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Abstract—Single Root I/O Virtualization (SR-IOV) is an
extension to the PCI Express (PCIe) standard that allows
virtual machines (VMs) to directly access shared I/O devices
without host involvement. This enabled SR-IOV to become
the best-performing solution for virtual I/O to date, which
lead to its commercial adoption, e.g., in the Amazon EC2.
On the downside, a malicious VM can exploit the direct access
to an SR-IOV device by flooding it with PCIe packets. This
results in a congestion on the PCIe interconnect, which leads
to performance interference effects between the malicious VM,
concurrent VMs and even the host.

In this paper, we present a hardware/software approach that
detects and mitigates such Denial-of-Service (DoS) attacks. On
the hardware side, we propose monitoring extensions within
SR-IOV devices that distinguish legal device use from malicious
device use by observing the rate of incoming PCIe transactions
at VM granularity. Malicious VMs are reported to the host
via interrupts. On the software side, performance interference
effects can then be mitigated by dynamically adjusting the
host’s scheduling of the malicious VM or even shutting it down.

We implement a prototype with a commercial off-the-
shelf SR-IOV Ethernet controller and an FPGA board. On
it, we demonstrate that appropriate scheduling of malicious
VMs successfully mitigates interference effects for three cloud-
relevant benchmarks. For example, Memcached is restored to
99.4% of baseline performance (compared to 61.8% without
our extensions). In contrast to QoS features proposed in the
PCIe 3.0 standard, our solution is more flexible. Additionally,
it can be realized as an add-on to existing misuse detection
hardware like the Intel Malicious Driver Detection (MDD).

Keywords-Virtualization, SR-IOV, Performance Interference

I. INTRODUCTION

Virtualization technology for sharing an x86 computer’s
physical resources is a key enabler in today’s cloud comput-
ing landscape. It enables fault isolation and allows for high
utilization of costly hardware resources. This is achieved by
encapsulating applications or servers into Virtual Machines
(VMs) and consolidating these VMs onto a single physical
machine. The resulting efficiency and reliability makes vir-
tualized datacenters an economically worthwhile business.

In such consolidated environments, VMs often concur-
rently access a machines’s shared resources. In certain cases,
this leads to performance interference effects. For example,
interference arises if two applications are deployed on differ-
ent cores of a multi-core processor that share the same last

level cache (LLC) [1]–[4]. If both applications run memory
intensive workloads, they evict each other’s data from the
LLC when bringing in their own. If such interference effects
can be mitigated, cloud service providers benefit, because
they can offer better service level agreements.

Previous studies analyzed performance interference ef-
fects caused by different types of shared resources, like
CPU cores, the CPU’s memory subsystem, disk-I/O [5]
and network-I/O [6]–[8]. Some studies also address mul-
tiple resources [9]–[11]. Proposed techniques for mitigating
performance interference effects cover isolation of shared
resources between concurrent VMs [1]–[3], [12], [13] or
sharing-based resource allocations [5], [14].

However, previous work does not cover PCI Passthrough
and Single Root I/O Virtualization (SR-IOV) [15], a recently
introduced class of x86 virtualized I/O that is supported
by commercial off-the-shelf devices. SR-IOV offers supe-
rior performance [16] relative to legacy I/O virtualization
approaches like emulation [17] and paravirtualization [18],
because it allows VMs to share and directly access a physical
I/O device without host involvement. This boosts perfor-
mance, because the overhead of multiplexing and forwarding
VM-I/O via the host is offloaded to the SR-IOV device.
This advantage in performance lead to SR-IOV’s commercial
adoption, e.g., in the Amazon EC2, where customers can
purchase instances with SR-IOV network devices.

In a recent paper [19], we showed that the direct access
to SR-IOV devices is exploitable. It enables a malicious
VM to flood the SR-IOV device with PCIe packets, which
causes the PCIe interconnect to congest. This adds delays
to I/O operations, effectively degrading the performance of
the attacked SR-IOV device as well as every other I/O
device that utilizes congestion-affected PCIe lanes. This
happens because CPUs always run at higher frequencies
than I/O devices. Therefore, malicious VMs can generate
PCIe packets faster than SR-IOV devices can consume them.
Additionally, I/O devices have no means of preventing CPU
packet generation. Eventually, such Denial-of-Service (DoS)
attacks manifest in performance interference effects between
the malicious VM, concurrent VMs and even the host.

