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Summary

Summary
One of the main hallmark features of asthma is airway hyper-responsiveness 

(AHR), and strong correlation exists between AHR and the inflammatory processes, 
suggesting the involvement of a network of cytokines. Other salient features include 
the IgE production, eosinophil infiltration and the shift of the fine balance between 
the different T - helper cells (Th1, Th2) towards a Th2 bias. Th2 cells occupy a 
central stage in the regulation of inflammatory cytokines and secrete a panel of them 
with several overlapping functions, through which it orchestrates the allergen-
induced responses. Pro-inflammatory cytokines such as TNFα, IL-1b, IL-6, IL-8, and 
IL-33 being the characteristic molecular signatures found in the bronchoalveolar 
lavage and sputum of asthmatics, are receiving increased attention for their role in 
the maintenance of the inflammatory cascade.

The main aim of the thesis is to investigate such circulating (serum) cytokines 
as intermediary phenotypes and at the application of genetic approaches to yield 
insights into the association of underlying constitutional host immunity and genetic 
component in a family based setting. Serum samples of 923 individuals coming from 
218 families were measured for 17 cytokines (Eotaxin, GM-CSF, IFNγ, IL-1b, 
IL-1RA, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12(p40), IL-13, IL-17, IL-23, IL-33, TSLP, and 
TNFα). The determination of heritable components in the variation of serum cytokine 
levels showed pro-inflammatory cytokines: TNFα and IL-8 as the most heritable with 
tight genetic control. In the genome-wide linkage analysis, one genomic region, 
17q22-24, exceeded the genome-wide significance threshold for the linkage with 
anti-inflammatory cytokine levels of IL-12(p40). Furthermore, common variants 
(Minor Allele Frequency; MAF > 5%) from a set of loci implicated in published 
population-based association studies of asthma phenotypes, were tested for their 
strength of association with cytokine levels using the family-based association tests 
for quantitative traits (QFAM). Some of the key findings are the significant 
association of SNPs residing in IL1RN , NR3C2 and GSDMA with cytokines involved 
in the Th2-mediated immune response. Significantly associated variants are followed 
up and annotated using a custom pipeline consisting of publicly available functional 
datasets on gene expression, regulatory networks and association catalogue. 
Interestingly, high-LD SNPs of the intronic variants residing in IL1RN and NR3C2 are 
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associated with differential expression of the genes in blood cells and immune cells, 
and significantly enriched for histone modification marks associated with promoter 
and enhancer activation in multiple cell types including the lung. Lookup of 
significantly associated variants from the QFAM test, in the meta-analysis summary 
statistics of a consortium based (GABRIEL) largest Genome-Wide Association Study 
(GWAS) of asthmatic individuals, shows the GSDMA variant to be genome-wide 
associated with asthma. The present work mainly argues that the intermediary 
phenotypes such as the serum levels of cytokines can function as an alternative to 
the classical clinical phenotypes, especially when the clinical criteria are ambiguous.

It is well-known that common variants contribute modestly to the phenotype 
through their moderate effect sizes and subtle regulatory effects, and explain only a 
small proportion of the heritability. This forms one of the outlook of this thesis, as low 
frequency variants (MAF < 1%) in the summary data from the GABRIEL study was 
explored, which led to the identification of a larger proportion of associated SNPs 
with larger effect estimates. Given the rare nature of the identified variants, further 
explorations with greater sample size are warranted. Additionally, factors like 
structural variants and gene-environment interactions that might explain some of the 
missingness are explored and discussed in a disease type with strong environmental 
component - Chronic Obstructive Pulmonary Disease (COPD). 
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Introduction

1. Introduction: 
The World Health Organisation (WHO) estimates the number of asthmatic 

individuals to be steadily increasing, from approximately 150 million people a decade 
back to about 334 million people today [1], making this non-communicable disease 
the most common and serious chronic lung disease. The estimates are considered 
to be in the lower end of the spectrum as a result of the stringent criteria applied in 
asthma diagnosis. All ethnic backgrounds suffer from asthma, with developed 
countries suffering more than the developing nations. Asthma prevalence in U.S is 
higher compared to the other countries in the world and varies drastically among 
different ethnic populations [2]. One common pattern in asthma prevalence is its 
higher distribution in children than adults, and a possible explanation for this high 
prevalence in children is atopic sensitization [3]. Additionally, it is also shown that 
lifestyle changes can contribute as a major risk factor in asthma frequency, as the 
transition from a rural community to urbanised area is associated with increased 
prevalence of asthma [4]. With a marked increase in the world population and 
urbanisation, a further increase in asthmatics is expected over the next two decades. 
Recent assessments show that asthma accounts for 1 in every 250 deaths 
worldwide, with 250,000 annual deaths attributed to the disease [5]. Cost effective 
management strategies that are proven to reduce morbidity and mortality is an 
effective substitute until there is a greater understanding of causality in asthma. 

1.1. Analytical studies in genetic epidemiology (Asthma)  
 From hallmark discoveries such as Mendel’s law of segregation and the 

proposal of the double helix model of the DNA by Watson and Crick, immense 
progress has been made in the field of genetics and in understanding their role in 
disease development. In contrast to monogenic disorders like Cystic Fibrosis (CF) 
where a single gene explains the major part of the observed phenotype, asthma is 
rather ambiguous in establishing the relationship between cause and effect. It does 
not follow the classical Mendelian patterns owing to its heterogeneous nature. 
Attributable to the large effect size of the variants and their high penetrance, single-
gene disorders like CF are less prevalent (1 in 2000–3000 live births) [6] compared 
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to counterparts like asthma that are more common. The prevalence of asthma and 
its severity varies significantly as a result of its multifactorial nature that includes both 
genetic and environmental factors; asthma is thus rightly termed as a common but 
complex genetic disorder. The genetic complexity of asthma is best evident from 
characteristic features such as the involvement of multiple genes (gene sets) in the 
pathogenesis (polygenic), different gene sets contributing to inter-individual 
variability in susceptibility (genetic heterogeneity), and the possibility of unaffected 
individuals carrying the same disease genotype (low disease penetrance). Twin 
studies and family-based studies have already established a strong genetic 
component about asthma onset [7]. This clustering in families is also evident from 
segregation studies; one such study by Meyers and co-workers showed that two loci 
in the 5q region combinatorially explained 87.4% of the variation in total serum IgE 
levels [8]. However, it has now become clear that no one genetic region or a single 
genetic approach comprehensively explains complex diseases. Rather, a multitude 
of approaches augmented by in-depth functional follow-up will be needed. In the 
following sections, such genetic approaches and their contribution to the field of 
asthma genetics will be discussed.

1.2. Before the era of genome-wide association studies 
     One approach (linkage analysis) uses no prior information in identifying 
regions of the genome that are linked or co-inherited with a particular phenotype of 
the disease of interest. It uses highly polymorphic markers called the microsatellites 
that are evenly spaced throughout the genome and comes with the prerequisite of 
affected families spanning for a minimum of two generations. Evidence of linkage in 
a typical genome-wide linkage analysis (GWLA) usually spans 10 to 20 Mb with the 
possibility of multiple genes residing in the region. Thus, follow-up of linkage results 
is vital in deciphering the actual causal locus. One can either analyse the variations 
residing in the region systematically by mapping finely spaced genetic markers 
(positional cloning) or target certain candidate genes in the region based on an 
apriori hypothesis. Positional cloning is a time-consuming process that involves 
cloning of the candidate region, followed by the identification of a single causative 
gene using mutation analysis comparing groups with and without the disease. So far 
genome-wide screens for asthma and related phenotypes have been carried out in 
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different populations including the East Asians [9], and owing to their differences in 
sample size and study design the overall results vary substantially. Nevertheless, 
asthma/atopy genes successfully identified through linkage and positional cloning 
approaches were discussed in detail elsewhere [10,11] and Table-1 is an attempt to 
summarise the genes, linked phenotype and list the regions that are successfully 
replicated. In genetic studies, it is customary to follow up the hits by replicating them 
in another independent dataset as an attempt to identify the true disease-
susceptibility loci. GWLA in particular struggles to replicate the signals from study to 
study due to low statistical power, possibly owing to the difficulties involved in 
ascertaining large pedigrees (large sample size). Two recent meta-analyses of 
asthma and atopy linkage studies overcome this barrier by combining data from nine 
Caucasian asthma populations [12] and across different ethnic populations (including 
Asian, Hispanic, etc.,) [13] conducted for asthma or related phenotypes. They aimed 
to investigate the consistency of linkage findings across different studies. Altogether, 
genome-wide evidence for linkage was detected for asthma/atopy phenotypes in 12 
chromosomal regions, with few overlapping findings between the two meta-analysis 
studies. Other than the two regions (2p21-p14 and 6p21.31–p21.1) in European 
families that reached genome-wide significance levels with asthma [12,13], the 
remaining regions were linked with lung function phenotypes (6p22.3-21.1, 2q22.1-
q23.3, 7q12.11-q31.1, and 5q23.2-q34 for bronchial hyper-responsiveness; BHR) 
[11,12] and atopy-related phenotypes (2q32-q34 for eosinophil count, 3p25.3-q24 
and 17p12-q25 for positive skin prick test; SPT, 5q23-q33 for a quantitative measure 
of SPT, and 5q11.2-q14.3 and 6pter-p22.3 for IgE) [11-13]. The lesser predominance 
of asthma-linked regions across these studies might reflect the disease 
heterogeneity and the need for relatively homogeneous measures, such as 
quantitative traits (BHR, IgE levels, eosinophil count, cytokines levels, etc.,) instead 
of a simple affected or not affected status of the disease (dichotomous trait). In 
addition to identifying new regions and replicating known regions, the main 
objectives of such meta-analysis are to investigate the shared regions across 
different phenotypes. Interestingly, overlapping of linked regions between different 
traits (6p22.3-21.1 for asthma and BHR; 3p14.1-q12.3 for asthma and SPT; 5q23.2 - 
q34 & 7p21.1 - 14.1 for asthma, BHR and IgE) are observed. This suggests the 
possibility of pleiotropic effects exerted by the gene residing in these regions leading 
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to multiple phenotypic expressions and ascertains asthma to be more of a spectrum 
rather than a single disease entity.

Table-1: Linked regions that are suggestively replicated in large-scale meta-analysis. 

 Genes identified by GWLA and positional cloning function as targets for 
candidate gene studies that rely on such apriori information. It is clearly evident from 
pathway analysis that a multitude of biological pathways are involved in asthma 
pathogenesis [14], and thus it is highly likely that there is a larger number of 
plausible candidate genes. The number of candidate gene studies in asthma could 
be well over 600, and examining close to 200 genes [10]. The cytokine cluster of 
genes and β2 adrenergic receptor (ADRB2) on 5q, ICOS, CD28 on 2q, Toll-like 
receptor (TLR) family of genes, C-C chemokine receptor genes on 3p, the high-

Positionally 
cloned genes

Chromosomal 
region

Linked phenotype in 
the original study

Replicated phenotype in meta-
analysis studies

DPP10 2q14 Asthma, IgE BHR, Denham et al., 2008 [13]

CYF1P2 5q33 Asthma SPTQ, Bouzigon et al., 2010 [14]

HLAG 6p21 Asthma BHR, Denham et al., 2008 [13] ; 
Asthma, Bouzigon et al., 2010 [14]

GPRA 7p14 Atopy, Asthma —

SFRS8 12q24 Asthma —

PHF11 13q14 Asthma, IgE —

ADAM33 20p13 Asthma —

IRAK3 12q14 Early asthma —

COL6A5 3q21 Atopy SPT, Denham et al., 2008 [13] ; 
SPT, Bouzigon et al., 2010 [14]

