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Abstract

In the near future, mobile machines are expected to leave thelabs and perform more and more
complex tasks in environments designed for human beings. Systems based on legged and espe-
cially bipedal locomotion have the potential of outperforming wheel-based locomotion systems in
certain scenarios. Yet, at the current point in time, it still seems to be a long way to go until legged
systems can unfold their full potential.

Bipedal locomotion is a difficult controls problem due to issues such as underactuation, unilat-
eral constraints and the hybrid nature of stepping. This work aims at first reducing the complexity
of the considered problem as much as possible, while tackling the full problem in a second step.
More explicitly: first, only the center of mass (CoM) dynamics of the robot is considered, which is
a reduced but correct representation of its motion. Using this reduced model, analytical controllers
are designed that include multi-step preview for both walking and running. The walking control
method is based on the concept of Divergent Component of Motion (DCM), which extends the
earlier concept of Capture Point to 3D. The proposed runningcontrol framework is called Bio-
logically Inspired Dead-beat (BID) control. It is based on the encoding of CoM motions as poly-
nomials during stance and explicitly solves for intuitively designed running boundary conditions.
Both methods are powerful, purely analytical and very insightful.

In a second step, the locomotion controllers are embedded into a quadratic programming (QP)
based whole-body control framework. The latter allows for instantaneous optimal control, which
ensures good trade-offs between the different necessary tasks at hand.

Both control frameworks are tested extensively in simulation. Real experiments are successfully
performed for DCM-based walking control and the whole-bodycontrol framework.
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CHAPTER 1

Introduction

1.1 Problem statement

Currently, we experience an increasing amount of automation of our everyday life. The digital
revolution in form of computers, internet and smart phones is in full swing. While the central
element of that mentioned revolution is flow and processing of information, it can be expected
that this focus will widen towards automatic real-world operations, which involves an increased
demand for mobile machines. These machines should be able toautomatically perform tasks in
our human environments. In some scenarios, unmanned aerialvehicles (UAV) or wheeled robots
may perform sufficiently. In other cases, it can be advantageous if the machine has human-like
proportions and capabilities, such that it can more naturally move through and make use of the
human environment. Biological forms of locomotion - such ashuman walking and running -
have evolved over millions of years. They are the product of relentless selection and can thus
to some extent be regarded as optimal for traversing naturalenvironments. The analysis and
decoding of natural locomotion poses a complex yet excitingfield of research for biomechanics
researchers. Their results can serve as inspiration for roboticists. From an engineering point of
view, gaited forms of locomotion - once fully understood - promise highly increased mobility
of machines as compared to wheel-based locomotion. Overcoming a set of stepping stones, as
shown in Fig.6.1, is one possible example where a legged robot may have advantages over other
machines of similar size and weight. Once a certain mobilitylevel has been reached, humanoid
robots may serve humans in many different scenarios including emergency relief, service robotics
or space operations, to name but a few. The DARPA Robotics Challenge (DRC) [3, 4] provided
an impressive insight in the current state of the art in robotics research. In just a few generations,
humanoid robots may reach technology readiness levels thatwill allow real-world applications
outside of controlled laboratory environments. One of the main challenges that is not yet solved
satisfactorily is to find control algorithms that enable humanoid robots to locomote in a versatile,
robust and agile way. From a controls perspective, bipedal locomotion poses several challenges
such as underactuation, unilateral constraints and the hybrid nature of stepping. Till this day,
bipedal locomotion has not been solved to a satisfactory level, yet.

The main goal of the research work presented in this thesis isthus clear:
To come up with new methods in the field of bipedal humanoid walking and running control

that enhance the state of the art and thus contribute to the mentioned mobilization of machines.
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1 Introduction

1.2 Related work

Aside from robotics in general, the work presented in this thesis contributes to three fields of
research: bipedal walking, bipedal running and humanoid whole-body control. In the following,
a short overview of related works in the different fields is given. Note that these works cannot
always be assigned to only one of the mentioned fields.

1.2.1 Bipedal walking

The first efforts in robotic bipedal locomotion have been putin the subdomain of bipedal walking.
Over the decades, the field of bipedal walking control has made major progress. Alongside suc-
cesses in passive dynamic walking [5] and walking based on the spring-loaded inverted pendulum
(SLIP) [6–8], one of the major breakthroughs has been the introduction of Zero Moment Point
(ZMP) control [9,10] for bipedal walking. Many different works have used preplanning of feasi-
ble focus points (e.g. ZMPs) in combination with the linear inverted pendulum (LIP) model for
bipedal gait generation and control: Stephens and Atkeson [11] present a Model Predictive Con-
trol (MPC) method for step adjustment and push recovery. Wieber [12] proposes a trajectory-free
linear MPC scheme, allowing for compensation of strong perturbations. Herdt et al. [13] generate
stable bipedal walking motions using an MPC formulation. Nishiwaki and Kagami [14] generate
dynamically stable walking patterns by frequently updating a preview controller. Sugihara [15]
introduces the Best COM-ZMP Regulator facilitating step adjustment of bipedal robots. Kajita et
al. [16] demonstrate walking on uneven pavement. Urata et al. [17] present an online walking pat-
tern generator that achieves fast changes in walking direction, high walking speed and strong push
recovery on a real biped platform. Tedrake et al. [18] provide a closed-form solution for real-time
ZMP gait generation and feedback control. They achieve dynamic walking on the humanoid robot
Atlas by recomputing the optimal controller online.

Several previous works [19–27] propose to split the center of mass (CoM) dynamics into a stable
and an unstable part. The state variable related to the unstable part of the dynamics has been
referred to as ‘(instantaneous) Capture Point’ by Pratt andKoolen et al. [20–22], ‘Extrapolated
Center of Mass’ by Hof et al. [19] and ‘Divergent Component of Motion’ (DCM) by Takenaka et
al. [23]. Motivated by the works of Pratt et al., in [24,25] the term ‘Capture Point’ had been used
for the DCM. Yet in [28], a significant difference between the Capture Point (defined as the point
on the ground where the robot has to step to come to a stop asymptotically) and the Divergent
Component of Motion was depicted, as the DCM is not restricted to the ground plane, but is a
point in 3D. For 2D considerations (constant CoM height), Capture Point and DCM (projected to
the floor) are equivalent, but not for the three-dimensionalcase.

The use of the LIP model for bipedal walking control is typically restricted to horizontal mo-
tions of the CoM (z= const). This motivates the derivation of methods that are not limited to con-
stant CoM and floor height. Kajita et al. [10] introduce the 3D Linear Inverted Pendulum Mode,
which constrains the CoM to a (not necessarily horizontal) plane. They present experiments for
walking on spiral stairs. Zhao and Sentis [29] introduce the Prismatic Inverted Pendulum dynam-
ics and solve it via numerical integration, allowing for three-dimensional foot placement planning
on uneven ground surfaces. Yet, lateral foot-placement cannot be predefined, but depends on the
sagittal dynamics. Also, the method is restricted to groundsurfaces with laterally constant heights.

The walking control framework presented in this thesis provides certain advantages over the
previously mentioned works. In [28], a method for three-dimensional bipedal gait planning and
control on uneven terrain was presented that overcomes manyof the aforementioned restrictions.
Yet, that method lead to discontinuous desired leg forces and thus desired joint torques, which can
cause perturbations in the actuation system. Therefore, in[30], a method for generating Continu-
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1.2 Related work

ous Double Support (CDS) trajectories is presented, which -similar to the “Multi-Contact Transi-
tions” in [29] - results in smooth enhanced Centroidal Moment Pivot points (eCMP, 3D equivalent
of ZMP) and related leg force profiles. The use of toe-off motion facilitates energy-efficient [31]
and human-like [32] walking. Thus, the CDS trajectory generator from [30] was extended to a
Heel-to-Toe (HT) trajectory generator in the same work, in which the eCMP is shifted from heel to
toe during single support. This allows for early toe-off motions, increasing the maximum achiev-
able step length and height. Additionally, [30] provides a robustness analysis of the DCM tracking
controller with respect to CoM error, constant external perturbation force, mass estimation error
and unknown force lag.

Hopkins et al. [33] enhance the concepts from [30] by introducing the time-varying DCM. By
varying the natural frequency of the DCM, they achieve generic vertical CoM trajectories during
walking. To smooth discontinuities in the corresponding DCM trajectories, Model Predictive
Control (MPC) is applied. Also section5 of this thesis improves the methods presented in [30] by
deriving DCM reference trajectories that correspond to eCMP (3D equivalent of ZMP) reference
trajectories that are explicitly designed to lie within thebase of support of the robot. Thus, in
contrast to [30], the nominal eCMPs are guaranteed to be feasible.

Aside from reduced dynamic models, such as the LIP, several authors propose the use of opti-
mization techniques to either directly design walking motions or to derive movement primitives
that can be applied online later. Werner et al. [34] generate bipedal walking gaits using nonlin-
ear optimization and apply these gaits to the DLR Biped (primary stage of the humanoid robot
Toro [1]) using a ZMP-based stabilizing controller. In [35], the same authors generate efficient
walking trajectories for robots with series-elastic actuators, exploiting the full actuator capabili-
ties. Clever and Mombaur [36] introduce a new template model for optimization studies ofhuman
walking and achieve three-dimensional CoM and foot trajectories for walking up and down stairs.
Koch et al. [37] generate humanoid gaits based on movement primitives thatare learned from
optimal and dynamically feasible motion trajectories. Wittmann et al. [38] implement a real-time
nonlinear model predictive footstep optimization for bipedal robots based on direct shooting and
provide experimental results of their robot LOLA [39] walking under real-world conditions.

1.2.2 Bipedal running and other highly dynamic gaits

Running and hopping are challenging tasks because, during flight, some of the robot’s states are
unavoidably non-actuated. Running provides a number of assets such as high achievable speed and
efficiency. Back in 1985, Raibert [40] presented his controller that decomposes running into three
parts: vertical hopping dynamics, forward velocity and attitude control. The controller design is
rather heuristic, yet very powerful. Aside from few exceptions such as [41–45], most running
algorithms are based on the spring-loaded inverted pendulum (SLIP) [6]. Dadashzadeh et al. [46]
present a SLIP-based two-level controller for running simulations of the ATRIAS robot. Carver
et al. [47] show that the number of required recovery steps depends on the goals of the control
mechanism and present a SLIP-based controller for two-steprecovery using synergies. Vejdani
et al. [48] introduce bio-inspired swing leg control for running on ground with unexpected height
disturbances. Wu et al. [49] present a deadbeat controller for the 3D SLIP model that cancope with
unknown ground height variations of up to 30% of the leg length. Their method is based on multi-
dimensional look-up tables and achieves deadbeat control of apex height and heading direction.
Yet, since their model assumes energy conservation, the method cannot handle dissipative losses
(e.g. during impact). Koepl and Hurst [50] control the stance phase impulse of a planar SLIP
model and achieve robust running. Wensing and Orin [51, 52] compute periodic trajectories of
the 3D-SLIP offline and apply a linearized control law to stabilize the virtual SLIP model around
the periodic solutions. The desired leg forces are passed toa whole-body controller and bipedal
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running of a simulated humanoid robot is achieved. The method requires offline computation of
each desired periodic SLIP gait (including particular turnrates) to obtain the required look-up
tables and the linearized SLIP feedback controller is only capable of limited acceleration rates.
Park et al. [53] present quadrupedal galloping with the MIT Cheetah 2 basedon impulse control.
They use third-order Bezier polynomials to encode the leg force profiles. Yet, their method is
nominally unstable and designed for constant speeds, such that heuristic PD control laws have to
be applied to achieve stability and speed control.

1.2.3 Whole-body control

Whole-body control is a wide field of research that includes control setups of different levels of
complexity. One can distinguish controllers that take intoaccount the whole robot motion over
a time preview window from controllers that are based on instantaneous control. The first class
of controllers typically uses offline optimization. Dai et al. [54] present a method for whole-
body motion planning that includes centroidal dynamics andfull kinematics and generate highly
dynamic motion plans including bipedal walking and runninggaits. Schultz and Mombaur [45]
generate optimal gaits via an offline direct multiple shooting method.

The second class ofinstantaneouscontrollers optimizes only the current control inputs, while
just few robot states (if any), such as the CoM dynamics, are previewed. This class of controllers
typically works in real-time. Sentis and Khatib [55,56] formulate a hierarchical whole-body con-
trol framework for humanoid robots and synthesize whole-body behaviors using behavioral prim-
itives. Ramos et al. [57] integrate the Capture Point in an operational space inverse dynamics
controller to achieve whole-body motions that prevent the robot from falling. Hopkins et al. [58]
present balancing of a series elastic humanoid robots on unstable terrain using whole-body mo-
mentum control. Feng et al. [59] formulate a cascade of online optimizations that allows for com-
pensation of modelling errors and external forces. Their controller was successfully implemented
on the Atlas robot and used during the DARPA Robotics Challenge [3]. Wensing and Orin [60]
generate dynamic humanoid behaviors through task space control with conic optimization. By
controlling the centroidal momentum of the robot, they observe self-emergent whole-body behav-
iors such as arm swing.

Passivity-based whole-body controllers [61–65] are a subclass of instantaneous controllers. As
compared to inverse-dynamics based approaches, these controllers promise higher robustness and
more intuitive haptics, which are important for safe human-robot interaction.

