
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Sicherheit in der Informationstechnik

Key Derivation with Physical Unclonable Functions

Matthias Hiller

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr. sc. techn. Gerhard Kramer

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Sigl

2. Prof. Dr.-Ing. Martin Bossert

Die Dissertation wurde am 04.07.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 07.11.2016 angenommen.

Abstract

Secure cryptographic keys are a prerequisite to protect the data that is transmitted
and stored by today’s and tomorrows embedded systems in the Internet of Things. For
many of those systems, secure Non-Volatile Memory (NVM) is not available due to
technical and cost constraints. Silicon Physical Unclonable Functions (PUFs) evaluate
manufacturing variations to generate unique secrets inside Integrated Circuits (ICs)
to replace the functionality of the NVM. However, PUFs are affected by noise and
changes in environmental conditions, so that PUF responses cannot be directly used as
cryptographic keys.

Key derivation algorithms turn a noisy PUF response into a reliable cryptographic key.
Error correction is required to remove the variation caused by environmental effects and
random noise, and derive stable cryptographic keys. Helper data enables error correction
by mapping random PUF responses to codewords of Error-Correcting Codes (ECCs),
where errors can be detected and corrected. Over the last 10 years, several helper
data generation approaches were introduced and implemented. Some challenges of key
derivation with PUFs are the lacking of a generic theoretical framework and optimal
practical ways of generating helper data. Further, today’s hardware implementations
focus on small block lengths in error correction for a low complexity.

This thesis addresses these open points by showing that the practical problem of key
derivation with PUFs is closely related to the information theoretical problem of key
generation from compound sources. It also provides an algebraic representation that
applies to a wide class of previous work on error correction for PUFs. The new rep-
resentation allows to upper bound the secrecy leakage of an approach already on the
algorithmic level during the design stage. The analysis shows that today’s algorithms
do not support maximum key rates and minimum helper data sizes, while causing no
helper data leakage at the same time.

Systematic Low Leakage Coding (SLLC) is a new error correction scheme presented in
this thesis that translates the properties of theoretical random coding approaches to a
deterministic code generation scheme. It maximizes the size of the key and minimizes
the size of the helper data without causing secrecy leakage through the helper data.
In addition, implementation parameters for an extremely low-area error correction for
PUFs with very low bit error probability are provided.

Not all PUF response bits are equally stable. This work shows with the information
theoretical concept of typicality that the error correction overhead decreases significantly
by selecting reliable PUF response bits in larger blocks. Differential Sequence Coding
(DSC) is introduced as an error correction approach that creates one single block of
reliable PUF response bits and thus overcomes the limitations of small block sizes of
previous implementations. This work uses DSC in combination with the popular code
class of convolutional codes. The DSC and Viterbi decoder error correction module
reduces the size of the PUF and the helper data significantly for a popular reference

scenario for SRAM PUFs and Xilinx Spartan 3 FPGAs without increasing the slice
count of the implementation.

The final comparison shows that different error correction candidates are favorable for
different applications, depending on their requirements and constraints. This work
expands the state of the art by providing more efficient solutions for various parameter
sets.

Keywords : Physical Unclonable Functions, Key derivation, Fuzzy Extractor, Syn-
drome Coding, Error-Correcting Codes, Information Theory, Hardware Implementation,
FPGA.

Kurzfassung

Sichere kryptografische Schlüssel sind eine Grundvoraussetzung, um Daten zu schützen,
die von heutigen und zukünftigen einbegetteten Systemen im Internet der Dinge
gespeichert, verarbeitet und übertragen werden. Sichere Nicht-flüchtige Speicher sind
aufgrund technischer oder wirtschaftlicher Beschränkungen in vielen Systemen nicht
verfügbar. Silicon Physical Unclonable Functions (PUFs) werten Fertigungsschwankun-
gen aus, um einzigartige Geheimnisse in integrierten Schaltungen zu erzeugen und
nichtflüchtige Speicher zu ersetzen. Die so-genannten PUF Responses werden von
Rauschen und physikalischen Umgebungsgrößen beeinflusst, sodass sie nicht direkt als
stabile kryptografische Schlüssel verwendet werden können.

Algorithmen zur Schlüsselableitung verarbeiten die PUF Response zu einem zuverlässi-
gen kryptografischen Schlüssel. Fehlerkorrekturverfahren werden dabei benötigt, um die
Abweichungen, die durch das Rauschen und die Umgebungseffekte entstanden sind, zu
entfernen. Helperdaten ermöglichen die Fehlerkorrektur, indem sie die zufälligen PUF
Responses auf Codewörter von fehlerkorrigierenden Codes abbilden in denen Fehler
erkannt und korrigiert werden können. In den letzten 10 Jahren wurden zahlreiche
Verfahren zur Helperdatenerzeugung vorgestellt und implementiert. Das Fehlen von all-
gemeinen theoretischen Modellen und optimalen praktischen Verfahren zur Helperdaten-
erzeugung, sowie das Bestreben möglichst kleine Fehlerkorrekturblöcke zu nutzen, um
Hardwareimplementierungen klein zu halten sind Herausforderungen bei der Schlüsse-
lableitung mit PUFs.

Bezüglich der theoretischen Modelle zeigt diese Arbeit, dass das informationstheoretis-
che Problem der Schlüsselerzeugung aus Compound Quellen eng mit Schlüsselableitung
aus PUFs verwandt ist. Außerdem wird eine generische algebraische Darstellung disku-
tiert, mit der eine große Zahl vorhandener Ansätze zur Schlüsselableitung dargestellt
werden kann. Die neue Darstellung ermöglicht es, für einen Ansatz auf algorithmis-
cher Ebene eine obere Schranke für die Schlüsselinformation, die maximal durch die
Helperdaten nach Außen gelangt, anzugeben.

Systematic Low Leakage Coding (SLLC) ist ein in dieser Arbeit entwickelter neuer
Fehlerkorrekturansatz, der die Eigenschaften von theoretischen Verfahren mit Zu-
fallscodes zeigt und gleichzeitig durch deterministische Codegenerierung auch praktisch
umgesetzt werden kann. Es maximiert er die Schlüsselgröße und minimiert gleichzeitig
die Größe der benötigten Helperdaten. Außerdem werden Implementierungsparameter
für eine Lightweight-Implementierung für PUFs mit sehr niedriger Fehlerwahrschein-
lichkeit diskutiert.

Nicht alle PUF-Response-Bits sind gleich stabil. Deshalb zeigt diese Arbeit mithilfe
des informationstheoretischen Konzepts typischer Sequenzen, dass die Fehlerkorrektur
für große Blöcke ausgewählter PUF-Response-Bits deutlich effizienter ist. Differential
Sequence Coding (DSC) ist ein in dieser Arbeit entwickelter Fehlerkorrekturansatz, der
auf einem einzigen Block mit zuverlässigen PUF-Response-Bits arbeitet und deshalb

die Beschränkung kleiner Blockgrößen überwindet. In dieser Arbeit wird DSC zusam-
men mit Faltungscodes eingesetzt. Das Fehlerkorrekturmodul mit DSC und Viterbi-
Decodierer reduziert die Anzahl benötigter PUF-Response-Bits und die Helperdategröße
deutlich für ein typisches Referenzszenario mit SRAM PUF und Xilinx Spartan 3E
FPGA. Dabei wird die Größe der Implementierung nur unwesentlich erhöht.

Der abschließende Vergleich zeigt, dass unterschiedliche Fehlerkorrekturansätze je nach
Vorgaben und Einschränkungen für unterschiedliche Anwendungen geeignet sind. Dabei
erweitert diese Arbeit den Stand der Technik um neue, effizientere, Verfahren für unter-
schiedliche Anwendungen und Parameter.

Schlüsselworte : Physical Unclonable Functions, Schlüsselableitung, Fuzzy Extractor,
Syndrome Coding, Kanalcodierung, Informationstheorie, Hardwareimplementierung,
FPGA.

Acknowledgments

The last four and a half years at TUM were full of exciting new experiences and chal-
lenges, where no year was like the one before. Moving to a new university, working on a
topic for several years and having the time to look at it from several different perspec-
tives, having deep technical discussions, establishing new courses, advising students,
publishing with people from different groups and fields, going to conferences, having
research stays abroad, getting settled and finding new friends in Munich, ... and all of
this would not have been possible without several people who I would like to thank:

First of all I would like to thank Prof. Dr.-Ing. Georg Sigl for giving me the chance
to do my PhD at his Chair of Security in Information Technology at TUM, giving me
the freedom to work on the ideas that interested me most, for providing me guidance
when needed, for opening doors and enabling opportunities. Collaborating with various
people from other academic groups, Fraunhofer and industry was a great benefit and
also being involved in teaching was an enriching personal experience.

Further, I would like to thank Prof. Dr.-Ing. Martin Bossert for being member of the
dissertation committee and for carefully reading this dissertation. He was involved in
several steps of my university education starting when I attended his lecture Signale
und Systeme in Ulm in 2007 and I would also like to thank him for the collaboration
over the last years.

Also, I would like to thank Prof. Dr. sc. techn. Gerhard Kramer for heading the
dissertation committee and for the inspiring discussions in the PUF COM Cluster and
beyond.

I would like to thank Dr.-Ing. Michael Pehl for the endless discussions, developing new
ideas, collaborating closely, sharing his knowledge on algebra and statistics, and also
for handling all kinds of administrative issues. I appreciate his feedback after carefully
proof-reading this dissertation.

I thank my office mates Fabrizio De Santis, Michael Weiner, Florian Wilde and Johanna
Baehr for the good times and collaboration and also all other members of the Chair of
Security in Information Technology. I would like to express some special thanks to
Marion Burhop and Harry Olm for all the big and small administrative and technical
things they took care of, which supported my work in many different ways.

Further, I would like to thank Dr.-Ing. Dominik Merli for introducing me to this won-
derful topic during my diploma thesis and the collaboration in the beginning, after I
moved to TUM.

Over the last years, I had the chance to work with great people between San Jose
and Shanghai and I would like to thank all of them for the collaboration. The three
months with Dr.-Ing. Axel Poschmann and the PACE group at NTU in Singapore were
very interesting to get new research perspectives and a broader view on cryptographic
engineering outside of Munich. Further, the two months I spent in 2014 and 2015 with

Mandel Yu at Verayo gave precious practical insights on the PUF world and also lead
several ideas and joint publications. I also thank Jeroen Delvaux and Mandel Yu for the
intensive intercontinental collaboration, where we exchanged around 500 emails since
early 2015.

I was lucky that I had the chance to advise some very talented and hard-working students
that supported me in research and teaching, for example with implementations that will
be discussed later in this work, and also contributing to several publications.

My work was funded by the German Federal Ministry of Education and Research
(BMBF) through the project ARAMiS (01IS11035Y), SIBASE (01S13020A) and
SMERCS (01DP12037A), and the Bavaria California Technology Center (2014-1/9).

Finally I would like to thank my family and friends for their support, patience and
encouragement over the last years.

Matthias Hiller
July 2016

Contents

List of Acronyms III

1. Introduction 1
1.1. Non-Volatile Key Storage in Integrated Circuits 2
1.2. Security from Intrinsic Manufacturing Variation 3
1.3. Secure Key Derivation with PUFs . 3
1.4. Integration of PUFs into Commercial Products 5
1.5. Contributions of this Thesis . 6
1.6. Outline . 7
1.7. Definitions and Notation . 7

2. Physical Unclonable Functions 9
2.1. Definition of PUFs . 9
2.2. PUF Properties . 10
2.3. PUF Primitives . 12
2.4. Conclusions . 15

3. Error Correction for PUFs 17
3.1. Definitions . 17
3.2. Theoretical Background . 19
3.3. Linear Schemes . 21
3.4. Pointer-Based Schemes . 23
3.5. Error-Correcting Code Implementations 24
3.6. Conclusions . 24

4. Theoretical Foundations of Key Derivation with PUFs 25
4.1. Relation between PUFs and Compound Sources 25
4.2. Review of the Information Theoretical Criteria and Limits 28
4.3. Unified Algebraic View on Secure Key Derivation with PUFs 31
4.4. Generic Security Criterion . 34
4.5. Algebraic Representation and Analysis of the State of the Art 38
4.6. Conclusions . 42

5. Systematic Low Leakage Coding 45
5.1. SLLC Code Construction . 46
5.2. Evaluation . 50
5.3. Implementation . 54

I

5.4. Conclusions . 56

6. Differential Sequence Coding 57
6.1. Relation between Block Size and Reliability 58
6.2. DSC Encoding . 62
6.3. Properties . 63
6.4. Security Analysis . 70
6.5. Convolutional Codes . 74
6.6. Design of a Complete Key Derivation Module 81
6.7. Implementation . 88
6.8. Further Improvements . 94
6.9. Conclusions . 95

7. Evaluation 97
7.1. Estimation of Implementation Complexity 98
7.2. Assessment of SLLC to the State of the Art 98
7.3. Syndrome Coding and ECC Designs for Medium Key Error Probability . 99
7.4. Syndrome Coding and ECC Designs for Low Key Error Probability . . . 104
7.5. Conclusions . 108

8. Conclusions and Outlook 111
8.1. Review of the Contributions in this Thesis 111
8.2. Outlook . 113

A. Supplementary Material 115
A.1. Information Theoretical Key Agreement from Compound Sources with

Random Codes . 115
A.2. Viterbi Algorithm . 117
A.3. SRAM PUF Reliability Distribution . 120

List of Pre-Publications 123

List of Supervised Theses 127

Bibliography 129

List of Figures 145

List of Tables 149

List of Symbols 151

Index 153

II

List of Acronyms

ASIC Application Specific Integrated Circuit
BCH Bose–Chaudhuri–Hocquenghem
C-IBS Complementary Index-Based Syndrome Coding
CMOS Complementary Metal-Oxide-Semiconductor
CO Code-Offset
CTW Contex-Tree Weighting
DSC Differential Sequence Coding
ECC Error-Correcting Code
FPGA Field Programmable Gate Array
GCC Generalized Code Concatenation
GE Gate Equivalent
GMC Generalized Multiple Concatenated
i.i.d. independent and identically distributed
IBS Index-Based Syndrome Coding
IC Integrated Circuit
LUT Lookup Table
ML Maximum-Likelihood
NVM Non-Volatile Memory
PUF Physical Unclonable Function
RAM Random Access Memory
REP Repetition
RLE Run-Length Encoding
RM Reed–Muller
RO Ring Oscillator
ROM Read-Only Memory
ROVA Reliability Output Viterbi Algorithm
RS Reed–Solomon
SDML Soft-Decision Maximum-Likelihood
SLLC Systematic Low Leakage Coding
SRAM Static Random Access Memory
TBD Trace-Back-Depth
TRNG True Random Number Generator

III

Chapter 1.

Introduction

The increasing availability of energy efficient and cost efficient computation, and also of
wireless connectivity to the Internet allows to use connected embedded devices in more
and more applications. This leads to several drivers that are changing our economy,
society and everyday lives within a span of just a few years.

The Internet of Things is unfolding [AIM10] and allows various kinds of smart sensors
to collect and transmit data, data centers to aggregate the data in the cloud and then
control lightweight decentralized actuators or displays reacting on the data, sometimes
even under real-time constraints. Moving the Internet of Things to the industrial context
resembles in Industry 4.0 [BFKR14] where individual goods can now be manufactured
in a large-scale industrial environment. All steps of the manufacturing processes of
the future can be monitored and controlled with small connected embedded devices.
In the medical and health care sector, wireless body area networks are established to
connect sensors, spread over the body, to personal or even remote control instances for
an individual medical treatment and also enabling a fast response if a critical condition
occurs [ZRJ14].

All these trends have in common that they involve sensitive data that is processed,
transmitted and stored, and thus has to be protected. Typically, cryptography is the
technology of choice because it provides secure algorithms that are designed to be im-
plemented efficiently in practice. The branch of lightweight cryptography [Pos09] takes
the energy and area constraints especially into account.

Secret keys are a foundation for cryptography to give a legitimate user an advantage
over an attacker. This advantage can only be preserved if it is impossible for the attacker
to obtain information on the key of the legitimate user. In many practical scenarios,
this requirement can be relaxed in a sense that the effort for the attacker to obtain the
key has to be higher than the expected revenue or damage so that it is not interesting
for an economically thinking attacker to pursue to go after the key.

Therefore, countermeasures have to be taken to secure the key and preserve the integrity
of the system over the lifetime of the device. It is not sufficient to simply store the
keys in weakly protected or even unprotected memories. The next section discusses
the conventional approach to store keys in non-volatile memory and is followed by an
introduction to key derivation with PUFs.

1

1. Introduction

1.1. Non-Volatile Key Storage in Integrated Circuits

The straightforward way to provide a cryptographic key in an embedded device is to store
it permanently inside the device. Storing cryptographic keys in Non-Volatile Memory
(NVM) is typically a cumbersome task if a certain security level has to be met. Refer-
ring to the overview provided in [Kil15], five types of storage of particular interest are
addressed in this section. More information on the state of the art and emerging NVM
technologies can be found for example in [RE10, Che15].

Embedded Flash Embedded flash, also called Flash Electrically Erasable Pro-
grammable Read-Only Memory, is a non-volatile storage that is based on hot electron
injection. Implementing embedded flash technology has the advantage that the memory
can be written thousands of times. However, it has the downside that it requires at
least ten more mask steps than standard CMOS technology during manufacturing and
that it is currently only available down to a 55nm manufacturing process [Kil15]. For
more information on the security of embedded flash, see for example [HT07].

Read-Only Memory (ROM) Hard-wired information can be placed in the mask in
the form of ROM when a circuit is designed. It offers only a low security level against
attacks and all devices at the same wafer position will have the same key, which is not
tolerable for many security applications where devices should have unique identities.

Electrical Fuse The electrical fuse is a one-time programmable memory and is set by
forcing such a high current through the fuse that the electrical connection is completely
destroyed or at least severely permanently damaged. Fuse cells are relatively large and
the surrounding circuit has to be protected by empty guard spaces around the fuse so
that it is not damaged during the programming process. Due to its large form factor
and massive interference with the material, fuses can be read out relatively easily by
attackers, compared to other NVM technologies.

CMOS Floating Gate The memory cell is a MOS transistor with two gates, a floating
one and a contacted one that overlap each other. The floating gate is insulated by
an oxide from the top and bottom. The state of the transistor is determined by the
charge of the floating gate and it can be programmed multiple times. This approach has
similarities with embedded flash and also requires additional masking steps. However,
it is compatible to the CMOS manufacturing process so that it can be integrated into
existing processes more easily. This NVM type has a medium security level.

Antifuse The antifuse is a circuit with high capacity and resistance in the default
state. In contrast to destroying a connection in the electrical fuse, the antifuse

2

1.2. Security from Intrinsic Manufacturing Variation

establishes a connection, so that it changes to a low resistance state, after a high
programming voltage is applied. The permanent changes inside the transistor are
relatively small which makes them harder to detect for an attacker.

All presented NVM approaches have in common that they permanently change the
silicon and, as a consequence, the functional behavior of the circuit. The following
section present Physical Unclonable Functions. They have the advantage that they
exploit existing minimal variations in the circuit so that no permanent changes in the
circuit behavior can be measured.

1.2. Security from Intrinsic Manufacturing Variation

Physical Unclonable Functions (PUFs) cast in silicon emerged over the last decade
as an efficient solution to increase the security level of cryptographic key storage in
standard circuits to the level of the remaining circuit. As a major advantage, they can
be manufactured in the same standard CMOS technology as the remaining circuit such
that only additional area has to be spent on a chip but no additional processing steps
are required.

PUFs evaluate manufacturing variations in the circuit to derive device-unique secrets.
Analog physical measures such as doping levels or physical dimensions lead for example
to different threshold voltages of transistors. Switching delays and other effects are
sampled and quantized to create a digital value, called PUF response.

There are two main applications of PUFs: lightweight authentication and secure
key derivation. Some PUFs have different configurations, set by an external chal-
lenge. This can be used to perform lightweight authentication protocols such as
[MRK+12, YMVD14][YHD+16] to provide security without performing actual crypto-
graphic operations that are expensive in terms of area. Focusing on secure key deriva-
tion, if applicable, a constant configuration sequence is assumed in the following to
generate the same secret whenever it is requested.

While there is currently an ongoing arms race in the crypto-less lightweight protocols
[YHD+16], there is a consensus in the community that key derivation with PUFs gen-
erally increases the security of CMOS circuits. Both approaches can already be found
in commercial products as discussed in Section 1.4 later in this chapter.

1.3. Secure Key Derivation with PUFs

PUFs measure physical circuit properties and – like any physical measurement – they
are affected by noise and varying environmental conditions. PUF responses are not

3

1. Introduction

completely stable so that they cannot be directly used as cryptographic keys. At the
same time, PUF responses of a specific chip are ideally completely unpredictable from
the outside. Security is based on the fact, they do not have any structure but it also
inhibits to directly identify and correct errors.

Therefore, additional side-information is stored that links the PUF response to a math-
ematical structure, and thus enables error correction. This side-information, or helper
data, must not reveal information about the secret to still be able use the secret as
key. After mapping the PUF response to a structure, typically an Error-Correcting
Code (ECC) takes over to detect and correct the variation between the measured PUF
response and an initial reference PUF response to reproduce the initially derived key.

Figure 1.1.: Evaluation criteria for secure key derivation with PUFs

When implementing a PUF key derivation module, different aspects have to be taken
into account. Figure 1.1 shows three main criteria for PUF key derivation, assuming
that the security and reliability level of the cryptographic key are specified by the system
or the cryptographic application the key is used in:

Chip Area The area on the IC that has to be spent on the PUF and the error correction
translates directly to the cost of the key derivation module. Later, the error correction
will optimized for two aspects. The first is to keep the number of PUF response bits as
low as possible to save area. The second aspect is to reduce the complexity of the ECC.
Depending on the characteristics and silicon area footprint of the PUF, different trade-
offs between PUF response bits and ECC complexity are made to reduce the overall size
of the key derivation block.

4

1.4. Integration of PUFs into Commercial Products

Helper Data The helper data has to be stored permanently and the cost of this storage
can vary greatly. The range goes from expensive on-chip memory on one side to nearly
free remote storage on a server on the other side of this range. Later in Chapter 6,
special effort is spent to reduce the size of helper data with a compression algorithm.

Run Time Depending on the application there can be very strict or up to virtually
no timing constraints. Assuming that a PUF key can be precomputed before the cryp-
tographic algorithm runs does not pose strict time constraints. There is typically a
trade-off between area and time, where this work optimizes for area.

1.4. Integration of PUFs into Commercial Products

Fundamental research is necessary to explore the feasibility of a new idea or technology
and the ultimate goal in engineering is to bring this technology into everyday products.
Meanwhile, hundreds of papers on PUFs were published which shows that the field was
attracting broad academic interest and was maturing over the last years.

Two companies, Intrinsic-ID [Int] and Verayo[Ver], emerged out of the initial groups at
Philips and the Massachusetts Institute of Technology working on PUFs which sell PUF
IP and PUF-enhanced services.

A brief review of public information shows that secure key derivation with PUFs is
already available as security feature inside Altera [Alt15] and Microsemi FPGAs [Mic15].
Also results of test chips of Intel processors [MSA+14] were published that use PUFs for
secure key derivation. In addition, PUFs were also already introduced in a smart-card
product by NXP [NXP13], which was recently certified by the German Federal Office
for Information Security for the security level EAL6+ [Bun16b, Bun16a]. Other major
smart-card vendors such as Infineon or Samsung also published papers on PUFs [HB10,
KLC+16]. This shows that secure key derivation with PUFs is becoming commercially
more and more relevant for various application scenarios.

Beyond secure key derivation, lightweight RFID tags with PUFs are used for example
for Canon 60D DSLR cameras in China to mark genuine products and protect against
counterfeiting [Dev].

The patent research in [SIB14] has shown that most major semiconductor companies
filed patents on PUFs which strongly indicates that there is a global commercial interest
in PUFs. However, the technology still has to make the way out of its niche in the next
years to push further into the emerging mass markets, for example regarding the Internet
of Things.

5

1. Introduction

1.5. Contributions of this Thesis

The previous sections have shown that key derivation with PUFs already went a long
way from fundamental research into first commercial products. However, there are still
limits and shortcomings in the state of the art, and some of them will be addressed in
later chapters of this thesis.

Theoretical models are important to understand the fundamental behavior and achiev-
able limits of a problem. So far, the PUF work is lacking a theoretical model that
covers the maximum key size together with the minimum helper data size over different
environmental conditions. This makes it impossible to evaluate if the state of the art
approaches already achieve this limits or how large the space for possible improvements
is.

Error correction for PUFs seems to be manageable in practice if the block size is chosen
small enough for compact hardware implementations. This contradicts with the typical
information theoretical approach of increasing the block size to control the statistical
properties of a drawn sequence.

Theoretical Model and new Security Criterion So far, PUF research is driven from a
practical point of view but is lacking a theoretical model that shows the limits, especially
when it comes to helper data. This work shows the parallels between the information
theoretical model of secure key generation from a compound source and the practical
problem of secure key derivation with PUFs, and highlights the common points and
differences.

So far, error correction schemes were mainly represented on an algorithmic level where
it is hard to see general security properties. Many key derivation approaches with PUFs
can be brought into an algebraic form. The algebraic representation of the linear state-
of-the art schemes are discussed and an algebraic security criterion is introduced which
allows to upper bound the leakage of an error correction scheme already during the
design of the algorithm.

Systematic Low Leakage Coding There exists a theoretically optimal information
theoretic approach for secure generation using large random codebooks which is brought
into a deterministic form in this work. Systematic Low Leakage Coding (SLLC) is
introduced as first approach that combines a minimal helper data size and the possibility
to achieve theoretical limits for optimal ECCs. In addition, this work discusses the
parameters for a lightweight implementation to demonstrate the practical feasibility of
the new scheme.

Differential Sequence Coding There are several ways to obtain reliability information
on specific PUF response bits. Looking at the distribution of reliable PUF response bits

6

1.6. Outline

over different blocks with the information theoretical concept of typicality reveals that
the reliability of the error correction increases greatly by using larger blocks. Differential
Sequence Coding (DSC) is introduced as a pointer-based approach which indexes PUF
response bits that are more reliable than a given reliability threshold and treats all
indexed bits as one single block.

In addition, I was the first to use convolutional codes in the PUF context. Looking at the
output error probability over different parameters shows that DSC is far more effective
as previous work. An FPGA hardware implementation is discussed and compared to
the state of the art to demonstrate the performance of DSC in a practical setting.

Evaluation The error correction approaches for PUFs have different properties so that
their effectiveness also depends on the scenario they are used in. The implementations
discussed in this work are compared to the state of the art for different input and output
error probabilities and I present a comprehensive listing also containing execution times
and FPGA slice counts.

1.6. Outline

Background information on PUF definitions, PUF primitives and evaluation criteria is
given in Chapter 2. Chapter 3 discusses the state of the art algorithms and implemen-
tations for secure key derivation with PUFs.

Chapter 4 introduces new theoretical foundations on key derivation with PUFs. A
first syndrome coding scheme, called Systematic Low Leakage Coding, is closely related
to the presented theory and is introduced in Chapter 5. A pointer-based syndrome
coding scheme, called Differential Sequence Coding, and its FPGA implementation are
presented in Chapter 6.

The evaluation in Chapter 7 compares the new schemes to the state of the art to set
this work into a larger context. Chapter 8 concludes this work and gives an outlook
over open related problems. Additional information is provided in the Appendix.

1.7. Definitions and Notation

Notation Random variables are given in capital italic letters, e.g. X and scalars such
as outcomes of random variables in small italic letter, e.g. x. Calligraphic letters X
indicate sets and |X | is the cardinality of set X . Further, a superscript over a letter,
e.g. Xn, denotes a vector of n instances of X. Note that the random variables in Xn

can have different probability distributions such that for example each PUF response
bit can have an individual bit error probability. Xj

i selects elements i to j of vector Xn.

7

1. Introduction

Pr[A] is the probability of event A. PX(x) denotes the probability distribution or, more
formally, the probability mass function, of X for x ∈ X . cdf(·) is the corresponding
cumulative distribution function. Further, let µ(·) be the mean operator and σ(·) the
standard deviation.

Matrices are written in bold capital letters. Let AT be A transposed. I is the identity
matrix with ones in the main diagonal and 0 is the all zero matrix. Concatenations are
indicated with square brackets [·].

For random variables X and Y , X|Y denotes X under the condition Y . Let H(X) stand
for the Shannon entropy of X and H(XY) for the joint entropy of X and Y , and let
I(X;Y) be the mutual information between X and Y [CT06, Kra07].

For a better readability, integer representations of numbers and their binary represen-
tations in Fn2 are both used without marking the binary representation explicitly. In
cases that require special emphasis, the binary representation of i in Fn2 , n ∈ Z+, is
denoted with bn(i).

Error-Correcting Codes Typically, error-correcting codes are defined by the code
length n, the code size (or number of information bits) k and the minimum distance
between any two codewords d [Bos99]. Sometimes, also the minimum number of cor-
rectable errors t =

⌊
d−1

2

⌋
is used. Code C is defined as set containing all codewords Ci,

i = 1, ..., 2k.

According to the definition in [BW13], codes are also characterized by code length n
and code size k. Instead of specifying the code distance, the maximum probability ε > 0
of a decoding error is defined for a given channel T. Then, a code is characterized as
(n, k, ε) code in the theoretical part. For asymptotic results, k is replaced by kn. The
Channel Coding Theorem [CT06] states that for channel T with input X, output Y and
capacity CT, there exist (n, kn, ε) codes such that

lim
n→∞

kn
n

= CT=I(X;Y) (1.1)

lim
n→∞

ε = 0 (1.2)

For the practical part, the (n, k, d) code parameters are used again.

8

Chapter 2.

Physical Unclonable Functions

As already discussed in the previous chapter, PUFs evaluate manufacturing variation to
generate information in a circuit that is unpredictable from the outside. This chapter
addresses three main points:

• Basic PUF definitions are covered in Section 2.1.

• Section 2.2 reviews qualitative and quantitive measures for PUF quality.

• Section 2.3 introduces a set of PUF constructions that covers the most popular
physical phenomena to generate PUF response bits.

General introductions to PUFs can be found for example in [MV10, HB10, RDK11,
Mae13, HYKD14].

This chapter contains a new method on the reliability evaluation of PUFs that was
introduced in [HSP13] and I also contributed to the entropy estimations published in
[PRPHG14, WHP14, PHG16].

2.1. Definition of PUFs

A very early PUF definition was presented by Gassend et al. in [GCDD02] that defines

a PUF as a function that maps challenges to responses, that is embodied by a physical

device, and that verifies the following properties:

1. Easy to evaluate: The physical device is easily capable of evaluating the function

in a short amount of time.

2. Hard to characterize: From a polynomial number of plausible physical measure-

ments [...] an attacker [...] can only extract a negligible amount of information

about the response to a randomly chosen challenge.

For secure key storage, a fixed challenge schedule is applied and the responses are not
published such that the second point only refers to lightweight authentication with
PUFs. The PUF response bits should ideally be independent and identically distributed
(i.i.d.), which is consistent with the second property.

9

2. Physical Unclonable Functions

The term intrinsic PUF states that the PUF response is generated from a part of an IC
without external components so that several intrinsic PUFs can also be implemented
on FPGAs without modifications [GKST07]. The term intrinsic PUF is widely used
synonymously with the term silicon PUF. Ideally, a silicon PUF is manufactured as
digital circuit in a standard CMOS process so that the design and manufacturing can
be integrated easily into existing design flows and manufacturing processes.

Plaga and Merli introduced a notion of characterizing a PUF as information storage
[PM15]. The stored value is defined by the manufacturing variations and this definition
also can be applied to quantum devices.

Typically, PUFs are separated into two classes of PUFs: strong PUFs and weak PUFs.

Strong PUF Some PUF circuits can be configured such that one configuration of
physical properties is selected from a large set of possible combinations. Strong PUFs
have a challenge-response interface. The challenge configures the PUF and the response
depends on the challenge and the physical properties of the PUF. The PUF can output
a large number of response bits that ideally are hard to predict even if a large number
of challenge-response pair of a particular PUF is already known [GKST07]. This facili-
tates the use in lightweight authentication protocols where PUF bits are exposed to the
attacker.

This property is tempting in theory but also faced several practical attacks in recent
days. Machine learning attacks try to create a model of a PUF from a number of public
challenge-response pairs to be able to authenticate a mathematical clone of the PUF
[RSS+10]. The practical security of a PUF-based lightweight authentication protocol
depends on the number of challenge-response pairs that is necessary to be able to reliably
predict unknown PUF responses so that one goal is to limit the number of available
challenge-response pairs [YHD+16].

Weak PUF It is natural to assume that a circuit with unknown properties produces
one read-out value. Weak PUFs [GKST07] have a response space that grows only
linearly with the area. The PUF outputs a reasonable number of response bits for key
derivation but it is not sufficiently high for a large number of authentication events.
Weak PUFs are also known as physically obfuscated key [Gas03].

Note that other than the names imply, weak and strong PUFs differ in their behavior
but do not necessarily lead to different security levels.

2.2. PUF Properties

Robustness The term robustness characterizes how much two responses of the same
PUF differ. It is given quantitatively as one minus the relative Hamming distance

10

2.2. PUF Properties

between the PUF responses and is an indicator for the reliability of a PUF [GKST07,
MGS13]. The term intra Hamming Distance is also used in this context.

For chips that each return initial PUF responses Xn and i subsequent PUF responses
Yi
n, the intra distance HDintra is defined as

HDintra =
1

k

k∑
i=1

HD(Xn, Yi
n)

n
× 100% (2.1)

However, HDintra only gives the expected error probability over all PUF response bits
so that it is only a rough estimate. Having a good model of the reliability distribution
of the PUF response bits is important to evaluate the PUF primitives themselves and
later to design the error correction properly [Mae13],[HSP13].

In the remainder of this work, the reliability distribution in [MTV09b], which was ob-
tained from real world data, will be used as reference for discussion and simulation.
This has the advantage that it makes the results reproducible and also comparable to
referenced work referring to the same setup. Details on the distribution are provided in
Appendix A.3.

Instead of using a newly coined PUF term, I will use the bit or block error probability as
measure as it common in communication theory in the following. Especially, since the
systems will operate in the domain of a robustness very close to 100% where differences
are only hardly visible but important. The step from 10−9 to 10−10 is more clear than
1− 10−9 to 1− 10−10 and especially allows logarithmic plotting.

Physical Unclonability Physical Unclonability [AMS+11] is a lofty definition from
the early days of PUFs. It conveys the aim to create non-silicon PUF like optical
PUFs [PRTG02], coating PUFs [TSS+06], or the PEP foil that is wrapped around a
device [HSZS13] that make a device unclonable by adding some physical security layer.
For silicon circuits, there are technology dependent limitations that allow for example
invasive attacks with focused ion beams on any part of the circuit [NHSB13]. It is
reasonable to make the PUF as secure as the surrounding circuit processing security
sensitive information, but true unclonability is out of scope and capability of today’s
silicon PUFs manufactured in CMOS technology.

