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For digital interactive distributed systems, the timing of their events and the

causality between their events are key issues. In real-time applications of embedded

software systems, timing properties are essential, such as the response times of

reactions depending on the precise timing of the input events. In a highly abstract

view, a digital system can be represented by a set of events annotated by their

timing. Sets of timed events labeled by actions represent the observations about

systems. An essential property that helps to understand distributed interactive

systems and a way to reason about their event flow is causality. Causality addresses

the questions under which conditions certain events must, may or must not happen.

Causality addresses the logical dependencies between the events in systems. Strictly

speaking, causality reflects the logical essence in the event and action flow of

systems. Causality is closely related to time. In particular, we study in the fol-

lowing the relationship between causality and the timing of input and output

events, as well as its relationship to the granularity of time. We deal, in particular,

with the problem of time abstraction and the precise timing of events. We show

how causality and time form the basis of inductive reasoning, in particular in the

case of dependencies in communication cycles (‘feedback’) and how we can work

with time in models of distributed systems with a flexible choice of local clocks

and local timing.

1. Time and causality

We study the information flow in relation to the time flow in a system of events
and components in the following. Information flow evolves through events in
physical or technical systems within a global time frame.

There are many ways to model and represent time, events, and information
and the way in which they evolve in physical or technical systems. Even more,
there are many ways to interpret certain phenomena related to events carrying or

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1062798710000281
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:40:18, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1062798710000281
http:/www.cambridge.org/core


disseminating information inside a system or over the system boundaries
between a system and its environment.

Since we consider models of systems that are the result of abstractions we are
very critical not to confuse observations in models with observations about real-
world systems. Only if the abstractions are chosen carefully do the models reflect
properties of real world systems faithfully.

In this paper, we study issues of timing and causality of discrete event systems
and how they are related. The behavior of systems is modeled by sets of events.
Causality addresses the logical dependencies between the events of systems and
thus the relationship between their cause and their effect. It refers in philosophy
to the principle that nothing can happen without causes. In distributed systems, it
addresses the logical dependencies between events, related actions and messages
generated by the different parts (often called ‘components’) of systems.

For realistic models of distributed interactive systems in terms of their flow of
events, data or signals as found in interactive distributed systems, we assume that there
is a source and a cause for each (communication) event and its transmitted infor-
mation. A reasonable way to model such systems is sets of communication events
with a causality relation and a timing relation where each event consists of sending or
receiving a message by one of the components of the system. This approach models
the behavior of systems in terms of their communication and event flows.

We are interested here basically in a number of fundamental questions of
system modeling and design, such as:

> How can the principle of causality be formalized?
> Are there universal laws of causality and what are they?
> How do causality and time relate?
> How does causality help to reason about systems?
> How does time help to reason about systems and their causality?

We first discuss notions of time and causality independently and then study their
relationship.

1.1. Discrete event systems

In physics, system behaviors are often modeled by continuous functions depending
on time. There, the dynamics of a system is captured by a set of variables that
change their values continuously over time. Dependencies between these variables
are captured by continuous functionals and expressed by formulas of differential
calculus and integration theory, where time is represented by real numbers. The
values of the continuous functions represent the states of the system at the cor-
responding points in time.

Digital event systems provide a more abstract logical model of technical or
economical systems than do continuous functions. Discrete steps of the systems
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modeled by events capture the dynamics of digital systems and discrete state
changes. A discrete event is a quite general notion. An event may represent the
execution of a certain statement, and thus a state change 2 such as the change of
the value of some system state attribute, a certain system predicate becoming
true, the arrival or the sending of a certain message, or reaching a certain time
boundary.

A digital system shows a behavior that can be modeled by a set of digital
processes. A digital process is a finite or even an infinite set of discrete events.
These events are causally dependent and take place within a time frame. The time
model may be continuous or discrete. In the following, we introduce a formal
model taking these considerations into account.

1.2. Time

Timing properties of systems can be classified into quantitative and qualitative
aspects. The quantitative aspects aim at measuring time and talk about time
distances between discrete events, leading to questions such as:

> How much time does it take until event A happens?
> How much time does it take until event B happens after event A had
happened?

If we are not interested in measures of time distances between events, as in hard
real-time applications, there remain questions addressing the qualitative nature of
timing properties, expressed by the after/before relation. Given such relations we
can ask questions such as:

> Does event A happen after event B?
> Do events A and B happen simultaneously?
> Does event A always happen only after event B?

Qualitative timing relates events in a partial or even linear order while quanti-
tative time refers to measures and distances between events in terms of time.

In this section, we introduce an abstract model of time. For our purpose a
simple model of time is sufficient. Time is represented by a set called TIME with
a linear order <.

For each process formed by a set of events E their timing is a mapping

time: E! TIME

If such a mapping is defined for the events of a process we call the process a
timed process.

In timed processes, we can relate events by their timing. In our approach each
event happens at a certain point in time. In other words, we assume that an event
represents a point in time and thus has no time duration. If we want to model
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system activities with some time duration we can do that by referring to two events
associated with the activity, the beginning of the activity and its termination.

For two events, e1 and e2, in a timed process we say e1 takes place before e2
if time(e1), time(e2) holds, and then we write e1, e2, and we say that the
events e1 and e2 are simultaneous, if time(e1)5 time(e2). This gives a simple but
quite useful notion for the timing of events.

We carefully distinguish between the timing of events, which gives us
‘absolute’ values in a time frame, and values measuring the duration of time.
Given two events e1 and e2 we can ask about the duration of time between the
occurrence of event e1 and event e2. The time duration is not a member of the set
TIME but of another set called DURATION, which is an additive semi-group
with a zero element.

For the set DURATION we assume an additive structure (which does not
make sense for time points). More precisely we assume an operation

þ: DURATION� DURATION! DURATION

as well as a mapping

dur : TIME� TIME! DURATION

This function maps two time points t1, t2 A TIME with t1< t2 onto a duration
dur(t1, t2) A DURATION which represents the time period that it takes until the
second time point is reached from the first time point. We can also introduce
negative time durations by considering dur(e2, e1) where e1, e2.

We, moreover, assume that there is a null element 0 A DURATION and that

durðt; tÞ ¼ 0

for all time points t A TIME and

0þd ¼ dþ0 ¼ d

for all durations d.
The operation dur can easily be extended to events e1, e2 given a timing:

durðe1; e2Þ ¼ durðtimeðe1Þ; timeðe2ÞÞ

This function introduces a relationship between the events and the duration of
time between them. For all simultaneous events their time is identical and thus
the duration of time between the two events is zero.

Also on durations we assume a linear ordering < which faithfully reflects the
timing, such that the following law holds:

e1pe2pe3) durðe1; e2Þpdurðe1; e3Þ

The ordering on the set of durations is assumed to be consistent with the addition
operator. In particular, we assume that the operator 1 is monotonic

d1pd10 ^ d2pd20 ) d1þ d2pd10 þ d20

So far, and in the following, we assume that time is linear (one-dimensional).
This seems to be obvious. However, when selecting the model of time, it is
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worthwhile considering the difference between a linear (one-dimensional) space
of time and time spaces where time might have several dimensions. We consider
only ‘one-dimensional’, linear time in the following.

A one-dimension linear space of time is characterized by the law

timeðe1Þptimeðe2Þptimeðe3Þ )

durðe1; e3Þ ¼ durðe1; e2Þ þ durðe2; e3Þ

or expressed in terms of time points t1, t2, t3ATIME:

t1pt2pt3)

durðt1; t3Þ ¼ durðt1; t2Þ þ durðt2; t3Þ

Duration allows us to refer to the relative timing of different time points. So we
can ask for time points t1, t2, t3ATIME with t1< t2< t3 whether

durðt1; t2Þodurðt2; t3Þ

A further question concerns the model of time. Basically there are two essentially
different classes of models of time, discrete (digital) time and continuous, dense
(analog) time.

For each set of time points we assume the existence of a least upper bound
(lub) and a greatest lower bound (glb). Examples of time domains are lN[ {N}
the natural numbers lN, including N for infinity, as well as the non-negative real
numbers, including infinity lR1[ {N} where lR1 5 {rA lR: 0< r}.

In a discrete model we find time points t1, t2ATIME with t1, t2 which are
‘direct neighbors’ (that cannot be strictly separated by a third time point that lies
in between both points), such that for all t3ATIME:

t1pt3pt2) t1 ¼ t3 _ t2 ¼ t3

Thus, each time point (except the maximal one, if it exists) has a unique suc-
cessor. This property of discreteness does not hold for dense time. In dense time
we can always find a time point separating two given different time points. This
density of time results in Zenon’s problem, where there is an infinite sequence of
time points that step by step increase in time but do not reach or go beyond a
particular point in a finite number of steps. For an extensive discussion on ways
to represent digital and analog time see Ref. 1.

1.3. Discrete timed processes

Based on the idea of timed events, the concept of a timed process is quite
straightforward. Let E be a set of timed events; then each subset PDE defines a
discrete timed process. If the set of events is finite then P is called a finite
process; otherwise it is called infinite.

A timed process P has a start time specified by the time value

glb ftimeðeÞ : e 2 Pg
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As its termination time we define

lubftimeðeÞ: e 2 Pg

that may be infinite. A process has also a duration

lub fdurðe; e0Þ: e; e0 2Pg

and a structure in terms of a partial order according to the relation e< e0 for
events e, e0AP provided time(e), time(e0) or e5 e0 hold.

By TPROCESS we denote the set of all timed processes.

1.4. Selecting models of time

As a first critical question for system models we address the nature of time and its
models:

> For which engineering tasks, and when is it necessary or at least more
convenient, to work with continuous, dense time and when is a model
of discrete time good enough or even more appropriate?

We work with discrete time in the following. Discrete time is typical for digital
systems that are pulse driven and proceed in discrete time steps. We want to
demonstrate in the following that discrete time also allows for time models that
are as flexible as continuous time.

We work with the following idea of observations that we can make about a
system. We assume that at each time t we observe a finite family of events. In
each run of the system we make a sequence of observations, one at each time
point. The timing introduces a structure on the events of a process. For each time
t A TIME we define the sub-process (the partial process)

fe 2 P: timeðeÞptg

that consists of all events that take place until time t. This process is denoted
by Pkt.

A logical property of a timed process is represented by a predicate

Q : TPROCESS! IB

A property Q that holds at time t is a predicate on (finite) processes applied to the
set Pkt of events. Each predicate Q of that type applied to a process Pkt is called
an observation about a system or about a process until time t.

We write also Qt(P) for Q(Pkt). We get a kind of temporal logic if we define
(for a given process P)

BQ � 9t 2 TIME: QtðPÞ

&Q � 8t 2 TIME: QtðPÞ

By these formulas we can introduce the temporal operators in a rather straight-
forward manner.
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An observation (a predicate) Q is called stable, if the following proposition

QtðPÞ ^ tot0 ) Qt0 ðPÞ

holds for all processes P and all times t, t0.

1.5. System behaviors

A discrete system may show a set of behaviors represented by processes. In the
literature a discrete system is often described by a state transition machine, for
instance, or by a set of concurrent cooperating state machines, or by a Petri-Net.
When executing such a state machine, actions are carried out that correspond to
state transitions. Each instance of an action is an event. Thus, we associate for an
interpreted process P (generated by the system) an action with each of its events.

Let Ep be the set of events forming a process P. The concept of a discrete
interpreted process is defined by a mapping

act: Ep!Action

where Action is the set of actions of the system. Each action defines a state
change, a timing action or a communication action. This leads to a slightly more
sophisticated notion of a system behavior represented by a set of processes where
each event is timed and corresponds to an action.

1.6. Causality

Causality is a notion that is more sophisticated than that of time. Time is used to
capture straightforward observations about systems. Referring to causality we
speak about the rules (‘the logics’) for the occurrence of events and actions in the
executions (processes) of systems.

Timing is an observation about a single process representing a run of a system.
Causality speaks about the properties and rules that hold for all processes of a
system and therefore deals with the logical properties of the system. Causality
addresses the rules and thus the logics of systems.

But what is causality precisely and how is it related to the observations with
respect to time?

Causality addresses the logical dependencies between the events and actions in
the digital processes of a concurrent interactive system S. Causality actually deals
both with liveness and safety in observations:

> Liveness: Does observation A about the system S guarantee another
observation B to follow later eventually: we say ‘in system S
observation A leads_to observation B’.

> Safety: Does observation B for the system S occur only if another
observation A was observed before: we may write ‘in system S
observation B ) observation A’; however, this expression using
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implication does not properly express the relation between the two
observations stating that B follows only after A, since the causal
relationship is expressed rather implicitly this way.

