography [17], carotid imaging towards detection of
arterial plaques [43], and skin imaging towards detection of melanomas [44, 45].

1.2 Objectives

OA imaging has already been demonstrated to successfully detect and charac-
terize a broad variety of disease models in small animals, as outlined above. The
next direct goal is thus to successfully translate OA imaging to a clinical setting
and to evaluate its potential. Robust and versatile OA instrumentation has
been designed, and dedicated reconstruction and processing frameworks have
been developed as well. Consequently, a routine application of OA modalities
in clinical environments has become feasible.

From a clinical point of view, there is a strong need for novel imaging tech-
nologies in many medical �elds where traditional imaging modalities cannot
provide su�cient image quality or �exibility. Consequently, clinical OA imag-
ing bears promise to be successfully complement or replace existing modalities,
to facilitate better diagnosis, or enable new �elds of clinical imaging applica-
tions.

Many clinical OA imaging studies are on their way or are initiated, and
research will address mainly three �elds: �rst, the selection of suitable �elds
of application like breast cancer, dermal imaging, or endoscopy, the recruit-
ment of volunteering patients, and the development of suitable routine imaging
protocols; second, the development of dedicated hardware for the respective ap-
plication such as handheld devices, or endoscopes; third, the development of
robust and automated processing and reconstruction strategies that are able to
provide a good image quality and that are fast enough to be used in clinical
routine, i.e. they should ideally provide real-time processing.

The objectives of this work are to develop MSOT imaging towards clinical
applications, which includes contributions to image reconstruction and process-
ing as well as to investigations of application studies related to clinically relevant
diseases in the human �nger. The three main objectives addressed by this work
are:

1. Can computationally expensive iterative OA reconstruction

approaches be applied for routine clinical imaging?

OA absorption images are not directly measured but they need to be
obtained computationally from the detected acoustic signals. Analytic
reconstruction methods exist and they are commonly selected due to their
computational speed. However, they are also prone to signi�cant artifacts
in experimental situations. Iterative numerical reconstruction methods
are more accurate, but they are orders of magnitude more computationally
demanding. For the huge amount of data created during high-throughput
real-time MSOT imaging, standard iterative reconstructions are often too
time consuming and analytical reconstructions have to be performed at the
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expense of image quality. One goal of this work is to identify particulars
of the OA imaging and reconstruction problem to facilitate considerable
acceleration of the image reconstruction process in typical real-time MSOT
scenarios, so that high-quality numerical reconstructions can be regularly
applied in clinical routine as the standard method.

2. Which reconstruction methods for good image quality in real,

non-ideal clinical imaging application scenarios can be devel-

oped that work robustly, efficiently, and without user input?

Due to the digital image formation in OA imaging, reconstruction, pre-
and post-processing methods need to be applied and they directly deter-
mine the resulting image quality. In order to maintain high image quality
and to avoid artifacts under non-ideal imaging conditions, multiple (pre-
)processing methods need to be applied and multiple parameters need to
be selected during the reconstruction process. Potential artifacts could
stem from noise or arise from di�erences between assumed and actual
acoustic properties of the imaged object and could led to e.g. negative
pixel values. This work aims at developing methods which e�ectively sup-
press such artifacts and which work automatically without the need for
manual expert input. In addition, high computational e�ciency of such
methods is also required to facilitate a routine application in clinical imag-
ing.

3. Can MSOT be applied for imaging and diagnosing common pe-

ripheral vascular diseases in the finger?

The intrinsic blood contrast of MSOT constitutes it an ideal candidate
for imaging and diagnosing peripheral vascular diseases. Two common
peripheral vascular diseases are mainly a�ecting the �ngers: Rheumatoid
arthritis results in in�amed and swollen �nger joints, and is associated
with large socioeconomic costs; and Raynaud's phenomenon is a class of
diseases associated with hypoperfusion, ulceration, and critical ischemia
in the �nger. This work investigates the application and optimization of
OA imaging for the diagnosis of peripheral vascular diseases in the �nger.
It aims at answering the question whether anatomical parameters such
as vessel location, vessel diameter or vascular branching can be robustly
extracted from OA measurements to potentially study anatomical changes
in Raynaud's phenomenon. Further it is investigated whether functional
parameters such as blood oxygenation level or the kinetic pro�les of an
optical contrast agent in the vasculature can be reliably extracted to po-
tentially study perfusion or neovascularization in Rheumatoid arthritis.

1.3 Outline

The presented work is organized as follows:
The overall structure has three main parts: Chapter 2, Chapter 3, and

Chapter 4 present the background and context of this work including state-of-
the-art OA imaging and reconstruction approaches. Chapter 5, Chapter 6, and
Chapter 7 present novel, optimized MSOT reconstruction methodologies with
increased reconstruction performance and enhanced resulting image quality. Fi-
nally, Chapter 8 and Chapter 9 present initial clinical imaging studies in the
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�nger using the MSOT technology.
In Chapter 2, the most important optical and non-optical (pre-)clinical imag-

ing modalities are introduced and compared with respect to their performance
metrics and their speci�c advantages and drawbacks. Furthermore, the inter-
action of photons with tissue and their propagation therein is discussed and
various classes of intrinsic or extrinsic targets of optical contrast are presented.

Chapter 3 introduces the fundamentals of OA imaging. The theory of the OA
e�ect and the propagation of ultrasonic pressure waves in tissue is reviewed in
detail. Then speci�c instrumentation considerations and approaches in existing
OA systems are presented. In particular, the small animal MSOT scanner that
was used for the experimental studies in this work is described.

Chapter 4 discusses the reconstruction problem associated with MSOT. Dif-
ferent types of reconstruction methods are presented and a particular focus is
placed on the class of iterative numerical algorithms. The speci�c requirements
for reconstruction in terms of image quality and reconstruction performance in
the context of clinical imaging are discussed at the end of the chapter.

An approach for acceleration of tedious numerical inversion is presented in
Chapter 5. The approach exploits the symmetries present in most OA systems.
The developed method is tested with experimental data of complete and incom-
plete signal information and a high performance reconstruction implementation
on graphics processing units is presented.

Chapter 6 presents a novel sparsity-based inversion framework. The transfor"-
mation-based approach results in a sparse and thus computationally favorable
formulation of the reconstruction problem. The speci�c transformations that
render the matrix and the signals sparse are discussed in detail and the perfor-
mance of the framework is tested with four di�erent experimental data-sets.

In Chapter 7, approaches for an automated reconstruction quality enhance-
ment in MSOT are presented. The approaches aim at noise reduction, nega-
tive image value suppression, automated image focusing, or an automated as-
signment of advanced acoustic propagation models. Finally, potential future
directions of reconstruction approaches in the context of clinical imaging are
discussed.

Chapter 8 presents initial experimental studies of in vivo �nger imaging with
MSOT. Motivated by the speci�c �nger anatomy and associated peripheral vas-
cular diseases therein, several anatomical and functional imaging parameters are
documented. The anatomical imaging approaches include cross-sectional and
volumetric angiography, while the functional imaging approaches include blood
oxygenation determination, pulse detection, and vascular constriction during a
thermal stress test.

In Chapter 9, clinical MSOT imaging is discussed in a context of diagnosing
rheumatoid arthritis. Rheumatoid arthritis is clinically detected using multiple
modalities, including pharmakinetic imaging of contrast agent pro�les. For op-
tical imaging methods, indocyanine green is one of the most common contrast
agents because it is clinically approved. The �rst demonstration of indocya-
nine green detection in humans by means of MSOT is presented in a perfusion
study in the �nger vasculature. The results are then discussed in the context of
rheumatoid arthritis detection and future steps and challenges for that purpose
are outlined.

Finally, Chapter 10 summarizes and discusses the results of this work and
further provides an outlook on future steps and implications of this work.
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Chapter 2

Biomedical Optical Imaging

2.1 Introduction to Biological and Medical Imag-
ing

Biomedical imaging aims at providing spatially resolved information from within
the body in living organisms which exceed the information obtainable with pure
vision of the eye. Its main purpose is to enable better diagnosis of diseases and
planning of their treatment, or to result in a better understanding of fundamen-
tal biological processes. Early biomedical imaging modalities included mirrors,
looking glasses, electrocardiography (ECG), or X-ray imaging. Since the early
steps, a large armada of modalities has been developed to visualize di�erent
anatomical structures and physiological and biological processes. These devel-
opments are summarized in Sect. 2.3 and Sect. 2.4.

The exploited information might be of structural nature, visualizing
anatomy as bone fractures in X-ray imaging; alternatively, the physiology and
other functional aspects might be probed as in imaging of the beating heart;
in the recent years, even processes at metabolic and molecular level can be
visualized based on the progress in imaging technologies.

In vivo imaging aims at providing images of organisms in their natural state
without altering their structure or function for or through imaging. Noninvasive
or at least minimally invasive imaging methods are thus favored as much as a
non-toxic nature of the imaging process. The most important parameters of
imaging are discussed in the following section.

In general, most biomedical imaging modalities are based on the following
�ve fundamental steps (Fig. 2.1): (1) An excitation signal is generated outside
of the object to be imaged. (2) The signal propagates to and within the object.
(3) Harvesting a speci�c physical process, the signals interact with the object
and thus encode information into the signal. (4) The modi�ed signal propagates
further within and from the object. (5) Outside the object, the signals are de-
tected and further processed to result an image; either a direct physical image
is formed or the images are rendered computationally in modern embodiments.
The unique capabilities of OA imaging stem from the fact that signal genera-
tion/propagation ((1) and (2)) and signal propagation/detection ((4) and (5))
are rooted on entirely di�erent physical phenomena, namely light and sound
[31]. Conversion (3) between both forms of energy is achieved by means of the
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Figure 2.1: Fundamental steps involved in imaging: (1) Signal generation; (2)
signal propagation towards the imaging sample; (3) interaction with the object;
(4) propagation from the imaging sample; (5) detection of the signals.

OA e�ect, described in detail in Sect. 3.2.

2.2 Characteristic Performance Metrics of Imag-
ing

The variety of modalities is based on multiple physical principles or technologies
used; however common parameters may be used in order to characterize their
imaging performance:

� Spatial resolution, which is the ability to distinguish and separate
objects located closely. The achievable spatial resolution covers many
orders of magnitude, ranging from tens of nm in organelles to some cm in
whole-body imaging (Fig. 2.2). Spatial resolution might be anisotropic,
i.e. di�erent for di�erent spatial dimensions, or even non-homogeneous
over the �eld-of-view. The spatial resolution of an imaging modality can
be characterized and determined by its modulation transfer function or
point-spread function.

� Temporal resolution determines the acquisition time for obtaining a
single image and consequently the imaging rate; for static imaging, the
imaging rate is of only minor importance while in imaging of dynamic
processes, the imaging rate has to be on the same order as the processes
to be observed, ranging from some ns to several mins and days.

� Penetration depth is the maximum depth from which information is
faithfully observed. Many of the high-resolution modalities as microscopes
typically o�er restricted penetration depth (Fig. 2.2). Thus their applica-
tion is limited to small sized specimens or to super�cial areas.
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Figure 2.2: Characteristic spatial resolution and imaging depth of di�erent
biomedical imaging modalities. See Sect. 2.3 and Sect. 2.4 for details on
the modalities. Diagram based on values reported in Refs. [1, 12].

� Contrast in the images stems from multiple physical processes, thus
providing maps of heavy atoms, distribution of water, blood, or glucose.

� Sensitivity is the minimal number or concentration of target molecules
(or of cells) that can be faithfully detected with an imaging modality at
su�cient signal-to-noise ratio (SNR). Molecular imaging typically o�ers
higher sensitivity compared to purely anatomical imaging.

� Costs of instrumentation are an important economical aspect deter-
mining the practical use as much as if a modality is stationary or if it is
portable and might be used at bed-side.

� Hazardous ionizing radiation and involvement of toxic substances strongly
limit the application of certain modalities or even prelude their usage in
humans.

2.3 Overview of Preclinical and Clinical Imaging
Modalities

Multiple modalities are nowadays in clinical and preclinical practice (Fig. 2.3,
top). Only an exemplary selection is presented here. Optical imaging methods
are presented in Sect. 2.4.

� X-ray radiation having a photon energy of tens of keV was discovered by
W.C. Roentgen in 1895 and immediately used for visualization of bones
because of the strong interaction of X-ray radiation with heavy atom nu-
clei. In the 1970s, planar projection X-ray imaging was extended to three
dimensions, acquiring images from multiple angles and reconstructing the
volumetric images in the computer, known as X-ray computed tomogra-
phy (X-CT) [5]. Both planar X-ray and X-CT have readily become clinical
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standard modalities for structural imaging as in dental or brain visual-
ization. The advantages of X-ray imaging are its high spatio-temporal
resolution and cost e�ciency. Its drawbacks are the ionizing nature of
the high energy radiation involved and the low soft tissue contrast. The
latter can be improved administering contrast agents (CA) in dynamic
contrast enhanced (DCE) imaging in order to visualize heart function or
vasculature in digital subtraction angiography [46]. Recent developments
include spectral imaging using multiple photon energies or exploiting the
phase-shift instead of only attenuation in phase contrast imaging in order
to enhance the poor soft tissue contrast [47].

� Ultrasonic imaging (US) is based on transmitting pulsed narrow band-
width longitudinal pressure waves in the frequency range from hundreds of
kHz to several MHz and receiving their re�ections from acoustically mis-
matching areas within the tissue [6]. Low cost of piezoelectric transducer
technology and electronics and excellent spatio-temporal resolution based
on the time-resolved US waves led a widespread use of US systems. In US,
depth is resolved via time-of-�ight (TOF) of the signals and 2-D images
are created steering the acceptance angle by electronically introducing an
individual time delay to the elements of the transducer arrays. Addition-
ally, �ow and motion can be easily measured based on the Doppler shift
of the frequencies in the detected signals [48]. In order to increase low soft
tissue contrast, highly mismatching air-�lled bubbles have been used as
CAs to increase elastic scattering or induce generation of higher harmonics
[49]. Recently, US imaging approaches have been enriched by extension to
three spatial dimensions, computational image formation, or transmission
mode measurements [6].

� Nuclear imaging approaches have probably been the �rst to apply the
molecular imaging paradigm [7, 50]. Nuclear imaging is based on the ra-
dioactive decay of an administered tracer and generation of a γ-quantum
either via γ-decay in single photon emission tomography (SPECT) or
511 keV annihilation radiation of the β-decay in positron emission tomog-
raphy (PET). With dextrose based radiotracers, PET is able to visualize
regions of increased metabolic rate. Despite its excellent sensitivity, the
use of nuclear methods is restricted to speci�c scenarios in practice by the
limited resolution and anatomical contrast, high cost, and the ionizing
nature of the radiation.

� Magnetic resonance imaging (MRI) is based on the Zeeman-energy-
splitting of nuclei with a magnetic momentum exposed to a (static) mag-
netic �eld and their subsequent Bloch-oscillations of the magnetization
if excited by a radio-frequency (RF) pulse [51, 52]. The penetration of
RF and static magnetic �elds is not limited in the human body and thus
whole body imaging is possible in humans. Because of the largest gyro-
magnetic ratio, MRI is mainly sensitive to the distribution of hydrogen
atoms, most importantly in water, and their chemical neighborhood. MRI
provides excellent anatomical images of water (T1-weighted energy relax-
ation) and fat (T2-weighted phase correlation relaxation) at good spatial
resolution owing to strong magnetic �elds of up to 3 T in humans. Addi-
tionally, functional imaging is possible with MRI relying on the di�erent
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behavior of oxygenated (HbO) and and deoxygenated (Hb) hemoglobin
in BOLD-MRI (blood oxygenation level dependent MRI) or anisotropic
di�usion of water within directional structures in di�usion tensor imag-
ing (DTI), providing unrivaled insights into human brain activity and
anatomy [4, 53, 54]. Functional contrast might be further enhanced using
Gadolinium (Gd) based CAs locally altering the relaxation rates [52, 55].
The drawbacks of MRI are typically associated with low spatio-temporal
resolution at su�cient SNR and the large cost of instrumentation.

� Magnetic particle imaging exploits the non-linear behavior of para-
magnetic nanoparticles in a highly inhomogeneous magnetic �eld [56]. It
holds promise for preclinical studies owing to the high spatio-temporal
resolution and unlimited penetration depth, but requires potentially toxic
nanoparticles.

� Electrical impedance tomography aims at providing maps of the
electrical impedance of tissue using 4-electrode measurements at multiple
locations. Di�erences in impedance might stem from the high conductivity
of blood or saline in cardiovascular applications or are associated with
pathological changes [57].

� Hybrid modalities have been developed in order to combine the strengths
of the di�erent modalities. Of particular interest is enriching molecular
imaging with anatomical reference images, as in PET-CT or PET-MRI
[58�60].

� Transmission and scanning electron microscopy have been established
as validation tool for basic biological studies. Electron microscopy is re-
stricted to ex vivo imaging and small sample sizes, but provides structural
information on an atomic and organelle level [61].

2.4 Overview of Optical Imaging Modalities

Optical imaging roots on the vision with the bare human eye and aims at vi-
sualizing what is revealed without using additional 'tools'. Optical imaging has
progressed from the �rst use of magnifying glasses to the live visualization of
single molecules. It is appealing for mainly two reasons: First, most molecules
absorb in the visible range because their excitable energy levels are comparable
to the energy of those non-ionizing photons (see Sect. 2.6). Second, sophis-
ticated technology for generation, manipulation, and detection of photons is
readily available because of the ubiquitous use of optical technologies in multi-
ple �elds of science and technology; thus it is facilitating fast and cheap imaging.

� The light microscope has enable the �rst visualization of single cells
by A. van Leeuwenhoek in the 17th century and its resolution has since
then approached its ultimate physical di�raction limit predicted by Abbe,
which is approximately half the wavelength of the excitation light. The
microscope has become the standard tool of biology, but is restricted to
small objects or super�cial areas of some tens of µm. Multiple illumina-
tion scenarios as standard bright-�eld mode in transmission and re�ection
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Figure 2.3: Overview of the development of clinical (top) and optical (bottom)
imaging modalities.
BLI: bioluminescence imaging; FPT: �uorescence protein tomography; FRI:
�uorescence re�ectance imaging; HR-FRI: high-resolution FRI; LN-MRI: lym-
photropic nanoparticle-enhanced MRI; MPM: multiphoton microscopy; MSCT:
multislice CT; OFDI: optical frequency-domain imaging. Figure reprinted with
permission from Ref. [1].

mode or dark-�eld mode to visualize scattering or polarization change are
used [8].

� Standard microscopy has been enhanced in order to suppress undesired sig-
nals: To suppress the background absorption, fluorescence microscopy
is used, where the detected photons are of slightly lower energy than the
photons used for excitation (see also Sect. 2.6). Furthermore, confo-
cal microscopy uses both focused illumination and focused detection to
minimize signals not stemming from the focal plane. Similarly, 2-photon
microscopy uses non-linear absorption processes which occur only for high
photon densities in space and time, i.e. in the focus. 2-photon microscopy
is thus basically free of background absorption [62]. Generalization to
higher multi-photon processes as 3-photon microscopy is possible, result-
ing higher energy density thresholds and di�erent optical selection rules,
and therefore also complementary sources of contrast. However, multi-
photon processes require raster-scanning and are thus relatively slow. One
approach to overcome the scan-time limitation is to perform optical sec-
tioning via restricting the illumination of the sample to an orthogonal
plane, known as SPIM [63].
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� Super-resolution techniques have been developed to overcome the
di�raction limit of optical imaging [9, 64]. One example of super-resolution
is stimulated emission depletion (STED): After di�raction-limited excita-
tion of �uorescent molecules, a second pulse depletes the excited states
before emitting a photon everywhere except in the center of the annular
depletion pulse [65]. E�ectively, only the molecules at the arbitrarily small
center are contributing to the �uorescence image; an entire image is then
obtained by raster scanning of the pulses.

� Optical imaging approaches are also able to visualized the local bio-

chemical environment: Bioluminescence imaging is based on the ex-
pression of the reporter gene luciferase which enzymatically catalyzes the
oxidation of luciferin under emission of a photon. The photon is sub-
sequently detected by a camera system or microscope [2]. Fluorescence
lifetime imaging capitalizes on the quenching of �uorescence depending
on the local environment of the �uorophore which can result in a shorter
�uorescence lifetime. Of particular interest is the reduction of lifetime by
oxygen whose local partial pressure can be obtained from lifetime imaging
[66]. Förster-resonance energy transfer imaging roots on the transfer of ex-
citation energy from a donor molecule to a second acceptor molecule which
�nally emits a �uorescence photon of lower energy [67]. The e�ciency of
the energy transfer crucially depends on the relative distance and orien-
tation of the two molecules and thus on the local chemical environment.
Raman scattering techniques use a special type of elastic scattering, the
Raman scattering from molecules with distinct vibrational energy levels,
by detecting photons with an energy deviating from the excitation light
energy just by the vibrational energy of the molecules [68]. In this fash-
ion, the local molecular composition of tissues can be probed with Raman
imaging methods.

� While microscopy techniques aim at enlarging tiny structures, endo-
scopic imaging reveals regions not directly accessible to human vision as
the esophagus or the colorectal tract. Early endoscopes involved systems
of multiple lenses and later were based on �ber-optical imaging systems.
Nowadays also CCD-based cameras directly at the tip of the endoscope
are in use [69].

� Optical imaging is not restricted to super�cial applications or small spec-
imens. However, resolution considerably decreases from scattering with
larger depths (see next section). Optical coherence tomography

(OCT) visualizes scattering at intermediate depths not accessible to con-
ventional microscopy as for retinal or skin imaging. OCT is based on
interferometrically detected, back-scattered photons from a light source
with short coherence time [70].

� Deep optical imaging is facilitated by di�use optical tomography (DOT)
which relies on a di�usive light transport model and measurements at
multiple illumination-detection combinations outside the object [71]. Dis-
tribution of the absorbers is then restored numerically based on the light
transport model. Fluorescence molecular tomography (FMT) aims at re-
covering the distribution of a �uorophore instead. FMT uses di�erent
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wavelengths for illumination and detection [72, 73]. The approach results
in lower background and advantages in the reconstruction process from
the additional DOT measurements at the excitation wavelength.

� Other techniques for deep tissue imaging have been developed as well: One
is ultrasonically tagging the photons which are passing the US trans-
ducer focus. Such photons are intensity modulated with the frequency of
the US. Detection of tagged transmitted or re�ected photons and raster
scanning of the focal point results an image then [74]. Laser speckle imag-
ing exploits the speckle pattern generated from a highly scattering medium
[75].

The above selection of the optical modalities highlights the great challenge
of biomedical optical imaging: High spatial resolution is well achievable, but is
restricted to very shallow depth of tens of µm. Although deep optical imaging is
possible, the achievable resolution in purely optical modalities is very limited as
explained in the following section. OA as intrinsically hybrid imaging modality
is unique, because it is able to provide optical contrast and good resolution at
up to cm scale imaging depth (see Chapter 3).

2.5 Transport of Light in Biological Tissues

The propagation of photons at arbitrary energy level (Fig. 2.4(a)) in biological
tissue is in general described by the well-known Maxwell equations and their
interaction with molecules by quantum �eld theory. However, the microscopic
theory is too complex for realistic large scale problems and no useful analytical
models for biomedical purposes exist besides the Mie theory to explain elastic
photon scattering at spherical objects.

On large scales, photon propagation in a wave or geometrical ray model
is described using e�ective material properties instead, mainly the refraction
index, which are most often spatially varying. E�ects like refraction, re�ection,
di�raction, and absorption are readily accounted for.

In biological tissues, scattering is the most dominant process for optical wave-
lengths owing to the heterogeneity on a molecular and organelle level [8, 76].
Scattering can in approximation be described by the scalar scattering coe�cient
µs, which is the inverse of the average distance a photon travels between two
consecutive scattering events. The scattering coe�cient exceeds the absorp-
tion coe�cient µa considerably in most biological specimens (µs >> µa). One
distinguishes between two regimes of photon transport (Fig. 2.4(b)): Ballistic
photons that have not been scattered might be (re-)focused and are basis to mi-
croscopy imaging; and di�use photons that have been scattered multiple times
have (almost) no directionality and phase information and can consequently not
be focused. Thus any focused beam is broadened from scattering after several
mm of propagation in highly scattering tissue (Fig. 2.4(c)).

Transport of light in scattering media can be modeled in a particle model
by the Boltzmann equation, an integro-di�erential equation. Owing to its 6-
dimensional nature, the Boltzmann equation is often too complex to be solved
(very few analytical solutions exist) and the lowest order approximation assum-
ing fully di�used photons is solved instead [77], known as di�usion equation
(DE):
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Figure 2.4: (a) Optical wavelengths as part of the electromagnetic spectrum. (b)
In the ballistic transport regime, photon scattering plays only a minor role; in
the di�use regime, photons are scattered multiple times before being absorbed.
(c) Illustration of light scattering when a focused beam is shed onto a scattering
medium. (d) Exponential decay of light �uence for a di�usive, semi-in�nite
homogeneous optical medium. (b) and (d) reprinted from [14], (c) gratefully
rendered by J. Turner using the MCML software package [78].

µa(x)Φ(x)−∇(Dp(x) · ∇)Φ(x) = q0(x), (2.1)

where q0 is the source term, Φ(x) is the optical �uence, i.e. the photon
energy per cross section, and Dp(x) = (3µa + µ′s)

−1 is the di�usion coe�cient
(µ′s is the reduced scattering coe�cient deviating from µs for highly anisotropic
scattering processes).

The 3-dimensional DE might be e�ciently solved numerically using �nite ele-
ment methods and also analytical solutions exist, e.g. for homogeneous cylinders
or semi-in�nite volumes. In the latter case, the depth dependence of the �uence
is given by Φ(z) = Φ0 ·exp(−µeffz) where µeff =

√
µa(µa + µ′s) is the e�ective

absorption coe�cient, which is often in the range of a few mm−1 or cm−1 for
tissue (Fig. 2.4(d)). If higher accuracy near the surface is needed, where the
photons are not fully di�used yet, a higher order approximation to the DE, the
δ-Eddington approximation, might be used.

In order to fully account for both ballistic and di�use photons, Monte Carlo
(MC) simulations of statistical photon random walk might be used [78, 79].
However, even when using powerful graphics processing units (GPU), MC sim-
ulations are still too time consuming for many applications.

In order to reconstruct images in DOT (or also FMT), the inverse problem
of obtaining the absorption (�uorophore) distribution from the �uence values
at the boundary needs to be solved. In quantitative optoacoustic tomography
(often QPAT in the literature, [80]) the measured optoacoustic images consist
the source term q0(x) of negative magnitude and quantitative values of the
absorption coe�cient are obtained by solving a light transport model for µa(x)
as unknowns. Inverting a light propagation model is extremely challenging in
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Figure 2.5: Spectra of the most dominant intrinsic tissue chromophores in the
visible and near-infrared: Oxygenated and deoxygenated hemoglobin, melanin
and lipids. Because of the lower absorption of hemoglobin for red and near-
infrared wavelengths, light can penetrate signi�cantly deeper into tissue, known
as near-infrared window. Figure reproduced from [14].

all case for multiple reasons: (1) Although the models are linear in �uence Φ(x),
they depend non-linearly on the absorption µa(x), requiring non-linear inversion
schemes or linearized approximations. (2) The inversion consists a severely
ill-posed problem (that is small relative changes in the signals might result
in large relative deviations in the solution), further complicating calculations
and requiring strong regularization, which limits spatial resolution. (3) The
problem is non-unique as multiple solutions might exist with di�erent scattering
distributions µs(x); the exact scattering distributions are typically not known
as well.

Despite the challenges arising from the scattering nature of tissue, deep
tissue optical imaging is highly attractive to study living organisms because of
the rich contrast from a variety of molecules, as described in the next section.
A su�cient number of photons penetrates to considerable depths and interacts
with molecules there. However, the photons are di�use in nature and cannot be
used for direct physical image generation. In the lower wavelength range of the
visible spectrum, penetration depth is limited to few hundreds of µm or some
mm owing to the strong background absorption of the omnipresent blood pool
(Fig. 2.5). However, in the red and near-infrared (NIR) regions of the spectrum,
the absorption of blood and water is comparatively low. This spectral region
is known as the NIR window. Consequently, optical imaging of up to several
centimeters depth is possible in the NIR.
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2.6 Chromophores and Contrast Agents for Op-
tical Imaging

The choice of targeted molecule or other source of contrast is dictated by several
factors, some of which are biological and some of which are technical in nature.
Yet, most importantly of course it is dictated by the biomedical questions the
imaging process is supposed to answer.

The spectral properties of the target molecule play a crucial rule for the se-
lection of excitation and/or detection wavelength(s) with implications on max-
imum penetration depth or the availability of laser technology or other light
sources to excite signals. The spectrum of the molecule needs to be distinct
to discriminate it from the background, and ideally has a pronounced peak. A
large extinction coe�cient ε allows for detection of the molecule even in small
concentrations ci(x) with high sensitivity (µa(x) = ε · ci(x)). The absorption
ideally depends linearly on the concentration without quenching or other non-
linear e�ects. For �uorescent targets, a high quantum yield is preferable (which
is the fraction of absorbed energy re-emitted as �uorescent light). In OA imag-
ing, a small quantum yield is preferred, but it is an issue of minor importance
compared to the extinction coe�cient.

In order to achieve a high speci�city and to separate multiple target molecules
(or one from the background), multi-spectral imaging is performed using several
excitation wavelengths λ. In order to separate the contributions from di�erent
targets, typically a linear mixture model is assumed. All image pixels are a
superposition of contributions from multiple target molecules within the pixels
[14]:

µa(x, λ) =
∑
i

εi(λ)ci(x) (2.2)

If the spectra of the absorption coe�cients of all present molecules are
known, linear un-mixing might be performed on a per-pixel basis inverting Eq.
2.2 using least-squares �tting [30]. If the spectra are not known a priori, blind
un-mixing using principal component analysis (PCA) might be performed, con-
currently resulting in the assumed target concentrations and their spectra, based
on a statistical analysis of the entire images [81]. A particular challenge with
un-mixing in the context of deep tissue imaging is the so-called spectral coloring:
Because of the spectral dependence of the relative light �uence on strong back-
ground absorption, the optoacoustically measured spectra might considerably
deviate from the physical ones. Errors in un-mixing are an unavoidable conse-
quence, unless light propagation is accounted for or the background is modeled
[82].

A large variety of possible target molecules (Fig. 2.6) is either intrinsically
present, genetically encoded, or externally administered.

As most organisms are not transparent, several intrinsic chromophores present
possible imaging targets. Their absorption spectra are
quantum-mechanically determined in a HOMO-LUMO formulation of the mole-
cules' states and the excitation energy decays without photon re-emission but is
thermalized instead. The most important intrinsic chromophore is hemoglobin
in its oxygenated and deoxygenated forms. Their spectra are plotted in Fig.
2.5 with several isosbestic points, where both forms have the same extinction
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Figure 2.6: Selection of absorbers for optical imaging: (a) Hemoglobin molecule
as example of an intrinsic chromophore. (b) Indocyanine green as example of
a �uorescent dye. (c) Green �uorescent protein is often used as reporter gene.
(d) Illustration of a gold nanoparticle. (e) Emission of di�erent quantum dots
in solution. (f) Single-walled carbon nanotubes. Figures with permission from
Refs. [83] (a), [84] (c), [85] (d), [86] (e), [87] (f).

coe�cient. Physiologically more relevant than the total amount of hemoglobin
is its saturation level (SaO)

SaO =
cHbO

cHbO + cHb
, (2.3)

which is the fraction of hemoglobin with oxygen bound. Spectral coloring
might result in considerable error of the saturation levels of deep vasculature
because of the strong blood pool background in the surrounding tissue.

Eumelanin has a strong absorption in the NIR with a relatively �at spec-
trum. It is highly concentrated in the skin and might limit penetration depth if
absorption in the skin is too strong. Furthermore, melanin contrast facilitates
optical melanoma characterization [88].

Glucose exhibits strong absorption at higher wavelengths in the NIR; thus
optical imaging promises a highly attractive method for non-invasive measure-
ments of blood glucose concentration, given a su�cient accuracy of the de-
tection method used. At similar wavelengths, lipid absorption increases and
arterial plaques in the carotids (often resulting hypoperfusion of the brain) can
be detected optically [32]. Water absorption is not negligible for very high wave-
lengths and thus penetration depth is very limited for those long wavelengths
again.

Another class of targets are small molecule organic dyes exhibiting �uores-
cence [89]. Fluorescence results from absorption of a photon, excitation of the
molecule from the ground state, and a subsequent inter-state crossing from a
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singlet state of the molecule to an excited triplet state of slightly lower en-
ergy. Based on optical selection rules the lifetime of the triplet state before
spontaneously emitting a �uorescent photon is orders of magnitude larger than
standard photon emission. As no �uorophore o�ers perfect �uorescence, i.e.
quantum yield of one, a portion of the absorbed energy also thermalizes. The
most important dyes are Indocyanine green (ICG) in the NIR (Fig. 2.6(b), and
Sect. 9.2), methylene blue, and Prussian blue, which need to be externally ad-
ministered. These dyes have been used clinically for decades and are among the
limited number of FDA approved optical CAs [89].

Target absorbers might as well be genetically engineered. Genetic expression
of �uorescent proteins (FP) in vivo was a major breakthrough in biology [84].
The �rst FP was the green �uorescent protein (GFP) derived from the Aequorea
Victoria DNA [90], and is still one of the most important genetic tools to date
(Fig. 2.6(c)). This is because it can be easily engineered in most biological
model organisms. GFP has an absorption peak at around 488 nm, where light
penetration depth is low, and thus GFP is most e�ective in microscopic imaging
of small-sized organisms as bacteria. Consequently, red-shifted FPs as iRFP or
mCherry [11], often GFP derivatives, with higher excitation wavelength have
been developed and stable expression of FPs in the far-red or infrared is an
active area of research. Genetic markers are not restricted to FPs, but might
also be absorbing molecules. LacZ is a reporter gene of high biological relevance
that catalyzes the reaction turning a colorless substrate X-gal into a form of
bright blue color [91]. Eumelanin is not only present intrinsically, but might
as well be a genetically engineered reporter system using viral vectors for its
expression [88].

Nanoparticles consist another class of CAs that can be externally admin-
istered. Gold nanoparticles (Fig. 2.6(d)) exhibit strong absorption stemming
from plasmonic resonances at their surface [92]. The speci�cs of the spectra
depend on many parameters as size, aspect-ratio, or speci�c shape. Quantum
dots (Fig. 2.6(e)) are build from semi-conducting materials and the small size
in all three dimensions leads huge di�erences from bulky samples in the band
structure and gives rise to strong photon absorption [93]. Quantum dots often
exhibit �uorescence in the visible and NIR. Carbon nanotubes (Fig. 2.6(f)) are
e�ectively 1-dimensional structures and exhibit absorption and �uorescence in
the near-infrared having spectra with often multiple peaks based on van-Hove-
singularities in the band structure. [87].

Given the broad variety of possible targets listed above, additional consid-
erations have to be made for in vivo imaging: First, functionalization of the
CA. CAs or drugs might be activatable on-site by light or US, or they might be
targeting by binding to a speci�c receptor at the cell membrane. Functionalized
CAs are often build from a compound of an antibody, a linker, and an opti-
cally active molecule. Second, the pharmakinetic behavior of CAs determines
imaging performance via its half-life until its catabolized or excreted, or if it is
bound to the blood pool or not. Third, toxicity of the CA and photo-bleaching
limit possible applications. Last, multi-modality CAs can provide complemen-
tary image contrast in the combination of optical imaging with MRI, US, or
PET.
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Chapter 3

Fundamentals of Optoacoustic

Imaging

3.1 Introduction

Optical imaging methods are very powerful tools for biomedical imaging, as
presented in the previous chapter. The main advantages are their high spatio-
temporal resolution, the excellent contrast from a large variety of intrinsic
molecules which can be further extended using administered CAs, the cheap
and mature technology available, and the non-ionizing nature of the radiation
involved. However, photon propagation in biological tissues is dominated by
scattering processes and thus high-resolution, purely optical imaging is restricted
to less than 1 mm depth, mostly some hundreds of µm. However, light pene-
trates up to a few cm depth in the NIR and deep tissue optical imaging is
possible nevertheless. Yet, spatial resolution is degraded by several orders of
magnitude and is often in the range of 1 mm or worse.

OA imaging shatters the barrier of low spatial resolution in deep tissue op-
tical imaging capitalizing on the OA e�ect [14, 94]: Transient pulses of incident
light are absorbed and the absorbed energy is thermalized; the local temperature
increase gives rise to propagating pressure waves via thermoelastic expansion.
OA imaging is an intrinsically hybrid imaging modality: The excitation is per-
formed optically while the read-out is performed ultrasonically. It combines
the advantages of both kinds of modalities: It preserves the rich photon con-
trast of optical imaging and its spectroscopic capabilities to distinguish di�erent
molecules; however, the strong light scattering does not degrade spatial reso-
lution because high-resolution is provided by means of US waves, which are
a�ected two orders of magnitude less by (ultrasonic) scattering compared to
photons [14]. Spatial resolution then mainly depends on the frequency con-
tent of the ultrasonic waves generated and detected. Much like the excellent
spatio-temporal resolution in US imaging, OA imaging may provide video-rate
volumetric images at spatial resolutions of hundreds of µm from cm depth. The
two main disadvantages of the two single modalities, namely low spatial reso-
lution in optical imaging and poor contrast in US, are thus circumvented by
means of the OA e�ect.

Because of the bene�cial combination of light and sound, OA imaging is
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able to provide anatomical, functional, and molecular information from a single
modality, scalable in dimension from organelles to organs [13]. For example,
the complementing anatomical and functional information could visualize tu-
mor margins and identify hypoxic areas in the tumor based on oxygenation
level maps [33]. In most applications of clinical and preclinical practice, OA
imaging is expected to complement existing imaging modalities rather than to
fully replace them. Although many more scenarios can be thought of, the three
main �elds of expected application are: (1) Cancer imaging either to understand
fundamental biological mechanisms of tumor growth and therapy using anatom-
ical, functional, and molecular information; or to clinically diagnose tumors in
breast or colorectal cancer [33, 95]. (2) Brain imaging to visualize structure and
its pathology like detecting stroke or neuronal activity in normal and diseased
state as in epilepsy [34, 96]. (3) Cardiac imaging and diseases related to the
vasculature as arterial plaques, arthritis, occlusions, varicose veins, and many
more [32, 52].

The hybrid nature of OA imaging opens not only the door for many new
�elds of imaging applications, but also requires special considerations concern-
ing the mechanism involved in the OA e�ect, concerning instrumentation used
for excitation and detection, and concerning the calculation of the reconstructed
images from the measured signals. These aspects are discussed in the following
sections of the chapter. The last section describes in detail the speci�c embod-
iment of a small animal OA scanner that was used for the experimental studies
in this thesis.

3.2 The Optoacoustic E�ect and the Propagation
of Sound

OA imaging roots on the OA e�ect1, also known as thermoacoustic or photoa-
coustic e�ect (Fig. 3.1): Transient heat H(x), where H(x) is the deposited
energy per unit volume in the tissue, leads a local temperature increase ∆T (x).
Thermoelastic expansion results in mechanical stress which subsequently prop-
agates as pressure waves in the material [94, 97]. In most cases, the deposited
heat results from the local absorption of light:

H(x) = Φ(x) · µa(x). (3.1)

The fractional volume expansion of the tissue is given by [94]:

∆V/V = −κ∆p0 + β∆T, (3.2)

where κ is the isothermal compressibility, ∆p0 is the pressure increase, and
β is the thermal volume expansion coe�cient. For short excitation pulses of
duration τex, the conditions of stress con�nement (∆X >> c · τex, where ∆X is
pixel size and c is the speed of sound, SOS) and thermal con�nement (∆X >>
4Dtτex, whereDt is the thermal di�usivity) are ful�lled. Under these conditions,
fractional volume expansion is negligible:

∆p0 = β/κ ·∆T. (3.3)

1Substantial parts of this and the following chapter are based on work previously published
as Ref. [14].
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Figure 3.1: Illustration of the OA e�ect: Pulsed laser light is shed onto the
object. When photons get absorbed within, the energy is thermalized and gives
rise to an initial pressure propagating as US waves from the site of absorption.
Figure reprinted from [14].

