Exploiting Execution Profiles in Software
Maintenance and Test

Sebastian Eder

Technical
University
of Munich

Institut fiir Informatik
der Technischen Universitat Miinchen

Exploiting Execution Profiles in Software
Maintenance and Test

Sebastian Eder

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Bernd Briigge, Ph.D.
Priifer der Dissertation:
1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy
2. Univ.-Prof. Dr. Alexander Pretschner

Die Dissertation wurde am 03.08.2016 bei der Technischen Universitdt Miinchen einge-
reicht und durch die Fakultit fiir Informatik am 21.10.2016 angenommen.

Abstract

Many business information systems are in use for decades and due to changing
users, environments, or business models, the systems are frequently updated. Such
changes are implemented during software maintenance, which accounts for 60% to
90% of the overall life-cycle costs of software systems.

In a traditional maintenance process, users are only sparsely involved. In conse-
quence, product owners identify, prioritize and analyze changes with little to no
information about how users typically use which parts of the software system.
This leads to developers implementing changes in unused functionality, which
does not provide any value for the users. Maintenance in this potentially useless
functionality might not provide value to the users and therefore imposes the risk of
being a waste of resources.

Insights into usage are therefore one prerequisite to avoid ineffective maintenance.
We measure usage by execution profiles that express, which parts of a software
system were executed during a given period of time.

In this thesis, we explore the benefit of analyzing execution profiles collected for
business information systems to reduce maintenance efforts. We contribute a
series of studies to gain insights into the actual execution of source code and its
implications, approaches that transfer execution profiles to other artifacts, and we
embed the approaches into the maintenance process.

In our first case study, we quantify unused source code in a business informa-
tion system and confirm that maintenance in unused source code can be a waste
of resources. Building on these insights, we present a constructive approach to
transfer the information contained in execution profiles to requirements artifacts
by detecting links between source code and requirements. The evaluation of this
approach shows that it is capable of detecting requirements artifacts that express
unused functionality. We embed this approach in the maintenance process for
product owners and developers and explain how product owners can prioritize
change requests and file new change requests based on knowledge about usage.

After changing software systems in maintenance, regression testing is performed to
validate that newly created or changed code did not impair existing functionality.
We explore applications of execution profiles to also support testing activities.

In our second study, we quantify untested code in a business information system
and empirically underpin the assumption that the fault rate in changed but untested
source code is higher than in other code regions. Building on that, we present
a constructive approach to indicate gaps in code coverage, which are indicated
by execution profiles, and to relate them to existing regression test cases. In an
evaluation, we show that, in 90% of all cases, our approach identifies a test case
that actually covers the gap in question. We furthermore embed these techniques
in the maintenance process and explain how test engineers can assess whether the
changes, which were made during maintenance, are covered by tests. We further
suggest a method for selecting regression test cases based on this knowledge.

The aforementioned approaches rely on detecting semantic links between artifacts.
To acquire these links, we provide a constructive approach for detecting semantic
links between artifacts fully automatically. We evaluate the approach in a case
study and confirm that the proposed approach is capable of detecting semantic
links between artifacts accurately. With this, we foster, technically, the applicability
of the aforementioned contributions.

Acknowledgments

Writing this thesis reminded more than once on climbing a huge mountain. In the
beginning, the mountain seems too high to be climbed. During climbing, there
are exhausting ups and downs. But close to the summit, all the effort is forgotten
and the fun outweighs. Climbing serious mountains always is teamwork, and
impossible without the support of fellow climbers. Now, that I am close to my
personal summit, the completion of this thesis, I sincerely want to thank all the
people, who helped me in reaching this summit I climbed over the last years.

First of all, I want to express my gratitude to Prof. Manfred Broy. He gave me the
opportunity to work at his chair in this great atmosphere of scientific thinking. I
am thankful for his continuous support and motivation. He guided me up this
mountain, while giving me the possibility to realize my own ideas. I also want to
thank Prof. Alexander Pretschner for co-supervising this thesis, for giving very
helpful comments, and for motivating me.

My thanks go to all the great people of Prof. Broy’s research group, who helped me
during this endeavor. In particular, I want to thank Benedikt Hauptmann, Henning
Femmer, and Maximilian Junker for the numerous discussions and reviews of this
thesis. During these discussion, I learnt a lot and they often changed my mind and
way of thinking. These people allowed me to be part of a great (rope) team, and I
am very glad they trust me even beyond research. Elmar Jiirgens gave me a great
start into the scientific world and his support, especially in the beginning of this
endeavor, heavily influenced, certainly very positively, my way of problem solving
and scientific writing. Moreover, he initiated many ideas that are written down in
this thesis. Even though Daniel Méndez Fernandez does look good, he might not be
in the physical condition to climb real mountains. But, he was always in the mental
condition to support me in all questions, especially regarding theory of science. His
exceptional knowledge and our discussions brought me further in this thesis and
in topics way beyond it. I thank my part-time office mate Daniela Steidl for great
and funny times, but also for all the help in scientific questions. And, for letting me
co-author an award-winning paper! I furthermore thank Jonas Eckhard, Andreas
Vogelsang, and Veronika Bauer for the feedback, discussions and advice, but also
for the motivation and distraction that helped me over exhausting passages more
than once. I particularly thank Silke Miiller for guiding me through the bureaucracy
at the university, and also for always raising my blood sugar level with sweets.

I'd like to thank my friends Christoph Frenzel and Josef Graubmann for climbing
real mountains with me. These trips were vital distractions and the experiences
I made there — there is always a better option than giving up, and usually one
can do more than he would expect — gave me a lot of trust in the success of this
project. I furthermore thank Christoph Frenzel, Severin Strobl and Martin Schreiber
for numerous discussions about computer science and other topics during late
night sessions that kept my mind open for new ideas, different points of view, and
inspired me to begin this whole project.

All of this could not have happened without the unconditional trust of my parents
through all my life. Everything I do, and everything I have done, would not have
been possible without their tremendous mental and material support. I thank my
brother for always being a role model, for being the older one, and for the chance to
grow at his side. By being with me for my whole life, my parents and my brother
gave me the prerequisites and strength to write this dissertation.

Above all, I thank Julia. She paid the largest bill during these intense years. During
all times, she covered my back and supported me regardless of what happened or
how stressed I was. This gave me the strength to climb this mountain. With her, I
feel the strength for climbing even higher ones.

Publication Preface

[1] Publication A:

© 2012 IEEE. Reprinted, with permission, from

Sebastian Eder, Maximilian Junker, Elmar Juergens, Benedikt Hauptmann, Rudolf Vaas,
Karl-Heinz Prommer,

How much does unused code matter for maintenance?,

34" International Conference on Software Engineering (ICSE), 2012

[2] Publication B:

© 2013 IEEE. Reprinted, with permission, from

Sebastian Eder, Benedikt Hauptmann, Maximilian Junker, Elmar Juergens, Rudolf Vaas,
Karl-Heinz Prommer,

Did we test our changes? Assessing alignment between tests and development in practice,

8" International Workshop on Automation of Software Test (AST), 2013

[3] Publication C:

© 2014 Association for Computing Machinery, Inc. Reprinted by permission.

Sebastian Eder, Benedikt Hauptmann, Maximilian Junker, Rudolf Vaas, Karl-Heinz Prommer,
Selecting manual regression test cases automatically using trace link recovery and change coverage,
9" International Workshop on Automation of Software Test (AST), 2014
http://dx.doi.org/10.1145/2593501.2593506

[4] Publication D:

© 2014 IEEE. Reprinted, with permission, from

Sebastian Eder, Henning Femmer, Benedikt Hauptmann, Maximilian Junker,

Which Features Do My Users (Not) Use?,

IEEE International Conference on Software Maintenance and Evolution (ICSME), 2014

[5] Publication E:

© 2015 IEEE. Reprinted, with permission, from

Sebastian Eder, Henning Femmer, Benedikt Hauptmann, Maximilian Junker,
Configuring Latent Semantic Indexing for Requirements Tracing,

2" International Workshop on Requirements Engineering and Testing (RET), 2015

Contents

1.

Introduction 1
1.1. Context o o e 1
1.2. Motivation e e 2
1.2.1. AnecdotalEvidence 2
1.2.2. From Literature 3
1.2.3. ObservationsinPractice 4
1.3. Problem Statement 5
1.3.1. ExecutionProfiles. 6
1.3.2. Research Objective 6
1.4. Contributions 6
1.4.1. Provide Insights into the Actual Usage of a Software System
toProductOwners, 7
1.4.2. Provide Insights into Regression Test Coverage to Test Engineers 8
1.4.3. Automatically Linking Source Code and Other Artifacts . .. 9
144. Summary 10
15, Overview e 10
Background 11
2.1. Software Maintenance Process 12
2.2. Software Maintenance 13
22.1. Definition e 13
2.22. Typesof Maintenance 13
223. InvolvedRoles 14
224. ChangeRequests 15
2.3. Software Testin Maintenance 16
2.3.1. Definition 16
2.3.2. Software Testing Process 16
233. Roles e 17
234. Levelsof Granularity 18
2.35. Goalsof System Testing 19
2.3.6. Regression Test Case Selection 20
23.7. TestCoverage 20
2.4. The Gap between Developers, Product Owners, and Users 21
2.5. Software Usefulnessand Usage 23
25.1. Usefulness e 23
2.5.2. Connection of Usefulness and Actual Usage 24

ii

26 SUMMATY oo

Related Work

3.1. Challenges in Software Maintenance
3.1.1. UnderstandingtheUser
3.1.2. QuestionsaboutUsers

3.2. Involving Users in the Software Maintenance Process
3.21. UserInvolvement.
3.2.2. Collection of Data about User Behavior
323, Summary

Execution Profiles in Software Maintenance and Test
4.1. Characterization of Execution Profiles
41.1. Description o
41.2. Profiling Technique
413. CollectedData
414. DataCollectors
4.2. Relation to Functionality
4.2.1. Relation of Functionality to Source Code
4.2.2. Relation of Execution Profiles to Usage of Functionality
43. RelationtoTestCases i v i i i i it
4.3.1. Relation of Test Cases to SourceCode
4.3.2. Relation of Execution Profiles to Code Coverage
4.4. Conclusions based on Execution Profiles
44.1. ConclusionsonUsageData
4.42. Conclusions on CoverageData
45. Comparison
4.5.1. Advantages of Execution Profiles
4.5.2. Disadvantages of Execution Profiles
453. Summary
46. Summary

Contributions
5.1. Unused Source Code in Maintenance
5.2. Transfer of Unused Source Code to Requirements Artifacts
5.3. Considering Usage Data in Maintenance
53.1. ProductOwner
532. Developer
533. Process
53.4. ImplicationsonResources
5.4. Uncovered Source Code in Regression Testing
5.5. Transfer of Uncovered Source Code to Regression Test Cases
5.6. Considering Coverage Datain Testing
56.1. TestEngineer
56.2. Process e
5.6.3. ImplicationsonResources
5.7. Automatically Linking Source Code with Other Artifacts

Conclusions

6.1. Summary
6.1.1. Contributions
6.12. KeyTakeaways

6.2. Limitations L
6.2.1. Limitation to Existing Artifacts

48

6.2.2. Limitedaccuracy
6.2.3. Assumptionso
6.2.4. Generalizability 0 oL
63. FutureWork oo o

Bibliography

Appendices

A.

B.

I o mm o O

Publication A [1]
Publication B [2]
Publication C [3]
Publication D [4]
Publication E [5]
Reprint Permission for Publication A [1]
Reprint Permission for Publication B [2]
Reprint Permission for Publication C [3]
Reprint Permission for Publication D [4]

Reprint Permission for Publication E [5]

101
101
113
119
127
133
141
143
145
149

151

iii

CHAPTER 1

Introduction

1.1. Context

In this thesis, we consider business information systems, which are “software
systems to support forecasting, planning, control, coordination, decision making,
and operational activities in organizations” [6]. These systems provide value to their
users by supporting their workflows in their daily business. We consider business
information systems that are used interactively by users via a user interface, and
not systems, that are merely triggered by other systems. Often, these systems are
developed and maintained for specialized users in a specific environment. These
specialized users are experts in their working domain and therefore know, to a
large extent, which functionality supports them in their working environment, and
which does not, once they see it. In this context, users perceive functionality as
useful, if using it increases their productivity, job performance, or effectiveness on
the job [7].

Business information systems are often in use for decades in industry [8]. During
these long periods of time, the users, environments, or business models change.
Therefore, the software systems themselves have to be adapted to these changes.

£ Maintenance Process

1 . 1 I
=i £ Maintenance P %Test
9] ! ! ' =
IS =2 ' & ! =)
5 o5 18 . . ! 3
1= (= 1 —
g. e = s | 1 L @ <
g % =g = = 8 o
® = 109 8 ' q Q ! < £
¢ i 1 S =) g & 5
& —> ' g N> 0 > > Q —3=T> g +— > —> .=
e =k 2 = E . 1ES s | o 5]
s '§e 5 = 2. '2% 9 2 o
= = «© €\ Q IR [SI = -
= £ o c] s ' | >0 Q 3] oy
£ 1 O¢& < [a] = hg < , (@]
1
¥ Qg 0 o 9, 98 9. 9
! 1
A S I S S B

Figure 1.1.: Simplified view of the software life-cycle and the maintenance process.

1.2. Motivation

We consider software maintenance as the activity of identifying and implementing
changes to a software system. This activity is embedded in the software main-
tenance process [9], which is triggered by the aforementioned changes, and is
illustrated in Figure 1.1. In this the first phase of this process, the change identifi-
cation, the product owner! collects changes from users, identifies changes on his
own, and prioritizes them. In the second and third phases, analysis and design,
the change is evaluated for feasibility and coarse and fine grained plans for its im-
plementation are developed. In the fourth phase, implementation, the developers
implement the change in source code (and perform therefore the activity mainte-
nance). After this, the test engineer leads the fifth phase, system testing, where
testers execute test cases to ensure the new functionality is correct and existing was
not impaired (regression testing). Then, the customer validates whether to accept
the changed system in the phase acceptance testing. If so, the system is delivered
to the customer in the phase delivery, and otherwise, the maintenance process
starts from the beginning. This process is repeated during the whole life-cycle of a
software system.

Maintenance can be categorized into four categories [10]. Corrective maintenance
are modifications to the software system to correct faults. Perfective maintenance are
additions of new functionality or modifications to existing functionality. Adaptive
maintenance are changes that adapt a software system to new environments, e.g.,
adapt a system to changed communication protocols with other software systems.
Preventive maintenance prepare a software system for future modifications, e.g.,
improving the comprehensibility of the source code of a software system.

1.2. Motivation

In traditional maintenance processes, like the waterfall process, users and customers
are involved only sparsely. In these traditional maintenance processes, anecdotal
evidence, literature, as well as our own observations in practice point to several
challenges that arise due to a lack of the understanding of users and customers.
These challenges indicate that information about usage and coverage is interesting
for product owners, developers, test engineers, and testers.

1.2.1. Anecdotal Evidence

Agile development focuses on direct collaboration of the stakeholders develop-
ing the software and the customers [11]. The goal is to get rid of unnecessary
documentation, while developers understand the requirements of the customer.

In lean software development, the reduction of waste is a central goal [12, 13]. Waste
is, e.g., work that is only done partially, useless functionality, or defects. Especially
the saying “You ain’t gonna need it!” [14] is well known nowadays and it means
that developers should be careful which functionality they implement, since lots of
functionality does not provide value to the users, even though the developers think
it is useful.

IBM reports that organizations waste about 40% or more of their resources [15]. Jim
Johnson of the Standish Group reported, describing a study about four software
systems, that 45% of all features of software systems are never used, and additional
19% only rarely used [16, 17]. This is backed up by Bergman [18], who reports about

1 We use the term product owner to summarize the tasks change identification/prioritization and analysis.
If the role itself does not exist in a project, its tasks still exist, which we refer to as the tasks of the
product owner for the sake of simplicity.

1. Introduction

large amounts of dead source code in a software system, after it was developed for
several years.

Ron Lichty [19] asks developers, how many features of an imaginary 400 pages re-
quirements document they typically implement. The answers are that usually only
15% to 25% of the contained requirements are actually delivered to the customer.
However, the delivered systems were accepted by the customers. The unimple-
mented requirements either were not necessary for the customers, or their absence
remained unnoticed. However, we expect the customers in our domain to know,
which functionality is necessary and not to accept a system with requirements that
are necessary, but not implemented. Therefore, we conclude, 75% to 85% of the
requirements were not necessary for the customers.

These anecdotes indicate a risk of wasting resources during development, and
furthermore, that product owners and developers have problems understanding
what the actual requirements of the customers are. This anecdotal evidence focuses
primarily on the development of software. In this thesis, we focus on maintenance,
which is performed after the initial development. But, we expect similar challenges
in software maintenance, due to the anecdotal evidence given above.

1.2.2. From Literature

Heiskari and Lethola report general challenges in software maintenance and em-
phasize the need for information about users [20]. They collected, among others,
the following concerns from practitioners in software maintenance:

e “There is too little user information.”
e “There is no feedback from outside the house during development.”
e “User information is scattered, unorganized, and difficult to access.”

One consequence of these challenges is that product owners and developers do not
accurately understand the requirements of the users, and therefore risk developing
software systems that do not fit the users’ requirements.

Begel and Zimmermann report some of the most essential questions of program
managers, developers and testers [21]. They emphasize the aforementioned con-
cerns. Among these questions, some emphasize the need of product owners, devel-
opers, and testers for knowledge about the usage of software systems.

e “How do users typically use my application?”

e “What parts of the software are most used and/or loved by my customers?”
e “What are the common patterns of execution in my application?”

o “How well does test coverage correspond to actual usage by our customers?”

All questions reported by Begel and Zimmermann [21] are concerned with the
actual usage of software systems. The last question also addresses software systems
in their testing environment by mentioning test coverage. With the answers to these
questions, product owners and developers can gain more insights into what the
users actually do with their software systems and adapt maintenance accordingly.
Testers can direct their testing efforts more towards a realistic user behavior.

In agile development, the users are closely involved in the development or main-
tenance process. Thus, at least partial answers to these questions can be obtained
directly from them. Therefore, agile methods are one possibility to prevent these
questions. However, the studies mentioned above show that these question do arise
in practice. One reason is that not every software development or maintenance
project is conducted agile [22], since agile methods do not fit on every project,
especially on large projects [23, 24].

1.2. Motivation

Since we do not expect these questions to often arise in projects using agile meth-
ods, we concentrate on maintenance projects, which do not use agile methods or
involve the users closely. However, there is evidence that obsolete requirements
are still implemented also in agile development projects [25, 22]. These obsolete
requirements can lead to the questions presented above.

1.2.3. Observations in Practice

Motivated by the challenges and questions described above, we conduct studies in
practice about usage and coverage of business information systems, which underpin
the aforementioned issues.

Maintenance Our own observations underpin the concerns and questions de-
scribed by Heiskari, Lethola [20], Begel, and Zimmermann [21]. In our studies, we
found that almost 25% of the source code of an industrial business information
system were not executed in a period over two years [1]. Unused functionality
does often not provide value to the users, since if it would provide value to the
users, they would use it [26, 27]. We consider functionality, which does not pro-
vide value to the users, in the context of custom developed business information
systems, as useless. Useless functionality is caused by, e.g., developers, who are
sometimes drawn towards implementing functionality they perceive as nice and
beautiful, while forgetting their focus should be on providing value to the users
[28]. Another example is obsolete functionality that remains in software systems,
because developers do not remove it.

Maintenance in unused, and therefore potentially useless functionality might not
provide value to the users. In a study, we show that almost half of the maintenance
effort spent on unused functionality of a business information system was a waste
of resources [1]. This problem is intensified by the fact that software maintenance
accounts for 60% to 90% of the overall life-cycle costs of software [29, 30, 31].
One reason for modifications in unused functionality are adaptive and preventive
maintenance, which account for 25% to 52% of all changes [32, 33, 34]. Adaptive
and preventive maintenance is performed in source code, often regardless of the
functionality it implements, as described in the examples given above for adaptive
and preventive maintenance (see Section 1.1). Thus, these types of maintenance
do not necessarily target functionality that is useful to the users. Therefore, we
expect maintenance to occur in source code implementing unused and useless
functionality, too.

Building on estimations of usage and usefulness, product owners decide which
changes are implemented in which order. However, their estimations might be
wrong. Juergens et al. report that, in their study of a business information system,
deviations of the expected usage and actual usage occur in 40% to 53% of all features.
In 70% of unused features, the stakeholders did not know that the features were
not used at all [35]. This shows that product owners have a lack of knowledge
about the usage and usefulness of the functionality of the software systems they are
responsible for.

But what is the origin of these deviations? One reason are the different areas of
expertise of product owners, developers and users. This bears the risk that the
product owner does not fully understand what the users require [36, 37, 38, 39, 40].
Therefore, product owners potentially waste resources due to missing knowledge
about actual usage. Our own findings confirm this, as they show that almost half of
the maintenance in unused code was a waste of resources [1].

1. Introduction

Regression Test The test engineer is responsible for coordinating the testing
activities. Among his tasks is selecting regression test cases, with the goal of
revealing the faults in the system under test. A common strategy is to select test
cases that cover modifications. The rationale behind this is that recently added or
changed source code is more likely to contain faults than other source code [41, 42,
43, 44]. Also, in our own studies, we found that fault rates in changed, but untested
source code are higher than in other source code [2]. Our findings confirm the
hypothesis of the aforementioned approaches, that concentrating on modified parts
of the source code during testing is sensible.

However, these approaches assume that the changes made to the software system
under test are known to the test engineer, and the test engineer has knowledge
about which source code is covered by tests. Regression testing is often performed
by dedicated testing teams that are often separated from development teams. There-
fore, the test engineers may not be aware of all changes in the software. Additionally,
there is often no tool support for the test engineer to collect coverage data for system
tests. Consequently, maintenance and testing can be aligned badly, and changes
done in maintenance can be missed in regression testing. We confirm this fact in
our own study, where we found that significant parts of changed source code were
not covered during regression testing [2]. As a consequence, faults introduced by
maintenance can remain in the system and occur in the productive environment of
the software system.

1.3. Problem Statement

The challenges described above indicate that the usage and coverage of software
systems are of interest to product owners, developers, test engineers, and testers.
Therefore, we formulate the hypothesis, that it is helpful for these roles, to gain
insights into usage and coverage.

Unused functionality often does not provide value to the users. However, in
maintenance projects, which do not involve users closely, e.g., by applying agile
methods, product owners lack knowledge about the actual usage of the software
systems they are responsible for [35]. Maintenance in useless functionality can be
a waste of resources. Therefore, the product owner needs insights into the actual
usage of the software system he is responsible for to prevent a waste of resources.
The test engineer needs insights into regression test coverage, since otherwise,
expensive faults introduced by adaptive preventive maintenance are more likely to
be missed by regression testing.

However, resources and budgets of product owners and testers usually are con-
strained. Therefore, providing plain insights into usage and coverage is not enough
for helping practitioners. For the information to be helpful, its collection and analy-
sis must not impose additional efforts, must be accurate and complete, and must
not interfere with existing software systems and processes.

In agile development, the insights the product owners, developers, test engineers,
and testers are asking for, are given by frequent meetings of users or customers with
the developing stakeholders. However, there is still the risk of obsolete functionality
remaining in a software system, or extra functionality not providing value to the
customer [25, 22]. In this case, insights into actual usage of a software system are
necessary, since some information becomes only apparent, when the system is in
productive use.

But how can product owners gain insights into the usage and test engineers into
the coverage of software systems in a lightweight and minimal invasive way?

1.4. Contributions

1.3.1. Execution Profiles

Our approach to provide insights into the usage and coverage of business infor-
mation systems are execution profiles. They express which methods, in an object
oriented sense, of a software system were executed in a given period of time?.
To keep the negative impact on runtime performance low, execution profiles are
collected automatically by ephemeral profiling [45]. This technique yields accurate
data, and does not require direct interaction with the users of the software system.

Execution profiles can be collected in all environments the considered system
is executed in. In the productive environment, real users use the system. The
execution of methods shows, that they implement functionality that was used.
Therefore, execution profiles, which are collected in the productive environment,
allow for gaining insights into the usage of a software system. Therefore, we call
execution profiles collected in the productive environment usage data. With usage
data, product owners and developers can gain insights into what users actually do
not use, and coordinate their maintenance efforts accordingly, to prevent a waste of
resources.

If execution profiles are collected in the testing environment of a software system,
they show, which methods were executed during testing. Therefore, execution
profiles collected in the testing environment show test coverage. Thus, we call
execution profiles collected in the testing environment of a software system coverage
data. With coverage data, test engineers can assess which parts of the source code
were not covered, and consequently, not tested. With this knowledge, they can close
gaps in their test coverage.

1.3.2. Research Objective

Motivated by the concerns of Heiskari and Lethola [20], the questions reported
by Begel and Zimmermann [21], and our own observations [1, 2], and by a gap in
literature of how to answer the questions and deal with the challenges, we formulate
the research objective for contexts, in which users are not involved closely in the
maintenance process:

We explore the benefit of analyses of execution profiles collected for business infor-
mation systems in software maintenance and test.

1.4. Contributions

We use execution profiles to provide information about the actual usage of a soft-
ware system to the product owner, and information about regression test coverage
to the test engineer.

Figure 1.2 illustrates the overview of contributions. We structure the contributions
in the activities maintenance and test. The contributions present studies to gain
insights into the actual execution of source code and its implications, approaches
that transfer execution profiles to other artifacts, and processes that allow product
owners and test engineers to consider execution profiles.

Published in [1] at

ICSE 2012
acc. rate 16%
10 pages

Full paper

1. Introduction

1 1
B LR :
! Unused source code ! ! Uncovered source code ! 9]
| in maintenance 1 | in regression testing 1 5
: (Publication A, Section 5.1) ' : (Publication B, Section 5.4) 8
1 1 1 1
1 l 1 1 l 1
1 1 1 1
1 1 1 1
' E) Transfer of unused source \ ' El Transfer of uncovered source \
! code to requirements artifacts | ! code to regression test cases |
! (Publication D, Section 5.2) ! | (Publication C, Section 5.5) 2
1 1 1 1
e
1 1 1 1 =
o
: \ | : / L8
1 1 0
: El Automatically linking source ! &
\ code with other artifacts !
: (Publication E, Section 5.7) '
: Vo :
1 1 1 1
1 1 1 1
h
X Considering usage : X Considering coverage V|8
! data in maintenance ! ! data in regression testing ! §
! (Section 5.3) ! ! (Section 5.6) | 8
: L)2
1 1 1 1

Figure 1.2.: Overview of the contributions.

1.4.1. Provide Insights into the Actual Usage of a Software
System to Product Owners

Unexecuted Source Code in Maintenance This contribution confirms in a case
study, that maintenance in unused source code can be a waste of resources, and
therefore lays a foundation for this thesis.

The contribution quantifies the effects of maintenance in source code that was never
executed by users. In a case study, we examine the extent of unused source code
in a business information system and quantify the modifications in unused code
performed due to maintenance. Building on this information, the contribution
quantifies the amount of maintenance in unused code, which provided no value
for the users. Consequently, the study shows, which share of costs could have
been saved by considering usage indicated by execution profiles. In addition, we
qualitatively examine the helpfulness for developers for preventing maintenance,
which does not provide value to the users.

The results of the case study conducted in this contribution show that, in the ex-
amined software system, 25% of the source code was not executed over a period
of four years. There, 48% of all maintenance actions in unused code were a waste
of resources. Examples for maintenance in unused code that were not considered
as a waste of resources, was maintenance in error handling code or code that was
prepared for future use. The developers wanted to know which source code was un-
used, which corresponds to the questions reported by Begel and Zimmermann [21]
described above. Due to the high probability of maintenance being a waste of
resources, the developers found the insights gained into the usage of the software
system under development helpful in practice.

As 7.6% of all maintenance actions fell in unused code, 3.6% of all maintenance
actions provided no value to the users.

2 Execution profiles do not express how often methods were executed during the time interval.

Published in [4] at

ICSME 2014
acc. rate 36%
5 pages

Full paper

Published in [2] at

AST@ICSE 2013
acc. rate 45%

4 pages

Short paper

1.4. Contributions

The system under consideration was maintained by nine to sixteen developers®.
Assuming 220 days of work per person and year, this means that eight days per
person and year could have been saved. Scaled to the persons working on the main-
tenance of the system under consideration, the savings lie between approximately
four (in case of nine developers working in the system) and seven (in case of sixteen
developers) person months per year. The developers of the system perceived this
amount of waste considerable and reported, that they found it beneficial if these re-
sources could be saved or allocated in different projects. But, practitioners state that
these savings should be considered only in projects where they enable a different
planning of resources.

Transfer of Unused Source Code to Requirements Artifacts This contribution
presents a constructive approach to transfer execution profiles to requirements
artifacts by detecting links between source code and requirements artefacts, and an
evaluation of this approach.

The latter contribution focuses on source code, since execution profiles also reside on
this level. In contrast to developers, product owners often do not know the source
code of the software system’s they are responsible for. Therefore, product owners
often do not understand information, especially execution profiles, that reside on
the level of source code. But, product owners usually know the functionality the
system provides.

This contribution presents a technique to map unused source code identified by
execution profiles to use case documents, which express functionality. For this
mapping, we use Latent Semantic Indexing [46] (LSI) from the field of Information
Retrieval to detect semantic links between source code and requirements documents.
With our technique, the product owners are able to identify use cases, which were
not performed by any user during a given period of time. We furthermore show,
that the technique’s exactness is good enough for being used in practice. Its average
precision lies at 0.89.

Considering Usage Data in Maintenance In this contribution, we describe in
which phases of the maintenance process the product owners and developers use
the aforementioned techniques. Additionally, we give a detailed explanation of
how product owners can prioritize changes and file new change requests based
on execution profiles. With the resulting change requests, unused source code and
functionality can be reduced.

1.4.2. Provide Insights into Regression Test Coverage to Test
Engineers

Unexecuted source code in regression testing This contribution confirms in
a case study, that the fault rate in untested, and maintained source code is high, and
thus, lays a foundation for this thesis. It confirms the assumption that it is sensible
to test modified source code. Additionally, this contribution provides a metric to
assess the alignment of maintenance and testing.

This contribution quantifies the effects of a bad alignment of maintenance in source
code and regression testing. In a case study, this contribution examines the extent
of changes in source code that were not covered during regression testing. It fur-
thermore measures the frequency of faults occurring in the productive environment
of a software system in the modified, but uncovered source code. Motivated by

3 The number varied over time.

1. Introduction

the fact that there are more field bugs in modified, but uncovered source code,
this contribution also provides a metric that is suitable for assessing the alignment
of maintenance and regression testing by quantifying the amount of uncovered
changes in source code.

In the system under examination, one third of all methods remained untested,
about 8% of all methods were changed, and about 44% of the changed methods
were executed by at least one regression test. The untested and changed methods
contained about 40% of all field bugs. The probability of was therefore considerably
higher faults in untested and changed methods than in other methods.

Transfer of Uncovered Source Code to Regression Test Cases This contribu-
tion presents a constructive approach to transfer gaps in coverage, measured by
execution profiles, to regression test cases, and an evaluation of this approach.

Often, test engineers and testers are employed in different departments than the
developers. Therefore, they are often even physically separated from each other.
This impacts the communication between test engineers, testers, and developers
negatively. Therefore, test engineers usually do not know the source code of the
system under test and which regression test cases test which source code. Thus, test
engineers often do not know which test cases to execute to cover formerly untested
modifications in source code.

This contribution provides a technique for test engineers to identify existing regres-
sion test cases that cover untested source code without executing the test cases first.
For this approach, we make use of LSI to detect semantic links between source code
and test cases statically without executing test cases. We evaluate the accuracy of
the approach in an industrial case study and show its applicability in practice.

In 90% of all cases, our approach suggested a test case for a method, which really
executes the method, while suggesting 1.75 in average of four possible test cases
per method.

Considering Coverage Data in Regression Testing In this contribution, we
describe in which phases of the maintenance process the test engineer uses the
aforementioned techniques. Additionally, we give a detailed explanation of how
test engineers can assess the alignment of maintenance and regression testing and
how they select regression test cases using execution profiles.

1.4.3. Automatically Linking Source Code and Other Artifacts

This contribution provides a constructive approach for detecting semantic links
between artifacts fully automatically and thus fosters, technically, the applicability
of the aforementioned contributions.

Two of the aforementioned contributions connect execution profiles residing on
source code with use case documents and test cases. In both cases, we use LSI to
identify semantic links between source code and the other artifacts. However, the
accuracy of this technique heavily varies depending on its configuration [47, 48, 49,
50, 51, 52, 53].

Therefore, we propose a technique to configure LSI automatically, to enable a fully
automatic identification of semantic links between software development artifacts.
In a case study, we show the accuracy of the technique. With this technique, product
owners and test engineers can identify semantic links between execution profiles
and artifacts they understand better.

Published in [3] at

AST@ICSE 2014
acc. rate 43%

7 pages

Full paper

Published in [5] at

RET@ICSE 2015
acc. rate NA

7 pages

Full paper

1.5. Overview

The evaluation shows that, given LSI is able to provide accurate results, our ap-
proach selects configurations for LSI that produce accurate results.

1.4.4. Summary

We provide approaches based on execution profiles to reduce waste [12] in the main-
tenance process. Therefore, we pursue goals that are similar to the goals of agile
development. However, agile development focuses on frequent face-to-face discus-
sions to gain insights into the actual usefulness of functionality to product owners,
developers, test engineers, and testers [11]. Thereby, agile methods focus primarily
on preventing the implementation of useless functionality. Our techniques allow
for a retrospective identification of useless features, in contrast to agile methods.
Therefore, our contributions target mainly non-agile maintenance projects.

One reason for employing agile methods are frequently changing requirements. Re-
quirements can also become obsolete, after their realization. Then, the implemented,
but obsolete functionality remains in the software system. With our approaches, we
detect also this functionality.

In the case, agile development processes are employed, we accompany discussions
with the proposed approaches. Thereby, we support the discussions with data about
the actual execution, usage, and coverage. If traditional development processes
like the waterfall model are in use, we give first insights into execution, usage, and
coverage to product owners, developers, test engineers, and testers.

1.5. Overview

We start with an explanation of the key concepts in this thesis in Chapter 2. We focus
on the activities software maintenance and testing in the context of the software
maintenance process, and on user involvement in this process. We furthermore
present our notion of usefulness of functionality and why this functionality is likely
to be used. In Chapter 3, we describe related work. We focus on general challenges
in the software maintenance process, and on how users are involved into the soft-
ware maintenance process. After that, we characterize execution profiles in detail.
Therefore, we describe in Chapter 4, how execution profiles are collected, their
advantages, and which conclusions we can draw from them. With the foundations
of the work explained, we present the contributions of this thesis in Chapter 5. The
thesis closes with Chapter 6, where we summarize the work, present limitations of
the contributions and future work. We furthermore formulate the key takeaways
for this thesis.

10

CHAPTER 2

Background

Contents
2.1. Software Maintenance Process 12
2.2. Software Maintenancettt 13
2.3. Software Test in Maintenance 16
2.4. The Gap between Developers, Product Owners, and Users . . . 21
2.5. Software UsefulnessandUsage 23
26. SUMMAIY vt ittt e et e 25

This section discusses the fundamental terms and concepts of this thesis. We first
describe the software maintenance process, focusing on the contained activities soft-
ware maintenance and test. We separate between the software maintenance process
and the activities maintenance and testing. We thereby focus on the stakeholders
who are responsible for the tasks that have to be done in these activities: product
owners, developers, test engineers, testers, and users.

In practice, we often notice a gap between product owners, developers, test engi-
neers, testers, and users. This results in product owners, developers, test engineers,
and testers having difficulties understanding the users of the software systems they
are responsible for. We explain reasons for this gap.

Furthermore, we describe our notion of usefulness of functionality for users, and
the consequences of usefulness for the actual usage of functionality.

11

2.1. Software Maintenance Process

% Maintenance Process

. 1 I
R £ Maintenance P fEFTest
& v | 5
= > [1 ! =]
s 3 '8 o w | o
€ Qo .= < 1 ! o ! (0] =
S = o 1 Q 1 n =
2 T c C = 1 - © (0]
e 8 188 § . ' B g | S £
o i 1 O F c ! Q 2 K o @
D —> "o N> o > > 0 —3> =T g 1— > — .=
Q 1 = c e e c = 1 j b
D= @ ! o o o (]
= 1 S5 = iy o 1 85 o ! > o
= 1 @S © a o R o 1 =
= , £ a c o) g ! >0 SR o) o
£ , ©O¢ < o = v g < a]
(s} 1
¥ 92 & 9 9, .92 9. 9
1
A S R N I N I

Figure 2.1.: Simplified view of the software life-cycle and the maintenance process.

2.1. Software Maintenance Process

The users, environments, and business models of business information systems
change over time. Long living custom business information systems are in produc-
tive use often over many years, or even decades. This means for a software system,
in order to stay useful for its users, it has to be adapted to the aforementioned
changes. The changes made to the software system are performed in software main-
tenance, which is organized in the software maintenance process. In this section,
we describe the software maintenance process in detail.

The software maintenance process comprises several tasks. We follow the definition
of the software maintenance process in the IEEE standard 1219 [9]:

As illustrated in 2.1, the maintenance process comprises the following tasks:

Change Identification/Prioritization In this task, changes to the software system are
identified, classified and assigned. Changes can be accepted, rejected or fur-
ther evaluated, and is estimated for the size of the modification and prioritized.
The latter means that the changes are assigned their importance relative to
each other and by this, their order of implementation is determined.

Analysis The change is analyzed for feasibility and its impact on the system. Fur-
thermore, its scope is identified and a preliminary plan for implementation is
created. Thereby, also the prioritization of changes may change.

Design The change to the software system is designed. All artifacts connected to
the software system, and all other data collected about the system are to be
considered.

Implementation The change to the software system is implemented.

Regression/System Testing The modified system is tested to validate that changed
or newly created code does not introduce faults that did not exist prior to the
maintenance activity.

Acceptance Testing The fully integrated system is tested by the customer or a third
party designated by the customer to confirm the functionality of the software
system meets the customer’s expectations, the software system does not
contain newly introduced faults, and the software system is interoperable
within the customer’s environment. Additionally, test cases are created or
modified.

Delivery The software system (the release) is delivered to the customer. This may
include a physical installation, a notification of the user community, archiving
the prior version of the software system, and training for the users.

12

2. Background

rc- -~~~ ~-" """~~~ TS TTTTTTTTTTTTTTTTTTT ST TSI TSI TS ST T T
1 & Maintenance

1

1
' {M Change . : M Imple- :
' Ident./Prio. O Analysis) Besign mentation !
e e N B :

triggers performs performs
[@ Change
Request selects

expressed in
@ Change

demands

oies [T | R

& Product
Owner

Figure 2.2.: Overview of terms, roles, and tasks in the activity maintenance.

From each of these activities, the need for more changes can arise. One example are
faults discovered during regression testing. The need for these faults to be fixed
triggers the activity maintenance with its tasks, and test afterwards.

2.2. Software Maintenance

Figure 2.2 gives an overview of the terms, roles, and tasks in the activity software
maintenance. In the following, we explain the relations between the roles and tasks,
and changes and change requests in the activity maintenance in more detail.

2.2.1. Definition

Software maintenance is the activity of modifying software systems after their first
delivery [54, 55, 56, 57] to correct faults in existing functionality, implement new
functionality, adapt the system to changed environments, or to prepare them for
future changes. Software maintenance is performed after the first delivery of the
software system and comprises the tasks change identification/prioritization, analysis,
design, and implementation, as depicted in Figure 2.1.

We consider artifacts to be maintained, if they were changed or created during the
activity software maintenance.

2.2.2. Types of Maintenance

Maintenance is performed due to the users’ demand for new or changed func-
tionality, due to changing environments, or new technical advances (e.g., transfer
to mobile devices, connect to faster database servers). According to Bennett and
Rajlich [10], maintenance can be divided into four categories, along these reasons:

Corrective: Faults in the system are fixed.

Perfective: New functionality is implemented or existing functionality is modified.

13

2.2. Software Maintenance

Adaptive: The system is adapted to work in a changed environment.

Preventive: The system is prepared for future modifications.

Adaptive maintenance has the goal to preserve existing functionality in a changed
environment. Perfective maintenance prepares a system for modifications of its
functionality in the future, without changing the functionality itself. Adaptive
and preventive maintenance often do not change or add functionality. Instead, if
functionality is changed in these types of maintenance, it is often not deliberately.

2.2.3. Involved Roles

In the activity maintenance, we focus on the roles developer, product owner, and user.
There can be settings, where the tasks we assign to these roles, are dispersed over
different roles. However, we rely on our rather simple assignment of tasks to reduce
complexity.

Developer The developer is the person who modifies a software system. The
modifications include source code and documentation. Therefore, the developer is
assigned to the task implementation. As the developer also needs to plan his concrete
actions to realize his modifications, he is also in charge of the task design.

Product Owner The product owner is responsible to maximize the value of the
software system.

The tasks of the product owner are identify, define, and prioritize changes, design,
implement and disseminate reference architectures to developers, choose technolo-
gies and tools for development, communicate with customers and developers, give
insights into the software systems business domain to developers, assess technical
risks, and plan releases [58].

In the software maintenance process, the product owner is, therefore, in charge of
the maintenance tasks change identification/prioritization and analysis. The product
owner indirectly coordinates the efforts of developers, because his tasks are con-
cerned with planning the implementation task. In agile development, the product
owner should be provided by the customer. In other development and mainte-
nance projects, however, the tasks of the product owner are usually adopted by the
developing company.

In other settings, there can also be a change control board consisting of the product
owner, developers, and architects!. Especially in contexts where agile methods
are applied, also the customers or users can be part of this board. This board then
decides about the prioritization of changes. Additionally, the name of the role
can be different or its tasks can be split up and distributed over several persons,
especially in non-agile maintenance projects. However, for the sake of simplicity,
we summarize these responsibilities under the role of the product owner.

User Besides the developers and product owners, who are directly involved into
the software maintenance process, there are the users.

The user uses the software system. There, he performs one or more tasks with
a software system by executing it in work activities, which we call usage. In the
context of custom software systems, the user is often the customer. Users are
responsible for communicating domain knowledge and changes to the product

1 The personnel may vary between companies and projects.

14

2. Background

owner. Therefore, the users do not perform tasks in the maintenance process, but
are involved indirectly.

We concentrate on the user in his working environment, and do not consider
hedonistic use of software [59]%. The reason is that the focus of this thesis lies on
custom business information systems. These are usually built to help users in their
working environment.

2.2.4. Change Requests

Software maintenance is triggered by changes to the software systems demanded by
users, developers, or product owners. These changes are expressed in change requests.
Change requests are proposed changes to a product that is being maintained [55].

Not only product owners, but all stakeholders of a business information system can
file change requests to express their demand for changes to the system. Common
stakeholders filing change requests are the users itself, or the developers [60, 61],
and the product owners. However, it is the product owner’s responsibility to
prioritize changes, and therefore, change requests.

Change requests can, like maintenance, be categorized as corrective, perfective,
adaptive, and preventive change requests. The categorization depends on the type
of maintenance the change request causes.

2.2.4.1. Reasons for Change Requests

There are several reasons for change requests. The following list is not complete, but
gives some examples for the reasons of why a change request is issued. Therefore,
these are also reasons for change requests.

New Ideas Users, customers, product owners, or developers have new ideas over
what the current system should do, or how it should do it. This leads to perfective
and corrective change requests.

Missed Functionality Functionality requested by the users or customers was not
implemented before. This leads to perfective change requests.

Misunderstandings Product owners and developers misunderstood the func-
tionality the users or customers demanded. This leads to corrective change requests.

Defects Wrongly implemented functionality needs to be corrected, so that the
software system complies with the functionality requested by the users or customers.
Defects lead to corrective change requests.

New Software Systems The users or customers get a new software system. They
want interfaces to this new system, or features that enable them to combine the
software systems, e.g., opening files from one system in the other. This leads to
perfective and adaptive maintenance.

2 Playing video games is one example.

15

2.3. Software Test in Maintenance

Changing Legislations Changing laws can affect which and how functionality is
implemented, and lead to new functionality. Therefore, they lead to corrective and
perfective maintenance. Also, adaptive maintenance can be caused by changing
legislations, since new technical constraints might have to be fulfilled.

Changing Technology As technologies change, e.g., database or presentation
technologies, also the software systems needs to be changed accordingly. These
changes lead to adaptive change requests.

Subsequent Changes One change in a software system can cause subsequent
changes. This can lead to all kinds of change requests. One example are attempted
bug fixes that cause new faults in different places.

The reasons above are just examples. In general, change requests emerge in the
minds of all stakeholders. However, it depends on the project, which stakeholders
are filing them. The various stakeholders are likely to file change requests of
different categories:

Users and Customers The users or customers are confronted with the functionality
of a software system in their daily business. Therefore, we expect users
and customers to file primarily corrective and perfective change requests.
However, also users and customers may issue adaptive and preventive change
requests. But we expect them to file these less than corrective and perfective
change requests.

Product Owners and Developers These stakeholders often have a deeper knowledge
about the technical aspects of a software system. Therefore, we expect them
to also file adaptive and preventive change requests. Also developers and
product owners can file perfective, and especially corrective change requests.
However, we expect the product owners and developers to be the main source
for adaptive and preventive change requests.

2.3. Software Test in Maintenance

Modifications to a software system possibly introduce faults. To validate that a
software system exposes the functionality desired by the users or customers, testing
is performed.

2.3.1. Definition

Software testing is the activity of executing a software system under conditions and
inputs specified in test cases, and comparing the system’s output with the outputs
specified in test cases to validate the functionality against the users or customers’
expectations [55, 56, 62].

Test cases are sets of inputs, execution conditions and expected results [55, 56, 62].
Test cases are executed by testers or developers. They can be performed manually
by testers, or automated, where no manual interaction is required [63].

Test cases are contained in test suites, which are sets of test cases [62].

2.3.2. Software Testing Process

The test process consists of the activities test planning, test design, test implemen-
tation, evaluating exit criteria and reporting, and test closure activities [62]. The

16

2. Background

1) Test Design 1 1M Test Impl. ' 1) Test Exit '
1 1 1
_ ' .) ! M Evalua- :
M Planning — { Management Ik {M Selection '™ ion Exit Crit. |
1 1 1
: " | ’ 1k i l
1 . ! 1 ! 1 !
) Creation/ 1 . I i
1 1 1
| Modification T | M Execution g M Closure !
1 ! 1 1 :

|- === === =-=-==- Fo- === ==-======n

1{M Test Design
1

1
1
1 1
. of
i & Test Engineer JlT—ir M Management — > (2] Test Suite
: = : l
(o]
| ' g . O Creation/ 1
! 2 ! Modification :
1 : | e e e e e M mmm— - - !
! 1
L Y contains
1 | r@ Test Impl. !
1 I I 1
1 1
1 : : ; !
! ' ——= I Selection —
: 1 1 :
1 1
1 | | 1
\ & Tester . +) Execution : > [Test Case
. , performs | | of
1 1

Figure 2.4.: Overview of terms, roles, and tasks in the task system/regression test.

activities are described in detail below and illustrated in Figure 2.3.

Test Planning During this activity, the scope, approach, resources, and schedules
for testing are defined. The functionality to be tested is also fixed. The exit
criteria for the test process are also defined.

Test Design In this activity, the specification of the functionality to test is reviewed,
and the objectives of the test are defined (analysis). Additionally, test cases are
created or modified (design). Furthermore, test cases are added to or removed
from test suites.

Test Implementation In test implementation, test cases are selected, and test data is
created. In execution, the test cases are run under on the system under test.