1.3 Contributions and overview of the presented research

This thesis provides several contributions in the field of humanoid locomotion control. It extends
the formerly two-dimensional concept of Divergent Component of Motion (DCM, also known
as “(instantaneous) Capture Point” [19, 20, 23]) to a 3D version, which allows to treat all three
spatial directions of the CoM dynamics equivalently and consistently. Also, this work introduces
corresponding DCM trajectory generation methods and feedback controllers (see Chap.5). These
facilitate the process of bipedal gait generation and provide interesting insights into the dynamics
of walking. When using the DCM as system coordinate, the second order CoM dynamics can
be split into the instable DCM dynamics and a second naturally stable component. Leaving the
stable component untouched, the original second order control problem turns into a first order one,
which explains the mentioned simplicity and comprehensibility of the DCM control framework.
The presented research also introduces two new points, the enhanced Centroidal Moment Pivot
point (eCMP) and the Virtual Repellent Point (VRP), respectively, which encode external (e.g.
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leg-) forces and total force acting on the robot’s CoM. Thesepoints can be seen as generalizations
of the Zero Moment Point (ZMP) [] and the Centroidal Moment Pivot [66] point to 3D.

Another major contribution of this work is the introductionof Biologically Inspired Deadbeat
(BID) control [67–69], which eliminates several drawbacks of state of the art running controllers.
BID control is inspired by observations from human running experiments and uses polynomial
splines to encode the robot’s CoM motion and leg forces during stance. It is real-time capable,
enables versatile running motions and is very robust against external perturbations. The control
design is very intuitive and purely analytical. This analyticity facilitates unique features such as
online three-dimensional footstep targeting, which - to the author’s knowledge - is a unique feature
of BID control, i.e. no other available online planning and control framework for running is able
to accomplish that task. The next two upcoming foot aim points on the ground (i.e. the left and the
right one) are predicted at all times, which facilitates thedesign of appropriate foot trajectories.
Comparisons to human running gaits show major similarities, such that BID control may serve as
tool for human running gait analysis.

The embedding of the DCM-based walking controller and BID-based running controller into
the whole-body control (WBC) framework presented in chapter 4 is another contribution of this
work. The implemented WBC framework uses a single weighted quadratic program (QP) to solve
an inverse dynamics problem. It contains the walking or running task besides other tasks, such as
foot tracking, torso orientation control and overall body posture control. The combination of these
tasks allows to reproduce several different agile locomotion modes such as walking and running.
All control components can be computed in real-time.

The general concept pursued in both the presented walking and running methods is the follow-
ing: Instead of explicitly previewing future constraint violations, constraint-compatible reference
trajectories for a multi-step preview are designed and tracked via feedback control. The references
are not only compatible with the constraints but also maximize the corresponding distance in or-
der to increase the margin of stability. That way in many cases the tracking controllers ask for
control actions that do not violate the contraints, such that the nominal, stable controller behavior
is actually achieved. The embedding of the CoM-based controllers into the presented QP-based
whole-body control framework then guarantees feasibilityeven in case of strong perturbations,
while stability cannot be guaranteed1.

The thesis is organized as follows: Chapter2 provides mathematical basics for robotics, which
the derivations in this thesis are based on. These include transformations and velocities, robot
kinematics and equations of motion. Chapter3 is a collection of useful tools for robotics and
motion design. These include polynomial interpolation, pole placement for PID controller
parametrization, a constraint-compatible tracking method, a method for quaternion trajectory
generation and tracking and an overview of task and null spaces. The whole-body control (WBC)
framework used in this work is described in chapter4. The methods, used in this work for
walking and running are presented in chapters5 and6. Both the walking and running controllers
use the reduced model of CoM dynamics for trajectory generation and feedback control and are
then embedded into the WBC framework from chapter4.

Parts of the research presented in this thesis have been published in conference and journal
publications. Table1.1 gives an overview of the author’s publications as first author, while his
publications as coauthor are summarized in table1.2.

1Note that, depending on the contact scenario and robot actuator limits, stability (for any possible perturbation) can
never be guaranteed for free-floating robots.
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Table 1.1: List of publications as first author

Reference Description

Journal, [1] J. Englsberger and Ch. Ott. Gangstabilisierung humanoiderRoboter mittels Capture Point
Regelung / Walking stabilization for humanoid robots basedon control of the Capture Point.
at-Automatisierungstechnik, Oldenbourg Wissenschaftsverlag, pages 692-703, 11/2012.

Journal, [2] J. Englsberger, Ch. Ott, and A. Albu-Schäffer. Three-Dimensional Bipedal Walking Control
Based on Divergent Component of Motion.IEEE Transactions on Robotics (TRO), Vol. 31,
No. 2, pp. 355-368, 2015.

Journal, [3] J. Englsberger, P. Kozlowski, Ch. Ott, A. Albu-Schäffer. Biologically Inspired Deadbeat
control for running: from human analysis to humanoid control and back. IEEE Transactions
on Robotics (TRO), Vol. 32, No. 4, pp. 854-867, 2016.

Conference: [4] J. Englsberger, Ch. Ott, M. A. Roa, A. Albu-Schäffer, and G.Hirzinger. Bipedal walking
control based on Capture Point dynamics. InInt. Conf. on Intell. Robots and Systems, pages
4420-4427, 2011.

Conference: [5] J. Englsberger and Ch. Ott. Integration of vertical COM motion and angular momentum in an
extended Capture Point tracking controller for bipedal walking. In IEEE-RAS Int. Conf. on
Humanoid Robots, pages 183-189, 2012.

Conference: [6] J. Englsberger, Ch. Ott and A. Albu-Schäffer. Three-dimensional bipedal walking control
using Divergent Component of Motion. InInt. Conf. on Intell. Robots and Systems, pages
2600-2607, 2013.

Conference: [7] J. Englsberger, T. Koolen, S. Bertrand, J. Pratt, Ch. Ott, and A. Albu-Schäffer. Trajectory gen-
eration for continuous leg forces during double support andheel-to-toe shift based on divergent
component of motion. InInt. Conf. on Intell. Robots and Systems, pages 4022-4029, 2014.

Conference: [8] J. Englsberger, A. Werner, Ch. Ott, B. Henze, M. A. Roa, G. Garofalo, R. Burger, A. Beyer, O.
Eiberger, K. Schmid and A. Albu-Schäffer. Overview of the torque-controlled humanoid robot
TORO. InIEEE-RAS Int. Conf. on Humanoid Robots, pages 916-923, 2014.

Conference: [9] J. Englsberger, P. Kozlowski, and Ch. Ott. Biologically Inspired Dead-beat controller for
bipedal running in 3D. InIEEE/RSJ Int. Conf. on Intell. Robots and Systems, pages 989-996,
2015.

Conference: [10] J. Englsberger, P. Kozlowski, and Ch. Ott. Biologically Inspired Deadbeat control for running
on 3D stepping stones. InIEEE-RAS Int. Conf. on Humanoid Robots, pages 1067-1074, 2015.
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Table 1.2: List of publications as coauthor

Reference Description

Journal, [11] Ch. Ott, O. Eiberger, J. Englsberger, M. A. Roa, and A. Albu-Schäffer. Hardware and Control
Concept for an Experimental Bipedal Robot with Joint TorqueSensors.Journal of the Robotics
Society of Japan, Vol. 30, No. 4, pp. 378-382, May 2012.

Journal, [12] Ch. Ott, A. Dietrich, D. Leidner, A. Werner, J. Englsberger,B. Henze, S. Wolf, M. Chalon,
W. Friedl, A. Beyer, O. Eiberger, A. Albu-Schäffer. From torque-controlled to intrinsically
compliant humanoid robots .ASME Dynamic Systems and Control Magazine, Vol. 3, No. 2,
pp. 7-11, June 2015.

Journal, [13] T. Koolen, S. Bertrand, G. Thomas, T. de Boer, T. Wu, J. Smith,J. Englsberger, J. Pratt. Design
of a momentum-based control framework and application to the humanoid robot Atlas. In-
ternational Journal of Humanoid Robotics, Vol. 13, No. 1, pp. 1650007 (34 pages) , March
2016

Journal, [14] N. Perrin, Ch. Ott, J. Englsberger, O. Stasse, F. Lamiraux, D. G. Caldwell . Continuous Legged
Locomotion Planning.IEEE Transactions on Robotics (short paper, accepted)

Conference: [15] M. Krause, J. Englsberger, P.-B. Wieber, and Ch. Ott. Stabilization of the Capture Point
Dynamics for Bipedal Walking based on Model Predictive Control. In 10th IFAC Symposium
on Robot Control - SYROCO, pages 165-171, 2012.

Conference: [16] H. Kaminaga, J. Englsberger, and Ch. Ott. Kinematic optimization and online adaptation of
swing foot trajectory for biped locomotion. InIEEE-RAS Int. Conf. on Humanoid Robots,
pages 593-599, 2012.

Conference: [17] T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff, N. Mertins, D. Stephen, P. Abeles,
J. Englsberger, S. McCrory, J. van Egmond, M. Griffioen, M. Floyd , S. Kobus, N. Manor,
S. Alsheikh, D. Duran, L. Bunch, E. Morphis, L. Colasanto, K.-L. Ho Hoang, B. Layton, P.
Neuhaus, M. Johnson, and J. Pratt. Summary of team IHMC’s virtual robotics challenge entry.
In IEEE-RAS Int. Conf. on Humanoid Robots, pages 307-314, 2013.

Conference: [18] B. Henze, A. Werner, M. A. Roa, G. Garofalo, J. Englsberger, and Ch. Ott. Control Applications
of TORO - a Torque Controlled Humanoid Robot (Best Video Award). In IEEE-RAS Int. Conf.
on Humanoid Robots, 2014.

Conference: [19] G. Garofalo, B. Henze, J. Englsberger and Ch. Ott. On the inertially decoupled structure of the
floating base robot dynamics . Inconference on mathematical modelling (MATHMOD), 2015.

Conference: [20] G. Garofalo, J. Englsberger, Ch. Ott. On the regulation of the energy of elastic joint robots:
excitation and damping of oscillations. InAmerican Control Conference (ACC), 2015.
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CHAPTER 2

Mathematical basics for robotics

This chapter provides the notation and mathematical basicsfor the methods derived in the subse-
quent chapters of this thesis. For readers with little experience in robotics, it may serve as compact
introduction to this exciting field of research.

2.1 Notations used in this work

In this chapter, the following notation for arbitrary points or vectors (denoted byv here) is used:

βvr,k . (2.1)

The indicesβ , r andk denote the reference frame, the reference point (or link frame origin) and
the point (or link frame origin) of interest, respectively.In other words, (2.1) defines a vector from
the point (or link frame origin) indicated by indexr to the point (or link frame origin) indicated
by indexk represented in the frame indicated by indexβ . The upper left index position is used for
the latter to keep the upper right index position free for inversion or square terms.

The notation for rotation matrices and homogeneous transformations is

αAβ , (2.2)

where αAβ denotes a rotation matrixαRβ or a homogeneous transformation matrixαHβ . This
notation represents the rotation or homogeneous transformation from a reference frame with index
α to another frame with indexβ . For a more intuitive understanding: The rotation matrixαRβ
denotes the base vectors of frameβ represented in the frame with indexα .

A wrenchβwk combines a forceβf k and a torqueβτ k in a single covector:

βwk =

[βf k
βτ k

]
. (2.3)

As above, the left upper indexβ denotes the base (or frame) that the wrench is represented in
while the lower right indexk denotes the link that the wrench is applied to.
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2.2 Homogeneous transformations

A three-dimensional point with indexk can be transformed from framej to framei via

ixi,k =
ixi, j +

iR j
jx j,k︸ ︷︷ ︸

ix j,k

. (2.4)

By augmenting the three-dimensional position (or vector) with an additional “1” (i.e. creating
homogeneous coordinates), this correlation can be writtenin a more compact form:

[
ixi,k

1

]
=

[
iR j

ixi, j

01×3 1

]

︸ ︷︷ ︸
iH j

[
jx j,k

1

]
. (2.5)

Here, iH j denotes the homogeneous transformation from linki to link j. If the world frame is
denoted by “0”, the relative rotation matrixiR j can be derived from the global orientations0Ri of

link i and0R j of link j as iR j =
0R

T
i

0R j . The relative translation between the two linksixi, j

can be computed from the corresponding global translationsasixi, j =
ix0, j −

i x0,i (still using the
frame of link i as base).

Homogeneous transformations as in (2.5) can be concatenated as follows:

iHk = iH j
jHk . (2.6)

Using (2.6), arbitrary transformation chains can be constructed. Note that the rotations from one
frame to another are automatically included in this notation.

The inverse of a homogeneous transformation can be conveniently computed as

iH−1
j =

[ iRT
j − iRT

j
ixi, j

01×3 1

]
= jHi =

[
jRi − jRi

ixi, j

01×3 1

]
. (2.7)

Remember that the inverse of a rotation matrix is its transpose, i.e. iR−1
j = iRT

j =
jRi , because

rotation matrices are orthogonal and their determinant is 1.

