# Mathematical Proceedings of the Cambridge Philosophical Society 

# Invariants of the dihedral group $D_{2 p}$ in characteristic two 

By MARTIN KOHLS<br>Technische Universität München, Zentrum Mathematik-M11, Boltzmannstrasse 3, 85748 Garching, Germany. e-mail: kohls@ma.tum. de<br>AND MÜFİT SEZER<br>Department of Mathematics, Bilkent University, Ankara 06800 Turkey.<br>e-mail: sezer@fen.bilkent.edu.tr

(Received 26 October 2010; revised 30 August 2011)


#### Abstract

We consider finite dimensional representations of the dihedral group $D_{2 p}$ over an algebraically closed field of characteristic two where $p$ is an odd prime and study the degrees of generating and separating polynomials in the corresponding ring of invariants. We give an upper bound for the degrees of the polynomials in a minimal generating set that does not depend on $p$ when the dimension of the representation is sufficiently large. We also show that $p+1$ is the minimal number such that the invariants up to that degree always form a separating set. We also give an explicit description of a separating set.


## 1. Introduction

Let $V$ be a finite dimensional representation of a group $G$ over an algebraically closed field $F$. There is an induced action of $G$ on the algebra of polynomial functions $F[V]$ on $V$ that is given by $g(f)=f \circ g^{-1}$ for $g \in G$ and $f \in F[V]$. Let $F[V]^{G}$ denote the ring of invariant polynomials in $F[V]$. One of the main goals in invariant theory is to determine $F[V]^{G}$ by computing the generators and the relations. One may also study subsets in $F[V]^{G}$ that separate the orbits just as well as the full invariant ring. A set $A \subseteq F[V]^{G}$ is said to be separating for $V$ if for any pair of vectors $u, w \in V$, we have: if $f(u)=f(w)$ for
all $f \in A$, then $f(u)=f(w)$ for all $f \in F[V]^{G}$. There has been a particular rise of interest in separating invariants following the publication the book [1]. Over the last decade there has been an accumulation of evidence that demonstrates that separating sets are better behaved and enjoy many properties that make them easier to obtain. For instance, explicit separating sets are given for all modular representations of cyclic groups of prime order in [8]. Meanwhile generating sets are known only for very limited cases for the invariants of these representations. In addition to attracting attention in their own right, separating invariants can be also used as a stepping stone to build up generating invariants, see [2]. For more background and motivation on separating invariants we direct the reader to [1] and [4].

In this paper we study the invariants of the dihedral group $D_{2 p}$ over a field of characteristic two where $p$ is an odd prime. The invariants of dihedral groups in characteristic zero have been worked out by Schmid in [7] where she sharpened Noether's bound for noncyclic groups. Specifically, among other things, she proved that the invariant ring $\mathbb{C}[V]^{D_{2 p}}$ is generated by polynomials of degree at most $p+1$. Obtaining explicit generators or even sharp degree bounds is much more difficult when the order of the group is divisible by the characteristic of the field. The main difficulty is that the degrees of the generators grow unboundedly as the dimension of the representation increases. Recently, Symonds [9] established that $F[V]^{G}$ is generated by invariants of degree at most $(\operatorname{dim} V)(|G|-1)$ for any representation $V$ of any group $G$. In Section 3 we improve Symonds' bound considerably for $D_{2 p}$ in characteristic two. The bound we obtain is about half of $\operatorname{dim}(V)$ and it does not depend on $p$ if the dimension of the part of $V$ where $D_{2 p}$ does not act like its factor group $\mathbb{Z} / 2 \mathbb{Z}$ is large enough. In Section 4 we turn our attention to separating invariants for these representations. The maximal degree of an element in the generating set for the regular representation provides an upper bound for the degrees of separating invariants. We build on this fact and our results in Section 3 to compute the supremum of the degrees of polynomials in (degreewise minimal) separating sets over all representations. This resolves a conjecture in [5] positively. Then we describe an explicit separating set for all representations of $D_{2 p}$. Our description is recursive and inductively yields a set that is "nice" in terms of constructive complexity. The set consists of invariants that are in the image of the relative transfer with respect to the subgroup of order $p$ of $D_{2 p}$ together with the products of the variables over certain summands. Moreover, these polynomials depend on variables from at most three summands.

## 2. Notation and conventions

In this section we fix the notation for the rest of the paper. Let $p \geqslant 3$ be an odd number and $G:=D_{2 p}$ be the dihedral group of order $2 p$. We fix elements $\rho$ and $\sigma$ of order $p$ and 2 respectively. Let $H$ denote the subgroup of order $p$ in $G$. Let $F$ be an algebraically closed field of characteristic two, and $\lambda \in F$ a primitive $p$ th root of unity.

Lemma 1. For $0 \leqslant i \leqslant(p-1) / 2$ let $W_{i}$ denote the two dimensional module spanned by the vectors $v_{1}$ and $v_{2}$ such that $\rho\left(v_{1}\right)=\lambda^{-i} v_{1}, \rho\left(v_{2}\right)=\lambda^{i} v_{2}, \sigma\left(v_{1}\right)=v_{2}$ and $\sigma\left(v_{2}\right)=v_{1}$. Then the $W_{i}$ together with the trivial module represent a complete list of indecomposable $D_{2 p}$-modules.