Evaluating Exit Criteria and Reporting The exit criteria for completing the test pro-
cess are evaluated, and the results of the tests are reported.

Test Closure The data collected during testing is archived.

Figure 2.4 gives an overview of the terms, roles, and tasks in the task system/

regression test. We concentrate on the roles test engineer and tester, and on their
tasks.

2.3.3. Roles

In the testing activity, we concentrate on two roles. The test engineer, who designs
and selects test cases, and the tester, who performs the testing.

Test Engineer The tasks of the test engineer are, among others, the management
test suites by adding or removing test cases, the creation and modification of test cases,
and the selection of test cases for execution.

17

2.3. Software Test in Maintenance

Additionally, the test engineer is in charge of performing coverage analysis, which
is the “measurement of achieved coverage to a specified coverage item during
test execution referring to predetermined criteria to determine whether additional
testing is required and if so, which test cases are needed.” [62].

Examples for coverage analysis are the investigation of source code that was not
tested, or the examination of which functionality was validated against the cus-
tomer’s expectations.

Tester The tester is responsible for the, possibly manual, execution of test cases.
Additionally, the tester reports the verdict (fail, success, abort) of the test to the test
engineer, developers, and product owner, if this is not achieved automatically.

A fault in the system, detected by the tester, can be handled in different ways. First,
the stakeholders can ignore it. This can make sense for unfinished functionality, or
for functionality that is not about to be delivered to the customer. Second, if the test
was wrong, but the system worked as expected by the users or customers, it is the
responsibility of the test engineer to modify test cases. Third, in case the test was
correct, but the system did not work as expected, the product owner is in charge to
file a corrective change request with the goal to fix the fault.

2.3.4. Levels of Granularity

Tests can be performed on different levels of granularity, depending on the scope of
the executed test cases. The scope of test cases ranges from very small portions of
the source code, like single methods or classes, to the whole system. All definitions
given in this section comply with the IEEE standards 24765 (Systems and soft-
ware engineering — Vocabulary) [55] and 610 (IEEE Standard Glossary of Software
Engineering Terminology) [56].

2.3.4.1. Unit Testing

The scope of unit testing are single algorithms, functions, methods, or classes [55, 56].
Developers trigger execution of unit test cases often directly from their develop-
ment environment. The results are usually displayed within the development
environment. The developer is presented the verdict of the test, and also the line
or statement coverage. In the case of unit testing, the developer himself fulfills the
roles tester and test engineer, since the developer performs the testing by himself in
the development environment.

Unit test cases are usually automated and, as described above, this activity is well
supported by tools. Reasons for this are the small complexity of the test objects
examined during unit testing, and the resulting small complexity of test cases.

2.3.4.2. Component Test

The scope of component testing are functionally distinct software items, or groups
of them [55, 56]. For this kind of test, testers execute (groups of) components
with inputs on their interfaces, and observe their outputs. However, the level of
granularity varies with the notion of the term component. In the programming
language Java, component testing considers, e.g., all classes in a package. To the
extreme, one can see single methods, or whole systems, as components. This kind
of testing is closely related to integration testing.

18

2. Background

2.3.4.3. System Testing

The scope of system testing is the complete, integrated system [55, 56]. Test cases
for system tests are often written in natural language and testers perform them man-
ually. The manual execution renders this kind of test rather expensive. However,
there are also automated system tests.

Modern business information systems often comprise a plethora of functionality.
Consequently, system test cases are rather complex. This complexity leads to expen-
sive initial development maintenance for automated system test cases. Therefore,
in practice, system tests are often not automated in practice.

The tool support for system testing is restricted to reporting verdicts and managing
or creating test cases, and does not allow for collection of coverage information.
On reasons for this is the large negative impact on run-time performance caused
by common coverage collection tools. Therefore, test engineers usually have no
insights into the coverage of their system tests.

2.3.5. Goals of System Testing

Besides the granularity of tests, also the goals vary. We distinguish four goals:

o Detection of faults in existing functionality
e Determination of the satisfaction of user acceptance criteria
e Evaluation of the interaction between combined components

e Evaluation of performance

2.3.5.1. Regression Testing

The goal of regression testing is the detection of new faults in existing functionality
prior to the delivery of the software system [64].

These faults were possibly introduced due to modifications to the software system.
According to our experience, in practice, the only regression tests that are per-
formed, are system tests, and automated unit tests. The tool support for developers,
testers, and test engineers for developers and testers in unit tests is well developed.
Therefore, we focus on system tests in the remainder of this thesis.

Regression testing only considers existing functionality. For new or changed func-
tionality, usually no regression test cases exist. Therefore, regression testing is
suitable after adaptive and preventive maintenance, since they often do not change
the system’s functionality.

In this thesis, we always refer to the activity regression testing when we use the
terms testing or test.

2.3.5.2. User Acceptance Testing

The goal of user acceptance testing is to determine whether a system satisfies its
acceptance criteria and to enable the customer to determine whether to accept the
system [55, 56].

Before a software system is delivered to the customers, they test it for acceptance.
Acceptance has two facets: rather formal criteria that are fixed prior to the test, and
more informal aspects like usability or graphical design issues that also can prevent
the customer from accepting a system.

19

2.3. Software Test in Maintenance

For new functionality, where often no test cases exist, the customers are asked to
perform exploratory tests to ensure the new functionality conforms to their change
requests. From these exploratory tests, test cases can be derived. These new test
cases can then be added to the collection of regression tests.

In the case of user acceptance testing, it is the users’ task to perform test cases. If
testing pursues different goals, as described below, it is the tester’s task.

2.3.5.3. Integration Testing

The goal of integration testing is to evaluate the interaction among combined
software and/or hardware components [55, 56, 62].

Integration tests also validate functionality, but focus more on the interfaces between
components. Additionally, in integration tests, not the whole system is tested
necessarily, but groups of components (see also component tests in Section 2.3.4.2).

The tested components interact according to the system’s architecture. Therefore,
also the architecture of a software system is validated during integration testing.

2.3.5.4. Performance Testing

The goal of performance testing is to evaluate the performance® of a system or
component [55, 56].

This kind of test does not consider directly what a system does, but how it does
it. However, to gain the desired efficiency, the source code of the software system
might change towards faster or less resource intensive implementation. The user
visible functionality stays the same, except, e.g., the response time. This does often
not influence the data observable at the system boundaries.

2.3.6. Regression Test Case Selection

Regression testing is a necessary, but expensive activity in maintenance [65, 66,
67, 68]. Therefore, executing all regression test cases in a test suite may consume
many resources [65]. Above that, there may be insufficient resources to execute
all regression test cases [67]. Therefore, test engineers choose a subset from the
regression test suite, which is to be executed. Their goal is to detect faults introduced
by the modifications to the software system in the existing functionality, while not
exceeding their resource budget.

Test engineers apply regression test case selection strategies to choose test cases
to execute from test suites [66]. Thereby, test engineers focus on testing changed
functionality [66], since they suspect more faults in this functionality. Several studies
have shown that this assumption is valid [2, 41, 42, 43, 44].

2.3.7. Test Coverage

We define coverage along the existing definition: “The degree, expressed as a
percentage, to which a specified coverage item has been exercised by a test suite.”
[62]. More exact, we concentrate on code coverage, which “determines which parts of
the software have been executed (covered) by the test suite and which parts have
not been executed.” [62].

3 Which can be, e.g., resource, or runtime performance.

20

2. Background

Note that we do not define coverage in relation to functionality, as other definitions
do, e.g., “extent to which the test cases test the requirements for the system or
software product.” [55]

Beneath others, there are several common coverage metrics measuring coverage,
and are defined in [62]. We describe these metrics below.

Statement Coverage The percentage of executable statements that have been
executed by a test suite.

Branch Coverage The percentage of branches that have been executed by a
test suite. 100% branch coverage implies both 100% decision coverage and 100%
statement coverage.

Decision Coverage The percentage of decision outcomes that have been executed
by a test suite. 100% decision coverage implies both 100% branch coverage and
100% statement coverage.

Condition Coverage The percentage of condition outcomes that have been ex-
ecuted by a test suite. 100% condition coverage requires each single condition in
every decision statement to be tested as True and False.

Decision Condition Coverage The percentage of all condition outcomes and
decision outcomes that have been executed by a test suite. 100% decision condition
coverage implies both 100% condition coverage and 100% decision coverage.

Modified Condition/Decision Coverage The percentage of all single condition
outcomes that independently affect a decision outcome that have been executed by
a test case suite. 100% modified condition decision coverage implies 100% decision
condition coverage.

Path Coverage The percentage of paths that have been executed by a test suite.

Method Coverage In contrast to the aforementioned coverage metrics, we con-
sider coverage on the level of methods*. Method coverage is the percentage of
methods, in an object oriented sense, that were executed at least partially by a test
suite [2]. It does not imply that all statements, branches, decisions, conditions, nor
paths of a method were executed by a test suite.

2.4. The Gap between Developers, Product Owners,
and Users

It is difficult for product owners and developers to understand the users of the
software system under development in the software maintenance process [36, 37,
38]. As a consequence, product owners and developers face the risk of realizing or
maintaining useless functionality, which is a waste of resources.

4 In an object oriented sense

21

2.4. The Gap between Developers, Product Owners, and Users

But where do the difficulties come from? One reason is a communication gap
between product owners, developers, and the users [39, 69]. In this section, we
focus on reasons for this gap.

We consider the gap between the technical background of the developers and
product owners, and the domain background of the users, as illustrated in Figure 2.5.
As it is the product owner’s task to communicate with users (see Section 2.2.3),
we do not consider communication between developers and users. Note that we
consider maintenance projects, which do not apply agile methods. In agile methods,
the product owner should be provided by the customer, who also is the user in our
context. Therefore, we place the product owner on the side of the developers, and
not of the users or customers, which would be the case in agile contexts.

Technical Domain
Background Background
Communication

-'-gvrvcacit:ct < /.....zommunication > & User

CommunicationI

& Developer
Gap

Figure 2.5.: Gap between users, developers, and product owners.

The gap between product owners, developers and users can be categorized into
several dimensions [70, 71]. Each of the dimensions has its own reasons for the gap
between developers and users to arise.

Perspective Gap: Users might forget that the goal of a system is to serve them and
technology is a tool, not an end in itself. Developers and product owners
forget that the software system has to provide value for the customers and
the developing organization is not the center of the universe [70].

Ownership Gap: Developers and product owners feel that the software and its
infrastructure belong to them, while the users feel ownership over the business
processes implemented in the software system. This leads to developers and
product owners seeing users as reactionists and users perceive developers
and product owners as technical elitists [70].

Cultural Gap: Users, developers, and product owners have different values, work-
ing behaviors, or priorities. Developers tend to be introverted, analytical,
and rational, while users (in a business context) are more extroverted and
intuitive [70].

Foresight Gap: Users, developers, and product owners have different capabilities
and strategies to make predictions for the future, but are unable to communi-
cate their predictions. Users can foresee better that a proposed solution will
not work for them, while developers and product owners have more exper-
tise in predicting technical feasibility and ways of implementing software
systems [70].

Communication Gap: One group does not understand what the other group tries to
express. One reason for this is different jargon used by each group. The re-
liance on specifications imposes furthermore a wall between users, developers,
and product owners [72]. The reason for this is that specification documents
are often handed over from the customer to the product owner and then, the

22

2. Background

customers assume the developers have all information that is necessary to
develop the software system as intended by the customers [70].

Expectation Gap: Users have unrealistic visions of what the developers are able
to do. Reasons are growing technical expertise of users, heroic efforts of
developers for delivering software, and developers making overblown claims
to what they can deliver [70].

Credibility Gap: The past performance of developers and product owners did not
meet the expectations of the users, due to failed projects, or poor customer
service. Because of this gap, product owners find user to be overly demanding
or unwilling to change [70].

Appreciation Gap: Users, developers, or product owners feel not appreciated by
the other group. Developers and product owners feel their hard work goes
unappreciated, except of failures [70].

Relationship Gap: Users and product owners do not interact frequently enough to
develop a constructive relationship. This can be reinforced by prejudice about
the other group [70].

Only some dimensions of the gap between developers and users lead to misunder-
standings between product owners and users. However, the perspective, ownership,
cultural, foresight, and especially the communication gap lead to product owners
understanding the users wrong.

Summarized, the reasons for the gap between users, product owners, and develop-
ers, are their different areas of expertise and organizations, and their background.
Users have domain knowledge, and know®, which problems should be solved and
which functionality they desire [73]. However, with modern of software systems
providing more and more functionality, users do not always know, which function-
ality they need [74]. Product owners and developers, on the other hand, usually
have rather technical knowledge about a software system.

As a result, users, product owners, and developers have different expectations and
understanding of the functionality, which a software system has to provide.

2.5. Software Usefulness and Usage

The gap between product owners, developers and users leads to misunderstandings
and different expectations of which functionality should be implemented and main-
tained in the software maintenance process. From the perspective of the users, who
are often the customers in our context, useful functionality should be implemented
and maintained. However, due to the aforementioned gap, developers and product
owners can have different expectations about the usefulness of functionality. But
what is usefulness? In this section, we explain our notion of the terms usefulness and
its connection to usage (see Section 2.2.3).

2.5.1. Usefulness

Legris et al. [7] characterize the term useful, and accordingly usefulness. They report,
that users perceive a software system as useful, if:

e “Using (the system) increases my productivity.” [7]
e “Using (the system) increases my job performance.” [7]
e “Using (the system) enhances my effectiveness on the job.” [7]

5 Possibly, only after they have seen prior versions of their software system

23

2.5. Software Usefulness and Usage

e “Overall, I find the (system) useful.” [7]

The notion of Legris et al. [7] of usefulness comprises complete software systems.
However, recent software systems tend to provide lots of user visible functionality.
We therefore transfer the notion of Legris et al. [7] from whole systems to user
visible functionality. This results in our notion of the terms useful and usefulness,
where using user visible functionality provided by a software system increases the
job productivity, job performance, effectiveness on the job of the users. Thus, we
consider functionality as useful, if the users perceive it as being useful.

However, this notion is subjective. In our context, the users of a software system
are specialized in their domain, and the software systems are customized for them.
Therefore, we expect users to know and to agree on which functionality is useful
for them, at least, once they see it.

2.5.2. Connection of Usefulness and Actual Usage

In this section, we describe that usefulness induces software usage. Literature
describes, that the usage of software systems does correlate with what is perceived
useful by the users [7, 27, 75, 76, 77]. This literature is based on the Technology
Acceptance Model [26, 27] (TAM), as illustrated in Figure 2.6, even though there are
several models explaining the usage of software systems by users [78].

Perceived
usefulness l
Attitude to- Behavioral in-
wards using tentiontouse > Actualuse
Perceived
ease of use

Figure 2.6.: Technology Acceptance Model (TAM) [26, 27, 78].

The TAM was shown to be suitable for explaining why users actually use soft-
ware [78], while being simple. The TAM explains most of the reasons for users
using software. Therefore, we also rely on this model, but adapt it to user visible
functionality, not whole software systems.

According to the TAM, actual usage of functionality, which is the act of executing
functionality, has two antecedents: Perceived ease of use and the perceived usefulness
of the potential users of the functionality. The actual behavioral intention to use
functionality is determined by the attitude towards using the functionality and its
perceived usefulness. The behavioral intention to use then motivates the actual use [78].

Several studies show, that the influence of the perceived usefulness is higher on
the actual usage than the influence of the perceived ease of use [7, 27, 75, 76, 77].
Especially, these papers show a statistically significant positive correlation between
the perceived usefulness and the actual usage of functionality. That means if the
perceived usefulness is high, the actual functionality use is also high.

But reversed, but also if the actual functionality use is low, also the perceived
usefulness is low. The latter means that if functionality is not used, it is likely to be
little useful in the perception of the users. Figure 2.8 illustrates the latter relation.

The TAM does only consider intrinsic, and not extrinsic motivation of users. There-
fore, it does not explicitly cover usage caused by external factors like company

24

2. Background

@ Perceived

TR —> © Actual use
usefulness

Figure 2.7.: High usefulness implies high usage.

© Perceived

s — O Actual use
usefulness

Figure 2.8.: Low usage implies low usefulness.

guidelines. However, according to Taylor and Todd [78], the TAM still explains
most of the actual usage, which means that extrinsic motivation plays a smaller role
in the usage of functionality.

Due to the specialized users, who know what is useful for them, in our context,
and the indicators from literature, we conclude that the usefulness of functionality
correlates with its usage.

We are aware, that this model does not present logical implications, but correlations.
Therefore, there is no strict implication from usefulness to usage or vice versa. For
example, a user might perceive functionality as not useful, but uses it anyways as a
substitute, because the functionality he actually needs is not implemented. Another
example is, that a user does not use functionality he perceives as useful, because he
does not know about it. But, as several studies show, the model explains most of
the actual usage of software [27, 7, 75,76, 77].

2.6. Summary

For gaining insights into the benefit of execution profiles in maintenance and
test, we first explained the background of this thesis. We considered the software
maintenance process, and the contained activities maintenance and test. In testing,
we focused especially on regression testing.

Furthermore, we explained the reasons, why product owners, developers, test
engineers, and testers are interested in usage and coverage. The main reason,
we identified was a communication gap between users and the aforementioned
stakeholders. This gap arises due to different areas of expertise of the users and
the other stakeholders. The gap results in product owners not fully understanding
what users require, and in test engineers, who do not know, how to align their test
cases to the usage patterns of the users.

The goal of product owners, developers, test engineers and testers is to better
understand the users. As these stakeholders ask for more knowledge about users,
we investigated the connection between usefulness for users, and usage.

25

CHAPTER 3

Related Work

Contents
3.1. Challenges in Software Maintenance 28
3.2. Involving Users in the Software Maintenance Process 29

In this chapter, we summarize the related work. We thereby concentrate on the
challenges and questions in software maintenance mentioned in Chapter 1, that
motivate this thesis. We describe them in detail in the first part of this chapter.

These challenges arise due to difficulties in the communication, a gap, between
product owners, developers, test engineers, and testers, as described in Section 2.4.
But how can we close this gap? The answer of current research is to involve users
in the software maintenance process. Therefore, we focus on user involvement in
the software maintenance process in the second part of this chapter. Thereby, we
focus on how we can gain knowledge about the actual behavior of users to provide
knowledge about the actual usage of a software system.

27

3.1. Challenges in Software Maintenance

3.1. Challenges in Software Maintenance

As a consequence of the gap between product owners, developers, and users (see
Section 2.4), the risk of building a system that does not provide functionality that
is useful for the users arises [79, 80]. In this section we describe challenges for
product owners, developers, test engineers, and testers reported in literature. These
challenges show, that the aforementioned roles are interested in closing the gap to
the users.

For closing the aforementioned gap, product owners, developers, test engineers,
and testers need to understand the users. However, this imposes challenges, which
we describe first in this section. Additionally, literature reports about questions
about users, which product owners, developers, test engineers, and testers want to
have answered. We explain these questions in the second part of this chapter.

3.1.1. Understanding the User

Heiskari and Lehtola [20] report about challenges during the software maintenance
process. These challenges are relate to knowledge about the users using a software
system.

e “There is too little user information.” [20]

e “There is no feedback from outside the house during development.” [20]
e “User information is scattered, unorganized, and difficult to access.” [20]
e “What does the customer actually value?” [20]

e “There is very little interaction between the end users and the development
organization.” [20]

e “How to integrate user knowledge to the existing processes?” [20]
e “No clear processes on understanding the user exists.” [20]

These challenges are concerned with gaining knowledge about the users, under-
standing them, and interpreting knowledge about them. Therefore, the challenges
show the difficulty for product owners, developers, test engineers, and testers of
understanding the users’ correctly.

The product owner’s tasks include communicating with users and developers to
transfer domain knowledge to the developers. Additionally, the product owner is
in charge of identifying and prioritizing changes. The challenges mentioned above
therefore concern the product owner, since he faces the difficulty of understanding
the users.

There are some other challenges, according to Heiskari and Lehtola [20], e.g., “The
big picture needs to be understood before going into details” [20]. However, these
target aspects of how to treat knowledge about the users and are not directly related
to the software maintenance process. Therefore, we consider these to be out of
scope of the thesis.

3.1.2. Questions about Users

In a recent study, Begel and Zimmermann [21], acknowledge the challenges iden-
tified by Heiskari and Lethola [20] and report 145 questions, product owners,
developers, test engineers, and testers want to have answered. Under the top ten of
the most essential! questions are four questions that are of interest to all aforemen-

1 As classified by Begel and Zimmermann [21]

28

3. Related Work

tioned roles. All of these questions are concerned with the usage and execution of
software systems.

e “How do users typically use my application?” [21]
e “What parts of the software are most used and/or loved by customers?” [21]
o “What are the common patterns of execution in my application?” [21]

o “How well does test coverage correspond to actual usage by our customers?”
[21]

All questions consider the usage of software systems. One mutual goal of the
questions is to understand what functionality is actually used by users, and how
the functionality is used. In this thesis, we concentrate on the question, which
functionality is used by the users.

The questions relate to the change identification prioritization, analysis, and design
tasks. In these tasks, the product owner uses the answers to these questions to
prioritize and identify changes regarding the usage. All aforementioned tasks
have an impact on which functionality, and consequently, which source code is
maintained. Therefore, these questions also affect the implementation task of the
developer. With the answers to these questions, product owners and developers
can reduce the maintenance in functionality that is not used by users.

The fourth question also relates to the regression/system testing task, since it considers
test coverage. Information about test coverage helps the test engineer to gain
insights into, e.g., where modified source code was not tested. With this information,
the test engineer can select existing regression test cases that test untested changes
to the software systemz.

The literature cited above emphasizes challenges and questions of practitioners.
However, we are not aware of research answering these questions in the mainte-
nance of non-agile projects. Furthermore, we are not aware of research targeting the
benefits of execution profiles in software maintenance and test. In this thesis, we
aim answering these questions by using execution profiles. We provide approaches
to the product owners, test engineers, and developers to gain insights into the usage
and coverage of the software systems they are responsible for.

3.2. Involving Users in the Software Maintenance
Process

The challenges and questions described in Section 3.1 arise due to the gap between
users and developers (see Section 2.4). In this section, we describe the state of the
art of closing this gap.

3.2.1. User Involvement

Many researchers emphasize the need for involving users into software maintenance
(see, e.g., [81, 82, 83, 84, 85, 86, 87]). Seyff et al. suggest “End-user led requirements
engineering” [81, 82], where the users are the main sources of input to the change
identification/prioritization task of the product owner. Maalej and Pagano [86]
propose a process for involving users into the maintenance process. Kujala et
al. [87] conduct a survey on user involvement in the requirements elicitation phase
of software projects. Their work shows that early user involvement is related to
better requirements quality and to project success.

2 As a precondition, appropriate test cases have to exist beforehand.

29

3.2. Involving Users in the Software Maintenance Process

The approaches vary in the data they collect, and in the contexts they collect the
data. Some approaches described above focus on getting feedback that is manually
composed by users. Some approaches combine this information with contextual
information that is recorded automatically. There are approaches that collect data
only for mobile devices [81, 82, 84], whilst others remove this restriction [83, 85, 86].
In all the aforementioned approaches, the users need to take personal action.

Importance of User Involvement: The aforementioned works state that user
knowledge is an important source for developers and product owners to under-
stand the users. Based on this assumption, they emphasize the importance of user
feedback during the software maintenance process. The aforementioned approaches
aim at getting the users’” understanding of the functionality explicitly.

Challenges of User Involvement: Bano and Zowghi [88] report some challenges
arising from incorporating the feedback of users into the maintenance process.
They categorize the shortcomings of user involvement approaches as psychological,
managerial, methodological, cultural and political. From a psychological point
of view, users are reluctant to get involved into the development process, since
they are not motivated or experienced enough. Managers refrain from involving
users, mainly because of the resulting additional efforts on the users’ and on the
developers’ side. From a methodological perspective, it is complex to involve users
effectively, and from a cultural perspective, users might not want to have a change
in their software systems. From a political point of view, there might arise conflicts
between users with different opinions, but also between users and developers [88].

The concrete challenges are, according to Bano and Zowghi [88]:

e Users might not be willing to communicate their requirements, due to a lack
of motivation, additional efforts, or confidentiality concerns.

o Not all users have the communication skills to formulate their requirements.
e Users are reluctant against changes in their work environment.

e The management does not want to invest efforts (of users and developers).

e Additional costs are implied for training developers and users.

e Collecting data and analyzing it is complex.

e Users might not be represented appropriately in the collected data.

Additionally, Pagano [89] identifies additional challenges that are focused on the
collected data:

The quantity of data can be large (see also [20]).

The data might miss structure.
e The content and quality of the data varies.

The data reflects different preferences of users.

In later work, Pagano and Briigge [90] postulate that developers need tool support
to deal with large data. However, they only take feedback into account that users
write manually. Additionally, Ko et al. [91] state that developers face problems if
change requests or bug reports question fundamental assumptions made in the
beginning of the software development process.

Many of these challenges arise due to the direct involvement of users and their
need for personal interaction. In contrast, in this thesis, we suggest approaches
that involve users only indirectly, while still gathering meaningful information.
Moreover, we suggest lightweight, and minimal invasive approaches for collecting
and interpreting data about user behavior.

30

3. Related Work

3.2.2. Collection of Data about User Behavior

Taking one step back, Begel and Zimmermann [21] report that product owners,
developers, test engineers, and testers want to know what functionality users use
(see Section 3.1). Data about the behavior of the user shows what the users use.
Therefore, we assume that data about the users’ behavior helps these stakeholders.
This assumption is underpinned by our own observations [1, 2]. Thus, we present
an overview of techniques collecting data about user behavior in this section.

3.2.2.1. Taxonomy

In this section, we characterize approaches for user involvement. We base the
structure of this section on the taxonomy of Lethbridge et al. [92]. They focus
on collection techniques for data in field studies about the behavior of software
engineers. Although this is not the focus of this thesis, the characterization of
the collection techniques allows for categorizing different kinds of data about
user behavior. They characterize data collection techniques into three degrees,
depending on how much interaction with the users is necessary to collect data:

First Degree Techniques: require direct access to and interaction with the users.
Examples: Talking to the users face to face®, equipping their bodies with
instruments, or verbally reminding them of thinking aloud.

Second Degree Techniques: need access to the systems the users use, or their envi-
ronment, but do not require direct interaction with the users.
Examples: Altering the source code of a software systems to produce cus-
tomized log files, or notifying users via an automated message on their screen
that they are monitored.

Third Degree Techniques: require access only to artifacts created during the usage
of software systems.
Examples: Analyzing log files generated without altering the systems itself,
or files the users create during using a system.

We structure approaches to the collection of data about user behavior from literature
along these three degrees, since they will have a significant impact on our choice of
collection techniques. Table 3.1 gives an overview of the techniques described in
the remainder of this section. It shows the considered techniques for collecting data
about user behavior, their degrees, and summarizes the collected data.

The list of techniques we discuss and explain in the following sections is certainly
not complete, since there is a plethora of research that focuses on the behavior of
software users. However, the next sections give a comprehensive overview of data
containing information about user behavior and techniques for collecting this data.

3.2.2.2. First Degree Techniques

First degree techniques require direct interaction with the users. These techniques
are often employed in usability testing [93]. Usability testing focuses on how a
system is perceived by its users regarding its, e.g., ease of use. However, these
techniques often capture data about user behavior, and about what users use. Ad-
ditionally, some techniques proposed in usability testing are observational [94, 92],
which means they aim at collecting data by observing users while they use a sys-
tem [95]. We do not consider inquisitive techniques, such as surveys or questionnaires,
since these do not observe users while using a system, but only afterwards.

3 Also, when instructing them prior to collecting data about their usage behavior.

31

3.2. Involving Users in the Software Maintenance Process

Degree Collection Technique Collected Data
Audio- or videotaping and manual Performed actions and the users’ thoughts in man-
protocols ual protocols, video- and audio recordings
First Eye-tracking and brain computer in- Eye-movement over a screen and current flow
terfaces through brain
Recording user interface interac- Automatically collected protocols containing mouse
tions clicks and key strokes, or higher level interactions
Second like opening files.
Profiling Automatically collected protocols about the execu-
tion of source code
Analysis of log files Log files, produced by, e.g., web-services
Third Analysis of resource usage Log files, produced by performance and resource
monitors
Mixed Techniques that are composed of Mixture of the above

techniques from different degrees

Table 3.1.: Collection techniques for data about user behavior with their degrees.

We give an overview over the observational techniques in this section that are most
widely used in research. These contain manual protocols, often accompanied with
audio or video taping. They often require the users to verbalize their thoughts. We
add technically more complex techniques, such as eye-tracking and data collection
by brain computing interfaces. They require less interaction to gather data, but
more interaction to prepare the collection process.

Audio- or Videotaping and Manual Protocols There are several techniques that
make use of audio-, videotaping, or manual protocols. These techniques require
the user to think aloud to be able to gather protocols [96, 97]. These protocols
include data about what a user thinks while using a software system, which tasks
the user performs, why the user performs particular steps, or what is difficult for
the user. The goal of this technique is to capture the information that is present in
the short-term memory of the user.

Eveland and Dunwoody [98] make audio recordings of think aloud protocols of
users, video recordings of the users’ facial expressions and the images on the screen,
while they are browsing the internet. Their goal is to elaborate whether the structure
of linked websites is helpful for the users. So, they use audio- and videotapes to
record user behavior. During the study, researchers are in the same room with the
participants of their study, to make sure the users keep thinking aloud as intended.
Furthermore, the users were asked to perform several supervised training tasks.

Van den Haak et al. [97] also record think aloud protocols (audio). They ask the
users to constantly verbalize their thoughts. They make video recordings of the
computer screen and also take notes of particular events manually. They are in the
same room with the participants. Thus, they use audio-, videotaping, and manual
protocols about user behavior. The data is collected in a lab, after briefing the
participants of their study how to think aloud. They evaluate the usability of an
online library catalogue.

The study of Ramal et al. [99] is concerned with the examination of what information
is used by software engineers during their maintenance tasks. In that study, they
record everything the software engineer says on audio tape. Furthermore, they
manually write a protocol about what the software engineer does, and which tasks
she performs. Thus, they combine audio recordings with manual protocols about
user behavior.

32

3. Related Work

Norgaard and Hornbaek [100] also use audio recordings, but not to monitor the
users, but the usability engineers that lead the users through a session for examining
the usability of a software system. This is a less structured approach to collect data
about user behavior. This work shows, however, that just recording audio is a
possibility for collecting data about user behavior.

There are several more observational first degree techniques, besides the often used
think aloud protocols, regardless of the technical monitoring technique, like audio-,
videotapes, or manual protocols. In shadowing, one would follow the users to record
what they do, and in participant observation, data is collected while the data collector
becomes part of the user team [99]. The latter is only possible, if the users of a
software are organized in teams. However, these techniques are similar to the
techniques described above and are less covered in literature.

Classification In the aforementioned techniques, often data collectors are in the
same room with the participants to remind them of thinking aloud or to take
data. At least, the data collectors remind the users to think aloud and give them
instructions how to do this. Therefore, all the techniques are first degree techniques,
since they always require direct interaction with the users.

Data Collected These approaches collect data about what a user does. Usually,
these are coarse grained actions or steps, collected in manual protocols and video-
tapes. Furthermore, they collect data about what a user thinks and how a user feels
in video- and audiotapes.

Remarks It is hardly possible to automate techniques that use audio- or videotap-
ing or involve manual protocols [101]. The reason for this is the collection process:
usually we cannot gather data in a way that the data is readable by a computer
directly without cleaning, tagging or preparing it in any way, which requires tedious
manual work.

Eye-tracking and Brain Computer Interfaces Other approaches involve eye-
trackers or brain computer interfaces. These approaches focus on deriving how a
user behaves, or what a user thinks by automatically collecting data.

Granka et al. [102] use an eye-tracker to understand what users of a search engine
are looking at and reading before selecting documents. They record where a user of
a search engine looks at on the results page. Based on this data, they measure how
long the users are reading abstracts, how many they read, and how the rank of a
document in the search results influences the final selection. Their study shows that
the selected document depends on how long a user reads the abstract and that users
tend to read the results list from top to bottom. These results show that eye-tracking
is suitable to gain insights into the actual behavior of users.

Similarly, Lorigo et al. [103] use eye-trackers to examine which abstracts are viewed
on the result page of a search engine and whether they are viewed sequentially or
not. To do this, they track the eye movement of the participants over the results
page of a search engine. Their study comes to the conclusion, that almost all users
only look at the first results page, and scan through the search results from top to
bottom. Also, this study shows, that eye-tracking yields insights into user behavior.

In contrast to the aforementioned approaches, Huang and Miranda [104] use a
brain computer interface, particularly an electroencephalography device (EEG) to
measure the ionic current flow of the brain’s neurons. Their goal is to understand
brain functions and use this to make self-adaptive systems to react and anticipate

33

3.2. Involving Users in the Software Maintenance Process

to users’ needs while using a system. They were able to deliberately move a car
depicted on the computer screen from one side to another, controlled only by the
input of the brain computer interface. Therefore, they were able to understand
what the user wanted to do, and actually did, with the software system. Thus, they
were able to show that this technique is also suitable to gain data about the actual
behavior of a user.

Classification Even though these techniques allow for automated data collection,
they still require direct interaction with the users. In the case of eye-tracking, the
user has to use an eye-tracking device, and therefore, either the user has to come to
a lab, or the data collectors have to visit the users. In the case of brain computer
interfaces, the user has to wear an EEG, which also requires preparation and manual
calibrations that are done by data collectors. Thus, all of these techniques require
direct interaction with the users and, therefore, are first degree techniques.

Data Collected The data collected by these techniques can be differentiated into
eye movement over a screen, which are basically the positions on a screen a user
looks at and when, and into the amplitude in Volts characterizing the current flow
through a brain over time. Both kinds of data are collected by a computer and
machine readable.

Remarks Even though eye-trackers and brain computer interfaces got cheaper
over the last years, these techniques are still expensive compared to audio-, video-
taping or manual protocols. The reason is the high price of the equipment for
collecting the data. Additionally, even though the data collected is directly ma-
chine readable, it still might require manual preparation, like tagging events in an
eye-tracking log.

3.2.2.3. Second Degree Techniques

Second degree techniques do only require indirect interaction with the users, or
only access to the software systems they use. This means that there is no personal
meeting, talking face to face, touching the users, or sending emails to them. How-
ever, techniques that display generated messages on the users’ screens, or that alter
the users’ systems to produce log files, fall into the second degree techniques.

Recording User Interface Interactions Some techniques consider recording in-
teractions users with the user interface. The techniques mainly originate from the
examination of usability. Many of the works focus on the usability of websites, and
only few focus on the behavior of users on other systems.

Atterer et al. [105] focus on fine grained data about user behavior browsing websites.
They collect data about page load, resize, focus, blur, unload, mouse click, hover,
move, scroll, and key press events. This data contains technical information about
the behavior of users. It is collected by instrumenting the users systems, with the
goal to examine the usability of a web pages.

Recording clicks and interactions on websites was also used by Hilbert et al. [106,
107, 108, 109]. Interactions range from fine grained, e.g., clicks or keystrokes, or
coarsely grained like the completion of input forms. The interactions can be freely
defined by the data collector to gather the data suitable for his task. This data is
stored in separate logs, which might be sent over the internet to the data collector.

34

3. Related Work

To collect the data, the users’ systems are instrumented with software agents capable
of recording the interactions, which form the data about the users’ behavior.

With the goal of re-engineering common use cases of legacy software systems, El
Ramly and Stroulia [110] collect and examine data about interactions with web-
based systems. They record coarsely grained interaction data like opening a catalog,
searching it, or viewing details in a list, and mine it to discover patterns many users
perform. From these patterns, they derive common usage scenarios, which they
transform manually into use cases.

Matejka et al. [111] also mine usage data. Their data are Tuples of the form {User,
Command, Time}, and therefore uniquely identify users. However, it remains
unclear on what level of granularity commands reside. Their work aims at recom-
mending commands to the users of the system AutoCAD by identifying similar
users, detect usage patterns of these users, and recommend the commands to the
users which were performed by similar users.

Sequences of commands like edit and paste, format bold, etc. are collected by Linton
et al. [112, 113]. The instrument Microsoft Word to collect this data and determine
the level of expertise of the users. Furthermore, they compare the actions of users
to the actions of an expert to derive learning possibilities of the users.

On Microsoft Excel, Horvitz et al. [114] records mouse and keyboard actions, and
the current status of the data in spreadsheets. Furthermore, they derive higher level
actions, such as access to menus, dialog boxes, selections and drawing actions, by
composing several lower level actions to these high level actions. In their notion,
these higher level actions represent goals and tasks, users want to achieve.

Murphy et al. [115] monitor the usage of the Eclipse integrated development envi-
ronment. Their Mylar Monitor captures coarse grained events such as preference
changes, selections, or periods of inactivity, and many more. The collected data is
stored locally on the computer of the users and sent for analysis to the researchers.
The goal of their research is to find out, how developers use the Eclipse integrated
development environment.

Classification All these techniques record user interface interactions. They alter
the users’ software systems for recording data about their behavior. Therefore,
all these approaches require access to the software systems of the users. This
modification and recording requires, by the law of some countries, a notification of
the users. Therefore, we categorize these techniques as second degree techniques.

Data Collected These techniques collect data about interactions users perform
with the system. These interactions range from fine grained, lower level interactions
like mouse clicks or keystrokes, to coarse grained, higher level interactions, like
tasks. These techniques often combine their data into sequences of interactions, to
derive information about the user or his behavior.

Remarks These techniques focus on how a user interacts with a system via its
user interface. These techniques do not consider the internals of a software system,
which can be much more complex than the systems interface. Additionally, all these
techniques require further analysis and interpretation of the data collected, but
allow a detailed automated analysis of the data.

Profiling In contrast to recording data about actions users perform on the user
interface of a software system, profiling aims at the whole software system. Profiling

35

3.2. Involving Users in the Software Maintenance Process

techniques monitor a system to gather data about execution times, resource usage,
and fine grained traces on the level of source code. This section provides an
overview over profiling techniques and their goals.

Elbaum et al. [116, 117] present an overview of strategies to profiling software
system. They divide profiling strategies into full profiling, targeted profiling, and
profiling with sampling:

Full Profiling On a software system, given a set of events to monitor, e.g., method
calls, the approach generates a new program that is instrumented and ev-
ery event in the event set is recorded. This approach negatively affects the
software system’s size and execution times.

Targeted Profiling Only particular events occurring locations of interest are mon-
itored. This limits the need for instrumentation to particular parts of the
software system and therefore reduces the negative impacts of full profiling.

Profiling with Sampling The software system is paused during execution and sam-
ples about the events to monitor are collected, e.g., the methods the system
is currently executing. This has less negative impacts on the execution times
and size of the software system, but yields possibly inaccurate results.

Traub et al. [45] augment the range of profiling techniques by presenting the concept
of ephemeral profiling*. In contrast to the techniques presented by Elbaum et
al. [116, 117], ephemeral profiling only collects the first few events and unhooks the
profiling routine afterwards to save performance. Furthermore, Traub et al. present
a technique to record profiling data without changing the source code of a software
system itself, but by changing the generated machine readable code at runtime
to include their recording routines. With this technique, they are able to add and
remove their recording code during the runtime of a software system. Traub et al.
use this technique to predict execution branches.

Similar to the approach of Traub et al. [45], Duesterwald and Bala [118] predict
paths in the control flow of a software system that are most likely to be executed.
They collect execution traces on a statement level but only at branches. Therefore,
the recorded data resides more on a block level, since branches are usually followed
by these blocks, as, e.g., in for or if statements in source code.

Also, Reps et al. [119] record data about which paths in the control flow of a software
system are executed. They collect these profiles to detect deviations in the executed
paths between different sets of input data. Particularly, they use input sets of data
that contains dates before the year 2000 and after, to detect instances of the Y2K
problem.

Salah et al. [120] record method invocations and build sequences from it. From this
data, they derive usage scenarios from classes (in an object oriented sense). These
scenarios are used to show developers how to (re-)use classes in terms of which
methods to execute in which order. For example, a common usage scenario for a
class writing contents to a file is first, opening the file, second, writing contents to
the file, and third, closing the file.

Data at a technically lower level is collected by Narayanasamy et al. [121]. They
collect processor register values, the current state of memory and program counters
at particular checkpoints in the software system. They use this data to exactly replay
the recorded run of the software system for debugging purposes. This data is very
complete and suffices to reconstruct a user’s run of a software system. However, it
generates huge amounts of data. Close to Narayanasamy et al., Fagui et al. [122]
record program counter values and load addresses. With this data, they locate
bottlenecks causing long execution times in embedded systems.

4 This is the same profiling technique as used in this thesis.

36

3. Related Work

A hybrid technique of profiling and recording actions is proposed by Juergens et
al. [35]. They instrument a system with an ephemeral profiler [45], and determine
the usage frequency of functionality by the usage of only particular methods, so
called feature beacons. With their technique, they record which methods (in an
object oriented sense) were called during a certain time interval, but only consider
methods that uniquely determine which functionality was used. Based on their
data, they compare the actual usage frequency of features with the usage frequency
expected by system experts. Their results show that, first, the experts’ estimations
about usage frequency are diverse, and second, the expectations of the experts
do only sparsely match the actual usage frequencies. This implies that system
experts do not know what is used how often in their systems. However, the
technique of Juergens et al. requires the maintenance of the methods indicating
which functionality was used. Looking at the same system two years after their
study, the methods used during their study were no indicators for the functionality
they tracked anymore. The reason was that the relationship between methods and
functionality was not maintained, since this imposed additional maintenance efforts
to the developers.

Classification All profiling techniques require an instrumentation of the users’
software systems. Therefore, they require access to the systems. However, not all
techniques require modifications of the source code.

Data Collected The data collected by profiling techniques is more detailed than
the data gathered by the action recording techniques, since it usually contains
single method invocations, statements, branches, or processor data. Thus, the
aforementioned techniques collect protocols about the execution of source code.
However, data about the whole system is recorded, and not only about actions
performed consciously by the user.

Remarks Due to the high level of detail of data resulting from profiling tech-
niques, also the amount of data is huge. This imposed issues regarding the analysis
of the data in the past. However, these issues can be overcome nowadays because of
more computing power available, and the data can usually be processed automati-
cally without manual interference. Additionally, data can be recorded for whole
systems and not only for certain parts. This allows for deeper insights into the
users’ behavior than action recording based techniques. However, many profiling
techniques negatively impact the size and execution times of systems. This means
for data collection, we have to choose a trade-off between accuracy of the data, and
these negative effects.

Others These are other profiling approaches that are more concerned with re-
sources and time aspects. This section gives some examples about second degree
collection techniques, which do not fit into the categories described above.

Yang and Padmanabhan [123] collect data about how long users are visiting certain
web-pages and domains with their browsers. Based on this data, they identify
individual users, and need access to the browsers the users employ to surf the
internet.

Froehlich et al. [124] log the usage on mobile devices. They record actions such as
phone calls, sending of messages, taking photos and videos, appointments, contacts,
and sensor values. With their framework, they want to provide the context of users
to researchers doing studies on software for mobile devices. As they instrument

37

3.2. Involving Users in the Software Maintenance Process

the mobile phones of users, and collect data from them, they need access to their
systems.

Classification The described techniques are examples for different kinds of data
that can be collected with access to the users’ systems users’. They require either
access to the systems itself or to systems that supply the users’ systems with data.

Data Collected The collected data is manifold, as described before. This shows
that data about the users’ behavior can be chosen quite freely, if there is access to the
users’ systems, according to the goal and analyses tasks that should be performed
on the data.

Remarks Depending on the collection technique, the data collected tells more or
less about the behavior of the users. The contextual data collected by Froehlich et
al. [124], gives detailed and complete data about the behavior of the users, whilst
the data collected by Yang [123] gives only insights into the browsing behavior of
users. This implies that depending on the goals of the data collection, different
sources have to be used.

3.2.2.4. Third Degree Techniques

Third degree collection techniques do not require interaction with the users or
access to their systems. These techniques either rely on log files that are typically
produced by common software systems like web-servers. Or, the techniques require
data that can be collected not at the users’ software systems, but at sources that are
indirectly used by users, e.g., web services that provide data to the users’ systems.

Analysis of Log Files A prominent third degree technique is the analysis of
log files, especially log files of web-servers. Reasons for this are that web-servers
are multi-purpose software systems that play central roles in the internet. Fur-
thermore, web-servers write log files by default, and so, much collectible data is
produced [125]. The data usually contains the IP address of a visitor to the web-
service, requested files, and a time-stamp. However, the applications of the analysis
of web-service log files are manifold, as described below.

Baysal et al. [126] analyze web-server logs to gather more information about which
browsers and operating systems are used, where users live, and what the navigation
behavior of the users is. They aim at deriving different usage patterns depending
on the age and origin of the users.

In contrast to Baysal et al., who are treating all log files end entries equally, Elbaum
et al. [127] record the data based on sessions to gain log files for individual users.
From this data, they generate test cases that aim to mime real users.

However, gaining data for individuals is, from the data contained in web-service log
files, a difficult task, since information about particular users is not distinguishable
from the data about other users. Alam et al. [128] consider which files were accessed,
how long and in which order. From this data, they cluster the data from the web-
service logs by user. Bayir et al. [129], and Srivastava et al. [130] also cluster this
data to derive common usage patterns and investigate usage statistics.

Coombs [131] analyzes proxy-server logs to determine which resources are im-
portant in an online library. She mines the proxy-server logs for requests to these
resources libraries. This data contains, similar to the logs produced by web-servers,
the files requested, the requester’s IP address, and a time-stamp.

38

3. Related Work

Yu et al. [132] analyze user behavior on a video on demand system. They record
user accesses over time and derive daily, and weekly patterns in terms of arrival
rates, and session lengths. From this data, they derive design and cache principles
for this kind of systems. They found out that there are certain times of the day
where users frequently request videos, and that videos are requested frequently
only over a limited period of time.

On databases, Fagni et al. [133] analyze queries, which are logged by database
servers, from the past to cache the results of database queries more effectively. They
only look at queries that are made to a database, and do not consider the requester.

Classification The described techniques all work on the log files the software
systems under consideration produce, regardless of the analyses. Therefore, these
techniques only require access to the log files, but not to the systems itself.

Data Collected The collected data usually contains which files where requested,
when the request happened, and the IP address of the requester. There are slight
variations in whether users are identified uniquely and whether more data, like
search requests are included in the data.

Remarks Third degree data collection techniques rely on the fact that systems
produce log files. The data often can be processed automatically, and does not
require interaction with the users. In contrast to web-servers, that often produce
log-files, there are lots of systems that do not produce log files that contain valuable
information about the behavior of users. If log files are produced, it might still
be the case that these log files are not automatically analyzable. Furthermore, the
data collected is coarse grained and does not allow for conclusions about what in a
system was used, but only, e.g., which files were requested. More fine grained data
can only be gathered, if the software system is instrumented.

Analysis of Resource Usage An indirect approach to the collection of data
about user behavior is to measure the resource usage their actions imply. With this
data and its analysis, conclusions about the behavior regarding resource usage can
be drawn.

Network usage data, in terms of bandwidth, and processor usage data is collected
by Abdelzaher [134] to determine the quality of service of web-services. This data
is not directly connected to the users itself, but to the services the users’ software
systems communicate with. However, the recorded data is suitable to determine
how much resources the users need when communicating with a web-service and
therefore indirectly measures the users’ behavior.

Focused on resources, Devaraj and Kohli [135] correlate the performance of hos-
pitals, e.g., the mortality rate, with measures about the usage of resources. Their
measures include disk I/O, processing time, and opened documents. They conclude
that, for example, the number medical reports opened correlates negatively with
the mortality rate. This means informally, the more often reports are opened, the
less people die in a hospital.

