UMo/Al nuclear fuel plate behavior under thermal treatment (425-550°C)

H. Palancher^{1,a)}, A. Bonnin^{1,2}, C.V. Colin³, V. Nassif³, V. Honkimäki², R. Jungwirth⁵, C. Ritter⁴, G. Champion¹, Y. Calzavara⁴.

 ¹ CEA, DEN, DEC, Cadarache, F13108 Saint Paul lez Durance, France
² ESRF, BP 220, F38043 Grenoble Cedex, France
³ Institut Néel, CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9, France
⁴ ILL, BP 156, 38042 Grenoble Cedex 9, France
⁵ Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, D-85747 Garching bei München, Germany

^{a)} Author to whom correspondence should be addressed. Electronic email: herve.palancher@cea.fr

Key words: neutron diffraction, synchrotron X-ray diffraction, in-situ, phase analysis, nuclear fuels

Abstract: Nuclear fuel plates based on a γ U-Mo/Al mixture are proposed for research reactors. In this work their thermal behavior in the [425; 550°C] temperature range has been studied mainly by neutron and high energy X-ray diffraction. Even if complementary studies will be necessary, the kinetics of first the growth of the interaction layer between γ U-Mo and Al and second of the γ U-Mo destabilization have been accurately measured. This basic work should be helpful for defining manufacturing conditions for fuel plates with optimized composition.