Proof. Let $V$ be any $D_{2 p}$-module. As $p$ is odd, the action of $\rho$ is diagonalizable. For any $k \in \mathbb{Z}, \sigma$ induces an isomorphism of the eigenspaces of $\rho, \sigma: \operatorname{Eig}\left(\rho, \lambda^{k}\right) \xrightarrow{\sim} \operatorname{Eig}\left(\rho, \lambda^{-k}\right)$. Therefore as $D_{2 p}$-module, $V$ decomposes into a direct sum of $\operatorname{Eig}(\rho, 1)$ and some $W_{i}$ 's with $1 \leqslant i \leqslant(p-1) / 2$. The action of $\sigma$ on $\operatorname{Eig}(\rho, 1)$ decomposes into a direct sum of trivial summands and summands is ismorphic to to Wher

Note that $W_{i}$ is faithful if and only if $i$ and $p$ are coprime. Let $V$ be a reduced $G$-module, i.e., it does not contain the trivial module as a summand. Then

$$
V=\bigoplus_{i=1}^{r} W_{m_{i}} \oplus \bigoplus_{i=1}^{s} W_{0}
$$

where $r, s, m_{i}$ are integers such that $r, s \geqslant 0$ and $0<m_{i} \leqslant(p-1) / 2$ for $1 \leqslant i \leqslant r$. By a suitable choice of basis we identify $V=F^{2 r+2 s}$ with a space of $2(r+s)$-tuples $\left\{\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s}\right) \mid a_{i}, b_{i}, c_{j}, d_{j} \in F, 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s\right\}$ such that the projection $\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s}\right) \rightarrow\left(a_{i}, b_{i}\right) \in F^{2}$ is a $D_{2 p}$-equivariant surjection from $V$ to $W_{m_{i}}$ for $1 \leqslant i \leqslant r$ and the projection $\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s}\right) \rightarrow\left(c_{j}, d_{j}\right) \in F^{2}$ is a $D_{2 p}$-equivariant surjection from $V$ to $W_{0}$ for $1 \leqslant j \leqslant s$. Let $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}, z_{1}, \ldots, z_{s}, w_{1}, \ldots, w_{s}$ denote the corresponding basis elements in $V^{*}$, so we have

$$
F[V]=F\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}, z_{1}, \ldots, z_{s}, w_{1}, \ldots, w_{s}\right]
$$

with $\sigma$ interchanging $x_{i}$ with $y_{i}$ for $1 \leqslant i \leqslant r$ and $z_{j}$ with $w_{j}$ for $1 \leqslant j \leqslant s$. The action of $\rho$ is trivial on $z_{j}$ and $w_{j}$ for $1 \leqslant j \leqslant s$. Meanwhile $\rho\left(x_{i}\right)=\lambda^{m_{i}} x_{i}$ and $\rho\left(y_{i}\right)=\lambda^{-m_{i}} y_{i}$ for $1 \leqslant i \leqslant r$.

## 3. Generating invariants

In this section we give an upper bound for the degree of generators for $F[V]^{G}$. So far $p \geqslant 3$ can be an odd number, but later $p$ is an odd prime. We continue with the introduced notation. In particular, $V$ is still reduced. For $1 \leqslant i \leqslant r$ and $1 \leqslant j \leqslant s$, let $a_{i}, b_{i}, c_{j}, d_{j}$ denote non-negative integers. Let $m=x_{1}^{a_{1}} \ldots x_{r}^{a_{r}} y_{1}^{b_{1}} \ldots y_{r}^{b_{r}} z_{1}^{c_{1}} \ldots z_{s}^{c_{s}} w_{1}^{d_{1}} \ldots w_{s}^{d_{s}}$ be a monomial in $F[V]$. Since $\rho$ acts on a monomial by multiplication with a scalar, all monomials that appear in a polynomial in $F[V]^{G}$ are invariant under the action of $\rho$. For a monomial $m$ that is invariant under the action of $\rho$, we let $o(m)$ denote its orbit sum, i.e. $o(m)=m$ if $m \in F[V]^{G}$ and $o(m)=m+\sigma(m)$ if $m \in F[V]^{\rho} \backslash F[V]^{G}$. As $\sigma$ permutes the monomials, we have the following:

Lemma 2. Let $M$ denote the set of monomials of $F[V] . F[V]^{G}$ is spanned as a vector space by orbit sums of $\rho$-invariant monomials, i.e. by the set

$$
\left\{o(m): m \in M^{\rho}\right\}=\left\{m+\sigma(m): m \in M^{\rho}\right\} \cup\left\{m: m \in M^{G}\right\}
$$

Let $f \in F[V]_{+}^{G}$. We call $f$ expressible if $f$ is in the algebra generated by the invariants whose degrees are strictly smaller than the degree of $f$.