Gaining insights into user behavior is also the goal of Yang et al. [136]. They collect
data about network traffic in China and focus on data usage, patterns in the mobility
of users, and which applications the users use. They gather data by instrumenting
a service provider’s network to collect their data, but do not need any access to the
users’ systems. With this technique, they gain clear insights into the behavior of
users regarding the data they record.

39

3.2. Involving Users in the Software Maintenance Process

Sinha and Chandrakasan [137] monitor the energy consumption of single processor
instructions on mobile devices. They record energy consumption in Joule and the
current in Ampere. Similarly, Flinn and Satyanarayanan [138] monitor which user
processes, user-level procedures, and kernel-level procedures of a modified NetBSD
kernel, consume how much energy. They calculate which procedures consume how
much power in Joule and Watt. These techniques also allow drawing conclusions
about how much energy users need while using a software system and therefore
show the behavior of users regarding energy consumption.

Classification All the described techniques do not rely on a certain system or
log files to be produced, in contrast, they monitor the physical machine hosting a
software system. Therefore, there is no interference with the users, nor with the
software used by the users. Thus, these techniques are third degree techniques.

Data Collected Data about every resource a software system needs can be col-
lected. The examples described above focus on network, disk, and processor usage,
as well as on energy consumption.

Remarks These techniques do not monitor what a user needs in a software system,
but the resources the software system requires. Therefore, these techniques are not
or only indirectly suitable for gaining insights into the actual usage or coverage
of software systems. However, these techniques also collect data about the actual
behavior of users.

3.2.2.5. Mixed Techniques

Also, combinations of techniques residing on different degrees, exist. For example,
Joachims et al. combine eye-trackers (first degree) and recording mouse clicks
(second degree). They use the data to determine the reliability of data about mouse
clicks. They conclude that only data about clicks is not reliable since, even though
users look at lower entries of a search engine’s results page, they often click on the
first result.

Yang and Padmanabhan [123] focus on online security and identify single individu-
als. They employ a web-server log file analysis (third degree) to build individual
user profiles, but combine this with the data about, e.g., how much an individual
scrolls (second degree) to gain more accuracy. Furthermore, they use other data
like the frequency and pattern of keystrokes and how the mouse is moved (second
degree) to enhance their accuracy. They conclude that with this data about the
behavior of users, identifying individuals uniquely is possible.

Roehm et al. [139, 140, 141, 142] collect data about user actions using sensors in the
software of the users. They suggest that sensors can be implemented in various
ways, like framework hooks (second degree), log file monitoring (third degree),
special monitoring code (second degree), or byte code instrumentation (second
degree) [139]. They suggest to focus on the actual software that should be monitored,
but also consider reuse of the data collecting software. However, in parts of their
work, they focus only on second degree techniques [140], or on data that is collected
by a software system anyways to enable undoing actions [141]. In more recent
research, they focus on capturing button clicks, menu selections textual inputs,
among others [142]. In all their research, Roehm et al. always collect data similar to
other techniques that are recording actions.

40

3. Related Work

3.2.3. Summary

First Degree Techniques require interaction with the users. These techniques
can only consider what a user can observe, but not the internals of a software system.
The format of the recorded data can either be chosen freely or is very general, like
audio data.

Audio- or Videotaping and Manual Protocols These techniques require manual data
collection, because the equipment for recording or preparing the data for
automated analysis has to be set up manually.

Eye-tracking and Brain Computer Interfaces These techniques produce data that is
automatically analyzable. They require manual preparation, like tagging
events in the recorded data, when, e.g., the user focused on a task.

Second Degree Techniques aim at just observing users, and therefore, they do
not necessarily require direct interaction. These techniques often produce data that
can be analyzed automatically. Additionally, the format of the collected data often
can be chosen freely.

Recording Actions These techniques require either particular events, like button
clicks or keystrokes, to be defined beforehand or collect data at the user in-
terface of a software system. Therefore, they do not include data about the
internals of a software system and do therefore not allow drawing conclu-
sions about functionality that is not directly accessible via the user interface.
However, these techniques can be integrated into the user interface without
being noticed by the users.

Profiling Depending on the collection technique, the impact on the execution times
and resource consumption of a software system is huge and noticeable by
the users. However, there are techniques that do not impact the system’s
performance noticeably. Additionally, the data collected by these approaches
is fine grained and contains data about the whole source code of the software
system.

Third Degree Techniques require additional data to be existing, such as log files,
or work products. However, these techniques do not require any interaction with
the users. Additionally, these techniques require no change to the software system.
All of these techniques can be automated.

Analysis of Log Files Logging usually is concerned with only particular events. In
the case of web-servers, requests are usually recorded, but no information
about how a request is processed is collected. This is sufficient to collect data
about usage for a website that is hosted on the web-service, but does not
suffice for drawing conclusions about the web-server itself.

Analysis of Resource Usage These techniques are not concerned with the user be-
havior in connection with a software system, but with the effects of the user’s
behavior. Therefore, only very little information about the system itself can be
collected.

Relation to this Thesis The aforementioned techniques focus on the collection
of data during the execution of software systems. However, only few of these
techniques focus on utilizing their collected data in the software maintenance
process. More clearly, only Reps et al. [119] relate to this thesis not only due to

41

3.2. Involving Users in the Software Maintenance Process

the collection of data about the execution of software systems, but they also guide
maintenance based on this data, since they direct developers to possible bugs®.

The related research presented above propose techniques agnostic for what they
are utilized. Thus, there is neither guidance on how to use them in the software
maintenance process, nor are there estimations about their benefits or disadvantages
in the software maintenance process.

In this thesis, we focus on the direct relation of usage and usefulness, and the
utilization of data about the behavior of users in the software maintenance process
in non-agile maintenance projects. In contrast to the related approaches described
above, we focus especially on the benefits and disadvantages of execution profiles
in the software maintenance process.

5 In their example, these are Y2K bugs, but they also consider other bugs

42

cHAPTER 4

Execution Profiles in Software Maintenance and Test

Contents
4.1. Characterization of Execution Profiles 44
4.2. Relation to Functionality 46
4.3. RelationtoTestCases eeennnnn 50
4.4. Conclusions based on Execution Profiles 50
45, CompariSOn vttt i e e e e 54
4.6. SUMMAIY vt it ettt et et et e e 57

In this thesis, we apply execution profiles, to provide product owners and developers
with insights the usage, and to provide test engineers and testers with insights
into test coverage. In this chapter, we characterize execution profiles and compare
them with the techniques for collecting data about the behavior of users described
in Section 3.2.

Execution profiles can be collected in the productive, and testing environment of a
software system. But which conclusions can we draw on them? Before answering
this question in the last part of this chapter, we first explain the relation of execution
profiles to functionality and to test cases. Based on these relations, we discuss which
conclusions can be drawn from execution profiles dependent on the environment,
in which they were collected.

43

4.1. Characterization of Execution Profiles

4.1. Characterization of Execution Profiles

To understand the usage and coverage, we measure, which parts of a software
system are executed. For this, we use execution profiles, inspired by Eisenbarth et
al. [143]. Execution profiles show, which methods were executed. In this section,
we explain execution profiles and their collection in detail.

4.1.1. Description

Execution profiles express which parts of the source code of a software system were
executed in a given period of time. They do not express, how often they were
executed during that time interval. Execution profiles are collected automatically,
and do therefore not require interaction with the users of the software system.

4.1.2. Profiling Technique

Full Profiling In execution profiles, we consider events in the whole source code
of a software system. Therefore, collecting execution profiles is a full profiling
technique (see Section 3.2.2.3).

Ephemeral Profiling In ephemeral profiling [45] (see Section 3.2.2.3), only the first
few occurrences of particular, predefined events are recorded. After the first few
events, recording is stopped for the part of source code, in which the events occurred.
These events can be, e.g., method calls or the execution of certain statements. This
technique yields less negative impact on the run-time performance of a system than
techniques that record not only the first few events, but all. To keep the negative
impact on runtime performance low, we chose ephemeral profiling for execution
profiles.

First Execution of Methods The event we specify for monitoring is the first
execution of each method? of a software system. The just in time compile event is
raised exactly and only at the first execution of a method during a system run.
Therefore, we use it to monitor the first execution of each method. This event is
triggered by the runtime environment of the software system, e.g., the common
runtime environment (CLR) of .NET for C# systems, or the Java virtual machine
(JVM) for Java systems. After the first invocation of a method, once the method was
compiled, we do not record any further events on this method.

We call the program collecting execution profiles a profiler. For the collection of
execution profiles in this thesis, we adapt the profiler of Juergens et al. [35], which
realizes the described technique. The implementation of the ephemeral profiler
targets C# systems, but the principles can be adapted also to Java systems.

Example Figure 4.1 illustrates three exemplary system runs with method invo-
cations. The system, containing three methods, is executed in three system runs.
For each system run, we record one execution profile. In the first run, the methods
1 and 2 are executed. We record their first executions. In the second system run,
all methods are executed and we record their first executions. In the third system
run, method 1 is not executed, but the other methods. Therefore, we record the first

1 In contrast to targeted profiling (see Section 3.2.2.3), where events only in parts of the source code are
considered.
2 In an object oriented sense

44

4. Execution Profiles in Software Maintenance and Test

Run 1 Run 2 Run 3

1 1 1 1

! ! ! ! Unobserved
Method 1 'O >) ¢ O e 0 | Method

! LS S R ! Execution

R 1 N : 1 1

Method 2 ! o6 i o

' ' Do 7 T Observed

' ! L < - ' O Method

1 1 1 1
Method 3 : | @) :O | Execution

> Cal

[Exec. O Exec. [Exec.
Profile 1 Profile 2 Profile 3
Method 1 Method 1 Method 3
Method 2 Method 2 Method 2
Method 3

Figure 4.1.: Example of three system runs and recorded method executions.

executions of method 2 and method 3 in the execution profile 3. Note that in one
system run, several methods can be triggered by the users via the user interface.
In Figure 4.1, these methods do not have incoming arrows. For example, in the
third run, a user triggered the execution of method three, which resulted also in the
execution of method 2. Possibly another user also triggered method three, which
also resulted in a call of method 2.

4.1.3. Collected Data

Table 4.1 shows the data contained in an execution profile. Execution profiles
considered in this thesis always contain this data. They contain the start and
end time of their recording, which are the start, respectively the end time of the
corresponding system run. Furthermore, we record the name of the system, and
the environment it was executed in, which can be, e.g., the productive environment
or the testing environment. Execution profiles contain data of all methods that
were executed during a system run. For each first execution of a method, execution
profiles contain the fully qualified name, parameter types, and the number of type
parameters of the method.

The example for an execution profile in Table 4.1 was recorded from the 25th of
February 2014 to the 26th of February 2014. It was recorded in the productive
environment of the system with the name mySystem.

Table 4.1 shows an example for an executed method with the signature, denoted
in C# syntax, myMethod<T1, T2> (int, mySystem.MyDataClass). This method is
located in the class MyClass, which is in the name-space mySystem. It has param-
eters of the types int and MyDataClass, where the latter type is located in the
name-space mySystem. The method has two type parameters T1 and T2. With this
data, we can uniquely identify, which methods were executed at least once.

We specified the first execution of each method as the event to monitor for our
profiler. Therefore, we are not able to assess whether a method was only par-
tially® executed. Consequently, we consider all methods as being executed, if any
statement of their body was executed.

Throughout this thesis, especially in all contributions, we use execution profiles.
We gain information about which parts of a software system were executed, and
more important for our approaches, which were not.

3 We consider a method as partially executed, if not all the statements contained in the method body
were executed, but a part of them.

45

4.2. Relation to Functionality

Name Fields Example Multiplicity

Context Name of system mySystem 1
Environment Productive

Time interval Start time 25/02/2014, 15:46:23 1
End time 26/02/2014, 17:39:19

Method signature Fully qualified name mySystem.MyClass.myMethod 0.*
Parameter types int, mySystem.MyDataClass

Number of type parameters 2

Table 4.1.: Data contained in execution profiles.

4.1.4. Data Collectors

Above, we described the data contained in execution profiles, and how we collect
them. But who performs the data collection?

Operations* staff are responsible for deploying software systems to the productive
and testing environment. Moreover, they are responsible for running the hardware
and operating system, on which the software system is deployed. Additionally,
they are in charge of administering the productive and testing environment by, e.g.,
managing user accounts.

Our profiler that we use for collecting execution profiles, has to be installed, and
the resulting execution profiles need to be collected. This is done by operations,
since they are responsible for deploying software, and to administer the underlying
hardware and software.

In DevOps [144], the developer is also charged with the tasks of operations. In this
case, the developer can gather the execution profiles on their own. This way, they
get direct feedback about the usage of their software systems.

4.2. Relation to Functionality

Users use the functionality of business information systems in its productive envi-
ronment. Execution profiles collected in the productive environment show which
methods were executed. During the usage of functionality of a software system, not
necessarily all methods of the software system are executed, but just the methods
that were triggered by the interactions of the user with the system. Thus, execution
profiles show, which methods were executed during the usage of a software system,
and which were not. Therefore, we call execution profiles collected in the productive
environment usage data.

Execution profiles contain information on the level of methods in source code.
However, users use functionality via a user interface, not the source code directly.
Modern business information systems often provide not one single functionality,
but comprise functionality for different tasks of users. In this section, we describe
the relation of functionality to methods, and consequently execution profiles.

4.2.1. Relation of Functionality to Source Code

Functionality is realized in source code. Source code is divided into methods.
Therefore, functionality is realized in methods. Usually, functionality is realized

4 Not to be confused with operations on a source code level.

46

4. Execution Profiles in Software Maintenance and Test

in several methods. Vice versa, methods can contribute to the realization of vari-
ous functionalities, resulting in a many-to-many relations between methods and
functionality.

4.2.1.1. Many-to-many Relation of Functionality to Methods

Due to the many-to-many relation between functionality and methods, the mapping
of functionality of methods can take various shapes. Functionality can be realized
in a distinct set of methods, the methods implementing functionality can overlap
with methods implement other functionality, or be included in the set of methods
realizing other functionality.

We call methods, which contribute to the realization of exactly one functionality
characteristic for this functionality (this corresponds to the notion of Juergens et
al. [35]). In the example illustrated in Figure 4.3, Method 1 is characteristic for
Functionality A, since it does not contribute to the realization of other functionality,
whereas Method 2 contributes also to other functionality. At the same time, when
Method 1 is executed, we know that Functionality A was used.

Mutually Distinct Functionality: We call functionality mutually distinct, if it is
realized only in characteristic methods. Figure 4.2 illustrates this case. Functionality
A is realized by the methods Method 1 and Method 2. All other functionality of the
software system is realized in Method 3 and Method 4. Functionality A does not
share source code with other functionality. The methods realizing Functionality A
do not overlap with methods implementing other functionality.

@ Functionality

1

1

1

! Functionality A Oz ~Lii-

! tionality
‘/\/\ “““ '
pmmmm e e NN

1
Method 1 Method 2 Method 3 Method 4 :
1
1
1

€1 Source Code

Figure 4.2.: Functionality A realized distinct from other functionality.

Overlapping Functionality: We consider functionality as overlapping, if it is real-
ized also with methods that contribute to the realization of other functionality, but
also in methods that do not realize other functionality. This case is illustrated in
Figure 4.3. Method 2 contributes to the realization of Functionality A, but also to
other functionality. Method 1, however, only contributes to the realization of Func-
tionality A. Therefore, the set of methods implementing Functionality A overlaps
with the set of methods implementing other functionality. In this example, only
Method 1 is characteristic for Functionality A.

Included Functionality: One functionality is realized only in methods that also
realize other functionality. Figure 4.4 illustrates this case. The methods realizing
Functionality A, Method 1, and Method 2, contribute also to the realization of other
functionality. Thus, the methods realizing other functionality fully include the
methods realizing Functionality A. In this example, no method is characteristic for
Functionality A.

47

4.2. Relation to Functionality

Q Functionality

1
1
: Other Func-
1
1

Functionality A tionality
________ - _—— . ——— - L e e f = = P ——
NI TN

1
Method 1 Method 2 Method 3 Method 4 |
1
1
1

€4 Source Code

@ Functionality

Other Func-
tionality

Functionality A

1
Method 1 Method 2 Method 3 Method 4 |
1
1
1

€ Source Code

Figure 4.4.: Functionality A realized included in other functionality.

4.2.1.2. Mandatory and Optional Methods

Methods contributing to functionality are either always executed, if the functionality
is used, or not. We call methods, which are always executed mandatory. We call
methods optional, if they are not always executed, e.g., because the user can cancel
his usage of a functionality after its beginning. Figure 4.5 shows Functionality A
that is realized by two mandatory methods, Method 1 and Method 2 (indicated by
solid arrows), and two optional methods, Method 3 and Method 4 (indicated by
dotted arrows).

Q Functionality

Functionality A

Method 1 Method 2 Method 3 Method 4

€4 Source Code

Figure 4.5.: Functionality A realized by mandatory and optional methods.

4.2.2. Relation of Execution Profiles to Usage of Functionality

Users make use of functionality, but execution profiles are collected on the level of
methods in source code. So, how do execution profiles relate to functionality? If
functionality is used, its realizing mandatory methods are executed, and its realizing
optional methods are executed potentially. In the example illustrated in Figure 4.5,
this means that the usage of Functionality A results in the execution of Method 1
and Method 2, and in the potential execution of Method 3 and 4.

48

4. Execution Profiles in Software Maintenance and Test

Characteristic Mandatory Executed Realized Functionality Used
v v v yes
v v - no
v - v yes
v - - unknown
- v v unknown
- v - no
- — v unknown
- - - unknown

Table 4.2.: Relation of the properties mandatory, characteristic, and executed of methods to
the usage of the functionality they realize.

The execution of a characteristic method indicates the usage of the functionality, for
which the method is characteristic. However, there are no characteristic methods
for included functionality. In this case, we cannot conclude about the usage of
functionality from the characteristic methods of the particular functionality. This
limits the expressiveness of execution profiles on the level of functionality.

The absence of execution of mandatory methods shows that the realized function-
ality was not used. However, the absence of the execution of optional methods
does not allow for this conclusion. This also limits the expressiveness of execution
profiles. Additionally, with execution profiles, we cannot draw conclusions about
functionality that is realized below the level of methods, for example, in parts of
methods. In this case, we only consider the execution of the method itself and
cannot distinguish between different functionality.

Table 4.2 summarizes the conclusions that can be drawn from execution profiles to
the usage of functionality.

In case characteristic methods are executed, we conclude the functionality was used.
If mandatory methods are not executed, we conclude the functionality was not
used. However, in the other cases, we cannot infer usage of functionality from the
execution of methods.

Especially in the case of included functionality, where no characteristic methods
exist for a particular functionality, we cannot draw conclusions about its usage
from execution profiles. However, Juergens et al. [35] report they were able to
identify methods that were both, characteristic, and mandatory for about 68% of all
functionalities in a business information system. Therefore, we are confident, that
we can draw conclusions about the usage for most functionality.

To cope with the aforementioned shortcomings, one could consider functionality
with unknown usage as unused. This leads to an overestimation of unused func-
tionality. This means that functionality is considered as being unused, which is
used. If we search for unused functionality, this strategy consequently leads to
lower precision, but higher recall.

Vice versa, if we consider functionality with unknown usage as used, we underesti-
mate unused functionality. For the identification of unused functionality, this leads
to higher precision, but lower recall. In this thesis, we consider functionality with
unknown usage as being used, to gain the higher precision, since we then can point
to useless functionality more accurately.

49

4.4. Conclusions based on Execution Profiles

4.3. Relation to Test Cases

If execution profiles are collected in the testing environment, they show, which
methods were executed there. The execution of test cases (manually or automati-
cally) triggers the execution of methods of the software system. During the test of a
software system, not all methods are executed necessarily, but just the methods that
were triggered by the execution of test cases. This relates to our notion of method
coverage (see Section 2.3.7), and therefore, we call execution profiles collected in the
testing environment coverage data.

4.3.1. Relation of Test Cases to Source Code

Figure 4.6 shows a simple example of tests contained in a test suite that execute
methods. In this example, the test suite contains two test cases, Test Case A and Test
Case B. Test Case A triggers the execution of the methods Method 1 and Method
2. Test Case B triggers the execution of Method 2, and Method 3. So, Method 2
is executed by both test cases, and Method 4 is not executed by any test case. We
consider the executed methods as covered by a test case, if they are executed during
the execution of the test case. Methods are uncovered, if they are not executed by
any test case. In our example, Method 4 is uncovered.

' €2 Test Suite !
1
1 1
' [Test Case A [Test Case B |
! I
p-- - ____\x _____ /_/ Ao
! Method 1 Method 2 Method 3 Method 4 |
| 1
1
| €4 Source Code !

Figure 4.6.: Two test cases that trigger the execution of methods.

4.3.2. Relation of Execution Profiles to Code Coverage

Execution profiles show, which methods were executed during testing, and which
were not. This corresponds to method coverage (see Section 2.3.7). Thus, we consider
execution profiles collected in the testing environment as coverage data. In the
example illustrated in Figure 4.6, the Method 1, Method 2, and Method 3 were
covered by test cases. Method 4 was not covered.

4.4. Conclusions based on Execution Profiles

Execution profiles collected in the productive environment are usage data (see Sec-
tion 4.2). If execution profiles are collected in the testing environment, we consider
them as being coverage data. In this section, we describe, which conclusions can be
drawn on usage data regarding usefulness (see Section 2.5). Additionally, we show
which conclusions can be drawn about the degree of validation on coverage data.
We focus on the expressiveness of execution profiles with respect to the reliability
of the conclusions based on them.

50

4. Execution Profiles in Software Maintenance and Test

4.4.1. Conclusions on Usage Data

Usage data (see Section 4.2) expresses, which functionality is used by the users. In
this section, we explain how usage data relates to usefulness (see Section 2.5). We
base our description on the TAM (see Section 2.5), but revise the connection between
usefulness and usage critically.

4.4.1.1. Categories of Functionality
We classify functionality into the categories implemented, used, known, and useful.
The different categories are illustrated in Figure 4.7 and explained below.

Implemented Functionality that is realized in a software system®.
Used Functionality that is executed by the users (see Section 2.2.3).
Known Functionality the users are aware of.

Useful Functionality that is perceived as useful by the users (see Section 2.5).

We also consider the counterparts of the categories. For example, functionality is
unused, if it does not fall into the category used.

We assume that there is no functionality that is not known, useful, and used. The
reason for this is that once a user uses functionality he perceives as useful, the
functionality is known. Furthermore, only implemented functionality can be used.

7/, Known Functionality
")\ Useful Functionality

Implemented Functionality

Used Functionality

7/, Known Functionality
)\ Useful Functionality

Implemented Functionality

Used Functionality

Figure 4.8.: Summarized types of functionality.

We summarize several categories into types of functionality, as depicted in Figure 4.8.
The areas outlined by dashed lines are these types. We define the types by the
schema in Table 4.3. In this table, the right column shows the representation of
the category in Figure 4.8. The left column contains the conditions under which
we consider functionality to belong to a certain category. So, for example, the
functionality falls into the category intentionally used, if it is useful, used and known.

5 We use the terms implemented and realized interchangeably.

51

4.4. Conclusions based on Execution Profiles

Name and
Condition

Description

Reason

Intentionally used
useful, used, known

Users perceive functionality,
which they know as useful,
and therefore use it.

Intention of the users.

Intentionally unused
not useful, unused

Users perceive functionality as
not useful, and therefore do
not use it.

Intention of the users.

Not implemented
useful, not
implemented

Users (would) perceive func-
tionality as useful, whether
they know about it or not, but
the functionality is not imple-
mented (yet).

There are some explanations
for this effect, e.g., rapidly
changing demands of users or
misguided requirements engi-
neering, which did not identify
functionality that users want.

Unknown
useful, unused,
unknown,
implemented

Users would perceive imple-
mented functionality as useful,
but do not know it, since they
are not experienced enough
with the software system, and
therefore do not use the func-
tionality.

Functionality is new and users
were not trained for it, the func-
tionality is hard to find, or not
reachable by the users.

Accidentally used
not useful, used

Users do not perceive function-
ality as useful, but use it any-
ways (whether they know the
functionality or not).

Users accidentally click on a
wrong button or expect a dif-
ferent functionality when using
the software system. Another
reason are unnecessarily com-
plex workarounds that replace
useful functionality. This is to
be expected for inexperienced
users.

Bad ease of use
useful, unused,
known, implemented

Users perceive implemented
functionality they know as use-
ful, but do not use it.

According to the TAM, one rea-
son is low perceived ease of
use, which is caused by bad
usability of a functionality. An
example are functionality that
is too complex to use, or func-
tionality that is provided also
by other tools the customer
has installed.

Table 4.3.: Categories of functionality.

Figure 4.7, Figure 4.8, and Table 4.3 show a view on the system that assumes all
users use, know, and consider the same functionality as useful. This is an unrealistic
assumption. We expect the opinions, knowledge and usage of users to deviate.
Thus, one user might use functionality intentionally, but others use it accidentally.

However, we consider these deviations to be small, since we focus on custom
software systems that are tailored to specialized tasks of users with similar jobs.
Therefore, also the tasks users want to perform are similar or clearly separated. This
leads to the conclusion that the differences of users regarding their opinion and
usage behavior in the system is rather consistent to other users performing similar
tasks and isolated from the users performing different tasks.

4.4.1.2. Critical Reflection of Relation between Usage and Usefulness

Under consideration of the TAM (see Section 2.5), useless functionality is not likely
to be used, while useful functionality is more likely to be used. Thus, the user shows,

52

4. Execution Profiles in Software Maintenance and Test

by using a system, what he perceives as useful. On the other hand, the user shows
which functionality is not useful by not using it. However, the relation between
usage and usefulness remains fuzzy, due to the reasons explained in Table 4.3.

But, in the context of custom business information systems, the approximation of
usefulness by usage (and execution profiles) is accurate enough to be helpful for
practitioners [1]. Thus, in the software maintenance process, data about the usage
of software can be used to gain insights into the usefulness of functionality.

As illustrated in Table 4.3, there is implemented functionality that is useless. This
functionality often provides no value for the users, and therefore, its maintenance
bears the risk of being a waste of resources. This functionality is realized because of
the reasons given in Section 2.4.

The goal of the product owner is to reduce the waste of resources in maintenance.
Therefore, we suggest to question maintenance on functionality that is unused.
However, due to inaccuracy of the relation between usage and usefulness, product
owners still have to manually inspect whether unused functionality is really useless.
But with usage data, at least first insights into the uselessness of features is possible.

There can be functionality that is used only rarely, but is useful for the users. An
example in business information systems is the annual accounting. Additionally,
custom business information systems have less users than off-the-shelf software
or, e.g., well known web services, like search engines. Therefore, new or changed
functionality might not be used soon after its realization and deployment. Therefore,
we suggest to continuously collect execution profiles for at least one business cycle.

As also shown in Table 4.3, and shortly discussed in Section 2.5.1, not all useful
functionality is actually used, nor is all used functionality useful. In the case of
unknown functionality, the users do not know about implemented functionality
they would perceive as useful, and therefore do not use it. On the other hand, in
the case of accidentally used functionality, the users use functionality even though
they do not perceive it as useful. Reasons for this are: in the case that more useful
functionality is implemented, the users do not know about it. In the case that
more useful functionality is not implemented, that the users use the less useful
functionality as a substitute. Another reason is, that users use functionality not
on purpose. In the case of bad ease of use, the users do not use functionality, they
actually perceive as useful, since it is, e.g., too complex or hard to use.

4.4.2. Conclusions on Coverage Data

Coverage data shows, which methods were executed during the execution of test
cases, and which were not. Consequently, due to the relation between methods
and functionality (see Section 4.2), coverage data shows, which functionality was
executed by a test case.

We categorize functionality into the groups covered, and tested in the context of
coverage data. Figure 4.9 illustrates these categories. Only functionality, that is
already implemented (see Section 4.4.1.1) in the software system can be covered.
And only covered functionality can be tested. But, coverage of functionality does
not mean, that it was indeed tested.

Covered Functionality, for which the realizing methods were executed during
testing by test cases (see Section 2.3.7).

Tested Functionality that was validated for conformance against the customer’s
expectations (see Section 2.3.1).

However, there are some limitations to the conclusions we can draw from coverage
data. The main reason is that covered functionality is not automatically tested.

53

4.5. Comparison

Software System
Covered Methods
\\\\ Tested Methods

Figure 4.9.: Covered, and tested functionality of a software system.

There are parts in system test cases, which execute a software system, but do not
validate its functionality against the customer’s expectations. Examples are the
setup and tear-down parts, which bring the system into a predefined state before
the actual checks begin, and reset the system afterwards. Above that, system test
cases often do not compare every single output of a system to an expected result,
since this would be too effortful. An extreme case are test cases that do not contain
expected outputs at all, and therefore cannot produce a negative verdict. These
assumptions are underpinned by, e.g., Inozemtseva and Holmes [145], who report
that coverage does correlate with the ability of test suites to detect faults, but is not
a good predictor for how many faults are revealed by a test suite. Therefore, we
conclude that sole coverage of functionality does not mean it was tested.

But what can we conclude from coverage data? Functionality that is realized
by methods that were not executed by test cases cannot be tested. Therefore,
uncovered functionality cannot be tested. Thus, we conclude from coverage data,
which methods, and consequently, which functionality was certainly not tested. So,
the expressiveness of coverage data is therefore limited to which functionality is
certainly not tested. But, due to the reasons given above, we cannot identify every
untested functionality.

Additionally, although coverage data is collected on source code, we cannot infer
conclusions about which methods were tested. However, due to the same reasons
as described above, we can conclude which source code was definitely not validated
against the customer’s expectations. But also due to the reasons given above, we
cannot identify all untested methods based on coverage data.

4.5. Comparison

The chosen technique for collecting execution profiles has some advantages over,
but also disadvantages compared to the techniques presented in Section 3.2.2.

In this section, we compare the collection and analysis of execution profiles to
the collection and analysis of other data about the user behavior and execution of
software systems (see Section 3.2.2). We focus on the challenges of user involvement
reported by Bano and Zowghi [88], and Pagano [89] (see Section 3.2.1).

4.5.1. Advantages of Execution Profiles

In this section, we describe the advantages of using execution profiles in the software
maintenance process compared to the related techniques presented in Section 3.2.2.

No User Interaction The collection of execution profiles does not require direct
interaction with the users. This is an advantage over first degree techniques, since
we do not disturb the users or impose additional work to them. Additionally, the

54

4. Execution Profiles in Software Maintenance and Test

users might be separated from the product owner (see Section 2.2.3), since the work,
e.g., in different countries. Therefore, we cannot assume, that the product owner
can directly access the. With execution profiles, the product owner does not have
to communicate directly with the users. In communication between the product
owners and the users the misunderstandings arise (see Section 2.4). Therefore,
misunderstandings between users and product owners (see Section 2.4) are less
likely when considering execution profiles than in techniques that require direct
feedback from the users.

This way, the approach is also applicable in contexts, where users are unwilling or
unable to communicate their requirements, as reported by Bano and Zowghi [88].

Seamless Integration Execution profiles are collected in a way that is not, or
only hardly noticeable for the users. Therefore, we avoid an impact on the users’
work or experience with the system. This is an advantage over other techniques,
because users do not have to get used to a changed system, or to data collection
techniques, and do not need to be trained for it®. However, we suggest informing
the users, that they are monitored.

These properties ensure that no efforts have to be invested for user training. Addi-
tionally, the users do not have to get used to a different working environment, to
which they can be reluctant [88]. Therefore, we consider execution profiles as less
invasive than first degree techniques.

Self-Containment Not all software systems produce data about execution or
interaction by users. Execution profiles do not depend on any preexisting data.
This is an advantage over third degree techniques, because these techniques require
particular data, like log files, which might not exist. Additionally, we can freely
choose the format of the collected data, by employing our own technique.

This property counteracts the varying structure, content, and quality of data, as
reported by Pagano [89].

Little Effort The collection and analysis of execution profiles can be automated
to a large extent. Therefore, we argue that the additional effort for the collection
and analysis of execution profiles for product owners, developers, test engineers,
and testers, is low. This advantage is apparent compared to first degree techniques,
that often employ manual data collection, direct interaction with the users, and
manual analyses of data (see Section 3.2.2.2). Therefore, we consider execution
profiles as lightweight. In first degree techniques, the collection and the analysis of
the collected data often requires manual effort. Therefore, first degree techniques
impose more effort on product owners, developers, test engineers, and testers.

Low additional efforts reduce the reluctance of the management due to additional
costs [88].

Completeness Execution profiles contain data about the whole source code of
a software system and all users. Therefore, there is less bias in the data towards
single users, compared to techniques that examine the behavior of only few users,
like first degree techniques. The second degree technique recording actions, usually
monitors only particular events on the user interface of a software system and
therefore does not consider all parts of a system. The third degree techniques that

6 This could also lead to confounding factors, where observations are caused by the changed environ-
ment.

55

4.5. Comparison

analyze resource usage, can only indirectly draw conclusions about the execution
of a software system.

Therefore, execution profiles reflect the preferences of all users together, and not
different preferences [89], while containing data about a whole software system.

4.5.2. Disadvantages of Execution Profiles

In the following, we describe disadvantages of execution profiles compared to other
approaches (which were presented in Section 3.2.2). The collection of execution
profiles are limited to existing source code, which threatens the comprehension of
product owners, test engineers, and testers. Furthermore, with execution profiles,
we can only gain insights into the execution of existing source code and functionality,
but not functionality the users desire besides the realized functionality.

Comprehensibility Execution profiles reside on the level of source code. There-
fore, the understanding of execution profiles alone requires knowledge about the
source code. However, this is not always the case for product owners, test engineers,
and testers. This is the case for all profiling techniques.

In audio- and videotaping techniques, the users are recorded directly. The tapes
show the interactions a user performs with the system. We expect this to be com-
prehensible for all stakeholders. However, eye-tracking data, and EEG-protocols
require great understanding of these techniques.

The comprehensibility of recorded actions for product owners, developers, test
engineers and testers depends on the granularity of the actions. But, if actions on
the level of functionality are recorded, we expect the product owners, developers,
test engineers, and testers to understand them. Profiling techniques reside on the
level of source code. Product owners, test engineers, and tester often do not have
this knowledge. Therefore, we consider profiling techniques as less comprehensible
for them.

Third degree techniques do not collect data, but just analyze it. Therefore, the com-
prehensibility for product owners, developers, test engineers, and testers depends
on the presentation of the results of the analyses.

Desired Functionality Additionally, execution profiles contain data only about
existing source code, and thus, realized functionality. Therefore, it is impossible
to get insights into which source code and functionality would be executed, if it
would exist. In general, second and third degree techniques are bound to existing
functionality and source code, since these techniques monitor existing and running
software systems.

In audio- and video-taping techniques, users are often requested to verbalize their
thoughts. Thus, they can also express what they would do, in case other functionality
was realized, or which functionality they miss. However, in eye-tracking techniques,
users can only look at existing data. We found no evidence, that brain computer
interfaces are capable of identifying functionality the users desire.

4.5.3. Summary
Table 4.4 illustrates the properties of the different collection techniques for data

about user behavior. It is structured by the three degrees of user involvement tech-
niques and follows the structure of our description of related work in Section 3.2.2.

56

4. Execution Profiles in Software Maintenance and Test

c S E

2 8 £ £ 8

g & £ 2 2 %

g £ £ . o g @8

£ »n S ° S o =]

»] c L= - S ha

o K] o hj K 2 3

2 £ Q) =] o =

2§ £ = E E @

. o o} [} k= <} o o
Technique Degree =2 o n = (¢} o o
Audio- or videotaping and manual protocols First - - v - - v v
Eye-tracking and brain computer interfaces - - v o V) - - -
Recording actions Second v v v v - V) -
Profiling v vy v v v - -
Analysis of log-files Third v v - VAR (V2 I (V4 B
Analysis of resource usage v v - v - V) -
Execution Profiling v v v v v - -

Table 4.4.: Comparison of techniques for data collection about user behavior.

It shows that execution profiles have some advantages, but also disadvantages
compared to other approaches to collect data about the behavior of users.

We conclude that the approach is lightweight, since it does not impose additional
efforts to users, and only small additional efforts for product owners, developer,
test engineers, and testers. It is furthermore not invasive, since execution profiles
do not require direct interaction with the users.

Execution profiles show, which methods are executed in a software system. The
execution of methods is triggered by the usage of functionality. The usage of
functionality indicates its usefulness. The absence of usage of functionality indicates
uselessness. Additionally, the absence of usage leaves methods unexecuted, which
is also reflected in execution profiles. Also, execution profiles show, which source
code was executed during testing, and which was not. The functionality realized in
unexecuted source code was certainly not tested, and therefore, is more likely to
contain faults than covered source code.

Due to these relations, and due to the advantages of execution profiles discussed
above, we conclude that execution profiles are eligible for product owners, develop-
ers, test engineers, and testers to gain insights into usage and coverage.

However, execution profiles cannot give insights into functionality that is desired
by users, but not yet implemented. The only technique that is capable of this, is
audio- or videotaping, or recording think aloud protocols.

Additionally, execution profiles are not comprehensible per se. We address this
issue in our contributions, which are described in the next chapter.

4.6. Summary

We presented our approach to collect information about usage and coverage. There,
we explained execution profiles in detail. Additionally, we compared execution
profiles to other approaches described in Chapter 3, and focused on advantages
and disadvantages of execution profiles over other techniques.

Furthermore, we described, how execution profiles relate to functionality and tests,
to be able to explain, which conclusions can be drawn based on execution profiles.
We discussed these conclusions afterwards. From execution profiles, we can gain
insights into which functionality was not used. Additionally, execution profiles
show, which source code was definitely not tested.

57

CHAPTER D

Contributions

Contents
5.1. Unused Source Code in Maintenance 62
5.2. Transfer of Unused Source Code to Requirements Artifacts .. 63
5.3. Considering Usage Data in Maintenance 64
5.4. Uncovered Source Code in Regression Testing 70
5.5. Transfer of Uncovered Source Code to Regression Test Cases . 71
5.6. Considering Coverage Datain Testing 72
5.7. Automatically Linking Source Code with Other Artifacts 80

In this chapter, we present the contributions of this thesis. All contributions build
on execution profiles (see Chapter 4) and on the foundations explained in Chapter 3.

Motivated by the challenges reported by Heiskari and Lehtola [20], the questions
raised by Begel and Zimmermann [21] (see Section 3.1), and our own observations [1,
2], we state the research objective for contexts, where users are not involved closely
in the maintenance process: We explore the benefit of analyses of execution profiles
collected for business information systems in software maintenance and test.

But, how can product owners, developers, test engineers, and testers profit from
execution profiles?

We answer this question by presenting clarifying studies and approaches that
apply execution profiles in the software maintenance process (see Section 2.1). We
focus on the activities maintenance and regression testing. Figure 5.1 shows the
contributions, and their logical dependencies.

Execution profiles show, which source code was executed, and which was not.
However, the presence of execution often does not allow for sharp conclusions (see
Section 4.4.1 and Section 4.4.2). But, the absence of execution does allow for more
precise conclusions.

To gain insights into the benefits of execution profiles, we first present studies
about the existence and extent of unexecuted source code in the productive and
testing environment. We present a study about the extent and the effects of unused
source code on the activity maintenance (Publication A). Additionally, we present
a study about the extent and the effects of uncovered source code in regression

59

1 1
3 LR :
! Unused source code ! ! Uncovered source code ! »
| in maintenance 1 | in regression testing 1 5
: (Publication A, Section 5.1) ' : (Publication B, Section 5.4) 8
1 1 1 1
1 l 1 1 l 1
1 1 1 1
1 1 1 1
' El Transfer of unused source \ ' El Transfer of uncovered source \
! code to requirements artifacts | ! code to regression test cases |
! (Publication D, Section 5.2) ! | (Publication C, Section 5.5) 2
1 1 1 1
e}
1 1 1 1 =
(o]
: \ | : / L8
1 1 =
: E Automatically linking source ! &
' code with other artifacts !
: (Publication E, Section 5.7) '
: . . :
1 1 1 1
: - : : - V| @
. Considering usage ' . Considering coverage | o
! data in maintenance ! ! data in regression testing ! §
! (Section 5.3) ! ! (Section 5.6) 1 8
: I : V)2
1 1 1 1

Figure 5.1.: Overview of the contributions.

testing (Publication B). The studies show the effects of unexecuted source code in
the software maintenance process.

Execution profiles are collected on the level of source code. They contain informa-
tion about source code. However, product owners, test engineers, and testers often
do not know the source code of the software systems, for which they are responsi-
ble. Additionally, decisions about change requests, maintenance, and regression
testing is are usually not made based on the level of source code, but on the level of
functionality.

To enable product owners, developers, and test engineers to use execution profiles,
we present approaches that transfer execution profiles from the level of source code
to the levels of functionality and test cases, which the stakeholders understand
better.

Thus, we present an approach to transfer unused source code to functionality, to
make execution profiles usable for product owners in the task change identifica-
tion/prioritization (see Section 2.1), who do not know the source code (Publication D).
Additionally, we present an approach to select regression test cases that cover
previously changed, but uncovered source code (Publication C).

The latter approaches use Latent Semantic Indexing [46] (LSI) from the field of infor-
mation retrieval to link execution profiles to other artifacts like use case documents
or test cases.

The goal of LSI is to measure the semantic similarity between documents contained
in a document corpus. But, LSI works on the syntax of the documents, while still
detecting semantic similarity. Similarity is expressed by a value between -1 and
1, where a higher value means the compared documents are more similar. LSI
identifies words belonging to a common concept (e.g., “car” and “automobile”) by
co-occurrence, enabling it to deal with synonyms.

The accuracy of the results of LSI vary with its configuration. However, to configure
LSI, technical knowledge about this technique is needed, and the configuration
has to be done manually. Therefore, to improve the applicability of the presented

60

5. Contributions

techniques, we present an approach to fully automate the configuration of LSI
(Publication E).

But how do the approaches integrate into maintenance and testing? To answer
this questions, we extend the maintenance process (see Section 2.1) and regression
testing (see Section 2.3.2) with tasks that enable the consideration of execution
profiles. The resulting processes show how and where execution profiles and the
aforementioned approaches can be brought into the existing processes.

The approaches and processes show that product owners, developers, and test
engineers can consider execution profiles in the maintenance process. Product
owners are supported in their task change identification/prioritization, developers in
their task implementation and design (see Section 2.1). Test engineers are supported
during the creation and selection (see Section 2.3) of regression test cases.

Together with our studies showing the value of execution profiles, we conclude that
the aforementioned stakeholders can benefit from execution profiles.

To the best of our knowledge, there is no research about how execution profiles
can be used to answer the questions reported by Begel and Zimmermann [21] after
they arise. We close this gap with this contribution. However, we are aware of agile
methods that aim at constructively addressing these questions before they arise by
closely involving the customers into the development or maintenance process.

61

Published in [1] at

ICSE 2012
acc. rate 16%
10 pages

Full paper

The author of this
thesis designed the
approach to identify
unnecessary main-
tenance by approxi-
mating unnecessary
code with unused
code, and he led and
conducted the stud-
ies for evaluating the
approximation. Fur-
thermore, he devel-
oped the tool sup-
port, except the pro-
filer, which was de-
veloped by Juergens
et al. [35].

5.1. Unused Source Code in Maintenance

5.1. Unused Source Code in Maintenance

Preliminaries In the context of this contribution, we introduce the term unnec-
essary in relation to maintenance (see Section 2.2) and source code. We consider
maintenance as unnecessary if it is a waste of resources. We consider source code
as unnecessary if it realizes useless (see Section 2.5.1) functionality. We approximate
useless with unused code, based on our explanations in Section 2.5.

Goal The goal of this contribution is to foster our understanding of unused source
code and its effects on the activity maintenance. Additionally, we evaluate the
approximation of unnecessary source code with unused source code.

Case Study We quantify the amount of unused source code and maintenance ac-
tions therein. Furthermore, we quantify maintenance in unused code, and examine
the extent of unnecessary maintenance therein. By quantifying unnecessary mainte-
nance, the study shows, how much efforts could have been saved by considering
usage indicated by execution profiles. Additionally, we qualitatively analyze the
helpfulness of knowledge about unused source code by interviews.

We collect execution profiles on an industrial business information system of the
reinsurance company Munich Re. We observe the system for two years. We present
the execution profiles to developers! of the system, who were maintaining the
system for several years, and interview the developers.

Results During the examination period, 25% of all methods in the examined
software system were not executed, and thus, remained unused. According to the
developers, not all unused code was unnecessary, since it also contained, e.g., error
handling routines. But, according to the developers considering execution profiles,
48% of the maintenance actions in unused source code were unnecessary. From this,
we conclude that unused code often is unnecessary. Thus, the developers found the
insights gained into the usage of the software system under development helpful
in practice. In our interviews, developers detected bugs, which were caused by
unexecuted code that should have been executed.

Only 7.6% of all maintenance actions happen in unused source code, and conse-
quently, 92.4% of maintenance efforts are spent on used source code. Obviously,
change requests primarily address useful functionality (see Section 2.5.1). We ex-
plain this by less execution of unnecessary functionality, and it is more likely to find
faults or shortcomings in used code as in unused source code.

We found that the concrete maintenance actions in unused code and used code are
similar®. Consequently, by considering execution profiles, 3.6% of all maintenance
actions could have been saved.

Thesis Contribution This contribution confirms by a case study, that mainte-
nance in unused source code can be a waste of resources, and therefore lays a
foundation for this thesis.

We aim at addressing the questions reported by Begel and Zimmermann [21] by
the retrospective analysis of usage information. To the best of our knowledge, there
is no research about how execution profiles can be used to answer these questions
after they arise. We close this gap with this contribution. However, we are aware of
agile methods that aim at constructively address these questions before they arise by
closely involving the customers into the development or maintenance process.

1 They had responsibilities, which are similar to the responsibilities of a product owner (see 2.2.3.).
2 They range from refactorings to more complex operations.

62

5. Contributions

5.2. Transfer of Unused Source Code to
Requirements Artifacts

Preliminaries In this contribution, we assume that functionality is documented
in use case documents [146]. This contribution makes use of Latent Semantic
Indexing [46] (LSI) to detect links between source code and use case documents.
We assume, that use case documents exist and are initially created by requirements
engineers before the maintenance of the functionality the use cases describe.

Goal The goal of this contribution is the identification of unused functionality
from unexecuted source code, to make execution profiles usable for product owners
and to point them to unused functionality. Therefore, we develop a technique for
detecting links between use case artifacts and source code.

Approach We detect links between source code and use case documents using LSI.
We collect execution profiles on the system under consideration in its productive
environment. With links between source code and use case artifacts, and execution
profiles, we identify the use case documents that describe functionality that was
not executed. More exact, we produce a ranking of use case documents, where use
case documents describing unused functionality are ranked highest.

Evaluation We evaluate our approach on a custom business information system
employed at Munich Re. The system is written in C#, and its functionality was
documented in 46 use case documents. We monitored its execution in the productive
environment for over one year. We filtered out unit testing code and did not take
external libraries into account. We evaluate our findings with the leading architect
of the software system. Among his tasks was change identification/prioritization.

With our approach, we detected two use case documents expressing unused func-
tionality (ranked at positions 1 and 2) and two use case documents, which expressed
partly unused features (ranked at positions 4 and 5). We draw two conclusions.
First, we confirm our finding of publication [1], that there is unused functionality in
custom business information systems. Second, we conclude that our approach is
capable of identifying use case documents that describe unused functionality, since
these use case documents were ranked highest.