CHML 1qter Atopy,Asthma —
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affinity IgE receptor gene (FCER1) and Clara cell secretory protein (CC16) on 11q 
are some of the genes that have been studied more frequently. Overall, the results 
vary enormously from study to study as a result of population and phenotype 
heterogeneity, posing a considerable challenge in identifying the true association.
    Immunological pathways driving the inflammatory response are a complex system 
involving multiple genes, systematically regulated under the influence of allergens. 
Therefore, it is natural for most of the candidate gene studies to have immune-
response genes as their study targets. Interestingly, the genes from 5q31 cluster 
involved in the IL-4/IL-13 pathway exhibit less inter-study variability and are 
frequently found to be associated with asthma/atopy-related traits [15,16]. IL-4 and 
IL-13 genes are located in close physical proximity (12.5 kb apart) and are involved 
in isotype switching from IgM or IgG to IgE in activated B lymphocytes [15]. In vivo 
studies have already demonstrated that the large insert of 5q31 transgenics 
influences several quantitative phenotypes of asthma by altering gene dosage [17]. 
Promoter polymorphism in IL-4 (-589 C/T) is known to be associated with IgE levels 
in asthmatics [18]. A number of genetic epidemiology studies have successfully 
replicated this association of IL-4 promoter polymorphism with asthma in different 
non-European populations (Chinese, Taiwanese) [19], Russians [20], and in the 
admixed population of the Madeira island (Caucasoid/Sub-Saharan) [21] where the 
polymorphism is additionally shown to be an important risk and severity predictor for 
atopy asthma. Similarly, polymorphisms in the exonic region of IL-13 (exon 4) are 
associated with elevated serum IgE levels in children from three different populations 
[15] and in the German population [22]; moreover, serum IL-13 levels are associated 
with both allergic and non-allergic forms of asthma in the British and Japanese 
populations [16]. It is important to remember that the tightly packed nature of this 
locus involving multiple genes (interleukin genes IL-4, IL-13, IL-9, IL-5, as well as 
CD14 and ADRB2) mandates a careful interpretation of any significant association, 
as the identified variant could be in high linkage disequilibrium (LD) with another 
novel/unknown gene. Other possible causes of differences in association studies 
include population-specific gene-gene or gene-environment interactions.
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1.3. GWAS in asthma  
  Candidate gene studies are, strictly speaking, more of a retrospective 
approach that starts with the outcome and traces back to investigate exposures. 
They are advantageous compared to earlier genome-wide screens (GWLA), as it 
can be applied to independent case-control subjects and are not limited to family-
based data. By increasing the case-control ratio and using a larger sample size, the 
power to detect true associations in a case-control study is enhanced [23]. However, 
case-control studies using candidate gene approach suffers from the important 
constraint of focusing only on the genes selected because of an apriori hypothesis, 
in contrast to the GWAS approach that maps the whole genome. The human 
genome encodes one SNP for every 300 base pairs [24], and on the genome scale, 
this comes close to 10 million SNPs at a frequency of > 1% in the world's human 
population and constitutes 90% of the variation (remaining 10% being rare variants). 
It is technically and as well statistically challenging to analyse all of these variants, at 
which point the LD pattern between the SNPs is used. Thereby, tag SNPs that are 
representative of all high-LD SNPs in a given region (‘haplotype block’) of the 
genome are genotyped instead of genotyping 10 million SNPs. Comparison of 
GWAS chips from different populations shows that genotyping chips with 
500K-1000K SNPs are a sufficient starting point for a good GWAS [25]. The number 
of GWAS studies has increased exponentially with the steady drop in the cost of 
genotyping, and identified true hits satisfying a stringent statistical threshold (10-7 to 
10-8 in contrast to the conventional p-value of 0.05) to control the genome-wide type 
I error rate [26]. So far GWAS studies in asthma have identified close to 45 genes 
[27], based on the criteria of study size being greater than 300 individuals and 
replication of the genome-wide hit in at least one additional population (Figure-1).
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�
Figure-1: Replication of significant findings in multiple studies. (Data from Weiss et al., 2009 
Table 1) [27]

 IL-4 and TNFα lead the list of genes replicated in multiple studies (> 5 
studies) with replication in 11 and 17 studies respectively. TNFα shares the locus 
(6p21) with the well characterised – major histocompatibility complex (HLA) region 
that has shown strong linkage evidence with asthma [28]. As mentioned in earlier 
sections, pro-inflammatory cytokines such TNFα are found in high levels in the 
sputum and bronchoalveolar lavage of asthmatics and are known to play a vital role 
in asthma severity through the activation and subsequent accumulation of 
neutrophils [29]. Other important observations include the replication of genes 
previously known by linkage and positional cloning such as DPP10, FCER1B, TLR, 
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PHF11, and ADRB2 [10,11]. ORMDL3 that is replicated in more than five studies 
were the first to be discovered by GWAS [30] and owing to their tight LD structure, 
variants from this locus function as expression quantitative trait locus (eQTL) 
regulating the expression of ORMDL3 and other neighbouring genes [11]. It is for this 
reason of obscurity in the regulatory effects the region is commonly termed as the 
17q21 locus. The biological function of the 17q21 locus in mammalian cells is little 
known, and its mode of action has been recently proposed [31]. ORMDL3 from this 
locus encodes a transmembrane protein in the endoplasmic reticulum (ER) that 
regulates the activity of an epithelial cell-specific membrane protein (SERCA), 
resulting in epithelial cell remodelling. In addition to studying the association with 
qualitative asthma traits, intermediate quantitative traits that reflect the severity of 
asthma were used in one study and identified a novel variant in the promoter region 
of CHI3L1 that is genome-wide associated with elevated serum YKL-40 levels [32]. 
Accounting for the characteristic small effect estimates of variants in complex traits, 
most of the genome-wide approaches require a larger sample size to achieve 
statistical power. Consortium based meta-analyses are designed specifically to 
address this issue, where genotype data from multiple studies with identical 
phenotype definition are combined. The first GWAS meta-analysis of approximately 
10000 asthma cases and 16000 controls integrating close to 500K SNPs from 23 
European studies was performed by the GABRIEL consortium [33]. It was soon 
followed by the meta-analysis of approximately 3000 asthma cases and 3000 
controls in ethnically diverse North American populations by the EVE consortium 
[34], where the analysis was carried out both in ethnically identical groups and in the 
overall group. In addition to the replication of previously identified loci, both these 
studies identified new asthma susceptible loci (PYNHIN1 - in African-descent 
population by EVE; and IL-33, SMAD3, IL1RL1/IL18R1, IL2RB1, HLA-DQ - in 
European population by GABRIEL) [33,34]. Recently, a more gene-centric approach 
is advocated over SNP-for-SNP replication [35]. This is true if the comparison is 
made across ethnically different populations, as the underlying assumption of 
identical allele frequency or haplotype structure does not hold in such cases. In this 
regard, 17q21 and IL1RL1 are the only regions that are genome-wide significant in 
both the studies (Figure-2), followed by TSLP and IL-33 genome-widely significant in 
one study and suggestive in the other.  In addition, there were few associations 
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(RORA, SMAD3) significant in the European population (GABRIEL study) but 
nominally associated with European Americans (EVE study), suggesting the 
possibility of a difference in risk susceptibility even between people of European 
descent. Nevertheless, it is important to specify that the variants identified by both 
these approaches explain little of the overall outcome, as in the GABRIEL study only 
35% of the individuals can be classified as asthmatics based on these common 
variants [33].

�
Figure-2: Significant hits from the largest asthma GWAS studies. (Data from Ober et al., 2011 
Table-5) [11]

Altogether, the findings from the GWAS approach replicate very little of what 
is known from earlier candidate gene studies. A plausible explanation for this might 
be the heterogeneity observed in asthma phenotypes and also to an extent the 
inadequate representation of previously known regions in commercial genotyping 
chips. The difference in coverage of the variants in genotyping chips might also 
explain the less successful efforts in replicating the findings from a European 
population to any non-European population (Asian or African). The other aspect to 
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be noted in individual GWAS studies and the meta-analysis approach is that despite 
having a larger sample size, only a few common variants reach genome-wide 
significance and with smaller effect sizes. Besides, genetic heterogeneity observed 
between individuals that can dilute the observed effect sizes [36]. Early life 
environmental exposure, interacting with the genotype of individuals, might play an 
important role in conferring the heterogeneity and result in selective association with 
small effect estimates that is evident only in exposed individuals. This forms the 
principle of gene-environment (GxE) interaction studies. Prior to the genome-wide 
approach, initial interaction studies focused on selecting genetic regions and 
environmental risk factors mainly from experimentally verified data. Dose-dependent 
relationships between bacterial endotoxin (environmental exposure) and the gene 
that codes for endotoxins receptor protein (CD14), were one of the initial candidate 
interaction studies [37]. Followed by testing the relationship between the 17q21 locus 
and tobacco smoke [38], which revealed an enhanced risk of asthma conferred by 
the 17q21 variant and individuals exposed to tobacco smoke in early life. It opened 
up a new possibility of expanding the GxE studies to a genomic scale, where 
estimates of both the main genetic effects (outcome) and their interaction 
(environmental risk factor) will be determined. The first GxE interaction study at the 
genome level was carried out to study the relationship of childhood asthma and 
farm-related exposures in 1,700 children from rural regions of Europe [39]. The study 
failed to show any significant interaction with common SNPs for which the study was 
well powered, and instead detected association with rare variants residing in a 
glutamate gene (GRM1) that plays a vital role in T-cell mediated immunity. Other 
than the initial success of experimental approaches that use prior knowledge on GxE 
interaction, agnostic approaches in the genome-wide scale are still in their infancy, 
as new methodological approaches such as next-generation analytic tools being 
currently proposed as a suitable alternative [40].
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1.4. Post-GWAS where next?  
Despite the identification of multiple asthma susceptible loci by GWAS studies 

of different endpoints (childhood asthma, severe asthma, and other asthma-related 
traits) [41], it still only manages to explain a small fraction of the heritability. Several 
hypotheses have been proposed to explain the “missing heritability” or "dark 
matter” [42], and since GWAS ignore low-frequency (MAF < 5%) and rare (MAF < 
0.5%) variants it is likely for those variants to hold the answer. In addition, structural 
variations such as insertion/deletions (INDELS) and copy number variants (CNVs) 
that can be detected by direct sequencing approaches are largely ignored in a typical 
GWAS set-up. Next-generation sequencing technologies such as whole genome 
sequencing (WGS) and whole exome sequencing (WES) are designed specifically to 
bridge this gap. Previous attempts of large-scale sequencing efforts such as the 
1000 genomes project (1,092 individuals / 14 populations) by using a combination of 
low-coverage WGS and WES [43], have already identified approximately 40 million 
of common and rare genetic variants including 38 million SNPs, and 1.4 million 
structural variants. The numbers are expected to rise with future efforts such as the 
UK10K project that aims to sequence the whole-exomes of 6,000 individuals through 
high read depth and the whole-genomes of 4,000 European-ancestry individuals at 
low-coverage (www.UK10K.org). Nevertheless, the validation of rare variants, in 
particular, comes with the high cost associated with deep sequencing of a large 
sample size that is required to attain enough statistical power for identifying rare 
variants. For this reason, it is customary for studies to opt for a combinatorial 
approach of performing relatively low-coverage WGS and follow up with cost-
effective, targeted sequencing for accuracy. In one such recent study, WGS results 
from a small number of index individuals (16 individuals from asthma enriched and 
depleted families) were followed up by targeted sequencing to identify structural 
variants including the CNVs [44]. The authors of this study, however, emphasise the 
need for a larger sample size and low-cost genotyping technologies to validate their 
results. With these technologies at hand and the possibility of cost reduction, the 
next wave of asthma genetic studies might include full genome sequencing analyses 
with the power to answer the century-long search for asthma genes.
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1.5. Family-based study designs in genetic epidemiology and 

their advantages  
 Genetic epidemiology differs from its classic counterpart by explicitly taking 
genetic factors, gene-environment interactions, and familial information into 
consideration. While the initial studies (familial aggregation, heritability, and linkage 
analysis) relied mainly on family-based approaches, later LD association mapping 
(candidate association studies, GWAS) studies that are more powerful in detecting 
moderate effects relied on the inclusion of relatively less laborious population-based 
(unrelated) approaches. However, association-based studies failed to replicate their 
findings or to explain the missing heritability, in spite of reporting larger numbers of 
true hits. One classic example for this could be the inability of GWAS studies to 
replicate the breast cancer susceptibility loci (BRCA1, BRCA2) identified by family-
based approaches [45]. A possible explanation for this could be the enrichment of 
genetic effects more in the affected as compared to unrelated individuals and thus 
the greater power to detect the association. Similar differences seen in the allele 
frequency between cases and controls is exploited in association-based approaches 
to detect disease variants, any introduction of ethnically different allele frequency 
results in population heterogeneity (or admixture) and thus the greater probability of 
false positives. Population-based studies that aim to increase sample sizes by 
including unrelated, ethnically different controls suffer from this stratification, 
whereas the family-based controls are completely immune and robust to population 
substructure. Other advantages of family-based designs include their immunity to 
genotyping errors as they can easily be detected by comparing parental and 
offspring genotype and check for any Mendelian inconsistencies [46]. In addition, 
approaches in family-based designs have evolved significantly from the strict 
parametric model (assumes specific genetic model) to non-parametric methods such 
as the TDTae (extension of Transmission Disequilibrium Test) that is developed for 
robustness against genotyping errors and hidden genetic structures [47], and the 
FBAT (Family-Based Association Test) approach that permits different genetic 
models, as well as multiple markers and phenotypes [45]. Recent efforts of inferring 
genotype information from genotyped individuals to impute un-genotyped individuals 
based on familial information in a cohort-based study (Framingham Heart Study, 
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FHS) [48] has opened the possibilities of genotyping more individuals at a lesser 
cost. Such a pseudo sequencing strategy has already been used in increasing the 
power to detect rare variants in a family-based study [49]. Altogether, it has led to a 
renewed interest in seeing both family-based designs and population-based designs 
as complementary instead of competitive.

1.6. Asthma phenotypes - Th2 associated asthma  

Asthma is an umbrella term for a group of clinical features including reversible 

expiratory airflow limitation and airway inflammation. The characteristics of these 
entities are so diverse with a sporadic occurrence that it is not possible to group 
them as a single disease entity. As a result, it is quite difficult to unify the phenotypes 
as one true phenotype representing the disease. Moreover, unifying procedures that 
are based on a single dominant character like atopic status can lead to possible bias, 
and thus unbiased approaches like cluster analyses that include additional 
parameters like personal characteristics, age at onset, treatment, lung function, etc. 
have been proposed [50-52]. Interestingly, in spite of the differences in study design, 
all unbiased studies identified two major phenotypes/subgroups: early-onset allergic 
phenotype and the less atopic late-onset phenotype. While the clusters showed age 
at disease onset as a key determining factor in defining the subgroups, it is equally 
important to perform phenotyping based on molecular signatures. The study by 
Woodruff et al. is one such study that showed it is possible to classify asthmatic 
subjects into ‘Th2 high’ and ‘Th2 low’ based on the expression profile of IL-13 - 
inducible genes (POSTN, CLCA1, SERPINB2)  [53]. The study also validated the 
classification by showing marked differences in the cytokine expression profile and 
markers of inflammation between the two classes, with more atopy seen in Th2 high 
compared to Th2 low people. It is vital to integrate clinical-clusters with molecular 
profiles for a better resolution, especially in the overlapping region encompassing the 
late-onset category. Defining the phenotype is an important prerequisite for genetic 
studies, and in particular, intermediate phenotypes are proposed to be a better 
alternative to questionnaire-based qualitative phenotypes. While the initial genetic 
and epidemiological studies in asthma focused on qualitative traits, the possibility of 
erroneous estimation of disease prevalence along with the diagnostic bias has 
encouraged researchers to study quantifiable biological markers [54]. Moreover, 
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tightly defined quantitative intermediate phenotypes are often regarded as the units 
of binary traits and are much closer to the underlying biology; and is more 
informative being closely related to the gene expression. Importantly, the results are 
easily interpretable when compared to genetic association studies involving 
qualitative traits.
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2. Aim of the study: 
Complex gene-environment interactions in the aetiology of asthma make the 

identification of causal genes arduous by just applying methodologies used in 
monogenic disorders. Furthermore, difficulties in defining the diagnostic criteria and 
the heterogeneity observed in the clinical phenotypes compounds the issue. 

