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Abstract

Abstract

Many scientific and engineering problems involve the coupling of several physical effects or
models. One class of coupled problems, that has interested many scientists and engineers for
decades, is the interaction of fluid flow and solid bodies. Possible applications range from aero-
elasticity over civil engineering to biomedical problems like the analysis of blood flow in the
human vascular system. Application-wise and from a numerical point of view, the interaction
of an incompressible fluid flow with solid bodies undergoing finite deformation is of particular
interest. Although many researchers addressed this class of problems for decades, solving fluid-
structure interaction (FSI) problems numerically still poses a challenging task.

In this thesis, a finite-element-based monolithic framework for the solution of FSI problems is
presented. It is particularly tailored to the demands that arise when an incompressible fluid flow
interacts with solid bodies undergoing finite deformation. Several key aspects are addressed,
in particular questions related to the formulation of the monolithic solver, non-matching inter-
face discretizations, time integration, and preconditioning of the system of linear equations. For
complex practical applications, computational effort has been reduced by 75% while at the same
time guaranteeing a user-given level of accuracy.

As FSI problems almost exclusively exhibit transient behavior, temporal discretization and
time integration play an essential role when it comes to accuracy and efficiency of the solver.
Hence, the proposed formulation allows for choosing the time integration schemes in the solid
and the fluid field freely and independently from each other by introducing a temporal inter-
polation of the interface traction fields in a temporally consistent manner. To the author’s best
knowledge, the present work poses the first development of an adaptive time stepping scheme
for monolithic FSI solvers where control over the temporal accuracy is enabled by adapting the
time step size based on a posteriori error estimation. Therefore, the fluid field, the structure
field, and the fluid-structure interface are taken into account.

The nonlinearity of the coupled problem is treated by a NEWTON–KRYLOV method. For an
efficient solution process, preconditioning techniques tailored to the FSI problem are crucial. To
further leverage efficiency and robustness of existing FSI-specific physics-based block precondi-
tioners based on algebraic multigrid methods, a novel hybrid additive/multiplicative SCHWARZ

preconditioner is proposed, that combines the existing physics-based block preconditioners with
an additional additive SCHWARZ preconditioner. The latter one is specifically designed to tackle
error accumulation at the fluid-structure interface, that stems from the physics-based block pre-
conditioning. Therefore, an overlapping domain decomposition with subdomains, that purposely
span across the interface, is generated. Subdomain solvers, that are insensitive to the separation
of physical fields by the interface, are used to smooth the solution across the interface.

Various numerical examples demonstrate the outstanding robustness and efficiency of the pro-
posed monolithic solver. The adaptive time stepping algorithm guarantees temporal accuracy up
to a user-given level while simultaneously computational cost is limited to the amount necessary.
Significant savings of up to 75% have been demonstrated. Furthermore, all described precon-
ditioning approaches are compared to each other. Remarkable savings of linear iterations and
of linear solver time can be achieved by the novel hybrid preconditioner. Finally, the pulsatile
blood flow through a patient-specific abdominal aortic aneurysm is simulated, which highlights
the huge potential of the proposed solver framework in real-world applications with complex
geometries.
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Zusammenfassung

Zusammenfassung

Viele Fragestellungen in Forschung und Entwicklung beinhalten die Kopplung mehrerer phy-
sikalischer Effekte oder Modelle. Eine Klasse gekoppelter Probleme, welche seit Jahrzehn-
ten im Fokus von Wissenschaftlern und Ingenieuren steht, umfasst die Wechselwirkung von
Fluidströmungen und deformierbaren Festkörpern. Zahlreiche Anwendungen aus Bereichen
wie der Aeroelastizität oder dem Bauingenieurwesen bis hin zu biomedizinischen Fragestel-
lungen bezüglich des Blutflusses im menschlichen Körper fallen in diese Problemklasse. Aus
Anwendungs- wie auch aus numerischer Sicht ist die Wechselwirkung inkompressibler Strö-
mungen mit Festkörpern, welche großen Deformationen unterliegen, von besonderem Interes-
se. Obwohl seit Jahrzehnten Gegenstand äußerst intensiver Forschung, ist die numerische Be-
handlung von Problemen der Fluid-Struktur-Interaktion (FSI) noch immer eine ausgenommen
anspruchsvolle Aufgabe.

Basierend auf der Methode der Finiten Elemente wird in dieser Arbeit ein monolithisches Ver-
fahren zur Lösung solcher Fluid-Struktur-Interaktionsprobleme vorgestellt. Dieses wird auf die
Besonderheiten der Interaktion von inkompressiblen Strömungen mit deformierbaren Festkör-
pern zugeschnitten. Insbesondere werden entscheidende Aspekte betreffend die Formulierung
des monolithischen Lösers, die Herausforderung nicht-passender Netze am Interface, sowie
Aspekte der Zeitintegration und der Vorkonditionierung des linearen Gleichungsystems behan-
delt. Die Rechenzeit für praktische Anwendungen mit komplexen Geometrien konnte dadurch
um bis zu 75% reduziert werden.

Da Probleme der Fluid-Struktur-Interaktion fast immer zeitabhängig sind, kommen der Zeit-
diskretisierung und -integration eine entscheidende Rolle zu, sobald Genauigkeit und Effizi-
enz des Lösers wichtig werden. Daher erlaubt die vorgeschlagene Formulierung eine freie und
gänzlich unabhängige Wahl der Zeitintegrationsverfahren für das Stuktur- und Fluidfeld. Dies
wird durch eine Interpolation der Interfacekräfte in der Zeit in einer zeitlich konsistenten Art und
Weise ermöglicht. Des Weiteren stellt diese Arbeit die erste Beschreibung einer adaptiven Zeit-
schrittweitensteuerung für monolithische FSI-Löser dar, in der eine a posteriori Fehlerschätzung
die Kontrolle der Genauigkeit der Zeitdiskretisierung unter Berücksichtigung der Beiträge des
Fluid- und des Strukturgebiets wie auch des Interfaces zwischen den beiden Feldern ermöglicht.

Der Nichtlinearität des betrachteten Problems wird durch ein NEWTON–KRYLOV-Verfahren
Rechnung getragen. Mit dem angestrebten Ziel eines effizienten Lösungsverfahrens kommen
Vorkonditionierungstechniken, welche auf die Besonderheiten der FSI zugeschnitten sind, eine
zentrale Bedeutung zu. Zwei existierende Vorkonditionierungsverfahren, die sich die physika-
lisch motivierte Blockstruktur des Gleichungssystems zu Nutze machen und auf algebraischen
Mehrgittermethoden basieren, werden eingeführt. Zur weiteren Steigerung der Effizienz und
Robustheit wird ein neuartiges hybrides Vorkonditionierungsverfahren vorgeschlagen, welches
additive und multiplikative SCHWARZ’sche Methoden miteinander kombiniert. Der Einsatz der
additiven SCHWARZ’schen Methode soll dabei zielgerichtet die Anhäufung des Fehlers am In-
terface beseitigen, welche im Rahmen der physikalisch motivierten Block-Vorkonditionierung
entsteht. Dazu wird eine überlappende Gebietszerlegung erzeugt, in der sich Teilgebiete über
das Interface hinweg erstrecken. Durch die Anwendung bestimmter Lösungsverfahren auf die-
sen Teilgebieten, welche gegenüber der unterschiedlichen Physik der beiden Felder insensitiv
sein müssen, wird die Lösung am Interface geglättet.
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Zusammenfassung

Eine Vielzahl anspruchsvoller numerischer Beispiele demonstriert die herausragende Robust-
heit und Effizienz des vorgeschlagenen monolithischen Lösungsverfahrens. Die adaptive Zeit-
schrittweitensteuerung ermöglicht dabei eine garantierte Kontrolle der Genauigkeit der Zeitin-
tegration bei gleichzeitiger Begrenzung der Rechenkosten auf das minimal notwendige Maß.
Dadurch können erhebliche Einsparungen von bis zu 75% erreicht werden. Des Weitern werden
die vorgestellten Vorkonditionierungsverfahren miteinander verglichen. Durch die Anwendung
der hybriden Vorkonditionierung können sowohl die Anzahl der Iterationen des linearen Glei-
chungslösers als auch die Löserzeit erheblich reduziert werden. Abschließend wird der pulsatile
Blutfluß durch eine patientenspezifische Geometrie eines abdominellen Aortenaneurysmas si-
muliert, um die Anwendbarkeit des vorgestellten Lösungsverfahren auf komplexe Geometrien
und realitätsnahe Problemstellungen zu demonstrieren.
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1 Introduction

Coupled physical phenomena, that include interactions between various physical fields and ef-
fects, are omnipresent in our world. They play an important role not only in traditional engi-
neering applications but also in various types of biomechanical and biomedical problems. One
prominent representative of coupled problems is the interaction of a fluid flow with solid bod-
ies undergoing finite deformation, commonly referred to as fluid-structure interaction (FSI).
Engineering applications range from the design of moving objects like an aircraft, where aero-
elasticity [70] is of huge interest, to the analysis of large building structures in civil engineer-
ing [257]. In biomechanics, especially the analysis of blood flow in the human vascular system,
i.e. the interaction of the incompressible pulsatile blood flow with the arterial wall, is of great
interest to many scientists and medical doctors. Several particular phenomena have been in the
focus of research during the past years, among them the simulation of the pumping motion of
the human heart [164], the assessment of rupture risk of abdominal aortic aneurysms, the blood
flow through healthy [12, 41, 230, 258] as well as stented arteries [171], or the development and
progression of atherosclerosis [140]. Numerical simulations have become a key component for
the understanding of these phenomena but also to assess their risk and to develop treatment
strategies. Although many researchers have addressed this class of problems for decades, solv-
ing such problems robustly, accurately, and efficiently still poses a great challenge for numerical
algorithms. One very promising approach are monolithic solvers for FSI problems as they were
found to be superior in such applications [143].

In this thesis, some of the difficulties are addressed, namely those arising from complex ge-
ometries, the choice of time integration schemes, accuracy requirements of the time discretiza-
tion, and questions related to the robustness and the efficiency of solving FSI problems mono-
lithically in a parallel computing environment. In practical applications with complex geome-
tries, a speed up of up to 75% could be achieved while concurrently guaranteeing a user-given
level of accuracy.

A Brief Classification of Methods and Algorithms for FSI

In the numerical solution of FSI problems, two basic types of solution approaches are distin-
guished, namely monolithic and partitioned schemes. In partitioned schemes, a sequence of
single field solutions is required, where coupling information is exchanged between the fluid
and the structure field. They have been and nowadays are still very popular for several reasons.
On the one hand, solving the solid and the fluid problem one after the other is possible even in
case of memory limitations since only one of the problems needs to fit into memory at a time. On
the other hand, it is often claimed that existing codes specifically tailored to the solution of solid
or fluid problems can be coupled together quite easily since no invasive changes in the solid or
the fluid solver are necessary. This is of particular importance if well-established legacy codes
or commercial codes are to be included into the coupling algorithm. Finally, the realization of

1



1 Introduction

the coupling procedures is straightforward. Complicated tasks like solving and preconditioning
of large systems of linear equations are left to the single field codes. The exchange of coupling
information is often based on a DIRICHLET–NEUMANN scheme [145,153] or ROBIN transmis-
sion conditions [7, 8, 79, 176]. Especially in biomedical applications, partitioned schemes lack
efficiency as discussed in [33,82,91] and demonstrated numerically in [9,113,143]. Acceleration
techniques [51, 144] might help to alleviate these problems. A detailed overview, classification,
and comparison of partitioned approaches has been given in the thesis by KÜTTLER [142].

By contrast, monolithic procedures as the one proposed by MAYR et al. [163] solve both
the fluid and the structural equations simultaneously within one global system of nonlinear
equations. For some challenging numerical problems like channels with flexible walls [112],
thin-walled structures in the human respiratory or hemodynamic system [143] or for balloon-
type problems like human red blood cells [139], monolithic schemes outperform partitioned
procedures by far in terms of computational costs or are even the only feasible schemes to ad-
dress such problems. Although the implementation of a monolithic solver requires more effort,
especially for the preconditioner, great improvements in robustness and performance can be
achieved. Detailed performance analyses and comparisons to partitioned schemes have been
carried out by BADIA et al. [9], HEIL et al. [113], and KÜTTLER et al. [143], for example.
A variety of preconditioners for the monolithic system of equations is available in the litera-
ture. An approach based on block-triangular approximations of the Jacobian matrix has been
proposed by HEIL [112] and extended by MUDDLE et al. [172]. In GEE et al. [89], efficient
preconditioners based on algebraic multigrid techniques have been developed. VERDUGO and
WALL [240] extended these ideas to the monolithic coupling of an arbitrary number of physical
fields. Further preconditioning strategies can be found in [10, 40, 149] and are discussed in the
respective chapter of this thesis.

Further distinction of methods is based on the observer, that is used to describe the fluid
flow field. When an Arbitrary LAGRANGEan–EULERian (ALE) description of the fluid field
is employed, the fluid grid needs to be deformed to follow the motion of the fluid-structure
interface. Such approaches date back to the 1970’s and 1980’s [18, 19, 60, 117, 125] and have
since spread widely into scientific and commercial codes. Limitations of an ALE approach may
come from too extensive mesh distortion or the necessity of topological changes. When solving
the fluid field on a fixed EULERian grid, the main challenge is to capture the interface location.
As the interface moves, it does not coincide with element edges and, thus, intersects the fluid
mesh. Prominent approaches to impose the coupling conditions in case of an EULERian fluid
mesh are immersed boundary methods [168, 181] or approaches based on the eXtended Finite
Element Method (XFEM) [92,245]. An overview of both ALE-based and fixed-grid approaches
has been given by WALL et al. [244]. A combination of both methods to a hybrid fixed-grid/ALE
approach is sketched by WALL et al. [244] and detailed in the thesis by SHAHMIRI [218].
Closely related is the differentiation between interface-tracking methods, where the position
of the fluid-structure interface is explicitly resolved by the deformable computational grid, and
interface-capturing methods, that use a fixed grid for the fluid field [226]. The present work
falls into the category of interface-tracking methods, since the interface is explicitly meshed,
the fluid field is described by an ALE observer, and the fluid grid is deformed to follow the
motion of the fluid-structure interface.
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Goals

This thesis aims at providing a framework for monolithic solution schemes for FSI problems
where an incompressible fluid flow interacts with a solid body undergoing finite deformation.
To deal with the deformation of the fluid domain, an arbitrary LAGRANGEan–EULERian (ALE)
observer will be used for the fluid field, while the solid domain is treated in a purely LA-
GRANGEan description. To allow for freedom in mesh creation, the proposed algorithm shall
exhibit capabilities to deal with non-matching interface discretizations. This can be achieved by
enforcing the interfacial constraints with a LAGRANGE multiplier field, that is then discretized
with a dual mortar method.

Questions related to time integration are of particular interest. On the one hand, it is aimed at
a free and independent choice of time integration schemes in the solid and the fluid field. This
allows for tailoring the time integration schemes to the needs of the solid and the fluid field with-
out being limited by the other field. To achieve this goal, a temporal interpolation of interface
traction fields needs to be incorporated into the time-discrete formulation in a temporally con-
sistent manner. Furthermore, control over the accuracy of the time-discrete solution is desired.
This can be achieved by introducing a novel adaptive time stepping scheme for monolithic FSI
solvers, that modifies the time step size throughout the entire simulation to match the required
level of accuracy. For efficiency reasons, such an approach will be based on a posteriori error
estimation. Of course, the fluid and the structure field, but also the fluid-structure interface need
to be taken into account for that purpose.

To allow for an efficient solution of large-scale problems, suitable preconditioning techniques
are required. As the monolithic system of equations exhibits a block structure, that is closely
related to the the involved solid, fluid, and ALE fields, physics-based preconditioners can be
designed that exploit this particular block structure of the monolithic system matrix. Power-
ful approaches based on algebraic multigrid methods are available. However, it is known that
physics-based block preconditioning of surface-coupled problems exhibits an accumulation of
the error at the interface. To overcome this drawback, a novel hybrid additive/multiplicative
SCHWARZ preconditioner shall be developed that combines the powerful multigrid performance
of existing physics-based block preconditioners with an additional additive SCHWARZ precon-
ditioner. The latter one needs to be constructed based on an overlapping domain decomposition,
whose subdomains span across the fluid-structure interface on purpose. By using subdomain
solvers, that are insensitive to the separation of physics by the interface, a high-quality solution
can be obtained. In combination with the physics-based block preconditioners, the error accu-
mulation at the interface can be reduced effectively such that gains in efficiency are expected.

Both the adaptive time stepping scheme as well as the proposed preconditioners will be eval-
uated by means of a series of numerical examples. Special focus will be put on the assessment
of the accuracy and the efficiency of the proposed solution scheme. Therefore, detailed com-
parisons to existing approaches will be drawn. Finally, the proposed monolithic solver shall be
used to simulate the pulsatile blood flow through a patient-specific abdominal aortic aneurysm
to prove its applicability to complex geometries and real-world problems.
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1 Introduction

Outline
The remainder of this thesis is organized as follows: In Chapter 2, the physical model is intro-
duced briefly by means of its governing equations.

In Chapter 3, discretization of all fields in space and time is performed. Starting from the
weak form presented in Section 3.1, discrete representations of the fluid and the solid problems
are shown in Section 3.2. Furthermore, discrete versions of the interface coupling conditions
are derived. A detailed discussion of the treatment of non-matching grids at the fluid-structure
interface by means of the dual mortar method is included and the freedom of choosing time
integration schemes in the solid and the fluid field independently is incorporated. After the as-
sembly of the monolithic system of equations, two variants of static condensation are detailed,
that lead to the final systems of equations to be implemented, cf. Section 3.3. A pseudo one-
dimensional example is proposed in Section 3.4 to demonstrate and discuss properties of the
proposed monolithic FSI solver, among them temporal convergence rates, a physical interpreta-
tion of the LAGRANGE multiplier field at the interface, and the interplay of essential boundary
conditions with the LAGRANGE multiplier field.

Temporal accuracy is addressed in Chapter 4, which details the first proposition of an adaptive
time stepping scheme for monolithic FSI solvers. Theoretical background as well as strategies
for a posteriori error estimation and adaptation of the time step size in the context of single
field problems are briefly summarized in Section 4.1 and extended to monolithic FSI solvers
in Section 4.2. Several examples are used to study accuracy and performance of the proposed
adaptive time stepping scheme in Section 4.3.

To allow for an efficient solution of the large monolithic systems of equations, powerful
preconditioning techniques are discussed in Chapter 5. After a brief review of existing physics-
based FSI preconditioners based on algebraic multigrid techniques in Section 5.1, a novel hybrid
additive/multiplicative SCHWARZ preconditioner for surface-coupled problems is proposed in
Section 5.2. Finally, some general remarks on iterative linear and nonlinear solvers in the context
of coupled multi-physics problems are given in Section 5.3.

Chapter 6 presents large-scale numerical examples. First, a pressure wave through an elas-
tic tube is used to study features of the FSI formulation related to time integration as well as
to demonstrate solver performance and efficiency of the proposed preconditioning techniques.
Second, the pulsatile blood flow through a patient-specific abdominal aortic aneurysm is studied
to show applicability of the proposed solver framework to complex geometries and real-world
problems.

Finally, some concluding remarks and an outlook for future research are given in Chapter 7.
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2 Governing Equations of
Fluid-Structure Interaction

The physical model and the set of governing equations for fluid-structure interaction problems
used in this thesis consists of the incompressible NAVIER–STOKES equations on a deforming
domain and a nonlinear elastic solid body. This is a common approach in literature and has
already been used for previous implementations in the in-house research code Baci, cf. the
theses by KÜTTLER [142] and KLÖPPEL [137]. Hence, only a brief introduction is given. For a
comprehensive presentation of continuum mechanics, the reader is referred to literature, e.g. to
the monographs by GURTIN [103] or TRUESDELL and NOLL [231]. Among others, GRESHO

and SANI [102] or DONEA and HUERTA [61] devoted their textbooks to fluid mechanics only,
while solid mechanics is covered by BONET and WOOD [24] or HOLZAPFEL [118] for example.
A sound and comprehensive introduction of the FSI problem has been given in the thesis by
KLÖPPEL [137], which was used as a starting point for the present work. The physical model
used in this thesis has previously been presented by MAYR et al. [163].

A sketch of the FSI problem is depicted in Figure 2.1. Two physical domains, namely the
solid body ΩS and the fluid field ΩF, interact with each other through a shared surface, the fluid-
structure interface ΓFSI. Interface tractions hS

ΓFSI
and hF

ΓFSI
are exchanged at the interface. To

deal with the deformation of the fluid domain, an ALE approach is used for the fluid field, while
the solid is treated with a purely LAGRANGEan description.

The governing equations of the fluid field on a deforming domain are briefly summarized
in Section 2.1, followed by the introduction of the solid mechanics problem in Section 2.2.
Finally, Section 2.3 details the coupling conditions, that need to be satisfied at the fluid-structure
interface.

2.1 Fluid Field on a Deforming Domain

The fluid field is assumed to be governed by the instationary, incompressible NAVIER–STOKES

equations for a NEWTONian fluid on a deformable domain ΩF using an ALE observer. In the
following, the notation ΩF× (0, T ) is used to indicate {x ∈ ΩF, t ∈ (0, T )}. Using an underline
to indicate continuum vector or tensor valued quantities, the unknown deformation dG(x, t) of
the deformable fluid domain ΩF is defined by the transformation ψG given as

dG(x, t) = ψG
(
dG

Γ,x, t
)

in ΩF × (0, T ) , (2.1)

which extends the effect of a prescribed boundary motion dG
Γ into the interior of the fluid domain

resulting in a deformation dG(x, t) of the fluid domain. The mesh deformation in the interior
of the fluid domain is calculated by a mesh moving algorithm purely based on the boundary
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2 Governing Equations of Fluid-Structure Interaction

ΩF ΩFΩS ΩS

ΓFSI ΓFSI

ΓFSI

ΓF
D ΓF

D

ΓF
N ΓF

N

ΓS
D ΓS

D

ΓS
N ΓS

N

hF
ΓFSI

hS
ΓFSI

Figure 2.1: Problem statement — Left: The domain Ω is subdivided into a fluid domain ΩF and
a structural domain ΩS by the fluid-structure interface ΓFSI. Both subdomains are bounded by
DIRICHLET boundaries ΓF

D and ΓS
D, NEUMANN boundaries ΓF

N and ΓS
N, and the common fluid-

structure interface ΓFSI, respectively. Right: At the interface, kinematic continuity as well as
equilibrium of interface traction fields hF

ΓFSI
and hS

ΓFSI
are required.

deformation dG
Γ. Then, the domain velocity uG (x, t) is given by

uG (x, t) =
∂ψG

(
dG

Γ,x, t
)

∂t
in ΩF × (0, T ) . (2.2)

In order to prevent fluid flow across the interface, it has to match the fluid velocity uF
ΓFSI

at the
fluid-structure interface ΓFSI, reading

uF
ΓFSI

= uG
ΓFSI

=
∂dG

ΓFSI

∂t
on ΓFSI × (0, T ) . (2.3)

The velocity of the fluid relative to the moving background mesh is given by the ALE convective
velocity c = uF − uG. Using the ALE time derivative, the incompressible NAVIER–STOKES

equations governing the fluid field on a deforming domain then read

ρF
∂uF

∂t
+ ρFc · ∇uF − 2µF

dyn∇ · ε
(
uF
)

+∇pF = ρFbF, (2.4a)

∇ ·uF = 0 , (2.4b)

both valid in ΩF × (0, T ), where fluid velocity uF and dynamic fluid pressure pF are unknown.
The body force is denoted by bF, the strain rate tensor by

ε
(
uF
)

=
1

2

(
∇uF +

(
∇uF

)T
)
,

and the constant dynamic viscosity by µF
dyn, respectively. The fluid density ρF is assumed to be

constant.
Given velocities ū are prescribed at the DIRICHLET boundary ΓF

D. At the NEUMANN bound-
ary ΓF

N, the fluid domain is loaded with external tractions h̄
F. Additional tractions hF

ΓFSI
arising

from the fluid-structure coupling act onto the interface portion ΓFSI of the boundary of the fluid
subdomain ΩF. These boundary conditions read

uF = ūF on ΓF
D × (0, T ) , (2.5a)
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2.2 Structure Field

σF ·nF = h̄
F on ΓF

N × (0, T ) , (2.5b)

σF ·nF = hF
ΓFSI

on ΓFSI × (0, T ) , (2.5c)

where the CAUCHY stress tensor σF is defined as

σF = −pFI + 2µF
dynε

(
uF
)

(2.6)

with the second order identity tensor I. The role of the interface traction hF
ΓFSI

in (2.5c) will be
detailed in Section 2.3, when the coupling conditions will be discussed. As initial condition, a
divergence free velocity field

uF (x, 0) = uF
0 (x) with ∇ ·uF

0 (x) = 0 for x ∈ ΩF (2.7)

has to be given.

2.2 Structure Field
For the solid domain ΩS, a description in material coordinates X is convenient. In contrast to
the fluid field, a LAGRANGEan observer is utilized. Without loss of generality, the structure
field is assumed to exhibit a nonlinear elastic behavior, while for convenience it is restricted
to compressible and nearly incompressible solid bodies. The dynamic equilibrium of forces
of inertia, internal forces, and an external body force bS

0 per unit undeformed volume in the
undeformed structural domain ΩS is given by the nonlinear elastodynamics equation

ρS0
d2dS

dt2
= ∇0 ·P + bS

0 in ΩS × (0, T ) (2.8)

with the solid displacement field dS (X, t) as the primary field of unknowns. The solid density
per unit undeformed volume is denoted by ρS0. Internal forces are expressed in terms of the first
PIOLA-KIRCHHOFF stress tensor

P = F S. (2.9)

It is computed based on the deformation gradient F = ∇0x and the second PIOLA-KIRCHHOFF

stress tensor S. For the sake of simplicity hyperelastic material behavior with a strain energy
function Ψ is assumed, such that the second PIOLA-KIRCHHOFF stress tensor is given as

S = 2
∂Ψ

∂C

with C = FTF denoting the right CAUCHY-GREEN tensor. The constitutive behavior is char-
acterized by the material parameters ES and νS denoting YOUNG’s modulus and POISSON’s
ratio, respectively.

As indicated in Figure 2.1, boundary conditions

dS = d̄
S on ΓS

D × (0, T ) , (2.10a)
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2 Governing Equations of Fluid-Structure Interaction

PSnS
0 = h̄

S on ΓS
N × (0, T ) , (2.10b)

PSnS
0 = hS

ΓFSI
on ΓFSI × (0, T ) (2.10c)

are imposed on the solid domain with nS
0 denoting the outward pointing normal vector in the

material configuration. On the DIRICHLET portion ΓS
D of the solid boundary, displacements d̄

S

are prescribed. External tractions h̄
S act onto the NEUMANN boundary ΓS

N, while the fluid-
structure interface ΓFSI is subject to interface tractions hS

ΓFSI
. In addition, initial displacement

and velocity fields are provided, reading

dS (X, 0) = dS
0 (X) ∀X ∈ ΩS

0, (2.11a)

ddS

dt
(X, 0) = ḋ

S

0 (X) ∀X ∈ ΩS
0. (2.11b)

2.3 Coupling Conditions at the Fluid-Structure
Interface

Finally, the coupling of fluid field and structure field are addressed in this section. Both fields
are coupled to each other through enforcement of kinematic and dynamic continuity conditions
at the fluid-structure interface ΓFSI. Physically motivated, a no-slip condition

∂dS
ΓFSI

∂t
(X, t) = uF

ΓFSI
(x, t) on ΓFSI × (0, T ) (2.12a)

is assumed for kinematic continuity at the interface. Thus, both fluid flow across the fluid-
structure interface and relative tangential movement of fluid and structure at the fluid-structure
interface are prohibited. Condition (2.12a) couples the physical fields, i.e. fluid velocity field
and structural displacement field. From (2.3) it is known that fluid velocity and grid velocity
coincide at the fluid-structure interface. Thus, condition (2.3) can be rewritten as

∂dS
ΓFSI

∂t
=
∂dG

ΓFSI

∂t
on ΓFSI × (0, T ) . (2.12b)

Integration w.r.t. time finally leads to the equivalent coupling condition

dS
ΓFSI

= dG
ΓFSI

on ΓFSI × (0, T ) (2.12c)

that will be used as starting point when deriving the discrete set of equations of the coupled prob-
lem. This approach is favored in this thesis, since it allows for an interpretation as a meshtying
problem that couples two displacement fields and, thus, enables a straightforward use of mortar
methods for meshtying of non-matching discretizations as it will be applied to the FSI problem
in Chapter 3.

Note that thanks to (2.3) all three conditions (2.12) are equivalent in the time-continuous
regime. They might differ after temporal discretization depending on the choice of time inte-
gration schemes in fluid and structure field. In this thesis, condition (2.12c) will be enforced in
the discrete regime.
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2.3 Coupling Conditions at the Fluid-Structure Interface

By application of the method of sections, the interface traction fields hS
ΓFSI

and hF
ΓFSI

of the
structure and the fluid field, respectively, become apparent at the interface as depicted in Fig-
ure 2.1. NEWTON’s third law [175] — actio = reactio — requires the interface tractions to be
equal, reading

hS
ΓFSI

= −hF
ΓFSI

on ΓFSI × (0, T ) . (2.13)

From a mathematical point of view, the interface traction can be interpreted as a LAGRANGE

multiplier, that is used to enforce the kinematic constraint (2.12c). Without loss of generality,
the LAGRANGE multiplier field is assumed to equal the interface traction field acting onto the
structure side of the interface. This physical interpretation of the LAGRANGE multiplier field
will be discussed in detail in Section 3.4.2, where its relation to the enforcement of essential
boundary conditions and interface coupling conditions will be studied.

Remark 2.3.1 The choice of interpreting the LAGRANGE multiplier field as the interface trac-
tion that acts onto the structure side of the interface is arbitrary, but will be kept consistently
throughout this thesis. The opposite choice has been done in the thesis by KLÖPPEL [137]. In
solid meshtying or contact mechanics problems, the LAGRANGE multiplier field is often associ-
ated with the negative interface traction of the slave side (cf. [95,96,119,152,184–186,191,256]
among others).
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3 Finite Element Formulation and
Monolithic System of Equations

Starting from the governing equations as presented in Chapter 2 of this thesis, the focus is now
put on the discrete representation of the coupled problem as previously reported in MAYR et
al. [163]. Numerical models for the physical fields of fluid and solid as well as the artificial ALE
field need to be established. Additionally, discrete versions of the interface coupling conditions
have to be derived.

For the spatial discretization of the involved partial differential equations (PDEs), the Finite
Element Method (FEM) is used. A detailed introduction to the FEM is omitted for the sake of
brevity. For a detailed introduction to the FEM and its theoretical foundation, the monographs
by HUGHES [124], STRANG and FIX [224], LARSON and BENGZON [150], and the first volume
of the textbook series by ZIENKIEWICZ et al. [263] can be consulted among others.

A variety of numerical algorithms for the solution of time-dependent problems is covered by
the books by BUTCHER [31], DEUFLHARD and BORNEMANN [58], HAIRER et al. [110], and
HAIRER and WANNER [111] to name a few. In this thesis, integration in time will be performed
by the generalized-α method [39,129] or the one-step-θ scheme [67]. An adaptive time stepping
scheme for monolithic FSI solvers will be proposed in Chapter 4.

The present monolithic solver has been implemented in the in-house research code BACI [243],
a C++-based multi-physics code jointly developed by the Institute for Computational Mechan-
ics1 and the Mechanics & High Performance Computing Group2 both at Technical University
of Munich. Among others, finite element solvers for solid dynamics and fluid flow problems on
deforming domains as well as different coupling algorithms are available. Earlier approaches to
monolithic solvers for FSI have been developed and implemented in BACI and are documented
in the theses by KÜTTLER [145] and KLÖPPEL [137].

After stating the weak form of the coupled FSI problem in Section 3.1, space- and time-
discrete expressions for all fields and coupling conditions are presented in Section 3.2. The
assembly and two variants of static condensation of the monolithic system of equations are
detailed in Section 3.3, before a very simple example is studied to discuss and demonstrate
basic properties of the proposed algorithms in Section 3.4. This chapter is concluded with an
intermediate summary in Section 3.5.

3.1 Weak Form of the FSI Problem
To obtain the starting point for a finite element formulation, a weak form needs to be established.
Denoting the collection of trial solutions by S and the collection of weighting functions by T,

1www.lnm.mw.tum.de
2www.mhpc.mw.tum.de
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3 Finite Element Formulation and Monolithic System of Equations

the solution spaces and test spaces for the fluid field [61] and ALE field [124]

SuF :=
{
uF ∈ H1

(
ΩF
)
| uF = ūF on ΓF

D

}
(3.1a)

SpF :=
{
pF ∈ L2

(
ΩF
)}

(3.1b)

SdG :=
{

dG ∈ H1
(
ΩG
)
| dG = d̄

G on ΓG
D

}
(3.1c)

TvF :=
{
vF ∈ H1

(
ΩF
)
| vF = 0 on ΓF

D

}
(3.1d)

TqF :=
{
qF ∈ L2

(
ΩF
)}

(3.1e)

TwG :=
{
wG ∈ H1

(
ΩG
)
| wG = 0 on ΓG

D

}
(3.1f)

as well as the structure field [124]

SdS :=
{

dS ∈ H1
(
ΩS
)
| dS = d̄

S on ΓS
D

}
(3.2a)

TwS :=
{
wS ∈ H1

(
ΩS
)
| wS = 0 on ΓS

D

}
(3.2b)

are defined. Finally, the respective dual spaces for the Lagrange multiplier field λ are given as

Sλ :=
{
λ ∈ H−

1
2 (ΓFSI)

}
(3.3a)

Tµ :=
{
µ ∈ H−

1
2 (ΓFSI)

}
. (3.3b)

as detailed by WOHLMUTH [253] as a LAGRANGE multiplier field is used to enforce the kine-
matic interface constraints weakly via a dual mortar method.

The method of weighted residuals is applied to the strong form of the fluid, solid, and interface
problems detailed in Sections 2.1, 2.2, and 2.3, respectively. This is done by multiplication with
the respective test functions v, q, w, and µ for the fluid velocity, the fluid pressure, the solid
displacement, and the LAGRANGE multiplier field. Subsequent integration by parts as well
as exploitation of the boundary conditions gives rise to the weak problem: Find dS ∈ SdS ,
uF ∈ SuF , pF ∈ SpF , dG ∈ SdG and λ ∈ Sλ for all wS ∈ TwS , vF ∈ TvF , qF ∈ TqF , wG ∈ TwG

and µ ∈ Tµ such that

0 =

(
vF, ρF

∂uF

∂t

)
ΩF

+
(
vF, ρFc · ∇uF

)
ΩF −

(
∇ ·vF, pF

)
ΩF

+
(
∇vF, 2µF

dynε(u
F)
)

ΩF
−
(
qF,∇ ·uF

)
ΩF −

(
vF, ρFbF

)
ΩF

−
(
vF, h̄

F
)

ΓF
N

+
(
vF,λ

)
ΓFSI

,

(3.4a)

0 =

(
wS, ρS0

d2dS

dt2
− bS

0

)
ΩS

+
(
∇0w

S,P
)

ΩS
−
(
wS, h̄

S

0

)
ΓS

N

−
(
wS,λ

)
ΓFSI

, (3.4b)

0 =
(
µ,dS

ΓFSI
− dG

ΓFSI

)
ΓFSI

. (3.4c)

This will be used as the starting point for the finite element discretization.
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3.2 Discretization of the FSI Problem

3.2 Discretization of the FSI Problem
The weak form (3.4) has to be discretized in space and time. For the monolithic approach
presented here, the spatial discretization of the fluid and the structure field is done with finite
elements. For the spatial discretization of the ALE field, several approaches are available, e.g.
finite elements or spring models. An overview of such mesh motion techniques as well as a
comparison are given in Appendix A. The constraints at the interface are enforced using a dual
mortar method, which has been proposed by KLÖPPEL et al. [138] for the FSI case. This results
in great freedom during mesh generation to tailor the meshes to the needs of the individual
fields, since the nodes of the fluid and structure mesh do not have to match at the interface.

Temporal discretization of the fluid and the structure field is performed independently by fi-
nite differencing with the same time step size ∆t in both fields. Subsequently, field-specific
fully implicit, single-step, and single-stage time integration schemes are applied, which can be
tailored to the needs of the individual field. Depending on the actual choices of time integration
schemes and their algorithmic parameters, the balance of linear momentum is formulated at an
intermediate time instant tm ∈ ]tn, tn+1] where the index m indicates a mid-point somewhere in
the time interval ]tn, tn+1]. In general, the actual time instants for equilibrium in the fluid and
the structure field do not coincide, i.e. tFm 6= tSm. MAYR et al. [163] allow for the freedom of
choosing the time integration schemes for the fluid and structure field independently and still
maintaining temporal consistency between both fields, which will be shown in detail in Sec-
tion 3.2.4. In the sequel, time-discrete quantities are indexed with the subscript (•)n to indicate
the current time step. To prepare the adaptive time stepping scheme detailed in Chapter 4, the
time step size is denoted by ∆tn to hint at possible changes of the time step size, even if a
constant time step size might be used.

Another new aspect of time integration in the work of MAYR et al. [163] is that field-specific
predictors are allowed within the monolithic FSI framework. By applying predictors in the solid
and the fluid field, one aims at a good initial guess as a starting point for the nonlinear solution
procedure and hopes to reduce numerical effort of the nonlinear solution scheme. Due to pos-
sible predictors in the structure and fluid field, the solution at the beginning of the nonlinear
iteration loop may differ from the converged solution of the previous time step by additional
increments, reading

dS,0
n+1 = dS

n + ∆dS
p (3.5a)

uF,0
n+1 = uF

n + ∆uF
p (3.5b)

with the subscript (•)p indicating the predictor step. Within the predictors, both fields can evolve
independently, leading to a possible violation of the kinematic continuity requirement (2.12) at
the fluid-structure interface, i.e. possibly incompatible initial guesses for the structure and the
fluid fields. This violation can be measured and will be accounted for when the discrete kine-
matic coupling conditions are derived in Section 3.2.4. Without any predictor, these additional
increments vanish, i.e. ∆dS

p = 0 and ∆uF
p = 0.