In this paper, we present an approach that combines
hardware and software extensions to detect and mitigate such
DoS attacks on SR-IOV devices. As hardware extensions,
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Figure 1. Block diagram of our proof-of-concept demonstrator. VM1 and VM2 each run on a dedicated core.

we propose monitoring facilities within SR-IOV devices
that observe the rate of incoming PCIe transactions at
VM granularity. The transaction rates are compared to a
host-defined threshold value that distinguishes legal device
use from malicious device use. Therefore, we contribute
an approach to determine suitable threshold values. If the
hardware extensions detect a malicious VM that floods the
interconnect, the host is informed by an interrupt. Software
extensions then mitigate performance interference effects by
dynamically adjusting the host’s scheduling of the malicious
VM or even shutting it down.

We implement our approach on a virtualized x86 system
with a commercial off-the-shelf SR-IOV Ethernet controller
and an SR-IOV capable FPGA board. On this prototype, we
verify our approach with help of three cloud-relevant micro-
and macro-benchmarks, namely Memcached, Apache and
netperf. For example, Memcached performance degrades to
61.8% of baseline performance during a DoS attack. De-
tecting the malicious VM and taking appropriate scheduling
measures restores 99.4% of baseline performance.

The remainder of this paper is organized as follows: Sec-
tion II describes design and implementation of our prototype.
Section III evaluates our approach. Section IV discusses
related work and Section V concludes this paper.

II. DESIGN AND IMPLEMENTATION

In this section, we first present our hardware prototype
configuration. We go on by motivating our approach to
implement PCIe transaction monitoring within an SR-IOV
device and use interrupts to report malicious VMs. Sub-
sequently, we describe how we implemented the proposed
PCIe transaction monitoring and DoS detection on an FPGA.
It follows a description of how we enable the FPGA to
monitor transactions to a commercial off-the-shelf SR-IOV
NIC. The section concludes by explaining how software
extensions determine malicious VMs and how their DoS
attacks can be mitigated.

A. Hardware Configuration

Figure 1 depicts the utilized hardware configuration:
Our machine uses an Intel S2600COE dual-socket Moth-
erboard housing a C602 chipset as its Platform-Controller-
Hub (PCH). The first socket is equipped with a Xeon E5-
2630 six-core CPU running at 2.30 GHz. For measurement,
Hyperthreading is disabled so that VMs can be pinned to full
physical cores and do not have to share cores with other
threads/VMs. SpeedStep and TurboBoost are disabled as
well in order to prevent non-deterministic frequency scaling.
The second socket of the Motherboard is unpopulated so
that our measurements are not influenced by non-uniform
memory access (NUMA) effects and latencies due to socket
crossings. Above described precautions minimize variances
in the conducted measurements and therefore guarantee
highly reproducible results without loss of generality.

The target device of our approach is an Intel 82576 PCIe
card, which is a dual-port gigabit Ethernet SR-IOV NIC. SR-
IOV devices offer multiple Virtual Functions (VFs), which
can be directly assigned to VMs via PCI Passthrough. This
enables VMs to directly access the physical PCIe device
without involvement of the host, which enables state-of-
the-art performance [16]. VFs are created and destroyed
by Physical Functions (PFs) that are exclusively managed
by the host. SR-IOV devices may have multiple PFs. This
is the case for the 82576, where each gigabit Ethernet
port has one PF, which can itself spawn up to eight VFs
each. The NIC is configured to have one VF spawned for
each PF (named VF1.0 and VF2.0). VF 1.0 is used by the
uncompromised VM1 to conduct performance benchmarks
like network throughput tests. VF2.0 is used as a DoS attack
target by malicious VM2.

In our previous paper [19], we showed that passthrough
I/O devices that are (i) connected to or (ii) integrated into
the PCH are specifically prone to DoS attacks. This, and
the fact that vendors (plan to) implement SR-IOV devices



directly into an x86 system’s PCH1 motivated us to connect
our target I/O device to the PCH’s PCIe slot. As our target
I/O device is an Intel 82576, we have a NIC and PCIe-slot
combination that is also featured in our previous paper cited
above. This renders results of this paper more comparable.
Investigating other PCIe-slot (e.g., CPU-integrated slots) and
NIC (e.g., 10 GBit) combinations is subject to future work.