Unpredictability Unpredictability covers the aspect that a PUF response to a challenge
should be hard to predict if the responses of other PUFs to this challenge are known.
Further, a response should be hard to predict if a fixed number of PUF responses of the
same PUF is already known. The PUF response should also be hard to predict from
helper data.

11

2. Physical Unclonable Functions

The inter Hamming distance or Uniqueness [MGS13] is a popular measure to assess the
unpredictability of a set of PUF responses. Again for m chips with initial PUF responses
Xn, the uniqueness is defined as

HDinter =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

HD(Xi
n, Xj

n)

n
× 100% (2.2)

Applying the inter Hamming distance is a first-order approach but is not able to cover
correlations and other patterns within PUF responses. Bit Aliasing and Uniformity are
similar measures that also cover different properties of the PUF [MGS13].

Source coding was used for the first time by Ignatenko et al. in [ISS+06] to give a
tighter upper bound on the entropy of PUF bits. Context-tree weighting [WST95] but
also other algorithms such as Lempel-Ziv [ZL77] can be used. If analog PUF data is
availalbe, principal component analysis can be applied to detect patterns in PUF data
[WHP14].

In [PRPHG14, PHG16], we went one further step and looked at the entropies of different
parts of structures to derive possible shortcomings in the circuit design.

2.3. PUF Primitives

Silicon PUF primitives that are manufactured as IC contain two different components:
One measures an internal physical quantity that is unique for each circuit in a measure-
ment circuit. This can be for example threshold voltages of transistors.

The second part is a quantization stage that turns the analog measurement of the prop-
erty into a digital signal that is used in later processing steps. Similar definitions can
also be found in [AMS+11].

2.3.1. SRAM PUF

SRAM cells have a undefined power-up state depending on the threshold voltages of
the involved transistors in the inverters that are shown in Figure 2.1. The SRAM PUF
[GKST07, HBF09] makes use of this phenomenon and evaluates the power-up state of
the SRAM as PUF response.

SRAM cells are very highly optimized circuits such that SRAM PUFs can generate a
relatively high number of PUF bits on a low area with average bit error probabilities
around 15% and a high unpredictablity [KKR+12]. However, SRAM PUFs require a
careful layout of the cells such that no bias is introduced as it was observed for example
in [vHvdLS+13]. The SRAM cell combines the measurement and quantization circuit

12

2.3. PUF Primitives

Figure 2.1.: SRAM PUF

because the inverter whose threshold voltage is reached first after power-up forces the
other inverter into the inverse state.

Other examples that use a similar symmetric structure with an undefined power-up
state are the Butterfly [KGM+08], Flip-Flop [MTV08], Two-Stage [HB10] or Buskeeper
[SvdSvdL12] PUFs.

2.3.2. Arbiter PUF

The Arbiter PUF evaluates the cumulative delay difference of signals that propagate
through two different paths in a circuit. The Arbiter PUF circuit contains of a num-
ber of multiplexers that can be configured through the external challenge as shown in
Figure 2.2.

A
rb
it
e
r

Challenge

Response

Figure 2.2.: Arbiter PUF

The first work on Arbiter PUFs was carried out by Lee et al. [LLG+04] and Lim et al.
[Lim04, LLG+05].

Arbiter PUFs have the advantage that they can be implemented very compactly on
ASICs and also have a challenge-response interface. This allows to generate multiple
bits from a small number of PUFs, as it used e.g. by Yu et al. in [YHD15]. A symmetric
layout of the delay path and the arbiter is important to avoid bias and achieve a high
unpredictability. In practice, the results of multiple arbiter chains are XORed [SD07]
to increase the resilience against machine learning attacks.

2.3.3. Ring Oscillator PUF

The Ring-Oscillator (RO) PUF by Suh and Devadas [SD07] comprises of chains with odd
numbers of inverting elements as shown in Figure 2.3 as measurement circuit. Instead

13

2. Physical Unclonable Functions

of evaluating a signal that propagates through the circuit once like in the Arbiter PUF,
the RO PUF switches constantly with a manufacturing variation dependent frequency.
The signal propagates through the chain so that the the inverted input signal at the end
of the chain is fed back to the input and propagates again through the chain. Due to the
delay of the inverting elements, a periodic oscillation can be observed. Typically, one
NOR gate is used as enable signal to prevent the circuit from oscillating permanently
to save energy.

Figure 2.3.: Ring-Oscillator with 5 inverting elements

Several ROs are combined to an RO PUF, given in Figure 2.4. Counters evaluate the
oscillation frequencies of the inverter chains and quantize the measured values. The
ROs are typically evaluated pair-wise so that only two counters are required and the
different RO chains are connected through multiplexers to the counter. More details on
the implementation RO PUFs and attacks on them can be found e.g. in the dissertation
of Merli in [Mer14].

RO1

RO2

ROn

Enable

Counter1

Counter2

>?

Challenge i

Challenge j

Response

M
U

X
M

U
X

Figure 2.4.: Ring-Oscillator PUF

RO PUFs have the advantage that they can be implemented very well on FPGAs. Since
they are built from standard cells, they are also well-suited for the implementation in
IP blocks.

The sum-PUF by Yu and Devadas allows to mimic an Arbiter-PUF-like behavior with
ROs on FPGAs [YD10a]. Several improvements on the quantization of the frequencies
were proposed in [YQ10, MVHV12, YQ13, GI14]. Some of these approaches require to
store helper data that can be attacked [DV14b].

14

2.4. Conclusions

2.3.4. Bistable and Twisted Bistable Ring PUF

The Bistable Ring PUF [CCL+11, CCL+12] can be seen as a mix of the three previous
PUFs. It contains of a large RO with an even number of inverting elements such that
it ultimately settles in a stable state like the SRAM PUF. In addition, the elements of
the ring can be configured similarly to an Arbiter PUF with an external challenge to
generate multiple response bits from the same physical structure.

The Twisted Bistable Ring PUF [SH14] is an extension that fixes practical shortcomings
of the Bistable Ring PUF such as a strong bias over the PUF responses. This is achieved
by changing the order of the elements in the ring through the challenge instead of
exchanging inverters in a ring.

2.3.5. Non-Silicon PUFs

The previous PUFs all have in common that they comprise of digital logic gates that
can be easily integrated into default CMOS manufacturing processes. Originally, PUFs
were introduced by Pappu et al. in the non-silicon world [PRTG02]. This subsection
mentions a few non-silicon PUFs for completeness. However, the remainder of this work
focuses silicon PUFs.

Instead of using intrinsic circuit components, the Coating PUF by Tuyls et al. wraps a
layer around the circuit to protect it [TSS+06]. The coating can contain particles that
block different wavelengths of light and also metal particles leading a local variation in
capacitance. This unique pattern is used to generate PUF responses. An optical coating
PUF was investigated for example in [EFK+12].

The Protecting Electronic Products foil by Hennig et al. [HSZS13] goes one step further
than the coating PUF and allows to cover larger form factors, for example an entire
printed circuit board for tamper protection.

2.4. Conclusions

This chapter discussed basic definitions on PUFs to lay the foundation for the following
chapters. Most silicon PUFs evaluate effects based on threshold voltages or timing
behavior of transistors. The SRAM and BR PUF settle in unpredictable stable states
while the RO and Arbiter PUF measure timing properties.

Different reliability and entropy measures are presented that are important for the key
derivation schemes. They permit to quantify statistical properties of PUFs to layout
the error correction discussed in the next chapter.

15

Chapter 3.

Error Correction for PUFs

This chapter addresses the state of the art in error correction for PUFs, starting with
the definitions used in referenced work. It gives an overview over theoretical work in dif-
ferent related communities around the hardware security field. Then, previous practical
schemes and their implementations are discussed. Overviews covering different aspects
of error correction can be found in e.g. in [Mae13, HYKD14, DGSV15],[DGV+16]

PUF-specific definitions for error correction for PUFs are provided in Section 3.1. Sec-
tion 3.2 gives an overview over related theoretical work. In Section 3.3, linear schemes
are discussed as one of the two major classes of error correction schemes for PUFs. The
pointer-based schemes in Section 3.4 are the second class. PUF-specific ECC implemen-
tations are given in Section 3.5.

This chapter also mentions contributions on error correction schemes where I was not
the main contributor and contributions that do not fit in the flow of the main con-
tributions of this work that will be addressed in detail in the following chapters. In
[MPB+14, PMB+15, HKS+15], we analyzed and implemented generalized concatenated
codes for PUFs [Bos99]. The C-IBS papers in [HMSS12], and partly [HDSMS12] are
based on my diploma thesis [Hil11] and extended in [HDSMS12]. The Maximum-
Likelihood (ML) symbol decoder by Yu et al. presented in [YHD15] interprets multiple
PUF bits as higher-dimensional symbols. A high-level introduction in German can be
found in [HPS15] and I also contributed to the overview and analysis by Delvaux et al.
in [DGV+16].

3.1. Definitions

There are several synonym and overlapping definitions for the error correction that were
used over the last years. This section reviews the most common ones and explains the
definitions used in this work.

The term helper data algorithm is a very wide term and covers all error correction
schemes for PUFs that use helper data.

Secure Sketch, Helper Data Architecture and Fuzzy Embedder The secure sketch
allows to correct errors in biometric templates with the help of helper data.

17

3. Error Correction for PUFs

To be more precise, Dodis et al. [DRS04] define a secure sketch S over space X as a
randomized map S : X → F

∗
2 that fulfills the following two properties:

1. There exists a deterministic recovery procedure Rec that recovers X from its sketch
W = S(X) and any vector Y close to X such that Rec(Y,W) = X for all X, Y ∈ X
with Hamming distance hd(X, Y) ≤ bd−1

2
c.

2. For all random variables X with output set X and min-entropy H∞(X) the average
min-entropy of X given W is at least m′, so H̃∞(X|W) ≥ m′.

A helper data architecture [TG04] is a less often used synonym for a secure sketch.

The fuzzy embedder by Buhan et al. [BDH+10] is a modification of the secure sketch
that embeds an arbitrary, external secret into a biometric template and stores helper
data. It recovers the embedded secret instead of restoring the biometric template. The
term is mainly used in a biometrics context rather than in the PUF field.

Fuzzy Extractor The fuzzy extractor is an extension of the secure sketch. Instead
of outputting the corrected biometric template, the template is hashed to produce a
full-entropy cryptographic key [DRS04]. Formally, a fuzzy extractor contains the two
procedures generation Gen and reproduction Rep:

1. The probabilistic generation procedure Gen has an input X ∈ X , and outputs
the extracted secret string K ∈ F

l
2 and the public helper data W . Let PU

be the uniform distribution. For any X ∼ PX with H∞(X) it is required for
(K,W)← Gen(X) so that the statistical distance between (K,W) and (PU ,W)
is bounded by an ε. Only the Hamming distance is used in this work, but the
construction also holds for other metrics.

2. The deterministic reproduction procedure Rep recovers K from W and a Y ∈ X
that is close to X with hd(X, Y) ≤ bd−1

2
c. If (K,W)← Gen(X) then Rep(Y,W) =

K.

Comments: Typically, X = F
n
2 . In practice, there also deterministic Gen procedures

used.

According to [DRS04], a fuzzy extractor can be built from any (n, k, d) ECC.

In [DGV+16], we have discussed new, tighter, bounds to evaluate H̃∞(X|W).

Using the same biometric template multiple times can leak key information. This issue
was addressed by Boyen in [Boy04].

The fuzzy extractor can also be extended to a robust fuzzy extractor to detect tampering
with the helper data [DKRS06, KR08, DKK+12].

18

3.2. Theoretical Background

Syndrome Coding and ECC All previous definitions have the shortcoming that they
all address the helper data generation and the error correction together. I picked up
the wording of [YD10b] and define the isolated helper data generation step as syndrome
coding. This definition is inspired by the coding theoretic definition, where the syndrome
is the multiplication of a vector with the parity check matrix of a code. If the syndrome
is zero the vector is a codeword. For the error correction part, the existing definition
for ECCs is fully precise and sufficient.

PUF

Helper Data

SYN

DEC

ECC

DEC

Key

Figure 3.1.: Generic reproduction procedure

Figure 3.1 shows a generic minimalistic reproduction procedure. The PUF response and
the helper data are the inputs of the syndrome decoder. Then, the output is forwarded
to the ECC decoder, where the remaining errors are corrected. For some approaches,
this figure is extended, for example by adding hash functions.

The definitions are mainly given for completeness to put the referenced work into con-
text. In the following, I will mainly use the syndrome coding wording.

3.2. Theoretical Background

Error correction for PUFs touches the information theory, biometrics and cryptographic
community that use slightly different methods and definitions, and also emphasize dif-
ferent aspects and results. Later, I will also discuss new theoretical results. This section
presents an overview over the state of the art on theoretical work on PUFs to embed
the new results in a larger context.

Information Theory Community Wyner’s wiretap channel [Wyn75] is an old problem
in information theory that started a large body of research and is currently attracting
a lot of attention under the term Physical Layer Security [BBRM08]. Basically, two
legitimate parties establish a joint secret by transmitting messages over a channel where
the attacker has access to a slightly noisier version of the communication than the
legitimate receiver.

19

3. Error Correction for PUFs

The problem of key agreement from correlated sequences of a source with multiple
outputs is the corresponding source coding problem. The main difference here is that
the shared sequence is given by the source and cannot be chosen arbitrarily like in a
channel coding problem. Early work was carried out by Ahlswede and Csiszar [AC93]
and Maurer [Mau93]. Strong secrecy is a stronger security notion that bounds the
absolute secrecy leakage instead of the secrecy leakage per bit [CN00].

Boche and Schäfer1 [BW13] extended the model and have shown that strong secrecy is
achievable. The authors also quantified the communication costs. This line of work is
an important foundation for this thesis and more detailed information can be found in
Appendix A.1.

Biometrics Community Biometrics is a popular application of the information theo-
retic model of secret key agreement. An early overview can be found in [LTS07]. Secret
key rates of optical PUFs were addressed in early work of Ignatenko et al. in [ISS+06]
where the approach of [Mau93] is generalized from i.i.d (independent and identically dis-
tributed) to ergodic sources, and the entropy is measured with Context-Tree-Weighting
[WST95], a universal source coding algorithm.

Shielding Functions by Linnartz and Tuyls [LT03] generate secret keys for contin-
uous distribution using quantization index modulation. The work of Buhan et al.
[BDHV07, Buh08, BDH+10] also looks at different information embedding approaches
for continuous distributions. Recent work on the quantization was also performed by
Immler et al. in [IHKS16].

For biometrics, privacy leakage plays an equally important role as secrecy leakage. Since
everyone only has a limited amount of biometric features that are potentially re-used for
different security applications, the question arises how much of the unique information
is revealed by each approach. Ignatenko and Willems discuss fundamental secrecy and
privacy trade-offs from an information theoretic point of view in [IW09, IW10, IW12].

Revealing the confidence of a generated key might be advantageous for some applications
but also opens new attack vectors as shown in [SKVdV09].

The fuzzy vault [JS02] is a scheme that allows to use a set of biometric in an order-
invariant way to unlock stored secrets.

Crypto Community The universal composition framework [Can01] is a major research
direction in cryptography that is not directly related to secure key generation. However,
[BFSK11, Sch13] show that PUFs can be used in this context for cryptographic protocols
such as bit commitment and oblivious transfer. Practical implications are discussed in
[RvD13].

In [AMS+09b, AMS+09a], Armknecht et al. interpret PUFs as pseudo-random functions
and discuss the properties and implications.

1né Wyrembelski

20

3.3. Linear Schemes

3.3. Linear Schemes

Linear schemes are one family of practical syndrome coding schemes. They have in
common that linear operations are applied to the entire input sequence to compute the
secret and the helper data. Therefore they also use linear ECCs [Bos99] with parame-
ters (n, k, d). Some schemes can also handle non-linear codes but this option was not
investigated or even implemented so far.

Fuzzy Commitment The Fuzzy Commitment [JW99] by Juels and Wattenberg stores
a random input Rk with the help of the PUF in a concealed way such that it can be
reproduced and used later as key Sn. Rk is encoded to a codeword Sn = Cn = Rk G of
the ECC by multiplying the random sequence with the generator matrix G of the code.
Then, it is masked with the PUF response Xn and the result is stored as public helper
data W n.

Sn = Rk G (3.1)

W n =
(
Rk G

)
⊕Xn (3.2)

A modified version of the Fuzzy Commitment was introduced in [TAK+05]. It uses
a secret Kk which does not contain any redundancy directly as output instead of the
codeword.

Kk = Sk = Rk (3.3)

W n =
(
Rk G

)
⊕Xn (3.4)

The original Fuzzy Commitment relies on an information theoretical security argument.
The Computational Fuzzy Extractor [FMR13] is a modified Fuzzy Commitment that
is constructed based on a complexity theoretical argument, namely the hard problem
of learning parity with noise [BKW03]. Here, the structured generator matrix of the
ECC G is replaced by a random generator matrix that is a-priorily chosen. Since the
decoding is hard under the presence of errors, a trapdoor is introduced in [HRvD+16]
that basically uses erasures to mark unreliable PUF bits in Y n dynamically during
reproduction and thus reduces the decoding complexity to a practically feasible level
while keeping the complexity for the attacker at the previous level.

Code-Offset Fuzzy Extractor The Code-Offset Fuzzy Extractor [DRS04] shows sev-
eral parallels to the Fuzzy Commitment. The main difference is that the PUF response
Xn defines the secret Sn instead of deriving it from the random number Rk. This differ-
ence causes leakage so that a hash function has to be added. Again, the helper data W n

21

3. Error Correction for PUFs

is computed as XOR between a random codeword Cn = Rk G and the PUF response
Xn.

Sn = Xn

Kk = f (Sn)
W n =

(
Rk G

)
⊕Xn

(3.5)

There exist different implementations of this approach:

An early implementation was introduced by Bösch et al. [Bös08, BGS+08] looking at
Reed–Muller, BCH and Golay Codes [Bos99].

Maes et al. published a Soft-Decision Reed–Muller implementation [MTV09b, MTV09a]
for an SRAM PUF on FPGAs, decoding the Reed–Muller code as Generalized Multiple
Concatenated (GMC) code [Bos99].

Van der Leest et al. looked at an enrollment scenario with a single read-out [vdLPvdS12]
also with Golay Codes and a standard-array decoder.

Recently, we introduced constructions with generalized code concatenation in
[MPB+14] using Reed–Muller codes and [PMB+15] also including Reed–Solomon codes.
Kürzinger implemented the approach discussed in [MPB+14] under my supervision
[HKS+15][Kür14] aiming at a very compact implementation size.

Syndrome Construction Another construction introduced in [DRS04] is based on the
method in [BBCS92] and requires linear codes. It stores the syndrome of the PUF
response as helper data so that no extra input random number Rk is required. Note
that for linear ECCs, the syndrome is precisely defined for block codes with parity check
matrix H. The syndrome is computed by multiplying the PUF response Xn with HT .
Again, a hash function Kk = f (Sn) is added to mitigate leakage. It compresses the
PUF output to create a secure cryptographic key.

In channel coding, the syndrome reveals information on the error pattern, or more pre-
cisely the coset of the input word. In the general PUF context, the word syndrome is
interpreted as information that facilitates error correction since it also contains infor-
mation on the error pattern in the PUF response. Here, Syndrome Construction is used
to specifically refer to the precise channel coding definition.

Suh implemented this scheme in 2005 in the AEGIS secure processor [Suh05], using
a BCH code as ECC. Maes et al. also presented an implementation called PUFKY
in [MVHV12] that uses the syndrome construction and a BCH code. It is part of a
stand-alone FPGA IP core using RO PUFs.

Parity Construction The construction in [DFM98] stores the parity of the PUF re-
sponse according to W n−k = XkP. The PUF response Xk is hashed and output as
key.

22

3.4. Pointer-Based Schemes

3.4. Pointer-Based Schemes

Instead of storing a linear function of the PUF response and random input number as
helper data, the pointer-based schemes store pointers to specific PUF responses. This
has the advantage that linear dependencies between the secret and the helper data are
removed.

Index-Based Syndrome Coding Index-Based Syndrome Coding (IBS) is a pointer-
based approach and was introduced by Yu and Devadas in [YD10b]. A secret is encoded
with an ECC and the PUF response is divided into fixed-sized blocks. Within each block
the PUF response bit that is equal to the codeword bit with the highest probability is
indexed, so that a pointer to this bit is stored in the helper data.

IBS performs error reduction by selecting response bits with a higher than average
reliability. Another advantage is that for i.i.d. PUF bits, the pointers are uncorrelated
with the code sequence so that no information leaks through the helper data.

In [YMSD11], an RO sum-PUF was used to generate the PUF bits. Syndrome distribu-
tion shaping was introduced to harden the approach against machine learning attacks.
In addition, an ASIC implementation was presented in [YSS+12]. The output bits of
an RO sum-PUF are not fully i.i.d. so that IBS helper data can attacked with machine
learning as it was shown in [BWG15].

Complementary Index-Based Syndrome Coding IBS ignores the majority of PUF
response bits so that is quite inefficient in terms of used PUF bits. Only a small frac-
tion is indexed while the rest is discarded. In my diploma thesis [Hil11], I introduced
Complementary IBS (C-IBS) that adds an intermediate encoding step. The codeword
bit is encoded with a repetition-like code, but with equal Hamming weight for both
codewords. Then, each repetition code bit is encoded as IBS pointer. This increases the
efficiency of IBS. Publications on C-IBS can be found in [HMSS12] and [HDSMS12].

Maximum-Likelihood Symbol Recovery The previous two approaches index bit-wise.
In contrast, the ML Symbol Recovery we presented in [YHD15] indexes an entire PUF
response block, similar to the Slender protocol for authentication with strong PUFs
[MRK+12]. The PUF response is partitioned into several blocks and the secret selects
one of the blocks which is published as helper data.

For decoding, the entire response sequence is read in and all blocks are compared to
the helper data. The position of the block with the minimum distance is returned as
secret. Note that ML decoding is applied, which has increased error correction capability
compared to other decoding algorithms. However, the decoding complexity and number
of PUF response bits increase exponentially with the number of embedded key bits.
The implementation in [YHD15] demonstrated that this approach is especially suited
for PUFs with bit error probabilities greater than 20%.

23

3. Error Correction for PUFs

3.5. Error-Correcting Code Implementations

For most of the implementations, the ECC decoder is the largest module in the repro-
duction block. In contrast to most communication use cases, latency and throughput are
not critical for most considered PUF applications. If the key can be precomputed before
it is used, the area is the most critical optimization goal in today’s implementations.

Application Specific Processors One popular implementation strategy breaks down
the decoding algorithm into instructions that are executed by a processor with a reduced
custom instruction set. It has the advantage that the components are generic and can
be reused several times. This strategy was used to implement a Generalized Multiple
Concatenated (GMC) code decoder [Bos99] for a Reed–Muller code in [MTV09a] and
a BCH decoder in [MVHV12, VHV12]. In [Ley15], Leyh developed a core for decoding
BCH codes under my supervision that will be used for reference implementation results
later in this thesis.

Reed–Muller Reed-Decoder In [HKS+15], we broke down the Reed decoding of the
Reed–Muller Code into very small and very similar operations and used a circular shift
register to move different code bits to the desired destinations of the decoder. It is based
on the Reed decoder discussed in [MS77].

3.6. Conclusions

There are two main families of syndrome coding schemes for PUFs: linear approaches
and pointer-based approaches. Over the last 10 years, vivid research in the PUF com-
munity improved the efficiency of the error correction, leading to more compact and
powerful implementations.

The ECC decoders are relatively large and have different requirements than in typical
communication scenarios. Therefore, they have to be addressed in detail and optimized
especially for this use case.

24

Chapter 4.

Theoretical Foundations of Key

Derivation with PUFs

Chapter 3 has shown that there are several approaches for secure key derivation with
PUFs and also the referenced implementation demonstrated that the approaches can be
used in practice. New algorithms were designed and the limits were pushed. However
the question is still open, how far the state of the art is away from ultimate limits.
Information theory provides the necessary tools to answer this question because the
problem of secure key agreement from correlated sources in general [AC93, Mau93] and
the introduction of the compound source in specific [BW13] address this issue. I will
discuss why and how this model fits to the practical problem and repeat fundamental
theoretical results from [AC93, Mau93, BW13] that will be used in this work.

This chapter has two main contributions: An information theoretical model for secret
key derivation with PUFs and a generic algebraic representation and security criterion
to evaluate syndrome coding schemes on an algorithmic level.

Section 4.1 addresses the common points and differences between the information the-
oretical and the practical problem. The impact of the information theoretical limits on
PUFs are discussed in Section 4.2. I introduce a unified algebraic view on key deriva-
tion with PUFs in Section 4.3 that leads to a generic security criterion, presented in
Section 4.4. In Section 4.5, this criterion is applied to the linear approaches given in
Section 3.3.

This chapter is based on the results published in [HYP15] and [PHS17, HPKS16].

4.1. Relation between PUFs and Compound Sources

This section shows that there is almost a 1:1 correspondence between the theoretical
problem of secret key agreement from correlated compound sources and the practical
problem of secret key derivation with PUFs, as shown in Figure 4.1. While some previous
work only evaluated one source distribution [TG04, IW10], the compound source model
introduced in [BW13] has an internal state that is able to capture different physical
states of a device and output them with different source statistics. More recent work on
compound sources can be found in [GBS15, TBS15].

25

4. Theoretical Foundations of Key Derivation with PUFs

Public Channel

Compound Source

Eve

Alice Bob
Helper Data

PUF

Attacker

GEN REP

Figure 4.1.: Analogies between the key agreement from a compound source and secret

key derivation with a PUF

In the theoretical scenario, Alice acts as enrollment that is performed in the secured
manufacturing environment while Bob corresponds to the key reproduction procedure
in the field. One difference between the theoretical and the PUF scenario is that Bob
typically only derives a session key once while the PUF key generation is carried out
multiple times.

The following four aspects characterize major parallels and differences between the in-
formation theoretical model and PUFs as application:

Source of Randomness A large sample of PUF ICs behaves like two nested random
processes. The first random variable represents the manufacturing process that defines
the physical parameters of a specific device. The PUF circuit itself is an instantiation
of this random variable. The response sequence depends on the internal physical pa-
rameters of the circuit and external physical parameters, or operating conditions which
are represented as the state of the source. For reproduction, noise is added which is
represented as second random variable. The new response should ideally still be closely
correlated with the first sequence output by this specific PUF. The response is read out
in the field for each cryptographic key reproduction whenever the key is needed.

Instead of a large batch of devices that generate individual keys, two parties, Alice and
Bob, want to generate session keys after each of the two observes one sequence of their
common source of randomness. For exactly identical sequences, the problem is trivial.
If the sequences are only correlated, Alice and Bob have to exchange messages to be
able to perform error correction and extract the joint part.

Since the derivation takes place only once, the first sequence refers to a fixed state and
the index is dropped in the following. Using multiple measurements during enrollment
further enhances the performance of the system [GK16] but is not considered in the
following.

26

4.1. Relation between PUFs and Compound Sources

Communication between Parties In both cases, the exchanged data enables error
correction. The information theoretical scenario assumes an authenticated, noiseless,
potentially bi-directional communication between Alice and Bob. However, note that
the optimal protocol discussed in [BW13] only requires one-way communication.

For PUFs, the helper data enables the communication between generation and repro-
duction.

Influence of the Attacker In both scenarios, the attacker can set the state of the
source to make the key generation as inefficient as possible for Alice and Bob. In the
PUF case, the PUF operates under different environmental conditions and still has to
work reliably. This represents different operation conditions and physical factors such as
temperature, external voltage or age that are represented in the state of the compound
source.

While the information theoretic scenario assumes an authenticated channel [BW13],
the helper data can be manipulated by the attacker in the PUF case. Various attacks
are discussed in [DV14a, DV14b, DGSV15] and helper data manipulation will also be
addressed in Section 6.4.2.

Physical attacks such as power, electro-magnetic and photonic side-channel attacks
[KS10, MSSS11, MHH+13, Mer14, TNS+14], laser fault attacks [TLG+15] and inva-
sive attacks [NHSB13, HNT+13] are practical threats that are not addressed explicitly
in this work. Here, it is also important to keep in mind that silicon PUFs are mainly
aiming to secure a standard CMOS circuit where meshes and other advanced security
features used in smart cards are not available. The PUF should not allow additional
attacks but it is also an unrealistic desire (or promise) to solve all problems by adding
a PUF.

Distance between Parties The parties involved in the key generation are separated in
some sense. The information theoretical scenario typically makes the assumption that
Alice and Bob are in different locations so that they communicate over a public wireless
or cable connection. In contrast, two responses of the same PUF are separated in time.
This has the practical limitation that no backward communication from Bob to Alice
is possible. However, the optimal coding scheme in [BW13] does not require backward
communication so that this limitation only has minor practical impact and the scenarios
are still very similar. Assuming that the adversary has unlimited computational power,
the security requirements for both key generation scenarios are identical.

For helper data manipulation, the separation over time is more advantageous for the
attacker because he can spend more time to compute manipulated helper data. Inter-
fering in a communication over space as man in the middle is more difficult because
intercepting the original helper data and sending the manipulated one has to occur
before a time-out signal is sent.

27

4. Theoretical Foundations of Key Derivation with PUFs

Information Theoretical

Model

Key Derivation with

PUFs

Source of Randomness Compound Source Batch of PUFs

Communication between

Parties

Public Communication

Channel

Public Helper Data

Influence of Attacker State of the Compound

Source

Operating Conditions of

PUF

Distance between Parties Space Time

Table 4.1.: Comparison of key derivation with a PUF and secret key agreement with a

compound source

Table 4.1 briefly wraps up the previous discussion. It shows that secret key derivation
with PUF is a specific case of the information theoretical problem of secure agreement
from a compound source.

4.2. Review of the Information Theoretical Criteria and

Limits

Figure 4.1 already gave a first, high-level overview over the problem of secret key gener-
ation with a compound source. In the following, the more detailed version in Figure 4.2
also contains the variable names. The discrete memoryless multiple compound source
[BW13] with correlated output sequences has an internal state t that is element of the set
T containing all possible states. Alice observes the outcome x ∈ X of random variable
Xt with marginal probability distribution PX,t(x) and Bob has access to y ∈ Y drawn
from random variable Yt with marginal probability distribution PY,t(y). The joint prob-
ability distribution is given by PXY,t(x, y). Eve is completely ignorant of Xt and Yt but
has access to the source in a sense that she can set the state t.

Alice and Bob establish keys K and L from the same key space K, with K,L ∈ K after
sending helper data W over the public channel with the goal that H(Xt

n|YtnW) goes to
zero. If this is the case, Xt

n is fully determined by Yt
n and W . The secret key agreement

protocols by Ahlswede and Cziszar [AC93], and Boche and Schfer [BW13] are discussed
in Appendix A.1.

In theory, Alice and Bob both observe marginals of n output pairs (x, y) of the source
that are drawn independently. A memoryless source that outputs independent bits is a
lot easier to handle and this simplification also holds in good approximation in practice
for PUFs. It was shown, e.g. in [KKR+12], that popular PUF types such as the SRAM
PUF or RO PUF can have nearly independent bits if they are implemented properly.

28

4.2. Review of the Information Theoretical Criteria and Limits

Eve

Alice Bob

{ P }XY,t

X t

n
Y t

n

t

W

t

Figure 4.2.: Secret key generation with a compound source

Alice’s observation Xt and Bob’s observation Yt have I(Xt;Yt) in common so that Bob
only has to know Xt|Yt to be able to reproduce the correct Xt. Instead of drawing
Yt directly from the source, Yt can be represented by the outcome of a probabilistic
memoryless channel Tt between Alice and Bob with input x ∈ X and output y ∈ Y . The
channel behavior is represented with the conditioned probability distribution PYt|X,t. For
one key agreement, one fixed state t ∈ T is considered and the channel Tt is defined by
the set of the conditional probabilities for all (x, y) pairs.

Tt =

{
PY |X,t(x, y) =

PXY,t(x, y)

PX,t(x)
: x ∈ X , y ∈ Y

}
(4.1)

Note that in contrast to a channel coding problem such as the compound wiretap
channel [LKPS09] it is not possible to optimize the properties of the transmitted
sequence for the specific channel, since Xt is determined by the source and cannot be
modified.

Definition of an Achievable Rate To be able to evaluate if a key agreement protocol
is good or not, the following achievable rate definition was introduced in [AC93] and
applied to biometrics, for example in [TG04]. The definition basically tells that the keys
of Alice and Bob have to be equal with a high probability, the helper data must not
leak substantial information about the key and the entire key space has to be used.

More formally, an achievable key rate Rkey specifies the amount of secret information
that can be derived reliably and securely from each (x, y) pair for large n. The rate is a
relative measure that is defined by key size divided by the length n of the PUF response.

Ahlswede and Csiszar [AC93] defined that a key rate Rkey is an achievable key rate if
the following four conditions hold for an ε > 0:

29

4. Theoretical Foundations of Key Derivation with PUFs

Pr[K 6= L] < ε (4.2)

1

n
I(W ;K) < ε (4.3)

1

n
H(K) > Rkey − ε (4.4)

1

n
log2 |K| <

1

n
H(K) + ε (4.5)

In [BW13], Boche and Schäfer use a stronger security notion, called strong secrecy
[MW00, CN08], where Condition 4.3 is replaced by

I(W ;K) < ε (4.6)

and also extend the general notion to compound sources such that the equations have
to hold for every t ∈ T. Going from Condition 4.3 to the tightened version in 4.6 is
important to strengthen asymptotic results. In this work, the absolute ε or n · ε value
is of major interest since PUFs are operating in a relatively small, finite block-length
regime.

Adapted from [BW13], the achievable helper data rate Rhd is for an achievable key rate
Rkey fulfilling Conditions 4.2 to 4.5 is given by

Rhd =
log2(|W|)

n
(4.7)

Interpretation of Conditions 4.2 to 4.5 Condition 4.2 quantifies that the probability
of generating an incorrect key L is smaller than ε and ensures the reliability of a protocol.
In practice, the error probability in Condition 4.2 can be quantified for example by
bounding techniques, e.g. [Bos99, CT06], or Monte Carlo simulations.

Security is ensured by Condition 4.3 or the stricter version in 4.6 because it bounds
the amount of key information K that leaks through the helper data W . The ε in
Condition 4.3 is quite hard to quantify. While H(X|W), analyzed in detail in [DGV+16],
can serve as starting point, general properties of I(W ;K) will be discussed later in
Section 4.3.

The rate Rkey quantifies the performance of a scheme. To make it a meaningful quantity
for the entropy of the generated key, Condition 4.4 tells that the entropy of the key must
not be much smaller than rate Rkey. The entropy H(K) in Conditions 4.4 and 4.5 can
be evaluated, for example with universal source coding algorithms such as context tree
weighting [WST95] or the Lempel-Ziv algorithm[ZL77], or with randomness tests such
as the NIST test suite for random number generators [RSN+10].