For the concept of causality, the notion of the flow of actions and events in each
process of the system is decisive, which reflects implicitly or explicitly a qualitative
notion of time 2 more precisely an ordering of the events according to time.

Example: Airbag

Let us look at a simple example. An airbag in a car is activated only if the crash
sensor indicates a crash, and whenever the crash sensor indicates a crash it is
activated. Both observations are stable. Therefore, if we do not consider time
flow, the two propositions: ‘crash sensor indicates crash’ (csic) and ‘airbag is
activated’ (aia) are logical equivalent for completed processes.

The asymmetry of these two events with respect to the event flow of a system
only gets modeled if we take the time flow into account. This can be done by
studying sub-processes of the processes P representing the behaviors of cars.
Then we require that

8t: csicðP # tÞ ( aiaðP # tÞ

8t: csicðP # tÞ ) 9 t0: tpt0 ^ aiaðP # t0Þ

Here csic(Pkt) stands for ‘crash sensor indicates crash’ as one of the actions of an
event in Pkt and aia stands for ‘airbag is activated’ as one of the actions of an
event in Pkt.

These are examples of properties addressed by the notion of causality.
This example leads to a delicate question that addresses the difference between

causality and logical implication. If we talk about the processes of a system and
their sets of events without timing or causality information, we may easily write
implications.

Example: Air Bag (continued)

For instance, in the case of an airbag we may write

ð
n
Þ crash sensor indicates crash ) airbag is activated

This system property expresses that for each (complete) process of the airbag system
this implication is valid. This seems fine. We are even tempted to read (*) as follows:

if crash sensor indicates crash; this leads to airbag is activated:

This is an assertion that can be appropriately formalized in temporal logic, but as
a translation into the statement (*) above it is misleading, however, since it is an
over-interpretation of implication. What we have written in (*) is simply logical

514 Manfred Broy

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1062798710000281
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:40:18, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1062798710000281
http:/www.cambridge.org/core


implication. For the airbag we also assume the validity of the formula:

airbag is activated ) crash sensor indicates crash

This is an implication like the one before. But now the ‘leads-to’ interpretation is
no longer appropriate. A more accurate interpretation is: ‘If the air bag is acti-
vated then the crash sensor has indicated a crash before.’

In fact, one way to look at causality is to see it as a principle that can be observed in
any form of information processing systems independently of their technical or
physical representation. Causality addresses the logical dependencies between the
events (and in turn the actions) of a system. Causality is a way to ‘understand’ a
system. Certain events and actions may take place or not (such as input). Other
events and actions can be caused by these events and actions (such as output). If a
system has no rules of causality it is chaotic. Then all actions and events may occur
at all times in a completely unrelated random manner.

Causality addresses both safety and liveness properties of systems. An event A
may guarantee an event B to happen later. This relationship is what is called a
liveness property. An event B may only happen if event A has happened before.
This relationship is what is called a safety property.

There are basically two aspects of causality between two events (or actions) A
and B. If A is causal for B, we may assume that

> A enforces (leads_to) B: this means that whenever event A occurs
event B eventually occurs (later),

> B requires A: this means that event B does not occur if event A did not
take place before.

Of course, there are many generalizations of the notion of causality beyond these
two basic principles.

Example: Air Bag (continued)

For the airbag we obviously get the rules

crash sensor indicates crash enforces

airbag is activated

as well as

airbag is acivated requires

crash sensor indicates crash:

Here we have a typical example of a strong relation of causality.

Causality can be discussed not only in terms of events but also in terms of system
properties. A property Q is called causal for a property Q0 if, for each system run,
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whenever we observe Q at some time t at some time later t0. t we observe Q0.
Moreover, whenever we observe Q at some time t0 there exists some time with
t, t0 such that Q holds.

We say ‘observation A is causal for observation B in system S’ if for each
process P A S we have (for all times tATIME)

AðP # tÞ ) 9 t0 2TIME: tpt0 ^ BðP # t0Þ

BðP # tÞ ) 9 t0 2TIME: t0pt ^ AðP # t0Þ

The first formula is capturing what is called the ‘leads-to’-property in temporal
logic. It can be expressed by temporal logic as follows:

&ðA)BBÞ

If both formulas shown above hold we speak of causality and write

A4�4B

From the definition of causality we easily prove the transitivity of the causality
relation:

A4�4B ^ B4�4C) A4�4C

An observation is called stable for a process P, if

tpt0 ^ AðP # tÞ ) AðP # t0Þ

or in terms of temporal logic

&ðA)&AÞ

In other words, if A holds at time t it remains valid from thereon. For stable
observations causality is very close to logical equivalence. If A is causal for B
and if A and B are stable then for each complete process P system causality boils
down to implication:

AðPÞ ) BðPÞ and BðPÞ ) AðPÞ

Here, logically there is no asymmetry between A and B, which indicates that by
simple implication the causal relationship between A and B is not modeled
appropriately. Causality is reduced to logical equivalence when abstracting from
timing. If we include timing the asymmetry between A and B becomes obser-
vable. There exist times t such that A(Pkt) holds but not B(Pkt). We get for all
times t (recall that we assume that A and B are stable)

BðP # tÞ ) AðP # tÞ

and

AðP # tÞ ) 9t0: tpt0 ^ BðP # tÞ

This shows that if A is causal for B we get B implies A which sounds coun-
terintuitive since sometimes ‘implies’ may be confused with ‘leads to’.

A sophisticated question asks about the very nature of causality. If we assume
in systems that there are mechanisms (‘algorithms’) that enforce that certain
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actions are executed by some control flow, this gives us a very concrete
(‘operational’) idea of causality. On the other hand, we may develop some idea
about causality only by observing systems and their generated actions and try to
conclude causality relations from that.

Actually there are, along these lines, two ways to look at the causality of a
system:

> in an intentional approach (‘glass box view’) we study the internal
structure and mechanisms of a system to recognize that certain events
A are causal for certain events B due to the technical mechanisms (the
‘algorithmics’) that control the behavior and the flow of actions and
events of the system.

> in an extensional approach (‘black box view’) to causality we study
only observations about a system in terms of its events and actions and
their temporal relationships without any knowledge of the internal
structure and mechanisms of the system. In the set of all observations we
may recognize certain regularities that we then call causal dependencies.

In the first case we can speak about the causality within a single process or a
single instance. In the second case we speak about the causality within the system
considering all its processes. Both approaches lead to concepts and notions of
causality. Extensional causality can be seen as an abstraction of intentional
causality. By this abstraction some intentional causality may get hidden. We get a
universal notion of extensional (‘observable’) causality for a system S modeled
by its set of timed processes.

A simple example that illustrates this distinction between intentional and
extensional is a non-deterministic process, where we have one run that first
shows the action d that leads, due to its underlying mechanism, causally to the
action b, and a behavior where the system can non-deterministically choose
between the actions d or b. Then, intentionally in the first run, there is a causal
relationship between d and b, while extensionally for the system this does not
hold. Observationally, the intentional causality is hidden by the non-determinism
of the system. An extensional causality is only valid if it is intentionally valid for
all executions of the system.

If we can only observe runs of a system with the events and their timing we get
processes that are sets of events with their timing. From the set of all observations
we cannot, in general, derive the intentional causality. Intentional causality allows
us to talk about the causality within a single execution represented by a process,
while extensional causality considers a system as a whole with all its processes.

In spite of the example above, causality and non-determinism are independent
notions. We do not even have to have a notion of non-determinism to introduce
the concept of causality and vice versa.
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2. Causality and time

Of course, we can also model causality for event structures that model systems
by concurrent traces. There, causality is a logical relationship between the events
of a system. We work with a universal notion of extensional causality for a
system S consisting of a set of timed processes.

Time, or at least a time-based ordering of the events, is an indispensable
instrument to capture and measure causality.

If event A is causal for event B then it certainly holds that B happens after A.
The reverse does not hold. If in an observation an event A is before an event B
this does not mean necessarily that they are causally related. However, if A
occurs in all processes (all observations) before B (whenever A occurs) then we
may assume a causal relationship between the events A and B.

Note that there are many possibilities how causality is realized operationally.
Even time can be a mechanism to establish causality between events. Assume
that a system starts a clock under certain conditions such that, after some time, A
happens, and after some later time B happens: then A is observably causal for B.

Time is definitely a way to observe causality since time is one way to observe
the ‘happens before’ relation. But the ability to observe this relationship requires
that the time granularity is fine enough.

We call a system model strongly causal if all events that are intentionally causal to
each other are strictly separated by their timing; more precisely the time scale is fine
enough that whenever an event e1 is causal for an event e2 then we have

timeðe1Þotimeðe2Þ

Of course, in any case, we assume for causal events

timeðe1Þptimeðe2Þ

We speak of weak causality if this property at least holds for a system model.
Weak causality is what we at least expect for any faithful model of a real-world

system. Only if we include ‘incorrect’ observations does the ‘law of weak
causality’ not hold any longer.

2.1. What is a nondeterministic system

In the literature, there is a careful distinction between deterministic and non-
deterministic systems. When looking at concrete system models, this distinction
seems obvious, at a first sight. In fact, however, it is often not so clear how to
give a definition of what it means that a system is ‘deterministic’ or ‘non-
deterministic’. Often, abstractions turn deterministic system models into non-
deterministic ones and vice versa.

The notion of non-determinism is inherently related to the notion of input to a
system. If we consider systems without input from the outside, either the system
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has only one behavior (one run or one process) or it has to be considered as being
non-deterministic. Input to a system comes from its environment and cannot be
controlled by the system itself. Systems with a variety of choices for input are not
considered non-deterministic if several processes depending on different input
exist. Only if the system shows at least two different processes for the same input
events do we call it non-deterministic.

We take here a very fundamental point of view. For us, a system is non-
deterministic if its behavior includes choices that cannot be controlled by input
from the outside but do influence its visible observable behavior.

2.2. Causality between input and output

For a system, there are events that are only internal and others that affect or are
affected by the environment. Typical events of the second class are input and
output. If we are aiming at an interface view of systems then we study the events
at the border of a system, these being events that carry input or output across the
system borders.

Of course, we may study models of systems where certain events carry both
input and output; however, in the following we deal only with systems that show a
clear separation between events providing input and those providing output in their
externally visible events. Note that there exist system models (specific instances of
so-called ‘process algebras’) like CSP or CCS (see Refs 2 and 3) with the concept
of synchronous communication where certain events are ‘shared’ between systems
and their environments and thus may carry both input and output. Then there is no
straightforward clear notion of causality between input and output.

We study a specific form of causality for systems in the following, namely the
causality between their input and output events. We work under following
hypothesis:

> there is a canonical notion of extensional causality between input and
output.

This idea of causality captures the essential relationship between input and
output. For a system we assume that we have a clear notion of input, which
means input events can be chosen arbitrarily by the environment (and must be
accepted by the system). The input events form a sub-process called the input
process. The system may or must react to such an input by an output. This
manifests the fundamental principle of causality between input and output. Of
course, in addition, there may be a causal relationship between the output events
observable, which manifests some additional logics of the system.

In a deterministic system for each input process, exactly one output process is
generated. Therefore, there is a fixed causality between the output events given
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some input process. In a non-deterministic system, several output processes may
be possible for a given input.

Extensional causality is observed by studying all possible system processes or
traces to find out whether an event is always present and guaranteed only after
another event. This also applies for the causality between input and output. Such
observations about the flow of events and their relationships are closely related to
a model of time.

We work in the following with the simplifying assumption that we do not
know anything about or at least do not take advantage of any causality in the
input history. We are mainly interested in studying causality between input and
output and the causality in the output history. This in turn also leads to a notion of
causality in the output.

2.3. Information flow and causality

Whenever two subsystems of a system interact, and in this way mutually
influence each other’s behavior within the context of the larger system, this
requires a form of information exchange between the subsystems. In general, the
information flows in both directions. This leads to a fundamental question:

> Can we always model information exchange as a directed activity
(information flow) with an explicit sender and one or several receivers
(modeling mutual information exchange as two steps of directed
information exchange)? The events of information exchange are then
the output of one system and the input to the other.

The basic principle of causality in the information flow of components with input
and output is as simple as the following axiom (here we assume that a system
cannot predict its future input and thus there is no ‘anticipating logical gate’ – no
logical gate that can predict its future input and thus produce a corresponding
output before the input actually arrived; therefore, in real life systems, an output
depending on such a future input can be produced only after that input had been
received):

> Information can only be evaluated, processed and forwarded as soon
as/after it has been received.