2.3 The skew operator

One operation that is particularly convenient for many of the subsequent derivations is the fol-
lowing: for an arbitrary three-dimensional vectorv = [v1,v2,v3]

T , its cross product with another
vectorw can be written as a matrix vector product, i.e.v×w = [v×]w for any three-dimensional
vectorw. It can be explicitly written as

[v×] =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 (2.8)

Obviously,[v×] is a skew-symmetric matrix. One example, where this skew operator is used, is
the correlation between the spatial angular velocityiωi, j (see Sec.2.5) and the derivativeiṘ j of a
rotation matrix iR j , which can be expressed as

[iωi, j×] = iṘ j
iRT

j . (2.9)

The equivalent correlation for the mapping that considers the body angular velocityjωi, j is

[ jωi, j×] = iRT
j

iṘ j . (2.10)
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2.4 Adjoint transformations

The transformation of a Jacobian or corresponding velocityfrom one frame to another is an op-
eration which is widely used in robotics. This transformation is accomplished by the so called
adjoint transformation. Any Jacobian (or corresponding velocity) that is represented in a framej
can be transformed to another framei via

iJk,l = Ad iH j
jJk,l . (2.11)

Here, i, j, k and l denote arbitrary frames (not necessarily different frames, see below). The
adjoint transformationAd iH j

uses the homogeneous transformationiH j as input:

Ad iH j
=

[
iR j [ixi, j×] iR j

03×3
iR j

]
(2.12)

In many applications, the inverse of the adjoint transformation is required. It can be computed as:

Ad−1
iH j

=

[ iRT
j − iRT

j [
ixi, j×]

03×3
iRT

j

]
= Ad iH−1

j
, (2.13)

An additional useful operation is theLie bracket matrix(presented in [70]) of a 6-dimensional
velocity vectorν, which is defined as

adj(ν) =

[
[ω×] [ẋ×]
0 [ω×]

]
. (2.14)

Here,ẋ andω denote the linear and angular components of the six-dimensional (body or spatial)
velocity vectorν = [ẋT ,ωT ]T . This Lie bracket matrix can be used to compute the time derivative
of the adjoint transformation, for example:

Ȧd iH j
=Ad iH j

adj(
j
bνi, j) . (2.15)

Here, j
bνi, j denotes the body velocity, which is introduced in the next section.

In addition to Jacobian transformations, the adjoints can also be used totransform wrenches. If
a wrench represented in a given frame (upper left index, see notation (2.3)) has to be transformed
to another base, the following correlations can be applied:

jwk =AdT
iH j

iwk ⇔ iwk =Ad−T
iH j

jwk (2.16)

2.5 Six-dimensional velocity vectors

In [71], Murray et al. describe three different six-dimensional velocities that combine both linear
and angular motion: thehybrid velocity, thebody velocityand thespatial velocity. These velocities
can be intuitively interpreted as follows:

Thehybrid velocity vectorcombines the linear and angular velocity of a linkj relative to another
link i represented in the coordinate frame that is attached to linki.1

Thebody velocity vectorcombines the linear and angular velocity of a linkj relative to another
link i but now represented in the coordinate frame attached to linkj. Intuitively, this would be the

1This representation correlates to the notation that is typically referred to, when engineers talk about “the” linear and
angular velocity of a body.
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relative velocity between the two links that a person sitting on link j would observe. For example:
this velocity is typically used when processing data from aninertial measurement unit (IMU) that
measures the velocity of a body w.r.t. the world, represented in the body frame.

The spatial velocity vectoris less intuitive at first. While its angular component equals the
hybrid counterpart (i.e. simply the spatial angular velocity), its linear component indicates the
velocity of a point2 that is attached to linkj relative to the frame attached to linki with the peculiar
feature that this point momentarily coincides with the origin of framei. The spatial velocity vector
is useful for a multitude of operations.

As compared to the notation presented in Sec.2.1, an additional lower left indexh (for hybrid),b
(for body) ands (for spatial) is introduced to indicate the three differentsix-dimensional velocities.
Using the mathematics introduced by Murray et al. [71] but utilizing the notation from Sec.2.1,
the correlations for thehybrid velocitycan be formulated as

i
hνi, j =

[
iẋi, j
iωi, j

]
= i

hJi, j q̇ =

[
iR j 03×3

03×3
iR j

]
j
bνi, j =

[
I3×3 −[ixi, j×]
03×3 I3×3

]
i
sνi, j , (2.17)

the correlations for thebody velocityas

j
bνi, j =

[
j ẋi, j
jωi, j

]
= j

bJi, j q̇ =

[ iRT
j 03×3

03×3
iRT

j

]
i
hνi, j = Ad−1

iH j

i
sνi, j , (2.18)

and the correlations for thespatial velocityas

i
sνi, j =

[
iẋi, j −

iωi, j ×
i xi, j

iωi, j

]
= i

sJi, j q̇ =

[
I3×3 [ixi, j×]
03×3 I3×3

]
i
hνi, j = Ad iH j

j
bνi, j . (2.19)

The second terms (between the first equal signs) denote the actual definitions of the
six-dimensional velocity vectors using the correspondingthree-dimensional linear and angular
velocity vectorsẋ and ω. The third terms demonstrate the velocity computations viathe
corresponding Jacobian matrices (q̇ being the generalized joint velocities of a robot (see
Sec.2.10)), and the subsequent terms represent the intercorrelations between hybrid, body and
spatial velocity.

2.6 Propagation of Jacobians and their derivatives along a
series of links

This section will provide equations for the propagation of Jacobians and their derivatives along a
serial chain of links. This propagation is used to compute the Jacobian of a link further down the
chain relating to the base frame.

The equations below are then typically evaluated iteratively to propagate from one link to the
next until the link of interest is reached. Note that the correlations are also valid for propagation
of hybrid, body or spatial velocities. The corresponding Jacobians simply have to be replaced by
the appropriate six-dimensional velocity vectors. In the following, the propagation formulas will
be provided without going into detail (more details can be found in [71]):

2Note that typically this is not a unique point on linkj but more of a temporary construction.
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2.7 Propagation of hybrid Jacobians

To obtain the hybrid JacobianihJi,k of a link, the hybrid Jacobian of its parenti
hJi, j is propagated

using the relative hybrid Jacobian between parent and linkj
hJ j,k:

i
hJi,k =

[
I3×3 − iR j [

jx j,k×] iRT
j

03×3 I3×3

]

︸ ︷︷ ︸
Aα

i
hJi, j +

[
iR j 03×3

03×3
iR j

]

︸ ︷︷ ︸
Aβ

j
hJ j,k (2.20)

The derivative of the hybrid Jacobian is propagated via

i
hJ̇i,k =

[
03×3 B

03×3 03×3

]
i
hJi, j + Aα

i
hJ̇i, j +

[
iṘ j 03×3

03×3
iṘ j

]
j
hJ j,k + Aβ

j
hJ̇ j,k , (2.21)

where

B = −( iṘ j [
jx j,k×] iRT

j + iR j [
j ẋ j,k×] iRT

j + iR j [
jx j,k×] iṘT

j ) (2.22)

and iṘ j = [iωi, j×] iR j .

2.8 Propagation of body Jacobians

The propagation of body Jacobians and their derivatives is similar to the one for hybrid Jacobians.
The corresponding propagation equations are

k
bJi,k = Ad−1

jHk

j
bJi, j +

k
bJ j,k (2.23)

for the body Jacobian, and

k
bJ̇i,k = Ad−1

jHk

j
bJ̇i, j − adj(k

bν j,k)Ad−1
jHk

j
bJi, j +

k
bJ̇ j,k (2.24)

for the time derivative of the body Jacobian.

2.9 Propagation of spatial Jacobians

The propagation of spatial Jacobians and their derivativesagain works similarly as for the other
Jacobians. The corresponding propagation equations are

i
sJi,k = i

sJi, j + Ad iH j
j
sJ j,k (2.25)

for the spatial Jacobian and

i
sJ̇i,k = i

sJ̇i, j + Ad iH j
adj(Ad−1

iH j

i
sνi, j )

j
sJ j,k + Ad iH j

j
sJ̇ j,k (2.26)

for the time derivative of the spatial Jacobian.
The three different Jacobians (hybrid, body and spatial) and their propagation are presented in

this chapter to provide a complete overview.
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2.10 Robot kinematics

2.10.1 Kinematic robot description

The kinematic structure of a robot is typically described using adefault posture, i.e. a posture in
which all joint angles are defined to be zero. For all robot linksk, the default transformation of the
frame3 is defined as

de f
0Hk =

[
de f

0Rk de f
0x0,k

01×3 1

]
. (2.27)

Here,de f
0Rk is the relative rotation between the global frame and thek-th link frame andde f

0x0,k

denotes its displacement, both represented w.r.t. the world frame “0”. The default relative trans-
formation between a linkk and its parent linkp can be computed as

de f
pHk = de f

0H
−1
p de f

0Hk . (2.28)

In addition to the default link framesde f
0Hk, information about the possible directions of motion

of the robot links w.r.t. each other is required to describe the robot kinematics. One possible
encoding of such motion constraints are the 6×1 relative spatial Jacobiansde f

0jp,k. They represent
the possible motion of each linkk w.r.t. its parentp in a six-dimensional vector that is represented
in world frame “0” andin the default posture. These Jacobians will be used in (2.44) to formulate
the exponential of twist formula (→ forward kinematics).

For prismatic (i.e. linear) joints, these relative spatialJacobians can be derived as

de f
0jp,k =

[
de f

0ulin,k

03×1

]
. (2.29)

Here,de f
0ulin,k ∈R

3×1 denotes the unit vector pointing in the direction of the linear axis of thek-th
link represented in world frame “0” and referring to the default pose of the robot.

For revolute (i.e. rotational) joints, the relative spatial Jacobians can be computed as

de f
0j p,k =

[
[de f

0x0,axk×]
I3×3

]
de f

0urot,k , (2.30)

wherede f
0x0,axk ∈ R

3×1 denotes a point on the axis of rotation represented w.r.t. the world frame
“0” and de f

0urot,k ∈ R
3×1 is the unit vector pointing in the direction of the rotational axis of the

k-th link, also represented in world frame “0”. Both axis point and unit vector are represented in
the default pose of the robot.

For screw joints4 the relative spatial Jacobians are computed as:

de f
0j p,k =

[
[de f

0x0,axk×]+hscrewI3×3

I3×3

]
de f

0urot,k (2.31)

wherede f
0x0,axk ∈ R

3×1 denotes a point on the screw axis represented w.r.t. the world frame “0”
andde f

0urot,k ∈ R
3×1 is the unit vector pointing in the direction of the screw axisof thek-th link,

also represented in world frame “0”, andhscrew is the pitch of the screw. Again, both axis point
and unit vector are represented in the default pose of the robot.

3Note: Link frames do not necessarily coincide with the corresponding joints.
4Note: Skrew joints can implement the most general one degreeof freedom (DOF) motions. They include both

revolute and prismatic joints as special cases.
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2.10 Robot kinematics

The relative spatial Jacobiansde f
0jp,k can be transformed into the relative body Jacobians

k
bjp,k︸︷︷︸
const

=Ad−1
de f

0Hk
de f

0jp,k . (2.32)

Note that these relative body Jacobians are constant (i.e.k
bjp,k = de f,b

kjp,k) because the motion
constraints of the link w.r.t. its own frame do not change. They will be used in (2.54) for the
forward propagation of global body Jacobians. Note that the6× 1 relative Jacobiansde f

0j p,k

andk
bjp,k can be interpreted as twists coordinates (see next section)and thus, the methods from

Sec.2.10.2can be applied.
To conclude, the default spatial link framesde f

0Hk and the relative spatial Jacobiansde f
0j p,k (or

alternatively the relative body Jacobiansk
bjp,k) are sufficient to specify the kinematics of a robot.

2.10.2 Twists and their exponentials

A mathematical tool that is often used in the analysis of robot kinematics is the so calledtwist. It
is a 4×4 matrix that can be written as

ϑ̂ =

[
[ϑrot×] ϑlin

01×3 0

]
. (2.33)

Its correspondingtwist coordinatesϑ consist of the 3×1 linear componentϑlin and a 3×1 rota-
tional componentϑrot which are stacked as

ϑ =

[
ϑlin

ϑrot

]
. (2.34)

Any 6× 1 Jacobianj that contains a 3× 1 linear componentjlin stacked on a 3× 1 rotational
componentjrot , i.e.

j =

[
jlin

jrot

]
, (2.35)

can be interpreted as such twist coordinates. Thus, the samemathematical tools used for twists
and twist coordinates can be applied to such Jacobians.