30

4.3. Unified Algebraic View on Secure Key Derivation with PUFs

Aiming to generate cryptographically strong keys, they should use the entire key space,
which is specified in Condition 4.5. It states that the key space must only be slightly
larger than the space that is filled by instantiations of K.

Capacity Definitions Information theory is generally interested in specifying the ulti-
mate achievable rates of a problem and to reach them asymptotically for block lengths
going to infinity. The ultimate rate that captures the limits of a system is called capacity
C and ideally an achievable rate R should approach capacity for large n with ε going to
zero. Depending whether a capacity C is defined as upper or lower bound of a measure,
it is defined as the supremum or infimum over all achievable rates R.

The supremum over all achievable key rates Rkey gives the key capacity Ckey of a com-
pound source. Boche and Schäfer have proven in [BW13] that the key capacity is the
minimum mutual information between both outcomes Xt and Yt of the source over all
possible states T .

Ckey = sup
Rkey is achievable rate

Rkey (4.8)

= min
t∈T

I(Xt, Yt) (4.9)

The decoder knows Yt, so it takes in average H(Xt|Yt) bits to reconstruct Xt from Yt with
joint distribution PXY,t and state t. However, H(Xt|Yt) varies over t. The maximum
conditioned entropy over all states is the helper data capacity Chd because this quantifies
the minimum amount to reliably reconstruct Xt from Yt also in the worst-case state.

Chd = max
t∈T

H(Xt|Yt) (4.10)

See again [BW13] for the proof. The capacities allow to evaluate schemes not only in
comparison to previous work. They also give designers quantitative information on how
far a scheme can still be improved until the absolute limits are reached and how far the
state of the art is still away from these limits.

4.3. Unified Algebraic View on Secure Key Derivation

with PUFs

Most helper data generation schemes discussed in Chapter 3 are given in an algorithmic
description which is close to implementation. However, it is hard to see fundamental
theoretical properties from this description. The unified algebraic description of the

31

4. Theoretical Foundations of Key Derivation with PUFs

problem, introduced in this section, reveals more information on the underlying struc-
ture, and especially facilitates to analyze the secrecy leakage in Condition 4.3 in general
only by evaluating algebraic properties of the coding scheme.

The new algebraic representation can represent linear schemes as the most-widely used
class covering, e.g. [DFM98, JW99, DRS04] and [HYP15]. Only very few exceptions
that do not show a regular algebraic structure such as [HWRL+13, YHD15] are hard
to analyze with this approach. An extended version of the algebraic representation is
discussed in [PHS17] also covers IBS [YD10b] and C-IBS [HMSS12].

Algebraic Core A

SYN

ENC Helper

 Data W

ECC

ENC

Random

Input R

PUF

Response X

Secret

S

kin

l in

kout

lout

Figure 4.3.: Algebraic view on secret key and helper data generation with a PUF during

enrollment

Figure 4.3 shows a generic high-level block diagram of secret key and helper data gen-
eration. This section looks at generic properties of vectors and the vector lengths are
dropped in this section for simpler representation and improved readability. They are
added again in the following case study to highlight overlaps and differences between
the different approaches. The PUF response X is a mandatory input to bind a key to
a PUF. In addition, some approaches also have a random number R as input that is
only necessary for helper data generation. In principle, it can be generated externally
in the secure manufacturing environment to avoid an on-chip True Random Number
Generator (TRNG). The random number can be used directly as embedded key or as
additional input if the PUF response is used as secret.

The binary PUF response X can be extended by reliability information, gathered from
additional analog PUF response information or repeated measurements. This can be
used for example to select the most stable PUF response bits with dark bit masking
[AMS+09a] to reduce the number of errors that have to be corrected by the error correc-
tion. It can be also used for indexing operations to increase reliability and security at the
same time for example in [YD10b, HMSS12]. These additional algorithmic steps can be
represented in a Preprocessing Matrix Mpre or Postprocessing Matrix Mpost, discussed
in detail in [PHS17].

The secret S and the helper data W are the two necessary outputs of each scheme. In
addition, optional reliability information on PUF response bits X can be stored in the

32

4.3. Unified Algebraic View on Secure Key Derivation with PUFs

helper data to enable soft-decision decoding to increase the reliability when the secret
is computed later in the field [MTV09a, HMSS12].

The helper data generation schemes with linear mappings discussed in Section 3.3 have
the following generic form in common with the Algebraic Core A in the center.

[S,W] = [R,X] Mpre A Mpost (4.11)

The inputs on the left side of the matrices are the random number R with dimensions
〈1× kin〉 and the PUF response X with dimensions 〈1× lin〉. As preprocessing step
such as dark bit masking [AMS+09a], the inputs are multiplied with the Preprocessing
Matrix Mpre. The multiplication with the Algebraic Core A is the most important
encoding operation where all interaction between R and X is performed. No inter-
action between the preliminary versions of S and W are allowed to take place in the
Postprocessing Matrix Mpost. Postprocessing steps such as the indexing operations in
[YD10b, HMSS12] are captured in Mpost. The final results S and W are of size 〈1× kout〉
and 〈1× lout〉.

The Algebraic Core A reveals fundamental security properties. Therefore, Mpre and
Mpost in Eqn. 4.11 are removed in the following, so Eqn. 4.11 simplifies to

[S,W] = [R,X] A (4.12)

A is split into a left part AL that outputs the secret S and a right part AR that
determines the helper data W . The random input R is multiplied with the upper part
[AUL AUR] of A and the PUF response X is multiplied with the lower part [ALL ALR].
As a result, A in Eqn. 4.12 decomposes to four sub-matrices of interest that will be
analyzed in the remainder of this chapter.

A =
[
AL AR

]
=

[
AUL AUR

ALL ALR

]
(4.13)

Figure 4.4 provides the dimensions of the sub-matrices of A given in Eqn. 4.13.

As discussed in Section 4.1, authenticated helper data cannot be guaranteed so that the
helper data is prone to tampering in general. To prevent this class of attacks, described
e.g. in [HWRL+13] and [DGSV15], a hash function can be used to hash the helper
data and XOR it with the secret as key K = S ⊕ f (W) [HWRL+13]. Using S ⊕ f (W)
instead of f (S,W) has the advantage that the hash function only operates on public
data, whereas f (S,W) would also be an interesting target for side-channel attacks. In
addition, only the diffusion property of the hash function is actually required and not
the stronger one-way property so that simpler algorithms could already achieve that
necessary security level.

The helper data of some schemes leak secret information. A hash function is added to
compress the remaining entropy H(S|W) that is spread over the entire secret S to a

33

4. Theoretical Foundations of Key Derivation with PUFs

URA

LRALLA

ULA

outk outl

ink

inl

Figure 4.4.: Dimensions of the sub-matrices of the Algebraic Core

shorter vector K = f (S) [DRS04] such that H(K) > kout − ε for key size kout and a
small ε > 0. It was shown in [DRS04] that information theoretically secure keys can
be generated if a universal hash function is used. Typically, hardware implementations
only have a regular cryptographic hash function instead of the universal hash function.
Compressing S to K comes at the expense that the hash loss has to be taken into
account [BDK+11] which requires a larger secret S. In addition, the hash function
adds computational complexity and a possible target for side-channel attacks, such as
in [MSSS11]. Therefore, one aim of the pursuit is to avoid the hashing of secret data
whenever possible.

4.4. Generic Security Criterion

As given by Condition 4.3 and 4.6 in Section 4.2, the mutual information I(S;W) has
a critical impact on the security of the secret key. The goal is that S and W are
uncorrelated such that I(S;W) < ε holds for a small ε. I will show that this is only
achievable if the rank of the entire Algebraic Core A is equal to the sum of the ranks of
the secret generating part AL and the helper data generating part AR. In the following
the rank loss ∆ will be introduced as a measure to quantify the difference between the
maximum possible rank of a matrix given by its smaller dimension and the actual rank.

Starting with some preliminaries, the size of an output space is defined by its basis. A
set of row vectors of a matrix define the basis of a space. In the following, the rank of a
matrix as an algebraic measure and the mutual information as an information theoretical
measure are linked. The entropy of an output of a vector-matrix multiplication is upper
bounded by the rank of the matrix the input is multiplied with.

Let the input sequence be Y ∈ Fn2 and the output sequence be Z ∈ Fm2 . The matrix A
has dimensions dim(A) = 〈n×m〉 and let q = rank (A). Z is given by Z = Y ·A. This
multiplication is equivalent to one specific mapping of Y ∈ Fn2 into a subspace Q ⊆ Fm2

34

4.4. Generic Security Criterion

with |Q| = 2q elements. The Shannon entropy of Z is H(Z) = q if all elements in space
Q occur with the same probability and H (Z) < q, otherwise.

In the following, this reasoning will be applied to Eqn. 4.12. Let set R contain all
possible input random numbers R and the set X contain all possible PUF responses
X. On the output side, let S be the set with all secret keys S and helper data set
W be the set containing all possible helper data values W . According to Eqn. 4.12
the input space R×X = F

kin+lin
2 is mapped to the output space S ×W ⊆ Fkout+lout2

through the Algebraic Core A. log2 (|S ×W|) is upper bounded by the rank of A,
which is equivalent to the maximum number of linearly independent base vectors in the
index set of the output space. If an element in R×X occurs with probability zero, the
size of the output space is also reduced, so log2 (|S ×W|) < rank (A). Therefore, the
maximum size of the index sets will be applied as a measure in the following.

To derive a bound on the secrecy leakage, index sets I of spaces are defined. An index
set contains numbers of rows of a matrix that form a basis. So, the space is given as
linear combination of the indexed rows.

Spaces S and W have bases formed by rows AL,i and AR,i of AL and AR, respectively.
The vectors selected by the elements in each index set I are linearly independent, so
any linear combination of base vectors can be zero only if all coefficients λi are zero.

IL =

{
i ∈ {1, ..., kin + lin}

∣∣∣∣∣∑
i

λi · AL,i = 0⇔ ∀i : λi = 0

}
(4.14)

IR =

{
i ∈ {1, ..., kin + lin}

∣∣∣∣∣∑
i

λi · AR,i = 0⇔ ∀i : λi = 0

}
(4.15)

Accordingly, the index set I of the full Algebraic Core A is:

I =

{
i ∈ {1, ..., kin + lin}

∣∣∣∣∣∑
i

λi · Ai = 0⇔ ∀i : λi = 0

}
(4.16)

Note that, |I| ≤ rank (A).

The rank loss ∆ quantifies the difference between the maximum rank of a matrix defined
by its dimensions and the maximum index set size, given by the rank. There are three
rank losses of interest: ∆L referring to AL, ∆R referring to AR and ∆ referring to the
entire core A, so

∆L = min{kin + lin, kout} − rank (AL) (4.17)

Analogously, ∆R and ∆ for AR and A are

35

4. Theoretical Foundations of Key Derivation with PUFs

∆R = min{kin + lin, lout} − rank (AR) (4.18)

∆ = min{kin + lin, kout + lout} − rank (A) (4.19)

The minimal rank loss gdim (kin + lin, kout, lout) that can occur by the concatenation of
two matrices, given by the dimensions, is defined as

gdim (kin + lin, kout, lout) = min{kin + lin, kout}+ min{kin + lin, lout} (4.20)

−min{kin + lin, kout + lout}

Only if there are rows of AL and AR that form bases of two complementary vector spaces
with dimensions rank (AL) and rank (AR), i.e., if the indices of the rows selected for
the bases from AL and AR are different such that

IL ∩ IR = ∅ (4.21)

the leakage can be brought to zero. Only then, the outputs S and W can become
independent. If the spaces are not complementary, there exists a linear dependency
between S and W which leads to secrecy leakage.

The union of the index sets define a basis formed by rows of A.

Lemma: The difference between the minimal rank loss and the actual rank loss bounds
the mutual information I (S;W) between the secret and helper data.

I (S;W) ≤ gdim (kin + lin, kout, lout) − (∆L + ∆R −∆) + ε0 (4.22)

= rank (AL) + rank (AR)− rank (A) + ε0 (4.23)

ε0 depends on the entropy of the input PUF data H(X) and the entropy of the random
number H(R). As soon as there is any overlap in the index sets, S and W cannot
be independent. The difference ∆L + ∆R −∆ is increased by one for each overlapping
index so that the leakage of the algebraic core is increased by one accordingly.

Proof: As first step of the bounding, all possible index sets are selected which contain
a maximum-sized set of linearly independent rows:

|IL| = rank (AL) (4.24)

|IR| = rank (AR) (4.25)

36

4.4. Generic Security Criterion

The selected index sets can be used to construct index sets for A.

I = IL ∪ IR (4.26)

All these sets are searched for a set I which is built from non-overlapping sets IL,IR.
This is ensured iff Eqns. 4.24 and 4.25, Eqn. 4.26 and

|I| = |IL|+ |IR| (4.27)

hold. If such a set I exists, i.e.,

∃
I,IL,IR

(I = IL ∪ IR) ∧ (|I| = |IL|+ |IR| = rank (AL) + rank (AR)) (4.28)

it is ensured, that no information leaks due to the structure of the Algebraic Core. If
Eqn. 4.28 cannot be fulfilled, information is leaked. Thus, we claim that Eqn. 4.28 is a
necessary and sufficient condition to ensure I (S;W) ≤ ε0.

Going to the mutual information as actual quantity of interest, I(S;W) can be rewritten
as

I(S;W) = H (S) +H (W)−H ([S W]). (4.29)

For sources with high entropy, the measures H(R) and H(X) can be set to
H(R) = kin − εin,1 and H(X) = lin − εin,2, respectively. This gives ε, εL, and εR val-
ues in

H (S) =H ([R X] AL) (4.30)

=rank (AL)− εL
= min{kin + lin, kout} −∆L − εL

H (W) =H ([R X] AR) (4.31)

=rank (AR)− εR
= min{kin + lin, lout} −∆R − εR

H ([S W]) =H ([R X] A) (4.32)

=rank (A)− ε
= min{kin + lin, kout + lout} −∆− ε

The epsilon parameters equal out partially in Eqn. 4.29 giving the overall loss ε0 with
ε0 = ε− εL − εR. As an upper bound, ε = εin,1 + εin,2 and εL = εR = 0 hold such
that ε0 ≤ εin,1 + εin,2. Note that ε only depends on the random number and the PUF

37

4. Theoretical Foundations of Key Derivation with PUFs

implementation, and can be brought down close to zero with good TRNG and PUF
implementations [KKR+12].

Inserting the Eqns. 4.30 to 4.32 into Eqn. 4.29 results in the mutual information

I (S;W) = H(S) +H(W)−H([S W]) (4.33)

≤ rank (AR) + rank (AL)− rank (A) + ε0 (4.34)

The ranks correspond to the maximum sizes of the index sets, so

= |IL|+ |IR| − |I|+ ε0 (4.35)

Using Eqns. 4.17 to 4.19 and Eqn. 4.20 gives

= gdim (kin + lin, kout, lout)− (∆L + ∆R −∆) + ε0 (4.36)

Eqn. 4.35 shows that, the mutual information in Eqn. 4.33 can only be brought down
close to zero if Eqn. 4.28 holds.

�

4.5. Algebraic Representation and Analysis of the State

of the Art

This section derives the Algebraic Cores for the linear schemes presented in Section 3.3.
It analyzes the secrecy leakage and discusses which schemes approach capacity for op-
timal (n, k, ε) codes introduced in Section 1.7. The superscripts for vector lengths are
picked up again to highlight the differences between the discussed approaches.

All approaches except of the Parity Construction use the same (n, k, ε) codes so that
the results can be directly compared to each other.

Fuzzy Commitment Let kin = kout = k and lin = lout = n. For the Fuzzy Commitment
[JW99], Rk is encoded and then output as secret Sn such that AUL = G and ALL = 0.
The product Rk G is XORed with Xn to form the helper data W n so that AUR is set
to the generator matrix G while AUL is the identity matrix I. Let γ(·) be the decoding
operation of the ECC. Then, the resulting equation in matrix form is

38

4.5. Algebraic Representation and Analysis of the State of the Art

[Sn W n] =
[
Rk Xn

] A︷ ︸︸ ︷(
G G
0 I

)
(4.37)

Kk = γ(Sn) (4.38)

For the modified version with Kk = Sk = Rk, presented in [TAK+05], AUL = G is re-
placed by I, resulting in

[
Sk W n

]
=
[
Rk Xn

] (I G
0 I

)
(4.39)

The difference between the two approaches is that [JW99] returns the codeword as secret
while [TAK+05] returns the random input.

In Eqn. 4.37, AL has rank k limited by the number of rows of G while AR has rank
n given by the number of columns. The full Algebraic Core has rank k + n so that
the index set I contains k + n values fulfilling Eqn. 4.28. The Algebraic Core A of the
Fuzzy Commitment in Eqn. 4.39 is an upper triangular matrix with full rank such that
Eqn. 4.28 holds immediately. As a result, the secrecy leakage of the Fuzzy Commitment
only depends on the joint entropy of the PUF response Xn and of the random number
Rk.

If the joint entropy H([Xn Rk]) is sufficiently high, the secret Sk can directly be used
as a key Kk. If H(Sk) << k, Sk can be compressed to a smaller key Kk∗ with k∗ < k
that fulfills Condition 4.5. The helper data has a fixed size of n which is larger than
necessary.

For a capacity achieving (n, kn, ε) code, up to kn secret bits can be derived. For large
n, approaches kn/n approaches capacity, so

lim
n→∞

Rkey = lim
n→∞

kn
n

= Ckey (4.40)

Since one helper data bit is stored for each key bit, Rhd = 1.

Code-Offset Fuzzy Extractor The Code-Offset Fuzzy Extractor [DRS04] shows sev-
eral parallels to the Fuzzy Commitment. Let kin = k and kout = lin = lout = n. Instead
of using the random number as secret, the PUF response is hashed and output as key.
Therefore, Sn = Xn, AUL = 0 and ALL = I while the right side of the algebraic core
A is AUR = G and ALR = I and thus remains the same as in the Fuzzy Commitment.
Eqn. 4.42 is added to compress the n-bit PUF response to a k-bit key.

39

4. Theoretical Foundations of Key Derivation with PUFs

[Sn W n] =
[
Rk Xn

](0 G
I I

)
(4.41)

Kk =f (Sn) (4.42)

Both parts AL and AR of the core A in Eqn. 4.41 have full rank such that ∆L = 0 and
∆R = 0. However, their index sets overlap. First, the lower n rows of AL are assigned
to the left index set IL. For IR, k linearly independent vectors are given by G but the
remaining n−k linearly independent rows of AR are already used for IL. So, ∆ = n− k
and up to n− k bits leak, which is consistent to literature such as [IW12]. Since the
attacker knows the helper data, the entropy of the n-bit long secret is reduced to k. As
a consequence the hash function in Eqn. 4.41 has to be designed such that the remaining
k bit of entropy are distributed equally to the bits of an k bit long key. Note that also
the entropy loss due to hashing has to be considered to derive information theoretically
secure keys [MVHV12].

For the Fuzzy Commitment, the codeword is masked with the PUF response such that
it forms a secure one-time pad for a high-entropy PUF. For the Code-Offset Fuzzy
Extractor, the PUF response is masked with the codeword resulting in an imperfect one
time pad because by definition, not all bits in the codeword are independent. This small
difference leads to a different secrecy leakage.

Similarly to the Fuzzy Commitment, k secret bits are derived. However, when taking
the hash loss into account, less bits can be derived. Therefore

lim
n→∞

Rkey ≤ Ckey (4.43)

Again, one helper data bit is stored per PUF response bit, so Rhd = 1.

Syndrome Construction The the Syndrome Construction also was introduced in
[DRS04]. Since no random number Rk is used, the two upper sub-matrices of A are set
to zero. It can be seen that all PUF response bits contribute to the helper data and also
to the key. The unified algebraic representation of the Syndrome Construction is given
by

[
Sn W n−k] = [0 Xn]

(
0 0
I HT

)
(4.44)

Kk =f (Sn) (4.45)

For PUF size n and k secret bits, this approach uses only n − k bits of helper data
which is the lowest possible number for a given error-correcting code and thus the best

40

4.5. Algebraic Representation and Analysis of the State of the Art

possible solution. In Eqn. 4.44, rank (ALL) = n and rank (ALR) = n− k. The index
sets overlap fully so that ∆ = n− k. Therefore, the maximum leakage is equivalent to
the one of the Code-Offset Fuzzy Extractor and again a hash function is required.

The key rate of the Syndrome Construction and the Code-Offset are equal, so

lim
n→∞

Rkey ≤ Ckey (4.46)

However, they differ in the helper data rate. The (n, kn, ε) code has redundancy n− kn,
so

lim
n→∞

Rhd = lim
n→∞

n− kn
n

= H(X|Y) = Chd (4.47)

Parity Construction Instead of storing the syndrome, the construction in [DFM98]
stores the parities of the PUF response. The entire PUF response is interpreted as
information to be encoded with an ECC with systematic encoding with G = (I P),
including the parity part P.

As for the Syndrome Construction, the secret and the helper data are computed from
the PUF response while no external secret is used. Therefore, AUL and AUR are both
set to zero again. Here, the hash function compresses the k-bit PUF response to a
smaller k∗-bit key. So, the unified description is

[
Sk W n−k] =

[
0 Xk

](0 0
I P

)
(4.48)

Kk∗ =f
(
Sk
)

(4.49)

In Eqn. 4.48, the rank of I is equal to the length of the secret, so rank (I) = k. P has rank
n− k. As for the previous scheme, the index sets fully overlap such that rank (A) = k.
The mutual information is given by I (S;W) = k − (n− k) + ε0 = 2k − n+ ε0 and
again, 2k − n bits leak so that a hash function is required.

Note that in Eqn. 4.48 only 2k − n secret bits remain so that this approach is only
suitable for small redundancies n− k such that 2k − n > 0 still holds and not the entire
secret is leaked through the helper data.

In [DGV+15] it was shown that the leakage of this approach is significantly higher than
the leakages of the other approaches in this comparison, so limn→∞Rkey < Ckey and
limn→∞Rhd < Chd.

41

4. Theoretical Foundations of Key Derivation with PUFs

Key Derivation maxRkey minRHD ∆ I(S;W) I(S;W)

Scheme (perfect PUF)

Fuzzy Commitm. Ckey 1 0 H(W n)−H(Xn) < ε0

Code-Offset ≤ Ckey 1 n− k H(W n)−H(Cn) < n− k + ε0

Syndrome Constr. ≤ Ckey Chd n− k H(W n−k) n− k
Parity Constr. < Ckey < Chd 2k − n H(W n−k) 2k − n

Table 4.2.: Key rates, helper data rates and mutual information between S and W of

the state-of-the-art syndrome coding approaches for PUFs

Summary on State-of-the-Art Syndrome Decoders Linear state-of-the-art helper
data generation schemes can be brought into a unified algebraic form which allows
a comparison of the individual properties. Wrapping up the results of this section,
Table 4.2 provides an overview over the properties of the discussed approaches.

The first two columns show whether the approaches can achieve the capacities provided
in Section 4.2 for optimal ECCs.

In general, it is difficult to simplify sums of entropies. Therefore, generic leakages are
given first before discussing leakages for a nearly perfect PUF with H(Xn) ≈ n that
show the optimal corner case. Preprocessing can support to achieve such high entropies.

The right-most column on leakage clearly shows that the Fuzzy Commitment, which
is the only one with an algebraic cores with full rank, does not leak significant secret
information.

The new criterion allows to already evaluate solutions in a very early design stage and
give feedback whether an algorithm can achieve zero leakage or not. The rank loss
difference ∆ gives an upper bound for the secrecy leakage and therefore specifies the
minimum requirements for a subsequent hash function.

This work provides a generic property that allows to analyze new more complex and
potentially more efficient, practical structures with less obvious leakages in future work.
Especially, the currently very regular matrix structures with many identity matrices can
be extended to other constructions under the constraint of keeping the rank loss low.

The state-of-the-art approaches output either Rk or Xn as S. Therefore, either AUL = I
or ALL = I, while the second sub-matrix of AL is set to zero. Afterwards, S is either
directly output as a key or fed into a hash function if kout > H(S|W).

4.6. Conclusions

This chapter has shown that secret key derivation with PUFs corresponds closely to the
information theoretic problem of secret key agreement from a correlated source. The

42

4.6. Conclusions

new generic security criterion based on the algebraic core revealed weaknesses in several
linear state-of-the-art schemes.

As a result, previous work on secure key derivation with PUFs is either able to achieve
zero leakage or helper data capacity. The next chapter introduces Systematic Low
Leakage Coding which is the first practical approach to combine zero leakage and a
helper data size close to capacity.

43

Chapter 5.

Systematic Low Leakage Coding

Analyzing the state of the art has shown that previous work did not achieve helper
data capacity without secrecy leakage. This chapter addresses this shortcoming and
introduces Systematic Low Leakage Coding (SLLC)1, a construction that achieves both
criteria at once.

SLLC is introduced in Section 5.1. Section 5.2 addresses the theoretical properties of
SLLC. An implementation sketch for a SLLC and a BCH code is discussed in Section 5.3.

This chapter is based on [HYP15] and Mandel Yu contributed especially to the imple-
mentation part where the ASIC gate counts are based on the BCH decoder implemen-
tation by Verayo that was also used in [YSS+12].

The random coding constructions by Ahlswede and Csiszar [AC93] and Boche and
Schäfer [BW13], discussed in Appendix A.1, show that the theoretical bounds in Chap-
ter 4 are achievable in principle for large block lengths and random codebooks. This
work goes a step further towards practice and presents a fully linear new syndrome
coding scheme that does not have to store the random codebooks anymore. The new
approach can be seen as a special case of [AC93] so that the theoretical considerations
and results are still valid. The random codebook generation is replaced with a deter-
ministic procedure where all codes are derived from one parent code. Also possible
hardware implementations on ASIC and FPGA are discussed.

As a prerequisite, it is assumed that (n, k, ε) code C achieves a rate of RCode for the chan-
nel such that decoding errors occur with a probability Pr[K 6= L] < ε. It is also necessary
that there exists a systematic encoding scheme for code C such that for all codewords
C ∈ C, the first k bits are equal to the information bits ck1 = xk1. Systematic encoders ex-
ist for many popular practical code classes, such as BCH, Reed–Solomon, convolutional,
low-density parity-check codes and many other code classes, see e.g. [MS77, Bos99].

1The SLLC construction was found independently by Hyonho et al. [HHK+14]. I submitted a first ver-

sion of [HYP15] to CHES 2014 three weeks before the conference proceedings containing [HHK+14]

were accessible on IEEE Xplore [IEE15]. I was informed about the existence of the paper in April

2015. Please note that [HHK+14] only presented the construction without the theoretical back-

ground and depth of analysis of this work.

45

5. Systematic Low Leakage Coding

5.1. SLLC Code Construction

As starting point, a high-level practical introduction motivates SLLC and gives a first
impression before going into the theoretical details. Figure 5.1 shows the SLLC encoding.
The PUF response is split into an information part PUFi and mask PUFm. The
redundancy RED is computed from PUFI with the encoder of an ECC with systematic
encoding.

RED

PUFi | PUFm

HD

+

=

ECC

Figure 5.1.: Sketch of SLLC helper data generation

The SLLC decoding in Figure 5.2 shows that the PUF response PUF ′ is mapped back
to the codeword with errors PUFi′|RED′ first, and then corrected to PUFi. The
corrected information part is then output as key.

PUFm‘

HD

PUFi‘ | RED‘

PU

U

+

=

PUFi

ECC

PUPU

=

ECC

Figure 5.2.: Sketch of SLLC secret key reproduction

[AC93] serves as starting point to formally introduce SLLC. Therefore, first 2k codebooks
are generated with 2n−k elements each.

In the following, one (n, k, ε) block code with systematic encoding creates all other codes
as cosets of the basic code. For the i-th coset of the code C, the binary representation

46

5.1. SLLC Code Construction

of i is XORed on the last n− k bits of each codeword to create code Ci. Iterating over
i from 0 to 2n−k − 1 assigns exactly one code Ci to each element in Fn2 .

Let In−k be the ((n− k)× (n− k)) identity matrix and P an (k × (n− k)) matrix. For
systematic encoding, the linear code C has a parity check matrix H in the form [Bos99]

H = ([PT In−k]) (5.1)

and a generator matrix G with

G = ([Ik P]) (5.2)

Let ϕ: Fk2 7→ F
n
2 be the encoder of code C and bk(l) the binary representation of l in Fk2.

The mother code C0 is defined as

C0 =
{
ϕ(bk(l)) : l = 0, ..., 2k − 1

}
(5.3)

All other codes Ci, i = 1, ..., 2n−k − 1 are derived from C0 by adding a constant offset to
all codewords

Ci =
{
ϕ(bk(l))⊕ [0k bn−k(i)] : l = 0, ..., 2k − 1

}
(5.4)

Given the n-bit PUF response Xn, the helper data W n−k is generated by storing code
index i.

W n−k = bn−k(i) =
[
ϕ(Xk)⊕Xn

]n
k+1

(5.5)

Since for all codes with systematic encoding,

[ϕ(Xk)]k1 = Xk
1 (5.6)

the n − k least significant bits return the binary representation of i. This representa-
tion separates the secret key part Xk

1 from the redundancy part Xn
k+1. The operation

ϕ(Xk) ⊕Xn can be interpreted as masking the redundancy [ϕ(Xk)]nk+1, that leaks key
information, with fresh PUF bits Xn

k+1.

Using indices from 0 to 2n−k−1 covers the entire output space X n such that there exists
a code Ci for all Xn ∈ Fn2 such that Xn ∈ Ci.

Xn ∈
2n−k−1⋃
i=0

Ci (5.7)

47

5. Systematic Low Leakage Coding

holds because

2n−k−1⋃
i=0

Ci = F
n
2 . (5.8)

Therefore, Eqn. A.2 holds with η = 0.

In contrast to the state-of-the-art approaches, the first k bits of the corrected PUF
response can be used directly as secret key without hashing if H(Xk) > k − ε and
I(Xk;Xn

k+1) < ε, i.e., if the PUF is well designed. If the entropy of Xk is lower, a
standard data compression function g, see e.g. [CT06], can be used to compress the
corrected PUF response to a key K = g(Xk) such that H(K) > l − ε for a small ε > 0.

During reproduction, Ŷ k
t is reconstructed from Yt

n and W n−k = bn−k(i). Let γ = ϕn
−1:

F
n
2 7→ F

k
2 be the decoder of the code C.

Ŷ k
t = γ(Yt

n ⊕ [0k bn−k(i)]) (5.9)

Remark In a typical communications scenario, the cosets are used to characterize
the errors that occurred during transmission. All vectors in the jth coset have the same
error pattern bn(j) ∈ Fn2 , j ∈ {1, ..., 2n−1}, that is added to each codeword. For bounded
minimum distance decoding [Bos99], the decoder can correct errors by finding j if the
Hamming weight of bn(j) is bounded by

wt(bn(j)) ≤ bd− 1

2
c (5.10)

In contrast, bn−k(i), i ∈ {1, ..., 2n−k − 1}, modifies the last n − k bits of codewords to
generate the ith coset, or subcode in this context. Then, bn−k(i) is transmitted as side
information to the decoder.

Yt
n can be represented as sum of the initial PUF response Xn and an n-bit error pattern

bn(j).

Yt
n = Xn ⊕ bn(j) (5.11)

Using Xn = ϕ(Xk)⊕ [0k bn−k(i)] gives

Yt
n = ϕ(Xk)⊕ [0k bn−k(i)]⊕ bn(j) (5.12)

48

5.1. SLLC Code Construction

Since bn−k(i) is known through the helper data, the decoder can correct any error as long
as Eqn. 5.10 holds. The systematic encoding enables to generate the subcode without
changing the first k bits. Therefore, the corrected key Ŷ k

t is obtained by

Ŷ k
t = γ

(
ϕ(Xk)⊕ bn(j)

)
(5.13)

Note that Eqn. 5.9 is equivalent to Eqn. 5.13. Eqn. 5.13 leads back to the default
decoding problem in the standard communications case where the decoder γ can be
used.

Example In this toy example, the new scheme SLLC is used together with an (n =
7, k = 4, d = 3) Hamming code with systematic encoding to demonstrate underlying
mechanism. 3 bits of helper data are stored and the code has the following generator
matrix G

G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
0 1 1
1 0 1
1 1 0
1 1 1

 , (5.14)

and parity check matrix H [Bos99]

H =

 0 1 1 1
1 0 1 1
1 1 0 1

∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

 (5.15)

Let the PUF return random sequence x7
1 = 1001010. The encoder of the Hamming code

encodes x4
1 to codeword c7

1

c7
1 = x4

1 ·G = 1001100 (5.16)

Storing the 3 least significant bits directly would be equivalent to the Parity Construction
discussed in Chapter 3 and leak information about the key and thus violate Condition 4.3
in Section 4.2. In SLLC, fresh PUF bits mask the redundancy part to bring the leakage
close to zero or eliminate it completely. The XOR between PUF response and codeword
gives the code index as follows (cf. Eqn. 5.5)

w3
1 = b3(i) (5.17)

= x7
5 ⊕ c7

5 (5.18)

= 010⊕ 100 (5.19)

= 110 (5.20)

49

5. Systematic Low Leakage Coding

Therefore, index 6 is stored as helper data value. The error in the received word will be
labeled in bold notation in the following. Assuming y7

1 = 1011010 as PUF response in
the field, the syndrome decoder reconstructs

c̃7
1 = y4

1||(y7
5 ⊕ w3

1) (5.21)

= 1011||(010⊕ 110) (5.22)

= 1011100 (5.23)

The Hamming decoder corrects c̃7
1 to ĉ7

1 = 1001100 which gives us ŷ7
1 = 1001010. This

example shows how to combine SLLC and an error-correcting code to correct errors such
that

ŷ4
1 = x4

1, or in general k = l (5.24)

Although it is only a toy example, it was shown that SLLC permits error-tolerant secure
key generation by using error-correcting codes with systematic encoding.

5.2. Evaluation

This section addresses the theoretical properties of SLLC, first to provide its Algebraic
Core and demonstrate that it enables zero leakage. In addition, it has optimal asymp-
totic behavior for large block sizes such that the capacities can be achieved.

SLLC is currently the only deterministic scheme that achieves the secret key and the
helper data capacity, and also inherently ensures information theoretic security.

In general, good PUFs have a sufficiently high entropy but do not necessarily show
perfectly i.i.d. behavior. For the security proof, I therefore loosen the i.i.d. assumption
to a wider assumption H(Xn) = n − εA and H(Xk) = k − εB that can also represent
correlations. Further, let H(W) = n− k − εW with εA > εB + εW .

Algebraic Core of SLLC The Algebraic Core is

[
Sk W n−k] =

[
Xk

1 X
n
k+1

](I P
0 I

)
(5.25)

Similar to the Fuzzy Commitment, the Algebraic Core A is an upper triangular matrix
with full rank. As a result, the mutual information I (S;W) = ε0, i.e., no information
leaks due to the structure of the algebraic core.

50

5.2. Evaluation

Achievable Rate of SLLC

Lemma 1 Rate k/n is an achievable key rate for SLLC and an (n, k, ε1) code with
systematic encoding where Conditions 4.2 to 4.5 are bounded by a finite ε.