LEMMA 3. Let $m=x_{1}^{a_{1}} \cdots x_{r}^{a_{r}} y_{1}^{b_{1}} \cdots y_{r}^{b_{r}} z_{1}^{c_{1}} \cdots z_{s}^{c_{s}} w_{1}^{d_{1}} \cdots w_{s}^{d_{s}} \in M^{\rho}$ such that $o(m)$ is not expressible. Then $\sum_{1 \leqslant j \leqslant s}\left(c_{j}+d_{j}\right) \leqslant s$.

Proof. Assume by contradiction that $\sum_{1 \leqslant j \leqslant s}\left(c_{j}+d_{j}\right)>s$. Pick an integer $1 \leqslant j \leqslant s$ such that $c_{j}+d_{j} \geqslant 2$. If both $c_{j}$ and $d_{j}$ are non-zero, then $m$ is divisible by the invariant $z_{j} w_{j}$. It follows that $o(m)$ is divisible by $z_{j} w_{j}$, hence $o(m)$ is expressible. Now assume $c_{j} \geqslant 2$ and $d_{j}=0$. Note that $m / z_{j} \in M^{\rho}$. We consider the product

$$
o\left(z_{j}\right) o\left(m / z_{j}\right)=\left(z_{j}+w_{j}\right)\left(m / z_{j}+\sigma(m) / w_{j}\right)=o(m)+\left(m w_{j} / z_{j}+\sigma(m) z_{j} / w_{j}\right)
$$

As $m w_{j} / z_{j}$ is divisible by $z_{j} w_{j}$ (because $m$ is divisible by $z_{j}^{2}$ ), the invariant $f:=m w_{j} / z_{j}+$ $\sigma(m) z_{j} / w_{j}$ is divisible by $z_{j} w_{j}$. Hence $o(m)=o\left(z_{j}\right) o\left(m / z_{j}\right)+f$ is expressible. The case

Theorem 4. For $p$ an odd prime, $F[V]^{G}$ is generated by invariants of degree at most $s+\max \{r, p\}$.

Proof. By Lemma 2 it suffices to show that $o(m)$ is expressible for any monomial $m=x_{1}^{a_{1}} \cdots x_{r}^{a_{r}} y_{1}^{b_{1}} \cdots y_{r}^{b_{r}} z_{1}^{c_{1}} \cdots z_{s}^{c_{s}} w_{1}^{d_{1}} \cdots w_{s}^{d_{s}} \in M^{\rho}$ of degree bigger than or equal to $s+\max \{r, p\}+1$. Also by the previous lemma we may assume that $\sum_{1 \leqslant j \leqslant s}\left(c_{j}+d_{j}\right) \leqslant s$. But then $t:=\sum_{1 \leqslant i \leqslant r}\left(a_{i}+b_{i}\right) \geqslant \max \{r, p\}+1 \geqslant r+1$, so we may take $a_{1}+b_{1} \geqslant 2$. As before, not both of $a_{1}$ and $b_{1}$ are non-zero because otherwise $o(m)$ is divisible by the invariant polynomial $x_{1} y_{1}$ and so is expressible. So without loss of generality we assume that $a_{1} \geqslant 2, b_{1}=0$. Let $\kappa_{F}$ denote the character group of $H$, whose elements are group homomorphisms from $H$ to $F^{*}$. Note that $\kappa_{F} \cong H$. For $1 \leqslant i \leqslant r$, let $\kappa_{i} \in \kappa_{F}$ denote the character corresponding to the action of $H$ on $x_{i}$. By construction the character corresponding to the action on $y_{i}$ is $-\kappa_{i}$. Since $\rho(m)=m$ we have $\sum_{1 \leqslant i \leqslant r}\left(a_{i} \kappa_{i}-b_{i} \kappa_{i}\right)=0$. This is an equation in a cyclic group of order $p$, and the sum contains at least $t \geqslant p+1$ (not distinct) nonzero summands. Therefore Proposition 6 applies to the sequence $\kappa_{1}, \kappa_{1}, \ldots, \kappa_{1}$ ( $a_{1}$ times), $\ldots,-\kappa_{r}, \ldots,-\kappa_{r}$ ( $b_{r}$ times). As $a_{1} \geqslant 2$, we get non-negative integers $a_{i}^{\prime} \leqslant a_{i}$ and $b_{i}^{\prime} \leqslant b_{i}$ for $1 \leqslant i \leqslant r$ with $0<a_{1}^{\prime}<a_{1}$ satisfying $\sum_{1 \leqslant i \leqslant r}\left(a_{i}^{\prime} \kappa_{i}-b_{i}^{\prime} \kappa_{i}\right)=0$. Hence $m_{1}:=x_{1}^{a_{1}^{\prime}} \cdots x_{r}^{a_{r}^{a_{r}}} y_{1}^{b_{1}^{\prime}} \cdots y_{r}^{b_{r}^{\prime}} z_{1}^{c_{1}} \cdots z_{s}^{c_{s}} w_{1}^{d_{1}} \cdots w_{s}^{d_{s}}$ is $\rho$-invariant. Thus $m_{2}:=m / m_{1}$ is also $\rho$-invariant. Since $0<a_{1}^{\prime}<a_{1}$, both $m_{1}$ and $m_{2}$ are divisible by $x_{1}$. Now consider

$$
\left(m_{1}+\sigma\left(m_{1}\right)\right)\left(m_{2}+\sigma\left(m_{2}\right)\right)=o(m)+\left(m_{1} \sigma\left(m_{2}\right)+\sigma\left(m_{1}\right) m_{2}\right) .
$$