For typical tissues, temperature rises in the mK range result a pressure rise
in the order of 1000 Pa. If all absorbed energy is instantly thermalized, the local
initial pressure p0(x) (∆ is omitted for simpli�cation of notation) is related to
the deposited energy density via [14]

p0(x) = Γ ·H(x) =
βc2

Cp
H(x), (3.4)

where Γ is the dimensionless Grüneisen parameter and Cp is the isobaric
speci�c heat capacity. Although being di�erent for di�erent kinds of tissue,
the spatial variations of the Grüneisen parameter are typically considered small
compared to those of the deposited energy (and those of the absorption co-
e�cient) and thus assumed to be constant and known. However, one might
consider the spatial variations of Γ as complementary source of image contrast
and aim at retrieving a map of Γ(x) in QPAT [80]. Or alternatively, one might
exploit the strong temperature dependance of Γ in order to either non-invasively
probe the local temperature in tissue [98] or to obtain super-resolution images
based on Γ-related non-linear e�ects [99].

The initial pressure p0(x) generated at the instant of the light pulse inci-
dence (t=0) is spatially varying because of the spatial dependance of H(x).
Consequently pressure waves start to propagate. Soft tissue is typically mod-
eled as a liquid where no shear waves propagate but only longitudinal waves.
The amplitude of those waves is assumed to be in the linear propagation regime.

Pressure propagation is governed by the spatially heterogeneous wave equa-
tion [14]:

∇2p(x, t)− 1

c(x)2

∂2

∂t2
p(x, t) = − β

Cp
H(x)δ′(t), (3.5)

where the inhomogeneous source term results from the excitation. Omitting
the spatial variations of SOS (c(x) ≡ c), the propagation results an initial value
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problem known as OA wave equation:

∇2p(x, t)− 1

c(x)2

∂2

∂t2
p(x, t) = 0 x ∈ <3, t ≥ 0

p(x, t = 0) = p0(x) (3.6)

∂tp(x, t = 0) = 0

pm(xd, t) = p(xd, t) xd ∈ S, t > 0.

S is a (closed) surface surrounding the object on which the pressure signals
pm(xd, t) are recorded. In ideal media, the pressure p(x, t) at two di�erent
spatio-temporal points (x, t) and (x′, t′) can be linked by a Green's function:

G(x, x′, t, t′) =
δ((t− t′)− |x− x′| /c)

|x− x′|
. (3.7)

Substituting G into Eq. 3.6, the recorded pressure signals pm(xd, t) on S
can be explicitly stated via a Poisson-type integral:

pm(xd, t) =
1

4πc

∂

∂t

∫
dA

p0(x)

|x− xd|

∣∣∣∣
ct=|x−xd|

. (3.8)

The pressure signal corresponding to one speci�c detector location xd is a
so-called projection and the ensemble of all projections is the sinogram. SOS is
most often assumed to be constant, mainly for the lack of mathematical tools
to treat the heterogeneous case e�ciently. In reality, the SOS varies for dif-
ferent types of soft tissues in a range of typically 1400 m/s - 1700 m/s [100].
Most often, c is associated with the SOS in water (1500 m/s at 25 °C) but more
thorough considerations might improve the resulting OA image quality (see also
Sect. 7.4 and Sect. 7.5). Similar to electromagnetic waves, acoustic waves are
also absorbed. In order to account for acoustic absorption, a dissipative term
is added to Eq. 3.5. The dissipative term is often modeled as fractional Lapla-
cian, leading to power law absorption with increasing attenuation for higher
ultrasonic frequencies [101, 102]. For macroscopic imaging systems, ultrasonic
attenuation can be neglected in most cases. For mesoscopic and microscopic
imaging applications which involve higher US frequencies, image quality might
however be considerably decreased. Finally, heterogeneities might alter wave
propagation, too: On a macroscopic level, mismatches of US impedance lead to
an aberration and re�ections at e.g. skull, bones, lungs, or organ boundaries;
on a microscopic sub-wavelength level, local acoustic mismatches result in scat-
tering of the ultrasonic waves. US scattering of phonons is nevertheless orders
of magnitude lower compared to scattering of photons in tissue [13].

3.3 Optoacoustic Imaging Systems: Signal Exci-
tation and Detection

The OA e�ect provides means to excite signals inside an object which can be
subsequently detected outside of the object. In practice many approaches for
excitation and detection have been developed that permit obtaining images
with di�erent characteristics and for di�erent applications, depending on the
instrumentation used.
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Signals are mostly excited with short light pulses of high power, approxi-
mated as δ-pulses that concurrently excite all US frequencies equally. Alter-
natively, amplitude modulated light of frequency ωex can be used in frequency
domain imaging, where the detected US frequency ωUS is equal to the excitation
modulation frequency (ωex = ωUS). By measurements at multiple frequencies
or chirp excitation, the full US spectrum of pressure waves can be obtained
[103, 104]. Frequency domain imaging is attractive for the possibility to use
cheap hardware with continuous-wave lasers and quadrature-detection signal
recording.

Although light is most often used, not only the optical part of the elec-
tromagnetic spectrum can be used for excitation of OA waves. Microwaves
or magnetic excitation of paramagnetic nanoparticles present alternative ap-
proaches of considerably higher penetration depth compared to light [105, 106].
Increased penetration depth of OA excitation is also possible with high energy
X-ray photons [107]. They are however ionizing in nature. Generalized forms of
local energy deposition might be used as well: In particular, the energy depo-
sition of protons at the Bragg peak might be localized via the thermoacoustic
e�ect [108].

Q-switched pulsed lasers are the main type of source to create monochro-
matic light for OA imaging with di�erent active materials such as solid state
Nd:YAG, dyes, or semiconductors [109]. If the provided wavelength of the laser
does not match the spectrum of the targeted chromophore or multi-wavelengths
imaging is performed in MSOT, an additional optical parametric oscillator
(OPO) allows for tuning to arbitrary wavelength over a wide spectral range.
Important laser parameters for imaging are the maximum pulse repetition rate,
the minimal pulse duration τex, and the beam shape quality if light needs to
be focused onto the sample. The per-pulse energy of the lasers employed is
typically in the order of tens of mJ for macroscopic imaging and of several µJ
only for microscopic imaging, based on the area illuminated.

The illumination pattern on the surface varies for di�erent imaging ap-
proaches (Fig. 3.2): In most tomographic systems, a broad illumination with
maximally homogeneous light distribution is used to minimize �uence related ef-
fects. In OA microscopy, a tightly focused spot provides a beam with di�raction
limited lateral resolution or in sectional imaging the origination of the signals
can be restricted to approximately a plane, similar to SPIM. In both cases, imag-
ing depth (without degradation of focusing) is limited to super�cial areas owing
to the strong scattering of light. Structured illumination is used to solve the
ill-posed inverse problem of light propagation modeling taking measurements
with di�erent illumination patterns or in the context of compressed sensing
(CS) measurements. For in vivo imaging, the maximum �uence is restricted
by the ANSI limits to 20 mJ/cm2 in the NIR in order to prevent thermal dam-
ages [110]. Depending on the illumination pattern, di�erent optical components
such as di�users, polarizers, (di-chroic) mirrors, (GRIN-)lenses, digital mirror
devices, etc. are used. Free-beam optics are convenient in building prototypes
in the laboratory; but in clinical systems, light is shed onto the object using
light guides, single- or multi-mode �bers, or �ber bundles [111]. Handheld OA
imaging is particularly based on the latter. Although light can be delivered from
arbitrary directions, trans-illumination (illumination from the opposite side as
the detection) and epi-illumination (from the same side as the detection) are the
most prevalent con�gurations because of practical considerations. Many large
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Figure 3.2: Illustration of typical illumination scenarios in optoacoustic imag-
ing. (a) Broad illumination is used in most tomographic setups with an almost
homogeneous light pro�le shed on the sample in order to minimize e�ects of light
�uence. (b) Focused illumination is used in OA microscopy or selective plane
imaging in order to restrict signal generation to a line or a plane. (c) Structured
illumination is used with CS approaches or multi-illumination tomography in
order to accelerate data acquisition or to reduce the ill-posed nature of invert-
ing the light propagation model. In all illustrations, scattering and absorption
within the object are not accounted for.

imaging objects are often only accessible from one side (e.g. in breast or skin
imaging), therefore only epi-illumination is feasible. In this case, the acoustic
read-out permits potentially up to double the imaging depth compared to purely
optical imaging modalities with di�use light, where the read-out is also based
on photons.

After conversion of light energy to mechanical energy, the propagating US
waves are measured on a detection surface surrounding the object (Fig. 3.3, top
row). The temporally resolved signals are measured at multiple locations on
the surface S, sampled as densely as possible. Distortions from the propagation
between the object and the detection surface have to be minimized and thus
water, ultrasonic coupling gel, or alternatively a solid couplant is used. The de-
tection surface S is convex, closed and preferably of mathematically ideal shape
(Fig. 3.3(a)-(c)): Either a circle in 2-D and its 3-D counterparts, a sphere or
cylinder [30]; or a line in 2-D and a planar surface in 3-D [112]. More sophis-
ticated detection patterns can improve image quality in certain experimental
set-ups [113]. Similarly as for light delivery, large objects allow only restricted
access for detection. Detectors can only be placed on one side of the object then
and only an incomplete part of the OA waves is captured. Incomplete signal
detection is known as limited view. Limited view with detection surfaces cover-
ing <2π (<4π in 3-D) generally results in degraded image quality compared to
full view because of the lack of information on parts of the signals; artifacts ap-
pear due to the increased condition number of the reconstruction problem [114].
A large numerical aperture (NA) is thus preferred because of visibility criteria
[115]: With planar sensors, their �nite size results a limited NA and structures
(almost) perpendicular to the detector do not emit waves that are captured by
the detectors. Thus such structure cannot be reconstructed. In order to recover
them, the e�ective NA needs to be increased, either by enlarging the surface or
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Figure 3.3: Detection surfaces and detector shapes in OA imaging. (a) Detec-
tors (red) are evenly distributed on a circle fully surrounding the object. (b)
Detection locations distributed on a line as used in OA microscopy, known as
planar detection. In 3-D imaging, combinations of the two are used: Spherical,
cylindrical, and planar. (c) Because of technical considerations in experimen-
tal practice, signals can often only be measured on parts of the circle, known
as limit view. (d) Point-like detection element (red) with spatial dimensions
smaller than characteristic US wavelengths. (e) Circularly focused detection el-
ement with focal distance fd. (f) Flat detection element with spatial dimensions
larger than characteristic US wavelengths. Illustration of the sensitivity �eld of
the di�erent detection elements as background. In 3-D imaging, combinations
of the shapes are used: Point-like, spherically focused, cylindrically focused, line
detection, and �at detection.

using acoustic re�ectors [116].

The shape of the sensor element(s) is ideally point-like with dimensions much
smaller than the wavelengths to be detected (Fig. 3.3(d)-(f)). Most reconstruc-
tion methods assume point-like detectors for simplicity of calculations (see also
Chapter 4 and Sect. 7.3). In practice however, all detection elements are �nite-
sized because of the SNR decreasing with shrinkage of the detector dimensions
and the technical limitations in miniaturizing sensor elements. Large spherically
or cylindrically focused elements place a viable alternative [59]. Unlike point-
like elements with a wide acceptance angle, the received signals originate in �rst
order approximation only from a line or a plane and the reconstruction problem
is thus reduced in its spatial dimensions. However, limited focusing capabilities
for broadband signals result in a much lower lateral than axial resolution and
artifacts from detected signals outside of the focal area appear, unless computa-
tionally accounted for [117]. Finally, huge line or planar sensors are attractive
for their high SNR, their easy compatibility with interferometric detection, and
the simple inversion based on the inverse Radon transformation [118].
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The requirements of OA detection technology di�er from those of standard
US technology. OA transducers are not operated in transmit/receive mode.
Thus OA sensors require only e�ciency in detection of the low intensity sig-
nals. Most importantly, OA signals are broadband spanning many octaves from
tens of kHz to several MHz in the same experiment as direct consequence of
the imaged structures at multiple scales. Besides a suitable central frequency,
detectors employed consequently need to have a large fractional bandwidth in
order to avoid frequency bandwidth related artifacts (see also Sect. 7.2). Com-
mercially available or customized standard piezoelectric ultrasonic technology
is most often used [45]. Despite being inexpensive and robust for operation
in water environments, piezoelectric technology based on PCT or polymers of-
fers either not an optimal bandwidth or not an optimal sensitivity, respectively.
Recent developments in the �eld of capacitive micro-machined ultrasonic trans-
ducers (CMUT) facilitate miniaturization at high bandwidth and sensitivity
[119]. Particularly interesting for OA are optical sensing methods. With ex-
ception of beam de�ection methods, optical sensing is based on interferometry:
The e�ective optical path length is changed by the incident US wave either by
changes in length or changes in refractive index. The intensity of the interfer-
ence pattern from di�erent paths is thus modulated by the incident US waves.
Particular embodiments of interferometric detectors are Fabry-Pérot interfer-
ometers [112], Mach-Zehnder interferometers [120], micro-ring resonators [121],
or �ber Bragg-gratings [122]. Interferometric detectors can provide unrivaled
detection bandwidth and o�er a huge potential for miniaturization.

Single element detectors have been employed in early OA systems and still
are for high frequency applications [22, 123]. Time consuming mechanical raster
or continuous scanning is required in order to obtain all projections. Conversely,
o�-shelf or custom-made parallel detection arrays have enabled real-time imag-
ing at video-rate from single laser shots [124]. Scanning is in this case only
required to capture entire volumes from slices or to improve image quality from
more available projections [18, 42].

The measured electrical signals are further processed by a data acquisition
system (DAQ): The DAQ pre-ampli�es the weak signals in the µV range, ap-
plies anti-aliasing frequency �ltering, and digitized the signals in parallel using
analog-digital converters. The sampling frequency is typically much higher than
the bandwidth of the transducer and a 12-bit or more vertical resolution is used
to capture the dynamic range of the signals without discretization artifacts. In
combination with large detection arrays, digitization can be done fully in paral-
lel or using multi-plexing at the price of longer acquisition times (averaging of
signals for a better SNR results also in increased acquisition times). The data
acquisition is triggered with �ring of the laser and the recorded signals are sent
to a PC for storage and further on- or o�ine processing.

With the listed technical possibilities at hand and application scenarios in
mind, several standard types of OA systems have been developed:

� Optical resolution optoacoustic microscopes compromise low
power, ultrahigh repetition rate lasers that are focused through a micro-
scope objective onto the sample to lead optically di�raction limited lateral
resolution in ballistic depths. Signals are captured by a large area high
frequency transducer element and images are generated by scanning the
excitation beam without mechanically moving parts. Optical resolution
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systems have been applied in imaging of red blood cells, super�cial brain
vasculature, and many more [16].

� Acoustic resolution optoacoustic microscopes provide acousti-
cally di�raction limited spatial resolution by using a large NA spherically
focused detector. Illumination is provided by means of broad or dark-�eld
illumination with di�used photons. Through the greater imaging depth
compared to ballistic photons only, several studies reported on imaging of
deep brain vasculature, skin, tumors, and many more [125].

� Optoacoustic tomography (OAT) systems compromise high power,
low repetition rate lasers of tunable wavelength with broad illumination
for imaging at mm or cm depth. Signals are captured with parallel curved
arrays on an arc or a sphere and images are formed computationally using
reconstruction approaches (see next chapter). OAT has found many appli-
cations in whole-body small animal imaging, including cancer, brain and
cardiovascular disease models as well as in clinical studies [22, 33, 42, 126].
Variants of OAT use standard ultrasound arrays with a planar detection
surface instead of a custom-made curved array [45, 113].

� Endoscopic or intravascular systems enhance the portfolio of imaging
locations to regions that are not accessible from the outside but from cavi-
ties inside of the body. Main challenges arise from the need to miniaturize
light delivery and signal detection, thus favoring �ber optical systems.
Furthermore, reconstructions are complicate as signals are measured form
within the object instead of from the outside. Anticipated �elds include
colorectal cancer, arterial plaques, and many other cardiovascular diseases
[32].

3.4 Small Animal Multi-Spectral Optoacoustic To-
mography Scanner

In the past decade, a variety of OAT imaging systems have been developed and
reported on for both small animal preclinical imaging and clinical imaging for
humans [42, 95, 127, 128]. The improved OAT small animal scanner technology
developed at the Institute of Biological and Medical, particularly the MSOT
technology, has been commercialized. For the OA imaging performed in the
context of this thesis, a commercially available small animal MSOT scanner
was used (model: inVisionTF256, iThera Medical GmbH, Munich, Germany).

The scanner is designed as a compact, movable cart system (Fig. 3.4(a)),
where all components are mounted in a single rack. Imaging is performed within
a tank build from stainless steel (Fig. 3.4(b)). The tank is �lled with warm dis-
tilled water and accessible through a tray from the top. The key component for
OA image generation is the integrated illumination-detection unit (Fig. 3.4(c)).

A schematic of the system components and the work�ow during imaging
is shown in Fig. 3.5. Image acquisition is controlled by a computer running
the proprietary ViewMSOT software. The software allows for convenient image
acquisition using a graphical user interface in real-time. The acquired raw sig-
nals (approximately 10 MB/s) are dumped to a hard drive for storage including
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Figure 3.4: Small animal scanner mainly used in this work. (a) Photograph
of the MSOT cart system (model: inVisionTF256, iThera Medical GmbH, Mu-
nich, Germany) with all components mounted in a rack. (b) Photograph of the
imaging chamber with tank to be �lled with water, illumination-detection unit
and translation stage to move the object. (c) Photograph of the illumination-
detection unit with the 10 �ber-bundle ends to provide an approximately ho-
mogeneous illumination on the object's surface and the cylindrically focused
detection array to con�ne the imaged volume to approximately a plane.

Figure 3.5: Schematics of the interplay between hardware components of the
MSOT system: The computer triggers the �ring of a pulsed laser and the wave-
length is modi�ed to the target wavelength via an OPO. Passing a �ber bundle,
the light is shed onto the imaging object. Ultrasonic pressure waves propagate
through object and water and are captured by the transducer array. The elec-
trical signals are digitized by a DAQ and stored in the computer. Additional
components include live preview, water temperature control, and positioning of
the object.
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Figure 3.6: Optical excitation components. (a) Photograph of the pulsed OPO
laser with fast wavelength tuning capabilities. (b) Spectrum of the average pulse
energy of the OPO laser in the NIR. (c) Photograph of two of the ten �ber
bundle ends to provide an approximately homogeneous illumination pattern on
the surface of the object.

meta-data of the image acquisition process. The software provides a live pre-
view from backprojection reconstructions (see Sect. 4.1) in order to chose an
imaging region, identify image artifacts, and monitor the animal well-fare. The
imaging region can be chosen by moving the object in all three spatial dimen-
sions with a linear translation stage (IAI Industrieroboter GmbH, Schwalbach,
Germany). Translation in z-direction allows for selection of the cross-sectional
imaging plane with sub-millimeter accuracy. A volumetric image of a whole
mouse or entire organs can be obtained from z-scanning and stacking of the
reconstructions from multiple slices. In-plane translation in x- and y-direction
permits to center the object for minimization of light �uence heterogeneity and
maximal image quality in the focus of the transducers. The temperature of the
water bath in the tank is controlled to ensure controlled, normal physiological
conditions of the mouse at approximately 34 °C water temperature. The water
temperature is increased by a heating pad attached to the tank wall and con-
trolled by a temperature sensor and a feedback loop. Thus, the temperature
can be stabilized within <0.2 K.

Optical signal excitation is provided by a pulsed, tunable OPO laser (model:
SpitLight, InnoLas Laser GmbH, Krailling, Germany, Fig. 3.6(a)). The Nd:YAG
pump laser provides short pulses (<10 ns) at 532 nm wavelength and 10 Hz pulse
repetition rate. The pulses are shed on an OPO crystal which exhibits strong
non-linear optical e�ects and thus allows altering the resulting wavelength. The
OPO unit allows tuning of the wavelength in a range from 670 nm to 930 nm
on a per-pulse basis, i.e. it allows for fast MSOT imaging without idle times
from changing wavelengths. A small fraction of the pulse is shed onto a photo
diode to measure the per-shot energy variations in order to eliminate image
intensity �uctuations or spectral artifacts through normalization. Fig. 3.6(b)
plots the resulting, wavelength dependent pulse energy with a maximum of ap-
proximately 100 mJ at the output of the laser. The light is coupled into a �ber
bundle with ten output arms. The arms are equally distributed on both sides
of the illumination-detection unit (Fig. 3.6(c)) to provide an approximately
homogenous light �uence on the surface of the object. For an object of 2 cm
diameter, the illumination stripe is ca. 8 mm wide and the light �uence does
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Figure 3.7: Parallel US detection array. (a) Sketch of the transducer geometry
with the 256 individual elements plotted in alternating color. The array is
cylindrically focused to con�ne received signals to approximately a plane. It
coveres a solid angle of 270° and has a radius of 40.5 mm. (b) Element sensitivity
in dependance of frequency with a center frequency of 4.2 MHz and lower and
upper limits (-3 dB) of 3.5 MHz and 6.2 MHz, respectively.

not exceed 18 mJ/cm2, which is below the maximum permissible exposure limit
of 20 mJ/cm2 in humans [110].

Detection of the resulting OA pressure waves is performed using a custom-
made parallel detection array (Imasonic SaS, Voray, France). The circular de-
tection array is cylindrically focused, covers a solid angle of 270°, and has a
radius of 40.5 mm (Fig. 3.7(a)). It covers 21 ° in elevation direction to restrict
the detected signals to originate from approximately a plane. The 256 individual
elements are manufactured from a piezocomposite material. Each element has
a central frequency of 4.2 MHz and a lower and upper frequency limit (-3 dB)
of 3.5 MHz and 6.2 MHz, respectively (Fig. 3.7(b)). The relative bandwidth is
64 % and the transducer sensitivity result electrical signals in the µV range for
OA signals of some Pa. The possible in-plane resolution is as good as 200 µm.
The z-resolution is object frequency dependent, but in the order of 1 mm. A
high detection sensitivity (FWHM) is achieved over a region with 3 cm diame-
ter [129]. The detection geometry allows for a large visibility region [115] and
singularities in all directions can be recovered. Consequently, a nearly isotropic
resolution over a large area is achieved.

The electrical signals from the transducer are digitized by a custom-made
DAQ system (Falkenstein Microsysteme GmbH, Taufkirchen, Germany). 256
parallel input channel prevent the need for multi-plexing. The low voltage
electrical signals are pre-ampli�ed, frequency �ltered by a 15 MHz anti-aliasing
�lter, and sampled at 40 MSa/s with 12-bit vertical resolution.

With this small animal MSOT scanner, in vivo longitudinal mouse imaging
studies are possible with high throughput. The achievable spatial in-plane res-
olution is up to 200 µm for centimeter-sized object. Whole image frames can
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be acquired from a single laser shot at video-rate and fast spectroscopic imag-
ing in the NIR is possible, also for fast kinetic processes. Volumetric scanning
allows to acquire MSOT images of a whole mouse or entire organs. Several
pre-clinical small animal imaging studies have been conducted with this scan-
ner, ranging from gastric emptying to in utero imaging of the mouse embryo
heartbeat [21, 130].

For parts of the experiments, a second scanner was used (model: inVi-
sionTF128, iThera Medical GmbH, Munich, Germany). The sytem is similar,
but there are two major di�erences: A deviating OPO laser is employed (Pho-
cus, Opotec Inc., Carlsbad, CA) that has the same pulse repetition rate and a
similar power spectrum but lacks fast wavelength tuning capabilities. Second,
a di�erent transducer array is used that has 128 detection elements only and
thus a slightly decreased in-plane lateral resolution.
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Chapter 4

Reconstruction Approaches

for Optoacoustic Tomography

This chapter introduces to di�erent types of reconstruction approaches with fo-
cus on model-based (MB) reconstructions in the context of (pre-)clinical imag-
ing. Speci�c challenges arise from reconstruction time and image quality con-
straints, which are also discussed in detail.

4.1 Types of Reconstruction Algorithms

Measured OA signals might directly result spatially resolved images: In the case
of OA microscopy raw images are basically stacked projections. Images might be
improved using post-processing algorithms, performing reconstructions is how-
ever not mandatory. The converse is the case in OAT. The measured signals
do not directly correspond to spatially localized image structures. Spatially
resolved images need to be computationally rendered from the signals in a re-
construction process.

Reconstructions in OAT are one example of an inverse problem: A cause
determines an e�ect based on a set of known physical laws. Predictions of
e�ects based on known causes can be easily made using the governing equations.
These calculations are termed forward problem or forward modeling. If only
the measured signals are known, an inverse problem arises, which is to �nd the
corresponding causes based on the same physical model. Most often, an inverse
problem is much harder to solve than the associated forward problem.

The inverse problem in OAT is to �nd the spatially resolved initial pressure
distribution p0(x) from the measured acoustic signals pm(xd, t). The governing
equations are given by Eq. 3.6 and an inverse initial value problem has to be
solved. For quanti�cation of OA reconstructions, a second inverse problem has
to be solved, which is the inversion of a light transport model. The associated
problem is known as quantitative OAT (or also QPAT) and is brie�y discussed
in Sect. 2.5 or in detail in the literature [14, 77, 80].

Multiple reconstruction approaches have been developed in order to solve
the acoustic inverse problem, starting from 'classical' X-CT Radon transforma-
tion based methods [97]. The approaches can be categorized in mainly four
di�erent classes [14]. In practice, the selection criteria of which class to use in-
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clude computational aspects and especially assumptions made such as detection
geometry or propagation medium. In experiments, the actual forward problem
can deviate from the formulation of Eq. 3.6 and the chosen type of algorithm
needs to be adaptable to the real experimental conditions to retain a good
image quality. Deviations from the idealized case include the spatial impulse
response (SIR) of �nite-sized transducers, the electrical impulse response (EIR)
of limited-bandwidth transducers, limited detection coverage, a heterogeneous
SOS distribution, and acoustic wave dissipation and scattering.

Series Expansion

One class of reconstruction approaches is the so-called series expansion method.
The solution of the inverse problem is represented as a converging series of
summed basis functions:

p0(x) =
∑
k

ψk ·Ψk(x). (4.1)

The basis functions Ψk(x) are the Eigenfunctions of the Laplacian in Eq.
3.5; the associated coe�cients ψk are integral-functionals depending on the
measured signals pm. The set of Eigenfunctions is only explicitly known for
a few ideal geometries (sphere, cylinder, in�nite plane, cube) and an ideal dis-
persion relation ω2 = c2(k2

x + k2
y + k2

z). Therefore, series solutions are restricted
to idealized settings. Additional challenges are associated with a potentially
large number of series coe�cients needed for su�cient convergence or with the
numerical integration of functions with singularities.

In experiments, series expansion reconstruction methods are mostly used
with planar sensors: To perform reconstructions, the measured signals pm(x, y, t)
are Fourier transformed in all variables pm(kx, ky, ω) = Fx,y,t {pm(x, y, t)}.
The transformed signals are mapped to the initial pressure p0(kx, ky, kz) us-
ing the dispersion relation ω2 = c2(k2

x + k2
y + k2

z). The sought-after initial
pressure is then obtained by inverse Fourier transformation in all variables
p0(x, y, z) = F−1

x,y,z {p0(kx, ky, kz)}. The algorithm is simple to implement, fast
in practice, and o�ers an optimal computational complexity of O(n3 · log(n)) in
3-D and O(n2 · log(n)) in 2-D, where n is the number of image voxels per spatial
dimension (assuming time-samples and number of projections per dimension of
the detection surface being proportional to n).

Backprojection

Based on the analogy with the Radon transformation of X-CT imaging [97],
backprojection (BP) type reconstruction formulas have been developed [131,
132]. First, the measured signals are frequency �ltered in the temporal dimen-
sion and subsequently backprojected to all locations of possible origination (Fig.
4.1(a)). Based on TOF considerations for a homogeneous medium, the locations
are distributed on an arc of radius r = ct centered around the detector location
of the currently processed projection. The �nal image is then obtained by su-
perposition of backprojected signals for all time-instants and projections. The
universal BP formula is the BP formula most often used in practice [132]:
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Figure 4.1: (a) Backprojection reconstruction: Signals from a speci�c detec-
tor and speci�c time-instant t1 are frequency �ltered and backprojected on an
arc of radius r = ct1 centered around the detector. A superposition for all
detectors and time-instants results the �nal reconstructed image. (b) Illustra-
tion of time reversal reconstruction (1-D): The measured signals are reversed in
time, re-emitted from the detector locations and propagated in time. The �nal
reconstruction is obtained at t = 0.

p0(x) =
1

4πc2

∫
dA

1

t
[
pm(xd, t)

t
− ∂pm(xd, t)

∂t
]

∣∣∣∣
ct=|x−xd|

. (4.2)

BP reconstruction formulas have been derived for ideal geometries (sphere,
planar, cylinder, and 2-D counterparts), but are approximately valid in the
far-�eld (detector distance much lager than ROI) for arbitrary geometries, too.
Because of the �ltering process involved, BP reconstruction might lack low spa-
tial image frequencies. Being based on the Green's function in Eq. 3.7, exact BP
formulas require ideal media and detection geometries, but several modi�cations
have been developed like weighting for limited view or scattering, or introduc-
ing delays for heterogeneous SOS maps [133, 134]. BP reconstructions have a
theoretically unfavorable complexity of O(n5) (or O(n3) in 2-D); but owing to
their simplicity they are fast in practice. BP reconstructions on GPU are rela-
tively simple to implement for the parallel, one-step nature of the algorithm and
they even allow for video-rate reconstructions of volumetric data [17]. Thus BP
reconstructions can generally be seen as current gold standard reconstruction
method in the context of real-time live visualization and feedback.

Time-Reversal

Time-reversal (TR) reconstructions are rooted on two general observations of
OA imaging [135, 136]: (1) The wave equation Eq. 3.5 is invariant under time
reversal t → t′ = −t. (2) According to Huygens' principle, all waves have left
the volume surrounded by the detectors after a �nite time Ttr, i.e. p(x, t) ≡ 0,
for x ∈ ROI and t > Ttr. Although Huygens' principle is not valid in 2-D, the
signal have su�ciently decayed for su�ciently large Ttr so that no considerable
errors are induced in practical 2-D reconstructions. The reconstruction problem
consists thus in a boundary value problem with the initial value at Ttr given as
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p(x,−Ttr) ≡ 0 and boundary conditions as the time-reversed measured signals
at the detection locations pm(xd,−t). Numerical wave propagation in time then
results the reconstructed initial pressure image p0(x) = p(x, t = 0) (Fig. 4.1(b)).

Unlike the other three classes of reconstruction methods, TR reconstruction
is not based on a speci�c, known Green's function solution (Eq. 3.8). Instead, it
directly operates on the level of the wave equation (Eq. 3.5). Non-ideal acoustic
properties are therefore easily accounted for such as arbitrary SOS maps, het-
erogeneous acoustic impedance distributions, or power-law absorption terms.
However, incomplete signal information in limited view geometries requires cor-
rections to avoid reconstruction artifacts.

Most TR implementations use �nite di�erences time domain (FDTD) meth-
ods with stencils that relate variables at neighboring points in space and time
and that provide explicit or implicit solutions with only a few neighbors con-
tributing. k-space methods obtain the spatial derivatives in the Fourier domain
via the Fast Fourier Transformation (FFT). The increased accuracy of the spa-
tial derivative permits courser time-steps and decreases the algorithm's run time
in this way. Despite a low complexity of O(n4) (or O(n3) in 2-D), TR recon-
structions are considered slow, especially compared to BP; but because only a
few image variables need to be stored and the variable updates are local, good
performance of TR implementations on GPU can be to obtained [136].

Model-Based

The fourth class of reconstruction algorithms are the so-called MB algorithms.
MB algorithms directly relate the discretized images to the corresponding dis-
cretized signals and solutions are obtained by numerical inversion. MB algo-
rithms are described in detail in the following section.

4.2 Model-Based Reconstructions for Optoacous-
tic Tomography

MB algorithms aim at obtaining reconstructions numerically instead of analyti-
cally. The reconstruction procedure is formulated as a discretized minimization
problem and the reconstructed image is the minimizing solution or a su�cient
approximate. Solving an inverse problem, like the reconstruction of OA images,
typically involves �ve major steps [137]:

1. Discretization of the unknown, i.e. the image p0(x), and representation
as a discrete vector f1. Image discretization can be performed on Carte-
sian or polar grids, with spherical voxels, or with arbitrary (potentially
adaptive) meshes (see Sect. 5.2 and Refs. [138, 139]). The number of un-
knowns is chosen large enough for a good image quality and small enough
for manageable computational cost of the reconstruction. The knowns, i.e.
the pressure signals pm, need to be discretized, too. The dimension of the
measured signals is �nite because of the �nite number of projections and

1Throughout this work, discrete vectors are denoted by a plain symbol without an addi-
tional index. Their continuous counterparts are denoted with an explicit argument instead, if
a di�erentiation between the two is required.
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time-samples. If needed, they might be re-sampled to further minimize
computational cost.

2. A physical model M is implicitly or explicitly calculated that relates the
unknowns to the knowns, i.e. the image f to the signals p:

p = M · f. (4.3)

For OA imaging with an ideal propagation medium and point-like detec-
tors, the linear model M is given by Eq. 3.8 in discretized form (see also
Sect. 5.2). The discretization of the model results from image and signal
discretization.

3. For statistical inversion, a noise model of the data is formulated, ei-
ther based on assumptions or derived from system noise measurements.
Although di�erent noise models like an exponential distribution are pos-
sible, too, Gaussian noise is mostly assumed. Correlation in the noise can
be equally modeled by the use of the covariance matrix; but most often
independent white noise of uniform amplitude is assumed and the covari-
ance matrix is the identity matrix. Further, priors on the distributions of
signal and image intensities might be included, too.

4. A scalar cost functional F (f) to be minimized with respect to the
unknowns f . The functional might be heuristically derived or statistically
chosen based on expectation maximization. For linear models with Gaus-
sian noise and Gaussian priors, the corresponding functional is quadratic
and the resulting inverse problem is relatively easy to solve compared to
deviating functionals.

Further, regularization might be required because of the ill-posed nature of
the model with a large condition number κ (which is the ratio of largest to
smallest Eigenvalue) or because of incomplete input data (limited view).
In CS, adding a non-quadratic penalty term like the l1-norm of the image
in a speci�c basis or like the total variation of the image enables recon-
structions even from under-sampled input data [140]. For regularization
of ill-posed problems, a quadratic penalty term (Tikhonov regularization)
might be added. The resulting quadratic functional is:

F (f) = ‖Mf − pm‖22 + ‖Pf‖22 , (4.4)

where P is a linear operator to e.g. suppress stripe artifacts or to enforce
smooth images [114]. If P is a multiple of the identity matrix, the func-
tional corresponds to statistical minimization assuming uniform Gaussian
noise.

5. Finally, a minimization algorithm to numerically minimize the cost
functional F (f) and to obtain the reconstructed image as minimizing so-
lution of Eq. 4.4. Depending on the functional, di�erent minimization
strategies might be employed. With convex non-quadratic functionals like
l1-regularization, non-linear optimization algorithms like gradient descent
algorithms or recently developed faster alternatives like FISTA might be
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used [141]. In the quadratic case, the resulting problem is a least squares
problem and many simple and fast inversion methods exist.

If the problem considered is su�ciently small in size, direct methods can
be employed and the solution can be directly obtained. Without an addi-
tional regularization term, the solution is obtained by the Moore-Penrose
pseudo-inverse M† of the model M [142]. The inverse2 of a full-rank ma-
trix is M† = (MTM)−1MT and MM† is an orthogonal projector. The
inverse is independent of the measured data and only depends on the sys-
tem geometry and on the acoustic properties. Unlike the original model,
the inverse matrix is however not sparse (with most entries equal to zero)
and inversion of the matrix requires O(n9) FLOPs (O(n6) in 2-D). For
realistic problem sizes, the inverse is often computationally too burden-
some to obtain. But if once calculated for a given experimental system,
the reconstruction process reduces then to a simple and fast matrix-vector
multiplication:

f = M†pm. (4.5)

Another possibility to obtain the inverse matrix is singular value decom-
position (SVD), a generalization of Eigenvalue decomposition for non-
quadratic matrices. SVD factorizes M as product of a diagonal matrix
D with entries in decreasing absolute order and two unitary matrices:
M = UT1 DU2. The inverse is then obtained as M† = UT2 D

−1U1 with the
reciprocal of the non-zero elements on the diagonal of D−1. By truncating
small valued diagonal entries, inversion can be regularized (TSVD, [143]).
Another alternative based on the full-rank of M is to solve the associated
normal equations:

F (f) =
∥∥MTMf −MT pm

∥∥2

2
. (4.6)

Direct inversion can then be e�ciently performed based on LU or QR
factorization of MTM . Because MTM is symmetric and positive de�-
nite, Cholesky factorization can be performed with half the asymptotic
computational cost in both FLOPs and memory consumption.

For large-scale problems where direct methods are not feasible, iterative
inversion is performed instead (Fig. 4.2). The solution f is obtained as
converging series fniter with increasing iteration number niter. An initial
guess f0 can be obtained via BP or an empty image is assumed. Iterative
updates are performed by �rst retrieving a suitable search direction and
then choosing a suitable step size in the search direction. With gradient
descent algorithms, the search direction is always the steepest descent di-
rection at optimal step size. For ill-posed problems, a zig-zag behavior can
be observed and convergence is thus slow. Conversely, conjugate search
directions with conjugate gradient descent (CG) or its variant LSQR [144]
in the Krylov sub-space spanned by

(MTM)niterMT pm, . . . , (M
TM)1MT pm,M

T pm (4.7)

2For the remainder of this thesis, the inverse of a matrix refers to its Moore-Penrose
pseudo-inverse.
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Figure 4.2: Schematic of iterative reconstruction. Starting from an empty image
or an initial guess, the image is forward modeled using the model matrix M .
The corresponding signal vector is compared to the measured signals and the
di�erence vector is calculated. The di�erence vector is backward modeled using
the transpose of the model matrix, MT , to update the current image. After
several iterations, depending on the problem considered and the algorithm used,
the image obtained is a good approximation of the solution. Basically, iterative
inversion works similar to a discrete vector-valued feedback loop. Figure based
on Ref. [145].

are explored.

After each iteration, the solution estimate fniter is the minimizing vector
in the current Krylov sub-space. The at least linear convergence, de-
pending on the condition number κcond, is much faster than for gradient
descent algorithms. Convergence might be further improved if a suitable
preconditioner can be found that reduces κcond. In exact arithmetic, CG
and LSQR converge to the exact solution when the number of iterations
is equal to the number of unknowns.

Iterative algorithms are e�cient for OA reconstructions because the main
steps, matrix-vector multiplications Mf and MT p, do directly bene�t
from the sparsity of the model. Also memory foronly a few additional
image and signal vectors needs to be allocated. The number of iterations
determined by either a preset maximum or by a threshold for the relative
change of (F (fn) − F (fn−1))/F (f0) is typically much smaller than the
number of unknowns. Performing only a limited number of iterations also
serves as intrinsic regularization.

The advantages of MB algorithms are manifold. Optimal reconstructions
(in the sense of minimizing Eq. 4.4) can be obtained for arbitrary detection
geometries and not only for ideal geometries and for full view [114]. The �nite
size of arbitrarily shaped detection elements can be taken into account [146].
Further, propagation medium properties are not restricted to ideal acoustic
media: Heterogeneities, attenuation, or scattering processes can also be taken
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into account [134, 147]. Regularization is possible to suppress artifacts from
the ill-posed nature of the reconstruction problem, statistical noise modeling
might improve image quality, or additional constraints like non-negativity of the
solution estimate might be seamlessly included [148, 149]. Reconstructions from
under-sampled data in a CS framework is only possible with MB algorithms,
not with analytical approaches.

The drawbacks of MB reconstructions are typically associated with their high
computational cost. For typical problems, inversion times are much longer than
for BP and the algorithmic complexity is much higher, O(n6) in 2-D and O(n9)
in 3-D. The actual run time however also depends on the sparsity of the model
matrix M and the number of iterations performed. The memory requirements
to store the model matrix M can also limit the possible applications of MB
reconstructions, especially in 3-D (O(n6)), unless matrix-free approaches are
used [139, 150].

4.3 Model-Based Reconstructions for (Pre-)Clinical
Optoacoustic Imaging

OA imaging has matured in the recent years from a pure proof-of-concept labora-
tory technology to a useful tool for biologists and pharmacologists in preclinical
research and for medical doctors in clinical diagnosis. Myriads of studies have
been reported like hepatic clearance [23], brain activity and damage [34, 96], car-
diac function [151], tumor morphology and physiology [33], and dermal imaging
[45]; and even more application �elds are currently under investigation.