This hypothesis leads to essential questions about the relationship between time,
granularity, and causality. If the time granularity is fine enough there is always a
delta, the ‘reaction time’, between the timing of the input and the output caused
by it. If the time granularity is not fine enough, this does not hold, in general. In
this case, input and output might occur in the same time interval and thus have
the same time stamp.
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2.4. Time granularity and causality

In this section we study changes and transformations of the time granularity of a
system and its consequences. We are, in particular, interested in time abstractions
that make the time scale coarser. Given a timed process P with the event set E
and the timing function

time: E! TIME

we can change (‘transform’) the timing of the process P by a function

trans: TIME! TIME0

where we assume the following monotonicity property for all times t1, t2 A TIME:

t1pt2) transðt1Þptransðt2Þ

Given a time transformation function we get a new timing for process P by the
function

time0: E! TIME0

specified by the formula (for all events e A E)

time0ðeÞ ¼ transðtimeðeÞÞ

As a result of a time transformation, the new timing may be coarser. Events e1 and
e2 with the timing property time(e1), time(e2) may become simultaneous events
under time’. In other words, we may get time0(e1)5 time0(e2). We speak of a time
coarsening in this case.

We discuss in the remainder of this paper the notions of strong and of weak
causality. Given strong causality, the time model strictly separates all events that
are causal for other events from those for which they are causal. If we coarsen the
timing of a process we may map a strongly causal process onto a process that is
no longer strongly but only weakly causal.

We are interested to study in the following the effects of the time granularity
and its coarsening onto the notion of causality. We study systems and their
models under several time granularities.

Basically, for systems and their models we assume the following principles:

> For the time granularity we find:
> If the time scale of the input events is chosen fine enough then there
is no non-determinism/underleft in the system model that is due to
missing information about the timing of the input.

> If the time scale is finer than the minimal delay of reactions to
events, then causal events are separated by time and the behavior is
strongly causal.

> Every system behavior is weakly causal in appropriately constructed
system models. Strong causality, however, may be abstracted away
due to time models that are too coarse and hence do not separate
some events that are in the causality relation.
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> Every system behavior is ‘physically’ strongly causal. This means
that even for a given weakly causal model of a real-world system
there exists a strongly causal behavior model such that the given
weakly causal system behavior model is a time coarsening of this
strongly causal model.

If we choose the time granularity not fine enough then we get a system behavior
that is only weakly causal, although implicitly strongly causal since it is an
abstraction of a strongly causal system.

3. Streams and stream processing systems

In this section we briefly introduce a simple, but very fundamental model of systems
called FOCUS (see Ref. 4). It is based on streams representing interaction histories.

3.1. Streams

A stream is a finite or infinite sequence of elements. In interactive systems
streams are built over sets of messages, signals, or actions. Streams are used in
that way to represent communication histories for sequential communication
devices such as channels or for sequential histories of activities.

Let M be a given set of messages. A stream over the set M is a finite or an
infinite sequence of elements from M.

We use the following notation:

M* denotes the set of finite sequences over M including the empty
sequence /S,

MN denotes the set of infinite sequences over M (that are represented by the
total mappings IN\{0} - M).

A stream is a member of the set Mv that is defined by the equation

Mo¼ Mn [M1

We introduce the prefix ordering L on streams, which is a partial order specified
for streams x, y A Mv by the formula

xLy � 9z 2 Mo : x^z¼ y

Here, x4z denotes the well-known concatenation of sequences; by concatenation
the stream z is appended to the stream x. To extend the concatenation to infinite
streams we define: if x is infinite then x4z5 x.

Throughout this paper, we do not work with this simple concept of a stream as
introduced above. Since we want to deal with the timing of systems we find it
more appropriate to use so-called timed streams. An infinite timed stream
represents an infinite history of communications over a channel or an infinite
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history of activities that are carried out sequentially in a discrete time frame. The
discrete time frame represents time as an infinite chain of time intervals of equal
finite duration. In each time interval a finite number of messages can be com-
municated or a finite number of actions can be executed. Since we do not assume
anything about the speed of communication the sequence of messages commu-
nicated within a time interval can be arbitrarily long but it is always finite.

Therefore, we represent a communication history over a sequential commu-
nication medium in a system model executed in a discrete time frame by an
infinite sequence (a ‘stream’) of finite sequences of messages or actions. By

ðMn
Þ
1

we denote the set of timed streams. Note that the elements of (M*)N are infinite
streams of finite sequences.

The idea of a timed stream reflects directly the concept of an observation in a
discrete time scale. For every time t A IN and every stream s A (M*)N the prefix
of s of length t (which is a sequence of length t of finite sequences from M*)
reflects the observation until time t.

For a function f we often write f.z for function applications instead of f (z) to
avoid unnecessary brackets.

Throughout this paper we work with a couple of simple basic operators and
notations for streams that are summarized below:

/S empty sequence or empty stream,
/mS one-element sequence containing m as its only element,
x.t tth element of the stream x, which is a sequence in the case of a timed

stream
#x length of the stream x,
x4z concatenation of the sequence x to the sequence or stream z,
xkt prefix of length t of the stream x (which is a sequence with t elements;

in the case of a timed stream, a sequence with t sequences as elements),
provided x has at least t elements (otherwise xkt5 x),

Srx stream obtained from x by deleting all its messages that are not
elements of the set S.

For a timed stream we denote by

�x the finite or infinite stream that is the result of concatenating all
sequences in the timed stream x. Note that �x is finite if x carries only a
finite number of non-empty sequences.

A timed stream xA (M*)N carries the information at which times which
messages are transmitted. As long as the timing is not relevant for a system it
does not matter if a message is transmitted somewhat later (scheduling messages
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earlier may make a difference with respect to causality – see later). To take care
of this we introduce the concept of a ‘delay closure’.

For a timed stream x A (M*)N we define the delay closure of x by the set xm
of timed streams that carry the same stream of messages but perhaps with some
additional time delays as follows:

x" ¼ fx0 2 ðMn
Þ
1: 8t 2 IN: x0 # tLx # t ^ �x ¼ x0g

Obviously, we have x A xm and for each x0 A xm we have

x0"� x"

as well as

�x ¼ x0

The set sm is called the delay closure for the stream s. The delay closure is easily
extended from streams to sets of streams by pointwise application (let S D (M*)N)

S " ¼
[
s2S

s "

Throughout this paper, we use streams exclusively to model the communication his-
tories of sequential communication media that we call channels. In general, in a
system, many communication streams occur. Therefore, we work with channels to
name the individual communication streams. Accordingly, in FOCUS, a channel is
simply an identifier in a system that identifies a communication line and in every
execution of the system it evaluates a stream of messages communicated over that line.

3.2. Components: syntactic and semantic interfaces

In this section we introduce a mathematical notion of components and their
interfaces. Components interact with their environment via channels. A channel
is a communication link and is uniquely identified by a channel identifier.

3.2.1. I/O-behaviors. Types (or sorts) are useful concepts to describe
interfaces. We work with a simple notion of types where each type represents a
set of data elements. These data elements are used as messages or as values of
state attributes.

Let a set S of types of messages be given. By M where

M ¼
[
s2S

s

we denote the set (the ‘universe’) of all data messages.
In FOCUS a typed channel is an identifier for a sequential directed commu-

nication link for transmitting messages of that type. By C we denote a typed
channel set. We assume that a type assignment for the channels in the set C is
given by the mapping:

type: C! S

524 Manfred Broy

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1062798710000281
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:40:18, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1062798710000281
http:/www.cambridge.org/core


Given a set C of typed channels, a channel valuation is an element of the set ~C
defined as follows:

~C ¼ fx: C!ðMn
Þ
1: 8c 2 C: x:c 2 ðtypeðcÞnÞ1g

A channel valuation x 2 ~C associates a stream of elements of type type(c) with
each channel c A C. In this way the channel valuation x defines a communication
history for each of the channels in the set C. The operators on streams induce
operators on channel valuations and furthermore on sets of streams as well as sets
of channel valuations by pointwise application. In this way all our operators
introduced on streams generalize to channel valuations.

Given a set of typed input channels I and a set of typed output channels O we
introduce the notion of a syntactic interface of a component:

(I, O) syntactic interface,
I set of typed input channels and,
O set of typed output channels.

A graphical representation of a component and its interface as a data flow
node is shown in Figure 1. We do not require that the channel sets I and O are
disjoint. If a channel c occurs both in I and O it denotes two different channels:
one channel in the set of input channels and one channel in the set of input
channels.

For a component-oriented approach to system development in addition to the
syntactic interface, a concept for describing the behavior of a component is
needed. We work with a simple and straightforward notion of a behavior.
Relations between input histories and output histories represent behaviors of
systems. Input histories are represented by valuations of the input channels and
output histories are represented by the valuations of the output channels.

I

. . .

. . .

O

F

Figure 1. Graphical Representation of a Component F with the Set of Input
Channels I and the Set of Output Channels O.
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In FOCUS, we represent the black box or interface behavior of systems by set-
valued functions (we also speak of the semantic or behavioral interface of the
component):

F: ~I!}ð~OÞ

As is well known, such a set-valued function is isomorphic to a relation that
is a subset of~I� ~O. We prefer set-valued functions in the case of system behaviors
to emphasize the different roles of input and output. We call the function F an I/O-
behavior. Given an input history x 2~I, F.x denotes the set of all output histories. A
system with behavior F may exhibit anyone of these in reaction to the input x.

An I/O-behavior F is called deterministic, if F.x is a one-element set for each x 2~I.
A deterministic I/O-behavior represents a function~I! ~O.

It is well known that a naive modeling of the behavior of systems by relations on
streams leads into the so-called merge anomaly (also called Brock-Ackermann
anomaly, see Ref. 6). In FOCUS, this anomaly is avoided by the notion of strong
causality (see later).

3.3. Specification of I/O-behaviors

An I/O-behavior represents a model of the behavior of a system. Using logical
means, an I/O-behavior F can be described by a logical formula, called a specifying
assertion relating the streams on the input channels to the streams on the output
channels. In such a formula, channel identifiers occur syntactically as identifiers
(variables) for streams of the respective type. The specifying formulas are interpreted
in the standard way of typed higher-order predicate logic (see Ref. 7).

An abstract specification of a system provides the following information:

> its syntactic interface, describing the input and output channels by
which the system interacts with its environment,

> its behavior by a specifying formula F relating input and output
channel valuations.

This leads to a specification technique for systems (see Ref. 4 for lots of
examples). In FOCUS we specify a system by a scheme of the following form:

/nameS

in /input channelsS
out /output channelsS

/specifying formulaS

The shape of the scheme is inspired by well-known specification approaches like
Z (see Ref. 8).
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Example. Transmission, merge and fork
As simple but quite fundamental examples of systems we specify a merge
component MRG, a transmission component TMC, and a fork component FRK.
In the examples, let T1, T2, and T3 be types (recall that in our case types are
simply sets) where T1 and T2 are assumed to be disjoint and T3 is the union of
the sets of elements of type T1 and T2. The specification of the merge component
MRG (actually the specification relies on the fact that T1 and T2 are disjoint,
which should be made explicit in the specification in a more sophisticated spe-
cification approach) reads as follows:

MRG

in x: T1, y: T2
out z: T3

�x ¼ T1r z ^ �y ¼ T2r �z

In this specification we do not specify the quantitative timing (since the output does
not refer to or depend on the timing of the input of the output streams) and therefore
we refer only to the time abstractions of the involved streams. The causality of the
time and message flow is considered in detail in the following subsection.

We specify the proposition x, y for timed streams x and y of arbitrary type T;
x, y is true if the messages in x are a permutation of the messages in y. Formally,
we define this operator by the following logical equivalence relation:

x � y � ð8m 2 T: fmgr �x ¼ fmgr �yÞ

Based on this definition we specify the component TMC below.
Often it is helpful to use some channel identifiers both for input channels and for

output channels. These are then actually two different channels, which, of course,
may have different types. To distinguish these channels in the specifying formulas,
we use a well-known notational convention. In a specification, it is sometime con-
venient to use the same channel name for an input as well as for an output channel.
Since these are different channels with identical names we have to distinguish them
in the body of a specification. Hence, in the body of a specification, we write, for a
channel c 2 which occurs both as an input and as an output channel 2 simply c to
denote the stream on the input channel c, and c0 to denote the stream on the output
channel c. Thus, in the following specification, z is the outside name of the output
channel z, and z0 is its local name used in the specifying formula.

TMC

in z: T3
out z: T3

z, z0
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This simple specification says that for component TMC every input message occurs
eventually also as an output message, and vice versa. Nothing is specified about the
timing of the messages. In particular, messages may be arbitrarily delayed and
overtake each other. Output messages may even be produced earlier than they are
received. This paradox is excluded by causality in the following section.