As $m_{1} \sigma\left(m_{2}\right)$ is divisible by $x_{1} y_{1}$, so is $f:=\left(m_{1} \sigma\left(m_{2}\right)+\sigma\left(m_{1}\right) m_{2}\right)$. It follows that $o(m)=$ $\left(m_{1}+\sigma\left(m_{1}\right)\right)\left(m_{2}+\sigma\left(m_{2}\right)\right)+f$ is expressible.

Remark 5. Let $p \geqslant 3$ be an odd number and assume that $V=W_{i}$ for some $1 \leqslant i \leqslant$ $(p-1) / 2$ such that $i$ and $p$ are coprime and set $x=x_{1}$ and $y=y_{1}$. Then $F[V]^{G}$ is generated by orbit sums $o(m)$ of monomials $m \in M^{\rho}$. If $m \in M^{G} \backslash\{1\}$, then $m$ is divisible by $x y \in M^{G}$. Otherwise, $o(m)=x^{k p}+y^{k p}$ for some $k$. Using the displayed formula above with $m_{1}=x^{p}, m_{2}=x^{(k-1) p}$, one sees $o(m)$ is expressible if $k \geqslant 2$. It follows that $F[V]^{G}=F\left[x^{p}+y^{p}, x y\right]$.

In the proof, we have used the following result of Barbara Schmid, which we state here for convenience of the reader:

PROPOSITION 6 (see [7, proof of proposition 7.7]). Let $x_{1}, \ldots, x_{t} \in(\mathbb{Z} / p \mathbb{Z}) \backslash\{\overline{0}\}$ ( $p$ an odd prime) be a sequence of $t \geqslant p+1$ nonzero elements. Let $k_{1}, k_{2} \in\{1, \ldots, t\}, k_{1} \neq k_{2}$ be a pair of different indices such that $x_{k_{1}}=x_{k_{2}}$ (such a pair obviously exists). Then there exists a subset of indices $\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, t\} \backslash\left\{k_{1}, k_{2}\right\}$ such that

$$
x_{k_{1}}+x_{i_{1}}+\cdots+x_{i_{r}}=\overline{0}
$$

Note that in this proposition we have to assume $p$ prime in order to make an arbitrary choice of indices $k_{1}, k_{2}$ with $x_{k_{1}}=x_{k_{2}}$. For $p$ a natural number, a weaker version holds, see the paper of Schmid.

## 4. Separating invariants

For a finite group $G$ and a fixed (algebraically closed) field $F$, let $\beta_{\text {sep }}(G)$ denote the smallest number $d$ such that for any representation $V$ of $G$ there exists a separating set of invariants of degree $\leqslant d$.

Proposition 7 (see [3, proof of corollary 3.11] or also [5, proposition 3]). The number $\beta_{\text {sep }}(G)$ is the smallest number d such that for the regular representation $V_{\text {reg }}:=F G$, invariants up to degree d form a separating set for $F\left[V_{\mathrm{reg}}\right]^{G}$.

Now we get:
THEOREM 8. For an algebraically closed field $F$ of characteristic 2 and $p$ an odd prime, we have $\beta_{\text {sep }}\left(D_{2 p}\right)=p+1$.

Note that in [5, proposition 10 and example 2], bounds for $\beta_{\text {sep }}\left(D_{2 p}\right)$ are given only in characteristics $\neq 2$, and the theorem above was conjectured. For example by [5], when $p$ is an odd prime and equals the characteristic of $F$, then $\beta_{\text {sep }}\left(D_{2 p^{r}}\right)=2 p^{r}$ for any $r \geqslant 1$.

Proof. We look at the regular representation $V_{\text {reg }}=F G$, which decomposes into $V_{\text {reg }}=$ $\bigoplus_{i=1}^{\frac{p-1}{2}} W_{i} \oplus \bigoplus_{i=1}^{\frac{p-1}{2}} W_{i} \oplus W_{0}$. This can be seen by considering the action of $G$ on the basis of $F G$ consisting of the elements $v_{k}:=\sum_{j=0}^{p-1} \lambda^{k j} \rho^{j}$ and $w_{k}:=\sigma\left(v_{k}\right)$ for $k=0, \ldots, p-1$, where $\lambda$ is a primitive $p$ th root of unity. Then $\rho\left(v_{k}\right)=\lambda^{-k} v_{k}, \rho\left(w_{k}\right)=\sigma \rho^{-1} v_{k}=\lambda^{k} w_{k}$, and $\sigma$ interchanges $v_{k}$ and $w_{k}$. It follows that $\left\langle v_{k}, w_{k}\right\rangle \cong W_{k}$ if $0 \leqslant k \leqslant \frac{p-1}{2}$ and $\left\langle v_{k}, w_{k}\right\rangle \cong$ $W_{p-k}$ if $\frac{p+1}{2} \leqslant k \leqslant p-1$.