For the past two decades, genetic studies all over the world have identified 
myriads of risk loci. Owing to the heterogeneous genetic sources for the phenotype 
and heterogenous epigenetic backgrounds or environmental influences most of the 
studies have been inconclusive. Affected family-based study has the advantage of 
identically phenotyped families with shared genetic and environmental background, 
which may be a promising alternative to explain the aetiological heterogeneity 
observed so far. 

Herein, intermediate sub-phenotypes in the form of circulating serum cytokines 
are explored to investigate its correlations with the genetic component. As shown in 
the introduction, there is evidence from prior own studies and literature, of the direct 
involvement of key cytokines (Eotaxin, GM-CSF, IFNγ, IL-1b, IL1RA, IL-4, IL-5, IL-6, 
IL-8, IL-10, IL-12(p40), IL-13, IL-17, IL-23, IL-33, TSLP and TNFα) in asthma 
pathology. Cytokine measurements from 218 asthmatic families with the affected sib-
pair (ASP) structure are used as the phenotype, and its heritability is determined for 
the first time. Linked chromosomal regions using autosomal microsatellite markers 
are examined, and SNP marker tested for association at genes implicated earlier 
with the autoimmune response.  
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3. Materials and methods: 

3.1. Probands
Samples were collected from 218 core asthma families in two stages and 

probands clinically evaluated for the severity of asthma [55,56]. The sample 
definition is identical to previous reports with regards to the study participants, 
clinical characteristics and the general selection process. For the first stage, 103 
asthma sib-pair families were selected, five families were excluded due to 
anomalous segregation (non-mendelian inheritance) of microsatellite markers, and 
one family was excluded with monozygotic twins, leaving 97 in total for an initial 
genome-wide linkage scan [55]. In the second study stage, 121 asthma sib pair 
families were selected over a period of 18 months. Identical phenotyping procedures 
were carried out by three university hospitals, and six paediatric pulmonary practices 
in both the stages of sample collection. Families comprising at least two children with 
clinically confirmed asthma are included and children with a history of low birth 
weight or prematurity, along with any severe pulmonary disease other than asthma 
were excluded. Altogether, the final sample consisted of 944 individuals (218 
families); and after the exclusion of 21 samples with insufficient clinical details, 923 
individuals remained for further analysis (Parents: n=424; Children: n=499). Whole 
genome linkage scan was performed with approximately 400 microsatellite markers 
[57]. Notably, clinical diagnosed asthmatic children over the age 3 had a history of 
recurrent wheezing that lasted for at least 3 years, without any other respiratory 
diseases. Clinical procedures contained detailed interviews of every family member, 
skin prick tests (SPT) for frequent allergens and blood sample assays (for IgE and 
allergen-specific IgE (RAST) measurements and ELISA (Pharmacia Diagnostics, 
Uppsala, Sweden) were applied to determine the total IgE levels, and allergen-
specific IgE (CAP FEIA system). The specificity test enables to differentiate atopic 
(allergic) asthma from the non-atopic type. The parent/guardians of all participants 
under 18 gave informed consent. Ethics Commission of ‘Nordrhein-Westfalen’ 
approved the study methods in 1995 and later again in 2001 by ‘Bayerische 
Landesärztekammer München’.
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3.2. Serum measurements 
As reported in Pukelsheim et al. [58] concentration levels of serum eotaxin, 

GM-CSF, IFNγ, IL-1b, IL1RA, IL-8, IL-10, IL-12(p40), IL-4, IL-5, IL-6 IL-13, IL-17, 
IL-23, IL-33, TSLP and TNFα were quantified using custom-made MILLIPLEX MAP 
Human Cytokine/Chemokine Panels (Millipore, Schwalbach/Ts, Germany).  The 
assays were performed as per the manufacturer recommendations and an 8-point 
standard curve for every cytokine is used for the dilutions.  Intra-assay sensitivity has 
a mean coefficient of variance (CV) of 4.5% to 10.4%. Samples were analysed on a 
Luminex 100 device (BioRad, München, Germany) and evaluated using the Bio-Plex 
Manager software (BioRad). Detailed information on the sample measurements is 
available in the Supplementary Table S1 of the original article by Pukelsheim et al. 
[58]). Values reaching below the detection limit were set to half of the limits, and if 
exceeding the maximum limit (3000 pg/ml), it is set to 3000 pg/ml.

3.3. DNA preparation and genotyping 
Peripheral white blood cells were used in the DNA isolating procedure, by the 

salt out method [59], and in few cases with the Qiamp blood kit (Qiagen-Hilden, 
Germany). Microsatellite genotyping is based on an in-house microsatellite-mapping 
panel (Genethon reference) and includes 18 markers on the X chromosome in 
addition to the autosomal markers. Detailed information on the microsatellite panel is 
available in the methods section of earlier German Asthma Family Study [55]. 

SNP selection is based on literature mining and included loci/regions implicated 
in other asthma studies. Information from publicly available disease-specific 
databases (http://geneticassociationdb.nih.gov - for the known genetic associations; 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM - human OMIM; http://
www.bork.embl-heidelberg.de/g2d/ - gene ontologies) were used in the refining 
process of identified candidate genetic regions. In addition, SNP information from 
dbSNP (http:// www.ncbi.nlm.nih.gov/SNP/), Ensembl (http://www.ensembl.org) and 
innate immunity PGA (http://innateimmunity.net) were used to finalise a total of 550 
SNPs. SNP-genotyping was done over a 5-year period, and highly polymorphic 
markers were selected that are equally spaced in the genome with markers also at 
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telomeric positions. It is performed in-house or at Illumina (San Diego, CA, USA) by 
use of the Sentrix bead arrays. PCR conditions included initial denaturation for 10 
min at 95°C, followed by extension of 45 cycles for 20 sec at 95°C, 30 sec at 72°C 
and a final extension for 10 min at 72°C and stored at 4°C. Primers were obtained 
from Metabion GmbH (Planegg, Martinstried, Germany) and MWG Biotech AG 
(Ebersberg, Germany). For validation of the selected SNPs, allele-specific primer 
extension products generated from amplified DNA sequences were tested with the 
mass spectrometry - MALDI-TOF (MassARRAY, SEQUENOM Inc., San Diego, CA, 
USA). Mass spectra were processed and analysed for peak area calculation, peak 
identification, and allele frequency estimation (SpectroTYPER RT 2.0, SEQUENOM 
Inc, San Diego, CA, USA). After amplification procedures, PCR products are 
sequenced using the ABI 377 automatic sequencer and scored using GENE-SCAN 
and GENOTYPER (ABI) software.

3.4. Statistical analysis 
Statistical analysis was performed using the freely-available statistical software, 

R 2.12.2 (R studio 0.93) [60]. Descriptive analysis performed using cross-tabulation; 
distribution of single variables and normalisation. Effect estimation by linear and 
logistic regression analysis corrected for the covariates age and sex. Merlin 1.1.2 
[61] was used in the calculation of QTL, single and multipoint non-parametric linkage 
analysis - Kong and Cox linear model in determining significance based on a 
likelihood-based approach (LOD scores). Variance components linkage analysis was 
performed along with the estimation of narrow sense heritability or additive genetic 
heritability (h2) adjusted for the covariates.  PLINK 1.07 [62] was used to perform the 
Transmission disequilibrium test (TDT) and the family-based tests of association with 
quantitative phenotypes by using the QFAM option. Association of cytokine levels 
with genotypes SNPs was calculated after testing for missing data, correction of 
paternity errors and calculation of Hardy-Weinberg equilibrium. Instead of fitting a 
maximum likelihood variance components model as done in the QTDT, QFAM does 
a simple linear regression of phenotype on genotype and provides pointwise 
empirical significance. It applies special permutation steps that are robust and by 
preserving the correlation structure between SNPs, it provides a less stringent 
correction for multiple testing, importantly accounting for the relatedness between 
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individuals. Multiple linear regression analysis was performed using variables on the 
drug intake and serum cytokine levels. Correlation matrix and scatterplot matrix are 
used to visually ascertain the interrelationships between variables. In addition, the 
combined effect of different drug intake on cytokine levels was tested using the 
multiple analysis of variance (MANOVA).

3.5. Lookups and Insilico annotation
 Figure-3 shows the prioritisation pipeline of significantly associated variants 
by using publicly available functional datasets. In the data-driven approach, 
significant SNPs and its high-LD SNPs were interrogated for its effect on amino acid 
sequence, gene expression and the possible involvement of regulatory regions from 
experimentally confirmed datasets. On the other hand, the same set of SNPs are 
investigated based on a priori knowledge by using association catalogues and 
biological knowledge base. Variant effect predictor (VEP) online tool was used to 
catalogue the LD variants (http://grch37.ensembl.org/Homo_sapiens/Tools/VEP). 
The following section brief on the tools and steps involved under each category,  
Protein altering effect: ANNOVAR - [63]. ANNOVAR imports precompiled database 
on amino acid changes and based on the allele information, and genomic 
coordinates of the SNPs the resulting biological consequence of the variant is 
determined. In addition, it provides the protein-altering effect of a SNP predicted by 
function prediction algorithms like SIFT (Sorting Intolerant From Tolerant), and 
PolyPhen (Polymorphism Phenotyping). 
eQTL lookup: Expression quantitative trait loci (eQTL) represent the genetic markers 
that are associated with the gene expression. GTEx V2 (web-based portal) [64], 
holds experimental information on eQTLs from seven different cell/tissue type and 
can be accessed through http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi. 
Additionally, the GRASP (Genome-Wide Repository of Associations between SNPs 
and Phenotypes) database [65] was queried to identify SNPs that are known to be 
functioning as eQTLs in published datasets.  
Epigenetic annotation: Association of variants with epigenetic marks was studied by 
using HaploReg V3 [66]. It takes the rsID of a variant as the input and annotates the 
region for the enrichment of specific histone modification marks for the chromatin 
state, using Chip-Seq data on multiple cell/tissue types from ENCODE 
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(Encyclopedia of DNA Elements) [67] and Roadmap (National Institutes of Health 
Roadmap Epigenome projects) [68].  
Association catalog: NHGRI-EBI GWAS catalog [69] is a manually curated, 
literature-derived collection of published GWAS studies assaying at least 100K SNPs 
and SNP-trait associations with p-values < 1.0 x 10-5. 
Canonical pathways and regulatory network analysis: “Data were analyzed through 
the use of QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 
www.qiagen.com/ingenuity).” “The [networks, functional analyses, etc.] were 
generated through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN 
Redwood City, www.qiagen.com/ingenuity).” Genes defined from a given list of SNPs 
are mapped to its corresponding gene set in the IPA knowledge base, and the 
associated canonical pathway is displayed. In addition, the IPA generated network 
gives insight on the molecular interactions of biological molecules and for this 
analysis direct physical interactions like protein-protein, chemical modifications were 
used. Network size was set to the default size of 35 nodes and the relationship 
between the network are based on the experimental information from the IPA 
knowledge base. Focus molecules in the network are Gene/Protein/ Chemical 
identifiers that made the user-defined cutoff and map to the global molecular 
network, and the significance is evaluated based on the following parameters; (1) P-
value: calculated by Fischer’s exact test that is the probability of the observed 
association by random chance alone; (2) Ratio: represents the number of molecule 
map to the total number of genes that participate in the putative canonical pathway; 
and the (3) score value representation of the negative log p-value. 
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Figure-3: Overview of candidate SNP and gene prioritisation pipeline. 

Contributions: Matthias Wjst (MW) conceived, and coordinated the study. Katrin 

Pukelsheim and David Kutschke performed the cytokine measurements. Muralidharan 

Sargurupremraj (MS) and MW analyzed the data. MW contributed reagents/materials/

analysis tools. MS wrote the papers. 
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4. Results: 
 The main demographic details of the study participants are summarised in 
Table-2. The samples across the two subsets (parents and children) were equally 
distributed with a mean age of 40 and 11 years respectively. Male and female 
distribution is almost equal in both the groups. The percentage of individuals with 
physician-diagnosed asthma is higher in children (88.7%) than in parents (21.9%), 
and the youngest asthmatic child was 4 years old while the oldest being 34 years 
old. 