Remark 3.2.1 MAYR et al. [163] use very simple extrapolation-based predictions of the solid
displacement field. In principle, the proposed solution schemes are able to handle fluid predic-
tors as well. However, if only the velocity field is predicted in a comparably simple way as in
the structure field, the pressure field does not match the velocity field after the prediction. An
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3 Finite Element Formulation and Monolithic System of Equations

extrapolation-based prediction of the pressure field is not possible since the pressure field does
not provide a time derivative, but rather adapts oneself as instantaneous quantity to guarantee
a divergence-free velocity field. Hence, MAYR et al. [163] recommend to just predict the struc-
tural solution unless sophisticated fluid predictors that include a pressure projection step are
available. In the present implementation, however, only explicit predictors are considered that
come with only negligible additional cost and therefore refrain from using a nonconstant fluid
predictor step.

Remark 3.2.2 In implementations, where DIRICHLET boundary conditions are applied in the
predictor step and then the respective degrees of freedom are excluded from the nonlinear solu-
tion process, the predictor strategy also allows for the prescription of inhomogeneous DIRICH-
LET boundary conditions at the fluid-structure interface.

Discretization of the weak form (3.4) of the coupled FSI problem can be performed indepen-
dently for each field. Discretization of the fluid contribution (3.4a) results in the fluid residual

rF = rFuF + rFλ =


rFI

rFΓFSI

rGI
rGΓFSI

+


0

rFλ,ΓFSI

0

0

 (3.6)

where the first term rF
uF on the right-hand side contains the standard fluid residual and only the

second term rFλ accounts for the interface coupling of fluid and structure field. Accordingly, the
discretization of the structural contribution (3.4b) is written as

rS = rSdS + rSλ =

[
rSI

rSΓFSI

]
+

[
0

rSλ,ΓFSI

]
(3.7)

with the first term rS
dS accounting for the pure structural problem and the second term rSλ again

representing the interface coupling. Finally, the weak coupling condition (3.4c) is discretized
yielding a residual contribution rcoupl. After assembling these three individual residuals into the
global FSI residual vector rFSI, that depends on the structural unknowns, the fluid unknowns,
and the unknown LAGRANGE multipliers, the solution of the nonlinear coupled FSI problem is
obtained by solving for

rFSI =

 rS

rF

rcoupl

 = 0. (3.8)

To solve the nonlinear problem (3.8), a NEWTON-type method is applied requiring the full
linearization of rFSI and, thus, of all single field residuals. After summarizing all unknowns
of the structure field in xS and those of the fluid field in xF to ease notation, respectively, the
resulting linear system in NEWTON iteration step k ≥ 0 reads

∂rS
dS

∂xS 0
∂rSλ
∂λ

0
∂rF

uF

∂xF

∂rFλ
∂λ

∂rcoupl

∂dS
Γ

∂rcoupl

∂uF
Γ

0


k

n+1

 ∆xS

∆xF

∆λ


k+1

n+1

= −

 rS

rF

rcoupl


k

n+1

(3.9)
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3.2 Discretization of the FSI Problem

where the subscript (•)ΓFSI
denoting the fluid-structure interface has been replaced by (•)Γ to

shorten the notation. This short notation is used throughout the remainder of this thesis, unless
a detailed specification is necessary. The current nonlinear iteration is indicated by the super-
script (•)k. In (3.9), the splitting into degrees of freedom that belong to the interior of ΩS or ΩF

and those located at the fluid-structure interface ΓFSI is omitted for clarity of presentation. It
will be re-introduced when the single field contributions to (3.9) will be derived in the following
subsections. The matrix contribution ∂rS

dS/∂xS of the structure field will be discussed in detail
in Section 3.2.2. Section 3.2.1 deals with the fluid discretization and will specify the matrix
contribution ∂rF

uF/∂xF. The remaining matrix contributions that are related to the interface
coupling will be addressed in Section 3.2.4.

The solution vector is updated in every iteration via xS

xF

λ


k+1

n+1

=

 xS

xF

λ


k

n+1

+

 ∆xS

∆xF

∆λ


k+1

n+1

. (3.10)

Note that due to the possibility of field-specific predictors, the initial guess for the nonlinear
iterative procedure may differ from the converged solution of the last time step, i.e. x0

n+1 6= xn,
cf. (3.5).

In order to obtain the full linearization of the coupled FSI problem, first space and time
discretization as well as linearization of the fluid, ALE, and structure field equations need to
be performed. As stated above, this will be done field-wise in the subsequent sections. A brief
introduction to the mortar method will be given in Section 3.2.3. Afterwards, the coupling at the
interface via the dual mortar method is illustrated. Finally, temporal consistent coupling of the
fluid and the structure field is introduced. The assembly of the global monolithic system will
then be shown in Section 3.3.

3.2.1 Fluid field

In this thesis, stabilized equal-order interpolated finite elements are used for spatial discretiza-
tion of the fluid field. Specialized FEM formulations for flow problems including detailed
analysis of the required stabilization techniques can be found in the textbooks by DONEA

and HUERTA [61] or GRESHO and SANI [102], in the second volume of the textbook se-
ries by ZIENKIEWICZ et al. [262] or in the theses by FÖRSTER [81], GRAVEMEIER [98], or
WALL [242].

Assuming a matching grid layout for the ALE mesh motion and for the fluid solution, the
ansatz for spatial discretization of ALE displacement, fluid velocity and fluid pressure field read

dG ≈
nnd,F∑
j=1

NG
j dG

j , (3.11a)

uF ≈
nnd,F∑
j=1

NF
j uF

j , (3.11b)
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3 Finite Element Formulation and Monolithic System of Equations

pF ≈
nnd,F∑
j=1

NF
j p

F
j (3.11c)

with nnd,F denoting the number of fluid nodes and NG
j and NF

j being the finite element ansatz
functions. While space-continuous quantities have been denoted by underlined bold face, the
underline character is dropped to indicate vectors of space-discrete nodal values.

Temporal discretization of the fluid velocity field is done by finite differences. Either the
generalized-α scheme proposed by JANSEN et al. [129] or the one-step-θ scheme [67] are used
for time integration. The generalized-α scheme is preferred due to its unconditional stability
in the linear regime, second order accuracy, and the possibility of user-controlled dissipation of
high frequencies. Numerical dissipation is controlled by choosing a spectral radius ρF∞, which
is used as a starting point to calculate the time integration parameters αF

f , αF
m, and γF [129].

One-step-θ is used with 0.5 ≤ θF ≤ 1, only. Second order accuracy can be achieved if and only
if θF = 0.5 while θF 6= 0.5 results in first order accuracy only. Both schemes formulate the
balance of linear momentum at an intermediate time instant tFm ∈ ]tn, tn+1] with

tFm =

{
tn+αF

f
for generalized-α

tn+θ for one-step-θ

which will play an important role for the temporal interpolation of interface traction later in
Section 3.2.4. Both schemes are single-step and single-stage schemes, i.e. they require only one
previous solution to be known and only need one nonlinear problem per time step to be solved.
Their fully implicit character makes them perfectly suitable to solve the incompressible fluid
flow problem without too distinctive restrictions on the time step size ∆tn.

To prepare the coupling at the interface, fluid velocity degrees of freedom are divided into two
sets. Those associated with an interface node are denoted by uF

Γ while the remaining velocity
degrees of freedom are collected in the vector ûF

I . For notational convenience, the vector pF of
all nodal pressure values is merged into the vector of inner velocities, reading

uF
I =

[
ûF

I

pF

]
.

The introduced split into quantities belonging either to the interior or the fluid-structure interface
of the fluid domain yields the matrix representation

Fαβ =
∂rFα
∂uF

β

, FG
αβ =

∂rFα
∂dG

β

, α, β ∈ {I,Γ}

of the linearization of the discrete nonlinear fluid residual rF. In order to compute the solution
increment ∆xF,n+1

k+1 , the linear system

[
FII FIΓ FG

II FG
IΓ

FΓI FΓΓ FG
ΓI FG

ΓΓ

]k
n+1


∆uF

I

∆uF
Γ

∆dG
I

∆dG
Γ


k+1

n+1

= −

[
rFI
rFΓ

]k
n+1

(3.12)
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3.2 Discretization of the FSI Problem

has to be solved in every nonlinear iteration step k ≥ 0. Considering the mesh motion of the
ALE mesh, we assume that discretization and linearization of (2.1) result in an ALE system
matrix A. The linearized version of (2.1) reads[

AII AIΓ

]k
n+1

[
∆dG

I

∆dG
Γ

]k+1

n+1

= −rG,kΓ,n+1. (3.13)

Note that the vectors of unknowns in (3.12) and (3.13) both contain the mesh displacements dG.
Hence, both systems can be combined to

 FII FIΓ FG
II FG

IΓ

FΓI FΓΓ FG
ΓI FG

ΓΓ

0 0 AII AIΓ


k

n+1


∆uF

I

∆uF
Γ

∆dG
I

∆dG
Γ


k+1

n+1

= −

 rFI
rFΓ
rGΓ


k

n+1

, (3.14)

which involves an expression for ∂rF
uF/∂xF needed for the schematic monolithic system (3.9).

Note that an equation for the evolution of the interface displacements dG
Γ is still missing in (3.14),

since the interface deformation cannot evolve freely, but has to follow the fluid field’s or struc-
ture field’s interface motion. To close the fluid linear system (3.14), a discrete coupling condi-
tion that relates fluid interface velocities uF

Γ to ALE interface displacements dG
Γ is necessary. It

will be derived in Section 3.2.4 along with the discrete coupling conditions at the fluid-structure
interface.

3.2.2 Structure field
Finite elements are also used here for spatial discretization of the structure field. Detailed pre-
sentations of the FEM in the context of solid mechanics can be found in the monographs by
BELYTSCHKO et al. [16], HUGHES [124], DE BORST et al. [45], WRIGGERS [255], or the third
volume of the textbook series by ZIENKIEWICZ et al. [261].

For the solid displacement field, the ansatz

dS ≈
nnd,S∑
j=1

NS
j dS

j (3.15)

is made with nnd,S denoting the number of nodes of the structure field, NS
j being the shape

functions and dS the vector of nodal displacements, respectively.
For time integration, the generalized-α method by CHUNG and HULBERT [39] is applied

due to its unconditional stability in the linear regime, second order accuracy, and the possibility
of user-controlled numerical dissipation of high frequencies. For the calculation of the time
integration parameters αS

f , αS
m, βS, and γS based on the spectral radius ρS∞ see the original pa-

per [39]. As in the fluid, the generalized-α method formulates the balance of linear momentum
at an intermediate instance in time, namely tSm = tn+1−αS

f
.

Remark 3.2.3 Although generalized-α schemes for fluid and solid use different indexing for the
intermediate point in time, namely tn+αF

f
vs. tn+1−αS

f
, choosing equal spectral radii ρF∞ = ρS∞

indeed results in αF
f 6= αS

f , but still tFm = tSm.
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3 Finite Element Formulation and Monolithic System of Equations

Using the splitting into interface and interior degrees of freedom and the shorthand notation

Sαβ =
∂rSα
∂dS

β

with α, β ∈ {I,Γ} to denote the linearization of the discrete nonlinear residual rS yields the
linear system of equations[

SII SIΓ

SΓI SΓΓ

]k
n+1

[
∆dS

I

∆dS
Γ

]k+1

n+1

= −

[
rSI
rSΓ

]k
n+1

(3.16)

to be solved in every NEWTON step k ≥ 0. The linear system (3.16) includes an expression
for ∂rS

dS/∂xS, which is needed in (3.9).

3.2.3 LAGRANGE Multiplier Field
In this thesis, a dual mortar method is used to weakly enforce the kinematic coupling condi-
tion (2.12c). The mortar method has been introduced by BELGACEM [15] to impose interface
constraints weakly. WOHLMUTH [253, 254] proposed an alternative choice of mortar shape
functions, namely dual shape functions. Their properties and benefits will be discussed be-
low. Meanwhile, the treatment of curved interfaces [80], the extension to higher order [146],
and aspects of numerical evaluation of the mortar integrals [68, 189, 190] have been addressed
in literature. Many applications can be found in computational analysis of contact mechanics
problems [96, 119, 184–186, 191, 192]. For a literature survey on the development and the ap-
plication of mortar methods in contact mechanics see the thesis by POPP [184]. In recent years,
mortar methods have spread to a broad spectrum of applications like mesh tying in solid me-
chanics [141, 189] and fluid dynamics [64], FSI problems [138, 163], or fluid-structure-contact
interaction [162]. Very recently, FARAH et al. [69] extended the mortar method to volume-
coupled multi-physics problems, e.g. poroelasticity or thermo-structure interaction.

In the context of FSI, the first application of the dual mortar method to problems with non-
matching interface discretizations has been described by KLÖPPEL et al. [138]. However, alter-
native approaches to deal with non-matching interface discretizations are available based on in-
terpolation techniques [56,72], localized LAGRANGE multipliers [205,206], or special interface
elements [135] to name a few. Very recently, DEPARIS et al. [52] proposed an interpolation-
based coupling method called INTERNODES, that also allows for non-matching grids. It
consists of two coupling operators, one for the continuity of the primal and one for the continu-
ity of the dual variable. Either LAGRANGEan basis functions or rescaled localized radial basis
functions [54] are used to construct the interpolation operators where the latter result in lower
interpolation errors in case of non-conforming interfaces and a low polynomial degree [52]. The
INTERNODES method has been applied to fluid-structure interaction problems by DEPARIS

et al. [55] and recently in the thesis by FORTI [83].
Here, only a very brief introduction to some basics of the dual mortar method is given. For

detailed derivations as well as theoretical background and analysis see further literature, e.g.
[80, 253, 254] and references therein.

In mortar methods, one usually distinguishes between a master and a slave side of the inter-
face. Discretization of the LAGRANGE multiplier field is always performed on the slave side.
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3.2 Discretization of the FSI Problem

Opposed to classical LAGRANGE multiplier choices, the discretization of the LAGRANGE mul-
tiplier field λ with the dual mortar method is based on so-called dual shape functions Φj leading
to the discretization

λ ≈
nnd,sl∑
j=1

Φjλj (3.17)

with discrete nodal LAGRANGE multipliers λj and nnd,sl nodes on the slave side of the inter-
face ΓFSI. The dual shape functions Φj are constructed such that they satisfy the biorthogonality
condition ∫

Γsl

ΦjN
sl
k dΓ = δjk

∫
Γsl

N sl
k dΓ (3.18)

which is often replaced by its element-wise representation∫
Γsl,e

ΦjN
sl
k dΓ = δjk

∫
Γsl,e

N sl
k dΓ. (3.19)

The construction of dual shape functions Φj based on the biorthogonality condition (3.19) with
the standard LAGRANGE polynomial shape function Nk has first been presented by SCOTT

and ZHANG [217] for projection-like operators and has been transferred to the LAGRANGE

multiplier case by WOHLMUTH [253]. Since (3.19) must hold in the physical space rather than
in the element parameter space, the dual shape functions depend on the actual distortion of
the underlying finite element. Thus, they can be given explicitly only for cases with constant
Jacobian mappings, but need to be computed for all other cases based on the actual mesh. For
details of the construction of the dual shape functions, see [80, 146, 147, 187, 254]. From a
computational point of view, they only have to be computed once in the beginning and can then
be reused throughout the entire computation since the coupling is performed in the material
configuration [138].

Integration over the interface leads to the mortar coupling matrices D and M associated with
the slave and the master side, respectively, cf. Section 3.2.4. The biorthogonality condition plays
a major role in the evaluation of D and M since it leads to a purely diagonal form of D. Hence,
the inversion of D will be computationally cheap enabling the condensation of the LAGRANGE

multiplier field from the global system of linear equations as will be shown in Sections 3.3.1
and 3.3.2.

3.2.4 Fluid-Structure Interface
As discussed in Section 2.3, kinematic and dynamic coupling conditions need to be satisfied
at the fluid-structure interface. Since at the interface, degrees of freedom of all involved fields
come together, one has to deal with the kinematic coupling of structure, fluid, and ALE degrees
of freedom resulting in two separate discrete kinematic coupling conditions, see Figure 3.1.

On the one hand, the evolution of the fluid interface motion, described by dG
Γ, has to be related

to the fluid velocity uF
Γ at the interface. This coupling between fluid and ALE degrees of freedom

takes place purely in the fluid domain and does not involve any structural degrees of freedom.
On the other hand, a discrete version of the kinematic continuity constraint (2.12c) has to be
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3 Finite Element Formulation and Monolithic System of Equations

ΩF ΩS

ΓFSI

dG
ΓFSI

uF
ΓFSI

dS
ΓFSI

Figure 3.1: Illustration of discrete kinematic interface coupling conditions as given by MAYR

et al. [163] — The conversion of interface fluid velocity degrees of freedom uF
ΓFSI

into inter-
face ALE displacement degrees of freedom dG

ΓFSI
happens internally in the fluid field and does

not include the mortar coupling across the fluid-structure interface. The mortar coupling it-
self involves structure and ALE displacement degrees of freedom dS

ΓFSI
and dG

ΓFSI
, respectively.

Combining these two couplings, that are illustrated by solid arrows, yields the FSI coupling of
interface fluid velocity degrees of freedom uF

ΓFSI
and interface structure displacement degrees

of freedom dS
ΓFSI

, that is indicated by the dashed arrow.

provided for the ’meshtying’ problem at the interface whereby the ALE deformation dG
Γ needs

to be associated with the structural deformation dS
Γ at the interface. Thereby, two sets of degrees

of freedom which are separated by the interface are coupled and, thus, the mortar coupling will
play an important role. Both discrete kinematic coupling conditions can finally be combined to
establish a link between fluid interface velocities uF

Γ and structural interface displacements dS
Γ

leading to the discrete representation of the no-slip condition (2.12a). The connections and
dependencies of these kinematic coupling conditions are illustrated in Figure 3.1 and will be
discussed in the following sections.

In the time-continuous regime, interface coupling conditions as depicted in Figure 3.1 are
fully equivalent. However, after time discretization only two out of three can be satisfied ex-
actly in general since time derivatives are computed differently in solid, fluid, and ALE field
due to different time integration schemes in each field. In this thesis, it is aimed at satisfying
discrete versions of (2.12c) and (2.3), i.e. matching of interface displacements and matching
of interface fluid and grid velocities, leaving mismatches in the equivalency of interface ve-
locities in every time step. The fluid interface velocities uF

Γ evolve as primary solution to the
NAVIER–STOKES equations, while the solid interface velocities ḋS

Γ are computed based on the
solid interface displacements dS

Γ, which match the grid interface displacements dG
Γ, and do not

evolve by themselves. Thus, these possible mismatches in the equivalency of interface velocities
cannot accumulate over time.

For the discretization of the interface traction equilibrium (2.13), the mortar method will come
into play since the LAGRANGE multiplier field λ can be interpreted as interface traction field.
In addition, a temporal interpolation of interface tractions will be introduced that allows for the
freedom of choosing fluid and structure time integration schemes independently and tailored to
the needs of the specific field.
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3.2 Discretization of the FSI Problem

Discrete Coupling Condition of Fluid Velocities and ALE Displacements

In the thesis by FÖRSTER [81], exact conservation of the volume of the fluid domain ΩF is
achieved by deriving a conversion of interface fluid velocities and interface ALE displacements
that is consistent with the fluid time integration scheme. The fluid time integration schemes used
in this thesis can be assumed to have an averaged acceleration in one time step tn → tn+1 =
tn + ∆tn. The deformation of the fluid domain can be computed by integrating this averaged
acceleration twice w.r.t. time. This yields a second order accurate transformation of interface
fluid velocities and interface ALE displacements

dG
Γ,n+1 − dG

Γ,n =
∆tn

2

(
uF

Γ,n+1 + uF
Γ,n

)
(3.20)

which can be identified as the trapezoidal rule. It correctly preserves the volume of the fluid
domain ΩF and, thus, satisfies and extends the geometric conservation law towards the interface.
Despite this desirable property, the trapezoidal rule may tend to oscillations of the velocity over
time. Hence, it is sometimes replaced by the dissipative backward EULER scheme

dG
Γ,n+1 − dG

Γ,n = ∆tnu
F
Γ,n+1. (3.21)

To enable the inclusion of (3.20) or (3.21) into the global monolithic system of equations, both
schemes have to be expressed in incremental form. After introducing the KRONECKER delta

δij =

{
1 if i = j

0 otherwise

this is done by recasting them into the form

∆dG,k+1
Γ,n+1 = τ∆uF,k+1

Γ,n+1 + δi0 ∆tnu
F
Γ,n, (3.22)

where the parameter

τ =

{
∆tn

2
for trapezoidal rule (3.20)

∆tn for backward EULER scheme (3.21)
(3.23)

determines the applied scheme.
When using the backward EULER scheme, which is first order accurate only, the overall tem-

poral convergence rate of the coupled solver is expected to deteriorate to first order. If the trape-
zoidal rule is applied, second order convergence can be achieved if the fluid and structure time
integration schemes are chosen as second order accurate. This will be shown in Section 3.4.1,
where temporal convergence rates of the proposed monolithic FSI solver are studied.

Discrete Coupling Condition for Solid and ALE Displacements

A discrete representation of the kinematic interface coupling conditions (2.12) needs to be es-
tablished. This is done by means of the dual mortar method. Its first application to inter-
face constraint enforcement in the context of FSI has been done by KLÖPPEL et al. [138].
While KLÖPPEL [137] performs the discretization starting from the velocity constraint (2.12a),
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3 Finite Element Formulation and Monolithic System of Equations

the displacement constraint (2.12c) is used as starting point in this thesis. Both procedures re-
sult in a discrete coupling of interface displacements and in exactly the same expressions for the
mortar coupling matrices D and M. Though, the latter approach seems to be more straightfor-
ward to prepare assembly of the monolithic system of equations.

Inserting the spatial discretizations (3.11), (3.15), and (3.17) for the ALE displacement, the
structural displacement, and the LAGRANGE multiplier field into the weak kinematic coupling
condition (3.4c) yields nsl∑

j=1

Φjµj,

nγ∑
k=1

Nγ
kdS,γ

k −
nε∑
l=1

N ε
l d

G,ε
l


Γ

=
nsl∑
j=1

µT
j ·

[
nγ∑
k=1

∫
Γ

ΦjN
γ
k dΓ dS,γ

k −
nε∑
l=1

∫
Γ

ΦjN
ε
l dΓ dG,ε

l

]

=
nsl∑
j=1

µT
j ·
[
CSF[j, k] dS,γ

k − CFS[j, l] dG,ε
l

]
= 0 ∀µj 6= 0

(3.24)

with γ, ε ∈ {ma, sl}, γ 6= ε and nsl being the number of slave nodes. Using Indim ∈ Rndim×ndim

to denote an identity matrix with ndim being the spatial dimension, i.e. ndim ∈ {2, 3}, the nodal
coupling matrices

CSF[j, k] = C
jk
SFIndim =

∫
Γ

ΦjN
γ
k dΓIndim ,

CFS[j, l] = C
jl
FSIndim =

∫
Γ

ΦjN
ε
l dΓIndim

have been introduced. They can be assembled to the coupling matrices CSF and CFS on system
level. For example, if the structure field is chosen as the slave field, i.e. γ = sl, the biorthogo-
nality condition (3.18) is employed to write

CSF =
nγ∑
k=1

∫
Γ

ΦjN
sl
k dΓ =

nγ∑
k=1

δjk

∫
Γ

N sl
k dΓ.

When choosing the fluid field as the slave field, the coupling matrix CFS takes a diagonal form in
an analogous way. Association of CSF and CFS with the mortar matrices D and M depends on
the actual choice of master and slave side. Possible choices will be discussed in Sections 3.3.1
and 3.3.2. Full details on the numerical evaluation of the mortar integrals are given in [189,191,
192]. Different numerical integration schemes have been compared by FARAH et al. [68]. A
consistent linearization is given by POPP et al. [186].

Since (3.24) needs to hold for all values of µ, the kinematic coupling residual can be ex-
pressed in terms of the global coupling matrices CSF and CFS, reading

rcoupl = CSFdS
Γ − CFSd

G
Γ.

Its linearization yields the kinematic coupling constraint

CSF∆dS,k+1
Γ,n+1 − CFS∆dG,k+1

Γ,n+1 = −δi0 CSF∆dS
Γ,p (3.26)

22



3.2 Discretization of the FSI Problem

formulated in incremental form. The violation of the interface continuity requirement due to
possible non-constant predictors is measured by ∆dS

Γ,p and accounted for by the right-hand
side term, which is necessary only in the first nonlinear iteration step k = 0 denoted by the
KRONECKER delta symbol δi0. Due to the linearity of the kinematic coupling condition, the
kinematic interface continuity requirement is guaranteed to be satisfied for all nonlinear iteration
steps k > 0.

Note that coupling is performed in the material configuration. The coupling matrices CSF

and CFS depend solely on the undeformed configuration, but not on the actual deformation.
Thus, they do not need to be re-evaluated during the simulation, but can be reused [138].
However, in scenarios like computational contact mechanics or in the FSI approach by KLÖP-
PEL [137], that allows for relative motion of fluid and solid meshes between two time steps, an
update of the mortar matrices is necessary as soon as the configuration has changed. See the
comparison by FARAH et al. [68] for some efficient techniques for an accurate evaluation of the
mortar integrals, which become essential in such update scenarios.

Conversion of Fluid Velocities and Solid Displacements

With the discrete coupling conditions (3.22) and (3.26), all necessary conditions are at hand to
assemble the global monolithic system. However, it is desirable to derive a direct conversion
of fluid velocities and structural displacements at the fluid-structure interface by replacing the
interface ALE displacements. On the one hand, this emphasizes the fact that the ALE field is
not a physical field but rather an auxiliary field to describe the fluid motion. On the other hand,
this eases the notation of the global monolithic system when it comes to choosing master and
slave side in the context of the dual mortar method.

Combination of (3.22) and (3.26) results in

CSF∆dS,k+1
Γ,n+1 + δi0 CSF∆dS

Γ,p = τ CFS∆uF,k+1
Γ,n+1 + δi0 ∆tnCFSu

F
Γ,n. (3.27)

Note that (3.27) does not take the role of an additional coupling condition. It is just a redundant
reformulation of (3.22) and (3.26). A graphical representation of (3.27) is given by the dashed
arrow in Figure 3.1.

Contributions to the Balances of Linear Momentum

Finally, the last two terms in the weak form, which are related to the interface tractions, are
dealt with. Inserting the spatial discretizations (3.11b) and (3.17) of the fluid velocity field and
the LAGRANGE multiplier field into the interface traction term of the fluid’s weak form (3.4a)
results in

(
vF,λ

)
Γ
≈

 nε∑
l=1

N ε
l v

F,ε
l ,

nnd,sl∑
j=1

Φjλj


Γ

=
nε∑
l=1

(
vF,ε
l

)T

·

nnd,sl∑
j=1

∫
Γ

N ε
l Φj dΓλj


=

nε∑
l=1

(
vF,ε
l

)T

·CT
FS[j, l]λj.

(3.28a)
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3 Finite Element Formulation and Monolithic System of Equations

Similarly, a discrete representation of the respective term of the solid’s weak form (3.4b) yields

−
(
wS,λ

)
Γ
≈ −

 nγ∑
k=1

Nγ
kwS,γ

k ,
nnd,sl∑
j=1

Φjλj


Γ

= −
nγ∑
k=1

(
wS,γ
k

)T

·

nnd,sl∑
j=1

∫
Γ

Nγ
kΦj dΓλj


= −

nγ∑
k=1

(
wS,γ
k

)T

·CT
SF[j, k]λj,

(3.28b)

where the discretizations (3.15) and (3.17) of the solid displacement field and the LAGRANGE

multiplier field have been used. In both expressions (3.28), the transposes of the nodal blocks
of the coupling matrices CFS and CSF can be found. The number of slave side interface nodes
is denoted by nnd,sl. Furthermore, γ, ε ∈ {ma, sl} and γ 6= ε.

As already indicated during discretization of both the fluid and the structure field in Sec-
tions 3.2.1 and 3.2.2, each field-specific time integration scheme evaluates the dynamic equilib-
rium at an intermediate point tFm, t

S
m ∈]tn, tn+1] with possibly

tFm 6= tSm. (3.29)

To impose equilibrium of interface traction fields weakly, the interface residual expressions of
the fluid and the structure field are extracted from the discrete weak residual expressions of the
respective field. They need to be evaluated exactly at these mid-point instances in time and,
thus, read

rFλ,m = CT
FSλ

F
m, (3.30a)

rSλ,m = −CT
SFλ

S
m, (3.30b)

where (3.28) is used to express them in terms of the coupling matrices CFS and CSF and the dis-
crete LAGRANGE multiplier field λ. Since the coupling matrices are purely based on geometry
and do not depend on time, only the interface traction needs to be incorporated at tFm and tSm
reading λF

m and λS
m, respectively. Having in mind the goal of choosing the time integration

schemes for fluid and solid independently and recalling (3.29) generally yields

λF
m 6= λS

m. (3.31)

Thus, the single field time integration schemes need to be taken into account when exchanging
interface tractions between the fields. As usual for fully implicit, single-step, single-stage time
integration schemes used in this work, linear interpolations are applied to evaluate rFλ,m and rSλ,m
at the intermediate time instances tFm and tSm, respectively. Then, the coupling terms (3.30) can
be expressed in terms of known nodal quantities λn and unknown nodal quantities λkn+1 reading

rF,kλ,m = CT
FS

(
bλn + (1− b)λkn+1

)
, (3.32a)

rS,kλ,m = −CT
SF

(
aλn + (1− a)λkn+1

)
(3.32b)

with interpolation weights a and b of the solid and fluid field, respectively. The actual values
of a and b depend on the specific field time integrators. They are always chosen equal to the
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tn tn+1tFm tSm t

λ

1− b
1− a

Figure 3.2: Temporal interpolation of the interface traction field inspired by [132] — The inter-
face traction λ is interpolated to the respective generalized midpoints tSm and tFm of the structural
and fluid time integrator, respectively. The interpolation weights a and b are chosen to match
the time integration weights associated with quantities at time tn.

weighting of the previous solution in (3.32). For example, when using generalized-α time in-
tegration [39] for the structure field and generalized-α time integration [129] for the fluid field,
time interpolation factors have to be chosen as a = αS

f and b = 1−αF
f . In the case of one-step-θ,

they are chosen as a = θS and b = θF. An illustration of the temporal interpolation of interface
traction is shown in Figure 3.2.

In (3.32), a known contribution λn from the last time step tn always occurs on the right-hand
side in both fluid and structure field interface equations, whereas λkn+1 is an additional unknown
and has to be solved for. Since the coupling terms in the weak forms (3.4a) and (3.4b) are linear
in the LAGRANGE multiplier field λ, cf. also (3.28), linearizations of the residual terms (3.32)
are just the coupling matrices themselves wherein the temporal interpolation factors occur, too:

∂rF,kλ,m

∂λkn+1

= (1− b)CT
FS,

∂rS,kλ,m

∂λkn+1

= − (1− a)CT
SF. (3.33)

Although the evaluation of interface traction at the generalized midpoints tSm and tFm has al-
ready been suggested by KLÖPPEL [137] in the context of monolithic solvers, it has been im-
plemented for the first time in the present contribution. A similar interpolation strategy has
previously been proposed by JOOSTEN et al. [132] for partitioned solution schemes, cf. Re-
mark 3.2.4.

Remark 3.2.4 For partitioned FSI schemes, the case of tSm 6= tFm has been studied by JOOSTEN

et al. [132]. Therein, a stability analysis of a model problem with generalized-α time integra-
tion in fluid and solid is performed. They conclude that stability and accuracy of the coupling
scheme can be maintained for all choices of spectral radii ρS∞ and ρF∞ if and only if a tem-
poral interpolation of the interface traction field as shown in Figure 3.2 is applied. With that
temporal interpolation of interface traction, the spectral radii can be chosen from the entire
range 0 ≤ ρS∞ ≤ 1 and 0 ≤ ρF∞ ≤ 1 while resulting in a stable and accurate solution.
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3 Finite Element Formulation and Monolithic System of Equations

Although choices of the spectral radius close or equal to zero are interesting from a theoret-
ical point of view when it comes to the analysis of high-frequency dissipation [39, 129], they
are usually limited to the reasonable range ρS∞ ≥ 0.5 and ρF∞ ≥ 0.5 for practical simulations.
These bounds are also imposed by the research code Baci [243] used in this thesis. Otherwise,
parameters αf and αm are in the theoretically admissible range, but such that the inertia con-
tributions to the dynamic equilibrium are taken from outside the actual time interval of interest.

In the analysis by JOOSTEN et al. [132], the instabilities without interpolation of the interface
traction occur only in the case of ρS∞ < ρF∞ with ρS∞ < 0.5. Thus, their theoretical meaning is
perceived, but their impact on practical applications is considered as rather small since such
parameter choices are usually avoided.

Energy Considerations at the Fluid-Structure Interface

To assess a possible production of artificial energy due to time integration, a similar line of
arguments as in the thesis by MOK [170], which dealt with partitioned solution schemes, is
followed. Such an analysis for monolithic FSI solvers has already been performed by MAYR et
al. [163]. The amount of energy production per time step at the fluid-structure interface can be
computed by balancing the work of the interface traction field along the motion of the solid and
the fluid side of the interface reading

∆En→n+1
Γ = ES,n→n+1

Γ + EF,n→n+1
Γ . (3.34)

The work contributions related to the solid and fluid interface motion are denoted by ES,n→n+1
Γ

andEF,n→n+1
Γ , respectively, and should cancel each other out to obtain an energy-stable scheme.

They are defined as

ES,n→n+1
Γ =

∫
Γ

λS
m ·
(
dS

Γ,n+1 − dS
Γ,n

)
dΓ, (3.35a)

EF,n→n+1
Γ =

∫
Γ

λF
m ·
(
dG

Γ,n+1 − dG
Γ,n

)
dΓ, (3.35b)

where the interface traction needs to be evaluated at the field’s time integration midpoint tSm
and tFm, respectively. Inserting (3.35) into (3.34) and using the temporal interpolation (3.32)
yields

∆En→n+1
Γ =

∫
Γ

(aλn + (1− a)λn+1) ·
(
dS

Γ,n+1 − dS
Γ,n

)
dΓ

−
∫

Γ

(bλn + (1− b)λn+1) ·
(
dG

Γ,n+1 − dG
Γ,n

)
dΓ.

Exploiting the discrete coupling condition (3.26), namely the exact equality of solid and fluid
interface displacements in the time-discrete setting, the amount of energy production per time
step is finally given as

∆En→n+1
Γ =

∫
Γ

((a− b)λn + (b− a)λn+1) ·
(
dS

Γ,n+1 − dS
Γ,n

)
dΓ (3.36)

= (a− b)
∫

Γ

(λn − λn+1) ·
(
dS

Γ,n+1 − dS
Γ,n

)
dΓ. (3.37)
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Its accumulation up to time tn+1 reads

En+1
Γ =

N∑
n=0

∆En→n+1
Γ . (3.38)

The following observations are made:

• The energy production per step (3.36) vanishes for a − b → 0, i.e. as time instances of
evaluating structure and fluid coupling tractions coincide: tSm − tFm → 0.

• Since dS
Γ,n+1 − dS

Γ,n ∝ ∆tn, the energy production per step (3.36) reduces as ∆tn → 0.
Thus, the scheme is called temporally consistent.

For numerical studies confirming these observations see the work by MAYR et al. [163] as well
as the examples in Sections 4.3.3 and 6.1.1.

3.3 Monolithic System of Equations

Starting from the discrete representations of all physical fields as given in the previous subsec-
tions, the monolithic system of equations

Jkn+1∆xk+1
n+1 = −rFSI,k

n+1 (3.39)

can be assembled which needs to be solved in every nonlinear iteration k in each time step n+1.
The Jacobian matrix of the coupled FSI system of linear equations then reads

Jkn+1 =



SII SIΓ

SΓI SΓΓ −(1− a)CT
SF

FII FIΓ FG
II FG

IΓ

FΓI FΓΓ FG
ΓI FG

ΓΓ (1− b)CT
FS

AII AIΓ

−CSF τCFS



k

n+1

, (3.40a)

where 0-blocks in the matrix have been omitted for the sake of clarity.

Remark 3.3.1 Matrix (3.40a) is rectangular, i.e. one kinematic relation that depends on the
actual choice of master and slave side is missing and will be added later in Sections 3.3.1
and 3.3.2 after master and slave side have been chosen.

The corresponding solution increment vector

∆xk+1
n+1

T
=
[

∆dS
I

T
∆dS

Γ
T

∆uF
I

T
∆uF

Γ
T

∆dG
I

T
∆dG

Γ

T
λT

]k+1

n+1
(3.40b)
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contains the primary unknowns of each field as well as the LAGRANGE multiplier field. Finally,
the residual vector is given by

rFSI,k
n+1 =



rSI
rSΓ
rFI
rFΓ
rGΓ
0



k

n+1

+



0

−aCT
SFλn

0

bCT
FSλn

0

0


+ δk0



0

0

0

0

0

∆tnCFSu
F
Γ,n − CSF∆dS

Γ,p


. (3.40c)

Due to the 0-block on the main diagonal, the global monolithic system of linear equations (3.40)
is of saddle-point type. In order to circumvent the saddle-point like system to be able to use the
efficient FSI-specific preconditioners detailed in Chapter 5, the unknown LAGRANGE multipli-
ers λn+1 will be condensed, yielding a problem with structural displacement, fluid velocity and
pressure as well as ALE grid displacement degrees of freedom as the only unknowns. By ex-
ploitation of the kinematic coupling conditions derived in Section 3.2.4, one can condense the
interface degrees of freedom of the slave side from the global system of equations. The slave
side’s interface balance of linear momentum will be used to perform the static condensation
of the LAGRANGE multipliers. The application of the dual mortar methods is crucial to enable
static condensation. If standard shape functions are used to discretize the LAGRANGE multiplier
field, the condensation is numerically very costly or even unfeasible. Then, the saddle-point type
system needs to be solved with appropriate saddle-point solvers. However, this is beyond the
scope of this thesis. An introduction to and survey of saddle-point solver is given by BENZI et
al. [20], for example.

System (3.40) does not include a specific choice of master and slave side, yet. In addition, the
coupling of ALE interface displacements dG

Γ to the motion of the fluid-structure interface ΓFSI

is omitted at this point, although the coupling of ALE interface displacements dG
Γ to the fluid

interface velocities uF
Γ has already been established in (3.22). To finally close system (3.40), the

required relation will be added after master and slave side have been chosen. This procedure
allows to express the interface motion in terms of master side’s interface degrees of freedom
only, which will be a good starting point for the condensation of the LAGRANGE multiplier
field. For both possible choices of master and slave side, the missing coupling conditions as
well as the process of condensation will be detailed in Sections 3.3.1 and 3.3.2, respectively.