Proof This section proves that Conditions 4.2 to 4.5 in Section 4.2 are fulfilled such
that rate k/n is an achievable key rate for a compound source with channel Tt using
SLLC and an (n, k, ε1) code C. An εi bounds each condition and then maximizing over
all four εi results in one ε.

Condition 4.2 Condition 4.2 is fulfilled by definition since an (n, k, ε1) code is assumed
as given for channel Tt, so

Pr[K 6= L] < ε1 (5.26)

In practice, the block error probability can be computed by bounding techniques [Bos99]
or Monte Carlo simulation.

Condition 4.3 Security is addressed by Condition 4.3. It states that I(K;W) has to
be upper bounded by and ε2.

I(K;W) = H(W) +H(K)−H([W K]) (5.27)

= H(ϕ(Xk
1)nk+1 ⊕Xn

k+1) +H(Xk
1)−H(Xn

1) (5.28)

(5.29)

According to the chain rule of entropy [CT06],

H(Xn
1) = H(Xk

1X
n
k+1) = H(Xk

1) +H(Xn
k+1|Xk

1) (5.30)

This gives

I(K;W) = H(ϕ(Xk
1)nk+1 ⊕Xn

k+1)−H(Xn
k+1|Xk

1) (5.31)

Xn
k+1 masks the redundancy ϕ(Xk

1)nk+1 such that

1

n

(
H(ϕ(Xk

1)nk+1 ⊕Xn
k+1)−H(Xn

k+1|Xk
1)
)
< ε2 (5.32)

51

5. Systematic Low Leakage Coding

Therefore,

1

n
I(K;W) < ε2 (5.33)

with ε2 >
1
n

(εA − εB − εW).

Condition 4.4 Condition 4.4 ensures that the key rate is close to the entropy of the
derived key.

1

n
H(K) > Rkey − ε3 (5.34)

with Rate Rkey = k/n

1

n
H(Xk

1) >
k

n
− ε3 (5.35)

1

n
(k −H(Xk

1)) < ε3 (5.36)

1

n
εB < ε3 (5.37)

Condition 4.5 Finally, Condition 4.5 checks that the entire key space is used by the
derived key.

1

n
log2 |K| <

1

n
H(K) + ε4 (5.38)

k

n
<

1

n
H(Xk

1) + ε4 (5.39)

1

n
(k −H(Xk

1)) < ε4 (5.40)

Inserting H(Xk
1) = k − εB gives

1

n
εB < ε4 (5.41)

Therefore, Rkey = k/n is an achievable key rate for block size n and

ε = max(ε1, ε2, ε3, ε4) (5.42)

�

52

5.2. Evaluation

Corollary For an ideal PUF with Pr[x = 0] = Pr[x = 1] = 0.5 and i.i.d outputs, Rate
Rkey is achievable with ε = ε1.

Proof Due to i.i.d. PUF outputs, H(Xn
k+1) = n− k. Further, H(Xk

1) = k. Therefore,
ε2 → 0, ε3 → 0, ε4 → 0 which gives ε = ε1. So, secret key rate k/n is achievable with an
(n, k, ε1) code.

�

Lemma 2 The secret key rate Rkey of SLLC achieves the capacities of the source.

SLLC can achieve a rate Rkey = k/n. Here, the code size is denoted with kn to highlight
that k depends on n for a given ε. Recall, according to Section 1.7, a capacity achieving
(n, kn, ε) code C for a channel Tt has rate kn/n such that

lim
n→∞

Rkey = lim
n→∞

kn
n

= CT = Ckey (5.43)

�

Lemma 3 For an ideal PUF with Pr[x = 0] = Pr[x = 1] ≈ 0.5 and i.i.d outputs the
helper data rate Rhd of SLLC, defined in in Eqn. 4.7, achieves the capacity of the source.

Proof By definition, the capacity achieving code C with systematic encoding has re-
dundancy n− kn.

Let T nε (PX) be the set of all ε-letter typical sequences of the source. See Section 6.1.1
or [Kra07] for the definition.. For an ideal PUF,

lim
n→∞

log2 (|T nε (PX)|) = n (5.44)

This is important because only is this case the union of SLLC codebooks is equal to
the typical set. If Eqn. 5.44 does not hold, the codebooks contain unused values and
capacity is not achieved anymore.

Therefore, for the ideal PUF,

lim
n→∞

Rhd = lim
n→∞

n− kn
n

(5.45)

53

5. Systematic Low Leakage Coding

According to Section 1.7, for a capacity achieving code kn = n(I(X;Y)− εn) holds for
a small εn > 0 , so

lim
n→∞

Rhd = lim
n→∞

1− I(X;Y) + εn (5.46)

For the assumed ideal PUF with H(X) = 1 − εX , εX > 0 and using the identity
H(X)− I(X;Y) = H(X|Y)

lim
n→∞

Rhd = lim
n→∞

H(X|Y) + εX + εn (5.47)

Applying the limit, the code dependent part εn goes to zero resulting in

lim
n→∞

Rhd = H(X|Y) + εX (5.48)

= Chd + εX (5.49)

Equation 5.49 shows that for capacity achieving codes and ideal PUFs with εX = 0,
SLLC achieves helper data capacity.

�

It can be seen that SLLC fulfills typical information theoretic requirements because the
error probability and the security parameters are bounded by ε. In addition, the scheme
is optimal in a sense that it is capacity achieving such that a maximum key size can be
extracted and the required helper data size is brought down to the theoretical limit in
an asymptotic setting.

5.3. Implementation

With the trend towards more reliable and secure PUFs, e.g. [HB10], PUFs with bit
error probabilities of 10−5 and lower can be manufactured. Therefore, less powerful
error correction is necessary to generate reliable keys. The PUF has only negligible bias
and correlation so that it provides close to i.i.d. properties such that the last column in
Table 4.2 at the end of the previous chapter holds in a good approximation.

Calculating the bit error probability with the Union Bound, e.g. [Bos99], shows in this
case that a compact high-rate (55, 43, 5) BCH code already leads to a key regeneration
failure rate of 7.87 · 10−11. This is below the Failure in Time (FIT) specification of
most, if not all, popular silicon processes (typical FIT failure rate ranges from 5 · 10−9

to 2 · 10−8 [Xil15]).

The example uses a BCH (55, 43, 5) code with systematic encoding, which is a shortened
version of a BCH (63, 51, 5) code [Bos99]. Running this three times results in 55·3 = 165

54

5.3. Implementation

PUF bits consumed to derive 43·3 = 129 data bits for the key, and using (55−43)·3 = 36
helper data bits.

The proof-of-concept BCH decoding core is a modified version of the one used in
[YSS+12] and requires 4, 441 NAND2 Gate Equivalents (GE) in an ASIC implemen-
tation. The design was synthesized using Synopsys Design Compiler, comprising of 194
flip-flops and the rest conventional standard-cell combinatorial logic. It uses a serialized
input and output interface. The latency is 372 clock cycles per block, and three blocks
(1, 116 cycles) are required to generate a 128-bit key. The decoder operates in GF (26)
with field elements constructed using the primitive polynomial p(x) = 1 + x + x6. The
generator polynomial used to generate the codewords for the (55,43,5) BCH code is
g(x) = ((1 + x+ x6) · (1 + x+ x2 + x4 + x6)). Since the code is shortened, the first 8
information bits of each 63 bit block are regarded as fixed to 0.

Note that the SLLC syndrome decoder only has a negligible impact on the overall
implementation size. It can be implemented as a 6 bit counter and a comparator that
decides if an input bit is within the information part of the codeword and fed directly
into the BCH decoder, or if it is XORed with a helper data bit.

In addition to the BCH decoder, popular state-of-the-art methods such as the Code-
Offset and Syndrome methods require an additional hash function. Compact implemen-
tations of popular lightweight hash functions like SPONGENT (256/256/16) [BKL+13]
or PHOTON (256/32/32) [GPP11] require around 2, 300 GE and 2, 150 GE, respec-
tively.

The rest of the work is focusing more on FPGAs than ASICs. To also provide consistent
results with the remainder of this work, Julian Leyh developed and analyzed different
BCH decoder implementations for FPGAs under my supervision in [Ley15]. An imple-
mentation similar to the presented ASIC design requires 232 LUTs, 155 registers, 72
slices and 692 clock cycles on a Xilinx Spartan 6 FPGA. Going to an optimized pro-
cessor core, similar to the one used in previously PUFKY [MVHV12], prioritizes area
strongly over time in the area time trade-off. The implementation requires 162 LUTs,
21 registers, 43 slices and 4, 597 clock cycles.

Key generation from Helper data Leakage Hash function Estimated area

internal PUF size required Dec + Hash

response (if needed)

SLLC 36 bit 0 bit no ≈ 4, 500 GE

Code-Offset [DRS04] 165 bit 36 bit yes ≈ 6, 600 GE

Syndrome Construc-

tion [DRS04]

36 bit 36 bit yes ≈ 6, 600 GE

Table 5.1.: Practical comparison to related work for non-optimized implementations

55

5. Systematic Low Leakage Coding

Table 5.1 compares the helper data size, the secret key leakage and an estimated ASIC
gate count of SLLC with the Code-Offset and the Syndrome Construction as most
popular previous work. It can be seen that SLLC is the only approach that combines
minimal helper data size and zero leakage through the helper data. For both other
approaches n− k = 36 bit of the PUF response are revealed.

With SLLC 128 of the 129 data bits can be used directly as 128-bit key, without pro-
cessing them through a hash function. The overhead for helper data is only 36 bits.

The areas of the Code-Offset and Syndrome Construction are estimated by adding the
size of the BCH decoder and the hash function. In a modular implementation where the
BCH module and the hash module are distinct, SLLC requires only the BCH module
of an estimated 4500 GE. With the Code-Offset or Syndrome Construction, additional
estimated 2150 GE are required for the hash, leading to a total of an estimated 6600 GE.
This is an extra 47% overhead that is avoided by SLLC.

With cost of less than 5, 000 gates, 36 extra helper data bits, and the use of SLLC which
eliminates the requirement for a hash function, there is an overall area reduction of 30%
compared to the Code-Offset and Syndrome methods. In addition, the required helper
data is cut to 24% of the Code-Offset method. Information theoretic security is achieved
without having to make additional assumptions on the security of the hash function.
From a practical standpoint, there is one module less to secure, e.g. against physical
attacks such as the side-channel attack presented in [MSSS11].

5.4. Conclusions

This section has introduced Systematic Low Leakage Coding to demonstrate that mini-
mal helper data size and low secrecy leakage are achievable at the same time in practice.
A deterministic scheme was derived from the random coding scheme by Ahlswede and
Csiszar [AC93] and it was demonstrated that the theoretical properties still hold. In
addition, the parameters of a possible ASIC design using a BCH code were discussed
and compared to the state of the art.

56

Chapter 6.

Differential Sequence Coding

After studying a generic scenario of key generation for PUFs in the last chapters, this
chapter focuses on PUFs where PUF-bit specific reliability information is available, for
example through multiple read-outs or multi-lettered output alphabets. Figure 6.1,
which was already discussed in Chapter 3, shows that the syndrome coding and error
correction block form the minimal number of data processing blocks in practical use
cases. I will show with the information theoretic concept of typicality that long sequences
are necessary to make precise a-priori estimates on the number of reliable PUF response
bits inside of a processing block in Figure 6.1. The new syndrome coding scheme called
Differential Sequence Coding (DSC) searches and indexes reliable PUF response bits.
In contrast to previous index-based work such as IBS [YD10b] and C-IBS [HMSS12],
DSC overcomes the fixed small block sizes and uses only one large block with relative
pointers. Preventing helper data manipulation attacks requires adding a hash function
to Figure 6.1.

PUF

Helper Data

SYN

DEC

ECC

DEC

Key

Figure 6.1.: Generic reproduction procedure

In Section 6.1, I will analyze the impact of an increasing block size with the information
theoretical concept of typicality [CT06, Kra07]. DSC encoding is introduced in Sec-
tion 6.2 and fundamental properties, including helper data compression, are discussed
in Section 6.3. Section 6.4 covers theoretical and practical security aspects of DSC. In
Section 6.5, I am the first to discuss convolutional codes in the PUF context. Then,
the performance of the overall system is compared to state-of-the art approaches in Sec-
tion 6.6. I will provide details on the hardware implementation in Section 6.7. Then,
possible improvements of the basic DSC approach are briefly addressed in Section 6.8.

This chapter is based on the following publications: The theoretical section on typicality
is based on [HYS16]. DSC was introduced first in [HWRL+13, HWS15]. The first

57

6. Differential Sequence Coding

improvement was published by using helper data compression [HS14]. The improved
Viterbi decoder was developed by Leandro Rodrigues Lima under my supervision and
published in [HRLS14]. The improved SPONGENT is based the work of Maximilian
Birkner [Bir13] and Leandro Rodrigues Lima and was compared to the state of the art
in [JRLH14]. Putting all parts together, the final system is discussed in [HYS16]. The
improvements discussed in 6.8 were analyed by Aysun Gurur Önalan and Benjamin
Nolet [Nol15].

6.1. Relation between Block Size and Reliability

This section applies the information theoretical concept of typicality to demonstrate how
the efficiency of syndrome coding schemes improves with an increasing block size. Aver-
aging effects become stronger and the impact of statistical outliers is reduced. Therefore,
the longer the block, the more precise predictions can be made on the distribution of
symbols in a sample.

Assuming sequences of length 100, drawn from a binary source with uniform distribution,
it is intuitive that most sequences have a roughly balanced number of zeros and ones.
To be more precise, for example a sequence with less than 25 or more than 75 ones is
only drawn with a probability around 10−7. So, it is possible predictions about how
many zeros and ones are in a sequence without knowing their actual positions, and the
longer the sequence is, the more precise the prediction. This common case, or more
precisely the set of all common sequences was defined as typical set by Shannon in his
1948 paper [Sha48].

For syndrome coding, the goal is to compress sequences that are drawn from a known
distribution efficiently and it is most important to handle the common case efficiently.
In the previous example, one could design a system that is optimized for 25 to 75 ones
per sequence and only spends less effort on the other sequences with more or less ones in
the sequence. Lossy compression goes even one step further and is not able to correctly
process uncommon sequences at all in the ultimate case.

6.1.1. Typical Sequences in Syndrome Coding

In the following, the concept of typicality enables to analyze the effect of the block size
on the distribution of reliable inputs for syndrome coding. Let Xn be a part of the
overall response sequence drawn from the PUF.

Let set P contain the probability distributions PXi
over all PUF bits Xi, i = 1, ..., n

with Xi ∈ {0, 1} and Bernoulli probability distribution PXi
. The occurrence of the

different distributions PXi
in P defines the reliability of the PUF. Examples for practical

distributions can be found e.g. in [MTV09b, Mae13] and [HSP13].

58

6.1. Relation between Block Size and Reliability

For a PUF response bit Xi with expectation µ(Xi) ≥ 0.5, an error occurs from drawing
a 0 which occurs with Pr[Xi = 0] = 1− µ(Xi), and for µ(Xi) < 0.5 for drawing a 1
analogously. The first question is, what is the probability p that a given PUF output is
reliable.

A fixed threshold 0 ≤ pmax ≤ 0.5 defines the maximum tolerable error probability of a
PUF response bit to be considered reliable. This gives

p = Pr[µ(X) ∈ {[0, pmax] ∪ [1− pmax, 1]}] (6.1)

Therefore, each of the n PUF response bits Xi in Xn behaves according to a Bernoulli
distributed reliability indicator Λ with parameter p. It indicates if Eqn. 6.1 holds for a
specific PUF bit Xi or not. The sequence λn for a specific Xn indicates for each PUF
bit Xi whether it is reliable (λi = 1) or not (λi = 0), i = 1, ..., n.

For the quantitative evaluation of typicality, the following notation is used:

• The letters a ∈ Pλ = {0, 1} indicate whether a PUF response bit is reliable or not.

• PΛ(·) gives the precise theoretical distribution of letters occurring in sequences Λn.

• N(a|λn) is the number of occurrences of letter a in sequence λn, and quantifies
the empirical distribution, i.e. the number of reliable and unreliable PUF bits in
Xn. Note that the distribution of N(a|λn) is given by a binomial distribution with
parameters PΛ(a) and n.

• The parameter ε > 0 quantifies the maximum allowed deviation of the number of
reliable bits N(1|λn) in a given sequence from the mean number of reliable bits
per sequence n · PΛ(1) to still be part of the typical set.

According to [Kra07], a reliability indicator sequence λn is an ε-letter typical sequence
if

∣∣∣∣ 1nN(a|λn)− PΛ(a)

∣∣∣∣ ≤ ε · PΛ(a) for all a ∈ Pλ (6.2)

and the letter typical set T nε (PΛ) is defined as set containing all sequences in Pnλ that
fulfill Eqn. 6.2.

Without loss off generality, let PΛ(0) < PΛ(1). Otherwise PΛ(0)s have to be replaced by
PΛ(1)s in Eqn. 6.3. The probability of drawing an ε-letter typical sequence is given by

Pr[Λn ∈ T nε (PΛ)] =

b(1+ε)·PΛ(0)·nc∑
i=d(1−ε)·PΛ(0)·ne

(
n

i

)
PΛ(0)i · (1− PΛ(0))n−i (6.3)

59

6. Differential Sequence Coding

Applying Hoeffding’s inequality in [Kra07], Eqn. 6.3 is lower bounded by

Pr[Λn ∈ T nε (PΛ)] ≥ 1− 4 · e−nε2 min[p,1−p] (6.4)

and the complementary event is

Pr[Λn /∈ T nε (PΛ)] < 4 · e−nε2 min[p,1−p] (6.5)

Note that the bound is relatively tight where the probability of a non-typical sequence
decreases exponentially with n. In contrast, the more widely used concept of entropy
typical sequences [Kra07] only gives a linear decrease in Eqn. 6.5 over n.

The concept of typicality allows to estimate the number of reliable bits in a PUF response
sequence. The next section will take this number into account to design the error
correction accordingly.

6.1.2. Analysis

An efficient error correction is designed to correct the errors that occur in typical se-
quences which have a controlled number of unreliable bits. One cannot make precise
statements on the other sequences so that errors can occur more likely if a sequence
which is not element of the typical set is drawn. Therefore, reducing the probability of
drawing a non-typical sequence is a first step to reduce the overall error probability.

Figure 6.2 plots the probability of drawing a non letter-typical sequence over the block
size n for p = 0.326 and different parameters ε. This p value will be used later in the
implementation to reduce the average bit error probability of the reference SRAM PUF
[GKST07, MTV09b] from 15% to 2.7%. An epsilon value of 0.4 corresponds to a ratio of
at least (1− ε) · p = 19.5% reliable PUF bits in a typical sequence, whereas for ε = 0.2
already 26% reliable bits are guaranteed.

The solid lines show the precise computed values derived from Eqn. 6.3 while dotted
lines give bounded values according to Eqn. 6.5. Note that the straight lines on the
logarithmic scale correspond to an exponential behavior in n.

Figure 6.2 shows that the block size has a large impact on the probability of drawing non-
typical sequences. Smaller blocks will lead to an increased key error probability because
non-typical error patterns are more likely to occur. As a consequence, increasing the
block size is a first requirement for an efficient usage of the reliable PUF bits. In addition,
it is important to find a good trade-off between the ε parameter and the probability of a
non-typical sequence. If a too small ε parameter is selected, very specific predictions on
the PUF sequence can be made but there the probability of drawing such a sequence is
relatively low. Otherwise, a too large ε results in a high probability of drawing a typical
sequence but one only has less precise information about the number of reliable bits in

60

6.1. Relation between Block Size and Reliability

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Block Size n

P
ro

b
of

 N
on

−
T

yp
ic

al
 S

eq
ue

nc
e

ε = 0.2 computed
ε = 0.2 bounded
ε = 0.3 computed
ε = 0.3 bounded
ε = 0.4 computed
ε = 0.4 bounded
ε = 0.176, n = 974

Figure 6.2.: Probability of drawing non-ε-letter-typical sequences, computed and upper

bounded values for p = 0.326 and different ε parameters. The parameters

ε = 0.176 and n = 974 are used later in the implementation.

the sequence. In Figure 6.2, p = 0.326 such that in average roughly one third of the n
PUF response bits in each sequence is reliable. Table 6.1 shows the minimum ratio of
reliable PUF response bits of sequences within the ε-letter-typical set.

ε 1
nN(1|λn)

0.2 0.26

0.3 0.23

0.4 0.20

Table 6.1.: Lowest ratio of reliable bits in an ε-letter-typical sequence

The reference implementations for the target scenario use block sizes between 3 and
11. This region is highlighted in gray in the far left of the plot. Several design space
explorations have shown that this is the most favorable region for the conventional
approaches [Bös08, MTV09b, Hil11]. However, the curves show that the probability of
drawing non-typical sequences in this area is > 10−1 so that errors through non-typical
sequences have to be corrected on a regular basis. The point that will be used later in
the DSC implementation is marked with the black cross. This work will operate on a
single block of size 974 and probability of a non-typical sequence of 5 · 10−4. ECCs are
designed to correct a specific number of errors and if the errors in all typical sequences
can be corrected with a high probability, successful error correction is ensured with

61

6. Differential Sequence Coding

a high probability. By using one maximum-sized block, the probability of drawing a
non-typical sequence decreases by a factor of 200.

So far, the largest block sizes of up to 256 can be found in the work of Yu et al. [YHD15],
which is designed for a different scenario with higher PUF noise, resulting in significantly
higher PUF bit / key bit ratios.

6.2. DSC Encoding

The previous section has shown that controlling the number of reliable PUF bits within
each block is a prerequisite for efficient key generation with PUFs. Larger block sizes are
favorable to control the number of unreliable bits per block. However, ECCs with large
block sizes typically create a heavy resource overhead. The DSC approach operates on
one maximally reliable block with low overhead. In particular, it is ensured beforehand
that a PUF response sequence with low bit error probabilities is fed into the ECC
decoder. To minimize the decoder complexity to ensure a low hardware overhead, only
the reliable PUF bits from the maximally sized single block are processed while the rest
is discarded.

During the generation step, the PUF provides a sequence of PUF bits X together with a
reliability indicator µ(X) for each PUF response bit. Note that the reliability indicators
µ(X) are unique for each chip so that they have to be obtained for each device separately.
DSC reads the entire PUF response sequence Xn and marks the PUF bits that have a
reliability above a predefined threshold. They point to a secret sequence Ck within the
PUF response sequence. The notation is adapted from block codes where n describes
the block size and k the number of embedded bits.

The PUF sequence Xn is scanned sequentially for PUF bits that are more reliable than
a given error probability threshold pmax. When such a PUF bit is found, the distance to
the last reliable PUF bit is stored as differential distance pointer U . If the expected value
µ(X) of the PUF bit is closer to the corresponding code sequence bit C, the inversion
bit V is set to zero. Otherwise, it is set to one. Adding the inversion bit ensures that all
reliable PUF bits are used. A version without inversion bits is also possible where only
PUF bits that are close to a code sequence bits Ci are indexed. However, in average only
half of the reliable PUF bits are indexed such that the PUF size n has to be doubled if
no inversion bits are used.

Figure 6.3 shows an example for DSC encoding. Code sequence c4 is provided by an
ECC and DSC stores one pointer for each code sequence bit. In the example, zeros are
represented by white boxes and ones by black boxes. For the PUF response X16 and a
given maximum error probability pmax, a white box denotes µ(X) ≤ pmax. A black box
stands for µ(X) ≥ 1− pmax and gray boxes show the unreliable PUF response bits with
pmax ≤ µ(X) ≤ 1− pmax.

62

6.3. Properties

1 0 3 4

4
c

16
X

4
u

4
v

Figure 6.3.: Example for DSC encoding

The code sequence c4 = (0, 1, 1, 0) and the PUF response X16 are encoded to the helper
data tuple w4 = (u, v)4. X2 is the first reliable PUF response bit. The distance pointer
keeps track of the unreliable PUF response bits between two reliable ones, so u1 = 1.
For the first inversion bit, v1 = 0 since both boxes have the same color. X3 is the next
reliable PUF bit, so u2 = 0 and again v2 = 0. After skipping three unreliable PUF bits,
X7 is indexed by u3 = 3. Since a white box is indexed for a black code bit, v3 = 1. u4

and v4 are computed accordingly, such that u4 = (1, 0, 3, 4) and v4 = (0, 0, 1, 1).

The algorithmic description of DSC encoding is provided in Algorithm 1 with Xi, ci, vi ∈
F2 and ui ∈ Fl2.

If the length of the code sequence exceeds the number of reliable PUF bits (error 1),
or if helper data cannot be stored (error 2), an error is thrown and the algorithm fails
to generate a valid set of DSC helper data.

6.3. Properties

This section addresses the probabilities of error 1 and error 2, leading to the yield. Fur-
ther, the DSC helper data is not uniformly distributed such that it can be compressed.
In the final part, this section addresses the bit error probability of DSC.

6.3.1. Yield

Previous work such as IBS and C-IBS, or the Code-Offset approach take a fixed number
of PUF bits to encode a fixed number of secret bits for each block, so the average bit
error probabilities can be determined and are well-controlled. However, it is not possible
to determine the reliability of a specific device. As a consequence, one cannot guarantee
that all devices of a batch fulfill a given minimum reliability.

In contrast, DSC already detects unreliable devices when no valid set of helper data is
generated. This occurs when not enough stable PUF bits are found during manufac-
turing. This additional measure gives a-priori reliability information about individual

63

6. Differential Sequence Coding

Algorithm 1: DSC Encoding

Input: Xn, ck

Output: uk, vk

o := 0 (The offset counter o tracks absolute the position within Λn)

for i := 1→ k do

Search for one reliable PUF response bit for each code sequence bit.

for j := 1→ 2l do

if o+ j > n then

Return error 1 (Not enough PUF output bits within the specification)

else if Pr[Xj+o = 0] ≥ 1− pmax ∨ Pr[Xj+o = 1] ≥ 1− pmax then

ui := j − 1

if Pr[Xj+o = ci] ≥ Pr[Xj+o = ci ⊕ 1] then

vi := 0 (No inversion)

else

vi := 1 (Inversion)

end if

o := o+ j

Break

else if j = 2l then

Return error 2 (Counter overflow)

end if

end for

end for

Return uk, vk

devices. Therefore, we can assess the average error probability in the field over all de-
vices and also provide a bound that the reliability of no individual device will exceed a
given maximum error probability.

If the error occurs during manufacturing, the device can still be used and programmed
with a different parameter set, for example, for a lower target reliability or smaller
key size. In the worst case, it has to be discarded during the manufacturing process.
However, the consequences are well-controlled and do not affect devices during operation
out in the field. If an error would occur during operation in the field instead, the
device is not able to generate the correct key and subsequent tasks cannot be performed
successfully. For DSC, the probability of any individual device failing in the field is
bounded. In the conventional approach, there is only a guarantee on the average failure
probability.

64

6.3. Properties

Recall that p is defined as the probability that the error probability of a PUF response
bit X is smaller than pmax:

p = Pr[µ(X) ∈ {[0, pmax] ∪ [1− pmax, 1]}]
= cdf(pmax) + (1− cdf(1− pmax)) (6.6)

Note that some of the previous work such as [MTV09b, YD10b],[HMSS12] requires a
precise estimation of µ(X) whereas DSC only operates on a binary decision whether
µ(Xi) ∈ {[0, pmax] ∪ [1− pmax, 1]}, i ∈ {1, ..., n}, holds, or not. The reliability informa-
tion can be obtained for example by performing multiple measurements [MTV09b] or
evaluating analog PUF output values [HSP13].

As mentioned above, there are two events where helper data generation fails:

Error Event 1: Lack of reliable PUF Bits

Successful DSC encoding requires that sequence Xn contains at least k reliable PUF
bits with µ(X) ∈ {[0, pmax] ∪ [1− pmax, 1]}. If less than k reliable PUF bits are found,
error event error 1 is triggered. Recall the probability of drawing a non-letter-typical
sequence in Eqn. 6.3. This requirement is relaxed for DSC because sequences with more
than k reliable PUF response bits also pass in helper data generation. So, error error 1
occurs with probability

e1 =
k−1∑
i=0

(
n

i

)
pi(1− p)n−i (6.7)

Recall that according to the typicality discussion in Section 6.1, e1 decreases exponen-
tially in n for a constant ratio k to n.

Error Event 2: Helper Data Overflow

The second error event error 2 occurs if the variably sized helper data does not fit into
the allocated space. The distribution of the helper data size of the selected parame-
ter set is obtained through simulation. A practical example is given later in Section 6.6.4

The cost of helper data storage varies greatly, depending on the scenario. Corner cases
are on-chip NVM, where each additional byte of data is a burden. On the other side of
the scale, the size is not critical if the helper data is stored on an external server that is
connected over a fast interface. The FPGA scenario with off-chip helper data storage
is in between.

65

6. Differential Sequence Coding

The yield ζ is computed by the probability that neither error 1 nor error 2 occur.
error 1 and error 2 are not disjoint, so

ζ > 1− (e1 + e2) (6.8)

Note that e1 depends on the worst case error probability pmax and the size of the PUF
n, whereas e2 is only affected by the maximum size of the helper data.

The events error 1 and error 2 define hard break conditions and affect the yield directly.
In the following, I aim for a yield ζ > 99.9%, and thus set e1 ≤ 5 · 10−4 and also
e2 ≤ 5 · 10−4.

6.3.2. Helper Data Compression with Run-Length Encoding

The helper data pointers uk are not uniformly distributed and thus contain redundancy.
This section discusses how they can be compressed to further reduce the helper data
size of DSC.

Data compression, or lossless source coding, is a discipline of Information Theory. The
goal of data compression is to find a shorter representation for output sequences of a
given source.

Let SU be a discrete memoryless source with output alphabet U , probability distribution
PU and entropy H(U). A source encoder maps an input sequence Un to an output
sequence Ql with alphabet Q and n, l ∈ N. Shannon’s source coding theorem [Sha48]
shows that any sequence Un output by source SU can be represented in average by
H(U) bits per symbol for n → ∞. For this application, the helper data of a batch of
identically manufactured PUF systems is treated as source with DSC helper data Uk of
a single device as output sequence.

There are typically two approaches for lossless source coding: Either an input sequence
of fixed length is mapped to a code sequence of variable length, or vice versa. The
remainder of this work only considers fixed to variable length encoding. For a known
source, Huffman coding [Huf52] can create output sequences with a length arbitrarily
close to the entropy of the source. Universal source coding algorithms such as Lempel-
Ziv coding [ZL77], are able to even compress sequences of unknown sources.

The straight-forward approach to represent a distance pointer ui as helper data is to al-
locate l bits and store the binary representation bl(ui). The pointers u are geometrically
distributed with parameter p, so the probability distribution PU is

PU(u) = (1− p)u p (6.9)

This basic binary representation contains a significant amount of redundancy. Golomb’s
Run-Length Encoding (RLE) [Gol66] is a source coding algorithm designed for sequences

66

6.3. Properties

with geometric probability distribution. An improved version was presented by Gallager
and van Voorhis [GVV75] in 1975. The basic version by Golomb [Gol66] is used in the
following in this work. Note that [Gol66] treats runs of successful draws ended by an
unsuccessful one and in this case, the successful draw ends a run.

RLE encodes any integer number u by a series of ones followed by a zero as delimeter
and a small number of a finite alphabet L with elements lj ∈ L, j = 0, ...,m − 1
and |L| = m. For the run-length part, m determines how many unsuccessful trials
are represented by every 1 and l gives the number in the remaining u mod m trials.
Therefore, the compressed version q(u) of u is given by

q(u) = 1 . . . 1︸ ︷︷ ︸
b u

mc times

0 l(umodm) (6.10)

The algorithm can be interpreted as Euclidean division of u by m with different rep-
resentations of the quotient and remainder. The quotient is represented in a series of
ones, followed by a zero, and the remainder in the finite alphabet L.

Algorithms [Gol66] and [GVV75] differ in the representation of lj. Golomb [Gol66] uses
an uncoded binary representation whereas Gallager and van Voorhis [GVV75] encode
the length fixed part with a Huffman code [Huf52]. According to [GVV75], optimal
codes can be constructed for an integer m chosen in dependency of p ∈ [0, 1] such that

(1− p)m + (1− p)m+1 ≤ 1 < (1− p)m−1 + (1− p)m (6.11)

u b4(u) q(u), m = 1 q(u), m = 2 q(u), m = 4

0 0000 0 0 0 0 00

1 0001 1 0 0 1 0 01

2 0010 11 0 1 0 0 0 10

3 0011 111 0 1 0 1 0 11

4 0100 1111 0 11 0 0 1 0 00

5 0101 11111 0 11 0 1 1 0 01

6 0110 111111 0 111 0 0 1 0 10

7 0111 1111111 0 111 0 1 1 0 11

8 1000 11111111 0 1111 0 0 11 0 00

9 1001 111111111 0 1111 0 1 11 0 01

10 1010 1111111111 0 11111 0 0 11 0 10

Table 6.2.: Run-length encoding with m = 1, m = 2 and m = 4 according to [Gol66]

67

6. Differential Sequence Coding

As an example, Table 6.2 shows RLE representations of small integers u for m = 1,
m = 2 and m = 4. For different parameters m, the size of the fixed length part and the
overall length l show large variations. Therefore, the selection of a good m value for a
practical scenario will be addressed later in Section 6.6.3.

The length l(u), i.e. the number of bits to represent u is given by the individual length
of the run-length part and the fixed length of the finite alphabet.

l(u) =
⌊ u
m

⌋
+ 1 + log2m (6.12)

Therefore, the expectation E(l) is minimized, where l(u) is distributed with the geo-
metric probability distribution PU(u) given in Eqn. 6.9.

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

10

11

p

µ(
q(

U
))

 a
nd

 H
(U

)

Entropy
m = 1
m = 2
m = 4
m = 8

Figure 6.4.: Average RLE encoded pointer sizes µ(q(U)) and entropy H(U) for geomet-

rically distributed random variables U with parameter p

The input distribution PU(u) and parameter m define the distribution and value of
q(u). In Figure 6.4, p is plotted on a logarithmic x-axis and the average length µ(q(u))
is shown for different m on the linear y-axis. Note that the entropy (solid cyan line) is
the lower bound for every lossless compression. Figure 6.4 shows that a good selection

68

6.3. Properties

of m gives very low overheads for different values of p such that RLE can enable optimal
compression for DSC.

6.3.3. DSC Bit Error Probability

For a given PUF response distribution PX , the output bit error probability of DSC
psyn can be computed analytically for a given maximum output error probability pmax
through the integral over the error probabilities of all PUF response bits that are
within the specification, normalized by their overall probability of occurrence p given
by Eqn. 6.6, so

psyn =
1

p

 pmax∫
0

PX(x) · x dx+

1∫
1−pmax

PX(x) · (1− x) dx

 (6.13)

In the following, the SRAM PUF distribution presented in [MTV09b] will serve as
reference to compare DSC to state-of-the-art approaches. Distributions for other PUFs
can be generated for example with the help of [Mae13],[HSP13].