B. Motivating Monitoring Extensions for SR-IOV Devices

The main objective of our approach is to monitor PCIe
transactions rates to the 82576 NIC at VF granularity.
First, we evaluated the use of CPU performance monitor-
ing counters (PMC) for this task, but concluded that they
are not ideally suited, because they lack granularity: PCIe
transactions can be monitored by configuring PMCs to track
Memory Mapped I/O (MMIO) transactions. However, this
configuration tracks non-PCIe MMIO as well as transac-
tions to multiple PCIe devices. This disqualifies PMCs for
scenarios where a VM is assigned to multiple PCIe devices.
Additionally, using interrupts to notify the host of suspected
DoS attacks, like our approach does, is non-trivial with
PMCs if an offending VM is deployed on more than one
core. Although PMCs can be configured to interrupt the
host if their counter value exceeds a threshold, it must be
done separately for each core. Therefore, configuring PMC
thresholds becomes difficult if the malicious VM distributes
its DoS attack on multiple cores.

These reasons motivate an implementation of PCIe trans-
action monitors within the SR-IOV device. It enables moni-
toring at VF granularity and works with VMs that distribute
their DoS attacks between multiple CPU cores, because
monitoring is done at the target, where incoming PCIe trans-
actions join. Additionally, it eases detection of malicious
VMs, because VF to VM assignment is static and therefore
known by the host.

More importantly, our approach of using interrupts to alert
the host about VF misuse is already employed in commercial
off-the-shelf hardware. For example, the Intel I350 Ethernet
controller offers Malicious Driver Detection (MDD) [20]. If
enabled, MDD checks if a VM tries to supply wrong source
MAC addresses (spoofing) or invalid transmit descriptors
(e.g., wrong IP header sizes). However, MDD looks for
security violations concerning Ethernet and some of its
higher-level protocols and does not detect PCIe DoS attacks.
Our approach aims to extend these misuse report facilities by
adding PCIe transaction monitors and DoS attack detection.
By leveraging and sharing existing interrupt report facilities,
our approach can be realized with only few extensions to
existing hardware.

1This is, for example, considered/realized for storage controllers. In fact,
the PCH of our test system features an SR-IOV capable SATA controller.
Unfortunately, at the time of our evaluations, no SR-IOV capable drivers
were available; therefore we exclusively evaluate networking performance.

C. Hardware Extensions (Monitoring / DoS Detection)

Unfortunately, it is not possible to extend the 82576 NIC
itself with hardware monitors. Therefore, we built a proof-
of-concept prototype by using a Xilinx VC709 FPGA board
(see Figure 1). The VC709 is a development board with
a Virtex7 FPGA that is capable of integrating an SR-IOV
enabled PCIe endpoint with two PFs and six VFs. The board
is connected to a slot of the CPU-integrated PCIe controller.
We configured the VC709 to provide one VF per PF, so
that the board acts like a clone of the 82576 NIC. VF3.0 is
intended to mimic VF1.0 of the 82576 NIC, VF4.0 is the
counterpart to VF2.0.

For each VF, we implemented monitoring via two coun-
ters for each type of PCIe transaction; two read counters and
two write counters. The two counter-sets work differently
and are intended for different purposes. One set is accessible
via the PF to which the VF belongs. It monotonically in-
creases the respective counter for each observed transaction,
and is implemented as Clear-on-Read for low overhead use
by monitoring/scheduling software.

The second counter-set is internal to the VC709 and is
used for DoS detection. Hardware periodically compares
the counters to a host-configurable threshold value and clears
them afterwards. If a counter exceeds the threshold value,
a bit in the VF DoS Detection Register (VFDDR) is set
and an interrupt from the PF is issued to the host. The
VFDDR is accessible via the PF, and each bit of the word
stored in the register represents an overflow condition for a
specific VF. On reception of the interrupt, software in the
host system can then read out the VFDDR and determine
the offending VF. The period at which these counters are
checked is also host-configurable. In conclusion, threshold
value und counting/checking period determine the rate of
PCIe transactions that, if surpassed, indicates a DoS attack.