When static condensation has been completed, the interface motion is purely described and
handled in terms of unknowns of the master field. Thus, two algorithmic variants are distin-
guished, namely fluid-handled interface motion and structure-handled interface motion. They
will be discussed in the subsequent sections. Section 3.3.1 deals with the variant, where the fluid
field has been chosen as the master field, while Section 3.3.2 describes the case of the structure
field being the master field. For both choices, the process of static condensation will be detailed
that leads to the final system of linear equations to be implemented.

3.3.1 Fluid-handled Interface Motion
First, the variant where the fluid field is chosen as the master field and the structure field as the
slave field is considered. Hence, the interface motion is expressed in terms of fluid velocity
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degrees of freedom uF
Γ. Since the fluid field has been chosen as master, the master side’s mortar

matrix M is identified with the coupling matrix of the fluid side and the mortar side’s slave
matrix D with the coupling matrix of the solid’s side, respectively:

M = CFS, D = CSF

The coupling of the interface ALE displacement dG
Γ to the interface motion is expressed in terms

of the master’s side interface degrees of freedom, i.e. in terms of fluid interface velocities uF
Γ.

This coupling has already been stated in (3.22) and will be used to close the monolithic system
of equations yielding the Jacobian matrix

Jkn+1 =



SII SIΓ

SΓI SΓΓ −(1− a)DT

FII FIΓ FG
II FG

IΓ

FΓI FΓΓ FG
ΓI FG

ΓΓ (1− b)MT

AII AIΓ

−D τM

τI −I



k

n+1

(3.41a)

and the residual vector

rkn+1 =



rSI
rSΓ
rFI
rFΓ
rGΓ
0

0



k

n+1

+



0

−aDTλn

0

bMTλn

0

0

0


+ δk0



0

0

0

0

0

∆tnMuF
Γ,n −D∆dS

Γ,p

∆tnu
F
Γ,n


. (3.41b)

The sixth row, that represents the kinematic constraint (3.27), is resolved for the structural
interface displacement increment

∆dS
Γ,n+1 = τP∆uF

Γ,n+1 + δk0 ∆tnPuF
Γ,n − δk0 ∆dS

Γ,p (3.42)

where the mortar projection matrix

P = D−1M (3.43)

has been introduced. When computing P, the biorthogonality property (3.18) enables a cheap
inversion of the slave side’s mortar matrix D since it guarantees its strict diagonal shape.

The coupling of fluid interface velocities uF
Γ and ALE interface displacements dG

Γ as given
in (3.22) shows up in the last row of system (3.41) and reads

∆dG,k+1
Γ,n+1 = τ∆uF,k+1

Γ,n+1 + δk0 ∆tnu
F
Γ,n. (3.44)

29



3 Finite Element Formulation and Monolithic System of Equations

From the balance of linear momentum of the structural interface degrees of freedom together
with (3.42), the unknown LAGRANGE multipliers are expressed by

λn+1 = − a

1− a
λn +

1

1− a
D−T

(
rSΓ,n+1 + SΓI∆dS,k+1

I,n+1 + τSΓΓP∆uF,k+1
Γ,n+1

)
+ δk0

1

1− a
D−T

(
∆tnSΓΓPuF

Γ,n − SΓΓ∆dS
Γ,p

)
.

(3.45)

Equation (3.45) is used to recover the LAGRANGE multiplier solution at the end of each time
step as a postprocessing step.

Using (3.42), (3.44), and (3.45), condensation of the system of equations (3.41) can be per-
formed. The condensed linear system with fluid-handled interface motion consists of the Jaco-
bian matrix

Jkn+1 =


SII τSIΓP

FII FIΓ + τFG
IΓ FG

II
1−b
1−aP

TSΓI FΓI FΓΓ + τFG
ΓΓ + 1−b

1−aτP
TSΓΓP FG

ΓI

τAIΓ AII


k

n+1

, (3.46a)

the solution increment vector

∆xk+1
n+1

T
=
[

∆dS
I

T
∆uF

I
T

∆uF
Γ

T
∆dG

I

T
]k+1

n+1
, (3.46b)

and the residual vector

rkn+1 =


rSI
rFI

rFΓ + 1−b
1−aP

TrSΓ
rGΓ


k

n+1

+


0

0(
b− a(1−b)

1−a

)
MTλn

0



+ δk0


∆tnSIΓPuF

Γ,n − SIΓ∆dS
Γ,p

∆tnF
G
IΓuF

Γ,n

∆tnF
G
ΓΓuF

Γ,n + 1−b
1−a∆tnP

TSΓΓPuF
Γ,n − 1−b

1−aP
TSΓΓ∆dS

Γ,p

∆tnAIΓuF
Γ,n

 .
(3.46c)

Remark 3.3.2 According to PUSO and LAURSEN [190], essential boundary conditions on the
mortar interface require special treatment in order to circumvent stability problems. From
the three remedies proposed by PUSO [190], we adopt the following strategy: Apply essen-
tial boundary conditions on the master side of the interface only. Due to the mortar coupling,
they will be effectively enforced weakly on the slave side of the mortar interface. In case of
fluid-handled interface motion, this means that at the interface only fluid degrees of freedom are
allowed to be subject to DIRICHLET boundary conditions while the boundary condition will be
imposed weakly on the structure degrees of freedom via the mortar coupling.

30



3.3 Monolithic System of Equations

3.3.2 Structure-handled Interface Motion
Now, the opposite choice of master and slave side, i.e. the structure being the master and the
fluid being the slave, is examined. In this case, the interface motion is entirely expressed in
terms of structural interface displacements dS

Γ and the mortar matrices are identified as

M = CSF, D = CFS. (3.47)

The coupling of interface ALE degrees of freedom is still governed by (3.22). However, the
fluid interface velocities will be condensed from the global system of equations and, thus, this
coupling needs to be expressed in terms of structural displacements reading

∆dG,k+1
Γ,n+1 = P∆dS,k+1

Γ,n+1 + δk0 P∆dS
Γ,p (3.48)

with the mortar projection operator P as defined in (3.43), but with D and M as given in (3.47).
The monolithic system of equations then contains the Jacobian matrix

Jkn+1 =



SII SIΓ

SΓI SΓΓ −(1− a)MT

FII FIΓ FG
II FG

IΓ

FΓI FΓΓ FG
ΓI FG

ΓΓ (1− b)DT

AII AIΓ

−M τD

M −D



k

n+1

(3.49a)

and the residual vector

rkn+1 =



rSI
rSΓ
rFI
rFΓ
rGΓ
0

0



k

n+1

+



0

−aMTλn

0

bDTλn

0

0

0


+ δk0



0

0

0

0

0

∆tnDuF
Γ,n −M∆dS

Γ,p

M∆dS
Γ,p


. (3.49b)

The kinematic constraint (3.27), which is given by the sixth row of system (3.49), is now re-
solved for the fluid interface velocity increment reading

∆uF
Γ,n+1 =

1

τ
P∆dS

Γ,n+1 + δk0
1

τ
P∆dS

Γ,p − δk0
∆tn
τ

uF
Γ,n. (3.50)

The coupling of structural displacements dS
Γ and ALE displacements dG

Γ at the fluid-structure
interface ΓFSI is given by the last row of system (3.49) and reads

∆dG,k+1
Γ,n+1 = P∆dS,k+1

Γ,n+1 + δk0 P∆dS
Γ,p. (3.51)
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From the balance of linear momentum of the fluid interface degrees of freedom together with (3.50)
and (3.51), the unknown LAGRANGE multipliers are expressed by

λn+1 = − b

1− b
λn −

1

1− b
D−T

(
rFΓ,n+1 +

(
1

τ
FΓΓ + FG

ΓΓ

)
P∆dS,k+1

Γ,n+1

)
− 1

1− b
D−T

(
FΓI∆uF,k+1

I,n+1 + FG
ΓI∆dG,k+1

I,n+1

)
− δk0

1

1− b
D−T

((
1

τ
FΓΓ + FG

ΓΓ

)
P∆dS

Γ,p −
∆tn
τ

FΓΓuF
Γ,n

)
.

(3.52)

Equation (3.52) is used to recover the LAGRANGE multiplier solution at the end of each time
step as a postprocessing step.

To perform the condensation of system (3.49), relations (3.50), (3.51), and (3.52) are utilized,
yielding the condensed system of linear equations for the structure-handled interface motion
with the Jacobian matrix

Jkn+1 =


SII SIΓ

SΓI SΓΓ + 1−a
1−b

1
τ
PTFΓΓP + 1−a

1−bP
TFG

ΓΓP
1−a
1−bP

TFΓI
1−a
1−bP

TFG
ΓI

1
τ
FIΓP + FG

IΓP FII FG
II

AIΓP AII


k

n+1

,

(3.53a)

the solution increment vector

∆xk+1
n+1

T
=
[

∆dS
I

T
∆dS

Γ
T

∆uF
I

T
∆dG

I

T
]k+1

n+1
, (3.53b)

and the residual vector

rkn+1 =


rSI

rSΓ + 1−a
1−bP

TrFΓ
rFI
rGΓ


k

n+1

+


0(

−a+ b(1−a)
1−b

)
MTλn

0

0



+ δk0


0

1−a
1−b

1
τ
PTFΓΓP∆dS

Γ,p + 1−a
1−bP

TFG
ΓΓP∆dS

Γ,p − 1−a
1−b

∆tn
τ
PTFΓΓuF

Γ,n
1
τ
FIΓP∆dS

Γ,p + FG
IΓP∆dS

Γ,p − ∆tn
τ
FIΓuF

Γ,n

AIΓP∆dS
Γ,p

 .
(3.53c)

Remark 3.3.3 As already indicated in Remark 3.3.2, one has to handle essential boundary con-
ditions at the fluid-structure interface ΓFSI with care. Following the same argument as before,
in case of a structure-handled interface motion only the structure interface degrees of freedom
may be subject to DIRICHLET boundary conditions. They will be imposed on the fluid interface
degrees of freedom weakly via the mortar coupling.
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ΩF

ΩS

ΓFSI

x

y

z
b

h

`F
`S

d̄
S

(t)

Figure 3.3: Geometry of a pseudo one-dimensional FSI problem with analytical solution —
The structural block ΩS moves in x-direction due to a time-dependent DIRICHLET boundary
condition d̄

S
(t) at x = `F + `S. Thus, fluid is pushed out or sucked in across the traction-free

NEUMANN boundary at x = 0. All movement in y- and z-direction is suppressed, leaving a
pseudo one-dimensional problem. The dimensions are given as: h = 1, b = 1, `F = 3, `S = 2.

3.4 Discussion of the Formulation using a Pseudo
One-Dimensional FSI Example

For demonstration and discussion of essential properties of the present formulation, a simplified
example is studied in detail. It mimics one-dimensional behavior and, thus, allows for an ana-
lytical solution. A sketch of the problem is given in Figure 3.3. The reduction to one dimension
is mimicked by constraining any lateral motion in y- and z-direction with DIRICHLET boundary
conditions. Actual constitutive parameters are of minimal importance here due to the simplicity
of the example and, thus, are only given when necessary for the discussion.

Temporal convergence behavior of the proposed FSI scheme is studied in Section 3.4.1,
while Section 3.4.2 sheds some light on the physical interpretation of the LAGRANGE multi-
plier field λ that is used to enforce the FSI coupling conditions.

A less detailed version of this example has previously been published by MAYR et al. [163].

3.4.1 Temporal Convergence Study

To study temporal convergence rates, first, an analytical solution is derived. Then, the relative
L2-error of the velocity field at the end time T = 1 is computed as

eF,uL2
=

∥∥uF
ex − uF

h

∥∥
L2

‖uF
ex‖L2

by comparison of the exact analytical solution uF
ex and its numerical approximation uF

h via the
L2-norm

‖(•)‖L2
=

√∫
Ω

(•)2. (3.54)
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Analogously, the L2-error eF,pL2
of the pressure field can be computed by comparison of the exact

pressure solution pFex with its discrete counterpart pFh . Finally, temporal convergence of the
overall FSI formulation is assessed in terms of temporal convergence rates. A comparison to
theoretically expected convergence rates is performed, that demonstrates optimal behavior of
the proposed FSI solver.

Analytical Solution

Assuming rigidity of the solid body and prescribing its boundary motion d̄
S

(t) at x = `F + `S,
the displacement, velocity, and acceleration field of the solid domain ΩS are given as

dS (x, t) = d̄
S

(t) , ḋ
S

(x, t) = ˙̄dS (t) , d̈
S

(x, t) = ¨̄dS (t) ∀x ∈ ΩS ∧ t ∈ (0, T ) . (3.55)

The kinematic coupling conditions at the interface transfer the interface velocity from the solid
to the fluid, reading

uF
ΓFSI

(t) = ˙̄dS (t) , u̇F
ΓFSI

(t) = ¨̄dS (t) on ΓFSI × (0, T ) , (3.56)

which finally, after exploiting incompressibility of the fluid flow field, yields the fluid velocity
and acceleration fields

uF (x, t) = uF
ΓFSI

(t) = ˙̄dS (t) ∀x ∈ ΩF ∧ t ∈ (0, T ) , (3.57a)

u̇F (x, t) = u̇F
ΓFSI

(t) = ¨̄dS (t) ∀x ∈ ΩF ∧ t ∈ (0, T ) . (3.57b)

Using the incompressibility condition (2.4b) and the restriction to one dimension as well as
neglecting body forces bF, the balance of linear momentum (2.4a) of the NAVIER–STOKES

equations reduces to

ρF
∂uFx
∂t

= −∂p
F

∂x
∀x ∈ ΩF ∧ t ∈ (0, T ) .

After integration along the channel direction x, the fluid pressure solution is given as

pF (x, t) = −ρF ∂u
F
x

∂t
x+ pF∞

∣∣
x=0

∀x ∈ ΩF ∧ t ∈ (0, T ) (3.58)

where the prescribed pressure at the free outlet is denoted by pF∞
∣∣
x=0

.

Temporal Convergence Rates

For the temporal convergence study, the structure field is chosen as master field. Hence, structure
interface degrees of freedom are subject to DIRICHLET boundary conditions, while fluid inter-
face degrees of freedom are not allowed to carry DIRICHLET boundary conditions according
to Remark 3.3.2. Besides the assumption of rigidity of the solid domain, all other constitutive
parameters are of no importance.

For spatial discretization, linear hexahedral finite elements are used for the structure field
as well as linear, equal-order interpolated, stabilized, and hexahedral finite elements are used
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for the fluid field. Since displacement, velocity, and pressure solutions vary at most linearly in
space, their spatial behavior can be captured exactly by the finite element approximation. Thus,
a mesh refinement study has not to be performed for this example.

When choosing the imposed time-dependent DIRICHLET boundary condition d̄
S

(t) such that
the analytical solution is also contained in the discrete temporal solution space, e.g. d̄

S
(t) =

−t2, the analytical solution is fully recovered by the numerical scheme up to machine precision.
For this reason, a DIRICHLET boundary condition d̄

S
(t) = −t5 is prescribed on the structure

in order to study temporal convergence behavior. The solution can still be fully recovered spa-
tially, but the involved time integration schemes are not able to capture the temporal evolution
exactly. Thus, temporal refinement is expected to reduce the error. As indicated above, the error
is measured as L2-errors eF,uL2

and eF,pL2
in the fluid velocity and pressure field, respectively.

The structure field employs the generalized-α time integration scheme [39] with a spectral
radius ρS∞ = 1.0, i.e. without artificial numerical dissipation. In the fluid field, either the
generalized-α scheme [129] with various spectral radii ρF∞ or the one-step-θ scheme [67] with
various choices of θF is employed. In addition, the conversion between fluid interface veloc-
ities uF

Γ and ALE interface displacements dG
Γ is varied between the trapezoidal rule and the

backward EULER scheme as indicated in (3.20) and (3.21), respectively.
If second order accurate time integration schemes in both fluid and structure field and a second

order accurate conversion between interface ALE displacements and fluid velocities is applied,
the overall FSI algorithm is expected to be second order accurate in time. However, if only one
of them is chosen as first order accurate, the overall order of temporal accuracy is expected to
reduce to first order.

Temporal convergence plots for velocity and pressure in the fluid field ΩF are shown in Fig-
ure 3.4. In this figure, the parametrization of the fluid time integration schemes are detailed,
where Gen-α and OST are shorthand notations for the generalized-α and one-step-θ time in-
tegration scheme, respectively. The corresponding user-chosen parameter, either ρF∞ or θF, is
specified as well as the temporal order of accuracy of the conversion between interface ALE
displacements and fluid velocities.

Only in those cases, where the conversion between interface ALE displacements and fluid
velocities is performed with the backward EULER scheme (3.21), the temporal convergence
rate deteriorates to first order. In all cases with second order time integration schemes and
second order conversion between interface ALE displacements and fluid velocities, the tempo-
ral convergence rate is of second order as expected. Summing up, the theoretically expected
convergence rates are fully recovered by the proposed monolithic FSI scheme.

3.4.2 LAGRANGE Multiplier Field and Choice of Master and Slave
Side

As introduced in Section 2.3, the LAGRANGE multiplier field is assumed to equal the interface
traction field that acts onto the structure side of the interface. To clarify its physical meaning as
well as to illustrate its relation to the enforcement of essential boundary conditions and interface
coupling conditions, the pseudo one-dimensional example is solved with both fluid-handled and
structure-handled interface motion algorithms.
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Figure 3.4: Temporal convergence study for pseudo one-dimensional FSI example — Configu-
rations with varying fluid time integration schemes and conversions of ALE interface displace-
ments to fluid interface velocities are compared. Temporal convergence rates are measured using
L2-errors of velocity field and pressure field in the fluid domain ΩF. The computed convergence
rates perfectly match theoretical expectations.
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Table 3.1: Material parameters for discussion of the LAGRANGE multiplier field of a pseudo
one-dimensional FSI example

Fluid Solid
dynamic viscosity µF

dyn 1.0 YOUNG’s modulus ES 103

density ρF 1.0 POISSON’s ratio νS {0, 0.3}
density ρS 1.0

d̄
S

(t)
λ

(a) Fluid-handled interface motion

d̄
S

(t)

λ

(b) Structure-handled interface motion: νS > 0

Figure 3.5: DIRICHLET boundary conditions for a pseudo one-dimensional example — This
projection in a two-dimensional setting illustrates the set of DIRICHLET boundary conditions for
fluid-handled and structure-handled interface motion algorithms, that are imposed on the master
side of the interface only [190]. DIRICHLET boundary conditions on fluid and structure domain
are indicated in blue and green color, respectively. Arrows indicate the expected LAGRANGE

multiplier field at the interface whose lateral components preclude lateral motion of the slave
side’s interface degrees of freedom.

The assumption of a rigid solid body is dropped since the influence of POISSON’s ratio νS on
the LAGRANGE multiplier field facilitates an illustrative and fruitful discussion. So, the material
parameters listed in Table 3.1 are used, where two values for the solid’s POISSON’s ratio are
tested. Due to the prescribed displacement d̄

S
(t) = −t3 of the solid surface at x = `F + `S

in negative x-direction, the solid is compressed. Thus, it tends to expand in lateral direction
if νS > 0.

As advised by PUSO and LAURSEN [190] and stated in Remarks 3.3.2 and 3.3.3, the DIRICH-
LET boundary conditions at the fluid-structure interface are directly imposed on the master side
only, see Figure 3.5. Their transfer to and weak enforcement on the slave side are handled by
the mortar coupling.

The following cases are studied:

• Fluid-handled interface motion with solid with POISSON’s ratio νS = 0

• Fluid-handled interface motion with solid with POISSON’s ratio νS = 0.3

• Structure-handled interface motion with solid with POISSON’s ratio νS = 0

• Structure-handled interface motion with solid with POISSON’s ratio νS = 0.3

In case of fluid-handled interface motion, indicated in Figure 3.5(a), the structure field is
chosen as slave field and, thus, the LAGRANGE multiplier field is discretized on the solid side
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of the interface. Since no DIRICHLET boundary conditions are allowed on the fluid interface
nodes, the interface traction field hF

ΓFSI
on the fluid side needs to exhibit a lateral component,

that points towards the center line of the channel to prevent the fluid to leave the channel in
lateral direction at the fluid-structure interface. Taking into account NEWTON’s third law [175],
i.e. actio = reactio, yields that the lateral component of λ at the channel walls is expected to
point away from the center line of the channel. This is in accordance with the assumption,
that the LAGRANGE multiplier field λ is interpreted as the interface traction, that acts onto the
structure, as well as with the interface equilibrium (2.13). Due to the absence of shear in the
velocity field, the LAGRANGE multiplier field’s x-component λx is supposed to equal the fluid
pressure pFΓ at the interface.

In contrast, in case of structure-handled interface motion as illustrated in Figure 3.5(b), the
LAGRANGE multiplier field is discretized on the fluid side of the interface. If POISSON’s ra-
tio νS > 0, the structure tends to expand in lateral direction which then needs to be precluded
by the lateral component of the LAGRANGE multiplier field. With νS = 0, this tendency doesn’t
exist and, thus, the interface traction field is expected to be aligned with the x-direction. Again,
the fluid pressure at the interface has to match the x-component λx of the LAGRANGE multiplier
field.

Figure 3.6 shows visualizations of the discrete interface LAGRANGE multiplier field λ for
all cases. For all cases, the fluid pressure pFΓ at the fluid-structure interface equals the x-
component λx of the LAGRANGE multiplier field. However, the level of the fluid interface
pressure depends on the actual choice of νS. The choice νS = 0 allows for more compressibility
of the solid domain. Hence, the fluid volume that needs to be pushed by the solid block is larger,
which results in a larger fluid interface pressure than in case of νS > 0. The DIRICHLET bound-
ary conditions at the slave side of the interface are fulfilled as well due to the mortar coupling.
The LAGRANGE multiplier field exhibits lateral components in those cases where it is expected.
Finally, it can be concluded that the numerical solutions perfectly match the expected results
described above.

3.5 Summary
In this chapter, the discretization of the fluid field, the solid field, and the fluid-structure interface
have been shown and the assembly of the monolithic system of equations has been performed.
Thereby, focus was put on the temporally consistent exchange of interface traction fields be-
tween the solid and the fluid field, which could be realized by introducing a temporal interpo-
lation of these traction fields. Static condensation of the LAGRANGE multiplier field as well as
the slave side’s interface degrees of freedom led to two different algorithmic variants, namely
the cases of fluid-handled interface motion and structure-handled interface motion. Using a
one-dimensional example, optimal temporal convergence rates could be shown. Furthermore,
the interplay of the LAGRANGE multiplier field with the imposition of DIRICHLET boundary
conditions at the fluid-structure interface was illustrated and discussed.
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3.5 Summary

(a) Fluid-handled interface motion, νS = 0 (b) Structure-handled interface motion, νS = 0

(c) Fluid-handled interface motion, νS = 0.3 (d) Structure-handled interface motion, νS = 0.3

Figure 3.6: Comparison of LAGRANGE multiplier fields for fluid-handled and structure-handled
interface motion algorithms — The fluid domain is colored according to its pressure field, while
the LAGRANGE multiplier field, that represents the interface traction, is colored according to its
x-component. The solid domain is not shown for clarity of presentation. Interface pressure pFΓ
and the traction component λx match as expected. If the fluid field is chosen as the slave field,
the LAGRANGE multiplier field always exhibits lateral components, that prevent the fluid from
leaving the channel, cf. Figures 3.6(b) and 3.6(d). If the structure field is chosen as the slave
field, a lateral component is only evident for νS > 0, cf. Figure 3.6(c). An x-aligned LAGRANGE

multiplier field is obtained only for fluid-handled interface motion with νS = 0, cf. Figure 3.6(a).
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4 An Adaptive Time Stepping
Procedure for Monolithic FSI
Solvers

All FSI problems in this thesis are transient problems and, thus, involve temporal discretization
and time integration. However, the actual choice of the time step size ∆t is not an easy one,
especially if the transient characteristic of the problem varies over time. A too large choice for
the time step size leads to a reduced accuracy or even stability problems. Choosing the time step
size very small results in a more accurate solution. However, even with a small value for the time
step size ∆t, quantification of the level of accuracy would require error estimation or a series
of simulations with different time step sizes to allow a comparison of the different solutions.
Furthermore, a constantly small time step size increases the number of time steps to be computed
and, thus, is very inefficient in many scenarios. Especially when the transient characteristics of
the problem change over time, a uniform time step size ∆t for every time step is likely too be
far from an optimal choice. Thus, one aims at providing a temporal discretization with varying
time step sizes ∆tn with the subscript n indicating the variability of the time step size. Such
a variable time step size ∆tn accounts for the current physical state of the problem such that
the deviation of the numerical solution from the exact, but unknown solution is minimized or
at least bounded by a user-given tolerance [58]. In the design of such algorithms, the following
important requirements have to be kept in mind [58, 130]:

• The deviation of the discrete solution from the exact solution should be below a user-given
tolerance for any time t ∈ (0, T ).

• The additional computational cost associated with adapting the time step size should be
comparatively small.

• The algorithms should be based on theoretical considerations.

• No (or only very rough) a priori knowledge about the exact solution of the problem should
be required.

• To be computationally efficient, the time step size should be as large as possible, but as
small as necessary.

Usually, deviations of the numerical solution from the exact solution are denoted as errors.
Following the definition by HUERTA et al. [121], either error estimation, where a measure of
the actual error is approximated in a given norm, or error indication, that relies on heuristics,
are applied to assess the error. Speaking in these terms, error estimation is applied exclusively
in this thesis. Further classification into a priori and a posteriori error estimation can be made.
The former one can be performed before solving the problem, while the latter one requires
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knowledge of the solution. All error estimation processes used throughout this thesis are of a
posteriori type.

Alternative approaches based on control theory have been developed by GUSTAFSSON et
al. [107], GUSTAFSSON [104–106], and SÖDERLIND [221–223]. Such approaches are said to
increase stability and to produce a smoother evolution of time step sizes. A detailed analysis
of the analogy of these approaches to the more classical methods based on a posteriori error
estimation is carried out by DEUFLHARD and BORNEMANN [58], for example. Since algorithms
based on a posteriori error estimation produced satisfying results for FSI problems, approaches
based on control theory are not considered in this thesis.

Recently, approaches for goal-oriented error estimation became very popular, where one
aims at controlling the error in a user-chosen quantity of interest. Since these techniques usually
require the solution of an adjoint problem, they become computationally and storage-wise very
expensive in transient problems and, thus, are not considered in this thesis. However, some
approaches addressing these issues are available in literature. For instance, CYR et al. [42]
use data compression techniques to reduce the huge storage demands, while CAREY et al. [32]
apply a block-wise adaptivity approach based on coarse scale adjoint solutions. Promising work
based on modal analysis has been done by VERDUGO et al. [238,239] for time-dependent solid
mechanics problems. Further approaches can be found in [151, 161].

To the author’s knowledge, the present work poses the first development of an a posteriori
error estimation based adaptive time stepping scheme in the context of monolithic solvers for
FSI with incompressible fluid flow and finite deformation.

This chapter is organized as follows: At first, fundamentals of adaptive time stepping schemes
are introduced in Section 4.1. At second, an adaptive time stepping scheme for monolithic
solvers for FSI problems is proposed in Section 4.2 for the first time. In addition, several im-
portant practical aspects are highlighted in this section as well. Three numerical examples are
presented in Section 4.3, that are used to demonstrate and discuss features and properties of
the proposed adaptive time stepping scheme. Finally, an intermediate summary is given in Sec-
tion 4.4.

4.1 Fundamentals

Here, only those fundamental relations are given, that are necessary to lay the foundation for the
development of adaptive time stepping procedures based on a posteriori error estimation. For
further insight into the numerical treatment of ordinary differential equations (ODEs) and time
integration, see the textbooks by ASCHER and PETZOLD [3], BUTCHER [31], DEUFLHARD

and BORNEMANN [58], HAIRER et al. [110], or HAIRER and WANNER [111] to name few.
Moreover, many books on numerical methods include sections about ODEs and time integration,
for example FAIRES and BURDEN [67], QUARTERONI et al. [193], QUARTERONI et al. [194],
and SCHWARZ and KÖCKLER [216].

Section 4.1.1 reflects some basics on time integration, before the important terms of error
and order of convergence, that are associated with every time integration scheme, are replicated
in Section 4.1.2. A well-established strategy to adapt the time step size is given in 4.1.3, which
relies on practical error estimation detailed in Section 4.1.4.
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4.1 Fundamentals

4.1.1 Preliminaries
The ordinary differential equation (ODE) of first order

ẋ (t) = f (x (t) , t) (4.1)

is given. A temporal discretization is performed, introducing N + 1 discrete time instances
{t0, t1, . . . , tN} where the solution is sought. This temporal grid is not necessarily equally
spaced, i.e. the time step size

∆tn = tn+1 − tn

may differ from time step to time step where n is used to index the time steps. The exact solution
at time tn+1 is denoted by x (tn+1), while its time-discrete approximation is indicated by xn+1.

Following the presentation by DEUFLHARD and BORNEMANN [58], the computation of the
unknown solution x (tn+1) based on known values x (tm), m ≤ n, can be summarized in the
discrete recurrence relation

x (tn+1) = Φn+1,n x (tn) (4.2)

where Φn+1,n denotes the exact evolution from time tn to time tn+1. Recursive application
relates the current solution to the initial value x (t0) by

x (tn+1) = Φn+1,n Φn,n−1 . . .Φ1,0 x (t0) = Φn+1,0 x (t0) .

With Ψn+1,n denoting the discrete or approximate evolution from time tn to time tn+1, a time
integration step is given as

xn+1 = Ψn+1,n xn (4.3)

where the actual expression for Ψn+1,n depends on the time integration scheme at hand.

4.1.2 Errors and the Order of Convergence
The deviation of the time-discrete solution xn+1 from the exact solution x (tn+1) is measured
by the global error [58, 110]

g
n+1

= x (tn+1)− xn+1. (4.4)

Inserting the exact evolution (4.2) and the discrete evolution (4.3) into (4.4) yields

g
n+1

= Φn+1,nx (tn)−Ψn+1,nxn

= Φn+1,nx (tn)−Ψn+1,nx (tn)︸ ︷︷ ︸
ln+1

+ Ψn+1,nx (tn)−Ψn+1,nxn︸ ︷︷ ︸
ḡ
n+1

= ln+1 + ḡ
n+1

.

(4.5)

This decomposes the global error into the local discretization error

ln+1 = Φn+1,nx (tn)−Ψn+1,nx (tn) (4.6a)
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tn tn+1

x

xn
xn+1

x (tn)

x (tn+1)

x∗n

ln+1

gn+1

Figure 4.1: Illustration of local and global error for the forward EULER method adopted from
QUARTERONI et al. [193] — The global error gn+1 measures the deviation of the discrete so-
lution xn+1 from the exact solution x (tn+1). The local error ln+1 quantifies the deviation from
the exact solution x (tn+1) from the approximate solution x∗n after one integration step when
starting from the exact solution x (tn).

≈ x (tn+1)− xn+1, (4.6b)

that is generated when integrating from tn to tn+1 while assuming xn = x (tn), and the propa-
gation error

ḡ
n+1

= Ψn+1,nx (tn)−Ψn+1,nxn, (4.7)

that represents accumulated errors from previous time steps [58]. An illustration of local and
global error in case of the forward EULER method is shown in Figure 4.1.

Inserting the TAYLOR series approximation

x (tn+1) =
∞∑
m=0

1

m!

∂mx (t)

∂tm

∣∣∣∣
t=tn

∆tmn (4.8)

of x (tn+1) around tn into (4.6b) and using the following shorthand notation of a time derivative

x(m) (tn) =
∂mx (t)

∂tm

∣∣∣∣
t=tn

with m = 0, 1, 2, . . . (4.9)

yields

ln+1 = Cx(p+1) (tn) ∆tp+1
n +O

(
∆tp+2

n

)
(4.10)

for the local error [110, 219], where p denotes the order of consistency of the time integration
scheme at hand [216] that equals the order of convergence of the time integration scheme [58,
216]. The constant C is often referred to as leading error coefficient. Its value depends on the
actual time integration scheme at hand.

44



4.1 Fundamentals

4.1.3 Adapting the Time Step Size
Primarily, adaptive time stepping algorithms aim at controlling the global error g

n+1
, such that

the relation ∥∥∥g
n+1

∥∥∥
L2

≤ ε∆t
g (4.11)

with a user-given tolerance ε∆t
g for the global error holds in every time step where the L2-norm

has already been defined in (3.54). A brief discussion of the norm calculation in practical
computer codes is given in Section 4.2.3.

Unfortunately, two major issues come along with the goal of controlling the global error:
First, the global error is not accessible directly since the exact solution is unknown. Second,
as stated in (4.5), the global error g

n+1
contains the propagation error ḡ

n+1
which cannot be

controlled without re-running the entire simulation from the beginning [58]. Both issues make
a control of the global error infeasible for practical applications. Hence, the alternative goal of
keeping the local error below a user-given tolerance ε∆t

l is pursued [58], reading∥∥ln+1

∥∥
L2
≤ ε∆t

l . (4.12)

SHAMPINE [219] justifies this choice by the fact, that the error does not accumulate if the error
per step is kept constant. Furthermore, “the behavior of the bound on the global error with
respect to the local tolerance [ε∆t

l ] is particularly regular [. . .]” [219, p. 198]. If the global error
is approximated as sum of the local errors, then according to BUTCHER [31] optimality in a
sense is obtained when the local error is maintained to be constant in every time step, i.e.∥∥ln+1

∥∥
L2

.
= ε∆t

l = const. ∀ n = 0, 1, . . . , N − 1. (4.13)

Based on these observations, a practical adaptive time stepping scheme has to satisfy (4.12)
in every time step. Therefore, it computes an optimized scaling factor κ∗ used to increase or
decrease the time step size such that the local error, that has been obtained with an optimally
scaled time step size, approximately equals the local error tolerance, reading

ε∆t
l ≈

∥∥ln+1 (κ∗∆tn)
∥∥

L2
. (4.14)

This idea is now transformed into an algorithm. Inserting the TAYLOR expansion (4.10) of the
local error into (4.14), i.e.

ε∆t
l ≈ C

∥∥x(p+1) (tn)
∥∥

L2
(κ∗∆tn)p+1 +O

(
∆tp+2

n

)
, (4.15)

and deducing the norm of (4.10) for the current step tn → tn+1 gives∥∥ln+1

∥∥
L2

= C
∥∥x(p+1) (tn)

∥∥
L2

∆tp+1
n +O

(
∆tp+2

n

)
. (4.16)

After neglecting higher order terms O (∆tp+2
n ) and combining (4.15) and (4.16), the intermedi-

ate expression

ε∆t
l∥∥ln+1

∥∥
L2

≈
C
∥∥x(p+1) (tn)

∥∥
L2

(κ∗∆tn)p+1

C ‖x(p+1) (tn)‖L2
∆tp+1

n
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can be solved for the optimized scaling factor

κ∗ ≈ p+1

√
ε∆t
l∥∥ln+1

∥∥
L2

, (4.17)

that is used to increase or decrease the time step size. Equation (4.17) establishes a relation
between the local error, that represents the current state of accuracy of the simulation, and the
desired accuracy ε∆t

l . If the accuracy demand (4.12) holds, the scaling factor κ∗ ≥ 1, which
will result in an increased time step size ∆tn+1 ≥ ∆tn, that will be used to proceed to the
next time step. However, in case of a violation of (4.12), the time step needs to be repeated to
satisfy (4.12), which is then more likely, since in this case a scaling factor κ∗ < 1 will decrease
the time step size [58, 110].

Since the exact error
∥∥ln+1

∥∥
L2

is not accessible, an estimate
∥∥l �n+1

∥∥
L2
≈
∥∥ln+1

∥∥
L2

is com-
puted and used instead [58], where the superscript (•) � indicates the estimation process. In
practice, the optimal scaling factor κ∗ is computed as

κ∗ ≈ p+1

√
ε∆t
l∥∥l �n+1

∥∥
L2

(4.18)

where the local error is estimated by any of the methods detailed in Section 4.1.4. Based on the
current time step size ∆tn, the set

[κ] = {κmin, κmax, κs}

of algorithmic parameters as well as some user-given bounds on the time step size, an optimal
time step size can be computed as

∆t∗ = min {∆tmax,max {min {κmax,max {κmin, κsκ
∗}}∆tn,∆tmin}} . (4.19)

In order to avoid too many repetitions of time steps, a safety factor κs < 1 is used, that is
supposed to keep the local error below and away from the tolerance barrier [110]. The effective
scaling factor κsκ

∗ is limited by user-given factors κmin and κmax that denote the minimal and
maximal ratio of time step size decrease or increase, respectively, such that κmin ≤ κsκ

∗ ≤
κmax. Finally, the time step size is limited by the lower and upper bounds ∆tmin and ∆tmax.
Section 4.2.3 will provide some hints for the choice of these algorithmic parameters.

The algorithm is summarized in Figure 4.2. In each time step, one starts with performing
the integration from tn, where all values are known, to tn+1 using the fully implicit scheme as
the marching time integration scheme. Afterwards, the error associated with the result of this
marching step is assessed by means of error estimation, yielding

∥∥l �n+1

∥∥
L2

. The estimated error
is then used to compute a new time step size ∆t∗ using (4.19) in combination with (4.18). If the
estimated error

∥∥l �n+1

∥∥
L2
> ε∆t

l , the accuracy demand (4.12) has been violated and, thus, the
current time step needs to be repeated with a reduced time step size ∆tn = ∆t∗ where (4.18)
guarantees κ∗ < 1 in (4.19). If

∥∥l �n+1

∥∥
L2
≤ ε∆t

l , one can directly proceed to the next time step
with a new, probably increased, time step size ∆tn+1 = ∆t∗.

In case of drastic changes of the transient behavior, especially if these changes occur suddenly
like in the case of buckling events, it might be necessary to repeat a single time step tn →
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Figure 4.2: Adaptive time stepping algorithm based on a posteriori error estimation — In each
time step, the marching step is done using the fully implicit time integrator. Based on an a
posteriori error estimate, one can adapt the time step size. After checking the accuracy de-
mand (4.12), one either needs to repeat the current time step with a reduced time step size or
can proceed with the next time step. This procedure is done in every time step until the simula-
tion time reaches the final time T .
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tn+1 several times while reducing the time step size in each repetition. For practical reasons,
the number of repetitions of a single time step may be limited. See Section 4.2.3 for further
discussion.

To increase robustness of application codes, time step size reductions and time step repetitions
may be necessary if the nonlinear solver fails to converge. Further details on such problems as
well as a possible strategy to deal with them will be outlined in Section 4.2.3.