The following component, FRK, is just the ‘inversion’ of the component MRG.

FRK

in z: T3
out x: T1, y: T2

�x ¼ T1r �z
�y ¼ T2r �z

Note that the merge component MRG as well as the TMC component and the fork
component FRK as they are specified here are ‘fair’. Every input is eventually
processed and reproduced as output.

Based on the specifying formula given in a specification of an I/O-behavior, F, we
may prove properties about the function F in classical (higher order) predicate logic.

3.4. Causality and timing in I/O-behaviors

For input/output information processing devices, the notion of causality is crucial.
Certain output depends causally on certain input. Causality indicates dependencies
between the input and output actions of information exchange of a system. So far
I/O-behaviors are nothing but relations represented by set-valued functions. In the
following we introduce and discuss the notion of causality for I/O-behaviors.

I/O-behaviors generate their output and consume their input in a global time
frame. This time frame is useful to characterize causality between input and
output. Output that depends causally on certain input cannot be generated before
this input has actually been received.

Let an I/O-behavior

F: ~I!}ð~OÞ

be given. In the following we define a couple of fundamental notions to char-
acterize specific properties of F that relate to causality and the timing of the input
and output messages.

Definition: Weak causality for component behavior
An I/O-behavior F is called weakly causal (properly timed), if for all times tA IN
the following formula is valid

x # t¼ z # t) ðF:xÞ # t¼ ðF:zÞ # t

F is properly timed if the output in the tth time interval does not depend on input
that is received after time t. This ensures that there is a proper time flow for the
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component modeled by the behavior function F. This is a property that manifests
the essential asymmetry between input and output.

If F is not weakly causal then there exists a time t and input histories x and x0

such that xkt5 x0kt but (F.x)kt 6¼ (F.x0)kt. A difference between the input his-
tories x and x0 occurs only after time t, but at time t the reactions of F in terms of
its output messages until time t are already different.

Nevertheless, proper timing in terms of weak causality does not exclude
instantaneous reaction (see Ref. 9): the output at time t may depend on the input
at time t. This may, however, lead into problems with causality if we consider,
in addition, delay free feedback loops (such problems also occur in Esterel9). To
avoid these problems we better strengthen the concept of proper time flow to the
notion of strong causality.

Definition: Strong causality for component behavior
An I/O-behavior F is called strongly causal (or time guarded), if for all times
tA IN (and all input histories x and z) we have

x # t¼ z # t) ðF:xÞ # t þ 1¼ ðF:zÞ # tþ1

If F is time guarded then the output in the tth time interval does not depend on input
that is received after the (t21)th time interval. Then F is certainly properly timed
and, in addition, reacts to input received in the (t21)th time interval, and not before
the tth time interval. In this way, causality between input and output is guaranteed
and explicitly visible according to the sufficiently fine time granularity.

Definition: Delay by n time units
We write delay(F, n), if F is a behavior with a delay by (at least) n time units.
More precisely we define:

delayðF; nÞ � ½8x; z; t: x # t¼ z # t) ðF:xÞ # t þ n¼ ðF:zÞ # t þ n�

In other words, F is (weakly) causal if delay(F, 0) holds and strongly causal if
delay(F, 1) holds.

Obviously we have for all n, mA IN (the proof is straightforward):

npm ^ delayðF;mÞ ) delayðF; nÞ

If delay (F, N) holds then the output does not depend on the input at all.
For a weakly causal component there is always a maximal number nA IN [

{N} such that delay(F, n) holds. This number is called the guaranteed delay.
Our concept of delay is easily extended to individual output channels. Of

course, there may be different delays and different guaranteed delays valid for the
different output channels of an I/O-behavior. We will return to this.

A function f :~I! ~O is called weakly or strongly causal respectively if the
deterministic I/O-behavior F: ~I!}ð~OÞ specified by F.x5{f.x} for all x 2~I has
the required properties.
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By [F]we denote the set of time guarded total functions f: ~I! ~O, with f.x A
F.x for all input histories x 2~I.

A non-deterministic specification F defines the set [F] of total deterministic
behaviors. A specification is only meaningful (‘consistent’) if the set [F] is not
empty. This idea leads to the following definition.

Definition: Realizability
An I/O-behavior F is called realizable, if [F] 6¼Ø; this means that there exists a
time guarded total function f :~I! ~O such that

8x 2 ~I : f :x 2 F:x

Given an input x 2~I an output y 2 ~O is called realizable for F with input x, if
there is a function fA[F] such that y5 f.x.

A time guarded function f: ~I!~O provides a deterministic strategy to cal-
culate for every input history x a particular output history y which is correct for F,
i.e. such that y A F.x holds. Every input xkt until time point t fixes the output
until time point t11 and in particular the output at time t1 1. Actually the
function f essentially defines a deterministic automaton with input and output.

If an I/O-behavior F is not realizable there does not exist a state machine that
implements it, not even a state machine that implements a refinement of F (for a
proof, see Ref. 11).

There are sophisticated examples of behaviors that are strongly causal, but not
realizable. Consider for instance the following example of a behavior F: ~I!}ð~OÞ
that is not realizable (here the proof of this fact is left to the reader, a proof can be
found in Ref. 4):

F:x ¼ fx0 2~I : x 6¼ x0g

Note that this behavior F is strongly causal but not realizable.

Definition: Full realizability
An I/O-behavior F is called fully realizable, if it is realizable, and if for all input
histories x 2~I:

F:x ¼ ff :x: f 2 ½F�g

holds.
Full realizability guarantees that for all output histories there is a strategy (a

deterministic state machine implementation) that computes this output history.
For fully realizable behavior there is a close relationship between F and the set
[[F]]. Both define the behavior of a system. In fact, non-deterministic state
machines with input and output are not more powerful or more expressive than
sets of deterministic state machines with input and output. An extensive defi-
nition of realizability and its relation to computability can be found in Ref. 11.
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3.5. Property refinement of interfaces

Property refinement allows us to replace an interface behavior by one having
additional properties. In this way, interface behaviors are replaced by a more
restricted ones. An interface

F :~I!}ð~OÞ

is refined by a behavior

F̂ :~I!}ð~OÞ

If

8x 2~I : F̂ðxÞ � FðxÞ

We then write

F̂ � F

Obviously, property refinement is a partial order and therefore reflexive, asym-
metric, and transitive. Note that the paradoxical system, with empty sets of
output histories for each of its input histories, is logically a refinement for every
system with the same syntactic interface.

A property refinement is a basic refinement step, adding requirements as is
done step by step in requirements engineering.

3.6. Computations

Our model describes behavior in terms of the relationship between input and output
histories. In this section, we show how to associate computations with behaviors.
The key idea is that we calculate the output in each time interval step by step from
the input given in the previous time interval according to the progress of time.

We show how to calculate stepwise inductively an output history for a given
strongly causal realizable behavior F and an input history x 2~I that is only
provided stepwise. We construct the output histories y 2 ~O defining ykt itera-
tively from input xkt for t5 0, 1, 2, y The key idea is that we can select the
output y.t11 given xkt without considering x.t1 1.

We define a computation for a realizable behavior F for a given input history
inductively as follows: we choose a deterministic behavior f A [F].

We start with t5 0; by definition xk0 and yk0 are both empty histories. Given
xkt and ykt A (F.x)kt we construct from xkt and ykt the sequence y.t1 1 as
follows.

We construct a chain of partial output histories yt A (F.x)kt such that

yt 2 fðf :x
0Þ # t: x0 # t¼ x # tg

The construction works as follows: we start the iteration with the empty history:

y0
0c ¼ /S 8c 2 O
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Given yt we construct yt1 1 by the following rules:

(1) choose some y0 A {f.x0: x0kt5 xkt}
(2) define yt1 1 5 yt

4/y0.t1 1S

Note that by strong causality yt 5 y0kt and thus yt11 5 y0kt1 1. This shows that
our construction essentially relies on the strong causality of f.

If the behavior is not strongly causal, then our construction does not work, in
general. Given some input xkt we may select some output

y # t 2 fy0 # t : 9x0 : y0 2 F:x0 ^ x0 # t¼ x # tg

such that

y # t =2 ðF:xÞ # t

The partial output ykt therefore cannot be necessarily completed into a complete
infinite output history (for details, see Ref. 11).

The same applies if the output y is not realizable. Then a function fA [F] does not
exist with y5 f.x. If we would choose in step (1) the formula y0A {F.x0: x0kt5 xkt}
then it is not guaranteed that y A F.t holds with this construction. For a behavior
function F :~I!}ð~OÞ there may exist a history y 2 ~O such that for some input
history x 2~I we have ykt A (F.x)kt for all t but y e F.x (for details see Ref. 11).

3.7. Fixpoints

To compose two or more components into a system architecture these compo-
nents are connected by their channels. Some of these connecting channels
typically form feedback loops, in general. Feedback corresponds to recursive
definitions of the streams in the channel valuations. Recursion on streams is
treated, as usual, in terms of ‘fixpoints’.

As is well-known, deterministic strongly causal functions always have fix-
points. Strongly causal function are guarded and thus the fixpoints can be
‘inductively’ defined. The existence proof basically is given by an inductive
construction of the fixpoint along the lines of the definition of the concept of a
computation as shown above. Thus, realizable strongly causal behaviors always
have fixpoints that reflect feasible computations of the system.

Recall, that every strongly causal function

f:~I! ~O

has a unique fixpoint x5 f(x). The proof is quite straightforward by an inductive
construction of the fixpoint as in the previous section on computations. There-
fore, every realizable function

F:~I!}ð~OÞ

has a fixpoint x A F(x). (Note that, for a function F that maps histories onto sets
of histories, x is called a fixpoint if x A F(x).) Moreover, for a fully realizable
behavior, every fixpoint x A F(x) is a fixpoint of a function f A [F].
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Using weakly causal functions we run into difficulties, here, however, to
separate fixpoints xA F(x) that correspond to actual computations from those that
do not. In the case of strongly causal, realizable functions, every fixpoint cor-
responds to a proper computation. For a weakly causal function

f :~I! ~O

we do not even have a guarantee that fixpoints actually exist.

Example: Fixpoints for weakly and strongly causal functions
Consider as an example the following specification:

Succ

in a: IN
out b: IN

8 t: b.t5 if a.t5/S then /1S else succ*(a.t) fi
where 8 n A IN, s A IN*:
succ*(/S)5/S
4 succ*(/nS4s)5/n1 1S4succ*(s)

Succ is obviously weakly causal, but not strongly causal since the output at time t
depends exclusively on the input at time t. However, Succ does not have a
fixpoint x A Succ.x; this is proved by contradiction as follows; there does not
exist a history x and y with

y 2 Succ:x

x:a ¼ y:b

since this would immediately result in a contradiction because then for all times
t A IN we would get (with a.t5 b.t):

b:t¼ if b:t¼/S then/1S else succnðb:tÞ fi

which is an equation impossible to fulfill since if b.t5/S then b.t5/1S
would follow as well as b.t 6¼/S and b.t5 succ*(b.t) cannot hold. If we slightly
change the definition by writing b.t1 15y instead of b.t5y then the specified
behavior is obviously strongly causal and fixpoints do exist. One fixpoint (in fact
the only one) is then given by the timed stream on channel b:

b.05/S
b.15/1S
b.25/2S y

This example demonstrates the complications when working with only weakly
causal in contrast to strongly causal functions and behaviors. Such problems are
also encountered in approaches called ‘perfect synchrony’ as found in Esterel,9

leading to the well-known problem of certain Esterel programs called causal
loops that are without proper computations.
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4. Composition operators

In this section we introduce an operator for the composition of components.
We prefer to introduce only one general powerful composition operator and

later show how to define a number of other operators as special cases.

4.1. Composing components

Given I/O-behaviors

F1:~I1!}ð~O1Þ; F2:~I2!}ð~O2Þ

where the sets of output channels are disjoint

O1 \ O2¼+

we define the parallel composition with feedback as it is illustrated in Figure 2 by
the I/O-behavior

F1 � F2:~I!}ð~OÞ

with a syntactic interface as specified by the equations:

I ¼ ðI1 [ I2ÞnðO1 [ O2Þ;O ¼ ðO1 [ O2Þ:

The resulting function is specified by the following equation (here we assume
z 2 ~C where the set of all channels C is given by C5 I1 [ I2 [ O1 [ O2):

ðF1 � F2Þ:x ¼ fzjO : zjI ¼ xjI ^ zjO1 2 F1ðzjI1Þ ^ zjO2 2 F2ðzjI2Þg

Here for a channel set C0 D C we denote for z 2 ~C by z|C0 the restriction of y to
the channels in C0. The equation defining composition includes a fixpoint con-
struction for all channels in

Z ¼ ðI1 [ I2Þ \ ðO1 [ O2Þ:

For these channels for given input history x 2~I we get, by the notation above,
some yjZ 2~Z which is a fixpoint of the function

lz:½ðF1 � F2Þ:ðx	 zÞ�jZ

. . . . . .