D. Emulation of 82576 Monitoring (Transaction Mirroring)

With the VC709 monitoring implementation mentioned
above, we emulate a system where the 82576 NIC appears to
have these counters built-in. We employ a host system with
Ubuntu 14.04 running Linux 3.13 and the KVM Hypervisor.
We spawn two fully virtualized Linux guest VMs that run
the same OS and kernel as the host. Each VM is pinned
to its own core and assigned 4 GB of RAM (total 32 GB).
The guest VMs are directly assigned to VF1.0 and VF2.0 of
the 82576 NIC and their counterpart VFs from the VC709
board, respectively.

The idea of this setup is to use the VC709 counters for
counting each PCIe transaction that a VM issues to its 82576
VF. Therefore, we modified the original Linux VF driver
for the 82576 VFs such that each PCIe transaction is also
issued to the counterpart VC709 VF. The same mirroring is
implemented for the attack code of the malicious VM that
issues DoS attacks to VF2.0. Figure 1 depicts the mirroring.



Naturally, transaction mirroring imposes a small over-
head on the conducted benchmarks (single-digit percentage,
which is suitable for a proof-of-concept). Detailed numbers
will be presented in the evaluation section. However, keep
in mind that there is no overhead at all if our proposed hard-
ware extensions are not emulated via FPGA and transaction
mirroring, but instead built into the SR-IOV device itself,
like we propose.

E. Software Extensions (DoS Mitigation Scheduling)
Finally, above described prototype can be used to miti-

gate DoS attacks in a running virtualized environment. A
simple approach is to shut down VMs that are reported as
malicious by an IRQ, which restores baseline performance
for concurrent VMs. A less harsh solution is to enforce
a schedule on malicious VMs that prevents them from
producing more PCIe transactions than allowed. This can
be realized by taking a suitable amount of CPU time away
from an malicious VM, so that it cannot cause a harmful
congestion on the PCIe interconnect. In the following, the
technical details of our implementation are explained.

1) Malicious VM Detection: If a VC709 counter exceeds
the host-configured threshold that indicates a DoS attack
(Section II-C), an interrupt is issued to the host. A VC709
PF kernel driver receives the interrupt and triggers the
Dosprotect process (compare Figure 1). Dosprotect then
reads the contents of the VF DoS Detection Register from the
VC709 and determines the VF under attack. Subsequently,
the QEMU process (aka the malicious VM) to which the
attacked VF is assigned is determined.

t = 500 µs︷ ︸︸ ︷
work = r · t sleep = t− work

← →

Figure 2. Scheduling malicious VMs. Parameter r is adjusted on-the-fly
with help of counter feedback.

2) Mitigation Scheduling: Knowing the malicious pro-
cess, Dosprotect enforces a schedule on it that interleaves
sleep and wake times. This is done by explicitly telling
the Linux kernel to sleep or wake the process. Figure 2
depicts the approach: A scheduling time slice of t = 500 µs,
which is an average value for common operating systems, is
divided into work and sleep quantums. To split the time slice
accordingly, Dosprotect first reads out the PCIe transaction
count trcounted that caused the interrupt. Together with the
threshold value for allowed transactions trallowed, a first
ratio r = trallowed/trcounted that determines work and sleep
quantums is calculated. In the following, after each passed
time slice t, the PCIe transaction counter is read out again
and used to fine-tune r by increasing or decreasing it in
small steps, but it is always true that r ∈ [0, 1]. In case the
VM no longer overcommits for a certain amount of time,
Dosprotect backs off and normal OS scheduling continues.

While actively scheduling, Dosprotect’s CPU overhead
was 5%. In systems where VMs are pinned to certain CPU
cores, Dosprotect can be pinned to the same core as the
malicious VM. This prevents stealing CPU time from non-
malicious VMs. If no DoS attacks are going on, Dosprotect
does not produce overhead.

III. EVALUATION

The objective of this section is to (i) determine an appro-
priate, real-world threshold value for PCIe transaction rates
that indicate DoS attacks in a reliable way and (ii) demon-
strate that our approach successfully detects DoS attacks and
mitigates performance interference effects. Both objectives
are realized by employing three established network micro-
and macro-benchmarks that are introduced beforehand.

Due to the nature of network benchmarks, an additional
remote machine is needed that acts as a client or server.
As remote machine we used a Core i7-3770 four-core CPU
with 16 GB of RAM and on-board gigabit Ethernet. It runs
the same Ubuntu and kernel version as our prototype. We do
not use jumbo frames and leave the Maximum Transmission
Unit (MTU) at its default value of 1500. All benchmarks run
for a period of 10 seconds and the presented results are the
average of 5 runs.