4.1.4 Estimation of the Local Discretization Error

According to DEUFLHARD and HOHMANN [59], an error estimator ε � for an unknown error ε
is characterized by the fact that κ1ε ≤ ε � ≤ κ2ε with constants κ1, κ2 satisfying κ1 ≤ 1 ≤ κ2.
However, the actual design of the error estimator poses one of the most difficult tasks in the
design of an adaptive algorithm. It is common practice to compare two approximations to each
other. These approximations are usually of different orders of accuracy. Some guidelines for
the design of local error estimators are given by ROMERO and LACOMA [203, 204].

Several methods to estimate the local discretization error are available in literature. Some of
them are described briefly in the sequel. Although approaches like RICHARDSON extrapolation
and embedded methods are very popular, error estimation in this thesis is mostly performed
by comparison of two different schemes of order p and p̂. For the solid field, error estimation
based on TAYLOR series expansion is available. For detailed derivations and discussion of other
error estimators see the textbooks by BUTCHER [31], DEUFLHARD and BORNEMANN [58], or
HAIRER et al. [110] to name only a few.

RICHARDSON Extrapolation

Based on knowledge about the relation of the error as a function of the time step size ∆tn, the
classic approach by RICHARDSON, originally proposed in [199] and fully detailed in [200], al-
lows for an approximation of the local discretization error at time tn+1 = tn+∆tn by comparison
of the solution x∆tn after one step with ∆tn to the solution x∆tn/2 after two steps with ∆tn/2.
Figure 4.3 illustrates both integration steps. An estimate of the local discretization error of the
solution associated with the smaller step size ∆tn/2 is then given as

l �n+1 ≈
1

2p − 1

(
x∆tn − x∆tn/2

)
with p being the order of the time integration scheme at hand. Then, RICHARDSON extrapola-
tion can be used to compute an improved approximation to the solution at time tn + ∆tn which
is of order p+ 1. However, this possibility is not exploited in the present work.

Although RICHARDSON extrapolation provides a very reliable estimate for the error, it lacks
efficiency if implicit time integration schemes are used. If the solution x∆tn with the lower accu-
racy is propagated, the additional cost for error estimation is twice as large as for the marching
scheme since the error estimation requires the computation of two additional time steps. How-
ever, when propagating the more accurate solution x∆tn/2, the additional cost is only 50%,
which is still far from negligible [31]. Summing up, RICHARDSON extrapolation is an interest-
ing concept. But since only fully implicit time integration schemes are applied in this thesis,
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tn tn+1/2 tn+1

x

xn x∆tnxn

x∗∆tn/2

x∆tn/2
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(
tn+1/2

)
x (tn+1)

Figure 4.3: Error estimation by RICHARDSON extrapolation — In RICHARDSON extrapolation,
two solutions are compared to each other, namely x∆tn and x∆tn/2. By marching two steps with
step size ∆tn/2 and passing the intermediate solution x∗∆tn/2 one arrives at the more accurate
solution x∆tn/2. To arrive at an error estimate, it is then compared to x∆tn which is obtained by
a single step with step size ∆tn.

RICHARDSON extrapolation would be unaffordable in terms of computational cost and, thus, is
not considered any further.

Note that the basic concepts of RICHARDSON [199, 200] are also applicable for estimating
the spatial approximation error in case of adaptive grid refinement.

Methods with Built-in Error Estimators

Embedded methods are very popular if the employed time integration scheme is a multi-stage
scheme, i.e. it uses several intermediate function evaluations, called stages, within a single time
step, e.g. RUNGE-KUTTA methods. Embedded methods use one set of stage vectors, but two
sets of coefficients to compute two different approximations x̂n+1 and x̃n+1 of the solution at
time tn+1. The coefficients are selected such that the two solutions are usually of different
orders p and p̂, e.g. p̂ = p+ 1. An estimate of the local discretization error of the solution with
lower order is then computed as

l �n+1 ≈ x̂n+1 − x̃n+1.

The first method of this type was proposed by MERSON [167]. According to [110], early meth-
ods of this type were proposed also by CESCHINO [34] and ZONNEVELD [265] while further
developments have been performed by SARAFYAN [212] and ENGLAND [66]. Very popular em-
bedded methods in the framework of RUNGE-KUTTA schemes are those by FEHLBERG [73–76].
Following [216], CESCHINO and KUNTZMANN [35] developed estimators for local discretiza-
tion errors of arbitrary 4th order RUNGE-KUTTA methods. Other well-known methods are
those by VERNER [241], who uses two different quadrature formulas for both methods, and by
DORMAND and PRINCE [63].

In this thesis, only single-stage time integration schemes are used. For further details on
multi-stage schemes and error estimation for such schemes, the reader is referred to [31,58,110].
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Comparison of Two Schemes of Order p and p̂

In this thesis, error estimation is mostly performed by comparison of two schemes of order p
and p̂. Thereby, one scheme is the marching implicit scheme and the other is an auxiliary explicit
scheme. Compared to RICHARDSON extrapolation, such a method reduces computational effort
since only a single implicit scheme is employed. Due to the explicit character of the auxiliary
scheme, its computational cost is almost negligible since it requires only a couple of vector
updates.

To derive an error estimator, one starts with the TAYLOR series expansion (4.10) for both
schemes, reading

ln+1 = Cx(p+1) (tn) ∆tp+1
n +O

(
∆tp+2

n

)
, (4.20a)

l̂n+1, = Ĉx(p̂+1) (tn) ∆tp̂+1
n +O

(
∆tp̂+2

n

)
, (4.20b)

where quantities of the auxiliary scheme are identified by the notation ˆ(•). Using defini-
tion (4.6b) of the local error for both schemes yields

ln+1 ≈ x (tn+1)− xn+1, (4.21a)

l̂n+1 ≈ x (tn+1)− x̂n+1, . (4.21b)

Subtracting them from each other results in

ln+1 − l̂n+1 ≈ x̂n+1 − xn+1. (4.22)

One can now study two cases, namely p < p̂ and p = p̂. The case p > p̂ is closely related to the
first one and, thus, dealt with at the same time.

At first, the case p < p̂ is examined. Inserting (4.20b) into (4.22) yields

ln+1 ≈ x̂n+1 − xn+1 + Ĉx(p̂+1) (tn) ∆tp̂+1
n +O

(
∆tp̂+2

n

)
, (4.23)

where Ĉx(p̂+1) (tn) ∆tp̂+1
n +O

(
∆tp̂+2

n

)
is at least O (∆tp+2

n ) since p < p̂. Exploiting the order
of ln+1 as given in (4.20a) and, thus, neglecting higher order termsO (∆tp+2

n ), expression (4.23)
reduces to

ln+1 ≈ l �n+1 = x̂n+1 − xn+1, (4.24)

which asymptotically is an estimate of the local discretization error of the lower order scheme
of order p [110]. Such an error estimator is sometimes referred to as upward estimator [25].

If p > p̂, the concept of error estimation is abandoned and l �n+1 is merely used for step size se-
lection. This case is often referred to as local extrapolation [110] or downward estimation [25].
DEUFLHARD and BORNEMANN [58] justify this approach using an analogy to control theory.
Thereby, the exponent of the root in (4.18) is required to satisfy certain conditions, however
their details are not provided here for the sake of brevity. Note that these conditions are fulfilled
for all methods used throughout this thesis.

Next, the second case with p = p̂ is considered which is discussed in the thesis by BORNE-
MANN [25] in full detail. Manipulating (4.20) by exploiting the fact p = p̂ and neglecting higher
order terms O (∆tp+1

n ) yields

1

C
ln+1 = x(p+1) (tn) ∆tp+1

n , (4.25a)
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1

Ĉ
l̂n+1 = x(p+1) (tn) ∆tp+1

n . (4.25b)

Both expressions in (4.25) are equal and, thus,

1

C
ln+1 =

1

Ĉ
l̂n+1

which can be recast to

l̂n+1 =
C

Ĉ
ln+1. (4.26)

Inserting (4.26) into (4.22) finally gives the following estimate of the local discretization error
if p = p̂:

l �n+1 ≈
C

C − Ĉ
(
xn+1 − x̂n+1

)
. (4.27)

Remark 4.1.1 The estimate (4.27) for marching and auxiliary scheme being of the same or-
der p = p̂ differs from the estimate (4.24) for the case p < p̂ only by a constant factorC/(C−Ĉ),
that depends on the involved time integration schemes. The difference between these two error
estimates is just the scaling with a constant factor. In practice, this factor can be dropped which
reduces (4.27) to (4.24). By doing so, the concept of error estimation is abandoned and l �n+1 is
just used for the purpose of step size selection. A similar argument has been used to justify the
application of (4.24) to the case where p > p̂.

Error Estimation based on TAYLOR Series Expansions

ZIENKIEWICZ and XIE [264] developed an error estimator for solid mechanics problems for
NEWMARK-type time integration schemes [173,174] like the generalized-α method of CHUNG

and HULBERT [39]. It is based on the comparison of a TAYLOR series expansion around the
known solution at time tn and the NEWMARK update formulas. The estimate is given as

l �n+1 ≈
(
β − 1

6

)
∆t2n

(
ẍNM
n+1 − ẍn

)
(4.28)

with the NEWMARK parameter β, the acceleration ẍNM
n+1 at time tn+1 based on the NEWMARK

update, and the known acceleration ẍn at time tn. Obviously, estimate (4.28) is only valid
for β 6= 1/6. Although an alternative estimate can be derived for this special case, it is of no
interest in the present work, since this parameter choice spoils unconditional stability of the
time integrator [264]. For further details see the original publication by ZIENKIEWICZ and
XIE [264].

4.2 Application to Monolithic Fluid-Structure
Interaction Solvers

The proposed adaptive time stepping procedure for monolithic fluid-structure interaction solvers
is based on a posteriori error estimation of the temporal discretization errors in both the fluid
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and the structure field. Since dynamics and accuracy demands may differ between the fluid and
the structure field, the temporal discretization errors are estimated separately for both fields.
To account for the central role of the fluid-structure interface, additional attention is paid to
its temporal discretization error. Although error estimation is performed field-wise and, thus,
different suggestions for the new time step size can be calculated, a uniform time step size for
all fields needs to be found, since the proposed monolithic solution scheme does not allow for
subcycling as it is possible in case of partitioned approaches [17, 182]. Due to the field-wise
error estimation, errors and tolerances for both fields need to be distinguished, which is done
by the superscripts (•)F and (•)S for fluid and solid quantities, respectively. However, if the
distinction is clear from the context or a statement applies equally to both fields, the superscript
will be omitted for the sake of an uncluttered notation.

A typical outline of an adaptive time stepping algorithm has already been shown in Figure 4.2
for single-field applications. In case of the FSI problem, just two minor modifications are neces-
sary: First, the estimation of the local error is replaced by estimations of local errors in both the
fluid and the structure field as well as at the fluid-structure interface. Second, during adaption
of the time step size, a single value for the time step size needs to be selected, that is then used
in all fields. Section 4.2.1 will elaborate the error estimation procedure in case of a monolithic
FSI solver, while the selection of the time step size will be detailed in Section 4.2.2.

A preliminary implementation of such an adaptive time stepping scheme for monolithic FSI
solvers has been done by WILHELM [251].

4.2.1 Estimation of the Local Discretization Error

Unfortunately, a single number that quantifies the temporal discretization error of the coupled
problem is not accessible. Hence, the temporal discretization error is estimated separately in
both fields, while additional focus is put on the fluid-structure interface. In this thesis, the tem-
poral discretization error in the structure field is estimated either by comparison to another, ex-
plicit scheme like explicit EULER [110], ADAMS–BASHFORTH-2 [110], or the central difference
method [67] or by the popular method of ZIENKIEWICZ and XIE [264]. In the fluid field, the
comparison to either explicit EULER or ADAMS–BASHFORTH-2 is available. It is stressed, that
the proposed framework is not limited to these approaches, but can easily be used in combination
with other, possibly more sophisticated error estimators. Further error estimation approaches
for solid and fluid dynamics are given in [36, 38, 126, 154, 155, 180, 204, 214, 233, 248, 260]
and [61, 101, 102, 130, 131, 133, 211, 237], respectively, to name a few without claiming com-
pleteness of that list.

When accounting for the central role of the interface, the algorithmic decision of master and
slave side comes into play. On the master side, whose interface degrees of freedom are used to
express the interface motion, an interface error is deduced by extracting the interface degrees
of freedom from the master’s side vector of local error. In addition, the error associated with
the interior degrees of freedom is considered in both master and slave field. The notation eαβ is
introduced to denote the norm of the estimated local error, where the superscript α ∈ {F, S}
indicates fluid or structure field and the subscript β ∈ {Γ ∪ I,Γ, I} provides information on the
involved degrees of freedom. The time step index has been dropped to ease notation. Table 4.1
provides an overview of the different sets of estimated error norms eαβ in case of fluid-handled
and structure-handled interface motion. Estimating the error of the inner or interface subset of
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Table 4.1: Error norms eαβ , α ∈ {F, S} and β ∈ {Γ ∪ I,Γ, I}, for fluid-handled and structure-
handled interface motion — On the master side, a separate interface error ema

Γ is estimated, while
on the slave side only interior degrees of freedom contribute to the error norm esl

I . The set of
estimated error norms for both choices of master and slave side are indicated by the symbol ×.

Interface motion handled by master field slave field eFΓ∪I eFΓ eFI eSΓ∪I eSΓ eSI
Fluid field ΩF ΩS × × × ×
Structure field ΩS ΩF × × × ×

degrees of freedom does not lead to notable additional computational costs. One just takes the
vector of estimated temporal discretization error with all degrees of freedom and extracts only
the inner or the interface portion. The computational cost of this extraction is negligible.

As given in Table 4.1, the set of estimated error norms in case of fluid-handled interface
motion is denoted by

[e]F = {eFΓ∪I, e
F
Γ, e

F
I , e

S
I}, (4.29)

where the superscript F at [e]F indicates the fact that the fluid field has been chosen as mas-
ter field. Accordingly, the set of estimated error norms [e]S for the case of structure-handled
interface motion is given as

[e]S = {eSΓ∪I, e
S
Γ, e

S
I , e

F
I }. (4.30)

Details on the computation of the error norms eαβ , α ∈ {F, S} and β ∈ {Γ ∪ I,Γ, I}, that are
necessary to provide a scalar value for each estimated error, will be given in Section 4.2.3. Note,
that degrees of freedom, that are subject to DIRICHLET boundary conditions, are excluded from
the error estimation, since their values are prescribed and, thus, exact.

4.2.2 Adapting the Time Step Size

Every error norm in the set [e]ma, ma ∈ {F, S}, needs to be taken into account to compute the
new time step size for the coupled problem. In order to transform the set of error norms to a
single value for the optimal time step size ∆t∗, the following steps are performed: First, a set
of optimal scaling factors [κ∗] is computed by applying (4.18) to each estimated error norm in
the set of errors [e]ma. To account for the accuracy demands in the single fields, the respective
tolerance εS,∆tl or εF,∆tl is used. Secondly, a set [∆t∗] of time step size suggestions is calculated
based on the set [κ∗] of optimal scaling factors as well as the algorithmic parameters [κ]. Finally,
the optimal time step size ∆t∗ of the coupled problem is determined as

∆t∗ = min [∆t∗] , (4.31)

Equation (4.31) guarantees that the time step size is governed by the subset of degrees of free-
dom, that is most critical in terms of achieving the desired tolerance εS,∆tl or εF,∆tl . Doing so,
the accuracy demand can be satisfied globally in the entire computational domain.
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4.2.3 Practical Considerations

In this section, some practical aspects are discussed and guidelines for the choice of all algo-
rithmic parameters for the adaptive time stepping procedure are given as well as measures of
computational efficiency of the proposed scheme are developed. Whenever possible, it is tried to
provide theory-indicated justifications for these guidelines. However, this is not possible in ev-
ery case and, thus, sometimes only rules of thumb or knowledge that has been obtained through
extensive numerical studies can be established.

Computation of Norms

To deduce a scalar quantity representing the estimated error, a norm of the error needs to be
computed, cf. (4.11) or (4.12) for example. Following the derivations from Section 4.1.3, where
space-continuous but time-discrete functions are used, the appropriate norm is the L2-norm as
previously defined in (3.54). However, in computer codes the required integral needs to be
evaluated numerically using a suitable quadrature rule, e.g. GAUSS quadrature. The influence
of the mesh size is respected in this quadrature process since it involves an integration over all
elements with possibly different sizes. Such an numerical evaluation of the integral in (3.54)
gives accurate results, but is also very costly and time-consuming. Hence, one aims at a cheaper
norm calculation while paying the price of a reduced accuracy which is acceptable especially in
the case of error estimation.

A first simplification can be thought of as approximating the exact L2-norm by an area- or
volume-weighted 2-norm of the vector of nodal values in two or three dimensions, respectively,
i.e. by computing an EUCLIDian vector norm where each nodal entry in the vector has been
weighted with the area or volume associated to the node. The weighting allows for compara-
bility of norms computed on different meshes. Although this is computationally more efficient
than the previous approaches, it still involves numerical effort to compute the weights and to
apply the weights to the vector.

In many practical computer codes, the norm computation is just done by EUCLIDian vector
norms ‖(•)‖2, which is also advised by DEUFLHARD and BORNEMANN [58] in the context
of time step size adaptivity due to their smoothness properties. To account for the size of the
spatial discretization and to allow comparability in the case of mesh refinement, a length scaling
is introduced such that

‖(•)‖2 =

√∑M
m=1 (•)2

m

M
(4.32)

with M being the length of the respective vector (•). In this thesis, all error norms for time step
size adaptivity are computed using (4.32).

Averaging of Increasing Time Step Sizes

As given in (4.19), the increase of the time step size is limited by the user-given factor κmax.
However, this still may lead to overshooting, i.e. to situations where the time step size is in-
creased so much that the subsequent time step requires a time step size reduction which finally
yields a non-smooth and wiggly evolution of the time step size as demonstrated in the example
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in Section 4.3.1. However, a smooth evolution of the time step size is said to be beneficial for
the conservation of stability and accuracy properties of time integration schemes, which usually
are only guaranteed in the case of a constant time step size. Another key player is the time step
size dependency of the fluid stabilization [21, 100], for example. Changes in the time step size
possibly change the stabilization parameter and, thus, the amount of stabilization brought into
the system. However, changing the amount of stabilization too rapidly leads to vast variations
in the stabilization, which should be avoided to maintain good stability properties of the fluid
solution. As a remedy, an averaging procedure is applied in case of an increasing time step size.
The new time step size ∆tn+1 is computed as a linear combination of the newly determined
optimal time step size ∆t∗ and M previous time step sizes via

∆tn+1 = γn+1∆t∗ +
M−1∑
m=0

γn−m∆tn−m = γn+1∆t∗ + γn∆tn + γn−1∆tn−1 + ... (4.33)

with user-chosen weights γi satisfying
∑M

m=0 γn−m+1 = 1 and γn−m+1 = 0 ∀m > M . This
can effectively reduce the occurrence of overshooting events. Furthermore, it fosters a smooth
evolution of the time step size, which seems to be beneficial when having in mind the time
step size dependency of the fluid stabilization or stability and accuracy properties of the time
integration schemes, that are only guaranteed if the ratio ∆tn+1/∆tn is not too large [111].

Since a decrease of the time step size is always triggered by a violation of the accuracy
demand, i.e.

∥∥l �n+1

∥∥
L2
> ε∆t

l , it is crucial to allow for the desired decrease immediately in order
to satisfy the accuracy demand. Henceforth, the averaging procedure is not applied in case of a
decrease of the time step size. The time step size ∆tn of the time step, that needs to be repeated,
is set to the decreased value ∆t∗ immediately without any further modifications.

Choice of Algorithmic Parameters

The upper time step size limit ∆tmax can often be chosen based on the desired temporal res-
olution, meaning that the time step size may not exceed a certain value in order to be able to
capture the transient behavior of the problem at hand. Usually, the computational engineer has
a notion of the transient behavior of the expected solution and, thus, can determine ∆tmax quite
easily.

The lower time step size limit ∆tmin should be chosen small enough such that the algorithm
is able to satisfy the accuracy demand. However, this value may not be chosen arbitrarily small.
For example, numerical results for a STOKES problem reported in BOCHEV et al. [22] indicate
that the stabilizing effect of the fluid stabilization deteriorates if the time step size is too small in
comparison to the spatial grid resolution. A detailed analysis of this issue has been performed
by BOCHEV et al. [21], which can be seen as providing a rule of thumb to choose the lower
time step size limit ∆tmin given a stabilization technique and a certain grid resolution. Since the
fluid stabilization is not in the focus of this thesis, the interested reader is referred to literature
for further information.

Every simulation is started using the lower bound ∆tmin of the time step size as initial value,
i.e. ∆t0 = ∆tmin. This ensures the satisfaction of the accuracy demand (4.12) right from the
beginning of the simulation. Since the initial time step size is chosen as the lower bound, a rapid
increase is expected during the first couple of time steps. If the time step size does not increase at
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the beginning of the simulation, the lower bound ∆tmin is not low enough to achieve the desired
error level ε∆t

l . Either the tolerance ε∆t
l needs to be reviewed or ∆tmin has to be decreased to

allow for satisfaction of the accuracy demand (4.12) throughout the entire simulation.
The parameters κmin and κmax, that limit the ratio of two subsequent time step sizes, are cho-

sen in the ranges of 0.1− 0.5 and 1.5− 5 [110], respectively. Depending on the time integration
scheme, these limitations have to be chosen even tighter, e.g. for the backward differentiation
formula of 2nd order the increase needs to be limited to κmax = 1 +

√
2 [110]. Typical values

for the safety factor κs are in the range of 0.8 − 0.95 [110]. Note that the safety factor κs < 1
leads to reductions of ∆tn even if the estimated error matches the tolerance quite well as desired
in (4.14). Although seeming to be counterintuitive, choosing κs < 1 speeds up the computation
a lot by avoiding many time step repetitions, that would become necessary if the error was only
slightly larger than the tolerance.

As indicated in the outline of the adaptive time stepping algorithm in Section 4.1.3, multiple
repetitions of the same time step tn → tn+1 may be necessary. However, the number of allowed
repetitions is limited. The reason for this is twofold: On the one hand, an infinite number of
repetitions needs to be avoided which would lead to stalling of the simulation. On the other
hand, an increased number of repetitions may indicate, that the time step size has been far too
large just before the transient event. In such cases, the algorithm may have stepped over the
beginning of the transient event with a very large time step size and, thus, the event has not
been resolved properly. In case that the algorithm reaches the maximum number of repetitions,
the simulation is aborted with an error. It is advised to rerun the simulation with a decreased
tolerance ε∆t

l and a decreased upper limit ∆tmax of the time step size. Numerical studies have
shown that a value of at most five repetitions of a single time step is sufficient even in very
demanding cases, cf. examples in Section 4.3.

Choice of Error Tolerances

The tolerance for the local discretization error is usually related to a characteristic quantity (•)char
of the solution, i.e. a characteristic velocity magnitude uFchar of the fluid flow field or a character-
istic displacement magnitude dSchar of the solid body, by a relative tolerance ε∆t

rel . The tolerance
for the local error is then given as

ε∆t
l = ε∆t

rel (•)char

with (•)char being the characteristic quantity of the respective field. Typically, values of ε∆t
rel are

in the range of 10−3 − 10−4 [242].
SHAMPINE [219] provides insight on the relation of local errors to global errors and summa-

rizes some rules of thumb, that are often applied to choose error tolerances in practical compu-
tations. His assumptions of a ’moderately stable problem’ and a ’small tolerance’ are supposed
to hold in the present work. Choosing the tolerance for the local error somewhat smaller than
the desired tolerance for the global error seems to be quite satisfactory. By studying bounds as
well as estimates of the global error, SHAMPINE [219] concludes that the global error will be
comparable to the tolerance of the local error. A similar result is given by DEUFLHARD and
BORNEMANN [58]. To further increase confidence in the numerical solution, the problem can
also be solved with a sequence of local error tolerances and an evaluation of the results by con-
sistency [219]. Thereby, differences in the solutions obtained with various error tolerances are
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evaluated until they become negligible. Such a process somehow has the notion of a temporal
convergence study.

If the error is kept constant per time step as previously presented, it accumulates over the
duration of the simulation. In the case of a small tolerance, many time steps are required. This
might lead to a larger error at the end time T as if only a few large time steps with a less tight
tolerance had been done. This issue can be addressed by a slightly different approach. By
introducing the notion of an error density per unit time, the tolerance can be adapted in each
time step depending on the current time step size ∆tn, such that the accumulated error in the
end does not exceed a prescribed value. Such an approach is closely related to methods known
as error per unit step in literature, cf. [219] for example.

Handling of Convergence Issues of the Nonlinear Solver

In the presence of an exceptionally strong nonlinearity, the nonlinear solver might fail to con-
verge. In such an event, the solution at time tn+1 is not available and, thus, cannot be assessed
by means of error estimation. This is more likely to be the case if the tolerance ε∆t

l is chosen
very loosely. To avoid abortion of the simulation in such cases, the convergence of the nonlinear
solver can be taken into account for time step size adaptivity as additional safety and robustness
measure.

In case of failure of the nonlinear solver, repeating the current time step with a reduced time
step size usually allows for continuation of the simulation. Lacking an error estimate, the time
step size is adapted heuristically. In this thesis, the reduced time step size is chosen as κnln∆tn
with the user-given factor κnln ∈]0, 1[. Often, the reduction factor κnln is chosen in the range
of 0.5 − 0.8. As in adaptivity based on error estimation, multiple repetitions of the same time
step with progressive reductions of ∆tn have to be performed, while the number of repetitions
is limited in the same manner as in error estimation-based adaptivity. If the nonlinear solver
converged successfully with the decreased time step size, further increase or decrease of ∆tn is
again based on error estimation. It seems to make sense to limit the increase of ∆tn for a couple
of time steps right after such a solver-based reduction of ∆tn in case that the strong nonlinearity
is more pronounced. This might not be the most efficient procedure, but is still more favorable
than aborting the simulation and not obtaining any result at all.

It is stressed that this strategy does not replace time step size adaptivity based on error esti-
mation. It is rather an additional safety measure that acts on top of the underlying adaptivity
approach. It is a pure safety measure to avoid breakdown of the simulation in case of unexpected
events and is not advised to be used as a stand-alone algorithm.

Computational Efficiency and Savings

As postulated in (4.11), the primary reason to apply error estimation-based adaptive time step-
ping is to control the accuracy of the numerical solution. Basically, one can obtain an accurate
solution with non-adaptive schemes as well. However, the number of time steps to be computed
might be much larger than with an adaptive time stepping scheme. Since the adaptive scheme
imposes small time step sizes only when necessary for accuracy reasons, but increases the time
step size if possible, it is able to advance in time much faster than a non-adaptive scheme of the
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same accuracy. Now, an efficiency measure shall be developed, that allows for a quantification
of savings of computational cost when aiming at a given level of accuracy.

A straightforward approach would be based on comparing wall clock time of both the adaptive
and the non-adaptive simulation. However, finding a constant time step size, that produces a
solution with the desired accuracy, is a non-trivial task. It probably requires many runs of the
same simulation with different values for ∆t, which all are costly. This approach seems to be
infeasible for practical applications.

Assuming that each time step is associated with roughly the same cost, an alternative and
much cheaper efficiency measure can be based on the number of time steps, that can be saved
by the adaptive scheme. First, the problem is solved with the adaptive time stepping scheme and
a given tolerance for the local error. Then, the smallest time step size min{∆tn} that occurred
in that simulation is used to compute a fictitious number

N const =
T

min{∆tn}
(4.34)

of time steps that would be necessary in a non-adaptive scheme with the same level of accuracy.
Note that the denominator in (4.34) should only include time step sizes that have been achieved
by time step size reduction caused by the algorithm to exclude the small values from the starting
phase of the simulation where initially ∆t0 = ∆tmin. Now, relative savings in the number of
computed time steps δN save are given as

δN save = 100%− Nada

N const
(4.35)

with Nada and N const being the number of time steps performed by the adaptive and non-
adaptive scheme, respectively. To account for the extra effort of possible time step size rep-
etitions, repeated time steps need to be included into Nada.

4.3 Numerical Examples
Three numerical examples are used to demonstrate and discuss properties of the adaptive time-
stepping procedure for monolithic FSI solvers. In the first two examples, the time step size is
adapted based on error estimation in the structure or the fluid field only. The last example uses
both fields for time step size adaptivity.

Common to all examples in this thesis is the use of equal-order interpolated linear finite
elements for the spatial discretization of the fluid field. Residual-based stabilization is applied,
namely Streamline Upwind PETROV–GALERKIN (SUPG) [28], Pressure-Stabilized PETROV–
GALERKIN (PSPG) [123], and a grad-div term [46]. The stabilization parameter follows the
definition by GRAVEMEIER et al. [100]. Details on the specific types of elements as well as the
employed time integration schemes are given separately for each example.

4.3.1 Buckling of a Solid Cylindrical Shell Submerged into Fluid
The first example is used to study time step size adaptivity based on error estimation in the
structure field only. In order to include the error estimate of the interface degrees of freedom,
the structure-handled interface motion algorithm is applied, cf. Section 3.3.2.
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Figure 4.4: Rectangular fluid domain ΩF (`v = 2.0, `h = 2.0) with submerged thin-walled solid
cylinder segment ΩS (r0 = 0.5, ri = 0.49) — The solid is clamped at both ends. No-slip
boundary conditions are assumed at the fluid walls and at the interface. The fluid top boundary
is loaded with a time-dependent Neumann load h̄

F
(t).

A very thin-walled cylindrical shell segment is submerged into a fluid domain as depicted in
Figure 4.4. At the fluid walls and at the fluid-structure interface, a no-slip condition is assumed.
The structure is clamped at both ends. Material parameters are listed in Table 4.2. On top of
the fluid domain, a time-dependent external traction h̄

F
(t) is applied, that points in negative

y-direction and varies in time according to

h̄
F

(t) =

ĥ
F · 1

2
(1− cos πt)

[
0

−1

]
if 0 < t ≤ 1

0 if t > 1

with the peak value ĥF = 0.5. Solid and fluid are initially at rest. Due to the time-dependent
external load on the fluid top surface, the structure will buckle if the fluid traction onto the

Table 4.2: Material parameters for solid cylindrical shell under fluid loading
Fluid Solid
dynamic viscosity µF

dyn 0.01 YOUNG’s modulus ES 104

density ρF 0.01 POISSON’s ratio νS 0.0

density ρS 1.0
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Figure 4.5: Mesh for solid cylindrical shell under fluid loading — The thin-walled cylindrical
shell is discretized with 128× 4 bilinear quadrilaterals, the fluid domain with 3712 linear equal-
order interpolated elements.

structure exceeds its critical value. This will lead to a highly transient motion of the structure,
which requires extremely fast and drastic changes in the time step size in order to enable a
numerical solution and to resolve the transient behavior accurately.

The structural domain is discretized with 128 × 4 quadrilateral finite elements, that use a
plain strain assumption to allow for two-dimensional modelling. To deal with possible locking
phenomena, Enhanced Assumed Strains (EAS) are utilized. The fluid domain is discretized
with 3712 equal-order interpolated P1P1 finite elements, where residual-based stabilizations as
detailed above are employed. The finite element mesh is depicted in Figure 4.5. To enable the
ALE mesh to deal with localized, but large deformation close to the solid domain, an elasticity
model is used for ALE mesh motion, cf. Appendix A.2.3. The ALE domain is divided into
two subdomains, both using a ST.-VENANT-KIRCHHOFF material but with different material
properties. Softer material properties (YOUNG’s modulus EG

soft = 1, POISSON’s ratio νGsoft = 0)
are assigned to the L-shaped subdomain with the cartesian grid away from the interface, cf.
Figure 4.5, whereas the smaller portion next to the interface uses a stiffer material with YOUNG’s
modulus EG

stiff = 1000 and POISSON’s ratio νGstiff = 0.49.
Temporal discretization is done with generalized-α time integration in the structure field and

fluid field as given in [39] and [129], respectively. The spectral radii are chosen as ρS∞ = 0.9
and ρF∞ = 0.5. The adaptive time stepping procedure for monolithic fluid-structure interaction
solvers is applied. Different settings for the adaptive time stepping algorithms are studied and
described in the following.

Figure 4.6 exemplarily depicts the solution obtained using time step size adaptivity with the
ZIENKIEWICZ-XIE error estimator [264] and a tolerance εS,∆tl = 10−3 at selected time steps.
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The y-components dSy and ḋSy of the structural displacement and velocity of its center point A
are plotted over time in Figure 4.7. The buckling event, that starts at time t = 0.75466, cf.
Figure 4.6(b), can be seen clearly by large amplitudes and fast changes in displacement and
velocity.

Monitoring of the Local Discretization Error with Different Error Estimators

To test error estimation, simulations with constant time step sizes are done while error estimation
is active. Figure 4.8 compares the estimated error in the structure field for the available error
estimators, namely the ZIENKIEWICZ-XIE [264] approach as well as comparisons to explicit
methods like ADAMS–BASHFORTH-2, explicit EULER and the central difference scheme. Two
different values for the time step size are used, namely ∆t = 10−2 and ∆t = 10−3. The smaller
time step size produces smaller errors, which is consistent with theory. The evolution of the
estimated error corresponds very well to the dynamics of the system. In the beginning, when
the system is still at rest and the load is increased slowly and smoothly, the error stays at quite a
low level. Around time t = 0.75466, the buckling of the structure starts, cf. Figure 4.6(b). This
leads to transient behavior, which in turn results in an increased error if the time step size is kept
constant. After the load has been removed, the shell returns to its original shape and the system
calms down quickly, which results in low error values, again.

Although minor quantitative differences between the applied error estimation methods can
be seen, the global qualitative behavior is the same. All compared estimation methods behave
similarly w.r.t. the increase of the error during the transient buckling event and w.r.t. an de-
crease of the error when the system approaches its final steady state, see Figure 4.8. No distinct
recommendation for one of the error estimators can be given.

Time Step Size Averaging in case of a Time Step Size Increase

The phenomenon of overshooting as described in Section 4.2.3 is studied. Therefore, a ref-
erence simulation without averaging of increasing time step sizes as given in (4.33), i.e. the
weight γn+1 = 1, is performed. Its evolution of the time step size ∆t is referred to as avg0 in
Figure 4.9. Right in the beginning, a steep increase of ∆t can be seen. This is due to the fact
that a very low error results in large increases of the time step size. Due to the choice γn+1 = 1,
the increasing value is always taken as the new time step size to its full extent. Not being slowed
down by portions of the previous time step sizes seems to be beneficial in this portion of the
simulation. After the buckling event, the time step size increases, but not monotonically. Due
to the effect of overshooting, reductions of the time step size have to be performed quite often.
Fortunately, this does not result in an massively increased number of time step repetitions in this
specific example since a safety factor κs = 0.9 has been chosen. As outlined in Section 4.2.3,
this behavior is not desirable. The oscillating error in this portion of the simulation as observed
in Figure 4.8 can be seen as a strong indicator that such variations of the time step size may be
expected.

To remedy this situation, different averaging strategies avg0 – avg4 are applied. The chosen
weights for each strategy are listed in Table 4.3. Results are reported in Figure 4.9. The larger
the weights of the previous time step sizes, the more the fast increase of ∆t at the beginning of
the simulation is slowed down. However, the rapid decrease at the beginning of the buckling
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0.4 0.7-0.01 0.97

p

0.1 0.20.00 0.28
|d|

(a) initial state at t = 0.0 (b) buckling starts at t = 0.75466 (c) t = 0.93779

(d) t = 1.00469 (e) state of maximum deformation
at t = 1.03116

(f) t = 1.09176

(g) t = 1.16202 (h) t = 1.22148 (i) final state at t = 6.0

Figure 4.6: Snapshots of the solution of the pressurized cylinder example at selected time steps
— The fluid field is colored according to its pressure field values p while the structure field’s
color is encoded with the displacement field magnitude denoted by |d|. Color scales are cali-
brated at maximum deformation at t = 1.03116. The simulation has been performed with time
step size adaptivity using the ZIENKIEWICZ-XIE error estimator [264] in the structure field with
a tolerance εS,∆tl = 10−3.
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Figure 4.7: Vertical displacement and velocity at the locationA of a solid cylindrical shell under
fluid loading — Both the displacement dSy and the velocity ḋSy start from zero values in the initial
configuration. During the buckling event, large amplitudes and fast changes can be seen. Both
quantities find back to their zero values in the final state which is fully at rest.

Table 4.3: Averaging strategies for solid cylindrical shell under fluid loading — Averaging
strategies avg0 – avg4 are parametrized with the respective weights γi. The last column re-
ports the number of time steps needed with each strategy.

Strategy γn+1 γn γn−1 # time steps
avg0 1.0 0.0 0.0 414

avg1 0.7 0.3 0.0 426

avg2 0.5 0.5 0.0 438

avg3 0.3 0.7 0.0 486

avg4 1
3

1
3

1
3

487
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(a) ZIENKIEWICZ-XIE
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(c) Explicit EULER
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Figure 4.8: Monitoring of the estimated local error in the structure for a solid cylindrical shell
under fluid loading — Keeping the time step size constant throughout the simulation, but record-
ing the estimated local error demonstrates qualitatively similar behavior for all applied error es-
timation schemes. Quantitative differences are minor. All schemes estimate a larger error during
the buckling event and smaller errors when the system is close to a steady state. A smaller time
step size results in smaller errors. Overall, expected behavior is reproduced.
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Figure 4.9: Averaging of increasing time step sizes for a solid cylindrical shell under fluid load-
ing — Averaging increasing time step sizes as proposed in (4.33) slows down the increase, but
also reduces the number of overshooting events. Strategy avg3 produces a reasonable evolution
of ∆tn compared to the case avg0 without averaging. Weights γi of all strategies are detailed in
Table 4.3.

event is captured by all simulations equally well since averaging is only applied for increasing,
but not for decreasing the time step size. After the buckling event, averaging helps to reduce
the number of overshooting incidences at the cost of an mildly increased number of time steps,
that need to be computed, cf. last column of Table 4.3. For this example, strategy avg3 with
the choice of γn+1 = 0.3 and γn = 0.7 seems to be a good trade-off between robustness,
overshooting and increased computational cost.

Evolution of Time Step Size

Finally, the use of different error estimators for adapting the time step size is studied. The same
error estimators as for the monitoring of the error are used, namely the ZIENKIEWICZ-XIE [264]
approach as well as comparisons to explicit methods like ADAMS–BASHFORTH-2, explicit EU-
LER and the central difference scheme. Two different tolerances εS,∆tl ∈ {10−3, 10−4} are used.
The remaining algorithmic parameters required to evaluate (4.19) are globally chosen as fol-
lows: κmin = 0.1, κmax = 2.0, κs = 0.9,∆tmin = 10−6,∆tmax = 10−4. The number of time
step repetitions is limited to five. In case of an increasing time step size, γn+1 = 0.3 and γn = 0.7
are used as weights for the averaging procedure (4.33) based on previous observations.