By Theorem 4, $F\left[V_{\text {reg }}\right]^{G}$ is generated by invariants of degree $\leqslant 1+\max \left\{p, 2 \frac{p-1}{2}\right\}=1+p$. Hence $\beta_{\text {sep }}(G) \leqslant p+1$ by Proposition 7. Note that this also follows constructively from Theorem 9. To prove the reverse inequality, consider $V:=W_{1} \oplus W_{0}$. We use the notation of section 2 , so $F[V]=F[x, y, z, w]$ (omitting indices since $r=s=1$ ) and look at the points $v_{1}:=(0,1,1,0)$ and $v_{2}:=(0,1,0,1)$ of $V$. They can be separated by the invariant $z x^{p}+w y^{p}$. Assume they can be separated by an invariant of degree less or equal than $p$. By Lemma 2, $F\left[V_{V}\right]^{G}$ is generated by invariant monomials $m \in F[V]^{G}$ and orbit sums $m+\sigma(m)$ of $\rho$-invariant monomials $m \in F[V]^{\rho}$. If such an element separates $v_{1}$ and $v_{2}$, we have $m\left(v_{1}\right) \neq m\left(v_{2}\right)$ or $(m+\sigma m)\left(v_{1}\right) \neq(m+\sigma m)\left(v_{2}\right)$ respectively. The latter implies $m\left(v_{1}\right) \neq m\left(v_{2}\right)$ or $\sigma(m)\left(v_{1}\right) \neq \sigma(m)\left(v_{2}\right)$. Replacing $m$ by $\sigma(m)$ if necessary, we thus have a $\rho$-invariant monomial $m$ separating $v_{1}, v_{2}$ of degree $\leqslant p$. Therefore, $x$ does not appear in $m$, so $m=y^{a} z^{b} w^{c}$. First assume $a=0$. If $b=c$, then $m$ is $G$-invariant, and does not separate $v_{1}, v_{2}$. If $b \neq c$, then $m$ is not $G$-invariant, and $m+\sigma(m)=z^{b} w^{c}+z^{c} w^{b}$ does not separate $v_{1}, v_{2}$. So $a>0$. As $m$ is $\rho$-invariant, we have $a \geqslant p$. Since $\operatorname{deg} m \leqslant p$, we have $a=p$ and $b=c=0$. Then $m+\sigma(m)=y^{p}+x^{p}$ does not separate $v_{1}, v_{2}$. We have a contradiction.

Theorem 8 gives an upper bound for the degrees of polynomials in a separating set. In the following, we construct a separating set explicitly. We use again the notation of section 2 . We assume that $V$ is a faithful $G$-module. In particular we have $r \geqslant 1$. Let $1 \leqslant i \leqslant r-1$ be arbitrary. Since the action of $\rho$ is non-trivial on each of the variables $x_{r}, y_{1}, \ldots, y_{r-1}$ there exists a positive integer $n_{i} \leqslant p-1$ such that $x_{r} y_{i}^{n_{i}}$ and $x_{r} x_{i}^{p-n_{i}}$ are invariant under the action of $\rho$. We thus get invariants

$$
f_{i}:=x_{r} y_{i}^{n_{i}}+y_{r} x_{i}^{n_{i}}, \quad g_{i}:=x_{r} x_{i}^{p-n_{i}}+y_{r} y_{i}^{p-n_{i}} \in F[V]^{G} \quad \text { for } i=1, \ldots, r-1 .
$$

For $1 \leqslant i \leqslant r-1$ and $1 \leqslant j \leqslant s$ we also define

$$
f_{i, j}:=x_{r} y_{i}^{n_{i}} z_{j}+y_{r} x_{i}^{n_{i}} w_{j}, \quad h_{j}:=x_{r}^{p} z_{j}+y_{r}^{p} w_{j} \in F[V]^{G} .
$$

Set $V^{\prime}=\bigoplus_{i=1}^{r-1} W_{m_{i}} \oplus \bigoplus_{i=1}^{s} W_{0}$.