(Pre-)Clinical and proof-of-concept studies also impose di�erent require-
ments on the reconstruction methods used. Both share the necessity to provide
the maximum image quality achievable. While in experimental studies image
quality can be optimized manually, this cannot be done in clinical routine where
reconstruction needs to be performed automatically. More importantly, tedious
o�ine reconstructions are not practical. Current clinical studies typically in-
volve real-time video-rate frame acquisition at multiple wavelengths, yielding
large amounts of raw data to be reconstructed3. For feedback to the exam-
iner, a live visualization is needed to �nd the suitable image ROI or to detect
dynamic processes such as heartbeat and pulsation [151, 152]. Currently, live
visualization is only possible using BP methods [17]. Unfortunately, BP is not
capable of providing the same image quality as MB reconstructions in typical
imaging scenarios [14]. MB reconstructions are computationally demanding and
video-rate MB reconstructions at su�cient resolution and image quality are an
active area of research.

The amount of raw data to generate images from has been steadily increasing
over the recent years, owing to the rapid progress in instrumentation technology
that enabled video-rate imaging. The key advancements were:

� Parallel detector arrays replaced scanned single element transducers. The
number of time-resolved electric pressure signals measured in parallel in-
creased from 1 to up to 512 [22, 127].

3For example, the perfusion experiment in Sect. 9.2 took 3 min to acquire, but required
more than 1 day of reconstruction time on a standard desktop computer.
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� Parallel data acquisition electronics with the same number of channels
prevented the need for multi-plexing. Consequently the achievable frame
rate is not reduced by the multi-plexing ratio of e.g. 1:3 or 1:8 [23, 127].

� Low noise electronics in the DAQ increased the resulting SNR which had
to be previously improved performing frame averaging. Assuming uncor-
related Gaussian noise, the SNR increases ∝ √navg, where navg is the
number of averages. Typically, tens of averages were taken for su�cient
SNR whereas low noise electronics allow for single laser pulse imaging
without averaging [22, 129].

� High power pulsed diode lasers are capable of delivering higher pulse rep-
etition rates compared to Nd:YAG lasers. The former limit of 10 Hz or
20 Hz has been shifted to up to 100 Hz [25]. Furthermore fast per-pulse
wavelength tuning capabilities of the OPO has eliminated idle times while
changing the wavelength. Consequently, video-rate imaging with >25
frame-sets per second in multi-spectral imaging and 100 frames per second
in monochromatic imaging has been realized [111].

Figure 4.3 illustrates the impact of the listed improvements on the (max-
imum) number of projections that can be acquired per second. The rate is
compared to the increase in computational power based on Moore's law (as-
suming a doubling ever 18 months). In the seminal work by Wang et al., a
single element transducer and a 10 Hz repetition rate laser were employed and
40 averages taken. The system consequently was able to provide 0.25 proj/s [22].
The recent generation small animal scanner described in Sect. 3.4 employs a 256
element transducer array in combination with a 10 Hz repetition rate OPO laser
and low noise electronics, i.e. frames can be acquired from single laser pulses.
In this way, acquisition of 2560 proj/s is possible [129]. A state-of-the-art, com-
mercially available clinical scanner compromises a 512 element volumetric probe
and a 100 Hz pulse rate laser. It is thus able to acquire 51200 proj/s [25]. It is
obvious that the increase of data generation capabilities of the recent systems
have considerably outperformed the progress of standard computational tech-
nology. Reconstruction time however even increases super-linear with number
of projections per image or the transition from 2-D to 3-D imaging increases
the image reconstruction duration even further.

After the data are acquired, an inversion framework is required that recon-
structs the best possible images from the measured data. For the small animal
scanner used in this work, the image ROI with su�cient image quality and sensi-
tivity is approximately 3 cm in diameter. The frequency content of the measured
signals is determined by the upper sensitivity limit of the detector at f=6.2 MHz
(-3 dB) which corresponds to a wavelength of λ = 230 µm and ultimately an ax-
ial resolution of 0.8λ = 180 µm [155]. Thus, typically an image discretization
with nx x ny=300 x 300 pixels is chosen to support the maximum resolution over
the entire ROI. The number of projections nproj is mostly �xed, but the number
of time-samples nt typically increases linearly with the number of image pixels
per dimension. BP methods compromise three independent, nested loops (in
2-D) that are simple to implement. Because no signi�cant additional memory
is required and the algorithm is intrinsically parallel, BP reconstructions are
readily implemented on GPUs and achieve real-time video-rate renderings at 50
Hz in cross-sectional and volumetric imaging.
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Figure 4.3: Progress in computational technology and optoacoustic detection
technology. In the semi-logarithmic plot, the progress of computational tech-
nology is plotted (blue line) according to Moore's law (a doubling every 18
months). The red symbols indicate the e�ectively acquired projections per sec-
ond for selected 2-D scanning (PAT: [22]; MSOT1: [30]), 2-D parallel detection
(MSOT64: [30]; MSOT256: [129] and Sect. 3.4; MSOT512: [153]) and 3-D
parallel detection systems (CUP: [154]; CUP512: [25])

Conversely, MB reconstructions impose much greater computational chal-
lenges. A typical problem consists of 300 x 300 = 90000 unknown image pixels
and 1273 x 256 = 325888 measured signal samples. The overdetermined system
of equations is thus governed by a model matrix M sized 325888 x 90000. In
double precision format, the matrix would require 218 GBs of memory. Luckily,
most of the matrix elements are zero because of the explicit time-distance re-
lationship of US pressure propagation. The fraction of �nite valued coe�cients
which have to be e�ectively stored is in the order of 1/nx, here 0.6 %. In a
sparse algebra format (Compressed Sparse Row), storage takes only 4.7 GBs
which is easily handled by standard desktop computers. Matrix vector multi-
plication Mf of the model M with the image vector f takes in the order of 1 s
then. However two matrix-vector multiplications (Mf and MT p) have to be
performed in each of the niter iterations during reconstruction. Typically, at
least niter = 15 iterations are needed to obtain a good estimate of the optimal
solution. The total reconstruction time per image on CPU is thus in the order
of 30 s, much slower compared to 0.1 s for a BP reconstructions. Naive imple-
mentations of MB inversion are approximately a factor of 300 x slower and thus
not suited for live visualization.

Because of the increasing gap between data acquisition capabilities and com-
putational power, the computational aspects of MB reconstructions for fast or
even video-rate imaging have become increasingly important. The three most
important computational characteristics of MB reconstructions are:

� Generation time of the model. If the model is stored as matrix and
re-used for multiple reconstructions, model generation (in the order of
several minutes for 2-D standard models) is not the crucial factor of re-
construction. The opposite is the case, if the model is barely re-used;
with matrix-free on-the-�y methods, model generation alone determines
the run time and thus feasibility of the method in practice.
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� Memory requirements to store the model. Matrix storage becomes
impossible for problem sizes with memory consumption that exceeds the
size of available memory. Memory considerations are crucial especially for
GPU implementations. The available memory on GPU is much smaller
compared to CPU RAM. If large problem sizes demand too much storage
like in 3-D imaging, matrix-free methods have to be used.

� Inversion time to solve Eq. 4.4 for one image or a given set of images
at a speci�c level of quality (with a certain number of pixels nx and a
certain number of iterations niter). In most cross-sectional MSOT imaging
scenarios, inversion time is the most important factor of reconstruction
performance, because the model can be stored in the memory and is re-
used multiple times.

Several approaches have been developed to address the above three limita-
tions. First, matrix-free methods have been developed to shatter the memory
limit [139]. The images are discretized using spherical voxels (blobs, or higher
order generalizations) and the corresponding pressure signals can be calculated
e�ciently independent of the voxels orientation. Alternatively, signals can be
obtained from FDTD methods that link signals via wave-equation based time-
propagators and require only a minimal amount of storage (a few copies of the
image ROI). Reconstruction is then performed on GPU by repetitive applica-
tion of that operator in combination with an iterative solver [150]. Such FDTD
methods o�er a maximum �exibility for selection of both acoustic properties
and regularization techniques, but are much slower than matrix-based methods.
Generally, GPU methods can greatly accelerate reconstruction speed, if mem-
ory restrictions are met and the algorithm structure �ts the GPU architecture
(see also Sect. 5.5). Moreover, transformation-based methods have been shown
powerful in overcoming computational limitations. First, most state-of-the-art
OA systems o�er geometrical symmetries (see Sect. 5.1). Whereas all analytic
reconstruction formulas are rooted on these symmetries, MB algorithms mostly
do not exploit them, but rather aim at solving an arbitrary inverse problem.
Chapter 5 presents a transformation-based approach that renders the model
matrix separable and thus enables fast reconstructions. Furthermore, sparsity
and transformations to sparse representations have been shown e�ective for re-
constructions. A sparsity-based inversion framework is presented in Chapter 6.
Finally, Sect. 7.6 discusses possible future approaches for fast and yet accurate
MB reconstructions.
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Chapter 5

Acceleration of Model-Based

Reconstructions: Exploiting

Tomographic Symmetries

Reconstruction time with MB inversion does typically not meet the requirements
of clinical imaging because of the large size of the inversion problems considered
and the need for multiple iterations. Symmetries are among the most powerful
tools to solve equations, but are most often not considered in MB inversion
algorithms. In the current chapter, symmetries in multiple OA scanners are
identi�ed, and a reconstruction framework is described with huge acceleration
gains from exploiting tomographic symmetries1. Performance is tested in full
and limited view detection geometries as well as the performance on CPU and
GPU architectures.

5.1 Symmetries in Optoacoustic Imaging

Standard MB reconstruction methods aim on solving the general inverse prob-
lem of minimizing Eq. 4.4. No speci�cs of the OA models are included and
no other assumptions are made except that the model M is sparse with mostly
zero elements.

Symmetries and transformations are the probably most powerful tools to
solve equations in general. Transformations allow to reformulate the problem
in a di�erent, more suitable basis via a coordinate transformation; symmetries
allow to reduce the dimensionality of corresponding (sub-)problems. For the
physical laws of motion, Noether's theorem states every continuous symmetry
implies conservation of the conjugate variable [157]. The resulting conservation
of energy and momentum are the most fundamental principles of physics.

For OA imaging, multiple symmetries are present in the governing equations
and the imaging systems:

� Time-shift invariance with a change of variable t → t′ = t + ∆t for ar-
bitrary ∆t results in conservation of the conjugate variable, the temporal

1Large parts of the results presented in this chapter have been previously published in
Medical Physics as Ref. [156].
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Figure 5.1: Illustration of symmetries in OA imaging. (a) For a tomographic
imaging system with rotation invariance, the detected signals are the same if
either the detector (blue) is rotated (dashed arrow) or the object (green) is
rotated by the same angle in opposite direction (solid arrow). (b) Corresponding
illustration for translation symmetry as found in e.g. raster scanning systems.
(c) In a system with re�ection symmetry, �ipping the detector location and
�ipping the object with respect to the symmetry axis result the same measured
signals.

frequency ω. The left-hand side of Eq. 3.5 is time-shift invariant, the
source term in pulsed illumination imaging is however not (t = 0 is dis-
tinct). For frequency domain imaging however, time-invariance leads to
conservation of frequency. Then acoustic signals are only detected at the
same frequency as the light modulation frequency ωUS = ωex [103, 158].

� Time-reversal invariance, t → t′ = −t, enabled time-reversal recon-
struction methods with same wave propagation for forward propagation
and reconstruction [136]. Similar to the initial value problem of forward
propagation, reconstruction is transformed into a boundary value prob-
lem with the boundaries given by the measured signals at the detection
surface and zero initial value. If time-reversal symmetry is broken, for
instance in the presence of a dissipative term, unmodi�ed time-reversal
reconstructions result in incorrect images [102].

� Rotational invariance of space (isotropy) with x → x′ = R∆ϕx where
x represents the two dimensional space vector x = (x, y)T and R∆ϕ =(

+ cos ∆ϕ + sin ∆ϕ
− sin ∆ϕ + cos ∆ϕ

)
with arbitrary ∆ϕ (Fig. 5.1(a)). Rotational

symmetry is found in circular scanning geometries in 2-D and spherical and
cylindrical geometries in 3-D. If a reconstruction problem is rotationally
invariant (in continuous formulation), the following three conditions hold:

1. The wave equation Eq. 3.6 is rotationally invariant. While this is
the case for homogeneous media, it is in general not valid in hetero-
geneous media.

2. The detection surface S is invariant under rotation: x ∈ S ⇒ x′ =
R∆ϕx ∈ S. The detection surface is circular (or multiple concentric
circles).
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3. The image ROI is invariant under rotation: x ∈ ROI ⇒ x′ = R∆ϕx ∈
ROI. The image ROI is circular and concentric with the detection
surface.

Although governing equations, image region, and detection surface must
obey rotational invariance, no such assumptions are made on the imaged
object and the measured signals themselves. Reconstructions of absorp-
tion distributions that are not rotationally symmetric can equally bene�t
as long as the reconstruction problem itself is rotationally invariant.

� Translation invariance x → x′ = x + ∆x leads to conservation of spa-
tial frequencies and is found with planar sensors as in raster scanning
microscopy, linear arrays, or z-scanning in cross-sectional imaging (Fig.
5.1(b)). The corresponding conditions as for the rotational case must be
met for translational invariance, too.

� Reflection symmetry for a given axis x → x′ = −x is often found as
implication of translational and rotational symmetry in multiple systems
(Fig. 5.1(c)). Re�ection is a discrete, 2-fold symmetry and the number of
independent symmetry axes is limited by the dimension of space.

The most important consequence of symmetries is regarding the solutions of
the wave equation: If the initial pressure p0(x) corresponds to signals pm(xd, t),
symmetries imply that p0(R∆ϕx) corresponds to pm(R∆ϕxd, t), i.e. the solution
of a rotated version of the image is a rotated version of the signals. Image and
opposite detector rotation have the same e�ect.

The above symmetry considerations can be translated from the continuous
to the discrete case to be used with MB reconstructions: Images, signals, and
propagation model are discrete. For a given experimental system, signals are
sampled at a �nite number of projections ϕi and time-instants tτ . Geometrical
symmetries are not a�ected by the choice of time-samples. Typically equidistant
sampling is chosen, tτ = τ ·∆t (τ = 1 . . . nt), with angular spacing of ∆ϕ between
two consecutive projections: ϕi = i ·∆ϕ (i = 1 . . . nϕ). Thus a nϕ-fold discrete
symmetry with ∆ϕ·nϕ = 2π is resulting. The discrete symmetry of the detection
surface requires the image discretization to have the same discrete symmetry.
For the circular case, the image grid is a polar grid with the same angular
spacing ∆ϕ as the detection surface (in principle, a rational multiple could also
be chosen). Typically, equi-distant radial spacing is chosen, too: ri = i · · ·∆r
(i = 1 . . . nr). For the planar case, an ordinary equi-spaced Cartesian grid can
be used.

For the rest of the section, the circular symmetry in 2-D is considered because
of the tomographic symmetries of the system used in this work and described in
Sect. 3.4. In principle, implementations for re�ection and translation symmetry
are alike; some of the special considerations and applications are discussed in
Sect. 5.6.
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Figure 5.2: Discretization of the image grid and model calculation. (a) The
image ROI is discretized to nϕ=5 and nr=3 equi-spaced pixels (blue circles).
Projection angles coincide with the grid discretization angles. For a given projec-
tion ϕ and time t, signals originate from an arc of radius ct which is discretized
by nint equi-spaced points (red diamonds). (b) Each integration point is bi-
linearly interpolated in angle and radius to the four neighboring pixels of the
image grid.

5.2 Model Generation in a Polar Grid Formula-
tion

In order to exploit rotational symmetry for MB reconstructions, Eq. 3.8 needs to
be discretized and modeled in such a way that the resulting matrix equation p =
Mf (Eq. 4.3) preserves the underlying symmetry of the continuous equations,
i.e. p = Mf ⇒ R∆ϕ,sigp = MR∆ϕ,imgf . The orthogonal matrices R∆ϕ,sig and
R∆ϕ,img e�ectively perform a rotation of signals and images by an angle of ∆ϕ.
In two dimensional representation of vectors p and f sized nϕ x nt and nϕ x
nr, respectively, rotation is a circular shifting of the rows by one. If restricted
to the �rst time-sample, R∆ϕ,t=1 is the permutation matrix with entries on the
lower diagonal. For the entire data vector, the rotation matrix is the Kronecker
product with the identity matrix in time samples: R∆ϕ,sig = R∆ϕ,t=1⊗ 1t (and
R∆ϕ,img = R∆ϕ,r=1 ⊗ 1r; for simplicity of notation, the indices indicating data
and image domain are omitted). R∆ϕ is an orthogonal matrix,i.e. R−1

∆ϕ = RT∆ϕ.

With the above de�nitions and rotational invariance, it follows2:

RT∆ϕMR∆ϕ = M ⇔ [M,R∆ϕ] := MR∆ϕ −R∆ϕM = 0 (5.1)

The procedure3 to obtain the model M is as follows [159]: For one projec-
tion at �xed position ϕi and time-sample tτ , a fan of rays originating from the
current detector location is generated that covers the entire image ROI (Fig.

2R∆ϕ is not well-de�ned, operating in both data and image domain with di�erent identity
matrices in the Kronecker product. For a rigor de�nition, all the arguments hold also for the
normal equations in the image domain only.

3The standard polar forward model generation code has been initially developed by. X.L
Déan-Ben.
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5.2(a)). The nint rays are equi-spaced in angle and the maximum distance be-
tween two rays in the ROI is smaller than the maximum grid spacing. Low nint
result in discretization errors and large nint result in long calculation times. The
integration in Eq. 3.8 along the arc with d = ctτ is approximated as discrete
sum of points on the rays (red diamonds). The points of the integration curve
do in general not coincide with the points of the image grid. Thus bi-linear
interpolation in angle and radius to the four neighboring grid points (a-d in
Fig. 5.2) is performed. Alternative interpolation schemes, as nearest neighbor
or spline interpolation are possible, but decrease accuracy or increase compu-
tational cost respectively. Finally, the temporal derivative ∂/∂t in Eq. 3.8 is
obtained numerically as central �nite di�erence with time di�erence ∆tderiv:

Mϕ=1,t=tτ =
Mϕ=1,t=tτ+∆tderiv −Mϕ=1,t=tτ−∆tderiv

2∆tderiv
(5.2)

Although bi-linear interpolation functions are not continuously di�erentiable,
the errors can be neglected if the time di�erence ∆tderiv is considerably below
the sampling time of the signals. The complete model M is then obtained by
repeating the above calculations for all time-samples (in parallel in vectorized
form) and projection numbers (sequentially).

The resulting complete matrix for all projections M is highly redundant
owing to the underlying rotational symmetry. The modeled signals of the second
projection can be obtained by the corresponding sub-matrix Mϕ=2 via pϕ=2 =
Mϕ=2f . Alternatively, rotation of the image by −∆ϕ, forward-modeling with
the sub-matrix of the �rst projection, Mϕ=1, and rotation of the signals by ∆ϕ
results identical signals. Consequently, all sub-matrices for higher projections
are entirely redundant and can be obtained from the �rst:

M =

nϕ−1∑
i=0

(R∆ϕ)
i
Mϕ=1(RT∆ϕ)

i
. (5.3)

In practice, the left-hand side is not calculated explicitly, but the sequence
of matrices on the right-hand side is applied to the image vectors. The rotation
by R∆ϕ is implemented as row shifting of the corresponding signals and images.

Matrix compression approaches similar to those described in Refs. [160, 161]
have been proposed for di�erent symmetries and o�er computational advantages
for two of three previously described aspects:

� Model computation only requires 1/nϕ of the time as only one projection
of the entire model is calculated. This is important in scenarios when
the matrix is barely re-used as for on-the-�y methods where it needs to be
recalculated in each iteration. Accounting for the �nite detector size in the
model considerably increases model generation time and then restriction
to only one projection is particularly bene�cial.

� Memory consumption is equally decreased to 1/nϕ of the original amount
by the matrix compression approach. Memory saving is crucial if the
number of projections is very large (particularly in 3-D imaging, [162])
and the model would else not �t the total memory; or on architectures
with comparably limited memory as on GPUs.
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� Inversion performance of the reconstructions is however not directly accel-
erated because the same number of FLOPs for matrix-vector multiplica-
tions has to be performed; bene�ts might however arise from the possibil-
ities to use GPUs or caching e�ects since e�ectively multiple right-hand
sides to Mϕ=1 are used.

For a realistic example, polar and Cartesian discretization matrices were cal-
culated using a 3 GHz dual-core processor and 8 GBs of RAM and implemented
as Matlab code. Data consisted of nt = 1768 time-samples and nϕ = 360 pro-
jections over 360°. The image ROI was 18 mm x 18 mm and 18 mm in diameter,
respectively, and discretized using nx = ny = 300 pixels in the Cartesian case
and nr = 250 x nϕ = 360 pixels in the polar case. The resulting matrix dimen-
sion, memory consumption, and calculation time can be found in Tab. 5.1. The
advantages of exploiting the rotational symmetry can be readily seen there.

metric dimension memory [GBs] time [s]
Cartesian (Mcart) 636480 x 90000 6.2 1517
complete polar (M) 636480 x 90000 7.1 1173
compressed polar (Mϕ=1) 1768 x 90000 0.02 3.3

Table 5.1: Comparison of matrix dimension, memory requirements, and calcu-
lation time for three di�erent MB approaches.

5.3 Expediting Reconstructions Using Symmetries

Most often, inversion is the crucial part in reconstruction of video-rate data-sets,
not the model generation (the model can be pre-calculated and used thousands
of times) or memory consumption (in 3-D it might become crucial, in 2-D re-
duction to 20 MB is not of crucial importance). Expediting reconstructions can
be achieved exploiting conservation of variables in the presence of symmetries.
Like the (temporal) frequency in the case of time, invariance under rotation
by an angle ∆ϕ implies a conserved variable L. L can be associated with the
angular frequency, or with the angular momentum in mechanics.

Conservation of L can be applied to the problem at hand to invertM , i.e. to
�nd its Eigenvectors (EV). According to Eq. 5.1, M and R∆ϕ are commutating
matrices. From basic linear algebra it is known that commutating operators
share a common set of EVs. Finding the EVs of R∆ϕ = R∆ϕ,t=1 ⊗ 1t then
simpli�es �nding the EVs of M . As �rst step, one needs to obtain the EVs of
R∆ϕ,t=1 while 1t will result in a degenerate subspace for each Eigenvalue. The
EVs of R∆ϕ are:

Ψl = exp(−i l · ϕ
2πnϕ

)⊗ 1t, (5.4)

for l = 0 . . . nϕ− 1. From those EVs, one can derive the corresponding operator

L =
∑
l

Ψl · l ·ΨT
l =: UTLDLUL, (5.5)

whereDL is the diagonal matrix with 0...nϕ−1 elements and UL is a unitary base
transformation matrix, namely the Fourier transformation in angle ϕ operating
independently on each time-sample. L is also commutating with M :
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[M,L] = 0. (5.6)

The next step is to transform the model matrix to the base of EVs of L.
With

p = Mf = UTL (ULMUTL )Uf =: UTLMLULf ⇔: pL = MLfL (5.7)

we obtain the model matrix in the new basis

ML = ULMUTL . (5.8)

Knowing the EVs and Eigenvalues of M or ML results the possibility to
perform reconstructions with a direct inverse approach (Eq. 4.5). However, the
model matrix ML is too large to calculate all EVs in straight forward matter.
However, the EVs of L are known with nϕ di�erent Eigenvalues. Each EV
of ML corresponds to one Eigenvalue l of L and is a linear combination in the
corresponding Eigenspace of L. ForML, a direct consequence is that the matrix
elements mij linking di�erent Eigenvalues of L, li 6= lj must vanish due to the
conservation of l, i.e. li 6= lj ⇒ mij = 0. So non-zero (NZ) elements of ML are
restricted to mij where li = lj . For each l, this is a block of size nt x nr and
nϕ blocks exist in total for the block-diagonal matrix ML. The number of NZ
matrix elements is bound to nt x nr x nϕ elements compared to nt x nr x n

2
ϕ for

M (however, as sparse matrix, a large fraction of the elements of M is zero), as
illustrated in Fig. 5.3(a) and (b). Each block of the matrix (and corresponding
parts of signal and image) can be stored and processed independently. If the
number of NZs in each block is su�ciently large compared to its size, dense
algebra formats can be used instead of sparse formats. Dense formats can be
more memory e�cient by up to a factor of two and much higher computational
e�ciency might be achieved.

Fourier coe�cients of real-valued data are redundant with the coe�cient at
negative frequency being the complex conjugate of the corresponding coe�cient
at positive frequency. For the image vector elements of fL it implies fL=l =
(fL=−l)

∗ where (∗) denotes the complex conjugate and l is taken modulo nϕ.
Equal considerations can be made for signal vectors pL. The consequence for
reconstruction is that negative frequency −l elements of pL can be obtained
computationally e�cient from the corresponding positive frequency elements
of pL (pL=−l = p∗L=l) instead of from explicit calculations (pL=−l = ML=−l ·
fL=−l). Thus almost 50 % of model storage and calculation time corresponding
to negative frequencies can be spared. Furthermore, re�ection symmetry leads
conservation of parity and sin- and cos-terms are not mixed. So ML is not
complex but real-valued.

The work-�ow of the forward modeling with the proposed polar approach is
illustrated in Fig. 5.3(c). Instead of directly calculating the pressure signals via
M (1'), the right-hand side of Eq. (5.7) is used and the calculations are split in
three parts (1)-(3):

1. Calculate the (angular) transformed image fL = ULf via parallel, column-
independent FFT.

2. Perform batched block-wise multiplications with the sub-blocks of ML for
non-negative frequencies l in a dense algebra format to obtain the signal
vector pL=l = ML=lfL=l. Coe�cients at negative frequencies are obtained
by complex conjugation of their positive frequency counterparts.
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Figure 5.3: (a) Illustration of the structure of a standard forward model ma-
trix M . In the large matrix with dimensions determined by the number of
unknown image pixels and known signal samples, most of the coe�cients are
zero. The NZ coe�cients (often only 1 %) are distributed almost throughout
the entire matrix. (b) Although the dimensions of the matrix are the same
after transformation to the angular frequency domain, the distribution of non-
zero coe�cients is di�erent. Owing to rotational invariance, NZ coe�cients are
restricted to dense blocks on the diagonal. Each block corresponds to an an-
gular frequency and the total number is given by the number of projections.
(c) Work�ow with the polar model: Instead of directly calculating the signals
corresponding to an image with the standard forward model M (black arrow,
(1')), calculation is alternatively performed in three steps: (1) Transformation
of the image to angular frequency domain using FFT on a per-row basis. (2)
Forward modeling step independently performed for each angular frequency us-
ing the corresponding block of the matrix. (3) Transformation of the obtained
signals on a per-row basis using inverse FFT.

3. Calculate the signals p = UTL pL via column-independent inverse FFT.

The advantages of the proposed approach compared to direct implementa-
tion of M are less memory consumption, fewer total FLOPs for matrix-vector
multiplications, and the possibility to work with dense algebra formats; the two
additional transformations UL are e�ciently implemented using FFT. Recon-
structions are subsequently performed using standard LSQR iterative inversion
calculating M in Eq. 4.6 in the proposed manner. MT is implemented in the
same way using the Hermitian conjugate operations in reversed order.

The polar model formulation does not only allow to expedite iterative recon-
structions but also to e�ciently obtain the direct inverse M† for realistic-sized
problems. Because UL as unitary matrix has full rank, M† can be obtained as
product of inverse matrices:

M† = UTLM
†
LUL. (5.9)

ML is block-diagonal and thus also its inverse must be block-diagonal with
blocks of the same size. Each block of the inverse corresponding to a speci�c l
is then obtained by independently inverting the block of the forward model ML

with same l. Inversion is e�ciently performed using e.g. SVD and the block size
size, nt x nr is su�ciently small compared to the size of the total matrix ML

so that the inversion is even fast for the sum of all nϕ blocks. If regularization
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Figure 5.4: Performance of the polar reconstruction approach with simulated
paraboloid absorbers. (a) Original image. (b) Iterative reconstruction using
Cartesian image discretization. (c) Reconstruction with polar model using iter-
ative inversion. (d) Corresponding reconstruction using the direct inverse.

is needed, truncated SVD can be performed, thresholding small singular values
zero. Note that the resulting inverse M†L requires only the same amount of
memory for storage as the forward model ML

4; this is orders of magnitude less
than the inverse matrix of M would require (also calculation times for M† are
not feasible on standard computers).

Inversion is again performed in a three step manner: (1) pL = ULp, (2)

fL = M†LpL, (3) f = UTL fL. The reconstruction process becomes extremely
e�cient and fast: The total reconstruction process has the same cost as one
application of MT

L ; this is 50 % of a single LSQR iteration and also much faster
then applying M† in standard basis - if it could be obtained at all - because of
the large number of NZs in the inverse in standard representation.

To test the proposed method, a numerical and an experimental5 set of OA
data was selected. The numerical phantom consisted of four paraboloid ab-
sorbers of 1 mm, 1.5 mm, 2 mm, and 3 mm diameter, respectively, with peak
absorbance of unity (Fig. 5.4(a)). The shape of the corresponding signals is
known analytically [138] and sampled at nt = 400 time-instants at 1° spacing
over 360°. Images to be reconstructed were discretized with nx = ny = 250
pixels in the Cartesian case and nr = 200 and nϕ = 360 in the polar case.
Using the same computational environment as described in Sect. 5.2, images
were either reconstructed using Matlab's lsqr-function with niter = 150 itera-
tions and no penalizing term or using the direct inverse. For quantitative image
quality assessment, the root mean square di�erence (RMSD) was calculated:

RMSD =
∥∥∥f − f (ref)

∥∥∥
2
/
∥∥∥f (ref)

∥∥∥
2
, (5.10)

where f is the image to be compared against the reference image f (ref).
Fig. 5.4 shows the reconstructions obtained by LSQR with Cartesian image

discretization (b), by the proposed polar approach with ML in iterative manner

using LSQR (c), and the reconstruction from the direct inverseM†L. All methods
correctly reconstructed the absorbers and RMSD errors versus the original in

4Solving the normal equations, the block size (and memory consumption) could be de-
creased to nr x nr. During reconstruction, then MT

L pL needs to be calculated which takes as

long as applying M†
L directly.

5The mouse data were kindly provided by T. Jetzfellner and originally published in Ref.
[163].
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Figure 5.5: Experimental reconstructions of a baby mouse head using 360 pro-
jections in 1° steps. (a) Conventional model-based reconstruction. (b) Iterative
reconstruction using the polar algorithm. (c) Reconstruction using the direct
inverse. The calculation times for per slice were 104 s, 15.3 s & 0.1 s, respec-
tively.

(a) were similar: 0.023 (b), 0.024 (c), and 0.024 (d), respectively.
Performance of the method was also tested with experimental data of 34

cross-sectional slices of an ex vivo baby mouse head acquired with a scanning
tomographic system. The details on the system and acquisition of the data-set
can be found elsewhere [163]. In brief, illumination at 650 nm was provided
by an OPO laser at 10 Hz pulse repetition rate and the light beam was con-
verted into a 2 mm thick light sheet at the surface of the head. OA pressure
signals were captured by a cylindrically focused transducer element that was
scanned around the object in 3° steps. Signals were then digitized by an analog-
digital-converter at 100 MSa/s sampling rate and stored on a PC for further
processing. nimg = 34 di�erent planes were acquired by translation of trans-
ducer and illumination in z-direction. Prior to image reconstruction, measured
projections were interpolated to 1° spacing and signals band-pass �ltered from
0.1 MHz to 8 MHz to minimize noise and artifacts. Then, the whole data-set
was reconstructed in parallel with e�ectively multiple right-hand sides for the
reconstruction algorithms considered.

The data-set consisted of nϕ = 360 projections per slice, each having nt =
1768 samples. To obtain high-resolution images, the ROI of 18 mm x 18 mm
(or diameter) consisted of nx = ny = 300 or nr = 250 pixels and niter = 50
iterations were performed in case of LSQR. Calculation of the conventional
sparse model matrix Mcart took 1517 s and its storage required 6.2 GBs of
RAM. Calculation of the polar model ML was much more e�cient, taking only
364 s and requiring only 0.64 GBs of RAM. Calculation of the inverse matrix
M†L required additional 32 s and 0.64 GBs of RAM.

The reconstructions of one slice are shown in Fig. 5.5. Fig. 5.5(a) presents
the reconstruction using conventional Cartesian image discretization with itera-
tive LSQR inversion. Solving the inverse problem required 104 s per slice. Fig.
5.5(b) presents the same slice using the proposed polar approach in iterative
manner. At no loss of image quality, reconstruction took only 15.3 s per slice.
Finally, Fig. 5.5(c) presents the reconstruction from the direct inverse. Pre-
venting the need for multiple iterations, reconstruction was fastest, taking only
0.1 s per slice.

The reconstruction speed increase by factor of 6.8 x can be attributed to two
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key aspects of the iterative implementation: First, the number of operations in
the forward model step is reduced from 397 MFLOPs in the Cartesian case to
159 MFLOPs in polar case, a factor of 2.5 x. Storage and thus also memory
transfer was decreased by even a factor of 9.7 x. Second, using dense algebra
increased the achievable performance. The actually resulting total performance
depends then on problem size including number of images considered, if arith-
metic operations or memory transfer bandwidth are limiting performance, on
Matlab's overhead in executing multiple serial tasks instead of a single large task,
and on the overhead from the two additional FFT operations. The latter is con-
siderably increased if the number of projections can not be factorized in small
prime numbers as exploited by Cooley-Tukey FFT implementations. When per-
forming reconstructions with the direct inverse, an additional speed-up by 150 x
resulted simply from reducing the workload to e�ectively 0.5 iterations instead
of 50 iterations during LSQR.

5.4 Polar Reconstructions in Limited View Ge-
ometries

In the last section, only full view tomographic imaging geometries spanning
360° have been considered. Full view detection systems are in general preferable
due to the higher image quality and the smaller condition number of the model
matrix [114]. However, in many real system embodiments only an incomplete
detector coverage with less than 360° is available. Accessibility of the object as
in skin imaging, limitations imposed during the manufacturing process of the US
probe, or simply cost of instrumentation are among the determining factors of
available coverage [42, 111, 154]. In the limited view con�gurations considered
here, only nϕ,lim < nϕ projections are available with the same angular spacing
∆ϕ as in the corresponding full view case.

A polar forward model Mlim for the limited view case can be readily for-
mulated, too. Also, memory e�cient implementations using only Mϕ=1 are
directly applicable, restricting the summation in Eq. 5.3 to available projec-
tions (0 . . . nϕ,lim − 1). The angular frequency case, ML, is rooted on the con-
servation of angular frequency from the image to the signal domain and vice
versa. However, there is a distinct direction with no detection elements. Rota-
tional symmetry is thus broken. The signals p at projections nϕ,lim + 1 to nϕ
are required to obtain the correct Fourier transformed signals pL, but they are
not known from the measurements. Extra-/Interpolation to not covered areas
induces considerable errors and might thus only be performed for very small
angles not covered.

Rotational symmetry is broken through the shape of the covered detection
surface; wave propagation itself is still conserving l and the signals obtained by
Mlimf are the same as for UTLMLfL for the projections available. Thus, the
limited view case model can be reformulated using ML:

Mlim = VlimM = VlimU
T
LMLUL. (5.11)

Vlim is the restriction from all (full view) projections to the actually available
projections. The nϕ,limnt x nϕnt matrix Vlim is obtained from the identity
matrix by dropping rows corresponding to non-available data. Images can then
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Figure 5.6: Polar reconstruction work�ow in a limited view scenario. For the
�rst iteration the measured signals are zero-�lled for projections with unknown
signals. The signals for all projections are then used for reconstruction of an
image estimate using the inverseM†L. The obtained image is then forward mod-
eled by ML. The resulting signals are kept for those projections not covered by
the detection surface, while the signals for the other projections are replaced by
the original measurement data. With the updated signals, additional iterations
are performed until su�cient convergence.

be reconstructed by iteratively minimizing ‖Mlimf − plim‖22 via LSQR with the
above implementation of Mlim using ML.

The direct inverse M†L,lim cannot be as simply reformulated. The symmetry
of the detection surface is broken and l of the data cannot be uniquely obtained.
Consequently, M†L,lim is not expected to be block-diagonal and thus not as

simple to obtain as M†L. Although all factors are easily invertible, the inverse
of the matrix product in Eq. 5.11 is not the product of its inverses

M†lim 6= V †limU
T
LM

†
LUL, (5.12)

because neither Vlim nor ML have rank ntnϕ. Images with direct inverse

M†L and zero-�lling pzero for missing projection data or any other estimate
guess will not be improved by repetitive application of the inverse and forward
matrix pair because M†LML is by de�nition an orthogonal projector. However

signals corresponding to ∆pzero = UTLMLM
†
LULpzero have larger deviations

from the solution's signals plim,sol = Mlimfsol at measured projections and
smaller deviations at projections only estimated or �lled initially with zeros.
Errors induced by initial zero-�lling can then be iteratively reduced replacing
the signals at unknown samples by ∆pzero

6. The work�ow of the reconstruction
method in the limited view case based on the inverse M†L is illustrated in Fig.
5.6 and compromises the following algorithmic steps:

6Convergence of the algorithm to the correct solution as e�ective Neumann series can

be proven by showing that both orthogonal projectors V T
limVlim and MLM

†
L do not have a

common set of EVs. The EVs of the �rst operator are in the angular space and of the second
in the angular frequency space. Uncertainty principle then forbids common EVs.
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Figure 5.7: Polar reconstruction performance in a limited view scenario. (a)
Iterative Cartesian reconstruction with input data from 270°using 150 itera-
tions. (b) Corresponding iterative reconstruction using the polar approach. (c)
Reconstruction from the direct inverse assuming zeros for the signals from the
missing detecton angles. (d) Corresponding reconstruction using four corrective
updates with forward model and direct inverse. (e) Convergence rates in limited
view with the direct inverse for 360°(black), 270°(red), and 180°(blue) and con-
vergence rate for iterative Cartesian reconstruction in (a) for comparison (black
dashed).

1. Zero-padd the measured signals p0 = V Tlimplim.

2. Transform the signals to the angular frequency domain pL,i = ULpi.

3. Reconstruct an image fL,i with the direct inverse from pL,i: fL,i = M†LpL,i.

4. Calculate the signals corresponding to the estimated solution pL,i+1 =
MLfL,i.

5. Transform the signals to the original representation pi+1 = UTL pL,i+1.

6. Update the signal vector combining original signals and improved esti-
mates : pi+1 = V Tlimplim + (1− V TlimVlim)pi+1.

7. Repeat steps (2) - (6) for i→ i+ 1 until su�cient convergence.

8. Transform the solution image to the original domain: fi+1 = UTL fL,i+1.

To test the proposed approach with limited view data, the same experimental
mouse head data-set was used and either all nϕ = 360 projections (360°), the
�rst nϕ,lim = 270 (270°), or the �rst nϕ,lim = 180 (180°) projections were kept,
while the others were discarded prior to reconstruction. Detector coverage was
chosen similar to two OAT systems in our lab (Sect. 3.4; [129]). The same image
parameters were chosen like for the full view case in the previous section. Due to
the missing projection information, the best MB solutions for di�erent detector
coverage angles are deviating. Limited view reconstructions are not minimizing
the full view data. The respective reference images were reconstructed using
LSQR inversion at niter = 150 iterations to ensure convergence.

Figure 5.7 presents the results of the polar approach in the limited view case.
Figure 5.7(a) shows the reconstruction for a Cartesian image discretization from
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nϕ,lim = 270 projections. Fig. 5.7 (b) presents the corresponding polar recon-
struction with iterative LSQR inversion. The reduced number of projections
decreased memory consumption and run time approximately proportionally for
the Cartesian model (4.6 GBs and 78 s per slice compared to 6.2 GBs and 104
s for the corresponding full view case). The polar model formulation had the
same requirements as for the full view case, but was still much more computa-
tionally bene�cial than standard Cartesian discretization (0.64 GBs and 15.3 s
per slice). Figure 5.7(c) presents the reconstruction from the direct inverse and
prior zero-padding of the signals for non-measured projections. Di�erences in
structure and intensity compared to (a) and (b) can be observed. The latter
can be understood from the decreased signal energy of pL,zero compared to pL.
Performing niter = 4 iterative limited view corrections to (c) using model ML

and inverseM†L, a correct reconstruction based on the inverse was obtained (d).

The convergence rates7 of di�erent methods and detection coverage angles
are plotted in Figure 5.7(e). RMSD versus the corresponding reference LSQR
reconstruction after 150 iterations is calculated as function of iterations per-
formed. For the full view case,M†L was the correct inverse and further iterations
lead no further substantial improvements (black). In the 270° limited view case,
the reconstruction converged to the correct solution as the number of iterative
updates is increased (red). For the smallest coverage of 180° only, RMSD de-
creased much slower as function of iterations and did not approach zero (blue).
While reconstructions by iterating the inverse rendered correct images, iterative
LSQR reconstructions exhibited visual artifacts because of the larger condition
number of the problem and the absence of a penalizing regularization term. The
convergence of LSQR as function of iterations in full view with Cartesian model
is plotted for comparison (black dotted) and was much slower than convergence
using the inverse-based updates in all cases.