Evolutions of the time step size for all these cases are reported in Figure 4.10. All error
estimators produce sequences of time step sizes, that behave similarly. The increase in the
beginning, a massive reduction of the time step size during the buckling event as well as the final
increase towards the end of the simulation is common to all procedures. However, the actual
value of ∆t varies as expected since different approaches result in different error estimates.
Furthermore, the cases with the tighter tolerance εS,∆tl = 10−4 result mostly in smaller values
of ∆tn than for εS,∆tl = 10−3.

Remark 4.3.1 Error estimation with the central difference scheme and a tolerance εS,∆tl =
10−3 leads to a series of time step sizes ∆tn, that steps so far over the beginning of the buckling
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Figure 4.10: Evolution of time step size ∆t for solid cylindrical shell under fluid loading — Four
different error estimators are used, namely ZIENKIEWICZ-XIE (ZX), ADAMS–BASHFORTH-2
(AB2), explicit EULER (EE), and the central difference scheme (CD). All of them capture the
buckling event very well by reducing the time step size. In general, cases with a tighter tolerance
result in smaller time step sizes as expected. Using CD with εS,∆tl = 10−3 fails due to invalid
mesh distortion.

event, that it cannot be captured properly. This results in inadmissible mesh distortion, which
leads to failure of the simulation. Even the most robust mesh motion schemes could not pre-
vent these issues. To avoid inadmissible mesh distortion, either a reduced maximum time step
size ∆tmax or a tighter tolerance εS,∆tl is necessary. Since this choice would corrupt compara-
bility, this case is excluded from the remainder of the discussion.

In the adaptive algorithm, the number of time step repetitions is limited to five. However, such
repetitions occur rarely and only at the beginning of the buckling event, when fast and massive
reductions of ∆tn are necessary. The case with explicit EULER as auxiliary scheme for error
estimation is an exception, where repetitions are necessary also throughout the buckling event.
The series of time steps based on error estimation with ADAMS–BASHFORTH-2 as auxiliary
scheme does not allow the time step to grow that much before the buckling event. In addition,
it starts with time step size reductions quite early and, thus, does not need to perform any time
step repetitions at all. For all error estimators, a single repetition is sufficient for most cases,
while even the utmost reductions of ∆tn require two repetitions at most.

Computational savings according to (4.35) are reported in Table 4.4. Compared to the case
of a non-adaptive time stepping scheme, the adaptive time stepping scheme reduces the number
of time steps to be computed by about 80%− 95% in this example if the same level of accuracy
is desired.
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Table 4.4: Computational savings for a solid cylindrical shell under fluid loading — Based
on Nada, the number of time steps of the adaptive simulation, computational savings δN save

are estimated using (4.35). In addition to controlling accuracy, the adaptive scheme reduces
the number of time steps to be computed by roughly 80% − 95% which is a huge gain w.r.t.
efficiency.

Error estimator εS,∆tl Nada N const δN save

ZIENKIEWICZ-XIE 10−3 497 6171 92.0%

ZIENKIEWICZ-XIE 10−4 3304 61903 94.7%

ADAMS–BASHFORTH-2 10−3 1654 17683 90.6%

ADAMS–BASHFORTH-2 10−4 3385 37958 91.1%

Explicit EULER 10−3 315 1765 82.1%

Explicit EULER 10−4 511 5000 89.8%

Central differences 10−3 − − −
Central differences 10−4 354 2143 83.5%

Table 4.5: Material parameters for elastic wall in channel flow
Fluid Solid
dynamic viscosity µF

dyn 0.01 YOUNG’s modulus ES 500.0

density ρF 1.0 POISSON’s ratio νS 0.0

density ρS 1.0

4.3.2 An Elastic Wall in a Channel Flow
To analyze the behavior of the fluid error estimator as well as its influence on the evolution of the
time step size, an elastic wall is put into a channel flow. Figure 4.11 depicts the domain of inter-
est by means of different views including all geometric features and boundary conditions. The
solid is modelled as NEO–HOOKEan material, while the fluid is assumed to be a NEWTONian
fluid. Material parameters are listed in Table 4.5. At x = 0, the x-component ūFx (y, z, t) of the
inflow velocity follows the parabolic profile

ūFx (y, z, t) = ˆ̄uF (t)

(
1− 4y2

(hF)2

)(
1− 4z2

(bF)2

)
with the time-dependent peak value

ˆ̄uF (t) =



ûF · 0.5
(
1− cos

(
π
6
t
))

if 0 < t ≤ 6

ûF if 6 < t ≤ 20

ûF
(
1 + cos

(
π
10

(t− 20)
))

if 20 < t ≤ 60

ûF if 60 < t ≤ 80

ûF
(
1 + cos

(
π
10

(t− 80)
))

if 80 < t ≤ 120
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tSūFx

side view

A

x

y

bS

bF

hS hF

left view

A

y

z
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Figure 4.11: Geometry and boundary conditions of an elastic wall in a channel flow — An
elastic wall ΩS (bS = 0.6, hS = 0.4, tS = 0.05) is put into a fluid channel ΩF (`F = 3.0, bF =
1.0, hF = 0.5) at `in = 0.5 and clamped at its bottom. A time-dependent parabolic inflow profile
is prescribed, while the outlet is traction-free. The channel walls are subject to no-slip boundary
conditions. The top, center point of the elastic wall is denoted by A.
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with ûF = 0.1, cf. Figure 4.12(a). The components in y- and z-direction are set to zero. Top and
bottom walls as well as lateral walls are subject to a no-slip boundary condition. On the outflow
area, a zero-traction boundary condition is applied. Due to the symmetry of the problem, only
the portion z ≤ 0 of the channel is modelled. Appropriate symmetry conditions are applied to
the xy-plane.

The structural domain is discretized with 2125 nodes grouped to 4× 24× 16 Hex8 F-Bar
finite elements [47], the fluid domain with 26017 nodes forming 22704 equal-order interpolated
Hex8 finite elements using residual-based stabilization as already detailed above.

Temporal discretization is done with generalized-α time integration in structure and fluid
field, see [39] and [129], respectively. The spectral radii are chosen as ρS∞ = 0.8 and ρF∞ =
0.5. Different tolerances εF,∆tl ∈ {10−1, 10−2, 10−3, 10−4} are used for adapting the time step
size based on the estimation of the temporal discretization error in the fluid field, which is
performed by comparison of the implicit solution to an explicit one obtained with an ADAMS–
BASHFORTH-2 scheme. The remaining algorithmic parameters required to evaluate (4.19) are
globally chosen as follows: κmin = 1/3, κmax = 3.0, κs = 0.9,∆tmin = 10−5,∆tmax = 1.5.
The number of time step repetitions is limited to five. No averaging of increasing time step sizes
is applied.

The x-displacement of the center point A at top of the elastic wall, cf. Figure 4.11, is de-
picted in Figure 4.12(b). Due to the low inflow velocity, the flow does not detach from the
solid and, thus, the solid deformation is able to follow the prescribed inflow velocity shown in
Figure 4.12(a) very closely. Figure 4.13 reports a snapshot at the state of maximum deflection
at t = 16.7, which is within the first stationary period of the inflow velocity, cf. Figure 4.12(a).

Figure 4.14 reports the evolution of the time step size ∆tn over time for all chosen toler-
ances. In case of the loosest tolerance εF,∆tl = 10−1, the time step size starts with the initial
value ∆t0 = ∆tmin and increases monotonically until it reaches the maximum bound ∆tmax.
Since the demanded accuracy is quite low, the simulation does not require any reduction of ∆tn
throughout the entire simulation. For εF,∆tl = 10−2, a minor reduction is necessary only during
the initial phase of the simulation. During the transient phases, the time step size needs to be re-
duced slightly once in a while, taking the smallest value ∆tn = 1.47161 < ∆tmax = 1.5, which
is a reduction by less than 2%. Remarkable changes of the time step size occur for εF,∆tl = 10−3

and εF,∆tl = 10−4. During the stationary phases, the time step size approaches the maximum
bound ∆tmax = 1.5, but during the transient inflow the time step size is reduced massively. As
expected, lower values for ∆tn are obtained for the lower tolerance εF,∆tl = 10−4. Common to
the cases ε∆t

l = {10−2, 10−3, 10−4} is the fact, that the minimal time step size resulting form
time step size reductions occurs in the initial phase of the simulation. In that phase, the increas-
ing inflow velocity needs to be propagated through the entire domain, that is initially at rest.
Later, when the flow field has already been established and just needs to change its velocity,
the time step size reduction to slightly larger values is sufficient to achieve the desired level of
accuracy.

The maximally allowed number of repetitions of time steps due to violations of the accuracy
demand (4.12) is limited to five, again. No repetitions are necessary for the cases εF,∆tl = 10−1

and εF,∆tl = 10−2, where no or only very little reductions of ∆tn are necessary. For the smaller
tolerances εF,∆tl = 10−3 and εF,∆tl = 10−4, the number of actual time step repetitions is reported
in Figure 4.15. Occurrence of time step repetitions coincides with massive reductions of the time
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(b) Tip displacement of elastic wall

Figure 4.12: Temporal evolution of the prescribed inflow velocity and the resulting tip displace-
ment of point A of an elastic wall in a channel flow — Top: Starting with a value of zero, the
inflow velocity is smoothly increased to its maximum value ûF = 0.1. Portions with constant
and varying inflow velocity alternate in order to trigger the adaptive time stepping algorithm.
Bottom: The deformation of the elastic wall follows the prescribed inflow velocity very closely.
Results differ only slightly for different tolerances, cf. zooms around t = 6 and t = 50. The
location of the monitored point A is specified in Figure 4.11.
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Figure 4.13: State of maximum deformation of an elastic wall in a channel flow — The solution
obtained with εF,∆tl = 10−4 is depicted during a phase of constant inflow velocity at time t =
16.7. The elastic wall is colored according to its displacement magnitude denoted by |d|. The
vertical fluid plane shows a contour plot of the velocity magnitude denoted by |u|, while the
bottom plane illustrates the pressure field denoted by p.
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Figure 4.14: Evolution of time step size ∆t for an elastic wall in a channel flow — Four different
tolerances εF,∆tl are used. The choice εF,∆tl = 10−1 produces an immediate increase of ∆tn
to ∆tmax and uses that value throughout the entire simulation. Lower tolerances use ∆tmax

only during the stationary phases, while they require a reduction of ∆tn in transient phases. In
general, cases with a tighter tolerance result in smaller time step sizes as expected.
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Figure 4.15: Necessary number of time step repetitions for an elastic wall in a channel flow —
Only the cases εF,∆tl = 10−3 and εF,∆tl = 10−4 require repetitions of time steps when the time
step size needs to be decreased significantly. Since εF,∆tl = 10−4 results in larger decreases,
more repetitions are necessary for that case.

Table 4.6: Computational savings for an elastic wall in a channel flow — Based on Nada, the
number of time steps of the adaptive simulation, computational savings δN save are estimated
using (4.35). Computational savings are more pronounced in case of smaller tolerances.

εS,∆tl Nada N const δN save

10−1 91 80 −13.8%

10−2 93 122 23.8%

10−3 456 1400 67.4%

10−4 4225 14116 70.1%

step size ∆tn, cf. Figure 4.14. More repetitions are necessary for εF,∆tl = 10−4, since the time
step size needs to be reduced by two orders of magnitude instead of only one for εF,∆tl = 10−3.

Computational savings δN save in terms of a reduced number of time steps to be computed are
reported in Table 4.6. Obviously, the computational savings δN save as defined in (4.35) depend
on the tolerance εF,∆tl . If a very accurate solution is required, i.e. a low tolerance εF,∆tl = 10−4

is chosen, the adaptive time stepping enables huge computational savings up to δN save = 70.1%
by increasing the time step size during the stationary phases. As already seen in the evolution
of the time step size, cf. Figure 4.14, the quite loose tolerance εF,∆tl = 10−2 does not lead to
significant reductions of the time step size ∆tn. Only a tiny reduction is required during the
starting phase of the simulation. Hence, computational savings are rather small for this case.
Only for the loosest choice εF,∆tl = 10−1, the adaptive time stepping seems to be inefficient,
since it needs more time steps. This is only due to the initial phase of the simulation, which is
necessary to increase the time step from its initial value ∆t0 = ∆tmin up to a suitable value. For
the loosest tolerance, this suitable value is limited by ∆tmax. Since the time step size is never
decreased throughout the simulation, the additional steps from the initial increase of the time
step size are seen as additional cost by (4.35), resulting in additional 13.8% time steps to be
computed.
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Figure 4.16: Geometry and boundary conditions of gasket-like example — The fluid domain ΩF

is enclosed by the inflow boundary with the prescribed inflow velocity profile ūF (t), the outflow
boundary with a zero-traction boundary condition, walls with no-slip conditions and the fluid-
structure interface. The structural domain ΩS is a segment of a thin-walled sphere. It can slide
along z-direction at its inner radius and rotate around its circumferential direction at its outer
radius. The solid shell is characterized by its radius R = 0.96 and its thickness t = 0.0032
resulting in a slenderness ratio R/t = 300. The problem exhibits rotational symmetry w.r.t. the
z-axis.

4.3.3 Snap-Through of a Gasket

Finally, error estimation in both the fluid and the structure field are used to adapt the time step
size in the simulation of the snap-through of a gasket. The geometry mimics a machine part with
rotational symmetry. It is inspired by an example by RAMM and WALL [197]. A detailed sketch
including all geometric dimensions can be found in Figure 4.16. Three-dimensional views with
two different meshes, that are used to demonstrate mesh independency of the adaptive time
stepping scheme, are shown in Figure 4.17. At the top, fluid inflow is prescribed, while fluid
outflow is in radial direction. Moreover, the fluid domain is confined by a rigid casing and a
thin-walled solid cap mimicking a rubber-like gasket. At the fluid walls and at the FSI interface,
a no-slip condition is assumed. The thin-walled spherical solid shell can slide along the z-
direction at its inner radius, while it can rotate around the circumferential direction at its outer
radius. The solid is modelled as NEO–HOOKEan material, while the fluid is assumed to be

73



4 An Adaptive Time Stepping Procedure for Monolithic FSI Solvers

(a) Coarse mesh with 81504 unknowns in total (b) Fine mesh with 566496 unknowns in total

Figure 4.17: Views including the mesh of a gasket-like example — Both the fluid and the struc-
ture field are meshed with structured grids using hexahedral elements only. Different mesh
resolutions are realized. Details on the number of unknowns are given in Table 4.8.

Table 4.7: Material parameters for gasket-like example
Fluid Solid
dynamic viscosity µF

dyn 0.1 YOUNG’s modulus ES 105

density ρF 100.0 POISSON’s ratio νS 0.3

density ρS 100.0

a NEWTONian fluid. The used material parameters are listed in Table 4.7. A time-dependent
parabolic inflow profile ūF (x, y, z, t) is prescribed. Its x- and y-components are set to zero,
while its z-component follows the spatial profile

ūFz (x, y) = − 4

(0.1− 0.25)2

(√
x2 + y2 − 0.1

)(√
x2 + y2 − 0.25

)
ˆ̄uF (t)

with the time-dependent peak value

ˆ̄uF (t) =


0.1 · ûF · 1

2

(
1− cos πt

2

)
if 0 < t ≤ 2

0.1 · ûF if 2 < t ≤ 5

ûF
(
0.1 + 0.9 · 1

2
(1− cos π(t− 2))

)
if 5 < t ≤ 6

ûF if t > 6

with ûF = 1.0. The temporal evolution of ˆ̄uF (t) is illustrated in Figure 4.18. A zero-traction
boundary condition is prescribed at the fluid outflow where an additional NEUMANN inflow
boundary condition [99] is applied to safely account for possible backflow. Starting from an
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Figure 4.18: Temporal evolution of the inflow velocity ˆ̄uF for a gasket-like example — Starting
from a zero velocity field, the inflow velocity is smoothly increased to a low value of ˆ̄uF = 0.1.
At time t = 5, the inflow velocity is rapidly increased to its maximum value ˆ̄uF = 1.0 and kept
at that value until the end of the simulation at T = 50.0.

Table 4.8: Mesh overview and computational resources for the gasket-like example — Two
meshes are used, a coarse and a fine one. Number of unknowns per field as well as total number
of unknowns are listed. Computational resources are detailed.

Mesh ID nS,dof nF,dof nG,dof ndof
total ncore ndof/core

coarse 9600 41088 30816 81504 8 10188

fine 37632 302208 226656 566496 64 8851.5

initially resting configuration, the inflow velocity is smoothly increased to ˆ̄uF (t = 2) = 0.1
and then kept constant until t = 5, such that a stationary state can be reached. Under these
flow conditions, the load exerted onto the structure is quite small, such that the structure is
able to maintain its shape. At t = 5, the inflow velocity is smoothly, but rapidly increased
to ˆ̄uF (t = 6) = 1.0 and then kept constant again. This increase of the fluid inflow velocity
results in an increase of the load onto the structure above a critical value, such that the thin-
walled solid will start buckling. The solid will snap through and finally find a stable equilibrium
configuration, such that a stationary flow field can be established.

To demonstrate mesh independency of the adaptive time stepping scheme, two structured
and purely hexahedral meshes are used, namely a coarse and a fine one. Both are depicted in
Figure 4.17. Details on the number of unknowns per field and in total are given in Table 4.8.
Simulations have been done on the Xeon partition of the in-house cluster, cf. Appendix B, where
8 and 64 cores have been used for the coarse and fine mesh, respectively.

Both the fluid and the structure field use generalized-α time integration schemes with spectral
radii chosen as ρF∞ = 0.5 and ρS∞ = 0.8, respectively. Both fields contribute to the error
estimation and the time step size adaption. In the fluid field, comparison to an auxiliary ADAMS–
BASHFORTH-2 scheme with a tolerance εF,∆tl is used, while the structure field employs the
ZIENKIEWICZ-XIE error estimator [264] with a tolerance εS,∆tl . The solid’s local error tolerance
is varied as εS,∆tl ∈ {10−3, 5 · 10−4, 10−4}, while the fluid’s one is chosen as εF,∆tl = 10−3. The
remaining algorithmic parameters required to evaluate (4.19) are globally chosen as follows:
κmin = 0.1, κmax = 2.0, κs = 0.9,∆tmin = 10−4,∆tmax = 0.2. The number of time step
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repetitions is limited to five. In case of an increasing time step size, γn+1 = 0.3 and γn = 0.7 are
used as weights for the averaging procedure (4.33) based on experience from previous examples.

Figure 4.19 shows a series of snapshots to illustrate the transient solution. Displacement and
velocity of a node on the inner radius of the solid are depicted in Figure 4.20 for the fine mesh
and tolerances εS,∆tl = 5 · 10−3 and εF,∆tl = 10−3. Until t = 5, the spherical shell is able to
maintain an equilibrium state close to its initial configuration, i.e. displacement and velocity
are close to zero. After increasing the inflow velocity at t = 5, the fluid load onto the structure
exceeds a critical value, such that the shell cannot maintain its shape and starts buckling. Hence,
large displacements and velocities occur while the shell is transformed to another equilibrium
configuration. Due to the viscous damping of the fluid and since the inflow velocity is kept
constant for t ≥ 6, oscillations are damped and a stationary flow field can be established. In this
state, the solid maintains a stable equilibrium configuration, i.e. the displacement is constant
and the velocity vanishes.

Figure 4.21 reports the evolution of time step size for both meshes and all tolerances. Both the
coarse and the fine mesh show a similar behavior regarding the evolution of the time step size. In
the initial phase, i.e. prior to t = 5, the time step size approaches its maximum bound ∆tmax =
0.2. Only the most accurate case with εS,∆tl = 10−4 requires a slight reduction of ∆tn during
this initial phase, all coarser tolerances allow for a monotonic increase. As the buckling starts,
all choices for εS,∆tl require a massive reduction of the time step size. As the final steady state
is approached, the time step size is increased until it reaches ∆tmax for all εS,∆tl . As expected,
smaller tolerances result in smaller values of the time step size ∆tn. Time step repetitions are
only performed at the beginning of the buckling event, where some steps required one or two
repetitions. All other portions of the simulation get along without time step repetitions.

The influence of the spatial discretization on the evolution of the time step size is studied as
well. Figure 4.22 reports the evolution of ∆tn over t for the setting εS,∆tl = 5 · 10−4 and εF,∆tl =
10−3 for the coarse and the fine mesh. Both curves deviate only very little from each other. Due
to the different spatial refinements, both meshes results in different buckling patterns, while
the finer mesh includes more localized buckling phenomena. Thus, more localized changes of
dynamic behavior occur during the simulation resulting in slightly smaller time step sizes during
the phase of increasing time step sizes t ∈ [10, 25]. Besides these local phenomena, the spatial
discretization does not influence the adaptive time stepping as expected.

The energy production per time step ∆En→n+1
Γ as discussed in Section 3.2.4 is studied as

well. To put it into relation to the overall energy of the system, the kinetic energy EF
kin of the

fluid field is computed as well. Since energies of the solid are comparatively small, they are not
included into the discussion and the fluid’s kinetic energy is used as an indicator for the energy in
the entire system. Figure 4.23 shows the kinetic energy EF

kin, the energy production ∆En→n+1
Γ

per time step as well as its accumulation En+1
Γ . The fluid kinetic energy EF

kin is governed
by the prescribed inflow velocity and, thus, shows a huge increase when the inflow velocity
is raised at t = 5. Oscillations occur during the buckling phase, but finally a constant level
of kinetic energy is reached when a stationary state is approached. Looking at the interface,
energy production per time step ∆En→n+1

Γ as well as its accumulation EΓ is by far smaller,
namely by three to five orders of magnitude. The main accumulation of artificial interface energy
happens during the buckling event. Before and after the buckling, interface energy production
per time step is around 10−6. This along with the previous analysis by MAYR et al. [163] confirm
numerically that the amount of energy production due to the mismatch tFm 6= tSm is negligible,
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(a) initial state at t = 0.0 (b) t = 4.9747 (c) t = 5.4505

(d) t = 5.7908 (e) t = 6.2596 (f) t = 6.6262

(g) state of maximum deformation
at t = 7.3003

(h) state of maximum oscillation
at t = 8.2363

(i) final state at t = 50.0

Figure 4.19: Snapshots of the solution of a gasket at selected time steps using the fine mesh —
The fluid field is colored according to the magnitude of its velocity field denoted by |u|while the
structure field’s color is encoded with the displacement field magnitude denoted by |d|. Color
scales are calibrated at maximum deformation at t = 7.30. Simulation has been performed
with εS,∆tl = 10−3 and εF,∆tl = 10−3.
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Figure 4.20: Displacement and velocity in the gasket-like example — Starting from resting con-
ditions, large amplitudes in displacement and velocity occur during as soon s the buckling
starts. Afterwards, the solid settles in a stable equilibrium configuration. Results are obtained
with εS,∆tl = 5 · 10−4 and εF,∆tl = 10−3.
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Figure 4.21: Evolution of the time step size ∆tn for the gasket-like example — The time step
size is increased in the initial phase of the simulation. When the buckling starts, a massive
reduction of ∆tn is performed, while it can increase again towards the end of the simulation.
Behavior for the coarse mesh (top) and the fine mesh (bottom) are similar.
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Figure 4.22: Influence of the mesh on the evolution of the time step size ∆tn for the gasket-
like example — The time step size evolves very similarly for both meshes. The finer mesh
sometimes requires slightly smaller ∆tn due to localized dynamic effects that come along with
the better resolved buckling patterns.
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Figure 4.23: Energies in gasket-like example — The kinetic energyEF
kin of the fluid field largely

increases with the increase in inflow velocity at t = 5 and ranges in the order of magnitude
of 100. At the interface, energy production per time step ∆En→n+1

Γ as well as its accumula-
tion EΓ are in the range of 10−5 and 10−3 and, thus, considered negligible.
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especially in practical applications, where energy also heavily depends on viscous effects of the
fluid as well as on the dissipation of the numerical scheme at hand.

4.4 Summary
The goal of controlling the temporal discretization error has been addressed in this chapter. After
a brief introduction to some fundamental terminology of ODEs, a well-established adaptive time
stepping scheme based on a posteriori error estimation has been reproduced from literature.
Several approaches to practical error estimation have been reviewed.

By combining error estimation in the solid and the fluid field and additionally taking into
account the fluid-structure interface, a novel adaptive time stepping scheme for monolithic FSI
solvers has been proposed. Guidelines for the choice of all algorithmic parameters have been
discussed. Several numerical examples have been used to demonstrate its properties, in particu-
lar the ability to guarantee a user-given level of accuracy while limiting the computational cost
to the amount that is necessary. Remarkable savings compared to the case of a non-adaptive
time stepping scheme could be achieved. The combination of guaranteed accuracy and compu-
tational efficiency is considered as highly relevant for practical applications.
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5 Solution Methods for the Monolithic
System of Equations

The most crucial part of applying monolithic schemes to FSI problems is the solution process. It
is common to address the nonlinearity with a NEWTON scheme, while the linear systems (3.46)
or (3.53) are usually solved with a preconditioned KRYLOV solver [89,112,142,163,227]. Due
to the non-symmetry of the system of linear equations, usually the Generalized Minimal Resid-
ual (GMRES) method by SAAD and SCHULTZ [208] is applied as iterative linear solver. The
most difficult part is defining a good preconditioner for GMRES. A variety of approaches has
been reported in literature. GEE et al. [89] proposed very powerful physics-based block pre-
conditioners based on algebraic multigrid (AMG) methods, which are briefly summarized in
Sections 5.1.2 and 5.1.3. A re-implementation of the ideas by GEE et al. [89] with extensions
to monolithic coupling of an arbitrary number of fields in a modular software framework within
the in-house code Baci has been done by VERDUGO and WALL [240]. HEIL [112] and HEIL et
al. [113] use block-triangular approximations to the full Jacobian as preconditioner. A precon-
ditioner based on pseudo-solid mesh updates is proposed and analyzed by MUDDLE et al. [172].
Several preconditioner designs are briefly sketched by TEZDUYAR and SATHE [227] in the con-
text of space-time finite elements, among them the block-iterative coupling used by GEE et
al. [89], cf. Section 5.1.2. By extending the work of CROSETTO et al. [40], a block precondi-
tioner for the factorized and statically condensed FSI matrix with a SIMPLE preconditioner for
the fluid subproblem has been proposed recently by DEPARIS et al. [53], see also [83].

To ease the discussion of all preconditioning techniques, the linear systems (3.46) and (3.53)
for the fluid-handled and structure-handled case are transformed to the general form S SSF

A AGF

FFS FFG F


 ∆xS

∆xG

∆xF

 = −

 rS

rG

rF

 (5.1)

by field-wise grouping of unknowns and subsequent rearrangement, such that an arrow-shaped
block matrix arises. To ease notation, the distinction of interior and interface degrees of free-
dom as well as the choice of master and slave have been dropped without loss of generality.
Additionally, time step and iteration indices are omitted to simplify notation. The superscripts
at the off-diagonal blocks indicate coupling between two fields.

Three FSI-specific preconditioners are discussed in this chapter. At first, the two existing
approaches by GEE et al. [89] are reviewed briefly in Section 5.1, namely a block-iterative cou-
pling with AMG-based approximations of the block inverses and a fully coupled AMG precon-
ditioner, that incorporates the interface coupling on the coarse levels of a multigrid hierarchy of
the coupled problem. Additionally, some extensions of the fully coupled AMG preconditioner,
namely dealing with different numbers of levels in each field as well as a smoother based on
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a SCHUR complement approximation, are introduced. Both approaches make use of the sepa-
ration of physical fields and are commonly referred to as physics-based block preconditioners.
They are very powerful, but exhibit one major drawback, namely the accumulation of error at the
fluid-structure interface. This is addressed by proposing a novel hybrid additive/multiplicative
SCHWARZ preconditioner in Section 5.2. It overcomes the drawbacks of classical physics-based
block preconditioning approaches by hybridizing the existing FSI preconditioners of multiplica-
tive SCHWARZ type with an additional additive SCHWARZ preconditioner. It is based on an
overlapping domain decomposition with subdomains spanning across the interface, which are
then treated with special subdomain solvers to reduce error accumulation at the interface. This
chapter concludes with some remarks on practical aspects of the involved linear and nonlinear
solvers in a monolithic setting, cf. Section 5.3. A detailed comparison and performance study
of all preconditioners is performed later using numerical examples, cf. Chapter 6. Finally, an
intermediate summary is given in Section 5.4.

5.1 Physics-Based Multilevel Block Preconditioning for
FSI

A variety of preconditioners for block matrices as given in (5.1) is available in literature. Com-
mon to all these approaches is the fact that they exploit the block structure of the system matrix.
The block structure usually corresponds to the grouping of unknowns of different physical fields,
while coupling between the fields is reflected by off-diagonal blocks. Thus, such precondition-
ers are often referred to as physics-based block preconditioners. Some approaches have already
been listed at the beginning of this chapter.

After a brief introduction to algebraic multigrid methods, that are core parts of the pre-
sented preconditioners, two multi-level block preconditioners by GEE et al. [89] are summarized
briefly, namely a block-iterative coupling with approximate block inverses in Section 5.1.2 and
a fully coupled algebraic multigrid preconditioner in Section 5.1.3, .

5.1.1 Algebraic Multigrid Methods in a Nutshell

One of the most powerful methods for the preconditioning of systems of linear equations that
arise from finite element discretizations are algebraic multigrid (AMG) methods. Only a very
brief summary is given here. For an intuitive presentation of multigrid methods in general
and AMG methods in particular see the introductory book by BRIGGS et al. [27]. More de-
tailed derivations as well as mathematical foundations are given in the monographs by HACK-
BUSCH [108, 109] or WESSELING [247] for example. The relation between multigrid methods
and domain decomposition techniques is discussed by SMITH et al. [220] for example. A very
recent literature survey on multigrid methods is given in the thesis by WIESNER [249].

The idea behind multigrid methods is to introduce coarse representations of the problem at
hand and use solutions of these coarse problems to accelerate the solution process of the original
fine level problem. This strategy heavily relies on the fact, that high-frequency components of
the error can effectively be reduced by cheap and simple relaxation-type smoothers, e.g. JACOBI

or GAUSS–SEIDEL smoothers, while their effect on low-frequency modes is often very poor. By
transferring the low-frequency modes to a coarser representation of the problem, they appear as
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Figure 5.1: Sketch of a 3-level multigrid V-cycle — On each level `, a smoother S` is applied to
smooth the different components of the error on different levels. On fine and medium levels, one
usually applies cheap smoothers, while a direct solve is performed on the coarsest level. Levels
are visited in the order indicated by the dashed arrows. Quantities are transferred between the
levels by restriction and prolongation operators R` and P`, respectively.

high-frequency modes relative to the coarser ’grid’ and, thus, can again be effectively tackled
by relaxation-type smoothers. This process is done recursively until a small enough coarse
system of equations is reached that can be treated with a direct solver efficiently. Each coarse
representation, referred to as level in the context of AMG methods, provides a correction to the
solution of the next finer representation. The idea behind multigrid methods can be summarized
as applying cheap smoothing techniques on differently coarse representations of the original
problem at hand to reduce the different components of the error effectively on different levels
of the multigrid hierarchy.

A variety of schemes, in which the levels are visited, is available in literature. In this thesis,
V-cycles are used exclusively. Figure 5.1 exemplarily shows a 3-level multigrid V-cycle. During
the pre-smoothing process, the algorithm starts at the fine level and works its way down to
the coarsest level, while the post-smoothing process proceeds in the opposite direction. The
transfer of quantities between the levels is managed by the level transfer operators, namely
the restriction operators R` for the transfer from a fine level ` to a coarse level ` + 1 and
the prolongation operators P` for the transfer from any coarse level ` + 1 to a fine level `,
respectively. On each level, smoothing techniques are applied, that can be completely specified
by the user. On the coarsest level, one usually employs a direct solver. Depending on the
physical field at hand, specific choices of transfer operators and smoothers are beneficial or
even necessary.

Although AMG can be applied as a stand-alone solver for systems of linear equations, it
is usually applied to precondition a KRYLOV solver. For elasticity problems, a very popular
choice is the application of smoothed aggregation (SA) techniques as introduced by VANĚK et
al. [234–236], BREZINA [26], or MANDEL et al. [160]. For convection dominated flow, an
energy minimization approach by SALA et al. [210] is available which is also referred to as
PETROV–GALERKIN algebraic multigrid (PG-AMG). Multigrid transfer operators for nonsym-
metric systems based on SCHUR complements and GALERKIN projections have been developed

83



5 Solution Methods for the Monolithic System of Equations

by WIESNER et al. [250]. In this thesis, SA-AMG is used for solid and ALE, while PG-AMG
is applied to the fluid’s equations. Implementations utilize the ML package [90] of the Trilinos
libraries [116].

5.1.2 A Block-Iterative Approach with an Internal Algebraic
Multigrid Preconditioner

As given in the thesis by KÜTTLER [145] or by GEE et al. [89], a block version of the GAUSS–
SEIDEL method, referred to as block GAUSS–SEIDEL (BGS), can be used as preconditioner for
the monolithic system of equations (5.1). It can be achieved by dropping the upper-triangular
coupling blocks in (5.1), yielding the forward BGS preconditioner

M−1
BGS =

 S

A

FFS FFG F


−1

. (5.2)

For an efficient application of M−1
BGS, the required block inverses S−1, A−1, and F−1 are ap-

proximated by field-wise preconditioning operations M−1
S , M−1

G , and M−1
F based on field-

wise AMG hierarchies. In these field-wise hierarchies, a variety of smoothers are available,
among them relaxation-based smoothers like damped JACOBI or damped, possibly symmetric
GAUSS–SEIDEL methods, CHEBYSHEV polynomials in case of symmetric matrices, or incom-
plete LU (ILU) factorizations with different fill levels, all implemented in Trilinos’ Ifpack
package [209]. On the coarse grid, usually a direct solver is applied, most often from the
Unsymmetric MultiFrontal PACKage (UMFPACK) [43]. Moreover, embedding of
the BGS preconditioner into a damped RICHARDSON iteration is straightforward, cf. KÜTT-
LER [142], but is not utilized in this thesis. Rather an additional GMRES iteration is performed,
which is much more effective than sweeping through the preconditioner twice per GMRES iter-
ation.

This preconditioner is denoted by BGS(AMG), since it uses a BGS method on the outside
with embedded AMG preconditioners for each physical field. A sketch of the algorithm is
given in Figure 5.2. The solid, ALE, and fluid multigrid V-cycles are denoted by S, G, and F,
respectively. Arrows indicate the coupling between the fields, which is realized via the BGS
method and is incorporated on the fine level only.

Advantages of this approach are as follows: First, it is very easy to implement. The BGS
method is very simple and just consists of a few lines of code, while all parts of the algorithm
related to multigrid methods can be handed off to a black box multigrid software package. Such
software packages provide a variety of pre-implemented and ready-to-use aggregation strategies
and level smoothers. In Baci, Trilinos’ ML package [87] is used for the FSI preconditioner,
while a more recent implementation [240] uses the MueLu package [188]. Second, the setup
cost is comparatively small, since the BGS does not involve any setup at all and the AMG setup
done by ML is highly optimized. Third, by using AMG as a black box, the necessary insight
is less than when the multigrid related algorithms have to be implemented by the user himself.
Fourth, since the field-wise multigrid hierarchies do not interact with each other directly, there
is no restriction on the number of levels in each of them. This is beneficial in cases, where for
example the solid discretization is much smaller than the fluid and ALE discretization, which
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S G F

Block GAUSS–SEIDEL

Figure 5.2: Block GAUSS–SEIDEL preconditioner with AMG-based approximate block inverses
— A block GAUSS–SEIDEL method is used to transfer information among the fields, while the
action of field-wise block inverses is approximated with field-individual multigrid schemes.
Data is exchanged between the fields only on the fine level ` = 0. Thus, the numbers of
levels nS,`, nF,`, and nG,` of the solid, fluid, and ALE hierarchies do not have to match. This
sketch is inspired by the presentation in [142].

could lead to a larger number of levels nF,` and nG,` in fluid and ALE hierarchies, respectively,
than in the solid hierarchy with nS,` levels. Fifth, each hierarchy is allowed to perform a dynamic
rebalancing if the coarse level systems are too small to be solved on all involved processors.
Such a rebalancing can be crucial to obtain optimal multigrid scalability and performance.

However, this approach also exhibits some drawbacks. The main issue is the fact that the
coupling information is not included on the coarse levels of the multigrid hierarchies. By ex-
changing coupling information among the fields only on the fine level, coupling is addressed by
means of the BGS method only and cannot benefit from the powerful multigrid performance.
Following the experiment of thoughts as given by GEE et al. [89], it can be argued, that even
if the block inverses can be computed exactly, the error after one application of the precondi-
tioner concentrates at the fluid-structure interface. To reduce those errors, quite some additional
KRYLOV iterations need to be performed. This is expensive, especially with the notion, that one
needs to deal with the full system just to reduce the error in a small, but important portion of it.

5.1.3 A Fully Coupled Algebraic Multigrid Preconditioner

To cure the main drawback of the block-iterative coupling, namely the lack of interface coupling
on the coarse levels ` > 0 of the multigrid hierarchies, GEE et al. [89] inverted the nesting of
BGS and field-specific AMG hierarchies to construct an AMG hierarchy for the coupled FSI
problem. Its key feature is the inclusion of the FSI coupling terms on the coarse levels. Hence,
it is referred to as fully coupled algebraic multigrid preconditioner.

The idea of the fully coupled AMG preconditioner for FSI as given by GEE et al. [89] or in
the thesis by KÜTTLER [142] is illustrated in Figure 5.3. A fully coupled multigrid hierarchy
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FSI

Figure 5.3: Fully coupled AMG preconditioner for FSI — A fully coupled multigrid hierarchy
is constructed, that includes FSI coupling terms on the coarse levels as well. This strongly
enhances the preconditioning effect, since interface-related errors can be tackled by the coarse
grid correction effectively. A BGS method or an approximate SCHUR complement approach are
applied as level smoothers. This sketch is inspired by the presentation in [142].

is constructed algebraically, such that the FSI coupling terms are included on the coarse levels
as well. FSI-specific smoothers are applied on each level of the fully coupled AMG hierarchy.
This strongly enhances the preconditioning effect, since interface-related errors can be tackled
by the coarse grid correction effectively. Of course, suitable level smoothers need to be defined,
that are able to handle the block system on each level.