We performed this study on use case documents. However, LSI is not specialized
nor bound to this kind of documents. Therefore, our approach technically is not
limited to use case documents. We are therefore confident that the presented
approach is also applicable in contexts, where functionality is documented in other
types of artifacts like user stories. In practice, these documents often exist [147].

Thesis Contribution The understanding of unused functionality helps the prod-
uct owner performing the tasks change identification/prioritization (see Section 2.2),
since he can prioritize changes in unused functionality low because this has a high
probability of being a waste of resources. The contribution helps the developer in
maintaining source code because also he can be pointed to unused functionality
during the implementation task, to avoid a waste of resources.

Besides the work of Juergens et al. [35], we are not aware of research work eliciting
feature level usage information. Their approach requires developers to manually
insert “feature beacons” into the source code. But, their technique is tedious, since
potentially hundreds of feature beacons have to be inserted manually and become
outdated due to changes. Thus, we propose a technique that allows for tracking the
execution of features without modifying source code.

63

Published in [4] at

ICSME 2014
acc. rate 36%
5 pages

Full paper

The author of this
thesis developed the
approach and the
tool support. He also
planned, designed,
and conducted the
case study.

5.3. Considering Usage Data in Maintenance

roc--~"~- -~~~ T~~~ T TS TTTTTTTTTTTTTTTT ST TSI TSI TSI TS ST T T
1 £ Maintenance

1
1
I {M Change :
' Ident./Prio. !
! 1
1

“’igge"ST performs

[Change :
Request selects |- .

expressed inT

Q Change OUUURUTURURRRRI Y IO > [Usage Data

Toles 17T | R

& Product
Owner

Figure 5.2.: Overview of the tasks of the product owner, where usage data can be
considered.

5.3. Considering Usage Data in Maintenance

The product owner and the developers are interested in the actual usage of their
software systems (see Section 3.1). But where and how can they profit from usage
data? In this section, we describe the areas of application of usage data.

Preliminaries This contribution refers to the techniques presented in publica-
tion [1] (see Section 5.1 and publication [4] (see Section 5.2). Thus, the assumptions
and limitation of these techniques apply also here.

Goal The goal of this contribution is to integrate the aforementioned techniques
into the software maintenance process (see Section 2.2).

Approach We describe in detail, in which tasks and by whom the techniques are
used. We focus on the tasks of product owners and developers. Building on the
maintenance process described in Section 2.1, we provide an extended maintenance
process that integrates tasks, where product owners and developers consider usage
data.

Thesis Contribution We embed the techniques described before into the software
maintenance process. With this, we provide a deeper understanding of which roles
use the presented techniques in which tasks in the maintenance process.

We are not aware of any attempts to embed execution profiles into the software
maintenance process. We build upon our own contributions, which were not
integrated into the software maintenance process beforehand.

64

5. Contributions

5.3.1. Product Owner

Figure 5.2 shows the tasks of the product owner (see Section 2.2), and in which tasks
the product owner profits from usage data. Solid black arrows show the tasks,
where the product owner profits from usage data. The product owner identifies
demanded changes, and selects change requests for implementation during the
change identification/prioritization.

Performing Change Identification: Demanding Changes Usage data shows
the product owner what functionality is used, and what is not. With the approach
presented in publication [1] (see Section 5.1), usage data is collected automatically,
and with the technique proposed in publication [4] (see Section 5.2), usage data is
transferred to documented functionality automatically.

Based on the information the aforementioned techniques yield, the product owner
can decide more easily, what functionality is useful, and what is useless. Conse-
quently, the product owner can steer the maintenance efforts to reduce maintenance
in useless functionality, which would be a waste of resources.

For useless functionality, the product owner has three possibilities to act. He can
demand the removal, preservation, or maintenance of useless functionality. The
strategies apply only to the characteristic source code (see Section 4.2) that realizes
useless functionality.

Removal With its realizing source code, the functionality is removed from the
system. The product owner files a change request that requests the removal
of the functionality.

Preservation The functionality, and its realizing source code is kept as it is, but it is
not maintained. In this case, the product owner does not file a change request.
This choice has implications on later change prioritization: the product owner
rejects change requests that target the respective functionality, or files new
change requests that only other functionality is maintained.

Maintenance The functionality, and its realizing source code are maintained, as if it
was useful. In this case, the product owner does not consider usage data.

Exemplary consequences of the application of the aforementioned strategies are
explained below.

Removal The functionality and its realizing source code cannot be (re-)used in other
functionality, which might be a loss. However, in modern version control
systems like SVN or Git, they can be restored, even after removal. Additionally,
this strategy prevents a waste of resources caused by maintenance in useless
functionality best.

Preservation Old and unmaintained functionality remains in the system. This
implies the risk of accidentally maintaining this functionality. Additionally,
faults can remain in the system, which may cause faults in case of, e.g.,
accidental usage by users.

Maintenance If useless functionality is maintained, it can be a waste of resources.
However, the functionality can become useful again, due to, e.g., changes in
the environment of the system®. In this case, the respective functionality is
likely to be ready for use.

Removing useless functionality is, among the described strategies, the safest way
of preventing a waste of resources. But, also removing functionality causes efforts.

3 For more reasons, see Section 2.2.4

65

5.3. Considering Usage Data in Maintenance

However, the efforts for removing functionality occurs only once. In contrast, if
functionality is not removed, it might be maintained more often.

However, removing useless functionality is not always possible. Under the follow-
ing exemplary circumstances, useless functionality has to be maintained or at least
preserved.

Dependencies The source code realizing useless functionality may depend techni-
cally on other source code*. This may prevent the useless functionality to be
removed, because it would impose difficult architectural changes. In these
cases, maintaining or preserving functionality can be necessary.

Politics/legislation Due to company politics or legislation, there can be obligatory
functionality, regardless of its usefulness. This functionality cannot be re-
moved. In this case, it has to be preserved, but should also be maintained.

The aforementioned strategies steer the maintenance process by triggering changes
to the software system, according to the usefulness of functionality. However, this
is not the only possibility to react. An alternative to the strategies described above
is training the users. Training the users to use other functionality than they actually
do can lead to a shift of usefulness in functionality.

The decision for the concrete treatment of unused and useless functionality depends,
however, on the project and its context. But, usage data points to functionality that
is likely to be useless, and therefore a possible subject to removal.

Performing Change Prioritization: Selecting Change Requests In the change
prioritization task, the product owner selects the change requests that are to be
implemented. There, the product owner has the option to accept, defer, or reject a
change request.

Accept The change request will be implemented as it is.
Defer The change request is not considered immediately, but later.
Reject The change request is not considered for implementation.

Based on usage data about the functionality targeted in the change requests, the
product owner can conclude about the usefulness of the respective functionality
(see Section 4.4.1). To prevent a waste of resources due to maintenance in useless
functionality, we therefore advise the product owner to reject the change request
that target unused functionality, since they are likely to provide no value to the
users.

Additionally, we suggest to critically review change requests that target unused
functionality. The goal of the review is to create new change requests with the
actions described for the task change identification.

In summary, with usage data, the product owner gains insights into the usefulness
of functionality. Based on this information, he can prevent maintenance in useless
functionality, to prevent a waste of resources.

Performing Analysis In the analysis task, the product owner investigates the
feasibility of a change request. This, however, is not influenced by the usage or
usefulness of functionality. Therefore, we do not consider this task.

5.3.2. Developer

The tasks of the developer comprise the design and implementation of change requests
(see Section 2.2). In these tasks, also the developer can profit from usage data, even

4 E.g., due to interface implementations

66

5. Contributions

rc- -~~~ """ "~~~ TS TS TTTTTTTTTTTTTTE TSI ST ST ST T
1 & Maintenance

1
1
1
! : Imple- !
M Design 0 P !
' 9 mentation !
I R A :
triggers performs
[@ Change .
Request
expressed in
Q Change - -> [Usage Data
demands
‘Roles [
1
| & Developer i
' '
. IS

Figure 5.3.: Overview of the tasks of the developer, where usage data can be considered.

if the change requests themselves were assessed based on usage data by the product
owner. Figure 5.3 shows the tasks of the developer that are associated with usage
data.

Performing Design In the design phase, the developer plans the maintenance
caused by a change request in detail. He decides which source code to modify and
how to modify it. Usage data, collected by the approach presented in publication [1]
(see Section 5.1), shows the developer, what source code is not executed. Unexecuted
methods are likely to implement useless functionality [1].

The developer has the choice between modifying source code, or not. Execution pro-
files give insights into the actual usage of the software system under maintenance.
The actual usage indicates, to a certain extent, usefulness. Thus, with insights into
the actual usage, the developer has more information about the usefulness of the
implemented functionality. Therefore, he can plan which source code to modify,
and which not, based on usage data. Therefore, usage data enables the developer
to decide, which source code not to change to use less resources. However, due to,
e.g., technical dependencies or reuse, maintenance in unexecuted methods can still
be necessary.

Performing Implementation Also during the implementation task, the developer
faces the risk of maintaining methods that realize useless functionality. With insights
into usage data, the developer can decide while modifying the source code, whether
the particular modification bears the risk of providing no value to the users.

5.3.3. Process

In this section, we comprise the actions that product owners and developers can
take based on usage data. Figure 5.4 outlines a process for considering usage data
in the activity software maintenance®. Solid arrows indicate the flow through the

5 The publications of this thesis are marked with the symbol [2.

67

5.3. Considering Usage Data in Maintenance

process, and dotted arrows illustrate the responsibilities of the roles®.

@ ¥ Collection of Roles i
Usage Data ' '
\ & Product Owner & Developer !
! 1
N 1
@ ¥ Transfer to R R LR R LD el .
Functionality . ;
L P N Yy #Maintenance|
1
' M Decision: M Decision: :
1 Usefulness of Funct. Usefulness of Code '
’ AN :
1 1
1 1
! { Change . . . X
! \dent /Prio, > M Analysis M Design M Implementation :
! 1
1 1

Figure 5.4.: Process and roles for considering usage data in software maintenance.

The process starts with the collection of usage data (see Chapter 4 and publication [1]
in Section 5.1). After this, usage data is transferred to the level of functionality,
using the technique presented in publication [4] (Section 5.2) and publication [5]
(Section 5.7). Both aforementioned steps are fully automated.

Based on the insights on usage data on the level of functionality, and his own
experience, the product owner decides about the usefulness of functionality. Thereby,
usage data enables the product owner to gain first insights and an overview of the
usefulness of functionality, and to revise his own experience.

The next step is the change identification/prioritization task (see Section 2.2). Based on
the usefulness of functionality, the product owner identifies changes, and prioritizes
changes (as described in Section 5.3.1).

After this, the product owner performs the analysis task and examines the feasibility
of the changes.

The developer decides about the usefulness of source code then, based on usage data
on the level of source code, and his experience. Usage data helps the developer to
gain first insights into usage, which he usually has not. From missing usage, the
developer can revise the usefulness of the maintenance action he plans.

After this, and with knowledge about which methods to maintain, the developer
performs the design and implementation task.

5.3.4. Implications on Resources

In this section, we explain the benefits of considering usage data in maintenance.
Thereby, we focus on resources. Our approaches are automated to a large extent. The
installation of our profiling technique in the productive environment is, from our
experience, done in few hours, and does not require further supervision. Therefore,
we assume that the costs of applying our approaches are low.

In the best case, developers and product owners are aware of the usefulness of
all unused source code and functionality. Then, they can save the amount of
maintenance, which goes into unused, and useless functionality.

6 For the sake of simplicity, we omit the responsibilities for maintenance tasks we already discussed in
Section 2.2.

68

5. Contributions

According to publication [1] (see Section 5.1), about half of all maintenance actions
in unused source code were providing no value to the users. With 7.6% of all
maintenance actions that were performed in unused source code, 3.6% percent
of maintenance in the examined business information system were a waste of
resources.

But, the additional tasks that are implied by the consideration of usage data, also
cause efforts. However, we expect the additional efforts to be small compared to
possibly reoccurring maintenance in useless functionality. A deeper investigation
is, however, subject to future work.

However, the examined software system was under quality control for several
years before our study. The gap between the product owner, developers, and
users was small because the system was developed for customers in the same
company. Additionally, the developing team was changing only infrequently. In
other contexts, e.g., with outsourced development, we expect developing teams
to change more often, and the gap between product owners and customers to be
larger. Therefore, we expect the amount of savings to be higher in other contexts.

69

Published in [2] at

AST@ICSE 2013
acc. rate 45%

4 pages

Short paper

The author designed
and conducted the
studies and devel-
oped the necessary
tool prototypes. He
also developed the
metric change cover-
age.

5.4. Uncovered Source Code in Regression Testing

5.4. Uncovered Source Code in Regression Testing

Preliminaries In this contribution, we introduce the metric change coverage, which
is the fraction of changed and covered methods to all changed methods. If change
coverage is high for a software system, many changed methods were covered during
testing. If change coverage is low, few changed methods were covered by tests.

We consider field faults as faults occurring in the productive environment of a
software system.

Goal We investigate changed source code that was not covered by regression tests
with respect to its fault rate. Furthermore, we examine the helpfulness of the metric
change coverage, and consequently information about changed, but uncovered
methods for test engineers.

Case Study We collect execution profiles in the testing environment of a business
information system. Additionally, we collect data about which source code was
changed during the activity maintenance, and which source code contributed to
field faults.

We investigate the existence and extent of changed source code and uncovered
source code. Upon this, we examine how much changed source code was not
covered by tests. We explore whether code regions with low change coverage
exhibit more field faults than code regions with high change coverage.

The system under consideration is employed at Munich Re, is written in C#, and
its size is 340 kLOC. We observed two releases of the system for 14 months in total.
We presented the results to a developer, who could also issue the execution of test
cases (see the role of the test engineer, Section 2.3).

Results 15% of all methods were changed in both releases respectively of the
software system and 34% of all methods were not covered by regression tests. Of
the changed methods, 44% in release 1, respectively 45% in release 2, were covered
by regression test cases. Thus, 8%, respectively 9% of all methods were changed,
but not covered by regression tests. Therefore, we conclude that gaps in the method
coverage of changed code exist in the analyzed system.

We observed 23, respectively 10, field faults. Of all field faults, 43% in release 1, and
40% in release 2, were located in modified, but uncovered source code, even though
these methods account for only 8%, respectively 9%. Consequently, with 0.53%,
respectively 0.21%, the probability of faults is higher in changed-untested methods.
This confirms that tested code or code that was not changed during maintenance is
less likely to contain field faults.

For several cases, the developer we presented the results to, issued the execution of
existing, and the creation of new test cases. Therefore, we conclude that coverage
information for changed source code is helpful in practice.

Thesis Contribution This contribution confirms, by a case study, that uncovered,
but changed source code contains more faults than other source code, and therefore
lays a foundation for this thesis.

It is common knowledge, that changed, but untested source code contains more
faults than other source code. However, we are not aware of any empirical evidence
for this in our context. We close this gap with this contribution. Existing coverage
metrics [148, 149, 150] focus on fine grained coverage information to detect gaps
in test coverage, but do not focus on changes. Our approach allows for assessing
the alignment of the activities regression testing and maintenance with the metric
change coverage, which focuses explicitly on changes. To the best of our knowledge,
this also closes a gap in literature.

70

5. Contributions

5.5. Transfer of Uncovered Source Code to
Regression Test Cases

Preliminaries The approach presented in this contribution is also based on LSI
(see Section 5.2).

Goal The goal of this contribution is the identification of test cases that cover
modified, but yet uncovered methods, to make coverage data better understandable
for test engineers, and to help test engineers in their task regression test case selection,
where they select test cases from existing test suites. In this contribution, we focus
on regression test cases, which are denoted in natural language and are executed
manually’ (see Section 2.3).

Approach Using LSI, we detect links between source code and regression test
cases. Additionally, we collect execution profiles on the system under test in
its testing environment. Based on the links between source code and regression
test cases, we identify the test cases for every method, which are likely to cover
it. Together with coverage data, we identify test cases that cover modified, but
uncovered methods.

Evaluation We evaluate our approach on a custom business information system
employed at Munich Re. The system is written in C# and we examined four
regression test cases. Among the four test cases, we had one test case with a failing
verdict. Additionally, the test cases did not only address the system itself, but also
external tools like Excel. The test cases varied in the number of interaction that
addressed the software system itself, and other tools.

We focused on the parts of the system that were covered by these test cases. In
the examined part of the system, which consisted of 2711 methods, methods were
covered by 2.56 test cases on average. Thus, randomly guessing a test case for a
method yields a 64% chance of hitting a test case that actually covers the method.

Our approach identified 1.75 test cases for each method on average. For 2444 meth-
ods, at least one covering test case was identified. Thus, in 90% of all methods, our
approach identifies a test case that covers the respective method, which outperforms
randomly guessing.

We furthermore evaluated whether the characteristics of the test cases influence
the results. The failing verdict did not influence the results. However, test cases
containing more interactions with the system under test, and less with external
tools, can be mapped with higher accuracy to methods using our approach.

We conclude that our approach is capable of identifying test cases that cover modi-
fied, but yet uncovered method. But, we rely on existing test cases. In case of new
or heavily modified functionality, the approach is not applicable.

Thesis Contribution The presented technique selects test cases. Therefore, it
directly helps the test engineer in the task test case selection (see Section 2.3). Since
we identify test cases for methods that are changed, and we propose to change
methods that realize useful functionality, we consequently suggest test cases for
useful functionality.

Many techniques for regression test case selection rely on logical properties like
pre and post conditions in source code, or coverage data from prior test runs [153,
154, 155, 156, 157, 158, 159]. The approach presented in this contribution is based
only static analyses of the test suite and source code, and does not need any of the
aforementioned information.

7 There is some evidence for manual testing being widely applied in practice [151, 152].

71

Published in [3] at

AST@ICSE 2014
acc. rate 43%

7 pages

Full paper

The author devel-
oped the approach
to test regression
test case selection.
He designed and
conducted the evalu-
ating study.

5.6. Considering Coverage Data in Testing

5.6. Considering Coverage Data in Testing

The test engineers show interest in the coverage of their software systems (see
Section 3.1). But where and how can test engineers and testers profit from coverage
data contained in execution profiles? In this section, we describe the areas of
application of coverage data provided by execution profiles.

Preliminaries This contribution refers to the techniques presented in publica-
tion [2] (see Section 5.4) and publication [3] (see Section 5.5). Therefore, the limita-
tions and assumptions of these techniques also apply here.

Goal The goal of this contribution is to integrate the techniques presented in
publication [2] (see Section 5.4) and publication [3] (see Section 5.5) into the activity
regression testing (see Section 2.2).

Approach In this contribution, we describe where and how test engineers profit
from coverage data provided by execution profiles (see Section 4.3) collected during
regression testing (see Section 2.3). We provide an extended testing process that
integrates the techniques mentioned before.

Thesis Contribution We embed the techniques described before into the regres-
sion testing task. With this, we provide a deeper understanding of which roles use
the techniques in which activities in the maintenance process.

We are not aware of any attempts to embed execution profiles into the regression
testing task. However, we build upon our own contributions, which were not
integrated into the regression testing task beforehand.

5.6.1. Test Engineer

In Figure 5.5, we illustrate the tasks of the test engineer (see Section 2.3), where cov-
erage data can be beneficial. The test engineer is in charge of the tasks management
of test suites by adding or removing tests, creation and modification of test cases, and
the selection of test cases for execution.

Coverage data shows the product owner, what was executed during test runs, and
what was not (see Section 4.4.2 and publication [2] in Section 5.4). Additionally,
with the publication [3], the test engineer gains insights into which regression test
cases should be executed to close gaps in test coverage (see Section 5.5).

Managing Test Suites: Adding Tests Based on information about existing test
cases that close gaps in the code coverage, the test engineer can add existing test
cases to existing test suites. The effect is a larger test suite that covers more source
code.

Creating and Modifying Test Cases The approach presented in publication [3]
(see Section 5.5) selects only existing test cases. However, for new or heavily
modified source code and functionality, test cases might not exist. However, the
approach still suggests test cases that are at least likely to cover the source code in
question. The test engineer can use this information to modify existing test cases, or
create new test cases that eventually lead to the coverage of the respective source
code.

72

5. Contributions

[Coverage Data

== === === ——==- : Fo— === =-======n

1{M Test Design
1

erférms !
& Test Engineer Jp——i» M Management ———>] Test Suite

X M Creation/ 1

! Modification :

o e e e e e e e e oo 1

Fmmm—mmmmm—— -, contains

3 {M Selection —

of_) [Test Case

1

1

1

1

1

| 1{M Test Impl.
1 1

1

1

1

1

1

Figure 5.5.: Overview of the tasks of the test engineer, where coverage data can be

considered.

Selecting Test Cases Based on coverage data, the approach presented in pub-
lication [3] (see Section 5.5) selects test cases that are likely to cover previously
uncovered source code. Therefore, the test engineer can use the suggestions for test
cases of the approach to select test cases for execution.

5.6.2. Process

') Test Design .~ ‘
9 q

M Creation/
modification

1
1
1 . -
| 1A <4
1

1
> @ Management — I Selection > N Execution
1

[@ # Transfer to 2 Assessment of 2 ¥ Collection of
Test Cases Coverage Gaps Coverage Data

Figure 5.6.: Process and roles for considering coverage data in testing.

Figure 5.6 illustrates the process for considering coverage data in regression testing®.
Solid arrows indicate the flow through the process, and dotted arrows illustrate the
responsibilities of the roles

The process forms a cycle that enables testing in iterations. In the first iteration,
coverage data cannot be considered, since no test cases were executed. The process
starts with the tasks of the test engineer creation and modification of test cases, contin-
ues with the management of test suites, and the selection of test cases. Afterwards,
the tester executes the selected test cases (see Section 2.3).

8 The publications of this thesis are marked with the symbol [2.

73

5.6. Considering Coverage Data in Testing

During the execution of test cases, coverage data is collected, using the techniques
for collecting execution profiles (see publication [1], Section 5.1, Chapter 4). Then,
with the techniques of publication [2] (see Section 5.4), gaps in the coverage of
source code are assessed automatically. Based on these gaps, the approach proposed
in the contributions [3] (Section 5.5) and [5] (Section 5.7) automatically transfers the
coverage information to test cases and suggests existing test cases that are likely to
cover the previously uncovered source code.

Based on the information about gaps in coverage, and which test cases are likely
to close the gaps, the test engineer creates or modifies test cases. The test cases must
validate the functionality that is realized in the uncovered methods. These test
cases can then be added to test suites during their management, with the goal to
permanently close the coverage gaps. The creation or modification task is especially
important, if no test cases exist that cover new or modified functionality.

The test engineer selects test cases from the test suites, also with the goal to close gaps
in coverage. Thereby, he focuses on test cases that were not executed previously,
since performing the same tests on an unmodified system is likely to cover the same
source code.

After this, the tester executes the test cases that were selected on the basis of coverage
information. After this, the cycle starts again, until the desired coverage is reached.
The desired coverage heavily depends on the project context and the domain.
However, we suggest to at least cover the changes made to the source code during
maintenance.

5.6.3. Implications on Resources

In publication [2] (see Section 5.4), we encountered that the probability of faults in
changed, but uncovered methods is higher than the probability of faults in changed,
and covered methods. In the study presented in the aforementioned contribution,
we examined two releases of the same software system. In the following, we
explain how many faults were, and could have been found by raising the coverage
of changed source code.

5.6.3.1. Assumptions

We assume, that the probability of introducing a fault into a system during mainte-
nance does not depend on whether the method is tested during regression testing
afterwards.

But, we assume that testing methods after their modification reveals faults. Ad-
ditionally, we assume that executing a method during testing yields a chance of
revealing a fault. We assume that this probability is the same for all methods.

Therefore, we assume that the detection of faults (test suite effectiveness) scales
linearly with the number of covered methods.

5.6.3.2. Approach

We divide the methods of a software system into covered and uncovered methods.
The absolute number of covered methods is denoted as m., and the absolute number
of uncovered method by m,,. The absolute number of faults in covered methods is
denoted as f. and the absolute number of faults in uncovered methods is f,. The
probability of faults in covered methods is p., and in uncovered methods p,,. The
latter values are calculated by the formulas:

74

5. Contributions

_ e

Pe = —

me

_fu
Pu =

My

The number of faults that would occur in the covered methods, if they were not
covered is denoted as f.. The absolute number of faults in uncovered methods, if
they were covered is denoted as f;,. We calculate the values by multiplying the
absolute number of the methods in the respective category with the probability of
faults in the other category:

[
fé:mc'pu:mc' E
My,
Je
filL:mu'pc:mu' <
me

The difference in the total number of bugs actually contained in covered methods
(f.) compared to the number of bugs if the methods were uncovered (f/) is denoted
as d.. And vice versa, the difference of faults for uncovered methods is denoted as
d,,. They are calculated by the following formulas:

dc:f(/:ffc
du:fuffq:

d. shows, how many more faults would be in the covered methods, if they were
uncovered. This means, that d. shows, how many faults were revealed by covering
these methods. We expect d. > 0, since p. < p,, as reported in publication [2] (see
Section 5.4). On the other hand, d,, shows, how many faults could have been found,
if all uncovered methods were covered.

From the values above, we compute the total number of faults contained in the
considered methods, before testing. We denote the total number of faults as F'. We
compute the total number of faults by adding the number of faults that occurred in
uncovered methods (f,) to the number of faults that would have occurred if the
covered methods had been uncovered (f):

F=fo+ [

Additionally, we calculate the number of faults that could have been detected if all
methods were covered F.

F' =d.+d,

From the total number of faults contained in the considered methods, we calculate
the share of faults that could have been detected by covering all methods S.

S:F

75

5.6. Considering Coverage Data in Testing

(2]

el

o

<

[}]

=

e

o

3 3 3

2 3 9

o []) o

S & O m ¥ P 7 d F F s
v 8395 5 0.0006 10.99 —5.99

3 T2 1375 18 0.0013 819 981 2899 1579 054

5
/14138 3 0.0002 11.54 —8.54

2 8574 7 0.0008 182 518 1894 1372 074

v 1469 5 0.0034 7.81 —2.81

8 T 1880 10 0.0053 640 360 8L G4l 036

C

S v 1553 3 0.0019 321 —0.21

o

s 2 1934 4 0.0021 374 o026 2 048 007

5 v 6899 0 0 465 —4.65

S Vo2 s 8 0.0007 0 8 1265 1265 1

©

£ /12585 0 0 569 —5.69

o

e 2 _ 6640 3 0.0005 0 3 869 869 1

Table 5.1.: Model instantiations for all and only changed methods, for two releases.

5.6.3.3. Instantiation

We instantiate the described model for all methods contained in the study object that
we also used in publication [2] (see Section 5.4). The study objects maintenance and
test did not follow the proposed approaches and processes. In these contributions,
we examined two releases of a business information system. We structure the
instantiation of our model along these releases. For each release, we present the
numbers for the aforementioned variables in Table 5.1.

Considering all Methods In the first release, 23 faults occurred in the productive
environment after testing. Five faults occurred in the covered methods, and 18
faults occurred in the uncovered methods. We conclude that about 29 faults existed
in the system. From these, about 16 faults could have been detected by covering all
methods with tests. Thus, 54% of the faults would have been detected by covering
all methods.

In the second release, 10 faults occurred in the productive environment. Three
faults occurred in the previously covered methods, and seven faults in uncovered
methods. We expect, that about 19 faults were in the system in total. If all methods
were covered by tests, about 14 faults, which account for 74% of all faults, would
have been detected.

Considering only Changed Methods Our process for considering coverage data
suggests considering especially changed methods. Therefore, we instantiate our
model for only the methods, that were changed during maintenance. Thereby, we
use the same study object as above, which we also used in publication [2] (see
Section 5.4).

In the first release, five faults occurred in changed, and covered methods. Ten faults
occurred in changed, but uncovered methods. We derive, that about 18 faults reside
in the changed methods. By covering all changed methods, about 6 faults could
have been detected, which would account for 36% of the faults in changed methods.

76

5. Contributions

In the second release, three faults were located in covered methods, and four in
covered methods. The probability of faults in either group of methods is quite
similar. This means, that whether methods were covered or not, did not influence
the number of faults. By applying our model, we derive, that no fault would have
been found by covering all changed methods in this particular release. This becomes
apparent by considering the numbers for the expected faults and the faults that
actually occurred. While we expect about three faults to be located in the covered
methods, three faults actually occurred there. This means, that testing did not reveal
these faults.

Considering only Unchanged Methods Considering only unchanged methods,
in both releases, there were no faults in covered methods. However, in both releases,
there were faults in the uncovered, and unchanged methods. According to our
model, the probability of faults in covered methods is p. = 0. Therefore, by applying
our model, we assume, that covering unchanged methods detects all faults. This
leads, according to our model, to the conclusion, that 100% method coverage leads
to the detection of all faults in the unchanged methods of the examined software
system. As this statement does not hold in general [145], this shows inaccuracies in
our model, which we discuss below in the threats to validity.

5.6.3.4. Threats to Validity

In this section, we describe the threats to validity for the findings produced by our
model described above.

External Validity We measured the numbers of covered and uncovered methods
and faults therein in one business information system. This prevents generalizability.
However, the maintenance and test processes, were typical for business information
systems. Additionally, the size and complexity of the examined system was usual
for business information systems. Therefore, we believe, that we did not examine a
special case.

Internal Validity Our assumptions might be wrong. Especially, we assume that
test suite effectiveness scales linearly with method coverage. This assumption is
not always valid, since the coverage is not a good predictor for the number of faults
revealed [145] (see Section 4.4.2). But, Inozemtseva and Holmes [145] report that
a larger number of test cases does influence the number of faults found. In our
process to close gaps in coverage, we suggest critically revising the gaps in coverage
and to create test cases that close these gaps and validate the realized functionality.
Therefore, we are confident that increasing coverage with our approach increases
the ability of a test suite to reveal faults.

We furthermore assume that the probability of revealing a fault is the same for
all covered methods. For the changed methods, we saw that the probability of
revealing a fault in covered methods is lower than for all methods together, and
for unchanged methods, it is higher. Therefore, the assumption does not hold. This
limits the expressiveness of our study. To act against this threat, we presented the
numbers for all methods together, and only changed, and unchanged methods, to
illustrate the effect.

Construct Validity In the instantiation, we consider only faults that actually
occurred in the productive environment of the examined business information

77

5.6. Considering Coverage Data in Testing

system. Not all faults might have become apparent in the productive environment
and still remain unnoticed. Therefore, we underestimate the number of faults.
However, the faults that occur and are revealed in the productive environment are
the ones that actually influence the user visible behavior. We argue, that these faults
are the ones that hurt, and therefore, we consider them.

5.6.3.5. Reflection

The results above indicate differences between all methods, changed methods, and
unchanged methods, regarding the probabilities of faults in covered and uncovered
methods. In changed methods, coverage is a bad indicator for the absence of faults,
while in all methods, the indicator works better, and in unchanged methods, the
indicator works, according to our results, perfect. So, the results vary greatly. But
where do these differences come from?

Considering all methods, we examine also unchanged functionality. For this func-
tionality, regression test cases exist. However, for the changed functionality, there
might be no test cases. Just covering the changed code with existing test cases does
not consider the changes. The changes might be subtle, and therefore, they do
not even become apparent. Consequently, also faults are not revealed by testing.
But testing still covers methods, which are possibly changed. This underpins the
observations of Inozemtseva and Holmes [145], who show that coverage is a bad
indicator for the effectiveness of test suites.

For unchanged methods, there are test cases that correspond to the realized func-
tionality. Additionally, these test cases are likely to be executed earlier, since they
are regression test cases. Therefore, faults in the executed methods are likely to be
removed before. However, in unchanged methods, where no test cases exist, there
are still faults. These faults cannot be detected in regression testing without cover-
ing the realizing methods. However, our model suggests, that covering unchanged
methods would detect all faults. However, this is probably too optimistic. But, since
faults were either in the unchanged system since the beginning of maintenance,
or due to faults introduced by maintenance, there must have been a point in time,
where these methods were changed. From this point on, the fault could have been
detected, but was not, and remained in the software system.

Therefore, it is important, to critically revise gaps in the coverage of changed
methods. It is not enough to run additional existing regression tests. The test
engineers have to, based on the results our approaches yield, define new test cases
for changed functionality or modify existing test cases accordingly. This emphasizes
the importance of the activity creation/modification in the process proposed before
(see Section 5.6.2).

Additionally, the estimation of the resources that can be saved by considering
coverage data according to our approaches and processes, is difficult.

The costs of faults occurring in the productive environment are hardly predictable.
They depend on the context of a software system and its domain. For example,
in insurance companies, contracts over large amounts of money are made in their
systems. Faults can become equally expensive. In safety-critical systems, even
people can be harmed.

Since we can hardly estimate the costs of faults, the implications on resources are
not predictable. However, since we suggest creating and executing additional tests,
this rises the expenses for testing. From our experience, only few tests (about one
to five) are created and selected for execution due to the presented analyses. With
regression test suites containing ten times this number, or even more, the increase
of expenses for testing is small, since all regression tests are usually executed.

78

5. Contributions

The small increase of expenses, and the possibly large costs due to failures, give our
approaches the character of a cheap insurance against expensive faults that would
have been missed without our approaches.

79

Published in [5] at

RET@ICSE 2015
acc. rate NA

7 pages

Full paper

The author of this
thesis developed the
approach for config-
uring LSI. He also
designed and con-
ducted the studies.

5.7. Automatically Linking Source Code with Other Artifacts

5.7. Automatically Linking Source Code with Other
Artifacts

Preliminaries LSI detects links between artifacts in a document corpus. Its output
is a matrix (documents x documents) containing their similarity (ranging between
-1 and 1). We call this matrix link matrix.

The contributions [3] and [4] are based on LSI. However, LSI has many configuration
options. The accuracy of the links between documents that are detected by LSI
heavily varies with the configuration. Additionally, the configuration of LSI has to
be done manually by experts for this technique. This limits the applicability of LSI
and consequently the applicability of the aforementioned approaches in practice.

Furthermore, there is often no knowledge about correct links in the document
corpus in our context, since then we would not need to detect the links between
documents automatically.

Goal The goal of this contribution is to provide an automatic approach to config-
ure LSI, which does not rely on knowledge about correct links between documents,
so that it produces accurate results.

Approach In a pre-study, we learn that there are heuristic metrics, which can
be collected on the link matrices produced by LSI, and which correlate with their
accuracy. These metrics do not rely on any knowledge about correct links between
documents. Based on the heuristic metrics, we filter out inaccurate link matrices,
and by doing so, also configurations, that yield inaccurate results.

Evaluation We evaluate the approach on seven document corpora from industry
(Munich Re, NASA) and academia. The contained documents are high- and low-
level requirements, use cases, test cases, change requests, and defect reports. We
compare the accuracy of the configuration selected by our approach fully automati-
cally to the accuracy of the best possible configuration, and to the accuracy of the
configuration chosen manually by other researchers’.

In one case, our approach selects the best possible configuration. In the other six
cases, the approach selects a configuration that yields results with an accuracy that
is close to the best possible configuration.

Compared to the configurations chosen by other researchers on the same document
corpus, our approach selects also configurations yielding either better, the same, or
only slightly worse accuracy.

LSI is not always capable of detecting links between documents accurately. But,
our approach selects the configurations that yield nearly the most accurate possible
results using LSI.

Thesis Contribution This contribution forms an extension to the contributions [3]
and [4]. It provides a mechanism for further automating the approaches presented
in these contributions and therefore improves their applicability.

Existing approaches to configuring LSI rely on links between documents that have
to be created by system experts [47, 48, 160, 161]. These approaches select the
configuration for LSI that reflects these manually created links best. In contrast to
these approaches, we present a technique that does not rely on manually created
links.

9 Often with knowledge about correct links

80

CHAPTER O

Conclusions
Contents
6. 1. Summary e e e e e 82
6.2. Limitations i i i i e i e e e e e e e 85
6.3. FutureWork ittt et i 89

To conclude this thesis, we first give a summary of this thesis and describe key
takeaways. We furthermore discuss limitations of the presented approaches and
give an overview of future work.

81

6.1. Summary

6.1. Summary

Context In this thesis, we concentrated on custom business information systems.
These systems are “software systems to support forecasting, planning, control,
coordination, decision making, and operational activities in organizations” [6], and
are developed for users, who are specialized in their working domain. Business
information systems provide value to their users by supporting their work-flows in
their daily business. In this context, users perceive functionality as useful, if using
it increases their productivity, performance, or effectiveness on the job [7].

Business information systems are often in use over years, or even decades [8].
During these long periods of time, the users, environments, or business models
change. Therefore, the software systems themselves have to be adapted to these
changes. These changes are realized in the maintenance process.

Motivation In this process, product owners, developers, test engineers, and testers
are interested in usage and coverage of the business information system, for which
they are responsible [21, 20]. Our own observations underpin these questions: we
observed, that nearly half of the maintenance actions done in unexecuted source
code were a waste of resources [1]. Additionally, we observed that modified, but
uncovered methods contain more faults than other methods [2].

We focused on the question: How can product owners gain insights into the usage
and test engineers into the coverage of software systems in a lightweight and
minimal invasive way?

We presented execution profiles to measure usage and coverage. Execution profiles
express, which methods (on the level of source code) were executed during a given
period of time. If execution profiles are collected in the productive environment of a
software system, they express, which methods were executed by the users. Methods
implement functionality, and therefore, their usage expresses, which functionality
was used. Execution profiles, which are collected in the testing environment of a
software system, show, which methods were covered by testing. Execution profiles
are lightweight, since they do impose only little additional efforts on product
owners, developers, test engineers, and testers. Execution profiles are minimal
invasive, since their collection is hardly noticeable and their interpretation integrates
seamlessly into existing processes.

Research Objective Motivated by the desire of product owners, developers, test
engineers, and testers to gain insights into the usage and coverage, we investigated
the research objective: We explore the benefit of analyses of execution profiles
collected for business information systems in software maintenance and test.

6.1.1. Contributions

To approach our research objective, we presented two case studies that clarified
the extent and effect of unexecuted source code. We furthermore developed three
approaches for utilizing execution profiles in the maintenance process. Further-
more, we proposed two processes that integrate execution profiles in the activities
maintenance and regression testing. Figure 6.1 shows the contributions of this
thesis, separated by the activities software maintenance and regression testing.

Studies To understand the extent and effects of unexecuted source code, we
conducted two studies. One about unexecuted source code in the productive
environment, and one about unexecuted source code in testing.

82

6. Conclusions

1 1
1 1
1 1 1 1
! E) Unused source code ! ! El Uncovered source code ! 9]
| in maintenance 1 | in regression testing 1 5
: (Publication A, Section 5.1) ' : (Publication B, Section 5.4) 8
1 1 1 1
: | L J :
1 1 1 1
' E) Transfer of unused source \ ' El Transfer of uncovered source \
! code to requirements artifacts | ! code to regression test cases |
! (Publication D, Section 5.2) ! | (Publication C, Section 5.5) 2
1 1 1 1
e}
1 1 1 1 =
o
: \ | : / L8
1 1 0
: El Automatically linking source ! &
' code with other artifacts !
: (Publication E, Section 5.7) '
: . \ :
1 1 1 1
1 1 1 1
h
' Considering usage \ ' Considering coverage o
! data in maintenance ! ! data in regression testing ! §
! (Section 5.3) ! ! (Section 5.6) | 8
: I :)2
1 1 1 1

Figure 6.1.: Overview of the contributions.

Our study about unexecuted source code in maintenance (Publication A) shows,
that one quarter of all methods in the examined systems were not executed over
two years. In these methods, 7.6% of the maintenance actions take place. From the
maintenance in unexecuted source code, about half of it was a waste of resources.
Consequently, 3.6% of the maintenance efforts could have been saved by considering
execution profiles. However, the examined software system was developed in house
by the same developers for years and the developers were familiar with the domain.
Therefore, the developers could estimate the usage of their software system to a
certain extent. However, this is not the case, when, e.g., developers are unfamiliar
with the software system or its domain, or do not know the software system as
good due to fluctuation in the developing teams. Thus, we expect the amount of
maintenance that can be saved by considering execution profiles to be higher in
other maintenance projects.

Our study about unexecuted source code in regression testing (Publication B) re-
vealed that, in the examined software system, about one third of all methods were
not executed, and therefore uncovered during regression testing. From the methods
that were changed in maintenance, almost half of them were covered by regression
tests. But, almost 10% of all methods were changed, but uncovered. In the changed,
but uncovered methods, we observed about almost half of the faults that became
apparent in the productive environment afterwards. This shows, that in the exam-
ined business information system, the probability of faults is higher in changed, but
uncovered methods than in other source code. Thus, we suggest that test engineers
reflect gaps in the coverage of changed methods critically to avoid faults. This
underpins common knowledge. However we are not aware of other research that
examined the probability of faults with respect to changes and coverage.

Approaches Building on the insights on unexecuted source code, we provided
approaches for product owners, developers, and test engineers, which enable them
use execution profiles.

83

6.1. Summary

For product owners and developers, we present an approach to identify unused
functionality (Publication D). We thereby rely on functionality to be documented
in requirements artifacts. We employ the information retrieval method Latent
Semantic Indexing [46] (LSI) to identify the requirements artifacts that describe
functionality, which is not used. Our evaluation of the technique showed, that the
transfer of execution profiles to use case documents produces accurate results on
the examined business information system. With the results, product owners can
prevent the waste of resources caused by maintenance in useless functionality, by
critically revising maintenance in unused functionality.

For test engineers, we proposed an approach, based on LSI to automatically select
regression test cases that are likely to cover changed, but yet uncovered source
code (Publication C). Our evaluation showed, that the technique produces accurate
results. However, the technique relies on existing test cases. For new or changed
functionality, often no test cases exist.

The latter contributions are based on LSI. However, LSI is not a fully automated
approach, since it needs to be configured manually. But the accuracy of the results
of LSI vary heavily with its configuration. Therefore, we proposed an approach
for configuring LSI automatically (Publication E). The evaluation of the approach
showed, that the configurations selected by the approach yield accurate results.

These approaches show, how product owners, developers, test engineers, and
testers can analyze execution profiles automatically and profit from them.

Processes Our goal is to enable product owners, developers, testers, and test
engineers to benefit from execution profiles. Therefore, we weave our approaches
into the existing maintenance and testing activities.

In maintenance, we propose a process to consider usage data. We weave the
automated approaches for collecting usage data (Publication A) and the transfer of
the information about unexecuted source code in execution profiles to functionality
(Publication D) into the existing tasks in software maintenance. Based on the results
of our automated approaches, product owners and developers decide upon the
usefulness of functionality and source code.

In testing, we extend the existing process by adding our automated approaches
for collecting coverage data (Publication A), assessing gaps in method coverage
(Publication B), and the transfer of these gaps to test cases (Publication C). We
conclude, that the test engineer has to decide which tests need to be created or
modified to validate functionality that remained uncovered.

6.1.2. Key Takeaways

We formulate the key takeaways of this thesis in a short overview.

There is a gap between users and other stakeholders. Due to the different
areas of expertise of the users of custom business information systems and product
owners, developers, test engineers, and testers, there is a gap between stakeholders
in non-agile maintenance projects. This gap leads to misunderstandings between
the stakeholders in charge of maintaining the software system and its users.

Execution profiles are a possibility to gain knowledge about the execution of
software systems. With execution profiles, we measure, which source code was
executed (usage data). If execution profiles are collected in the productive environ-
ment, they indicate usage. In case the execution profiles are collected in the testing

84

6. Conclusions

environment, they indicate coverage (coverage data). Product owners, developers,
test engineers and testers can use this information to answer the questions reported
by Begel and Zimmermann [21].

Data about usage and coverage is interesting. Product owners, developers,
test engineers, and testers want to understand which source code and functionality,
and how functionality is executed in their systems [21, 20]. With this knowledge,
product owners and developers can understand the actual usage of their software
systems. Thus, they understand better what is useful for the users of their software
systems (see Section 5.1 and Section 5.2). But also for test engineers and testers,
the execution of software systems is of interest. With data about the execution
in software systems, they can measure test coverage. With knowledge about test
coverage, test engineers and testers have insights into where testing efforts should
be spent (see Section 5.4 and Section 5.5).

Considering execution profiles yields benefits. Source code realizes function-
ality and is covered by test cases. With usage data, we can derive, which functional-
ity was not used (see Section 4.2). Maintenance in unused functionality bears a high
risk of being a waste of resources (see Section 5.1). With usage data, product owners
can detect unused source code and functionality (see Section 5.2 and Section 5.3).
Thus, and since product owners are in charge of the economic success of a software
system, usage data is of interest to them. With usage data, they can reduce the
waste of resources.

Source code that was not covered by tests is certainly not tested (see Section 4.3). It
is the goal of test engineers and testers to reveal faults. With coverage data, they
can detect gaps in coverage, especially in change coverage (see Section 5.4). Based
on this information, test engineers can select or modify existing test cases (see
Section 5.5), or create new test cases, with the goal to test modified source code (see
Section 5.6). However, we advise that just covering source code does not mean that
it was validated against the customer’s expectations.

Thus, we conclude, that product owners, developers, test engineers, and testers
benefit from the consideration of execution profiles. If the questions reported by
Begel and Zimmermann [21] occur!, we advise to use execution profiles to gain
insights into the actual usage and coverage of the system under maintenance or test,
because with execution profiles, product owners, developers, test engineers, and
testers can at least partially answer the questions of Begel and Zimmermann [21].

6.2. Limitations

Beneath the benefits of execution profiles, there are also some limitations, which we
reflect in this section.

6.2.1. Limitation to Existing Artifacts

Execution profiles can only be collected on existing source code. Furthermore, our
approaches to transfer the information contained in execution profiles to functional-
ity and test cases rely on existing artifacts. Thus, it is not possible with the proposed
approaches, to e.g., suggest test cases that do not yet exist.

1 We expect these question to be more likely to occur in non-agile contexts.

85

6.2. Limitations

Limitation to Existing Functionality In execution profiles, users do not directly
express, what is useless for them. But, from execution profiles, we suggest to mea-
sure the usage of functionality, and then draw conclusions about their usefulness.
This limits the scope of the proposed approaches to existing functionality. So, it is
not possible to derive new functionality from the usage of software systems.

Additionally, to identify unused functionality, we select existing requirements
documents, that describe unused functionality. However, the functionality of
a software system is not necessarily documented. In this case, our approaches
cannot identify unused functionality. Additionally, the proposed approaches are
not capable of identifying functionality that would be useful for the users, if it was
realized in the software system under examination.

Limitation to Existing Test Cases Based on gaps in coverage, we identify ex-
isting test cases, which are likely to cover the source code in question. However,
if there is no such test case, our approaches are not capable of suggesting a new
test case. Therefore, our approaches are limited to existing test cases. The field
of test suite augmentation focuses on extending existing test suites to, e.g., gain
higher coverage, or more effective test suites [162, 163, 164]. Due to the limitation
to existing test cases, our approaches cannot be used for test suite augmentation
directly. The approaches can be used for giving hints, for which functionality test
cases should be created.

6.2.2. Limited accuracy

The relation of execution, or usage and coverage, to usefulness and validation is
usually not straightforward. We rely on a correlation between these properties, but,
the relation is inaccurate. Additionally, we cannot conclude about single users, the
frequency of usage, or the order in which source code or functionality is used.

Usage and Usefulness The relation of usefulness and usage is described in the
TAM (see Section 2.5). There is a correlation between the usage and the usefulness
of functionality. However, the relation is not necessarily causal or strictly logical
and usefulness is not the only reason for usage (see Section 4.4.1).