Theorem 9. Let p be an odd prime. Let $S$ be a separating set for $V^{\prime}$. Then $S$ together with the set

$$
T=\left\{x_{r} y_{r}, x_{r}^{p}+y_{r}^{p}, f_{i}, g_{i}, f_{i, j}, h_{j} \mid 1 \leqslant i \leqslant r-1,1 \leqslant j \leqslant s\right\}
$$

of invariant polynomials is a separating set for $V$.
Note that a separating set for $\bigoplus_{i=1}^{s} W_{0}$ is given in [8].
Proof. We have a surjection $V \rightarrow V^{\prime}:\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s}\right) \rightarrow$ $\left(a_{1}, \ldots, a_{r-1}, b_{1}, \ldots, b_{r-1}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s}\right)$ which is $G$-equivariant. Therefore by [ 6 , theorem 1] it suffices to show that the polynomials in $T$ separate any pair of vectors $v_{1}$ and $v_{2}$ in different $G$-orbits that agree everywhere except $r$ th and $2 r$ th coordinates. So we take

$$
v_{1}=\left(a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s}\right)
$$

and

$$
v_{2}=\left(a_{1}, \ldots, a_{r-1}, a_{r}^{\prime}, b_{1}, \ldots, b_{r-1}, b_{r}^{\prime}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{s}\right)
$$

Assume by way of contradiction that no polynomial in $T$ separates $v_{1}$ and $v_{2}$. Since $\left\{x_{r} y_{r}, x_{r}^{p}+y_{r}^{p}\right\} \subseteq T$ is a separating set for $W_{m_{r}}$ by Remark 5, we may further take that $\left(a_{r}, b_{r}\right)$ and $\left(a_{r}^{\prime}, b_{r}^{\prime}\right)$ are in the same $G$-orbit. Consequently, there are two cases.

First we assume that there exists an integer $t$ such that $\left(a_{r}^{\prime}, b_{r}^{\prime}\right)=\rho^{t}\left(a_{r}, b_{r}\right)$. Hence $a_{r}^{\prime}=$ $\lambda^{-t m_{r}} a_{r}$ and $b_{r}^{\prime}=\lambda^{t m_{r}} b_{r}$. Set $c:=\lambda^{-t m_{r}}$. Notice that $a_{r}$ and $b_{r}$ can not be zero simultaneously because otherwise $v_{1}=v_{2}$. Without loss of generality we take $a_{r} \neq 0$. Also if $a_{i}=b_{i}=0$ for all $1 \leqslant i \leqslant r-1$ then we have $\rho^{t}\left(v_{1}\right)=v_{2}$, hence $r>1$ and there is an index $1 \leqslant q \leqslant r-1$ such that at least one of $a_{q}$ or $b_{q}$ is non-zero. We show in fact both $a_{q}$ and $b_{q}$ are non-zero together with $b_{r}$. First assume that $a_{q} \neq 0$. If one of $b_{q}$ or $b_{r}$ is zero, then $g_{q}\left(v_{1}\right)=$ $a_{r} a_{q}^{p-n_{q}}$ and $g_{q}\left(v_{2}\right)=c a_{r} a_{q}^{p-n_{q}}$. This yields a contradiction because $g_{q}\left(v_{1}\right)=g_{q}\left(v_{2}\right)$. Next assume that $b_{q} \neq 0$. If one of $a_{q}$ or $b_{r}$ is zero then $f_{q}\left(v_{1}\right)=a_{r} b_{q}^{n_{q}}$ and $f_{q}\left(v_{2}\right)=c a_{r} b_{q}^{n_{q}}$, yielding a contradiction again. In fact, applying the same argument using the invariant $g_{i}$ (or $f_{i}$ ) shows that for $1 \leqslant i \leqslant r-1$ we have: $a_{i} \neq 0$ if and only if $b_{i} \neq 0$. We claim that $a_{i}^{p}=b_{i}^{p}$ for $1 \leqslant i \leqslant r-1$. Clearly we may assume $a_{i} \neq 0$. From $f_{i}\left(v_{1}\right)=f_{i}\left(v_{2}\right)$ we get $(1+c) a_{r} b_{i}^{n_{i}}=\left(1+c^{-1}\right) b_{r} a_{i}^{n_{i}}$. Similarly from $g_{i}\left(v_{1}\right)=g_{i}\left(v_{2}\right)$ we have $(1+c) a_{r} a_{i}^{p-n_{i}}=$ $\left(1+c^{-1}\right) b_{r} b_{i}^{p-n_{i}}$. It follows that

$$
c^{-1}=\frac{a_{r} b_{i}^{n_{i}}}{b_{r} a_{i}^{n_{i}}}=\frac{a_{r} a_{i}^{p-n_{i}}}{b_{r} b_{i}^{p-n_{i}}} .
$$

This establishes the claim. For $1 \leqslant i \leqslant r-1$, let $e_{i}$ denote the smallest non-negative integer such that $b_{i}=\lambda^{e_{i}} a_{i}$. We also have $b_{r}=c \lambda^{e_{i} n_{i}} a_{r}$ provided $a_{i} \neq 0$. We now show that $c_{j}=d_{j}$ for all $1 \leqslant j \leqslant s$. From $f_{q, j}\left(v_{1}\right)=f_{q, j}\left(v_{2}\right)$ we have $c_{j} a_{r} b_{q}^{n_{q}}+d_{j} b_{r} a_{q}^{n_{q}}=c c_{j} a_{r} b_{q}^{n_{q}}+$ $c^{-1} d_{j} b_{r} a_{q}^{n_{q}}$. Putting $b_{q}=\lambda^{e_{q}} a_{q}$ and $b_{r}=c \lambda^{e_{q} n_{q}} a_{r}$ we get $c_{j} a_{r} \lambda^{e_{q} n_{q}} a_{q}^{n_{q}}+d_{j} c \lambda^{e_{q} n_{q}} a_{r} a_{q}^{n_{q}}=$ $c c_{j} a_{r} \lambda^{e_{q} n_{q}} a_{q}^{n_{q}}+c^{-1} d_{j} c a_{r} \lambda^{e_{q} n_{q}} a_{q}^{n_{q}}$ which gives $c_{j}+c d_{j}=c c_{j}+d_{j}$. This implies $c_{j}=d_{j}$ as desired because $1+c \neq 0$. We now have