Setup of the Fully Coupled AMG Hierarchy

Assuming the existence of field-specific restriction operators RS
` , RG

` , and RF
` as well as prolon-

gation operators PS
` , PG

` , and PF
` associated with the level transfer between levels ` and ` + 1

for solid, ALE, and fluid field, respectively, a representation of the monolithic system of linear
equations (3.39) on level ` ∈ [0, n` − 1] can be given as

J`∆x` = −r`, (5.3)

where the multigrid hierarchy is assumed to consist of n` levels. To ease notation, time step and
iteration indices have been dropped. On level `+ 1 with ` ∈ [0, n` − 1], the coarsened Jacobian
in (5.4) reads

J`+1 =

 RS
`

RG
`

RF
`


 S SSF
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` RF
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F
`

 ,
(5.4a)
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while the residual vector r`+1 is computed as restriction of the fine level residual vector, reading

r`+1 =

 RS
`

RG
`

RF
`


 rS

rG

rF


`

=

 RS
`r

S
`

RG
` r

G
`

RF
` r

F
`

 . (5.4b)

It is stressed that all building blocks for the coarse-level FSI system of equations are readily
available from the single-field multigrid hierarchies. The only tasks to be performed by the
user’s implementation itself is the construction of the off-diagonal coupling blocks in (5.4a) as
well as defining a smoother on each level, that is capable of dealing with the block structure
of (5.4).

Note that (5.4) requires the number of levels in solid, fluid, and ALE hierarchies to be equal,
i.e. nS,` = nF,` = nG,` = n`. Especially in cases of largely differing sizes of solid and fluid
discretizations, this seems to be a limiting factor, since the larger field cannot be coarsened
as much as necessary. However, this can be easily cured by revisiting the construction of the
off-diagonal coupling blocks. For levels ` < min{nS,`, nF,`, nG,`}, coarsening is performed as
given in (5.4). As any field reaches its coarsest level prior to the other fields, this field’s matrix
is not coarsened further. This is achieved by setting restriction and prolongation operators of
this field to be the identity I`. Only the other fields are coarsened further. Exemplifying the
case nS,` < nF,` = nG,`, coarsening is performed as given by (5.4) until ` = nS,` − 1. Then,
further coarsening follows the strategy

J`+1 =

 I`
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`

RF
`
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(5.5a)

and

r`+1 =

 I
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` r

G
`

RF
` r

F
`

 . (5.5b)

where the level index `S for the solid field is kept constant at `S = nS,` − 1 while fluid and
ALE level indices are progressively incremented with ongoing coarsening until ` = nF,` − 1 =
nG,` − 1. Note that the solid block S`S in (5.5) is not affected by further coarsening of fluid and
ALE fields. Figure 5.4 illustrates this strategy using graphical representations of V-cycles. Of
course, a similar strategy can be applied for the cases with more levels in the solid hierarchy
than the fluid and ALE hierarchies or even in cases where all three hierarchies have different
numbers of levels.
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S G F

Figure 5.4: Fully coupled multigrid hierarchy with different numbers of levels per field exem-
plifying nS,` < nF,` = nG,` — For levels ` < min{nS,`, nF,`, nG,`} − 1 (red and green), the
coarse problem is constructed via (5.4). After the solid reached its coarsest level, further coars-
ening happens only in fluid and ALE (purple), while the off-diagonal coupling blocks need to
be treated properly, cf. (5.5).

Smoothers for the Fully Coupled AMG Hierarchy

On each level `, a smoother needs to be defined. On the one hand, the BGS method (5.2) can
be applied as level smoother, while the actions of the block inverses are approximated with the
same field-specific one-level preconditioners that already have been used as level smoothers
in the internal AMG hierarchies of the BGS(AMG) approach. On the coarse level, usually a
BGS(LU), i.e. a block GAUSS–SEIDEL method with exact block inverses, is preferred over a
direct solve on the fully coupled coarse level matrix. The latter would require a transformation
of the block sparse matrix storage format into a single sparse matrix format, which is computa-
tionally expensive due to a change of the matrix type.

On the other hand, a SCHUR complement approximation can be used as a level smoother.
Thereby, the fluid SCHUR complement is approximated via

ŜF = F−FFSD−1
S SSF −FFGD−1

G AGF (5.6)

with DS = diag (S) and DG = diag (A) being pure diagonal matrices, that contain the diagonal
entries [Sii] and [Aii] of the solid and ALE matrix S and A, respectively. Application of the
SCHUR complement approach on any level ` ∈ [0, n` − 1] is done as

∆xF
` = −

(
ŜF
)−1

rF` ,

∆xS
` = −S−1

(
rS` + SSF

` ∆xF
`

)
,

∆xG
` = −A−1

(
rG` + AGF

` ∆xF
`

)
.

(5.7)

In practical applications, the inverses in (5.7) are never formed explicitly. As the approximate
SCHUR complement is used as preconditioner for an outer KRYLOV method, it is sufficient to
approximate the action of the inverses in (5.7) on a vector by any, often cheap, iterative method.

Independently, LANGER and YANG [149] proposed a very similar SCHUR complement pre-
conditioner, but they replace DS and DG by point-wise block diagonal matrices. They used it as
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stand-alone one-level preconditioner, yielding mesh size dependency of the number of GMRES
iterations, which had been cured by applying the fully coupled AMG method described in this
section. Additionally, they briefly touched the cases where SCHUR complement approximations
for the solid and ALE block are constructed, but considered them as not worth to investigate,
since their construction is not cheaper than (5.6). Their numerical results show very good per-
formance in terms of GMRES iteration counts. However, parallel performance has not been
assessed and a detailed comparison to other state of the art FSI preconditioning methods is
missing in their report.

Both the BGS and the approximate SCHUR complement smoothers can be embedded into
stationary RICHARDSON iterations. Most often, only a single iteration is performed with a
damping factor ω`. Multiple iterations need to be performed only in very demanding problems.
Embedding of the fully coupled AMG preconditioner in a RICHARDSON iteration around the
coupled V-cycle is possible, but not applied for similar reason as in the case of BGS(AMG).

Depending on the actual choice of the level smoother, i.e. BGS or approximate SCHUR com-
plement, this preconditioner is referred to as AMG(BGS) or AMG(Schur), respectively. This
notation indicates, that the BGS or approximate SCHUR complement are embedded into the
fully coupled AMG method. This idea will generally be referred to as AMG(BGS/Schur), when
the distinction of the actual level smoother is not important.

Revisiting the experiment of thoughts used to motivate the AMG(BGS/Schur) preconditioner,
a certain amount of improvement can be expected, since the multigrid coarse level corrections
reflect the interface coupling. However, the basic issue of a block preconditioner that relies on
the physics-based block structure of the matrix is still present. Thinking in terms of AMG(BGS),
the fine and coarse level coupling is still only addressed by means of the BGS method, even if the
block inverses inside the BGS method are computed exactly. Hence, a concentration of error at
the fluid-structure interface is still expected, even if it is less pronounced as for the BGS(AMG)
approach.

5.2 A Novel Hybrid Additive/Multiplicative SCHWARZ

Preconditioner for Surface-Coupled Problems

Both preconditioning approaches presented in Section 5.1 exploit the block structure of the FSI
system matrix that is related to the separation of physical fields by the fluid-structure interface.
A commonality of all physics-based block preconditioners is the concentration of error at the
fluid-structure interface as already indicated in the experiment of thoughts at the end of Sec-
tion 5.1.2. The present section aims at developing a preconditioner that in particular addresses
this issue. This can be achieved by combining the existing physics-based block preconditioners
denoted by M−1

MS with an additional preconditioner M−1
AS that is based on a purposely ’non-

physics-based’ overlapping domain decomposition. By neglecting the location of the interface
when generating the domain decomposition, the resulting subdomains span across the fluid-
structure interface on purpose. By using high-quality solves, i.e. direct or close-to-direct solves,
on the patches across the interface, the accumulated error stemming from the physics-based
block preconditioner can be reduced effectively. Of course, the subdomain solves have to be
insensitive to the mixed-physics block matrices that are encountered on subdomains spanning
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across the FSI interface. Motivations of the notations M−1
MS and M−1

AS will be given below. A
preliminary implementation of such an approach has been done by NOLL [177].

After a brief introduction to overlapping domain decomposition and SCHWARZ methods in
Section 5.2.1, requirements and setup of the desired domain decomposition are detailed in Sec-
tion 5.2.2. Technically, combining the preconditioners is realized by embedding them into a
RICHARDSON iteration, which will be described in Section 5.2.3. A demonstrative example is
then given in Section 5.2.4, while performance evaluations on a larger scale will be carried out
in Section 6.1.2.

5.2.1 Overlapping Domain Decomposition and SCHWARZ Methods

Only a very brief introduction of domain decomposition (DD) methods and their relation to
SCHWARZ methods is given, which is mainly limited to introduce the usual wording related to
such methods. For comprehensive and detailed introductions of DD and SCHWARZ methods it is
referred to the monographs by QUARTERONI and VALLI [195], SMITH et al. [220], or TOSELLI

and WIDLUND [228], for example.
In this thesis, only overlapping DD methods are used, while the case of non-overlapping DD

methods is not treated at all. In overlapping DD methods, the entire computational domain Ω is
decomposed into M overlapping subdomains Ωm with m = 0, . . . ,M −1. Then, the problem is
reformulated as a local DIRICHLET-type problem on each subdomain. Exchange of information
among the subdomains happens via the overlap of the subdomains. In parallel computer archi-
tectures, subdomains Ωm are often assigned to a processor m to allow for parallel execution and
speed-up of the computation.

Two elementary methods, known as additive SCHWARZ method and multiplicative SCHWARZ

method, will play an important role in defining the FSI preconditioners. Both are based on an
overlapping DD. Starting from a matrix representation that groups unknowns according to sub-
domains, one ends up with an additive SCHWARZ method by dropping all off-diagonal blocks,
which equals a block-JACOBI approach. Solutions on all subdomains can be computed simulta-
neously, since they do not depend on other subdomains. In opposite, multiplicative SCHWARZ

methods are obtained by dropping only the upper-triangular off-diagonal blocks, yielding a
block-GAUSS–SEIDEL approach. Solving for each subdomain needs to be done one after an-
other, since the lower-triangular off-diagonal blocks couple the subdomains and, thus, require
the solution in subdomain m − 1 to be known in order to solve on subdomain m. For further
details the reader is referred to the literature listed above.

5.2.2 Requirements for the Domain Decomposition

To allow for hybridization of the existing physics-based block preconditioners with the addi-
tional preconditioner M−1

AS that specifically tackles error accumulation at the interface, the par-
allel distribution of the problem among all processors must satisfy certain requirements. They
will be discussed briefly in the following.

A typical overlapping domain decomposition for purely physics-based block preconditioners
is illustrated in Figure 5.5. The entire computational domain Ω is separated into a solid do-
main ΩS and a fluid domain ΩF by the fluid-structure interface ΓFSI. To speed up computations
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ΓFSIΩF ΩS

proc 1proc 0 proc 2 physical fields

Figure 5.5: Physics-based overlapping domain decomposition of a FSI problem — At the fluid-
structure interface ΓFSI, the domain is partitioned into solid and fluid subdomains indicated by
dashed lines. Each field can further be distributed among several processors by an overlapping
domain decomposition indicated by the colored patches. Overlap of subdomains is not depicted
for clarity of presentation.

on parallel hardware architectures, each physical field can be partitioned among ncore proces-
sors by an overlapping domain decomposition, cf. ’proc 0’, ’proc 1’, and ’proc 2’ in Figure 5.5.
For simplicity of illustration, coloring of the subdomains is done based on the ’interior’ nodes
of each subdomain, while the overlap is not visualized. By passing the solid and fluid domain
separately to a partitioning tool like Zoltan [23], the partitioner is not aware of the fluid-
structure interface. This results in domain decompositions of the solid and the fluid field, where
subdomain boundaries at the interface inside the solid domain do not necessarily coincide with
subdomain boundaries of the fluid field. Note that every processor handles a portion of each
field, i.e. owns nodes of both solid and fluid subdomains.

Remark 5.2.1 Since the fluid field is solved on a moving domain by means of an ALE descrip-
tion, the ALE field needs to be distributed among the processors as well. Usually, a domain
decomposition is performed for the fluid field only and is then transferred to the ALE field to
guarantee the same layout. This reduces communication and data exchange among proces-
sors throughout the computation. In the sequel, domain decomposition of the ALE field is not
mentioned anymore, since it is assumed to be matching with the fluid’s decomposition.

This mismatch of subdomains at the interface can be overcome by basing the partitioning on
a monolithic graph, that consists of the solid and fluid graphs and also reflects the interface cou-
pling. It is created as the combination of the solid and the fluid graph with additional insertion of
off-diagonal coupling entries for the interface coupling. The coupling can be extracted from the
mortar projection operator P defined in (3.43) where a non-zero entry Pij indicates the coupling
between the ith degree of freedom of the slave field to the jth degree of freedom of the master
field and vice versa. It is created as an auxiliary graph purely for the purpose of creating the
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ΓFSIΩF ΩS

proc 1proc 0 proc 2 interface patch

Figure 5.6: Overlapping domain decomposition based on a monolithic graph of a FSI problem
— In such a decomposition, subdomains span across the interface like ’proc 0’ and ’proc 2’.
They are crucial for the effectiveness of the proposed preconditioner. Some processors might
not own portions of both fields, e.g. ’proc 1’. Overlap of subdomains is not depicted for clarity
of presentation.

desired overlapping DD. If the monolithic graph has been constructed properly, a graph-based
partitioner cannot distinguish between solid and fluid field and, thus, will produce subdomains,
that are likely to span across the interface as illustrated in Figure 5.6. At the interface, opposite
solid and fluid subdomains reside on the same processor, namely ’proc 0’ and ’proc 2’ in Fig-
ure 5.6. These processors, that can be seen as patches spanning across the interface, will play a
key role in the design of the proposed preconditioner. On the other hand, some processors might
not own a portion of each field, for example ’proc 1’ in Figure 5.6, that only owns solid nodes,
but no fluid and ALE nodes. Again, coloring of the subdomains is done based on the ’interior’
nodes of each subdomain, while the overlap is not visualized for simplicity of illustration. A
physics-based overlapping DD and one based on a monolithic graph are compared to each other
in Figure 5.7 using a one-dimensional setting. The mesh (bottom) is divided in solid and fluid
portions ΩS and ΩF by the fluid-structure interface ΓFSI. The physics-based overlapping DD
(middle) partitions each physical field into three subdomains with the interface coinciding with
a subdomain boundary. By partitioning of a monolithic graph (top), only three subdomains are
generated in total, where one of them spans across the interface, namely the one associated with
’proc 1’. In particular this subdomain is supposed to address error accumulation at the interface,
that results form the physics-based block preconditioners.

Remark 5.2.2 A fundamental difference between the physics-based overlapping domain de-
composition and the one obtained from a monolithic graph is as follows: In the former one,
every processor owns nodes of every physical field. In the latter one, only the subdomains that
span across the interface have their share of the solid and the fluid field, while those subdomains
away from the interface contain portions of either the solid or the fluid and the ALE field only.
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monolithic
graph

physics-
based

mesh

ΓFSIΩF ΩS

proc 1proc 0 proc 2

Figure 5.7: Overlapping domain decompositions for FSI preconditioners — An exemplary one-
dimensional FSI mesh (bottom) is partitioned by a physics-based overlapping DD (middle) and
an overlapping DD based on a monolithic graph (top). In the latter case, the subdomain associ-
ated with ’proc 1’ spans across the interface ΓFSI.

This matters in certain aspects of the implementation that are related to the layout of the MPI
communicator.

The implementation in the in-house research code Baci [243] heavily relies on the fact that
all processors own portions of all physical fields, since many steps throughout the computation
are done field-by-field-wise, e.g. the residual evaluation. If one processor does not contain
any solid nodes for example, this processor is idle during the solid’s residual evaluation. This
is not an optimal design when thinking in terms of parallel performance. However, loss of
performance is outweighted by the speed-up due to the new preconditioner as can be seen in the
performance evaluation in section 6.1.2. This issue can be cured by a more sophisticated, but
appropriate design of the MPI communicators. By introducing sub-communicators that group
processors according to the number and type of fields that they own and applying a suitable
load-balancing strategy, it can be avoided that single processors are idle. As this requires
major restructuring of the setup of the MPI communicators, this is subject to future work.

Alternatively, one could come up with an overlapping domain decomposition that on the one
hand exhibits interface-spanning subdomains to satisfy the requirements for the hybrid precon-
ditioner, but on the other hand is such that every processor owns solid, fluid, and ALE nodes.
Such an approach has been tested by NOLL [177]. However, creation of this type of overlapping
domain decomposition turned out to be a very difficult and tricky task especially in the case of
a large number of subdomains.

Using the overlapping domain decomposition based on a monolithic graph, the linear sys-
tem (5.1) is rather presented as

Ax = b (5.8)

with A, x and b replacing the system matrix J`, the solution increment vector ∆x`, and the
right-hand side vector −r`. This also indicates, that the block structure is of no importance.
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Sorting all unknowns by their affiliation to subdomains yields the matrix representation

A =


A00 A01 · · · A0n

A10 A11 · · · A1n

...
... . . . ...

An0 An1 · · · Ann

 (5.9)

distributed among n subdomains, where n usually equals the number of processors ncore. Matri-
ces Aii are restrictions of the global matrix A to processor i, while the off-diagonal matrices Aij

account for the coupling between the local subproblems on processors i and j. All processor-
local matrices in (5.9), especially the off-diagonal ones, are sparse.

5.2.3 Setup and Application of the Preconditioner

To setup the combined preconditioner, two building blocks are necessary, namely any of the
already existing physics-based block preconditioners M−1

MS from Section 5.1 plus the additional
preconditioner M−1

AS. Construction, setup, and implementation of the physics-based block pre-
conditioners has already been detailed in Section 5.1. The additional preconditioner M−1

AS is
obtained by dropping all off-diagonal coupling blocks in (5.9), which results in an additive
SCHWARZ preconditioner

M−1
AS =


A00

A11

. . .

Ann


−1

=


A−1

00

A−1
11

. . .

A−1
nn

 . (5.10)

In order to tackle error accumulation due to physics-based block preconditioners and to benefit
from the domain decomposition, where subdomains span across the interface on purpose, the
subdomain solve A−1

ii on processor i needs to be of a type that is insensitive to mixed-physics
block matrices. This rules out BGS-type methods as used in physics-based preconditioners, but
opens the field to direct solvers. Such high quality solves on subdomains, that span across the
interface, enable an efficient reduction of errors remaining from the application of a physics-
based block preconditioner.

Commonly used direct solvers are often based on LU factorizations, that decompose the ma-
trix A of the linear system into a lower triangular matrix L and an upper triangular matrix U
such that A = LU [44, 166, 232]. However, matrices L and U are no longer sparse even for
sparse A, which usually makes their computation too expensive in terms of time and memory
consumption. This can be remedied by approximations usually referred to as incomplete LU
(ILU) factorizations [37, 165, 207]. Approximation quality of ILU factorizations can be con-
trolled by choosing a fill level k, which is then denoted by ILU(k). The cheapest method is
ILU(0), that proceeds as in a full LU factorization, but drops all entries in L and U, that are not
in the sparsity pattern of A. Larger fill levels k > 0 allow for additional fill-in in L and U, which
brings them ’closer’ to the exact factorizations. Often, ILU(0) is sufficient for a strong precondi-
tioning effect, while additional fill-in does not pay off when having in mind the increased setup
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and storage costs [209] for fill levels k > 0. In this thesis, such incomplete LU factorizations are
performed by Trilinos’ Ifpack package [209]. The cost of the factorizations is directly related
to the size of the subdomains. To allow for a fast setup of the additive SCHWARZ preconditioner,
sizes of subdomains should not be too large. In the numerical example in Section 6.1.2, they are
chosen in the range of ndof/core ≈ 7600.

Now, light can be shed on the notations. The physics-based block preconditioners M−1
MS

from Section 5.1 are formally of multiplicative SCHWARZ type, which has been indicated by
the subscript MS. Respectively, the notation M−1

AS of the additional preconditioner with its
subscript AS refers to additive SCHWARZ methods.

Remark 5.2.3 The initial intention in the design of the preconditioner was to address error
accumulation particularly at the fluid-structure interface only as the error in the interior of
each subdomain is effectively addressed by the preconditioner M−1

MS. Thus, one could perform
subdomain solves only on those subdomains that have their share of the interface. All other
subdomains away from the interface can be dropped, i.e. , their local subdomain solves are
replaced by an identity matrix I. Assuming 3 subdomains in total and assuming that only pro-
cessors 0 and 2 contain a portion of the interface, the additive SCHWARZ preconditioner would
read

M−1
AS =

 A−1
00

I

A−1
22

 .
However, this does not result in savings of setup cost, as factorizations of Aii are performed
simultaneously on each processor. Processors with I would be idle, waiting for processors
with a portion of the interface to finish their factorizations. Hence, in this thesis all processors
perform local solves A−1

ii , which does not result in additional setup cost, but strengthens the
effect of the preconditioner even away form the interface.

The physics-based block preconditioner M−1
MS and the additional additive SCHWARZ precon-

ditioner M−1
AS are chained together to form the hybrid additive/multiplicative SCHWARZ precon-

ditioner. Equally, the shorter expression hybrid SCHWARZ preconditioner is used in this thesis.
It is applied as a symmetric multiplicative SCHWARZ method, reading

M−1
HS = M−1

AS ◦M
−1
MS ◦M

−1
AS (5.11)

where the additive SCHWARZ preconditioner is applied before and after the physics-based block
preconditioner. In GMRES iteration k, the preconditioner (5.11) is applied to the linear sys-
tem (5.8) via three stationary RICHARDSON iterations

xkI = xk0 + ωASM
−1
AS

(
b−Axk0

)
xkII = xkI + ωMSM

−1
MS

(
b−AxkI

)
xkIII = xkII + ωASM

−1
AS

(
b−AxkII

) (5.12)

with damping parameters ωAS and ωMS and the initial guess xk0. Intermediate steps after the
first and second RICHARDSON iteration are denoted by xkI and xkII, respectively, while the final
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result of the preconditioning operation is referred to as xkIII. Basically, it is possible to perform
multiple iterations of each of the three RICHARDSON iterations in (5.12) and also to wrap (5.12)
in a RICHARDSON iteration itself. However, these possibilities are not exploited for practical
applications. Additionally, damping parameters are chosen as ωAS = 1 and ωMS = 1 in this
thesis.

Remark 5.2.4 One-level additive SCHWARZ methods are known to result in increased itera-
tion counts, when the number of subdomains is increased [220]. Thus, the additive SCHWARZ

preconditioner M−1
AS is never applied as the only preconditioner without any multigrid precon-

ditioner. It is always applied in the hybrid setting together with a physics-based multigrid pre-
conditioner as given in (5.11) to enable mesh independency as demonstrated in the numerical
example in Section 6.1.2.

5.2.4 Proof of Concept and Demonstration of Improved Error
Reduction

To demonstrate the basic principle behind the proposed hybrid preconditioner numerically, a
reduced version of the well-known pressure wave example is studied. For a detailed description
of the example see Section 6.1. A very coarse mesh is used. The solid portion consists of 5904
unknowns, while fluid and ALE use 15908 and 11931 degrees of freedom, respectively. The
total number of unknowns is 33743. The problem is solved on 4 processors using an overlapping
domain decomposition based on a monolithic graph of the coupled problem.

For simplicity, only the linear system of equations in the first nonlinear iteration of the first
time step is considered. This system can be seen as exemplary for all time steps of the simula-
tion, since iteration counts are rather constant throughout the entire simulation as will be shown
in Section 6.1.2. The effectiveness of the hybrid preconditioner is assessed by comparing error
reduction through different preconditioners. On the one hand, a purely physics-based block-
iterative preconditioner, cf. Section 5.1.2, is applied. Assuming exact block inverses for each
block within the BGS method, errors after application of the preconditioner are only due to the
BGS method. Exact block inverses are computed via a direct solver, namely a LU decomposi-
tion. Thus, this preconditioner is referred to as BGS(LU). On the other hand, the newly proposed
hybrid preconditioner is configured as follows: The additive SCHWARZ portion uses direct LU-
based solves for each subdomain, while the interior multiplicative SCHWARZ method is the
aforementioned BGS(LU) approach to augment comparability. It is referred to as H-BGS(LU).

Two tests are performed: First, the linear system of equations is solved exactly. Efficiency
of the preconditioner is assessed in terms of the number of GMRES iterations required to reach
machine precision. The pure BGS(LU) method requires 41 GMRES iterations, while the hybrid
approach only takes 11 GMRES iterations until convergence to machine precision.

Second, the number of GMRES iterations is limited as detailed below. The effect of pre-
conditioning is evaluated by the achieved relative residual reduction as well as the remaining
error, i.e. the deviation of the approximate GMRES solution from the exact solution obtained
in the first test. For the hybrid preconditioner, only a single GMRES iteration is performed
to reduce error reduction to the effect of preconditioning as much as possible. One sweep of
H-BGS(LU) consists of three applications of LU-type preconditioners, namely the pre- and
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post-application of the additive SCHWARZ preconditioner plus one sweep of BGS(LU) in be-
tween. To achieve comparability, three GMRES iterations are performed with pure BGS(LU) to
also apply a LU-based method three times in total. The hybrid preconditioner achieves a relative
residual reduction ‖r1

lin‖2 / ‖r0
lin‖2 = 6.9 · 10−3, while the pure BGS(LU) allows for a reduction

up to ‖r3
lin‖2 / ‖r0

lin‖2 = 5.2 · 10−2, only. A visualization of the error is shown in Figure 5.8. For
the BGS(LU) preconditioner, the error after three GMRES iterations is plotted in Figure 5.8(a).
In the solid, the error is at the order of 10−4 (left) with slightly larger values at the fluid-structure
interface. The accumulation of error at the interface is even more pronounced for the fluid ve-
locity (middle) and fluid pressure (right), which are of order 100 and 103 − 104, respectively.
The same analysis for the hybrid preconditioner H-BGS(LU) is shown in Figure 5.8(b), showing
that massive error reductions could be achieved. The maximum error in solid displacements is
close to the fluid-structure interface, but at the order of 10−8, which resembles a reduction by
four orders of magnitude. Similar reductions are reported for errors in fluid velocities and fluid
pressure, whose maximum values are now at the order of 10−4 and 10−1, respectively. A graph-
ical representation of these reductions is given in Figure 5.8(c). The circular geometry is cut in
half. The upper half reports the errors for pure BGS(LU), the lower half those for H-BGS(LU).
Color scales are calibrated such that they span the combined range of errors of BGS(LU) and
H-BGS(LU). The significant reductions of the error by the hybrid preconditioner compared to
the purely physics-based one can be seen clearly.

Summing up, the idea behind the hybrid additive/multiplicative SCHWARZ preconditioner
could be confirmed numerically. Huge gains in error reduction could be achieved in this simple
example. Further performance analysis on a larger scale will be performed in Section 6.1.2.

5.3 Practical Aspects of Monolithic Linear and
Nonlinear Solvers for Coupled Problems

In this section, practical aspects of monolithic solvers for coupled problems are discussed,
namely the type of convergence check as well as the type of norms to be used. Both linear
and nonlinear solvers are addressed.

Since both the nonlinear and the linear solver are iterative schemes, appropriate stopping
criteria have to be provided to decide whether the iterative procedure can be stopped or needs
to be continued. Basically, one can stop iterating if the numerical solution is close enough to
the exact solution. Lacking the knowledge of the exact solution, one usually aims at reducing
the norm of a residual vector below a tolerance ε and accepts the numerical solution associated
with that residual as the final approximation to the exact solution. In addition, the norm of the
solution increment ∆x can be monitored and included into the convergence check.

Common norms are EUCLIDian vector norms, namely the length-scaled 2-norm ‖(•)‖2 as
already introduced in (4.32) and the inf-norm ‖(•)‖∞ given as

‖(•)‖∞ = max {|(•)m|}

with m = 1, . . . ,M and M being the number of entries in the vector (•). In opposite to the
2-norm, a length-scaling is not necessary for the inf-norm, since its calculation does not involve
a summation of all entries.
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(a) Error after 3 GMRES iterations with BGS(LU) preconditioning

(b) Error after 1 GMRES iteration with H-BGS(LU) preconditioning

(c) Comparison of BGS(LU) (top) and H-BGS(LU) (bottom)

Figure 5.8: Comparison of the error reduction by BGS(LU) and H-BGS(LU) — Errors after
three GMRES iterations with BGS(LU) preconditioning are compared to errors after one GM-
RES iteration with H-BGS(LU) preconditioning. Errors in solid displacements, fluid velocities,
and fluid pressures denoted by e d, e u, and e p, respectively, are visualized on a cross sec-
tion of the pressure wave example. The hybrid preconditioner is more effective than the purely
physics-based BGS(LU) approach.98
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5.3.1 Convergence Check for the Nonlinear Solver
In the context of solving a system of nonlinear equations, the stopping criterion is usually based
on the comparison of a norm of the nonlinear residual vector r to a user-given tolerance εnln

r .
The stopping criterion is satisfied if

‖r‖ ≤ εnln
r .

The norm of the solution increment can be included in the convergence check via additionally
asking for

‖∆x‖ ≤ εnln
∆x.

For both convergence checks, 2-norm and inf-norm are applicable. In this thesis, the nonlinear
convergence check is always based on absolute norms. In practical applications, often weighted
norms [198] or a combination of absolute and relative tolerance [134] seem to be useful.

In multi-physics applications like the FSI problem at hand, both the global solution and resid-
ual vector are assembled based on solution and residual vectors of each field involved in the
problem, cf. e.g. (3.8) for the global FSI residual. However, there is no guarantee that the por-
tions from each field are somehow balanced, neither w.r.t. size nor w.r.t. their magnitude. It may
happen — and this is usually the case — that solid and fluid field differ significantly in size and
magnitude of their residual vectors. While differences in size are due to geometric dimensions
and spatial discretization, discrepancy in magnitude can have several reasons. On the one hand,
different systems of units may be used in both fields, but even with the same system of units dif-
ferences in physical properties may lead to differences in the magnitude of the residual vector.
On the other hand, the initial residual vector depends on the initial guess of the solution vector.
This initial guess can be of varying quality in both fields, which might lead to a small residual
contribution of one field, if its initial guess is very good, while the other field produces a large
residual due to a less accurate initial guess.

Having in mind the possibly huge variations of the contributions to the global residual vec-
tor, it seems to be dangerous to judge about convergence based on norms of the global residual
vector, only. Especially when using a 2-norm, the residual norm might be dominated by one of
the involved fields such that no control over the other fields can be guaranteed. This dominating
effect can be either based on the length scaling included in the 2-norm or based on the different
magnitudes of the field residuals. Though, even application of the inf-norm might be problem-
atic since choosing a single tolerance does not reflect for possible variations in magnitude of the
field residuals. Similar arguments hold for testing the solution increment vector.

To circumvent the aforementioned issues, a more sophisticated convergence check is per-
formed in this thesis that reflects the contributions of the single fields as well as the coupling
between them. The nonlinear monolithic residual as well as the monolithic solution increment
vector are decomposed into physics-based portions, namely

• all entries related to the solid’s displacement degrees of freedom: rS,∆dS

• all entries related to the fluid’s velocity degrees of freedom: rFu,∆uF

• all entries related to the fluid’s pressure degrees of freedom: rFp ,∆p
F

• all entries related to the fluid-structure interface: rma
ΓFSI

,∆xma
ΓFSI

with ma ∈ {S,F} depend-
ing on the choice of master and slave side of the mortar coupling
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Similarly as for error estimation in the adaptive time stepping, cf. Section 4.2.1, the actual
subdivisions depend on the choice of master and slave side of the mortar method. If exemplarily
choosing the solid as the master field, the solid portion contains all solid degrees of freedom
including those located on the fluid-structure interface. Then, the fluid’s velocity portion only
accounts for the interior fluid velocity degrees of freedom away from the interface. However,
the pressure residual takes all pressure degrees of freedom into account, since the pressure is not
affected by the interface condensation process. Finally, the solid’s interface degrees of freedom
are extracted into a separate set to account for the central role of the fluid-structure interface.
In case of the fluid being the master side, this strategy stays the same, however, the interface is
assigned to the fluid field, respectively. For each of these physics-based portions, both 2-norm
and inf-norm are required to satisfy user-given tolerances, that may be different for each vector
portion. To achieve convergence, all individual tests must be passed at the same time, which is
equivalent to tie all individual tests together with a logical AND relation.

The FSI solver in Baci [243] does not implement the nonlinear solver by itself, but employs
the NOX package from the Trilinos project [116]. This library also provides a framework for
convergence tests. Besides testing residual and increment norms as described above, additional
tests for valid numbers and the number of nonlinear iterations are performed. An exemplary
screen output is given in Figure 5.9. Four groups associated with solid, interface, fluid veloc-
ity and fluid pressure degrees of freedom can be seen, denoted by DISPL, GAMMA, VELOC,
and PRESS, respectively. Each group tests 2-norm and inf-norm of its residual (denoted by
residual) as well as its solution increment vector (denoted by update). At the very bot-
tom, the 2-norms of the global residual and solution increment vectors are given, which show
the difference between the global norms and the field-wise norms. The test is passed if and only
if all individual tests are satisfied at the same time, resembling a combination of the tests by a
logical AND.

Choosing all these tolerances is up to the user. The computational engineer can select mean-
ingful tolerances, where the influence of the system of units, the problem size, and the desired
accuracy need to be taken into account. Usually, physical insight into the problem is helpful.
General rules cannot be provided. A possible strategy is outlined in [198].

5.3.2 Convergence Check for the Linear Solver

The linear system of equations is solved with the preconditioned GMRES method by SAAD

and SCHULTZ [208], using the implementation in the Aztec package [115] from the Trilinos
library [116]. Convergence is tested by means of a relative residual norm, reading

‖rilin‖2

‖r0
lin‖2

≤ εlin

with ‖rilin‖2 denoting the 2-norm of the linear residual in GMRES iteration iwhich is normalized
with the initial residual norm ‖r0

lin‖2. The base tolerance εlin is given by the user with typical
values being in the range of 10−4−10−5. Its interplay with the nonlinear convergence tolerances
needs to be considered to obtain a reasonable value.

With progress of the nonlinear solver, the nonlinear residual rk probably consists of small
entries, which might approach the limit of machine precision. In such scenarios, it might be
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************************************************************************
-- Status Test Results --

**...........OR Combination ->

**...........Finite Number Check (Two-Norm F) = Finite

**...........AND Combination ->
Converged....AND Combination ->
Converged....DISPL residual Two-Norm = 2.508e-11 < 1.000e-08
Converged....DISPL residual Max-Norm = 3.143e-10 < 1.000e-08
Converged....DISPL update Two-Norm = 2.302e-10 < 1.000e-08
Converged....DISPL update Max-Norm = 1.030e-09 < 1.000e-08

**...........AND Combination ->
Converged....GAMMA residual Two-Norm = 3.546e-11 < 1.000e-09
Converged....GAMMA residual Max-Norm = 3.143e-10 < 1.000e-09
Converged....GAMMA update Two-Norm = 2.306e-10 < 1.000e-09

**...........GAMMA update Max-Norm = 1.030e-09 < 1.000e-09

**...........AND Combination ->
Converged....VELOC residual Two-Norm = 4.605e-12 < 1.000e-08
Converged....VELOC residual Max-Norm = 3.642e-11 < 1.000e-08

**...........VELOC update Two-Norm = 6.304e-08 < 1.000e-08

**...........VELOC update Max-Norm = 1.372e-06 < 1.000e-08

**...........AND Combination ->
Converged....PRESS residual Two-Norm = 1.395e-15 < 1.000e-08
Converged....PRESS residual Max-Norm = 2.162e-14 < 1.000e-08

**...........PRESS update Two-Norm = 1.981e-05 < 1.000e-08

**...........PRESS update Max-Norm = 8.414e-05 < 1.000e-08

**...........Number of Iterations = 4 < 10

************************************************************************

************************************************************************
-- Nonlinear Solver Step 4 --
||F|| = 4.389e-08 step = 1.000e+00 dx = 5.445e-03

************************************************************************

Figure 5.9: Exemplary screen output of nonlinear convergence test for monolithic FSI in Baci
— Based on Trilinos’ NOX::StatusTest, a combination of field convergence tests for
residuals and solution increments related to solid displacements (DISPL), interface quantities
(GAMMA), fluid velocities (VELOC), and fluid pressures (PRESS) can be performed. Additional
checks for finite numbers and iteration counts are included.
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very expensive or even unfeasible to converge the linear solver to its base tolerance εlin. This is
remedied by adapting the convergence test to

‖rilin‖2

‖r0
lin‖2

≤ max

{
1,

βlin

‖rk‖2

}
· εlin.

The scalar factor βlin is usually chosen in the range of 10−2 − 10−3. It loosens the effective
tolerance for the linear convergence check in case that the nonlinear residual norm

∥∥rk∥∥
2

is
smaller than βlin, such that the linear solver is required to converge to a tolerance, that is less
tight with ongoing convergence of the nonlinear solver. This strategy saves computational time
and avoids aiming at accuracies in the linear solver that are infeasible to achieve.

5.4 Summary
In this chapter, key components of monolithic solvers for FSI problems have been discussed.
Focus was put on the preconditioning of the monolithic system of linear equations. Existing
physics-based block preconditioners tailored to FSI problems have been reviewed briefly. To
address one of their drawbacks, namely the accumulation of error at the fluid-structure interface,
a novel hybrid additive/multiplicative SCHWARZ preconditioner has been proposed. It combines
the existing physics-based approaches with an additional additive SCHWARZ preconditioner.
The latter one is based on an overlapping domain decomposition that purposely consists of
subdomains spanning across the fluid-structure interface. Through the application of incomplete
LU factorizations as subdomain solvers in this additional preconditioner, error accumulation
can be reduced effectively. A simplified example has been shown to proof the basic concept.
Finally, some remarks on the convergence check for iterative linear and nonlinear solvers have
been given where specifics of monolithic solution processes for coupled multi-physics problems
have been addressed.
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6 Numerical Examples

Besides the numerical examples in Section 4.3, where the focus was put on demonstration and
discussion of the newly proposed adaptive time stepping scheme, two three-dimensional ex-
amples are shown in the sequel. First, a pressure wave through an elastic tube is used as a
benchmark problem for the monolithic FSI solver, where time integration and preconditioning
techniques will be examined. Second, real-world applicability of the proposed framework will
be demonstrated by the example of pulsatile blood flow through a patient-specific abdominal
aortic aneurysm (AAA), where the adaptive time stepping will play an important role again. In
both examples, efficiency will be of particular interest.