The bene�t of polar reconstructions8 over Cartesian approaches in limited
view geometries depends on several factors, mainly the angle covered. While
the computational burdens per iteration of Cartesian reconstruction decrease
proportionally to the number of projections nϕ,lim, polar methods have con-
stant computational burdens irrespective of the detection angle. This leads an
overhead by a factor of nϕ/nϕ,lim per iteration compared to the full view case.
For detection angles much smaller than 360° and LSQR reconstructions [111],
this overhead might not be compensated by the advantages derived from com-
putationally more e�cient implementation in the full view case (less storage
and run time). However, using the direct inverse convergence might be faster
compared to LSQR reconstruction (again depending on the coverage); the cost
per iteration are the same as for one LSQR iteration. For example, to achieve
a certain image quality for the presented data-set at 270° detector coverage
(RMSD < 0.15), 3 iterative updates had to be performed with the inverse ma-
trix. To achieve the same RMSD, at least 8 LSQR iterations were needed. The
overhead of nϕ/nϕ,lim = 1.33 x is compensated by the gain of 5.1 x per iteration

7The limited view algorithm presented here is e�ectively a preconditioned gradient descent
minimization. Future methods might employ a version as preconditioned conjugate gradient
algorithm with an enhanced convergence rate for ill-posed problems such as the limited view
OA inversion.

8By polar an implementation of the model in the angular frequency domain is meant

(ML or M†
L), not a polar image discretization alone or pure matrix compression approaches

(Mϕ=1).
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compared to the Cartesian model and the 2.6 x reduced number of iterations
in total compared to LSQR approaches. Image reconstruction takes then 11.8 s
(LSQR with Cartesian model) and 0.93 s (polar using the inverse), respectively;
the polar approach with the direct inverse thus accelerated reconstructions in
the most common limited view geometry by factor of 12.7 x at the same image
quality on a standard PC.

5.5 Graphics Processing Units and Polar Recon-
structions

In the last two decades, GPUs have developed from simple 2-D image display
hardware to dedicated 3-D calculation and rendering devices with huge pro-
cessing capabilities. Rendering of photo-realistic 3-D scenes at video-rate has
become possible on relatively cheap standard hardware. GPUs have been opti-
mized to perform millions of simple operations as geometrical coordinate trans-
formations e�ectively in parallel. Requirements of 3-D rendering have caused
GPUs to provide a much higher peak performance than CPUs in executing these
operations. More than a decade ago, it was realized that GPUs might not only
render graphics, but might also be used for other computations as linear algebra
operations or X-CT reconstructions [164]. Since then, unprecedented growth of
computational power and development of high-level, 'non-expert' GPU-APIs
(application programming interface) have turned GPUs into standard compu-
tation platforms, also referred to as general purpose GPUs (GPGPU); GPGPUs
are applied for numerical mathematics, cryptography, molecular dynamics sim-
ulations, bioinformatics, and many more [165�168].

GPU platforms gain their peak power through massive parallelism. Although
each processing sub-unit is less powerful than a CPU, operation of hundreds or
even thousands of these units in parallel results a higher peak performance.
The architecture of CPUs and GPUs is fundamentally di�erent and thus also
the applicable programming paradigms. Traditional CPUs execute parallel tasks
sequentially and implement the SISD paradigm (single instruction, single data),
performing one operation at the time. High performance is achieved through
e�ective hierarchical caching of memory latency; so program branching and
interdependency of variables do not considerably decrease performance of SISD
architectures. Conversely, GPUs only perform e�ciently in highly parallel tasks
according to the SIMD paradigm (single instruction, multiple data). Instead of
sequentially executing the same operation multiple times, e.g. a point operation
on all image pixels, the operation is concurrently performed for all image pixels
by multiple processing sub-units.

The typical architecture of a GPU device is illustrated in Fig. 5.8(a). The
parallel processing units (only four in the sketch) are denoted as cores. A modern
GPU compromises at least several hundreds of cores. The cores are clustered
into sub-groups, denoted as blocks (two in the sketch). Each core has its own set
of memory registers. Read-/write-access to registers is fast, but their number is
very limited compared to CPU registers. Shared memory is available to all cores
within the same block and can be used for data transfer. All cores have access
to the global memory of the GPU. However synchronization barriers might
be needed to prevent concurrent write-access of di�erent cores and to ensure
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Figure 5.8: GPU architecture and work�ow of reconstructions on GPU with
Matlab. (a) Illustration of GPU memory hierarchy and processing unit (cores)
organization. Each of the parallel processing units executes a thread and has a
set of its own register memory. Several threads are grouped to blocks that can
exchange data via shared memory. Access to global GPU memory is possible,
but comparatively slow and potentially requires synchronization. Global GPU
memory can also be accessed by the CPU. (b) Work-�ow to perform reconstruc-
tions in Matlab on the GPU using the MEX interface and CUDA. The main
workload is realized within the GPU kernel functions.

deterministic program behavior. Furthermore, global memory access (especially
write) is orders of magnitude slower than local register memory access. Memory
access latency is not hidden by a sophisticated cache hierarchy as for CPUs.
High performance might be still achieved if memory access patterns are regular:
If adjacent cores access adjacent memory blocks (coalesced memory access),
memory transfer in the order of tens GB/s can be achieved. As consequence of
that architecture, numerical problems can be solved computationally e�ciently,
if: (1) the problem can be split into a set (or a sequence of sets) of independent
sub-problems of su�ciently small size; (2) little data exchange between sub-
problems is needed; (3) if data exchange cannot be avoided, data transfer is
local (using the shared memory per block); (4) multiple arithmetic operations
are preformed per memory access operation to capitalize the peak computational
power instead of being limited by memory bandwidth; (5) no data adaptive
branching is needed; (6) total memory consumption is below total GPU memory.

CUDA is a proprietary9, high-level API for GPGPU programming in C that
hides the speci�cs of the hardware [166]. With CUDA C language extension,
GPU operations and its memory can be accessed by the API and parallel tasks
are implemented as so-called kernels. The code of a kernel is executed multiple
times working on di�erent sub-problems in parallel. Each kernel can access its
own registers, associated shared memory, and the global memory. A parallel
task is ended, once all kernels have �nished and all results have been written
to the global memory. One particular advantage of CUDA is that it is bundled

9CUDA runs only on NVIDIA GPUs; OpenCL is platform independent and runs both on
CPUs and GPUs.
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Figure 5.9: Performance of polar reconstructions on GPU. (a) Total run time
for 16 concurrent images as function of iterations. Performance is linear with
an o�set resulting from initialization and data transfer. (b) Total run time as
function of images for 30 iterations. The performance increase is super-linear
because of naturally higher parallelism and reduced ratio of global memory
access.

with several kernels (and APIs) for standard numerical tasks such as FFT, the
BLAS dense algebra library, a sparse algebra library, and multiple more.

Multiple applications of GPU computing for the purpose of medical imaging
have been reported; among them are X-CT image reconstruction and photon
propagation modeling for optical imaging approaches [165, 169]. In particu-
lar, also OA reconstruction algorithms have been implemented using BP, MB
in spherical voxel approximation, or k-wave FDTD approaches [17, 136, 170].
However, for a good performance both the algorithm has to be designed for
GPUs and the actual implementation has to be e�cient for the selected prob-
lem size, model of GPU, etc. Particularly tweaking performance with the latter
might be a tedious task for custom-written kernels.

Porting of the proposed polar reconstruction algorithm to GPU was done
using Matlab's build in MEX-API (Matlab executable) and CUDA libraries in
C in order to provide an interface invokable from the standard Matlab environ-
ment (Fig. 5.8(b)). MEX is a C API to provide access to the Matlab variables
and environment. The functionality of the MEX program code for polar re-
constructions on GPU mainly consists in data handling: Memory allocation
and management, data transfer to and from the GPU, library initialization and
termination, and call of the CUDA kernels and CUDA library functions.

The polar reconstruction approach is particularly suited for GPU imple-
mentation because of four main reasons: (1) Reduced memory consumption
compared to standard model representations; (2) coalesced memory access with
dense algebra formats; (3) main operations FFT and matrix-matrix multiplica-
tion are available as highly optimized standard CUDA library functions; (4)
intrinsically parallel nature of all algorithmic steps consisting of small sub-
problems. Besides data handling overhead in the MEX function, reconstruction
work is performed by the following CUDA functions or kernels (implemention
of the algorithm in Sect. 5.4):

1. Batched FFT of the signals in the angle variable for all time-points and
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images (nϕ x ntnimg) using the cuFFT library real-to-complex FFT func-
tion. Step (1) implements UL: pL,i = ULpi.

2. Permutation of signal data representation to real-valued variables with
time-sample as leading matrix dimension (nt x nimg x nϕ) by a custom-
written kernel function. Because of the simplicity of the task as indepen-
dent, one-step operation, neither memory consumption nor performance
is crucial for the overall performance of the algorithm.

3. Batched, independent matrix-matrix multiplication of nϕ real-valued ma-
trices (nr x nt) with (nt x nimg) matrices using cuBLAS Level 3 function-

ality. This step implements applying the inverse M†L: fL,i+1 = M†LpL,i. If
no further iterations are needed, (4)-(7) are spared.

4. Corresponding batched matrix-matrix multiplications to apply the for-
ward model matrix ML: pL,i+1 = MLfL,i+1

5. Permutation of signal data to the same representation as prior to re-
ordering in (2).

6. Batched inverse FFT as in (1).

7. Replacement of available projection signals by memory block copy of orig-
inal signals, implementing pi+1 = V Tlimplim+(1−V TlimVlim)pi+1. If further
iterations are needed, (1)-(7) are repeated.

8. Permutation of image data using a re-ordering kernel as in (5).

9. Batched inverse FFT of the image as in (6).

The above algorithm has been implemented in C using CUDA libraries (ver-
sion 6) and single variable precision. Reconstruction data consisted of the mouse
head data-set restricted to 270° detector coverage. Interpolated signals consisted
of nimg = 1 . . . 16 slices where each had nt = 1200 (or nt = 1800) time-samples
and nϕ,lim = 256 projections. The image ROI was discretized using nϕ = 346
and nr = 200 (or nr = 300) pixels. niter = 1 . . . 30 iterations were performed.
As computational platform, an Intel i-7 multi-core CPU operating at 3.2 GHz
was used equipped with 64 GBs of RAM and a Matlab 2014a environment. The
GPU platform consisted of a NVIDIA GTX 780 graphics card with 2304 parallel
cores and 3 GBs of total memory.

The resulting reconstruction quality is independent of performing inversion
on CPU or GPU. Single variable precision did not decrease visual image quality
and has a negligible in�uence of RMSD compared to other reconstruction pa-
rameters like number of iterations or selected SOS. Single precision formats are
however improving computational performance. The resulting total GPU recon-
struction run time is plotted in Fig. 5.9 as function of iterations performed (a)
and number of images reconstructed in parallel (b) for the two di�erent numbers
of image pixels. Initialization and data transfer, mainly of the matrices, took
0.5 s (0.6 s for the higher resolution case). Each additional iteration then took
0.076 s (0.11 s) for all 16 images in parallel, which corresponds in average to
0.005 s/iteration/image (0.007 s/iteration/image). The performance depended
non-linearly on the number of images reconstructed as can be observed from
(b), showing the total run time including initialization and 30 iterations for
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Figure 5.10: Di�erent reconstruction schemes for multi-frame data-sets with
e�ects on latency time and overall performance. Individual reconstruction (top
row): Immediately after acquisition of the �rst frame (red), all 5 iterations are
performed on an individual basis. After the reconstruction of frame #1 is done,
reconstruction of frame #2 (green) is started. Latency time (dashed line of
the same color) between acquisition and display of the �rst frame is smallest
at a low overall performance rate. Block-wise reconstruction (middle row): All
frames of the data-set are �rst acquired and then reconstruction is performed
block-wise for all frames concurrently. Although overall performance is best, a
huge delay is introduced for the �rst frame. FIFO reconstruction (bottom row):
The reconstruction of all frames is immediately started after their acquisition.
Reconstruction is then performed in parallel for all available frames that have
not been fully reconstructed yet. The number of processed frames might vary
and the iteration number during one step is di�erent for di�erent frames. With
the proposed scheme, the average latency time is adaptively minimized at good
overall performance rate.

di�erent numbers of images. The achieved performance increase probably then
stems from improved ratio of arithmetic operations to memory access opera-
tions. The GPU implementation presents approximately a 13 x improvement
over the corresponding CPU run time for the same problem (see Sect. 5.4).

On GPU, images could thus be reconstructed with niter = 5 iterations in
0.024 s per image in average (0.035 s), corresponding to up to 40 FPS (28 FPS)
in reconstruction rendering. The average reconstruction time was thus below
the frame acquisition time of 100 ms for the scanner described in Sect. 3.4
and in the order o the 20 ms of the clinical handheld system reported in Ref.
[111]. Video-rate MB reconstructions at >10 FPS and high-quality have thus
been enabled using the proposed polar approach on a comparably cheap stan-
dard GPU architecture. However, the current approach did not yet provide
real-time visualization and feedback. Besides minor implementation related de-
tails as a non-recurring library initialization and matrix transfer as well as an
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asynchronous signal and image transfer, the fundamental obstacle is the latency
time: If 16 images are reconstructed at a time, 1.5 s have passed since the �rst
frame has been completely acquired until the other 15 frames are acquired as
well. Performance on individual frame basis might lower reconstruction perfor-
mance below 10 Hz. Real-time reconstruction and visualization approaches will
have to �nd a suitable compromise between image quality, achievable overall
frame rate, and latency. Two strategies might however decrease the latency
time: First, in multi-spectral imaging scenarios, typically ≥ 5 wavelengths are
employed. For anatomical visualization, only one wavelength is needed and the
required frame rate is reduced by the corresponding factor. For spectral anal-
ysis, all wavelengths need to be reconstructed before spectral decomposition;
thus all frames for di�erent wavelengths can be reconstructed block-wise with
advantages in achievable performance. Second, latency can be reduced by using
an interwoven reconstruction scheme (see Fig. 5.10). Because the proposed
inversion method (similar for LSQR) is non-adaptive with respect to the input
data and stationary (operations do not depend on iteration number), calcula-
tions might be performed concurrently for frame #1 in its 5th iteration, for
frame #2 in its 4th iteration, and so on. Using a FIFO (�rst in, �rst out)
scheme with variable number of concurrent images, additional frames are added
to the parallel inversion scheme as soon as the acquisition of the frame is �nished
and frames are removed as soon as su�cient iterations have been performed for
those frames. Using such a schemes on a per MSOT-frame basis or in continuous
mode, latency is minimized and overall reconstruction frame rate automatically
adjusted to the system's frame rate (unless reconstruction is already faster on
individual basis or slower for arbitrary large number of concurrent images).

5.6 Discussion, Outlook, and Conclusions

The proposed symmetry-based reconstruction approach has been demonstrated
for a cross-sectional circular tomography geometry. The proposed methodol-
ogy is also applicable to other detection geometries in 2-D and 3-D. Suitable
geometries in 3-D are:

� Spherical detection surfaces with rotational invariance in two axes [19,
42, 154]. The applicability of the approach might however be limited
by the often very limited coverage well below 4 π, the irregular detec-
tor distribution in at least one of the axes in the discrete case, and the
computational burden of the basis transformation to spherical harmonics
(although asymptotically fast algorithms exist).

� Cylindrical detection surfaces with rotational in one and translational
symmetry in the other axis. Matrix compression methods with one pro-
jection only follow at hand from a suitable image discretization. For the
z-axis (translation), FFT is equally applied to split the problem in inde-
pendent spatial z-frequencies. After splitting based on both symmetries,
su�ciently small sub-blocks are left for further processing and inversion.
One fundamental di�erence between rotational and translational symme-
tries however exists: In real systems, the number of translational steps
is �nite and the detection aperture is thus naturally limited. The as-
sumption of periodic boundary conditions might induce artifacts. Enlarg-

66



ing the reconstructed area over the actual ROI (with signal repetition or
zero-padding), using focused detection elements, or applying iterative cor-
rections via an exact forward model are potential means to reduce those
artifacts. The proposed inversion approach is particularly advantageous
for 3-D z-scanning with cylindrically focused detectors [18, 30]. In �rst
approximation, all signals originate from a plane and reconstructions can
be performed independently in 2-D. Corrections of out-of-plane artifacts
require a 3-D model accounting for the correct detection element shape
(see Sect. 3.3 and Sect. 7.3). Detected signals are elongated compared to
point-like detectors and sparsity of the resulting model matrix and con-
sequently the reconstruction speed are considerably decreased. Unlike in
conventional MB representations, matrices of the proposed approach are
dense and signal elongation does not in�uence the memory requirements
of the matrix or the corresponding reconstruction speed. It is thus ex-
pected possible to perform high-resolution 3-D reconstructions of a whole
mouse body at multiple wavelengths within several minutes on a standard
PC. This would be even faster than conventional approaches in performing
stacked 2-D reconstructions and orders of magnitude faster than conven-
tional 3-D SIR-MB algorithms.

� Planar detection surfaces o�er translational symmetries in two axes and
the above considerations also apply there. Image quality in microscopy
set-ups or linear array scanning might considerably bene�t from 3-D de-
tector shape modeling compared to �rst order 'in-plane' approximations
[45, 171]. Currently, realistic-sized MB reconstructions are complicated by
long inversion times, even for precomputed matrices in a matrix compres-
sion approach. The proposed method with its inversion e�ciency might
put high resolution MB reconstructions in routine application for those
set-ups. In addition, MB inversion might also easily include the e�ects of
focused illumination as found in optical and hybrid focus OA microscopy
setups [59].

� Non-conventional scanning geometries often o�er rotational and trans-
lational symmetries [113]. Because both symmetries are mixed in the same
axis, the resulting blocks are too large to be e�ciently inverted. Matrix
compression approaches are however still applicable and image discretiza-
tion di�erent than Cartesian, as for example hexagonal closest packed lat-
tices with hexagonal voxel shape might exploit existing symmetries best
to minimize model generation burdens.

Regularization might also be applied in the context of the proposed inver-
sion approach. While CS approaches using l1 regularization are possible but not
favorable because of the regular detection pattern, quadratic l2 regularization
can be seamlessly included in the inversion process. Using the direct inverse,
only rotationally symmetric terms as standard Tikhonov or smoothness opera-
tors are possible. Directional terms as horizontal derivative operators [114] or
general operators in polar discretization are restricted to be used with LSQR
inversion only.

Furthermore, acoustic properties on which the model is based do not nec-
essarily need to be ideal. Any propagation medium might be modeled as long
as rotation symmetry is still given. This might be the case for a layered SOS
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distribution of concentric rings as �rst order circular approximation, for statis-
tical acoustic wave scattering [134], or for frequency dependent acoustic atten-
uation [101, 102]. For non-symmetric problems, approximations of the correct
inverse might be obtained from the symmetry based inverse matrix and the non-
symmetric forward model using linear perturbation theory for Moore-Penrose
pseudo-inverse matrices or Neumann series.

Symmetry-based approaches might also be combined with the multi-scale
and sparsity-based approaches presented in the following chapter: Either aiming
at an acceleration of polar reconstructions by data and model sparsity or by
reducing the e�ective workload by a multi-scale model formulation.

In summary, polar symmetry was shown to be an e�cient means to expedite
MB reconstructions for standard cross-sectional MSOT systems. Compared to
conventional iterative MB reconstructions in the most common limited view
geometry, the reconstruction process could be accelerated by a factor of 5.1 x
using advantageous dense algebra model formulation and by an additional factor
of 2.6 x using the direct inverse of the the model. The total acceleration on CPU
by 12.7 x could be further increased by porting the reconstruction approach to
GPU: Rooted on standard GPU libraries, reconstructions could be accelerated
by a factor of 13 x compared to the corresponding CPU implementation. With
the inversion methodology developed, high-resolution MB reconstructions of
frame sequences have been enabled at video-rate of up to 40 FPS for a modern
OAT system. With the achieved performance and an additional latency time
minimizing inversion scheme, high �delity MB live visualization at >10 Hz is
ready to hand.
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Chapter 6

Acceleration of Model-Based

Reconstructions: Sparse

Problem Formulation

For acceleration of MB reconstructions towards real-time performance in clini-
cal imaging, a polar reconstruction approach has been developed as described
in the previous chapter. It is based on a space transformation and an associ-
ated problem reformulation in the angular frequency domain that exploits the
underlying rotational symmetry. The model matrix is 'compressed' losslessly,
i.e. the e�ective matrix size (or the number of entries) size is reduced without
introducing errors into the solution. The reduced reconstruction time results
from a decreased matrix size and from bene�cial structural properties in the
new representation after transformation.

Similarly, 'lossy compression' in the reconstruction process can be aimed for,
i.e. reduction of computational burdens at the price of small deviations in the
reconstructed images. If the problem formulation is su�ciently sparse - similar
to the good compressibility of certain digital images - computational bene�ts
can be much greater compared to the errors introduced. 'Lossy compression'
can be likewise achieved by suitable transformations of the representation space.
Yet, 'lossy compression' is not restricted to systems with strict geometrical sym-
metries where coe�cients exactly vanish to zero. Instead, the proposed 'lossy
compression' approach is based on general (inexact) properties of OA data-sets
and of the OA wave equation (Eq. 3.5).

In this chapter, a 'lossy' transformation-based approach with a highly sparse
problem formulation is presented in order to provide fast MB reconstructions
towards clinical OA image reconstruction for arbitrary detection geometries1.

1The work presented in this chapter has been published in IEEE Transactions on Medical
Imaging, Ref. [172]
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6.1 Sparsity, Wavelet Packets Transformation, and
Principal Component Analysis

The expected e�ciency of compression approaches can be characterized by the
resulting sparsity after transformation. A signal representation is considered
sparse, if its energy is distributed to mainly a few large valued coe�cients while
the large majority of coe�cients is low in value2. Sparsity can be quanti�ed by
several measures as entropy, ratio of l1 to l2 norm, or the Gini-index g used in
this work [173]:

g = g(f) = 1− 2

N∑
i=1

|fi| (
N − k + 0.5

N
)/

N∑
i=1

|fi| , (6.1)

where N is the length of vector f with entries fi ordered in increasing abso-
lute order. The Gini-index is the normalized area between the Lorentz-curve of
the signals and the main diagonal. The Lorentz-curve is the fraction of maxi-
mum relative signal energy as function of relative number of coe�cients used for
its representation. The more non-linear the Lorentz-curve of a signal represen-
tation, the higher is its Gini-index: A constant signal is least sparse with g ≈ 0,
while a signal with one �nite coe�cient and zero everywhere else is maximally
sparse with g = 1. To calculate Gini-indices of multi-dimensional signals and
matrices, quantities are vectorized, a representative sub-set is taken (for large
matrices) and the vector is restricted to NZs for reasons explained further below.

One particular transformation that might result a sparse representation is
the Fourier transformation implemented as FFT in 1-D, 2-D, or 3-D. FFT does
not only render sparse representations for exact spectral localization, but also
when certain frequencies are dominant as exploited in image compression. How-
ever, due to exact localization of Fourier coe�cients in frequency domain, corre-
sponding signals become completely de-localized in the time domain. For signals
with a certain localization in time, the Fourier signal representation might not
render those signals particularly sparse.

The wavelet (WL) transformation in contrast o�ers localization properties
in both time and frequency domain [174]. As for the Fourier transformation,
coe�cients are obtained from integration with a kernel which is the so called
mother WL at di�erent scales (typically a power of two) and translation posi-
tions. Many mother WLs have a �nite length in time with the �rst few moments
vanishing and a band-limited frequency range; for instance, the daubechies1 WL
(Fig. 6.1) is a bi-polar, piecewise constant WL with vanishing mean. The WL
coe�cients obtained by decomposition (also called analysis) can be used to re-
compose the original signal (synthesis) from the coe�cients like in the case of
the Fourier transformation.

In the discrete case, WL decomposition of a signal is implemented as �lter-
banks and coe�cients are obtained from convolution of the �lter with the signal.
The �lter-banks have band-pass characteristics: The so-called approximation co-
e�cients are obtained from a low-pass �lter and the so-called detail coe�cients
are obtained using the matching high-pass �lter. Resulting coe�cients are re-
dundant and can be down-sampled (typically by a factor of two) without loss

2Signals are not only considered sparse, if they contain mostly zero elements resulting
a small l0 norm; signals are also sparse, if most elements can be replaced by zero without
signi�cant error, i.e. if the l1 norm is small.
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Figure 6.1: Illustration of wavelet and wavelet packets decomposition. The
original image (left) is decomposed to four sub-bands applying a daubechies1
mother wavelet (red) in both horizontal and vertical direction. The resulting
horizontal (3), vertical (1), and diagonal (4) detail coe�cients and the approx-
imation (2) coe�cients are visualized in the di�erent quadrants of the central
image. For a wavelet decomposition, higher level decomposition is achieved
by recursive application on the approximation coe�cients only (right top). In
contrast, all sub-bands are further decomposed for higher level wavelet packets
decomposition (right bottom).

of information. Higher level Ldec WL decomposition can be realized by recur-
sive application of WL decomposition on the approximation coe�cients and is
resulting in an asymmetric binary tree of coe�cients. Each leaf corresponds to
one of the overlapping frequency bands and the number of coe�cients of a node
is approximately half of its parent node. A 2-D WL decomposition is obtained
applying the 1-D decomposition for both axes and results in a asymmetric quad-
tree of approximation, and vertical, horizontal, and diagonal detail coe�cients
(Fig. 6.1). The detail coe�cients are not further decomposed in WL analy-
sis and their number is, opposed to the approximation coe�cients, not further
reduced for higher decomposition levels.

Wavelet packets (WP) analysis extends WL decomposition to a full, symmet-
ric binary tree (quad-tree in 2-D), where also detail coe�cients are recursively
decomposed to all levels [175]. Finally, all 4Ldec leafs in 2-D have approximately
the same size of 4−Ldec of the original (Fig. 6.1). Analysis is performed using the
same �lter-banks but recursively applying both low-pass and high-pass �lter.

Sparse representations in the WL domain (and also in the WP domain in
both 1-D and 2-D) of real signals from audio, video, and also OA applications
have been achieved [176]. The signals can then be e�ectively represented by
storing only the few high valued coe�cients and the large majority of low val-
ued coe�cients can be discarded. Besides a reduced storage and a more e�cient
processing, sparse signal representations are also often e�ective for noise reduc-
tion.

WP (and WL) transformation of signals (e.g. images) f to its coe�cients
fWP , containing the coe�cients of all leaves, are linear operations in 1-D and 2-D
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and can be formally denoted as U
(dec)
WP

3. The coe�cients of only one speci�c leaf

i can be obtained via U
(dec)
WP,i, which is the corresponding sub-block of the matrix

U
(dec)
WP . After processing, the signals can be recomposed from the coe�cients

using U
(rec)
WP .

In signal processing, PCA is another important transformation for multi-
dimensional data sets [177]. PCA, also known as Karhunen-Loève transfor-
mation, is the basis transformation that represents a set of observations with
minimal error in energy when the number of basis vectors (components) is trun-
cated. In multi-spectral imaging, each pixel x of an image f = fλ,x is assumed
a superposition of a few di�erent, unknown spectra measured at di�erent wave-
lengths λ. PCA aims at �nding the spectra and their magnitude in each pixel
by de-correlation of the correlated images. PCA is a blind method and not
based on assumptions on the spectra, but rather on their statistical distribution
in the pixels. Formally, the PCA transformation fPCA = fPCA,λ′,x of a signal
f = fλ,x is

fPCA = UPCA · f. (6.2)

The unitary matrix UPCA is the matrix that diagonalizes the covariance4

matrix G with EVs in decreasing order:

G := (f− < f >x)(f− < f >x)T =: UTPCADGUPCA, (6.3)

where < f >x denotes the mean of f with respect to x for each λ.

Application of PCA increases sparsity of the signals through de-correlation.
As optimal linear transformation, data might be su�ciently well represented by
a few of the principal components only. PCA can thus be e�ciently used for
dimensionality reduction of multi-dimensional data to a few statistically relevant
uncorrelated components.

Multi-dimensional signals can also be transformed to a combined represen-
tation, applying both WP decomposition and PCA. First, all signals are 2-D
WP decomposed via UWP . Then the multi-dimensional set of WP coe�cients is
PCA transformed with respect to the spectrum, resulting in a combined PCA-

WP representation fPCA−WP = UPCA · (f · (U (dec)
WP )

T
). Both transformations

operate independently in the spatial (U
(dec)
WP ) and spectral (UPCA) dimension

of the signal. However, the resulting representation is not independent of the
order because UPCA depends non-linearly on the signals.

Combination of the two transformations leads potentially a sparser signal
representation than achievable with a single transformation. Combined repre-
sentations have been used for signal de-noising purposes (see Sect. 7.1) and are
crucial for the reconstruction acceleration presented in the rest of this chapter.

3U
(dec)
WP is however not a unitary basis transformation matrix if the WL coe�cients are an

over-complete representation and not a basis.
4Deviating de�nitions of PCA use the correlation matrix instead.
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6.2 From a Sparse Wavelet Packets Model to a
Sparse Inverse Matrix

In order to accelerate the reconstruction process, a formulation of OA recon-
structions in the WP is sought that is sparse and approximately separable;
then the corresponding WP inverse5 can be obtained and reconstructions are
rendered computationally e�cient owing to the sparse problem formulation.

The underlying model matrix is obtained similar to the polar forward model,
but with Cartesian image discretization instead [159]. The problem is then re-
formulated in the WP domain: The new image vector fWP is obtained from a
2-D WP transformation of the original image f in x- and y-direction (fWP =

U
(dec)
WP f)6. Equally, the corresponding signals p are transformed to the WP

domain (pWP ) via a 2-D WP decomposition in projection angle ϕ and time-

sample t (pWP = U
(dec)
WP p). The model representation in the WP domain is

given by:

MWP = U
(dec)
WP MU

(rec)
WP . (6.4)

The sub-block of the model corresponding to one speci�c image domain leaf i

can be obtained viaMWP,i = U
(dec)
WP MU

(rec)
WP,i. U

(rec)
WP,i denotes the linear operator

corresponding to WP synthesis with coe�cients of leaf i only, assuming all other
coe�cients to be zero. Each of the sub-blocks MWP,i is approximately 1/4Ldec

of the total size of MWP . If higher level WL decomposition (Ldec > 1) was
performed instead, three blocks from the detail coe�cients with a quarter of
the size would remain, compared to 1/16, 1/64, etc. for all WP decomposed
blocks. The resulting matrix still contains many zero elements because of the
localization properties of WP transformation.

The sparsity in the WP formulation arises also in a non-exact manner from
a general property of the governing OA wave equation. In the time domain,
origination of signals and measured TOF at a certain detector are related via the
distance ct. In the frequency domain, detected frequencies are related to spatial
frequencies of the image via the acoustic dispersion relation ω2 = c(k2

x+k2
y). In

combined space of the WP transformation, the OA wave equation also exhibits
a localization property. The integration curves in Eq. 3.8 are arcs and related
to the spherical Radon transformation. In the far-�eld approximation, when
structure size is much smaller than the distance to the detector, integration
arcs can be approximated as lines and the governing OA equations become a
'localized Radon transformation'. Localization properties then follow from the
Fourier-slice theorem: A localized cosine image structure with modulation of
a certain image frequency in x-direction creates a directional OA wave pattern
[178]. Signals will be mainly detected for lateral elements at the left and at the
right and only minor will be measured by the elements at top and bottom. The
detected signals will be localized around the time-frequency corresponding to
the image modulation frequency. If a much higher modulation frequency was
chosen, resulting signals would be at much higher frequencies and thus in a
di�erent signal WP leaf. Similarly, if modulation was along y-direction, signals

5The framework for calculation of the WP inverse has been developed by A. Rosenthal and
has been previously published as Ref. [178].

6With a similar notation like in the previous chapter, corresponding operators are denoted
by the same symbol without explicit index for image or signal domain.
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would be mainly measured by top and bottom elements and thus be localized
with respect to the angle ϕ. In this case, such an image would mainly excite
signals in another di�erent signal WP leaf.

Consequently, di�erent WP signal coe�cients are excited by di�erent image
WP coe�cients. Coe�cients of the same image leaf do however excite similar
signal coe�cients. The cross-talk, i.e. excitation of the same signal coe�cients
by di�erent image leaves, is expected to be low.

Figure 6.2: Illustration of direct reconstructions in the WP domain: The
model matrix is formulated in a WP representation and split into sub-matrices
MWP,1...4 (illustrated for Ldec = 1), each representing a sub-band of the im-
age (black arrows). Subsequently, each sub-matrix is inverted independently

(M†WP,1...4). Images can be reconstructed e�ciently from the direct inverse ma-
trices in a non-iterative procedure (red arrows). Adapted with permission from
Ref. [172].

Sparsity of MWP is a direct consequence of this localization. Although
there are many NZ elements, the matrix is expected to be sparse with few large
valued elements and most of the NZs small in value. quantitatively, the Gini-
index of the matrix is thus expected to be high. Because image coe�cients
belonging to one leaf i excite only a subset of similar signal coe�cients and do
not signi�cantly excite the other coe�cients, speci�c signal coe�cients can be
omitted for a certain leaf i and the corresponding rows can be discarded in the
matrix MWP,i. Notably, signal coe�cients kept might belong to di�erent signal
leafs and respectively the sub-sets of retained signal coe�cients are di�erent for
each image leaf. The rows kept are calculated from the matrix elements that
belong to the largest prede�ned fraction in at least one of the columns. The
reduced forward model matrices in the WP domain are then obtained by
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M
(red)
WP,i = V

(red)
i MWP,i, (6.5)

where V
(red)
i is obtained from the identity matrix by discarding columns that

belong to signal coe�cients to be discarded by the above procedure. Finally,

each of the reduced matrices M
(red)
WP,i is much smaller than 4Ldec in size and

particularly only a tiny fraction of the size of the original matrix MWP because
the number of columns is reduced as well.

The structure of the sparsity from localization properties and the low cross-
talk render the blocks relatively independent. Signal coe�cients can be mainly
attributed to one speci�c image leaf. Therefore it is expected that the inverses

M†WP,i of the reduced model blocks M
(red)
WP,i are reasonable approximations of

the corresponding blocks of the inverse (MWP )
†
of the entire model MWP . The

size of each of the blocks is su�ciently small to invert them with reasonable
computational resources.

Reconstructions can be e�ciently performed on a per image leaf basis where
the respective inverse is applied to the corresponding signals coe�cients and the
entire image is obtained by summing the images from all leafs (Fig. 6.2).

The inverse of the full matrix in WP formulation is approximately the con-

catenation of the the inverse sub-matrices M†WP ≈
∑
i V

(exp)
i M†WP,iV

T,(red)
i ,

where V
(exp)
i is obtained from the identity matrix by keeping all columns that

belong to image leaf i.
Generally, most elements of the inverses are NZs. However, they are expected

to be sparsely distributed. Most of them can thus be e�ectively thresholded to
zero without introducing a signi�cant error in the reconstructed image. All
inverse matrix elements (n,m) that contribute less than a fraction of τmat to
the absolute sum of their respective row and column are set to zero:

M
†,(thresh)
WP (n,m) =

M†WP (n,m) if
|M†

WP (n,m)|∑
n orm|M†

WP (n,m)| < τmat,

0 else.
(6.6)

WP transformation and related sparsity of the matrix have thus contributed
in two ways to simplify and accelerate the reconstruction problem: First, by ren-
dering the problem approximately separable with su�ciently small block size so
that direct reconstruction can be performed instead of iterative reconstruction.
Second, by reducing the computational requirements of applying the inverse by

sparsi�cation of its elements. The memory requirements of M
†,(thresh)
WP can be

reduced using sparse algebra formats, if at least 50 % of the elements can be
thresholded. And equally important, the number of arithmetic operations to be
performed during reconstruction is equally reduced then.

6.3 Sparsity in Optoacoustic Data-Sets

Transformations can likewise be used to create sparse signal representations, not
only sparse model representations. For example, the PCA transformation in the
temporal domain has been shown to render the signals sparse in the context of 4-
D PET reconstructions [179]. In OA imaging, sparse signal representations have
been exploited for the purpose of de-noising and reconstruction acceleration, too.
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WL decomposition in time-samples of all projections of a single frame leads
a particularly sparse signal representation [176]. OA signals are well represented
in a WL basis as broad-band, well-localized, non-stationary signals. In contrary,
independent random Gaussian noise is non-sparse irrespective of the basis used.
Soft or hard thresholding of coe�cients below a certain, statistically optimal
level thus e�ectively retains most of the signal energy while rejecting large por-
tions of the noise. In multi-spectral imaging, signals for di�erent excitation
wavelengths are highly correlated while the corrupting noise is mostly uncor-
related between frames. This statistical prior improves de-noising performance
compared to individual frame de-noising [180]: The multi-frame data are even
more sparsely represented in a combined WL-PCA domain, where the WL co-
e�cients are PCA transformed with respect to the spectral dimension. Hard
thresholding of those coe�cients results in noise rejection (see Sect. 7.1).

For the purpose of reconstruction acceleration of a single frame, signal repre-
sentation in the frequency domain with subsequent small coe�cient hard thresh-
olding was proposed [181]. Reconstruction is then performed iteratively with a
model in the frequency domain. Improved computational e�ciency was achieved
by discarding all rows of the model matrix where the corresponding signal coef-
�cients is rejected. One disadvantage of that iterative method, however, is that
the Krylov-subspace explored (see Eq. 4.7) is changed and the set of equations
is e�ectively modi�ed. Resulting reconstructions might thus be a�ected by arti-
facts unless additional regularization is performed. For the case of multi-frame
data-sets (temporal series), a low-rank matrix estimate of the measured data
has been proposed for reconstruction acceleration [182]. The low-rank matrix
estimation is basically performing PCA in the frame-dimension and rejecting
low energy principal components. Reconstruction is then performed with an
e�ectively reduced number of frames and savings are given by the fraction of
rejected principal components.

The multi-frame approach has the advantage of being compatible with ar-
bitrary reconstruction approaches as only a reduced number of single frame
reconstructions is performed. But as only whole frames can be discarded, per-
formance under both aspects of de-noising and time saving might not be optimal
when only a small number of frames is considered. Furthermore, sparsity on a
single frame basis is not accounted for at all. Single frame accelerations rely on
the sparsity of the data in the representation of the model. If a sparse signal in
a certain domain is transformed to the deviating domain of the model prior to
reconstruction, sparsity is typically lost and no time savings can be expected. If
the signals are sparse in a speci�c domain, the corresponding model might not
be computationally disadvantageous in this domain: For example, frequency
domain signals might be much sparser than in the time domain signals, but the
frequency domain model has 100 % NZ elements (with accordingly increased
memory consumption), while their fraction is often only 1 % in time domain.
Vice versa, if the model is particularly sparse like in the time domain, signals
might however not be su�ciently sparse for substantial bene�ts based on signal
sparsity methods.

Substantial savings can only be obtained if the inversion method employed
does directly bene�t from increased sparsity of the signals in terms of run
time. If multiple iteration steps are performed and sparsity decreases in each
step, overall savings might be marginal. One extreme case are TR recon-
structions with sparse data, where the sparsity would decrease in each time-
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propagation step; having to perform hundreds of those steps, no substantial
bene�t is achieved. So the overall possibilities of e�ective acceleration from
sparse signal representations are restricted to domains where (1) signals are
su�ciently sparse; (2) an accurate and e�cient model is available at given com-
putational resources; (3) the inversion method bene�ts from sparsity; and (4)
overall performance exceeds that of standard iterative approaches.

Based on the above considerations, the proposed high-throughput sparsity-
based inversion scheme aims at performing reconstructions in the domain of the
inverse described in the previous section, the WP domain. A good performance
is expected, because (1) signals are assumed to be sparse not only in the WL
domain but also in the related WP domain; (2) e�cient formulations of forward
and inverse model are available; (3) reconstructions in sparse algebra directly
bene�t from sparsity of the signal vector; and (4) with the available direct
inverse matrix, no iterations need to be performed but only one matrix-vector
multiplication.

In order to increase signal sparsity of single frames, signals p are transformed

to the 2-D WP domain, pWP = U
(dec)
WP p. Then a hard signal thresholding

operator Tsig is applied, setting all small valued coe�cients to zero p
(thresh)
WP =

Tsig(U
(dec)
WP p). The threshold level is chosen in such a way that approximately

a fraction τsig of the signal energy is retained (
∥∥∥p(thresh)

WP

∥∥∥2

≈ τsig

∥∥∥pWP

∥∥∥2

).