If the 6× 1 Jacobianjk of a link k describes a pure translation, i.e.jrot,k = 03×1, the twist
exponential for that Jacobian can be computed as

e(ĵk qk) =

[
I3×3 jlin,k qk

01×3 1

]
, (2.36)

whereqk denotes the corresponding joint angle. Otherwise (jrot,k 6= 03×1), the twist exponential
of a Jacobianjk is

e(ĵk qk) =

[
Re (I3×3−Re) [jrot,k×] jlin,k + jrot,k j

T
rot,k jlin,k qk

01×3 1

]
. (2.37)

Here,Re is a rotation matrix that can be computed usingRodrigues’ formula[72]:

Re = e(ĵrot,k qk) = I3×3 + [jrot,k×] sin(qk) + [jrot,k×]2 (1−cos(qk)) . (2.38)
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2 Mathematical basics for robotics

2.10.3 Forward kinematics: the product of exponentials for mula

Ploen [73] summarizes different formulations for the forward kinematics of robots. To support the
following derivations, thek-th reference frame0Hkre f is introduced, which is defined as

0Hkre f = 0H p de f
pHk , (2.39)

i.e. it is fixed to the parent link frame0H p at a constant offsetde f
pHk (which is the default relative

transformation between linkk and its parentp from (2.28)). Reordering (2.39) yields

pHkre f = de f
pHk . (2.40)

Ploen shows that the relative transformation between a linkk and its parentp can be expressed as

pHk = de f
pHk︸ ︷︷ ︸

pHkre f

e(
k
bĵp,k qk)︸ ︷︷ ︸

kre fHk

. (2.41)

Here,kbjp,k denotes the relative body Jacobian between the two links,e(
k
bĵp,k qk) is the exponential

of the corresponding twist (computed via (2.36) or (2.37)) andqk is thek-th joint angle. The left
brace indicates the equality (2.40). The right brace clarifies thate(

k
bĵp,k qk) encodes the relative

displacement between thek-th reference frame (as defined in (2.39)) and the current frame, i.e.

kre fHk = e(
k
bĵp,k qk) . (2.42)

Concatenating the relative transformations of all involved joints, the transformation of thek-th link
w.r.t. the world frame “0” can be expressed as

0Hk = 0H1 · 1H2 · · ·
k−1Hk =

k

∏
i=1

( i−1Hi) . (2.43)

Using the matrix identity de f
0Hk e(

k
bĵp,k qk) de f

0H
−1
k = e(de f

0Hk
k
bĵp,k de f

0H
−1
k qk) = e( de f

0ĵ p,k qk),
equation (2.43) can be transformed into the so calledproduct of exponentials formula:

0Hk = e( de f
0ĵ0,1 q1) ·e( de f

0ĵ1,2 q2) · · · e( de f
0ĵk−1,k qk)

de f
0Hk =

k

∏
i=1

(
e( de f

0ĵ i−1,i qi)
)

de f
0Hk . (2.44)

Note that here the default spatial relative Jacobiansde f
0ĵ i−1,i (as introduced in2.10.1) are used

for the i-th link (or joint). This formula provides the direct correlation between the involved joint
anglesqi and the global transformation of thek-th link.

2.11 Inertia computations and transformations

The kinematics of a robot, as presented in the previous section, has a major effect on its dynamics
(see Sec.2.12). The second important property that influences the dynamics is the robot’s inertia,
i.e. its mass distribution. Using the notation introduced in Sec.2.1, the inertia of a robot linkk
represented in its center of mass (denoted bykCoM) can be written as

kCoMMk =

[
mk I3×3 03×3

03×3 IkCoM

]
(2.45)
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2.12 Derivation of robotic equations of motion

Here,mk is the mass of the link andIkCoM is its moment of inertia around its CoM.
Using the adjoint transformation, arbitrary inertias can be transformed via

jMk =AdT
iH j

iMk Ad iH j
⇔ iM k =Ad−T

iH j

jMk Ad−1
iH j

. (2.46)

Here, indexk denotes the link, while the other two indices denote the bases that the inertias are
represented in. When the link inertia represented in the link frame is required, (2.46) can be
applied to (2.45) which yields

kMk = Ad−T
kHkCoM

kCoMM k Ad−1
kHkCoM

=

[
mk I3×3 −mk [

kxk,kCoM×]
mk [

kxk,kCoM×] IkCoM −mk [
kxk,kCoM×] [kxk,kCoM×]

]
. (2.47)

Here, kHkCoM =

[
I3×3

kxk,kCoM

01×3 1

]
andkxk,kCoM denotes the offset of the link CoM from the link

frame origin represented in link frame.
The matrix kMk in (2.47) is the inertia of linkk represented in its own framek, i.e. in body

coordinates. To identify what effect the inertia of a singlelink has along the generalized system
coordinatesq (i.e. in the direction of the robot joints), it can be mapped onto joint space via

qMk = k
bJ

T
0,k

kMk
k
bJ0,k . (2.48)

On the other hand, the total robot inertiaqMq (represented in joint space, i.e. along the gener-
alized coordinatesq) can be mapped onto thek-th link space via

kMq = (k
bJ0,k

qM−1
q

k
bJ

T
0,k)

−1 . (2.49)

Matrix kMq indicates the projected inertia that the joint space inertia qM−1
q opposes to an ex-

ternal wrench (expressed in body coordinates) that is applied to thek-th end effector. Note that for
the sake of brevity, the joint space inertia matrixqMq is denoted byM in (2.56).

2.12 Derivation of robotic equations of motion

Newton’s 2nd law relates the time derivative of the generalized momentumto the generalized force:

d
dt
(generalized momentum) = generalized f orce. (2.50)

For a single bodyk, Newton’s 2nd law can be written in body coordinates (see [70]) as

kMk
k
bν̇0,k +

(
kMk adj(

k
bν0,k) − adjT(k

bν0,k)
kMk︸ ︷︷ ︸

kCk

)
k

b ν0,k = kwk,grav + kwk,c + kwk,nc︸ ︷︷ ︸
kwk

(2.51)
Here, the tensorkMk ∈ R

6×6 denotes the inertia of thek-th link expressed in its own link coor-
dinates (see (2.47)), kCk is the body Coriolis matrix,kbν0,k and k

bν̇0,k are the body velocity and
acceleration of linkk relative to the world frame “0” andkwk denotes the total wrench acting on
link k expressed in its own coordinate frame (the “body wrench”). The single elements ofkwk

are the gravitational wrenchkwk,grav =
kMk Ad−1

0Hk
[0,0,−g,0,0,0]T (g is the gravitational con-

stant), the constraint reaction wrenchkwk,c (if constraints are active) and a wrenchkwk,nc acting
along the non-constrained directions. The termsk

bν0,k andk
bν̇0,k in (2.51) can be computed as

k
bν0,k = k

bJ0,k q̇ (2.52)
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2 Mathematical basics for robotics

and
k
bν̇0,k = k

bJ̇0,k q̇ + k
bJ0,k q̈ . (2.53)

Here, k
bJ0,k and k

bJ̇0,k denote the origin-related body Jacobian of linkk and its time derivative,
while q̇ andq̈ are the robot’s joint velocities and accelerations, respectively. Applying (2.23) the
correlation for the body Jacobiank

bJ0,k relative to the world frame “0” can be expressed as

k
bJ0,k = Ad−1

pHk

p
bJ0,p + k

bJp,k︸︷︷︸
= [06×1, . . . ,

k
bjp,k, . . . , 06×1]

. (2.54)

It propagates the origin-related body Jacobianp
bJ0,p of the parent linkp to thek-th origin-related

body JacobiankbJ0,k. Note:k
bJ0,k serves as origin-related parent body Jacobian for the computation

of the next link(s) down the kinematic chain. In the relativebody JacobiankbJp,k, the vectorkbjp,k

(computed via (2.32)) denotes the “local body Jacobian” between linkk and its parentp. It relates
thek-th joint velocity q̇k (thek-th joint connects linkk to its parentp) to the relative body velocity
between the two links, i.e.kbνp,k = k

bjp,k q̇k.
Equivalent to (2.54) the corresponding relative body Jacobian time derivativek

bJ̇0,k is propagated

k
bJ̇0,k = Ad−1

pHk

p
bJ̇0,p − adj(k

bνp,k)Ad−1
pHk

p
bJ0,p . (2.55)

Now, the single link equations of motion (2.51) will be transformed into the robot equations of
motion. It is well-known that wrenches can be transformed into joint space via the Jacobian
transpose. Premultiplying both sides of (2.51) by k

bJ
T
0,k, insertingk

bν0,k andk
bν̇0,k from (2.52) and

(2.53) and summing up all equations fork∈ {1 .. nlinks} (nlinks being the number of robot links5),
finally the robot equations of motion are achieved

∑
k

(
k
bJ

T
0,k

kMk
k
bJ0,k

)

︸ ︷︷ ︸
M

q̈ + ∑
k

(
k
bJ

T
0,k

kCk
k
bJ0,k + k

bJ
T
0,k

kMk
k
bJ̇0,k

)

︸ ︷︷ ︸
C

q̇ − (2.56)

−∑
k

(
k
bJ

T
0,k

kwk,grav

)

︸ ︷︷ ︸
τgrav

= ∑
k

(
k
bJ

T
0,k

kwk,c︸ ︷︷ ︸
= 0

)
+ ∑

k

(
k
bJ

T
0,k

kwk,nc

)

︸ ︷︷ ︸
τ

.

Here,M andC denote the joint space inertia matrix and Coriolis matrix, respectively. Note
that the constraint wrencheskwk,c vanish after the mapping with the Jacobian transposes. The
generalized torquesτ are the torques along the non-constrained directions of thesystem, i.e. along
the generalized coordinatesq. For a general free-floating robot with end effectors in contact with
the environment, these torques can be composed by

τ = Sact τact+JT
EE wEE (2.57)

whereSact is a mapping matrix that maps the actuated joint torquesτact to the generalized torques
τ (for a free-floating robot (with non-actuated base), typically Sact = [06×6, Injoints×njoints]

T). The
second term maps external end effector wrencheswEE to the generalized torques via the Jacobian
transposeJT

EE. Finally, the equations of motion of a free-floating robot can be written as

M q̈ + C q̇ + τgrav = Sact τact+JT
EE wEE (2.58)

The end effector quantitiesJEE andwEE may be formulated in hybrid, body and spatial notation.

5Note: Depending on the chosen formulation, the free-floating DOF may be treated as single “links” as well.
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CHAPTER 3

Useful tools for robotics and motion generation

This chapter describes several tools and methods for robotics and motion generation. Some of the
methods are consistently used in robotics. To the author’s knowledge, the constraint-compatible
tracking method and the quaternion interpolation and tracking method, described here, contain a
certain degree of novelty and may be of interest also for experienced robotics researchers.

3.1 Polynomial interpolation

A common task in motion generation is to find a trajectory thatfulfills certain desired bound-
ary conditions. Typical boundary conditions may include desired position, velocity and accel-
eration profiles. Polynomials are a class of functions that can satisfy such boundary conditions.
Their advantage as compared to many other non-linear function classes is that polynomials and
their derivatives can be written aslinear functions of the polynomial parameters. The problem of
boundary condition fulfillment thus is reduced to solving a system of linear equations.

A n-th order polynomial - comprisingn+ 1 polynomial parameters and thus appropriate for
fulfilling n+1 boundary conditions - can be written in the form

f (t) = [1, t, t2, ..., tn]︸ ︷︷ ︸
tT(t)

p , (3.1)

where t denotes the evaluation time,f (t) is the function value at that time and
p = [p1, p2, ..., pn+1]

T is the polynomial parameter vector. The evaluation time vector t(t)
combines all required time powers. Similar to (3.1), anyd-th order derivative (indicated by the
bracketed superscript “(d)”) of the polynomial function can be computed as

f (d)(t) = t(d)T(t) p , (3.2)

wheret(d)T(t) denotes thed-th derivative oftT(t) w.r.t. time. Now, then+1 boundary conditions
can be combined in a single equation:




f (dc,1)(tc,1)
...

f (dc,n+1)(tc,n+1)




︸ ︷︷ ︸
fc

=




t(dc,1)T(tc,1)
...

t(dc,n+1)T(tc,n+1)




︸ ︷︷ ︸
Tc

p . (3.3)
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3 Useful tools for robotics and motion generation

Here,dc,i denotes the order of thei-th derivative andtc,i is the time at which thei-th boundary
condition has to be fulfilled. The vectorfc combines all boundary conditions, while the matrix
Tc ∈ R

(n+1)×(n+1) contains all corresponding time mapping vectors. SinceTc is a square matrix
and full rank, (3.3) can be solved by inversion

p= T−1
c fc , (3.4)

which provides the solution to the boundary condition problem. Now, for any evaluation timet,
the function value and its derivatives can be evaluated using (3.1) and (3.2).