$$
v_{1}=\left(a_{1}, \ldots, a_{r}, \lambda^{e_{1}} a_{1}, \ldots, \lambda^{e_{r-1}} a_{r-1}, c \lambda^{e_{q} n_{q}} a_{r}, c_{1}, \ldots, c_{s}, c_{1}, \ldots, c_{s}\right)
$$

and

$$
v_{2}=\left(a_{1}, \ldots, a_{r-1}, c a_{r}, \lambda^{e_{1}} a_{1}, \ldots, \lambda^{e_{r-1}} a_{r-1}, \lambda^{e_{q} n_{q}} a_{r}, c_{1}, \ldots, c_{s}, c_{1}, \ldots, c_{s}\right)
$$

Since $0<m_{r}<p$, there exists an integer $0 \leqslant h \leqslant p-1$ such that $-h m_{r}+e_{q} n_{q} \equiv 0$
the last $2 s$ coordinates is trivial it suffices to show that $\lambda^{-h m_{i}} b_{i}=a_{i}$ for $1 \leqslant i \leqslant r-1$ and $\lambda^{-h m_{r}} b_{r}=c a_{r}$. Hence we need to show $-h m_{i}+e_{i} \equiv 0 \quad \bmod p$ for $1 \leqslant i \leqslant r-1$ when $a_{i} \neq 0$, and $-h m_{r}+e_{q} n_{q} \equiv 0 \bmod p$. The second equality follows by the choice of $h$. So assume that $1 \leqslant i \leqslant r-1$ and $a_{i} \neq 0$. We have $m_{r}-n_{i} m_{i} \equiv 0 \bmod p$ because $x_{r} y_{i}^{n_{i}}$ is invariant under the action of $\rho$. It follows that $e_{q} n_{q}-h n_{i} m_{i} \equiv 0 \bmod p$. But since $e_{i} n_{i} \equiv e_{q} n_{q}\left(\right.$ as $\left.b_{r}=c \lambda^{e_{i} n_{i}} a_{r}=c \lambda^{e_{q} n_{q}} a_{r}\right)$ we have $n_{i}\left(e_{i}-h m_{i}\right) \equiv 0 \bmod p$. Since $n_{i}$ is non-zero modulo $p$ we have $e_{i}-h m_{i} \equiv 0 \bmod p$ as desired.