Our own study showed, that almost half of the maintenance in unused source code
was still important (see Publication A, Section 5.1). This shows the limitations of
accuracy when inferring usefulness from usage. Therefore, we require product
owners and developers to decide manually about the usefulness of functionality.

We discussed some examples where usage does not indicate usefulness (see Sec-
tion 4.4.1). Users might not know functionality they would perceive as useful and
therefore not use it, and even use other functionality as a substitute. Additionally,
users might use functionality, even though they perceive it as not useful either
accidentally, or as a substitute for missing functionality.

Business information systems support the workflows of users in their daily business.
However, if the workflows itself are designed badly, also the software systems
that implement the workflows do not support the users well. This leads to less
usefulness of these software systems in the perception of the users. However, the
users might be obliged to use functionality. In this case, and in general, where
users are obliged to use functionality?, usage does not allow for conclusions about
usefulness. Additionally, in these cases, usage might even lead to wrong conclusions
about usefulness.

2 This would be extrinsic motivation, in contrast to the more intrinsic view of the TAM.

86

6. Conclusions

Coverage and Validation Plain coverage of source code does not mean the real-
ized functionality was tested. An extreme example are test cases that do execute
source code, but do not check for any results. Inozemtseva and Holmes [145] report
that coverage is not a good indicator for the effectiveness of test suites. However,
in this thesis, we use missing coverage as an indicator for what was certainly not
tested.

The relation between covered and tested source code depends on whether test cases
actually validate the functionality of the covered source code. We acknowledge
that covered source code is not necessarily tested. Therefore, just raising coverage
might not yield the desired result of revealing more faults. Therefore, we suggest
monitoring the effectiveness of test cases.

However, with coverage data, we can identify methods, that were not covered.
Therefore, these methods are definitely untested.

6.2.3. Assumptions

In this thesis, we stated several assumptions and narrowed down the context. We
reflect these assumptions critically.

Custom Business Information Systems We considered only custom business
information systems. These systems are employed in the working environment of
users. There, they serve the users in tasks that are specialized to their domain. This
excludes off-the-shelf software like text processing systems or operating systems.
In these systems, users are far more diverse than in business information systems.
Additionally, the experience of the users in the functionality of these systems varies.
So, for example in text processing, there can be expert users, who master the area
of text processing, whilst other users are beginners. These users use the software
systems differently.

Linton et al. [112, 113] present a technique, where they monitor the interactions
of users to compare them with the interactions of expert users. They found out,
that expert users of a text processing tool use the functionality, which novice users
use, with the same frequency. However, expert users extend their repertoire of
functionality. This means, that the amount of unused functionality is reduced by
expert users. However, the functionality that is not used by novice users, but expert
users is not useless. However, business information systems also different users.
They vary not as much in their expertise with the system, but in the tasks they
perform. For the different users, different functionality can be useful. Therefore, we
expect the relation of usage and usefulness in off-the-shelf software is comparable
to the relation in business information systems.

However, the limitation to custom business information systems excludes the
majority of installed software systems, which impacts the generalizability of our
findings negatively.

Systems with User Interfaces We assume, that users decide, which functionality
they use, by directly interacting with software systems via a user interface. However,
not all business information systems are built for this way of usage. There are, e.g.,
batch systems, which are triggered remotely by other software systems. These
systems are either not triggered by users at all (fully automated batch jobs), or
only indirectly, if the user executed functionality that triggers another software
system. However, execution profiles also in these systems show usage and coverage.
Therefore, the aforementioned techniques can also be applied to these systems, with

87

6.2. Limitations

the limitation, that not the usefulness for users is in the focus, but the usefulness for
underlying business purposes.

Long Living Software Systems that are Actively Maintained We developed
our techniques for long living software systems that are actively maintained. This
is often the case for business information systems [8]. However, not all business
information systems are long living, or are actively maintained. In these systems,
the resources that are spent on maintenance are less. Therefore, in shorter living
systems, or systems that are not actively maintained, the benefit of the proposed
approaches is less. However, the approaches can still be applied in shorter living
software systems that are actively maintained. In systems that are not maintained,
there are no stakeholders to perform the tasks required by our approaches (see
Section 5.3 and Section 5.6). Therefore, our techniques cannot be applied there. But,
if the systems are not maintained, there is also no risk of wasting resources in their
maintenance.

Existing Processes We rely on existing process as described in Section 2.1, Sec-
tion 2.2, and Section 2.3. However, different processes and approaches to mainte-
nance can be established. One example are agile methods. Agile methods focus on
the reduction of waste in maintenance [12, 13]. Thereby, these methods focus on
frequent discussions of developing stakeholders and users or customers. However,
also in agile contexts, the risk of implementing obsolete requirements exists [22].
Thus, we suggest to complement the discussions between developing stakeholders
and customers or users with the proposed approaches. One example, how this can
be done, is to retrospectively consider, whether the functionality that was imple-
mented is used as expected. With the techniques presented in this thesis, product
owners can detect obsolete requirements retrospectively.

An emerging paradigm in software development and maintenance are DevOps [165,
166]. As we already described (see Section 4.1.4), operations are responsible for
collecting execution profiles. With DevOps, developers and operations cooperate
closely, or these roles are even fulfilled by the same person. Thus, developers are
able to gain feedback about usage rapidly, which enables them to bring in this
knowledge into discussions with the product owner or other stakeholders.

Manual System Tests We assume, that regression testing is often done manually.
However, there is a trend towards automating regression tests, also on the system
level. However, there is some evidence, that there are still software systems, which
are tested manually [151, 152]. Therefore, we regard this assumption as valid. But, if
tests are performed automatically, their execution costs drop, and, e.g., all regression
test cases can be run in one night. In this case, our technique for selecting regression
test cases (Publication C, Section 5.5) does not need to be applied. However, there
can still be gaps in the coverage of changed source code. These gaps still yield
a higher probability of faults. Test engineers aim at detecting faults. Therefore,
we conclude that our approach to investigate gaps in the coverage of changed
source code, which is presented in Publication B (see Section 5.4) is beneficial of test
engineers.

Functionality is Implemented in Methods We assume, that functionality is dis-
tinguishable by the methods that implement it. However, this might be wrong, and
therefore, execution profiles on the level of methods too coarse grained. But, we rely
on the findings of Juergens et al. [35], who report they were able to find methods
that were suitable for characterizing functionality in most cases.

88

6. Conclusions

6.2.4. Generalizability

We performed the major part of our studies in the context of the reinsurance com-
pany Munich Re, and made several assumptions as described above. This limits
the generalizability of our findings we gathered in our studies and evaluations (see
Section 6.1.1). However, Munich Re is an experienced company in software devel-
opment and applies common techniques, processes, and strategies for developing
software. Thus, we expect Munich Re to be similar to other software developing
companies. Therefore, we are confident that our findings are transferable also to
other companies developing custom business information systems, which fulfill
our assumptions.

6.3. Future Work

Building on this thesis, there arise some new topics in research and practice. Many
of these topics arise from the limitations we presented before, and augment the
applicability of our approaches.

Combination with other Techniques Execution profiles and analyses of them
are optimized to cause only small additional efforts, but reduce the efforts in the
software maintenance process. This gives room for more extensive user involve-
ment. To overcome the limitations of our approaches to existing and documented
functionality, our analyses can be combined with user involvement techniques,
which require direct interaction with users (see Section 3.2.2), to gain insights in the
usefulness of functionality that is not yet implemented into a software system.

Agile Processes The reduction of waste is central for agile processes. However,
to the best of our knowledge, there are no reliable reports about whether agile
processes really avoid waste, or how much waste they avoid. Especially, when it
comes to extra features [167], no evidence for the effectiveness for agile methods
is given. Since one of the potential benefits of the application of usage data in
maintenance is the elimination of extra features, we suggest to examine agile
methods for their capabilities regarding the reduction of extra features. This would
also allow for a more detailed comparison of the techniques presented in this thesis
and agile methods.

Usage of Data The approaches we proposed are limited to source code. Therefore,
they are not able to consider the data that is viewed or edited by users. To gain
insights into the usage of data, for example, log file analysis techniques can be
employed (see Section 3.2.2): by analyzing log files of servers providing data,
product owners can gain insights into which data is viewed or edited. However,
with a technique for collecting information about the usage of data, we expect our
approaches to provide more detailed information.

Usage of Maintenance Artifacts One particular instance of considering data is
monitoring the artifacts used during the software maintenance process. Software
maintenance not only produces source code, but also other artifacts like require-
ments documents or test cases. These artifacts aim at facilitating activities like
project management, maintenance, or testing. However, in practice, artifacts can
be created that are not relevant for any activity®. For example, test cases might be

3 Agile methods also focus on the reduction of irrelevant artifacts [167].

89

6.3. Future Work

created that are never executed. The creation of these artifacts is consequently a
waste of resources. Therefore, the identification of these unused artifacts can also
be helpful in practice to reduce a waste of resources.

90

Bibliography

[1] S.Eder, M. Junker, E. Jurgens, B. Hauptmann, R. Vaas, and K. Prommer, “How
much does unused code matter for maintenance?” in International Conference
on Software Engineering (ICSE). 1EEE, 2012, pp. 1102-1111, Reprinted with
permission.

[2] S. Eder, B. Hauptmann, M. Junker, E. Juergens, R. Vaas, and K.-H. Prommer,
“Did we test our changes? assessing alignment between tests and develop-
ment in practice,” in International Workshop on Automation of Software Test
(AST). 1IEEE, 2013, pp. 107-110, Reprinted with permission.

[3] S. Eder, B. Hauptmann, M. Junker, R. Vaas, and K.-H. Prommer, “Selecting
manual regression test cases automatically using trace link recovery and
change coverage,” in International Workshop on Automation of Software Test
(AST). ACM, 2014, pp. 29-35, Reprinted with permission.

[4] S. Eder, H. Femmer, B. Hauptmann, and M. Junker, “Which features do
my users (not) use?” in International Conference on Software Maintenance and
Evolution (ICSME). 1IEEE, 2014, pp. 446450, Reprinted with permission.

[5] —, “Configuring latent semantic indexing for requirements tracing,” in
International Workshop on Requirements Engineering and Testing (RET). 1EEE,
2015, pp. 27-33, Reprinted with permission.

[6] P. Bocij, A. Greasley, and S. Hickie, Business information systems: technology,
development and management. Pearson Education, 2008.

[7] P. Legris, J. Ingham, and P. Collerette, “Why do people use information
technology? a critical review of the technology acceptance model,” Information
& Management, vol. 40, no. 3, pp. 191-204, 2003.

[8] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann, J. Stammel, and R. Weiss,
“Sustainability guidelines for long-living software systems,” in International
Conference on Software Maintenance (ICSM). 1EEE, 2012, pp. 517-526.

[9] IEEE, “IEEE standard for software maintenance (IEEE Std 1219-1998),” 1998.

[10] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: A
roadmap,” in Future of Software Engineering (FOSE). ACM, 2000, pp. 73-87.

[11] E Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering and agile
software development,” in International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE). 1EEE, 2003, pp. 308-313.

[12] M. Poppendieck and T. Poppendieck, Implementing Lean Software Development:
From Concept to Cash. Addison-Wesley, 2007.

91

Bibliography

[13] C. Ebert, P. Abrahamsson, and N. Oza, “Lean software development,” IEEE
Software, vol. 29, no. 5, pp. 22-25, 2012.

[14] M. Fowler, “Yagni,” http:/ /martinfowler.com/bliki/Yagni.html, 2015, ac-
cessed: March 28 2016.

[15] S. Arnold and P. White, “Leaner software development using devops,”
http:/ /www.ibm.com/developerworks/rational/library /leaner-software-
development-with-the-aid-of-collaborative-lifecycle-management/, 2014,
accessed: March 28 2016.

[16] J. Johnson, “Roi, it’s your job,” Keynote at XP, 2002.
[17] M. Cohn, “Are 64% of features really rarely or never used?”

https:/ /www.mountaingoatsoftware.com/blog/are-64-of-features-really-
rarely-or-never-used, 2015, accessed: March 28 2016.

[18] R. Bergman, “Embracing nihilism as a software development philosophy and
the birth of the big book of dead code,” in Agile Conference (AGILE). 1EEE,
2012, pp. 86-91.

[19] R. Lichty, “The most convincing reason to change from waterfall to ag-
ile,” http:/ /ronlichty.blogspot.de /2013 /07 / the-most-convincing-reason-to-
change.html, 2013, accessed: March 28 2016.

[20] J. Heiskari and L. Lehtola, “Investigating the state of user involvement in
practice,” in Asia-Pacific Software Engineering Conference (APSEC). 1EEE, 2009,
pp- 433-440.

[21] A.Begel and T. Zimmermann, “Analyze this! 145 questions for data scientists
in software engineering,” in International Conference on Software Engineering
(ICSE). ACM, 2014, pp. 12-13.

[22] K. Wnuk, T. Gorschek, and S. Zahda, “Obsolete software requirements,”
Information and Software Technology, vol. 55, no. 6, pp. 921-940, 2013.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
50950584912002364

[23] T. Dyba and T. Dingsoyr, “What do we know about agile software develop-
ment?” [EEE Software, vol. 26, no. 5, pp. 6-9, 2009.

[24] W. Raschke, M. Zilli, J. Loinig, R. Weiss, C. Steger, and C. Kreiner, “Where
does all this waste come from?” Journal of Software: Evolution and Process,
vol. 27, no. 8, pp. 584-590, 2015.

[25] M. Ikonen, P. Kettunen, N. Oza, and P. Abrahamsson, “Exploring the sources
of waste in kanban software development projects,” in Conference on Software
Engineering and Advanced Applications (EUROMICRO), 2010, pp. 376-381.

[26] E. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance
of information technology,” MIS Quarterly, vol. 13, no. 3, pp. 319-340, 1989.

[27] ——, “User acceptance of information technology: system characteristics, user
perceptions and behavioral impacts,” International Journal of Man-Machine
Studies, vol. 38, no. 3, pp. 475-487, 1993.

[28] J. Kramer, S. Noronha, and J. Vergo, “A user-centered design approach to
personalization,” Communications of the ACM, vol. 43, no. 8, pp. 44—48, 2000.

[29] B. W. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[30] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Professional,
vol. 2, no. 3, pp. 17-23, 2000.

[31] R. L. Glass, “Maintenance: Less is not more,” IEEE Software, vol. 15, no. 4, pp.
67-68, 1998.

[32] D. Yeh and J.-H. Jeng, “An empirical study of the influence of departmen-
talization and organizational position on software maintenance,” Journal of

92

Bibliography

Software Maintenance and Evolution: Research and Practice, vol. 14, no. 1, pp.
65-82, 2002.

[33] H. Rombach, B. T. Ulery, and]J. D. Valett, “Toward full life cycle control:
Adding maintenance measurement to the sel,” Journal of Systems and Software,
vol. 18, no. 2, pp. 125-138, 1992.

[34] V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo, and J. D. Valett,
“Understanding and predicting the process of software maintenance release,”
in International Conference on Software Engineering (ICSE). IEEE, 1996, pp.
464-474.

[35] E. Juergens, M. Feilkas, M. Herrmannsdoerfer, F. Deissenboeck, R. Vaas,
and K. Prommer, “Feature profiling for evolving systems,” in International
Conference on Program Comprehension (ICPC). 1EEE, 2011, pp. 171-180.

[36] M.]. Gallivan and M. Keil, “The user—-developer communication process: a
critical case study,” Information Systems Journal, vol. 13, no. 1, pp. 37-68, 2003.

[37] J. Coughlan and R. D. Macredie, “Effective communication in requirements
elicitation: A comparison of methodologies,” Requirements Engineering, vol. 7,
no. 2, pp. 47-60, 2002.

[38] H. Rombach and B. Ulery, “Improving software maintenance through mea-
surement,” Proceedings of the IEEE, vol. 77, no. 4, pp. 581-595, 1989.

[39] G. Fischer, “User modeling in human-computer interaction,” User Modeling
and User-Adapted Interaction, vol. 11, no. 1-2, pp. 65-86, 2001.

[40] B. P. Lientz and E. B. Swanson, “Problems in application software mainte-
nance,” Communications of the ACM, vol. 24, no. 11, pp. 763-769, 1981.

[41] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in International Conference on Software Engineering
(ICSE). 1EEE, 2005, pp. 284-292.

[42] N. Nagappan, B. Murphy, and V. R. Basili, “The influence of organizational
structure on software quality: An empirical case study,” in International
Conference on Software Engineering (ICSE). ACM, 2008, pp. 521-530.

[43] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence using
software change history,” IEEE Transactions on Software Engineering, vol. 26,
no. 7, pp. 653-661, 2000.

[44] T.]. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” SIGSOFT
Software Engineering Notes, vol. 29, no. 4, pp. 86-96, 2004.

[45] O. Traub, S. Schechter, and M. D. Smith, “Ephemeral instrumentation for
lightweight program profiling,” School of engineering and Applied Sciences,
Harvard University, Tech. Rep., 2000.

[46] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman, “Indexing by latent semantic analysis,” Journal of the Association
for Information Science and Technology, vol. 41, no. 6, pp. 391-407, 1990.

[47] M. Lormans and A. van Deursen, “Can LSi help reconstructing requirements
traceability in design and test?” in European Conference on Software Maintenance
and Reengineering (CSMR). 1EEE, 2006, pp. 10-56.

[48] S. K. Sundaram,]. H. Hayes, and A. Dekhtyar, “Baselines in requirements
tracing,” SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1-6, 2005.

[49] R. B. Bradford, “An empirical study of required dimensionality for large-
scale latent semantic indexing applications,” in Conference on Information and
Knowledge Management (CIKM). ACM, 2008, pp. 153-162.

[50] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, Factors Impacting the Inputs of
Traceability Recovery Approaches. Springer, 2012, pp. 99-127.

93

Bibliography

[51] A. Garron and A. Kontostathis, “Applying latent semantic indexing on the
trec 2010 legal dataset,” in Text Retrieval Conference (TREC). National Institute
of Standards and Technology, 2010.

[52] G. Bavota, A. De Lucia, R. Oliveto, A. Panichella, F. Ricci, and G. Tortora,
“The role of artefact corpus in LSI-based traceability recovery,” in International
Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE).
IEEE, 2013, pp. 83-89.

[53] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability technique for
specifications,” in International Conference on Program Comprehension (ICPC),
vol. 0. IEEE, 2008, pp. 103-112.

[54] IEEE, “IEEE/eia standard industry implementation of international standard
ISO/IEC 12207: 1995 (ISO/IEC 12207) standard for information technology
software life cycle processes (IEEE/EIA 12207.0-1996),” 1998.

[65] ——, “Systems and software engineering — vocabulary (ISO/IEC/IEEE
24765:2010(E)),” 2010.

[56] , “IEEE standard glossary of software engineering terminology (IEEE Std
610.12-1990),” 1990.

[57] E. Deissenboeck, “Continuous quality control of long-lived software systems,”
Ph.D. dissertation, Technische Universitat Miinchen, 2009.

[58] J. M. Bass, “Agile method tailoring in distributed enterprises: Product owner
teams,” in International Conference on Global Software Engineering (ICGSE).
IEEE, 2013, pp. 154-163.

[59] C.-P. Lin and A. Bhattacherjee, “Extending technology usage models to inter-
active hedonic technologies: a theoretical model and empirical test,” Informa-
tion Systems Journal, vol. 20, no. 2, pp. 163-181, 2010.

[60] V. Rajlich, “Software change and evolution,” in International Conference on
Software Engineering (ICSE). ACM, 1999, p. 695.

[61] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a
bug or an enhancement?: A text-based approach to classify change requests,”
in Conference of the Center for Advanced Studies on Collaborative Research: Meeting
of Minds (CASCON). ACM, 2008, pp. 304-318.

[62] ISTQB, “Glossary of testing terms,” 2014.

[63] B. Hauptmann, M. Junker, S. Eder, C. Amann, and R. Vaas, “An expert-based
cost estimation model for system test execution,” in International Conference on
Continuous Software Process Improvement (ICSSP). ACM, 2014, pp. 159-163.

[64] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlégel, and
A. Wiibbeke, “Regression test selection of manual system tests in practice,” in
European Conference on Software Maintenance and Reengineering (CSMR). 1EEE,
2011, pp. 309-312.

[65] G. Rothermel and M. Harrold, “Analyzing regression test selection tech-
niques,” IEEE Transactions on Software Engineering, vol. 22, no. 8, pp. 529-551,
1996.

[66] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection
technique,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 2, pp. 173-210, 1997.

[67] Z.Li, M. Harman, and R. M. Hierons, “Search algorithms for regression test
case prioritization,” IEEE Transactions on Software Engineering, vol. 33, no. 4,
pp. 225-237, 2007.

[68] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An
empirical study of regression test selection techniques,” ACM Transactions on
Software Engineering and Methodology, vol. 10, no. 2, pp. 184-208, 2001.

94

Bibliography

[69] U. Abelein and B. Paech, “Understanding the influence of user participation
and involvement on system success — a systematic mapping study,” Empirical
Software Engineering, vol. 20, no. 1, pp. 28-81, 2015.

[70] J. Mann, “It education’s failure to deliver successful information systems:

Now is the time to address the it-user gap,” Journal of Information Technology
Education: Research, vol. 1, no. 1, pp. 253-267, 2002.

[71] D. Tuffley, “Exploring the it-user gap: towards developing communication
strategies,” in Qualitative Research in IT & IT in Qualitative Research (Quallt).
Griffith University (IIIS), 2005.

[72] J. Grudin, “Interactive systems: Bridging the gaps between developers and
users,” IEEE Computer, vol. 24, no. 4, pp. 59-69, 1991.

[73] A. Tiwana and M. Keil, “The one-minute risk assessment tool,” Communica-
tions of the ACM, vol. 47, no. 11, pp. 73-77, 2004.

[74] G. Mrenak, “Evolving concepts, or why users often don’t recognize the soft-
ware they asked for,” in Washington Ada Symposium on Ada (WADAS). ACM,
1990, pp. 17-22.

[75] D. A. Adams, R. R. Nelson, and P. A. Todd, “Perceived usefulness, ease of use,
and usage of information technology: a replication,” MIS quarterly, vol. 16,
no. 2, pp. 227-247, 1992.

[76] G. H. Subramanian, “A replication of perceived usefulness and perceived
ease of use measurement®,” Decision Sciences, vol. 25, no. 5-6, pp. 863-874,
1994.

[77] P.J. Hu, P. Y. Chau, O. R. L. Sheng, and K. Y. Tam, “Examining the technology
acceptance model using physician acceptance of telemedicine technology,”
Journal of management information systems, vol. 16, no. 2, pp. 91-112, 1999.

[78] S. Taylor and P. A. Todd, “Understanding information technology usage: A
test of competing models,” Information Systems Research, vol. 6, no. 2, pp.
144-176, 1995.

[79] L. Damodaran, “User involvement in the systems design process-a practical
guide for users,” Behaviour & Information Technology, vol. 15, no. 6, pp. 363-377,
1996.

[80] M. Harris and H. Weistroffer, “A new look at the relationship between user
involvement in systems development and system success,” Communications
of the Association for Information Systems, vol. 24, no. 1, pp. 739-756, 2009.

[81] N. Seyff, F. Graf, and N. Maiden, “Using mobile re tools to give end-users
their own voice,” in International Requirements Engineering Conference (RE).
IEEE, 2010, pp. 37-46.

[82] N.Seyff, G. Ollmann, and M. Bortenschlager, “Appecho: A user-driven, in situ
feedback approach for mobile platforms and applications,” in International
Conference on Mobile Software Engineering and Systems (MOBILESoft). ACM,
2014, pp. 99-108.

[83] N. A. Qureshi, N. Seyff, and A. Perini, “Satisfying user needs at the right
time and in the right place: a research preview,” in International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ).
Springer, 2011, pp. 94-99.

[84] K. Schneider, S. Meyer, M. Peters, F. Schliephacke, J. Morschbach, and
L. Aguirre, “Feedback in context: supporting the evolution of it-ecosystems,”
in International Conference on Product Focused Software Process Improvement
(PROFES). Springer, 2010, pp. 191-205.

[85] W. Maalej, H.-J. Happel, and A. Rashid, “When users become collaborators:
Towards continuous and context-aware user input,” in Conference on Object

95

Bibliography

Oriented Programming Systems Languages and Applications (OOPSLA). ACM,
2009, pp- 981-990.

[86] W. Maalej and D. Pagano, “On the socialness of software,” in International
Conference on Dependable, Autonomic and Secure Computing (DASC). IEEE,
2011, pp. 864-871.

[87] S. Kujala, M. Kauppinen, L. Lehtola, and T. Kojo, “The role of user involve-
ment in requirements quality and project success,” in International Require-
ments Engineering Conference (RE). IEEE, 2005, pp. 75-84.

[88] M. Bano and D. Zowghi, “A systematic review on the relationship between
user involvement and system success,” Information and Software Technology,
vol. 58, no. 0, pp. 148-169, 2015.

[89] D. Pagano, “Towards systematic analysis of continuous user input,” in In-
ternational Workshop on Social Software Engineering (SSE). ACM, 2011, pp.
6-10.

[90] D. Pagano and B. Briigge, “User involvement in software evolution practice:
A case study,” in International Conference on Software Engineering (ICSE). IEEE,
2013, pp- 953-962.

[91] A.]. Ko, M.]. Lee, V. Ferrari, S. Ip, and C. Tran, “A case study of post-
deployment user feedback triage,” in International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). ACM, 2011, pp. 1-8.

[92] T. Lethbridge, S. Sim, and J. Singer, “Studying software engineers: Data col-
lection techniques for software field studies,” Empirical Software Engineering,
vol. 10, no. 3, pp. 311-341, 2005.

[93] J.S. Dumas and J. Redish, A practical guide to usability testing. Intellect Books,
1999.

[94] M. Maguire, “Methods to support human-centred design,” International Jour-
nal of Human-Computer Studies, vol. 55, no. 4, pp. 587-634, 2001.

[95] M. Maguire and N. Bevan, User Requirements Analysis. Springer, 2002, pp.
133-148.

[96] K. A. Ericsson and H. A. Simon, “How to study thinking in everyday life:
Contrasting think-aloud protocols with descriptions and explanations of
thinking,” Mind, Culture, and Activity, vol. 5, no. 3, pp. 178-186, 1998.

[97] M.vanden Haak, M. D. Jong, and P.]. Schellens, “Retrospective vs. concurrent
think-aloud protocols: Testing the usability of an online library catalogue,”
Behaviour & Information Technology, vol. 22, no. 5, pp. 339-351, 2003.

[98] W. P.]. Eveland and S. Dunwoody, “Examining information processing on
the world wide web using think aloud protocols,” Media Psychology, vol. 2,
no. 3, pp. 219-244, 2000.

[99] M. Ramal, R. de Moura Meneses, and N. Anquetil, “A disturbing result on
the knowledge used during software maintenance,” in Working Conference on
Reverse Engineering (WCRE). 1EEE, 2002, pp. 277-286.

[100] M. Nergaard and K. Hornbeek, “What do usability evaluators do in prac-
tice?: An explorative study of think-aloud testing,” in Conference on Designing
Interactive Systems (DIS). ACM, 2006, pp. 209-218.

[101] M. Y. Ivory and M. A. Hearst, “The state of the art in automating usability
evaluation of user interfaces,” ACM Computing Surveys, vol. 33, no. 4, pp.
470-516, 2001.

[102] L. A. Granka, T. Joachims, and G. Gay, “Eye-tracking analysis of user behavior
in WWW search,” in International Conference on Research and Development in
Information Retrieval (SIGIR). ACM, 2004, pp. 478-479.

96

Bibliography

[103] L. Lorigo, M. Haridasan, H. Brynjarsdéttir, L. Xia, T. Joachims, G. Gay,
L. Granka, F. Pellacini, and B. Pan, “Eye tracking and online search: Lessons
learned and challenges ahead,” Journal of the American Society for Information
Science and Technology, vol. 59, no. 7, pp. 1041-1052, 2008.

[104] S. Huang and P. Miranda, “Incorporating human intention into self-adaptive
systems,” in International Conference on Software Engineering (ICSE), vol. 2.
IEEE, 2015, pp. 571-574.

[105] R. Atterer, M. Wnuk, and A. Schmidt, “Knowing the user’s every move: User
activity tracking for website usability evaluation and implicit interaction,” in
International Conference on World Wide Web (WWW). ACM, 2006, pp. 203-212.

[106] D. M. Hilbert and D. F. Redmiles, “An approach to large-scale collection
of application usage data over the internet,” in International Conference on
Software Engineering (ICSE). 1EEE, 1998, pp. 136-145.

[107] ——, “Agents for collecting application usage data over the internet,” in
International Conference on Autonomous Agents (AGENTS). ACM, 1998, pp.
149-156.

[108] D. M. Hilbert, “Large-scale collection of application usage data and user
feedback to inform interactive software development,” Ph.D. dissertation,
University of California, Irvine, 1999.

[109] D. M. Hilbert and D. F. Redmiles, “Large-scale collection of usage data to
inform design,” in Conference on Human-Computer Interaction (INTERACT).
Ios Press Inc., 2001, pp. 569-576.

[110] M. El-Ramly and E. Stroulia, “Mining software usage data,” in International
Workshop on Mining Software Repositories (MSR). 1EEE, 2004, pp. 64-8.

[111] J. Matejka, W. Li, T. Grossman, and G. Fitzmaurice, “Communitycommands:
Command recommendations for software applications,” in Symposium on
User Interface Software and Technology (UIST). ACM, 2009, pp. 193-202.

[112] E. Linton, D. Joy, and H.-P. Schaefer, “Building user and expert models by
long-term observation of application usage,” in International Conference on
User Modeling (UMAP). Springer, 1999, pp. 129-138.

[113] E Linton and H.-P. Schaefer, “Recommender systems for learning: Building
user and expert models through long-term observation of application use,”
User Modeling and User-Adapted Interaction, vol. 10, no. 2-3, pp. 181-208, 2000.

[114] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse, “The
lumiére project: Bayesian user modeling for inferring the goals and needs
of software users,” in Conference on Uncertainty in Artificial Intelligence (UAI).
Morgan Kaufmann Publishers Inc., 1998, pp. 256-265.

[115] G. Murphy, M. Kersten, and L. Findlater, “How are java software developers
using the elipse ide?” IEEE Software, vol. 23, no. 4, pp. 76-83, 2006.

[116] S. Elbaum and M. Hardojo, “An empirical study of profiling strategies for
released software and their impact on testing activities,” SIGSOFT Software
Engineering Notes, vol. 29, no. 4, pp. 65-75, 2004.

[117] S. Elbaum and M. Diep, “Profiling deployed software: Assessing strategies
and testing opportunities,” IEEE Transactions on Software Engineering, vol. 31,
no. 4, pp. 312-327, 2005.

[118] E. Duesterwald and V. Bala, “Software profiling for hot path prediction: Less
is more,” SIGPLAN Notices, vol. 35, no. 11, pp. 202-211, 2000.

[119] T. W. Reps, T. Ball, M. Das, and J. R. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,” in
European Software Engineering Conference (ESEC/FSE). Springer, 1997, pp.
432-449.

97

Bibliography

[120] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and F. Vokolos, “Scenar-
iographer: a tool for reverse engineering class usage scenarios from method
invocation sequences,” in International Conference on Software Maintenance
(ICSM). 1EEE, 2005, pp. 155-164.

[121] S. Narayanasamy, C. Pereira, and B. Calder, “Software profiling for deter-
ministic replay debugging of user code,” Frontiers in Artificial Intelligence and
Applications, vol. 147, no. 0, p. 211, 2006.

[122] L. Fagui, L. Shengwen, X. Ran, and L. Chunwei, “A low-overhead method
of embedded software profiling,” in International Colloquium on Computing,
Communication, Control, and Management (CCCM), vol. 4. IEEE, 2009, pp.
436-439.

[123] Y. C. Yang and B. Padmanabhan, “Toward user patterns for online security:
Observation time and online user identification,” Decision Support Systems,
vol. 48, no. 4, pp. 548-558, 2010.

[124] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay, “Myexpe-
rience: A system for in situ tracing and capturing of user feedback on mobile
phones,” in International Conference on Mobile Systems, Applications and Services
(MobiSys). ACM, 2007, pp. 57-70.

[125] R. Cooley, B. Mobasher, and J. Srivastava, “Web mining: information and
pattern discovery on the world wide web,” in International Conference on Tools
with Artificial Intelligence (ICTAI). 1EEE, 1997, pp. 558-567.

[126] O. Baysal, R. Holmes, and M. Godfrey, “Mining usage data and development
artifacts,” in Working Conference on Mining Software Repositories (MSR). IEEE,
2012, pp. 98-107.

[127] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher, “Leveraging user-session
data to support web application testing,” IEEE Transactions on Software Engi-
neering, vol. 31, no. 3, pp. 187-202, 2005.

[128] S. Alam, G. Dobbie, and P. Riddle, “Particle swarm optimization based clus-
tering of web usage data,” in International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT). 1EEE, 2008, pp. 451-454.

[129] M. A. Bayir, I. H. Toroslu, A. Cosar, and G. Fidan, “Smart miner: A new
framework for mining large scale web usage data,” in International Conference
on World Wide Web (WWW). ACM, 2009, pp. 161-170.

[130] J. Srivastava, R. Cooley, M. Deshpande, and P-N. Tan, “Web usage min-
ing: Discovery and applications of usage patterns from web data,” SIGKDD
Explorations Newsletter, vol. 1, no. 2, pp. 12-23, 2000.

”

[131] K. A. Coombs, “Lessons learned from analyzing library database usage data,
Library Hi Tech, vol. 23, no. 4, pp. 598-609, 2005.

[132] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding user behavior
in large-scale video-on-demand systems,” SIGOPS Operating Systems Review,
vol. 40, no. 4, pp. 333-344, 2006.

[133] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the performance
of web search engines: Caching and prefetching query results by exploiting
historical usage data,” ACM Transactions on Information Systems, vol. 24, no. 1,
pp. 51-78, 2006.

[134] T. Abdelzaher, “An automated profiling subsystem for QoS-aware services,”
in Real-Time Technology and Applications Symposium (RTAS). Springer, 2000,
pp- 208-217.

[135] S. Devaraj and R. Kohli, “Performance impacts of information technology: Is
actual usage the missing link?” Management Science, vol. 49, no. 3, pp. 273-289,
2003.

98

Bibliography

[136] J. Yang, Y. Qiao, X. Zhang, H. He, E. Liu, and G. Cheng, “Characterizing
user behavior in mobile internet,” IEEE Transactions on Emerging Topics in
Computing, vol. 3, no. 1, pp. 95-106, 2015.

[137] A. Sinha and A. Chandrakasan, “Jouletrack-a web based tool for software
energy profiling,” in Design Automation Conference (DAC). 1EEE, 2001, pp.
220-225.

[138] J. Flinn and M. Satyanarayanan, “Powerscope: a tool for profiling the energy
usage of mobile applications,” in Workshop on Mobile Computing Systems and
Applications (HotMobile). 1EEE, 1999, pp. 2-10.

[139] T. Roehm, B. Bruegge, T.-M. Hesse, and B. Paech, “Towards identification
of software improvements and specification updates by comparing moni-

tored and specified end-user behavior,” in International Conference on Software
Maintenance (ICSM). 1EEE, 2013, pp. 464—467.

[140] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej, “Monitor-
ing user interactions for supporting failure reproduction,” in International
Conference on Program Comprehension (ICPC). 1EEE, 2013, pp. 73-82.

[141] T. Roehm and B. Bruegge, “Reproducing software failures by exploiting
the action history of undo features,” in International Conference on Software
Engineering (ICSE). ACM, 2014, pp. 496-499.

[142] T. Roehm, S. Nosovic, and B. Bruegge, “Automated extraction of failure
reproduction steps from user interaction traces,” in International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1EEE, 2015, pp.
121-130.

[143] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source code,
IEEE Transactions on Software Engineering, vol. 29, no. 3, pp. 210-224, 2003.

”

[144] J. Roche, “Adopting devops practices in quality assurance,” Communications
of the ACM, vol. 56, no. 11, pp. 3843, 2013.

[145] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test
suite effectiveness,” in International Conference on Software Engineering (ICSE).
ACM, 2014, pp. 435-445.

[146] A.Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.

[147] J. Mund, D. M. Fernandez, H. Femmer, and]. Eckhardt, “Does quality of re-
quirements specifications matter? combined results of two empirical studies,”
in International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2015, pp. 1-10.

[148] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and
adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366427, 1997.

[149] Q. Yang,].]. Li, and D. M. Weiss, “A survey of coverage-based testing tools,
The Computer Journal, vol. 52, no. 5, pp. 589-597, 2007.

[150] Y. Malaiya, M. Li, J. Bieman, and R. Karcich, “Software reliability growth
with test coverage,” IEEE Transactions on Reliability, vol. 51, no. 4, pp. 420-426,
2002.

[151] B. Hauptmann, M. Junker, S. Eder, E. Juergens, and R. Vaas, “Can clone
detection support test comprehension?” in International Conference on Program
Comprehension (ICPC). IEEE, 2012, pp. 209-218.

[152] B. Hauptmann, M. Junker, S. Eder, L. Heinemann, R. Vaas, and P. Braun,
“Hunting for smells in natural language tests,” in International Conference on
Software Engineering (ICSE). 1EEE, 2013, pp. 1217-1220.

[153] J. Bible, G. Rothermel, and D. S. Rosenblum, “A comparative study of coarse-
and fine-grained safe regression test-selection techniques,” ACM Transactions
on Software Engineering and Methodology, vol. 10, no. 2, pp. 149-183, 2001.

”

99

Bibliography

[154] V. Channakeshava, V. K. Shanbhag, A. Panigrahi, R. Sisodia, and S. Laksh-
manan, “Safe subset-regression test selection for managed code,” in India
Software Engineering Conference (ISEC). ACM, 2008, pp. 137-138.

[155] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo, “Testtube: A system for selective
regression testing,” in International Conference on Software Engineering (ICSE).
IEEE, 1994, pp. 211-220.

[156] M.]J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,
S. A. Spoon, and A. Gujarathi, “Regression test selection for java software,”
SIGPLAN Notices, vol. 36, no. 11, pp. 312-326, 2001.

[157] D. Willmor and S. Embury, “A safe regression test selection technique for
database-driven applications,” in International Conference on Software Mainte-
nance (ICSM). 1EEE, 2005, pp. 421-430.

[158] G. Rothermel and M. J. Harrold, “Selecting regression tests for object-oriented
software,” in International Conference on Software Maintenance (ICSM). 1EEE,
1994, pp. 14-25.

[159] , “Selecting tests and identifying test coverage requirements for modified
software,” in International Symposium on Software Testing and Analysis (ISSTA).
ACM, 1994, pp. 169-184.

[160] A.D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering traceability
links in software artifact management systems using information retrieval
methods,” ACM Transactions on Software Engineering and Methodology, vol. 16,
no. 4, pp. 1-49, 2007.

[161] A. Kontostathis, “Essential dimensions of latent semantic indexing (LSI),” in
Hawaii International Conference on System Sciences (HICSS). 1EEE, 2007, pp.
73-73.

[162] Z.Xu and G. Rothermel, “Directed test suite augmentation,” in Asia-Pacific
Software Engineering Conference (APSEC). 1EEE, 2009, pp. 406-413.

[163] R. Santelices, P. Chittimalli, T. Apiwattanapong, A. Orso, and M. Harrold,
“Test-suite augmentation for evolving software,” in International Conference on
Automated Software Engineering (ASE). IEEE, 2008, pp. 218-227.

[164] Z. Xu, Y. Kim, M. Kim, and G. Rothermel, “A hybrid directed test suite
augmentation technique,” in International Symposium on Software Reliability
Engineering (ISSRE). 1EEE, 2011, pp. 150-159.

[165] J. Wettinger, U. Breitenbiicher, and F. Leymann, “Standards-based devops
automation and integration using tosca,” in International Conference on Utility
and Cloud Computing (UCC). IEEE, 2014, pp. 59-68.

[166] J. Humble and J. Molesky, “Why enterprises must adopt devops to enable
continuous delivery,” Cutter IT Journal, vol. 24, no. 8, pp. 6-12, 2011.

[167] M. Poppendieck and T. Poppendieck, Lean Software Development: An Agile
Toolkit. Addison-Wesley, 2003.

100

APPENDIX A

Publication A [1]

Venue: ICSE 2012
Acceptance rate: 16%
Length: 10 pages

Type: Full paper
Reviewed: Peer reviewed

101

How Much Does Unused Code Matter for Maintenance?

Sebastian Eder, Maximilian Junker, Elmar Jiirgens, Benedikt Hauptmann

Institut fiir Informatik

Technische Universitdt Miinchen, Germany

Garching b. Miinchen, Germany

Rudolf Vaas, Karl-Heinz Prommer
Munich Re
Miinchen, Germany
{rvaas,hprommer} @ munichre.com

{eders, junkerm,juergens,hauptmab} @in.tum.de

Abstract—Software systems contain unnecessary code. Its
maintenance causes unnecessary costs. We present tool-support
that employs dynamic analysis of deployed software to detect
unused code as an approximation of unnecessary code, and
static analysis to reveal its changes during maintenance. We
present a case study on maintenance of unused code in an
industrial software system over the course of two years. It
quantifies the amount of code that is unused, the amount of
maintenance activity that went into it and makes the potential
benefit of tool support explicit, which informs maintainers that
are about to modify unused code.

Keywords-Software maintenance, dynamic analysis, unneces-
sary code, unused code

[. INTRODUCTION

Many software systems contain unnecessary functionality.
In [1], Johnson reports that 45% of the features in the
analyzed systems were never used. Our own study on
the usage of an industrial business information system [2]
showed that 28% of its features were never used.

For consumer software, speculative or even unnecessary
features might be justified to lure new customers into buying
a product. For custom developed software, such as the
business information systems developed and maintained at
Munich Re, a re-insurance company in Germany, however,
they provide no value at all.

For such systems, maintenance of unnecessary features
is a waste of development effort. To avoid such waste,
maintainers must know which code is still used and useful,
and which is not. Unfortunately, such information is often
not available to software maintainers. In our own study [2],
expected and actual usage frequency deviated from 40%
to 53% of the cases (depending on which stakeholder was
involved in the evaluation). The picture was even clearer for
entirely unused features: for over 70% of them, it surprised
the stakeholders that they were not used at all.

Whether unnecessary code causes maintenance efforts
depends on whether it actually needs to be adapted during
maintenance. On the one hand, we expect perfective and
corrective change requests [3] to mostly arise for features
that are important to their users—otherwise they would not
complain about bugs or demand changes. For unnecessary
features, perfective and corrective maintenance effort can

978-1-4673-1067-3/12/$31.00 (©) 2012 IEEE

1102

thus be expected to be low. On the other hand, however,
preventive and adaptive maintenance [3] regularly affect
code independent of the functionality it implements. Ex-
amples include the migration of a software system to a
new programming language or platform, or the replacement
of a component, such as the underlying database. Such
changes also affect unused code. Both adaptive and preven-
tive maintenance are regularly performed during software
evolution. Extensive studies on maintenance effort reported
that perfective and corrective maintenance constitute merely
48% [4], 64% [5], and 75% [6] of all change requests.
The remaining changes comprise adaptive and preventive
maintenance. We thus have to expect unnecessary code to be
subject to maintenance, too. To perform maintenance tasks
cost-effectively, maintainers must know which code is still
necessary, and which is not.

Whether code is still necessary or not is determined by
the function it fulfills for its users. The value of code is
thus not an inherent property, but determined by its context.
One way to approximate usefulness of code to its users
is to monitor its usage in production, and compare it to
its expected usage. If code is never used, and does not
implement infrequently used functionality such as failure
recovery, maintainers should investigate if the effort for its
modification is justified.

However, the recording of usage information and consid-
eration of unused code is not an integral part of software
maintenance practice. Based on our experience and that of
our industrial partners, we see two reasons for this. First,
we have little empirical data on how much unused code
exists in software and how strongly it affects maintenance.
Second, we lack suitable tool support to capture usage data
in production and present it in a way suitable to maintainers.
As a consequence, it remains unclear how important unused
code for cost-effective maintenance really is in practice.
Given the amount of unused code in industrial software, we
consider this precarious both for practice and for education.

Problem: Real-world software contains unnecessary
code. Its maintenance is a waste of development resources.
Unfortunately, we lack tool support to identify unnecessary
code and empirical data on the magnitude of its impact on

ICSE 2012, Zurich, Switzerland
Software Engineering in Practice

maintenance effort. As a consequence, it is unclear how
harmful unnecessary code is for software maintenance.
Contribution: In this paper, we present tool support to
collect code-level usage information in a production envi-
ronment, to approximate unnecessary code. We contribute a
case study that analyzes the usage of an industrial business
information system over the period of over 2 years. The
study quantifies maintenance effort in unused code and
shows the potential benefits of the tool support we propose.

II. OUTLINE

The paper is structured as follows: In the next section,
we define important terms. Afterwards, we introduce our
tool support in detail, followed by a description of the case
study. We then discuss our results and related work. We
conclude with an overview of future work and a summary
of our results.

III. TERMS

Method: Units of functionality of a software system.
Methods consist of a signature and a body.

Method genealogy: List of methods that represent the
evolution of a single method over different versions of a
software system. The list contains all versions of one method
in chronological order.

Modified: A method genealogy is modified if not all
its methods are equal with respect to their signatures and
bodies. A method is modified if it is part of a genealogy
which is modified.

Unused: A method genealogy is unused, if none of its
methods is executed in a productive environment. This is
not necessarily useless or dead code, but code that was just
not executed in a considered time frame.

Unnecessary: A method is unnecessary, if it is not
needed to fulfill the system’s intended purpose and could be
removed. Domain and development knowledge is necessary
to decide whether a method is unnecessary.

IV. TooL SUPPORT

The proposed tool support is divided into four steps:
the collection of usage data, the analysis of the program
structure, the combination of both in a data repository, and
the generation of statistics that can be used by developers.
The tool chain is illustrated in Figure 1.

Profiler:
Collection of
Data repository: .
usage data pository Query interface:
Storage of .
Selection and
program structure Aggregation
Manual: and usage data seree
Collection of
program structure

Figure 1. Schematic illustration of the proposed tool chain.

For collecting usage data, we use a profiler based on the
.NET profiling API that logs method invocations.

For each program version that gets deployed, we collect
assemblies (compilation units in .NET) manually to obtain
the structure and functionality of the program. The reason
why we work on the binary level and not directly on the
source code level is that the system includes several compo-
nents which are developed by different teams, have different
release cycles and are only integrated in binary form. It is
thus non-trivial to determine the complete source code for
a program version that ran in the productive environment.

Usage data, as well as the software system’s structure
and functionality are stored in a central data repository. For
calculating statistics, we provide a query interface. In the
following sections, we explain the different steps in more
detail.

A. Profiling Usage Data

When collecting usage data, we need to minimize the
impact on the productive system while still providing enough
accuracy to gain valuable information. Therefore, we use
an ephemeral [7] profiler that records which methods were
called within a certain time interval. The profiler does not
record how often a method was called, just if it was called
in a given time interval. For our study, we set the time
interval to one day, to gain data that is accurate enough but
produces very low performance impact. More information
on the profiler can be found in [2].

Every method is instrumented with a profiling hook at
(re-)start of the software system. This hook is removed after
the first call of the method and therefore yields no perfor-
mance impact on later invocations. This technique may miss
methods that were inlined by the just-in-time compiler for
performance issues, and, thus, we also instrument methods
for the inlining event and count this event as an invocation.
This is valid, because inlining is performed just in time by
the virtual machine. The resulting data is written to a file
at every shutdown of the system. Our approach is based on
.NET, but not limited to it. It can also be applied to other
environments with a virtual machine, such as Java.