Table-2: Clinical characteristics of the study population (n = 923). Descriptors of categorical 
variables include n (total sample) followed by percentage. Descriptors of continuous variables 
include mean values followed by standard deviation. Abbreviations: D.far, Dermatophagoides 
farinae; D.pter, Dermatophagoides pteronyssinus; FEV1, forced expiratory volume in 1 
second. Note: Percentages may not add up to 100 due to rounding. Standard deviation 

expressed as ±   

Characteristics Parents Children

Number, n (%) 424(44.9) 499(52.8)

Mean age (in Years) 40 + 5.5 11 + 3.8

Asthma Diagnosis (%) 93(21.9) 443(88.7)

Sex (%)

Male 223(52.5) 275(55.1)

Female 201(47.4) 224(44.8)

Skin prick test

D.pter Skin >= 3mm 129(30.4) 221(44.2)

D.far Skin >= 3mm 111(26.1) 189(37.8)

Serum-specific IgE (CAP) test

D.pter 101(24.0) 237(48.3)

D.far 94(22.3) 234(47.5)

FEV1(ml) 3.6 + 0.9 2.6 + 0.9

In(IgE) (kU/L) 4.1 + 1.6 5.0 + 1.9

In(eosinophil) (count/mm3) 0.5 + 1.7 1.1 + 1.6
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4.1.  Drug effects on cytokine levels
Significant effects were found in patients treated with glucocorticoid, 

cromoglycate,  and antihistamines (p < 0.05) (Table-3). The coefficient is negative for 
the pro-inflammatory cytokines (GM-CSF, IL-8, TNFα and IL-1b) with antihistamine, 
cromoglycate, and the leukotriene antagonist treated group. Similarly, the 
chemokine-Eotaxin exhibits a negative association with glucocorticoid. On the other 
hand, the treatment of glucocorticoids was associated with higher IL-4 and IL-5. 
Multivariate analysis of variance that studies the overall drug effects on serum 
cytokines shows that glucocorticoid contributes to the model more than any other 
substance (Supplementary 10.1). 

Table-3: Multiple regression analysis - effect of drug intake on serum cytokine levels 
(Significantly correlated 8 cytokines from the total of 17 cytokines). Depicted are regression 
coefficients followed by the p-value (* Significant).

Drug
Regression model

Eotaxin GMCSF IL-4 IL-5 IL-8 TNFα IL-1b IL1RA

Glucocorticoid -0.071  
0.0048*

-0.079  
0.309

0.2 
0.0427*

0.19 
0.013*

-0.038  
0.56540

-0.004  
0.9007

0.010 
0.9963

-0.021  
0.685

Leukotriene an-
tagonist

-0.014  
0.9035

-0.105  
0.764

-0.453  
0.3079

0.006 
0.986

0.018 
0.95172

-0.111 
0.4089

-0.739  
0.0231*

-0.434  
0.057

β2-sympath-
omimetic

-0.053  
0.0582

-0.018  
0.837

0.025 
0.8212

0.003 
0.976

0.157 
0.03440*

0.037 
0.2674

0.081 
0.3179

0.111 
0.052

Aminophylline 0.018 
0.7315

0.173 
0.281

-0.314  
0.1202

-0.221  
0.156

-0.118 
0.38702

-0.004  
0.9427

-0.193  
0.1925

-0.109  
0.295

Cromoglycate 0.023 
0.3962

-0.006  
0.939

0.259 
0.0152*

0.172 
0.037*

-0.238  
0.00102*

-0.028  
0.3794

-0.211 
0.0074*

-0.057  
0.299

Anticholinergic 0.069 
0.0880

0.15 
0.237

0.123 
0.4407

-0.046  
0.709

-0.165  
0.12741

0.061 
0.2061

0.056 
0.6364

0.029 
0.726

Antihistamine -0.03  
0.4733

-0.317  
0.016*

0.026 
0.8774

0.010 
0.998

0.009 
0.93582

-0.13  
0.0099*

-0.197  
0.1095

-0.164  
0.058
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4.2. Heritability  
Additive genetic variance (combined effect of all loci) was used to determine 

narrow sense heritability from the serum concentration of 17 cytokines as shown in 
Figure-4. After adjusting for confounders, IL-8 (h2 = 1.00) had the strongest genetic 
component followed by TNFα (h2 = 0.55), IFNγ (h2 = 0.51) and IL-1b (h2 = 0.51), 
suggesting a tight genetic control for the production of these chemokines and pro-
inflammatory cytokines. IL-6 (h2 = 0.43) showed moderate heritability with shared 
environmental component. Heritability for other cytokines (IL-5, IL-10, IL-13, IL-23 
and IL1RA) varied from weak genetic influence to no genetic influence (TSLP and 
IL-33). 

�  
Figure-4: Heritability estimates of serum cytokines. Effect sizes ranging from environmental 
effect (heritability < 20, dotted line) to genetic effect (heritability > 40, straight line). Heritability 
expressed as percentage.
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4.3. Linkage 
Non-parametric genome-wide linkage analysis (NPL) with 334 autosomal 

markers adjusted for age and sex (linear model) revealed two quantitative trait loci 
(QTL) (D6S344; D17S949) that are above the thresholds (Figure-5). One peak 
reached the genome-wide linkage significance level (LOD > 3.6) with a LOD score of 
4.05 (crude p-value of 7.80 x 10-6) for IL-12(p40), followed by the suggestive 
evidence of linkage (LOD > 2.2) with a LOD score of 2.56 (crude p-value of 3.00 x 
10-4) for Eotaxin levels (Table-4). 

Figure-5: Genome-wide linkage scan with 334 autosomal markers. QTL with a genome-wide 
significant LOD > 3.6 (Black horizontal line) on 17q24.3, and suggestive LOD > 2.2 on 6p25.3 
(Blue horizontal line). LOD scores of the markers used in the linkage panel are plotted in cM 
relative to their chromosomal location.  
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Table-4: Non-parametric linkage analysis (n = 923). Ϯ Chromosome position. Abbreviations: 

EDN1, endothelin 1; FOXF2, forkhead box F2; GCNT2, glucosaminyl (N-acetyl) transferase 2; 
GPD1, glycerol-3-phosphate dehydrogenase 1; JAK2, janus kinase 2; KCNH3, potassium 
voltage-gated channel H3; IL-33, interleukin-33; MAP2K6, mitogen-activated protein kinase 
kinase 6; PTPRD, protein tyrosine phosphatase receptor type DKCNJ2, potassium inwardly 
rectifying channel J2; RFX3, regulatory factor X 3; SERPINB1, Serpin peptidase inhibitor, clade 
B1; SSTR2, Somatostatin receptor 2; WNT1, wingless-type MMTV integration site 1. *Distance 
separating the marker and the candidate genes are taken from UCSC genome bioinformatics 
site (http://genome.ucsc.edu/). Negative and positive values represent the position of the gene 
located downstream or upstream from the marker, respectively.

4.4. Association  
 Quantitative trait association analysis of 550 genotyped SNPs shows that of 
the multiple significant associations from TDT (Supplementary-10.2), few were 
replicated in parents or children only. Association was found to be highly significant 
with SNP markers rs439154 (2q13), rs2070948 (4q31.23), rs3894194 (17q21.1), 
rs3135499 (16q12.1), rs3782905 (12q13.11) residing in IL1RN, NR3C2, GSDMA, 
NOD2 and VDR gene respectively, amongst the children (Table-5). In Interleukin-1 
receptor antagonist gene (IL1RN), individuals with the homozygous minor allele (AA) 
of the intronic variant (rs439154) was associated with significantly lower serum levels 
of IL-12(p40) than in those with the AG genotype or the GG genotype 

Pheno-
type Chr Ϯ Marker cM LOD p-value

Candidate genes (distance 
from the marker in Mb *)

Eotaxin 6p25.3 
6p24.3

D6S344 
D6S470

1.40 
18.22

2.56 
2.14

3.00E-04 
8.00E-04

FOXF2(-0.2), 
SERPINB1(1.2) 

GCNT2(0.4), EDN1(2.2)

IL-12(p40)
9p24.2 
9p24.1 

17q24.3

D9S288 
D9S286 

D17S949

9.83 
18.06 
93.27

2.13 
2.09 
4.05

8.00E-04 
9.00E-04 
7.80E-06

RFX3(-0.4), JAK2(1.0) 
IL-33(-1.7), PTPRD(0.2) 

MAP2K6(-0.9), KCNJ2(-0.2), 
SSTR2(2.6)

IL-4 6p25.3 D6S344 1.40 1.51 4.00E-03 FOXF2(-0.2), 
SERPINB1(1.2)

IL-5 9p24.2 D9S288 9.83 1.57 3.00E-03 RFX3(-0.4), JAK2(1.0)

TNF-α 12q13.11 D12S85 62.10 2.02 1.00E-03 WNT1(2.0), KCNH3(2.5), 
GPD1(3.1)

!  32



Results

(Supplementary-10.3.a). IL-23, TSLP, and IL-33 show statistical significance with 
those individuals carrying the homozygous major allele (GG) and except for the 
slightly higher levels of IL-23 and TSLP, no major differences in the serum levels 
were seen possibly as a result of the small subject number (Supplementary-10.3.a). 
In mineralocorticoid receptor gene (NR3C2), serum levels of IL-13 and eotaxin show 
a statistically significant association with the intronic polymorphism and are higher for 
the individuals with homozygous major allele (TT) (Supplementary-10.3.b). 
Furthermore, isolated associations were seen amongst the GSDMA and VDR 
variants with the serum levels of IL-33 and IL-13 respectively. 

Table-5: SNP association with cytokine expression profile. Ϯ Chromosome position with 
respect to NCBI built 37; MAF= Minor allele frequency.

Gene 
name SNP Chr:pos Ϯ MAF Functional Allele Cytokine p-value

IL1RN rs439154 2:113884401 0.47 Intronic A/G
IL-4 
IL-5 

IL-12(p40) 
IL-23 
IL-33 
TSLP

AA vs 
AG 

0.032 
0.021 
0.003 
0.042 
0.467 
0.019

AG vs 
GG 

0.529 
0.145 
0.036 
0.0006 
0.028 
0.004

NR3C2 rs2070948 4:149358729 0.33 Intronic A/T Eotaxin 
IFNγ 
IL-13

AA vs 
AT 

0.021 
0.043 
0.026

AT vs 
TT 

0.036 
0.136 
0.004

GSDMA rs3894194 17:38121993 0.42 Missense C/T
IL-33

CC vs 
CT 

0.015

CT vs 
TT 

0.001

NOD2 rs3135499 16:50766127 0.37 3’ UTR A/C
GMCSF

AA vs 
AC 

0.029

AC vs 
CC 

0.031

VDR rs3782905 12:48266167 0.24 Intronic C/G
IL-13

CC vs 
CG 

0.013

CG vs 
GG 

0.659
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4.5. Insilico annotation 
Locus boundaries: Significantly associated SNP from each locus were used to 
define their boundaries based on the linkage disequilibrium (LD) between the lead 
SNP and proxy SNPs (LD value-r2 > 0.5) using the PLINK tool set for pairwise LD 
calculation, with 1000 genomes (CEU) as the reference population. In total, it 
resulted in 149 SNPs of which 95 located in the intronic and non-coding transcript 
regions, 4 intergenic variants and 35 downstream and upstream variants, 7 variants 
from the UTR location, 1 synonymous variant, 1 splice region variant, 3 non-
synonymous variant and 3 other variants (Supplementary-10.4). Variant effect 
predictor (VEP) tool was used to catalogue all the genes residing in the genomic 
coordinates of these 149 SNPs. Collectively, there were 10 protein-coding genes 
(Supplementary-10.5).  
 As outlined in the Methods section, the primary objective was to identify the 
most plausible locus and the pipeline consists of two different parts; using 
experimental data and using prior knowledge.  
Protein altering effect: The effect of a SNP on the amino acid (AA) change and the 
biological consequence was determined using the ANNOVAR tool. Of the 149 SNPs, 
3 missense variants from the GSDMA locus lead to AA change with deleterious 
protein-altering effect predicted by the SIFT, PolyPhen algorithm and the integrated 
Condel score (Table-6).

Ben-Benign; Del-Deleterious 

Table-6: Functional prediction of variants. Ϯ Chromosome; LD = Linkage disequilibrium; AA = 

Aminoacid; SIFT = Sorting Intolerant From Tolerant; PolyPhen = Polymorphism Phenotyping; 
Condel = Consensus deleteriousness.

Lead SNP
Chr
Ϯ LD LD SNP

Conse-

quence

Nearby 
Gene

AA  
change

SIFT
Poly-

Phen

Con-

del

rs3894194 17 1.0 rs3894194 missense-
variant GSDMA p.Arg18

Gln
Ben

(0.14)
Ben

(0.05)
Neutral
(0.46)

rs3894194 17 0.8 rs7212938 missense-
variant GSDMA

p.-
Val128L

eu

Del
(0.04)

Ben
(0.01)

Del
(0.48)

rs3894194 17 0.6 rs56030650 missense-
variant GSDMA p.Thr31

4Asn
Ben
(0.1)

Del
0.52)

Del
(0.72)
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Gene expression: In addition, to the published eQTL effect (Supplementary 10.6) of 
the SNPs from the 17q21 locus using GRASP, lookup using the GTEx dataset 
showed significant eQTL effect on the GSDMA gene in different tissue types 
including blood cells, immune cells, brain, and liver (Figure-6). No significant eQTLs 
were found for the SNPs from other loci using GTEx, except for few high-LD SNPs 
that were known to be functioning as eQTLs in published dataset (using GRASP)  
(Table-7) altering the gene expression levels in immune cells and blood dendritic 
cells of Mycobacterium tuberculosis (MTB) infected individuals.  

 

Figure-6: Tissue-specific eQTL effect of GSDMA locus (using GTEx). Regional association plot 
of eQTL association p-value of the lead SNP rs3894194 and its LD SNPs. (Associated gene is 
highlighted in red).
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Table-7: Tissue-specific eQTL effects of other loci (using GRASP) and the corresponding 

publication (ID) PMID. Ϯ Chromosome; LD = Linkage disequilibrium; eQTL = expression 

quantitative trait loci. 