Next we consider the case $\left(a_{r}^{\prime}, b_{r}^{\prime}\right)=\rho^{t} \sigma\left(a_{r}, b_{r}\right)$ for some integer $t$. Hence $a_{r}^{\prime}=\lambda^{-t m_{r}} b_{r}$ and $b_{r}^{\prime}=\lambda^{t m_{r}} a_{r}$. Set $c:=\lambda^{-t m_{r}}$. As in the first case one of $a_{r}$ or $b_{r}$ is non-zero, so without loss of generality we take $a_{r} \neq 0$. As $h_{j}\left(v_{1}\right)=h_{j}\left(v_{2}\right)$ for $1 \leqslant j \leqslant s$, we get $\left(a_{r}^{p}+\right.$ $\left.a_{r}^{\prime p}\right) c_{j}=\left(b_{r}^{p}+b_{r}^{\prime p}\right) d_{j}$, which implies $\left(a_{r}^{p}+b_{r}^{p}\right) c_{j}=\left(a_{r}^{p}+b_{r}^{p}\right) d_{j}$. If $a_{r}^{p}=b_{r}^{p}$, we have $b_{r}=\lambda^{l} a_{r}$ for some $l$. Then we have $\left(a_{r}^{\prime}, b_{r}^{\prime}\right)=\left(\lambda^{-t m_{r}+l} a_{r}, \lambda^{t m_{r}-l} b_{r}\right) \in\langle\rho\rangle \cdot\left(a_{r}, b_{r}\right)$, so we are again in the first case. Therefore we can assume $a_{r}^{p} \neq b_{r}^{p}$, and we get $c_{j}=d_{j}$ for all $1 \leqslant j \leqslant s$. Now, if $a_{i}=b_{i}=0$ for all $1 \leqslant i \leqslant r-1$, then $v_{2}=\rho^{t} \sigma\left(v_{1}\right)$. Hence $r>1$ and there is an index $1 \leqslant q \leqslant r-1$ such that at least one of $a_{q}$ or $b_{q}$ is non-zero. Let $1 \leqslant i \leqslant r-1$. From $f_{i}\left(v_{1}\right)=f_{i}\left(v_{2}\right)$ we get $a_{r} b_{i}^{n_{i}}+b_{r} a_{i}^{n_{i}}=c b_{r} b_{i}^{n_{i}}+c^{-1} a_{r} a_{i}^{n_{i}}$ and so $a_{i}^{n_{i}}\left(c^{-1} a_{r}+b_{r}\right)=b_{i}^{n_{i}}\left(a_{r}+c b_{r}\right)$. Note that $c^{-1} a_{r}+b_{r} \neq 0$ because otherwise $v_{1}=v_{2}$. So we have $a_{i}^{n_{i}}=c b_{i}^{n_{i}}$. Along the same lines, from $g_{i}\left(v_{1}\right)=g_{i}\left(v_{2}\right)$ we obtain $b_{i}^{p-n_{i}}=c a_{i}^{p-n_{i}}$. It follows that $a_{i}^{p}=b_{i}^{p}$. As before, for $1 \leqslant i \leqslant r-1$ let $e_{i}$ denote the smallest nonnegative integer such that $b_{i}=\lambda^{e_{i}} a_{i}$. We also have $c=\lambda^{-n_{i} e_{i}}$ for all $1 \leqslant i \leqslant r-1$ with $a_{i} \neq 0$. We have $v_{1}=\left(a_{1}, \ldots, a_{r}, \lambda^{e_{1}} a_{1}, \ldots, \lambda^{e_{r-1}} a_{r-1}, b_{r}, c_{1}, \ldots, c_{s}, c_{1}, \ldots, c_{s}\right)$ and $v_{2}=$ $\left(a_{1}, \ldots a_{r-1}, c b_{r}, \lambda^{e_{1}} a_{1}, \ldots, \lambda^{e_{r-1}} a_{r-1}, c^{-1} a_{r}, c_{1}, \ldots, c_{s}, c_{1}, \ldots, c_{s}\right)$. We finish the proof by demonstrating that $v_{1}$ and $v_{2}$ are in the same orbit. Since $0<m_{r}<p$, there exists an integer $0 \leqslant h \leqslant p-1$ such that $\lambda^{-h m_{r}}=c$. Equivalently, $-h m_{r}+e_{q} n_{q} \equiv 0 \bmod p$. We claim that $\rho^{h} \sigma\left(v_{1}\right)=v_{2}$. Since $c_{j}=d_{j}$ for $1 \leqslant j \leqslant s$ and the action of $\rho$ on the last $2 s$ coordinates is trivial we just need to show that $\lambda^{-h m_{i}} b_{i}=a_{i}$ for $1 \leqslant i \leqslant r-1$ and $\lambda^{-h m_{r}} b_{r}=c b_{r}$. Since the last equation is taken care of by construction we just need to show $-h m_{i}+e_{i} \equiv 0$ $\bmod p$ for $1 \leqslant i \leqslant r-1$ when $a_{i} \neq 0$. We get $e_{i} n_{i} \equiv e_{q} n_{q}$ from $c=\lambda^{-e_{i} n_{i}}=\lambda^{-e_{q} n_{q}}$. Now the proof can be finished by exactly the same argument as in the first case.

Acknowledgements. We thank Tübitak for funding a visit of the first author to Bilkent University. Second author is also partially supported by Tübitak-Tbag/109T384 and Tüba-Gebip/2010. We also thank the anonymous referee for useful suggestions.

## REFERENCES

[1] H. Derksen and G. Kemper. Computational invariant theory. Invariant Theory and Algebraic Transformation Groups, I. (Springer-Verlag, 2002). Encyclopaedia of Mathematical Sciences, 130.
[2] H. Derksen and G. Kemper. Computing invariants of algebraic groups in arbitrary characteristic. Adv. Math. 217(5) (2008), 2089-2129.
[3] J. Draisma, G. Kemper and D. Wehlau. Polarization of separating invariants. Canad. J. Math. 60(3) (2008), 556-571.
[4] G. Kemper. Separating invariants. J. Symbolic Comput. 44 (2009), 1212-1222.
[5] M. Kohls and H. Kraft. Degree bounds for separating invariants. Math. Res. Lett. 17(6) (2010), 1171-1182.
[6] M. Kohls and M. Sezer. Separating invariants for the klein four group and the cyclic groups. arXiv:1007.5197, 2010.
[7] B. J. Schmid. Finite groups and invariant theory. In Topics in invariant theory (Paris, 1989/1990), volume 1478 of Lecture Notes in Math. pages 35-66 (Springer, 1991).
[8] M. Sezer. Constructing modular separating invariants. J. Algebra. 322(11) (2009), 4099-4104.
[9] P. Symonds. On the Castelnuovo-Mumford regularity of rings of polynomial invariants. Annals of Math., to appear. Preprint available from http://www.maths.manchester.ac.uk/ pas/preprints/, 2009.