B. Data Repository

To store usage data and the structure of every version of
the examined software system, we use a database.

For every program version, the structure of the program is
stored hierarchically. Program versions are decomposed into
assemblies. Every assembly contains types (e.g., classes),
which are themselves decomposed into methods. Types and
assemblies only carry their names, whereas methods carry
their signature and body. Figure 2 illustrates our data model.

After storing the program structure and usage data for all
of the program versions, we map methods from one version
to the next. Typically, one program version is succeeded
by another version including bug fixes and change requests.

1103

Program version Type
Name Name
1 1.* 1
1.* 1 *
Assembly Method
Name Signature
Body
Figure 2. Data model of the program structure.

These changes are reflected in differences in method bodies
and signatures, as well as in the structure of types and
assemblies and their names. Because of these changes and
in order to gain accurate usage data, methods have to be
mapped from one program version to another. We perform
this mapping by comparing the methods of succeeding
program versions with respect to their signatures, bodies,
enclosing types, and assemblies. We find the most accurate
match for each method by first looking in the original type in
the original assembly of the next program version. Types and
assemblies are matched based on their names and contained
methods. We then rate the similarity of methods, whereas
the maximum similarity is given, if a method in the next
program version is found in the same type and assembly
with an exact match in the method name and parameters. The
confidence in the similarity is hampered, if parameters or the
enclosing type of a method have changed. The confidence
is even lower, if only the parameter types of two methods
are the same. We map methods to the most accurate match
in the next version. This enables us to build lists of methods
of different program versions that evolved from each other.
We manage to map about 98% of all methods from one
program version to the next. The list follows the ordering of
the software system’s versions. We call these lists method
genealogies, as defined in Section III.

Maintenance between two versions is detected by compar-
ing two consecutive methods in the same genealogy. There
are three possible actions, a developer could have performed:
Add, remove, or change methods.

All of the three actions can be detected in genealogies.
If a method was added during the program evolution, its
genealogy does not reach to the first program version. If a
method was removed, its genealogy does not reach to the
last program version and if a method was changed, the body
or signature changes in the method genealogy.

Figure 3 depicts the most important kinds of method
genealogies. The first genealogy is used twice, but never
modified. The second genealogy is never used, but modified
twice. The third genealogy is used twice and modified once.

Figure 4 illustrates the sets of method genealogies and
their relationships. The method genealogies, that are interest-

M M M M M M

(a) Used and unmodified method genealogy.

M _'_> MI N Ml _'_> M// Y M” N MII

(modifi:cation > (modifi:cation >

(b) Unused and modified method genealogy.

usage usage

M M = M M MW

(c) Used and modified method genealogy.

Figure 3.

Different types of method genealogies.

necessarily
maintained

unnecessarily
maintained

modified

all method

genealogies Unused and modified

Figure 4. Analyzed sets of method genealogies and their composition.

ing for our analysis, are unused and modified. These methods
then can be split up into two sets again: Methods that were
modified necessarily and unnecessarily.

Having the time interval a program version was produc-
tive, we can reconstruct the possible time interval in which a
method was changed: Between the start of its own program
version and the beginning of the next. We used this infor-
mation in order to retrieve the source code that was affected
by a modification and to discuss it with the developers. If
a method was modified, each of its maintenance actions is
recorded as single event.

C. Query Interface for Developers

To support developers in maintenance, we provide a
query interface for the analysis results. This interface allows
generating statistics about the percentage of unused method
genealogies, the number of maintenance actions that have
been performed on unused method genealogies, and the
development of both over time. Thus, we use the query
interface for obtaining the relevant number for the case
study.

Furthermore, developers can search for methods they
are maintaining and retrieve the usage frequency of these

1104

methods. With the help of this information, developers can
direct their maintenance effort.

V. CASE STUDY

In this section, we explain the case study we conducted
to quantify the impact of unused code on maintenance.

A. Research Questions

We formulate our research objective using the Goal-
Question-Metric approach from [8]. The research objective
is defined using the goal definition template as proposed
in [9]:

We analyze usage and maintenance of a large
industrial software system for the purpose of
exploring the role of unused code with respect
to its effect on maintenance from the viewpoint
of maintenance engineers and developers in the
context of industrially hosted business information
systems.

We infer the following research questions:

RQI: How much code is unused in industrial systems?
This question targets the existence and extent of unused code
in industrial systems. If there is no unused code, our study
would be irrelevant.

RQ2: How much maintenance is done in unused code?
Having identified unused code, we answer the question about
the existence and extent of maintenance effort that is spent
on unused code.

RQ3: How much maintenance in unused code is un-

necessary?
This research questions targets the existence and extent
of maintenance that gets spent on unnecessary code. This
question determines the severity of the problems caused by
maintenance actions in unused code and the potential of
savings of maintenance effort.

RQ4: Do maintainers perceive knowledge of unused
code useful for maintenance tasks?

This question determines the usefulness of the proposed
analysis. It is especially interesting whether the analysis
helps developers to direct their maintenance effort.

B. Study Object and Subjects

We evaluated the research questions with respect to a
business information system being in production at Munich
Re Group. Munich Re Group is one of the largest reinsur-
ance companies in the world and employs more than 47,000
people in over 50 locations. For their insurance business,
they develop a variety of custom supporting software sys-
tems. The analyzed business information system implements
damage prediction functionality and supports about 150
expert users in over 10 countries. An overview is shown
in Table I.

We chose this system as study object for several reasons.
First, the system has been in successful use for § years

Table 1
STUDY OBJECT.

Language Cit
Age (years) 8
Size at beginning (kLOC) 360
Engineers (max) 9 (16)
Min. # Methods (size at beginning) 13908
Max. # Methods (size at end) 21664
Versions 19

and is still actively used and maintained. Understanding the
impact of unnecessary code on maintenance is thus likely
to decrease maintenance costs. Second, the development
and usage context is typical for the Munich Re Group. Its
users are distributed across different countries. The software
engineers are from different companies (some are employed
by Munich Re, some by software suppliers) and work at
different sites. This distribution of users and engineers com-
plicates communication inside and across the stakeholder
groups and could thus lead to a lack of usage information.
Third, it is a web application. Its server offers a single
point for usage data collection. Our study subjects are two
maintainers of the system. Both have been working in the
system for 8 years actively. Thus, they have deep knowledge
about the system.

C. Study Design

We conduct our study in two major steps. First, we collect
program and usage data. Second, we analyze the data in four
steps oriented at our research questions.

RQI: Amount of unused code: We answer RQ1 using
the profiling data. We calculate the fraction of the number
of unused method genealogies off the overall number of
method genealogies for all individual program versions as
well as in total.

RQ2: Maintenance in unused code: For RQ2, we need
to identify modifications in method genealogies. Modifica-
tions in a genealogy occur between two program versions.
Therefore, we compare successive methods and determine if
they differ. This way, we find all modifications for a geneal-
ogy. If a modification took place in an unused genealogy,
we conclude that the maintenance effort for this modification
was spent on unused code.

RQ3: Amount of unnecessary maintenance and RQ4:
How does the analysis help the developers In order to
answer RQ3 and RQ4, we discuss our findings with the
developers of the system. There are typically large parts of
a system’s code that are systematically unused in production
such as unit tests or code related to batch jobs that are
not executed in the productive environment. In order to get
meaningful results, it is important to exclude such code from
the analysis. Therefore, in a first round, we select unused, but

1105

maintained methods in a way that every part of the system
that exhibited unused code is represented in the sample.
Additionally, we select methods that seem to be noticeable
(e.g., methods with a large change in size or methods whose
names suggest unit tests). This results in a set of 24 methods.
We present this sample to a developer and use the results
to improve the filters in our analysis. These filters are also
applied for the measurements to answer RQ1 and RQ2. In a
second round, we take a random sample of cases, which we
discuss in detail with a different developer of the system in
order to elicit the reasons why the code was not used and
to quantify the fraction of unnecessary maintenance. We are
able to discuss 27 cases with this developer. Furthermore,
we investigate how the developer would have acted with
knowledge about the unused code and discuss if a tooling
as proposed would be helpful for supporting maintenance
tasks.

D. Execution

During the analysis period of two years, we gathered
usage data of 19 different program versions. Figure 5 shows
the distribution of the program versions over time. The
uncovered time intervals exist due to missing data that was
lost because of technical errors.

Program Version

16 -

17 '

18 -_—

19 —
2008-11-20 2011-02-17

Figure 5. All program versions with their time span of deployment.
In the following, we discuss the concrete procedure for
answering our research questions.

RQI: The investigation of RQ1 requires some prerequi-
sites. The program structure, consisting of assemblies, types,
and methods, is extracted from the binary versions of the
software system by using the .NET reflection technique. We
then store the whole structure of the program in a relational
database to perform the method mapping. We map methods
based on several heuristics that consider the signature and
location of a method, the name of its containing type and
assembly.

This results in a multistage mapping procedure to find
methods in the succeeding program version. At first, the
algorithm maps assemblies and types in the next program

version based on their names and contents. Based on the
found relations between assemblies and types, methods are
mapped. Methods are preferably matched if they have the
same location and the same signature. If no completely
matching method is found at the exact location, methods
are compared based on the method’s signature (name, return
type and argument types). This way, we can match methods
with arguments added and removed or with a changed name.
If no match was found at this stage, the whole software
system is searched for the method based on the same
heuristics as before. This way, we find methods that were
moved.

If iterated over all pairs of consecutive program versions,
this procedure leads to method genealogies that reach at
most from the first program version to the last.

RQ?2: Maintenance actions can be derived by compar-
ing method signatures (name, return type, and argument
types) and bodies of consecutive methods. For method
bodies, we check intermediate language code of methods for
equality. If signatures or bodies differ within one genealogy,
we count this as a modification.

RQ3: To obtain information about how much code
is unnecessary, we present a random sample of method
genealogies from the unused, but modified, method genealo-
gies to maintainers. With the help of the maintainers, we split
our sample into two groups: A set of maintained and unused,
but necessary, method genealogies and a set of maintained,
but unnecessary, methods.

RQ4: The interviews we conducted to answer RQ3
also provided information for RQ4. In the interviews, we
asked the developers, how useful and interesting the pro-
vided information was. Furthermore, having identified the
unnecessarily maintained method genealogies, we quantify
the accuracy of our analysis by comparing the set of un-
used, but maintained, method genealogies with the set of
unnecessarily maintained method genealogies.

Technical details: We conducted the study using a
machine with two 2.4 GHz processor cores and dedicated
4 GB of RAM. We were using a relational database for
storing the program structure and usage data. The complete
evaluation toolkit is written in Java. Inserting the program
structure and usage data of all 19 program versions into
the database took about 7 hours. Mapping methods and
generating the results took about 5 minutes.

Table II
DISTRIBUTION OF MODIFIED AND UNMODIFIED METHOD
GENEALOGIES, DEPENDING ON USAGE.

Used Unused Total

Unmodified 533% 229% 76.2%
Modified 21.7% 2.1% 23.8%
Total 75% 25% 100%

1106

25000

20000

15000
M Unused
10000 W Used
5000
0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Program version

Number of methods

Figure 6. Number of used and unused methods per program version.

E. Results

In the following, we present the results of our study by
providing numbers for our research questions. The numbers
are based on the method genealogies we obtained after
filtering. That means unit tests and code related to batch
jobs that are not executed in production are not included.

In the system, we identified 25,390 method genealogies.
Of these, 6,028 were modified with a total of 9,987 individ-
ual modifications. This means that considerable maintenance
effort took place during the analysis period.

RQI: Amount of unused code: Table II shows the
distribution of used and unused method genealogies. We
found that 25% of all method genealogies were never used
during the complete period. The fraction of unused methods
is roughly stable across program versions, as illustrated by
Figure 6.

RQ2: Maintenance in unused code: We first compared
the degree of maintenance (i.e. percentage of maintained
genealogies) between used and unused method genealogies.
We found that 40.7% of the used method genealogies
were maintained, but only 8.3% of the unused method
genealogies. That means, unused methods were maintained
less intensively than used methods. The unused genealogies
account for 7.6% of the total number of modifications.
Figure 7 shows how the modifications are distributed over
the program versions in absolute numbers and Figure 8
shows the percentage of the number of unused methods off
the number of modified methods for each program version.

RQ3: Amount of unnecessary maintenance: We re-
viewed the examples of unused maintenance with the devel-
opers. By inspecting the affected code and researching the
reason why it is not used, we found that in 9 of 27 (33%)
cases, the unused code was indeed unnecessary. In another
4 cases (15%) the code in question was no longer existent
as it was either deleted or moved. That means that in nearly
every second case unused methods were either unnecessary
or potentially deleted from the system. The exact actions
could not be retrieved from the versioning system.

RQ4: How does the analysis help the developers:
In both discussion rounds, we encountered great interest
in the analysis results, especially in the cases in which

3000
2500 n
2000

1500
M Unused

-
1000 Used

500

O | —_— | | —_— —_—
23 45 67 89 1011 12-13 1415 16-17 18-19
12 34 56 78 910 11-12 13-14 1516 17-18
Program version

Number of modified methods

Figure 7. Number of methods that were modified from one program
version to the next. The grey bar shows the part of the methods that are
used; the black bar shows the part of methods that are unused.

10
8
6
: I I
; |
, 1

1-2 34 56 7-8 9-10

2-3 4-5 6-7 8-9

Percentage

- 1112 1314 1516 17-18
- - - 1011 1213 1415 1617 18-19

Program versions

Figure 8. The fraction of the modified and unused methods of all modified
methods.

unused methods were maintained. Often, the developers
were surprised that the respective method was not used.
When investigating the reason why a particular method was
not used, in some cases the developers discovered a bug
(e.g., a business function was not correctly hooked into
the UI). Regarding the tool support we got the feedback
that information about unused methods would be helpful to
support maintenance.

Experiences with the mapping of methods: In general,
we found that our procedure to identify genealogies works
well in the majority of cases. The fraction of methods
that could be mapped from one program version to the
next usually was around 98%. Only in two cases it was
significantly lower (90% and 93%). As it is sensible to
assume that a certain number of methods are deleted without
replacement due to refactoring or changed requirements,
the fraction of methods genealogies that are erroneously
terminated should be very small. To support this claim we
manually inspected 20 genealogies. As far as we could tell
all of them were correct.

E. Interpretation

This section presents an interpretation of the results based
on the research questions.
RQI: Amount of unused code: In our case study,
25% of the implemented code has never been executed
and, therefore, can be considered as unused. However, this

1107

amount does not only consist of code of unused features, but
also of error handling routines such as exception handlers.

RQ?2: Maintenance in unused code: Bringing together
the code usage with the locality of the changes, it is notice-
able that most of the modifications have been done in code
which has been executed. Only 7.6% of the system’s changes
affect methods that have never been executed. This means
that most of the maintenance (92.4%) has been spend on
actually used code. For this, we have the following explana-
tion. Change requests primary address the key functionality
of a system. Functionality, which is rarely or never executed,
is less likely affected by change requests. Furthermore, it is
more likely to find bugs in executed code as in code which
is not executed at all. Additionally, developers are aware
that some code is seldom or never executed and focus their
maintenance effort on actually used code.

RQ3: Amount of unnecessary maintenance: Based on
our measurements, 7.6% of all maintenance modifications
have been performed in unused code regions. To decide
whether modifications are unnecessary or not, we can com-
bine the answers from the developer interviews. Therefore,
48% of all modifications performed in unused code can be
considered unnecessary. The cleanup of all unused code
would cause unreasonable effort. Thus, we suggest tool
support to warn developers in case they are performing
maintenance tasks in an unused code region. With this, the
developer can decide individually if the planned maintenance
modifications are necessary or not. During our interviews
with the developers, we found that the actions taken to
maintain unused and unnecessary code are very similar to
the actions that are taken to maintain used code (from
refactoring to more complex adaptions). This implies that
the actual effort spent on unnecessary code is comparable
to the aforementioned numbers.

RQ4: How does the analysis help the developers:
Connecting the amount of maintenance in unused code
(7.6%) with the ratio of unnecessary maintenance from
the interviews (48%), 3.6% of the overall maintenance is
needless. However, using usage data during maintenance, a
developer can be sure in 92.4% that the performed changes
are definitely necessary, whereas in the remaining 7.6%
which are not used there is a 48% chance to avoid unneces-
sary changes. Furthermore, during the developer interviews,
several bugs have been detected which are directly related
with unused code.

G. Threats to Validity

In this section, we discuss the threats to validity in our
study. We structure the threats by internal, external and
construct validity.

Internal validity: We consider genealogies as used, if
they were used at an arbitrary time during the examination
period. If a method was modified after its last usage, we
are still considering the method genealogy as used and

modified. Therefore, we are missing method genealogies
that are unnecessarily maintained after their last usage,
because they are not used in the future. This results in an
underapproximation of the amount of maintenance actions in
unused code and implicates more conservative estimations,
which we see, however, as a minor threat.

There are two missing time intervals in our study due
to technical errors as shown in Figure 5. Because of that,
we compared program versions that did not follow each
other directly. However, we are able to map nearly as many
methods between these program versions as between all
other versions. Thus, we consider this to be a minor threat.
The missing data also affects usage data. This results in
method usages, which are not considered in our analysis.
The discussion with the maintainers did not show any
methods that were used in the maintainers’ opinion. Thus,
we consider this as a minor threat.

External validity: We examined only one system with
our analysis. To gain more general numbers about how much
unnecessary code is maintained during the software life
cycle, the investigation of our research questions on more
systems is needed. This allows for a generalization of our
findings, whereby we currently plan similar studies on other
systems.

Construct validity: Another threat to validity is that
method mapping may produce false method genealogies.
This effect can be divided into two classes: Methods are
set into relation that should not be and methods are not
set into relation that should be. This can cause under- and
overestimation of the maintenance actions on unused code.

These imprecisions arise due to the lack of information
about the exact history of methods, types, and namespaces
and the resulting estimation of relationships of different
methods. We minimize these effects by implementing a
rather conservative search algorithm, which matches method
based on several heuristics, considering all possible succes-
sors and matching methods with the highest probability. In
addition, we manually analyze further random samples of
method genealogies. Since we did not find any errors, this
strengthens our confidence in a low overall amount of errors.

VI. DISCUSSION

Our analyses, as well as the interviews with the maintain-
ers show results that exceed our research questions. In this
section, we discuss these results.

The analysis shows that 3.6% of the maintenance was
unnecessary. We expect this low number to be caused by
the structure of the development team. Most of the devel-
opers are maintaining and developing the system since the
beginning and are experts for the domain, as well as for the
system. In an environment where developers change more
frequently, it is likely that there is less knowledge about the
actual usage of the program and, thus, more maintenance in
unnecessary code.

1108

According to the developers, the main causes for mainte-
nance of unused code are:

o Exception handling

« Interfaces that had to be implemented

e Code for future use

o Code for testing

We also detected code that was about to be removed or
was removed shortly after our examination interval. This
means that our analysis was able to identify unnecessary
code the developers were aware of.

However, the maintaining developers found the infor-
mation our analysis provided very useful. In 48% of our
findings for maintenance of unused code, the developers
did not know why the method was not used. Knowledge
about the usage frequency would significantly have changed
the behavior of the developers regarding maintenance. In
the sample set of methods, the most interesting findings
pointed to bugs. For example, we found a method that
checked certain conditions that validated a data set. With
this check not being performed, it was possible to insert
inconsistent data into the system’s database. According to
the maintainers, the unnecessarily maintained methods are
undergoing deeper investigation. These methods are either
used in the future or subject to removal.

With our analysis, we narrowed the set of methods to
look for unnecessary maintenance from 6369 (all unused
method genealogies) to 529 methods (maintained method
genealogies that were not used). This makes it a lot easier
for maintainers to identify misdirected maintenance effort.
This effect was also confirmed by the maintainers. These
results and their interpretation as well as the feedback of
the developers, points out that this analysis is useful for
maintainers in practice.

VII. RELATED WORK

To the best of our knowledge, other approaches that
use usage information to find out unused code to support
maintenance do not exist. However, our approach builds on
existing work from several areas. We relate it to remote anal-
ysis of deployed software, program profiling, code coverage
testing, diff and semantic diff, as well as unnecessary code
elimination.

Remote analysis of deployed software: has been pro-
posed by several researchers. Hilbert [10] proposes to
employ agents to collect usage information in deployed
software to support usability engineering. Orso etal. [11]
investigate means to distribute monitoring tasks across users
to reduce associated impact. Liblit etal. [12], [13] propose
remote program sampling to isolate bugs. Elbaum and Diep
[14] survey existing approaches to support testing by profil-
ing deployed software. Haran etal. [15] present approaches
to classify execution data gathered during remote program
analysis in support of further analysis. These approaches
were a valuable inspiration for our work and provide general

indication for the feasibility of profiling deployed software.
However, to the best of our knowledge, none of them are
targeted at usage analysis and maintenance.

Program profiling: [16] is an established practice in
performance engineering to identify problematic code. Exist-
ing approaches can be categorized into exact and statistical
profilers. While exact profilers yield precise results, their
potentially devastating impact on performance inhibits their
application on production machines. Statistic approaches
sacrifice precision to reduce performance impact and, thus,
can be applied to continuous profiling of deployed software
[17]. Ephemeral profiling [7], as we employ it, combines
exact results with minimal impact, thus, combines the ad-
vantages of both approaches.

Code coverage testing: In software testing, metrics
such as instruction, branch, path, or condition coverage are
used to measure the quality of test suites. These metrics
describe to which degree a program has been tested based
on its control flow graph. Many testing tools track the control
flow during test execution by either injecting additional
measurement code or using a system’s debugging interface.
Both affect the execution time and memory consumption in a
negative way. Since our test object was under productive use,
none of these techniques could be applied. We focused on
tracking just method executions in a lightweight way, which
affects the system’s run time behavior in a minimal way. We
injected measurement code, which is executed just once for
every first execution of a method. Since the application has
been restarted every day, method usage could be tracked on
a day time precision.

Syntactic and semantic diff: Differences between pro-
grams can be determined on several levels. There are
approaches comparing two versions of a program on the
syntactic, as well as on the semantic level. The UNIX diff
tool, for example, performs a lexical analysis of two text
sources. Even little textual changes, which have no effect on
the compilation, such as removing unnecessary line brakes
or spaces, will be detected as changes. Some work has
been done in finding differences based on abstract syntax
trees (AST) of programs [18], [19], [20]. By comparing
programs on their abstract structure, lexical changes, which
do not affect the behavior, are ignored. Another approach
is to compare programs on the semantic level. Semantic
Diff [21], for example, creates local dependency graphs to
compare their observable input-output behavior. LSdiff [22]
uses logical structural deltas to detect and understand sim-
ilarities in Java code. Since compiling source code already
filters little changes of the source code, which does not
change the system’s semantics, we focused on comparing
the binary representation of the system. However, during the
compilation of .NET applications, some information, which
is necessary to understand the intention of the developer,
gets lost.

1109

Unnecessary code elimination: Most compilers per-
form optimizations to remove unnecessary code. Code,
which does not affect the applications result (dead code)
or cannot be executed at all (unreachable code), is detected
and not included in the compilation result [23], [24], [25].
In some development environments, this analysis is already
performed during coding which helps the developer to re-
move this code. Since all this is performed before executing
the system, the decision whether code is unnecessary is
based on the static information available at compile time.
In our approach, we perform a dynamic analysis using the
actual usage data, which exists not until the execution of the
system. To this end, we can detect code, which is technically
reachable, but still never executed.

VIII. FUTURE WORK AND CONCLUSION

In this section, we provide a conclusion, a short summary
of our work, and an overview of the results of our case study.
Afterwards, we outline our future research plans.

A. Conclusion

Real-world software systems typically contain unneces-
sary code. Maintenance of this code is unnecessary and
produces unnecessary maintenance costs.

To understand the impact of unused code on maintenance,
we monitored the usage and maintenance actions of an
industrially hosted business information system for over
two years. We quantified the amount of unused code and
measured how often such code is maintained. Furthermore,
we investigated to what extent maintenance tasks on unused
code are unnecessary. We conducted our study by using the
presented tool support.

From our analysis, we draw two main conclusions: A
large portion of the code has not been used over the
analysis period of two years (25% of all methods). However,
a surprisingly low amount of maintenance (7.6% of all
maintenance actions) is spent on this fraction of the software
system. Therefore, unused code is not a severe problem
in the maintenance of the examined system. But nearly
50% of the maintenance actions that were performed on
the unused parts of the system affected methods that were
unnecessary and caused unnecessary maintenance effort or
even bugs. The information received during interviews with
the maintainers of the examined software system indicates
that our analysis is helpful for them.

We believe that our analysis would show a greater amount
of unnecessary maintenance for projects with a different
structure of the maintaining team. We are optimistic that this
analysis helps directing maintenance efforts more effectively.

B. Future Work

Motivated by the results of our study, we plan a number
of improvements and validations for the proposed analysis
in the future.

Increase accuracy: At this stage, we are not able to
map functionality of methods that is migrated into other
methods. In order to gain more precise statistics, we plan to
improve our mapping mechanisms. Moreover, we are work-
ing on more elaborated statistics and metrics that measure
unnecessary maintenance effort.

Another possibility to increase the accuracy of our analy-
sis is to employ procedures for filtering exception handlers
and similar parts of the code from the set of unused and
maintained methods. We are optimistic to raise the ratio of
unnecessarily maintained code in our findings.

Test control: Our tooling can also be applied to test
systems. Combined with knowledge about changes to an
underlying system, we can point testers to methods that were
changed, but not tested afterwards.

Representative study: In this study, we only observed
one large software system. In the future, we will monitor
more systems to gain more general results about the main-
tenance of unused code. Furthermore, the presented tool
support only targets systems written in C#. As our approach
is not limited to this programming language, we plan to
adopt it also for other systems that work on virtual machines,
for example, Java.

ACKNOWLEDGMENT

We are grateful to Markus Herrmannsdoerfer for his
help with the execution of the study. We also thank Lars
Heinemann, Markus Herrmannsdoerfer, and Daniel Méndez
Fernandez for their helpful comments.

REFERENCES
[1] J. Johnson, “Roi, it’s your job,” Keynote at XP ’02.

[2] E. Juergens, M. Feilkas, M. Herrmannsdoerfer, F. Deis-
senboeck, R. Vaas, and K. Prommer, “Feature profiling for
evolving systems,” in ICPC 11, 2011.

[3] IEEE, “IEEE standard glossary of software engineering ter-
minology,” Standard, 1990.

[4] D. Yeh and J.-H. Jeng, “An empirical study of the influence of
departmentalization and organizational position on software
maintenance,” J. Softw. Maint. Evol. Res. Pr.,, 2002.

[5] H. D. Rombach, B. T. Ulery, and J. D. Valett, “Toward full
life cycle control: Adding maintenance measurement to the
SEL,” J. Syst. Softw., 1992.

[6] V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo,
and J. D. Valett, “Understanding and predicting the process
of software maintenance release,” in ICSE ’96, 1996.

[7] O. Traub, S. Schechter, and M. D. Smith, “Ephemeral in-
strumentation for lightweight program profiling,” School of
engineering and Applied Sciences, Harvard University, Tech.
Rep., 2000.

[8] V. Basili, G. Caldiera, and H. Rombach, “The Goal Question
Metric Approach,” Encyclopedia of Software Engineering,
vol. 1, 1994,

1110

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in software engineering: An
introduction. Kluwer Academic Publishers, 2000.

D. M. Hilbert, “Large-scale collection of application usage
data and user feedback to inform interactive software devel-
opment,” Ph.D. dissertation, University of California, Irvine,
1999.

A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma
system: Continuous evolution of software after deployment,”
SIGSOFT Softw. Eng. Notes, vol. 27, no. 4, 2002.

B. Liblit, A. Aiken, A. X. Zheng, and M. 1. Jordan, “Bug
isolation via remote program sampling,” SIGPLAN Notices
’03, vol. 38, no. 5, 2003.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in PLDI ’05, 2005.

S. Elbaum and M. Diep, “Profiling deployed software: As-
sessing strategies and testing opportunities,” IEEE Trans.
Softw. Eng., vol. 31, no. 4, 2005.

M. Haran, A. Karr, M. Last, A. Orso, Alessandro d A. Porter,
A. Sanil, and S. Fouche, “Techniques for classifying execu-
tions of deployed software to support software engineering
tasks,” IEEE Trans. Softw. Eng., vol. 33, no. 5, 2007.

S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A
call graph execution profiler,” in SIGPLAN Notices 82, 1982.

1111

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl, “Continuous profiling:
Where have all the cycles gone?” ACM Trans. Comput. Syst.,
vol. 15, no. 4, 1997.

S. Horwitz, “Identifying the semantic and textual differences
between two versions of a program,” in PLDI *90, 1990.

W. Yang, “Identifying syntactic differences between two
programs,” Softw., Pract. Exper., vol. 21, no. 7, 1991.

J. E. Grass, “Cdiff: A syntax directed differencer for C++
programs,” in UXENIX C++ 92, 1992.

D. Jackson and D. A. Ladd, “Semantic diff: A tool for
summarizing the effects of modifications,” in ICSM "94, 1994.

M. Kim and D. Notkin, “Discovering and representing sys-
tematic code changes,” in ICSE ’09, 2009.

R. U. J. D. Aho, Alfred V.; Sethi, Compilers - Principles,
Techniques and Tools. Addison Wesley, 1986.

A. Appel, Modern Compiler Implementation in Java. Cam-
bridge University Press, 1998.

S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Com-
piler techniques for code compaction,” ACM Trans. Program.
Lang. Syst., vol. 22, 2000.

APPENDIX B

Publication B [2]

Venue: AST@ICSE 2013
Acceptance rate: 45%
Length: 4 pages

Type: Short paper
Reviewed: Peer reviewed

113

Did We Test Our Changes?
Assessing Alignment between Tests and
Development in Practice

Sebastian Eder, Benedikt Hauptmann,
Maximilian Junker
Technische Universitidt Miinchen, Germany

Abstract—Testing and development are increasingly performed
by different organizations, often in different countries and time
zones. Since their distance complicates communication, close
alignment between development and testing becomes increasingly
challenging. Unfortunately, poor alignment between the two
threatens to decrease test effectiveness or increases costs.

In this paper, we propose a conceptually simple approach to
assess test alignment by uncovering methods that were changed
but never executed during testing. The paper’s contribution is a
large industrial case study that analyzes development changes,
test service activity and field faults of an industrial business
information system over 14 months. It demonstrates that the
approach is suitable to produce meaningful data and supports
test alignment in practice.

Index Terms—Software testing, software maintenance, dy-
namic analysis, untested code

1. INTRODUCTION

A substantial part of the total life cycle costs of long-
lived software systems is spent on testing. In the domain
of business-information systems, it is not uncommon that
successful software systems are maintained for two or even
three decades. For such systems, a substantial part of their
total lifecycle costs is spent on testing to make sure that new
functionality works as specified, and—equally important—that
existing functionality has not been impaired.

During maintenance of these systems, test case selection is
crucial. Ideally, each test cycle should validate all implemented
functionality. In practice, however, available resources limit
each test cycle to a subset of all available test cases. Since se-
lection of test cases for a test cycle determines which bugs are
found, this selection process is central for test effectiveness.

A common strategy is to select test cases based on the
changes that were made since the last test cycle. The underly-
ing assumption is that functionality that was added or changed
recently is more likely to contain bugs than functionality that
has passed several test cycles unchanged. Empirical studies
support this assumption [1], [2], [3], [4].

If development and testing efforts are not aligned well,
testing might focus on code areas that did not change,

This work was partially funded by the German Federal Ministry of Educa-
tion and Research (BMBF), grant “EvoCon, 011S12034A”. The responsibility
for this article lies with the authors.

978-1-4673-6161-3/13/$31.00 © 2013 IEEE

Elmar Juergens
CQSE GmbH,
Germany

107

Rudolf Vaas, Karl-Heinz Prommer
Munich Re Group,
Germany

or—more critically—substantial code changes might remain
untested. Test alignment depends on communication between
testing and development. However, they are often performed
by different teams, often located in different countries and
time-zones. This distance complicates communication and
thus challenges test alignment. But how can we assess test
alignment and expose areas where it needs to be improved?

Problem: We lack approaches to determine alignment be-
tween development and testing in practice.

Proposed Solution: In this paper, we propose to assess
test alignment by measuring the amount of code that was
changed but not tested. We propose to use method-level
change coverage information to support testers in assessing
test alignment and improving test case selection.

Our intuition is that changed, but untested methods are more
likely to contain bugs than either unchanged methods or tested
ones. However, our intuition might be dead wrong: method-
level churn could be a bad indicator for bugs, since methods
can contain bugs although they have not changed in ages.

Contribution: This paper presents an industrial case study
that explores the meaningfulness and helpfulness of method-
level change coverage information. The case study was per-
formed on a business information system owned by Munich
Re. System development and testing were performed by dif-
ferent organizations in Germany and India. The case study
analyzed all development changes, testing activity, and all field
bugs, for a period of 14 months. It demonstrates that field bugs
are substantially more likely to occur in methods that were
changed but not tested.

II. RELATED WORK

The proposed approach is related to the fields of defect
prediction, selective regression testing, test case prioritization,
and test coverage metrics. The most important difference to the
named topics is the simplicity of the proposed approach and
the fact that change coverage assesses the executed subsets of
test suites, but does not give hints to improve them.

Defect prediction is related to our approach, because we iden-
tify code regions that were changed, but remained untested,
with the expectation that there are more field bugs.

AST 2013, San Francisco, CA, USA

There are several models for defect prediction [5]. In
contrast to these models, we measure only changes in the
system and the coverage by tests and do not predict bugs, but
assess test suites and use the probability of bugs in changed,
but untested code as validation of the approach.

The proposed approach is related to [6], which uses series
of changes “change bursts” to predict bugs. The good results
that were achieved by using change data for defect prediction
encourage us to combine similar data with testing efforts.

Selective regression testing techniques target the selection
of test cases from changes in source code and coverage
information. [7], [8], [9].

In contrast to these approaches, the paper at hand focuses
on the assessment of already executed test suites, because
often experts decide which tests to execute to cover most of
the changes made to a software system [10]. However, their
estimations contain uncertainties and therefore possibly miss
some changes. Our approach aims at identifying the resulting
uncovered code regions. Therefore, our approach can only be
used if testing activities were already performed.

Compared to [11], we are validating our approach by
measuring field defects, and do not take defects into account
that were found during development.

Test coverage metrics give an overview of what is covered by
tests. Much research has been performed in these topics [12]
and there is a plethora of tools [13] and a number of metrics
available, such as statement, branch, or path coverage [14]. In
contrast to these metrics, we focus on the more coarse grained
method coverage. Furthermore, we do not only consider static
properties of the system under test, but changes.

Empirical studies on related topics focus to the best of our
knowledge mainly on the effectiveness of test case selection
and prioritization techniques [9], [15]. In our study, we assess
test suites by their ability to cover changes of a software
system, but do not consider sub sets of test suites.

III. CONTEXT AND TERMS

In this work, we focus on system testing according to the
definition of IEEE Std 610.12-1990 [16] to denote “testing
conducted on a complete, integrated system to evaluate the
system’s compliance with its specified requirements”. System
tests are often used to detect bugs in existing functionality
after the system has been changed. In our context, many tests
are executed manually and denoted in natural language.

Our study uses methods as they are known from program-
ming languages such as Java or C#. Methods form the entities
of our study and can be regarded as units of functionality of a
software system. They are defined by a signature and a body.
To compare different releases of a software system over time,
we create method genealogies which represent the evolution of
a single method over time. A genealogy connects all releases
of a method in chronological order [17].

In the context of our work, the life cycle of a software
system consists of two alternating phases (see Figure 1). In
the development phase, existing functionality is maintained

Method Genealogy 1
Method Genealogy 2
Method Genealogy 3

/]

4,4
7

L —

& /)

Test Run 1 - -3~

Iteration 2 --Q-%-Q -

Legend
C Change
T Test
F Fix

&\\\ Genealogy is

changed-untested

Iteration 1 -- Q- O---
Test Run 2 - -%-—3-%-
Release
Hotfix - -4/-m-%-
Hotfix - -"-

Development Phase Productive Phase

Fig. 1. Development life-cycle

or new features are developed. Development usually occurs
in iterations which are followed by test runs which are the
execution of a selection of tests aiming to test regressions
as well as the changed or added code. A development phase
is completed by a release which transfers the system into
the productive phase. In the productive phase, functionality
is usually neither added nor changed. If critical malfunctions
are detected, hot fixes are deployed in the productive phase.

We consider a method as fested if it has been executed
during a test run. If a method has been changed or added
and been tested afterwards before the system is released we
consider it as changed-tested. If a method change or addition
has not been tested before the system is transferred in the
productive phase, we consider the method as changed-untested
(see genealogy 1 and 3 in Figure 1).

IV. CHANGE COVERAGE

To quantify the amount of changes covered by tests, we
introduce the metric change coverage (CC). It is computed by
the following formula and ranges between [0,1].

#methods changed-tested
change coverage =

#methods changed

A change coverage of 1 (CC = 1) means that all methods
which have been changed since the last test run have been
tested after their last change. On the contrary, a coverage of
0 (CC = 0) indicates that none of the changed methods have
been covered by a test.

V. CASE STUDY
A. Goal and Research Questions

The goal of the study is to show whether change coverage is
a useful metric for assessing the alignment between tests and
development. We formulate the following research questions.

RQ 1: How much code is changed, but untested? The goal
of this research question is to investigate the existence of
changed, but untested code, to justify the problem statement of
this work. Therefore, we quantify changed and untested code.

RQ 2: Are changed-untested methods more likely to contain
field bugs than unchanged or tested methods? The goal of
this research question is to decide whether change coverage
can be used as a predictor for bugs in large code regions and is

108

therefore useful for maintainers and testers to identify relevant
gaps in their test coverage.

B. Study Object

We perform the study on a business information system at
Munich Re. The analyzed system was written in C# and its
size are 340 kLOC. In total, we analyzed the system for 14
months. The system has been successfully in use for nine years
and is still actively used and maintained. Therefore, there is
a well implemented bug tracking and testing strategy. This
allows us to gain precise data about which parts of the system
were changed and why they were changed.

We analyzed two consecutive releases of the system. Re-
lease 1 was developed in five iterations in two months, and
release 2 was developed in ten iterations in four months.
Both releases were deployed to the productive environment
due to hot fixes five times and were in productive use for
six months. Note that one deployment may concern several
bugs and changes in the system. The system contained 22123
(release 1) respectively 22712 (release 2) methods.

For both releases, test suites containing 65 system test cases
covering the main functionality were executed three times.

C. Study Design and Execution

For all research questions, we classify methods according to
the categories shown in Figure 2: Tested or untested, changed
or unchanged, and whether methods contain field bugs.

untested

methods with bugs
22> changed-untested
%metbods with bugs

Fig. 2. Method categories used to evaluate change coverage

changed

Study Design: First, we collect coverage and program data,
then we answer RQ 1 and RQ 2 based on the collected data.
For answering RQ 1, we build method genealogies and
identify changes during the development phase and relate
usage data to these genealogies. With this information, we
identify method genealogies that are changed-untested.

For answering RQ 2, we calculate the probability of field
defects for every category of methods by detecting changes
in the productive phase of the system in retrospective. This
is valid for the analyzed system, since only severe bugs are
fixed directly in the productive environment, which is defined
by the company’s processes.

We gain our results by identifying methods that are changed
in the productive phase, which means they were related to
a bug. We then categorize methods by change and coverage
during the development phase. Based on this, we calculate the
bug probability in the different groups of methods.

Study Execution: We used tool support, which consists of
three parts: An ephemeral [18] profiler that records which
methods were called within a certain time interval, a database
that stores information about the system under consideration,

=

=}

k=i

P 0.53%
e

8 049 0.34%

E 0.24% [] 29 0 19% () 21%
Z 0.2% . 1%0 4% 0.09%

£

s 0% ‘
a%n overa“ umesﬁed cha“ge?\ nged-1] ‘e ged- umes&ed

Fig. 3. Probability of fixes in both releases

and a query interface that allows retrieving coverage, change,
and change coverage information. The same tool support was
used in earlier studies [17], [19].

Validity Procedures: We focus on validity procedures and not
on threats to validity due to space limitations.

We conducted manual inspections to ensure that every bug
that is identified by our tool support is indeed a bug.

To confirm the correctness of method genealogies we build
based on locality and signatures, we conducted manual inspec-
tions of randomly chosen method genealogies. We found no
false genealogies and have therefore a high confidence in the
correctness of our technique. We also used the algorithm in
our former work [17], which provided suitable results as well.

D. Results

RQ 1: Untested methods account for 34% in both releases
we analyzed. 15% of all methods were changed during the
development phase of the system, also in both releases. The
equality of the numbers for both releases is a coincidence.

8% respectively 9% of all methods were changed-untested.
Considering only changed methods, only 44% were tested in
release 1 and 45% of these methods were tested in release
2. These numbers constitute that there are gaps in the test
coverage of changed code in the analyzed system.

RQ 2: We found 23 fixes in release 1 and 10 fixes in
release 2. The distribution of the bugs over the different change
and coverage categories of methods is shown in Table I.
The biggest part of bugs occurred in methods categorized as
changed-untested with 43% of all bugs in release 1 and 40%
of all bugs in release 2. In both releases, there are considerably
less bugs in unchanged regions than in changed regions.

The probabilities of bugs are shown in Figure 3. With 0.53%
in release 1 and 0.21% in release 2, the probability of bugs
is higher in the group of methods that were changed-untested.
This confirms that tested code or code that was not changed in
the development phase is less likely to contain field defects.

E. Discussion

RQ 1: With 15% of all methods being changed and 34% of
all methods being not tested, untested code and changed code
plays a considerable role in the analyzed system. The high
amount of changed methods results from newly developed
features, which means that many methods were added during
the development phase of both releases.

109

TABLE 1
DISTRIBUTION OF FIXES OVER THE DIFFERENT CATEGORIES

Release 1 Release 2
Category Absolute Relative Absolute Relative
changed-tested 5 22% 3 30%
changed-untested 10 43% 4 40%
unchanged-tested 0 0% 0 0%
unchanged-untested 8 35% 3 30%

43% respectively 40% of the changed methods were not
tested in the analyzed system. These high numbers also result
from features that are newly developed during the development
phase. For these new features, there was only a very limited
number of test cases.

RQ 2: With a probability of bugs in untested-changed methods
of 0.53% respectively 0.21%, this group of methods contains
most of the bugs. This means that the system itself contains
few bugs at the current stage of development and bugs are
brought into the system by changes.

Furthermore, the probability of bugs in untested code is,
in both releases, less than half of the probability in changed-
untested code. Hence, we conclude that only considering test
coverage is not as efficient as considering change coverage.

The probability of bugs in changed code regions is also con-
siderably higher than in untested regions. But the combination
of both metrics, test coverage and changed methods points to
code regions that are more likely to contain bugs than others.
Is Change Coverage Helpful in Practice? We employed
the proposed approach also in the context of Munich Re in
currently running development phases. We showed the results
to developers and testers by presenting code units, like types or
assemblies ordered by change coverage. During the discussion
of the results, we conducted open interviews with developers to
gain knowledge about how helpful information about change
coverage is during maintenance and testing.

Developers identified meaningful methods in changed but
untested regions by using the static call graph to find methods
they know. With these methods, the developers were able
to identify features that remained untested. For example the
processing of excel sheets in a particular calculation was
changed, but remained untested afterwards. In this case, among
some others, the (re-)execution of particular test cases and
the creation of new test cases were issued. This increased
the change coverage considerably for the code regions where
the features are located. This shows that change coverage is
helpful for practitioners.

VI. CONCLUSION AND FUTURE WORK

We presented an automated approach to assess the alignment
of test suites and changes in a simple and understandable
way. Instead of using rather complex mechanisms to derive
code units that may be subject to changes, we are focusing
on changed but untested methods and calculate an expressive
metric from these methods. The results show that the use of

change coverage is suitable for the assessment of the alignment
of testing and development activities.

We also showed that change coverage is suitable for guiding
testers during the testing process. With information about
change coverage, testing efforts can be assessed and redirected
if necessary, because the probability of bugs is increased in
changed-untested methods. Furthermore, we presented our tool
support that allows us to utilize our technique in practice.

However, the number of bugs we found is too small to
derive generalizable results. Therefore, we plan to extend our
studies to other systems to increase external validity. But the
first results that we presented in this work point out that the
consideration of code regions that are modified, but not very
well tested is important. This motivates future work on the
topic and the inference of improvement goals.

One challenge is the identification of suitable test cases from
code regions to give hints to testers and developers which test
case to execute to cover more changed, but untested methods.
Therefore, we plan to evaluate techniques related to trace link
recovery to bridge the gap to test cases.

REFERENCES

[1] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in /CSE, 2005.

[2] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality,” in ICSE, 2008.

[3] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence
using software change history,” IEEE Trans. Softw. Eng., vol. 26, no. 7,
2000.

[4] T.J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in
ISSTA, 2004.

[S5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Trans. Softw. Eng., vol. 38, no. 6, 2012.

[6] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
“Change bursts as defect predictors,” in ISSRE, 2010.

[7]1 V. Channakeshava, V. K. Shanbhag, A. Panigrahi, R. Sisodia, and
S. Lakshmanan, “Safe subset-regression test selection for managed
code,” in ISEC, 2008.

[8] Y.-F. Chen, D. Rosenblum, and K.-P. Vo, “Testtube: a system for
selective regression testing,” in /CSE, 1994.

[9] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel,
“An empirical study of regression test selection techniques,” in ICSE,
1998.

[10] M. Harrold and A. Orso, “Retesting software during development and
maintenance,” in FoSM, 2008.

[11] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in devel-

opment environment,” in ISSTA, 2002.

H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage

and adequacy,” ACM Comput. Surv., vol. 29, no. 4, 1997.

Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage based testing

tools,” in AST, 2006.

Y. Malaiya, M. Li, J. Bieman, and R. Karcich, “Software reliability

growth with test coverage,” IEEE Trans. Rel., vol. 51, no. 4, 2002.

G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test cases

for regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10, 2001.

[16] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,”

New York, USA, 1990.

S. Eder, M. Junker, E. Jurgens, B. Hauptmann, R. Vaas, and K. Prommer,

“How much does unused code matter for maintenance?” in /ICSE, 2012.

O. Traub, S. Schechter, and M. D. Smith, “Ephemeral instrumentation

for lightweight program profiling,” School of engineering and Applied

Sciences, Harvard University, Tech. Rep., 2000.

[19] E.Juergens, M. Feilkas, M. Herrmannsdoerfer, F. Deissenboeck, R. Vaas,
and K. Prommer, “Feature profiling for evolving systems,” in ICPC,
2011.

[12]
[13]
[14]

[15]

[17]

[18]

110

appenDix C

Publication C [3]

Venue: AST@ICSE 2014
Acceptance rate: 43%
Length: 7 pages

Type: Full paper
Reviewed: Peer reviewed

119

Selecting Manual Regression Test Cases Automatically
using Trace Link Recovery and Change Coverage -

Sebastian Eder,

Benedikt Hauptmann, Maximilian Junker

Technische Universitat Minchen, Germany
{eders,hauptmab,junkerm}@in.tum.de

ABSTRACT

Regression tests ensure that existing functionality is not im-
paired by changes to an existing software system. However,
executing complete test suites often takes much time. There-
fore, a subset of tests has to be found that is sufficient to
validate whether the system under test is still valid after
it has been changed. This test case selection is especially
important if regression tests are executed manually, since
manual execution is time intensive and costly.