In Figure 6.5, the bit error probabilities for different syndrome coding schemes are shown
over the number of SRAM PUF bits n for embedded bits k with the distribution given
in [MTV09b] and mean error probability 15%. In this basic case, no additional ECC is
considered such that the key size κ is equal to the number of indexed bits κ = k. Later,
in Section 6.6, an ECC is added after the syndrome decoding, so κ < k

For DSC and key size κ = k = 128, n is chosen such that e1 = 5 · 10−4 resulting in
block size n for DSC. The average error probability of the indexed bits psyn is given by
Eqn. 6.13. The worst case error probability psyn−max covers the unlikely case that all
indexed bits have error probability pmax, so psyn−max = pmax.

Note that DSC’s maximum error probabilities are in the same range as previous mean
error probabilities for low n to k ratios.

Comparing the mean error probabilities, DSC is considerably more efficient than pre-
vious work for an n to k ratio of 4. This is caused by the fact that other approaches
operate on very small independent blocks with varying reliability. It takes an n to k
ratio between 9 and 10 for the Code-Offset Method and a repetition code with Soft-
decision Maximum-Likelihood (SDML) decoding to approach DSC’s performance. This
shows that a careful selection of the 10% most reliable PUF bits still has a lower error
probability as computing repetition code blocks of size 10. In addition, adding 10 bits
and performing the decision whether the sum is larger than 5 or not is significantly more
complex than simply forwarding one single bit.

69

6. Differential Sequence Coding

2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

PUF Bits / Key Bit (n/k)

 p
sy

n

DSC Max
DSC Mean
(n,4) C−IBS
CO + REP
IBS

Figure 6.5.: Max and mean bit error probabilities of syndrome coding schemes without

second stage ECCs for an SRAM PUF with 15% average bit error proba-

bility.

6.4. Security Analysis

This security analysis contains a theoretical and a practical part. The information the-
oretic analysis quantifies the amount of key information that leaks through the helper
data. The helper data manipulation attack shows a vulnerability of hardware imple-
mentations of the DSC decoding algorithm and also proposes a generic countermeasure.

6.4.1. Information Theoretic Analysis

For code sequence Ck, PUF response Xn and helper data W k, the mutual information
between the code sequence and the helper data I(Ck;W k) determines the amount of

70

6.4. Security Analysis

secret code information that leaks through the helper data. Let X
k

be the vector of
selected PUF bits in Xn. According to the definition of the mutual information,

I(Ck;W k) = H(Ck)−H(Ck|W k) (6.14)

The helper data element Wi is computed as a function f of all previous helper data
W i−1, the current code sequence bit Ci and the selected PUF response bit X i.

Wi = f(W i−1, (Ci ⊕X i)) (6.15)

The distance pointers Uk are selected independently from the key, so they cannot leak
any key information as long as reliability and PUF response bit are not correlated.
Therefore, the leakage of the helper data W k only depends on

V k = Ck ⊕Xk
(6.16)

Using the helper data computation in the conditioned entropy in Eqn. 6.14 gives

H(Ck|W k) = H(Ck|Ck ⊕Xk
) (6.17)

= H([Ck (Ck ⊕Xk
)])−H(Ck ⊕Xk

) (6.18)

= H(Ck) +H(Ck ⊕Xk|Ck)−H(Ck ⊕Xk
) (6.19)

H(Ck ⊕Xk|Ck) = H(X
k
), which removes the XOR in the joint entropy, such that

H(Ck|W k) = H(Ck) +H(X
k
)−H(Ck ⊕Xk

) (6.20)

Using this result in Eqn. 6.14 gives

I(Ck;W k) = H(Ck ⊕Xk
)−H(X

k
) (6.21)

An upper bound can be given by H(Ck ⊕Xk
) ≤ k, so

I(Ck;W k) ≤ k −H(X
k
) (6.22)

In general, correlated or biased PUF responses can lead to syndromes which leak key
information if too much key information is stored. The main insight from Eqn. 6.21 is
that the leakage can be reduced nearly down to zero with diligent code design such that

H(Ck ⊕Xk
) ≤ H(X

k
) + ε holds for a small ε > 0.

71

6. Differential Sequence Coding

As a counterexample, for codes with systematic encoding with distinct information and
redundancy parts, a PUF with low entropy H(Xn) cannot fully protect the information
part that has maximum entropy such that information leaks through the XOR. There-
fore, the codes have to be designed in such a way that the bias or correlations in the
PUF are also represented in the code structure.

According to the bound in Eqn. 6.22, DSC is information theoretically secure for any

code if the PUF has a high entropy such that H(X
k
) > k− ε. According to [KKR+12],

this is given for example for the SRAM PUF.

6.4.2. Helper Data Manipulation Attack

In the system model, an attacker has no access to the PUF responses or the key. How-
ever, the helper data is typically stored in an unprotected and unauthenticated NVM,
so that an attacker can arbitrarily read or modify this data. Furthermore, the attacker
can verify if a cryptographic operation cryptop(data input, key) that uses the generated
key from the PUF response shows valid behavior or not, for example by observing if a
firmware decryption is successful and the system boots properly. This vulnerability and
the corresponding attack strategy were found by Michael Weiner [HWRL+13].

In previous pointer based syndrome coding schemes such as IBS or C-IBS, independent
blocks of PUF response bits were used for each codeword bit. This corresponds to
distinct address spaces such that the attacker cannot point from a reference in one
space to a reference in another. This can also be exploited for C-IBS if more than one
secret bit is embedded in each block [Hil11].

DSC does not split the PUF response into blocks but uses one long sequence out of which
all code sequence bits are referenced in one address space. From a security perspective,
having one long sequence for all PUF response bits is problematic: it allows an attacker
to compare different PUF response bits by modifying the helper data. As a result,
he can learn whether PUF response bits corresponding to ci and ci+1 are equal or the
inverse of each other.

In a simplified scenario, no second stage error correction is used after the syndrome
coding. The ECC is not required for a successful attack and the simplified scenario
makes the problem accessible more easily. As a consequence, the term “codeword” is
replaced by “key” for the following attack description.

Figure 6.6 shows the attack strategy, where the attacker manipulates the helper data
u4. In the changed helper data ũ4, he shifts pointer i to point to position i + 1, then
modifies pointer i+ 1 to point to an unused bit between i+ 1 and i+ 2. He then finally
adjusts the distance of pointer i+ 2 such that position i+ 2 and all subsequent pointers
are addressed correctly again. The fact that the unused bit is not part of the key implies
that its stability is below the required threshold.

72

6.4. Security Analysis

16
Y

1 0 3 4

4
u

1 0 34

4
u
~

i i+1 i+2

4
c

i i+1 i+2

Figure 6.6.: Example for helper data manipulation attack on DSC

Therefore, the attacker can assume that if several DSC key reproductions are performed,
this bit will be equal to key bit ci+1 in some of the reproductions. Of course, the
attacker cannot observe for an individual bit in which of the reproductions this is the
case; however, for those cases it becomes important whether ci = ci+1 holds or not. If
it holds, the attacker observes that the reproduced key is equal to the original one.

The attacker can evaluate whether there exists a significant number of unchanged keys
by observing the output of a cryptographic operation or by verifying whether a cryp-
tographic operation such as firmware decryption is successful. Eventually, the attacker
can repeat this procedure for every pair of subsequent bits such that in the ideal case,
only one key bit remains unknown, independently of the actual key length.

PUF Key

Helper Data

ECC

DEC

Hash

XOR

SYN

DEC

Figure 6.7.: Generic reproduction procedure with countermeasure against helper data

manipulation attacks

For a successful attack, it is required to modify a small number of targeted key bits
while keeping the rest at its original value. Therefore, the attack can be prevented if
the attacker cannot address single key bits anymore. For this reason, a hash function
is integrated into the proposed scheme as shown in Figure 6.7. The output of the ECC
is XORed with the hash value of the helper data; with this addition, any change in the

73

6. Differential Sequence Coding

helper data will on average lead to a change of 50% of the key bits. Note that in this
construction, only the public helper data is fed into the hash function so that it is not
threatened by physical attacks such as side-channel attacks [MSSS11].

If a second-stage ECC is present, the attack becomes more cumbersome because one
has to first ensure that the ECC will not correct the induced changes by introducing
additional faults. A first evaluation of such an attack strategy was carried out by Fuchs
[Fuc15] under my supervision.

6.5. Convolutional Codes

Convolutional codes are a powerful and popular class of ECCs that was discovered
by Elias [Eli55] in 1955 and showed a very high practical relevance throughout the
seventies and eighties of the last century [CJFJ07]. Efficient decoding algorithms such
as the Viterbi algorithm [Vit67], as well as other efficient decoding algorithms, are also
an important prerequisite for the success of a code class.

Other than suggested in [Mae12], convolutional codes are actually very well-suited for
PUFs as the remainder of this chapter demonstrates.

For all classes of channel codes, an information sequence is encoded to a longer code
sequence with a code specific structure. The code sequence is exposed to an environment
that stochastically changes or erases parts of the sequence. On the decoder side, errors
in a given sequence are corrected by detecting distortions that contradict with the code
structure and solving these contradictions.

Block codes divide the information sequence into blocks that are encoded indepen-
dently into code blocks with redundancy. As discussed in Section 6.1, increasing the
block length improves the error correction performance, but also increases the decoding
complexity.

As one major advantage of convolutional codes, there exist very efficient decoding algo-
rithms [Bos99]. Convolutional codes offer powerful error correction for a low hardware
overhead. In this work, the focus is set on the Viterbi algorithm [Vit67] that is discussed
in Appendix A.2.

6.5.1. Convolutional Encoder

Similar to a window sliding along the information sequence, every code sequence bit is a
function of a constant number of consecutive information bits. This operation is defined
mathematically as convolution.

The encoder of an (2, 1, [µ]) convolutional code encodes one input sequence to 2 output
sequences c1, c2 with

74

6.5. Convolutional Codes

c1 = c1,1c1,2c1,3...

c2 = c2,1c2,2c2,3...

Output sequences c1 and c2 are concatenated to the code sequence c according to

c = c11c21c12c22 ...

The following discussion only considers (2, 1, [µ]) codes with two output sequences and
one input sequence. For more information about convolutional codes with a higher
number of input or output sequences see, e.g. [Bos99]. The convolution operation is
carried out in hardware by shifting the information sequence through a shift register of
length µ, as shown in Figure 6.8.

1
c

2
c

i
shift reg.

Figure 6.8.: (2, 1, [7]) convolutional encoder

Functions of the input bit ij and the internal state of the decoder (ij−1, . . . , ij−µ) compute
two output bits (c1,j, c2,j) for each input bit.

c1,j = ij ⊕ ij−2 ⊕ ij−5 ⊕ ij−6 ⊕ ij−7

c2,j = ij ⊕ ij−1 ⊕ ij−2 ⊕ ij−3 ⊕ ij−4 ⊕ ij−7

As main difference to block codes, every information bit is woven into the code stream
with a certain impact length instead of encoding independent blocks where every code
bit might be affected by every information bit within the same block. After the last
information bit, µ zeros are shifted into the encoder to terminate the sequence, so that
the last information bit also has full impact length.

A larger internal state µ increases the number of code sequence bits that are affected
by every information bit, which increases the error correction capability of the code,

75

6. Differential Sequence Coding

as well as its implementation complexity. A comprehensive introduction and analysis
of convolutional codes and the Viterbi algorithm that will be used in the hardware
implementation can be found in [Bos99].

Convolutional codes can also be systematically encoded so that they could also be used
in combination with SLLC [Bos99].

6.5.2. Bounding the Bit Error Probability of Convolutional Codes

The bit error probability is a key parameter to evaluate the performance of a code in
a given scenario. However, it is computationally infeasible to calculate the precise bit
error probability for most practical use cases. So, the straight forward approach is to
run Monte Carlo simulations until a statistically significant number of errors is detected
to calculate the average bit error probability and ideally also its confidence, see e.g.
[Gra07]. For low bit error probabilities, simulations can become quite time and resource
consuming.

Bounding techniques simplify a given problem so that it becomes feasible to compute a
bound that gives a best or a worst case statement. This will be used in the following
to asses the reliability of a large number of key derivation modules with DSC and a
convolutional code.

The following upper bound for the bit error probability of convolutional codes is based
on the Bhattacharyya bound and is discussed in [Bos99]. In the following, the bound is
extended for inputs bits with varying bit error probability.

The convolutional code is a linear code. Therefore, the behavior of the entire code can
be characterized from the properties of the all zeros sequence.

For the all zeros code sequence, a decoding error occurs in a sequence with Hamming
weight w if e bit errors occur with

e > b(w − 1)/2c (6.23)

According to the Bhattacharyya bound, the probability pw of a decoding error in a
sequence with Hamming weight w for a channel with bit error probability pb is bounded
by

pw <
(

2
√
pb(1− pb)

)w
(6.24)

To analyze the mean error over the PUF response distribution, the expectation over the
distribution is calculated.

E(pw) < E
((

2
√
pb(1− pb)

)w)
(6.25)

76

6.5. Convolutional Codes

For i.i.d. error probabilities every factor can be treated independently.

E(pw) <
(
E
(

2
√
pb(1− pb)

))w
(6.26)

For the further bounding Jensen’s inequality [CT06] is applied twice on concave func-
tions. The concavity of the square root function permits the following two bounding
steps.

E(pw) <
(

2
√
E (pb(1− pb))

)w
(6.27)

Again, pb(1− pb) is concave, so

E(pw) <
(

2
√
E(pb)(1− E(pb))

)w
(6.28)

Using E(pb) = psyn computed in Eqn. 6.13, E(pw) can be bounded by

E(pw) <

(
2
√
psyn(1− psyn)

)w
(6.29)

Eqn. 6.29 bounds the probability of error if the given bit is part of a specific sequence
with Hamming weight w. Instead of iterating over all possible code sequences, the
next step iterates over the Hamming weight and assigns E(pw) to all sequences with
Hamming weight w.

Conveniently, the information weight I(w) of a code gives the number of sequences with
Hamming weight w. The information weight spectrum of different convolutional codes
can be found e.g. in [Con84] and so the output bit error probability is bounded by

poutput err <
∑
w

I(w) · E(pw) <
∑
w

I(w) ·
(

2
√
psyn(1− psyn)

)w
(6.30)

As a result, Eqn. 6.30 bounds the bit error probability of a convolutional code and thus
permits to evade laborious simulations.

6.5.3. Seesaw Viterbi Decoder Architecture

The Viterbi algorithm is a popular decoding algorithm for convolutional codes [Vit67,
Bos99]. An introduction to the algorithm and an example can be found in Appendix A.2.
Figure 6.9 shows the trellis diagram that is explained in detail in Appendix A.2.

There are several ways to implement a Viterbi decoder in hardware, e.g. [CS93, FG93,
EDE04, TSR+05, YTA06, KwA07, SES09]. This section discusses the Viterbi decoder

77

6. Differential Sequence Coding

state 00

state 01

state 10

state 11

I II III IV

11 10 01 01

0 2 3 (4)

0 3

0

1

(5)

2

2

(4)

1

3

(4) (5)

1

3

(3)

(5)

3

(3)

3

round

code sequence

i = 0

i = 1

survivor

Figure 6.9.: Trellis diagram for a (2, 1, [2]) convolutional code

even odd

data-path

even odd

data !ow in even rounds

data !ow in odd rounds

distance RAM

path RAM

code bits decoded

information

bit

Figure 6.10.: Seesaw architecture and data flow

architecture published in [HRLS14]. Figure 6.10 shows the data flow in the architec-
ture. Two dual-port block RAMs and the data-path in between form the core of the
architecture. The distance RAM holds the path distances and the path RAM holds the
previous information bits for each state.

78

6.5. Convolutional Codes

Each RAM is partitioned in an even and an odd data section. One section provides the
results of the last round and the other stores the results of the current round. Thus,
the read and write accesses toggle between these sections after each round. Block RAM
on FPGAs provides large, inflexible but fast chunks of storage. By storing the decoder
variables (path distances and survivor paths) from last round and from current round
in different memory sections (even and odd), no additional resources are allocated on
the FPGA for intermediate results. This reduces the overall size of the Viterbi decoder.
Note that there are also higher-density RAM structures available for ICs such that this
approach is also in principle transferable to ASICs.

Distance RAM The even and odd sections of the distance RAM contain 2µ path
distances of the size path distance length (PDL) each. This corresponds to the numbers
next to all dots in one round in Figure 6.9. The data flow in Figure 6.10 shows that
in even rounds, path distances are read from the even section and written to the odd
section. In odd rounds, the data flow changes such that the path distances are read
from the odd section and written to the even section.

For each path distance calculation, two path distances are read from one section. The
trellis in the toy example in Figure 6.9 shows that states 00 and 01, and 10 and 11
have the same possible successors. This also holds for more complex codes. Therefore,
their distance values can be stored together in one memory location and accessed with
a single memory read. The data-path computes the updated path distance and writes
it to a location in the other memory section. Dual port block RAM on Xilinx FPGAs
supports two read, or one read and one write access per clock cycle so that the entire
operation is performed within one clock cycle. The path is updated in the subsequent
clock cycle in the pipelined architecture.

Path RAM The path RAM stores the previous information sequence for each state
of the trellis at one point in time. For each state, the surviving paths are updated
in every round. After the survivor was chosen in the data-path according to the up-
dated path-distance, the old path of the previous state is read from one memory sec-
tion. Each address in the path RAM contains the hypothetical information sequence
ij, ij−1, ..., ij−TBD for one state at the time j. The data flow is identical to the data flow
of the distances RAM. In even rounds the paths are read from the even section and
written to the odd section. And again, in odd rounds the data flow direction switches.

The data is shifted by one and the new information bit is added to the survivor path.
Afterwards, the data is written to the corresponding address in the other memory section
of the path RAM. The TBD specifies the size of the survivor for each state. Note that
typical Xilinx block RAMs store up to 36 bit of data in each address [Xil11]. A TBD
of 35 is recommended for the very popular (2, 1, [7]) code such that the entire survivor
can be stored in one memory location. For a larger TBD, multiple block RAMs can be
used in parallel with the same throughput or data can be spread over multiple addresses
with a lower throughput and a higher control overhead.

79

6. Differential Sequence Coding

Data-Path A small control module attached to the data-path handles the control of
the other modules and the direction of the data flow for the RAMs. Aiming for a low-
complexity data-path, similar operations are serialized as far as possible. In contrast to
typical Viterbi decoder implementations, only one path-distance and survivor is updated
at a time. The almost redundant data representation in the path RAM enables a simple
update of the stored paths. A simple shift operation replaces the complex transition
through the trellis, which reduces the required logic size.

The path distances only have a finite size, so an overflow handling mechanism has to
be implemented for long code sequences. All paths in Figure 6.9 are derived from the
same survivor path and only vary in the last rounds. Therefore, the path distance of
the common survivor can be seen as a constant that can be subtracted from all path
distances. The discussed mechanism can be interpreted as a repeated subtraction of the
constant part from all states, as illustrated in Figure 6.11.

Metric Threshold

P
a

th
-D

is
ta

n
c

e
V

a
lu

e

P
a

th
-D

is
ta

n
c

e
V

a
lu

e

State State

Minimum State

Figure 6.11.: Path-distance vverflow preventing logic

Exploiting the binary representation of the path distances permits to replace the sub-
traction with setting the most significant bit to zero. As soon as the MSB is set to
one for all path distances, it can be set to zero for all locations again. The maximum
difference between any path distances can be assumed as bounded by 2 · TBD, so that
the maximum distance that has to be stored is given by 4 · TBD. As a consequence, it
is sufficient to set the PDL to

PDL ≥ dlog2 TBDe+ 2 (6.31)

Both RAMs store two data sets of 2µ values each. The distance RAM contains
2µ+1(dlog2 TBDe + 2) bits according to Eqn. 6.31, and the typically larger path RAM
stores 2µ+1TBD bits. The total amount of RAM bits can be calculated by:

RAM Bits = 2µ+1(TBD + dlog2 TBDe+ 2) (6.32)

80

6.6. Design of a Complete Key Derivation Module

6.6. Design of a Complete Key Derivation Module

The error probabilities after source coding are not sufficient to consider the reproduced
secret as reliable cryptographic key. Therefore, PUFs need a second stage of error correc-
tion. This section analyzes the performance of DSC concatenated with a convolutional
code to derive a parameter set suitable for implementation.

6.6.1. Effect of the Block Size on the Typical Set

In virtually all PUF key generation schemes published to date, block-based error cor-
rection is used. This can be in the form of a BCH or Repetition code, or IBS variants.
The IBS block size corresponds to 2 to the power of the index size.

The reliability of these schemes is influenced by the larger ε value associated with ε-letter
typical sequences with small block sizes n. As described in the typicality analysis in
Section 6.1, the probability of drawing too few reliable bits decreases exponentially with
an increase in block size. By using a smaller block size, the prior approaches require
more PUF bits to be used for each key bit, as shown in Figure 6.5 for the same level of
perr, or alternatively higher perr for the same PUF bit / key bit ratio.

6.6.2. Key Bit Error Probability

An important performance criterion for PUF error correction is the number of input
PUF bits that are required and the bit error probability of the output. Therefore, the
relation between number of PUF bits n and output bit error probability perr quantifies
the efficiency of the decoder. Note that psyn used in Section 6.2 referred to the error
probability after syndrome decoding while perr quantifies the error after both syndrome
decoding and ECC error correction.

First of all, it is important to set the length µ of the shift register of the convolutional
code. Figure 6.12 shows upper bounded values of the mean error probabilities for convo-
lutional codes with memories µ from 2 to 7. The values were obtained with the bounding
technique discussed Eqn. 6.30 in Section 6.5.2. For a PUF output to key bit rate of n/k,
DSC is configured such that in average n/(2k) bits are indexed. Aiming for a yield of
99.9% the probability of not finding enough PUF response bits is set to e1 = 5 · 10−4

again.

It can be seen that µ = 7 is required to move inside the region of less than 10 PUF
response bits per key bit to be more efficient as state-of-the-art work for a mean input
PUF response bit error probability of 15%. Going to memory 8 would double the number
of operations in the decoder so that µ is set to 7 in the following.

Figure 6.13 compares the simulated key bit error probabilities of DSC with a (2, 1, [7])
convolutional code to DSC with BCH codes of various length with bounded minimum

81

6. Differential Sequence Coding

5 10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

PUF Outputs / Key Bit

p er
r

DSC+Conv µ = 2
DSC+Conv µ = 3
DSC+Conv µ = 4
DSC+Conv µ = 5
DSC+Conv µ = 6
DSC+Conv µ = 7

Figure 6.12.: Bounded mean key bit error probabilities of DSC concatenated with dif-

ferent convolutional codes for an SRAM PUF with average bit error prob-

ability 15% and e1 = 5 · 10−4.

distance decoding [Bos99]. Looking at the number of PUF response bits per key bit
at the error probability of perr = 7.81 · 10−9 shows that (2, 1, [7]) has roughly the same
performance as a (127, 64, 21) BCH code. FPGA implementation sizes and run-times of
the two candidates are compared in Table 6.3. The Viterbi decoder uses only 44% of
the area of the BCH code such that it has a significant advantage for optimized FPGA
implementations using Block RAM. As a side effect it is also 2.6× faster. Therefore, it
will be the preferred decoder in the following.

Slices Run-Time

(2, 1, [7]) Seesaw Viterbi Decoder 21 3, 824

(127, 64, 21) BCH Decoder (simple IS) [Ley15] 48 13, 952

Table 6.3.: ECC decoders synthesized for Xilinx Spartan 6 FPGAs using Block RAM

82

6.6. Design of a Complete Key Derivation Module

5 6 7 8 9 10 11 12
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

PUF Outputs / Key Bit

p er
r

DSC+(59,32,11) BCH
DSC+(127,64,21) BCH
DSC+(252,128,37) BCH
DSC+Conv Sim Mean

Figure 6.13.: Simulated mean key bit error probabilities of DSC concatenated with a

(2, 1, [7]) convolutional code compared to bounded mean key bit error prob-

abilities of rate 1/2 BCH codes

Figure 6.14 sets the DSC and convolutional coding approach in relation to previous
work. The optimal point is in the lower left corner of the diagram so that a low key
error probability is achieved with a low number of PUF bits. Reference values that are all
coherent with the scenario in [MTV09b] were taken from [Bös08, Hil11, HMSS12]. Recall
that the goal in [MTV09b] is to reproduce a 128 bit key with a key error probability
smaller than 10−6, which corresponds to a key bit error probability of 7.81 ·10−9, from a
PUF with an average bit error probability of 15% and a distribution given in [MTV09b].

It can be seen, how the field moved to the left over time. The black diamonds are the
Code-Offset (CO) Fuzzy Extractor results by Bösch et al [BGS+08, Bös08]. Repetition
(REP) codes were concatenated with relatively small BCH and Golay codes and decoded
with hard decision decoding. The magenta crosses show the results by Maes et al.
[MTV09b, MTV09a] where Repetition codes were concatenated with Reed–Muller (RM)
codes and decoded with GMC and SDML soft decision decoders [Bos99]. More recent
work is more efficient than the the older Bösch et al. results, so in general the approach

83

6. Differential Sequence Coding

5 10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

PUF Bits / Key Bit (n/k)

 p
er

r

DSC+Conv Max
DSC+Conv Mean
DSC+Conv Sim Mean
C−IBS+RM Mean (2012)
CO+REP+RM Mean (2009)
CO+REP+BCH Mean (2008)

Figure 6.14.: Bounded mean and max key bit error probabilities of DSC concatenated

with a (2, 1, [7]) convolutional code compared to the state of the art for an

SRAM PUF with average bit error probability 15%. Again, e1 = 5 · 10−4.

shows an improved performance so that less PUF bits are required to achieve the same
key bit error probabilities. The C-IBS results [Hil11, HMSS12] also use IBS pointers in
combination with Repetition codes and Reed–Muller codes and soft-decision decoding.
The results overlap widely with the results in [MTV09b, MTV09a] with a light shift
towards lower numbers of PUF response bits per key bit.

The two nearly diagonal lines across the entire diagram represent DSC concatenated
with a (2, 1, [7]) convolutional code. As a first difference, the other approaches have
fixed bit numbers that result in points in the diagram. For DSC, pmax can be chosen
quasi-continuously as fine-grained as the digital representation of the reliability values
of the PUF response bits allows. Applying again the bounding techniques discussed
in Section 6.5.2 gives a maximum bit error probability for each device and also quick
worst-case reference values for the mean error probability.

DSC’s maximum error probability is comparable to the mean error probabilities of the
state of the art whereas the bounded mean error probabilities of DSC separate the

84

6.6. Design of a Complete Key Derivation Module

field from the left corner. This demonstrates that the DSC and convolutional code
concatenation is more efficient than previous work over the entire analyzed range.

The bounded results give a very quick and rough estimate on the performance of a
scheme. The cyan line, which is the leftmost line and without explicit data points,
shows Monte Carlo simulation results that are roughly 1.5 PUF bits per key bit better
than the corresponding upper bounded values.

As in [GKST07], this work aims to generate a 128 bit key with an error probability
smaller as 10−6. This corresponds to a target bit error probability of et = 7.81 · 10−9,
shown by the horizontal line in Figure 6.14. The simulations have shown that it is
possible to reach the target bit error probability of et = 7.81 · 10−9, shown by the
horizontal line, with pmax = 0.027 by indexing in average p = 32.6% of the available
PUF bits. This specific value was measured by simulating ν = 1.9 · 1011 PUF bits
on Intel Core i7 CPUs where each CPU simulated 6.5 · 107 PUF bits per hour in 8
parallel threads. 1, 170 bit errors were found in total, resulting in a measured bit error
probability of em = 6.2 · 10−9. Xiaoqing Wan and Benjamin Nolet contributed to the
development of the simulation framework in their Master’s Theses [Wan12] and [Nol15],
both under my supervision.

In addition to the mean value em, confidence intervals quantify the precision of the
result. Let kσ be a scalar to give a number as multiple of standard deviations, i.e. kσ ·σ.
The confidence interval is defined as [em −∆e, em + ∆e]. The number of errors in the
Monte Carlo simulation follows a binomial distribution. To assess the confidence of the
of results, Eqn. 6.33 is used [Gra07], simplified for large number of simulated PUF bits
ν

ν =
em(1− em) · (kσ)2

(∆e)2
(6.33)

In the following, Eqn. 6.33 will be solved for two different variables to derive different
statements. kσ = 3.29 corresponds to a 99.9% confidence interval. Solving Eqn. 6.33
for ∆e gives ∆e = 6 · 10−10. Therefore, one can say with a confidence of 99.9% that the
setup has a bit error probability smaller than 6.8 · 10−9.

Next, Eqn. 6.33 is solved for kσ and ∆e is set to et − em. Recall that et defines the
target bit error probability of et = 7.81 · 10−9. As a result, the specified maximum error
probability et has a distance of kσ = 8.9 standard deviations from the simulated value
em. Therefore, the specification et is met with a confidence1 of 1− 2.5 · 10−19.

The corresponding number of PUF bits is 974 to embed the required 270 code sequence
bits, or 128 key bits. This gives 974 · p = 317.5 reliable PUF bits in average and
requires 270 reliable PUF bits to be able to index the entire code sequence. The 128
key bits are encoded to 2 · 128 = 256 code sequence bits. Termination [Bos99] requires

1Let cdfN (·) be the cdf of the Normal distribution and 2kσ the width of the confidence interval. Then,

the confidence level is given by cdfN (kσ)− cdfN (−kσ)

85

6. Differential Sequence Coding

another 2 · 7 = 14 bits leading to 270 code sequence bits in total. The average overhead is
1− 317.5

270
= 17.6%. Therefore, letter typical sequences with an ε of 0.176 can be accepted.

This shows that, even such a low ε value can be efficiently realized in practice when the
block size is large enough.

6.6.3. Properties Helper Data Compression

After determining the parameters for the error correction in the last section, this section
identifies a suitable helper data compression parameter m to increase the efficiency of
DSC. The pointer lengths in RLE differ depending on the input and the code param-
eters. This section shows compression for different parameters to identify the optimal
parameter for the given problem. For increasing p in geometric distributions, higher
integer numbers u are selected less likely, so the average amount of information per
symbol decreases. For very low p, the expression (1 − p)u only decreases very slowly
with increasing u. Therefore, many u have similar probabilities which results in a high
entropy. For high p, small u are chosen with a high probability and (1 − p)u decreases
much faster. This leads to a low entropy.

Recall Figure 6.4 in Section 6.3.2. For low m, the fixed part is rather small whereas the
RLE part increases rapidly with increasing source entropy. In contrast, high m have a
large fixed part and only slowly increasing RLE parts.

Figure 6.15 shows that for p = 0.326, m = 2 leads to the lowest helper data size and
thus achieves the best compression. With an average pointer size of 2.79, the encoded
representation is only 0.03 bit higher than the entropy, so the basic RLE solution almost
reaches the entropy. The more advanced RLE with Huffman coding [GVV75] is more
efficient for larger alphabets L. However, since small m are more efficient for this
scenario, the basic approach by Golomb [Gol66] is analyzed and implemented in the
following.

Varying m gives very low overheads for various parameters p so that RLE enables nearly
optimal compression for DSC independently of the parameter p.

6.6.4. Yield Analysis

Figure 6.16 shows an empirical (1−cdf(l)) function, obtained by Monte Carlo simulation,
that corresponds to the overflow probability e2 in dependency of the maximum helper
data size l. According to Figure 6.4, on average 2.79 helper data bits have to be stored
for each distance pointer for p = 0.326 and m = 2. To handle varying helper data sizes
requires to assign more helper data storage. Aiming for a yield ζ ≥ 99.9%, one can
tolerate overflows with a probability e2 ≤ 5 · 10−4.

The average size of the helper data can be reduced significantly compared to the 2, 176
bits of the uncompressed version without reducing the yield. At least 1, 070 helper

86

6.6. Design of a Complete Key Derivation Module

1000 1100 1200 1300 1400 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Helper Data Size

E
m

pi
ric

al
 P

ro
ba

bi
lit

y
D

is
tr

ib
ut

io
n

m = 1
m = 2
m = 4
m = 8

Figure 6.15.: Helper data length distribution functions based on 107 simulated PUFs

with DSC encoding with p = 0.326, RLE helper data compression and a

(2, 1, [7]) convolutional code

data bits should be assigned for a reasonable yield. However, the error probability e2(l)
decreases by several orders of magnitude for spending 5% to 10% more helper data bits.
As a result, e2(l) ≤ 5 · 10−4 can be achieved in practice by l = 1, 108, which is only 8%
over the entropy of the helper data.

6.6.5. Comparison with Dark Bit Masking

The DSC setup has the same error probability as dark bit masking combined with a
Fuzzy Commitment [JW99] and an identical (2, 1, [7]) convolutional code. The average
bit error probability of the distribution in [MTV09b] is varied between 10% and 20%
and the parameters for a key error probability of 10−9 were obtained with the bounding
technique discussed in Section 6.5.2. Figure 6.17 shows the average helper data sizes of
DSC with helper data compression and the Fuzzy Commitment with Dark Bit Masking.

87

6. Differential Sequence Coding

700 800 900 1000 1100 1200 1300 1400

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Helper Data Size

E
rr

or
 P

ro
ba

bi
lit

y
ε 2

Figure 6.16.: Overflow error probabilities for different fixed helper data sizes and 107

simulated PUFs with DSC encoding with p = 0.326, helper data compres-

sion with m = 2 and a (2, 1, [7]) convolutional code

The comparison shows that DSC reduces the helper data size by up to 73% compared to
the conventional approach. Therefore storing compressed differential pointers is signifi-
cantly more efficient than selecting PUF bits with a bit mask when only a small fraction
of PUF response bits is indexed.

6.7. Implementation

After selecting the parameters for the PUF error correction module, this section presents
an overview of the hardware implementation and compares the resource consumption
with the state of the art.

The encoding does not have to be part of the final implementation since it can be
performed off-chip or with a different configuration bit-stream in a secure environment.

88

6.7. Implementation

10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

Average Input Error Probability

A
ve

ra
ge

 N
um

be
r

of
 H

el
pe

r
D

at
a

B
its

DSC with HD Compression
Dark Bit Masking

Figure 6.17.: Helper data sizes of DSC with helper data compression and dark bit mask-

ing for a key error probability of 10−9 and different input error probabilities

Also, the encoder modules only have a fraction of the complexity of the decoders. On
a Xilinx Spartan-3E FPGA, the DSC encoder requires 15 slices (10 flip-flops and 25
LUTs) while the convolutional encoder only uses 10 slices (12 flip flops and 11 LUTs)
which is roughly a factor of 10 smaller than the corresponding decoders (see Table 6.4).
Therefore, the focus is set on the more important and interesting optimized decoder
implementation.

For an increased robustness and flexibility, all discussed modules are protected with a
double handshake shown in Figure 6.18. If valid data is on a line, the sender asserts the
strobe signal stb. The receiver acknowledges the received data by asserting ack and is
ready to process the next data after ack is set to zero again.