3.2 Mastering P(I)D controllers: pole placement

A common task encountered by control engineers and roboticists is the control of linear (or lin-
earized) systems. Often, for an-th order system, only then-th state derivative is controllable. In
that case, the closed-loop system dynamics typically looksas follows:




e(1)

...
e(n)




︸ ︷︷ ︸
ė

=

[
0(n−1)×1 I(n−1)×(n−1)

[k1, . . . , kn]

]

︸ ︷︷ ︸
Acl




e
...

e(n−1)




︸ ︷︷ ︸
e

, (3.5)

wheree(i) denotes thei-th derivative of the state erroreandAcl is the closed-loop system matrix.
The feedback gains[k1, . . . ,kn] map the state error vectore to then-th state error derivative, i.e. to
the control input. The characteristic polynomialpchar of Acl is computed as

pchar = det(λ In×n−Acl) , (3.6)

its roots being the eigenvalues of the closed-loop system. Alternatively, the following formula is
used for then-th order characteristic polynomial:

pchar = (λ −λ1)∗ . . .∗ (λ −λn) , (3.7)

whose roots obviously lie atλ1 to λn. By expansion of (3.7) and comparison of parameters, the
feedback gains[k1, . . . ,kn] can be expressed as functions of the eigenvaluesλ1 to λn. The design
of feedback gains using this technique is calledpole placement[74]. As compared to manual gain
tuning, this tool provides more intuitive access to the closed-loop system dynamics and is thus
popular in control engineering. The following table provides the mapping from desired system
eigenvaluesλ1 to λn to the feedback gains[k1, . . . ,kn] of first to third order systems:

k1 k2 k3

1st order system λ1 — —
2nd order system −λ1 λ2 λ1+λ2 —
3rd order system λ1 λ2 λ3 −(λ1 λ2+λ1 λ2+λ1 λ2) λ1+λ2+λ3

An interesting case are PID controllers, which are typically applied to second order systems.
By introducing the error integral as additional system state, the second order system dynamics can
be transformed into a third order error dynamics system. Thecontrol gains are then assigned as
follows: integral gainkI → k1, proportional gainkp → k2, derivative gainkd → k3, i.e. the third
row of the table above is applied for corresponding pole placement.
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3.3 Constraint-compatible tracking method

3.3 Constraint-compatible tracking method

PID controllers, as presented in the previous section, are widely used to track reference trajectories.
Here, a second order PID controller will be used as example:

q̈des= PID(∆q,∆q̇) (3.8)

In this example,∆q and∆q̇ stand for joint position and velocity errors, but can be replaced by
arbitrary considered quantities (such as Cartesian positions/velocities etc.). This kind of controller
returns a desired acceleration ¨qdeswhich typically doesn’t consider constraints such as position or
velocity limits. Thus, depending on the reference trajectory (e.g. in case of operator errors or bad
trajectory design) the controller may exceed both position(e.g. hardware end stops) and velocity
(e.g. maximum joint speed) limits.

The motivation of this section is thus to compute accelerations1 that follow the desired accel-
erations from (3.8) as far as possible while avoiding constraint violations. It has to be noted that
this constraint avoidance should be activatedbeforethe constraint is violated since otherwise the
system dynamics may prohibit a successful constraint avoidance. For example, in case of accelera-
tions as input, the velocity towards a position constraint should already be zero once the constraint
is reached, otherwise an overshoot into the constraint is inevitable. To this end, the desired ac-
celeration ¨qdes is compared to special reference dynamics (one for each constraint) that, if they
are followed, make the system converge towards the constraints asymptotically. These reference
dynamics can thus be calledasymptotic constraint attractors(ACA). For a position limit, such an
ACA can have the following form:

q̈pos,limit =−λpos,1λpos,2 (q−qlimit )+ (λpos,1+λpos,2) q̇ , (3.9)

which, given the current state[q, q̇], leads to asymptotic convergence to the position limitqlimit

for negative (and preferably non-imaginary to avoid overshooting) eigenvaluesλpos,1 andλpos,2.
Similarly, for a velocity limit, an ACA can be formulated as

q̈vel,limit = λvel (q̇− q̇limit ) , (3.10)

which converges towards the velocity limit ˙qlimit asymptotically for a negative (and non-imaginary)
eigenvalueλvel. Now, combining all ACA reference dynamics, lower and upperlimits for the
feasible acceleration ¨qf eascan be formulated. The lower limit is simply the maximum of all lower
limit ACAs (computed via (3.9) and (3.10) usingqlimit = qlowerlimit andq̇limit = q̇lowerlimit):

q̈lowerlimit = max(q̈pos,lowerlimit , q̈vel,lowerlimit ) . (3.11)

Accordingly, the upper limit is the minimum of all upper limit ACAs (computed via (3.9) and
(3.10) usingqlimit = qupperlimit andq̇limit = q̇upperlimit):

q̈upperlimit = min(q̈pos,upperlimit, q̈vel,upperlimit) . (3.12)

With the lower and upper acceleration limits, the feasible acceleration is finally computed as

q̈f eas= max(q̈lowerlimit ,min(q̈upperlimit, q̈des)) , (3.13)

i.e. the system dynamics is safely embedded into the ACA framework, which usually leaves the
original controller untouched (i.e. ¨qf eas= q̈des) while converging to the constraint(s) if the original
controller is in danger of violating the constraints.

1Note: The same method can be applied to higher derivatives aswell.
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The speed of convergence in (3.9) and (3.10) depends on the choices ofkp,pos, kd,pos andkvel.
Faster gains lead to a wider area in which the original controller (3.8) remains unaffected but
require higher accelerations away from the constraint oncean ACA is active. Thus, in practice
these gains have to be chosen carefully.

An ACA-based safety framework as presented in this section could be implemented as con-
straints in a quadratic program (QP) based whole-body control framework. In the author’s previ-
ous research work, the ACA framework was used for a safe jointinterpolator, while its use in the
presented whole-body control (WBC) framework (see Sec.4) will be evaluated in the near future.

3.4 Controlling rotations: unit quaternions as powerful
representation

Rotations can be represented in multiple ways, for example via Euler angles, angle-axis repre-
sentation, rotation matrices or (unit) quaternions. In this work, both rotation matrices (since they
are part of the homogeneous transformations that the forward kinematics presented in Sec.2.10.3
works with) and quaternions are used to represent three-dimensional rotations. Rotation matrices
have the advantage of being intuitively comprehensible, since their columns are simply the orthog-
onal basis vectors of the corresponding frame, while on the other side being redundant (9 elements
for 3 rotational degrees of freedom). Both Euler and angle-axis representation suffer from (algo-
rithmic, i.e. non-physical) singularities, which this work tries to avoid. With their four elements,
quaternions are the most compact representation of three-dimensional rotations that doesn’t suffer
from singularities. For this reason quaternions are used for rotation reference generation and track-
ing control. The basic quaternion mathematics is taken from[75], while the presented quaternion
trajectory generation and tracking control are the author’s contribution.

3.4.1 Theoretical background on (unit) quaternions

This section will give a short overview on the theoretical background of unit quaternions. A
quaternion is a four-dimensional vector that can be constructed as

ζ =

[
η
ǫ

]
. (3.14)

Here, η denotes the scalar component of the quaternion andǫ = [ε1,ε2,ε3]
T is its

three-dimensional vector component2. Note that throughout this work, wherever not stated
differently, when the term “quaternion” is used, actuallyunit quaternionsare meant. In contrast
to arbitrary quaternions, unit quaternions have a length of1, i.e. the constraint

ζTζ = 1 (3.15)

is fulfilled. This equation defines a four-dimensional hypersphere of radius 1. Compared to ro-
tation matrices, quaternions as four-dimensional vectorswith scalar and vector elements are less
comprehensible. Yet, unit quaternions can be derived from the angle-axis representation via

ζ =

[
η
ǫ

]
=


 cos

(
αang.ax

2

)

sin
(

αang.ax

2

)
uang.ax


 , (3.16)

2Note: In some textbooks the elements ofǫ are interpreted as coordinates along three imaginary axes,while in this
work vector and matrix calculus is used for all required quaternion operations.
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whereuang.ax denotes the unit vector indicating the axis of rotation andαang.ax is the rotation angle.
Equation (3.16) facilitates the intuitive understanding of (unit) quaternions, especially when the
rotation vectoruang.ax and angleαang.ax are derived explicitly.

A useful tool in quaternion calculus is the quaternion mapping matrix defined as

Z =Z(ζ) =




η −ε1 −ε2 −ε3

ε1 η −ε3 ε2

ε2 ε3 η −ε1

ε3 −ε2 ε1 η


 . (3.17)

It uses an arbitrary quaternionζ as input. This quaternion mapping matrixZ is orthogonal and
thus its inverse is equal to its transpose, i.e.

Z−1 =ZT . (3.18)

The quaternion mapping matrixZ allows relative quaternion operations. For example applying
(3.17) to 0ζa, i.e. 0Za = Z(0ζa), the relative quaternionaζb between a quaternion0ζa and another
quaternion0ζb can be computed:

0ζb = 0Za
aζb ⇔ aζb = 0Z

T
a

0ζb . (3.19)

Note that instead of a simple subtraction (as used for Cartesian vectors) the transpose of the quater-
nion mapping matrix is used to compute the relative quaternion. The index “0” denotes spatial
quantities and, for brevity, is sometimes omitted throughout this thesis. Equation (3.19) is equiva-
lent to the following standard operations applied to corresponding rotation matrices inR3

0Rb = 0Ra
aRb ⇔ aRb = 0R

T
a

0Rb , (3.20)

which can be verified using the following mapping from quaternion to rotation matrix:

R(ζ) =R(η ,ǫ) = 2 (η2I3×3+ ǫǫT +η [ǫ×] )−I3×3 . (3.21)

Here,[ǫ×] denotes the skew-symmetric matrix as defined in (2.8). By closer inspection of (3.21)
it becomes obvious that the mapping from quaternions to rotation matrices is not unique: instead,
a quaternionζ correlates to the same rotation matrix as its antipode−ζ, i.e. R(ζ) = R(−ζ).
This duality problem has to be considered in the design of quaternion trajectories and tracking
controllers.

For completeness, the inverse mapping of (3.21), i.e. the mapping of a rotation matrix to a
corresponding unit quaternion (its scalar and vector elements), will be presented here:

η =
1
2

√
1+R1,1+R2,2+R3,3 (3.22)

ǫ=−
1

4η




R2,3−R3,2

R3,1−R1,3

R1,2−R2,1


 , (3.23)

whereRr,c denotes the elements in rowr and columnc of the rotation matrixR.
As discussed below (3.19), the computation of relative quaternions or quaternion errors is more

complex than for Cartesian quantities. A possible candidate for quaternion error quantification is
the arc length, i.e. the length of the shortest path connecting two quaternions on the hypersphere
(see Fig.3.2). For two quaternionsζi andζ j it is defined as

larc = acos(ζT
i ζ j) . (3.24)

Forζi = ζ j , the arc length becomes zero. It may thus serve as error measurement.
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3 Useful tools for robotics and motion generation

3.4.2 Design of smooth trajectories in quaternion space

This section provides a method for the generation of smooth quaternion reference trajectories that
may connect an arbitrary number of waypoint quaternions. Tothis end, first a set of desired quater-
nion waypoints is preprocessed to yield the shortest possible paths, the waypoints are interpolated
via polynomials (yielding non-unit quaternion trajectories) and then the non-unit quaternion tra-
jectories are consistently projected onto the unit quaternion constraint manifold to finally achieve
smooth unit quaternion reference trajectories.

Quaternion waypoints

GivenNquat arbitrary desired quaternion waypointsζwp,des,i (with i ∈ {1, ..,Nquat}), the first step
in the presented quaternion waypoint interpolation is to stepwise swap the desired quaternion
waypointsζwp,des,i to their antipodes (that represent the same rotation, see (3.21)), if the antipodes
are closer (i.e. shorter arc length, see (3.24) and Fig.3.1) to the previous quaternion waypoints:

ζwp,i =

{
ζwp,des,i ζT

wp,i−1ζwp,des,i ≥ 0

−ζwp,des,i ζT
wp,i−1ζwp,des,i < 0

(3.25)

Starting withζwp,1 = ζwp,des,1, equation (3.25) is iterated forward fori = 2 .. Nquat. This ensures
that each interpolation segment takes the shorter path, i.e. the path from the previous quaternion
to thecloserone of the two antipodal quaternions that represent the samewaypoint orientation.
In R

3, the longer path (i.e. the one between the previous quaternion and the more distant one
of the antipodal quaternion candidates) would correspond to a rotation about the same axis but
by an angle of 2π −αmin ≥ αmin (where 0≤ αmin ≤ π denotes the smallest spatial angle which
the rotation may be constructed with), which is undesirablein most cases. Additionally, this
shorter path interpolation decreases the non-linear effects of the unit quaternion projections from
equations (3.26), (3.28) and (3.30) that are presented in the next sections and ensures that the
interpolated trajectories keep away from the origin[0,0,0,0]T of the hypersphere, which would
lead to division by zero in the projections.

Euclidean interpolation

The next step in the quaternion reference trajectory designprocess is a Euclidean interpolation
between the quaternion waypointsζwp,i . Any interpolation method (such as B-splines, for exam-
ple) could be used. In this work, due to the typically limitednumber of quaternion waypoints,
polynomial interpolation as presented in Sec.3.1was applied, starting from and ending with zero
quaternion velocity and acceleration (at the initial and final quaternion waypoints) and interpo-
lating through the quaternion waypoints without intermediate stops. This process yields a C2-
continous (non-unit) quaternion reference trajectory[ζre f,NU , ζ̇re f,NU , ζ̈re f,NU ], whereζre f,NU is the
(non-unit) quaternion reference position,ζ̇re f,NU is the (non-unit) quaternion reference velocity
andζ̈re f,NU is the (non-unit) quaternion reference acceleration.

Consistent projection onto unit quaternion manifold

It is clear that, while providing a smooth interpolation between the quaternion waypoints in Eu-
clidean space, the Euclidean interpolation introduced in the previous section (in almost all cases)
violates the unit quaternion constraint (3.15) that is required for the rotation representation. Thus,
a method to project the Euclidean (non-unit) quaternion reference to the more appropriate unit
quaternion space (see Fig.3.1) is provided.
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ζwp,1 = ζwp,des,1

ζwp,2 ζwp,3 = ζwp,des,3

ζwp,4

ζwp,des,2

ζwp,des,4

ζNU(t)
ζ(t)

Figure 3.1: Projection of quaternion spline to hypersphere(3D illustration).