To select manual test cases, many regression testing tech-
niques exist that aim on achieving coverage of changed or
even new code. Many of these techniques base on cover-
age data from prior test runs or logical properties such as
annotated pre and post conditions in the source code. How-
ever, coverage information becomes outdated if a system is
changed extensively. Also annotated logical properties are
often not available in industrial software systems.

We present an approach for test selection that is based
on static analyses of the test suite and the system’s source
code. We combine trace link recovery using latent semantic
indexing with the metric change coverage, which assesses the
coverage of source code changes. The proposed approach
works automatically without the need to execute tests be-
forehand or annotate source code. Furthermore, we present
a first evaluation of the approach.

Categories and Subject Descriptors

K.6.3 [Management of Computing and Information
Systems]|: Software Management; D.2.4 [Software Engi-
neering): Testing and Debugging

*This work was performed within the Software Campus
project ANSE; it was funded by the German Federal Min-
istry of Education and Research (BMBF) under grant no.
011S12057. The authors assume responsibility for the con-
tent.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

AST’14, May 31 — June 1, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2858-6/14/05...$15.00
http://dx.doi.org/10.1145/2593501.2593506

Rudolf Vaas, Karl-Heinz Prommer
Munich Re, Germany
{rvaas,hprommer}@munichre.com

General Terms

Software Maintenance, Coverage Testing, Tracing

Keywords

Regression tests, test selection, manual system tests, test
coverage, trace link recovery, software maintenance

1. INTRODUCTION

Business information systems often run and are maintained
for up to two or three decades. For these long living systems,
existing functionality must be preserved in spite of modifi-
cations. Therefore, regression testing detects changes that
break existing functionality. In the field of business informa-
tion systems, regression testing is often done manually by
using test cases written in natural language.

An example of a manual test case is illustrated in Figure 1:
A test case is separated into different steps and every step
contains an action the tester has to perform and the expected
result the tester has to check.

Regression testing ensures that existing functionality of
the system under maintenance is not impaired. However,
due to the size of test suites and limited resources, just
subsets of test suites can be executed. Thus, the selection
strategy is crucial for the effectiveness of regression testing.
During maintenance, when a system is changed and tested
afterwards, code changes are possibly missed by tests, which
leads to field bugs. As we already showed in previous work [8],
the rate of field bugs is higher in untested and changed code
than in other code regions and therefore, it is more important
to test changed methods. Based on these results, we now
present an approach to regression test case selection, which
targets changed code, for manual system tests which are
written in natural language.

Action Expected result

1 Start the system System is ready

Systems displays a message
that you are logged in suc-
cessfully

2 Login using a valid username
and password

System shows dialog for ex-
porting the results

6 Enter data for calculation

7 Export results to Excel Excel file is created

8 Open files

Data is correct

Figure 1: Example: Manual test case.

Problem: Existing test case selection approaches often rely
on code coverage data of tests, or on logical properties such as
pre and post conditions annotated in source code [10] used to
predict which code regions might be executed by a test. How-
ever, these approaches are not generally applicable because
coverage data from prior test runs becomes outdated if the
system under test underlies extensive changes. Furthermore,
logical properties are usually not contained in industrial soft-
ware systems, because they are costly and difficult to create
and maintain. This renders existing regression test selection
techniques difficult to apply in real world scenarios.

Contribution: We propose an approach based on static
analysis to identify regression tests that cover changed code.
We do not rely on coverage data nor on annotations in
source code, but present a fully automated approach based
on Latent Semantic Analysis [7] to relate manual tests to
source code, recovering trace links between both. With these
trace links, we select test cases that have to be executed
to test a certain piece of code. We use the metric change
coverage to identify what parts of a system have been changed
and are therefore subject to regression testing. Combining
trace link recovery and change coverage enables identifying
test cases as regression tests to test the changed code. Goal
of the approach is, given a set of methods, that were changed,
but not tested, to select test cases that execute methods.
Additionally, we provide initial results of an evaluation of
our technique, showing that the approach performs well in
selecting relevant tests.

2. RELATED WORK

Selective regression testing or regression test selection
techniques identify test cases based on changes of the system
under test. There are several approaches to this topic [3,
4, 12, 22, 5]. However, these approaches mainly use code
coverage information from prior test runs to identify which
test case executes which code regions. Furthermore, most
approaches focus on being safe, in terms of being capable
of uncovering the same bugs the complete test suite could
also reveal. We focus on selecting at least one test case that
executes changed but untested methods. Additionally, these
approaches tend to recommend many test cases which might
be too much for an application in practice, especially if the
tests have to be executed manually [15]. In contrast, we only
select test cases that target changed code that has not been
covered by tests since their modification and use only fully
automated static analyses and therefore do not require the
test suite to be executed to identify relevant test cases nor
do we rely on logical properties of test cases or the system.

Test case prioritization orders test cases on their likeliness
to detect bugs based on coverage metrics such as coverage of
changes [20, 23]. Our work is related to the field of test case
prioritization, since our approach can be used for this task
too. As noticed in [8], changed methods indeed cause more
field bugs than unchanged methods. Therefore, we suggest
testing untested methods and prioritizing test cases covering
these methods high.

Trace link recovery and feature location focus on un-
covering relations between different artifacts such as locating
higher level features in source code. Many approaches borrow
from the fields of information retrieval and natural language
processing. Cleland-Huang et al. [6] give an overview on
the applicability of trace link recovery and proposes best

30

practices. To the best of our knowledge, there is no approach
using traceability link recovery for test case selection, which
is the main contribution of this paper.

There are some approaches that target the recovery of
trace links between natural language documents in software
engineering (e.g. [16, 13]). Besides other algorithms [18],
these approaches often use the Vector Space Model or LSI
for retrieving links between documents. Falessiet al. [11]
report on using and calibrating retrieval algorithms. We use
this knowledge to calibrate the presented approach uses and
rely on best practices presented by other researchers.

Much work has been done on recovering links between
code and design artifacts. Especially Zhao et al. [24] present
an approach very similar to our approach: Technically, they
also use the call graph of a system to find representative code
regions and propagate the tracing results through the call
graph (we illustrate our approach in detail in Section 3). They
use this technique to relate requirements to code regions and
validate their approach based on two open source systems.
As they achieve very good results (ca. 100% precision and
ca. 95% recall) in linking code regions to requirements, we
follow their work. However, they note that requirements
have to be well designed to match to code. We use a very
similar approach, but evaluate it on real world test cases
from industry, rather than requirements documents.

Similarly to Zhao et al. [24], an approach using LSI and the
static call graph of the software system under maintenance is
presented by Charrada et al. [2]. They use traceability link
recovery to detect outdated requirements based on source
code changes, by extracting concepts from the source code
that are relevant for requirements. We conform to their
approach by also using the call graph, but do not consider
requirements, but link source code methods to regression
test for selection.

The selection properties to consider when tracing from
source code to test cases or other artifacts is crucial. In [1],
a study about which properties of the source code to take
into account is given. They suggest using class names for
tracing, but also show that using method names produces
good results. Encouraged by this, we use method signatures,
since tracing on class level is too coarse in our context.

Lucia et al. [17] introduce an approach facilitating tracing
between code and test cases. They also use LSI as technique
for comparing documents, but do not give details about
how code is preprocessed prior to comparing it to test cases.
Furthermore, it remains unclear, whether the test cases are
written in natural language. Our approach is dedicated
to trace from source code to test cases written in natural
language for manual testing.

3. APPROACH

In this section, we introduce our approach used for re-
gression test case selection. After giving a short overview
of the approach, we explain the input to our approach and
afterwards illustrate the main parts: Change Coverage and
Trace Link Recovery using latent semantic indexing and the
static call graph of the system under consideration.

Overview: To select test cases, we first seek code areas with
methods that were changed but not tested as presented in [8].
We then run the trace link recovery algorithm (based on LST)
to find test cases that might cover these gaps. But as this
approach is based on similarities, it suggests test cases.

3.1 Starting Point

The algorithm uses test case descriptions in natural lan-
guage. We consider a test case as a plain text document
written in natural language.

Furthermore, the approach expects a software system as
input. Currently, we only support the programming language
C#. The software system is given to the algorithm as com-
piled Intermediate Language (IL) code'. Additionally, the
approach uses different versions of the same software system
under maintenance to detect changes to the source code.
Changes are considered only at method level (a method was
changed or not). We consider a method as changed if its IL
code differs from the previous version.

For calculating change coverage (see the following section),
we use profiling data from an ephemeral profiler [21] as in our
earlier work [8, 9]. The profiler does not record how often a
method was called, just whether it was called during a fixed
time interval. This data suffices to gain valuable insights
into the test coverage of a system under maintenance.

With the data about method changes and the coverage
information on method level, change coverage is calculated.

3.2 Change Coverage

To select code regions for which we select test cases, we use
change coverage, since it quantifies the amount of changes cov-
ered by tests. Change coverage is calculated by the fraction
number of methods that were changed and tested afterwards
and the number of all changed methods (as shown in Equa-
tion 1). A detailed description can be found in [8]. The
same study shows that collecting coverage information at
method level is fine grained enough to gain insights into
code coverage in practice, but does not produce too much
performance overhead for practical application.

#methods changed-and-tested
#methods changed

(1)

A change coverage of 1 means that all methods which
have been changed have been tested after their last change.
On the contrary, a coverage of 0 indicates that none of the
changed methods has been covered by a test.

We perceive change coverage as a simple metric that is
easy to understand. As reported earlier [8], this helped
transferring it into practice.

change coverage =

3.3 Latent Semantic Indexing

As our approach to trace link recovery is based on Latent
Semantic Indexing (LSI) [7], we explain it in this section.
LSI is a technique to compute for each pair from a corpus of
documents how similar they are to each other. The measure
for the similarity is a value between zero and one, where
one means identical 2 .Compared to other techniques LSI
identifies groups of words that belong to a common concept
(e.g. car and automobile belong to the same concept), which
makes the computation of similarities more precise. Schemat-
ically LSI works as follows (and as illustrated in Figure 2):
First, every document is represented by a vector in the space
of words. Each entry in this vector denotes the weight that
this word has with respect to this document (e.g. how often
it occurs). Thus the whole set of documents is represented by

!Call graph dependencies are easier to analyze in IL code.
2In the remainder of the paper, documents do not have to
be identical, as we use the results from LSI as a measure of
similarity.

31

a term-document matrix. Now LSI applies a procedure called
Singular Value Decomposition (SVD). The result of SVD is
a smaller matrix where terms are replaced by concepts, thus
each document is now represented by a vector in the space
of concepts. The similarity between two documents can then
be calculated as the distance of the correspondent vectors.

2 [E[E

BRERE

car

automobile car, automobile
tree —_ tree, plant
plant SVD computer
computer

J

Distance

Figure 2: Schematic working of LSI.

3.4 Trace Link Recovery

The procedure for trace link recovery is divided into several
steps, as illustrated in Figure 3. These steps are explained
in detail below.

Test cases IL Code
N
Read call graph
N
Collect concepts
N
Propagate concepts
N
Preprocess Preprocess
Compare (LSI)
4
Propagate similarity tables
N
Clean similarity tables
N
Similarity Matrix
Process Step Input/Output

Figure 3: Overview of the approach.

Preprocessing of test cases consists of stemming and
stop word removal®. Although stemming is theoretically
not necessary when using LSI since the model recognizes
synonyms given a dataset of sufficient size [14]. However, the
size of the test suites we analyzed did not suffice to correctly
classify synonyms (in the resulting vector space, two words
with the same meaning are too far away from each other
affecting the results in a negative way). Therefore, we use
stemming to ensure every word is reduced to its normal form,
expecting that stemming improves the results [14].
Transferring source code methods into documents:
We divide this task in four steps:

Read call graph: The static call graph is retrieved directly

from the intermediate language code (IL code).

3We used the stemming approach introduced by Porter [19].

Collect concepts: We rely on the common convention that
identifiers are denoted in camelCase or different concepts
are separated by underscores or dashes. With this assump-
tion, we can split methods signatures into the concepts they
contain. For example the method getRatingAgency() is
transferred into the list [get, rating, agency].

Propagate concepts: We extract the concepts from the
signatures of all methods that are reachable in the static
call graph from the method under consideration. If, for ex-
ample, the method getNameOfAgency() is reachable from
getRatingAgency (), the resulting list of concepts is [get,
rating, agency, get, name, of, agency|. With this technique,
we also get information for methods that are entry points
to the system.

Preprocess: On this list, we perform stemming and stop
word removal resulting in the list of concepts [get, rate,
agenc, get, name, agenc]*. Note that the same stemming
is performed on test cases resulting in the same stemmed
terms occurring in the test cases.

We represent the result of the preprocessing of methods as

a set of text files, one per method, containing all the concepts

of the method itself, and the concepts of all methods that

are reachable from this method. These files do not contain
correct natural language, but suffice to use it with LSI.

Compare: After preprocessing is finished, we compare the

documents resulting from methods and test cases based on

LSI. The outcome is a matrix containing the values that

indicate how similar a test case is to a method. The LSI

comparison is the most time consuming task in our approach.

TC1 0.9 |
TC2 0.1
TC3 0.1
TC4 0.1

Figure 4: Example: Propagation of similarities.

Propagate similarity tables: Each system contains meth-
ods which are not similar to any test case, and therefore
cannot be linked®. However, using the call graph, we know
how to reach these methods. Therefore, we traverse along
the call graph reversely to find methods which we can relate
to tests with more confidence and propagate them back along
the call graph. The result is that every method is annotated
with the maximum similarity values for every test case from
all methods it can be reached from in the call graph. Figure 4
shows an example of this propagation. With this procedure,
we find tests cases for methods that are not mentioned in
test cases directly.

Clean similarity tables: To this end, we calculated the
similarities between every method and every test case. Since
we only want to select relevant test cases, we keep only the

4«agenc” and “rate” result from stemming, and “of” is removed
as it is a stop word.

5For example, logging facilities that are not mentioned in
the test cases.

32

elements in the list of similarities of a method where we
expect that test case to execute this method. This is done as
follows: Given a list of similarity values, sorted in descending
order, we cut the list at the point where the biggest distance
between two consecutive similarity values occurs. This is the
same algorithm as used in [24]. Table 1 shows an example
of the cutting algorithm: Between the test cases TC1 and
TC2, the distance of the similarity values is 0.5, whereas the
distance between TC3 and TC1, and TC2 and TC4 is only
0.1. Therefore, the list is cut between TC1 and TC2, since
the distance of similarity values there is the biggest.

Table 1: Example for cutting similarity lists.

Test Case Similarity Test Case Similarity
TC3 0.9 TC3 0.9
TC1 0.8 TC1 0.8
TC2 0.3
TC4 0.2

(a) Method M4 (before) (b) Method M4 (after)

The result of the algorithm for trace link recovery is a
matrix containing similarity values denoting the similarity
of all methods to all test cases. An example of a similarity
matrix is illustrated in Table 2, where TC1 to TC4 are test
cases and M1 to M5 are source code methods.

Table 2: Example similarity matrix.

| M1 M2 M3 M4 M5
TC1|09 00 09 09 09
TC2 | 0.0 07 07 08 0.7
TC3 |00 00 00 00 00
TC4 |00 00 00 00 08
4. INITIAL EVALUATION

For evaluation, we conducted a case study in an industrial
environment with which we answer the following questions:
RQ1 How accurate is the approach to trace link recovery?

This question assesses for how many methods we find test

cases that execute the methods.

RQ2 What is the influence of characteristics of test cases
on the approach? With this question we measure the
influence of characteristics of test cases such as the verdict
of test cases and the number of steps that test functionality
specific to the system on the accuracy of our approach.

4.1 Study Object

System under test: We perform the study on a business
information system at Munich Re, which is one of the world’s
leading reinsurance companies with more than 47,000 em-
ployees in reinsurance and primary insurance worldwide. For
their insurance business, they develop a variety of custom
software systems. The business information system analyzed
in this study implements damage prediction functionality and
supports ca. 150 expert users in over ten countries. Table 3
illustrates the study object’s main characteristics.

‘We chose this system as study object for several reasons:
The system has been successfully in use for ten years and
is still actively used and maintained. Moreover, it is a web

Table 3: Study object: System under test.

Language C#
Age (years) 10
Size (kLOC) 340
Size (#methods) 39398

application, thus offering a single point for coverage data
collection and accessible for researchers outside Munich Re.

Test suite: For an initial evaluation, we selected four manual
test cases written in natural language®. The test cases we
selected cover between 1297 and 2300 methods, and 2711
methods in total. The execution of the test cases takes
between 5 and 15 minutes. The characteristics of the test
cases are illustrated in Table 4. Column Steps shows the
number of steps (consisting of action and expected result) a
test case has and the column Methods denotes the number
of methods a test case executes.

Table 4: Study object: Test cases.

Test Case Steps Methods
TC1 5 2300
TC2 7 1763
TC3 5 1297
TC4 11 1602

4.2 Study Design and Data Collection

Setup phase: To have reference values for the evaluation,
we execute all test cases manually on the system under test
and measure the code coverage for each test case. This data
will deal as an oracle for our evaluation. However, some parts
of the code have not been executed at all since there were
no test cases covering this code. Since we have no data for
these parts, we focus on executed methods in this study.

This oracle enables us to compare the results from our
approach with the actual coverage data.

Evaluation phase: We define a link suggested by our tool
from a source code method to a test case as correct, if the
method has been executed during the actual test run of the
suggested test. We calculate the accuracy of our approach
by counting how many suggested links of the methods we
executed in the setup phase are correct.

For answering RQ1 (How accurate is the approach to trace
link recovery?), we calculate the accuracy of links from source
code methods to test cases as the ratio of correctly linked
methods and all considered methods as shown in Equation 2.

#tcorrectly-linked
)

F#considered-methods

accuracy =

‘We compare our approach to randomly guessing a test
case for every method as a baseline. Furthermore, we apply

5For the study, execution traces of test cases are necessary.
Since capturing execution traces of manual test cases in an
industrial environment is a difficult task, because usually
there is no profiling environment and test cases require deeper
knowledge of the system under test, we had to face the trade-
off between test cases from industry (but less) or artificial
test cases (more). To gain more realistic results, we chose
test cases from industry.

33

Pearson’s Chi-Squared Test to test the null hypothesis Hy:
The presented approach produces no significantly different
results as the baseline. We chose a p value of 0.01.

To answer RQ2 (What is the influence of characteristics
of test cases on the approach?), following the links from test
cases to source code methods, we investigate the influence of
the test cases on the accuracy. We calculate in how many
cases the links suggested by our tool from test cases to source
code methods are correct. To measure the performance of
our approach, we calculate its precision using Equation 3,
where true positives are links between methods that are really
executed by the linked test case and false positives are links
that connect methods with test cases that do not execute
the method.”

##true-positives
F#true-positives + #false-positives

3)

precision =

4.3 Results

Results for RQ1 (How accurate is the approach to trace
link recovery?) The proposed approach suggests at least
one test case for every method. As we have four test cases
for evaluation, assuming that every method is executed by
exactly one test case, guessing would yield a chance of i =
25% to hit the right test case. Since methods might be
executed by more than one test case, we define the baseline
for RQ1 higher: From our analyses we know that each method
is executed by 2.56 test cases in average. Therefore randomly
guessing yields a chance for guessing a correct test case of
256 — 64% as a baseline for our evaluation.

For the first research question, the results are presented
in Table 5: We considered 2711 source code methods in
total and linked 2444 methods with a test case that executes
them. With 90% of all considered methods classified to a
correct test case, we gain considerably better results than
the baseline.

Table 5: Results: Methods.
Total Correctly linked Accuracy

2711 2444 90%

We link 1.75 test cases to a method in average with a
variance of 0.60; 1237 methods are linked to one test case,
909 methods are linked to two test cases, 565 methods are
linked to three test cases, and no method is linked to four
test cases (this results from the design of the algorithm for
cutting similarity lists).

For a statistical interpretation of the results, we observed
2444 methods as linked to a correct test case and 267 methods
not linked to a correct test case. With the baseline of 64%
of correctly linked test cases by randomly guessing (and
36% incorrectly linked methods), we expect 1740.5 methods
to be linked to the correct test case and 970.5 methods to
be incorrectly linked. The result of the Chi-Squared-Test
(x? = 764.3) shows, that the null hypothesis Ho can be

"Recall would measure whether our approach finds all meth-
ods executed by a test case or reversed, whether the approach
finds all test cases for a method. Since the goal of the pre-
sented approach is to close gaps in change coverage and
therefore executing methods that were changed, but not
tested, it is enough to find one test case for every method,
what we do by design and thus recall is not appropriate.

rejected and the approach outperforms randomly guessing
with statistical significance (p = 0.01).

Results for RQ2 (What is the influence of characteristics of
test cases on the approach?) For the second research question,
we present the results for every test case in Table 6 focusing
on links between test cases and methods. Column 7Total
links contains the total number of all links suggested by our
approach for the corresponding test case. Column Correct
links contains the number of correct links from methods to
the test case. The precision for every test case is contained in
the second column indicating how many links of the suggested
links for every test case are correct. Overall, we suggested
4750 links and 3619 (76%) of these links are correct.

Table 6: Results: Test cases.

Test Case Precision Total links Correct links
TC1 95% 1558 1480
TC2 73% 852 618
TC3 68% 523 355
TC4 64% 1817 1166

Overall 76% 4750 3619

4.4 Discussion

RQ1: The use case of our approach is finding test cases that
execute methods that were changed, but remained untested.
Our approach suggests a correct test case in 90% of all con-
sidered methods while suggesting 1.75 test cases in average.
These results indicate that the approach is suited for the
use case, because first, the approach has a high hit rate and
second, the approach limits the number of test cases to select.

RQ2: To enable a more detailed discussion, characteristics of
the test cases we chose for the initial evaluation are presented
in Table 7. Column Interactions shows the number of actions
and checks that target the system under test (and not an
external tool, like step 8 in the example in Figure 1) and
therefore contain more words that are characteristic to the
system. The value in brackets is the total number of steps
contained in the test case (see Table 4). This influences our
approach since the more characteristic words are contained
in a test case the more terms of the test case are found in
source code methods. Furthermore, we chose three test cases
with a successful verdict and one failing test case. Column
Verdict contains the outcome of the test case: Success means
the test case was performed without revealing errors, and
a failing test case produced errors. Table 7 also shows that
we chose heterogeneous test cases in terms of verdict and
system specific interactions for our evaluation.

We deliberately chose test cases containing not only inter-
actions with the system under test but also with external
tools, because we observed many test cases in the test suite

Table 7: Study object: Test cases (extension).

Name Interactions Verdict
TC1 5 (5) Success
TC2 7(7) Fail

TC3 2 (5) Success
TC4 4 (11) Success

34

we perform our analysis on exhibiting this characteristic. To
gain more representative results for the system under con-
sideration, it is thus necessary to also choose test cases with
parts that are considering external systems.

We observe that the precision for TC1, which was executed
without errors and only contains interactions regarding the
system directly produces the best result considering precision
(94%). This is not surprising, since this test case contains
mainly words regarding the system and furthermore did
not trigger error handling due to errors and thus did not
execute program parts that are not mentioned in the test
case. However, also TC2, which produced an error and could
not be executed completely, can be related to methods with
a precision of 73% (we successfully executed four steps in
TC2). The remaining test cases T3 and T4 focus heavily
on checks regarding data in an exported file. This leads to
slightly worse results than we observe with TC1 and TC2.

These results indicate that the precision even rises when

we consider test cases that contain more interactions specific
to the system and are not failing.
Conjecture: The results show that out approach is able
to suggest correct test cases for methods. Therefore, we
consider it suitable for finding test cases for methods that
are untested, but can be executed by an existing test case.
Based on this, we formulate the following hypothesis which
is subject to further investigation: Using trace link recovery
based on LSI facilitates regression test selection for changed,
but yet untested source code methods.

4.5 Threats to Validity

As we performed our trace recovery approach on only one
system and four test cases, the results are hardly general-
izable. However, we chose a system with a common size
and complexity in business information systems. We chose
heterogeneous test cases, which means successful and failing
test cases and test cases with less or more system interaction
and system specific text, to reduce the bias introduced by
the small number of test cases.

It is possible that our collection of usage data for test
runs did not collect all necessary data for the oracle. This
can happen, for example, when caching mechanisms become
active after one run of the system. We expect this effect to be
small, since developers told us there are no such mechanisms.
The collection procedure itself has shown to be working with
sufficient accuracy in earlier research [9, 8].

Furthermore, the tracing algorithm might not be imple-
mented correctly. We mitigated this threat by testing our
implementation on other artefact types.

5. CONCLUSIONS AND FUTURE WORK

We presented an approach based on trace link recovery
(using latent semantic indexing [7]) and change coverage [8]
for regression test selection for test cases written in natural
language and an initial evaluation of the approach. The
approach yields the advantage that a changed program does
not need to be executed again to gain enough information
for selecting test cases or needs to be annotated again with
logical properties to enable test case selection. The evaluation
showed that the tracing mechanism works well for manual
system tests: Our approach selects a correct test case for
90% of all considered source code methods and outperforms
guessing randomly with statistical significance.

The repeated execution of a system under test to gain

coverage data of test cases is not desirable, since this again is
a task which needs resources that are usually missing, and this
is why test case selection is performed in the first place. The
annotation of logical properties to industrial software systems
is difficult due to the size and complexity of these systems.
Furthermore, modern programming languages, for example

C# lack clear formal semantics, which is a prerequisite for

gaining formal logical information about a system.

Our approach suggests test cases for every method. One

effect of this is that if there is no test case covering the code
region under consideration, our approach still might suggest
a test case based on the concepts contained in the methods
of the code region not covering the code. It is subject to

future work to investigate effects of this behavior.
In our future work, we want to increase external validity
by studying more manual test cases on different systems.

Furthermore, we plan to use the trace link recovery approach

for not only tracing to test cases, but also to other artifacts

as requirements documents. Furthermore, we evaluate how
different calibrations of the approach affect the results. Ad-

ditionally, we plan to investigate the influence of missing test

cases on our approach.

Another promising direction is the combination of the pre-
sented approach to trace link recovery with coverage based
test case selection techniques (for example [5]). We expect to
get good results using more complex techniques than change

coverage for finding code that has to be tested. Furthermore,
we are confident to gain better applicability of existing ap-

proaches, which rely on coverage data by applying our trace
link recovery algorithm instead of using test coverage data.

6. ACKNOWLEDGMENTS

The authors thank Daniela Steidl, Jonas Eckhardt, Hen-
ning Femmer, and Elmar Jiirgens for their helpful comments

on this work.

7. REFERENCES

[1] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella.
Design-code traceability recovery: selecting the basic
linkage properties. Sci. Comput. Program., 40(2-3):213
— 234, 2001.

[2] E. Ben Charrada, A. Koziolek, and M. Glinz.

Identifying outdated requirements based on source code

changes. In RE 2012, 2012.

J. Bible, G. Rothermel, and D. S. Rosenblum. A

comparative study of coarse- and fine-grained safe

regression test-selection techniques. ACM Trans. Softw.

Eng. Methodol., 10(2), 2001.

[4] V. Channakeshava, V. K. Shanbhag, A. Panigrahi,
R. Sisodia, and S. Lakshmanan. Safe subset-regression
test selection for managed code. In ISEC 08, 2008.

[5] Y.-F. Chen, D. Rosenblum, and K.-P. Vo. Testtube: a

system for selective regression testing. In ICSE ’9/,

1994.

J. Cleland-Huang, R. Settimi, E. Romanova,

B. Berenbach, and S. Clark. Best practices for

automated traceability. Computer, 40(6):27-35, 2007.

[7] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. J. Am. Soc. Inf. Sci. Technol.,
41(6):391-407, 1990.

3

6

35

[8] S. Eder, B. Hauptmann, M. Junker, E. Juergens,
R. Vaas, and K.-H. Prommer. Did we test our changes?
assessing alignment between tests and development in
practice. In AST 2013, 2013.
[9] S. Eder, M. Junker, E. Jurgens, B. Hauptmann,
R. Vaas, and K. Prommer. How much does unused
code matter for maintenance? In ICSE ’2012, 2012.
E. Engstrom, P. Runeson, and M. Skoglund. A
systematic review on regression test selection
techniques. Inf. Softw. Technol., 52(1):14-30, 2010.
D. Falessi, G. Cantone, and G. Canfora. Empirical
principles and an industrial case study in retrieving
equivalent requirements via natural language
processing techniques. IEEE Trans. Softw. Eng.,
39(1):18-44, 2013.
M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for java software. SIGPLAN
Not., 36(11), 2001.
J. H. Hayes, A. Dekhtyar, and S. K. Sundaram.
Advancing candidate link generation for requirements
tracing: The study of methods. IEEE Trans. Softw.
Eng., 32(1):4-19, 2006.
D. Jiménez, E. Ferretti, V. Vidal, P. Rosso, and C. F.
Enguix. The influence of semantics in ir using Isi and
k-means clustering techniques. In ISICT ’03, 2003.
E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas,
C. Schlogel, and A. Wiibbeke. Regression test selection
of manual system tests in practice. In CSMR 11, 2011.
M. Lormans and A. van Deursen. Can lsi help
reconstructing requirements traceability in design and
test? In CSMR ’06, 2006.
A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Recovering traceability links in software artifact
management systems using information retrieval
methods. ACM Trans. Softw. Eng. Methodol., 16(4),
2007.
R. Oliveto, M. Gethers, D. Poshyvanyk, and
A. De Lucia. On the equivalence of information
retrieval methods for automated traceability link
recovery. In ICPC 2010, 2010.
M. F. Porter. An algorithm for suffix stripping.
Program: Electronic Library & Information Systems,
40(3):211-218, 1980.
G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Prioritizing test cases for regression testing. Software
Engineering, IEEE Transactions on, 27(10), 2001.
O. Traub, S. Schechter, and M. D. Smith. Ephemeral
instrumentation for lightweight program profiling.
Technical report, School of engineering and Applied
Sciences, Harvard University, 2000.
D. Willmor and S. M. Embury. A safe regression test
selection technique for database-driven applications. In
ICSM 05, 2005.
W. Wong, J. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In
ISSRE 97, 1997.
W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang.
SNIAFL: Towards a static noninteractive approach to
feature location. ACM Trans. Softw. Eng. Methodol.,
15(2):195-226, 2006.

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

18]

(19]

[20]

(21]

(22]

[23]

24]

APPENDIX D

Publication D [4]

Venue: ICSME 2014
Acceptance rate: 36%
Length: 5 pages

Type: Full paper
Reviewed: Peer reviewed

127

2014 IEEE International Conference on Software Maintenance and Evolution

Which Features Do My Users (Not) Use?

Sebastian Eder, Henning Femmer, Benedikt Hauptmann, Maximilian Junker
Technische Universitdt Miinchen, Germany

Abstract—Maintenance of unused features leads to unnec-
essary costs. Therefore, identifying unused features can help
product owners to prioritize maintenance efforts. We present a
tool that employs dynamic analyses and text mining techniques
to identify use case documents describing unused features to
approximate unnecessary features. We report on a preliminary
study of an industrial business information system over the course
of one year quantifying unused features and measuring the
performance of the approach. It indicates the relevance of the
problem and the capability of the presented approach to detect
unused features.

I. INTRODUCTION

Software systems contain unused features. Studies report
that in practice 28% [1] to 45% [2] of a system’s features are
unused. These features lead to code areas that are not used in
a productive environment. Maintaining unused code leads to
unnecessary costs, since unused code is often unnecessary [3].
However, product owners directing maintenance efforts often
do not know the actual usage of their system in its productive
environment. Hence, from the perspective of a product owner,
the question arises: “How can we identify the unused features
to prevent unnecessary maintenance cost?”.

To answer their question, we would like to collect usage
data on feature level. Due to technical reasons, this is not well
established in practice: code profilers record usage data on
source code level, whereas profilers on feature level require
instrumentation or annotation of source code that explicitly
maps source code to features (see, e.g., [2]), which leads to
additional maintenance efforts.

Problem: Usage data on code level reveals only which parts
of the code, instead of features, are used or unused. As such,
this information is helpful for developers who know the source
code of the system and can decide whether to keep or remove
source code based on this information. But this information
does not help product owners, who are on project management
or requirements level and, more important, who do not know
the system’s source code. This is just one reason for product
owners being unable to relate unused code to features. Since
product owners do not want to direct maintenance to unused
features, they require usage information on the level of fea-
tures, which is not given by profilers employed in industry.
Hence, to help product owners planning maintenance efforts,
we need to transfer runtime usage information to higher level
usage data and bridge the gap between code level usage data
and features.

Contribution: We propose an approach using text mining
techniques to bridge the gap between code level usage informa-
tion and features. In this approach, we approximate to features
by analyzing use case documents (see, e.g., [4]). By extracting
concepts from source code methods and matching the content

1063-6773/14 $31.00 © 2014 IEEE
DOI 10.1109/ICSME.2014.71

446

of use case documents to these concepts, we can suggest those
use case documents that describe most likely unused features.

We analyzed a real-world business information system
from the reinsurance domain where features are documented in
46 use cases. We present a preliminary study, based on usage
data collected for more than one business year, which lead to
the discovery of two use case documents that describe unused
features and two use case documents containing large parts
that were not performed by the actual users of the system.
The results show that the precision and recall of the approach
are high, and therefore, indicate the validity of our approach.

II. RELATED WORK

Feature Profiling: Besides [2], we are not aware of research
work eliciting feature level usage information on the level
of requirements. However, one approach to detect unused
features is linking code to features manually. This is a tedious
task, if even feasible in practice, since possibly thousands of
locations in the source code have to be linked to requirements
documents. Additionally, these links possibly become outdated
in a changing system and this leads to even more efforts.

Software Usage Mining: Several approaches gather infor-
mation about the usage of software: techniques for web usage
mining [5] gained much attention by researchers, however,
there are also techniques for other types of systems [2], [6],
[7]. The difterence to our work is that those approaches do not
establish connections to requirements documents, such as use
cases. Furthermore, these approaches often rely on a certain
structure or instrumentation of programs, e.g. [7] is specific to
software built on top of the Eclipse Framework. Our approach,
in contrast, is generic as it inspects the source code text.

Feature Location: Feature Location refers to the task of
identifying code areas that implement a certain feature. An
extensive survey on feature location is given by Dit et al. [8].
Among the techniques proposed for this task are static and
dynamic analyses [9] as well as text mining techniques [10],
which is what we applied here. Text mining has been used
for feature location, e.g., in [11] where features are located
based on natural language documents. The main goal of feature
location techniques is to answer a query about a feature by
providing a list of matching source code areas. This differs
from our goal, as we want to decide which features are not
executed on the system.

Trace Link Recovery: Trace Link Recovery focuses on
uncovering relations between different software-related arti-
facts. A taxonomy of trace link recovery techniques has been
published by Cleland-Huang [12]. In terms of this taxonomy
we use a technique based on term matching. Uncovering
traces between requirements documents and source code to
ease maintenance has been investigated by Charrada [13],

(@) co‘nE1EEuter
D)
= psoaety

[14]. Lucia et al. [15] present an approach and a tool to
automatically uncover trace links between a wider range of
artifacts, among them use cases. Lormans [16] uses trace
link recovery to identify requirements that have not been
implemented. Compared to these works, which often use text
mining techniques [17], we share the underlying techniques
such as LSI, but establish relations between use cases and
source code with the goal to find unexecuted features.

III. APPROACH

We explain our approach to identifying unused features
expressed by use case documents, which is based on usage
data analysis and Latent Semantic Indexing (LSI) for linking
unused code to use case documents.

A. Background: Latent Semantic Indexing

LSI [18] measures the similarity between documents con-
tained in a document corpus. Similarity is expressed by a value
between -1 and 1, where a higher value means the compared
documents are more similar'. LSI identifies words belonging
to a common concept (e.g., ‘car’ and ‘automobile’), enabling
it to deal with synonyms.

LSI starts with creating a term document matrix (terms X
documents) with entries for each word in each document.
The entries are calculated by a global and local weighting
function for each word. On this matrix, given the number of
desired dimensions (which can be interpreted as the number of
concepts), singular value decomposition is performed, resulting
in a smaller matrix where words are replaced by their concepts.
This matrix represents every document as a vector in the
space of concepts. The similarity of documents is calculated
by comparing their vectors using cosine similarity.

B. Finding Unused Features

The approach is divided into several steps as illustrated in
Figure 1 and uses the variables listed in Table I. It assumes
the source code using the same concepts in the same language
as the use case documents.

TABLE 1. APPROACH: VARIABLE NAMES AND MEANINGS.
Variable Description
M Set of all method names
U; The ith use case document in all use case documents
Mouseds Munused The set of used/unused methods
Cluseds Cunused The set of concepts in method names in Meq / Miunusea
SU; used” SUs unused The similarity of U; t0 Cusea / Cusea
ZUz‘ The score of U;
Input:

e Use case documents written in natural language describing
the flow of steps users perform.

e Usage data collected by an ephemeral profiler> [19]. The
resulting log files list the executed methods?>.

e Source code of the software system®.

!'The range of some other implementations of LSI is between 0 and 1.

2This profiling technique imposes less performance impact than classical
profiling techniques. This improves the applicability in productive systems.

3But no information about how often a method was called.

4The approach also works on Java-Bytecode and IL Code for C#, since we
rely only on method signatures that are extractable from these artifacts.

447

® Extract and Filter Methods:

Input: Source code

Procedure: Filter out generated code and test code’ and extract
method names M from the remaining methods’ signatures.

Output: M.

@ Partition Methods:

Input: M, usage data log files

Procedure: Partition method names by usage (used or unused).
Oulpul: Museds Munused~

® Extract Concepts for Method Sets:

Inpul"]\/[MSed!]\/junused

Procedure: Bxtract concepts® from method names. We rely
on the coding convention that method names are written
in camelCase or single words are split by underscores. For
example, the method getRatingAgency () is transferred
into the list of concepts [get, rating, agencyl].

Oulpul: Cused’ Cunused«

@ Compare (LSI):

Input: Corpus of use case documents Cl.g and Clysed-

Procedure: Extract cleaned text’ from use case documents.
Compute the similarities of every use case document U; to
the word sets Cleq, Cuusea using LSIE.

Output: For each use case document U;: Sy, used> SU; unused-

® Calculate Scores:

Input: For every use case document U;: Sy, usea a0d Sy, unused

Procedure: Calculate the score X, for every use case docu-
ment U; as: Xy, = SU, unused— SU; used- In this step, we want
to score a use case document higher, the more similar it
is to the concepts of unused methods, and lower, the more
similar it is to the concepts of used methods, since there
might be use case documents that match well to both sets
of methods.

Output: For every use case document U;: Xy, .

® Sort Use Case Documents:

Input: Xy, for every use case document U;

Procedure: Sort the use case documents by their score in
descending order.

Output: Ranking of use case documents. Higher ranked use
cases are more likely to describe unused features.

Parameter Estimation: The parameters used for configuring
LSI highly impact the results. Therefore, we suggest to es-
timate parameters based on a sample use case document that
contains unused features and is identified manually by a system
expert. We iterate through possible parameters and choose the
parameters with which the proposed approach ranks this use
case document highest. The rationale behind this approach is
that identifying just one use case document that expresses an
unused feature can be done with less effort than identifying
all — which then is facilitated by our approach.

STest methods are never executed in the productive environment. Generated
code does not contain words relevant for our approach and has not been
manually maintained.

%Single words contained in method names.

7We omit information like authors or version history. Additionally, we
remove stop words and stem the text.

8To compare word sets to documents, we generate one document for each
concept set by writing the contained words to a text document.

Source Usage Use Case
Code Data Documents
\l, \l, J,Text
@ Extract .. ® Extract @ Compare ® Calculate ® Sort Use 5
: —> Ranki
Filter @ Partition Concepts (LSD Scores Case Docs. anxing
Methods Method Sets Concept Sets Similarities Scores
M Mouseds Munused Cluseds Cunused — SU used SU ,unused Su,

Fig. 1.

IV. PRELIMINARY STUDY

The goal of this preliminary study is to show the relevance
of the research problem and to validate the applicability of
the approach in a real world case study. Consequently, we
formulate the following two research questions:

RQ1: How many use case documents that express unused
features are in the system? This question targets the existence
and number of unused features to show that the problem of
unused features exists in practice.

RQ2: Is the approach capable of detecting use case documents
describing unused features? This question focuses on the
validity and performance of our approach in terms of precision
and recall, and the applicability in real world examples.

A. Study Object and Subject

We perform the study on a business information system at
Munich Re, which is one of the world’s leading reinsurance
companies with more than 47,000 employees in reinsurance
and primary insurance worldwide. For their insurance busi-
ness, they develop a variety of custom software systems. The
business information system analyzed in this study implements
damage prediction functionality and supports ca. 150 expert
users in over ten countries. Table II illustrates the study object’s
main characteristics.

TABLE II. STUDY OBJECT: CHARACTERISTICS.
Language C#
Age (years) 10
Size (kLOC) 313
Size (#methods) 31,991
Use case documents 46

The system’s usage was monitored for 414 days in its
productive environment. We filtered out methods and types that
only have a testing purpose and did not take external libraries
into account. This leads to 11,034 unused methods and 20,957
used methods.

For validating our results, we interviewed the leading
architect of the system (system expert in the remainder of
the paper). Since he has been developing the system for 10
years, he has good knowledge about the system itself but also
about the domain. Therefore, we argue that he is capable of
estimating whether a feature contained in an use case document
is unused based on method usage data.

B. Study Execution

First, we collect usage data, the software system’s source
code, and its use case documents. From the use case docu-
ments, we automatically extract the text.

4438

Schematic illustration of the approach. Light boxes are input or output artifacts, while dark boxes are steps in the approach. Arrows indicate data flow.

Second, we present unused methods to the system expert
and identify one use case expressing an unused feature manu-
ally for parameter estimation’ (see Section III).

Third, we generate the ranking following our approach as
described in Section III.

Fourth, we present the generated ranking to the system
expert. He classifies the use case documents as used (features
contained in the use case document are used completely or
only a small part is not used), partly unused (large portions
of the contained features are not used), and unused (the use
case was never performed) according to usage data and his
knowledge about the system.

C. Results

Our approach produced the ranking shown in Table III.
This ranking was produced by using use case document UC2
for the calibration of LSI and we use it for answering our
research questions.

TABLE III. RANKING, SIMILARITY SCORE, AND EXPERT
CLASSIFICATION OF USE CASE DOCUMENTS.

Rank Name Score Expert Classification
1. UcCl1 0.18 unused
2. ucz* 0.18 unused *Used for calibration
3. uc3 0.16 used
4. uc4 0.16 partly unused
5. ucs 0.12 partly unused
6.-46. ... < 0.10 used

RQ1: We found two use case documents expressing unused
features which were ranked highest by our approach (UCI1 and
UC2), and two use case documents, which expressed partly
unused features (UC4 and UCS5). However, UC3 was used
according to the system expert. The use case documents ranked
below the fifth rank sometimes contained small unused por-
tions, but therein, the features contained in use case documents
are described in a too coarse grained fashion (at the level of
use case steps or whole flows) to make statements about usage.

RQ2: The top two use case documents in our ranking express
unused features. Especially, UC1 was ranked higher than UC2,
which was used for calibration and known to contain only
unused features. Hence, we found one use case document
expressing a completely unused feature. Furthermore, with
detecting UC4 and UC5 and ranking them also high, the ap-
proach is capable of detecting use case documents expressing
unused features. However, we ranked UC3, which describes
used features, high, leading to a drop in precision.

9For LSI, we used 17 factors for singular value decomposition. The local
weighting functions returns 1 if a term occurs in the document and O else.
The global weighting function is inverse term document frequency.

Since our approach produces a ranking of use case doc-
uments rather than classifying use case documents by their
feature usage, we calculate precision and recall depending on
the number of use case documents (or the number of top
ranks) we consider. Precision and recall dependent on the ranks
are shown in Table IV. For our calculations of precision and
recall, we classify use case documents describing features with
large unused parts also as relevant (zrue), because they contain
large regions that never have been performed and should be
considered by the product owner when planning maintenance.
Considering use case documents expressing partly unused fea-
tures as relevant, our approach achieves an average precision
(AP)'% of 0.89, and taking only use case documents into
account describing completely unused features, AP is 1, since
our approach ranks both relevant use case documents highest.

TABLE IV. RESULTS: PRECISION AND RECALL OF THE APPROACH
FOR GIVEN RANKS (USE CASES THAT EXPRESS PARTLY UNUSED FEATURES
CONSIDERED RELEVANT).

Ranks Precision Recall
1 1.00 0.25
2 1.00 0.50
3 0.67 0.50
4 0.75 0.75
5 0.80 1.00
6 0.67 1.00

D. Discussion

RQ1: Unused features exist. Since these features may lead to
unnecessary maintenance, we consider the problem addressed
by our approach as relevant. When presenting the results
to the system expert, he was not aware of the existence of
unused feature, which was proven by usage data. Therefore,
the reasons for the identified features being unused are unclear
and demand further investigation.

However, we gained anecdotal insights into the reasons for
the existence of unused features in other systems (reported by
the system expert):

e Requirements were demanded and formulated, but never
used, because workarounds that were easier to use than
the actual system also fulfilled the task.

e Features were not completely implemented at the time of
the inspection and were therefore not possible to perform.

RQ2: With good precision considering the highest use case
documents in the produced ranking, and also good recall, the
presented approach helps finding unused features. The system
expert found the information helpful, since based on this he
can direct maintenance actions aligned more along the users’
needs.

10We calculate the average precision AP according to [20] by

n

1 PRI 1
AP =) Z r; (f =7 Z (P(i) - 7;) , where
1=1 =1
1 if document at rank 7 is relevant
ry = , and
0 else

P(4) is the precision at rank 4, R is the total number of relevant documents,
and n = 46, since we considered 46 use case documents. AP measures how
many irrelevant documents are amongst the relevant documents in a ranking.

449

General: With the presented approach, we narrowed down
the search space for use case documents expressing unused
features from 46 (all) use case documents to 6 use case
documents. According to the system expert, the remaining use
case documents contained only features that had to be used
by the actual users to do their daily business. Therefore, our
approach reduces the effort that has to be spent to find unused
features by giving hints to product owners.

The study object already was cleaned from known unused
code and use case documents containing unused features in a
refactoring phase before we monitored its usage for the study.
Hence, our results only point out to use cases that have been
overseen by experts in this previous phase. Thus, we expect
more unused features in other systems that were not cleaned.

E. Threats to validity

The results presented might be flawed due to technical
errors in the usage data collection. Due to the nature of
our profiler that records method calls by registering to the
just in time compile event, but also to the inline event of
methods, it might record methods as used that were not used'!.
This could produce less unused methods, which leads to less
unused features. However, this profiler was used for several
years in the environment under consideration (see [3], [21],
[22]) without significant or visible errors. Therefore, we are
confident that the errors introduced are small, if existent.

In this study, we applied the usage data of one year. Even
though different time spans might produce other results, we
considered this appropriate. This assumption was confirmed
by the system expert.

Furthermore, we might not have collected all relevant use
case documents for the system, since these were scattered
through the company’s storage system. This would lead to
possibly more unused features than we presented. However,
this leads only to an underestimation of unused features.
Additionally, we might also not have found all use case
documents describing unused features, since the system expert
might not be aware of all unused features. We did not find any
methods that belonged to a feature that was not used except for
the features expressed by the use case documents we identified.

As we conducted the preliminary study only on one sys-
tem, generalizability of our results is threatened. Especially,
choosing different parameters for the tracing algorithm might
be necessary for replicating the study on other systems. To
mitigate this threat, we presented our approach to parameter
estimation and also estimated parameters using UCI1. The
configuration resulting from using UC1 rather than UC2 was
the same as using UC2, and therefore we consider this threat
as minor.