6.7.1. Hardware Architecture

The block diagram in Figure 6.19 shows the building blocks of the DSC and convolutional
code reproduction procedure.

89

6. Differential Sequence Coding

valid Data

clk

stb

dat

ack

Figure 6.18.: Double handshake IO protocol

PUF Key

Helper Data

DSC DEC Viterbi

DEC

SPON-

GENT

REG

XOR

RLE DEC

DSCcmpr DEC

Figure 6.19.: DSC reproduction with helper data compression

The DSC decoder with helper data compression combines the functionality of decoding
the helper data pointers, that are RLE encoded [Gol66], and selecting the corresponding
incoming PUF response bits. The helper data and the PUF outputs are read sequen-
tially, until the helper data signals that the current incoming PUF bit is the indexed
one.

As shown in Figure 6.19, the helper data is hashed onto the output of the Seesaw Viterbi
decoder to prevent helper data manipulation attacks as discussed in Section 6.4.2.
SPONGENT was selected as a lightweight hash function [BKL+11]. In [JRLH14],
we demonstrated that SPONGENT is well-suited for compact FPGA implementations.
Therefore, I chose the implementation discussed in [JRLH14] in the smallest configura-
tion that returns an 88-bit hash value.

The REG XOR module XORs the outputs of the Viterbi decoder and the helper data
hashed in the SPONGENT module and stores the result in a register. This ensures that
88 key bits are affected by each helper data bit to corrupt the key as soon as the helper
data is manipulated to prevent the attack discussed in Section 6.4.2.

6.7.1.1. Optimized SPONGENT

SPONGENT [BKL+11] is a lightweight hash function that is based on the PRESENT
block cipher [BKL+07]. It can be seen as a generalization to larger block lengths.

90

6.7. Implementation

Fig. 6.20 shows the datapath of the SPONGENT implementation used in this work.
It was initially developed by Maximilian Birkner [Bir13] and later improved by Lean-
dro Rodrigues Lima, both under my supervision. We published a comparison of this
implementation with two other lightweight hash functions in [JRLH14].

To avoid large multiplexers in the design whenever possible, it contains a layer of parallel
S-boxes. The three steps of the round function are processed in each round and the result
is stored in the state register. No additional serialization takes place in the architecture.

Figure 6.20.: The SPONGENT architecture.

As first step of the round function, a round constant is computed based on the internal
state of an LFSR, configured with a primitive polynomial. For SPONGENT, the state
is interpreted as one long vector. The state of the LFSR is XORed on the rightmost
part of the state. In addition, the same data is reversed and XORed on the leftmost
part of the state. Note that the XORs only refer to the right or left 6− 9 bits while the
remaining b minus 6− 9 bits are directly forwarded.

For the S-box layer, the state is divided into four-bit blocks. For each mapping of a
four bit block to another block of the same size, the mapping function is defined by the
PRESENT S-box [BKL+07]. The S-box layer can be implemented in serial or in parallel.
A serial implementation would require a large multiplexer to connect all four-bit blocks
to the S-box, whereas a parallel implementation is much faster at lower area cost on an
FPGA. Therefore, a parallel implementation is more favorable for this application.

The permutation layer is an extension of the (inverse) permutation in PRESENT. It is
designed for ASICs, where it can be easily implemented by simple wiring. In contrast,
the wiring has to be implemented with look-up tables in FPGAs which causes a slightly
increased resource consumption.

6.7.2. Synthesis Results

This section compares the new DSC and Seesaw Viterbi implementation to previous
work to evaluate its efficiency. Table 6.4 shows synthesis results for Xilinx Spartan
3 FPGAs and several reference implementations for the same scenario discussed in
[MTV09b, MTV09a], namely an SRAM PUF with average bit error probability 15%

91

6. Differential Sequence Coding

with distribution discussed in [MTV09b] and a desired key error probability of 10−6

for a 128 bit key. The DSC and convolutional code implementation is by far the most
efficient one in terms of required PUF outputs and helper data bits.

PUF Response Helper Data Slices Block RAM Clock Cycles

Bits Bits Bits

Code-Offset Go-

lay [BGS+08]

3, 696 3, 824 ≥ 907 0 > 24, 024

Code-Offset RM-

GMC [MTV09a]

1, 536 13, 952 237 32, 768 10, 298

C-IBS RM

[HMSS12]

2, 304 9, 216 250 0 ∼ 9, 000

DSC Conv. Code

(bounded)

1, 224 2, 176 262 11, 264 30, 846

Compr. DSC

Conv. Code.

(bounded)

1, 224 1, 224 272 11, 264 33, 925

Compr. DSC See-

saw (simulated)

974 1, 108 249 10, 752 29, 243

Table 6.4.: FPGA implementations of reproduction procedures of the DSC and reference

implementations synthesized for Xilinx Spartan 3E FPGAs

Tables 6.5 and 6.6 show detailed synthesis results of the architecture for Spartan-3E
and Spartan-6 FPGAs. Compared the first DSC results, the Seesaw Viterbi decoder
and SPONGENT implementation mainly reduces the number of not fully used block
RAMs so that I was able to reduce the overall number to 2 while slightly decreasing the
overall size of the top module. This was mainly achieved with a more balanced design
by using the spare registers in slices that were already allocated for their LUTs. In
addition, more advanced synthesis optimizations were applied to reduce the size.

Replacing the block RAM in Table 6.6 by distributed RAM increases the size of the
implementation from 72 to 146 slices.

6.7.3. Evaluation

Comparing the most recent results to the early DSC results shows that using precise
simulation results instead of the bounded values allows to decrease the number of PUF

92

6.7. Implementation

DSCcmpr Dec Viterbi Dec SPONGENT REG XOR Entire Module

Slices Total 17 68 85 58 249

Registers 9 56 117 40 247

Logic LUTs 26 75 153 104 388

Block RAM Bits − 10, 752 − − 10, 752

Table 6.5.: Detailed synthesis results of the DSC reproduction procedure implementa-

tion for Xilinx Spartan-3E FPGAs

DSCcmpr Dec Viterbi Dec SPONGENT REG XOR Entire Module

Slices Total 7 21 24 20 72

Registers 9 55 117 33 235

Logic LUTs 18 77 85 67 251

Block RAM Bits − 10, 752 − − 10, 752

Table 6.6.: Detailed synthesis results of the DSC reproduction procedure implementa-

tion for Xilinx Spartan-6 FPGAs

bits by 20%. In addition, the size of the helper data is 9% less than the previous com-
pressed results and 50% less than the default DSC case. The improved implementation
slightly reduces the number of slices, block RAM bits and clock cycles.

These results make DSC by far the most efficient approach for this scenario in terms of
PUF and helper data bits. DSC enables to generate a reliable key from 974 PUF bits
and 1, 108 helper data bits for pmax = 0.0270.

Figure 6.21 compares the DSC Seesaw implementation with helper data compression
to the state of the art approaches discussed in Table 6.4. All results are normalized to
the maximum number in the corresponding categorie in the comparison. It can be seen
that all DSC results, except of the cycle count, are within the 0.4 area while all other
approaches have outliers in at least two categories.

All in all, the number of PUF bits is reduced by 36% compared to [MTV09a] and the
number of helper data bits by 71% compared to [GKST07], which are both the most
efficient approaches for each measure with a significant drawback in the other. The
required number of FPGA slices for the DSC implementation is only 5% larger than the
smallest reference implementation [MTV09a]. However, optimizing rigorously for area
also makes the DSC implementation the slowest investigated one in this comparison
with the highest cycle counts, as shown in Table 6.4.

93

6. Differential Sequence Coding

Figure 6.21.: FPGA implementations of reproduction procedures of the DSC and refer-

ence implementations synthesized for Xilinx Spartan 3E FPGAs

6.8. Further Improvements

This chapter has shown the theoretical and practical properties of DSC. In addition to
the basic DSC version discussed in detail in this chapter, two incremental improvements
will be addressed in brief in this section.

6.8.1. Soft-Output Viterbi

Aysun Gurur Önalan investigated in her research internship in 2015 under my supervi-
sion the option of using a Reliability Output Viterbi Algorithm (ROVA) [RB98]. The
idea for this project came from Prof. Martin Bossert and the results are published in
[HOSB16]. The basic idea is to read out the PUF multiple times, compute multiple keys
during reproduction and select the most reliable key candidate.

The ROVA decoder can output additional reliability information that indicates how
many errors were corrected to reach the given output sequence. If only a small number
of errors is corrected, there are two possibilities: there was actually only a small and

94

6.9. Conclusions

well-controlled number of error events, or the transmitted sequence contained so many
errors that a decoding error occurred and it was decoded to something else. However,
the second event occurs only with a very small probability.

The majority of errors occurs if the result is close to the decision bound and then a
wrong decision is made. The reliability output Viterbi algorithm detects cases with a
low reliability. Then, the result is discarded and the decoding is carried out another
time.

The simulation results have shown that this approach allows to increase pmax from 0.027
to 0.1 so that the approach tolerates an almost 4× higher input error probability. As a
result, roughly 50% of the PUF bits could be indexed instead of currently 32%.

However this scheme might show some vulnerability against hill climbing attacks, e.g.
[SKVdV09], that should be further investigated before usage of the scheme.

6.8.2. Multistage DSC

In the presented approach, DSC only uses one reliability criterion pmax. Benjamin Nolet
investigated trade-offs for 2 and 3 criteria in his Master’s Thesis [Nol15] under my
supervision.

The PUF response is first scanned for PUF response bits that fulfill a very strict relia-
bility criterion pmax,1. Due to their higher reliability, a code with a higher rate can be
used to achieve the same output bit error probability. Then, the PUF bits that have
reliability between the first criterion pmax,1 and a weaker criterion pmax,2 are indexed
and a code with a lower rate is used to embed the next bits.

Going to multiple stages did not decrease the number of required PUF response bits
but requires more helper data and 2 or 3 DSC iterations. As a consequence, we did not
continue any further research in that direction.

6.9. Conclusions

This chapter quantified an algorithm-independent relationship between block size and
reliability with the information theoretical concept of typicality for the first time in the
PUF context.

I introduced Differential Sequence Coding (DSC), a pointer-based syndrome coding
scheme that is able to skip unreliable PUF response bits and can treat the PUF re-
sponse bits as a single, maximally reliable, block. I have shown its advantages from an
information theoretical point of view and compared it to the state of the art.

The hardware implementation requires 36% less PUF bits and 71% less helper data bits
than the best reference implementations for a popular SRAM PUF scenario.

95

Chapter 7.

Evaluation

Chapters 3, 5 and 6 discussed several flavors of error correction and evaluated them
for specific scenarios. Different error correction schemes are favorable depending on the
characteristics of the PUFs, implementation complexity constraints and the required
output reliability of the key. This chapter sets them into a larger context by varying the
average input bit error probability of the PUF µ(ppuf) and designing the error correction
accordingly to reach a target key error probability. SRAM PUFs with the distribution
discussed in Appendix A.3 are used exemplarily as input.

Four practical implementation criteria are discussed in this evaluation for each output
error probability:

• PUF bits

• Helper data bits

• Slices

• Clock cycles

It is practically not feasible to carefully design optimized implementations for all candi-
dates and multiple parameter sets. Therefore, Section 7.1 discusses how the performance
of the parameter sets that are compared in this section are estimated if no dedicated
full implementation was created. Section 7.2 puts the SLLC results into context. In
Section 7.3, approaches for a medium key output error probability of 10−6 are presented
and compared. The same analysis is performed in Section 7.4 for candidates that were
designed for a key error probability of 10−9.

Tables 7.1 and 7.2, located at the end of the chapter, wrap up the results in a compact
representation and provide the precise numbers. They contain error correction param-
eters for PUFs with average bit error probabilities µ(ppuf) between 10−5 and 25% for
target key error probabilities of 10−6 and 10−9.

The performance of the new approaches presented in this thesis is compared to published
results of state-of-the-art schemes. All results refer to Xilinx Spartan 6 FPGAs so that
they are fully comparable.

97

7. Evaluation

7.1. Estimation of Implementation Complexity

To get a bigger picture on the performance of different approaches, this section ex-
trapolates the implementation complexity of various parameter sets from the reference
implementations by using conservative estimates. If a specific parameter set is selected
for implementation, the previously discussed methods can be applied to optimize the
implementation and further increase the performance to achieve more competitive re-
sults.

The required numbers of PUF response bits for DSC were obtained by applying the
bounding technique presented in Section 6.5.2 except for the 15% average input error
probability and 10−6 output key error probability data point that was discussed in detail
in Section 6.6. The expected helper data size for compressed helper data refers to RLE
m parameters chosen as power of 2. As shown in Section 6.6.3, a small overhead has to
be added for a reasonable yield. This overhead is neglected in the resource estimation.
The implementation sizes and cycle counts refer to helper data compression with m = 2.
Values of up to m = 16 will cause a slight overhead in the decoder. The (2,1,[7]) Viterbi
decoder with Seesaw architecture, discussed in Section 6.5.3, remains identical for all
approaches. Reading a PUF response bit is assumed to take two clock cycles and a
third one is assumed for the helper data handling and control overhead. Therefore, the
remaining DSC cycle counts are estimated based on the reference implementation for
average input error probability µ(ppuf) = 15% and 10−6.

The BCH code implementation results were obtained with the design discussed in [Ley15]
using the advanced instruction set architecture that is optimized for area, not for speed.
This implementation type has a relatively constant implementation size for different
parameters. There are only minor changes in register widths while the actual instruction
set is independent of the code parameters. However, the number of clock cycles increases
significantly with the decoding complexity, which highly depends on the code length
and code distance. For the SPONGENT-(128/128/8), a delay of 1, 120 clock cycles
are estimated for the 16 bytes with 70 rounds each. The implementation discussed in
[JRLH14] uses 44 FPGA slices.

For a fair comparison, all implementation sizes refer to modules with distributed RAM
where no Block RAM is used.

7.2. Assessment of SLLC to the State of the Art

Most state of the art approaches were designed for mean input error probabilities
µ(ppuf) > 10% using more than n = 700 PUF bits to generate k = 128 key bits.
Reducing n helper data bits to n− k saves less than 20% of the overall helper data bits
which is only a small incremental improvement.

As discussed in Section 5.3, SLLC can show its benefits best for very reliable PUFs
where it becomes significantly more efficient than other approaches. Therefore, DSC

98

7.3. Syndrome Coding and ECC Designs for Medium Key Error Probability

and SLLC complement each other for different scenarios instead of competing in the
same range.

The SLLC data point from Section 5.3 is also shown in Section 7.4 to show this discrep-
ancy. Due to the lacking reference implementations in this range, it is hard to compare
SLLC directly to other optimized and published implementations.

7.3. Syndrome Coding and ECC Designs for Medium

Key Error Probability

A key error probability of 10−6 is widely used in previous literature as tolerable output
key error probability, e.g. in [GKST07, BGS+08, MTV09a]. Several implementations
were designed and analyzes were performed for this scenario so that this section gives
a comprehensive listing of previous work and sets the new work into context. Table 7.1
shows previous implementations for different average input bit error probabilities and the
distribution given in [MTV09b]. The numbers of PUF and helper data bits demonstrate
the effectiveness of the approaches while the implementation complexity can be seen by
the number of slices and an estimate on the run time of the different approaches.

There are four candidates that will be discussed in this section:

• The Code-Offset approach with Repetition and BCH codes [Bös08] serves as base
line and is the oldest candidate in this comparison. Since the paper only contains
results for Spartan 3 FPGAs, new Spartan 6 results were obtained with the BCH
decoder implementation proposed in [Ley15]. The old Toeplitz Hash [Kra94] was
replaced with a more recent SPONGENT 128/128/8 hash function [BKL+13]. The
Code-Offset Fuzzy Extractor could be replaced by SLLC which would reduce the
helper data size by the size of the reproduced secret.

• The Repetition and Reed–Muller code Code-Offset Fuzzy Extractor [MTV09a,
MTV09b] is a previous implementation with soft-decision decoding that requires
soft input information on the reliability of specific PUF bits.

• The C-IBS syndrome coding with Reed–Muller ECC presented in [Hil11, HMSS12]
is a pointer-based approach that also uses soft-decision decoding with relatively
short block lengths.

• The DSC and Viterbi results were discussed in detail in Chapter 6. In contrast
to the soft-decision approaches, DSC only requires a binary reliability indicator
λ, whether the error probability of a specific PUF bit higher or lower than the
threshold pmax.

The ML symbol-based approach in [YHD15] is optimized for a strong PUF that provides
large numbers of PUF bits. It is designed for a different scenario, so that a direct com-
parison has to be done with care. In the following analysis, the mean error probability

99

7. Evaluation

of the PUF µ(ppuf) serves as common reference and is always plotted as x-axis of the
figures. The different y-axes visualize the different implementation measures that are
also later given in columns 3 to 6 in Table 7.1, and later in Table 7.2.

4 6 8 10 12 14 16 18 20 22
0

500

1000

1500

2000

2500

3000

3500

4000

µ(p
puf

) in %

P
U

F
 B

its

CO+REP+BCH [Bos08]
C−IBS+RM [HMSS12]
CO+REP+RM [MTV09a]
DSC+Conv

Figure 7.1.: Number of PUF bits of different syndrome coding and ECC approaches

designed for a key error probability of 10−6

PUF Response Bits Figure 7.1 visualizes the numbers of PUF bits of the different
approaches. The results for the 15% data point were already analyzed in detail in
Chapter 6. Note that the black Code-Offset BCH point lies underneath the Code-Offset
RM data point. DSC shows low PUF bit counts in the middle area. The C-IBS and
Code-Offset RM approaches both benefit from the soft-decision decoding. C-IBS is able
to achieve the same performance as Code-Offset BCH with a significantly shorter code
length, while the Code-Offset RM approach is more efficient than the other two reference
points. As already discussed in Chapter 6, the DSC approach is more efficient than the
three references in the 15% point.

For 10% input error, DSC requires only 30% of the PUF response bits of the Code-
Offset BCH implementation. Going to 20% input error probability at the other side of

100

7.3. Syndrome Coding and ECC Designs for Medium Key Error Probability

the scale, the Code-Offset BCH approach outperforms DSC at the expense of a BCH
code with a long code length of 255. For DSC, it might be useful to go to a (2, 1, [8])
code for 20% input error probability to bring the number of PUF bits down again.

4 6 8 10 12 14 16 18 20 22
0

5000

10000

15000

µ(p
puf

) in %

H
el

pe
r

D
at

a
B

its

CO+REP+BCH [Bos08]
C−IBS+RM [HMSS12]
CO+REP+RM [MTV09a]
DSC+Conv

Figure 7.2.: Number of helper data bits of different syndrome coding and ECC ap-

proaches designed for a key error probability of 10−6

Helper Data As expected, the helper data size results in Figure 7.2 show that the
hard-decision approaches, namely the Code-Offset and BCH code construction and the
DSC approach, have low helper data counts that scale almost linearly with the input
error probability. As discussed in Section 6.6.5, the DSC helper data compression shows
the largest impact for a high PUF bit to key bit ratio, as it is required for PUF with high
mean error probabilities on the right side of the x-axis. Storing reliability information
in the helper data in [MTV09a] and [HMSS12] increases the numbers by a factor of 3×
and more such that these approaches have a significant disadvantage in helper data size.

Slices Figure 7.3 provides the first part of the implementation complexity results for
the analyzed approaches, given by the slice counts. The synthesis results in [MTV09a]

101

7. Evaluation

4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

µ(p
puf

) in %

S
pa

rt
an

 6
 S

lic
es

CO+REP+BCH
C−IBS+RM [HMSS12]
DSC+Conv

Figure 7.3.: Number of Spartan 6 slices of different syndrome coding and ECC ap-

proaches designed for a key error probability of 10−6

are for a Spartan 3E FGPA so that they cannot be compared to the other approaches.
The BCH and the Seesaw Viterbi decoders show a fairly constant behavior for different
input error probabilities, since the block size only has a minor impact on the size of the
decoder in the selected processor-based architecture [Ley15] and the (2, 1, [7]) convolu-
tional code is identical over all DSC data points. Seesaw takes great advantage of Block
RAM such that the slice count of the DSC and Viterbi module doubles if distributed
RAM is used. In this case, the BCH decoder is roughly 25% to 30% smaller than the
Seesaw Viterbi decoder. As soon as FPGA-specific optimization with Block RAM is
permitted, the results in Chapter 6 hold where the DSC Seesaw is significantly more
area efficient. The C-IBS RM implementation with code length 8 in [HMSS12] is small
and fast with the trade-off that fine-grained reliability information is stored in the helper
data. Also, a larger number of PUF bits is necessary to achieve the same reliability at
the output, compared to DSC.

102

7.3. Syndrome Coding and ECC Designs for Medium Key Error Probability

4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

µ(p
puf

) in %

C
lo

ck
 C

yc
le

s

CO+REP+BCH
C−IBS+RM [HMSS12]
CO+REP+RM [MTV09a]
DSC+Conv

Figure 7.4.: Number of clock cycles of different syndrome coding and ECC approaches

designed for a key error probability of 10−6

Clock Cycles The cycle counts of the implementations are shown in Figure 7.4. They
differ over several orders of magnitude due to the different code classes and architectures.
Especially the cycle counts of the BCH decoders show a large variation because the
number of operations is highly dependent on the code length and code rate. A lower
rate leads to more syndrome equations that have to be checked in the decoder. The 15%
data point is the slowest in this comparison because a length 255 BCH code with a low
rate is used. The key is spread over two BCH codewords so that two time consuming
BCH decoding operations are necessary. Going to a larger repetition code in the 20%
data point such that only one BCH codeword is used speeds up the decoding at the
expense that the number of PUF bits also goes up. DSC shows a rather linear behavior
as the number of PUF bits increases since the decoder remains constant. The Reed–
Muller implementations are the fastest in this comparison. However, note that the
Reed–Muller decoder in the next chapter is relatively slow such that this property does
not hold in general.

103

7. Evaluation

Considering a trade-off between all four categories, DSC shows a high performance in
PUF bits, helper data bits and clock cycles with an increased implementation complexity
since no block RAM is used in this comparison. The Code-Offset approach with Rep and
BCH code has a high number of PUF bits and by far the highest clock cycle counts in
the field. The soft decision approaches in [MTV09a] and [HMSS12] lead to a significant
helper data overhead. A graphic comparison of the 15% input error probability data
point can be found in Figure 6.21 in Chapter 6. The precise numbers discussed in this
section can be found in Table 7.1 at the end of this chapter.

7.4. Syndrome Coding and ECC Designs for Low Key

Error Probability

This section analyzes error correction schemes that were designed for a key error prob-
ability of 10−9, which was used for example in [MVHV12]. The decrease in error prob-
ability can only be achieved by correcting more errors which requires a more powerful
error correction.

Six implementation candidates are compared in this section:

• The SLLC and BCH code candidate was discussed in detail in Chapter 5. It was
designed as lightweight solution for extremely low input error probabilities such
that it is not directly comparable to the other designs in the field.

• Again, the Repetition and BCH code fuzzy extractor based on the results in [Bös08]
serves as reference.

• The PUFKY design is an optimized practical implementation published in
[MVHV12]. It was designed as stand-alone IP core together with an RO PUF.

• Our design and implementation of a Code-Offset and RM construction with GCC
[PMB+15, HKS+15][Kür14] shows that the decoding complexity can be reduced
by using shorter block sizes concatenated with a GCC construction.

• The Reed–Muller and Reed–Solomon code construction is the first that shows the
potential of RS codes in the PUF context [PMB+15]. [PMB+15] also contains a
more sophisticated GCC RS construction that will not be taken into account here.

• Finally, the bounded DSC and Viterbi results set the contributions provided in
Chapter 6 in a larger context, also for a lower output key error probability.

PUF Response Bits Figure 7.5 has parallels to Figure 7.1. Again, DSC shows a low
number of PUF bits for expected input error probabilities 10% and 15%, while the
20% data point exceeds the Code-Offset Rep and BCH code approach. In the 13% to
15% range, the DSC result is slightly better than Code-Offset results in [MVHV12] and

104

7.4. Syndrome Coding and ECC Designs for Low Key Error Probability

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

µ(p
puf

) in %

P
U

F
 B

its

CO+REP+BCH [Bos08]
SLLC+BCH
CO+REP+BCH [MVHV12]
DSC+Conv
RM GCC [MPB+14]
RM+RS [PMB+15]

Figure 7.5.: Number of PUF bits of different syndrome coding and ECC approaches

designed for a key error probability of 10−9

[MPB+14]. Both require roughly two thirds of the PUF response bits of the Code-Offset
Repetition and BCH implementation [Bös08]. Using only roughly half of the PUF bits
of the other constructions, the Reed–Solomon construction in [PMB+15] has the best
performance in this input error range.

Helper Data The helper data sizes differ significantly for the different approaches. For
the Code-Offset approach, the numbers of helper data bits in Figure 7.6 are identical to
the numbers of PUF response bits in Figure 7.5. For the Syndrome approach and SLLC
the helper data size is given by the difference between secret size and number of PUF
response bits.

The helper data compression for DSC mitigates the increase in helper data size for
larger input error rates. Increasing the m parameter of the RLE encoder only leads to
a slow increase in helper data size over µ(ppuf) as discussed previously in Figure 6.4.
Note that in contrast to the 10−6 scenario, none of the approaches relies on reliability

105

7. Evaluation

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

µ(p
puf

) in %

H
el

pe
r

D
at

a
B

its

CO+REP+BCH [Bos08]
SLLC+BCH
CO+REP+BCH [MVHV12]
DSC+Conv
RM GCC [MPB+14]
RM+RS [PMB+15]

Figure 7.6.: Number of helper data bits of different syndrome coding and ECC ap-

proaches designed for a key error probability of 10−9

information stored in helper data such that the maximum numbers are lower than in
the 10−6 scenario.

Slices Figure 7.7 shows the numbers of slices of the different implementations. Due to
the parallels in the implementations, again the BCH decoder presented in [Ley15] leads
to a compact implementation of the Code-Offset Repetition and BCH, and the SLLC
construction. The DSC slice counts are slightly higher while the implementations of
[MVHV12] and [HKS+15],[Kür14] are above of 200 slices.

So far, there are no implementation results available for the Reed–Solomon construction
discussed in [PMB+15]. Also note that for the implementation of the Reed–Muller
Construction with GCC in [Kür14][HKS+15], the recursive decoder was replaced by a
Reed decoder [MS77], which leads to a slightly increased decoder error probability.

Clock Cycles The cycle counts differ by two orders of magnitude in Figure 7.8 so that
the clock cycles are plotted on a logarithmic scale. For the given compact BCH decoder,

106

7.4. Syndrome Coding and ECC Designs for Low Key Error Probability

0 5 10 15 20
0

50

100

150

200

250

µ(p
puf

) in %

S
pa

rt
an

 6
 S

lic
es

CO+REP+BCH
SLLC+BCH
CO+REP+BCH [MVHV12]
DSC+Conv
RM GCC [HKS+15]

Figure 7.7.: Number of Spartan 6 slices of different syndrome coding and ECC ap-

proaches designed for a key error probability of 10−9

the Code-Offset Repetition and BCH implementations are on average over one order of
magnitude slower as the remaining candidates.

Combining the results in Figures 7.7 and 7.8, it is noteworthy that the DSC implemen-
tation is smaller and faster as implementations based on the Code-Offset and Syndrome
constructions in [MVHV12] and [HKS+15],[Kür14]. This is mainly caused by the fact
that significantly more errors have to be corrected by the ECC while DSC already
reduced the average input error probability by the indexing step during helper data
generation.

All in all, again DSC offers a good trade-off between PUF bits, helper data, FPGA
slices and clock cycles at the price that information on the reliability of individual bits
has to be obtained during generation. Other approaches are stronger in the individual
categories with drawbacks in others. An compilation of the numbers plotted in the
figures can be found in Table 7.2.

107

7. Evaluation

0 5 10 15 20

10
5

10
6

µ(p
puf

) in %

C
lo

ck
 C

yc
le

s

CO+REP+BCH
SLLC+BCH
CO+REP+BCH [MVHV12]
DSC+Conv
RM GCC [HKS+15]

Figure 7.8.: Number of clock cycles of different syndrome coding and ECC approaches

designed for a key error probability of 10−9

7.5. Conclusions

The comparison has shown that there is no superb one-size-fits-all solution so that
different approaches have their merit for different scenarios. The previous sections show
that the DSC and convolutional code solution, presented in the previous chapter, offers
a good trade-off between the different criteria and can be applied if a PUF bit specific
reliability indicator is available.

108

7.5. Conclusions
P

U
F

B
it

E
rr

.
P

ro
b
.

A
p
p
ro

ac
h

(+
R

ef
er

en
ce

)
P

U
F

B
it

s

H
D

B
it

s

N
u
m

S
li
ce

s

R
u
n

T
im

e

E
st

im
at

e

C
om

m
en

t

5%
C

O
+

R
ep

(3
,1

,3
)

+

B
C

H
(2

55
,1

71
,2

3)
[B

ös
08

]

76
5

76
5

10
3

10
6,

00
0

10
%

C
O

+
R

ep
(7

,1
,7

)
+

B
C

H
(5

9,
35

,9
)

[B
ös

08
]

2,
06

5
2,

06
5

89
68

,0
00

10
%

D
S
C

+
V

it
er

b
i

+
S
P

O
N

-

G
E

N
T

88

60
8

70
7

14
6

28
,0

00
B

in
ar

y
R

el
y

In
d
ic

at
or

15
%

C
O

+
R

ep
(5

,1
,5

)
+

B
C

H
(2

26
,8

6,
43

)
[B

ös
08

]

2,
26

0
2,

26
0

10
7

36
5,

00
0

15
%

C
O

+
R

ep
(3

,1
,3

)
+

R
M

(6
4,

22
,1

6)
[M

T
V

09
a]

1,
53

6
13

,9
52

–
10

,0
00

S
of

t
In

p
u
t

In
fo

rm
at

io
n

15
%

C
-I

B
S
(9

,4
)

+
R

M
(8

,4
,4

)

[H
M

S
S
12

]

2,
30

4
9,

21
6

76
9,

00
0

S
of

t
In

p
u
t

In
fo

rm
at

io
n

15
%

D
S
C

+
V

it
er

b
i

+
S
P

O
N

-

G
E

N
T

88

97
4

1,
10

8
14

6
30

,0
00

B
in

ar
y

R
el

y
In

d
ic

at
or

20
%

C
O

+
R

ep
(1

3,
1,

13
)

+

B
C

H
(2

55
,1

71
,2

3)
[B

ös
08

]

3,
31

5
3,

31
5

10
4

11
8,

00
0

20
%

D
S
C

+
V

it
er

b
i

+
S
P

O
N

-

G
E

N
T

88

3,
78

0
1,

57
5

14
6

38
,0

00
B

in
ar

y
R

el
y

In
d
ic

at
or

24
%

M
L

S
y
m

b
ol

A
p
p
ro

ac
h

+
n
on

-

b
in

ar
y

P
C

[Y
H

D
15

]

75
3,

66
4

2,
94

4
–

–

25
%

D
S
C

+
V

it
er

b
i

+
S
P

O
N

-

G
E

N
T

88

15
,1

20
1,

97
7

14
6

72
,0

00
B

in
ar

y
R

el
y

In
d
ic

at
or

T
ab

le
7.

1.
:

C
om

p
ar

is
on

of
d
iff

er
en

t
ap

p
ro

ac
h
es

w
it

h
ta

rg
et

ke
y

er
ro

r
p
ro

b
ab

il
it

y
10
−

6
sy

n
th

es
iz

ed
fo

r
X

il
in

x
S
p
ar

ta
n

6
F

P
G

A
s.

A
p
p
ro

ac
h
es

w
h
er

e
I

co
n
tr

ib
u
te

d
to

ar
e

in
d
ic

at
ed

b
y

gr
ay

b
ox

es
.

109

7. Evaluation

P
U

F
B

it

E
rr.

P
rob

.

A
p
p
roach

(+
R

eferen
ce)

P
U

F

B
its

H
D

B
its

N
u
m

S
lices

R
u
n

T
im

e

E
stim

ate

C
om

m
en

t

10
−

5
S
L

L
C

+
B

C
H

(55,43,5)
165

36
43

23,000

5%
C

O
+

R
ep

(3,1,3)
+

B
C

H
(127,57,23)

[B
ös08]

1,143
1,143

95
945,000

10%
C

O
+

R
ep

(5,1,5)
+

B
C

H
(127,57,23)

[B
ös08]

1,905
1,905

95
949,000

10%
D

S
C

+
V

iterb
i

+
S
P

O
N

-

G
E

N
T

88

810
810

146
29,000

B
in

ary
R

ely
In

d
icator

13%
C

O
+

R
ep

(7,1,7)
+

B
C

H
(318,174,34)

[M
V

H
V

12]

2,226
2,052

243
55,000

14%
C

O
+

R
M

(G
C

C
)

+
S
P

O
N

G
E

N
T

128

[P
M

B
+

15,
H

K
S

+
15]

2,048
2,048

225
109,000

E
rr

P
rob

1.5
×

10
−

9

14%
C

O
+

R
M

+
R

S
+

S
P

O
N

-

G
E

N
T

128
[P

M
B

+
15]

1,152
1,152

–
–

15%
C

O
+

R
ep

(3,1,3)
+

B
C

H
(251,43,85)

[B
ös08]

3,012
3,012

116
1,843,000

15%
D

S
C

+
V

iterb
i

+
S
P

O
N

-

G
E

N
T

88

1,890
1,236

146
32,000

B
in

ary
R

ely
In

d
icator

20%
C

O
+

R
ep

(5,1,5)
+

B
C

H
(243,43,85)

[B
ös08]

5,020
5,020

116
1,853,000

20%
D

S
C

+
V

iterb
i

+
S
P

O
N

-

G
E

N
T

88

7,020
1,852

146
48,000

B
in

ary
R

ely
In

d
icator

T
ab

le
7.2.:

C
om

p
arison

of
d
iff

eren
t

ap
p
roach

es
w

ith
target

key
error

p
rob

ab
ility

10
−

9
sy

n
th

esized
for

X
ilin

x
S
p
artan

6
F

P
G

A
s.

A
p
p
roach

es
w

h
ere

I
con

trib
u
ted

to
are

in
d
icated

b
y

gray
b

ox
es.

110

Chapter 8.

Conclusions and Outlook

The design of the error correction is a critical step to bring secure derivation storage
with PUFs into practice. With the Fuzzy Commitment [JW99] and Code-Offset Fuzzy
Extractor [DRS04] as starting points, several new algorithms and implementations were
presented over the last years. This thesis aimed to improve this field by providing
contributions in different directions. Section 8.1 briefly wraps up the major contributions
of this work while Section 8.2 gives some ideas on open problems for future work.

8.1. Review of the Contributions in this Thesis

This thesis contains theoretical as well as practical contributions. Table 8.1 briefly wraps
up the contributions of the different chapters of this work.