F2

F2

F1

F1

Figure 2. Parallel composition with feedback.
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where, for x1 2~I1, x2 2~I2 where (I1\ I2)5+

x1 	 x2 2 I1 [ I2
���!

is defined as follows:

ðx1 	 x2ÞjI1¼ x1 ^ ðx1 	 x2ÞjI2¼ x2

As long as F1 and F2 have disjoint sets of input and output channels the com-
position is simple. Given x1 2~I1 and x2 2~I2 we get the equation

ðF1 � F2Þ:ðx1 	 x2Þ ¼ fy1 	 y2: y1 2 F1:x1 ^ y2 2 F2:x2g

Now assume

I1¼ O1 and I2¼ O2¼+

Note F2 is then the component without input and output. We write then m.F1 for
F1 � F2. We get I5Ø (m.F1 has no input channels) and

m:F1¼ fy : y 2 F1:yg

This somewhat special construction shows once more that composition with
feedback loops corresponds to a kind of fixpoint equation. We call y A F1.y a
fixpoint of F1. Note in the case of a deterministic function f 1:

_~O1! ~O1 we get
y5 f1.y.

The operator � is a rather general composition operator that can be easily
extended from two components to a family of components.

A more specific operation is sequential composition also called pipelining. It is
a special case of the composition operator where O1 5 I2 and the sets I1 and O2

are disjoint. In this case we define

F1
 F2¼ F1 � F2

where the composition is illustrated by Figure 3.
Pipelining is the special case of composition without feedback. It can easily be

generalized to the case where the channel sets I1 and O2 are not disjoint. The
definition reads as follows

ðF1
F2Þ:x¼fz 2 F2:y: y 2 F1:xg

This composition is also called relational composition if F1 and F2 are repre-
sented as relations or functional composition if F1 and F2 are deterministic and
thus functions.

F1 F2

Figure 3. Pipelining.
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4.2. Granularity refinement: changing levels of abstraction

In this section we show how to change the levels of abstractions by refinements
of the interfaces, state machines and processes. Changing the granularity of
interaction and thus the level of abstraction is a classical technique in software
system development.

Interaction refinement is the refinement notion for modeling development
steps between levels of abstraction. Interaction refinement allows us to change
for a component

> the number and names of its input and output channels,
> the types of the messages on its channels determining the granularity
of the communication.

An interaction refinement is described by a pair of functions

A : ~C0!}ð~CÞ R: ~C!}ð~C0Þ

that relate the interaction on an abstract level with corresponding interaction on the
more concrete level. This pair specifies a development step that is leading from one
level of abstraction to the other, as illustrated by Figure 4. Given an abstract history
x 2 ~C each y A R(x) denotes a concrete history representing x. Calculating a repre-
sentation for a given abstract history and then its abstraction yields the old abstract
history again. Using sequential composition, this is expressed by the requirement:

R 
A ¼ Id

Let Id denote the identity relation, and ‘8’ the sequential composition is defined as
follows:

ðR 
AÞðxÞ ¼ fy 2 AðzÞ : z 2 RðxÞg

A is called the abstraction and R is called the representation. R and A are called a
refinement pair. For untimed systems we weaken this requirement by requiring R 8A
to be a property refinement of the untimed identity, formally expressed by the following
equation:

ðR 
AÞðxÞ ¼ f~xg

This defines an identity under time abstraction.

abstract level

concrete level

R A

. . . . . .

. . . . . .

Figure 4. Communication history refinement.
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Interaction refinement allows us to refine systems, given appropriate refine-
ment pairs for their input and output channels. The idea of an interaction
refinement is visualized in Figure 5 for the so-called U

21

-simulation. Note that
here the components (boxes) AI and AO are no longer definitional in the sense
of specifications, but rather methodological, since they relate two levels of
abstraction.

Given refinement pairs

AI :~I2!}ð~I1Þ RI :~I1!}ð~I2Þ

AO : ~O2!}ð~O1Þ RO : ~O1!}ð~O2Þ

for the input and output channels we are able to relate abstract to concrete
channels for the input and for the output. We call the interface

F̂ :~I2!}ð~O2Þ

an interaction refinement of the I/O-behavior

F:~I1!}ð~O1Þ

if the following proposition holds: E.

AI

 F 
 RO �4F̂ U�1- simulation

This formula essentially expresses that F̂ is a property refinement of the system
AI 8 F 8 RO. Thus, for every ‘concrete’ input history x̂ 2~I2 every concrete output
ŷ 2 ~O2 can also be obtained by translating x̂ onto an abstract input history
x 2 AI � x̂ such that we can choose an abstract output history y A F(x) such that
ŷ 2 ROðyÞ.

5. Variations on time granularity

In this section we show how to change the time granularity in system models
and study the effect of those changes. We start by defining operators that change
the time scale. Then we study algebraic properties of these operators.

. . .. . .

. . .. . .

abstract level

concrete level

F

F̂

I1 O1

AI RO

I2 O2

Figure 5. Interaction refinement (U
21

-simulation).
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5.1. Changing the time scale

Let n A IN with n. 0 and C be a set of typed channels; to make, for a channel
history (or a stream)

x 2 ~C

its time scale coarser by the factor n we introduce the coarsening function

COAðnÞ: ~C! ~C

defined by (for all t A IN):

COAðnÞðxÞ:tþ1 ¼ x:ðtnnþ 1Þ^ . . .^ x:ðtnnþ nÞ

COA(n).x yields a history from history x where for each stream associated
with a channel the sequences for n successive time intervals are concatenated
(‘abstracted’) into one. In that way we forget about some of the time distributions
of x. The time scale is made coarser that way.

Time coarsening, obviously, is an instance of abstraction. We forget some
information about the timing of a history. The mapping is not injective. Distinct
histories may be mapped onto the same history by time scale coarsening.

It is not difficult to allow even a coarsening factor n5N in time coarsening.
Then, the infinite number of time intervals in a timed stream is mapped into one.
The infinite stream of sequences is concatenated into a non-timed stream. Timed
streams are abstracted into non-timed streams in that way if we define:

COAð1Þ:x ¼ �x

On histories, coarsening is a function that is not injective and thus there does not
exist an inverse.

We generalize the coarsening of the time scale from channel histories to behaviors.
We coarsen both the input and the output histories. To make a behavior

F:~I!}ð~OÞ

coarser by the factor n, we define the coarsening operator that maps F onto a function

COAðF; nÞ:~I!}ð~OÞ

which is defined as follows

COAðF; nÞðxÞ ¼ fCOAðnÞ:y : 9x0: x¼COAðnÞ:x0 ^ y 2 Fðx0Þg

Coarsening maps I/O-behaviors onto I/O-behaviors. On one hand, coarsening may
introduce further non-determinism and underspecification into behaviors due to the
coarser time scale of the input histories. Certain different input histories are mapped
by the time coarsening onto the same coarser input histories. Then their sets of output
histories are defined by the union of all their coarsened output histories. In this way
non-determinism may grow.

On the other hand, some non-determinism and underspecification may be
removed in behaviors by coarsening since some different output histories may be
mapped by the time coarsening onto the same coarser output history.
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A special case is the coarsening COA(F,N), which abstracts completely away
all time information. If the output of F depends on the timing of the input, then
the coarsening COA(F, N) introduces a lot of non-determinism, in general.
However, if the output produced by F does not depend on the timing of the input
messages at all but only on their values and the order in which they arrive,
COA(F, N) will rather be more deterministic.

If F is weakly causal, the behavior COA(F, n) is obviously also weakly causal.
However, strong causality is not maintained by coarsening the time scale. We
will return to more explicit laws of causality and coarsening later. Reactions to
input at later time intervals may be mapped onto one time interval.

We can also map a history as well as a behavior onto a finer time granularity.
Let n A IN; to make for a history (or a stream)

x 2 ~C

its time scale finer by the factor n we use the function

FINEðnÞ: ~C!}ð~CÞ

defined by the equation:

FINEðnÞðxÞ ¼ fx0 2 ~C :8t 2 IN: x:t þ 1¼ x0:ðnn t þ 1Þ^ . . .^ x0:ðn n t þ nÞg

FINE(n).x yields the set of histories where for each time interval the sequences
of messages in this interval are arbitrarily subdivided into n sequences that are
associated with n successive time intervals. Thus, the sequence on each time
interval for each channel is non-deterministically divided into n sequences. The
time scale is made finer that way.

Making the time scale finer is a form of concretization in contrast to
abstraction. Each history is mapped onto a number of histories by making its time
scale finer. Each of these histories represents one version of the history with a
finer time granularity.

Another way to define the function FINE is demonstrated by the following
formula

FINEðnÞðxÞ ¼ fx0: COAðnÞ:x0 ¼ xg

This equation shows more explicitly the relationship between making the time scale
coarser and making the time scale finer. They are ‘inverse’ operations (for detailed
discussion see the following section). Changing the time scale represents an
abstraction if we make the time scale coarser, and a concretization if we make it finer.

The idea of making a time scale finer can be applied also to behaviors. We
specify

FINEðF; nÞðxÞ ¼ fy0 2 FINEðnÞ:y: 9x0: x ¼ FINEðnÞðx0Þ ^ y 2 Fðx0Þg

Due to the underspecification that is involved in the way we make the time scale
finer, there is no guarantee that we get a higher number of delays in the behaviors
when moving to a finer time scale.
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Nevertheless, we can introduce an ‘artificial’ operator DFINE that makes the
time scale finer in a way that guarantees a larger delay. This operator is easily
defined in a brute force way by defining DFINE as follows for t A IN\{0}

ðDFINEðnÞ:xÞ:t ¼
x:ðt=nÞ if t mod n ¼ 0

/S otherwise

�

Then every input is delayed by the factor n.
Such an operator is artificial, however, since it resolves some of the non-

determinism introduced by the operator FINE in a brute force way by making the
time grain finer in a way that guarantees the largest delay.

Going from a finer to a coarser time scale we generally lose some information
about the timing that cannot be recovered properly when making the time scale
finer again.

5.2. Rules for time scale refinement

Changing the time scale is an operation on histories and behaviors. In this section
we study laws and rules for changing the time scale.

Our first rules for changing the time scale show that the functions COA(n) and
FINE(n) form refinement pairs in the sense of 4

COAðnÞ:FINEðnÞ:x¼ fxg

x 2 FINEðnÞ:COAðnÞ:x

In other words, coarsening is the inverse of making the time scale finer. The
proof of the equation is quite straightforward by the definition of COA and FINE.

We observe, in particular, the following equations (here F1 8 F2 denotes the
pipeline composition of F1: ~I1!}ð~O1Þ and F2: ~I2!}ð~O2Þ where O1 5 I2
and (F1 8 F2 ).x5{y: (z: z A F1.x 4 y A F2.z})

COAðF; nÞ ¼ FINEðnÞ 
 F 
 COAðnÞ

FINEðF; nÞ ¼ COAðnÞ 
 F 
 FINEðnÞ

The proof is again quite straightforward. The equations show that time refine-
ment in fact is a special case of interaction granularity refinement (see Ref. 12).

Both time granularity abstractions and refinements by factors n*m can be seen
as two consecutive refinements by the factor n followed by a refinement with
factor m or vice versa.

Figure 6 shows such an iterative refinement of the time scale.
We get the following obvious rules:

FINEðn n mÞ ¼ FINEðnÞ 
 FINEðmÞ

COAðn n mÞ ¼ COAðnÞ 
 COAðmÞ

We are, in particular, interested to analyze how time refinement relates to
causality. This relationship is illustrated by the following equation (let m, n A IN
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with m> 1):

delayðF; n n mÞ ) delayðCOAðF;mÞ; nÞ

The proof of this rule is quite straightforward and uses the fact that

ðCOAðmÞ:xÞ # t¼COAðmÞ:ðx # ðt n mÞÞ

holds.
This rule is, in particular, interesting for our discussion of time, time

abstraction, and causality. As long as we coarsen a behavior F for which delay(F, n)
holds at most by factor n, causality is still guaranteed for the resulting component.