Simulations have been performed with the in-house research code Baci [243]. Details on
the fluid stabilization have already been given at the beginning of Section 4.3. Specifications of
the used hardware resources can be found in Appendix B.

6.1 Pressure Wave through an Elastic Tube

As a benchmark problem for monolithic FSI solvers, the well-known pressure wave through
an elastic tube, originally proposed in [91], is studied. It is designed to mimic hemodynamic
conditions, especially w.r.t. to the material densities with the ratio ρS/ρF ≈ 1. MAYR et al. [163]
used this example to discuss the influence of different time integration schemes on the solution.
Superiority of monolithic FSI solvers in comparison to partitioned solution schemes has been
demonstrated by KÜTTLER et al. [143]. A detailed analysis of the performance of the linear
solvers has been performed by GEE et al. [89] where classical versions of the FSI-specific
AMG preconditioners from Section 5.1 have been applied. Simulations with non-matching
interface discretizations have been reported in literature, where KLÖPPEL et al. [138] used the
dual mortar method to deal with non-matching grids at the interface, while DEPARIS et al. [55]
and FORTI [83] use the INTERNODES approach [52]. It is often used as a benchmark for
partitioned [8, 50, 57, 77–79] and monolithic solvers [9, 12, 40, 53, 65, 142, 148, 149] among
others.

The geometry is depicted in Figure 6.1. The solid tube is clamped at both ends. The fluid
is initially at rest. For the duration of 3 · 10−3 s, it is loaded with a surface traction h̄

F
=

1.3332 · 104 g · cm/s2 in z-direction at z = 0. At z = `, fluid velocities are prescribed to zero,
meaning that the tube is closed at that end. As a result, a pressure wave travels along the tube’s
longitudinal axis and is reflected at the closed end of the tube. The constitutive behavior of the
structure is modelled by a ST.-VENANT-KIRCHHOFF material. The fluid is assumed to be an
incompressible NEWTONian fluid. The actual constitutive parameters are listed in Table 6.1.

The solid is discretized with Hex8 F-bar elements [47], while the fluid utilizes P1P1 el-
ements with residual-based stabilization as detailed at the beginning of this chapter. Different
meshes are used, some of them with matching grids at the interface, some with non-matching
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Figure 6.1: Geometry of pressure wave through an elastic tube — A solid tube (outer radius ro =
0.6 cm, inner radius ri = 0.5 cm, length ` = 5.0 cm) is clamped at both ends and is filled with
an incompressible NEWTONian fluid that is initially at rest.

Table 6.1: Material parameters for the pressure wave example
Fluid Solid
dynamic viscosity µF

dyn 0.03 g/(cm · s) YOUNG’s modulus ES 3.0 · 106 g/(cm · s2)

density ρF 1.0 g/cm3 POISSON’s ratio νS 0.3

density ρS 1.2 g/cm3
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6.1 Pressure Wave through an Elastic Tube

Table 6.2: Matching and non-matching meshes for the pressure wave example — Numbers of
degrees of freedom per field and in total are reported. Meshes pw1 – pw6 use matching interface
discretizations, while grids do not match at the interface for meshes pw7 – pw9. By running each
mesh on a specific number of cores ncore, the load per core can be kept roughly constant.

Mesh ID nS,dof nF,dof nG,dof ndof
total ncore ndof/core

pw1 22896 56180 42135 121211 16 7576.7

pw2 45312 113516 85137 243965 32 7623.9

pw3 90000 228300 171225 489525 64 7648.8

pw4 185328 453420 340065 978813 128 7647.0

pw5 274680 680596 510447 1465723 192 7634.0

pw6 362304 906204 679653 1948161 256 7610.0

pw7 243936 689476 517107 1450519 56 25902.1

pw8 584640 1917124 1437843 3939607 140 28140.1

pw9 1804608 5410948 4058211 11273767 448 25164.7

grids. They differ in element size and, thus, result in different numbers of degrees of free-
dom. Meshes pw1 – pw6 with matching interface discretizations and meshes pw7 – pw9 with
non-matching interface discretizations are detailed in Table 6.2. Mesh independency has been
studied by MAYR et al. [163]. Based on their results, all meshes used in this thesis are con-
sidered as fine enough to render mesh independency of the solution. Two different hardware
platforms are used. Meshes pw1 – pw6 are ran on the Opteron partition of an in-house cluster,
while meshes pw7 – pw9 are solved on SuperMUC’s Phase 2 of the Leibniz Supercomputing
Center, Garching, Germany. Hardware details are summarized in Appendix B. The load per
core is kept approximately constant at ≈ 7620ndof/core and ≈ 26400ndof/core, respectively.

The exemplary mesh pw7 is depicted in Figure 6.2. Displacement and pressure fields obtained
with mesh pw7 are shown in Figure 6.3. The pressure wave travels along the longitudinal axis of
the tube, resulting in radial expansion of the tube’s wall. Locations of maximum fluid pressure
and maximum radial expansion of the solid coincide. In Figure 6.3, the generalized-α method
has been used for solid and fluid field with spectral radii ρS∞ = 0.8 and ρF∞ = 0.7, respectively.

6.1.1 On the Influence of Time Integration Schemes

Two phenomena, that are related to time integration, are studied in this section. First, the in-
fluence of different time integration schemes on the solution is discussed. Second, the energy
production at the fluid-structure interface is monitored to confirm the theoretical findings of
Section 3.2.4 numerically.

Damping Properties of Different Time Integration Schemes

A central aspect of the presented FSI solver is the freedom of choice of time integration schemes
in solid and fluid field. This freedom as well as the effect of different combinations of time
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Figure 6.2: Mesh pw7 of pressure wave example — Solid and fluid are meshed with structured,
pure Hex meshes with non-matching interface discretizations. The finer meshes pw8 and pw9
are then generated via global mesh refinement.

Figure 6.3: Cut view of displacement and pressure field in pressure wave at time t = 0.005 s —
The solid domain is colored according to its displacement magnitude, denoted by |d|, while the
fluid is colored according to the fluid pressure, denoted by p. Displacements are magnified by a
factor of 10 for the purpose of visualization.
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6.1 Pressure Wave through an Elastic Tube

integration schemes with various time integration parameters in both fluid and structure field is
now studied. A similar analysis has already been performed by MAYR et al. [163].

In the solid, the generalized-αmethod [39] is applied. In the fluid field, both the generalized-α
method [129] and the one-step-θ scheme with various choices for their time integration param-
eters ρF∞ and θF are used.

The choice of time integration schemes and especially their numerical dissipation is studied
in terms of solution quantities, namely the x-component dSx (t) of the solid’s displacement at
location A on the tube’s outer surface and the fluid pressure pF (t) at the tube’s center point B.
Locations of points A and B are indicated in Figure 6.1. Solution curves for different com-
binations of time integration schemes with various time integration parameters in both the
fluid and the structure field are depicted in Figure 6.4. When both fields are discretized with
generalized-α schemes, the influence of the actual parameter choice is rather small. The pres-
sure field shows some fluctuations, when no or only little numerical dissipation is imposed.
These fluctuations vanish the better, the more numerical dissipation is introduced into the sys-
tem. However, the overall behavior of the solution is not affected by numerical dissipation.
This changes dramatically, when one-step-θ time integration is utilized in the fluid field. Then,
only the choice θF = 0.5 is free of numerical dissipation. The larger the value of θF, the more
numerical dissipation is involved. Again, numerical dissipation reduces the fluctuations in the
pressure field. Simultaneously, the amplitudes in the displacements as well as in the pressure
are reduced significantly by a larger amount of numerical dissipation, i.e. the solution changes
a lot. This becomes particularly evident in the displacement solution around times t = 0.013 s
and t = 0.017 s, where local features of the undamped curves cannot be reproduced due to large
numerical dissipation.

As can be seen from this comparison, numerical dissipation of one field does also highly
affect the solution of the other field due to the interface coupling. Thus, numerical dissipation
and its impact on the coupled problem needs always to be considered when choosing the time
integration schemes for the solid and the fluid field.

Energy Considerations at the Fluid-Structure Interface

The production of spurious energy at the interface as given in (3.36) and (3.38) is studied nu-
merically using meshes pw1 and pw7 with matching and non-matching interface discretizations,
respectively. For comparison, the total energy of the solid, i.e. its elastic and kinetic energy, is
used as indicator for the system’s total energy. The fluid’s kinetic energy is not considered
since the fluid field exhibits only very little flow localized at the interface and its amount is
not worth mentioning. Due to the implementation at hand, Hex8 elements using enhanced as-
sumed strains (EAS) are used in the solid instead of Hex8 F-Bar elements to allow for the
calculation of the solid’s internal and kinetic energy.

Using the generalized-α method in the fluid and the solid field, the influence of the time dis-
cretization is studied with two cases that address the issue of possibly mismatching generalized
midpoints tSm and tFm:

• Case I: spectral radii are chosen equal, namely ρS∞ = ρF∞ = 0.7

• Case II: spectral radii differ, namely ρS∞ = 0.8 and ρS∞ = 0.7
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Figure 6.4: Various combinations of time integration schemes for the pressure wave example
— For the structure field, generalized-α time integration with its spectral radius ρS∞ has been
utilized. In the fluid field, either generalized-α time integration or a one-step-θ scheme have
been employed, denoted by their parameters ρF∞ and θF, respectively. Close-ups for the first
peak are shown revealing the damping effect of the one-step-θ scheme with θF > 0.5.
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6.1 Pressure Wave through an Elastic Tube

In case I, energy production per time step at the interface is expected to vanish since ρS∞ = ρF∞
and, thus, a = b yielding ∆En→n+1

Γ = 0, cf. (3.36). Numerically, this expectation is confirmed
up to machine precision. Consequently, energy accumulation (3.38) does not take place.

In case II, a certain amount of energy production per time step is expected. However, it
should be small compared to the systems total energy. The solid’s total energy is at the order
of 102, while its actual value shows minor variations over time. The production of interface
energy as given in (3.36) and (3.38) ranges at the order of 10−2 and 100, respectively, and, thus,
are remarkably smaller. In combination with the fluid’s viscous damping and the numerical
dissipation of the time integration scheme, it is assumed that the production of artificial energy
at the interface does not spoil stability of the solution.

These results are the same for both meshes. Thus, the mortar projections at the interface do
not affect the energy production at all.

6.1.2 Discussion of FSI Preconditioners

The subsequent analysis of the proposed preconditioners is divided into two parts. First, the clas-
sic multigrid block preconditioners, that heavily rely on the separation of physics at the fluid-
structure interface, are applied to solve problems with non-matching grids, cf. Section 6.1.2.
A series of matching grids is used to study the behavior of the newly proposed hybrid addi-
tive/multiplicative SCHWARZ preconditioner, that combine the physics-based block precondi-
tioners with an additional interface preconditioner to overcome drawbacks due to the separation
of physics, cf. Section 6.1.2.

Efficiency and performance are assessed in terms of iteration counts and time measurements
of preconditioner setup and linear solving. Since iteration counts are inherent to the algorithm,
this number does not depend on the used hardware as well as its workload during the computa-
tion. Though, time measurements depend very much on the hardware at hand, e.g. differences
in nominal frequency of the CPU or memory access bandwidth, and especially on the workload
on the used cluster during the measurement. Especially on clusters, where output of results
is written via the same network used for internode communication of data during a parallel
computation, timings can be inaccurate if the computation of interest is delayed by other com-
putations on the same hardware, that overload the internode communication with writing output.
In this thesis, especially time measurements taken on the in-house cluster’s Opteron partition,
cf. Appendix B, suffer from the latter issue. Having in mind these possible inaccuracies, time
measurements will be seen as a useful indicator for performance, but can not be considered
as reliable and exact measurement data. Summing up, iteration counts are considered as more
reliable, even if time to solution is of greater interest to the user in practical applications.

Physics-based AMG Block Preconditioners for FSI

The physics-based block preconditioners BGS(AMG), AMG(BGS), and AMG(Schur) from
Section 5.1 are compared to each other. Performance is assessed in terms of GMRES itera-
tions per time step, preconditioner setup time, and total solver time.

Configurations of the multigrid hierarchies and smoothers for each field are summarized in
Table 6.3. Due to symmetry of their respective matrices, solid and ALE use CHEBYSHEV

polynomials of degrees 6 and 12 as the fine and medium level smoothers, respectively. Three
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Table 6.3: Settings for multigrid hierarchies for pressure wave example — Solid and ALE use
CHEBYSHEV smoothers on fine and medium level, while the fluid employs three sweeps of
damped symmetric GAUSS–SEIDEL (SGS) on the fine level and incomplete LU with fill level 0
on intermediate levels. All fields use a direct solver on the coarsest level.

Field Fine level Medium levels Coarse level
S CHEBYSHEV(6) CHEBYSHEV(12) LU
F SGS(3× 0.69) ILU(0) LU
G CHEBYSHEV(6) CHEBYSHEV(12) LU

sweeps of damped symmetric GAUSS–SEIDEL (SGS) are applied to the fluid’s fine level prob-
lem, while on the medium levels an incomplete LU factorization with fill level 0 is employed.
Coarse level problems of all fields are treated with a direct solver. Solid and ALE use smoothed
aggregation transfer operators, while the PETROV–GALERKIN AMG scheme [210] is applied
for the fluid problem. Coarsening is done until the size of the coarse level problem is below
7500 unknowns per field. The resulting multigrid hierarchies have three levels for the coarser
meshes pw7 and pw8, while four levels are needed for the finest mesh pw9. The preconditioner
is created once at the beginning of each time step and then re-used in every nonlinear iteration
of that time step.

The convergence check is performed as outlined in Section 5.3. For the nonlinear solver,
absolute norms of residual vectors and solution vector increments are required to be smaller
than 10−6 for solid and fluid field, while a tolerance of 10−7 is demanded at the interface. The
linear solver uses the relative tolerance εlin = 10−5 in combination with βlin = 10−3.

Exemplifying the finest mesh pw9 with approximately 11.3 · 106 unknowns, Figure 6.5 re-
ports iteration counts and time measurements associated with the linear solver. Numbers of
linear iterations per time step as well as accumulated time measurements for setup of the pre-
conditioner as well as solving the linear system do not vary over simulation time a lot. This
corresponds to the very similar dynamic behavior of the problem in every time step without any
specific or outstanding events. Considering the three different preconditioning approaches, the
BGS(AMG), where the coupling conditions are enforced on the fine level only, needs signifi-
cantly more iterations than the two other methods, where the interface coupling terms are also
included in the coarse level problems, cf. Figure 6.5(a). However, no clear difference in iteration
counts can be seen between AMG(BGS) and AMG(Schur). This indicates a similarly strong ac-
tion of the coarse level couplings despite the actual choice of the level smoothers. However,
when looking at setup and iteration timings, the picture is quite different. The BGS(AMG)
approach, where only the setup of the field hierarchies needs to be done, is cheaper in terms
of setup cost than AMG(BGS) and AMG(Schur), where additional steps to build the coupled
coarse level problems are necessary on top of the same setup cost as in BGS(AMG). Assuming
an already computed preconditioner and considering solely the time spent in the linear solver,
cf. Figure 6.5(b), one observes proportionality between the number of iterations and the time
spent for iterations for every preconditioning method. In terms of pure solver time, BGS(AMG)
performs similarly as AMG(BGS). The most expensive approach in terms of solver timings is
the AMG(Schur) method, which is due to the implementation at hand. When summing up setup
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Figure 6.5: Iteration counts and timings for physics-based block preconditioners applied to
mesh pw9 of pressure wave example — Iterations, setup and iteration timings are almost con-
stant over all time steps. Iteration counts are lower for preconditioners with FSI coupling on
coarse levels. Overall time for the linear solver, cf. Figure 6.5(c), is dominated by the setup cost
of the preconditioner.
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Table 6.4: Averages of iteration counts and solver time per time step for physics-based block
preconditioners in pressure wave example — Iteration counts of the linear solver are not sensi-
tive w.r.t. mesh refinement for all types of preconditioners. A similar, but less strong statement
can be made about the time spent in the linear solver, having in mind possible inaccuracies of
the time measurements.

(a) Avg. # of linear iterations per time step

Mesh ID pw7 pw8 pw9
ncore 56 140 448

BGS(AMG) 70.1 65.0 80.3

AMG(BGS) 55.0 48.0 51.0

AMG(Schur) 55.5 48.0 49.0

(b) Average linear solver time per time step

Mesh ID pw7 pw8 pw9
ncore 56 140 448

BGS(AMG) 10.4 s 14.8 s 16.1 s

AMG(BGS) 9.3 s 11.8 s 12.3 s

AMG(Schur) 12.9 s 15.4 s 14.3 s

cost of the preconditioner and time spent in the linear solver, cf. Figure 6.5(c), AMG(Schur) is
again the most expensive method due to huge setup cost of the SCHUR complement operator,
but also its increased timings for the linear solver, cf. Figure 6.5(b). The setup is expensive since
it involves copying large parts of the system matrix, which spoils time measurements. Although
iteration counts of the BGS(AMG) are remarkably higher than those of AMG(BGS) and even
with the slightly larger time that BGS(AMG) spends in the linear solver , cf. Figure 6.5(b), it
is the cheapest approach in total, since it can balance larger iteration counts with the cheapest
setup and application cost of all examined preconditioners, cf. Figure 6.5(c).

For mesh pw9, iteration counts and timings do not vary much over time. This can also be
observed for the coarser meshes pw7 and pw8. Thus, the further discussion uses time-averaged
values. Such averaged values for the total number of linear iterations per time step as well
as the total time for the linear solve, i.e. the sum of the setup time of the preconditioner and
the time for linear iterations, are reported in Table 6.4. For all preconditioners, the number of
iterations is constant over mesh refinement as expected for preconditioners based on multigrid
techniques. This statement holds for all considered preconditioners. Regarding the time spent
in the linear solver, it seems that BGS(AMG) and AMG(BGS) show a slight increase with mesh
refinement, while AMG(Schur) does not. However, having only three measurement points is
a too small data base to come up with a conclusive statement. Overall, all preconditioners
are considered satisfactory in keeping iteration counts and solution time constant with ongoing
mesh refinement.

In the research code Baci [243], BGS(AMG) and AMG(BGS) are more favorable than
AMG(Schur) due to comparable and faster times to solution despite the differences in itera-
tion counts. Performance optimization of the AMG(Schur) implementation is subject to future
work.

Novel Hybrid Additive/Multiplicative SCHWARZ Preconditioners for FSI

To assess performance improvements, that can be achieved by the newly proposed hybrid addi-
tive/multiplicative SCHWARZ preconditioner, cf. Section 5.2, the new preconditioner is applied

112



6.1 Pressure Wave through an Elastic Tube

(a) Physics-based domain decomposition (b) Domain decomposition with interface-spanning sub-
domains

Figure 6.6: Domain decompositions for physics-based and hybrid preconditioners for pressure
wave example — The cut view shows the parallel distribution of the entire problem among
256 cores. The position of the interface is indicated by black lines. Left: In the initial parallel
layout, where solid and fluid domain have been distributed independently, subdomains do not
span across the interface. Right: After performing the redistribution based on a monolithic
graph, some subdomains contain solid or fluid portions only, while only a certain number of
subdomains contains solid and fluid portions. The latter span across the interface and, thus,
allow for the application of the hybrid additive/multiplicative SCHWARZ preconditioner.

together with the existing preconditioners from Section 5.1 using the RICHARDSON scheme
as given in (5.12). The problem is solved on the series of meshes pw1 – pw6 as detailed in
Table 6.2 to study the influence of mesh refinement and increased core counts. Thereby, the
load per core is kept constant, yielding the notion of a weak scaling study. The core counts are
chosen such that the average load per core is roughly 7620ndof/core for each mesh, such that
the local subdomains are of a size that can be treated with incomplete LU or LU factorizations
very efficiently. This is crucial in case of the hybrid preconditioner. Otherwise, the additional
setup cost for the additive SCHWARZ portion could spoil setup times and, thus, render the hybrid
approach to be non-competitive at all.

A prerequisite for the application of the hybrid additive/multiplicative SCHWARZ precon-
ditioner is an overlapping domain decomposition with subdomains that span across the fluid-
structure interface, cf. Section 5.2.2. Initial and final distributions for mesh pw6 are shown in
Figure 6.6 for a total core count of ncore = 256. Starting from an initial, field-wise distribution
as shown in Figure 6.6(a), a monolithic graph containing solid and fluid graphs is built. This is
passed to the hyper-graph partitioner package Zoltan [23] to obtain a parallel layout as it is
required. The final parallel layout exhibits subdomains that span across the fluid-structure inter-
face, cf. Figure 6.6(b), and, thus, is able to overcome the concentration of error at the interface
in case of the purely physics-based preconditioners.

In this study, the following preconditioner configurations are studied: The additive SCHWARZ

part of the combined preconditioner applies an ILU(0) locally on each subdomain. It is applied
before and after the AMG preconditioner, that formally is a multiplicative SCHWARZ method.
The setup of the physics-based multiplicative SCHWARZ preconditioners is summarized in Ta-
ble 6.5. Their configurations are similar to the ones from the previous section. The only differ-
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Table 6.5: Settings for multigrid hierarchies embedded in the hybrid preconditioner — Solid
and ALE use CHEBYSHEV smoothers on the fine and medium levels, while the fluid employs
three and six sweeps of damped symmetric GAUSS–SEIDEL (damping parameter ω = 0.69) on
the fine and medium levels, respectively. All fields use a direct solver on the coarsest level.

Field Fine level Medium levels Coarse level
S CHEBYSHEV(6) CHEBYSHEV(12) LU
F SGS(3× 0.69) SGS(6× 0.69) LU
G CHEBYSHEV(6) CHEBYSHEV(12) LU

ence is the application of six sweeps of damped symmetric GAUSS–SEIDEL in the medium lev-
els in the fluid’s AMG hierarchy, since doing ILU in the additive and multiplicative SCHWARZ

part of the preconditioner seems to be inefficient due to the higher setup cost. The preconditioner
is created once at the beginning of each time step and then re-used in every nonlinear iteration of
that time step. Convergence tolerances for the linear and nonlinear solvers are chosen as in the
previous example with purely physics-based preconditioning. Only one domain decomposition
is computed for each mesh pw1 – pw6 and then used for all studied preconditioners to foster
comparability of performance results independent of the domain decomposition.

Iteration counts, pure linear solver time, and total linear solver time are reported in Figure 6.7
for the finest mesh pw6. Solid lines represent the hybrid additive/multiplicative SCHWARZ pre-
conditioner denoted by the prefix ’H-’, while dashed lines indicate the classic, purely physics-
based block preconditioners for the sake of comparison. The additional additive SCHWARZ

preconditioner enhances the preconditioner such that the number of linear iterations is reduced
remarkably in every configuration, cf. Figure 6.7(a). A very similar picture can be seen w.r.t.
the timings of the linear solver. Looking at the pure solver time, cf. Figure 6.7(b), the reduced
number of iterations in case of the hybrid preconditioner results in a significant reduction of the
time, that is spent in the linear solver. These massive savings can also be seen in the total tim-
ings of the linear solver, that also include the setup cost of the preconditioner, cf. Figure 6.7(c).
Since the setup cost of the hybrid preconditioner are larger than of the pure physics-based block
preconditioners, the relative savings are lower than in the pure solver time, but still remarkable.
These time measurements confirm, that the additional setup cost are amortized by far by the
stronger preconditioning effect of the additional additive SCHWARZ step. Although respective
diagrams for the coarser meshes pw1 – pw5 are omitted for brevity of presentation, it is stressed
that they show similar behavior.

Time measurements of the preconditioner setup are not reported separately in Figure 6.7,
but rather are included in the total timings, cf. Figure 6.7(c). Due to the additional ILU(0)
factorization, that needs to be computed to construct the additive SCHWARZ preconditioner,
setup cost are expected to increase in case of the hybrid preconditioner. Due to inaccurate time
measurements, the additional cost cannot be determined exactly, but this increase seems to be
small since the local subdomain are of small size which allows for a fast computation of the
ILU(0) factorization.

For each mesh pw1 – pw6 and all purely physics-based as well as all hybrid preconditioners,
the averaged number of GMRES iterations per time step, the average time spent in the linear

114



6.1 Pressure Wave through an Elastic Tube

30

40

50

60

70

0 0.005 0.01 0.015 0.02

#
lin

.i
t.

[−
]

t [s]

BGS(AMG)
H-BGS(AMG)

AMG(BGS)
H-AMG(BGS)

AMG(Schur)
H-AMG(Schur)

(a) Number of linear iterations per time step

20

30

40

50

60

0 0.005 0.01 0.015 0.02

so
lv

er
tim

e
[s

]

t [s]

BGS(AMG)
H-BGS(AMG)

AMG(BGS)
H-AMG(BGS)

AMG(Schur)
H-AMG(Schur)

(b) Time for iterating of the linear solver

30
40
50
60
70
80

0 0.005 0.01 0.015 0.02

se
tu

p
an

d
so

lv
e

[s
]

t [s]

BGS(AMG)
H-BGS(AMG)

AMG(BGS)
H-AMG(BGS)

AMG(Schur)
H-AMG(Schur)

(c) Time for preconditioner setup and iterating of the linear solver

Figure 6.7: Iteration counts and timings for hybrid preconditioners applied to mesh pw6 of pres-
sure wave example on 256 cores — Iterations, setup and iteration timings are almost constant
over all time steps. Application of the hybrid preconditioner leads to a reduction of iterations
and solver time for every type of underlying physics-based block preconditioner.
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solver, as well as relative savings due to the hybrid preconditioner are reported in Table 6.6. A
comparison among all meshes allows for studying the influence of the mesh size and the core
count. Considering the number of GMRES iterations per time step, they remain rather constant
with ongoing mesh refinement for all preconditioning approaches as it is expected for multigrid
algorithms. Timings of the linear solver exhibit only slight increases, when refining the mesh.
When increasing the problem size by a factor of 16, the timings increase only by a factor of 5.
This is considered as acceptable, since the problem at hand as well as the implementation are
designed to solve engineering problems and not to specifically target optimal solver performance
as its only purpose. There are several reasons for these increases: Due to the fully coupled AMG
preconditioner, ML’s internal rebalancing can not be applied. This leads to a coarse level system,
that is far too small to be solved efficiently on a large number of cores and whose solution
requires much communication among all processors. Hardware limitations and communication
patterns surely contribute to increased timings as well.

To assess its efficiency, iteration counts and solver timings with and without the novel hybrid
preconditioner are compared in Table 6.6, where also relative savings of iterations and solver
time are reported. These savings are considered as remarkable and totally worth the additional
effort during setup of the preconditioner. The extra setup cost is just governed by the size of the
subdomains, since the ILU factorization on each core can be performed in parallel independently
of each other. If the load per core is kept constant, the additional setup cost is independent of
the problem size or the number of processors, respectively.

For the local subdomain solves involved in the additive SCHWARZ part of the hybrid precon-
ditioner, larger fill levels than ILU(0) have been tested. Though, the huge increase in setup cost
cannot be amortized by the improved quality of the preconditioner. If the local subdomains are
sufficiently small, an exact direct solve seems to be a viable choice, however it is outperformed
by the ILU(0) option. Summing up, ILU(0) seems to be a good trade-off between setup cost and
effectiveness of the preconditioner. Based on numerical experiments, it is preferred above ILU
with higher fill levels and also above direct solves for each subdomain.

6.2 Pulsatile Blood Flow through a Patient-specific
Abdominal Aortic Aneurysm

To demonstrate applicability of the proposed formulation and solver framework to complex and
patient-specific geometries, the pulsatile blood flow through an Abdominal Aortic Aneurysm
(AAA) with an outer diameter of 7.5 cm is considered. Model generation starts from computer
tomography (CT) images and follows the procedure outlined by MAIER et al. [159], whereas
meshing is done with Cubit V13.2. The solid phase consists of the intraluminal thrombus
(ILT) and the arterial wall, while the fluid domain covers the lumen. The reconstructed geometry
is depicted in Figure 6.8.

The arterial wall utilizes the hyperelastic material model by RAGHAVAN and VORP [196] with
constitutive parameters αS

wall = 0.174 MPa, βS
wall = 1.881 MPa, and POISSON’s ratio νSwall =

0.49. The ILT employs a coupled form of the compressible NEO-HOOKEan model [118] with
the YOUNG’s modulus ES

ilt = 0.1044 MPa and POISSON’s ratio νSilt = 0.45. Density of both
arterial wall and ILT is chosen as ρS = 1.0 g/cm3. All values of the solid’s constitutive parame-
ters are taken from MAIER et al. [159]. Blood uses the modelling assumption of a NEWTONian
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Table 6.6: Averages of iteration counts and time measurements per time step for comparison of
classic, physics-based block preconditioners and the newly proposed hybrid preconditioner in
the pressure wave example — Only one domain decomposition is computed for each mesh pw1
– pw6 and then used for all preconditioners to avoid spurious influence of the domain decompo-
sition. Iteration counts of the linear solver are not sensitive w.r.t. mesh refinement for all types
of preconditioners. Timings of the linear solver exhibit only slight increases with mesh refine-
ment due to the implementation. Relative savings due to the hybrid preconditioner are reported.
These savings are considered as remarkable.

(a) Average # of linear iterations per time step

Mesh ID pw1 pw2 pw3 pw4 pw5 pw6
ncore 16 32 64 128 192 256

BGS(AMG) 68.6 65.5 56.6 57.0 59.7 64.1

H-BGS(AMG) 46.1 49.7 42.8 44.8 47.8 50.7

Savings 32.8% 24.1% 24.4% 21.4% 19.9% 20.9%

AMG(BGS) 52.6 54.3 41.9 42.4 44.7 49.1

H-AMG(BGS) 37.0 42.0 33.4 35.0 37.4 41.4

Savings 29.7% 22.7% 20.3% 17.5% 16.3% 15.7%

AMG(Schur) 50.6 53.9 41.7 43.3 45.1 49.7

H-AMG(Schur) 36.0 40.5 33.0 35.0 37.7 41.4

Savings 28.9% 24.9% 20.9% 19.2% 16.4% 16.7%

(b) Average linear solver time per time step

Mesh ID pw1 pw2 pw3 pw4 pw5 pw6
ncore 16 32 64 128 192 256

BGS(AMG) 6.4 s 12.4 s 17.4 s 20.8 s 27.8 s 31.6 s

H-BGS(AMG) 5.7 s 11.0 s 15.5 s 18.2 s 21.1 s 24.4 s

Savings 10.9% 11.3% 10.9% 12.5% 24.1% 22.8%

AMG(BGS) 5.6 s 11.4 s 16.5 s 19.1 s 28.8 s 28.0 s

H-AMG(BGS) 5.0 s 9.6 s 13.8 s 15.8 s 19.4 s 22.2 s

Savings 10.7% 15.8% 16.4% 17.3% 32.6% 20.7%

AMG(Schur) 9.9 s 18.1 s 26.6 s 37.8 s 47.2 s 50.1 s

H-AMG(Schur) 8.2 s 15.8 s 23.0 s 24.9 s 29.8 s 32.4 s

Savings 17.2% 12.7% 13.5% 34.1% 36.9% 35.3%
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Figure 6.8: Geometry of a patient-specific AAA — The solid phase consists of the intraluminal
thrombus (ILT) and the arterial wall. It is colored in gray. The fluid domain covers the lumen
and is colored in red. Pulsatile fluid inflow is prescribed at the top, while the outflow boundary
is at the bottom.

fluid with dynamic viscosity µF
dyn = 4 · 10−3 Pa · s and density ρF = 1.0 g/cm3 [128]. The ALE

mesh motion is determined by a LAPLACEian smoothing procedure, which is suitable since only
small deformations are expected.

ILT and arterial wall are clamped at inflow and outflow cross sections. A visco-elastic embed-
ding is used to mimic the surrounding tissue. It is realized with springs and dashpots attached
normal to the wall surface in material configuration. Spring stiffness and dashpot viscosity are
chosen uniformly as kemb = 10 g/(mm2 · s2) and cemb = 100 g/(mm2 · s), respectively, taken
from [169]. At the fluid inflow area AF

in = 267, 018 mm2, a time-dependent parabolic velocity
profile is prescribed. The time curve is based on measurement data [225] and results in a flow
rate Qin = 3.0 l/min, which seems to be in the physiological range. It is depicted in Figure 6.9.
At the beginning of the heart cycle, the inflow velocity is immediately increased to its peak value
at time t ≈ 0.09 s. In this short period of time, almost all transport of blood volume happens.
This peak is followed by a brief plateau at low inflow velocities. Then, the inflow direction is
even reverted during a short period of prescribed backflow with its peak at time t ≈ 0.37 s. Start-
ing with approximately t > 0.6 s only very low and constant inflow velocities are prescribed.
Although the downstream portion of the vascular system is not resolved geometrically, it is in-
cluded into the model via a traction boundary condition at the fluid outflow area. The prescribed
time-dependent traction value varies between the diastolic level pFdia = 86.9 mmHg and the sys-
tolic level pFsys = 121 mmHg. Its time curve is based on results by ISMAIL et al. [128] and is
also depicted in Figure 6.9. Its peak plateau is in the range of approximately 0.15 s ≤ t ≤ 0.31 s,
i.e. it is slightly delayed to the velocity curve. Its peak value is located at t = 0.18 s. An even
more accurate modelling can be achieved by the application of patient-specifically calibrated
Windkessel models [128], but limitations in the implementation of the computational frame-
work prevented their application in combination with the adaptive time stepping scheme. Both
velocity and pressure curves are periodic in time with a cycle time of Tc = 1.0 s.

To account for the fact that the stack of CT images have been taken in vivo, i.e. in the presence
of blood pressure, a prestressing phase up to the diastolic blood pressure pFdia using a modified
updated LAGRANGEan formulation (MULF) proposed by GEE et al. [88] is prefixed to the ac-
tual transient simulation. During this prestressing phase, the fluid inflow and outflow boundary
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Figure 6.9: Time curves for physiological fluid boundary conditions of AAA— The inflow ve-
locity time curve ūFin (t) is based on measurement results published in [225] and on the compu-
tational example in [128]. The temporal evolution p̄Fout (t) of the pressure level at the outflow
boundary is analog to numerical results in [128]. Both curves are periodic in time with a cycle
time of Tc = 1.0 s.

conditions are smoothly increased to their initial values at the beginning of the heart cycle, while
the solid is treated with the MULF algorithm.

Meshing is performed as follows: Starting with a unstructured quadrilateral mesh of the fluid-
structure interface of the lumen, a purely hexahedral boundary layer for the fluid is created. The
remaining fluid domain is filled with tetrahedral elements, while a single layer of pyramid ele-
ments is used at the transition to the hexahedral boundary layer. The fluid’s interface mesh is
then imprinted on the lumen’s FSI surface. Additionally, the lumen’s outer surface is meshed
with unstructured quadrilaterals. As in the fluid domain, the bulk of the ILT is meshed with
tetrahedra while pyramids are inserted at the transition to the quadrilateral surface meshes. Fi-
nally, the arterial wall is extruded using linear hexahedral elements. The mesh is depicted in
Figure 6.10. It consists of 211827 solid, 328548 fluid, and 246411 ALE degrees of freedom,
yielding a total number of unknowns of ndof

total = 786786. The problem is ran on 28 cores of
SuperMUC’s Phase 2 partition, cf. Appendix B.

Time integration is performed by means of the generalized-αmethod with spectral radii ρS∞ =
0.8 and ρF∞ = 0.5 in solid and fluid field, respectively. Adaptive time stepping is applied
based on error estimation in the fluid field only, using the comparison to an auxiliary ADAMS–
BASHFORTH-2 scheme. The solid is not taken into account for error estimation since only very
little deformation is expected. Moreover, dynamics of the problem are solely driven by the fluid
flow. The local error tolerance is related to the peak fluid inflow velocity as εF,∆tl = 2.0 ≈
0.5% · ˆ̄uFin as suggested in Section 4.2.3. The time step size is limited to the range ∆tmin =
10−5 s ≤ ∆tn≤ 0.1 s = ∆tmax. The remaining algorithmic parameters related to adaptive time
stepping have been chosen as κmin = 0.1, κmax = 2.0, and κs = 0.9. Averaging of increasing
time step sizes (4.33) is applied using γn+1 = 0.3 and γn = 0.7. The number of time step
repetitions is limited to five.

The fully-coupled AMG-based FSI preconditioner detailed in Section 5.1.3 is applied. Set-
tings are summarized in Table 6.7. A three-level multigrid hierarchy is built, where SA-AMG is
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(a) Meshes and parallel layout (b) Mesh at inflow area

Figure 6.10: Mesh of a patient-specific AAA — Left: Meshes of solid and fluid domain are
shown. Colors indicate the domain decomposition among 28 processors. Right: The close-up
of the mesh at the inflow are shows the tetrahedra-based solid mesh, where the arterial wall is
extruded as pure hexahedral mesh (dark grey). The fluid features a purely hexahedral boundary
layer. Its interior is meshed with tetrahedral elements (light grey).

Table 6.7: Settings for fully-coupled AMG-based preconditioner for solution of AAA — Solid
and ALE use cheap CHEBYSHEV smoothers on fine and medium level, while the fluid employs
three sweeps of damped symmetric GAUSS–SEIDEL on the fine level and incomplete LU with
fill level 0 on intermediate levels. All fields use a direct solver on the coarsest level. On each
level, a BGS smoother is applied.

Field Level 0 Level 1 Level 3

S Chebyshev(6) Chebyshev(12) LU
F SGS(3× 0.69) ILU(0) LU
G Chebyshev(6) Chebyshev(12) LU
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(a) beginning of cycle at
t = 0.02579 s

(b) peak inflow velocity at
t = 0.09586 s

(c) peak displacement at
t = 0.17195 s

(d) t = 0.72371 s

Figure 6.11: Snapshots of the solution of a pulsatile blood flow through an AAA — The fluid
field is colored according to the magnitude of its velocity field denoted by |u|while the structure
field’s color is encoded with the displacement field magnitude denoted by |d|. The fluid color
scale is calibrated at maximum inflow velocity at t = 0.09586 s, while the solid color scale is
based on maximum deformation at t = 0.17195 s. The pulsatile motion of ILT and arterial wall
is further detailed in Figure 6.12.

used for solid and ALE, while a PG-AMG is applied to the fluid. For the linear solver, a relative
tolerance of εlin = 10−5 in combination with βlin = 10−3 is required, while the nonlinear iter-
ative solver is considered as converged as soon as field-related residual and solution increment
norms are below 10−6 and those related to the interface below 10−7.