Chapter 4 addressed fundamental theoretical properties of secure key derivation with
PUFs. A good theoretical model is an important prerequisite to analyze a problem.
In Section 4.1, I have shown that the practical problem behaves very similar to the
information theoretical problem of secret key agreement from a compound source. The
mutual information between the secret key and the helper data is a critical measure for
the security of all key derivation approaches with PUFs. The analysis of the rank loss
in Section 4.3 demonstrated that it is sufficient to look at the algebraic properties of a
scheme to provide a first upper bound on the secrecy leakage through the helper data.

I translated an information theoretical random coding approach into a practically im-
plementable scheme in Chapter 5. Section 5.1 introduced the new scheme and analyzed
its theoretical properties in Section 5.2. The implementation sketch in Section 5.3 has
demonstrated that the new approach significantly reduces the gate count of an error
correction module compared to its closest competitors.

Chapter 6 presented DSC, a new sequence based error correction approach that over-
comes the limitations of the small block sizes of the state of the art. In Section 6.1,
I applied to concept of typicality to show the shortcoming of the state of the art that
small block sizes inhibit efficient error correction. The new approach DSC treats the
PUF response as one long sequence as shown in Section 6.2. I also demonstrate that the
helper data size can be reduced significantly by compressing the DSC distance pointer
with RLE. In the security analysis in Section 6.4 I have discussed that the information
leakage can be brought to zero and also that DSC is prone to helper data manipulation

111

8. Conclusions and Outlook

Theoretical Contributions Practical Contributions

Chapter 4

Section 4.1 Equivalencies between Com-

pound Source Model and Error

Correction for PUFs

Section 4.3 Unified Algebraic Representation

and Security Criterion

Chapter 5

Sections 5.1 SLLC Code Construction SLLC Code Construction

Section 5.2 Theoretical Evaluation

Section 5.3 Implementation Sketch

Chapter 6

Section 6.1 Typicality Discussion

Sections 6.2 & 6.4 DSC Construction, Helper Data

Compression and Security Analy-

sis

Section 6.5 Convolutional Codes for PUFs

Sections 6.6 & 6.7 Performance Analysis and FPGA

Implementation

Chapter 7

Review of the New Approaches in

Relation to the State of the Art

Table 8.1.: Overview over theoretical and practical contributions in this thesis

attacks. In addition, I also presented a countermeasure that mitigates this issue. I am
the first to use convolutional codes in the PUF context, as discussed in Section 6.5. The
performance analysis in Section 6.6 revealed that the combination of DSC and convolu-
tional codes is significantly more efficient than previous work. The implementation in
Section 6.7 therefore has a higher performance as the state of the art with only a small
increase in resource consumption.

In Chapter 7, I set the results of this thesis in context to existing implementations for
output key error probabilities of 10−6 and 10−9. This evaluation has shown that the
new DSC and SLLC schemes provide the most efficient error correction to date over a
wide range of parameters.

112

8.2. Outlook

8.2. Outlook

This thesis is one puzzle piece of the endeavor of bringing secret keys from PUFs closer
to products that effect our everyday lives. Therefore some questions were answered,
some were put aside, and also new ones arose. This section discusses some points of
future research.

• The innovation in the PUF field focused more on syndrome coding than on channel
coding. One open point is to look for more new results in coding theory that
provide efficient error correction and low decoder complexities for short block
lengths.

• In Section 4.3 I introduced the Algebraic Core to address the secrecy leakage
of different error correction approaches. So far, most approaches are based on
matrices. However, especially when BCH and Reed-Solomon codes are used, this
evaluation may also be extended to polynomials in finite fields.

• Estimating the reliability of PUF response bits in practice is a hard but important
issue that was not addressed in detail. This leads to a trade-off between quantiza-
tion of the PUF response, number of samples and confidence of the results under
the additional condition of different cost constraints.

• So far, the error correction was optimized for area. For some applications also
the run time can be very critical such that research for low latency schemes is an
important open problem that might require new solutions.

• In the existing work, rather ideal PUFs were assumed. Going to biased or corre-
lated PUF bits as for example in [DGV+16] leads to new challenges that require
new specially tailored error correction solutions.

113

Appendix A.

Supplementary Material

Chapter 4 references key agreement from compound sources and Chapter 5 introduces
a deterministic approach without discussing the random coding approach. Section A.1
is intended to fill this gap and provide more background information.

Section A.2 explains the Viterbi algorithm that plays a key role in Chapter 6.

The SRAM PUF reliability distribution that is used throughout this work is provided
in Section A.3.

A.1. Information Theoretical Key Agreement from

Compound Sources with Random Codes

In addition to the practical key storage schemes in Chapter 3, this section discusses
an information theoretic approach using random coding. Analyzing only the code con-
struction and omitting the efficiency of encoding and decoding algorithms, or even their
implementations, allows to reduce the problem to its fundamentals.

Early work on this problem was carried out by Ahlswede and Csiszar [AC93] and Maurer
[Mau93]. Boche and Schäfer introduced an optimal combined syndrome coding and error
correction construction for a compound source in [BW13] and later work on compound
sources can be found in Grigorescu et al. [GBS15] and Tavangaran et al. [TBS15].

Figure A.1, which was already shown in Chapter 4, gives the involved components and
random variables for key generation with a compound source. The compound source
with state t ∈ T returns the correlated sequences Xt

n and Yt
n

A large number of random codebooks is created such that any output of the source
Xt

n is a codeword of one of the codes with probability close to one. The more recent
approach [BW13] the old approach [AC93] differ here. The codewords in [AC93] are
chosen such that they form an (n, k, ε) code for the channel between X and Y , while
only typical sequences are considered as possible codewords in [BW13].

Alice transmits the number of the code as helper data to indicate Bob which code to
use for decoding Yt

n. The adversary Eve only knows that Xt
n is one of the 2k codewords

of the code with the number that is transmitted. However, she received no information

115

A. Supplementary Material

Eve

Alice Bob

{ P }XY,t

X t

n
Y t

n

t

W

t

Figure A.1.: Secret key generation with a compound source

which of the 2k codewords in the codebook is equal to Xt
n. Therefore, this information

can be used as secret key.

For the sake of simplicity, this discussion is limited to the use case for PUFs where Xn

is evaluated in a controlled manufacturing environment in which the state of the source
is fixed. To achieve error probabilities < ε for all possible states and a small ε > 0,
capacity achieving (n, k, ε) error-correcting codes have a code rate

RCode =
k

n
= max

t∈T
H(X|Yt) (A.1)

Before running the actual key agreement process, ψ random (n, k, ε) codes Ci
(i = 0, ..., ψ − 1) with disjoint codewords are created. The codes Ci are created in se-
quential order, starting with code C0. As code generation procedure of codeword Cj
(j ∈ 0, ..., 2k − 1) of code Ci, an output sequence of length n and with distribution
PX is drawn from the source (PUF). If Cj is not already a codeword of the code Ci
(Cj /∈ Ci = {C0, ..., Cj−1}) or any other previously generated code C0,...,Ci−1 (Cj /∈

i−1⋃
l=0

Cl),

the new codeword Cj is added to Ci. Otherwise, the sequence is discarded and a new
sequence is drawn. This process is continued until all ψ codes contain 2k codewords.

The union over all codes covers the most likely output sequences Xn, so if the number
of codes ψ is sufficiently large

Pr[Xn ∈
ψ−1⋃
i=0

Ci] > 1− η (A.2)

for a small η > 0. Note that the codebooks are public, so also accessible to the adversary
Eve.

116

A.2. Viterbi Algorithm

Starting with the actual key agreement, Alice draws the sequence Xn from the source.
She transmits (or the PUF saves) the index i of the selected code Ci as helper data W
such that

W (Xn) =

{
i, if Xn ∈ Ci, and i ∈ {0, ..., ψ − 1}
0, otherwise

(A.3)

According to Eqn. A.2, the probability of the otherwise case in Eqn. A.3 is bounded by
η so that this helper data generation process is sufficiently reliable.

All codes are (n, k, ε) codes for the given channel, so Bob (or the PUF in the field) can
reconstruct the correct key L from W and Yt

n with a small error probability such that

Pr[K 6= L|Xn ∈ Ci] < ε (A.4)

Considering both error events given in Eqns. A.2 and A.4 leads to an overall error
probability of

Pr[K 6= L] < ε+ η (A.5)

The proofs in [BW13] show that this approach is capacity achieving and that the security
condition, Condition 4.3, in the definition of an achievable key rate in Section 4.2, is
satisfied with I(W ;K) = 0 for i.i.d. PUF response bits.

Random codes show properties of (n, k, ε) codes, so the error correction problem is solved
in theory. However, Alice and Bob have to store all random codebooks, which makes
this approach infeasible in practice, especially for PUFs when they are used in resource
constrained lightweight embedded systems.

A.2. Viterbi Algorithm

As already discussed in Section 6.5, a (2, 1, [µ]) convolutional encoder encodes one input
sequence into two output sequences. Figure A.2 shows an encoder of a (2, 1, [2]) code
that will be used as example in the following. This section is based on [HRLS14].

The Viterbi algorithm [Vit67, Bos99] is a powerful decoding algorithm for convolutional
codes because it is a ML decoder. This means that the decoder always makes the best
possible decision based on its input information.

Every state of the shift register in a convolutional encoder only depends on the previous
µ information bits. The decoding complexity increases exponentially with µ, but only

117

A. Supplementary Material

1
c

2
c

i
shift reg.

Figure A.2.: (2, 1, [2]) convolutional encoder

linearly in code sequence length. The Viterbi algorithm is favorable for compact imple-
mentations because it contains many small computations that can be easily serialized
or parallelized depending on the constraints of the given application.

The convolutional encoder in Figure A.2 has four possible states and eight possible state
transitions shown in Table A.1.

Memory State Input Bit Output Bits

(ij−1, ij−2) (ij) (c1jc2j)

00 0 00

00 1 11

01 0 11

01 1 00

10 0 10

10 1 01

11 0 01

11 1 10

Table A.1.: State transitions for a (2, 1, [2]) convolutional code

The Viterbi algorithm builds a history of the state transitions with the lowest number of
errors from the input code sequence. For each pair of code sequence bits, the errors for
all eight transitions are computed and added to the history. A trellis diagram visualizes
all encoder states and possible transitions over time. Figure A.3 shows a simplified trellis
diagram that only contains the state transitions and the number of errors. In each step,
two input code sequence bits are evaluated to estimate the most likely internal state of
the encoder, based on the previous inputs.

118

A.2. Viterbi Algorithm

state 00

state 01

state 10

state 11

I II III IV

11 10 01 01

0 2 3 (4)

0 3

0

1

(5)

2

2

(4)

1

3

(4) (5)

1

3

(3)

(5)

3

(3)

3

round

code sequence

i = 0

i = 1

survivor

Figure A.3.: Trellis diagram for a (2, 1, [2]) convolutional code

In this example, the (2, 1, [2]) convolutional code has 4 possible memory states that are
represented by dots in vertical direction. Every capital Roman number in horizontal
direction represents one state transition, or decoding round, in time. The two digits
below show the received code sequence bits. The path distance represents the minimum
number of errors that lead to a state for the input sequence. By definition, the encoder
is initialized with 00 and its path distance is set to 0 while the path distances of all
other states are set to ∞.

For round I, the internal state of the encoder shown in Figure A.2 can transit to 10 if
a 1 is shifted in (dotted line), or it remains in 00, if a 0 is shifted in (solid line). For
both paths, the decoder computes hypothetical code sequence bits ĉ11 ĉ21 based on the
initial encoder state (00) and the hypothetical information bit. For both options, the
Hamming distance to the actual input code sequence bits is stored as path distance. In
this case 2 for 00 and 0 for 10 as shown in Figure A.3 above the black dots representing
the states.

In round II, the four possible transitions from states 00 and 10 are evaluated accordingly.
The ĉ12 ĉ22 pairs are computed for all four paths. For every path, the Hamming distance
to the two input code sequence bits is added to the path distance of the previous state.
For example, one would expect code sequence bits 00 for a transition from state 00 to 00.
The Hamming distance to the actual code-sequence bits is 1 which leads to an overall
path distance of 3 for state 00.

The first decisions are made in round III, because now two paths merge in each state.
The path distances are computed for both incoming paths and now, the decoder decides
that the path with lower path distance contains less errors. Therefore it is more likely,
that this path was transmitted. So, it is labeled as survivor. In this example, a transmis-
sion error occurred, which is marked in bold in the figure. The path distance is updated

119

A. Supplementary Material

to the path distance of the survivor and the other path, with the past distance marked
with brackets in the figure, is discarded. Due to the error two states have distance 1
now.

The subsequent rounds are performed according to round III. It can be seen that the
wrong path with distance 1 in the previous round has an increased distance of 3 due to
the convolution, whereas the correct path still has distance 1. The bold red path with
the lowest distance represents the most likely input sequence.

Figure A.3 shows that all survivors in round IV originate from the 01 state after round
II. Therefore, all survivor paths contain the first two input bits as 1 and 0. They can
be considered as stable and output as decoded result. The Trace-Back-Depth (TBD)
determines the number of states that are stored before the output bits are returned.
It has been shown empirically that, depending on the memory size of the encoder µ, a
TBD value of 5µ is recommended [CC81].

For a hardware implementation, the path distances and paths have to be stored and
updated.

Register exchange and trace back [CS93] are the two predominant approaches with sev-
eral derivative and refined methods. Both have in common that the trellis is represented
in the architecture similarly to the trellis diagram in Figure A.3. The TBD determines
the number of rounds that are processed in the decoder. Both approaches store the
predecessor for each state. The decoded bit is determined by choosing a random last
state of the trellis and tracing it back to the unified survivor that is equal for all end
states. The next round is computed by shifting the entire data by one step.

The approaches differ in the tracing mechanism. For register exchange, a fast but re-
source consuming tracing is carried out over concurrent logic with wires and multiplex-
ers. The trace back method requires less resources but more time to translate through
the trellis. Here, the trellis is searched sequentially which enables using RAM instead
of registers. However, for high throughput implementations, additional effort has to be
spent to parallelize the RAM update and trace back mechanism to some extent.

A.3. SRAM PUF Reliability Distribution

The SRAM PUF distribution discussed in [MTV09b] is determined by two parameters,
λ1 and λ2. Let PN be the probability distribution of a normal distribution and cdfN

−1

the corresponding inverse cumulative distribution function.

Then the distribution of the expected values of the PUF is given by

PX(x) =
λ1PN

(
λ2 − λ1cdfN

−1(x)
)

PN(cdfN
−1(x)

(A.6)

120

A.3. SRAM PUF Reliability Distribution

In the following, only bias-free PUFs are considered which corresponds to λ2 = 0.
Figure A.4 shows a sample probability distribution function with λ1 = 0.51, resulting in
ppuf = 15% that is used for example as input to evaluate the implementation candidates
in Section 6.7.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

x

P
X
(x

)

Figure A.4.: Probability distribution function of an SRAM PUF with λ1 = 0.51, result-

ing in ppuf = 15%

Sweeping over λ1 results in the following mean error probabilities of the PUF ppuf
provided in Table A.2.

121

A. Supplementary Material

λ1 ppuf

0.16 5%

0.33 10%

0.36 11%

0.396 12%

0.433 13%

0.47 14%

0.51 15%

0.55 16%

0.592 17%

0.636 18%

0.68 19%

0.74 20%

1.01 25%

Table A.2.: Mean error probabilities of SRAM PUFs in dependency of λ1

122

List of Pre-Publications

[DGV+15] Jeroen Delvaux, Dawu Gu, Ingrid Verbauwhede, Matthias Hiller, and
Meng-Day Mandel Yu. Secure sketch metamorphosis: Tight unified
bounds. IACR eprint archive, 2015.

[DGV+16] Jeroen Delvaux, Dawu Gu, Ingrid Verbauwhede, Matthias Hiller, and
Meng-Day (Mandel) Yu. Efficient fuzzy extraction of PUF-induced secrets:
Theory and applications. In Benedikt Gierlichs and Axel Poschmann,
editors, Conference on Cryptographic Hardware and Embedded Systems
(CHES), volume 9813 of LNCS, pages 412–431. Springer Berlin / Hei-
delberg, 2016.

[HDSMS12] Matthias Hiller, Fabrizio De Santis, Dominik Merli, and Georg Sigl. Re-
liability bound and channel capacity of IBS-based fuzzy embedders. In
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages
213–220. IEEE, 2012.

[HKS+15] Matthias Hiller, Ludwig Kürzinger, Georg Sigl, Sven Müelich, Sven
Puchinger, and Martin Bossert. Low-area Reed decoding in a general-
ized concatenated code construction for PUFs. In IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2015.

[HOSB16] Matthias Hiller, Aysun Gurur Önalan, Georg Sigl, and Martin Bossert.
Online reliability testing for PUF key derivation. In International Work-
shop on Trustworthy Embedded Devices (TrustED), pages 15–22. ACM,
2016.

[HPKS16] Matthias Hiller, Michael Pehl, Gerhard Kramer, and Georg Sigl. Algebraic
security analysis of key generation with physical unclonable functions. In
Security Proofs for Embedded Systems Workshop (PROOFS), 2016.

[HPS15] Matthias Hiller, Michael Pehl, and Georg Sigl. Fehlerkorrekturverfahren
zur sicheren Schlüsselerzeugung mit Physical Unclonable Functions. Daten-
schutz und Datensicherheit (DuD), 39(4):229–233, 2015.

[HRLS14] Matthias Hiller, Leandro Rodrigues Lima, and Georg Sigl. Seesaw: An
area-optimized FPGA Viterbi decoder for PUFs. In Euromicro Conference
on Digital System Design (DSD), pages 387–393. IEEE, 2014.

[HS14] Matthias Hiller and Georg Sigl. Increasing the efficiency of syndrome cod-
ing for PUFs with helper data compression. In Design, Automation & Test
in Europe Conference & Exhibition (DATE). ACM/IEEE, 2014.

123

A. Supplementary Material

[HSP13] Matthias Hiller, Georg Sigl, and Michael Pehl. A new model for estimating
bit error probabilities of ring-oscillator PUFs. In International Workshop
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC).
IEEE, 2013.

[HWRL+13] Matthias Hiller, Michael Weiner, Leandro Rodrigues Lima, Maximilian
Birkner, and Georg Sigl. Breaking through fixed PUF block limitations
with differential sequence coding and convolutional codes. In Interna-
tional Workshop on Trustworthy Embedded Devices (TrustED), pages 43–
54. ACM, 2013.

[HWS15] Matthias Hiller, Michael Weiner, and Georg Sigl. A method and an appa-
ratus for deriving secret information from a series of response values and a
method and an apparatus for providing helper data allowing to derive a se-
cret information. European Patent (EP 2773061B1, Assignee: Fraunhofer
Gesellschaft), issued 2015.

[HYP15] Matthias Hiller, Meng-Day (Mandel) Yu, and Michael Pehl. Systematic low
leakage coding for physical unclonable functions. In ACM Symposium on
Information, Computer and Communications Security (ASIACCS), pages
155–166, 2015.

[HYS16] Matthias Hiller, Meng-Day (Mandel) Yu, and Georg Sigl. Cherry-picking
reliable PUF bits with differential sequence coding. IEEE Transactions on
Information Forensics and Security, 11(9):2065–2076, 2016.

[JRLH14] Bernhard Jungk, Leandro Rodrigues Lima, and Matthias Hiller. A sys-
tematic study of lightweight hash functions on FPGAs. In International
Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE,
2014.

[KUM+15a] Stephan Kleber, Florian Unterstein, Matthias Matousek, Frank Kargl,
Frank Slomka, and Matthias Hiller. Design of the secure execution PUF-
based processor (SEPP). In TRUDEVICE Workshop on Secure Hardware
and Security Evaluation, 2015.

[KUM+15b] Stephan Kleber, Florian Unterstein, Matthias Matousek, Frank Kargl,
Frank Slomka, and Matthias Hiller. Secure execution architecture based on
PUF-driven instruction level code encryption. IACR eprint archive, 2015.

[MPB+14] Sven Müelich, Sven Puchinger, Martin Bossert, Matthias Hiller, and Georg
Sigl. Error correction for physical unclonable functions using generalized
concatenated codes. In International Workshop on Algebraic and Combi-
natorial Coding Theory (ACCT), 2014.

[PHG16] Michael Pehl, Matthias Hiller, and Helmut Graeb. Efficient evaluation of
physical unclonable functions using entropy measures. Journal of Circuits,
Systems and Computers, 25(1):1640001, 2016.

124

A.3. SRAM PUF Reliability Distribution

[PHS17] Michael Pehl, Matthias Hiller, and Georg Sigl. Error correction for physical
unclonable functions. In Holger Boche, Ashish Khisti, H. Vincent Poor, and
Rafael F. Schäfer, editors, to appear at Information Theoretic Approaches
to Security & Privacy. Cambridge University Press, 2017.

[PMB+15] Sven Puchinger, Sven Müelich, Martin Bossert, Matthias Hiller, and Georg
Sigl. On error correction for physical unclonable functions. In International
ITG Conference on Systems, Communications and Coding (SCC). IEEE,
2015.

[PRPHG14] Michael Pehl, Akshara Ranjit Punnakkal, Matthias Hiller, and Helmut
Graeb. Advanced performance metrics for physical unclonable functions.
In International Symposium on Integrated Circuits (ISIC). IEEE, 2014.

[WHP14] Florian Wilde, Matthias Hiller, and Michael Pehl. Statistical security anal-
ysis of ring oscillator PUFs. In International Symposium on Integrated
Circuits (ISIC). IEEE, 2014.

[YHD15] Meng-Day (Mandel) Yu, Matthias Hiller, and Srinivas Devadas. Maxi-
mum likelihood decoding of device-specific multi-bit symbols for reliable
key generation. In IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pages 38–43, 2015.

[YHD+16] Meng-Day (Mandel) Yu, Matthias Hiller, Jeroen Delvaux, Richard Sowell,
Srinivas Devadas, and Ingrid Verbauwhede. A lockdown technique to pre-
vent machine learning on PUFs for lightweight entity authentication. IEEE
Transactions on Multi-Scale Computing Systems, 2(3):146–159, 2016.

125

List of Supervised Theses

[Ali16] Syed Bilal Ali. Software Implementation of Error Correction for PUFs. Mas-
ter’s Thesis, Technical University of Munich, 2016.

[Bir13] Maximilian Birkner. Implementation of a Lightweight Hash Function. Bache-
lor’s Thesis, Technical University of Munich, 2013.

[Bou16] Jason Bouroutis. Implementation of a Hardware Abstraction Layer for an
Industry 4.0 Model. Bachelor’s Thesis, Technical University of Munich, 2016.

[Fuc15] Tobias Fuchs. Attack Schemes on DSC Helper Data. Bachelor’s Thesis, Tech-
nical University of Munich, 2015.

[Kai13] Rainer Kaiser. Design and Implementation of a PUF + TRNG Circuit. Bach-
elor’s Thesis, Technical University of Munich, 2013.

[Kür14] Ludwig Kürzinger. Analysis and Efficient Implementation of GC RM Error
Correction Codes for PUFs. Diploma Thesis, Technical University of Munich,
2014.

[Leo13] Justine Leow. Security Analysis of PUF Data. Bachelor’s Thesis, Technical
University of Munich, 2013.

[Ley15] Julian Leyh. Lightweight BCH Decoder Architectures for PUF-Based Key Gen-
eration. Bachelor’s Thesis, Technical University of Munich, 2015.

[Nol15] Benjamin Nolet. Differential Sequence Coding with multi-rate encoding for
PUFs. Master’s Thesis, Technical University of Munich, 2015.

[Wan12] Xiaoqing Wan. Design of a Hardware Efficient Fuzzy Embedder for PUFs on
FPGAs. Master’s Thesis, Technical University of Munich, 2012.

127

Bibliography

[AC93] Rudolph Ahlswede and Imre Csiszar. Common randomness in information
theory and cryptography - part I: Secret sharing. IEEE Transactions on
Information Theory, 39(4):1121–1132, 1993.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[Alt15] Altera Corporation. Altera partners with Intrinsic-ID to de-
velop worlds most secure high-end FPGA. Press Release,
http://newsroom.altera.com/press-releases/nr-altera-intrinsic-id-
security-stratix-10.htm, accessed 25.11.2015, 2015.

[AMS+09a] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and
Pim Tuyls. Memory leakage-resilient encryption based on physically un-
clonable functions. In Mitsuru Matsui, editor, Advances in Cryptology
(ASIACRYPT), volume 5912 of LNCS, pages 685–702. Springer Berlin /
Heidelberg, 2009.

[AMS+09b] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and
Pim Tuyls. PUF-PRFs: a new tamper-resilient cryptographic primitive.
In Antoine Joux, editor, Advances in Cryptology (EUROCRYPT), volume
5479 of LNCS, pages 96–102. Springer Berlin / Heidelberg, 2009.

[AMS+11] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Francois-Xavier
Standaert, and Christian Wachsmann. A formal foundation for the secu-
rity features of physical functions. In IEEE Symposium on Security and
Privacy (S&P), pages 397–412, 2011.

[BBCS92] Charles H Bennett, Gilles Brassard, Claude Crepeau, and Marie-Helene
Skubiszewska. Practical quantum oblivious transfer. In Joan Feigenbaum,
editor, Advances in Cryptology (CRYPTO), volume 576 of LNCS, pages
351–366. Springer Berlin / Heidelberg, 1992.

[BBRM08] Matthieu Bloch, Joao Barros, Miguel R. D. Rodrigues, and Steven W.
McLaughlin. Wireless information-theoretic security. IEEE Transactions
on Information Theory, 54(6):2515–2534, 2008.

[BDH+10] Ileana Buhan, Jeroen Doumen, Pieter Hartel, Qian Tang, and Raymond
Veldhuis. Embedding renewable cryptographic keys into noisy data. In-
ternational Journal of Information Security, 9:193–208, 2010.

129

Bibliography

[BDHV07] Ileana Buhan, Jeroen Doumen, Pieter Hartel, and Raymond Veldhuis.
Fuzzy extractors for continuous distributions. In ACM Symposium on
Information, Computer and Communications Security (ASIACCS), page
353, 2007.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof
Pietrzak, Franois-Xavier Standaert, and Yu Yu. Leftover hash lemma,
revisited. In Phillip Rogaway, editor, Advances in Cryptology (CRYPTO),
volume 6841 of LNCS, pages 1–20. Springer Berlin / Heidelberg, 2011.

[BFKR14] Malte Brettel, Niklas Friederichsen, Michael Keller, and Marius Rosen-
berg. How virtualization, decentralization and network building change
the manufacturing landscape: An Industry 4.0 perspective. International
Journal of Science, Engineering and Technology 8 (1), 37, 44, 2014.

[BFSK11] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzen-
beisser. Physically uncloneable functions in the universal composi-
tion framework. In Phillip Rogaway, editor, Advances in Cryptology
(CRYPTO), volume 6841 of LNCS, pages 51–70. Springer Berlin / Hei-
delberg, 2011.

[BGS+08] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid
Shokrollahi, and Pim Tuyls. Efficient helper data key extractor on FP-
GAs. In Elisabeth Oswald and Pankaj Rohatgi, editors, Workshop on
Cryptographic Hardware and Embedded Systems (CHES), volume 5154 of
LNCS, pages 181–197. Springer Berlin / Heidelberg, 2008.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christoph Paar,
Axel Poschmann, Matt J. B. Robshaw, Yannick Seurin, and C. Vikkel-
soe. PRESENT: An ultra-lightweight block cipher. In Pascal Paillier
and Ingrid Verbauwhede, editors, Workshop on Cryptographic Hardware
and Embedded Systems (CHES), volume 4727 of LNCS, pages 450–466.
Springer Berlin / Heidelberg, 2007.

[BKL+11] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. SPONGENT: A lightweight hash func-
tion. In Bart Preneel and Tsuyoshi Takagi, editors, Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), volume 6917 of LNCS,
pages 312–325. Springer, Heidelberg, 2011.

[BKL+13] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. SPONGENT: The design space of
lightweight cryptographic hashing. IEEE Transactions on Computers,
62(10):2041–2053, 2013.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. Journal of the ACM,
50(4):506–519, 2003.

130

Bibliography

[Bos99] Martin Bossert. Channel Coding for Telecommunications. John Wiley &
Sons, New York, 1999.

[Bös08] Christoph Bösch. Efficient Fuzzy Extractors for Reconfigurable Hardware.
Master’s thesis, Ruhr-University Bochum, 2008.

[Boy04] Xavier Boyen. Reusable cryptographic fuzzy extractors. In ACM Con-
ference on Computer and Communications Security (CCS), pages 82–91,
2004.

[Buh08] Ileana Buhan. Cryptographic keys from noisy data, theory and applica-
tions. Dissertation, University of Twente, 2008.

[Bun16a] Bundesamt für Sicherheit in der Informationstechnik. NXP Secure Smart
Card Controller P6021y VB (BSI-DSZ-CC-0955, Rev. 0.93). Security
Target Lite, 2016.

[Bun16b] Bundesamt für Sicherheit in der Informationstechnik. NXP Secure Smart
Card Controller P6021y VB including IC Dedicated Software (BSI-DSZ-
CC-0955-2016). Certification Report, 2016.

[BW13] Holger Boche and Rafael F. Wyrembelski. Secret key generation using
compound sources - optimal key-rates and communication costs. In In-
ternational ITG Conference on Systems, Communications and Coding
(SCC). IEEE, 2013.

[BWG15] Georg Tobias Becker, Alexander Wild, and Tim Gneysu. Security anal-
ysis of index-based syndrome coding for PUF-based key generation. In
IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), 2015.

[Can01] Ran Canetti. Universally composable security: a new paradigm for cryp-
tographic protocols. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 136–145, 2001.

[CC81] George C. Clark and J. Bibb Cain. Error Correction Coding for Digital
Communications. Plenum Press, New York, 1981.

[CCL+11] Qingqing Chen, György Csaba, Paolo Lugli, Ulf Schlichtmann, and Ulrich
Rührmair. The bistable ring PUF: A new architecture for strong physical
unclonable functions. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 134–141, 2011.

[CCL+12] Qingqing Chen, György Csaba, Paolo Lugli, Ulf Schlichtmann, and Ul-
rich Rührmair. Characterization of the bistable ring PUF. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1459–1462. ACM/IEEE, 2012.

[Che15] An Chen. Emerging nonvolatile memory (NVM) technologies. In Euro-
pean Solid State Device Research Conference (ESSDERC), pages 109–113.
IEEE, 2015.

131

Bibliography

[CJFJ07] David J. Costello Jr. and G. David Forney Jr. Channel coding: The road
to channel capacity. Proceedings of the IEEE, 95:1150–1177, 2007.

[CN00] Imre Csiszar and Prakash Narayan. Common randomness and secret key
generation with a helper. IEEE Transactions on Information Theory,
46(2):344–366, 2000.

[CN08] Imre Csiszar and Prakash Narayan. Secrecy capacities for multiterminal
channel models. IEEE Transactions on Information Theory, 54(6):2437–
2452, 2008.

[Con84] Jean Conan. The weight spectra of some short low-rate convolutional
codes. IEEE Transactions on Communications, 32(9):1050–1053, 1984.

[CS93] Robert Cypher and C. Bernard Shung. Generalized trace-back techniques
for survivor memory management in the Viterbi algorithm. Journal of
VLSI signal processing systems for signal, image and video technology,
5(1):85–94, 1993.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley, New York, second edition, 2006.

[Dev] Srinivas Devadas. Personal Website,
http://people.csail.mit.edu/devadas/, accessed 01.12.2015.

[DFM98] George I. Davida, Yair Frankel, and Brian J. Matt. On enabling secure
applications through off-line biometric identification. In IEEE Symposium
on Security and Privacy (S&P), pages 148–157, 1998.

[DGSV15] Jeroen Delvaux, Dawu Gu, Dries Schellekens, and Ingrid Verbauwhede.
Helper data algorithms for PUF-based key generation: Overview and
analysis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 34(6):889–902, 2015.

[DKK+12] Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin,
and Adam Smith. Robust fuzzy extractors and authenticated key agree-
ment from close secrets. IEEE Transactions on Information Theory,
58(9):6207–6222, 2012.

[DKRS06] Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith. Robust
fuzzy extractors and authenticated key agreement from close secrets. In
Cynthia Dwork, editor, Advances in Cryptology (CRYPTO), pages 232–
250. Springer Berlin / Heidelberg, 2006.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. In
Christian Cachin and Jan L. Camenisch, editors, Advances in Cryptology
(EUROCRYPT), volume 3027 of LNCS, pages 523–540. Springer Berlin
/ Heidelberg, 2004.

132

Bibliography

[DV14a] Jeroen Delvaux and Ingrid Verbauwhede. Attacking PUF-based pattern
matching key generators via helper data manipulation. In Josh Benaloh,
editor, Topics in Cryptology (CT-RSA), volume 8366 of LNCS, pages
106–131. Springer International Publishing, 2014.

[DV14b] Jeroen Delvaux and Ingrid Verbauwhede. Key-recovery attacks on var-
ious RO PUF constructions via helper data manipulation. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2014.

[EDE04] Dalia A. El-Dib and Mohamed I. Elmasry. Modified register-exchange
Viterbi decoder for low-power wireless communications. IEEE Transac-
tions on Circuits and Systems, 51(2):371–378, 2004.

[EFK+12] Thomas Esbach, Walter Fumy, Olga Kulikovska, Dominik Merli, Dieter
Schuster, and Frederic Stumpf. A new security architecture for smart-
cards utilizing PUFs. In Information Security Solutions Europe (ISSE)
Conference. Vieweg Verlag, 2012.

[Eli55] Peter Elias. Coding for noisy channels. Proceedings of the Institute of
Radio Engineers, 43(3):356–356, 1955.

[FG93] Gennady Feygin and P. G. Gulak. Architectural tradeoffs for survivor
sequence memory management in Viterbi decoders. IEEE Transactions
on Communications, 41(3):425–429, 1993.

[FMR13] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. Computational fuzzy
extractors. In Kazue Sako and Palash Sarkar, editors, Advances in Cryp-
tology (ASIACRYPT), volume 8269 of LNCS, pages 174–193. Springer
Berlin / Heidelberg, 2013.

[Gas03] Blaise Gassend. Physical Random Functions. Master’s thesis, 2003.

[GBS15] Andrea Grigorescu, Holger Boche, and Rafael F. Schaefer. Robust PUF
based authentication. In IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6, 2015.

[GCDD02] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas.
Silicon physical random functions. In ACM Conference on Computer and
Communications Security (CCS), pages 148–160, 2002.

[GI14] Onur Günlü and Onurcan Iscan. DCT based ring oscillator physical
unclonable functions. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8248–8251, 2014.

[GK16] Onur Günlü and Gerhard Kramer. Privacy, secrecy, and storage with
noisy identifiers. Technical report, 2016.

[GKST07] Jorge Guajardo, Sandeep S Kumar, Geert Jan Schrijen, and Pim Tuyls.
FPGA intrinsic PUFs and their use for IP protection. In Pascal Pail-
lier and Ingrid Verbauwhede, editors, Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES), volume 4727 of LNCS, pages 63–80.
Springer Berlin / Heidelberg, 2007.