In fact, there exists a kind of monotonicity of coarsening with respect to delay
properties:

nom ^ delayðCOAðF;mÞ; kÞ ) delayðCOAðF; nÞ; kÞ

Again the proof is straightforward and left to the reader. If we coarsen the time
scale we may, in general, lose strong causality. In other words, the property of
strong causality depends on a fine enough granularity of the time scale.

...

0
3

6
9

12
15

Figure 6. Refinement of the time scale by 6: shown as a refinement by the
factor 3 followed by a refinement by the factor 2.

t time

{

{

I

O

guaranteed delay

on input

guaranteed 

delay on output

Figure 7. Relationship between input with guaranteed delay and output with
guaranteed delay at time t.
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The following equation does not, in general, hold for the operator FINE. It
holds only for the version DFINE of FINE that increases the delay.

delayðF; nÞ ) delayðDFINEðF;mÞ;m n nÞ

To keep this formula valid we cannot replace the operator DFINE by FINE.

5.3. Fractions of time changes

For a given behavior F we can change its timing by fractions m/n for m, n A IN
using the time change operator TCH.

TCHðF;m=nÞ ¼ COAðFINEðF; nÞ;mÞ

Note that all the rules introduced so far for COA and FINE obviously carry over
to this case, since we expressed TCH in terms of COA and FINE.

5.4. Choosing the appropriate time scale

We have discussed how closely the time scale is related to the property of causality.
It depends very much on the time scale whether a behavior is strongly causal as well
as on the delay properties of the components. In a large system with many com-
ponents, different time scales may be appropriate for different subsystems. In the
remainder of this section we therefore study an idea of flexible timing.

Complex hierarchical distributed systems require a flexible time model such that its
time granularity can be adapted individually to the needs of its various subsystems.

This leads to the following idea: we establish and model different time scales
for the subsystems of a composed system. Then we can choose the time scales in
a flexible way, according to the following observations:

> for each system composed of strongly causal components its time
delay is greater than the length of the shortest path of channels through
the system of components;

> therefore we can coarsen the interface abstraction of the system by the
factor k without losing strong causality provided the shortest path is > k.

This leads to hierarchical system models that support local islands (‘subsystems’)
of finer granularity of time. A system may be composed of many subsystems
with their own finer time scales. To discuss this idea in detail we have first to
introduce a notion of composition.

5.5. Causal fixpoints and causal loops

Given a strongly causal function

F : ~C! ~C

each fixpoint y A F.y is called causally faithful or, for short, causal. In a causal
fixpoint, each sequence of values in a time interval t is triggered by the values
that occurred in the history before t.
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Now we consider a coarsening of the time for the function F

COAðF; nÞ : ~C! ~C

We get for each fixpoint

y 2 F:y

that COA(n).y is a fixpoint of COA(F, n), too. But there may be fixpoints COA(F, n)
that do not correspond to fixpoints of F.

A fixpoint y0 A (COA(F, n)).y0 is called causal w.r.t. F if there is a fixpoint y A
F.y such that y05COA(n).y. Otherwise y0 is called a causal loop.

We will show that considering COA(F, n) alone without knowing F we cannot
distinguish, in general, causal fixpoints from causal loops. In other words, if we
choose the time scale too coarse such that the resulting function is not strongly
causal we may lose the faithful notion of causality and compositionality and
cannot distinguish causal from not causal fixpoints.

Let us consider a simple function

IDS: ~C!}ð~CÞ

with the specification (for all channels c A C)

ðIDS:xÞ:c ¼ f//SS^ðx:cÞg

IDS is the identity on the data streams shifted by one time interval.
Now we consider the history

x:c¼//1S/SS1 for all c 2 C

we get

ðIDS:xÞ:c ¼ //S/1SS1 for all c 2 C

This shows that x is not a fixpoint of IDS. Now we consider COA(2).IDS.
We get:

COAð2Þ://1S/SS1 ¼ f//1SS1g

COAð2Þ://S/1SS1 ¼ f//1SS1g

This proves the fixpoint property

//1SS1 2 ðCOAð2Þ:IDSÞ://1SS1

So //1SSN is a fixpoint of COA(2).IDS. However, this fixpoint is not causal,
since //SSN is the only fixpoint of IDS as well as COA(IDS, 2).

This shows that coarsening a behavior F leads to functions F0 with additional
fixpoints that are not causal in the case that F0 is, in contrast to F, not strongly but
only weakly causal. Moreover, we cannot distinguish, in general, for these
functions between causal and non-causal fixpoints.
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5.6. Delay calculus for system architectures

By composition of a family of components we can form a network (representing
an architecture) of components with delays. This network is a directed graph with
channels as arcs and components as nodes.

With each path in the graph leading from an input channel to an output
channel c, we can associate a delay, which is the sum of all delays on that path
(each component on the path adds to the delays). For an output channel c the
(guaranteed) delay in the system for c is the minimum over the sum of delays on
each of the paths from some input channel to the output channel c.

In a behavior function we can define the guaranteed delay between an input
channel and an output channel. Consider

F :~I!}ð~OÞ

and an output channel c0 A O and an input channel cA I. We define the guaranteed
delay for the output channel c in F by the following formula (Figure 7 illustrates
the relationship between delayed input and guaranteed delay of the output):

gardelayðF; c0Þ ¼

max fk 2 IN [ f1g: 8 x; x0 2~I; t 2 IN :

x # t ¼ x0 # t

) ððF:x0Þ:cÞ # t þ k¼ ððF:xÞ:c0Þ # t þ kg

In a composed system we define the delay length of a path from an input channel c0

to an output channel c as follows:
A path is a sequence of channels p5/c0 c1 y ckS such that for each index i, k

there exists a component Fi in the system such that ci is an input channel of Fi and ci11

is an output channel of that component. c0 is called the source of p and ck is called the
target of p. By Path(c, c0) we denote the set of all paths with source c and target c0.

The delay length of the path is given by the formula

dlðpÞ ¼
Xk
i¼1

gardelayðFi; ciÞ

For each output channel c0 for the system F represented by the considered net-
work we obtain:

gardelayðF; c0ÞXminfdlðpÞ : p 2 Pathðc; c0Þg

Given lower bounds for the delays between the components we can calculate
lower bounds for the delays for output channels in composed systems.

5.7. Composition and delay

Using our composition operators we can construct system architectures repre-
sented by data flow nets. In this section, we study how to calculate the delay of
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composed systems from the delay profile of their components. For each component
of the considered system, we can define a (maximal) guaranteed delay for each
output channel. Given a component

F :~I!}ð~OÞ

we introduce mappings

d : I! IN [ f1g; e : O! IN [ f1g

that associate a delay with every input and output channel. To calculate the
guaranteed delay of a network of components, we have to be able to determine
the delay of F if for each of its input channels a delay is given.

We are interested in the delay of a component that is inside a large architecture
given by a data flow graph (with feedback loops). If we give input to the data
flow graph up to time t A IN then we assume that for each channel c A I the
stream (x.c)k(t1 d.c) determined by that input to the network up to time t.

From this delay of the input we guarantee a delay for the output channels at
time t, if d.b is the guaranteed delay on input channel bA I; thus the input
(x.b)k(t1 d.b) is fixed at time t. We write

isdelayðF; d; eÞ

for the logical proposition that holds, if for all times t A IN we have (here we
assume that for a stream s the partial stream skj is empty if j< 0)

8x; z 2~I : ½8b 2 I : ðx; bÞ # ðt�d:bÞ ¼ ðz:bÞ # ðt�d:bÞ� )

½8c 2 O : fðy:cÞ # tþe:c : y 2 F:xg ¼ fðy:cÞ # tþe:c : y 2 F:zg�

This formula expresses that the input on channel b affects the output on channel c
at most after e.c time steps, provided fresh input arrives on the input channels
only after the times as described by d. We call then the functions

d : I! IN [ f1g; e: O! IN [ f1g

a delay profile. A delay profile can be graphically represented by an annotated
data flow node as show in Figure 8.

Let all the definitions be as in the section on composition. For a composition we get
graphical representations of the delay profiles of the components as shown in Figure 9.

Given

d: ðI1 [ I2Þ ! IN [ f1g;

e : ðO1 [ O2Þ ! IN [ f1g

yn: Nn[e.yn]

y1: N1[e.y1]

xn: Mn[d.xn]

x1: M1[d.x1]
... ...F

Figure 8. Delay profile in a graphical representation.
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we only have to assume for dk 5 d|Ik and ek 5 e|Ok for k5 1, 2:

isdelayðF1; d
1; e1Þ

as well as

isdelayðF2; d
2; e2Þ

and for the feedback (by d12 ¼ d1jðI1 \ O2Þ we denote the vector of delays for the
channels in (I1 \ O2), by d

2
2 ¼ d2jðI2 \ O1Þ we denote the vector of delays for the

channels in (I1 \ O2), by e22 ¼ e2jðI1 \ O2Þ we denote the vector of delays for
the channels in (I1 \ O2), by e12 ¼ e1jðI2 \ O1Þ we denote the vector of delays for
the channels in (I1 \ O2))

d12pe22 ^ d22pe12

F1 F2

e
1

2
e

1

1
e

2

2

d
1

1
d

2

1
d

1

2d
2

2

2
e

1

Figure 9. Delay profile for the components in a composition (suppressing
channel identifiers).

F
1

F
4

F
3

F
2

1

12

2 3

42

Figure 10. Network of components with given delay for each channel.
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to guarantee

isdelayðF1� F2; djI; ejOÞ:

Note that the guaranteed delay of a feedback channel c A (I1 \ O2) [ (I2 \ O1)
must be greater at the output than the assumed at the input to guarantee a faithful
fixpoint and strong causality. This way of asserting delays of composition can be
captured in a simple proof rule.

5.8. Optimal delay profile

In this section we show how to calculate optimal delay profiles for composed
systems.

We assume that 8 c A I1 \ I2:

d1:c ¼ d2:c

isdelayðFi; d
i; eiÞ for i¼ 1; 2

8c 2 I1 \ O2: d
1:cpe2:c

8c 2 I2 \ O1: d
2:cpe1:c

to guarantee that

isdelayðF1 � F2; d; eÞ

holds, where

I ¼ ðI1nO2Þ [ ðI2nO1Þ;O ¼ ðO1 [ O2Þ

and

d: I! IN [ f1g; e : O! IN [ f1g

F
1

F
4

F
3

F
2

3

65

2 3

49

0 09

6

Figure 11. Network of components with accumulated delay for each channel.
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are functions defined by the equations:

8c 2 I : d:c ¼

d1:c if c 2 I1nI2

d2:c if c 2 I2nI1

minðd1:c; d2:cÞ if c 2 I1 \ I2

8><
>:

8c 2 O : e:c ¼

e1:c if c 2 O1nO2

e2:c if c 2 O2nO1

minðe1:c; e2:cÞ if c 2 O1 \ O2

8><
>:

These rules allow us to calculate and prove delays in a modular way for com-
posed systems given delays for their components.

We construct the maximal guaranteed delay b for the feedback loops in a
composition. We assume that for all i A {1, 2}

isdelayðFi; d
i; eiÞ

holds and that for all channels c A I1 \ O2

d1:cp b:c

and for all c A I2 \ O1

d2:cpb:c

where input delay b is defined as

b : I1 [ I2! IN

with

b:c ¼ max fbk:c : k 2 INg

and where we inductively calculate the delays

bk : I1 [ I2! IN

as follows

b0:c ¼ 0 if c 2 C

b0:c ¼ di:c if c 2 IinC

where C is the set of feedback channels

C ¼ ðI1 [ I2Þ \ ðO2 [ O1Þ:

The delays bk1 1 are defined inductively by

bkþ1:c ¼ di:c for c 2 IinC

bkþ1:c ¼ a:c for c 2 C

where the delay a: O1 [ O2 - IN is the maximal numbers such that

isdelayðFi; b
k jIi; ajOiÞ

holds.
Note that b is the ‘least fixpoint’ of the delay function.
The construction uses as its basis the compositionality of the calculus.
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5.9. Deducing delay equations

We consider a network N with interface behavior FN with a number of systems as
data flow nodes. Let C be the set of all channels in the net N. We want to
calculate a delay profile

d : C! IN [ f1g

With every system behavior F in the network we may associate a function

gdelFðcÞ : IN� . . .� IN! IN

for every output channel c defined by

gdelFðcÞðd:c1; . . . ; d:cnÞ ¼

max fk 2 IN [ f1g : 8x; z : ½8b 2 I : ðx:bÞ # ðt�d:bÞ ¼ ðz:bÞ # ðt�d:bÞ� )

fðy:cÞ # tþ k : y 2 F:xg ¼ fðy:cÞ # t þ k : y 2 F:zg

This equation calculates the maximal guaranteed delay for channel c given the
delays d.c1, y, d.cn for the input channels of F.