Figure 6.11 shows cuts through the AAA to illustrate flow patterns and internal deformation.
The lumen is cut prior to the outlet to allow for a visualization of the displacement of the
interior boundary of the ILT, i.e. the FSI interface. Starting from an initial state with only
little flow and almost no deformation, cf. Figure 6.11(a), the state with the peak inflow velocity
is reached quickly at time t = 0.09586 s, cf. Figure 6.11(b). The prescribed inflow can be seen
clearly, which is then deflected by the ILT. Due to a larger diameter of the lumen inside the
AAA, velocities are lower there and increase only towards the narrowed outlet. The maximum
deformation of ILT and arterial wall is reached at time t = 0.17195 s, cf. Figure 6.11(c), where
the largest displacements occur directly at the fluid-structure interface. However, deformation
of the wall is visible as well, even if it takes smaller values than in the ILT due to its higher
stiffness. Towards the end of the heart cycle, as only a low and almost constant inflow velocity
is prescribed, fluid flow in the domain almost vanishes, cf. Figure 6.11(d). Additionally, only
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Figure 6.12: Displacement of the artery throughout the heart beat — The absolute displacement
of two exemplary solid nodes, one located on the outer surface of the arterial wall and the other
on the fluid-structure interface, is governed by the fluid pressure pF, that in turn follows the
prescribed pressure p̄Fout (t) at the outflow cross section. The influence of the fluid velocity field
on the pulsatile motion of the ILT and the arterial wall seems to be rather small.

small displacements occur due to the fluid pressure being closer to the diastolic than the systolic
pressure level. Overall, a periodic state has been reached.

The pulsatile motion of ILT and arterial wall can be seen in Figure 6.12, where the absolute
displacements of two exemplary solid nodes are related to the prescribed pressure at the outflow
cross section. Both nodes are picked at about half length of the aneurysm in regions, where large
deformations occur. One is located on the fluid-structure interface and the other one on the outer
surface of the arterial wall. Temporal evolution of their displacement magnitudes follows the
time curve of the prescribed outflow pressure p̄Fout (t). Solid deformation seems to be governed
by the fluid’s pressure rather than by the fluid’s velocity field. This fact stresses the importance
of the applied prestressing technique, that is crucial to obtain physiologically correct pressure
levels.

The evolution of the time step size ∆tn is reported in Figure 6.13. A variation of the time
step size can be clearly observed. At the beginning of the heart cycle, the time step size is
reduced due to the transient behavior stemming from the peak of the inflow velocity. Towards
the end of the heart cycle, i.e. t > 0.6 s, a low and almost constant inflow velocity is prescribed.
Additionally, dynamic behavior from the the initial velocity peak already vanished. Thus, in
increase of the time step size by roughly an order of magnitude is possible. Repetition of time
steps is necessary only for the last five time steps of the heart cycle where the inflow velocity
already increases a little bit, cf. Figure 6.9. All other reductions of ∆tn can be handled by the
safety factor κs without the need of time step repetitions. As the beating motion of the heart and,
thus, the pulsatile blood flow exhibit periodic behavior, such a periodicity can also be observed
for the evolution of the time step size.

To assess computational efficiency, computational savings compared to the case with constant
time step size and the same accuracy requirements are quantified using (4.35). Taking into
account the smallest time step size used during the computation, ∆tn = 1.5873 · 10−4 s, and
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Figure 6.13: Evolution of time step size ∆tn for pulsatile flow through AAA — After reduction
of ∆tn during the initial phase of the hear cycle with high inflow velocities and even a prescribed
backflow, the time step size is increased towards the end of the heart cycle, where only low
inflow velocities are prescribed and dynamics already calmed down.

the number of adaptive time steps nada = 1616 needed for one heart cycle, the computational
savings evaluate to 74.5% which is a tremendous gain in efficiency.
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7 Concluding Remarks and Outlook

Achievements of this thesis are summarized briefly before an outlook on possible future research
directions is given.

Summary of Achievements

In this thesis, a monolithic framework for the solution of fluid-structure interaction problems has
been described. It allows for the numerical simulation of the interaction of an incompressible
fluid flow with solid bodies undergoing finite deformation. To deal with the deformation of the
fluid domain, an ALE observer has been used for the fluid field, while the solid domain has
been treated with a purely LAGRANGEan description. At the fluid-structure interface, kinematic
continuity as well as dynamic equilibrium of interface traction fields are required. The coupling
conditions have been enforced weakly via a LAGRANGE multiplier field.

Spatial discretization of the solid and the fluid field has been performed by means of the finite
element method. The meshes of the solid and the fluid field do not need to match at the interface
since a dual mortar method has been used for the discretization of the LAGRANGE multiplier
field. Due to the dual shape functions, a static condensation of the LAGRANGE multiplier de-
grees of freedom could be performed. This led to two variants of coupling algorithms, namely
one with a fluid-handled interface motion and another one with a structure-handled interface
motion. For both cases, the final systems of equations have been derived and presented in full
detail.

For time integration, fully implicit, single-step, and single-stage time integration schemes are
applied in both fields. The basic goal of choosing the solid and fluid time integration scheme
freely and independently from each other to allow for tailoring to the field-specific needs has
been achieved. For this purpose, a temporal interpolation of the interface traction fields has
been incorporated in a temporally consistent manner. The artificial energy production at the
FSI interface due to different time integration schemes in the solid and the fluid field has been
studied theoretically and numerically. This energy production is shown to vanish for time step
size refinement, i.e. ∆t→ 0, or for certain choices of time integration schemes, namely tFm = tSm.
Numerical examples have been presented, that demonstrate optimal temporal convergence rates,
study this freedom of choice of time integration schemes, and show the negligibility of the
artificial energy production at the FSI interface in practical simulations.

To control the accuracy of the time integration of the coupled problem, a novel adaptive time
stepping scheme for monolithic FSI solvers has been proposed. It is based on a posteriori
error estimation. Quantities from the solid and the fluid field as well as from the fluid-structure
interface are taken into account to adapt the time step size to the current needs of the simulation.
Overall, a user-given level of accuracy can be guaranteed. The adaptive time stepping scheme
has been applied to several academic examples but also to the simulation of the pulsatile blood
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flow through a patient-specific abdominal aortic aneurysm. Guaranteed accuracy as well as
remarkable gains in efficiency have been demonstrated.

Starting from existing physics-based AMG block preconditioners for FSI problems, a novel
hybrid additive/multiplicative SCHWARZ preconditioner has been developed. It combines the
powerful multigrid performance of the existing physics-based preconditioners with an additional
additive SCHWARZ preconditioner, that is specifically designed to tackle error accumulation at
the fluid-structure interface. This was achieved by generating an overlapping domain decom-
position with subdomains that span across the interface. Incomplete LU factorizations that are
insensitive to the block structure of the matrix stemming from the different physical fields have
been found to be a viable choice as subdomain solvers. They seem to represent a good trade-off
between setup cost and quality of the result.

A thorough comparison of the presented preconditioning techniques has been performed.
The influence of the problem size has been studied. Summing up, the application of the novel
hybrid additive/multiplicative SCHWARZ preconditioner results in significant reductions of the
number of linear iterations as well as the time that is spent in the linear solver. These savings
have been shown to be independent of the mesh size and the number of cores used for the
computation. Furthermore, a pulsatile blood flow through a patient-specific abdominal aortic
aneurysm has been simulated. Thereby, the adaptive time stepping as well as FSI-specific AMG-
based preconditioners have been applied. Overall, applicability of the proposed monolithic
solver with all its features to real-world problems could be demonstrated. Even in such complex
problems, a speed-up by a factor of 4 was achieved.

Outlook and Future Work

In future work, several aspects could be studied: On the one hand, questions of the handling of
non-matching interface discretizations could be addressed. In the current approach with the dual
mortar method, the evaluation of the mortar integrals is very expensive. This is not a drawback
in the present work as the mortar matrices need to be evaluated only once in the beginning of
the simulation and then are stored and used throughout the entire computation. However, this
works only for problems with large but still moderate distortion of the fluid mesh. Especially
in applications where the solid body performs a rotatory motion inside the fluid domain, mesh
distortion often becomes very large. To prevent the breakdown of the simulation, a relaxation of
the ALE mesh is necessary. This can be realized by releasing the mesh interface coupling in tan-
gential direction as proposed by KLÖPPEL [137], but at the additional cost of re-evaluating the
mortar coupling matrices. Speed-up can be achieved by fast integration techniques as discussed
by FARAH et al. [68], but this does not cure the original problem. Alternatively, one could
employ a method whose coupling operators can be evaluated very fast and cheaply. The IN-
TERNODES approach by DEPARIS et al. [52, 55] could be interesting in that regard. Although
it requires the evaluation of the coupling operators in the spatial configuration, their setup is very
fast since only mass matrix-like operators needs to be integrated on the interface in the spatial
configuration. A third remedy is described in the thesis by SHAHMIRI [218] where a hybrid
fixed-grid/ALE approach is employed. To allow for arbitrary movement of the solid body, a thin
layer of ALE-based fluid is wrapped around the solid body such that the FSI problem can be
treated with the same methods described in the present thesis. However, this ALE-based fluid
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is then moved over the EULERian background fluid. Hence, the mortar matrices do not change
throughout the simulation, but additional costs and difficulties arise from the fluid-internal in-
terface. Applications that can benefit from such approaches range from a very small scale like
in the numerical analysis of red blood cells [137] to the very large scale like simulations of wind
turbines [13, 14].

With regard to the adaptive time stepping scheme, two extensions are of interest. First, an
incorporation of more sophisticated and hopefully more accurate error estimators could increase
accuracy even further. Additionally, the concept of an ’error density per unit time’, that has been
briefly mentioned in section 4.2.3, is worth further investigation.

The newly proposed hybrid additive/multiplicative SCHWARZ preconditioner produced sat-
isfactory results and speed-ups of the computation. However, some details of that approach
should be investigated further. In the current approach, the additional additive SCHWARZ pre-
conditioner is applied before and after the physics-based block preconditioner, cf. (5.11). By
applying it only either before or after the physics-based block preconditioner, the computational
time for a single application of the additive SCHWARZ preconditioner could be saved. However,
it is not clear a priori how this modification influences the quality of the preconditioner. An al-
ternative modification would be to keep the order of applications as given in (5.11), but to reduce
or even drop the amount of pre- and/or post-smoothing on the AMG hierarchy’s fine level of the
physics-based block preconditioner. Both modifications need to be evaluated by comparing sav-
ings in application time to a possible increase of numbers of linear iterations due to a reduced
effect of the preconditioner. Especially the variant that omits the application of the additive
SCHWARZ preconditioner after the physics-based block preconditioner might lead to additional
overall savings. Looking at the implementation in Baci, the issue of single cores being idle
during some stages of the computation needs to be addressed as indicated in Remark 5.2.2.

Finally, the overall nesting of all components of the solution process could be changed. Cur-
rently, the nonlinearity is treated by a NEWTON scheme, that employs a KRYLOV solver in
every nonlinear iteration, which in turn uses linear multigrid methods for its preconditioning.
With such a setup, it is well known that the simulation spends most of its wall clock time inside
the linear solver, but requires only a few residual evaluations per time step. Having in mind
recent trends in hardware architecture, namely fine-grained parallelism with CPUs connected to
many GPU-like cores, evaluations of the residual vector can be sped up a lot due to their perfect
parallel scalability. To exploit this fact in the solution of a nonlinear problem, the nesting as
described above could be flipped as follows: A nonlinear multigrid method can be put on the
outside to address the nonlinear character of the problem. The NEWTON scheme, an approxi-
mate variant of it, or other nonlinear schemes can be used as level smoothers inside the nonlinear
multigrid scheme. Additionally, the outer multigrid scheme can be embedded into a nonlinear
KRYLOV accelerator like nonlinear GMRES [48, 179, 246] or ANDERSON acceleration [1] to
improve convergence. By using any other method than NEWTON’s method to deal with nonlin-
ear problems, the number of iterations of the nonlinear solver and, thus, the number of residual
evaluations is expected to increase or even to increase a lot. However, exactly these residual
evaluations can be done extremely fast. Combined with the fact, that the effort of solving large
systems of linear equations might be reduced by such an approach, huge overall savings might
be possible. BRUNE et al. [30] show results of such an approach applied to pure elasticity or
fluid flow problems, but using them in the setting of fluid-structure interaction problems seems
to be a novel approach.
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A Mesh Motion Algorithms for the
ALE Grid

As an ALE observer is used to describe the flow field on a deforming domain, evidently a
strategy for moving the nodes of the ALE mesh is needed. In a FSI context, its basic task is
to extend the interface motion, i.e. interface displacement and velocity, into the interior of the
fluid domain, such that grid displacements and grid velocities at interior nodes can be computed
purely based on prescribed boundary information as given by (2.1). The problem of ALE mesh
motion is a purely artificial problem. It is not related to the physics of the coupled problem,
i.e. it does not influence the coupling itself. Its sole purpose is to define a proper mesh for the
evaluation of the fluid problem.

A brief, but detailed and comprehensive overview on ALE methods is given by DONEA et
al. [62]. ALE methods are most often used in the context of finite volume or finite element based
spatial discretizations. An application to meshless methods is described in [183], for example.

Although in this thesis the ALE method is used to describe the fluid field on a deforming
domain, it can also be applied to other types of problems. In solid mechanics, ALE meth-
ods are very appealing in scenarios with very large displacements and distortions like frac-
ture, crash, metal forming, impact, and explosion, where a Lagrangian description usually
fails [62]. Especially problems including plasticity are often treated with an ALE description,
e.g. [2, 4, 5, 84–86, 93, 120, 122, 156, 157, 201, 202, 215].

In the following, some ALE mesh motion techniques are summarized briefly. First, some
basic requirements are discussed. Afterwards, an overview of possible mesh moving algorithms
is given, where those three that are used throughout this thesis are described briefly. Finally, a
large deformation benchmark test case is proposed and used to compare and evaluate these ALE
mesh motion algorithms.

A.1 Requirements

First, some desired properties are discussed which will later be used to assess the quality and the
efficiency of mesh motion algorithms. This collection of requirements is based on comments
in [62, 242]. The ALE field is a purely artificial and auxiliary field, that is just used to enable
fluid computations on a deforming domain, but does not alter the physical problem at hand. Its
influence on the computational workflow should be small, i.e. mesh motion should be a cheap
and automatic process during the simulation. In addition, remeshing should be circumvented
for two reasons. On the one hand, it would introduce additional errors due to data transfer
from the old to the new mesh. On the other hand, remeshing usually requires user interaction,
that should be avoided. Further requirements arise since the quality of the fluid field solution
crucially depends on the grid displacement and velocity fields. Even in the presence of large
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deformation, one aims at avoiding excessive element distortion, which at least degrades the
quality of the fluid solution, but also can lead to the failure of the simulation, if distortions result
in invalid element shapes or deformations like inverted or self-penetrating elements. Moreover,
a spatially smooth grid velocity field uG is necessary since it directly enters the convective term
in the NAVIER–STOKES equations (2.4). Finally, certain features of the mesh like boundary
layers or local refinements should be preserved throughout the simulation.

A.2 Mesh Motion Algorithms

Especially in the presence of large deformations, a robust mesh motion algorithm is crucial in
practical applications. In this section, some mesh motion techniques are reviewed very briefly.
A literature survey on ALE mesh update procedures is given by DONEA et al. [62]. They
distinguish two basic mesh update techniques. The category of mesh regularization comprises
all techniques that aim at preserving mesh regularity and avoid mesh entanglement during the
computation. Mesh adaptation techniques usually involve some notion of error indication to
allow, for instance, to concentrate a finer mesh in regions of steep solution gradients. When
thinking in these two categories, the concept of mesh regularization is applied in this thesis
exclusively.

A further classification has been done in the thesis by WALL [242], where a basic distinction
into continuous and discontinuous mesh motion algorithms is made. On the one hand, con-
tinuous methods usually deform huge portions of the mesh. If mesh deformation can roughly
be estimated a priori, heuristic approaches like in [60] or interpolation methods like in [6, 94,
97, 114, 136, 153, 213, 229] can be applied. For more complex problems, general approaches
might be necessary that can be seen as mesh regularization techniques in the sense of DONEA et
al. [62]. On the other hand, discontinuous approaches are often used, when large deformations
occur, but are limited to simple geometric features of the domain like e.g. rotating machinery
parts in a turbine. These approaches allow for relative motion between two meshes and enable
data exchange at an interface in case of surface coupling or in a region of overlap in case of
volume coupling. A mortar-based approach for such problems of surface-coupled type has been
developed by KLÖPPEL [137] for the simulation of human red blood cells. Referring to the
classification by WALL [242], solely continuous mesh motion schemes are used in this thesis.

Three different mesh regularization strategies are applied, namely LAPLACEian smoothing, a
springs model and an elasticity approach which are briefly described in the sequel. A thorough
study of available implementations in the research code Baci [243] has been performed by
BRUDER [29].

A.2.1 LAPLACEian Smoothing

Positioning of nodes by solving a LAPLACE equation is a very popular method for ALE mesh
motion. It has originally been proposed by WINSLOW [252]. LÖHNER and YANG [158] dis-
tinguish between coordinate and velocity smoothing techniques with nodal displacements or
velocities as the primary unknowns. In this thesis, only smoothing of the nodal displacements
is pursued, whereas the grid velocity uG is reconstructed afterwards by the means of finite dif-
ferences as also done by FÖRSTER [81].
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To avoid steep gradients and to arrive at smooth mesh displacement or velocity fields, the
LAPLACE equation

∇0 ·κG∇0d
G = 0 (A.1)

with essential boundary conditions

dG = d̄
G on ΓD

G

is solved. Note that the mesh motion problem is a pure DIRICHLET problem, i.e. ΓG
D = ∂ΩG

0 .
A finite element formulation can be derived by applying the standard procedures as they have
already been outlined in Section 3.2. After stating a weak form, the spatial discretization (3.11a)
is inserted and the finite element formulation can be developed. Due to the linearity of (A.1),
the stiffness matrix needs to be evaluated only once in the beginning of the simulation. This
makes such an approach very appealing from a computational point of view.

However, the simplicity of the LAPLACEian smoothing comes along with a reduced robust-
ness in certain scenarios. For example, meshes usually feature small elements in the vicinity of
interfaces or boundaries, e.g. boundary layers, or other types of refinement in special areas of
interest. Moreover, these areas often undergo large deformations and, thus, these small elements
are endangered to reach inadmissible deformation first. By allowing for a spatially varying dif-
fusivity κG, one can shift the deformation away from the small elements towards the larger ones
that are far away from the interface or boundary. This greatly enhances robustness of the mesh
motion in presence of large deformation. Different strategies have been proposed in literature.
LÖHNER and YANG [158] use a larger κG close to the interface or boundary and decrease its
value with increasing distance. Alternatively, the diffusivity κG can be chosen to scale inversely
with the element size or element Jacobian. However, in this thesis a constant diffusivity κG is
chosen throughout all computations. If mesh motion by LAPLACEian smoothing fails, the more
powerful elasticity model is used, cf. Section A.2.3. In addition, the LAPLACEian smoothing
has one major drawback, namely its restriction to domains [62]. If it is applied to non domains,
interior nodes might be moved outside the domain, yielding an inadmissible mesh. However
even for domains, the mesh might undergo extensive local squeezing. Overall, moving the mesh
using a LAPLACEian smoother has certain advantages w.r.t. simplicity and efficiency, but its
practical applicability is limited especially for complex domains and large deformations. Thus,
in this thesis LAPLACEian smoothing is applied only just for scenarios with small or moderate
or uniform mesh motion, that do not exhibit large amounts of shear.

A.2.2 Springs Model
Another class of methods interprets the finite element mesh as a network of linear springs instead
of continuum elements. This spring analogy has been originally proposed by BATINA [11]
for two-dimensional airfoil simulations on purely triangular unstructured meshes, where the
vertices of the computational grid are connected with rectilinear springs. Although this approach
prevents collision of nodes, it suffers from possible interpenetration of neighboring elements,
which can be overcome by additional torsional springs as proposed by FARHAT et al. [71].
Extensions to three dimensions have been done in [49, 259]. A graphical representation of the
two-dimensional case is shown in Figure A.1.
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Quad4 element Lineal springs [11] Torsional springs [71]

Figure A.1: Springs analogy in two dimensions for ALE mesh motion — All nodes of an finite
element (left) are connected with rectilinear springs (middle). Additionally, torsional springs
(right) can be placed at each vertex to increase robustness in presence of large deformations.
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Figure A.2: Configuration of rectilinear and torsional springs in an exemplary triangular element
— The vertices i, j, and k are connected with rectilinear springs. At each vertex, a torsional
spring is attached, acting on the angle between the two edges sharing that specific vertex.

In the rectilinear springs model, nodes are connected with linear springs. The spring stiff-
nesses kij are chosen inversely proportional to the length `ij of the supporting edge between the
vertices i and j [11]. Following the improvements by FARHAT et al. [71], a torsional spring is
attached at vertex j between the two edges, that connect the vertices i, j, and k while sharing
vertex j, see Figure A.2. Its stiffness is denoted by cijkj with the subscript j specifying the node,
that the torsional spring is attached to, and the superscript ijk indicating the angle between the
edges ij and jk, that is used to calculate the torque of this spring [71], cf. Figure A.2. The
torsional stiffness tends to infinity if the angle θijkj approaches its bounds 0 or π. This helps
to prevent interpenetration of neighboring elements [71] which enhances the robustness of the
mesh moving algorithm in presence of large deformations. A numerical solution algorithm is
sketched by FARHAT et al. [71].

Its simplicity and its broad range of applicability make the spring model very appealing in
many scenarios and, thus, it is often used in literature. However, it might result in distorted
meshes, that are not acceptable for the computation of accurate fluid field solutions, especially
in the presence of large deformations, cf. BRUDER [29].
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A.2.3 Elasticity Model

The most expensive, but also most robust approach for mesh motion is an elasticity model.
Therefore, a reduced static version of (2.8) is used, reading

∇0 ·P = 0 in Ω0
G (A.2)

with the first PIOLA-KIRCHHOFF stress tensor as defined in (2.9). All remaining quantities
needed to evaluate (A.2) are defined as in the solid case, cf. Section (2.2).

In principle, a variety of strain energy functions Ψ can be used to model the constitutive be-
havior. Due to their availability in the research code Baci [243], BRUDER [29] studied different
nonlinear hyperelastic materials, namely ST.-VENANT-KIRCHHOFF (SVK), MOONEY-RIVLIN

(MR), NEO-HOOKE (NH), and logarithmic NEO-HOOKE (logNH), cf. [24, 118]. The MR ma-
terial includes constitutive parameters cG1 , cG2 , and cG3 with a penalty parameter-like notion to
enforce incompressibility. Despite the SVK material’s capabilities for large displacements and
rigid body motions, it is said to be not suitable for large distortions. The NH material contains
terms that penalize cases where the determinant of the Jacobian becomes small. Its logarithmic
variant reacts even stronger when subjected to shear. The latter three can be parametrized using
a YOUNG’s modulus EG and a POISSON’s ratio νG. For further details on these material laws,
see e.g. the textbooks by BONET and WOOD [24] or HOLZAPFEL [118]. A detailed numerical
analysis of the evolution of the strain energy functions in case of ALE mesh motion applications
has been performed by BRUDER [29].

In very demanding cases, when the stiffening effect of a constitutive law is not sufficient to
cope with mesh distortion, the ALE domain can be subdivided into subdomains with different
constitutive behavior. In this thesis, the same constitutive model is used for every subdomain,
but different material parameters are assigned to them. Usually, stiffer parameters are chosen
close to the interface or moving boundary and weaker ones in the bulk field. This allows for con-
servation of element shapes close to the interface and makes it attractive to push large amounts
of the mesh deformation into the bulk field. This strategy has been pursued in the buckling of a
cylindrical shell under fluid loading in Section 4.3.1.

The nonlinear character of (A.2) requires an evaluation of the residual vector and its lin-
earization in every nonlinear iteration. In scenarios with only moderate mesh motion, it is often
sufficient to update the stiffness matrix only once per time step or even only once in the be-
ginning of the simulation. Since an exact satisfaction of (A.2) is not necessary and since the
ALE field does not alter the physical model, violations due to a modified NEWTON-RAPHSON

scheme with an inexact Jacobian matrix and insufficient number of iterations do not harm the
overall solution procedure, if sufficient mesh quality can be reached. Thus, even in the nonlinear
case, ALE mesh motion is not included into the nonlinear convergence check, cf. Section 5.3.1.

A.3 A Comparison of ALE Mesh Motion Algorithms

To compare robustness of the presented methods, a test case is studied that is driven by a pre-
scribed rotation. It has been specifically designed to trigger difficult mesh motion scenarios
including large deformation and strong shear components close to the moving boundary. Ro-
bustness is assessed in terms of achievable rotation angle before inadmissible element shapes
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occur. Mesh distortion is considered inadmissible as soon as a single element shows det J ≤ 0
with J being the Jacobian matrix for the isoparametric mapping evaluated at each node of the
element. For quadrilaterals or hexahedra, mesh quality is judged by the quality measure DG of
ODDY et al. [178], reading

DG =
ndim∑
i=1

ndim∑
j=1

c2
ij −

1

ndim

ndim∑
k=1

ckk

 (A.3)

with

cij =
1

det J

ndim∑
k=1

JkiJkj

and ndim ∈ {2, 3} being the number of spatial dimensions. This measure is evaluated at every
node and the largest nodal value in the element is used as the element’s quality measure [127,
178]. It accounts for both shearing and stretching, while being invariant to rigid body motions
as well as the element size [213]. It results in DG = 0 for squared elements and increases with
increasing distortion. Unfortunately, an actual geometric interpretation is not straightforward.
For some numerical tests, see the work by HYUN and LINDGREN [127] and SARRATE and
HUERTA [213], who use measure (A.3) to develop mesh smoothing techniques.

The test case is designed as follows: A squared domain with an inner rectangular whole is
considered, cf. Figure A.3. The inner rectangle is subject to a prescribed rotation

d̄
G

(t) =

[
cosωt − sinωt

sinωt cosωt

][
x

y

]
−

[
x

y

]
=

[
x (cosωt− 1)− y sinωt

x sinωt+ y (cosωt− 1)

]
xy

with the angular velocity ω = π/360◦, while all nodes on the outer boundary are fixed. Using
a pseudo-time t with an artificial time step size ∆t = 0.5, the rotation angle is increased in in-
crements of 0.5◦. A similar test has previously been performed by BRUDER [29] who compared
the presented mesh motion schemes as well as their implementations in the in-house research
code Baci [243].

The springs model as well as the elasticity approach with different material laws are compared
to each other. LAPLACEian smoothing isn’t included in the comparison, since it is known to not
be qualified for non domains [62]. Table A.1 provides an overview of the compared methods.
Figure A.4 shows the maximally deformed state, that can be achieved with each model. The
springs model allows only for small deformation. In addition, element distortion concentrates
at the corners of the moving rectangle. Using an elasticity model enables larger rotation angles.
The more the constitutive law resists against shearing deformation, the larger deformation is
acceptable. The SVK model, which is said to be unsuitable for large distortions, shows similar
behavior as the springs approach. Distinctively larger deformation is possible with NH, logNH
and MR constitutive laws. As can be seen from the most right column in Table A.1, an increasing
value of POISSON’s ratio νG enables larger rotation angles, since it immediately increases shear
resistance. The parameter cG3 of the MR material shows a similar effect. Additionally, element
distortion does not concentrate at the vertices of the moving boundary, but rather happens more
inside the bulk field.
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Table A.1: Methods involved in the comparison of ALE mesh motion algorithms — The springs
approach is compared to the elasticity model with various constitutive laws. The rightmost
column indicates the rotation angle, at which the first element in the mesh exhibited inadmissible
distortion. Clearly, elasticity models with high resistance against shear are most robust in this
test case.

ID Model Parameters Max. rotation angle

ale01 Springs − 27.0◦

ale02a Solid with SVK EG = 1.0, νG = 0.0 18.0◦

ale02b Solid with SVK EG = 1.0, νG = 0.3 21.0◦

ale02c Solid with SVK EG = 1.0, νG = 0.45 27.5◦

ale02d Solid with SVK EG = 1.0, νG = 0.49 35.0◦

ale03a Solid with NH EG = 1.0, νG = 0.0 35.0◦

ale03b Solid with NH EG = 1.0, νG = 0.3 49.0◦

ale03c Solid with NH EG = 1.0, νG = 0.45 78.5◦

ale04a Solid with logNH EG = 1.0, νG = 0.0 35.0◦

ale04b Solid with logNH EG = 1.0, νG = 0.3 43.0◦

ale04c Solid with logNH EG = 1.0, νG = 0.45 57.5◦

ale04d Solid with logNH EG = 1.0, νG = 0.49 128.0◦

ale05a Solid with MR cG1 = 1.0, cG2 = 1.0, cG3 = 1.0 37.5◦

ale05b Solid with MR cG1 = 1.0, cG2 = 1.0, cG3 = 10.0 40.0◦

ale05c Solid with MR cG1 = 1.0, cG2 = 1.0, cG3 = 10.0 60.5◦

ale05d Solid with MR cG1 = 1.0, cG2 = 1.0, cG3 = 500.0 96.0◦

ale05e Solid with MR cG1 = 1.0, cG2 = 1.0, cG3 = 1000.0 100.5◦
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Figure A.3: Square domain with rotating rectangular slot — Left: A two-dimensional squared
domain (` = 5.0) is fixed at its outer boundaries, while its inner rectangular slot (h = 0.2,
b = 1.0) undergoes a prescribed rotation d̄

G
(t). Right: Grid for comparison of mesh motion

techniques.

Although increasing values of νG or cG3 seem to be beneficial for the mesh motion, a trade-off
needs to be done since they might cause numerical trouble. The more the material approaches
the incompressible limit νG → 0.5, the harder the linear system is to solve. In the present
example, results for values νG > 0.49 could not be computed since they either led to floating
point exceptions during the computation or to convergence issues.

Finally, some recommendations can be given:

• LAPLACEian smoothing: Although LAPLACEian smoothing can only be applied to do-
mains, it is still an attractive choice due to its simplicity and low numerical effort. In cases
of mild and uniform deformations like in the pressure wave example or in the computa-
tional analysis of AAA, LAPLACEian smoothing is a good and very reasonable choice.
Basically, it can be used as a parameter-free scheme. However, if necessary more sophis-
ticated variants are available, cf. for example [158].

• Springs: Due to its purely geometric character, the springs model is easy to implement. It
can be used very well in the case of mild and uniform deformations. Especially scenar-
ios with low or even without shear, but large elongation or compression can be handled
without any problems like in the one-dimensional example presented in Section 3.4.

• Elasticity model: The most robust approach in presence of large deformation is definitely
the elasticity model, especially with logNH or MR constitutive laws. It shows good preser-
vation of mesh regularity in the vicinity if the interface or moving boundary. However,
the nonlinearity of the approach results in increased numerical effort since the stiffness
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(a) Springs: 27.0◦ (b) Solid with SVK: 35.0◦ (c) Solid with NH: 78.5◦

(d) Solid with logNH: 128.0◦ (e) Solid with MR: 100.5◦

Figure A.4: Final deformations of different ALE mesh motion schemes in a rotation test — The
state of maximum rotation in counterclockwise direction is shown, i.e. the state just before at
least one element in the mesh undergoes an inadmissible distortion. Elements are color-coded
w.r.t. the quality measure DG, cf. (A.3), where large values (red) stand for highly distorted
elements. The solid models with high shear resistance, namely logarithmic NEO-HOOKE and
MOONEY-RIVLIN materials, allow for the largest deformation while still maintaining accept-
able mesh quality, especially in the vicinity of the moving boundary.

137



A Mesh Motion Algorithms for the ALE Grid

matrix needs to be evaluated in every nonlinear iteration. This cost is not negligible at all,
but might be the only choice if all other approaches fail.
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B Hardware and Computational
Resources

In-house Cluster
The in-house linux-based cluster is jointly operated by the Institute for Computational Mechan-
ics1 and the Mechanics & High Performance Computing Group2, both at Technical University
of Munich. It consists of two partitions, denoted by Opteron and Xeon.

• The Opteron partition consists of 1408 AMD Opteron 6128 Magny Cours cores organized
in 88 nodes with 2 octocore CPUs each. Nominal frequency is 2.0 GHz. Each node has a
memory of 32 GB.

• The Xeon partition consists of 128 Intel Xeon E5-2670 SandyBridge cores organized in
8 nodes with 2 octocore CPUs each. Nominal frequency is 2.6 GHz. Each node has a
memory of 32 GB.

Communication between nodes is handled via an Infiniband network (Mellanox ConnextX,
40 GBit/s).

SuperMUC Phase 2 at Leibniz Rechenzentrum
The SuperMUC Petascale System3 at Leibniz Supercomputing Centre in Garching, Germany,
consists of two installations, named Phase 1 and Phase 2. In this thesis, computational nodes
of Phase 2 have been used. It consists of 86016 Haswell Xeon Processor E5-2697 v3 cores,
grouped into 3072 nodes with 2 processors with 14 cores each. Nominal frequency is 2.6 GHz.
Per core, 2.3 GB of memory are available. Nodes are connected via a Infiniband FDR14 net-
work.

1www.lnm.mw.tum.de
2www.mhpc.mw.tum.de
3https://www.lrz.de/services/compute/supermuc/systemdescription/, visited on June 1st 2016
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[23] E. G. Boman, U. V. Çatalyürek, C. Chevalier, and K. D. Devine. The Zoltan and Isorropia Parallel Toolkits
for Combinatorial Scientific Computing: Partitioning, Ordering and Coloring. Scientific Programming,
20(2):29–150, 2012.

[24] J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge Uni-
versity Press, 2nd edition, 2008.

[25] B. Bornemann. Time Integration Algorithms for the Steady States of Dissipative Non-Linear Dynamic
Systems. PhD thesis, Imperial College London, 2003.

[26] M. Brezina. Robust Iterative Methods on Unstructured Meshes. PhD thesis, University of Colorado at
Denver, 1997.

[27] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, 2nd edition, 2000.

[28] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection domi-
nated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in
Applied Mechanics and Engineering, 32(1):199–259, 1982.

[29] L. Bruder. A non-linear ALE mesh moving strategy for large-displacement fluid-structure interaction prob-
lems. Bachelor’s Thesis, Technische Universität München, 2014.

[30] P. Brune, M. Knepley, B. Smith, and X. Tu. Composing Scalable Nonlinear Algebraic Solvers. SIAM
Review, 57(4):535–565, 2015.

[31] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd, 2nd edition,
2008.

[32] V. Carey, D. Estep, A. Johansson, M. Larson, and S. Tavener. Blockwise Adaptivity for Time Dependent
Problems Based on Coarse Scale Adjoint Solutions. SIAM Journal on Scientific Computing, 32(4):2121–
2145, 2010.

[33] P. Causin, J. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for fluid–
structure problems. Computer Methods in Applied Mechanics and Engineering, 194(42–44):4506–4527,
2005.

[34] F. Ceschino. Evaluation de l’erreur par pas dans les problèmes différentiels. Chiffres, 5:223–229, 1962.
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[47] E. A. de Souza Neto, D. Perić, M. Dutko, and D. R. J. Owen. Design of simple low order finite elements
for large strain analysis of nearly incompressible solids. International Journal of Solids and Structures,
33(20–22):3277–3296, 1996.

[48] H. de Sterck. A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition. SIAM
Journal on Scientific Computing, 34(3):A1351–A1379, 2012.

[49] C. Degand and C. Farhat. A three-dimensional torsional spring analogy method for unstructured dynamic
meshes. Computers & Structures, 80(3–4):305–316, 2002.

[50] S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni. Fluid–structure algorithms based on Steklov–
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[223] G. Söderlind. Time-step selection algorithms: Adaptivity, control, and signal processing. Applied Numerical
Mathematics, 56(3–4):488–502, 2006.

[224] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Wellesley Cambridge Press, Wellesley,
MA, 2nd edition, 2008.

[225] A. Swillens, L. Lanoye, J. De Backer, N. Stergiopulos, P. Verdonck, F. Vermassen, and P. Segers. Effect
of an Abdominal Aortic Aneurysm on Wave Reflection in the Aorta. IEEE Transactions on Biomedical
Engineering, 55(5):1602–1611, 2008.

[226] T. E. Tezduyar. Interface-tracking and interface-capturing techniques for finite element computation of
moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering, 195(23–
24):2983–3000, 2006. Incompressible {CFD}.

[227] T. E. Tezduyar and S. Sathe. Modelling of fluid–structure interactions with the space–time finite elements:
Solution techniques. International Journal for Numerical Methods in Fluids, 54(6–8):855–900, 2007.

[228] A. Toselli and O. B. Widlund. Domain Decomposition Methods: Algorithms and Theory, volume 34 of
Springer Series in Computational Mathematics. Springer Berlin / Heidelberg, 2005.
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[245] W. A. Wall, A. Gerstenberger, U. Küttler, and U. M. Mayer. An XFEM Based Fixed-Grid Approach for 3D
Fluid-Structure Interaction, pages 327–349. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[246] T. Washio and C. W. Oosterlee. Krylov subspace acceleration for nonlinear multigrid schemes. Elextronic
Transactions on Numerical Analysis, 6:271–290, 1997.

[247] P. Wesseling. An introduction to multigrid methods. Wiley, Chichester, West Sussex, 1992.

[248] N.-E. Wiberg and X. D. Li. A post-processing technique and an a posteriori error estimate for the newmark
method in dynamic analysis. Earthquake Engineering & Structural Dynamics, 22(6):465–489, 1993.

[249] T. A. Wiesner. Flexible Aggregation-based Algebraic Multigrid Methods for Contact and Flow Problems.
PhD thesis, Technische Universität München, 2015.

[250] T. A. Wiesner, R. S. Tuminaro, W. A. Wall, and M. W. Gee. Multigrid transfers for nonsymmetric sys-
tems based on Schur complements and Galerkin projections. Numerical Linear Algebra with Applications,
21(3):415–438, 2014.

[251] E. K. Wilhelm. Time Adaptivity in Fluid–Structure Interaction. Bachelor’s Thesis, Technische Universität
München, 2013.

[252] A. M. Winslow. Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh.
Journal of Computational Physics, 1(2):149–172, 1966.

153



Bibliography

[253] B. I. Wohlmuth. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier. SIAM
Journal on Numerical Analysis, 38(3):989–1012, 2000.

[254] B. I. Wohlmuth. Discretization Methods and Iterative Solvers Based on Domain Decomposition, volume 17.
Springer, Heidelberg, 2001.

[255] P. Wriggers. Nichtlineare Finite-Element-Methoden. Springer Berlin Heidelberg, 2001.

[256] P. Wriggers. Computational Contact Mechanics. Springer Berlin / Heidelberg, 2nd edition, 2006.
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