133

Bibliography

[Gol66] Solomon W. Golomb. Run-length encodings (corresp.). IEEE Transac-
tions on Information Theory, 12(3):399–401, 1966.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family
of lightweight hash functions. In Phillip Rogaway, editor, Advances in
Cryptology (CRYPTO), volume 6841 of LNCS, pages 222–239. Springer
Berlin / Heidelberg, 2011.

[Gra07] Helmut E Graeb. Analog design centering and sizing. Springer, 2007.

[GVV75] Robert G. Gallager and David C. Van Voorhis. Optimal source codes for
geometrically distributed integer alphabets (corresp.). IEEE Transactions
on Information Theory, 21(2):228–230, 1975.

[HB10] Maximilian Hofer and Christoph Böhm. An alternative to error correc-
tion for SRAM-like PUFs. In Stefan Mangard and Franois-Xavier Stan-
daert, editors, Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), volume 6225 of LNCS, pages 335–350. Springer, Berlin /
Heidelberg, 2010.

[HBF09] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. Power-up SRAM
state as an identifying fingerprint and source of true random numbers.
IEEE Transactions on Computers, 58(9):1198–1210, 2009.

[HHK+14] Kang Hyunho, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura.
Cryptographic key generation from PUF data using efficient fuzzy ex-
tractors. In International Conference on Advanced Communication Tech-
nology (ICACT), pages 23–26, 2014.

[Hil11] Matthias Hiller. Optimized Fuzzy Extractor for PUFs on FPGAs. Diplo-
marbeit, Ulm University, 2011.

[HMSS12] Matthias Hiller, Dominik Merli, Frederic Stumpf, and Georg Sigl. Com-
plementary IBS: Application specific error correction for PUFs. In
IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 1–6, 2012.

[HNT+13] Clemens Helfmeier, Dmitry Nedospasov, Christopher Tarnovsky,
Jan Starbug Krissler, Christian Boit, and Jean-Pierre Seifert. Break-
ing and entering through the silicon. In ACM Conference on Computer
& Communications Security (CCS), pages 733–744, 2516717, 2013.

[HRvD+16] Charles Herder, Ling Ren, Marten van Dijk, Meng-Day (Mandel) Yu, and
Srinivas Devadas. Trapdoor computational fuzzy extractors and stateless
cryptographically-secure physical unclonable functions. IEEE Transac-
tions on Dependable and Secure Computing, 2016.

[HSZS13] Maxim Hennig, Oliver Schimmel, Philipp Zieris, and Georg Sigl. Manip-
ulationssensible kopierschutzfolie. In D A CH Security, 2013.

134

Bibliography

[HT07] Helena Handschuh and Elena Trichina. Securing flash technology. In
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 3–20. IEEE, 2007.

[Huf52] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[HYKD14] Charles Herder, Mandel Yu, Farinaz Koushanfar, and Srinivas Devadas.
Physical unclonable functions and applications: A tutorial. Proceedings
of the IEEE, 102(8):1126–1141, 2014.

[IEE15] IEEE support. Personal communication, 2015.

[IHKS16] Vincent Immler, Maxim Hennig, Ludwig Kürzinger, and Georg Sigl. Prac-
tical aspects of quantization and tamper-sensitivity for physically obfus-
cated keys. In Workshop on Cryptography and Security in Computing
Systems (CS2), 2016.

[Int] Intrinsic-ID BV. Company Website, https://www.intrinsic-id.com/, ac-
cessed 25.11.2015.

[ISS+06] Tanya Ignatenko, Geert Jan Schrijen, Boris Skoric, Pim Tuyls, and Frans
M. J. Willems. Estimating the secrecy-rate of physical unclonable func-
tions with the context-tree weighting method. In IEEE International
Symposium on Information Theory (ISIT), pages 499–503, 2006.

[IW09] Tanya Ignatenko and Frans M. J. Willems. Biometric systems: Privacy
and secrecy aspects. IEEE Transactions on Information Forensics and
Security, 4(4):956–973, 2009.

[IW10] Tanya Ignatenko and Frans M. J. Willems. Information leakage in fuzzy
commitment schemes. IEEE Transactions on Information Forensics and
Security, 5(2):337–348, 2010.

[IW12] Tanya Ignatenko and Frans M. J. Willems. Biometric security from an
information-theoretical perspective. Foundations and Trends in Commu-
nications and Information Theory, 7(2-3):135–316, 2012.

[JS02] Ari Juels and Madhu Sudan. A fuzzy vault scheme. In IEEE International
Symposium on Information Theory (ISIT), page 408. IEEE, 2002.

[JW99] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM
Conference on Computer and Communications Security (CCS), pages 28–
36, 1999.

[KGM+08] Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert Jan Schrijen, and
Pim Tuyls. Extended abstract: The butterfly PUF protecting IP on every
FPGA. In IEEE International Workshop on Hardware-Oriented Security
and Trust (HOST), pages 67–70, 2008.

135

Bibliography

[Kil15] Kilopass Technology Inc. Comparison of embedded non-
volatile memory technologies and their applications. White
Paper, http://www.kilopass.com/download-white-paper-a-
comparison-of-embedded-non-volatile-memory-technologies-and-their-
applications/#wpcf7-f8864-p8865-o1, accessed 25.11.2015, 2015.

[KKR+12] Stefan Katzenbeisser, Unal Kocabas, Vladimir Rozic, Ahmad-Reza
Sadeghi, Ingrid Verbauwhede, and Christian Wachsmann. PUFs: Myth,
fact or busted? a security evaluation of physically unclonable func-
tions(PUFs) cast in silicon. In Emmanuel Prouff and Patrick Schau-
mont, editors, Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), volume 7428 of LNCS, pages 283–301. Springer Berlin /
Heidelberg, 2012.

[KLC+16] Bohdan Karpinskyy, Yongki Lee, Yunhyeok Choi, Yongsoo Kim, Mijung
Noh, and Sanghyun Lee. 8.7 physically unclonable function for secure
key generation with a key error rate of 2E-38 in 45nm smart-card chips.
In IEEE International Solid-State Circuits Conference (ISSCC), pages
158–160, 2016.

[KR08] Bhavana Kanukurthi and Leonid Reyzin. An improved robust fuzzy ex-
tractor. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, edi-
tors, International Conference on Security and Cryptography for Networks
(SCN), LNCS, pages 156–171. Springer Berlin / Heidelberg, 2008.

[Kra94] Hugo Krawczyk. LFSR-based hashing and authentication. In YvoG
Desmedt, editor, Advances in Cryptology (CRYPTO), volume 839 of
LNCS, pages 129–139. Springer Berlin / Heidelberg, 1994.

[Kra07] Gerhard Kramer. Topics in multi-user information theory. Foundations
and Trends in Communications and Information Theory, 4(4-5):265–444,
2007.

[KS10] Deniz Karakoyunlu and Berk Sunar. Differential template attacks on
PUF enabled cryptographic devices. In IEEE International Workshop on
Information Forensics and Security (WIFS), 2010.

[KwA07] Matthias Kamuf, Viktor wall, and John B. Anderson. Survivor path
processing in Viterbi decoders using register exchange and traceforward.
IEEE Transactions on Circuits and Systems, 54(6):537–541, 2007.

[Lim04] Daihyun Lim. Extracting Keys from Integrated Circuits. Master’s thesis,
Massachusetts Institute of Technology, 2004.

[LKPS09] Yingbin Liang, Gerhard Kramer, H. Vincent Poor, and Shlomo (Shitz)
Shamai. Compound wiretap channels. EURASIP Journal on Wireless
Communications and Networking, 2009:1–12, 2009.

[LLG+04] Jae W. Lee, Daihyun Lim, Blaise Gassend, Gookwon Edward Suh, Marten
van Dijk, and Srinivas Devadas. A technique to build a secret key in

136

Bibliography

integrated circuits for identification and authentication applications. In
IEEE Symposium on VLSI Circuits (VLSIC), pages 176–179, 2004.

[LLG+05] Daihyun Lim, Jae W. Lee, Blaise Gassend, Gookwon Edward Suh, Marten
van Dijk, and Srinivas Devadas. Extracting secret keys from integrated
circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 13(10):1200–1205, 2005.

[LT03] Jean-Paul Linnartz and Pim Tuyls. New shielding functions to enhance
privacy and prevent misuse of biometric templates. In Josef Kittler and
Mark S Nixon, editors, Internation Conference on Audio- and Video-
Based Biometric Person Authentication (AVBPA), volume 2688 of LNCS,
pages 393–402. Springer Berlin Heidelberg, 2003.

[LTS07] Jean-Paul Linnartz, Pim Tuyls, and Boris Skoric. A communication-
theoretical view on secret extraction. In Pim Tuyls, Boris Skoric, and
Tom A.M. Kevenaar, editors, Security with Noisy Data, pages 57–77, Lon-
don, 2007. Springer.

[Mae12] Roel Maes. Physically Unclonable Functions: Constructions, Properties
and Applications. Dissertation, Katholieke Universiteit Leuven, 2012.

[Mae13] Roel Maes. An accurate probabilistic reliability model for silicon PUFs.
In Guido Bertoni and Jean-Sbastien Coron, editors, Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES), LNCS. Springer,
Berlin / Heidelberg, 2013.

[Mau93] Ueli Maurer. Secret key agreement by public discussion from common in-
formation. IEEE Transactions on Information Theory, 39:733–742, 1993.

[Mer14] Dominik Merli. Attacking and Protecting Ring Oscillator Physical Unclon-
able Functions and Code-Offset Fuzzy Extractors. Dissertation, Technical
University of Munich, 2014.

[MGS13] Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont. A systematic
method to evaluate and compare the performance of physical unclon-
able functions. In Peter Athanas, Dionisios Pnevmatikatos, and Nicolas
Sklavos, editors, Embedded Systems Design with FPGAs, pages 245–267.
Springer New York, 2013.

[MHH+13] Dominik Merli, Johann Heyszl, Benedikt Heinz, Dieter Schuster, Frederic
Stumpf, and Georg Sigl. Localized electromagnetic analysis of RO PUFs.
In IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), pages 19–24, 2013.

[Mic15] Microsemi Corporation. AC434: Using SRAM PUF system ser-
vice in SmartFusion2 – Libero SoC v11.6. Application Note,
http://www.microsemi.com/document-portal/doc download/134545-
ac434-using-sram-puf-system-service-in-smartfusion2-libero-soc-v11-6-
application-note, accessed 25.11.2015, 2015.

137

Bibliography

[MRK+12] Mehrdad Majzoobi, Masoud Rostami, Farinaz Koushanfar, Dan S. Wal-
lach, and Srinivas Devadas. Slender PUF protocol: A lightweight, robust,
and secure authentication by substring matching. In International Work-
shop on Trustworthy Embedded Devices (TrustED), pages 33–44. ACM,
2012.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The the-
ory of error-correcting codes. North-Holland, 1977.

[MSA+14] Sanu K. Mathew, Sudhir K. Satpathy, Mark A. Anders, Himanshu Kaul,
Steven K. Hsu, Amit Agarwal, Gregory K. Chen, Rachael J. Parker,
Ram K. Krishnamurthy, and Vivek De. A 0.19pJ/b PVT-variation-
tolerant hybrid physically unclonable function circuit for 100 In IEEE
International Solid-State Circuits Conference (ISSCC), pages 278–279,
2014.

[MSSS11] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg Sigl. Side-
channel analysis of PUFs and fuzzy extractors. In Jonathan M. McCune,
Boris Balacheff, Adrian Perrig, Ahmad-Reza Sadeghi, Angela Sasse, and
Yolanta Beres, editors, International Conference on Trust and Trustwor-
thy Computing (TRUST), volume 6740 of LNCS, pages 33–47. Springer
Berlin / Heidelberg, 2011.

[MTV08] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Intrinsic PUFs from
flip-flops on reconfigurable devices. In Benelux workshop on information
and system security (WISSec), 2008.

[MTV09a] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Low-overhead imple-
mentation of a soft decision helper data algorithm for SRAM PUFs. In
Christophe Clavier and Kris Gaj, editors, Workshop on Cryptographic
Hardware and Embedded Systems (CHES), volume 5747 of LNCS, pages
332–347. Springer Berlin / Heidelberg, 2009.

[MTV09b] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. A soft decision helper
data algorithm for SRAM PUFs. In IEEE International Symposium on
Information Theory (ISIT), pages 2101–2105, 2009.

[MV10] Roel Maes and Ingrid Verbauwhede. Physically unclonable functions: A
study on the state of the art and future research directions. In Ahmad-
Reza Sadeghi and David Naccache, editors, Towards Hardware-Intrinsic
Security, Information Security and Cryptography, pages 3–37. Springer
Berlin / Heidelberg, 2010.

[MVHV12] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. PUFKY:
A fully functional puf-based cryptographic key generator. In Emmanuel
Prouff and Patrick Schaumont, editors, Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES), volume 7428 of LNCS, pages 302–
319. Springer Berlin / Heidelberg, 2012.

138

Bibliography

[MW00] Ueli Maurer and Stefan Wolf. Information-theoretic key agreement: From
weak to strong secrecy for free. In Bart Preneel, editor, Advances in Cryp-
tology (EUROCRYPT), volume 1807 of LNCS, pages 351–368. Springer
Berlin Heidelberg, 2000.

[NHSB13] Dmitri Nedospasov, Clemens Helfmeier, Jean-Pierre Seifert, and Chris-
tian Boit. Invasive PUF analysis. In Fault Diagnosis and Tolerance in
Cryptography Workshop (FDTC). IEEE, 2013.

[NXP13] NXP Semiconductors N.V. NXP strengthens SmartMX2 se-
curity chips with PUF anti-cloning technology. Press Release,
http://www.nxp.com/news/press-releases/2013/02/nxp-strengthens-
smartmx2-security-chips-with-puf-anti-cloning-technology.html, accessed
25.11.2015, 2013.

[PM15] Rainer Plaga and Dominik Merli. A new definition and classification of
physical unclonable functions. In Workshop on Cryptography and Security
in Computing Systems (CS2), pages 7–12, 2694807, 2015. ACM.

[Pos09] Axel Y. Poschmann. Lightweight Cryptography - Cryptographic Engineer-
ing for a Pervasive World. Dissertation, Ruhr-University Bochum, 2009.

[PRTG02] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Phys-
ical one-way functions. Science, 297:2026–2030, 2002.

[RB98] Arvind R. Raghavan and Carl W. Baum. A reliability output Viterbi
algorithm with applications to hybrid ARQ. IEEE Transactions on In-
formation Theory, 44(3):1214–1216, 1998.

[RDK11] Ulrich Rührmair, Srinivas Devadas, and Farinaz Koushanfar. Security
based on physical unclonability and disorder. In Mohammad Tehranipoor
and Cliff Wang, editors, Introduction to Hardware Security and Trust.
Springer-Verlag New York Inc., 2011.

[RE10] Wolfgang Rankl and Wolfgang Effing. Smart Card Handbook. John Wiley
& Sons, 2010.

[RSN+10] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker,
Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heck-
ert, James Dray, and San Vo. Special publication 800-22 revision 1a: A
statistical test suite for random and pseudorandom number generators
for cryptographic applications. Technical report, National Institute of
Standards and Technology, 2010.

[RSS+10] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas De-
vadas, and Jrgen Schmidhuber. Modeling attacks on physical unclonable
functions. In ACM Conference on Computer and Communications Secu-
rity (CCS), pages 237–249, 2010.

139

Bibliography

[RvD13] Ulrich Rührmair and Marten van Dijk. On the practical use of physical
unclonable functions in oblivious transfer and bit commitment protocols.
Journal of Cryptographic Engineering, 3(1):17–28, 2013.

[Sch13] Heike Schröder. Physically Uncloneable Functions in the Stand-Alone and
Universally Composable Framework. Dissertation, TU Darmstadt, 2013.

[SD07] Gookwon Edward Suh and Srinivas Devadas. Physical unclonable func-
tions for device authentication and secret key generation. In ACM/IEEE
Design Automation Conference (DAC), pages 9–14, 2007.

[SES09] Sherif W. Shaker, Salwa H. Elramly, and Khaled A. Sheriata. FPGA
implementation of a reconfigurable Viterbi decoder for WiMAX receiver.
In International Conference on Microelectronics (ICM), pages 264–267,
2009.

[SH14] Dieter Schuster and Robert Hesselbarth. Evaluation of bistable ring PUFs
using single layer neural networks. In Thorsten Holz and Sotiris Ioanni-
dis, editors, Trust and Trustworthy Computing (TRUST), volume 8564 of
LNCS, pages 101–109. Springer International Publishing, 2014.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. The
Bell Systems Technical Journal, pages 379–423 and 623–656, 1948.

[SIB14] SIBASE Zwischenbericht. Project Report, 2014.

[SKVdV09] Alex Stoinov, Tom Kevenaar, and Michiel Van der Veen. Security issues of
biometric encryption. In IEEE Toronto International Conference Science
and Technology for Humanity (TIC-STH), pages 34–39, 2009.

[Suh05] Gookwon Edward Suh. AEGIS : A Single-Chip Secure Processor. Disser-
tation, Massachusetts Institute of Technology, 2005.

[SvdSvdL12] Peter Simons, Erik van der Sluis, and Vincent van der Leest. Buskeeper
PUFs, a promising alternative to D Flip-Flop PUFs. In IEEE Inter-
national Symposium on Hardware-Oriented Security and Trust (HOST),
pages 7–12, 2012.

[TAK+05] Pim Tuyls, Anton H. M. Akkermans, Tom A. M. Kevenaar, Geert-Jan
Schrijen, Asker M. Bazen, and Raimond N. J. Veldhuis. Practical biomet-
ric authentication with template protection. In Takeo Kanade, Anil Jain,
and NaliniK Ratha, editors, Audio- and Video-Based Biometric Person
Authentication (AVBPA), volume 3546 of LNCS, pages 436–446. Springer
Berlin / Heidelberg, 2005.

[TBS15] Nima Tavangaran, Holger Boche, and Rafael F. Schaefer. Secret-key ca-
pacity of compound source models with one-way public communication.
In IEEE Information Theory Workshop (ITW), pages 252–256, 2015.

140

Bibliography

[TG04] Pim Tuyls and Jasper Goseling. Capacity and examples of template-
protecting biometric authentication systems. In Davide Maltoni and
AnilK Jain, editors, Biometric Authentication International Workshop
(BioAW), volume 3087 of LNCS, pages 158–170. Springer Berlin / Hei-
delberg, 2004.

[TLG+15] Shahin Tajik, Heiko Lohrke, Fatemeh Ganji, Jean-Pierre Seifert, and
Christian Boit. Laser fault attack on physically unclonable functions.
In Fault Diagnosis and Tolerance in Cryptography Workshop (FDTC).
IEEE, 2015.

[TNS+14] Shahin Tajik, Dmitri Nedospasov, Jean-Pierre Seifert, Clemens Helfmeier,
and Christian Boit. Emission analysis of hardware implementations. In
Euromicro Conference on Digital System Design (DSD), 2014.

[TSR+05] Russell Tessier, Sriram Swaminathan, Ramaswamy Ramaswamy, Dennis
Goeckel, and Wayne Burleson. A reconfigurable, power-efficient adap-
tive Viterbi decoder. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 13(4):484–488, 2005.

[TSS+06] Pim Tuyls, Geert-Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke Ver-
haegh, and Rob Wolters. Read-proof hardware from protective coatings.
In Louis Goubin and Mitsuru Matsui, editors, Workshop on Cryptographic
Hardware and Embedded Systems (CHES), volume 4249 of LNCS, pages
369–383. Springer Berlin Heidelberg, 2006.

[vdLPvdS12] Vincent van der Leest, Bart Preneel, and Erik van der Sluis. Soft decision
error correction for compact memory-based PUFs using a single enroll-
ment. In Emmanuel Prouff and Patrick Schaumont, editors, Workshop on
Cryptographic Hardware and Embedded Systems (CHES), volume 7428 of
LNCS, pages 268–282. Springer Berlin / Heidelberg, 2012.

[Ver] Verayo, Inc. Company Website, http://www.verayo.com/, accessed
25.11.2015.

[VHV12] Anthony Van Herrewege and Ingrid Verbauwhede. Tiny application-
specific programmable processor for BCH decoding. In IEEE Interna-
tional Symposium on System on Chip (SoC), pages 1–4, 2012.

[vHvdLS+13] Anthony van Herrewege, Vincent van der Leest, Andr Schaller, Ste-
fan Katzenbeisser, and Ingrid Verbauwhede. Secure PRNG seeding on
commercial off-the-shelf microcontrollers. In International Workshop on
Trustworthy Embedded Devices (TrustED), pages 55–64. ACM, 2013.

[Vit67] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260–269, 1967.

141

Bibliography

[WST95] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The
context-tree weighting method: basic properties. IEEE Transactions on
Information Theory, 41(3):653–664, 1995.

[Wyn75] Aaron D. Wyner. The wire-tap channel. The Bell Systems Technical
Journal, 54(8):1355–1387, 1975.

[Xil11] Xilinx, Inc. Spartan-6 FPGA data sheet: DC and switching characteristics
(DS162 v3.0), 2011.

[Xil15] Xilinx, Inc. Device reliability report UG116 (v10.3.1). Technical Report,
2015.

[YD10a] Meng-Day (Mandel) Yu and Srinivas Devadas. Recombination of phys-
ical unclonable functions. In Government Microcircuit Applications and
Critical Technology Conference (GOMACTech), pages 1–4, 2010.

[YD10b] Meng-Day (Mandel) Yu and Srinivas Devadas. Secure and robust er-
ror correction for physical unclonable functions. IEEE Design & Test of
Computers, 27(1):48–65, 2010.

[YMSD11] Meng-Day (Mandel) Yu, David M’Raihi, Richard Sowell, and Srinivas
Devadas. Lightweight and secure PUF key storage using limits of machine
learning. In Bart Preneel and Tsuyoshi Takagi, editors, Workshop on
Cryptographic Hardware and Embedded Systems (CHES), volume 6917 of
LNCS, pages 358–373. Springer Berlin / Heidelberg, 2011.

[YMVD14] Meng-Day (Mandel) Yu, David M’Raihi, Ingrid Verbauwhede, and Srini-
vas Devadas. A noise bifurcation architecture for linear additive physical
functions. In IEEE International Symposium on Hardware-Oriented Se-
curity and Trust (HOST), 2014.

[YQ10] Chi-En Yin and Gang Qu. LISA: Maximizing RO PUF’s secret extraction.
In IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), pages 100–105, 2010.

[YQ13] Chi-En Yin and Gang Qu. Improving PUF security with regression-based
distiller. In ACM/IEEE Design Automation Conference (DAC), 2013.

[YSS+12] Meng-Day (Mandel) Yu, Richard Sowell, Alok Singh, David M’Raihi, and
Srivinas Devadas. Performance metrics and empirical results of a PUF
cryptographic key generation ASIC. In IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pages 108–115, 2012.

[YTA06] Gang Yao, Erdogan Ahmet T., and Tughrul Arslan. An efficient pre-
traceback architecture for the Viterbi decoder targeting wireless com-
munication applications. IEEE Transactions on Circuits and Systems,
53(9):1918–1927, 2006.

142

Bibliography

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–343,
1977.

[ZRJ14] Meng Zhang, Anand Raghunathan, and Niraj K. Jha. Trustworthiness
of medical devices and body area networks. Proceedings of the IEEE,
102(8):1174–1188, 2014.

143

List of Figures

1.1. Evaluation criteria for secure key derivation with PUFs 4

2.1. SRAM PUF . 13
2.2. Arbiter PUF . 13
2.3. Ring-Oscillator with 5 inverting elements 14
2.4. Ring-Oscillator PUF . 14

3.1. Generic reproduction procedure . 19

4.1. Analogies between the key agreement from a compound source and secret
key derivation with a PUF . 26

4.2. Secret key generation with a compound source 29
4.3. Algebraic view on secret key and helper data generation with a PUF

during enrollment . 32
4.4. Dimensions of the sub-matrices of the Algebraic Core 34

5.1. Sketch of SLLC helper data generation 46
5.2. Sketch of SLLC secret key reproduction 46

6.1. Generic reproduction procedure . 57
6.2. Probability of drawing non-ε-letter-typical sequences, computed and up-

per bounded values for p = 0.326 and different ε parameters. The pa-
rameters ε = 0.176 and n = 974 are used later in the implementation.
. 61

6.3. Example for DSC encoding . 63
6.4. Average RLE encoded pointer sizes µ(q(U)) and entropy H(U) for geo-

metrically distributed random variables U with parameter p 68
6.5. Max and mean bit error probabilities of syndrome coding schemes with-

out second stage ECCs for an SRAM PUF with 15% average bit error
probability. 70

6.6. Example for helper data manipulation attack on DSC 73
6.7. Generic reproduction procedure with countermeasure against helper data

manipulation attacks . 73
6.8. (2, 1, [7]) convolutional encoder . 75
6.9. Trellis diagram for a (2, 1, [2]) convolutional code 78
6.10. Seesaw architecture and data flow . 78
6.11. Path-distance vverflow preventing logic 80

145

List of Figures

6.12. Bounded mean key bit error probabilities of DSC concatenated with dif-
ferent convolutional codes for an SRAM PUF with average bit error prob-
ability 15% and e1 = 5 · 10−4. 82

6.13. Simulated mean key bit error probabilities of DSC concatenated with a
(2, 1, [7]) convolutional code compared to bounded mean key bit error
probabilities of rate 1/2 BCH codes . 83

6.14. Bounded mean and max key bit error probabilities of DSC concatenated
with a (2, 1, [7]) convolutional code compared to the state of the art for
an SRAM PUF with average bit error probability 15%. Again, e1 = 5 ·10−4. 84

6.15. Helper data length distribution functions based on 107 simulated PUFs
with DSC encoding with p = 0.326, RLE helper data compression and a
(2, 1, [7]) convolutional code . 87

6.16. Overflow error probabilities for different fixed helper data sizes and 107

simulated PUFs with DSC encoding with p = 0.326, helper data com-
pression with m = 2 and a (2, 1, [7]) convolutional code 88

6.17. Helper data sizes of DSC with helper data compression and dark bit mask-
ing for a key error probability of 10−9 and different input error probabilities 89

6.18. Double handshake IO protocol . 90

6.19. DSC reproduction with helper data compression 90

6.20. The SPONGENT architecture. 91

6.21. FPGA implementations of reproduction procedures of the DSC and ref-
erence implementations synthesized for Xilinx Spartan 3E FPGAs 94

7.1. Number of PUF bits of different syndrome coding and ECC approaches
designed for a key error probability of 10−6 100

7.2. Number of helper data bits of different syndrome coding and ECC ap-
proaches designed for a key error probability of 10−6 101

7.3. Number of Spartan 6 slices of different syndrome coding and ECC ap-
proaches designed for a key error probability of 10−6 102

7.4. Number of clock cycles of different syndrome coding and ECC approaches
designed for a key error probability of 10−6 103

7.5. Number of PUF bits of different syndrome coding and ECC approaches
designed for a key error probability of 10−9 105

7.6. Number of helper data bits of different syndrome coding and ECC ap-
proaches designed for a key error probability of 10−9 106

7.7. Number of Spartan 6 slices of different syndrome coding and ECC ap-
proaches designed for a key error probability of 10−9 107

7.8. Number of clock cycles of different syndrome coding and ECC approaches
designed for a key error probability of 10−9 108

A.1. Secret key generation with a compound source 116

A.2. (2, 1, [2]) convolutional encoder . 118

A.3. Trellis diagram for a (2, 1, [2]) convolutional code 119

146

List of Figures

A.4. Probability distribution function of an SRAM PUF with λ1 = 0.51, re-
sulting in ppuf = 15% . 121

147

List of Tables

4.1. Comparison of key derivation with a PUF and secret key agreement with
a compound source . 28

4.2. Key rates, helper data rates and mutual information between S and W
of the state-of-the-art syndrome coding approaches for PUFs 42

5.1. Practical comparison to related work for non-optimized implementations 55

6.1. Lowest ratio of reliable bits in an ε-letter-typical sequence 61
6.2. Run-length encoding with m = 1, m = 2 and m = 4 according to [Gol66] 67
6.3. ECC decoders synthesized for Xilinx Spartan 6 FPGAs using Block RAM 82
6.4. FPGA implementations of reproduction procedures of the DSC and ref-

erence implementations synthesized for Xilinx Spartan 3E FPGAs 92
6.5. Detailed synthesis results of the DSC reproduction procedure implemen-

tation for Xilinx Spartan-3E FPGAs . 93
6.6. Detailed synthesis results of the DSC reproduction procedure implemen-

tation for Xilinx Spartan-6 FPGAs . 93

7.1. Comparison of different approaches with target key error probability 10−6

synthesized for Xilinx Spartan 6 FPGAs. Approaches where I contributed
to are indicated by gray boxes. 109

7.2. Comparison of different approaches with target key error probability 10−9

synthesized for Xilinx Spartan 6 FPGAs. Approaches where I contributed
to are indicated by gray boxes. 110

8.1. Overview over theoretical and practical contributions in this thesis 112

A.1. State transitions for a (2, 1, [2]) convolutional code 118
A.2. Mean error probabilities of SRAM PUFs in dependency of λ1 122

149

List of Symbols

A Algebraic Core
b(·) Binary representation
C/c Codeword or code sequence
C Code
Chd Helper data capacity
Ckey Key capacity
cdf(·) Cumulative distribution function
d Minimum distance of a code
dim(·) Dimensions of a vector or matrix
∆ Rank loss
E(·) Expectation
e1 Probability that error 1 occurs
e2 Probability that error 2 occurs
f(·) Hash function
g(·) Compression function
gdim (·, ·) Dimensional rank loss
γ(·) Decoding operation of an ECC
G Generator matrix
H(·) Shannon entropy
H Parity check matrix
I(·; ·) Mutual information
I Identity matrix
I Index set
k Code size
kin Input size of the random number of the Algebraic Core
kout Output size of the secret of the Algebraic Core
lin Input size of PUF response of the Algebraic Core
lout Output size of helper data of the Algebraic Core
K/k Key from generation
κ Key size
L/l Key from reproduction
L Finite-length alphabet for RLE
Λ/λ Reliability indicator variable
m Parameter of run-length encoding
Mpre Preprocessing Matrix

151

List of Tables

Mpost Postprocessing Matrix
max (·, ·) Maximum operator
min (·, ·) Minimum operator
µ(·) Mean value
µ Memory length of convolutional code
n Block length, or code length
N(·|·) Numbers of occurrence of a letter in a sequence
p Probability of indexing a PUF response bit
P (·) Probability distribution
P Parity part of the generator matrix of an ECC with sys-

tematic encoding
perr Output bit error probability of the key
pmax Maximum input error probability of indexed PUF re-

sponse bits
ppuf Output error probability of a PUF response bit
psyn Average bit error probability at output of syndrome de-

coder
psyn−max Upper bound of output bit error probability of syndrome

decoder
Pr[·] Probability
ϕ(·) Encoding operation of an ECC
q(·) RLE compressed version of an integer number
R/r Input random number
Rhd Achievable helper data rate
Rkey Achievable key rate
rank (·) Rank of a matrix
S/s Output secret
σ(·) Standard deviation
sup (·, ·) Supremum operator
T/t Internal state of a compound source
T nε Letter typical set
T Channel between X and Y
U/u Differential distance pointer
V/v Inversion bit
W/u Helper data
wt(·) Hamming weight operator
X/x PUF response during generation
Y/y PUF response during reproduction
ζ Yield of DSC helper data generation failure
0 All zeros matrix
|·| Cardinality operator

152

Index

Achievable Key Rate, 29, 51, 117
Algebraic Core, 33, 50
Arbiter PUF, 13

BCH Code, 22, 24, 45, 54, 81, 83,
98–100, 104

Bistable Ring PUF, 15

Capacity, 31
Code-Offset Fuzzy Extractor, 21, 39,

55, 63, 83, 100, 104, 111
Complementary IBS, 23, 63, 72, 84, 100
Compound Source, 25, 28
Context Tree Weighting, 12, 20, 30
Convolutional Code, 45, 74, 83, 84

Dark Bit Masking, 87
Differential Sequence Coding, 57, 98

Fuzzy Commitment, 21, 38, 50, 87, 111

Generalized Code Concatenation, 104
Golay Code, 22, 83

Index-Based Syndrome Coding, 23, 63,
72, 81, 84

Lempel-Ziv Algorithm, 12, 30, 66

Non-Volatile Memory, 2, 65, 72

Parity Construction, 22, 41, 49
Physical Attacks, 27, 56, 74
Postprocessing Matrix, 33
Preprocessing Matrix, 33

Rank Loss, 34, 35, 111
Reed–Muller Code, 22, 24, 83, 99, 100,

103, 104
Reed–Solomon Code, 22, 45, 104
Ring-Oscillator PUF, 13, 22, 23, 28, 104
Run-Length Encoding, 66, 86, 90, 98,

105, 111

SRAM PUF, 12, 22, 28, 91, 120
Strong PUF, 10
Syndrome Construction, 22, 40, 55
Systematic Low Leakage Coding, 45,

76, 104

Typicality, 53, 58, 81

Viterbi Algorithm, 74, 94, 102, 117

Weak PUF, 10

153

	List of Acronyms
	Introduction
	Non-Volatile Key Storage in Integrated Circuits
	Security from Intrinsic Manufacturing Variation
	Secure Key Derivation with PUFs
	Integration of PUFs into Commercial Products
	Contributions of this Thesis
	Outline
	Definitions and Notation

	Physical Unclonable Functions
	Definition of PUFs
	PUF Properties
	PUF Primitives
	Conclusions

	Error Correction for PUFs
	Definitions
	Theoretical Background
	Linear Schemes
	Pointer-Based Schemes
	Error-Correcting Code Implementations
	Conclusions

	Theoretical Foundations of Key Derivation with PUFs
	Relation between PUFs and Compound Sources
	Review of the Information Theoretical Criteria and Limits
	Unified Algebraic View on Secure Key Derivation with PUFs
	Generic Security Criterion
	Algebraic Representation and Analysis of the State of the Art
	Conclusions

	Systematic Low Leakage Coding
	SLLC Code Construction
	Evaluation
	Implementation
	Conclusions

	Differential Sequence Coding
	Relation between Block Size and Reliability
	DSC Encoding
	Properties
	Security Analysis
	Convolutional Codes
	Design of a Complete Key Derivation Module
	Implementation
	Further Improvements
	Conclusions

	Evaluation
	Estimation of Implementation Complexity
	Assessment of SLLC to the State of the Art
	Syndrome Coding and ECC Designs for Medium Key Error Probability
	Syndrome Coding and ECC Designs for Low Key Error Probability
	Conclusions

	Conclusions and Outlook
	Review of the Contributions in this Thesis
	Outlook

	Supplementary Material
	Information Theoretical Key Agreement from Compound Sources with Random Codes
	Viterbi Algorithm
	SRAM PUF Reliability Distribution

	List of Pre-Publications
	List of Supervised Theses
	Bibliography
	List of Figures
	List of Tables
	List of Symbols
	Index