The following derivations will show how an arbitrary non-unit quaternion set[ζNU, ζ̇NU, ζ̈NU]
can be projected to the closest feasible unit quaternion set[ζ, ζ̇, ζ̈]. Unit quaternions have unit
length, i.e. the constraint (3.15) holds. It can be shown that

ζ =
ζNU√
ζT

NU ζNU

(3.26)

fulfills this constraint, while being closest to the original non-unit quaternionζNU. Differentiation
of (3.15) yields a constraint for the unit quaternion velocityζ̇:

ζT ζ̇ = 0 . (3.27)

This constraint is fulfilled by the quaternion velocity computed via differentiation of (3.26):

ζ̇ = (I4×4−ζ ζT)
ζ̇NU√
ζT

NU ζNU

. (3.28)

Differentiating (3.27) once more yields a constraint for the unit quaternion acceleration:

ζT ζ̈ = − ζ̇T ζ̇ . (3.29)

This constraint is fulfilled by the quaternion acceleration

ζ̈ =− ζ̇T ζ̇ ζ︸ ︷︷ ︸
ζ̈radial

+ (I4×4−ζ ζT)
ζ̈NU√
ζT

NU ζNU
︸ ︷︷ ︸

ζ̈tangent

, (3.30)

which is achieved by differentiating (3.28). Here,ζ̈radial can be interpreted as centripetal acceler-
ation that ensures that the quaternion remains on the unit hypersphere, whilëζtangent is the quater-
nion acceleration in the hypersphere’s tangent space constructed in the current quaternionζ.
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Now, using (3.26), (3.28) and (3.30), the (non-unit) quaternion reference trajectory
[ζre f,NU , ζ̇re f,NU , ζ̈re f,NU ] from the previous section is projected to a unit quaternion reference
trajectory[ζre f , ζ̇re f , ζ̈re f ] that is closest to the original reference trajectory. This unit quaternion
reference is smooth (typically C2-continuous, depending on the chosen interpolation method),
fulfills the unit quaternion constraints (3.15), (3.27) and (3.29) and isconsistent.

3.4.3 Tracking of quaternion trajectories

This section presents a method for quaternion tracking control. To this end, first a general quater-
nion regulation controller is presented which is then applied to the case of relative quaternion reg-
ulation to finally yield a quaternion tracking controller.

For theregulation case(i.e. ζ̇re f = 0, ζ̈re f = 0), the following suitable control law was found

ζ̈des= − ζ̇T ζ̇ ζ︸ ︷︷ ︸
radial constraint

+kζ ,p

arc length larc︷ ︸︸ ︷
acos(ζT

re f,cζ)

tangential unit vectorutang︷ ︸︸ ︷
(I4×4−ζ ζT) ζre f,c√

ζT
re f,c(I4×4−ζ ζT) ζre f,c+λ 2

damping term︷ ︸︸ ︷
− kζ ,d ζ̇

︸ ︷︷ ︸
tangential space control

, (3.31)

which for ζ̈ = ζ̈des makes the the quaternionζ converge to the reference quaternionζre f,c. The
main components of the controller are the radial constraint(as in (3.30)) and the tangential space
control, which consists of a proportional feedback and a damping term. The proportional feedback
component unreels the arc lengthlarc between the commanded reference quaternionζre f,c and the
current quaternionζ onto the tangential space of the hypersphere via the tangential unit vector
utang (see Fig.3.2). The tangential unit vectorutang points from the current quaternionζ towards
the commanded reference quaternionζre f,c as good as possible while being constrained to the
tangential space. A small damping term 0< λ 2 ≪ 1 is used that keeps the fractional term in
(3.31) from exploding in caseζ = ζre f,c. Similar to (3.25), the commanded reference quaternion
ζre f,c is either chosen to beζre f or −ζre f , depending on which of the two antipodes is closer toζ:

ζre f,c =

{
ζre f ζT

re fζ ≥ 0

−ζre f ζT
re fζ < 0

(3.32)

Equivalently, the commanded reference quaternion velocity ζ̇re f,c is chosen to be

ζ̇re f,c =

{
ζ̇re f ζT

re fζ ≥ 0

−ζ̇re f ζT
re fζ < 0

(3.33)

For a positive proportional gainkζ ,p > 0 and damping gainkζ ,d > 0 (pole placement as presented
in Sec.3.2can be applied alternatively), the regulation control law (3.31) was found to be stable.

The regulation controller (3.31) can also be applied to the regulation of relative quaternions:

ζ̈rel,des=− ζ̇T
rel ζ̇rel ζrel +kζ ,p

rel. arc length larc,rel︷ ︸︸ ︷
acos(ζT

re f,relζrel)

rel. tangential unit vectorutang︷ ︸︸ ︷
(I4×4−ζrel ζ

T
rel) ζre f,rel√

ζT
re f,rel(I4×4−ζrel ζ

T
rel) ζre f,rel +λ 2

− kζ ,d ζ̇rel ,

(3.34)
Here, ζre f,rel = [1,0,0,0]T is the reference relative quaternion, whileζrel denotes the relative
quaternion between a commanded reference quaternionζre f,c and the current quaternionζ, which
can be computed as

ζrel =ZT
re f,c ζ . (3.35)
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ζ

ζre f,c

ζ̇

larc

larc utang

Figure 3.2: Unreeling of arc length for quaternion tracking(3D illustration).

Here,Zre f,c is derived fromζre f,c via (3.19). Note that a matrix operation is used instead of
a Euclidean difference (which might have the formζrel = ζ−ζre f,c) to define the relative
quaternion. Also note that forζ = ζre f,c, the relative quaternion becomes[1,0,0,0]T (instead
of 04×1). This means that by regulating the relative quaternionζrel to the reference relative
quaternionζre f,rel = [1,0,0,0]T (or its antipode, respectively),ζ converges toζre f,c, i.e. the
quaternion tracking error vanishes. Differentiating (3.35), the relative quaternion velocitẏζrel is
computed as

ζ̇rel = ŻT
re f,c ζ+ZT

re f,c ζ̇ . (3.36)

Differentiating (3.36) once more yields the relative quaternion acceleration

ζ̈rel = Z̈T
re f,c ζ+2 ŻT

re f,c ζ̇+ZT
re f,c ζ̈ . (3.37)

Solving (3.37) for ζ̈, settingζ̈ = ζ̈des and using the desired relative quaternion acceleration from
(3.34) (i.e. settingζ̈rel = ζ̈rel,des), the desired quaternion acceleration is found as

ζ̈des=Zre f,c (ζ̈rel,des− Z̈T
re f,c ζ−2 ŻT

re f,c ζ̇) . (3.38)

Finally, the combination of (3.34) and (3.38) forms the quaternion tracking control which
asymptotically tracks the quaternion reference trajectory [ζre f , ζ̇re f , ζ̈re f ]. In combination with
the planning method presented in the previous sections, this control provides a powerful tool for
multi-waypoint quaternion reference trajectory generation and tracking.

3.4.4 Transformations between quaternion and angular spac e

Orientation control is typically performed in angular space, i.e. using angular velocities and accel-
erations. Therefore, the quaternion velocities and accelerations derived in this section need to be
transformed into angular space. Given a quaternion velocity ζ̇, the corresponding angular velocity
ω can be computed as

ω = 4ET ζ̇ . (3.39)

The matrixE is defined as

E = −
1
2

[
ǫT

[ǫ×]−η I3×3

]
∈ R

4×3 . (3.40)
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Note thatE is not square and thus cannot be inverted directly. The inverse operation of (3.39) -
i.e. the mapping of an angular velocityω to the corresponding quaternion velocityζ̇ - is

ζ̇ = E ω . (3.41)

Differentiating (3.39), quaternion accelerations̈ζ can be mapped to angular accelerationsω̇:

ω̇ = 4 (ET ζ̈+ ĖT ζ̇) = 4ET(ζ̈− Ėω) , (3.42)

where 4ETE = I3×3 andĖT =−4ETĖET was used. The derivative of (3.40) is

Ė = −
1
2

[
ǫ̇T

[ǫ̇×]− η̇ I3×3

]
∈ R

4×3 . (3.43)

The inverse mapping of (3.40) can be computed via differentiation of (3.41) as

ζ̈ = Ė ω+E ω̇ = 4 ĖET ζ̇+E ω̇ . (3.44)

3.5 Task and null spaces

This section gives a short overview of different types of pseudoinverses and null space projectors,
which can be used to find control inputs that satisfy given tasks as good as possible.

In many cases, a linear (or linearized) correlation

dtask = Dtasku (3.45)

can be found, which maps the input vectoru ∈ R
n×1 to the task vectordtask∈ R

m×1 via the task
space mapping matrixDtask∈R

m×n, i.e. there aren control inputs available form tasks. Now, the
aim is to find an input vector that either perfectly fulfills the desired tasks, i.e.

dtask = dtask,des (3.46)

or minimizes a corresponding cost function. Here, three different cases have to be distinguished:
m= n , m> n andm< n. These cases are examined in the following sections.

3.5.1 Fully determined case

The task mapping (3.45) is fully determined if the number of tasks equals the numberof control
inputs available (i.e.m= n) and the robot is in a non-singular configuration. In that case,Dtask is
square and, ifDtask is full rank, (3.45) can be solved via inversion

u∗ = D−1
taskdtask,des , (3.47)

which fully determines all available control inputs and fulfills the desired tasks (3.46).

3.5.2 Over-determined case

If the number of tasks is bigger than the number of control inputs available (i.e.m> n), the task
mapping (3.45) is over-determined, i.e. there are not enough control inputs available to completely
fulfill all tasks at hand. One possibility to handle this problem is to split the over-determined task
into several under-determined tasks (as presented in the next section) to build up a hierarchical
control policy that ensures that higher-priority tasks areperfectly fulfilled, while lower-priority
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tasks may be violated. Another possible approach is to definea cost function that leads to a good
trade-off between the subtasks. Such a scalar cost functionmay have the following form:

G =
1
2

∆dT Wtask∆d +
1
2
uT

Λ u . (3.48)

Here,∆d = dtask−dtask,des=Dtasku−dtask,des, Wtask∈ R
m×m is the (typically diagonal) task

weighting matrix andΛ is a damping matrix that minimizes the input vectoru. By differentiating
(3.48) by u and setting the result to zero, the optimal input vectoru∗ is found as

u∗ = (DT
taskWtaskDtask + Λ︸ ︷︷ ︸

Θ

)−1DT
taskWtask

︸ ︷︷ ︸
D#

task

dtask,des , (3.49)

which minimizesG and thus optimally trades off the desired tasks. This optimal solution is highly
dependent on the chosen weighting matrixWtask. The pseudoinverseD#

task∈ R
n×m maps the de-

sired task vectordtask,des to the optimal control input vector. Due to the minimizationof the input
vectoru via the (typically positive definite and diagonal) matrixΛ in (3.48) and the corresponding
element inΘ, the latter is guaranteed to be invertible, even when some ofthe tasks become singu-
lar. The corresponding solution from (3.49) behaves well, such thatD#

task (including the damping
termΛ) is also called damped pseudoinverse.

3.5.3 Under-determined case

If the number of tasks is smaller than the number of control inputs available (i.e.m< n), the task
mapping (3.45) is under-determined. This means that all original tasks can be fulfilled, while in
their null space additional DOF remain available for other tasks. The solution for that case is

u∗ = D+
taskdtask,des + ND ũ . (3.50)

Here,D+
task∈ R

n×m is the pseudoinverse ofDtask which is defined as

D+
task = DT

task(DtaskD
T
task)

−1 (3.51)

To distinguish this pseudoinverse from the one in (3.49), the superscript “+” is used instead of
“#”. For the inversion to work,Dtask needs to be of full row rank.

The matrixND ∈ R
n×n in (3.50) is the corresponding null space mapping:

ND = (In×n−D+
taskDtask) . (3.52)

Inserting (3.50) in (3.45) fulfills the desired correlation (3.46) sinceDtaskD
+
task= Im×m and

DtaskND = 0m×n. The vectorũ ∈ R
n×1 in (3.50) can be used to pursue additional tasks.

This vector, just likeu, is n-dimensional, yet via the projection throughND, m DOF become
unavailable for the additional tasks. The redundancy in thevectorũ can be undesirable. Thus, the
next section will present a non-redundant solution to this problem.

3.5.4 Reduced null space matrix

Several works such as [76] and [77] present approaches that avoid the redundancy problem men-
tioned in the previous section. To this end, similar to the correlationDtaskND = 0m×n, a reduced
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null space matrixND,red ∈R
n×(n−m) is designed such thatDtaskND,red = 0m×(n−m), i.e.

[Dtask,square, Dtask,rem]︸ ︷︷ ︸
Dtask

[
ND,red,upper

I(n−m)×(n−m)

]

︸ ︷︷ ︸
ND,red

= 0m×(n−m) = Dtask,squareND,red,upper + Dtask,rem .