The reconstruction approach with single frames represented in the WP domain

(pWP ), subsequent hard thresholding (p
(thresh)
WP ), and reconstruction with the

sparsi�ed inverse matrix (M
†,(thresh)
WP ) is referred to as WP-T. Reconstruction

without signal (pWP ) and matrix thresholding (M†WP ) as originally proposed in
Ref. [178] is referred to as WP-O.

In multi-spectral, multi-frame data-sets, all frames are �rst transformed to

the WP domain7 via U
(dec)
WP . Then the PCA transformation UPCA is applied

in the spectral dimension λ and all principal components are kept. The signal

representation in this combined domain is then pPCA−WP = UPCAU
(dec)
WP p =

U
(dec)
PCA−WP p. In combined representation, hard thresholding of small valued

coe�cients is performed to reduce the number of NZ coe�cients (p
(thresh)
PCA−WP =

Tsig(pPCA−WP ) = Tsig(U
(dec)
PCA−WP p)). Like in the single-frame case, the thresh-

old level is chosen based on the fraction of overall signal energy kept, τsig.
Reconstruction with this data is referred to as PCA-WP-T strategy. For com-
parison, a strategy of pure PCA thresholding is also implemented, thresholding
entire principal components λ′ to zero, i.e. e�ective frames, not only single co-

e�cients (p
(thresh)
PCA = TPCA(UPCAp)). The thresholding operator TPCA retains

approximately τsig of the original signal energy. This thresholding strategy is
referred to as PCA-T.

Overall, inversion is boiled down from iterative reconstruction to one matrix-
vector multiplication

fPCA−WP = M
†,(thresh)
WP p

(thresh)
PCA−WP , (6.7)

7Like in Chapter 5, all operators involving multi-frame signal and image vectors are ob-
tained from their single-frame counterparts as Kronecker product with the identity matrix.
For simplicity of notation, the same symbols are however used without explicit indices.
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where most of the coe�cients of both the matrix and the signal vector are
zero. By sparing calculations involving zero coe�cients, a considerable gain over
a non-sparse problem formulation is thus expected. The achievable gain of the
method depends on the e�ectiveness of the thresholding approach to create zero
entries without introducing signi�cant errors.

Thus, the individual steps of the sparsity-based reconstruction approach are:

1. Calculate the forward model M (see also Ref. [159]).

2. Calculate the inverse modelM†WP in the WP domain (see also Ref. [178]).

1. Calculate the forward model MWP,i in WP formulation for one WP
image leaf i from the original forward model M .

2. Discard the insigni�cant columns of MWP,i.

3. Calculate the inverse model matrix M†WP,i for leaf i.

4. Repeat (2.1)-(2.3) for all remaining leafs.

5. Concatenate all inverses M†WP,i (M
†
WP )

3. Sparsify the inverse model M†WP by hard thresholding of insigni�cant

coe�cients (M
†,(thresh)
WP = Tmat(M

†
WP ))

4. Transform the multi-frame signals p to the combined representation

(pPCA−WP = U
(dec)
PCA−WP p).

5. Sparsify the signals (p
(thresh)
PCA−WP = Tsig(pPCA−WP )).

6. Reconstruct the images via direct, sparse reconstruction

(fPCA−WP = M
†,(thresh)
WP · p(thresh)

PCA−WP )

7. Transform the images back to the standard domain (f = U
(rec)
PCA−WP fPCA−WP ).

6.4 Performance Evaluation with Multi-Spectral,
Volumetric, and Temporal Data-Sets

The proposed sparsity-based inversion framework has been tested with three
experimental OA data-sets: A multi-spectral data-set of a cross-sectional slice
of a �nger, a volumetric scanning of multiple cross-sectional slices of the same
�nger, and the temporal monitoring of an ICG injection in the digital vascula-
ture8. Another application scenario of the sparse WP reconstruction approach
in the context of SOS auto-focusing is discussed in Sect. 7.4. All code was
implemented in Matlab 2014a and was executed an Intel i-7 CPU at 3.2 GHz
using 64 GBs of RAM.

Multi-Spectral Data-set

TheMulti-spectral Data-set was acquired with the setup described in Sect. 3.4

8The experimental details of data-set acquisition and anatomical and physiological back-
ground are discussed in Chapter 8 and Chapter 9.
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Figure 6.3: E�ects of signal representation and thresholding. (a) Lorentz-curves
of the Multi-spectral Data-set signals in standard (black, Gini-index g=0.56),
WP (blue, g=0.87), PCA (green, g=0.81), and PCA-WP representation (red,
g=0.92) visualize the extraordinary sparsity of the proposed signal represen-
tation. (b) Corresponding Lorentz-curves after superimposing 10 % Gaussian
noise, resulting reduced sparsity (g=0.51, g=0.57, g=0.80, and g=0.79). (c),
(d) Reconstruction time (solid curves) and deviation from the reference recon-
struction (dashed curves) as function of signal energy thresholding level τsig for
the signal representations in (a) and (b), respectively. Adapted with permission
from Ref. [172].

and Sect. 8.3. The imaging location at the author's right index �nger was cho-
sen between both interphalangeal joints (see Sect. 8.1). The data-set consisted
of six frames at di�erent wavelengths of λ={715 nm, 730 nm, 760 nm, 800 nm,
850 nm, and 900 nm}. The model matrix M used for reconstruction featured
256 x 256 pixels and 256 projections with 1086 time-samples. SOS was selected
as c = 1537m/s. For comparison, iterative reconstruction was performed using
LSQR at niter = 50 iterations (LSQR-50). Alternatively, LSQR was stopped
prior to convergence, performing niter = 15 iterations only (LSQR-15) as po-
tential means to reduce the reconstruction time compared to LSQR-50. For
WP reconstruction, a daubechies6 mother wavelet and a decomposition level of
Ldec = 2 were selected. A Noisy Data-set was created from the Multi-spectral
Data-set by superimposing random Gaussian noise with 10 % peak-to-peak sig-
nal magnitude to show the intrinsic de-noising capabilities of the algorithm.

The matrix M contained only 0.6 % NZ elements and its Gini-index was
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Figure 6.4: Cross-sectional �nger reconstructions of the Multi-spectral Data-
set at di�erent wavelengths (from 715 nm at the left to 900 nm on the right)
using di�erent reconstruction methods. (a) Fully converged iterative recon-
struction (LSQR-50). (b) Unthresholded direct WP inversion (WP-O). (c) Pro-
posed sparse inversion with model and data thresholding (PCA-WP-T). (d), (e)
Absolute di�erences of the reconstructions in (b) and (c) with respect to (a),
respectively. Scale bar 1 cm. Adapted with permission from Ref. [172].

g = 0.31. Owing to the relatively low sparsity, attempts to reduced the number
of NZ matrix elements further by discarding the lowest 50 % of entries resulted
in a reconstruction error of RMSD=0.53 and are thus not a viable option for
substantial acceleration. Conversely, the model in WP formulation had a much
higher sparsity of g = 0.92, suggesting low cross-talk. The inverse matrix ob-
tained was similarly sparse with g = 0.84, and could thus be e�ciently thresh-
olded. Choosing a threshold of τmat = 0.001, the remaining fraction of NZs
was reduced by a factor of 6.3 x. The RMSD induced through matrix thresh-
olding was comparatively low (RMSD=0.06). Focus can either be shifted on
reconstruction speed-up or on image quality upon selection of τmat.

The e�ects of signal representation and thresholding on sparsity, reconstruc-
tion speed, and RMSD error are visualized in Figure 6.3. Fig. 6.3(a) plots the
Lorentz-curves of the Multi-spectral Data-set for standard (black), WP (blue),
PCA (green), and combined PCA-WP representation (red), respectively, with
corresponding Gini-indices of g=0.56, g=0.87, g=0.81, and g=0.92. Combining
WP and PCA transformation resulted an extraordinary sparse signal represen-
tation with most of the energy (>95 %) con�ned in a very small fraction of the
coe�cients (<5 %). Fig. 6.3(b) plots the corresponding Lorentz-curves of the
Noisy Data-set. Although the overall characteristics were similar, signals were
less sparse (g=0.51, g=0.80, g=0.57, and g=0.79). Thresholding at a suitable
level results then in rejection of most of the noise while keeping most of the
signals.

Figure 6.3(c) plots the relative reconstruction time and the RMSD errors vs.
unthresholded WP-O reconstructions of the Multi-spectral Data-set as function
of thresholding level τsig for WP-T (blue), PCA-T (green), and PCA-WP-T
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(red). The RMSD (dashed curves) increased almost linearly with rejected sig-
nal energy and the behavior was similar for all representations. Conversely,
reconstruction time (solid curves) bene�ted highly non-linearly from thresh-
olding. Both WP-T and PCA-T considerably led reconstruction speed-ups for
increased thresholds; but both were considerably outperformed by the combined
PCA-WP-T approach. Fig. 6.3(d) plots the reconstruction savings and errors
for the Noisy Data-set. The trends in time saving were similar, but yet less
non-linear. Notably, a minimum in RMSD was found (vs. noiseless WP-O
reconstruction) at a level τsig < 1, i.e. thresholding resulted in de-noising of
the signals. For the remaining part of the chapter, a signal thresholding level
of τsig = 0.98 was chosen in combination with a matrix thresolding level of
τmat = 0.001.

Figure 6.4 presents the reconstructed images of the Multi-spectral Data-
set with di�erent methods. The reconstructions for di�erent wavelengths with
LSQR-50 (a), WP-O (b), and the proposed PCA-WP-T (c) approach are shown,
while the respective absolute di�erences vs. LSQR-50 are shown in (d) and (e).
RMSD compared to LSQR-50 was 0.14 and 0.16 for WP-O and PCA-WP-T, re-
spectively. Most of the di�erence can be attributed to the approximate character
of the inverse, not to thresholding of signals and inverse. Reconstruction times
for the data-set were 108 s, 7.2 s, and 0.58 s, respectively. WP-based methods
exceeded the performance of LSQR by a factor of 15 x and 186 x, respectively.
Thus, exploiting sparsity of signals and inverse resulted an additional factor
of 12 x compared the already fast WP-O inversion. For comparison, when re-
construction time is limited in time-critical contexts like in clinical imaging,
performing LSQR with a reduced number of iterations (niter = 15, LSQR-15)
resulted a comparable error (RMSD=0.19). The time required was however
still 33 s for LSQR-15. Consequently, WP methods (WP-O and PCA-WP-T)
presented a bene�t by factors of 4.5 x and 56 x at comparable reconstruction
quality.

Volumetric Data-set

The Volumetric Data-set (see Sect. 8.4 for further experimental details) was
obtained from cross-sectional z-scanning of the �rst author's index �nger and
consisted of 219 consecutive slices at 0.2 mm distance at an excitation wave-
length of 715 nm. The multi-frame data-set with λ=219 frames was recon-
structed with the same parameters as the Multi-spectral Data-set. PCA was
calculated in z-direction instead of in spectral dimension.

Figure 6.5 shows the reconstructions of volumetric scanning of the �nger.
A photograph of the �nger is shown in Fig. 6.5(a) as anatomical reference.
The maximum intensity projections (MIP) obtained with LSQR-15 (b), WP-O
(c), and PCA-WP-T (d) are shown besides in similar orientation. Mainly skin
and vascular tree can be found on the images. The Gini-indices of the signals
were g=0.58 in standard and g=0.91 in combined PCA-WP representation.
Reconstruction errors compared to LSQR-50 were 0.19 (b), 0.17 (c), and 0.18
(d), respectively. The inversion process took 1200 s, 245 s, and 29 s, respectively.
Thus the proposed PCA-WP-T method exhibited a performance increase by
factors of 8.4 x compared to WP-O and of 41 x compared to standard iterative
LSQR-15 inversion at similar image quality.
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Figure 6.5: 3-D maximum intensity projections of theVolumetric Data-set show-
ing a 3-D �nger angiogram obtained by cross-sectional z-scanning of the �nger.
(a) Photograph of the �nger and reconstructions obtained with (b) LSQR-15,
(c) WP-O, and (d) PCA-WP-T. Reprinted with permission from Ref. [172].

Temporal Data-set

The Temporal Data-set was obtained from monitoring an ICG bolus in the
�nger vasculature of a volunteer at video rate of 10 Hz, as described in detail in
Sect. 9.2. The total duration of the experiment was 180 s, and 10 consecutive
frames were averaged in order to reduce the total size of the data-set to 180
e�ective frames. The scanner employed had 128 elements, and signals were in-
terpolated to 256 virtual projections prior to reconstruction. SOS was selected
as c=1528 m/s and all other reconstruction parameters were the same as for
the Multi-spectral Data-set. PCA was calculated in the dimension of the λ=180
temporal frames.

Figure 6.6 presents the results with the Temporal Data-set. Fig. 6.6(a) shows
the reconstructions of the �rst frame at t=0 s for LSQR-15 (top) and PCA-WP-
T (bottom). Fig. 6.6(b) presents the MIPs along the y-direction as function
of time. The ICG in�ow into the vessels started around t ≈ 85 s. Sparsity
of the data-set was g=0.58 in standard and g=0.95 in combined PCA-WP-T
representation. Due to the extraordinary sparsity of the data-set, reconstruction
time was reduced from 980 s (LSQR-15) to 1.4 s only (PCA-WP-T). RMSD
versus LSQR-50 was similar in both cases (0.16 and 0.17). PCA-WP-T o�ered
a performance increase by a factor of 700 x compared to standard iterative
inversion. WP inversion in its original formulation (WP-O) required 206 s at a
similar RMSD of 0.16.
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Figure 6.6: Monitoring of the ICG bolus injection in a human �nger (Temporal
Data-set). (a) Cross-sectional image at the start of the experiment reconstructed
by LSQR-15 and PCA-WP-T. (b) Corresponding y-direction maximum intensity
projections as function of time with ICG in�ow in the di�erent vessels at t ≈ 85 s.
Scale bar 1 cm. Adapted with permission from Ref. [172].

6.5 Discussion and Conclusions

The proposed sparsity-based reconstruction approach was rooted on transfor-
mations to and a reformulation of the reconstruction problem in a combined
PCA-WP domain. The PCA-WP domain both rendered the model approxi-
mately separable and thus directly invertible, and also represented inverse model
matrix and signals sparse. Thus the number of e�ective operations for inversion
could be drastically reduced.

Four di�erent sources of sparsity contributed to achieving fast reconstruc-
tions. First, the WP reformulation of the problem led a problem approximately
represented by a set of much smaller and independent problems, based on the
'local Radon transformation' character of the OA inversion problem. Each of
the blocks was su�ciently small to be directly inverted numerically. Deviations
from the assumption of strict separability were the main source of reconstruc-
tion errors induced in the method. Second, the obtained inverse matrix elements
were sparsely distributed and most of them could be e�ectively thresholded to
zero. Not only was the e�ective number of operations in the matrix-vector mul-
tiplication reduced, but more importantly the overall memory requirements for
matrix storage were reduced by the same factor. Porting to GPU might be-
come possible for larger problem sizes, too. Third, single frames were sparse
in WP representation owing to their broad-band character and their localiza-
tion in time. Sparsity of the signals in the WP domain was similar to WL
representations. Then signal domain thresholding in the WP domain exhibited
intrinsic de-noising capabilities, too. Fourth, multi-frame data-sets were highly
correlated between frames. Application of PCA de-correlated the frames. In
combined PCA-WP representation, signals were extraordinarily sparse and only
a tiny fraction of coe�cients (throughout all principal components) needed to
be retained for e�ective signal representation.

Experimental multi-frame data-sets are typically highly correlated. For
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multi-spectral data-sets, the number of major chromophores is mostly limited
(like Hb and HbO). The number of excitation wavelengths employed is typically
larger than the number of those chromophores. Signals are then concentrated
to the �rst principal components, provided spatial coloring can be neglected
[77]. In volumetric imaging, adjacent slices are often correlated when imaging
elongated structures such as blood vessels or from the integration over a �nite
e�ective slice thickness, if the thickness is larger than the distance between adja-
cent scanning positions. In temporal monitoring, a high correlation is expected
because the distribution of the agent often a�ects only a small portion of image
pixels, has a small number of di�erent kinetic pro�les, or the time constants in-
volved are often slower than the video-rate frame acquisition rate. Conversely,
correlation is decreased from strong motion like breathing or heart beat. Nat-
urally, multiple sources of multi-frame signal sparsity can be combined, e.g. in
real-time MSOT or time-lapse multi-spectral scanning of volumes [21, 111].

Limitations of the proposed method stem from the approximation character
of the inverse matrix used. To improve image quality, iterative corrections using
forward model and inverse can be applied. However, the residual signal then
contains almost only NZs and thresholding needs to be performed again in each
iteration. Also the forward modeling step needs to be similarly accelerated to
achieve an overall performance bene�t. Alternatively, an improved inverse can
be obtained by linear perturbation theory of matrices and improved reconstruc-
tions can be obtained in one-step manner with an optimized inverse matrix.
Furthermore, approaches rooted on direct inverses are restricted to quadratic
regularization terms. l1-functionals or total variation regularization is restricted
to be used with iterative inversion. In addition to the ideal models used here, the
proposed approach can also be used with more sophisticated models modeling
for a heterogeneous SOS distribution or the SIR of the detectors.

Future work on the sparsity-based approach will focus �nding suitable strate-
gies towards real-time imaging. While the achievable performance greatly in-
creases with the number of frames, latency equally increases. The size of the
data-set for reconstruction has to be selected to satisfy needs of both latency
and peak performance. Furthermore, more sophisticated thresholding strategies
might be developed. Instead of one preselected global threshold level based on
a fraction of the signal energy, levels might be varying with scale and principal
component and are ideally selected on the inherent signal noise to maximize de-
noising capabilities. To directly adapt WL de-noising strategies, signals might
also be thresholded in the PCA-WL representation and prior to fully decompos-
ing them to the PCA-WP representation. Most importantly, WP approaches
might also be used to address the long standing need for e�cient 3-D recon-
structions. The WP methodology can also be employed in 3-D with 3-D WP
decomposition and suitable 2-D parametrization of the detection surface. Once
3-D WP inverse models are available, sparsity-based methods are expected to
greatly improve the performance achievable.

In summary, an inversion approach for MSOT was presented that exploits
four sources of sparsity in both signal and model domain conjointly. High perfor-
mance in reconstructions was enabled through a unique combination of sparsely
represented direct inverse and sparse signal representations in the WP domain.
The new approach accelerated computations by a factor of 41 x to 700 x as com-
pared to the commonly applied model-based iterative reconstruction schemes
with similar quality of the reconstructed images.
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Chapter 7

E�cient Automatic Quality

Enhancement of Model-Based

Reconstructions

In the previous two chapters, two approaches based on symmetries and sparsity
of the reconstruction problem have been presented in order to accelerate MB
reconstructions. In a clinical setting, it is not only important to provide the clin-
ician feedback within a given time frame. Providing an improved image quality
might potentially facilitate better diagnosis and treatment. Improvements of
image quality can be achieved by suppressing noise, avoiding negative pixel in-
tensity artifacts, or using more appropriate reconstruction models. Unlike in
proof-of-concept studies, reconstructions in a clinical environment should not
necessarily require user input but rather need to be performed automatically.
The current chapter presents solutions to these issues and further discusses
potential future approaches for MB reconstructions in the context of clinical
imaging.

7.1 De-Noising of Signals in Multi-Spectral Op-
toacoustic Tomography

Every experimental OA data-set is to a certain level corrupted by noise pnoise.
If the SNR of the measured data is not su�ciently high, the resulting images are
corrupted by visible artifacts. Then image quanti�cation in spectral or temporal
monitoring studies is complicated or even impossible. Improving the SNR by
hardware means using low-noise electronics, improved transducer technology,
or shielding from electromagnetic interference is always performed in practical
experimental systems. Because the maximum light �uence is limited for in
vivo studies, the noise equivalent pressure needs to be decreased to be able to
detect low intensity signals. A further increase of the SNR by means of pure
hardware improvements gets more and more challenging. Software methods are
an additional means to increase the e�ective SNR.

The detected signals pnoisy are typically modeled as linear superposition of
noise pnoise onto the true signals p:
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pnoisy = p+ pnoise. (7.1)

The sources of noise can be manifold, including electronic shot noise, ther-
mal noise, or electromagnetic interference. Consequently, the resulting noise
can be statistically uncorrelated white Gaussian noise, noise with inherent fre-
quency characteristics, or coherent noise simultaneously superimposed onto all
projections.

Software approaches aim at eliminating as much of the noise term while
most of the true signals. The simplest de-nosing method is averaging of frames
to eliminate the statistically uncorrelated noise. SNR increases only with the
square root of averages taken, and possibilities for frame averaging might be
limited in clinical settings where immediate feedback is required or fast temporal
processes need to be captured. Frequency �ltering of the signals is only able to
reduce (the part of the) noise that has no overlapping frequency bands with the
signals. Spatial single frame de-noising via soft or hard coe�cient thresholding
in the WL domain has been previously proposed [176]. Statistical inversion
with more realistic noise models than the usually assumed uniform, uncorrelated
Gaussian noise might also be a future method to improve OA reconstructions
[183].

To improve de-noising capabilities in MSOT data-sets for clinical settings,
a spatio-spectral de-noising framework is proposed that also takes into consid-
eration the spectral (i.e. the signal dependence on excitation wavelength) char-
acteristics of MSOT signals and noise1 [180]. The procedure in spatio-spectral
de-noising is similar to PCA-WP-T signal thresholding: Finding a maximally
sparse representation of a multi-spectral data-set and then thresholding of small
valued coe�cients to zero. The sparser the signal can be represented, the better
the noise can be rejected, because white Gaussian noise is non-sparse indepen-
dent of representation.

For de-noising, the signals are transformed to a combined PCA-WL repre-
sentation: First, signals are WL transformed on a per-projection basis, resulting
in the WL coe�cients for di�erent scales. Spectral frame de-correlation is then
performed on a per-wavelet-scale basis via PCA, where the correlation matrix of
the high valued coe�cients is used to obtain the transformation matrix UPCA

2.
The noise level is obtained from the standard deviations of experimentally mea-
sured signals without the presence of OA absorbers. De-noising of the signals is
then performed by hard coe�cient thresholding with individual threshold levels
per scale, projection, and principal component (based on the experimentally
determined noise level). The de-noised signals are then re-transformed to the
original domain and used as input to an arbitrary reconstruction method.

The spatio-spectral de-noising was tested with arti�cially superimposed and
purely experimental noise. In the case of arti�cial parasitic noise (i.e. coherent
noise over all projections) superimposed onto a data-set of nλ=21 wavelengths,
RMSD after spatio-spectral PCA-WL de-noising was less than a fourth (0.024)
of the corresponding RMSD after purely spatial WL de-noising not taking spec-
tral information into account (0.10). The de-noising performance achieved ex-

1The results presented in brevity here are based on a project led by S. Tzoumas. A
comprehensive description can be found in Ref. [180].

2The correlation matrix is obtained from the covariance matrix by normalizing the elements
by the respective standard deviations.
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Figure 7.1: De-noising of multi-spectral OA data. (a) Signals of one projection
at 900 nm laser wavelength before (cyan) and after (blue) de-noising. (b) Corre-
sponding original, noisy reconstruction. (c) Corresponding reconstruction from
the de-noised signals with improved image quality.

ceeded the noise reduction capabilities of 10 frame averaging. Finally, Figure
7.1 presents the results with purely experimental noise in a mouse data-set con-
sisting of nλ=8 wavelengths. Fig. 7.1(a) plots the measured original signals
of one projection (cyan) and the same signals after spatio-spectral de-noising
(blue). Fig. 7.1(b) shows the corresponding reconstruction from the original
signals at 900 nm, while Fig. 7.1(c) shows the corresponding reconstruction af-
ter spatio-spectral de-noising. An obvious artifact reduction is visible, mainly
from suppression of parasitic noise in all projections.

The spatio-spectral de-noising framework can be routinely applied in clinical
MSOT data-sets since the method is computationally cheap compared to the MB
reconstruction process. It is most bene�cial whenever the SNR is comparatively
low, e.g., when using diode-pumped lasers of relatively low pulse energy and
thus limited SNR. Synergistic e�ects arise when combined with the proposed
sparsity-based reconstruction method (see Chapter 6). E�cient video-rate de-
noising can be easily achieved on GPU because of the naturally parallel structure
of the method and because no large matrices or iterative processes are involved.

7.2 The Causes and E�ects of Negative Image
Values in Optoacoustic Tomography

The presence of negative image values is another kind of image artifacts besides
noise. The reconstructed image values are associated with the energy density
of the deposited heat H. Because absorption followed by thermalization is a
thermodynamically irreversible process, photon emission from pressure does not
occur. In addition, H is a strictly non-negative quantity as product of strictly
non-negative variables absorption µa, light �uence Φ and Grüneisen parameter
Γ (Eq. 3.4).

Although no physical interpretation exists, negative values are regularly
found in experimental OA reconstructions nevertheless. The obtained OA recon-
structions are a result of the combination of the signals measured, of the model
and its underlying acoustic propagation properties, and of the reconstruction
algorithm employed.

The signals themselves are bi-polar while the initial pressure they linearly
depend on is strictly uni-polar. Arbitrary bi-polar signals do not necessarily lead
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uni-polar images but only a certain subset does for given inverse model. OA
signals can, as discussed, be corrupted by strong noise. Furthermore, measured
signals cover only an incomplete frequency band of the theoretical full bandwidth
signals. The limited frequency content of the signal might either result from
the limited detector frequency bandwidth or simply from frequency �ltering to
remove dominating parasitic signal parts such as low frequency drifts.

Deviations in the assumed model from the physical ground truth can lead
negative image values. First, all model matrices are a�ected by discretization
errors like from the calculation of the temporal derivative in Eq. 3.8. More
importantly, the acoustic properties assumed in the model might be considerably
deviating from experimental reality and thus errors in the reconstructed images
might be present. Deviations might concern assumption on the SOS map, the
SIR and EIR of the transducer, attenuation, dissipation, and acoustic scattering.

The inversion algorithm employed can also be source of negative values. BP
reconstructions are only exact in the far-�eld approximation and errors exist
for �nite distances to the detectors. However, negative values might be present
in MB reconstructions, too. However, one of the main advantages of the MB
algorithms is that regularization and constraints can be included in the inversion
process. Particularly, a non-negativity constraint (f ≥ 0) can be added during
the minimization procedure.

A non-negativity constraint can only be complied with in iterative recon-
structions. A linear direct inverse can per de�nition not deal with an inequality
constraint. With the additional constraint, inversion becomes slower because
more iterations need to be performed than in unconstrained inversion. Thus, a
fast inversion algorithm was developed that is almost as fast as unconstrained
iterative LSQR inversion3. Instead of performing slowly converging gradient
descend steps followed by the application of projectors or re-starting CG inver-
sion with di�erent active pixel constraints, the rapidly converging CG steps of
LSQR are concurrently performed with the updates of the set of active pixel
constraints [149]. Then, the optimum solution without negative pixel values is
found (in the sense of minimal quadratic norm of the residual signal). If the
residual is large, the solution can considerably deviate from the physical ground
truth despite the physically motivated non-negativity constraint.

A numerical study was performed in order to test several sources of negative
values and their suppression via non-negativity constraints. Fig. 7.2(a) shows
the original image compromising ten paraboloid absorbers of varying diameter.
The corresponding signals are analytically known and sampled at 256 full view
projections at a virtual sampling rate of 40 MSa/s [138]. The resulting sino-
gram is shown in Fig. 7.2(b). Fig. 7.2(c)-(l) show the central horizontal and
vertical cross-sections (white lines in (a)) of the reconstructions for variations
of input data, model, and inversion algorithm. Images were reconstructed on a
ROI of 3 cm x 3 cm with 201 x 201 pixels using LSQR or the proposed fast con-
strained inversion algorithm (niter = 80). When using signals of full bandwidth
((c) and (d)), original (black), unconstrained LSQR reconstruction (blue), and
constrained reconstruction (red) were almost identical. The RMSD with re-
spect to the original was 0.03 in both cases. When applying a low-pass �lter of
1.5 MHz to the signals (8th order chebyshev), mimicking the limited sensitivity
of a transducer above a certain frequency, both reconstructions in (e) and (f)

3The project was led by L. Ding and the detailed results can be found in Ref. [149].
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Figure 7.2: Simulation demonstrating di�erent causes of negative image val-
ues. (a) Original numerical phantom compromising ten paraboloid absorbers of
di�erent location and size. (b) Corresponding analytically calculated pressure
signals. (c),(d) x- and y-direction cross-sections of original phantom (black),
standard unconstrained LSQR reconstruction (blue), and reconstruction with
non-negativity constraint (red). (e),(f) Corresponding cross-sections after low-
pass �ltering of the pressure signals. (g),(h) Pro�les after high-pass �ltering
of the signals. (i),(j) Pro�les reconstructed from signals with 30 % Gaussian
noise superimposed. (k),(l) Pro�les with deviating SOS assumed during the
reconstruction process.

deviated from the original in amplitude and width of the small absorbers, but
did not deviate for the larger structures. No larger di�erence was found be-
tween the two inversion methods (RMSD 0.04). However, when a correspond-
ing high-pass �lter of 0.1 MHz was applied, mimicking a reduced sensitivity of
transducers at very low frequencies, both reconstruction methods considerably
deviated from the original ((g) and (h), with RMSD of 0.91 for LSQR and 0.78
for the constrained inversion). Strong image variations, i.e. high spatial image
frequencies, were recovered with correct relative magnitude by both algorithms.
Yet, the gradual intensity increase, i.e. low spatial image frequencies, could not
be restored by either of the two methods. The additional constraint induced an
overall shift of the image to the positive. The shift was not globally constant,
but smoothly varying with space. Compensation for the missing input data
at low frequencies could only be partially achieved. In the presence of strong
Gaussian noise of 30 % of the peak-to-peak signal amplitude, large deviations
could be found, too ((i) and (j)). All peaks could still be observed since the noise
was not restricted to a speci�c frequency band. The non-negativity constraint
led an overall shift of the image to positive image values and deviations from
the original were thus e�ectively increased (RMSD of 0.36 and 0.46). Finally,
a 2 % too large SOS was chosen for reconstruction. Only the large, gradually
varying structures could be correctly reconstructed in this case ((k) and (l)).
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None of the small- or medium-sized structures were reconstructed in correct
shape. Although there were small di�erences between both algorithms, RMSD
was equally large (0.24).

Overall, constrained inversion 'successfully' suppressed negative values in all
cases; however, qualitative and quantitative di�erence compared to the ground
truth did not improve in all cases. With undisturbed signals and correct model,
(almost) no pixel constraints were active and reconstruction results were identi-
cal. In the case of band-limited signals, e�ectively signals needed to be extrapo-
lated to frequencies not measured. A correct extrapolation was not possible over
more than relatively small frequency ranges. For low-pass frequency character-
istics, high-frequencies were not available and the resolution was consequently
degraded. In non-negative inversion, the number of active constraints was very
low and di�erences to unconstrained inversion were small. Conversely, with
high-pass characteristics, the number of active constraints was relatively large,
and results thus considerably deviated from unconstrained inversion. However,
the restoration of low frequencies was only partial and errors were still large. In
the presence of strong noise, an additional initial de-noising stage as presented
in the previous section would most probably be more e�ective than a constraint
alone and might decrease the overall RMSD rather than increasing it. Finally,
deviating acoustic properties degraded image quality irrespective of a constraint
applied. Instead, accurate retrieval of correct acoustic properties is more impor-
tant than a non-negativity constraint to provide good image quality (see also
Sect. 7.4 and Sect. 7.5).

Negative pixel values impose great challenges and lead strong restrictions to
the quantitative analysis of OA images. First, in individual images considerable
qualitative anatomical information might be lost, if hard thresholding of nega-
tive image values is performed. Further, ratios of di�erent image ROI intensities
might be prone to relatively large errors. Non-negativity constraints might on
one hand partially solve the associated problems, but on the other hand cloak
the need for other image quality improvements. In temporal monitoring of ki-
netics, pro�les might be inverted or be a complex mixture of di�erent pro�les at
multiple spatial scales. Most importantly, in multi-spectral imaging, absorption
spectra might also be inverted. Blood oxygenation can only be calculated from
strictly positive image values. However, even small absolute changes can lead
to drastic relative errors in the oxygenation estimation when some of the pixel
values at one wavelength are close to zero.

Particularly image quanti�cation with large structures or with smaller struc-
tures in their vicinity is very challenging; this is for example the case when
measuring perfusion of entire organs. Luckily, small dominating features like
blood vessels are less prone to quanti�cation error as long as the resulting res-
olution in the reconstructions is su�ciently high. Rigorous �tting of analytical
light �uence functions or even numerical inversion of a light transport model
in QPAT are likely to fail with typical experimental data because of the de-
scribed low frequency errors. Improvements might be based on hardware using
either multiple detection elements with di�erent bandwidth such that also a
sensitivity in the low frequency range is achieved [184, 185] or novel detection
technology like interferometric detectors. Algorithmic improvements might be
based on a combination of residual weighting towards the detector's bandwidth,
a (non-)quadratic regularization term, and a non-negativity constraint.
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7.3 E�cient Modeling of Finite-Sized Transduc-
ers

All detection elements of experimental systems are not point-like, but �nite
in size as depicted in Sect. 3.3. Reasons for using large detectors are either
focusing to approximately a line or a plane, manufacturing restrictions, and/or
increase of SNR by increasing the active detection area.

Most reconstruction algorithms do however assume in�nitely small, point-
like detectors. Image quality with such algorithms is deteriorated, unless the
detector shape, the resulting spatially dependent SIR, and the altered signal
shape are accounted for during reconstruction. This is particularly the case for
image regions where the di�erence in time-of-�ight, ∆TOF , to di�erent regions
of the detection element surface becomes comparable to or larger than the time
corresponding to the maximal measured OA frequency. Image quality is not
drastically a�ected su�ciently close to the detector's focal point or for much
larger distances. But particularly shallow of the focus, the artifacts with large
detector elements considerably reduce the achieved spatial resolution and overall
image quality.

Multiple approaches have been proposed to reduce SIR-related artifacts like
de-blurring methods, deconvolution, or synthetic aperture focusing [117, 186].
Particularly MB algorithms can seamlessly correct for the e�ects of SIR. Sig-
nals measured with �nite-sized transducers pSIR(xd, t) are ordinary OA signals
pm(x′d, t) integrated over the surface Strans of the transducer, pSIR(x′d, t) =∫
Stranspm(xd, t). A corresponding model MSIR can be obtained by convolut-

ing the signals of a point-like model M with the analytically known, spatially
dependent SIR of a �at transducer [146]. Alternatively, the detector surface
integral can be discretized and MSIR obtained as sum of multiple point-like
models Mi, MSIR =

∑
iMi. The latter approach is also possible for matrix-

free models. However model generation time scales linearly with the number of
detection surface integration points.

Figure 7.3(a) illustrates a typical geometry with a focused transducer of
1.5 cm focal length in 2-D, an image ROI spanning 2 cm around the focal point
and a pixel size of ∆xpix=400µm. Fig. 7.3(b) plots the corresponding signals
excited by the Pixel1, Pixel2, and Pixel3 for a point-like (red) and the �nite-
sized transducer (blue). While Pixel2 at focus created almost the same signals
for both transducer models, Pixel3 (deeper than focus) created a slightly elon-
gated signal of di�erent shape. In opposite, Pixel1 shallow of focus excited an
entirely altered signal shape and amplitude. Signal duration from the pixel was
elongated by a factor of 3.1 x and the sub-matrix of the model MSIR corre-
sponding to pixel1 had memory requirements increased by the same factor of
3.1 x. Overall, the entire SIR model MSIR required 4.6 x the memory of the
corresponding point-like model M and reconstruction time was increased by a
similar factor.

If a single element of �nite size is circularly scanned around the object or
a circular parallel array of identical elements is employed, the resulting recon-
struction problem is rotationally invariant. The proposed polar reconstruction
approach (see Chap. 6) can be used to create a model also accounting for the
SIR. Re-using the sub-matrix corresponding to the �rst projection spares the
tedious generation of the SIR model for all further projections. More impor-
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Figure 7.3: E�ect of �nite-sized transducers. (a) Imaging geometry with a point-
like (red) and a circularly focused (blue) transducer and three pixels of interest
above, in, and below the focus. (b) Corresponding sensitivity and signals shape.
In focus, the signals deviate only slightly, but particularly signals originating
from near the surface are considerably elongated and altered in shape.

tantly, the polar model formulation uses dense algebra instead of sparse algebra.
Elongation of signal length does thus not decrease model sparsity or increase
memory consumption. Images can thus be reconstructed from signals of �nite-
sized transducers with the same computational performance as in the point-like
case (omitting a tiny increase from an altered total span of time-samples con-
sidered for the ensemble of all pixels). Moreover, an inverse can be calculated
and reconstructions are much faster compared to standard iterative inversion.

To demonstrate the advantages of the polar MB approach for SIR models,
a phantom consisting of solidi�ed agar gel containing 200 µm spheres was im-
aged4. The cylindrically focused transducer element was sized 1.3 cm in active
diameter with a focal length of 2.5 cm. The element was fully scanned around
the object in 2.25◦ steps. Further experimental details are described elsewhere
[187]. To model the in-plane SIR for 2-D reconstructions, the transducer surface
was discretized by 120 virtual point-like detectors, and the image consisted of
nr=300 x nϕ=256 pixels in polar discretization. It took 5.1 GBs to store the en-
tire point-like model in standard Cartesian representation and the corresponding
SIR model would have required 57 GBs of storage. With the proposed angu-
lar frequency polar model, both point-like model ML and SIR model ML,SIR

required only 0.56 GBs of memory for storage.

Figure 7.4 shows reconstructions of one of the slices with the direct inverse
for point-like (a) and SIR model (b), respectively. Both polar models required
only 0.35 s per slice in total for reconstruction. A comparable iterative LSQR
reconstruction (niter = 15) with standard Cartesian point-like and SIR model
formulation would have required approximately 55 s and 600 s per, respectively.
The proposed polar reconstruction approach becomes thus even more bene�cial

4The data-set was kindly provided by D. Queirós.
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Figure 7.4: Microspheres imaged with a cylindrically focused transducer. (a)
Reconstruction assuming point-like transducers. (b) Reconstruction modeling
for the detector shape with drastically improved image quality. Signal elongation
decreases model sparsity by a factor of 11 x, and standard reconstructions have
correspondingly longer inversion times and memory consumption for storage
(tens of seconds per iteration and tens of GBs). With the polar approach,
reconstructions can be performed at the same computational cost as for point-
like detectors (here 0.35 s in total).

when a large detector shape has to be modeled, providing a speed-up of up to
two or three orders of magnitude.

The e�ciency of the proposed symmetry-based inversion can also be ex-
ploited in other geometries. As discussed in Sect. 5.6, z-scanning of a cylindri-
cally focused array (see Sect. 3.4) or raster-scanning of a spherically focused
detector in dermal microscopy are commonly employed imaging approaches us-
ing large focused detectors. In the latter case, the proposed algorithm might
replace commonly employed synthetic aperture focusing algorithms with similar
or even improved reconstruction performance. Reconstruction is then limited
by the size of the domain for which the model can be stored in memory, not
by computational time for inversion. For example, an inverse model for recon-
structing a 512 x 512 x 512 voxel grid can be calculated and stored on a modern
PC with 128 GBs of RAM. Once the inverse model is obtained (mainly depend-
ing on the time to calculate one projection including SIR), inversion can be
performed in tens of seconds per volumetric data-set instead of hours or days.

When using matrix-free approaches, the model is re-calculated twice in each
iteration. In addition, modeling the SIR requires a repeated model generation
for all transducer surface discretization points. Although memory consumption
is not a�ected, performance of the inversion is decrease by at least one order
of magnitude (depending on the number of transducer discretization points).
In such a situation, reconstructions can be considerably accelerated based on
the observation that the Green's function in Eq. 3.7 is translation invariant
and depends only on the absolute di�erence in space. In this case, the order
of integration over the transducer surface and signal origination integration can
be reversed:

93



pSIR(xd, t) =

∫
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point-like model for modi�ed image p̃0(x)

Basically, the signals pSIR(xd, t) for a �nite-sized transducer can be obtained
using the a point-like detector model, if the original image p0(x) is integrated
along the mirrored detector shape prior to modeling (dashed blue line in Fig.
7.3 (a)), resulting p̃0(x). The applied integration shape can be deviating for dif-
ferent projections because the detector orientation might vary. The additional
image convolution operation per projection (inner integral) is computationally
fast compared to multiple re-calculations of model projections (outer integral).
Thus a considerable acceleration is expected from inverting the integration or-
der. Drawbacks of the method result from an e�ectively enlarged image ROI
and image discretization to square (cubic) pixels. E�ects on quality and run-
time are as well subject to future work as the approximating character of the
method if used with heterogeneous SOS distributions, where an exact transla-
tion invariance is not given.