Memcached is a distributed memory object-caching
server. It is used to accelerate web applications by caching
frequently used database requests or small static page ele-
ments in memory. We installed Memcached in VM1; perfor-
mance is measured by loading the server with the memaslap
benchmark, which runs on the i7 remote machine. Memaslap
is configured with 4 threads and a concurrency of 64. Other
parameters are left default, which means that generated
requests are randomly distributed with probabilities of 90%
for get and 10% for set requests. Memaslap counts the
number of completed transactions per second.

Apache is a widely used HTTP server and represents a
classic application that runs in a virtualized server. Apache is
running inside VM1 and provides three static HTML pages
of the sizes 4 KiB, 16 KiB, 64 KiB and 256 KiB. Our
i7 remote machine runs Apachebench with four concurrent
threads (one per core) and measures the number of com-
pleted requests per second for a given page.

Netperf measures the data transfer performance of UDP
and TCP streams. VM1 is acting as the initiator for both
protocols. In all our netperf tests, we vary the message
size between 16 byte and 4 KiB. We found this window
to contain the relevant insights about DoS attacks during
streaming benchmarks.

As a first result, we noticed that the VF driver barely
issues PCIe reads. The monitored rate ranged from five
to ten reads per second throughout all of the conducted
benchmarks. Because they are of insignificant volume, we
only consider PCIe writes in the following sections.
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A. Configuring the DoS Detection

In order to appropriately configure the DoS detection, we
need to find a threshold value for PCIe transaction rates that
reliably indicates DoS attacks. Therefore, we first recorded
the PCIe transaction rates of the benchmarks mentioned
above, running in VM1. Subsequently, we recorded the PCIe
transaction rate of VM2 while executing a DoS attack on
its assigned VF. In contrast to our previous paper [19], the
DoS attack targets the Receive/Transmit Descriptor Base
Address registers of the 82576, as we found them to cause
more degradation. Additionally, 64 bit PCIe writes were
used instead of 32 bit writes, because they also increase
degradation.

Each benchmark was run for the parameter range men-
tioned in the previous subsection. Results are depicted in
Figure 3. The PCIe write rate of a DoS attack is 5x larger
than the maximum rate witnessed in any of the benchmarks.
This gap allows a clear distinction between legal and ma-
licious device use, which we can use to define threshold
values. Possibilities include checking for rates just beneath
the DoS rate, just above the highest legal rate or anything
in between.

For this paper, we chose a detection threshold of 420k
writes per second, which is about 1% above the highest
value for legal use (netperf UDP) and did not trigger any
false positives in our experiments. The VC709 DoS detection
is configured to check at this rate. In the following, this
configuration is used to compare (i) baseline results of
the benchmarks with (ii) results during a DoS attack and
(iii) results during an attack with active DoS detection and
mitigation scheduling. The approach to shut down malicious
VMs equals restoring baseline performance.
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B. Memcached and Apache Results

Figure 4 shows results for Memcached. During a DoS
attack without detection and mitigation, transactions/s de-
cline by 38,2% (33887 trans/s). Identifying and properly
scheduling the malicious VM restores 99.4% of baseline
performance. Baseline performance results in this and subse-
quent benchmarks were gathered on a configuration without
any of our hardware or software extensions.

Figure 5 depicts the results obtained for the Apache
benchmarks. For page sizes of 4 KiB and 16 KiB, we
observe 8.4% (446 req/s) and 33,5% (1386 req/s) less page
requests/s during a DoS attack, respectively. The decrease
gets worse with growing page sizes. At 64 KiB, we have
a 46,1% (725 req/s) lower request rate, at 256 KiB it is
51,3% (229 req/s).

With DoS detection and mitigation scheduling, perfor-
mance almost returns to baseline. For 16 KiB page sizes,
the request rate returns to 95.6% of baseline performance.
For all other page sizes, performance is restored to ~98%.
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Figure 6. Netperf results for UDP and TCP throughput benchmarks for a range of message sizes.