Epigenetic: annotation using Haploreg V3 identified putative regulatory SNPs based 
on the enrichment for chromatin states estimated by histone modification marks in 
different cell/tissue types from ENCODE and ROADMAP projects. SNPs from the 
NR3C2, NOD2 and GSDMA locus are enriched for histone modification marks for 
promoter (H3K4Me1) and enhancer (H3K27ac) activation in multiple cell/tissue types 
including the lung (Figure-7a,7b). 

Figure-7a: Enrichment of promoter associated histone modification mark (H3K4Me1) in 
multiple cell/tissue types. Blue highlighted bar represents the SNPs that are enriched in 
multiple cell/tissue types including the lung. Prime SNP indicated followed by its LD SNPs. 
Note: Number of high-LD (r2 > 0.5) SNPs varies for each SNP.

Lead SNP
Chr
Ϯ LD LD SNP

eQTL 

association 

p-value

Gene
Cell/tissue 

Type
PMID

rs439154 2 0.9 rs2637988 5.40E-07  IL1RN Blood cells 21829388

rs2070948 4 0.8 rs4635799 2.09E-02  NR3C2 Blood dendritic 

cells (MTB)
22233810

rs3135499 16 0.9 rs11647841 4.27E-04  NOD2  CD4+ lympho-

cytes
20833654
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Figure-7b: Enrichment of enhancer associated histone modification mark (H3K27ac) in 
multiple cell/tissue types. Blue highlighted bar represents the SNPs that are enriched in 
multiple cell/tissue types including the lung. Prime SNP indicated followed by its LD SNPs. 
Note: Number of high-LD (r2 > 0.5) SNPs varies for each SNP.

Association catalog: Literature-based mining using the recent NHGRI-EBI GWAS 
catalog showed that of the 149 SNPs queried, SNPs from the 17q21 locus were 
known to be genome-wide associated with the highest odds for childhood-onset 
asthma, along with other traits such as asthma with hay-fever, white blood cell count 
and asthma status (Table-8). 

Lead SNP Chr
Ϯ LD LD SNP DISEASE/TRAIT p-value OR PMID

rs3894194 17 0.8 rs7212938 Asthma and hay fever 4.00E-10 1.16 24388013

rs3894194 17 1.0 rs3894194 Asthma (childhood 
onset) 3.00E-21 1.59 24241537

rs3894194 17 0.5 rs4794820 Asthma 1.00E-08 1.33 22561531

rs3894194 17 0.6 rs3859192 White blood cell count 2.00E-12 0.14 ᴪ 22037903
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Table-8: NHGRI-EBI GWAS catalog of genome-wide genotype-phenotype associations. Ϯ 

Chromosome; LD = Linkage disequilibrium; publication (ID) PMID; ᴪ Beta value. 

Canonical pathways and regulatory networks: Table-9 shows the most significant 
canonical pathways across the entire dataset from the IPA knowledge base. 
Glucocorticoid receptor signalling was the top pathway with two molecules 
contributing (Ratio) significantly to the overall pathway network estimated by 
Fischer's exact test. 

Table-9: List of the genes in the top canonical pathways. 

rs3894194 17 1.0 rs3894194 Asthma 5.00E-09 1.17 20860503

Lead SNP Chr
Ϯ LD LD SNP DISEASE/TRAIT p-value OR PMID

Pathway p-value Ratio
Overlapping 

molecule

Glucocorticoid receptor signalling 2.95E-03 2/272 NR3C2, IL1RN

Role of hypercytokinemia in Influenza 
pathogenesis 1.29E-02 1/41 IL1RN

Graft Vs Host Disease signalling 1.38E-02 1/44 IL1RN

Role of cytokines in mediating communications 
between immune cells 1.63E-02 1/52 IL1RN

IL-10 signalling 2.13E-02 1/68 IL1RN
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5. Lookup of supplemental data from GABRIEL 
study

 Different factors are held responsible for the unexplained or missing 
heritability in asthma genetics like imprecise phenotype definition, sample 
heterogeneity, etc. Of these shortcomings, the bias in SNP selection based on the 
allele frequency (MAF > 5%) and omitting low frequency and rare variants has the 
greatest impact as they are much more pronounced in the genome than previously 
anticipated. This section aims to stress their importance by using supplemental data 
from the largest GWAS (10,365) on asthmatic individuals (GABRIEL study) and 
study such rare variants, which are omitted in a typical GWAS setting as part of the 
quality control procedure. However, considering the low error rate of genotyping 
chips (< 0.01%) it is now considered as being inadequate. Upon reanalysis of the 
supplemental data, rare variants were seven-fold enriched in terms of the effect 
estimates and makes up to 45% of the total genome-wide significant SNPs (n=109) 
that satisfies the significance threshold (P <= 7.20 x 10-8) (Figure-8). They are 
distributed amongst more than 50 unique genes with odds ratio scaling up to 50. In 
addition to the loci reported in the original study, new variants with stronger effect 
sizes were identified such as the DDR1, a tyrosine kinase receptor that is 
phosphorylated by collagen; PERP, a component of intercellular desmosome 
junctions; FOXP2, a regulator of lung development; and CYP2A6, the primary 
enzyme responsible for the oxidation of nicotine.
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Figure-8: Asthma risk by rare variants from the Gabriel study. Manhattan plot showing the 
significance of SNP association from the fixed effects model. Size of the symbol correlates 
with the odds ratio (OR) magnitude (if OR greater than 1 or 1/OR if OR less than 1). Genes that 
are reported in the original publication are depicted in bold and locus with strong effect sizes 
SNPs are depicted by underline.
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6. Discussion:  
In this thesis, I demonstrated that a better definition of the phenotype for a 

complex disease like asthma is necessary and showed the plausibility of an 
intermediary phenotype like the circulating levels of serum cytokines as an 
alternative for a better understanding of the underlying pathology. ASP analysis is an 
effective study design in examining allele sharing and in identifying disease-
associated genetic markers, additionally by studying common variants (n=550) that 
are shown to have a moderate effect on asthma phenotypes it gives enough 
statistical power in detecting true associations even under small sample size. By this 
approach, I show the genetic association of key cytokines that are involved in 
inflammatory pathways as well as functional evidence from publicly available 
datasets. With additional functional validation, the identified variants can be listed as 
potential biomarkers in the diagnosis, considering the ambiguity in the clinical 
diagnosis of asthma and its myriad causes. Three different analyses were 
performed, as the outcome of single part analysis may be misleading. The approach 
followed a stepwise approach to elucidate the inheritance of quantitative traits. In 
spite of the differences, each analysis corroborates each other and allows 
conclusions on the genetic influences on serum cytokines.  

The samples for this study were collected in two stages and higher serum 
levels of the chemoattractant cytokine IL-8 were observed in the second part of the 
study (details in Materials and Methods section). IL-8 levels are strongly correlated 
with elevated neutrophil levels in airway secretions of acute asthma patients [70]. 
Hull et al. [71] first reported IL-8 in virus-inflicted respiratory illness while later studies 
associated IL-8 with asthma and concluded its role in genetic predisposition to 
asthma [72]. Noticeably, the heritability estimates of IL-8 (h2 =1.00) is higher than 
with any other cytokine, possibly reflecting unapparent infections running in the 
families. Nevertheless, reported high heritability of other cytokines like TNFα, IFNγ 
and IL-1b support the previous arguments that SNPs in these regions affect allergen-
induced cytokine production [73]. 
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6.1. Implications from linkage analysis  
Though several genome-wide linkage studies have been completed for 

asthma and atopy-related phenotypes, to the best of my knowledge this is the first 
report of genome-wide screening in relation to the serum cytokine levels. Except for 
a few that used population-based semiparametric [74] and parametric methods [75], 
most of the studies utilised non-parametric sib-pair linkage strategies. In particular, 
few studies have used the ASP structure with stringent selection criteria for affected 
subjects to minimise the type I (false positive) and type II (false negative) error rate 
[55,76]. ASP being a model-free method requires no assumption on the mode of 
inheritance and is more informative in the presence of incomplete penetrance. By 
performing ASP linkage analysis of serum cytokine levels and following the 
recommended criteria for ‘significance’ by Lander and Kruglyak (1995) [77], the 
present work found genome-wide significant evidence for linkage in one region 
(17q24.3, LOD=4.05; crude p-value = 7.80E-06), along with suggestive significance 
(6p25.3, LOD=2.56; crude p-value = 3.00E-04) and few other potentially interesting 
regions (6p24.3-25.3, 9p24.2-24.1, 12q13.11). Previous studies have reported 
suggestive evidence of linkage in the 17q24.3 region for SPT [78] and eosinophil 
count [79] in French and Dutch families respectively. The later meta-analysis of 
genome-wide linkage data for asthma and related phenotypes [12,13] using different 
bin widths (bins of fixed centimorgan window sizes) confirmed the significance 
across a broad region of 17q for atopy-related phenotypes (atopic asthma, SPT). In 
addition, the 17q region is known to be linked with other atopic diseases like 
dermatitis [80] and includes the 17q21 asthma susceptibility locus (ORMDL3/
GSDMA) that is identified by genome-wide association study of single nucleotide 
variants [30]. Interestingly, in the present study, the evidence for linkage in the 17q 
region was genome-wide significant for IL-12p40 cytokine levels and showed 
nominal linkage signals for the 17q21 region. Sharing of identical regions across 
multiple phenotypes might be the result of pleiotropic effects, exerted by genes 
residing in the region, which is common amongst studies investigating intermediate 
traits. Few other regions showed suggestive (6p25.3) and marginal (6p24.3) 
evidence of linkage for serum eotaxin levels. Multiple genome-wide screens have 
already reported the 6p region to be linked with asthma and related phenotypes [81], 
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making it the most replicated region. Refinement of this region showed 6p24.3 to be 
linked with asthma in Danish population [82], and 6p21 with asthma and bronchial 
hyper-responsiveness in a collaborative study involving multiple independent 
samples (Chicago, Hutterite, Dutch families) [28]. The other interesting region is 
9p24, which showed marginal evidence of linkage for IL-12(p40) levels. Recent 
large-scale GWAS showed SNPs in this region flanking the IL-33 gene to be 
genome-wide associated with asthma [33,34]. 

The most convincing finding of our study is the evidence of linkage to 
IL-12(p40) levels at D17S949 on chromosome 17q24.3, and is located about 6cM 
from a locus (BP14; blood pressure QTL 14) that is known to function as quantitative 
trait loci (QTL) for blood pressure changes in murine models [83]. Interestingly 
D17S949 is known to exhibit significant allele sharing in affected sib pairs for 
essential hypertension [84]. Apart from the long established relationship between 
asthma and hypertension [85], both these entities involves spasms of smooth 
muscles. This similarity proposes the possibility of one disease type predisposing the 
other under specific stimuli, as acute severe asthmatics exhibit elevated blood 
pressure [86] and experimental evidence exists to show the relation between pro-
inflammatory cytokines and hypertension [87]. However, it is equally important to 
remember the effect of β2 – Agonists (Bronchodilators) on inducing blood pressure 
changes [88]; this, along with other environmental confounders, makes it difficult to 
attain a definitive conclusion. The other gene that is in proximity with D17S949 is the 
SSTR2 - a G protein-coupled receptor (GPCR) subtype for somatostatins (SST), that 
is vital in the initiation of physiological actions of SSTs. Somatostatins are known to 
function as an integral part of the immunoregulatory circuit by limiting the production 
of IFNγ in the granuloma cells of chronic inflammatory mice models [89]. 
Furthermore, from the expression studies on granuloma cells, it is known that of all 
the somatostatin receptor subtypes, mRNA for the SSTR2 is expressed more, 
blocking its activity with anti-SSTR2 antiserum prevents the IFN-inhibitory effect of 
SSTs particularly in the T-cells [90]. Based on in vitro cell-specific localization studies 
(using immunohistochemistry) it is known that SSTR2 localises more in the human 
immune cells and lung fibroblasts [91], and that binding of somatostatin or its 
analogues on such receptors attenuated inflammatory airway hyper-responsiveness 
[92], bleomycin-induced pulmonary fibrosis [93]. Altogether, it suggests the central 
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role of GPCR receptors like SSTR2 in orchestrating airway inflammation and 
remodelling airway architecture. 

17q23.2 also harbours potassium ion (K+) channel genes (KCNJ2) and the 
mitogen-activated protein kinase kinase (MAP2K6) gene. K+ channel genes have 
been shown to be involved in human airway smooth muscle cell (HASM) hyperplasia 
(increased smooth muscle bulk) and contribute to airway remodelling by promoting 
the proliferation of HASM [94]. Although the initial ion channel studies in asthma 
primarily focused on voltage-gated Ca2+ channels, there is a recent shift of focus 
towards K+ channels owing to its modulatory effect on membrane potential by 
regulating the activation of other ion channels that are involved in smooth muscle 
contraction. MAP2K6 regulates the transcription and activation of pro-inflammatory 
genes by phosphorylating and activating protein kinase (p38) in response to 
inflammatory cytokines and other environmental stress. Features that are central to 
the pathophysiology of asthma such as eosinophil apoptosis, Th2 cell-mediated IL5 
and IL-13 synthesis, and the expression of IgE receptor are all known to be 
associated with p38 MAP2K6 activation [95]. Its importance is further demonstrated 
by the reversal of allergen-induced complications [96] and corticosteroid insensitivity 
[97] during asthma treatment by inhibiting p38 MAPK. Potential therapeutic 
applications targeting potassium channel openers/modulators and inhibiting the p38 
protein kinase pathway have already been discussed in the treatment of complex 
lung disorders [98]. 