To calculate for every channel c in the network its delay d.c we associate with
every node and every output channel c of one of the nodes F the equation

d:c ¼ gdelFðcÞðd:x1; . . . ; d:xnÞ

For the input channels c we assume

d:c ¼ 0

We get an equation for each channel c A C. It is easy to show that the functions
gdelF (c) are all monotonic. Therefore, there exists a least fixpoint d for the
equations which is the delay profile.

6. Composition and the choice of the time scale

In this chapter we study the question how time abstraction and composition fit
together. A compositional formula for time refinement should read as follows:

COAðF1 � F2; nÞ ¼ COAðF1; nÞ � COAðF2; nÞ

However, this formula does not hold, in general, since making a behavior coarser
is an information loss that may result in the loss of strong causality and thus may
introduce ‘causal loops’. The time abstraction is the origin of the problems with
causal loops in approaches advertised under the name ‘perfect synchrony’ such as
Esterel (see Ref. 9). Moreover, the individual timing of the subcomponents may
be highly relevant for selecting the behaviors (the output histories).

6.1. Strong causality and compositionality of coarsening

In this section we study cases that guarantee the validity of the equation

COAðF1 � F2; nÞ ¼ COAðF1; nÞ � COAðF2; nÞ
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As we will explain in Section 9.3, coarsening is fundamental for a flexible timing
of large systems architectures.

That this equation does not hold, in general, can immediately be concluded
from our discussion of causal and not causal fixpoints.

Theorem: Let F1 and F2 be behaviors that can be composed (according to
consistent channel naming and typing); then the following equation holds

COAðF1� F2; nÞ � COAðF1; nÞ � COAðF2; nÞ

Proof: By definition, the statement (let all definitions be as in the definition of �)

y 2 ðF1 � F2Þ:x

stands for: there exists a history z for all channels in I1, I2, O1, and O2 such that
y5 z|O and

zjI ¼ xjI

^ zjO1 2 F1ðzjI1Þ

^ zjO2 2 F2ðzjI2Þ

Now let us assume y0 A COA(F1 � F2, n).x
0; then there exists y A (F1 � F2).x such

that x05COA(n).x and y05COA(n).y and there exists z such that y5 z|O and

zjI ¼ xjI

^ zjO1 2 F1ðzjI1Þ

^ zjO2 2 F2ðzjI2Þ

From this, we get with z05COA(n).z:

z0jI ¼ x0jI

^ z0jO1 2 COAðnÞ:F1ðzjI1Þ

^ z0jO2 2 COAðnÞ:F2ðzjI2Þ

Since by definition of COA(n) we get

COAðnÞ:ðF:xÞ � COAðF; nÞ:ðCOAðnÞ:xÞ

we get

z0jI ¼ x0jI

^ z0jO1 2 COAðF1; nÞ:ðCOAðnÞ:ðzjI1ÞÞ

^ z0jO2 2 COAðF2; nÞ:ðCOAðnÞ:ðzjI2ÞÞ

and finally

z0jI¼ x0jI

^ z0jO1 2 COAðF1; nÞ:ðz
0jI1Þ

^ z0jO2 2 COAðF2; nÞ:ðz
0jI2Þ

which proves that

y0 2 ðCOAðF1; nÞ � COAðF2; nÞÞ:x
0
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and thus that

COAðF1 � F2; nÞ � COAðF1; nÞ � COAðF2; nÞ

This completes the proof.

The theorem shows that

COAðF1 � F2; nÞ

is a refinement of

COAðF1; nÞ � COAðF2; nÞ

The converse statement is not true, in general. It holds only if both F1 and F2 are
not sensitive to the finer timing.

Theorem: Let n. 1 hold. Assume for i5 1, 2 that we have (for all x, x0 A~I)
COAðnÞ:x¼COAðnÞ:x0 ) Fi:x¼ Fi:x

0

and that delay(Fi, n) holds, then we get:

COAðF1; nÞ � COAðF2; nÞ � COAðF1 � F2; nÞ

Proof: The proof that under the given assumptions the formula holds uses the
stepwise construction of the history z such that

zjI ¼ x jI ^ zjO1 2 F1ðzjI1Þ ^ zjO2 2 F2ðzjI2Þ

for any given z0 with

z0jI¼ x0jI

^ z0jO1 2 COAðF1; nÞ:ðz
0jI1Þ

^ z0jO2 2 COAðF2; nÞ:ðz
0jI2Þ

with z05COA(n).z. Note that y0 A (COA(F1, n) � COA(F2, n)).x
0 iff such a

history z0 exists with y05 z0|O. From the existence of z we can conclude y05
COA(n).z and y0 A COA(F1 � F2, n).

This construction is inductive and uses the fact that the behaviors are strongly
causal. Since delay(Fi, n) holds for i5 1, 2, we can conclude that COA(Fi, n) is
strongly causal for i5 1, 2.

By the assumption we get for any history d and b such that

b 2 COAðFi; nÞ:ðCOAðnÞ:dÞ

with the history a A Oi - (M*)n*k specified by

a ¼ ðCOAðnÞ:bÞ # ðnnkÞ

and

a 2 ðFi:dÞ # ðn
n kÞ

that there exists a history a0 A Oi - (M*)n*(k11) such that

a0 ¼ ðCOAðnÞ:bÞ # ðnnðkþ1ÞÞ

and

a0 2 ðFi:dÞ # ðn
nðk þ 1ÞÞ
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Now let

y0 2 ðCOAðF1; nÞ � COAðF2; nÞÞ:ðCOAðnÞ:xÞ

hold; then there exists a history z0 such that y05 z0|O and

z0jI ¼ x0jI

^ z0jO1 2 COAðF1; nÞ:ðz
0jI1Þ

^ z0jO2 2 COAðF2; nÞ:ðz
0jI2Þ

We construct a history z such that z05COA(n).z holds and

zjI ¼ xjI ^ zjO1 2 F1ðzjI1Þ ^ zjO2 2 F2ðzjI2Þ

inductively as follows: since delay(Fi, n) holds there exists a history

zð0Þ 2 C! ðMnÞ
n

such that z0k15COA(n).z(0) and for every z00 we have (for i5 1, 2)

zð0ÞjI ¼ ðx # nÞjI ^ zð0ÞjOi 2 Fi:ðz
ð0Þ^z00jIiÞ # n

This follows from the fact that Fi.akn5Fi.bkn for all a, b since delay(Fi, n)
holds and therefore

COAðnÞ:ðFi:ðz
ð0Þ^z00jIiÞ # nÞ ¼ ðCOAðFi; nÞ:ðz

0jI2ÞÞ # 1

Given z(k) A C - (M*)n*(k1 1) where

z0 # ðkþ1Þ ¼ COAðnÞ:zðkÞ

and

zðkÞjI ¼ ðx # ðnnðkþ1ÞÞÞjI

^ zðkÞjOi 2 Fi:ðz
ðkÞ^z00jIiÞ # ðn

nðkþ1ÞÞ

there exists z(k1 1) A C - (M*)n*(k1 2) such that

zðkþ1ÞjI ¼ ðx # ðnnðkþ2ÞÞÞjI

^ zðkþ1ÞjOi 2 Fi:ðz
ðkþ1Þ^z00jIiÞ # ðn

nðkþ2ÞÞ

This follows from the fact that

Fiðz
ðkÞjI^i aÞ # n¼ Fiðz

ðkÞjI^i bÞ # ðn
nkÞ

For all a, b since delay(Fi, n) holds and therefore

COAðnÞ:ðFi:ðz
ðkÞ^z00jIiÞ # ðn

n kÞÞ ¼ ðCOAðFi; nÞ:ðz
0jI2ÞÞ # k

By induction we get for all k:

z0 # ðkþ1Þ ¼ COAðnÞ:zðkÞ

and

zðkÞjI ¼ ðx # ðnnðkþ1ÞÞÞjI

^ zðkÞjOi 2 Fi:ðz
ðkÞ^z00jIiÞ # ðn

nðkþ1ÞÞ

and thus for z with zk(n*(k11))5 z(k) for all k

z0 ¼ COAðnÞ:zðkÞ
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and
zjI ¼ xjI

^ zjOi 2 Fi:ðzjIiÞ

This proves that

COAðF1; nÞ � COAðF2; nÞ � COAðF1 � F2; nÞ

and thus concludes the proof.
Moreover, if a component is time independent, then we have the validity of the

following equation:

COAðF; nÞ:COAðnÞ:x¼COAðnÞ:ðF: xÞ

However, in contrast to problems when coarsening behaviors, the equation

FINEðF1 � F2; nÞ ¼ FINEðF1; nÞ � FINEðF2; nÞ

does always hold, as long as F1 and F2 are strongly causal.

7. Pros and cons for strong causality

As formulated in the hypothesis above, we may assume that for each model of a
physical system behavior, there is a time scale that is fine enough to capture all
essential time differences, especially for the delay between input and output,
to guarantee the property of strong causality. Modeled in an appropriate time scale
the behavior is always strongly causal according to the principle of strong causality.

Strong causality has a number of significant advantages since it makes the rea-
soning about systems more concrete and simpler since reasoning about feedback
loops is reduced to induction. In particular, it is easy to treat feedback loops by
fixpoints for strongly causal behaviors since strong causality guarantees, in parti-
cular, the existence of unique fixpoints for deterministic functions. In other words,
for strongly causal, fully realizable system behaviors all fixpoints are causal and thus
computationally appropriate in the sense that they faithfully reflect computations.

The disadvantage of strong causality is its limited abstractness illustrated for
instance by the fact that in sequential composition delays accumulate. This well
known effect observed for the composition of strongly causal components can be
nicely demonstrated for pipelining.

Let the behaviors

F1: I1!}ðO1Þ;F2: O1!}ðO2Þ

be given. We obtain

delayðF1;mÞ ^ delayðF2; nÞ ) delayðF1
 F2;mþ nÞ

In the case of two strongly causal functions F1 and F2 we get (at least)

delayðF1
 F2; 2Þ

On one hand this observation is very satisfactory since it leads to a useful delay
calculus (see above). On the other hand it shows an unfortunate inflexibility of
the design calculus for timed systems. If we want to represent a function by an
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architecture with two functions composed by pipelining we always have to
accept a delay by at least 2 if the functions are strongly causal. In fact, if we insist
on a delay less than 2 then a component cannot be implemented by a system
consisting of two components composed sequentially. This seems unacceptable,
since it makes the design very inflexible, and seems to be a good reason to reject
our approach based on a global discrete time altogether. In the remainder of this
paper we deal with this issue and show how to gain the necessary flexibility.

The choice of the time granularity is crucial for the behavior. As a result
of strong causality composition is not as abstract as wanted and needed. A
sequentially composed system with strongly causal components always shows
delays larger than one. This difficulty can be avoided by lowering the constraint
of strong to weak causality. But then the characterization of fixpoints being
causally sound and computationally realistic is no longer guaranteed and the
reasoning about fixpoints and the characterization of causally correct fixpoints
gets much more involved or even impossible.

Fixpoints are of major interest for systems since they are the classical tech-
nique to give meaning to feedback loops, mutual interaction, and recursive
definitions of behaviors. A feedback loop introduced for a behavior F with input
channel e and output channel c is specified by a fixpoint characterization

x:e 2 fy:c : y 2 F:xg

Let us consider a function F: ~C!}ð~CÞ. Feeding back all its channels corre-
sponds to the fixpoint property x A F.x. This property characterizes the com-
putations in feedback loops correctly if F is strongly causal. Otherwise there may
occur fixpoints that are computationally infeasible since they are the result of so-
called causal loops. A causal loop yields a fixpoint where certain output is
produced under the assumption that this output is fed back within the same time
interval as the corresponding input (‘self fulfilling prophecy’). There exist fix-
points that are not causal in the sense that they do not reflect proper computa-
tions. We demonstrate this observation by some simple examples.

For a feedback loop a fixpoint is causal, if all produced output is actually
caused by some input or – more precisely – is enforced by some input that is
available before the output is generated. This corresponds to the well-known
concept of least fixpoints and inductive definitions that reflect in an abstract
manner a concept of computation. A fixpoint is not causal if there is output that is
produced before the corresponding input arrives, which then in turn is used as the
corresponding input in a feedback loop to ‘logically justify’ the output.