C. Netperf Results

Figure 6 depicts the results for netperf UDP and TCP
streaming benchmarks, conducted for different message
sizes. During a DoS attack without mitigation, both protocols
see degradation for all message sizes. UDP streams degrade
between 37,8% (4096 byte message size) and ~70% (256 -
16 byte). With mitigation scheduling, baseline performance
is restored for message sizes between 4096 and 512 byte.
In the range of 512 down to 16 byte, our approach restores
90% of baseline performance.

TCP streams show similar results. During a DoS attack,
performance degrades by 51% for messages sizes between
4096 and 256 byte. Here, DoS detection and mitigation
scheduling is able to completely restore baseline perfor-
mance. Starting with 128 byte (47% degradation), perfor-
mance degradation during a DoS attack becomes smaller
for smaller message sizes (down to 1% for 16 byte). In this
range, mitigation scheduling restores between 86.5% (128
byte) and 93.7% (16 byte) of baseline performance.

In conclusion, we found that mitigation scheduling re-
stores baseline performance for message sizes where netperf
is not CPU-bound. This is true for sizes of 512 byte and
greater for UDP and sizes of 256 byte and greater for TCP.

For message sizes where netperf fully loads the CPU,
because it must prepare a large number of tiny packets,
a malicious VM is still able to cause some degradation.
This happens because the malicious VM is, despite being
scheduled only for very small time slices, still able to cause a
short lasting congestion on the PCIe interconnect, which still
suffices to degrade some performance. In theory, this effect
could be reduced by picking a smaller scheduling time slice
t. This, however, has implications regarding the sampling
rate of the SR-IOV device’s PCIe transaction counters and
the fact that the Dosprotect process, which schedules the

malicious VM, is itself scheduled by the host kernel. As
our choice of parameters performed fine for the Apache and
Memcached macro-benchmarks, which represent real-world
applications, we did not further investigate fine-tuning t.

D. Transaction Mirroring Overhead
In the following, we want to discuss the overhead that

our PCIe transaction mirroring had on the conducted bench-
marks. These overheads need only be considered for our
proof-of-concept demonstrator. If transaction monitoring is
built into SR-IOV I/O devices beforehand, like we propose,
no mirroring is needed.

With active mirroring, the CPU duplicates each PCIe
transaction. This results in a tiny CPU overhead (one assem-
bler instr.) and doubles the number of PCIe packets. How-
ever, this is neglectable due to the fact that (i) the VC709
and the 82576 don’t share PCIe lanes where interferences
might occur and (ii) the CPU internal ring, which the original
and mirrored packets traverse, is capable of much larger
transaction volumes. Mirroring impact on benchmarks and
DoS attacks shall be covered shortly in the following:

1) Benchmark Overhead: Mirroring for VM1, which
executes the benchmarks, was only active for determining
the maximum PCIe write rates of the respective benchmarks
in Section III-A. We quantified mirroring impact and found
variations of at most 7% on the benchmark performances.
Considering the fact that the recorded PCIe write rate of the
DoS attack is more than 4 times as big as the most demand-
ing benchmark (netperf UDP), this overhead is neglectable.
For evaluating our mitigation scheduling approach, mirroring
for VM1 was disabled. Only VM2, which executes the DoS
attacks, had activated mirroring. Therefore, performance
results for the network benchmarks were not influenced.
The impact of mirroring on the DoS attack code shall be
discussed in the following.



2) No DoS Overhead: The DoS attack code that floods
VF2.0 with PCIe write transactions is not affected by
mirroring the packets to VF4.0. This is because our VC709
design does not share PCIe lanes with the 82576 NIC and
completes PCIe writes faster than the NIC (compare Table I).

Table I
TIME FOR EXECUTING A FOR-LOOP (DOS ATTACK) WITH 108

CONSECUTIVE PCIE WRITES, DEPENDING ON DEVICE.

Device 82576 NIC VC709 FPGA

time/write 361.38 ns 88.12 ns

Therefore, congestion on the interconnect during DoS
attacks will first emerge on the PCIe lanes that connect
to the 82576 NIC. Congestion in this case means that the
CPU has to busy-wait for the NIC to process pending PCIe
packets, so that there will be a free egress buffer slot on
the port to which the 82576 is connected. In conclusion, the
CPU can send a mirror packet to the VC709 while it has to
wait for the 82576 to process a PCIe packet. Due to these
circumstances, mirroring packets to the VC709 causes zero
overhead regarding DoS attacks.