(3.53)
Here,Dtask,square∈ R

m×m is the square submatrix combining the firstm rows and columns of
Dtask, andDtask,rem∈ R

m×(n−m) combines the remaining columns. The appropriate upper matrix
ND,red,upper∈R

m×(n−m) is found via inversion ofDtask,squaresuch thatND,red becomes

ND,red =

[
−D−1

task,squareDtask,rem

I(n−m)×(n−m)

]
. (3.54)

Obviously, this only works ifDtask,square is invertible. Otherwise, a collection ofm independent
columns ofDtask may be used. The advantage ofND,red over the original null space mapping ma-
trix ND is that it has only(n−m) columns. It matches the dimensions of the(n−m)-dimensional
input vectorũred that encodes the whole remaining null space such that (3.50) can replaced by

u∗ = D+
taskdtask,des + ND,red ũred . (3.55)

This way, the redundancy problem mentioned above is solved.Due to the lower dimensionality of
the reduced null space vectorũred the complexity of derivations may be reduced.
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CHAPTER 4

Whole-body control framework

The previous chapters provided some basic mathematical introduction to robotics and a collection
of useful tools for robotics and motion design. Many of the methods presented in this work
are based on these tools. The previous chapters also form thebasis for the whole-body control
framework presented in this section.

Humanoid robots can be expected to take over a multitude of tasks in the near future. Their
typically high number of joints and thus high number of degrees of freedom (DOF) have the
potential of fulfilling a multitude of tasks. Often, the number of desired tasks is even higher than
the number of available DOF. For a legged humanoid robot withits free-floating base, some of
the most important tasks are balancing and locomotion. Often, these tasks are carried out by the
legs of the robot, while the arms are mostly dedicated to manipulation tasks. Yet, situations where
the arms are used for balance (multi-contact) or a leg is usedfor manipulation (e.g. when kicking
a ball) are not uncommon either. The main challenge in whole-body control (WBC) is to find
the optimal control outputs, which best fulfill the desired tasks (e.g. contact force control) while
fulfilling the given constraints.

The particular choice of the control architecture has a great effect on the achievable robot
performance. Prominent examples for whole-body control architectures include Virtual Model
Control [78, 79], passivity-based whole-body controllers [61–65] and inverse dynamics base
approaches such as presented in [56, 80–83]. Most approaches work with local optimizers
(optimizing for the current time step only) with preview typically limited to CoM dynamics,
while whole-body model predictive control approaches, as presented in [84], due to the
highly increased complexity, are still in their beginnings. This work uses an inverse dynamics
architecture which, as in many other recent works, is embedded into a quadratic program (QP)
based optimization framework. In this work, the actuated joint torques and linear contact forces
are used asoptimization variables(or control inputs) and the optimization problem is formulated
as a quadratic program (QP). This chapter presents the used optimization framework.
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Figure 4.1: Outline of CoM frame and polyhedral convex cone approximation.

4.1 Contact representation and adapted equations of motion

One of the challenges in the control of humanoid or other free-floating1 robots is how the different
contact scenarios and the corresponding feasible wrenchescan be encoded. One basic idea is
to approximate continuous contact surfaces (such as a robotfoot) via contact points and make
assumptions about the feasible contact forces that can be applied at these contact points. For a
robot foot, the constraints for the feasible contact forcesin a contact point are typically formulated
as friction cone constraints: only forces that lie within this friction cone (centered around the
ground normal at the contact point) are feasible. This cone representation is non-linear. Although
there are solvers that can handle conic constraints (as for example presented by Wensing et al.
[60]), often (e.g. in [80–83]) these constraints are approximated via polyhedral convex cones (see
Fig. 4.1) that span the original friction cone as best as possible, thereby turning the constraints
into linear ones and thus simplifying the problem. In this work, this approximation via polyhedral
convex cones is used.

In the polyhedral convex cone framework, the feasible contact wrenches are encoded via linear
contact forcesfi ∈ R

3×1 that are composed of a unit vector0u fi indicating the force direction in
space and a scalar parameterρi denoting the contact force magnitude, i.e.

fi = 0u fi ρi . (4.1)

That way, all friction cones considered for a given contact scenario are represented by a total
number ofnρ linear contact forces. The feasible directions0u fi are typically determined by the
given contact configuration. The contact force magnitudes are typically (at least when friction
cones are approximated) constraint to be positive, i.e.ρi ≥ 0. The contact force magnitude vector

1The term “free-floating” is not necessarily related to spacerobots but to robots whose base link is not rigidly con-
nected to the environment.
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ρ combines allnρ contact force magnitudes as

ρ =




ρ1
...

ρnρ


 . (4.2)

The contact force magnitudesρ can be mapped to six-dimensional spatial (i.e. representedin
world frame “0”) wrenches0wEEk via

0wEEk = 0Aρ ,k ρ , (4.3)

wherek is the index of end effectorEEk. Each0Aρ ,k denotes a special adjoint matrix that maps
the vector of contact force magnitudesρ to thek-th spatial wrench. If thei-th (i ∈ 1..nρ ) contact
force is associated with thek-th end effector, the corresponding column in0Aρ ,k is

0aρ ,k =

[
0u fi

[0x0,ci×] 0u fi

]
. (4.4)

Otherwise, the corresponding column is0aρ ,k = 06×1. Here,0u fi is the contact force direction
vector as used in (4.1), while 0x0,ci denotes the spatial position of the contact pointci that the
contact forcefi is associated with. In this work, four contact points in the corners of each foot
and four contact forces at each contact point are used that approximate the corresponding friction
cone. This leads to a total ofnρ = 16 contact forces per end effector/foot such that (4.3) involves a
10-dimensional null space in the mapping from contact forcemagnitudesρ to foot wrenches. The
control input regularization as presented in Sec.4.2.5assures stability of that null space.

It has to be noted that the contact forcesfi are only assured to actually be feasible if the
estimated friction coefficients and ground normals are estimated correctly and if the assumption
that a certain contact point is in contact at all is correct. Otherwise the computed contact
forces/wrenches are invalid which may lead to major stability issues.

Using the contact wrench encoding (4.3), the general robot equations of motion (2.58) become

Mq̈+Cq̇+τgrav︸ ︷︷ ︸
n

= Sactτact +
nEE

∑
k=1

(s
0J

T
0,EEk

0Aρ ,k ρ︸ ︷︷ ︸
0wEEk

) (4.5)

=
[
Sact,

nEE

∑
k=1

(s
0J

T
0,EEk

0Aρ ,k)
]

︸ ︷︷ ︸
τAu

[
τact

ρ

]

︸ ︷︷ ︸
u

.

Here,nEE denotes the number of considered end effectors ands
0J0,EEk is the corresponding spatial

end effector Jacobian that corresponds to thek-th spatial end effector wrench0wEEk. In this work,
the actuated joint torquesτact and the contact force magnitudesρ are chosen ascontrol inputs.
They are stacked in the control input vectoru as

u =

[
τact

ρ

]
. (4.6)

The matrixτAu in (4.5) combines both the actuated torque mapping matrixSact and the contact
force mapping matrices into a single operator that maps the input vectoru to generalized joint
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4 Whole-body control framework

torques. In the subsequent task derivations, often the correlation between control inputsu and
generalized joint accelerations̈q is required. It can be derived from (4.5) via inversion ofM :

q̈ = −M−1 n︸ ︷︷ ︸
q̈MB

+ M−1 τAu︸ ︷︷ ︸
Q

u (4.7)

Here,Q maps the control inputsu to generalized accelerations̈q, while q̈MB are the accelerations
due to multi-body effects, such as gravitational and Coriolis accelerations.

4.2 Tasks used for whole-body control in this work

Whole-body control of humanoid robots is an exciting field ofresearch which comprises chal-
lenges regarding stability, robustness and safety, to namebut a few. A humanoid robot has the
physical ability to perform a multitude of useful tasks simultaneously. The issues of stability and
robustness have to be tackled with highest priority. Once these rather physics-related tasks are
solved, humanoid robots can use their additional availableDOF to perform actually useful tasks.
This work focuses on robot stability. Most of the tasks described in the following subsections are
at least to some extent related to the stability of the robot.All whole-body control tasks will be

formulated using the control input vectoru =

[
τact

ρ

]
in the following form:

di,des = Di u . (4.8)

Here,di,des denotes the desired task space vector of thei-th task andDi is the corresponding task
mapping matrix.

4.2.1 Balance and locomotion: linear and angular momentum c ontrol

As mentioned above, balance is one of the most critical issues in the control of humanoid robots,
which due to their underactuation is a difficult control problem. Locomotion can be seen as dy-
namic balance which makes proper trajectory generation andfeedback control even more impor-
tant as compared to static balancing. The centroidal dynamics [85] of a robot (including linear and
angular momentum dynamics) is strongly connected to its balance. This motivates the derivation
of momentum-based control strategies in this work (see sections 5 and 6). The two following
subsections present how these tasks are preprocessed for the whole-body control framework.

Embedding linear CoM dynamics for walking and running

Newton’s second law of motion provides a fundamental correlation for the CoM dynamics that can
be applied to any multi-body system such as a humanoid robot.It is important to note that the CoM
dynamics is areducedmodel rather than asimplifiedmodel, since it captures the most prominent
part of the overall robot dynamics while not making any simplifications or introducing errors. In
sections5 and6, two frameworks for humanoid walking and running control will be introduced
that are based on CoM dynamics. For walking, the corresponding desired linear external force on
the CoMFext,des from (5.63) is used while for running (6.45) is used. The use of force control for
the linear CoM balance and locomotion task is directly compatible with the torque-based control
framework presented in this work, since the contact force magnitudesρ can be directly mapped to
the desired external forces (see (4.11)).
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Regulation of angular momentum

The angular momentuml of a robot can be computed from its generalized joint velocities via

l=AG,l q̇ . (4.9)

Here,AG,l denotes the part of the centroidal momentum matrixAG, introduced by Orin et al. [85],
that relates to the angular momentuml. If a reference trajectory for the angular momentum of the
robot [lre f , l̇re f ] is given, it can be tracked via the following controller

l̇des︸︷︷︸
τcom,des

= l̇re f −kh,l (l− lre f) , (4.10)

which is stable forkh,l > 0. In this work, both the reference angular momentumlre f and its
rate of changėlre f are chosen to be zero (→ regulation case), which, for moderate walking and
bipedal running, yields satisfactory results. Yet, for other forms of locomotion such as galloping
or faster locomotion (e.g. high speed running) a non-zero angular momentum reference seems
to be highly desirable or even necessary. The interplay of the angular momentum task with the
overall posture task (see Sec4.2.4) is a particularly important, yet challenging issue. In many
cases these two tasks seem to compete and thus trade-offs have to be accepted. The design of
appropriate angular momentum references (as for example presented by Herzog et al. [86]) that fit
well the requirements of a particular locomotion form whilebeing well feasible regarding the robot
hardware limitations and other tasks at hand is a challenge that has to be investigated further. In
contrast to offline optimizations, online generation of such angular momentum references would
support arbitrary and sudden changes in the locomotion patterns and thus facilitate more agile
and versatile humanoid locomotion. Methods for online generation of nominal references that
reconcile both tasks, to the author’s knowledge, do not exist so far. Such considerations will be
part of future research.

Embedding the linear and angular momentum task into whole-b ody control

The desired linear external force on the CoMFext,des from (5.63) or (6.45) and the desired torque
around the CoMτcom,des from (4.10) are related to the chosen optimization variables as follows

[
Fext,des

τcom,des

]

︸ ︷︷ ︸
dcom,des

= [06×nact,
comAρ ]︸ ︷︷ ︸

Dcom

u . (4.11)

Here,nact denotes the number of actuated joints. The matrixcomAρ can be computed as

comAρ = AdT
0Hcom

nEE

∑
k=1

(0Aρ ,k) . (4.12)

It maps the linear contact forcesρ to a combined external wrench in the CoM frame:
comwext =

comwρ = comAρ ρ. The matrices0Aρ ,k map the contact forcesρ to spatial wrenches
via (4.3). The adjoint transposeAdT

0Hcom
(computed via (2.16)) acts as transformer from world

frame (index “0”) to CoM frame. Here, the CoM frame0Hcom (see Fig.4.1) is defined as:

0Hcom =

[
I3×3

0x0,com

01×3 1

]
, (4.13)
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where0x0,com is the spatial position of the CoM. The corresponding rotation matrix is a unit
matrix, i.e. the CoM frame is not rotated w.r.t. the world frame “0”. The centroidal momentum
task mapping matrixDcom and the corresponding desired task vectordcom,des in (4.11) compactly
represent the CoM wrench task and will be merged with the other tasks in Sec.4.3.

4.2.2 Foot acceleration tasks

Unlike wheeled robots, legged robots have to execute a discrete series of footsteps in order to move
forward. The robot feet alternate between phases of stance and swing. During the stance phase,
a foot supports the weight of the robot, transmitting the required forces to the ground. During
swing phases, the swing foot moves from its previous footstep location to the next one. This foot
relocation has to be thoroughly coordinated with the previewed CoM motion, i.e. the foot needs
to target the previewed footstep location precisely enoughand with the right timing. This section
presents the six-dimensional foot trajectory generation and tracking control method used in this
work and its embedding into the whole-body control framework. Although the section is about
foot control, the more general term “end effector” is used instead of “foot” to indicate that other
end effectors can be controlled using the very same methods.