The other noteworthy linkage signal is that of the microsatellite marker 
D6S344 at chromosome 6p25.3 with eotaxin levels. D6S344 are located closely to 
the serine protease inhibitor genes (serpins) and are known to inhibit chymotrypsin-
like proteases that are involved in regulating the release of reactive oxidants [99]. 
Dysfunctioning serpins can thus result in the excessive release of reactive oxygen 
species, bringing oxidative stress along with the depletion of antioxidant defences. In 
vivo studies already show the outcome of oxidative stress with increasing degrees of 
airway hyper-responsiveness in guinea pigs [100].
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6.2. Implications from association analysis 
In the family-based association test for quantitative traits (QFAM), intronic 

variants of the mineralocorticoid receptor (NR3C2) and interleukin 1 receptor 
antagonist (IL1RN) gene satisfied the significance threshold (p < 0.05) for 
association with serum cytokine levels. The significance is based on the permutation 
procedure to control for the dependence of individuals within the same family.  By 
preserving the correlational structure between SNPs, the permutation scheme 
provides a less stringent correction for multiple testing compared to the bonferroni 
that assumes all tests as independent [62]. 

Stress is a known risk factor for asthma, as stress-induced cortisols secreted 
by the neuroendocrine (HPA: hypothalamic–pituitary–adrenal) organs controls over 
the Th1/Th2 balance, favouring predominantly type 2 response [101]. Cortisols 
exerts its effect by binding with the mineralocorticoid (MR) (Eg. NR3C2) and 
glucocorticoid receptors (GR) (Eg. NR3C1). NR3C2 is a highly polymorphic gene 
and functions as receptors for both the mineralocorticoids and glucocorticoids 
response elements and were chosen for investigation due to its implication in 
psychological stress. In vitro assays have already shown that SNPs residing in these 
genes regulate cortisol levels [102] by modulating the HPA (hypothalamic–pituitary–
adrenal) axis. Equally, it is important to remember that stress may not modify the 
immune response by its own, rather it accentuates the inflammatory response to 
environmental triggers. Therefore, the hypothesis is that variants in this genetic 
region might be associated with individual asthma susceptibility modulated by 
psychological stress. So far two studies have established the link between 
glucocorticoid receptor-gene (NR3C1) variants and asthma development [103,104], 
while yet to show the association of the mineralocorticoid receptor gene (NR3C2). In 
this study, an intronic variant (rs2070948) of NR3C2 was found to be significantly 
associated with quantitative asthma phenotypes (serum levels of eotaxin, IFNγ, and 
IL-13); highlighting the importance of corticosteroid pathway in asthma pathology. 

In particular, the association of NR3C2 SNP (rs2070948) with IFNγ is 
interesting, as it is long known that stressed subjects have a significantly higher 
production of IFNγ compared to subjects with low-stress perception [105]. 
Furthermore, in vivo studies demonstrated increased IFNγ production along with 
enhanced airway hyperreactivity in ovalbumin-sensitized and stressed mice [106], 
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strengthening the hypothesis of psychological distress being perceived by the 
immune system through the secretion of pro-inflammatory cytokines. This 
association of mineralocorticoid system with pro-inflammatory cytokines 
complements the in vivo molecular evidence of arterial leukocyte infiltration and 
increased expression of pro-inflammatory markers [107] as a result of the infusion of 
mineralocorticoids such as aldosterone. The exact mechanism by which aldosterone 
affects inflammatory processes is best illustrated by the in vitro knockdown of MR in 
human aortic endothelial cells resulting in decreased aldosterone-mediated 
endothelial exocytosis - the initial response in leukocyte trafficking to tissue sites of 
inflammation [108]. 

Additionally, this study demonstrates that the possession of IL1RN rs439154 
polymorphism major allele (GG) is significantly associated with IL-23 levels along 
with the nominal associations of IL-33 and TSLP levels. More importantly, haplotypes 
estimated from this SNP region were known to be associated with a higher 
prevalence of asthma [109] and high total IgE levels [110] in our earlier studies on 
German family samples and German adult populations respectively. The fact that 
previous studies have analysed the effect of SNPs in this region with atopy-related 
traits ensure that these are likely associations and not false positives. IL1RN belongs 
to the IL-1 family of cytokines involved in inflammatory processes and encodes for 
the IL-1 receptor antagonist (IL1RA) polypeptide. IL1RA protein exhibits anti-
inflammatory properties by binding competitively with the pro-inflammatory IL-1 
receptor sites and inhibiting the inflammatory cascade (downstream). Thus, 
depending on the IL1RN expression range, two possibilities exist, lower level of 
IL1RA activity as a result of reduced IL1RN expression promoting an excess 
inflammation or increased expression resulting in higher levels of IL1RA activity and 
reduced inflammatory response. The protective role of IL1RA is confirmed by 
experimental data, where IL1RA treatment of antigen-sensitized animals exhibited 
the reversal of histamine-induced bronchial hyperreactivity [111]. Maintenance of this 
balance between pro- and anti-inflammatory systems have already been explored in 
in vivo models [112,113]. 

Of the multiple cytokines associated with IL1RN, the association with the 
levels of IL-33 is interesting as it plays an agnostic role in inflammatory cascade by 
signalling towards Th2-driven inflammation. IL-33 belongs to the IL-1 family of 
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cytokines, released mainly by damaged and dying (necrosis) cells. Released IL-33 
are often in their active state, and by binding to their respective receptors stimulate 
early inflammatory responses. Additional properties of IL-33 include co-stimulating 
Th2 cytokines with TSLP and regulating maturation of mast cell precursors to 
enhance the production of other pro-inflammatory agonists [114].  

6.3. Implications from insilico annotations 
The main challenge in genetic association studies is establishing the causal 

link between the SNP and the gene and is particularly challenging for the non-coding 
variants. In such cases, the LD structure of the lead variant can be helpful in 
identifying cell type-specific eQTLs or regulatory regions of the gene, which 
potentially links the variants to the genes involved in disease pathogenesis. In this 
study, publicly available databases on gene expression, regulatory elements, and 
biological networks were queried to predict the functional effects of loci. As expected, 
missense variants in the GSDMA locus in addition to functioning as significant eQTL 
for the same gene, lead to amino-acid changes with deleterious protein-altering 
effect. Interestingly, high-LD SNPs of the intronic variants residing in IL1RN and 
NR3C2 are associated with its differential expression in blood cells and immune 
cells. The annotation relied mainly on the eQTL data, as a large proportion of the 
common disease variants identified so far seems regulatory [115]. However, there is 
a considerable variation in the sample sizes in eQTL studies thereby limiting the 
power to detect true eQTLs, more importantly, limited by the availability of disease-
relevant tissues. Ongoing efforts of profiling eQTLs from different tissues by the 
Genotype-Tissue Expression (GTeX) consortium should contribute in the 
identification of eQTLs in asthma-relevant tissues [64]. Furthermore, NR3C2 SNPs 
are significantly enriched for the histone modification marks that are associated with 
promoter and enhancer activation in multiple cell types (mainly the lung), 
emphasising the regulatory effect of these SNPs on the gene expression. Recent 
estimates by the ENCODE consortium shows that only approximately 27% of the 
regulatory elements (histone marks) interacts with the nearest promoter [116], 
suggesting the closest gene need not be the target for a given SNP association. This 
brings to one of the limitations of the current pipeline as it does not include results 
from chromatin-capture experiments that assess long-range interactions. Both 
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experimental data and prior knowledge were used in the present functional 
annotation pipeline. Noticeably, the GSDMA locus exhibits functional relevance in 
almost all the annotation steps, except for the network-based analysis. The use of 
previous biological knowledge in the pathway analysis could contradict the 
hypothesis-free nature of genome-wide association signals (Table-8), possibly 
explaining the failure to detect the GWAS-identified GSDMA locus in the network 
analysis. On the other hand, glucocorticoid receptor signalling pathway is the top 
biological pathway contributed by NR3C2 and IL1RN, further stressing the 
importance of corticosteroid pathway in asthma pathology. The annotation efforts 
exhibit the complexity in the downstream effects of a locus, as it does not fit clearly 
into a function or pathway and identifying the mechanistic relevance of these loci to 
the trait of interest requires additional experimental assays.   

6.4. Implications from the lookup of major meta-analysis data 
The main focus of the lookup is to address the missing heritability seen in 

genetic association studies of asthma and discuss the need for identifying variants 
that explain the main pathology. Apart from multiple factors attributed to the 
unexplained heritability, importance is given to the rare variants which are omitted in 
a typical GWAS setting and that provides the highest risk estimates. To study such 
variants, supplemental data from the largest asthma GWAS to date (GABRIEL study) 
was used [33]. Rationale of including low frequency (MAF < 1%) variants in this 
lookup comes from the fact that error rate of genotyping chips is reported to be less 
than 0.01%. Being said that calling of these rare variants and any future implications 
need to be verified by targeted deep sequencing strategies. Along with hits already 
reported in the original publication (HLA-DQA, IL-33, SMAD3, GSDMA, IL18R1, 
ILR2B), there were new hits identified with much larger effect estimates (DDR1, 
PERP, FOXP2, CYP2A6). Discoidin domain receptor 1 (DDR1) is a receptor tyrosine 
kinase that lies in proximity with several HLA class I genes and are activated by the 
binding of collagen components (ligand) of the extracellular matrix. Experimental 
evidence shows that they are strongly over-expressed in the basolateral surface of 
the bronchial epithelium [117], colocalized with its ligand. Furthermore, invivo studies 
on DDR1 knockout mice have demonstrated resistance to lung inflammation and 
fibrosis that are induced by bleomycin administration [118], emphasising DDR1 role 
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in cytokine production and the downstream inflammatory processes. It is well known 
that consistent inflammation brings remodelling of the airway epithelium, leading to 
clinical symptoms of asthma, and thus it is expected to see significant differences in 
DDR1 expression between asthmatics and non-asthmatics. However, given the fact 
that DDR1 is strongly expressed in the epithelium of bronchial biopsies from 
individuals with and without asthma [119], suggests that DDR1 might play a 
regulatory role in the inflammation through means other than the epithelial damage 
repair process. 

The other interesting hit from the lookup is the gene involved in the drug 
metabolism (xenobiotics) (CYP2A6). Cytochrome P450 is the primary enzyme 
responsible for the oxidation of nicotine and in the metabolism of several 
pharmaceuticals and carcinogens [120]. Genetic polymorphisms residing in this gene 
has already been implicated in multiple outcomes like smoking habits [121] and 
pulmonary emphysema [122]. Though initial reports in high ranking journals have 
associated the CYP2A6 polymorphism with nicotine metabolism and tobacco 
dependancy [121], recent studies with novel and advanced genotyping methods 
show additional loci (EGLN2) [123] affecting the smoking behaviour. Marked inter-
individual variation in the activities of CYP2A6 [124] and possible suppressed 
expression by inflammatory stimuli place them as an interesting candidate for 
studying its association with asthma.  

As mentioned earlier, the primary technology for the detection of rare variants 
with high confidence is by targeted deep sequencing of the region of interest. 
Additional cost-effective approach such as inferring (imputation) based on a 
comprehensive genome catalogue like the 1,000 Genomes Project (http://www.
1000genomes.org/page.php) [125], can facilitate the extension of already-genotyped 
SNPs to additional common and rare variants. Nevertheless, when it comes to the 
interpretation, it is imperative to remember that such events are rare possibly 
involving other mediators that modulate the disease process. Thus it is highly 
unlikely that few functional variants can explain the phenotype under study. 
Complicating matters further, the sample size that is required to detect low-frequency 
variants with high-risk association scales roughly linearly (1/MAF) requiring larger N 
as the variants become rarer [126]. Inter-individual differences also pose a significant 
challenge in finding appropriate subjects, as individuals with rare variants at one 

!  49



Discussion

locus may have ancestral differences in allele frequency. In addition to these 
problems, statistical approaches used in evaluating common variants are not 
applicable for rare variants. On the other hand, structural variations like copy number 
variants (CNVs), inversions, repeat genetic elements and translocations could 
explain some of the missingness. Similar to trait-associated SNPs, structural variants 
associated with the disease can either be rare with larger effect sizes or common 
with modest effects, and various approaches have been developed to identify and 
integrate them in GWAS such as exploiting the LD relationship between SNP and 
common CNVs [127].  Of note, common CNVs and de novo CNVs, seem highly 
unlikely to contribute to family resemblance and heritability, but could emphasise the 
involvement of an active environmental component. Specifically, it is worthwhile to 
mention that the current estimates of heritability for common traits can be 
significantly inflated due to the underlying assumption of no gene-gene or gene-
environment interactions. In conclusion, the next wave of asthma genetic studies will 
probably not so much on improving genotyping chips but use full-genome 
sequencing analysis supported by family-based studies, and learn from 
phenotypically well-defined data by exploring in the context of regulatory 
annotations. 
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7. Potential role of structural variants like transposable 

elements in COPD onset:  