IV. RELATED WORK

The PCIe 3.0 standard specifies Virtual Channels (VCs),
which enable isolated PCIe communication by means of
per-VC buffering and configurable VC scheduling. While
we are not aware of CPU/Motherboard combinations that
offer multi-VC support, this approach has the potential to
provide isolated PCIe communication for concurrent VMs.
However, an application scenario with N VMs requires the
same amount of VCs to be implemented to provide complete
isolation.

To provide a more flexible solution than the use of VCs,
we pursued a monitoring based approach. Here, PCIe trans-
actions are monitored for each virtual interface by hardware
extensions embedded into the SR-IOV device itself. While
this approach is more flexible, it is limited to reactive
counter-measures following a detection of malicious behav-
ior. However, we do not view the concepts of monitoring
and VCs as mutually exclusive. Rather, a combination of
both could be used to overcome the limitations of each
approach. For example, sharing of VCs by multiple VMs
can be enabled through monitoring.

We are first in tackling performance interference in SR-
IOV enabled setups. Other research focuses on performance
interference effects in paravirtualized environments. This
includes research on the impact of schedulers on network
performance [6], [7], Amazon EC2 performance interfer-
ence [8], and improving CPU time sharing by accounting
for time consumed in the driver domain [12]. Because SR-
IOV setups are specifically designed to allow I/O requests
bypassing the hypervisor, no privileged component like the
hypervisor or driver domain can be used for monitoring.

Approaches that prevent performance interference ef-
fects that are caused by contention in memory subsystem
components of the CPU, e.g., LLC or memory controller
contention, are close to our work. Memory subsystem con-
tention is prominently investigated in [1]–[3]. The work is
conducted for OS-level workloads. However, it applies to
virtualized environments if similar workloads run inside vir-
tual machines. They leverage CPU performance monitoring
counters (PMC) to monitor memory subsystem contention
effects, e.g., LLC misses. Feedback from the PMCs is
used for scheduling decisions that mitigate performance
interference by enforcing CPU resource isolation. In [13],
a similar PMC-based approach is used for VMs on Xen.

In a contrary approach, Kanemasa et al. [14] demonstrated
that shortcomings of strict isolation can outweigh its bene-
fits. They show that a 50-50 split of CPU resources between
two concurrent VMs can yield lower performance than a
fully-shared allocation (100% CPU for both). A similar
sharing approach applied to disk-I/O is presented in [5].

In contrast to work dealing with LLC or memory con-
troller contention, we did not use PMCs of the CPU as they
provide insufficient granularity to monitor PCIe transactions
(c.f. II-B). Due to these limitations, we embedded monitors
into the SR-IOV device itself. Nevertheless, if current PMC
limitations are overcome in future hardware, monitoring
could also be done within the CPU or root complex.

In summary, we extend existing work by contributing an
approach that mitigates a new class of performance inter-
ference, which has been discovered recently in virtualized
environments using SR-IOV. Previous work mainly focuses
on paravirtualization or uses CPU performance monitoring
counters to mitigate performance interference in the memory
subsystem. While we cannot use privileged components like
the hypervisor or driver domain for monitoring in an SR-IOV
scenario, we transfer the concept of performance monitoring
counters to the virtualized I/O device.

V. CONCLUSIONS

In this paper, we demonstrated an approach for mitigating
performance interference effects which manifest when SR-
IOV capable I/O devices are exploited via Denial-of-Service
attacks on the PCIe interconnect. To tackle the problem,
we propose hardware monitoring extensions within SR-IOV
devices that distinguish legal device use from malicious
device use and report malicious VMs to the host. Knowing
the offender, performance interference effects can then be
mitigated by dynamically adapting the host’s scheduling
of the malicious VM or shutting the offender VM down.
For a proof-of-concept, we implemented our approach on a
system with a commercial off-the-shelf SR-IOV NIC and an
FPGA prototyping board and evaluated it with three micro-
and macro-benchmarks. Results showed that our concept
successfully mitigates performance interference effects and
restores close to baseline performance.



The core idea of our presented concept, implementing
PCIe transaction monitoring at Virtual Function granularity
within the I/O device, can be realized as an extension to
existing misuse detection hardware inside commercial-off-
the-shelf SR-IOV devices. Because the presented attacks can
be easily executed, we recommend to consider PCIe trans-
action monitoring for implementation in future commercial
SR-IOV devices.
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