7.4 Residual-Based Speed-of-Sound Auto-Focusing

For highly accurate reconstructed images, the acoustic propagation properties
underlying the reconstruction model must match the real acoustic properties of
the object. These properties are most often not exactly known. In OA imaging
of soft tissues at low frequencies below 10 MHz, the SOS distribution is the
acoustic property e�ecting �nal reconstructions the most. Although in principle
tables with average SOS values for di�erent types of tissue are available [100],
the SOS can be measured in transmit/receive or passive US experiments [188],
or a linearized SOS map can theoretically be concurrently obtained with the
absorption distribution in numerical inversion [189], only a crude SOS range is
known for the large majority of experiments. Further, the SOS strongly depends
on temperature, which is most often not known or controlled in experiments
either. Because of the uncertainty about spatial SOS variations and because of
algorithmic limitations, SOS is most often assumed spatially constant. SOS is
thus a scalar parameter of the reconstruction problem and needs to be optimally
chosen. Visual inspection can be a crude approach, but it is often biased and
subject dependent.

The importance of and solution to choosing an appropriate SOS can be
understood from the reconstruction process as the result of US wave interference.
In the 1-D case of Fig. 7.5(a) with two opposing detectors (red circles), the
reconstruction can be thought of as TR at a given single frequency (dashed
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Figure 7.5: E�ects and retrieval of SOS. (a) 1-D illustration of the superposition
of signals from multiple detectors (red circles): US signals from left (black) and
right (blue) with almost fully constructive superposition in the image region
(red) for a given SOS. (b) Corresponding illustration with 5 % higher SOS re-
sulting in mainly destructive superposition. Reconstruction of an experimental
phantom at (c) 1500 m/s, (d) optimum of 1528 m/s, and (e) 1560 m/s. When us-
ing a deviating SOS, small absorbers are smeared and object boundaries do not
match. (f) The corresponding Brenner gradient image domain focus functional
as function of SOS increasing for images containing more high spatial frequen-
cies. (g) Signal domain residual functional as function of SOS with minimum
when signals from multiple projections overlap constructively.
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lines). Using an almost optimal SOS value, signals from both detectors interfere
almost entirely constructive in the ROI (red). If a 5 % higher SOS is chosen
(Fig. 7.5(b)), a relative phase shift in the order of π/2 is induced and signal
interference is almost entirely destructive. The intensity of the resulting image
in the ROI is therefore much lower. Real OA signals are broadband and they
are a superposition of signals at multiple frequencies. The respective phase
shift from a SOS change is proportional to the respective frequency and the
high frequency components in the ROI are much more a�ected by small SOS
changes than the low frequency components (see also Fig. 7.2).

Automatic auto-focusing strategies originating from light microscopy have
also been applied to OA imaging [190, 191]. They commonly exploit the fact
that high frequency image components are much stronger a�ected by the choice
of SOS than the low frequency components. Typically, an image functional
is calculated that relates the high frequency content of an image to the low
frequency content (or to a constant). One commonly applied measure, the
Brenner gradient, is obtained from the norm of the spatial derivatives for all
image pixels [191]. Auto-focusing then consists in reconstruction of the set of
images for all SOS values within the considered range, calculation of the image
focus functional for all images of the set, and selection of the image maximizing
the focus functional.

Auto-focusing algorithms in the image domain are based on the recon-
structed images and can consequently be sensitive to image artifacts induced
(e.g limited view of when using BP reconstructions). MB algorithms o�er an
additional possibility for auto-focusing that does not rely on image domain focus
measures. MB reconstructions are obtained from minimizing the signal resid-
ual functional RR(f) = F (f)/F (f = 0) (Eq. 4.4). The optimum SOS can be
obtained by concurrently minimizing the functional RR(f, c) for both f and c.
The dependence of the residual signals on c can be equally understood from Fig.
7.5(a) and (b). When forward-modeling the image (red) with the correct SOS,
the corresponding signals at the detectors are almost identical to the original
signals (black and blue) in phase and amplitude. The residual is relatively small
then. Conversely, at a deviating SOS, the forward-modeled signals are consid-
erably deviating from the original signals in phase and amplitude. The residual
RR becomes relatively large then. SOS auto-focusing via residual minimization
thus results the optimum SOS in the same sense that images reconstructed by
MB methods are optimal, i.e. the quadratic functional of Eq. 4.4 is minimized.

Figs. 7.5(c)-(e) show the MB reconstruction of a circular agar phantom with
ink background absorption and two circular ink insertions of higher absorption
with a reconstruction SOS of c=1500 m/s (c), the optimum of c=1528 m/s (d),
and c=1560 m/s (e). At considerably wrong SOS value, both outer and inner
phantom boundaries exhibited a double structure and the microsphere at the
top-right is smeared. At correct SOS, all boundaries were sharp and the mi-
crosphere appeared as point-like absorber. Fig. 7.5(f) plots the corresponding
Brenner gradient as function of SOS with a distinct, but broad maximum at
1528 m/s. Fig. 7.5(g) plots the corresponding residual RR(c) with distinct
minimum at the same value. The exact shape of the focus functional is al-
ways dependent on the frequency content of the signals and the reconstruction
method employed. For the geometry of the MSOT scanner used, the SOS needs
to be determined with accuracy of ± 2 m/s in order to facilitate reconstructions
with resolution of 200 µm or better.
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Figure 7.6: SOS auto-focusing with the WP reconstruction approach. PCA-
WP-T reconstructions with c=1480 m/s (a), the manually selected visual op-
timum at c=1538 m/s (b), and c=1600 m/s (c). (d) Brenner gradient focus
measure as function of SOS for LSQR-15 (black), WP-O (blue) and PCA-WP-
T (red). (e) Corresponding plot for the residual signal energy RR(c) with a
minimum at 1536 m/s. Adapted with permission from Ref. [172].

The SOS can in principle be concurrently optimized with the pixel values
during iterative inversion. However, the reconstruction problem becomes non-
linear in this case. Moreover, the focus functional depends not always in convex
manner on SOS (e.g. for the microspheres in Fig. 7.4 or for dominating small
vasculature) and a local minimum might be found instead of the global mini-
mum. Thus the same strategy as in the image domain is employed and �rst all
images for di�erent SOS values are reconstructed and minimization regarding
SOS is performed as second step.

However, MB reconstructions are computationally costly. Cost can be de-
creased by the observation that for a homogeneous medium and point-like de-
tectors, the model (Eq. 4.3) does only depend on the product ct, not on the
factors alone. Thus the same model matrix can be used for all SOS values and
model re-calculation can be spared. Instead, signals are re-sampled at di�erent
time instants, corresponding to a stretching of the time axis based on the SOS
change. The signal vectors for di�erent SOS values are highly correlated then.
As stated above, low frequency signals do only slightly change, while the main
di�erences manifest in the high frequency signals. Consequently, an e�ective
multi-frame reconstruction problem has to be solved with high inter-frame cor-
relation in the low frequency components. The problem can be e�ciently solved
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using the proposed sparsity-based WP inversion framework presented Chapter
6.

Figure 7.6 presents the auto-focusing for the 900 nm frame of the Multi-
Spectral Data-set of Sect. 6.4 with the sparse WP inversion approach. Probing
a SOS range from 1450 m/s to 1650 m/s in 2 m/s steps resulted in a data-set of
λ=101 e�ective frames. The PCA-WP-T reconstructions for c=1480 m/s (a),
the manually selected visual optimum at c=1538 m/s (b), and c=1600 m/s (c)
are shown in the top row. Fig. 7.6(d) plots the Brenner gradient as function
of SOS for iterative LSQR (black), WP-O (blue), and PCA-WP-T (red) re-
constructions. Fig. 7.6(e) plots the corresponding relative residual as function
of SOS. Although there were slight quantitative di�erences, all reconstruction
methods resulted a global extremum at c= 1536 m/s (residual) or c=1538 m/s
(Brenner). Because of the complex structure of the object, the minimum of
the residual was more pronounced than the maximum of the Brenner gradient.
Due to the high level of signal sparsity in combined representation (Gini-index
g=0.95), the PCA-WP-T reconstruction process took only 9.6 s compared to
641 s (LSQR-15) and 112 s (WP-O). This was an improvement by factors of
67 x and 12 x, respectively. However, if residual focusing is considered with WP
based methods, the residual is not obtained with inversion and an additional
forward-modeling step needs to be performed per image, decreasing performance
bene�ts. But still, a sparse formulation of the auto-focusing task is much faster
compared to iterative reconstructions.

7.5 Signal Domain Analysis and Segmentation for
Optoacoustic Tomography

Selection of a suitable SOS has a large e�ect on the obtained image quality, as
shown in the previous section. The range of SOS and other acoustic properties
for di�erent kinds of tissues is wide [100] and in some cases an idealized homoge-
neous acoustic medium is a too crude approximation. This is the case when the
SOS is considerably spatially varying, in particular at the interface of imaged
object and coupling medium; or if there is a strong acoustically mismatching
boundary like with bones and air-�lled cavities, where huge acoustic re�ections
are induced.

Complex, non-homogenous acoustic properties can also be accounted for
during reconstruction with numerical methods. MB methods have been mod-
i�ed for the main e�ect of small SOS variations, the time delay induced, and
optionally also minor e�ects like amplitude corrections and refraction [147, 192].
Re�ections could potentially be modeled for with 'ray-tracing' model calcula-
tion [159], performing a branching of the 'rays' at acoustically mismatching,
partially re�ecting surfaces. FDTD methods intrinsically allow to model for
arbitrary SOS and impedance maps, which are direct parameters to the wave
equation used [136, 150].

The acoustic parameters used for reconstruction are often set manually in
proof-of-concept studies. This approach is however not feasible in clinical prac-
tice. Concurrent recovery with the absorption map is possible in principle, but
has not been demonstrated with experimental data yet [189]. Reconstructions
with an approximated SOS map, segmentation of the image to di�erent com-
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partments, and subsequent auto-focusing of the SOS for all compartments is
yet another approach. Not only is segmentation of OA images in an immature
state compared to segmentation for traditional imaging modalities or photogra-
phy, but also such an approach would be extremely computationally demanding
because several rounds of heterogeneous model generation and reconstruction
have to be performed during SOS optimization. Alternatively, acoustic prop-
erties might also be determined experimentally with active transmit/receive or
passive OA US measurements [188]. However this approach requires speci�c
hardware not available in all OA scanners.

The object's acoustic properties do not only a�ect the reconstructed images,
but are also directly encoded in the signals measured. One might therefore also
attempt to estimate the acoustic properties directly from OA signals instead of
from the reconstructions in the image domain. In general, this task is equally
complicated as in the image domain. But in some cases, like in the case of
cross-sectional �nger imaging, the experimental situation is su�ciently simple
to extract the most relevant acoustic parameters - shape of the �nger, SOS
within, and outline of the bone - directly from the signals and reconstructions
can be performed with the extracted parameters e�ciently in one-step man-
ner without a time consuming repeated optimization process including multiple
heterogeneous reconstructions.

The proposed signal domain analysis for optimized reconstructions is based
on the following assumptions on object and imaging system employed5:

� The model can be divided into two main compartments, each with ho-
mogeneous SOS c0 and c1, respectively. With a suitable choice of com-
partment boundary and SOS values, a better reconstruction than the best
homogeneous reconstruction can be achieved.

� The boundary in the image domain is smooth and convex. In the case con-
sidered here, the boundary is characterized byR(ϕ) =

∑−nhar
j=nhar

Aj exp(ijϕ)
plus two constants for x- and y-direction o�set.

� The outer compartment has minor optical absorption compared to the
inner compartment and its SOS c0 is assumed to be known (e.g. from
temperature measurements). Its shape is however not known a priori.
The outer compartment is associated with the coupling medium like gel
or water.

� The inner compartment has little internal acoustic variations compared to
the di�erence to the outer object. The inner compartment is associated
with the object to be imaged. Further, strong OA absorption takes place
at the boundary. Its shape and SOS c1 are not known a priori.

� The optional third compartment mainly induces signal re�ections and is
associated with the bone.

� For a good performance of the method, a signi�cant detection angle is
covered, ideally more than 180°.

5A detailed description of the proposed method has been published in Photoacoustics as
Ref. [193].
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Figure 7.7: Concept of signal domain segmentation. (a) Illustration of OA sig-
nal generation with a numerical phantom. At the absorbing boundary (black
cross) of the phantom huge signals will be generated for detector locations ((1)
and (2)) with an integration arc (dashed black line) tangential to the boundary.
Opposite detectors provide partially redundant information and consequently
information on the SOS. Accordingly, boundary signals (white cross) with di-
rect (1') and indirect (3) propagation provide information on the location of
a re�ecting boundary (white dashed line). (b) Corresponding sinogram with
signal features corresponding to the image domain features in (a). (c) Work-
�ow of the proposed algorithm: After band-pass frequency �ltering, the signals
are Hilbert-transformed with respect to time and the absolute value, philb(t, ϕ),
is taken. Based on a parametrized �t function TOF (ϕ,m), numerically maxi-
mizing the functional FTOF (m) =

∑
ϕ philb(TOF (ϕ,m), ϕ) leads the optimized

reconstruction parameters m. The parameters obtained in the signal domain
prior to reconstruction are object shape, inner SOS c1, and re�ecting bound-
ary. The optimized parameters are subsequently used for a single, improved
reconstruction.
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The concept of the signal domain analysis method is illustrated in Fig. 7.7.
Distinct image features (Fig. 7.7(a)) correspond to distinct signal features (Fig.
7.7(b)). In analogy to half-time reconstructions [194], where it has been shown
that the �rst and second half of OA signals in the homogeneous full view case are
entirely redundant, signals of opposing detectors measure partially redundant
information: The strongly absorbing boundary (black cross) orthogonal to the
direct path to the director (1) creates large signals that are highly correlated
with the signals measured at the opposite director (2). From the two corre-
sponding arrival times and the detection surface diameter, one can calculate
the average SOS. Likewise, directly propagating (1') signals from the boundary
(white cross) and re�ected signals (3) provide information on the location of the
re�ecting boundary (white dashed circle).

In order to extract the information on the acoustic properties, the original
signals are Hilbert-transformed with respect to time on a per-projection basis
and the absolute values of the analytical signals are taken. Thus uni-polar signal
philb(t, ϕ) are generated from the bi-polar original signals pm(t, ϕ)6. Next, model
functions TOF (ϕ,m) facilitate the calculation of the corresponding signal time-
of-arrival of image features according to Fermat's principle at a certain detector
location ϕ in dependance of a set of parameters m. Three di�erent TOF model
functions are used: TOF1(ϕ,m) provides the shortest TOF of signals from the
boundary with boundary coe�cients Aj as parametersm. TOF2(ϕ,m) provides
the longest direct signal propagation time from the same boundary with the SOS
of the inner compartment c1 as parameter m. Finally, TOF3(ϕ,m) predicts the
TOF of the �rst signals originating from the object boundary and re�ected at
the mismatching boundary (characterized by A′j =: m).

Optimized �t parameters m to the models TOF are then obtained numeri-
cally by maximizing a functional FTOF , which is given by the sum of the Hilbert-
transformed signals over all projections sampled at the time-instants predicted
by TOF :

m = argmax
m

[
FTOF (m)

]
:= argmax

m

[∑
ϕ

philb(TOF (ϕ,m), ϕ)

]
(7.3)

Weighting factors, initial guesses, or constraints can be seamlessly included
in the maximization process. The TOF function calculations are implemented
numerically and maximization is performed using Matlab's fminunc-function.
The overall steps of the proposed method are summerized in Fig. 7.7(c).

The proposed methodology was tested with synthetic data using the k-wave
toolbox [136]. The ROI consisted of 472 x 472 pixels and the central region
of the original absorption map is illustrated in Fig. 7.8(a). The SOS was
c0=1500 m/s outside of the red ellipse and c1=1700 m/s inside. An acoustic
mismatch of twice the impedance on the inside is depicted by the blue circle of
80 pixel radius. Signals were detected at 720 equally spaced projections over
360°. The Hilbert-transformed signals philb(t, ϕ) are shown in Fig. 7.8(b) with
the �tting curve TOF1 superimposed in red. TOF2 �tting (green) resulted in
an estimate of c1=1694 m/s, which is only 0.4 % below the actual SOS inside
of the 'head'. Fitting with TOF3 (blue) resulted a radius of the re�ector of 81

6Deviating from the rest of the thesis, discrete vectors in this section are denoted with
their arguments in brackets, not as indices.
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pixels, which was 1.8 % above the original. Fig. 7.8(c) shows the time-reversal
reconstruction using the estimated SOS distribution, while Fig. 7.8(d) plots the
SOS functional value TOF2 for homogeneous (blue) and 2-compartmental (red)
model. Finally, Fig. 7.8(e) plots the central horizontal cross section of original
(black), best homogeneous (blue), and 2-compartmental (red) reconstruction
using the estimated parameters. The 2-compartmental reconstruction deviated
less from the original in magnitude and location of the absorbers at an overall
improved RMSD (0.39 compared to 0.95).

Figure 7.8: Signal domain analysis with numerical data. (a) Original absorp-
tion distribution and acoustic properties: The SOS is c0=1500 m/s outside of
the red line and c1=1700 m/s inside. An acoustic mismatch is indicated by the
blue circle (twice the impedance inside). (b) Corresponding Hilbert-transformed
sinogram with �tted signal characteristics corresponding to phantom boundary
(red), inner SOS (green), and re�ector surface (blue). (c) 2-compartmental re-
construction using parameters from signal domain segmentation. (d) SOS focus
function for homogeneous and proposed 2-compartmental model. (e) Central
horizontal cross-section for original (black), optimized homogeneous (blue), and
2-compartmental model(red).

Performance with experimental, limited-view data was tested with the same
ink Phantom as described in Sect. 7.4 and the results are illustrated in Figure
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Figure 7.9: Experimental ink phantom study. (a) Hilbert-transformed sinogram
of the ink phantom and �ts for object outline (red) and SOS (green). (b) SOS
focus function for homogeneous (solid blue) and 2-compartmental (red) model in
the signal domain and homogeneous post-reconstruction auto-focus functional
in the image domain (dotted blue). (c) Reconstruction of the phantom using
optimized reconstruction parameters. Scale bar 5 mm.

7.9. Fig. 7.9(a) plots the Hilbert-transformed signals with �tting for object
shape (TOF1, red) and SOS (TOF2, green) superimposed. Assuming an outer
SOS of c0=1517 m/s based on the water temperature of 34 °C, a diameter of
16 mm was estimated, which is 1.1 % larger than the 3/8 inch syringe used to
mold the phantom. The SOS estimation curve is plotted in Fig. 7.9(b), having
an optimum inner SOS of c1=1550 m/s. For comparison, the corresponding
focus function for the assumption of a homogeneous model (blue) is plotted
along with its post-reconstruction residual focus function (dotted blue). Both
proposed signal domain analysis and post-reconstruction auto-focusing resulted
approximately the same optimum homogeneous SOS (1527 m/s and 1528 m/s).
The resulting 2-compartmental MB reconstruction (the heterogeneous model
was calculated with an algorithm described in Ref. [159]) is shown in Fig.
7.9(c) with the estimated object shape superimposed in red.

The proposed signal domain analysis was able to recover the most important
acoustic reconstruction properties directly from the signals instead of from te-
dious image domain analysis that requires reconstructed images for all possible
parameters tested. Thus, the algorithm was computationally very e�cient. This
e�ciency is of particular importance because heterogeneous models are often as-
sociated with higher computational cost compared to homogeneous models. The
application of the method is however limited to speci�c scenarios, where the as-
sumed prerequisites hold true. Most importantly, the method can be applied
to cross-sectional imaging of �ngers. The corresponding results with the signal
domain method are presented in Sect. 8.4. Additionally, it could also be ap-
plied in mouse torso imaging or with handheld skin, muscle, or breast imaging
of tomographic or raster-scan detection geometry [111, 195]. Furthermore, the
method can be easily extended to 3-D imaging based suitable TOF functionals
with a 2-D parametrization.
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7.6 Novel Potential Approaches of Model-Based
Reconstructions for Clinical Imaging

Future reconstruction methods that meet the requirements of clinical imaging
will mainly focus on numerical approaches for various reasons. BP methods
cannot provide the same image quality as MB reconstructions and the applica-
tion of BP methods is restricted to situations where numerical inversion is too
slow even at lower resolutions or not feasible at all [185]. Series solutions are
mainly important for mathematical analysis of the reconstruction problem and
in practical use only with planar scanners. TR algorithms o�er great �exibility,
but are only exact in full view geometries and are most often much slower than
matrix-based reconstructions. However, their FDTD propagation model can
equally be used as core of iterative inversion at low memory requirements [150].

Novel MB approaches will most probably be diverse, because of the variety
of time and quality requirements for the reconstructions, because the speci�c
imaging scenarios considered vary a lot, and because of the high computational
cost. A uni�ed approach covering all practical situations is unlikely. Most
likely, hybrid strategies based on multiple approaches will be employed. The
strategies depend on the possibility to e�ciently use GPU platforms instead
of CPUs; whether the model can be stored in memory or matrix-free methods
need to be employed; if multiple images are reconstructed using the same model
(even simultaneously) or just one image per speci�c model; if (approximate)
direct inverses are feasible or if only iterative reconstruction can be performed;
if symmetries are present or if the inversion can bene�t from sparsity; if and
which kind of regularization is required; or if constraints need to be applied.
All these considerations will determine the selection criteria of the inversion
strategy employed.

Two potential future strategies are outlined in the following, one for highly
e�cient, high quality reconstructions in 2-D handheld imaging [111]; the other
for facilitating e�cient reconstructions with complex heterogeneous acoustic
media and a 3-D probe with �nite detection element size [35].

The �rst suggested approach executes multiple steps on di�erent scales, both
direct and iterative methods, and runs on both CPU and GPU (Fig. 7.10(a)).
In a �rst step, the inverse (MTM)−1 for the normal equations (Eq. 4.6) is
calculated on a coarser resolution scale with as much pixels as the available
PC memory permits. Because the number of data samples typically exceeds
the number of pixels, the size of (MTM)−1 is smaller (n2

x x n
2
x) than of the

pseudo-inverse M† (n2
x x ntnϕ). Further, the matrix MTM is symmetric and

positive de�nite. Consequently, Cholesky factorization can be applied at half
the memory requirements and FLOPs involved. Further, if re�ection symmetry
is present, the memory can be reduced by an additional factor of 2. In sin-
gle precision, the Cholesky factorized matrix for 400 x 400 pixel images can be
stored with less than 30 GBs of RAM. Cholesky factorized matrices are exact
inverses. Arbitrary quadratic regularization terms can be included, and recon-
struction speed does not degrade in limited view settings. Initial tests revealed
that peak performance might be limited by the application of MT rather than
application of the factorized matrix. When considering lower resolutions and
GPU implementations, real-time reconstructions seem easily possible. In the
second step, the active set of non-negativity constraints is determined. Because
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Figure 7.10: Illustration of two potential future reconstruction approaches with
high e�ciency. (a) Reconstruction can be performed with multiple direct (red)
and iterative (blue) methods at di�erent scales. It might include memory in-
tensive direct reconstruction via Cholesky factorization at low scale, e�cient
iterative retrieval of non-negativity constraints at low scale, calculation of im-
age details with direct WP inverses, and �nalization of the image at all scales
at a reduced number of constrained LSQR iterations. (b) Hybrid approach with
matrix-free FDTD modeling. Instead of modeling the full domain (blue) in-
cluding ROI (red) and detectors with FDTD methods, FDTD modeling can be
performed on a restricted area (green) including ROI and the area of non-ideal
acoustic medium. Time-resolved signals are then captured on a virtual detec-
tion surface and are in a second step directly propagated to the real detection
location using a Green's function. With the hybrid approach, a higher number
of ROI image pixels can be modeled at lower computational cost.

constraints are often mainly associated with low image frequencies (see Sect.
7.2), they can be e�ectively retrieved at low resolution. This step can possibly
be performed on GPU. In the third step, details in the �ne scales are added by
the approximate inverses in WP domain for detail coe�cient leafs (exploiting
sparsity of the signals as shown in Chapter 6 results in huge performance bene-
�ts). Finally, as forth step, a reduced number of LSQR iterations is performed
at full resolution to correct for the approximate character of the WP inverses
and potentially update the set of constraints at �ne scales. Overall, the num-
ber of computationally costly iterative steps at full resolution can be drastically
reduced and thus performance considerably increased for excellent quality 2-D
reconstructions.

The second method tackles reconstructions in 3-D with complex acoustic
properties and �nite-sized detectors. Typically, the problem is too large to
store the matrix, especially because the SIR increases the memory requirements
and because no symmetries are present (the model takes hundreds of GBs for
storage). Recalculation of the complex model in each iteration with on-thy-�y
methods would be extremely costly, even when modeling the e�ects of heteroge-
neous SOS and absorption only on much lower scales than the actual image res-
olution. In particular, modeling the SIR increases calculations by an additional
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order of magnitude because multiple point-like models need to be calculated for
transducer surface discretization (see Sect. 7.3). Conversely, FDTD methods
with iterative inversion can handle complex media and detector SIR intrinsically
without additional overhead [150]. They are however associated with long com-
putational runtime. One particular reason for such long computational times
with standard piezoelectric detectors (black circle in Fig. 7.10 (b)) is that the
imaged object is at a considerable distance from the detection surface S and
the domain to be modeled (blue) is much larger than the actual image ROI to
be reconstructed (red). Furthermore, the number of time steps to be performed
for the whole domain is much larger than the actual signal length. Thus time
and memory consumption of full domain FDTD modeling (1') is not ideal. The
space between object and detectors is typically �lled with water and US propa-
gation is ideal there. Consequently, the modeling problem can be divided in two
parts: (1) Standard FDTD modeling is performed on a restricted area (green)
that contains the ROI and a virtual detection surface S′ surrounding the ROI.
Signals are then recorded on the virtual detection surface S′ for time-points
until the pressure waves have entirely left the restricted domain. In the second
step (2), the time-series of recorded virtual signals is propagated further to the
real detection elements by means of a Green's function. For each combination
of location on virtual and real detection surface, propagation is described by
a time delay and an amplitude factor (a sum of several pairs for a �nite-sized
detector). As block-wise operations, propagation modeling is much faster than
modeling it by means FDTD methods.

Considering a full view spherical detection geometry of 4 cm radius, the ROI
is often only as small as 2 cm x 2 cm x 2 cm or even less, which is only 1/64th
of the domain to be modeled. A restricted domain that contains a spherical
virtual detection surface surrounding the ROI is only about 5 times larger than
the ROI volume itself. Further, the number of time-steps can be reduced by 40 %
because of the reduced propagation distance to be modeled. Most importantly,
memory requirements can be reduced by factor of approximately 13 x at the
same number of ROI voxels. For acceleration of FDTD methods by GPUs,
memory consumption can be a limiting factor. Assuming modern GPUs can
perform FDTD with 512 x 512 x 512 voxel grids, the proposed two step approach
increases the number of e�ective ROI voxels possible from 128 x 128 x 128 to
300 x 300 x 300 at almost the same computational cost. When the same number
of e�ective ROI voxels is kept, the proposed two-step method is expected to be
up to a factor of 20 x. Thus the method could enable e�cient high-resolution
volumetric MB imaging with heterogeneous acoustic properties and �nite-sized
transducers.

7.7 Summary and Outlook

A translation of OA imaging from basic biological studies in the laboratory
towards routine clinical imaging brings new opportunities for OA imaging, but
also new challenges: Beside modi�ed set-ups like handheld devices or di�erent
imaging protocols, the requirements for signal processing and reconstruction
approaches become more demanding. A live preview is needed for which MB
algorithms are currently too slow. Thus BP reconstruction of considerably lower
image quality has to be performed. Similarly, a prompt, accurate analysis of
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the data-sets acquired requires fast reconstructions of high quality without long
delays. This is challenging to achieve with standard MB approaches owing to
the huge size of the data-sets typically involved. Providing live MB visualization
and prompt high-resolution, high quality MB images using available standard
computational environments thus presents a long standing challenge for clinical
OA imaging. Further, user dependent input of reconstruction parameters has
to be minimized or better totally avoided in clinical settings, while in proof-of-
concept studies manual tweaking might still be acceptable.

In the previous three chapters, multiple approaches have been presented that
aim at providing high-quality MB images at superior reconstruction performance
without user dependent inputs for clinical imaging.

Two main approaches have been shown to considerably decrease cost of MB
reconstructions: First, a symmetry-based method for 2-D tomographic imaging
was demonstrated to provide accurate images at a fraction of the reconstruc-
tion time of standard MB inversion. For the limited view tomographic system
used in this work, a high-resolution direct inverse could be obtained and re-
constructions could be accelerated by a factor of 12.7 x. The reduced memory
requirements, dense algebra formats involved, and the intrinsically parallel na-
ture of the algorithm facilitated an implementation on GPU with an additional
performance increase by a factor of 13 x. High-resolution reconstructions at
video-rate have thus been enabled. The basic concepts are also applicable for
other kinds of OA scanners and might increase achievable image quality in e.g.
dermal imaging applications. Second, a sparsity-based approach has been pre-
sented. Suitable basis transformations rendered the model matrix separable,
and the obtained inverse model and multi-frame signals sparse. With the re-
sulting direct, sparse reconstruction method, experimental data-sets could be
reconstructed 40 x - 700 x faster than standard iterative inversion at compara-
ble image quality. The sparsity-based framework is expected to �nd application
for reconstructions in studies with huge data-sets or for a MB preview in set-ups
like 3-D handheld scanners.

The reconstruction and signal processing approaches presented in this chap-
ter have been aiming at providing improved image quality without examiner de-
pendent input required. Some of them could also be combined with the two pro-
posed approaches for acceleration of reconstructions. The image enhancement
methods included e�cient and automatic removal of noise and computationally
e�cient suppression of negative image values. Further, a robust residual-based
auto-focusing approach was presented that provided improved image quality by
retrieving an optimized homogeneous SOS for reconstruction. A generalization
to the heterogeneous case with a 2-compartmental model towards superior re-
constructions in �nger imaging (see Sect. 8.4) was based on a signal domain
analysis and automatically yielded a segmentation of the reconstruction and
estimates for the reconstruction parameters used.

Several other open problems concerning reconstructions for clinical imag-
ing still have to be tackled and solved in the future. Most importantly, high-
resolution MB reconstructions in 3-D are needed, particularly for systems where
no symmetries can be exploited or where computationally demanding SIR mod-
eling is required, and thus the system matrix might be too large to be stored.
Calculations are further complicated if heterogeneous acoustic properties like
2-compartmental SOS distributions have to be included in the model. More ad-
vanced, matrix-free ray-tracing methods or FDTD model are potential methods
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with su�cient computational e�ciency for (pre-)clinical applications. In par-
ticular, matrix-free models bundled with powerful GPU platforms of restricted
available memory are expected to be computationally e�cient compared to CPU
implementations, where model matrices might be stored in memory. The com-
putationally demanding nature of the OA reconstruction process hinders the use
of one general approach for all systems and applications; it is rather expected
that multiple dedicated methods for di�erent kinds of systems and requirements
will be developed. These will probably combine several concepts to facilitate
MB reconstructions at the required image quality and with the available re-
sources. Such methods might also be based on the concepts proposed and/or
used in the context of this work.
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Chapter 8

Multi-Spectral Optoacoustic

Tomography of Fingers

The unique design of the human hand with its digits has provided mankind
unrivaled dexterity and versatility. Conversely, loss of functionality comes with
great limitations, as �ngers are also a�ected by several prevalent diseases. Po-
tentially, some of those diseases might also be diagnosed by MSOT. This chapter
provides basic �nger anatomy and common diseases in their vasculature, depicts
the OA scanner used for �nger imaging in humans, and presents results of ini-
tial anatomical and functional imaging studies. Finally, Chapter 9 presents the
results of a perfusion study towards OA diagnosis of rheumatoid arthritis (RA).

8.1 Brief Introduction to the Anatomy of Fingers

The human hand compromises �ve digits with dimensions in the order of 2 cm
diameter and 8 cm length. The thumb, index �nger, middle �nger, ring �n-
ger, and little �nger are enumerated and abbreviated by D1 to D5. The basic
�nger anatomy is depicted in the labeled MRI slices of the index �nger of the
author's right hand1 (see Fig. 8.1). Each digit compromises three bones, the
phalanges, with the exception of the thumb that compromises only two bones.
The bones of the �nger are connected to each other and to the metacarpal bone
of the hand via joints: The distal interphalangeal joint (DIP) links distal and
intermediate phalanges, the proximal interphalangeal joint (PIP) links interme-
diate and proximal phalanges, and the metacarpal (MCP) joint links proximal
phalanx and metacarpal bone. The synovia of the joint consists of the synovial
membrane and the synovial �uid. Fingers can be moved with the help of ten-
dons for �exion and extension and several nerves are facilitate motion control
and haptics.

The vasculature of the �ngers provides the blood supply fed through two
main arteries: The radial (art. rad.) and the ulnar (art. uln.) digital artery2

are both located laterally. Depending on which is �nger considered, the arter-
ies branch from the super�cial palmar arch or the deep palmar arch. In the

1Dr. Reinhard Meier is acknowledged for acquisition of the MRI data at Klinikum Rechts
der Isar.

2The radial and ulnar artery are also called proper digital arteries (art. dig. prop.).
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Figure 8.1: Visualization of �nger anatomy using MRI slices with anatomical
locations (green) and structures (red) labeled. (a) Central sagittal slice of the
right index �nger. (b) Corresponding transversal slice at the PIP joint. (c)
Transversal slice through the phal. prox.
phal.: phalangeal bone; DIP: distal interphalangeal joint; PIP: proximal inter-
phalangeal joint; MCP: metacarpal joint; art. rad.: radial artery; art. uln.:
ulnar artery; ext.: extensor; �ex.: �exor.

index �nger, art. rad. branches from the deep palmar arch while the art. uln.
branches from the super�cial palmar arch. Close to the joints regular dorsal
branches originate symmetrically from both main �nger arteries. The diame-
ter of the feeding digital arteries varies considerably between individuals and
decreases for distal parts of the �nger. The diameter is in the order of 1 mm
[196]. Around the joint regions and in the �nger tip, rich capillary structures
are found. The venous structure is however less regular. Multiple major veins
maintain the blood transport backward. They are located on all sides of the
�nger and relatively super�cial compared to the main arteries. The nail is an
anatomical structure with a high acoustic mismatch. However, a rich capillary
structure is found in its vicinity in the nail bed and of interest in capillaroscopy
[197], potentially also by means of OA imaging.

The skin is the second major source of intrinsic contrast besides the blood
pool [111, 195, 198]. The skin compromises multiple layers of which the epider-
mis (most super�cial) and the dermis are most important. At the epidermal-
dermal junction small vascular structures might be identi�ed, provided su�cient
resolution. The thickness of the epidermal layer depends on site, but generally
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is less than 250 µm and thus requires high frequency OA or OCT systems to be
resolved [195, 199]. Melanin is an omnipresent intrinsic absorber in the skin.
It has strong absorption in the entire NIR range with a �at, slightly decreasing
spectrum (see Fig. 2.5). It is both a target chromophore and a major challenge
for delivering light to deeper regions in the �nger.

8.2 Common Peripheral Vascular Diseases in the
Finger

Cardiovascular diseases are the number one cause of mortality in western soci-
eties. Although diseases directly a�ecting the heart are most life-threatening,
widespread peripheral vascular diseases (PVD) have severe implications for pa-
tients, diagnosis, and treatment nevertheless. PVDs mainly a�ect the extremi-
ties and a great number is found in the �nger vasculature as well. The intrinsic,
label-free sensitivity to blood contrast constitutes MSOT an ideal candidate for
their clinical diagnosis. An incomplete, incomprehensive overview of PVDs in
the �nger, mainly a�ecting the arteries, is given in the following (based on Ref.
[200]).

The general indication ischemia is associated with a diminished blood supply
and might be caused by several factors. Among them are a stenosis, a locally
reduced vessel lumen, or even a complete occlusion. Ischemia might result in
hypoxia of large tissue regions or ultimately even in ulceration and necrosis.
Ischemic patients are typically imaged determining the vessel lumen, the blood
�ow via Doppler US, or by visualizing the perfusion of a CA in the vasculature.

Thromboangiitis obliterans (TAO) is an in�ammatory, pathological, non-
classi�ed peripheral vascular disease often also related to Raynaud's phenomenon
(RP). It is associated with strong pain, stenosis, and necrosis. To maintain the
blood supply distal of a stenosis, collateral networks are formed. In TAO, the
vasculature is commonly found to have a cork-screw structure near the stenosis
which is an indicator for diagnosing the disease.

RP is a functional disease characterized by acute vasospasms. It mainly
a�ects the �ngers (D2-D5) and hypoperfusion results in a color change of the
�ngers. Up to 30 % of females are a�ected by RP. It might be classi�ed pri-
mary, merely a functional disorder without anatomical changes, or secondary to
another, anatomical PVD such as TAO. RP is typically diagnosed via thermal
stress tests or nail bed capillaroscopy.

Atherosclerosis is characterized by the formation of �brous or lipid-rich
plaques at the vessel wall and often followed by a subsequent calci�cation. The
reduced vessel lumen results in a stenosis and the rupture of the plaques might
result in occlusions or in necrosis for very severe cases.

The autoimmune disease RA is discussed in detail in Sect. 9.1.

Besides arterial PVDs, venous PVDs are common as well. Most frequent
is varicosis, where the deep veins are insu�cient in transporting blood and
the enlarged, crooked super�cial veins need to compensate. Although varicosis
imaging and monitoring its treatment is an highly interesting �eld for OA imag-
ing in general� the vast majority of varicosis is found in the lower extremities
only, not in �ngers.
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Figure 8.2: Light penetration and scattering in �ngers: (a)-(f) Illustration of
illumination (top row) with laser pointers and transmitted light (bottom row)
through the the skin between the �ngers for di�erent wavelengths. Opposed
to higher energetic photons, enhanced imaging depth is possible in the NIR
window. (g),(h) Illustration of light scattering where the relatively focused
beam is entirely di�used after passing through the �nger tip.

8.3 Modi�cation of the MSOT Scanner for Fin-
ger Imaging

MSOT is a highly attractive optical imaging technology for clinical �nger imag-
ing because of several reasons: The dimensions of the �nger are too large for
macroscopic imaging with ballistic photons and they even exceed the possible
imaging depth of OCT. But di�use light in the NIR can penetrate and thus illu-
minate the entire �nger (Fig. 8.2). Furthermore, �ngers are accessible from 360°
and imaging approaches are not restricted to limited view geometries and re�ec-
tion mode imaging. A variety of intrinsic absorbers of interest - Hb, HbO, and
melanin - is present while �uorescence imaging technologies like FMT require
administering external CAs. The major drawback of MSOT is its sensitivity
to the acoustically mismatching bones in the center of the �nger that induce
artifacts and decrease overall image quality (see Sect. 8.4).

Cross-sectional �nger imaging can be performed with the small animal MSOT
scanner described in Sect. 3.4. To ensure optimal coupling, the �nger is im-
mersed in water heated to 34 °C in order to prevent cooling and to minimize
SOS di�erences with respect to the tissue. With the OPO laser employed, the
resulting light �uence on the surface of the �nger is 16 mJ/cm2 at maximum,
which is below the ANSI maximum permissible exposure limit of 20 mJ/cm2

in humans [110]. Orientation of the imaging planes is mainly possible in two
ways. First, acquisition of sagittal or coronal slices is possible when the �nger
is inserted from the top through the part of the detection circle not covered by
the array (Fig. 8.3(a)). Anatomical restrictions hinder imaging for large parts
of the �nger and thus this con�guration is limited to imaging in the �nger tip.
Second, axial slices can be acquired when the imaged �nger in stretched posi-
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Figure 8.3: OA reconstructions of (a) a coronal slice in the �nger tip and (b)
an axial slice near the PIP joint. Scale bar 5 mm.

tion intersects the imaging plane, while all others are bend towards the palm
(Fig. 8.3(b)). For all �ve digits, cross-sectional images from the �nger tip to
almost the area of the MCP joint can be obtained. When using a limited view
scanner, the in-plane orientation of the �nger can be rotated to provide best
image quality at the palmar, dorsal, or lateral side of the �nger.