Example: Causal loops for the identity function
Let us consider as a simple example the weakly causal time independent identity
function Id characterized by the equation

Id: x ¼ �x
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In fact there are many time independent identity functions (functions that fulfill
the equation above) that are only distinct with respect to their time delay and
timing. In particular, there is a weakly causal identity function that fulfills the
following specification (recall that #x denotes the length of a sequence)

Id:x ¼ fx0 : x0 ¼ �x ^ 8t 2 IN : #x0 # tp#x # t g

A strongly causal version of the identity shows in addition the property

Id:x # k þ 1Lx # k ðnÞ

If we are looking for a fixpoint

x 2 Id:x

we easily prove for a strongly causal version by induction from the equation (*)
the expected property �x ¼ /S. For the most general, only weakly causal identity
Id.x5 xm, however, each history is a fixpoint.

For a weakly causal version of the identity function Id the proof that x A
Id:x) �x ¼ /S as shown for strong causality does not work. There are fixpoints
x A Id.x that are not the empty history (i.e. �x 6¼ /S) and do not represent causal
computations, of course. An example is the history x with x.t5/1S for all t A IN.
Such fixpoints do not reflect feasible ‘causally proper’ computations. They are
not causal and instances of a causal loop.

Weak causality is the result of selecting too coarse time scales. It leads to
models that are too abstract. As a result, in these models composition may not
be operationally faithfully definable since fixpoints may correspond to causal
loops and – even worse – we cannot distinguish between causal and non-causal
fixpoints, in general. Strong causality allows us to avoid causal loops at the cost
of less abstract models. Strong causality provides a computationally faithful,
more down to earth model of composition and interaction.

8. A compromise

We have extensively discussed so far the advantages and disadvantages of strong
in contrast to weak causality. Weak causality is transparent with respect to
composition. A weakly causal component can always be decomposed into a
system of weakly causal components with feedback loops and sequential com-
position, which does not hold for strongly causal components. Strong causality is
not abstract enough, while weak causality is too abstract in cases of feedback
loops and fixpoints. The challenge is to combine the advantages of weak and
strong causality. In this section we look for a methodological compromise that
incorporates, as much as possible, both their advantages and avoids most of their
disadvantages by supporting a refinement of time.
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8.1. Strongly and weakly causal behaviors

In this section we explore possibilities to identify causal fixpoints for weakly
causal behaviors. In fact, there is a natural implicit notion of strong causality that
applies even for weakly causal systems.

Definition: Causality
An I/O-behavior (that is weakly causal)

F :~I!}ð~OÞ

is called causal (properly timeable), if there exists a number n A IN and a
strongly causal function

F0 :~I!}ð~OÞ

such that F5COA(F0, n).

In other words, in the definition above, F is a causal function that is weakly causal
and can be understood as an abstraction (by time coarsening) of some strongly causal
function F0. The critical question, however, is whether such a strongly causal
function is unique and thus leads to a canonical construction of causal fixpoints.

Every fixpoint of the strongly causal function F0 is a fixpoint of the weakly
causal function F since

x 2 F0ðxÞ

) COAðnÞ:x 2 COAðnÞ:F0ðxÞ

) COAðnÞ:x 2 COAðF; nÞ:COAðnÞ:x

Given a weakly causal function F the existence of a strongly causal function F0

such that F is an abstraction of F0 does not really help, however, to separate
faithful fixpoints from causal loops. There are cases where there are several
choices of strongly causal behaviors F0, say F1

0 and F2
0, such that some fixpoints

of F are causal for F1
0 but not for F2

0. This leads to the following fact: time
abstractions may lose the notion of strong causality leading to models where we
cannot distinguish causal from non-causal fixpoints. The information loss by
time abstraction is therefore critical, in general, and does not allow any longer
distinguishing causal from non-causal fixpoints.

We illustrate this problem by an example. First we show an example where
weak causality works.

Example. Identity
Consider again some identity function F with FðxÞ ¼ �x. We can prove that fix F
is the empty stream. The proof is essentially the same as the one given above. We
assume that there is a strongly causal function and that every causal fixpoint of F
corresponds to a fixpoint of the strongly causal function. This way we easily
deduce �x ¼ /S for every fixpoint.
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This shows that the assumption of strong causality leads to proof of principles
for systems with feedback loops. But the assumption does not allow us to rule out
non-causal fixpoints in a canonical way. Only strong causality guarantees that all
fixpoints are causal and that we do not have fixpoints for which we do not know
whether they are causal or not.

Finally, to demonstrate the significance of strong causality let us look at a
slightly trickier example. We consider a function F with the following char-
acteristic behavior:

�x F:x

/S {/S, /1S}
/1S {/1S, /1 1S}

/1 1S {/1 1S}

Depending on the structure of its timing the history x with �x ¼ /1S can be a
causal fixpoint or not (here //SSN denotes the infinite stream with empty
sequences of messages in each time interval) depending on the actual definition
of F. The following table shows a particular version of F:

x F.x

//SSN {//SSN, //1SS4//SSN}
//1SS4//SSN {//SSN, //1SS4//SSN, //1S /1SS4//SSN}
//1S /1SS4//SSN {//SSN, //1SS4//SSN, //1S /1SS4//SSN}

In this case F is (more precisely, can be extended to) a strongly causal function
and the stream /1S4//SSN is a causal fixpoint.

Now consider the strongly causal function F0 with the following characteristic
behavior

x F0.x

//SSN {//SSN, //1SS4//SSN}
//1SS4//SSN {//SSN, //S /1SS4//SSN, //1S /1SS4//SSN}
//1S /1SS4//SSN {//SSN, //S /1SS4//SSN, //1S /1SS4//SSN}

In this case /1S4//SSN is not a causally correct fixpoint of F0, although

F:x and F 0:x

do coincide. In such a case, the timing of the output is essential for determining the
causality of fixpoints and therefore for determining which of the fixpoints are causal.

Relating Time and Causality in Interactive Distributed Systems 557

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1062798710000281
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:40:18, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1062798710000281
http:/www.cambridge.org/core


9. Causality, time, and composition

As we have shown, causality is essential for an inductive reasoning about
composed systems with feedback loops.

9.1. Causality and composition

Given a set of specified components we get for each component

F :~I!}ð~OÞ

with the relational specification (‘specifying assertion’) for y A F.x in the form of
a predicate P:

Pðx; yÞ

by imposing causality the logical weakest specification Pc that fulfills the fol-
lowing equation

Pcðx; yÞ � Pðx; yÞ ^ 8t 2 IN : 9x0 : x0 # t¼ x # t)

9y0 : Pcðx0; y0Þ ^ y0 # tþ1 ¼ y # tþ1

This way we can add the requirement of strong causality to every specification to
get a strongly causal specification. Note, that the specification may become
inconsistent if the original specification contradicts the notion of strong causality.
As is well-known (and straightforward to prove), if we compose strongly causal
systems we get again strongly causal systems.

9.2. Composition and coarsening time

If we compose strongly causal systems, then their time delays accumulate. For
instance, if each component has a time delay of at most one, then computing the
time delay of a composed system is the result of calculating the minimal number
of delays of components on the shortest path from an input to an output channel.
This allows us to calculate delays in architectures of composed systems. But
sometimes we may be interested in a more abstract view on the function com-
puted by an architecture.

If we work with a component F with delay k, we easily construct a strongly
causal component of delay one by the component

COAðF; kÞ

This construction can be understood as a way to abstract from the finer time
scale used inside for the sub-systems of a system to a coarser time scale outside
of the system. We may speak of a macro/micro time scale. As long as we are not
interested in the fine-grained notion of time, such an abstraction is certainly
appropriate. It is the best abstraction maintaining crucial notions such as causal
fixpoints and ways to reason about them.
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9.3. Local timing

The flexibility of our timing calculus can be seen in the following by demon-
strating how we can work with local timing and local clocks.

For each subsystem (subcomponent) of a network we can introduce a local
time and a local time granularity. This idea is demonstrated by a simple example.

Example: Architecture with local Time Granularities
The following expression

COAðCOAðF� G; 10Þ � COAðH� K; 20Þ � L; 2Þ

denotes a system with a subsystem

F� Gwhichworks in a 10 times faster mode

H� Kwhichworks in a 20 times faster mode

This way we get a system with different local time scales where each time scale
can be chosen fine enough for each of the components locally to guarantee strong
causality of each of its subcomponents such that all local computations are
captured on the right level of time granularity. The components operate locally
on a higher frequency. Since delays accumulate in a system the larger compo-
nents composed of many subcomponents show typically larger delays such
that we can choose coarser time granularity for them without losing strong
causality.

Figure 12 shows an informal example of a complex system composed of three
subsystems, each of which is composed of four components. For each of the
subsystems we may select local proprietary time granularity.

Figure 12. Hierarchical architectures of components with different time scales.
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9.4. Multiplexing of the components of a network on one CPU

In general, we cannot expect that each dedicated node in a data flow net always
runs on its own CPU. We rather expect that a complete net or sub-net of com-
ponents is executed on one CPU. Then the multiplexing of the components,
which may be running at different speeds, have to be mapped by a scheduling
onto the CPU cycles.

9.5. Avoiding causal loops

In the following, we finally discuss the problem of causal loops. We show how
we can add strong causality as a property to specifications to reason about
feedback loops.

Example: Interface specification
Consider the following specification of a component that copies its input on
channel x on both of its output channels y and r.

Copy

in x: T
out y, r: T

�x ¼ �y ^ �x ¼ �r

Strong causality as an assumption on the specification Copy allows us to
conclude in addition to the specifying assertion the following property:

8t 2 IN :8m 2 T :

fmg#r# t þ 1pfmg# x # t

^ fmg#y # t þ 1pfmg#x # t

where M#x denotes the number of copies of messages in the set that occur in x.
Another example is the specification of component Repeater, which repeats each
of its inputs infinitely often. Its specification reads as follows:

Repeater

in r : T

out x : T

8m 2 T : fmg# �r40) fmg# �x ¼1

^ fmg# �r ¼ 0) fmg# �x ¼ 0

Strong causality allows us to conclude in addition to the specifying assertion the
following property

8t 2 IN : 8m 2 T :

fmg# r # t ¼ 0) fmg# x # t þ 1 ¼ 0
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Now let us compose the two components into the composed system characterized
by the term

Repeater � Copy

as shown in Figure 13. We get a system that forms a feedback loop. If we want to
reason about the composed system, we have to refer to the assumption of strong
causality to reason about the system in a way where we avoid causal loops.
Without strong causality arguments we get the following formula:

�x ¼ �y ^ �x ¼ �r

^

8m 2 T : fmg# �r40) fmg# �x ¼1

^fmg# �r ¼ 0) fmg# �x ¼ 0

which simplifies to

�x ¼ �y ^ �x ¼ �r ^ 8m 2 T : fmg# �r40) fmg# �r ¼1

which indicates for the output y of the network only

8m 2 T : fmg#y40) fmg#y¼1

With strong causality arguments we get in addition the assertion

8t 2 IN :8m 2 T :

fmg#r # tþ1pfmg#x # t ^ fmg# r # tpfmg#x # t

^

8t 2 IN : 8m 2 T :

fmg#r # t ¼ 0) fmg# x # tþ1 ¼ 0

that allows us to conclude (by a simple inductive argument) the validity of the
following formula

�y ¼ /S

which cannot be concluded without strong causality.

Copy

Repeater

x

x

r

r

y

Figure 13. Composition repeater
N

copy.
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10. Conclusion: robust flexible timing

The goal of this paper was to show the relationship between causality and the
choice of the time scale and granularity as well as its influence onto composi-
tionality. The main issues here were the dependencies between the time scale and
composition with feedback.

If we choose the time scale fine enough the definition of faithful composition
is quite straightforward. Our approach supports flexibly chosen time scales. We
worked out the following idea of flexible timing:

> The leaves of the component hierarchy are state machines.
> Each state machine runs in its own local time scale, which defines the
time duration of each of its steps.

> Each processor (CPU, controller) contains a family of state machines,
which run with different speed (time granularity). This defines the finest
time grain steps and the set of steps (state transitions) that have to be
executed (scheduled) in a time slot. This determines the workload.

Hence, we can design a static schedule at the abstract level of behavior without
being forced to address low-level technical issues such as schedulers or operating
systems. Moreover, by strong causality we get a very robust inductive technique
for reasoning by feedback.

We obtain a flexible and modular theory of timing of systems and sub-systems
this way, which provides the following helpful properties

> high level abstract and flexible modeling
> multiplexing and scheduling on abstract level
> application oriented time model close to hardware time model
> causality for inductive reasoning
> avoiding causal loops
> rich algebraic properties
> discrete model of time that provides the same flexibility as analog
models of time (real time)

> time abstraction by coarsening the time granularity to get rid of
unwanted delays.

In the end we can generate from such a time model a static scheduling for the system.
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