V. FUTURE WORK

Based on the insights we gained in our preliminary study,
we are motivated to take further steps in the area of the
presented research work. We divide our future work in short
term tasks, next steps, and long term items, the future research
questions.

11Sych as inlined methods that were not executed.

Next steps: The validation we conducted in this study indi-
cates the abilities of our approach. However, many questions
regarding the correctness and limitations are still open. In
future work, we plan to perform broader evaluations focusing
on the applicability and benefit of our approach.

So far, our approach is uncovering links between source
code and use case documents. However, other software en-
gineering artifacts contain valuable information too and can
help supporting development and maintenance of software. In
future work, we plan to extend our approach to include design
artifacts such as user stories or business rules and process
artifacts such as change requests or bug tracking issues.

Being aware of unused feature implementation can help to
direct maintenance tasks efficiently. In future work, we plan to
enrich our methods to create a closer feedback loop to uncover
unused features early and thereby reduce maintenance costs
effectively from the beginning of the maintenance phase.

Future research questions: One question arising from our
study is why there are features which have been specified
once but are actually never used in the implemented software
systems. This information can be valuable feedback for soft-
ware engineering research to correct requirements elicitation
methods and techniques to specify, design and implement just
those functionalities which are actually needed.

Furthermore, once unused implementations have been de-
tected it is still unclear how to proceed: the spectrum of
options reaches from simply removing unused functionality
up to adapting user training so users can optimize their work
by using abandoned features. We need structured approaches
to cope with unused functionality in software systems.

VI.

Unused features often are unnecessary. Therefore, mainte-
nance of unused features possibly leads to unnecessary costs.
Unfortunately, information about the usage of a software
system is collected by profilers on code level. This leads to
the problem that product owners, that do not know the source
code of their systems, are not able to establish a mapping
between usage information and features. Therefore, we provide
an approach to the question “How can we identify the unused
features to prevent this unnecessary maintenance cost?”.

SUMMARY AND CONCLUSIONS

We proposed an approach that bridges the gap between
unused code and features using LSI for linking methods to
use case documents as an approximation to features and to
calculate a ranking that sorts use case documents by their
likeliness of containing features that are not used by ac-
tual users of a software system. In a preliminary study we
showed that our approach yields promising results: with the
ranking produced by our approach, we found two use case
documents containing completely unused features and two use
case documents describing features with large unused parts.
Furthermore, we presented results that indicated our approach
performs well in terms of precision and recall.

ACKNOWLEDGMENTS

The authors thank Christoph Frenzel and Veronika Bauer
for their helpful comments on this work, and Karl-Heinz
Prommer and Rudolf Vaas for their efforts interpreting the data.

450

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant “Evo-
Con, 01IS12034A”, and “Software Campus project ANSE,
01IS12057”. The authors assume responsibility for the content.

REFERENCES

[1]
[2]

J. Johnson, “Roi, it’s your job,” Keynote at XP ’02.

E. Juergens, M. Feilkas, M. Herrmannsdoerfer, F. Deissenboeck,
R. Vaas, and K. Prommer, “Feature Profiling for Evolving Systems,”
in ICPC, 2011.

S. Eder, M. Junker, E. Jurgens, B. Hauptmann, R. Vaas, and K. Prom-
mer, “How Much Does Unused Code Matter for Maintenance?” in
ICSE, 2012.

1. Jacobson, G. Booch, and J. Rumbaugh, The unified software devel-
opment process. Addison-Wesley Reading, 1999.

J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web Usage
Mining: Discovery and Applications of Usage Patterns from Web Data,”
ACM SIGKDD Explor. Newsl., vol. 1, no. 2, 2000.

M. El-Ramly and E. Stroulia, “Mining Software Usage Data,” in MSR,
2004.

G. C. Murphy, M. Kersten, and L. Findlater, “How are Java software
developers using the Eclipse IDE?” Softw., IEEE, vol. 23, no. 4, 2006.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location
in Source Code: A Taxonomy and Survey,” Journal of Software:
Evolution and Process, vol. 25, no. 1, 2013.

B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating Information
Retrieval, Execution and Link Analysis Algorithms to Improve Feature
Location in Software,” Empir. Softw. Eng., vol. 18, no. 2, 2013.

N. Alhindawi, N. Dragan, M. Collard, and J. Maletic, “Improving
Feature Location by Enhancing Source Code with Stereotypes,” in
ICSM, 2013.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: Towards
a Static Noninteractive Approach to Feature Location,” ACM Trans.
Softw. Eng. Methodol., vol. 15, no. 2, 2006.

J. Cleland-Huang and J. Guo, “Towards More Intelligent Trace Retrieval
Algorithms,” in RAISE, 2014.

E. Ben Charrada, A. Koziolek, and M. Glinz, “Identifying Outdated
Requirements Based on Source Code Changes,” in RE, 2012.

D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Combining probabilistic ranking and latent semantic indexing
for feature identification,” in /CPC, 2006.

A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
Traceability Links in Software Artifact Management Systems Using
Information Retrieval Methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, no. 4, 2007.

M. Lormans and A. van Deursen, “Reconstructing Requirements Cover-
age Views from Design and Test Using Traceability Recovery via LSI,”
in TEFSE, 2005.

R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
equivalence of information retrieval methods for automated traceability
link recovery,” in /ICPC, 2010.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by Latent Semantic Analysis,” J. Am. Soc.
Inf. Sci. Technol., vol. 41, no. 6, 1990.

O. Traub, S. Schechter, and M. D. Smith, “Ephemeral Instrumentation
for Lightweight Program Profiling,” School of engineering and Applied
Sciences, Harvard University, Tech. Rep., 2000.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20] A. Turpin and F. Scholer, “User performance versus precision measures

for simple search tasks,” in SIGIR, 2006.

S. Eder, B. Hauptmann, M. Junker, R. Vaas, and K.-H. Prommer,
“Selecting Manual Regression Test Cases Automatically Using Trace
Link Recovery and Change Coverage,” in AST, 2014.

S. Eder, B. Hauptmann, M. Junker, E. Juergens, R. Vaas, and K.-H.
Prommer, “Did We Test Our Changes? Assessing Alignment between
Tests and Development in Practice,” in AST, 2013.

[21]

[22]

APPENDIX E

Publication E [5]

Venue: RET@ICSE 2015
Acceptance rate: NA
Length: 7 pages

Type: Full paper
Reviewed: Peer reviewed

133

2015 IEEE/ACM 2nd International Workshop on Requirements Engineering and Testing

Configuring Latent Semantic Indexing
for Requirements Tracing

Sebastian Eder, Henning Femmer, Benedikt Hauptmann, Maximilian Junker
Technische Universitidt Miinchen, Germany

Abstract—Latent Semantic Indexing (LSI) is an accepted
technique for information retrieval that is used in requirements
tracing to recover links between artifacts, e.g., between require-
ments documents and test cases. However, configuring LSI is
difficult, because the number of possible configurations is huge.
The configuration of LSI, which depends on the underlying
dataset, greatly influences the accuracy of the results. Therefore,
one of the key challenges for applying LSI is finding an appro-
priate configuration. Evaluating results for each configuration
is time consuming, and therefore, automatically determining an
appropriate configuration for LSI improves the applicability of
LSI based methods.

We propose a fully automated technique to determine ap-
propriate configurations for LSI to recover links between re-
quirements artifacts. We evaluate our technique on six sets of
requirements artifacts from industry and academia and show
that the configurations selected by our approach yield results
that are almost as accurate as results from configurations based
on a ground truth like known links or expert knowledge.
Our approach improves the applicability of LSI in industry
and academia, as researchers and practitioners do not need
to determine appropriate configurations manually or provide a
ground truth.

I. INTRODUCTION

When change requests have to be implemented for a soft-
ware system, not only the software itself has to be changed,
but also its documentation. It is often unclear which parts
of a software system have to be changed and which other
artifacts are impacted by the change. Furthermore, if one
documentation artefact is changed, e.g., a use case, other
artifacts also have to be changed, for example test cases. In
both cases, we face the problem to decide which artifacts have
to be changed in order to keep a consistent state of the software
itself and the documentation as a whole.

In the fields of requirements tracing and trace link recovery,
there are several methods of finding artifacts that are seman-
tically connected to each other. Many of these approaches
rely on Latent Semantic Indexing (LSI) [1] to retrieve links
between artifacts that are semantically connected, e.g. [2]-[4].
However, LSI has to be configured differently for every artifact
corpus [5].

Problem: There is a huge number of possible configurations
for LSI [6] heavily influencing the resulting links and their
accuracy [2], [3], [5], [7]-[10]. Existing approaches determine
the configuration of LSI by using the configuration that reflects
the links best that have to be created by system experts
manually first [2]-[4], [11], [12]. Therefore, experts have
to invest efforts to gain initial results, and may introduce

978-1-4673-7073-8/15 $31.00 © 2015 IEEE
DOI 10.1109/RET.2015.13

27

incorrect links [13], which limits the applicability of LSI in
requirements tracing.

Contribution: We propose a fully automated technique that
estimates configurations for LSI. Our technique only relies
on heuristic metrics that are calculated on the similarities
between documents computed by LSI. In contrast to existing
techniques, it does not rely on system experts’ knowledge,
existing known links between documents, or a ground truth,
to recover semantic links between artifacts written in natural
language. This yields the advantage, that experts do not have
to invest efforts to gain just first results.

We evaluate our technique on six sets of requirements arti-
facts from industry and academia. We show that our approach
determines configurations for LSI that yield, compared to the
best possible configurations and to configurations chosen with
a ground truth, accurate results for different kinds of artifacts.

Outline: The remainder of the work is structured as follows:
First, we give an overview of related work and then introduce
the most important terms and definitions. We then outline the
procedure how we derived the proposed approach. We describe
our pre-study, the approach and its validation. Afterwards, we
describe topics for future work and summarize our work.

II. RELATED WORK

Automated Requirements Tracing: Falessi et al. present
seven principles that aim on improving the validity of studies
that compare techniques for requirements tracing based on
natural language processing [14]. We adhere, as far as possible,
to these principles, however, we do not compare different
techniques for requiremenents tracing (as we are considering
just LSI) but present an approach for finding configurations
for LSI that yield accurate results. Furthermore, Falessi et
al. present a case study that compares different techniques to
requirements tracing. As they state that LSI, not considering
certain configurations, yields well results, we are motivated to
also use this technique.

Requirements Tracing using LSI: A common approach to
requirements tracing is to use LSI for generating links between
semantically connected artifacts. Existing approaches use rules
of thumb and best practices based on knowledge about correct
links between artifacts, as also shown in Section VII, to select
initial configurations of LSI, e.g., [2]-[4], [12], [15]. These
works aim at the accuracy of recovered trace links, or at
improving their accuracy. As optimal parameters for LSI vary

for every artifact corpus [S], we propose to select parameters
more carefully in a systematic way, and to focus on finding
an initial configuration for LSI to recover trace links.

There are several approaches for recovering links between
semantically similar requirements artifacts. Some approaches
use expert feedback on some generated links to adjust the
whole set of links [3], [15]. However, expert feedback might
worsen the results [13] and forces practitioners to invest
efforts, which limits the applicability in practice. Therefore
we do not consider expert feedback to adjust the results
produced by LSI, but develop a fully automated approach
for the estimation of appropriate configurations of LSI for a
given artifact corpus without using a ground truth, like expert
knowledge or known links.

Parameter Estimation for LSI: Kontostathis gives insights in
factors that influence the performance of LSI itself [16]. How-
ever, the work focuses on understanding the inner mechanisms
of LSI and does not consider the accuracy of the results. In
contrast, the accuracy is in the center of our work, since it
improves the applicability of LSI in requirements tracing. Ali
et al. investigate the impacts of the inputs to tracing approaches
when recovering links between source code and requirements
artifacts [7]. They concentrate on experts’ knowledge and
on properties of the given artifact corpus. In contrast, we
focus only on the configuration of LSI to produce accurate
results independently of the actual artifact corpus or experts’
feedback, because often, both are not changeable nor available.
Binkley at el. give an approach to estimate parameters for
Latent Dirichlet Allocation (LDA) [17], but not for LSI. We
focus on LSL

III. BACKGROUND AND TERMS

Latent Semantic Indexing: LSI calculates the similarity
between artifacts contained in an artifact corpus based on
the content of the contained artifacts. Similarity is usually
expressed by a value between -1 and 1, where a greater
value means the compared artifacts are more similar!. LSI
identifies words belonging to a common concept (e.g., ‘car’
and ‘automobile’), enabling it to deal with synonyms to a
certain extent.

LST starts with creating a term-document matrix (terms x
artifacts) containing entries for each word in each artifact.
The entries are calculated by a global weighting function wy
and a local weighting function w; for each word, determining a
value depending on the occurences of a term in the containing
document (local) and on the ocurrences of a term in the
whole artifact corpus (global). On this matrix, singular value
decomposition is performed and the result is truncated to a
smaller matrix, given the number of desired dimensions k
(which can be interpreted as the number of concepts). This
results in a reduced matrix where words are replaced by their
concepts. This matrix represents every artifact as a vector in

!Can be scaled to the range between 0 and 1.

28

the space of concepts. The similarity of artifacts is calculated
by comparing their vectors, e.g., cosine similarity?.

We apply LSI to calculate similarity values between source
artifacts and target artifacts. For example, if we want to know
which use cases are impacted by change requests, the source
artifacts represent the change requests and the target artifacts
represent the use cases. Therefore, we generate similarity val-
ues between all change requests and all use cases. Afterwards,
the target artifacts (use cases) are sorted by their similarity
value to the source artifact (change requests, in descending
order), resulting in a ranking of all target artifacts by similarity
to the source artifact.

Configuration options of LSI: A configuration of LSI con-
sists of three items: the local weighting function w;, the global
weighting function wg, and the number of dimensions k.
Table I shows common options for each item, and supple-
mantary variables. We use these options in the remainder of
the work. All combinations of the options for w;, wg, and k
are applicable, leading to 3 -3 (N — 4) combinations.

TABLE 1
CONFIGURATION OPTIONS OF LSI CONSIDERED

Variables

daf ; Number of artifacts containing ith term
tf ij Number of occurences of ith term in jth artifact
9f; Number of occurences of ith term in all artifacts
Dij tfi;/9f;
N Total number of artifacts

Options for the Local Weighting Function w;
Term Freq. if =1if;;
Log Term Freq. tf = log(tf;; +1)
Binary bin =1

Options for the Global Weighting Function w,
Entropy H=1-3% %
Inverse Doc. Freq. idf = log%dfi
Binary bin =1

Options for the Number of Dimensions &
Range from 5 to N, considering all possibilities (step width is 1)

Quality Measurement: To measure the quality of a config-
uration, we calculate the average precision (AP) [18] on the
rankings for every source artifact and then take the mean over
all these rankings, which results in the mean average precision
(MAP) [6]. A MAP of 1 means for a ranking, that all relevant
artifacts are ranked to the top of the list, without irrelevant
artifacts in between’. We use MAP only for evaluating our
approach (see Section VII), and to develop our approach (see
Section V). The approach itself does not rely on MAP, since
for this, it would need a ground truth.

2We use only cosine similarity, since our pre-study (see Section V) showed
that it outperforms other distance measures by large.

3MAP implicitely measures recall as well, since a greater number of
irrelevant artifacts between relevant artifacts reduces the MAP.

Quality of Configurations: The best possible MAP among all
configurations for one dataset is denoted as MAPp, and the
average over all configurations as MAP 4.The MAP produced
by a selected configuration C' is denoted as MAP¢.

As an acceptence criterion, we consider a configuration
C as appropriate, if MAPc > MAPp — 0.1. This means,
compared to the best configuration, precision@rank [10] drops
by less than 0.1 in average over all possible ranks and over all
source artifacts with an appropriate configuration. Therefore,
we expect configurations that are appropriate to produce
rankings that reflect actual semantic links almost as good as
the best configuration does.

Heuristic metrics: The proposed approach aims at finding
appropriate configurations of LSI by not using a ground truth
or expert knowledge. However, it uses heuristic metrics that
are calculated solely on the ranking produced by LSI with a
certain configuration, and not on the ground truth. MAP cannot
be such a heuristic metric, since it demands a ground truth,
like a set of known links between artifacts, to be calculated.

IV. STUDY OVERVIEW

The goal of our study is to develop an approach to select
appropriate configurations for LSI without using a ground truth
in terms of expert knowledge or known links. We developed
the approach in a structured way and in three steps, as
illustrated in Figure 1. The next sections are organized along
this structure.

In our first step, we conduct a pre study to build hypotheses
about which heuristic metrics are suitable to determine ap-
propriate configurations. We do this based on our experience
gathered in earlier work [19], [20], and on the dataset MRO.
Additionally, we test the hypotheses for validity to determine
whether the heuristic metrics are suitable to determine appro-
priate configurations. This step is detailed in Section V.

The second step is developing a fully automated approach
that is based on the hypotheses and heuristic metrics from the
first step by operationalizing them, as explained in Section VI.

The last step is validating our approach by applying it
to all datasets available. In this step, we determine whether
the proposed approach is suitable for finding appropriate
configurations for LSI without using a ground truth or expert
knowledge. The approach will be described in detail in Sec-
tion VI, and the validation well be described in Section VII.

We use the ground truth for the datasets only to test our
hyptheses from the first step, to develop our approach and
to validate the approach. The ground truth is not used for
applying the approach.

V. PRE-STUDY

We summarize the first step of our study in this section, the
pre-study: First, we develop our heuristic metrics and build
hypotheses based on them. Second we test the hypotheses. The
goal of the pre-study is to identify reliable heuristic ranking
metrics (that do not depend on a ground truth) we can base
our apporach on.

29

Training dataset
(MRO)

!

Conduct pre-study —s| Develop approach

g
Develop heuristic metrics % Operationalize hypotheses
(s3
g
Build hypotheses lAPPmaCh
Test hypotheses Validation
Apply approach
All datasets — Validate approach

Fig. 1. Schematic overview of the studies. Light boxes are input artifacts,
while dark boxes are steps in the approach. Arrows indicate data flow.

A. Heuristic Ranking Metrics

Our approach relies on two heuristic metrics that are
calculated based on the rankings a configuration yields. We
developed these metrics in a pre-study with the dataset MRO
(see Section VII) for which all correct links were documented
by system experts. We use knowledge about correct links
only for developing and evaluating our approach, whereas the
approach itself does not rely on it.

We determined two heuristic metrics to select configurations
from our experience: pos, and range. The following paragraph
explains these metrics and the rationale behind them.

Metric pos: The position of the largest distance between the
similarity values of two consecutive* artifacts in the ranking.
Rationale: Often, only few target artifacts are actually linked
to the source artifact. The lower pos is, the less artifacts are
considered to be linked by LSI following the approach of
Zhao et al. [21] that considers artifacts ranked above pos to be
actually linked to the source artifact. Thus, we expect rankings
to be better, if pos is lower.

Metric range: The difference of the highest and lowest
similarity value in a ranking. Rationale: With a higher range,
the ranking gets more expressive, since artifacts with higher
similarity are ranked higher with more confidence, and low
ranked artifacts have a more distinctive similarity.

To calculate pos and range for a configuration C, we take
the mean of these metrics over the rankings C' produced for
all source artifacts.

B. Hypotheses

With our two heuristic metrics, we constitue two hypothe-
ses. Since we measure the accuracy of the ranking produced
by one configuration by its MAP, both hypotheses relate our
heuristic metrics to MAP.

Hos: Rankings with low pos, exhibit a high MAP. So we
expect configurations that produce rankings with a low pos to
produce more accurate results.

#Rankings are sorted by similarity value in descending order (Section IIT).

H,ange: Rankings with high range, exhibit a high MAP.
This hypothesis states that we expect configurations that yield
rankings with a high range to produce more accurate results.

C. Test of Hypotheses

Figure 2 visualizes the correlation between pos, range, and
MAP for the dataset MRO, where one dot is one configuration:
Configurations with a high MAP exhibit a low pos and a high
range. The visual impression is confirmed by the correlation
of the two heuristic metrics to MAP: The Pearson correlation
coefficient between pos and MAP is -0.84, consituting a strong
correlation, and between range and MAP it is 0.87, also
constituting a strong correlation. Both with a p-value that is
greater than 95%.

Due to these correlations, we confirm our hypotheses.
Therefore, we use these metrics to determine appropriate con-
figurations. However, picking configurations with the highest
pos or the highest range is not sufficient, since there are
outliers, which do not yield optimal results, but exhibit a low
MAP, as illustrated in Figure 2.

0.8
0.6 |~
0.4
0.2

0

MAP

0.2 0.4 0.6 0.8

pos

(a) Correlation of pos and MAP

0.8
0.6 |~
0.4
0.2

MAP

0.4 0.6

range

0.8 1 1.2

(b) Correlation of range and MAP

Fig. 2. Correlations of the metrics pos and range with MAP for the study
object MRO. Every point represents one configuration.

VI. APPROACH

Due to the outliers shown in the last section, we develop
a more sophisticated approach to determine proper configura-
tions for LSI.

The input to the first step of our approach are the sets
of source and target artifacts (the dataset). The output of
the approach is one configuration. For all other steps, the
inputs are the outputs of the previous step. Note that we
select different configurations for every dataset. The approach
is illustrated in Figure 3. Note that, as illustrated, the proposed
approach does not use any kind of ground truth as input, but
only the source and target artefacts.

(D Perform LSI to compare every source artifact to every
target artifact for all possible configurations.

Output: For every configuration: Rankings for each source
artifact to all target artifacts sorted by similarity.

30

Sets of source

and target artifacts @ Perform LSI

Rankingsl
@ Calculate ranking metrics

All rankings with heuristic metricsl
® Eliminate configurations

Few rankings with heuristic melricsl

@® Determine final configuration —» Final configuration

Fig. 3. Schematic illustration of the approach. Light boxes are input/output
artifacts, while dark boxes are steps in the approach. Arrows indicate data
flow between the steps.

(@ Calculate ranking metrics for the rankings produced by
the previous step. For every configuration, we calculate pos
and range.

Output: Ranking metrics for all configurations.

(® Eliminate configurations with a mean value of pos higher
than the median or a mean value of range lower than the
median, because we want a configuration to satisfy both
criteria: low pos (only a small number of target artifacts to be
linked to the source artifact), and high range (a high difference
in similarity between highly and lowly ranked target artifacts).
We repeat this step until the number of kept configurations is
lower than ten’. The rationale behind this step is not to select
appropriate configurations, but to eliminate the bad ones. We
do this incrementally not to loose either configurations with a
low pos or a high range.

Output: Few configurations.

(@ Determine the final configuration by taking the configu-
ration with the median of pos among the remaining configura-
tions, because we do not want to select outliers in terms of pos
or range. The reason for this becomes apparent in Figure 2:
The best configurations in terms of MAP exhibit a high range
and a low pos, but there are configurations, which are worse,
that also fulfil these conditions.

VII. VALIDATING STUDY

We conduct a case study to evaluate our approach by
answering the following research questions. The goal of the
validating study is to check whether the proposed approach
selects appropriate configurations for LSI. We used knowledge
about correct links between artifacts just for designing and
evaluating our approach, but not as an input to it.

RQ1: Does the algorithm find appropriate configurations?
By answering this question, we validate the ability of the
proposed approach to find configurations that produce accurate
trace links measured against the best possible configuration.

RQ2: How does the automated approach compare to
approaches used in literature? Other approaches in literature

SThis is an arbitrary choice, but yielded the best results for MRO.

use knowledge about the semantic similarity between the
artifacts in their datasets to gain appropriate configurations.
We compare our approach that does not take any knowledge
about a (partial) set of correct links between artifacts, to the
configurations used by other researchers.

A. Study Objects

We use six datasets with varying artifact types to evaluate
our approach. Three datasets, MODIS, CM-1, and EasyClinic6
were already used by other researchers to evaluate their
approaches, and can therefore be used for answering RQ1 and
RQ2. The other three datasets, MR0O, MR1, and MR2, originate
from the reinsurance company Munich Re and are confidential.
Therefore, they can only be used for answering RQ1, since no
other researchers could validate their approaches on them. The
characeristics of the datasets are shown in Table II.

B. Study Execution

We execute the study along our approach. We use an own
implementation of LSI in Java, which is optimized for running
LSI with different configurations and was already used in prior
work [19], [20]. We calculate ranking measures in R’. Also
the elimination and selection of the final configuration is done
in R. Running the analyses took 11 minutes on a computing
server with 16 processing cores (2.0 GHz) and 64 GB of RAM.

C. Results

RQ1: Figure 4 shows the MAP resulting from the configura-
tion C selected by our approach (MAP(), the MAP resulting
from the best possible configuration (MAPp), and the average
MAP over all configurations (MAP 4), which shows that it is
not trivial to find an appropriate configuration. The difference
from MAPp to MAPc lies below 0.1 in every case, and
therefore, we consider all found configurations as appropriate,
as explained in Section III.

B MAPc /. MAPg

1 \ \

|
0.8 2
0.6 %
0.4 g
el I
0 T T T T
MODIS CM-1 EasyClinic MRO MRI MR2

Fig. 4. MAP of the selected, best and average configuration for each dataset

Discussion: For all datasets we considered, the approach
finds configurations that produce rankings with a MAP that
is close to MAPp. In the case of MR2, we find the optimal
configuration. The difference of MAPp to MAP¢ lies below
0.1 in every case. This means, compared to the best configu-
ration, precision@rank [10] drops by less than 0.1 in average

These datasets, and others, can be acquired for study reproduction via
CoEST at http://www.coest.org/index.php/resources/dat-sets
http://www.r-project.org/

31

over all possible ranks and over all source artifacts with the
configuration selected by our approach. Therefore, the selected
configuration produces rankings that reflect actual semantic
links almost as accurate as the best configuration.

B MAPp — MAPc

0.1 . .
0.08 i
0.06 -
0.04 -
0.02 i
0 - T
MODIS CM-1 EasyClinic MRO MRI MR2

Fig. 5. Difference of MAP of the selected, and best configuration for each
dataset. The higher the bars, the greater is the distance of the best possible
configuration and the selected one.

Figure 6 shows the distribution of the MAP for the dif-
ferent study objects. The distributions show that finding a
configuration that is that close to the best configuration is
not trivial, since there are much more configurations with a
MAP worse than the MAP of the selected configurations. The
chance of selecting appropriate configurations according to our
definition in Section III by random lies between 1% (MR1: 15
configurations out of 1422 are appropriate) and 23% (CM-1:
932 out of 4050 configurations are appropriate).

200 | 1,000 |- .
100 — - 500 H -
0 1 T 0= 1 T

0 0.5 1 0 0.5 1
(a) MODIS (b) CM-1
! ! ! !
400 [=
300 - 1501 B
200 - 100 |~ B
100 |~ - 50 - -1
0 1 0 1
0 0.5 0 0.5
(c) EasyClinic (d) MRO
! ! ! !
800 [200]-
600 [~
200
0+ 1 0 1
0 0.5 0 0.5
(e) MR1 (f) MR2

Fig. 6. Distribution of MAP over all configurations for the study objects

Thus, we conclude that the proposed approach finds con-
figurations yielding accurate results, given that LSI is able to
produce rankings with a desired quality.

RQ2: Table III shows the configurations from previous
work [3], [4], [15] that were applied to our datasets and the

TABLE 11
STUDY OBJECTS

Name Source artifacts Target artifacts # possible Configurations Source
MODIS 19 high-level requirements 49 low-level requirements 567 Industry (NASA)
CM-1 235 high-level requirements 220 low-level requirements 4,050 Industry (NASA)
EasyClinic 30 use cases 63 test cases 792 Academia
MRO 24 use cases 60 test cases 711 Industry (Munich Re)
MRI 135 defect reports 28 use cases 1,422 Industry (Munich Re)
MR2 28 change requests 21 use cases 396 Industry (Munich Re)
TABLE III D. General Discussion
CONFIGURATIONS FOR ALL STUDY OBJETCS
The results show, that the proposed approach finds ap-
Configurations of other contributions Selected propriate configurations among a great number of possible
Dataset Paper w; wy k(CH k(CD) |w wy K configurations (496 — 4050), where the number of appropriate
configurations is small, without necessary knowledge about
MODIS 31, 1151 &~ adf 10 19 lif bin 7 correct links between artifacts for several datasets. Therefore,
M- 31, 151 o adf 100 200\ o adf 66 it is suitable for estimating parameters for LSI.
EasyClinic [4 #f H 01-N 02-N|tf idf 12

configurations selected by our approach. All three contribu-
tions propose two configurations C/, and C2. However, the
configurations per contribution only vary in the number of
dimensions k. In Figure 7, we illustrate the comparison of
the configuration C' selected by our approach, yielding MAP-
to the MAP of configurations used in previous work: MAP
and MAP 5. In the case of CM-1 and EasyClinic, MAP¢ is as
high as the highest MAP achieved by the other configurations,
and for MODIS, MAP¢ lies between the two configurations
proposed by the works we compare to.

W MAPG 7 MAPG1 = MAPco ‘

0.8 —

0.6
1 |

7
04] 2
T T T

0.2
CM-1 EasyClinic

MODIS

Fig. 7. MAP of the configuration selected by our approach (MAP¢) and the
configurations proposed by other papers (MAPc1 and MAPc2)

Discussion: In all cases, our approach selected configurations
that yield rankings with a MAP close to the configurations
proposed by prior work. This means that our approach per-
forms almost as well as approaches using knowledge about
existing links between artifacts. We therefore conclude, that
our approach is suitable for finding appropriate configurations.
And in contrast to prior work, our approach does not rely on
knowledge about existing links between artifacts. This shows
the improvement of LSI’s applicability by our approach.

32

The approach is computationally intensive, because LSI has
to be performed on the datasets with all possible configura-
tions. Analyzing the largest dataset (CM-1) took 7 minutes on
a computing server with 16 processing cores (2.0 GHz) and
64 GB of RAM.

E. Threats to Validity

Even though we conducted the study on six datasets, we can
still not generalize from the results. We adressed this threat by
selecting study objects from industry containing heterogeneous
artifacts from different companies.

We used manually developed lists of the correct links
between artifacts that might contain errors. Three of the
datasets (MODIS, CM-1, and EasyClinic) were used by other
researchers in a plethora of studies and were examined for
accuracy. Therefore, we consider this threat as minor for these
datasets. For the datasets provided by Munich Re (MRO, MR1,
and MR?2), we performed manual inspections to mitigate this
threat. As we could not find false or missing links, we consider
this threat as minor for these datasets.

Measuring the MAP of the rankings produced by the con-
figurations selected by our approach might not be suitable
for all scenarios, since MAP captures whole rankings rather
than just the first artifacts and thus implicates that the whole
rankings are presented. Other approaches cut the rankings
by thresholds of similarity values or after a fixed number
of artifacts [14]. They measure, consequently, F-Measure to
show the validity of the produced rankings. However, we
examined the correlation between precision, recall, and MAP,
and observed that MAP correlates strongly (in a statistical
sense) with F-Measure.

VIII. FUTURE WORK

Since the approach is computationally intensive, we plan
to employ more intelligent search strategies, e.g., genetic
algorithms [6], to find configurations that match the given
criteria in terms of the proposed metrics.

Furthermore, we only considered links between homoge-
neous sets of artifacts written in natural language. Therefore,
we plan to evaluate our approach between more heterogeneous
sets of artifacts like models or diagrams and source code.

As LSI is not the only approach for recovering semantic
links between artifacts [22], we plan to apply similar heuristics
for configurations of other tracing techniques. Examples are
Latent Dirichlet Allocation (to compare to Binkley et al. [17]),
the Jensen-Shannon Divergence, or the Vector Space Model.

Another research direction is, incorporating expert feedback
as proposed in prior contributions, e.g., [3], [15]. We expect,
as the initial rankings are produced automatically by our
approach, the applicability of these approaches to improve.

IX. SUMMARY AND CONCLUSION

Changing requirements of a software system lead to changes
not only to the software itself, but also to its documentation
and tests, e.g., if a use case is adapted, we also have to update
test cases. Therefore, we have to decide which artifacts have
to be changed to keep a consistent state of the software itself
and the documentation corpus.

Latent Semantic Indexing (LSI) is a common technique
for requirements tracing, to recover links between artifacts,
e.g., between requirements documents and test cases. How-
ever, configuring LSI is difficult, because the number of
possible configurations is huge. The configuration of LSI,
which depends on the underlying dataset, greatly influences the
accuracy of the results. Therefore, one of the key challenges
in applying LSI-based methods is finding an appropriate
configuration producing accurate results.

We presented an approach to find configurations for LSI
used in requirements tracing automatically. In contrast to other
approaches, our approach does not rely on any kind of ground
truth like expert knowledge or existing links between artifacts.
The approach only uses two heuristic measures, pos and
range that are calculated solely on the results LSI produces.
Therefore, the only input to our approach are the documents
for which traceability links have to be recovered.

We furthermore showed in a case study considering six
objects from industry and academia that our approach finds
appropriate configurations among hundreds or thousands of
possible configurations. The found configurations produce
rankings with similar accuracy (in terms of Mean Average Pre-
cision), as configurations chosen manually by other researchers
with knowledge about existing links that had to be created
manually beforehand.

The results we gained in our study indicate that our ap-
proach is suitable for automatically selecting appropriate con-
figurations for LSI: The configurations selected are, in terms
of accuracy, close to configurations selected with a ground
truth. This improves the applicability of LSI in requirements
tracing in research and practice, since no ground truth has to
be established for determining an appropriate configuration.

33

ACKNOWLEDGMENT

The authors would like to thank Daniela Steidl, Veronika
Bauer, Jonas Eckhardt, Daniel Méndez Fernandez, and An-
dreas Vogelsang for their helpful comments on this work.

REFERENCES

[1] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman, “Indexing by latent semantic analysis,” JASIST, vol. 41, no. 6,
1990.

M. Lormans and A. van Deursen, “Can LSI help reconstructing require-
ments traceability in design and test?” in CSMR, 2006.

S. K. Sundaram, J. H. Hayes, and A. Dekhtyar, “Baselines in require-
ments tracing,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, 2005.

A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” TOSEM, vol. 16, no. 4, 2007.

R. B. Bradford, “An empirical study of required dimensionality for large-
scale latent semantic indexing applications,” in CIKM, 2008.

S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang,
“Improving trace accuracy through data-driven configuration and com-
position of tracing features,” in ESEC/FSE, 2013.

N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Factors impacting the
inputs of traceability recovery approaches,” in Software and Systems
Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman, Eds. Springer
London, 2012.

A. Garron and A. Kontostathis, “Applying latent semantic indexing on
the trec 2010 legal dataset,” in TREC, 2010.

G. Bavota, A. De Lucia, R. Oliveto, A. Panichella, F. Ricci, and G. Tor-
tora, “The role of artefact corpus in LSI-based traceability recovery,” in
TEFSE, 2013.

A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability technique
for specifications,” in ICPC, 2008.

A. Kontostathis, “Essential dimensions of latent semantic indexing
(LSI),” in HICSS, 2007.

S. Eder, B. Hauptmann, M. Junker, E. Juergens, R. Vaas, and K.-H.
Prommer, “Did we test our changes? assessing alignment between tests
and development in practice,” in AST, 2013.

D. Cuddeback, A. Dekhtyar, and J. Hayes, “Automated requirements
traceability: The study of human analysts,” in RE, 2010.

D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an
industrial case study in retrieving equivalent requirements via natural
language processing techniques,” IEEE Trans. Softw. Eng., vol. 39, no. 1,
2013.

J. Hayes, A. Dekhtyar, and S. Sundaram, “Advancing candidate link
generation for requirements tracing: the study of methods,” IEEE Trans.
Softw. Eng., vol. 32, no. 1, 2006.

A. Kontostathis and W. M. Pottenger, “A framework for understanding
latent semantic indexing (LSI) performance,” Information Processing
& Management, vol. 42, no. 1, 2006, formal Methods for Information
Retrieval.

D. Binkley, D. Heinz, D. J. Lawrie, and J. Overfelt, “Understanding
LDA in source code analysis,” in ICPC, 2014.

S. Robertson, “A new interpretation of average precision,” in SIGIR,
2008.

S. Eder, B. Hauptmann, M. Junker, R. Vaas, and K.-H. Prommer,
“Selecting manual regression test cases automatically using trace link
recovery and change coverage,” in AST, 2014.

S. Eder, H. Femmer, B. Hauptmann, and M. Junker, “Which features do
my users (not) use?” in ICSME, 2014.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “Sniafl: Towards a static
noninteractive approach to feature location,” TOSEM, vol. 15, no. 2,
2006.

[22] M. Borg and P. Runeson, “IR in software traceability: From a bird’s eye
view,” in ESEM, 2013.

(21
(3]

(4]

(8]

[9

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

APPENDIX F

Reprint Permission for Publication A [1]

141

6/20/2016

Copyright

{ Clearance
"@ ,

Center

¢IEEE ™
(=

Requesting Conference

fi:mlziiﬂﬂ Proceedings:
o-reu

content from
an IEEE Author:
publication

Publisher:
Date:

Rightslink® by Copyright Clearance Center

t
ccoun Live Chat

How much does unused code
matter for maintenance?
2012 34th International
Conference on Software
Engineering (ICSE)
Sebastian Eder; Maximilian
Junker; Elmar Jirgens;
Benedikt Hauptmann; Rudolf
Vaas; Karl-Heinz Prommer
IEEE

2-9 June 2012

Copyright © 2012, IEEE

Thesis / Dissertation Reuse

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or

want to learn more?

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an

IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE

copyright line ¢ 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line @ [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also

obtain the senior authorgs approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: ¢ [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication

title, and month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your

thesis on-line.

3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications standards/publications/rights/rights link.html to learn how to obtain a

License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.

Copyright © 2016 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#form Top

11

apPENDIX G

Reprint Permission for Publication B [2]

143

6/20/2016 Rightslink® by Copyright Clearance Center

Copyright
&P Cicarance | Home | e I
3 b Live Chat

Center

@IEEE Title: Did we test our changes? m
T

Assessing alignment between If you're a copyright.com

Requesting tests and development in user, you can login to
permission practice RightsLink using your
to reuse copyright.com credentials.

Conference Automation of Software Test

content from Already a RightsLink user or

an IEEE Proceedings: (AST), 2013 8th International |want to learn more?
publication Workshop on
Author: Sebastian Eder; Benedikt

Hauptmann; Maximilian Junker;
Elmar Juergens; Rudolf Vaas;
Karl-Heinz Prommer

Publisher: IEEE

Date: 18-19 May 2013
Copyright © 2013, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line @ 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line ¢ [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior authorgs approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: ¢ [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.

3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html to learn how to obtain a
License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

Copyright © 2016 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#form Top 17

APPENDIX H

Reprint Permission for Publication C [3]

145

6/23/2016 RightsLink Printable License

ASSOCIATION FOR COMPUTING MACHINERY, INC. LICENSE
TERMS AND CONDITIONS

Jun 23, 2016

This Agreement between Sebastian Eder ("You") and Association for Computing Machinery,
Inc. ("Association for Computing Machinery, Inc.") consists of your license details and the
terms and conditions provided by Association for Computing Machinery, Inc. and Copyright
Clearance Center.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number 3894600372851
License date Jun 23, 2016
Licensed Content Publisher Association for Computing Machinery, Inc.

Licensed Content Publication Proceedings

Licensed Content Title Selecting manual regression test cases automatically using trace link
recovery and change coverage

Licensed Content Author Sebastian Eder, et al

Licensed Content Date May 31, 2014

Type of Use Thesis/Dissertation

Requestor type Author of this ACM article

Is reuse in the author's own Yes

new work?

Format Print and electronic

Portion Full article

Will you be translating? No

Order reference number

Title of your Exploiting Execution Profiles in Software Maintenance and Test
thesis/dissertation

Expected completion date Jul 2016
Estimated size (pages) 155

Requestor Location Sebastian Eder
Boltzmannstr. 3

Garching, 85748
Germany
Attn: Sebastian Eder

Billing Type Credit Card

Credit card info Visa ending in 2838
Credit card expiration 02/2021

Total 7.05 EUR

Terms and Conditions

Rightslink Terms and Conditions for ACM Material
1. The publisher of this copyrighted material is Association for Computing Machinery, Inc.
(ACM). By clicking "accept" in connection with completing this licensing transaction, you
agree that the following terms and conditions apply to this transaction (along with the
Billing and Payment terms and conditions established by Copyright Clearance Center, Inc.
("CCC(C"), at the time that you opened your Rightslink account and that are available at any

https://s100.copyright.com/AppDispatchServlet 1/3

6/23/2016 RightsLink Printable License

time at).

2. ACM reserves all rights not specifically granted in the combination of (i) the license
details provided by you and accepted in the course of this licensing transaction, (ii) these
terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

3. ACM hereby grants to licensee a non-exclusive license to use or republish this ACM-
copyrighted material* in secondary works (especially for commercial distribution) with the
stipulation that consent of the lead author has been obtained independently. Unless otherwise
stipulated in a license, grants are for one-time use in a single edition of the work, only with a
maximum distribution equal to the number that you identified in the licensing process. Any
additional form of republication must be specified according to the terms included at the
time of licensing.

*Please note that ACM cannot grant republication or distribution licenses for embedded
third-party material. You must confirm the ownership of figures, drawings and artwork prior
to use.

4. Any form of republication or redistribution must be used within 180 days from the date
stated on the license and any electronic posting is limited to a period of six months unless an
extended term is selected during the licensing process. Separate subsidiary and subsequent
republication licenses must be purchased to redistribute copyrighted material on an extranet.
These licenses may be exercised anywhere in the world.

5. Licensee may not alter or modify the material in any manner (except that you may use,
within the scope of the license granted, one or more excerpts from the copyrighted material,
provided that the process of excerpting does not alter the meaning of the material or in any
way reflect negatively on the publisher or any writer of the material).

6. Licensee must include the following copyright and permission notice in connection with
any reproduction of the licensed material: "[Citation] © YEAR Association for Computing
Machinery, Inc. Reprinted by permission." Include the article DOI as a link to the definitive
version in the ACM Digital Library. Example: Charles, L. "How to Improve Digital Rights
Management," Communications of the ACM, Vol. 51:12, © 2008 ACM, Inc.
http://doi.acm.org/10.1145/nnnnnn.nnnnnn (where nnnnnn.nnnnnn is replaced by the actual
number).

7. Translation of the material in any language requires an explicit license identified during
the licensing process. Due to the error-prone nature of language translations, Licensee must
include the following copyright and permission notice and disclaimer in connection with any
reproduction of the licensed material in translation: "This translation is a derivative of ACM-
copyrighted material. ACM did not prepare this translation and does not guarantee that it is
an accurate copy of the originally published work. The original intellectual property
contained in this work remains the property of ACM."

8. You may exercise the rights licensed immediately upon issuance of the license at the end
of the licensing transaction, provided that you have disclosed complete and accurate details
of your proposed use. No license is finally effective unless and until full payment is received
from you (either by CCC or ACM) as provided in CCC's Billing and Payment terms and
conditions.

9. If full payment is not received within 90 days from the grant of license transaction, then
any license preliminarily granted shall be deemed automatically revoked and shall be void as
if never granted. Further, in the event that you breach any of these terms and conditions or
any of CCC's Billing and Payment terms and conditions, the license is automatically revoked
and shall be void as if never granted.

10. Use of materials as described in a revoked license, as well as any use of the materials
beyond the scope of an unrevoked license, may constitute copyright infringement and
publisher reserves the right to take any and all action to protect its copyright in the materials.
11. ACM makes no representations or warranties with respect to the licensed material and
adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in
its Billing and Payment terms and conditions for this licensing transaction.

12. You hereby indemnify and agree to hold harmless ACM and CCC, and their respective
officers, directors, employees and agents, from and against any and all claims arising out of
your use of the licensed material other than as specifically authorized pursuant to this
license.

13. This license is personal to the requestor and may not be sublicensed, assigned, or

https://s100.copyright.com/AppDispatchServlet 2/3

6/23/2016 RightsLink Printable License

transferred by you to any other person without publisher's written permission.

14. This license may not be amended except in a writing signed by both parties (or, in the
case of ACM, by CCC on its behalf).

15. ACM hereby objects to any terms contained in any purchase order, acknowledgment,
check endorsement or other writing prepared by you, which terms are inconsistent with these
terms and conditions or CCC's Billing and Payment terms and conditions. These terms and
conditions, together with CCC's Billing and Payment terms and conditions (which are
incorporated herein), comprise the entire agreement between you and ACM (and CCC)
concerning this licensing transaction. In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and
Payment terms and conditions, these terms and conditions shall control.

16. This license transaction shall be governed by and construed in accordance with the laws
of New York State. You hereby agree to submit to the jurisdiction of the federal and state
courts located in New York for purposes of resolving any disputes that may arise in
connection with this licensing transaction.

17. There are additional terms and conditions, established by Copyright Clearance Center,
Inc. ("CCC") as the administrator of this licensing service that relate to billing and payment
for licenses provided through this service. Those terms and conditions apply to each
transaction as if they were restated here. As a user of this service, you agreed to those terms
and conditions at the time that you established your account, and you may see them again at
any time at http://myaccount.copyright.com

18. Thesis/Dissertation: This type of use requires only the minimum administrative fee. It is
not a fee for permission. Further reuse of ACM content, by ProQuest/UMI or other
document delivery providers, or in republication requires a separate permission license and
fee. Commerecial resellers of your dissertation containing this article must acquire a separate
license.

Special Terms:

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

https://s100.copyright.com/AppDispatchServlet 3/3

APPENDIX |

Reprint Permission for Publication D [4]

149

6/20/2016

Copyright

"‘ e (Elearance

Center

¢IEEE ™
(=

Requesting Conference

fi:mlziiﬂﬂ Proceedings:
o-reu

content from
an IEEE Author:
publication

Publisher:
Date:

Rightslink® by Copyright Clearance Center

t
ccoun Live Chat

Which Features Do My Users
(Not) Use?
Software Maintenance and

Evolution (ICSME), 2014 IEEE
International Conference on

Sebastian Eder; Henning
Femmer; Benedikt Hauptmann;
Maximilian Junker

IEEE
Sept. 29 2014-Oct. 3 2014

Copyright © 2014, IEEE

Thesis / Dissertation Reuse

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or

want to learn more?

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an

IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE

copyright line @ 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line ¢ [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also

obtain the senior authorés approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: ¢ [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication

title, and month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your

thesis on-line.

3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org/publications standards/publications/rights/rights link.html to learn how to obtain a

License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single

copies of the dissertation.

Copyright © 2016 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#form Top

11

APPENDIX J

Reprint Permission for Publication E [5]

151

6/20/2016 Rightslink® by Copyright Clearance Center

Copyright
&P Cicarance | Home | e I
3 b Live Chat

Center

@IEEE Title: Configuring Latent Semantic m
T

Indexing for Requirements If you're a copyright.com

R&qugstjng Tracing user, you can login to
f':m'zi‘““ Conference Requirements Engineering and E(')%gtrisé-mkcgingreyg:;ﬂals

o reu - . : . .
S Proceedings: Testing (RET)_, 2015 IEEE/ACM Already a RightsLink user or
an lEEE 2nd International Workshop on |want to learn more?
publication Author: Sebastian Eder; Henning

Femmer; Benedikt Hauptmann;
Maximilian Junker

Publisher: IEEE

Date: 18-18 May 2015
Copyright © 2015, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an
IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line ¢ 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright line @ [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior authorgs approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: ¢ [year of
original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication
title, and month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.

3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with permission
in this thesis, the IEEE does not endorse any of [university/educational entity's name goes here]'s
products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to

http://www.ieee.org/publications standards/publications/rights/rights link.html to learn how to obtain a
License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

Copyright © 2016 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#form Top 17

J. Reprint Permission for Publication E [5]

153