7.1. Key regulators in COPD  
COPD is characterised by the co-occurrence of bronchial inflammation 

(bronchitis) and alveolar wall destruction (emphysema). The main clinical feature 
associated with COPD is the reduction of forced expiratory volume in one second 
(FEV1) along with the decrease in the ratio of FEV1 to forced vital capacity (FVC) 
[128], resulting in obstruction of the airways due to reduced lung volume and lesser 
contractile response of the airway walls. Though environmental influence such as air 
pollution plays a role in their onset, smoking is regarded as the most common cause 
of COPD. Pathophysiologically, it involves inflammatory cell infiltration (neutrophils, 
macrophages) and hyperplasia of the airway smooth muscle cells (ASMC), releasing 
proteolytic enzymes, which generate oxidants and thereby imposing oxidative stress 
[129]. ASMC and the mucociliary system (goblet cells and ciliated cells) are the 
primary target of action for these inflammatory mediators. As biopsies of bronchial 
airways and small airways from COPD patients show abnormal goblet cell 
differentiation (metaplasia), histopathologic changes of the small airways and mucus 
hypersecretion with the loss of mucociliary clearance [130]. These changes manifest 
as what is known to be the hallmarks of COPD, namely emphysema (airway 
remodelling and obstruction) and bronchitis (narrowing of bronchial walls – 
inflammation and mucus hypersecretion). Fibroblasts are also involved in the airway 
remodelling as they proliferate under the stimulus of transforming growth factor-beta 
(TGF-β) from epithelial cells resulting in fibrosis in the small airways [131]. The 
airway wall thickens as a result of this remodelling process which narrows the airway 
lumen causing irreversible airflow limitation and increased airway hyperreactivity.
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7.2. Developmental control of transposable elements 
In complex gene-environment interaction, the genome is continuously 

challenged by deleterious genotoxic events, which are efficiently evaded by the host 
surveillance networks. Their failure triggers genomic instability, and many such 
events were reported in complex disorders such as COPD [132]. Global distribution 
of transposable elements (TEs) and their ability to translocate (retrotranspose) to 
one position from another poses a greater challenge to maintain this integrity [133]. 
TEs such as Long Interspersed Nuclear Elements (LINEs or L1s) introduce somatic 
mutations during translocation and lead to post-insertional genomic instability events 
[134], but their role in complex disorders like COPD is unclear. The possibility of 
retrotransposition events during embryogenesis and affecting the integrity of 
developmental genes in the early growth phase is an interesting proposal. Any 
genetic damage occurring during the early growth stage of the lung could result in 
susceptibility to damage either by the host machinery (protease/anti-protease 
imbalance) or environmental factors like cigarette smoking and pollutants. The 
theory is further supported by L1 insertion mediated mosaicism seen in somatic and 
germline cells [135], and the occurrence of L1 RNA in embryonic cells [136]. 
Moreover, quantitative studies have already shown the frequency of 
retrotransposition to be higher in reproductive cells [137]. For instance, epigenetic 
changes during lung development are known to play a vital role in the development 
of bronchopulmonary dysplasia (BPD) [138]; this can pose as a risk factor altering 
the lung morphology in early childhood and any associated lower lung functions can 
ultimately result in the development of COPD.

7.3. Epigenetics of transposable elements  
DNA methylation is a heritable non-genetic change that in addition to 

regulating the gene expression has evolved to keep a check on the repeat elements 
and silence them. Almost one-third of the DNA methylation occurs in TEs like Alu 
elements and L1s [133], and since the TEs account for nearly half of the genome, 
this can function as a representative marker for global methylation profile. 
Nevertheless, such sites are highly prone to environmental influences and can be 
hypomethylated, leading to genome instability and altered gene expression. For 
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instance, one study established such an association by showing altered gene 
expression as a result of hypomethylation in lung tissue samples from idiopathic 
pulmonary fibrosis patients [139]. As a further support to the hypothesis 
hypomethylation of L1 elements is associated with a rapid decline in lung function 
measures (FEV1 and FVC) [140].  Lung function tests being a major determining 
factor in diagnosing and measuring the severity of lung disorders, the impact of 
hypomethylation on lung function is intriguing. 

7.4. Oxidative stress and hypomethylation  
 Oxidative stress as a result of oxidant/antioxidant imbalance plays a central 
role in the pathogenesis of COPD (Figure-9). Under stress conditions, oxidation 
susceptible GC-rich sites oxidize to guanyl neutral radical [141] that react with 
superoxides from the cigarette smoke to form a stable oxidation product (8-OHdG) 
[142]. 8-OHdG, a marker of oxidative stress, plays a vital role in altering the 
methylation profile by inhibiting the binding capacity of DNA methyltransferase to 
CpG islands, resulting in the hypomethylation of guanine and cytosine residues. The 
hypomethylation property of 8-OHdG is further strengthened by its ability to cause 
transversions (G > T) and reduce the methylation hotspots (CpG dinucleotides) 
[143]. Interestingly, 5'-UTR region of the L1 mRNA is GC rich (approximately 60%), 
which makes it highly susceptible to oxidative stress mediated hypomethylation. Of 
the various environmental factors, smoking is considered to play a decisive role, as 
prenatal exposure to tobacco smoke is associated with global hypomethylation in 
adulthood [144]. Similar, evidence show that cigarette smoking and other 
environmental factors like particulate air pollution can synergistically determine the 
overall methylation status [145]. 
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!  
Figure-9: Oxidative stress mediated by exogenous and endogenous sources.  

 Figure-10a discusses the effect of oxidative stress mediated hypomethylation 
in activating and transposing L1s that leads to deleterious structural alterations in the 
genome followed by a cascade of signalling events (Figure-10b). These events can 
result in the death of cells or inflammatory response or both leading to a continued 
decline in lung function. All these evidence strongly suggest that these are not 
isolated events in the COPD onset and that epigenetic changes mediated by 
oxidative stress play a central role. 
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Figure-10a: L1 retrotransposon life cycle. L1 life cycle begins with the transcription of active L1, 
followed by polyadenylation to create L1 RNA. Spliced L1 RNA is later nuclear exported for 
translation. In the cytoplasm, L1 RNA coded proteins (ORF1 and ORF2) binds with other L1 RNA that 
are retrotranscription competent L1 (RC-L1) to form the ribonucleoprotein (L1 RNP) complex. L1 RNP 
is nuclear imported for the retrotransposition mechanism resulting in double-strand break (DSB) by 
the endonuclease activity of L1 ORF2. Lesions created by the digesting activity is repaired and 
integrated into the genome by reverse transcription (TPRT) method. Smoke particles and heavy 
metals can interact with L1 lifecycle either at the early stages by altering the methylation profile or at 
the late stages by impairing the repair pathway resulting in the accumulation of somatic mutations 
(Granulated cells). 10b: Somatic mutation on disease onset and exacerbation. Mutated somatic 
cells are recognized as foreign cells by the host system and presented by the antigen-presenting cells 
(APCs), triggering the T helper (Th) and cytotoxic T cells (Tc) that migrate to the infected sites 
inducing cell death. Failure in removing the dying/dead cells (efferocytosis) results in aberrant 
remodeling of the cells. On the other hand, mutant cells can increase the release of cytokines by 
interacting with transcription factors and recruit inflammatory cells to destabilize the immune balance, 
thereby manifesting the features of COPD. 
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7.5. Proposal for future studies of COPD and transposable 

elements 
 Distribution of TEs varies across individuals probably attributed to their activity 
in somatic tissues and the low selection pressure encountered by these elements, 
enabling them to evolve rapidly and making their identification arduous. However, 
with the advent of next generation sequencing technologies, different algorithms for 
detecting the inserts were proposed [146]. Earlier methods rely on prior information 
and identify bonafide TEs based on sequence (homology-based) and structural 
(structure-based) similarity [147]. However, they are prone to bias in identifying TEs 
belonging to the previously identified families. De-novo approaches, on the other 
hand, attempts to discover new TEs using their unique repetitive nature [148]. 
Figure-11 discusses the main theme of this approach. Research interest in structural 
variants has increased exponentially over the past decade, and so far approximately 
5,000 insertions have been reported. Database of Retrotransposition Insertion 
Polymorphism (DbRIP) represents a comprehensive non-redundant list of such 
variants (SINE, Alu and LINE) [149]. 
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Figure-11: General scheme of pipeline in identifying repeat elements. (White inset boxes - 
Examples of available tools). Sequence reads are pre-screened for the presence of TEs, and 
cryptic structures (poly (A) tail) are trimmed from the sequence to avoid excessive 
mismatches. Followed by mapping against the reference genome and repeat library to form 
clusters of consensus sequences. In the post-processing step, consensus sequences are 
remapped with the reference based on the characteristic features of TEs. This yields either 
concordant (YES) or discordant combinations (NO). Concordant combinations are the 
elements that are already in the library while the discordant combinations represent the 
putative novel elements. 
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8. Synthesis:  
The major challenge of addressing asthma is the ambiguity observed in the 

clinical definition and the overlapping phenotype with other pulmonary disease. The 
approach used in this study is more of a multi-dimensional approach, where an 
alternate phenotype in the form of serum cytokine levels is proposed, and their 
genetic relations are explored. By using a family-based sample of 923 individuals 
from 218 asthma families, the study has enough statistical power to detect common 
variants associations. Primary outcomes include the confirmation of the immune-
regulatory role of the 17q24.3 region by identifying its strong linkage with IL-12(p40) 
levels. Furthermore, IL-12(p40) along with IL-33 and IL-23 are shown to be 
associated (novel) with intronic variants of IL1RN and NR3C2 gene, which is not 
otherwise detected using clinical diagnosis alone. After performing annotation 
analysis using a custom pipeline, functional and regulatory role of the identified 
variants were confirmed. Further functional studies are needed for a better 
understanding of the molecular mechanism that drives the diseases phenotype. It is 
to be mentioned that in this study three cytokines (IL-4, IL-5, and IL-8) were 
positively correlated with the intake of anti-asthmatic drugs, but considering the 
overall effect of drug intake, cytokine levels implicated in the association and linkage 
analysis remains unaffected by the treatment history. Though the study does not 
show replication of results in an independent case-control dataset, the huge 
difference in the proportion of asthmatics between parents and children (21.9%, and 
88.7% respectively) can be seen as case-control sets. 

The main strength of the study is the affected sib-pair structure that controls the 
confounding effect of environmental factors and provides the statistical power to 
study variants that are common in the population. The present work mainly argues 
that the intermediary phenotypes such as the serum levels of cytokines can function 
as an alternative to the classical clinical phenotypes, especially when the clinical 
criteria are ambiguous. As common variants contribute modestly to the phenotype 
through their moderate effect size,  association data from another asthma study are 
explored, leading to the identification of many more associated SNPs, all being rare 
variants with effect estimates scaling up to an OR of 50. Although this may be due to 
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some population stratification, intermediary phenotypes and rare variants might 
further explain some of the missing genetic heritability. This is explored and further 
discussed in another pulmonary disease type with strong environmental component, 
Chronic Obstructive Pulmonary Disease (COPD). 
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Supplementary

10. Supplementary information 

10.1 Multivariate analysis of variance (MANOVA) - overall effect of drugs on 
serum cytokine levels.

Drug

MANOVA

Pillai’s trace approx F p-value
Bonferroni adjusted

Glucocorticoid 0.041 3.48 6.00E-04

Leukotriene antago-
nist 0.005 0.42 1

β2-sympathomimetic 0.025 2.08 1.54E-01

Aminophylline 0.012 1.01 1

Cromoglycate 0.027 2.31 7.02E-02

Anticholinergic 0.012 1.01 1

Antihistamine 0.007 0.55 1
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10.2 Transmission Disequilibrium Test (TDT) associations of 17 serum 
cytokines.

#

#
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10.3.a Significant QFAM test association of the IL1RN SNPs with serum 
cytokine levels in children.

�
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10.3.b Significant QFAM test association of the NR3C2 SNPs with serum 
cytokine levels in children.
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10.4 Distribution of LD extended SNPs from Variant Effect Predictor (VEP).
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10.5 LD SNP information.