One major challenge in �nger imaging experiments is associated with the
motion of the �nger. Although single laser pulse imaging renders individual
frames free of motion artifacts, motion hinders the correct analysis of experi-
ments with frame averaging, temporal monitoring, spectral un-mixing, or volu-
metric stacking of the planes. Motion artifacts can be addressed by either using
mechanical �xation of the �nger during the experiment or post-reconstruction
computations. With software approaches, parts of the motion related e�ects
cannot be compensated for, including motion of the imaged plane, tilting of
the �nger, or non-isotropic image quality in the ROI (e.g. because of detector
focusing characteristics or because of a non-homogeneous illumination pattern).
Even with software processing it is thus crucial to �x the imaging plane and to
reduce in-plane motion. After reconstruction, image frames have to be aligned
to a reference frame regarding in-plane translation and rotation of a rigid body
object. Image co-registration algorithms for this purpose can be categorized
in intensity-based and feature-based approaches [201]. The �rst class aims at
maximizing a functional like cross-correlation or mutual information of both
images with respect to the transformation parameters. The second class per-
forms co-registration in typically four steps: (1) Feature extraction from both
images; (2) feature matching to �nd corresponding features in both images; (3)
robust image transformation parameter estimation from the list of matching
coordinates; (4) transformation and re-sampling of the images.

Figure 8.4 illustrates the motion related artifacts and motion correction and
prevention. Fig. 8.4(a) shows the motion-free cross-sectional reconstruction of
a single frame at 800 nm. Fig. 8.4(b) shows the temporal MIP over 10 s with
manual �xation of the �nger by the other hand. Due to strong motion, vas-
cular features were smeared. Frames were then co-registered using the feature
based ASIFT algorithm [202]. Due to the dominant vascular structure in the
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Figure 8.4: Motion correction and prevention in OA �nger imaging. (a) Individ-
ual frame showing a cross-section with the detected matching key points plotted
in red. (b) Uncorrected MIP over 10 s with manual �xation of the �nger. (c)
Corresponding MIP after motion correction via ASIFT post-processing. The
in-plane motion estimated from the average distance between matching ASIFT
key points was approximately 350 µm. (c) Photograph of the holder system to
�x the �nger at the tip, hand palm, and near the MCP joint so that a large
range of axial slices is possible to acquire. (e) The MIP over 10 s with holder �x-
ation is almost free of motion artifacts. (e) Corresponding MIP after additional
motion correction with a motion estimate of 25 µm.

images, feature-based algorithms generally showed a better performance than
intensity-based methods. Performance of the co-registration was mainly deter-
mined by the number of correct matches found by the algorithm (red crosses in
Fig. 8.4(a)). Fig. 8.4(c) shows the corresponding MIP after ASIFT correction.
The average translational motion could be estimated to be 350 µm and thus
small features are much better resolved in the �nal MIP after correction.

Mechanical �xation was realized using a custom-designed holder system (Fig.
8.4 (d)). The �xation possibilities are limited by the minimal comfort acceptable
for the volunteer during the imaging session and mainly by the restriction that
no solid parts may directly intersect the imaging plane. The designed holder
�xed the �nger at its tip, near the MCP joint at dorsal side, and at the hand
palm. Thus robust imaging for all axial slices from close to the tip to close to
the MCP joint of the �nger was possible. Further, �xation could be adapted
to di�erences between individuals in length and diameter of the �nger. The
holder was directly attached to the linear translation stage of the scanner and
thus convenient positioning in all three spatial dimensions was possible with
sub-resolution accuracy. In this way, also volumetric scanning of the entire �n-
ger was possible (see Sect. 8.4). Fig. 8.4(e) shows a MIP over 10 s when �xing
the �nger with the holder system. Motion artifacts were considerably reduced.
Results after a further ASIFT software correction are shown in Fig. 8.4(f) with
an estimated average motion of 25 µm only. Motion was thus limited to a level
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Figure 8.5: Cross-sectional OA imaging of �nger anatomy. Slices in the PIP joint
(a) at 730 nm and (b) 850 nm excitation wavelength show mainly the vasculature
and the skin. The ROIs of three selected vessels are indicated by the green boxes.
(c) Corresponding MRI slice with direct correspondence of all major vessels and
good agreement in their location and size.

where computationally expensive correction could be omitted in most appli-
cation scenarios and experiments, depending on motion induced and accuracy
required.

8.4 Anatomical Imaging of Fingers

The OA �nger renderings presented in this thesis were acquired imaging the
index �ngers of two volunteers: Volunteer1 was a 28 year old healthy female
and the index �nger (D2) of her left hand was scanned. In this experiment, the
scanner with 128 detection elements was used (see Sect. 3.4). The results of
the experiment with Volunteer1 are presented in Fig. 8.5, Fig. 8.9, and the
corresponding text as well as in Chapter 9. Volunteer2 was the author and the
index �nger of his right hand was scanned. All other reconstructions presented
in this thesis are based on these experiments. Before OA scanning, a MRI3

scan with in-plane resolution of 0.4 mm was �rst performed for the purpose
of cross-validation of the images using a 3 T MRI scanner (Verio, Siemens,
Erlangen,Germany) and a �exible surface coil (�ex large, Siemens, Erlangen,
Germany). For this, the volunteers were examined in a prone position with
the hands outstretched in a praying position. All human studies were approved
by the Ethical Committee of the University Hospital Klinikum Rechts der Isar
of the Technical University of Munich and the experiments were conducted
according to the principles of the Declaration of Helsinki, including written
informed consent of the volunteers.

Anatomical cross-sectional slices

Figure 8.5 shows the anatomical �nger cross-sections in the PIP joint ac-
quired during the experiment with Volunteer1 4. In the reconstruction with
730 nm excitation wavelength in Fig. 8.5(a), both skin and vasculature are
equally prominent, while at 850 nm excitation wavelength the vasculature is
dominant in Fig. 8.5(b). Multiple vessels of di�ering size could be visualized,
mainly at the palmar and the dorsal side of the �nger. The vessels at the dorsal

3The MRI scans were performed by Dr. Reinhard Meier at Klinikum Rechts der Isar.
4The �ndings of the experiment were previously published as Ref. [126].
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side were considerably deteriorated due to the limited detector coverage and
the presence of the bone. Fig. 8.5(c) visualizes the corresponding MRI slice.
Notably, all major vessels in the OA images had a direct correspondence in the
MRI slice with excellent agreement in location and size. Three exemplary ves-
sels were selected for detailed ROI analysis (green boxes). Based on location,
oxygenation (see Sect. 8.5), and perfusion (see Sect. 9.2), Vessel1 could be
identi�ed as one of the veins, Vessel2 as the art. uln., and Vessel3 as the art.
rad. For comparison of the vessel lumen in the OA and MRI reconstructions,
a 2-D Gaussian was �tted to the respective vessels in the images and the lu-
men was calculated from the area at FWHM. The summarized results in Tab.
8.1 con�rm the good agreement between both modalities for anatomical imag-
ing and further a good agreement with ex vivo measurements reported in the
literature [203].

ROI Vessel1 Vessel2 Vessel3
vessel type vein art. uln. art. rad.
lumen MSOT [mm2] 4.4 2.9 1.8
lumen MRI [mm2] 5.4 2.7 2.1

Table 8.1: Comparison of vessel lumen in MSOT and MRI slices.

Optimized reconstructions via signal domain analysis

The achievable OA image quality in the �nger is degraded through the pres-
ence of the acoustically mismatching bone, as shown in Fig. 8.5 and discussed
in Sect. 7.5. Also, the selection of an optimal reconstruction SOS distribution
drastically in�uences the resulting image quality (see. Sect. 7.4 and Sect. 7.5).
The previously presented reconstructions have been obtained with standard ho-
mogeneous models and manual SOS selection or residual-based auto-focusing
[156, 159].

The results of the �nger imaging with the developed signal domain analysis
approach described in Sect. 7.5 are summarized in Fig. 8.6. In the experi-
ment, a cross-sectional slice located approximately in the middle of the phal.
intermed. was imaged at 690 nm and 900 nm excitation wavelength with the
dorsal side of the �nger facing the detection array. Fig. 8.6(a) shows the opti-
mum homogeneous reconstruction at 900 nm with a SOS of c=1542 m/s which
was obtained from residual-based auto-focusing. Because of the SOS di�erence
between �nger and water, deeper located vasculature was not optimally focused
using a homogeneous model (green circles). The e�ects of the bone were mainly
lack of transmitted signals from the palmar side (not covered by the detection
surface) and re�ection artifacts from the signals of the dorsal vasculature (blue
arrows). Fig. 8.6(b) presents the Hilbert-transformed sinogram at 690 nm ex-
citation wavelength, where melanin was prominent over hemoglobin (see Fig.
2.5). The �ts for �nger shape (red, TOF1), inner SOS (green, TOF2), and
bone location (red, TOF3) are superimposed. Because of limited view detec-
tion and the alignment of skin, bone, and detector, the re�ected signals could
not be faithfully obtained for certain projections (dashed line segments). Fig.
8.6(c) presents the optimized reconstruction with �nger shape (red) and inner
SOS estimates of c1=1610 m/s obtained from pre-reconstruction signal domain
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Figure 8.6: Signal domain analysis for optimized �nger reconstructions. (a)
Cross-sectional reconstruction of a �nger at 900 nm excitation wavelength with
best homogeneous SOS (1542 m/s). Blue arrows represent re�ection artifacts
induced by the bone. (b) Hilbert-transformed sinogram at 690 nm excitation
with �ts to estimate �nger shape (red), inner SOS (green), and bone outline
(blue). (c) Corresponding reconstruction using optimized model parameters
obtained from signal domain segmentation. (d) Same reconstruction for 900 nm
excitation signals with improved image quality over the homogeneous model
(green circles). (e) Fusion of the corresponding MRI slice (grayscale) and the
optoacoustic reconstruction (color) of (d), demonstrating the good agreement
between skin and vasculature acquired with the two di�erent modalities. (f)
MRI slice with estimated skin (red) and bone (blue) location superimposed.
Scale bar 1 cm.

analysis. The estimated shape of the bone with only minor optical absorption
compared to the blood pool is plotted in addition (red). Fig. 8.6(d) shows the
corresponding 900 nm reconstruction using the same heterogeneous model as
for the 690 nm case. Opposed to the homogeneous reconstruction (a), also the
small deep vasculature was properly focused (green circles), not only the more
shallow vasculature. Finally, Figs. 8.6(e) and (f) present a cross-validation
with the corresponding MRI slice. In Fig 8.6(e), the OA image of Fig 8.6(d) is
superimposed in color onto the MRI slice (grayscale). The alignment was per-
formed manually with dorsal vasculature as reference points. Fig. 8.6(f) plots
the estimates of �nger and bone shapes onto the MRI. On the dorsal part, the
skin estimate agreed well with the MRI, while large deviations were found in
the palmar part because of the limited detection view in MSOT and soft tissue
deformations during MRI. The estimated bone shape �tted the location in the
MRI equally well in the dorsal part of the �nger. Deviations in the palmar part
can be understood from incorrect shape extrapolation due to the limited view
and from the absence of strong re�ected signals for lateral parts of the detector.
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The proposed signal domain analysis approach was not only computationally
e�cient compared to image domain methods. Moreover it was able to automat-
ically provide improved image quality without user input required. This is an
important aspect towards clinical translation of advanced reconstruction meth-
ods. With a bone estimate available, re�ection artifacts might be removed using
a 3-compartmental model that also accounts for re�ections from an acoustically
mismatching boundary [150]. The bone estimate might further ease automatic
ROI analysis with RA, where in�amed sites in the synovia are located close to
the bones in the �nger joint (see. Sect 9.4). Furthermore, the signal domain ap-
proach is not limited to �nger imaging only, but also other applications imaging
through the skin like breast cancer screening or carotid imaging are possible.
SOS estimates c1 for the inner compartment cannot only be obtained in trans-
mission mode, but also in re�ection mode from dominant vessels as guide stars.
Bone re�ection might also occur for other imaging regions like with the ulnar
bone or the ribs and the proposed methodology might be applied in this case
as well.

Anatomical imaging of volumes

Using the cross-sectional OA scanner, naive imaging provided only 2-D slices
as only signals approximately originating from a single imaging plane were ac-
quired. By z-scanning of several slices of the �nger, a volumetric representation
of a �nger ROI could be obtained by either stacking the individually recon-
structed slices or by a combined 3-D reconstruction of the entire data-set. To
obtain a volumetric representation, the index �nger was attached to the �nger
holder and scanned over a range of 4.4 cm in 0.2 mm steps from the nail bed
to the PIP joint. Six excitation wavelengths (715 nm, 730 nm, 760 nm, 800 nm,
850 nm, and 900 nm) were used and the total acquisition time of the data-set
was approximately 6 min.

Figure 8.7 presents the result of the experiment. Figs. 8.7(a)-(d) show dif-
ferent slices at 715 nm excitation wavelength near the nail bed (a), in the DIP
joint (b), in the middle of the phal. intermed. (c), and near the PIP joint
(d). In the four slices, the di�erent shape and dimension of the �nger as well
as structure and diameter of the vasculature could be observed. Because one
global, homogeneous SOS was used for all slices, not all vessels in all slices were
focused properly. Fig. 8.7(e) provides a photograph of the same �nger with the
position of the slices in (a)-(d) indicated in green. A MIP5 of the 3-D stack
of the entire 219 slices is shown in Fig. 8.7(f). The elongated structure of the
whole vascular tree over the entire �nger with vessels of di�erent sizes could be
visualized. Furthermore, branching of vessels at multiple sizes could be observed
as well. Subsequent to performing the reconstructions for all wavelengths, the
volumes were un-mixed to oxygenated and deoxygenated hemoglobin using their
known absorption spectra and linear inversion with non-negativity constraint.
The volumes of both components were then processed in volume rendering mode
of ImageJ. The two rendered volumes are shown in Fig. 8.7(g) and (h), respec-
tively. In the HbO channel, mainly the vasculature was visible and vessels could

5For volumetric renderings, the VolumeViewer of ImageJ was used. No advanced image
processing besides transparency threshold level adjustment was performed. Sub�gures (g) and
(h) were gratefully rendered by M. Kneipp.
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Figure 8.7: Volumetric MSOT imaging of �ngers. Selected slices at 715 nm exci-
tation wavelength (a) near the nail bed, (b) in the DIP joint, (c) approximately
in the middle of the phal. intermed., and (d) near the PIP joint. (e) The pho-
tograph of the �nger indicates the location of the slices in (a)-(d). (f) Dorsal
view of the MIP of the volume obtained from stacking all 219 slices with both
vascular and skin visible. (g) In the volumetric view of the HbO component
after un-mixing, the vascular tree of the �nger is visualized. (h) Corresponding
Hb component with both vasculature and skin visible.
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be tracked along the �nger. In the Hb channel, both vasculature and skin were
visible because of the similar spectra of deoxygenated hemoglobin and melanin
(see Fig. 2.5). From the melanin contribution in the skin, the general shape of
the whole �nger could be clearly recognized.

Advanced image post-processing and segmentation algorithms might further
improve the visualization quality and more importantly facilitate a detailed
quantitative analysis of the data-set. For example, vessels could be automati-
cally tracked over the entire �nger, their diameter determined, and their branch-
ing studied. Concerning the multi-spectral aspect, un-mixing might be improved
by explicitly accounting for further intrinsic chromophores like melanin. An ex-
plicit calculation of oxygenation level (see Sect. 8.5 and discussion therein) could
allow to distinguish arteries and veins. By tracking of the recovered oxygenation
saturation level over the entire vessel, e�ects like spectral coloring from vary-
ing vessel depth or mixing of venous blood at branches with in�ow at di�erent
oxygenation saturation levels might be studied. Volumetric imaging of the vas-
culature might become a viable clinical alternative to DSA X-ray angiography
in several applications. For example, volumetric angiography might visualize
the altered vascular structure in RA (see Chapter 9) or in other diseases like
TAO. In TAO, arteries are not of straight elongated shape, but they are rather
winded with a corkscrew structure. At sites of highest curvature, occlusions of-
ten occur. MSOT might visualize and quantify those sites based on the altered
shape of the vasculature.

8.5 Functional Imaging of Fingers

The excellent spatio-temporal resolution of MSOT in combination with its spec-
troscopic capabilities permits not only acquiring anatomical reference images,
but also permits probing functional parameters. While many more functional
parameters can be alternatively targeted for, initial imaging studies for three
important functional (vital) parameters in �ngers are presented in the following.

Pulse detection

The pulse rate is one of the most important vital parameters to monitor the
physiological conditions and well-being of patients. The pulse can be manually
palpated for example in the carotid arteries or in the radial artery of the arm.
The pulse rate can also be determined during blood pressure measurements or
during pulse-oxymetry. Pulse measurements provide insights in multiple cardiac
diseases or the athletic �tness condition of an individual.

In order to test the capabilities of MSOT to determine the pulse rate, the
right index �nger was imaged at 890 nm excitation wavelength. Single wave-
length imaging was performed because acquisition at multiple wavelengths was
not possible with a 10 Hz repetition rate laser owing to the Nyquist theorem.
Immediately before the experiment, physical exercise was performed to increase
the heart rate above normal conditions and to enhance pulsating motion. Par-
tial constriction of the �nger was however not performed. The �nger was then
imaged over the coarse of 50 s by means of MSOT.

Figure 8.8 shows the results of a 7 s sequence of the pulse detection experi-
ment. Fig. 8.8(a) shows a cross-sectional reconstruction of the �nger at t=0 s.
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Figure 8.8: OA pulse measurement. (a) MIP of the reconstructed frames over
7 s with the ROI of the art. uln. indicated by the red box and the ROI of a vein
by the blue box. The magni�cations show the art. uln. (b) in systolic phase at
t=0.1 s and (c) in diastolic phase at t=0.6 s. (d) The tracking of the vessel inten-
sity from a 2-D Gaussian �tting shows the periodic motion of the artery (red),
while the vein is almost constant in intensity (blue). (e) Fourier power spectrum
of the vessel intensities shows an arterial pulsation rate of approximately 110
beats per minute (1.85 Hz). Scale bar 5 mm.

The red box indicates the ROI of the pulsating art. uln., while the blue box
indicates the ROI of a vein for comparison. Fig. 8.8(b) shows the enlarged
arterial ROI in systolic phase at t=0.1 s, while Fig. 8.8(c) shows the corre-
sponding diastolic phase 0.5 s later. In order to quantify the pulsating motion,
a 2-D Gaussian was �tted to the two ROIs in all frames and the correspond-
ing normalized volume under the curve is plotted in Fig. 8.8(d). In the vein
no pulsating motion could be detected. In the artery, a periodic motion was
found with a peak frequency of approximately 1.85 Hz, which corresponds to 110
beats per minute. For later observation times, a decrease in pulse rate could be
tracked and the recovery of the body towards normal physiological conditions
could thus be monitored.

Pulse rate determination is most often performed in the context of pulse-
oxymetry. Potential OA applications are thus discussed together with oxygena-
tion measurements at the end of the next paragraph.
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Figure 8.9: Visualization of blood oxygenation level in distinct vessels. (a)
Anatomical image at 730 nm excitation wavelength with anatomical reference
and ROIs of two selected vessels. (b) Blood oxygenation level obtained from
un-mixing with seven di�erent wavelengths. Art. uln. (Vessel2 ) exhibited the
highest saturation level compared to the other major vessels (veins).

Blood oxygenation level determination

The blood oxygenation level SaO (Eq. 2.3) is probably the most impor-
tant vital parameter to be monitored. Furthermore, multiple diseases such as
cancer are related to hypoxia [1]. Spatial mapping of blood oxygenation enabled
better tumor localization and treatment, functional mapping of brain activity
in BOLD-MRI, and many more [204�206]. The oxygenation level can be deter-
mined invasively by taking blood samples or non-invasively by optical methods
based on the distinct spectra of oxygenated and deoxygenated hemoglobin (see
Fig. 2.5). Because of strong photon scattering in tissue, SaO can most often
only be spatially mapped at very super�cial depths or with extremely low spa-
tial resolution. Pulse-oxymetry can also determine oxygenation at considerable
depth like in the �nger tip or in the ear lobe; it however relies on a strong pul-
sating motion of an artery and works typically in transmission mode, i.e. for
relatively thin objects only. More importantly, pulse-oxymetry does neither pro-
vide any spatial information on the oxygenation nor the possibility to quantify
the oxygenation level in venous blood.

In order to test the ability of MSOT to spatially resolve the oxygenation
level, a multi-spectral data-set was acquired in the PIP joint of Volunteer1 at
seven equi-distant wavelengths ranging from 730 nm to 850 nm6. For each wave-
length, �ve frames were acquired and averaged to improve SNR. Signals were
normalized by the average wavelength dependent laser pulse energy prior to
reconstruction. Spectral un-mixing to the concentrations of oxygenated and de-
oxygenated hemoglobin components was subsequently performed on a per-pixel
basis by least square �tting with a non-negativity constraint, using the known
spectra of the chromophores. From the un-mixed hemoglobin distributions, the
oxygenation saturation level was calculated for all pixels with su�cient qual-
ity of the linear spectral �tting (R2>0.8) and su�ciently high pixel intensity
(>12 % of the maximum intensity for each wavelength).

Fig. 8.9(a) presents the reconstructed frame at 730 nm with the ROIs of two

6The experiment presented here is part of a study previously published as Ref. [126].
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selected vessels indicated by the green boxes. Fig. 8.9(b) shows the calculated
saturation level map superimposed in color onto the anatomical reference image
of Fig. 8.9(a). The average saturation level in Vessel1 was 0.88 (a.u.) and the
average saturation level in Vessel1 was 0.92 (a.u.). Vessel2 corresponded to one
of the main �nger arteries (art. uln.) while Vessel1 corresponded to one of the
super�cial �nger veins.

Using MSOT, the oxygenation level could be individually determined for
each major vessel. In principle saturation level determination is even possible
on a per-pixel basis. However, major improvements need to be made before a
routine clinical application of MSOT in oxymetry is anticipated: As it can be
seen in Fig. 8.9(b), the saturation is considerably spatially varying within in-
dividual vessels, probably owing to reconstruction and calculation errors rather
than to (unknown) physiological e�ect. Further, SaO could not be faithfully
calculated for all image pixels. Quanti�cation errors might have resulted from
reconstruction errors in the individual images and also from considerable spec-
tral coloring at larger depths. For accurate quanti�cation, both issues need to
be addressed.

Relative trends can however be extracted from neighboring vessels or in
monitoring of temporal changes of oxygenation level. In the future, real-time
MSOT could become a clinical alternative to standard pulse-oxymetry because
of several advantages it o�ers: (1) It can provide information on the spatial
distribution and resolve oxygenation level on a single vessel basis; (2) it does
not necessarily require a strong pulsation of the artery; (3) thus it can also
determine the saturation level of venous blood; (4) re�ection mode imaging is
possible and enables novel measurement sites like the carotid arteries.

Tracking the thermal response of vasculature

The peripheral vascular system is able to adopt to changes in the physio-
logical state or also to changes in its environment [207]. Vascular constriction
and dilation are a decrease and an increase in vessel lumen, respectively, and lead
to a subsequent change of hemodynamics as response to an external or internal
stimulus. One particular stimulus for vascular constriction and/or dilution is
a thermally induced stimulus, i.e. the exposure to cold and warmth. Thermal
stress tests probe the temporal response of the vasculature to e.g. exposure
to cold water. An altered thermal vascular response is often associated with
certain PVDs like RP [197]. Besides imaging the altered structure of capillaries
in the nail bed, diagnosis and characterization of RP are often performed by
thermal stress tests. OA imaging could potentially contribute to a more accu-
rate diagnosis owing to its intrinsic blood contrast, its high scalable resolution
up to centimeter depth, and its simplicity to use coupling to a water bath with
adjustable temperature while imaging.

An experiment was performed to monitor the response of the �nger vascula-
ture to a thermal stress test by means of MSOT imaging. The index �nger was
completely immersed in a bath of iced water for 4 min. Immediately before and
after exposure to the cold water, the �nger was imaged at 890 nm excitation
wavelength at an e�ective frame repetition rate of 0.4 Hz over 120 s and 260 s,
respectively. Note that the tank of the scanner was �lled with water heated to
34 °C. All measured frames were reconstructed using a homogeneous model and
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Figure 8.10: OA imaging before and a after thermal stress test with exposure
of the �nger to iced water. (a) Finger before the challenge with the ROIs of
two selected veins indicated by the red and the blue box. (b) Corresponding
reconstruction immediately after the challenge. (c) Reconstruction at the end
of the experiment. (d) Intensities of the selected vessels with a rather constant
baseline before the cold challenge and continuous recovery after the challenge.
(e) SOS obtained from residual-based auto-focusing on individual frame basis
reveals changes in tissue temperature. Scale bar 5 mm.

residual-based SOS auto-focusing in 1 m/s steps on an individual frame basis.

Figure 8.10 presents the results of the experiments. Selected frames at the
beginning of the experiment (a), immediately after the cold exposure (b), and
at the end of the experiment are shown (c). Di�erences in vessel intensity can
be seen on the three images. For further analysis, two vessels were selected for
detailed analysis, one palmar vein (red box) and one dorsal vein (blue box).
Fig. 8.10(d) plots the intensity for both vessels obtained as amplitude from a
2-D Gaussian �tting to the ROIs in all frames. The baseline measured prior to
the cold challenge was comparatively constant with variations most probably
related to imaging artifacts and �tting errors rather than rapid physiological
changes. From imaging after the exposure to the iced water, a large change
of intensity could be observed in both vessels. The initial intensities (t=0 s)
were lower than those of the respective baselines. A rapid increase in intensity
with time was found for both vessels, indicating a thermal response to the 34°
warm water and thus a recovery from the cold challenge. While the palmar vein
reached approximately its initial intensity as before the exposure, the dorsal
vein had a larger intensity than before. Fig. 8.10(e) plots the optimized SOS
values used for reconstruction as function of time. The SOS was comparatively
constant for the baseline and slowly increasing back to its initial value after
cold challenge. Because of the exposure to the iced water, the tissue in the
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�nger was cooled down. The decrease in temperature resulted a corresponding
decrease in SOS in the tissue of the �nger from the temperature dependence of
the SOS. Thus, SOS determination permitted an indirect sensing of temperature
(or temperature changes) in the �nger [208]. Assuming the same leading linear
coe�cient of 2 m/s/K like in water and the �nger to be 2 cm in diameter, the
global SOS change from 1538 m/s to 1532 m/s corresponded to a change of
∆T ≈ −12 K of average tissue temperature.

The presented experiment demonstrated the general ability of MSOT to
monitor and quantify vascular constriction and dilution. Yet, several aspects
need to be further addressed. It remains unclear if the detected response of the
dorsal vessel is indeed an overcompensation to the stress test or an intensity
drift of unknown source. Multiple subjects and all vessels in the �nger need to
be examined in order to answer such questions. A fully automated processing
like vessel selection and a robust analysis is needed for that purpose. Optimized
image quality from heterogeneous models could also ease analysis and allow to
robustly track vasculature diameter directly instead of intensity. From the time
series of the �ttings, certain representative quantitative values (like exponential
decay constant) could be extracted and in addition could be combined with
thermal models for classi�cation of the thermal response and disease progression.

8.6 Summary, Discussion, and Conclusions

In this chapter, MSOT imaging of human �ngers has been experimentally
demonstrated. Imaging at the site of the �ngers is important because many
prevalent PVDs a�ect the �ngers and their vasculature. Examples of such
PVDs with altered vascular anatomy and/or physiology are RA, TAO, scle-
rosis, artery occlusions, or RP. Further, vital parameter monitoring by means
of purely optical pulse-oxymetry is also mostly performed in �ngers.

An adaptable holder system has been developed to facilitate �exible cross-
sectional, axial MSOT imaging in the �nger at almost arbitrary position using
a commercially available small animal scanner. Motion artifacts during acqui-
sition could be minimized and thus spectral and temporal imaging studies were
possible. Furthermore, volumetric imaging was enabled by z-scanning of the
�nger without the need for further post-processing. Motion could also be cor-
rected for via an ASIFT-based registration framework that could be shown to
correct with almost pixel size accuracy. For most imaging studies, the mo-
tion prevention using the mechanical holder even spared this time consuming
post-processing.

High-quality anatomical images could be rendered in this fashion. The two
main features in the images were the vasculature and the skin, corresponding to
the two main intrinsic absorbers, hemoglobin and melanin. Blood vessels much
smaller than half a millimeter in diameter could be resolved. A cross-validation
of vessels with the corresponding MRI slices revealed a good agreement between
both modalities in terms of size and location. Furthermore, the outline of the
bone, whose absorption was not visible in the OA images, could be extracted
based on its e�ects on US propagation (i.e. inducing signal re�ections). The
method was based on an automatic signal domain analysis and facilitated skin
and bone outline extraction, and thus intrinsic segmentation. Further, it pro-
vided ROIs for image analysis, as well as an automated 2-compartmental SOS
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distribution determination. Consequently, an improved reconstruction quality
of small, deep vessels could be achieved based on an automatically generated,
heterogeneous model matrix. Further work will also focus on the generation of
a 3-compartmental model that also models the re�ections of the acoustic signals
at the bone boundary and could thus remove the re�ection artifacts from the
image and improve reconstruction quality.

Cross-sectional MSOT imaging was also extended to volumetric imaging of
the �nger based on z-scanning and stacking of the obtained images. Performing
OA angiography, the overall shape of the �nger could be visualized from the
nail to almost the MCP joint, the vascular tree could be extracted, and the
major vessels could be tracked over the entire length of the �nger. Label-
free OA angiography will thus be able to characterize the vascular anatomy
and physiology under healthy and diseased conditions. Such diseases include
TAO, where artery occlusions often occur at locations of high vessel curvature
(corkscrew vessels) and might be potentially detected using MSOT in the future.
In general, stenoses might be detected optoacoustically based on a reduced vessel
lumen or occlusions might be visualized based on perfusion measurements (see
Chapter 9). Future work will also have to address the post-processing of the
reconstructions in such studies for tasks like automated vessel identi�cation,
segmentation, or quanti�cation of parameters like vessel size or branching.

Functional OA imaging studies were as well showcased in this chapter, like
monitoring of the most important vital parameters pulse rate and blood oxy-
genation level. The pulsation of the art. uln. could be determined to be 110
beats per minute from spatially resolved OA measurements. Conversely no
pulsating motion could be observed in the veins of the �nger. The blood oxy-
genation level could be determined based on the spectroscopic capabilities of
MSOT and SaO values extracted for individual vessels. The main arteries ex-
hibited the highest SaO level while the veins exhibited a lower oxygenation level.
MSOT could thus develop into an alternative to purely optical pulse-oxymetry.
For combining both pulse and oxygenation determination conjointly, faster laser
technology has to be used however. OA pulse-oxymetry o�ers good spatial res-
olution, the possibility to determine the oxygenation level of both arterial and
venous blood, and novel possible measurement sites such as the carotid arter-
ies, because it does not fundamentally require pulsation and does not work in
transmission mode only. Yet, MSOT technology is still expensive compared to
cheap LEDs and photodiodes, and the challenge of spectral coloring of the light
�uence from the background blood pool and especially from the melanin in the
skin has to be managed. Error estimates for realistic in vivo situations will
have to be obtained, and robust schemes for �uence correction based on light
transport models or other advanced signal processing approaches will have to
be developed. The accurate and robust correction of light �uence related e�ects
remains one of the great open challenges for deep tissue MSOT imaging.

In a further functional imaging study, vascular constriction and dilation in
response to a thermal stress test could be monitored on an individual vessel ba-
sis. Thermal stress tests are the main method to diagnose RP, usually based on
super�cial optical capillaroscopy or camera-based thermography. MSOT is not
restricted to super�cial areas and o�ers both high spatial resolution to monitor
the changes in vessel diameter and also high temporal resolution to track tem-
poral changes in response to environmental factors. In order to comprehensively
test the capabilities of MSOT in such situations, larger cohorts of healthy and
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diseased subjects will have to be examined and compared. For this purpose,
an automatic processing and response quanti�cation will have to be developed.
An advanced analysis could also include modeling of a temperature map with
corresponding SOS distributions in the reconstruction process or modeling of
heat in�ow through skin and arterial blood.

In summary, high-quality, high accuracy cross-sectional and volumetric �n-
ger imaging studies have been presented. The anatomical and functional imag-
ing studies enabled monitoring important vital parameters like pulse rate and
blood oxygenation level and enabled label-free, volumetric angiography of the
entire �nger. The results presented are expected to potentially in�uence clinical
imaging and diagnosis of prevalent PVDs like RA, TAO, arterial occlusions and
stenosis, and RP as well as to allow for optoacoustic pulse-oxymetry.
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Chapter 9

Towards an Optoacoustic

Diagnosis of Rheumatoid

Arthritis

RA is an in�ammatory disease a�ecting ca. 1 % of the total population with
large associated socioeconomic cost. Molecular optical imaging approaches are,
as discussed herein, promising to facilitate an early diagnosis of RA before on-
set of large anatomical damages. MSOT, as shown in this chapter, is highly
promising for detection of the altered spatio-temporal kinetics of the ICG agent
in in�amed joints, thereby overcoming the disadvantages of the current clini-
cal imaging modalities in RA diagnosis. For this purpose, it is necessary to
detect the spatially resolved ICG kinetics at the site of the �nger joint at clini-
cally relevant concentrations. Based on the �ndings of the associated OA ICG
monitoring study presented in this chapter and the underlying molecular imag-
ing paradigms in RA diagnosis, further steps and challenges for an early RA
diagnosis based on MSOT are discussed.

9.1 Rheumatoid Arthritis and its Current Clini-
cal Diagnosis

RA is an in�ammatory auto-immune disease in multiple joints that a�ects ap-
proximately 1 % of the total population. Mainly females of 40 - 60 years in age
at �rst outbreak of the disease are a�ected [200, 209]. Because of its expensive
treatment and the considerable limitations in every day life, RA causes large
economical cost in the order of billions of dollar in the United States alone [210].

Among the �rst joints a�ected by RA are typically the MCP joints in the
hand, the PIP joints in the �ngers, and the hips. Symptoms of RA are pain in
the a�ected joints and considerable associated limitations performing motions
like �exing. Joints are considerably swollen because of an enlargement of the
synovial membrane, known as pannus. The in�ammation process in the syn-
ovia results in neo-vascularization, i.e. the formation of new vasculature, and a
higher density of small vasculature in that area. The newly formed vessels have
an increased vessel wall permeability compared to the original vessels. This
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Figure 9.1: Sequence of DCE-MR images for RA diagnosis. (a) Coronal MIP at
time of �rst Gd agent �ooding. (b) Corresponding MIP at peak intensity time.
(c) After the signals in the large vasculature have decayed, strong signals are
observed from the in�amed joints.

'leaky vasculature' permits smaller molecules to leave the blood stream. The
leaked molecules and their kinetics can serve as basis for imaging (see Sect. 9.2).
In a late state of RA, the bone around the joint might get irreversibly damaged
by corrosion [211]. The molecular mechanisms of RA are still only poorly un-
derstood, and more research is on the way in order to develop e�ective drugs
for treatment [210]. To date, RA is mostly treated with cortisone. Treatment
with cortisone is e�ective in stopping the progression of RA and limiting the
overall pain; however, treatment can only be successful when RA is diagnosed
early enough when little pathological changes have taken place and the bone is
not damaged yet.

Diagnosis of RA is routinely performed with multiple imaging modalities.
One important indicator is still analysis of rheumatoid antibodies in the blood,
regardless of additional imaging methods employed. Depending on the image
modality and approach chosen, diagnosis can then be performed on an anatom-
ical, functional, or molecular level. The clinical imaging modalities mainly used
are [212, 213]:

� US imaging has a high sensitivity in diagnosing RA anatomically. Because
it is a cheap and widespread imaging modality, US is still considered gold
standard in RA imaging. But sonography is known to be strongly exam-
iner dependent and diagnosis is only possible in a late state of RA, when
macroscopic anatomical changes, especially bone damages, have already
occurred.

� X-ray imaging can as well provide detailed anatomical images; its draw-
backs in RA diagnosis are its ionizing nature and the low soft tissue
contrast. This renders X-ray imaging only e�ective in late phases with
considerable bone damage and therapy might thus not be successful any
more.

� Nuclear imaging methods provide functional or molecular contrast and
have been used in RA diagnosis as well. The lack of anatomical reference,
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the high associated cost, and the toxicity of the radio-trackers involved
hinder a primary use of nuclear methods in RA imaging.

� MRI is able to provide both anatomical and functional/molecular con-
trast. In clinical research it has become standard, but the high associated
cost prevent a general application as routine imaging modality [52]. Func-
tional diagnosis is based on application and tracking of a Gd-based CA
for DCE-MRI. Because of the di�erent kinetics of the CA in diseased and
healthy joints (see next section), the in�ammation level can be quanti�ed
from the temporal pro�le of the CA. Figure 9.1 shows an example of RA
diagnosis via DCE-MRI1. When most of the CA has already vanished from
the main vasculature, the remaining high CA concentration indicates the
PIP joints of D2 - D4 to be highly in�amed.

� Optical imaging methods are as well used in clinical research because
of the functional and molecular contrast they can provide from altered
optical properties of the joints in late phases of the disease or the altered
CA kinetics in early phases [52, 214, 215]. Further, optical methods are
cheap and non-ionizing. Besides DOT and laser speckle imaging, mostly
�uorescence based imaging methods are used in combination with an ad-
ministered CA whose spatio-temporal distribution is tracked and analyzed
[52, 214]. Because planar �uorescent imaging is often weighted towards
super�cial contributions and o�ers no depth information, volumetric FMT
imaging has recently been shown successful in diagnosis of early RA [216].

Besides the established clinical modalities, OA imaging has also been used for
diagnosis of arthritis. Detection of (osteo-)arthritis was among the few reported
OA studies in humans [217, 218]. Multiple studies with OA have conversely been
reported in animal models [215, 219]. In animal models, imaging performance
could also be enhanced be newly developed, targeting CAs, which are however
not (yet) approved for the use in humans.

A translation of OA imaging technology to the clinics is foreseeable in the
near future, because of the unique combination of anatomical and functional
imaging contrast at high spatio-temporal resolution, because of its low cost,
and because of the maturity of the technology. Diagnosis can then be performed
both on anatomical basis with altered vasculature and bone structure (especially
using hybrid modalities in combination with US) and on functional basis of CA
tracking. The clinically CA agent ICG and its pharmakinetic model in the
context of RA imaging are described in the next section.

9.2 Indocyanine Green and its Pharmakinetic Mod-
eling

ICG is an organic dye that exhibits �uorescence in the NIR (Fig. 9.2). The
cyanine group is characteristic for ICG and responsible for its �uorescence. The
entire molecular structure with a weight of 751 Dalton is shown in Fig. 9.2(a).
ICG absorbs and �uoresces in the NIR and the exact properties depend on
its chemical environment [89, 220]. In blood serum, the peak absorption is

1The MRI images were acquired and gratefully provided by Dr. Reinhard Meier.
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Figure 9.2: (a) Molecular structure of ICG. (b) Absorption spectrum of ICG
with a peak at approximately 807 nm.

at 807 nm with an extinction coe�cient of ε=121000 M−1 cm−1 (Fig. 9.2(b)).
Peak �uorescence occurs at a higher wavelength of 822 nm with a quantum yield
of 9 % [89]. However, both absorption and �uorescence depend non-linearly on
concentration because of aggregation and quenching [10]. ICG is water soluble,
but immediately binds to blood serum proteins like albumin with an associated
change in optical properties [221]. The binding of the small ICG molecules to
large proteins e�ectively con�nes them to the blood stream in healthy subjects.
No metabolites of ICG are known and ICG is excreted through hepatic clearing
into bile juice with a half-life of 150 - 180 s [89]. ICG has a relatively high photo-
stability, but is degraded, if the solution is exposed to light over long periods of
time [222]. Enhanced ICG-derived optical CAs have been developed recently as
well, either by functionalization of ICG to bind to a speci�c target molecule or
by using liposomal ICG with modi�ed pharmakinetics and increased half-life in
the blood stream through reduced hepatic clearing rates [223].

ICG is one of the very few clinically approved optical CAs. The main ad-
verse reaction is due to sodium iodide and occurs as seldom as 1:10000. ICG
was developed in the 1950s and is in use with multiple clinical applications since
then: Among them are angiography in the context of ophthalmology, oncology,
surgery, perfusion and occlusion measurements, hepatic clearing e�ciency mon-
itoring, and measurement of the cardiac output [10, 89, 220, 224, 225]. ICG
has also been used for optical diagnosis of RA based on measurements of its
pharmakinetics described further below [52]. ICG has as well been used in the
preclinical context like for photo-thermal therapy, digestion, or stem cell dif-
ferentiation [21]. Detection and imaging of ICG is mostly performed purely
optically based on its �uorescence. Modalities for its detection include in vitro
measurements of blood samples taken, camera-based planar �uorescence imag-
ing, and FMT. ICG can as well be detected based on its absorption properties
since most of the photon energy is thermalized. OA imaging technologies have
successfully localized ICG in many preclinical applications [21, 23, 223, 226].