Prime_SNP LD LD SNP Gene BIOTYPE

rs2070948 0.5 rs10029199 - open_chromatin_region

rs2070948 0.8 rs10031992 NR3C2 protein_coding

rs3135499 1.0 rs10521209 NOD2 protein_coding

rs3135499 0.8 rs1054987 RP11-327F22.5 lincRNA

rs3782905 0.8 rs10875693 VDR protein_coding

rs2070948 0.7 rs11099695 NR3C2 protein_coding

rs2070948 0.8 rs11099696 NR3C2 protein_coding

rs2070948 0.5 rs112737912 NR3C2 protein_coding

rs3135499 0.9 rs11642482 NOD2 protein_coding

rs3135499 0.9 rs11642646 NOD2 protein_coding

rs3135499 0.6 rs11646242 CYLD protein_coding

rs3135499 0.9 rs11647841 NOD2 protein_coding

rs2070948 0.7 rs11929719 NR3C2 protein_coding

rs3894194 0.9 rs12451084 GSDMA protein_coding

rs3894194 0.9 rs12451100 GSDMA protein_coding

rs3894194 0.6 rs12601749 LRRC3C protein_coding

rs3894194 0.5 rs12603332 ORMDL3 protein_coding

rs3894194 0.9 rs12603481 LRRC3C protein_coding

rs3135499 0.8 rs13332720 RP11-327F22.5 lincRNA

rs3135499 0.8 rs13337656 CYLD protein_coding

rs3135499 0.8 rs1420872 CYLD protein_coding

rs2070948 0.8 rs1512344 NR3C2 protein_coding

rs3135499 0.5 rs1548990 CYLD protein_coding

rs439154 1.0 rs1665190 IL1RN protein_coding

rs3135499 0.8 rs17223195 CYLD protein_coding

rs3135499 0.9 rs17312836 NOD2 protein_coding

rs3135499 0.9 rs17314341 CYLD protein_coding

rs3135499 0.8 rs17314544 CYLD protein_coding

rs2070948 0.7 rs17582206 NR3C2 protein_coding
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rs439154 1.0 rs1794066 IL1RN protein_coding

rs3135499 0.9 rs1861757 NOD2 protein_coding

rs3135499 0.9 rs1861758 NOD2 protein_coding

rs3135499 0.9 rs1861759 NOD2 protein_coding

rs3135499 0.6 rs1861761 RP11-327F22.5 lincRNA

rs3135499 0.6 rs1861762 CYLD protein_coding

rs439154 0.6 rs1867830 - -

rs3135499 0.7 rs2066848 SNX20 protein_coding

rs3135499 0.9 rs2066851 CYLD protein_coding

rs3135499 0.9 rs2067085 NOD2 protein_coding

rs2070948 1.0 rs2070948 NR3C2 protein_coding

rs2070948 1.0 rs2070949 NR3C2 protein_coding

rs2070948 0.8 rs2070950 NR3C2 protein_coding

rs2070948 0.8 rs2070951 NR3C2 protein_coding

rs3135499 0.7 rs2111435 CYLD protein_coding

rs3135499 0.7 rs2160683 CYLD protein_coding

rs3782905 0.9 rs2238138 VDR protein_coding

rs3135499 0.9 rs2357791 NOD2 protein_coding

rs3135499 0.5 rs2357792 NOD2 protein_coding

rs439154 0.9 rs2592346 IL1RN protein_coding

rs439154 0.9 rs2637988 IL1RN protein_coding

rs2070948 0.5 rs28477241 - -

rs3135499 1.0 rs3135499 NOD2 protein_coding

rs3135499 0.9 rs3135500 NOD2 protein_coding

rs3135499 0.6 rs3135501 CYLD protein_coding

rs3135499 0.8 rs3135503 CYLD protein_coding

rs439154 0.9 rs315919 IL1RN protein_coding

rs439154 0.5 rs315933 IL1RN protein_coding

rs3135499 0.9 rs34133110 NOD2 protein_coding

rs3135499 0.6 rs34464167 CYLD protein_coding

rs3135499 0.8 rs34552113 CYLD protein_coding

rs3894194 0.9 rs35123741 LRRC3C protein_coding

Prime_SNP LD LD SNP Gene BIOTYPE
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rs3782905 1.0 rs3782905 VDR protein_coding

rs3135499 0.7 rs3785140 CYLD protein_coding

rs3894194 0.6 rs3859191 GSDMA protein_coding

rs3894194 0.6 rs3859192 GSDMA protein_coding

rs3894194 0.7 rs3859193 GSDMA protein_coding

rs3894194 0.6 rs3893044 LRRC3C protein_coding

rs3894194 0.8 rs3894193 GSDMA protein_coding

rs3894194 1.0 rs3894194 GSDMA protein_coding

rs3894194 0.6 rs3902025 GSDMA protein_coding

rs3894194 0.6 rs3907022 PSMD3 protein_coding

rs3894194 0.7 rs3931960 GSDMA protein_coding

rs3135499 0.7 rs4027241 CYLD protein_coding

rs3894194 0.5 rs4065275 ORMDL3 protein_coding

rs3894194 0.6 rs4065876 GSDMA protein_coding

rs3894194 0.6 rs4065985 LRRC3C protein_coding

rs3894194 0.9 rs4065986 LRRC3C protein_coding

rs3894194 0.6 rs4239225 GSDMA protein_coding

rs439154 1.0 rs439154 IL1RN protein_coding

rs439154 1.0 rs452204 IL1RN protein_coding

rs3894194 0.7 rs4580194 GSDMA protein_coding

rs2070948 0.8 rs4635799 NR3C2 protein_coding

rs3135499 0.9 rs4785224 NOD2 protein_coding

rs3135499 0.6 rs4785226 CYLD protein_coding

rs3135499 0.6 rs4785227 RP11-327F22.4 antisense

rs3135499 0.7 rs4785450 CYLD protein_coding

rs3135499 0.5 rs4785451 CYLD protein_coding

rs3135499 0.6 rs4785452 RP11-327F22.4 antisense

rs3135499 0.7 rs4785453 RP11-327F22.4 antisense

rs3135499 0.8 rs4785454 RP11-327F22.5 lincRNA

rs3135499 0.8 rs4785455 RP11-327F22.5 lincRNA

rs3894194 0.5 rs4794820 RP11-387H17.4 lincRNA

rs3894194 0.8 rs4794821 GSDMA protein_coding

Prime_SNP LD LD SNP Gene BIOTYPE
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rs3894194 0.9 rs4795406 LRRC3C protein_coding

rs3894194 0.9 rs4795408 - promoter_flanking_region

rs3894194 0.8 rs4795409 GSDMA protein_coding

rs2070948 0.5 rs4835138 NR3C2 protein_coding

rs2070948 0.7 rs4835519 NR3C2 protein_coding

rs3894194 0.6 rs55739615 GSDMA protein_coding

rs3894194 0.6 rs56030650 GSDMA protein_coding

rs3894194 0.6 rs56199421 RP11-387H17.4 lincRNA

rs3894194 0.6 rs56326707 GSDMA protein_coding

rs2070948 0.5 rs58869535 NR3C2 protein_coding

rs3894194 0.6 rs60134943 GSDMA protein_coding

rs3894194 0.6 rs60137005 GSDMA protein_coding

rs3894194 0.8 rs60725845 GSDMA protein_coding

rs3894194 0.6 rs62068170 LRRC3C protein_coding

rs3894194 0.6 rs62068171 LRRC3C protein_coding

rs2070948 0.7 rs62332388 NR3C2 protein_coding

rs2070948 0.5 rs62332389 NR3C2 protein_coding

rs3135499 0.9 rs6500328 NOD2 protein_coding

rs3135499 0.9 rs6500329 CYLD protein_coding

rs3135499 0.6 rs6500331 CYLD protein_coding

rs3894194 0.9 rs6503525 LRRC3C protein_coding

rs3894194 0.9 rs6503526 GSDMA protein_coding

rs2070948 0.8 rs6814934 NR3C2 protein_coding

rs3135499 0.9 rs718226 NOD2 protein_coding

rs3135499 0.7 rs7194886 NOD2 protein_coding

rs3135499 0.9 rs7203691 NOD2 protein_coding

rs3135499 0.6 rs7205423 NOD2 protein_coding

rs3894194 0.8 rs7212938 GSDMA protein_coding

rs3894194 0.9 rs7216564 LRRC3C protein_coding

rs3894194 0.5 rs7221814 RP11-387H17.4 lincRNA

rs3894194 0.7 rs7223717 GSDMA protein_coding

Prime_SNP LD LD SNP Gene BIOTYPE
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rs3782905 0.9 rs7311713 VDR protein_coding

rs3135499 0.6 rs7342715 CYLD protein_coding

rs3135499 0.9 rs748855 NOD2 protein_coding

rs3135499 0.8 rs751919 CYLD protein_coding

rs2070948 0.7 rs7658048 NR3C2 protein_coding

rs3782905 0.5 rs7968852 VDR protein_coding

rs3782905 0.7 rs7974708 VDR protein_coding

rs3135499 0.9 rs8045009 NOD2 protein_coding

rs3135499 0.7 rs8047910 CYLD protein_coding

rs3135499 0.6 rs8053457 CYLD protein_coding

rs3135499 0.5 rs8056611 NOD2 protein_coding

rs3135499 0.8 rs8060598 CYLD protein_coding

rs3135499 0.8 rs8061821 CYLD protein_coding

rs3135499 1.0 rs8061960 NOD2 protein_coding

rs3135499 0.8 rs8062540 CYLD protein_coding

rs3894194 1.0 rs8069202 GSDMA protein_coding

rs3894194 0.7 rs8071050 - -

rs3894194 0.8 rs8079416 RP11-387H17.4 lincRNA

rs3894194 0.6 rs8080734 LRRC3C protein_coding

rs3894194 0.9 rs8081462 - -

rs3135499 0.8 rs9635531 RP11-327F22.4 antisense

rs3135499 0.8 rs9925070 CYLD protein_coding

rs3135499 0.8 rs9938976 CYLD protein_coding

rs3135499 0.7 rs9940175 CYLD protein_coding

rs2070948 0.8 rs9992256 NR3C2 protein_coding

Prime_SNP LD LD SNP Gene BIOTYPE
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10.6 Significant eQTLs of the GSDMA locus using GRASP.

Lead SNP LD LD SNP eQTL associa-
tion p-value

Gene Cell/tissue 
type

PMID

rs3894194 1.0 rs3894194 1.70E-05  GSDMA  blood cells 21829388

rs3894194 1.0 rs3894194 3.30E-93  GSDMB  blood cells 21829388

rs3894194 1.0 rs3894194 2.09E-04  GSDML  CD4+ lym-
phocytes

20833654

rs3894194 1.0 rs3894194 7.46E-11  MED24  brain 22685416

rs3894194 1.0 rs3894194 1.08E-16  MED24  brain 22685416

rs3894194 1.0 rs3894194 1.50E-07  MED24  brain 22685416

rs3894194 1.0 rs3894194 1.31E-03  MED24  brain 22685416

rs3894194 1.0 rs3894194 1.66E-10  MED24  brain 22685416

rs3894194 1.0 rs3894194 6.71E-16  MED24  brain 22685416

rs3894194 1.0 rs3894194 4.80E-07  MED24  brain 22685416

rs3894194 1.0 rs3894194 1.23E-03  MED24  brain 22685416

rs3894194 1.0 rs3894194 1.70E-37  ORMDL3  blood cells 21829388

rs3894194 1.0 rs3894194 3.31E-07  ORMDL3  CD4+ lym-
phocytes

20833654

rs3894194 0.9 rs6503526 3.89E-15  MED24  brain 22685416

rs3894194 0.9 rs6503526 5.40E-14  MED24  brain 22685416

rs3894194 0.9 rs4795408 4.30E-15  MED24  brain 22685416

rs3894194 0.9 rs4795408 2.90E-14  MED24  brain 22685416

rs3894194 0.9 rs6503525 2.19E-05  IKZF3  brain 22685416

rs3894194 0.9 rs6503525 2.52E-12  IKZF3  brain 22685416

rs3894194 0.9 rs6503525 7.94E-09  IKZF3  brain 22685416

rs3894194 0.9 rs6503525 9.18E-08  IKZF3  brain 22685416

rs3894194 0.9 rs6503525 1.90E-12  IKZF3  brain 22685416

rs3894194 0.9 rs6503525 1.18E-07  IKZF3  brain 22685416

rs3894194 0.9 rs6503525 3.51E-10  MED24  brain 22685416

rs3894194 0.9 rs6503525 4.35E-15  MED24  brain 22685416

rs3894194 0.9 rs6503525 1.31E-06  MED24  brain 22685416

rs3894194 0.9 rs6503525 2.66E-09  MED24  brain 22685416

rs3894194 0.9 rs6503525 3.40E-14  MED24  brain 22685416

rs3894194 0.9 rs6503525 2.80E-06  MED24  brain 22685416
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rs3894194 0.9 rs6503525 3.35E-07  ORMDL3  blood cells 22692066

rs3894194 0.8 rs8079416 5.80E-05  GSDMA  blood cells 21829388

rs3894194 0.8 rs8079416 1.90E-101  GSDMB  blood cells 21829388

rs3894194 0.8 rs8079416 5.62E-05  GSDMB  intestine 23474282

rs3894194 0.8 rs8079416 5.13E-04  GSDML  CD4+ lym-
phocytes

20833654

rs3894194 0.8 rs8079416 4.96E-10  MED24  brain 22685416

rs3894194 0.8 rs8079416 4.35E-15  MED24  brain 22685416

rs3894194 0.8 rs8079416 1.56E-06  MED24  brain 22685416

rs3894194 0.8 rs8079416 5.20E-03  MED24  brain 22685416

rs3894194 0.8 rs8079416 2.71E-09  MED24  brain 22685416

rs3894194 0.8 rs8079416 3.39E-14  MED24  brain 22685416

rs3894194 0.8 rs8079416 5.72E-03  MED24  brain 22685416

rs3894194 0.8 rs8079416 2.50E-39  ORMDL3  blood cells 21829388

rs3894194 0.8 rs8079416 7.94E-08  ORMDL3  CD4+ lym-
phocytes

20833654

rs3894194 0.8 rs7212938 1.67E-19  MED24  brain 22685416

rs3894194 0.8 rs7212938 8.09E-19  MED24  brain 22685416

�82



Publications

11. Publications  

Sargurupremraj M, Pukelsheim K, Hofer T, Wjst M 
“Intermediary quantitative traits - an alternative in the identification of disease genes 
in asthma?” 
Genes and Immunity 2013: 1-7.

Sargurupremraj M, Wjst M 
“Transposable elements and their potential role in complex lung disorder.” 
Respiratory Research 2013;14: 99.

Wjst M, Sargurupremraj M, Arnold M 
“Genome-wide association studies in asthma: what they really told us about 
pathogenesis”. 
Current opinion in allergy and clinical immunology 2013;13: 112-118.

�83



Acknowledgement

12. Acknowledgement 
I take this opportunity to thank Prof. Dr. Matthias Wjst, Prof. Dr. Bertram Mueller-

Myhsok and Prof. Dr. Johannes Beckers for their time and valuable suggestions. 
It is my greatest gift and pleasure to have such a supportive family (Sargurupremraj, 

Maheswari, Shobana, Chandru, Sasi Rekha, and Bairav). Lastly, the new addition to my 
family and the lucky charm, Aadhira. I am indebted for my life. Vielen Dank.

�84