Optical diagnosis of RA with ICG is based on tracking its kinetic pro�le
in the region of the in�ammation. In healthy subjects, ICG is con�ned to the
blood stream and cannot leak to the extravascular space. For in�amed joints
however, the newly formed vasculature allows also larger molecules to penetrate
the vessel walls towards the extravascular space. Finite concentrations of ICG
are then found in the extravascular space with kinetics considerably deviating
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Figure 9.3: 2-compartmental modeling of CA distribution. (a) The CA con-
centration in the �rst compartment, the vascular compartment, is given by the
AIF and is washed out with the blood stream. From the vascular compartment,
the contrast agent can also di�use to and from the extravascular compartment.
(b) Resulting concentration pro�les in the vascular and the extravascular com-
partment with a bolus injection: AIF (blue) and corresponding pro�le of the
extravascular compartment (red) for high vessel wall permeability (k12=0.12
min−1). Although the peak concentration is much lower compared to the AIF,
the decay is much slower and the concentration exceeds the concentration of the
AIF for longer observation times. For low permeability (red dashed, k12=0.012
min−1) the peak concentration might be too small to be detected.

from those in the blood stream.
ICG with a maximum approved dose of 5 mg/kg is prepared by dissolving

the powder in water (or saline) and systemically injected intravenously in one of
the peripheral veins as concentrated bolus. After circulation through the heart
and lungs, the ICG bolus in the arterial blood reaches the �nger. The exact ICG
concentration pro�le in the �nger artery (known as arterial input function, AIF)
depends on multiple factors. The shape is mainly determined by particulars of
the injection and the cardiac output. Dilution of the bolus from injection site
to the �nger smears the pro�le and multiple peaks occur, when strong and fast
recirculation takes place. The AIF can be modeled by a superposition of gamma
functions or approximated by a dual exponential decay [227]. When the ICG has
entirely diluted at later times, its concentration is approximately homogenous
within the whole blood pool and slowly decays exponentially due to hepatic
clearing.

The ICG kinetics within the �nger are best described by linear compart-
mental modeling. To describe the ICG distribution in the extravascular space,
a 2-compartmental model is needed (Fig. 9.3(a)): The �rst compartment is the
vascular compartment that is fed by the AIF and ICG can be eliminated from
there by washout clearing. The second compartment is the extravascular com-
partment where ICG can di�use from or di�use to the vascular compartment
with a transport proportional to the concentration di�erences and to the rate
constants k12 and k21. The concentrations in the respective compartments are
then modeled by the following linear di�erential equations:

dc1(t)/dt = −k12c1(t) + k21c2(t)− k1c1(t) +AIF (t) (9.1)

dc2(t)/dt = +k12c1(t)− k21c2(t),
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where k12 = k21 for passive transport. In the following, a limited exchange
between compartments is assumed: k12 << k1 and k12 · τAIF << 1, where
τAIF is a time constant related to the decay of the AIF. Because the washout
is fast, the concentration in the vascular compartment is equal to the AIF. For
a quasi-constant AIF, the concentrations c1(t) in the vascular and c2(t) in the
extravascular compartment are equal (if ICG might penetrate at all). With a
rapidly changing AIF like for a bolus injection, the peak concentration c2,max
in the extravascular compartment is much smaller than the peak concentration
c1,max in the vascular compartment and is in the order of c2,max ≈ c1,max · k12 ·
τAIF . At later time points, the concentration in the extravascular compartment
exceeds the concentration in the vascular compartment and decays exponentially
with a rate of k12.

The concentration pro�les of the vascular compartment (blue) and the ex-
travascular compartment (red) for two di�erent sets of exchange rate constants
k12 of vessel wall permeability are plotted in Fig. 9.3(b). For a very low con-
stant (dashed red), almost no ICG leaks to the extravascular compartment. At
higher permeability with an increased exchange constant (solid red), the ICG
concentration gets signi�cant in the extravascular compartment as well. In the
example, considerable amounts of ICG are left at 200 s to 400 s, when almost
all ICG has already vanished from the vascular compartment.

In RA, the 'leaky vasculature' from neo-vascularization allows penetration
of ICG to the extravascular compartment with an associated exchange rate

constant much higher than for health subjects: k
(RA)
12 >> k

(healthy)
12 ≈ 0. Con-

sequently, in�ammation can be detected from regions with remaining CA signal
at later time points, when no signal is left in the vasculature. This is also the
basis of DCE-MRI with the Gd CA shown in Fig. 9.1. The slowly decaying pro-
�les can be either detected in entire pixels, provided su�cient resolution; or the
pro�les can be obtained as superposition together with other, more rapid pro-
�les in sub-resolution structures, too. For every pixel, a exchange rate constant
k12(x) can be extracted from the corresponding kinetic pro�les quantitatively
or qualitatively and in�amed areas can be located in this way.

9.3 Real-Time Detection of Indocyanine Green
Perfusion in a Human Volunteer's Finger

An experiment was performed to test the ability of MSOT to faithfully track the
kinetic pro�le of an ICG bolus injection at clinically relevant doses in spatially
resolved manner within the �nger. The left index �nger of Volunteer1 was
imaged at a slice in the PIP joint, using the 128 element MSOT scanner. Multi-
spectral acquisition of the temporal pro�le was not possible because of the lack
of fast wavelength tuning capabilities of the OPO employed. Consequently,
single wavelength imaging at 10 Hz laser repetition rate was performed over a
period of 180 s. An excitation wavelength of 800 nm was chosen, which was
close to the ICG peak absorption. For kinetic pro�le imaging, a commercially
available ICG agent (ICG-PULSION, Pulsion Medical Systems SE, Feldkirchen,
Germany) was dosed to 1 mg per kg of body weight and dissolved in saline. ICG
was administered into the vena mediana cubiti of the right arm of the volunteer
by an experienced physician. The bolus injection started around t ≈ 55 s after
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Figure 9.4: OA monitoring of ICG perfusion in the �nger vasculature. (a) Cross-
sectional reconstruction at the beginning of the experiment with ROIs indicated
by the boxes. (b) Corresponding reconstruction at t=85 s with peaking relative
dynamic contrast. (c) Pro�les of ICG perfusion in the two selected vessels
with �ttings superimposed in black. Dynamic ICG contrast could be observed
starting 22 s after the injection. In the artery (Vessel2 ), the relative dynamic
contrast was higher and peak time was earlier compared to the corresponding
quantities in the analyzed vein (Vessel2 ).

the beginning of imaging and the injection took around 5 s in total.

The results of the perfusion experiment are shown in Figure 9.4. Fig. 9.4(a)
shows the reconstructed cross-sectional slice at the beginning of the experiment
prior to ICG injection. Fig. 9.4(b) shows the reconstruction at t=85 s with
peaking dynamic contrast from ICG. ASIFT corrections with respect to the
�rst frame were performed to compensate for motion artifacts. In-plane motion
could be estimated to 400 µm in average. For further analysis, two ROIs were
selected: Vessel1 was a vein (cyan box) and Vessel2 was the art. uln. (red box).
For each frame and each ROI, the 95-percentile of the OA pixel intensity was
calculated. A linear baseline �tting to the values obtained was performed for the
time points prior to injection in order to characterize a potential intensity drift
and the �uctuation level. Based on the baseline and the peak dynamic contrast
for both ROIs, the time points τ20 and τ80 were calculated, when the dynamic
contrast �rst exceeded 20 % and 80 % of its peak value, respectively. From the
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two time points τ20 and τ80, linear extrapolation to τ0 and τ100 was performed.
A dual-exponential �tting was performed in order to characterize the temporal
pro�les in both vessels, starting from τ0 to the end of the experiment at t=180 s:

fprof (t) = A1 · exp(−t/τd)−A2 · exp(−t/τr) +A3, t > τ0. (9.2)

The extracted temporal intensity pro�les of the two vessels are plotted in
Fig. 9.4(c). From the baseline �ttings, a potential relative intensity drift over
the total duration of the experiment could be estimated to be less than 2 %
of the vessel intensity. From the standard deviation of the measurements with
respect to the baseline, a frame-to-frame �uctuation of less than 3 % could be
estimated, potentially originating from laser power �uctuations or system noise.

First in�ow of ICG was observed at τ
(2)
0 =77 s in Vessel2, which was 22 s after the

beginning of the injection. The dynamic ICG signal reached its peak at τ
(1)
100=89 s

and τ
(2)
100=84 s, respectively, which was 34 s and 29 s after the injection. From the

dual-exponential �tting using fprof (t), the characteristic time constants of the

ICG temporal pro�le were calculated to be τ
(1)
d =20 s and τ

(1)
r =2.7 s for Vessel1,

and τ
(2)
d =21 s and τ

(2)
r =2.0 s for Vessel2. The maximum relative signal increase

with respect to the baseline was 47 % and 67 %, respectively.
The excellent spatio-temporal resolution of MSOT allowed to visualize and

distinguish kinetic ICG pro�les on an individual vessel basis. With the US
limited spatial resolution, ICG in�ow could be localized in vessels of half a mil-
limeter diameter and less; with the video-rate image acquisition rate of 10 Hz,
fast kinetics in the order of 2 s were readily captured. For individual vessels,
magnitude, the time-to-peak, and the decay could be calculated from a �tting
function. In the arteries, ICG in�ow started and peaked earlier than in the
veins2, as expected because of the additional pass through the capillaries for
venous blood. Also, the amplitude relative to the baseline was higher in the
selected ulnar artery than in the selected vein3. Thus the ICG injection bolus
was still more concentrated in the artery. After passage through the capillar-
ies, the bolus was more diluted and consequently resulted and lower relative
amplitude in the monitored vein. The shape of the observed pro�les corre-
sponded well with shapes predicted by tracer modeling after systemic injection
and/or measurements with other tracers and modalities, as for example in dye-
densitometry [224]. Because of the distant site of measurement, no additional
peaks of recirculation were present. The delay of 22 s from systemic injection to
�rst appearance of ICG in the �nger resulted from venous �ow from the injec-
tion site to the heart, passage through the lungs, and arterial �ow to the �nger.
The delay was within the range of 10 - 31 s for a systemic circulation time in
humans [228]. Further it has to be noted that the observed decay with a time
constants of τd ≈ 20 s resulted from a dilution of the ICG bolus towards a ho-
mogeneous concentration on its way from the injection site to the measurement
site (mainly in the heart), not from hepatic clearing of ICG with a half life in
the order of 3 min. In the experimental results presented, no 2-compartmental

2The observation of earlier peak time was also made for the art. rad. and with respect to
the other major veins.

3Note that the selected wavelength of 800 nm was close to the isosbestic point at 797 nm.
The baseline value was almost insensitive to di�erent oxygenation levels in arterial and venous
blood. The amplitude increase was thus approximately proportional to the fraction of ICG
concentration to total hemoglobin concentration.
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kinetic modeling was performed. In healthy subjects, ICG is expected to be
bound to the blood pool. So no extravasation occurs and the concentration
of ICG in the second, extravascular compartment equals zero. Con�rming the
absence of extravasation, no signi�cant dynamic ICG contrast was observed for
image regions that did not have an original contrast of signi�cant magnitude
prior to injection stemming from the blood pool or melanin.

9.4 Future Steps Towards Optoacoustically Diag-
nosing Rheumatoid Arthritis

In Chapter 8 it was shown that high-quality anatomical and functional imaging
of �ngers in regions a�ected by RA is possible. Sect. 9.3 demonstrated - for the
�st time to the best of knowledge - the ability of MSOT to track the kinetic
pro�le of ICG in a spatially resolved per-vessel basis at clinically relevant con-
centrations. Yet, diagnosis of RA by means of MSOT remains challenging. RA
diagnosis imposes certain requirements on the imaging technology based on the
nature of the anatomy and processes to be visualized. These requirements and
associated challenges, some of which still need to be solved for RA diagnosis
with MSOT, are discussed in the following.

An imaging-based diagnosis of RA can be achieved based on two di�erent
paradigms, either by detecting anatomical changes or by performing functional
imaging with DCE imaging (see Sect. 9.2). Anatomical imaging, also when
using MSOT, is expected to visualize RA only in a late phase of the disease.
Because the bones and bone damages are not directly visible in OA images, de-
tectable changes are rather associated with the blood pool and neovasculariza-
tion. However, the corresponding blood vessels are small with a size comparable
to imaging resolution or even below. Vessels stemming from neovascularization
might not be visible on an individual basis in the OA images, but rather the
whole ensemble might result in an overall increased image intensity in the af-
fected regions of the joint. A ROI-based analysis of the MSOT reconstructions
might allow for determining a form of qualitative or quantitative measure for
vascularization in that area. Bone localization (see Sect. 8.4) can provide an
automatically obtained ROI for such an analysis while improved reconstruction
methods can enhance the e�ective resolution in non-super�cial areas and can
thus improve and ease the analysis. Another possibility for characterization
could be the average oxygenation level in certain regions, provided a hypothet-
ical di�erence of SaO between healthy and arthritic joints.

Functional MSOT imaging promises to enable RA diagnosis also in early
phases of the disease and is thus favorable. It is based on the distinct spatio-
temporal kinetics resulting from the 'leaky vasculature' in RA. In order to quali-
tatively and quantitatively characterize ICG kinetics and to discriminate healthy
from diseased subjects, certain imaging performance metrics associated with dif-
ferent domains must be met.

In the temporal domain, image acquisition must be su�ciently fast to cap-
ture the dynamics. With a frame rate of 10 Hz (and especially with 50 Hz
and 100 Hz), the fast in�ow of ICG in the order of few seconds can be cap-
tured at multiple excitation wavelengths. Especially with higher laser repetition
rates, the amount of data to analyze from an experiment over several minutes
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becomes extremely challenging, even when using fast reconstruction methods.
Potentially frames need to be discarded or averaged, provided motion can be
neglected. Motion in general is a huge challenge for temporal imaging studies.
Although generally better avoided at all by using suitable �xation systems, it
can be corrected using post-processing methods. However, motion within one
multi-spectral frame-set is crucial and thus to be avoided, because erroneous
arti�cial spectra are introduced. And most importantly, the temporal stability
of the system over the entire imaging period is essential. The kinetic pro�les
need to be determined over the course of several minutes, dictated by the time
constants for ICG dilution, ICG clearing, and compartmental exchange rates.
E�ects like �uctuations or a thermal drift of hardware components such as the
laser, altered physiology in the �nger from e.g. cooling, or simply motion from
non-comfort of the volunteer would introduce arti�cial temporal pro�les in the
image pixels. The true ICG pro�les and associated kinetic constants would then
be (partially) masked. However, the reported perfusion experiments revealed
that imaging with su�cient temporal stability over minutes is possible.

Challenges in the US frequency domain are associated with negative image
values. They stem from deviating OA propagation models and particularly from
the the diminished sensitivity of the detectors at low US frequencies (see Sect.
7.2). Negative image values are mainly found in deep areas with weak OA
signals generated. Such signals are also expected for the ICG contrast in the
in�amed regions. Negative image values might thus mask the weak, positive ICG
concentration there. Besides alternative detection technologies with a higher
bandwidth, alternative reconstruction approaches with a di�erent weighting of
lower US frequencies might potentially decrease negative values and increase
quanti�cation of the image values.

Multiple issues are also identi�ed in the three spatial dimensions. The de-
tected OA signals are a superposition of contributions from multiple locations.
By performing reconstructions, the contributions are spatially localized to their
origination. However, artifacts and errors cause a considerably wrong localiza-
tion of contributions. Examples are limited view artifacts on the dorsal side
of the �nger, deviations in the assumed SOS distribution (which can however
be reduced when using the proposed 2-compartmental model), and the bone
re�ections. For example, re�ected contributions from the digital arteries can
be erroneously located to within the area of the bone, induce artifacts there,
and lower the reconstructed intensity of the actual site of the artery. Thus
new reconstruction algorithms capable of modeling the re�ections of the bones
will have to be developed to increase achievable reconstruction accuracy. Addi-
tionally, the use of volumetric imaging probes is expected to avoid out-of-plane
artifacts, which are decreasing image accuracy in cross-sectional 2-D systems
based on focused signal detection. With volumetric probes, it is further possi-
ble to analyze larger regions of the joint and the analysis is not restricted to a
single plane that has to be chosen at the beginning of the experiment.

Last, several advantages and challenges stem from the spectral domain. Most
importantly, spectroscopic imaging approaches allows to selectively visualize ab-
sorption contributions from ICG contrast. With novel laser technology avail-
able, multi-spectral data-sets can be acquired at video-rate , not only single
wavelength data-sets. Consequently, ICG can be detected with a much higher
sensitivity compared to single wavelength imaging (as performed in Sect. 9.3),
because ICG contributions can be un-mixed from the background contributions
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of the blood pool. A higher sensitivity allows not only for better diagnosing
capabilities, but also for a corresponding reduction of the administered ICG
dose. However, multi-spectral imaging imposes also several challenges. Most
importantly, spectral coloring of the light �uence in deep tissue areas alters
the measured absorption spectra. If the spectral coloring is not adequately ac-
counted for during the un-mixing process, ICG contributions are erroneously
attributed to the hemoglobin concentrations and vice versa. Thus the quan-
tity and temporal and spatial distribution of the unmixed 'ICG'-channel can
be signi�cantly corrupted. Then extraction of the kinetic parameters might be
considerably complicated by the false positives or even impossible.

9.5 Summary, Discussion, and Conclusions

The auto-immune in�ammatory disease RA a�ects approximately 1 % of the
population and is associated with billion dollars socioeconomic cost. This is
because of the patients' strong limitations with motion and strong pain, mainly
in the joints of the �ngers and of the hand, because of the high cost of treatment,
and because of the irreversible anatomical damages in the late phase of the
disease. Early diagnosis of RA is di�cult, but then good management of the
disease can be established. In clinical routine, RA is currently diagnosed with
multiple imaging modalities; some of them can only detect RA in a late phases
(US, X-ray), involve toxic radiotracers (PET/SPECT), or are expensive (MRI).

Conversely, optical imaging is cheap, non-ionizing, and capable of molecular
and functional imaging with rich contrast. RA can be diagnosed by means of
optical imaging based on the altered spatio-temporal kinetics of ICG. ICG is a
FDA approved, well tolerated organic dye exhibiting �uorescence and absorp-
tion in the NIR. ICG binds to albumin and thus it cannot leave the vascular
compartment. From there, it is excreted through hepatic clearing. No contribu-
tions from dynamic ICG contrast in the extravascular compartments are found
in the joints of healthy subjects. In in�amed joints however, neovascularization
in the joints results in vasculature with higher vessel wall permeability and ICG
can therefore also leak to the extravascular space. The ICG signals from the ex-
travascular compartment have a di�erent kinetic pro�le with a long-lived, slowly
decaying dynamic contrast. With the exact decay given by the corresponding
exchange rate constants, signi�cant contributions are still found in the extravas-
cular space, when the ICG in the blood pool has already been cleared. Conse-
quently, RA can be diagnosed by detecting the signi�cant amounts of ICG in
(the extravascular compartments of the) the in�amed joints at late time points
or by directly calculating the associated larger exchange rate constant. Optical
detection of RA has been realized based on camera-based planar �uorescent
methods, which have a high sensitivity for ICG, but a low resolution in general
and not depth resolution in particular. Recently, FMT has been shown suc-
cessful in RA imaging. FMT as 3-D modality has also depth resolution, but a
relatively low resolution in general and a time consuming acquisition procedure
(hindering imaging of fast kinetic processes like the injection).

MSOT combines the advantages of optical RA imaging approaches with
high spatial resolution in all dimensions. Its real-time capabilities allow also
to capture fast temporal processes like the AIF. Here, it has been shown that
MSOT is able to provide a detailed visualization of vasculature in the PIP joint.
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Individual blood vessel of less than half a millimeter in diameter could be ren-
dered (even at several millimeters depth using the signal domain segmentation
2-compartmental reconstruction algorithm) as cross-sectional slices or in a volu-
metric stack. In addition to the anatomical imaging, functional parameters like
blood oxygenation level could be extracted on a single vessel basis. Further-
more, the location and shape of the weakly absorbing bone could be identi�ed
and might also be a potential starting point to automatically select a ROI for
analysis of the potential in�ammation in the synovia. Most signi�cantly for the
detection of RA, an injected ICG bolus could be detected at clinically relevant
concentrations. To the best of our knowledge, this was the �rst demonstration
of detecting ICG in humans by means of OA imaging. Its kinetics could be track
and quantitatively extracted at 100 ms temporal resolution, thereby providing
an AIF for compartmental kinetic modeling. Under stable imaging conditions,
the ICG pro�le could be monitored over several minutes and di�erent kinetics
were observed on an individual vessel basis.

In order to facilitate an OA diagnosis of RA, several improvements might be
implemented. Most importantly, spectroscopic imaging instead of single wave-
length excitation can drastically increase the sensitivity for ICG. However, false
positives from spectral coloring of the light �uence and from motion artifacts
have also to be minimized then. Furthermore, the use of volumetric imaging
probes will allow not only for larger imaging regions of the in�amed area, but
will also eliminate out-of-plane artifacts. Algorithmic improvements might aim
on reducing the negative image values present and the re�ection artifacts, and
thus increase overall image quality and quanti�cation. And an automated ROI
analysis and extraction of kinetic pro�les and associated parameters will facili-
tate an application in clinical routine.

In summary, the demonstrated kinetic ICG pro�le monitoring paved the way
towards an early diagnosis of RA by means of MSOT in the near future and to
potentially establish MSOT as an alternative clinical imaging modality in this
context.
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Chapter 10

Summary, Conclusions, and

Future Work

10.1 Summary

The aims of this work have been to advance MSOT towards its routine clinical
application for �nger imaging. In particular, three main goals were pursued:
The �rst was to accelerate accurate, computationally expensive MB reconstruc-
tions towards video-rate and live visualization for clinically relevant imaging
systems. The second was to automatically provide superior image quality with-
out the need for manual user input for clinically relevant scenarios. An addi-
tional important consideration for the development of such methods was their
computational e�ciency so that they can be routinely applied in clinical prac-
tice. The third goal was to demonstrate the feasibility of MSOT to perform
high-quality clinical imaging in the �nger. For this purpose, the possibility
to extract anatomical and physiological parameters related to common PVDs
like RA or RP or to monitoring of vital parameters from MSOT measurements
needed to be tested.

For the acceleration of MB reconstructions, two transformation-based ap-
proaches have been developed that take into account the particulars of the OA
imaging and reconstruction problem.

The �rst approach presented in Chapter 5 was based on geometrical sym-
metries present in most OA systems, particularly in the case of rotational sym-
metries in tomographic scanners. A suitable polar image discretization revealed
rotational invariance in the discrete formulation of the forward problem. Ex-
ploiting the conservation of angular frequency by a transformation of the model
to this domain, the model became block-diagonal and thus separable. Conse-
quently, a direct inverse of the model matrix could be readily obtained which
is usually computationally and memory prohibitive in Cartesian discretization.
An inversion scheme based on inverse and forward model in polar formulation
could be developed for limited view scanners and o�ered a faster convergence
rate and superior inversion performance. A 12.7 x higher reconstruction rate
could be achieved compared to standard iterative LSQR inversion at the same
image quality. The memory e�cient formulation using dense algebra in com-
bination with the intrinsically parallel nature of the algorithm enabled an ef-
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�cient implementation on powerful GPU platforms using standard numerical
libraries. Computations could be accelerated on GPU by an additional factor of
13 x compared to the corresponding CPU implementation and thus an overall
acceleration of more than two orders of magnitude versus state-of-the-art MB
reconstructions could be realized. As a consequence, peak reconstruction rates
of up to 40 frames per second enabled video-rate reconstructions at high image
qualities for clinical imaging. The long-standing goal of replacing BP approaches
with MB live-previews is ready at hand if further approaches to decrease the
frame latency time are implemented.

The second method for accelerating MSOT reconstructions is also applica-
ble for systems where symmetries cannot be e�ciently exploited. The high-
throughput framework was based on a sparse and thus numerically e�cient
problem re-formulation. It was rooted on general properties of the OA imag-
ing problem rather than exact symmetries. It extended a previously published,
in-house developed framework that had exploited the approximate separabil-
ity of the forward model in a 2-D WP representation and consequently had
achieved fast reconstructions using an approximate WP inverse. In addition
to model separability, three other sources of sparsity could be identi�ed and in
total four means for reconstruction acceleration were exploited conjointly: (1)
model separability which enabled direct instead of iterative reconstructions; (2)
the sparsity of the inverse model matrix in the WP domain allowed rejecting
small valued matrix elements and thus saving memory and inversion time; (3)
signals of individual frames were sparse in the WP domain and hard coe�cient
thresholding resulted in high computational bene�ts at only minor loss of image
quality; (4) accounting for a high inter-frame correlation in a combined PCA-
WP domain resulted in an extraordinary sparse representation of multi-frame
signals and consequently an extraordinarily fast inversion performance. Under
high-throughput conditions, when standard MB reconstructions are often com-
putationally prohibitive, an acceleration of 40 - 700 x with respect to partially
converged iterative reconstructions of similar RMSD error could be achieved for
clinically relevant multi-spectral, volumetric, and temporal multi-frame data-
sets. The sparsity-based MB inversion framework enabled high-quality recon-
structions at video-rate peak performance previously only achieved by BP meth-
ods of inferior image quality.

Aside to accurate model based reconstructions, a number of additional pro-
cessing methods are required for achieving high image quality. Various methods
have been developed in the context of this work in order to provide superior re-
construction quality at moderate computational cost and without manual user
input. Negative image values are regularly found in experimental OA recon-
structions although their unphysical nature hinders image interpretation and
quanti�cation. A computationally e�cient iterative inversion method has been
developed that suppresses the appearance of negative image values by imposing
an additional inequality constraint. Moreover, multiple sources of negative value
artifacts have been identi�ed: Besides limited detection frequency bandwidth,
corruption by strong superimposed noise was one of them. E�ective signal
de-noising of multi-spectral signals could be achieved based on an extraordinar-
ily sparse representation in a combined PCA-WL domain and subsequent hard
thresholding. A further source of negative image values was the inaccurate mod-
eling of OA signal propagation. Particularly the assignment of the correct SOS
for reconstruction was crucial, which, if not successfully performed, resulted
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in a loss of resolution and an overall loss of image quality in addition to the
negative pixel intensities. An optimized homogeneous SOS parameter could be
accurately and robustly retrieved for MB reconstructions using a residual-based
auto-focusing approach. The computationally burdensome SOS retrieval could
be considerably expedited when using the developed sparsity-based, multi-frame
reconstruction approach. It could also be shown that computationally favorable
homogeneous models were not able to provide optimal image quality for all imag-
ing scenarios. Therefore, suitable heterogeneous models were needed instead.
The SOS distribution of a 2-compartmental model could be e�ciently calculated
prior to the one-step reconstruction process based on a signal domain analysis.
Extraction of characteristic OA signal features allowed for conclusions on the
acoustic properties; the method thus resulted in improved reconstructions and
it is not limited to, but mainly applicable in OA �nger imaging.

In the experimental part of this work, the feasibility of MSOT imaging for
routine clinical imaging in �ngers has been demonstrated in volunteers. MSOT
imaging of �ngers is one major �eld for the clinical translation of the OA tech-
nology because their vasculature is frequently a�ected by common PVDs such
as RA, RP, or TAO. Moreover, the �nger is the predominant site to monitor
vital parameters. A commercially available small animal MSOT scanner sys-
tem was enriched by a custom-designed adaptable �nger holder system. It thus
enabled real-time multi-spectral imaging of cross-sectional slices of almost the
entire �nger without being corrupted by motion artifacts (sub-pixel accuracy
could be achieved). Aside to the stability provided by the �nger holder, a ro-
bust post-processing OA motion correction framework based on ASIFT rigid
body image co-registration was implemented and also allowed for the analysis
of motion corrupted experimental studies.

It was shown possible to acquire anatomical cross-sectional OA images with
excellent contrast from melanin in the skin and hemoglobin in the blood vessels.
Vasculature of diameter much smaller than 0.5 mm could be visualized and the
size and location of all major blood vessels in the �nger appeared in excellent
agreement with the corresponding MRI slices which were acquired for cross-
validation. Cross-sectional imaging could be further extended to volumetric
anatomical imaging by z-scanning of the �nger, stacking of the slices, and 3-D
rendering. The vascular tree of almost the entire index �nger could be visualized,
the course of individual vessels tracked, and their branching studied. When
applying the 2-compartmental signal domain analysis, an automated and yet
accurate segmentation of the �nger area was obtained, superior SOS focusing
and image quality compared to homogeneous models could be achieved for small,
deep-seated vessels, and the outline of the optically less pronounced bone could
be identi�ed based on the induced signal re�ections. The identi�ed bone outline
could be further con�rmed based on the corresponding MRI slice.

In addition to the visualization of detailed anatomical features, this study
also demonstrated �rst functional MSOT imaging of the human �nger. The
spectroscopic capabilities of MSOT facilitated to quantitatively distinguish the
contributions of HbO and Hb and consequently to calculate the blood oxy-
genation level SaO on a per-vessel or even per-pixel basis for both arterial and
venous blood. A higher saturation level could be demonstrated for arterial blood
compared to venous blood, even without a pulsing motion of the vessels, and
arteries could therefore be discriminated from veins. The video-rate temporal
resolution of MSOT enabled capturing the fast, pulsating motion of the ulnar
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�nger artery at approximately 110 beats per minute while such a motion was
absent in the accompanying veins. Another functional OA study monitored the
vascular response to a thermal stress test as often performed in the context of
RP using established imaging modalities. A vasoconstriction in the �nger ow-
ing to the exposure to iced water could be observed and the subsequent slow
recovery towards normal conditions monitored. Hypothermia and thermal re-
covery could as well be indirectly monitored by the temporal changes of the
temperature-dependent average SOS in the �nger.

For the �rst time, to the best of our knowledge, the detection of a clinically
approved CA in humans by means of MSOT was reported. DCE OA imaging
is not only of outstanding interest for general (pre-)clinical studies, but particu-
larly in the context of diagnosing RA: Functional DCE imaging has been shown
to visualize in�ammation in an early phase before the onset of macroscopic
pathological damages and before the possibility to detect them using anatomi-
cal imaging paradigms. For this purpose, the altered spatio-temporal kinetics of
the blood-bound CA ICG need to be monitored. In this work, the pro�les of an
extrinsically administered ICG bolus at clinically relevant concentrations were
successfully and robustly tracked in the �nger vasculature over several minutes
by means of MSOT. At video-rate temporal resolution, the dynamic ICG pro-
�les could be extracted on a per-vessel basis and characteristic time constants
were calculated from the temporal pro�les as required for AIFs in compartmen-
tal kinetic modeling. The extracted time constants revealed a circulation time
from systemic injection site to the measurement site of approximately 22 s and
an appearance of the ICG in the veins delayed by 5 s compared to the arteries.
Although both arterial and venous pro�les were similar (2 s rise and 20 s decay),
the veins exhibited a diminished peak contrast relative to the static blood pool
contrast. The demonstrated results in anatomical and particularly functional
ICG monitoring paved the way towards OA imaging for diagnosis of RA in early
phases and future e�orts based on the work performed in the context of this
thesis will be devoted to achieve this goal. Some of these potential ways are
outlined in the following.

10.2 Conclusions and Future Work

The methods developed in the context of this work are expected to provide
novel reconstruction paradigms to provide real-time, high-quality reconstruc-
tions in clinical imaging. Moreover, the experiments performed are anticipated
to stimulate further research on the �elds initiated, and to pave the way for
more comprehensive imaging studies in order to detect various PVDs.

The symmetry-based reconstruction approach in combination with an adap-
tive reconstruction scheme is expected to replace the BP live preview in clinical
handheld systems by their MB counterpart. In addition, symmetry-based ap-
proaches are expected to facilitate a routine use of volumetric reconstruction
approaches, thereby replacing 3-D stacking of 2-D reconstructions and elimi-
nating the associated out-of-plane artifacts. Even when modeling the detector
shape with 3-D systems, symmetry-based reconstruction approaches in the spa-
tial frequency domain are fast because the model matrix uses dense algebra and
signal elongation does not in�uence performance. More importantly, the feasi-
bility of a direct inverse can accelerate the inversion process by several orders
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of magnitude.
The two main future applications of symmetry-based reconstructions in 3-D

are z-scanning of focused arrays and OA microscopy. When performing recon-
structions for z-scanning with an entirely volumetric inversion method, out-of-
plane artifacts are suppressed and a better resolution in z-direction compared
to image stacking is achieved. In pre-clinical imaging, the methodology could
enable fast, high-resolution reconstructions of a whole mouse body within sev-
eral minutes instead of days. In clinical imaging, the method is expected to �nd
application in z-scanning of linear arrays which are frequently used. Second,
the method is expected to �nd application in OA microscopy, particularly in
the emerging �eld of dermal microscopy. With the symmetry-based method, a
complete modeling of the SIR of the detection element in MB algorithms be-
comes realistic. On modern workstations it is possible to obtain a direct inverse
for image grid sizes as large as 512 x 512 x 512 voxels and the reconstruction time
is thereby decreased from days to a few minutes. Consequently, it is anticipated
that the methodology will be regularly applied for purposes of clinical dermal
microscopy, because in this case MB algorithms are able to provide unrivaled
image quality.

The second methodology developed for fast MB reconstructions, the sparse
inversion framework, is expected to �nd application in fast reconstructions for
systems with limited or no e�ective symmetries. It can possibly become an al-
ternative approach for live visualization in 2-D or more importantly as fast, but
yet accurate reconstruction method in 5-D imaging. The computational times
could be reduced from several minutes to tens of seconds. As the methodology
roots on general properties of OA signals and OA wave propagation rather than
system geometries, it will mainly be applied for systems with too many voxels
to calculate an inverse in a naive way but with still computationally feasible
WP inverse. Using systems like the volumetric handheld probe, clinical stud-
ies comprising large multi-spectral data-sets with hundreds of temporal frames
might be analyzed in a reasonable amount of time then.

In general, a broad variety of reconstruction approaches are expected to
�nd application in OA imaging due to the complexity of the reconstruction
problem involved. The method of choice is system- and application-dependent
with di�erent foci on reconstruction time constraints, resulting image quality,
or complexity of the model. Because of this variety of aspects, considerable
e�orts will have to be undertaken in the �eld of MB reconstruction approaches.
Novel approaches might include e�cient iterative FDTD models, e�cient SIR
modeling by image domain convolution, or especially multi-scale and hybrid
approaches: In iterative inversion methods, the �rst few iterations could be
performed on a coarse scale only or di�erent reconstruction methods could be
employed for di�erent scales, such as direct reconstructions from the Cholesky
factorization on a coarse scale and direct WP reconstructions on a �ner scale. In
future methods, both concepts of symmetry and sparsity might also be powerful
means to be included.

The proposed image quality enhancement strategies will also impact the
standard signal processing and reconstruction routines. The unrivaled noise
elimination capabilities of the developed de-noising methodology along with the
comparatively low computational cost will make it a standard pre-processing
routine for multi-spectral data-sets with low SNR. The proposed constrained
iterative inversion can remove unphysical negative image values. However, it
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is more e�ective, but also more challenging, to not only deal with the symp-
toms, but to tackle the causes such as a limited bandwidth of the detected
signals, noise, or deviations of the assumed propagation model from physical
reality. Potential means could be providing signals of higher bandwidth (e.g.
using multiple transducers or particularly di�erent technologies like the emerg-
ing interference detection) or algorithms that weight the missing low frequency
components less. Such means could also be the application of the novel de-
noising method to provide su�cient SNR of the signals or propagation models
that are closer to physical reality, i.e. heterogeneous models. More research will
have to be conducted in order to develop fast methods to generate heterogeneous
models such as e�cient ray tracing or FDTD approaches. In combination with
the proposed signal analysis approach, they are expected to �nd application in
pre-clinical imaging studies like in mouse torso imaging and more importantly
in clinical imaging studies in or through the skin, such as dermal microscopy,
carotid imaging, or breast cancer screening.

For the experimental part of this work, the demonstration of the �rst clin-
ically relevant �nger imaging results is expected to motivate further studies
towards clinical imaging for vital parameter monitoring and characterization
of PVDs. Thereby, technical improvements in instrumentation or processing
can improve the diagnosing characteristics. OA �nger imaging in general re-
quires image co-registration for motion compensation if motion cannot be to-
tally avoided or in multi-modal imaging for image fusion or cross-validation.
Alternatives to the proposed ASIFT methodology will have to be evaluated and
further extended to the 3-D case to be used with volumetric probes. Novel
instrumentation might also o�er higher US frequencies based on broadband de-
tection technology and thus also higher spatial resolutions, when combined with
advanced, heterogeneous models like the proposed 2-compartmental model. Au-
tomatic retrieval of such models will also have to be adapted to detectors with
highly limited view. Furthermore, the 2-compartmental model can be extended
to a full 3-compartmental model that minimizes re�ection artifacts induced by
the mismatching bone. In order to quantify anatomical and functional param-
eters, an automated, robust feature extraction methodology is required like the
signal domain analysis for the skin and the bone. More importantly, an au-
tomated processing is required in order to extract vascular parameters such
as diameter or curvature and to track of vessels and their branching. Potential
means could include image segmentation, feature extraction, or simply Gaussian
�ttings.

The proof-of-principle experiments in this thesis indicate that MSOT imag-
ing in the �nger might be used for vital parameter monitoring with pulse-
oxymetry measurements. However, more e�orts are still required to test its
clinical potential. First, direct comparisons with the photoplethysmography or
blood samples are required. Second, OA pulse detection and saturation deter-
mination need to be combined in a single experiment enabled by the available
higher repetition rate laser technology and an automated processing of the tem-
porarily varying part has to be developed to extract the heart rate. Third and
most importantly, quanti�cation of the calculated saturation levels has to be
achieved, which is one of the great and long-standing challenges of MSOT in
general. Although relative trends like arteries exhibiting the highest saturation
are correctly determined, the obtained saturation levels do not yet match the
absolute values of approximately SaO ≈ 0.98 and SaO ≈ 0.8 for arterial and
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venous blood, respectively. Besides image artifacts, strong spectral coloring
is the major source of deviations. Novel and robust light transport inversion
schemes or advanced signal processing approaches will have to be developed in
the future.

MSOT is also expected to be clinically applied for imaging of PVDs in the
next years, particularly for the early diagnosis of RA. The next major step,
namely a functional detection of RA based on the ICG kinetics, can be achieved
qualitatively by detecting the slowly decaying ICG contrast in the joint at late
phases after the injection. Alternatively, quantitative determination can be per-
formed by extracting the ICG pro�le in the potentially in�amed ROI and the
AIF in the feeding arteries; then both can be related via a 2-compartmental
kinetic model and the exchange rate constant can be quantitatively extracted
as metric to characterize the disease level. In any case, a group of volunteering
patients will have to be compared with a group of healthy subjects in order to
evaluate the signi�cance of the hypothetical di�erence between the two groups.
Furthermore, the minimal detectable dose of ICG will have to be determined,
particularly when using more sensitive MSOT illumination strategies instead of
single wavelength imaging. Potentially, novel instrumentation like the volumet-
ric probe might not only be able to visualize larger regions of the joint in 3-D,
but the MCP joint might also be accessible with such a limited view probe. Ad-
ditionally, the use of fast 100 Hz laser technology might reduce motion-related
artifacts and thus might improve quanti�cation through a reduction of false
positives in the ICG-channel.

MSOT imaging might potentially become a modality for diagnosing RP. As
mainly functional disorder, RP is typically probed by functional tests similar
to the thermal stress test performed in this work. For a clinical application of
MSOT in this context, a standardized protocol will have to be developed and the
observed thermal responses of the �nger vasculature will have to be compared for
patients and a control group. An advanced analysis method might also include
a simpli�ed modeling of the temperature map describing a SOS gradient within
the �nger. For a more direct comparison with existing super�cial capillaroscopy
methods, OA microscopy in the nail bed might be performed as well. Similar
patient studies will also have to be performed in the case of TAO to detected
the cork-screw anatomical structure of the collateral arteries by 3-D z-scanning.
The required high resolution at the depth of the arteries might be achieved by
means like the 2-compartmental signal domain approach.

In conclusion, clinical MSOT imaging might greatly bene�t from the recon-
struction and processing methods developed in the context of this work: The
proposed symmetry- and sparsity-based methods are expected to develop into
real-time reconstruction frameworks for clinical tomographic imaging or to fa-
cilitate OA imaging with high-throughput clinical MB reconstructions. Finger
imaging with MSOT is expected to be translated towards patient imaging in
prevalent PVDs such as RA, RP, or TAO within the next years. The proposed
e�cient processing methods such as a de-noising, auto-focusing, or advanced
modeling are likely to be routinely applied to ensure su�cient the high im-
age quality in needed for a successful routine clinical application of the MSOT
technology.
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