Design and tracking of translational swing leg trajectorie s

In this section, the polynomial interpolation method from Sec.3.1 is used. The linear foot tra-
jectory generation presented in this work typically uses fifth order polynomials (i.e. with 6 un-
knowns) for the horizontal directionsχ ∈ x,y and a sixth order polynomial (with 7 DOF) for the
vertical direction:

pχ ,EE =




tT
χ(0)

ṫ T
χ (0)

ẗ T
χ (0)

tT
χ(Tsw)

ṫ T
χ (Tsw)

ẗ T
χ (Tsw)




︸ ︷︷ ︸
Tc,χ

−1 


χEE(0)
χ̇EE(0)
χ̈EE(0)

χEE(Tsw)
χ̇EE(Tsw)
χ̈EE(Tsw)




︸ ︷︷ ︸
fc,χ

pz,EE =




tT
z (0)

ṫ T
z (0)

ẗ T
z (0)

tT
z (

Tsw
2 )

tT
z (Tsw)

ṫ T
z (Tsw)

ẗ T
z (Tsw)




︸ ︷︷ ︸
Tc,z

−1 


zEE(0)
żEE(0)
z̈EE(0)

zEE(
Tsw
2 )

zEE(Tsw)
żEE(Tsw)
z̈EE(Tsw)




︸ ︷︷ ︸
fc,z

(4.14)

Here, equation (3.4) from Sec. 3.1 is applied. The time in swing phase is denoted by
tsw ∈ [0,Tsw], whereTsw is the total swing time. Applying (3.1) and (3.2), the time mapping
vectors can be computed astT

χ(tsw) = [1, tsw, t2
sw, t

3
sw, t

4
sw, t

5
sw], ṫ

T
χ (tsw) = [0,1,2tsw,3t2

sw,4t3
sw,5t4

sw],

ẗ T
χ (tsw) = [0,0,2,6tsw,12t2

sw,20t3
sw], tT

z (tsw) = [1, tsw, t2
sw, t

3
sw, t

4
sw, t

5
sw, t

6
sw], ṫ T

z (tsw) =

[0,1,2tsw,3t2
sw,4t3

sw,5t4
sw,6t5

sw] and ẗ T
z (tsw) = [0,0,2,6tsw,12t2

sw,20t3
sw,30t2

sw], where tsw = 0 and
tsw= Tsw, respectively, is used in (4.14) to compute the time mapping matricesTc,χ andTc,z. The
latter are square and full rank, and thus invertible. Equation (4.14) provides the polynomial
parameter vectorspχ ,EE andpz,EE that comply with the boundary condition vectorsfc,χ andfc,z.
Typically, zero initial and final velocities and accelerations are used as boundary condition, i.e.
χ̇EE(0) = 0, χ̈EE(0) = 0, χ̇EE(Tsw) = 0, χ̈EE(Tsw) = 0, żEE(0) = 0, z̈EE(0) = 0, żEE(Tsw) = 0 and
z̈EE(Tsw) = 0. As initial and final position boundary conditions the previous stance foot position
and the foot target position (which may be adjusted online, see Sec.5.3.3) are used. As seventh
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4.2 Tasks used for whole-body control in this work

vertical boundary condition, a vertical foot position at mid swingzEE(
Tsw
2 ) is used, which yields

the required ground clearance during foot swing.
Now, with the solution for the polynomial parameter vectorspχ ,EE andpz,EE, the foot position,

velocity and acceleration reference for the current time inswingtsw is found using



χEE,re f

χ̇EE,re f

χ̈EE,re f


(tsw) =



tT

χ (tsw)

ṫ T
χ (tsw)

ẗ T
χ (tsw)


 pχ




zEE,re f

żEE,re f

z̈EE,re f


(tsw) =



tT

z (tsw)

ṫ T
z (tsw)

ẗ T
z (tsw)


 pz . (4.15)

All spatial directions (x, y, z) are now combined in the end effector reference coordinates
xEE,re f = [xEE,re f ,yEE,re f ,zEE,re f ]

T . The corresponding reference[xEE,re f , ẋEE,re f , ẍEE,re f ] is
tracked by applying a second order tracking control law as described in Sec. (3.2):

ẍEE,des= ẍEE,re f −λEE,1 λEE,2(xEE−xEE,re f) + (λEE,1+λEE,2)(ẋEE− ẋEE,re f) . (4.16)

Here,λEE,1 andλEE,2 denote the desired eigenvalues of the end effector trackingdynamics. Equa-
tion (4.16) returns the desired linear end effector (here: foot) acceleration.

Design and tracking of rotational swing leg trajectories

For quaternion trajectory generation, the methods presented in Sec.3.4.2 are used. The initial
quaternion0ζEE,prev.stance computed from the previous stance foot rotation, the final quaternion
target0ζEE,target as terminal rotation and optionally several quaternion waypoints distributed over
the swing time are used as desired waypoints for the quaternion reference. The latter may be
used for example for features such as toe-off motions and heel touchdown preparation (i.e. heel
lower than toes right before touchdown to lower the impacts in case of premature landings). These
desired quaternion waypoints are then preprocessed via (3.25) and interpolated via polynomials
(timings and equations similar to (4.14) and (4.15)) using zero initial and final quaternion veloc-
ities and accelerations as additional boundary conditions(to achieve smooth interpolation). The
resulting non-unit quaternion trajectory is then consistently projected to the unit quaternion mani-
fold via (3.26), (3.28) and (3.30) (see Sec.3.4.2). The gained unit quaternion reference trajectory
is then tracked via the quaternion tracking controller (3.34) and (3.38), which yields the desired
end effector quaternion accelerationζ̈EE,des. Settingζ̈ = ζ̈EE,des in (3.42) yields the desired angu-
lar acceleration of the end effector

ω̇EE,des= 4 (ET
EE ζ̈EE,des + ĖT

EE ζ̇EE) . (4.17)

Implementation of 6-DOF foot acceleration tasks

In [71], Murray et al. introduced three types of different velocities: spatial velocity, body
velocity and hybrid velocity (see also Sec.2.5). The hybrid velocity combines the translational
velocity2 and the spatial angular velocity of a link in a single six-dimensional vector:

h
0ν0,link = [0ẋ

T
0,link,

0ω
T
0,link]

T . The concept of hybrid velocity suits the end effector tracking tasks
(4.16) and (4.17) very well. The hybrid velocity (see Sec.2.5) of an end effector is computed as

h
0ν0,EE = h

0J0,EE q̇ . (4.18)

Here, h
0J0,EE denotes the hybrid Jacobian of the end effector andq̇ are the generalized joint

velocities. Differentiation of (4.18) yields the hybrid end effector acceleration:

h
0ν̇0,EE = h

0J̇0,EE q̇ + h
0J0,EE q̈ . (4.19)

2in spatial frame, however not to be confused with spatial velocity.
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During foot swing, the desired hybrid end effector acceleration combines (4.16) and (4.17) into:

h
0ν̇0,EE,des =

[
ẍEE,des

ω̇EE,des

]
, (4.20)

while during the stance phase it is assumed that the end effector (e.g. foot) is not accelerating since
it is in firm contact, i.e.h0ν̇0,EE,des= 06×1. This is just an assumption, of course, which may cause
problems regarding robustness in case it is not true (e.g. robot standing on soft or unstructured
grounds). Now, using (4.7) and settingh0ν̇0,EE =h

0ν̇0,EE,des in (4.19), the end effector acceleration
task can be expressed as function of the control variablesu:

h
0ν̇0,EE,des − h

0J̇0,EE q̇ − h
0J0,EE q̈MB︸ ︷︷ ︸

dEE,des

= h
0J0,EE Q︸ ︷︷ ︸
DEE

u . (4.21)

This equation provides the desired end effector (or foot) acceleration task vectordEE,des and the
corresponding task mapping matrixDEE, which is embedded into the WBC framework in Sec.4.3.

4.2.3 Torso orientation control

The torso orientation tracking control implemented in thiswork is equivalent to the angular com-
ponent of the end effector tracking task in the previous section. The spatial angular velocity can
be computed as

0ω0,torso = ω
0J0,torso q̇ , (4.22)

whereω
0J0,torso denotes the angular Jacobian of the torso andq̇ are the generalized joint velocities

(including the free-floating joints).
Differentiation of (4.22) yields the angular acceleration of the torso:

0ω̇0,torso = ω
0J̇0,torso q̇ + ω

0J0,torso q̈ . (4.23)

The angular Jacobianω0J0,torso and its time derivativeω0J̇0,torso correspond to the angular com-
ponents of the hybrid Jacobian of the torsoh

0J0,torso and its time derivativeh0J̇0,torso, respectively.
Inserting (4.7) and setting0ω̇0,torso=

0ω̇0,torso,des, the following desired task mapping for the torso
orientation is found:

0ω̇0,torso,des − h
0J̇0,torso q̇ − ω

0J0,torso q̈MB︸ ︷︷ ︸
dtorso,des

= ω
0J0,torsoQ︸ ︷︷ ︸
Dtorso

u . (4.24)

Here,0ω̇0,torso,des is the desired angular torso acceleration which can be computed via (3.42) as

0ω̇0,torso,des = 4 (ET
torso

0ζ̈torso,des + ĖT
torso

0ζ̇torso) , (4.25)

where0ζ̈torso,des denotes the desired torso quaternion acceleration which isused to track the torso
quaternion reference[0ζtorso,re f ,

0ζ̇torso,re f ,
0ζ̈torso,re f ]. The latter can be designed by averaging

the vertical components of the left and right foot referencequaternion trajectories (the detailed
derivation is omitted here). The quaternion transformation matricesEtorso andĖtorso in (4.25) are
computed from the torso quaternion0ζtorso and its derivative0ζ̇torso via (3.40) and (3.43).

Equation (4.24) provides the desired torso acceleration task vectordtorso,desand the correspond-
ing task mapping matrixDtorso, which will be embedded into the WBC framework in Sec.4.3.
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4.2.4 Joint posture reference

The tasks introduced in the previous subsections are not sufficient to determine all desired robot
DOF (at least for high-DOF humanoid robots). In other words,the null space of these tasks in
non-empty and needs to be controlled. One convenient optionis to add a posture task, which
typically involves all actuated robot joints. A possible desired task space dynamics for the joint
posture task can be defined as follows:

q̈post,des = q̈post,re f −λpost,1λpost,2 (Spostq−qpost,re f )+ (λpost,1+λpost,2)(Spost q̇− q̇post,re f ) ,
(4.26)

whereSpost maps the generalized joint coordinatesq to the actuated onesqact (i.e. qact = Spostq,
in this work Spost= ST

act), [qpost,re f , q̇post,re f , q̈post,re f ] is the postural reference andλpost,1 and
λpost,2 are the corresponding desired eigenvalues (see Sec.3.2). While such a dynamic postural
reference including corresponding joint velocities and accelerations would be conceivable, this
work uses a constant reference postureqpost,re f for all actuated joints (i.e. q̇post,re f = 0 and
q̈post,re f = 0) such that (4.26) turns into the regulation case.

Reordering (4.7), premultiplying withSpost and settingSpost q̈ = q̈post,desyields

q̈post,des−Spost q̈MB︸ ︷︷ ︸
dpost,des

= SpostQ︸ ︷︷ ︸
Dpost

u , (4.27)

which provides the desired torso acceleration task vectordpost,desand the corresponding task map-
ping matrixDpost. These will be embedded into the WBC framework in Sec.4.3.

4.2.5 Control input regularization

In the section about over-determined pseudo inverses, a damping term 1
2 uT

Λ u was introduced
in the cost function (3.48) which ensures good behavior of the resulting input vectoru in case
of singularities. The latter typically occur when the (undamped) matrix that would have to be
inverted is not full rank. Here, a “damping” task is introduced, which fulfills the same function
as in (3.48). Its main task is to prevent the control input vectoru from growing to infinity when
singularities occur. To this end,udes= 0 will be used as desired input vector. By considering this
task in the subsequent optimization this instable behavioris successfully avoided.

For control inputs chosen in this work, as mentioned in Sec.4.1, the mapping of linear contact
forces to contact wrenches (4.3) is by default under-determined. Thus, at least the null space
that correlates to that mapping has to be damped (or regularized). Additionally, depending on the
tasks and robot configuration at hand, further singularities may occur such that the damping of all
elements of the input vectoru is advisable. That way situations such as fully stretched knees (as
often observed in humanoid robots, e.g. in case of perturbations or when taking very long steps
while walking) can be handled well, while without damping they can lead to total loss of control.
The desired input vector from above can be mapped to the actual input vector via

udes︸︷︷︸
ddamp,des

= Inu×nu︸ ︷︷ ︸
Ddamp

u , (4.28)

where, as proposed above,udes= 0 is chosen as desired damping task vectorddamp,des and the
damping task mapping matrixDdamp is simplyInu×nu (nu denotes the total number of elements in
the control input vectoru). Via ddamp,des andDdamp,des, the damping task will be embedded into
the WBC framework in Sec.4.3.
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4.3 Optimizing the task objectives via quadratic programmi ng

In humanoid robotics the number of desired tasks (as derivedin the previous sections) is typi-
cally higher than the number of available robot DOF, i.e. theproblem is over-determined (as in
Sec.3.5.2). Additionally, the robot hardware limitations have to be met and ground contact con-
straints have to be fulfilled. Therefore, finding the optimal3 solution, which is the best trade-off
between the desired tasks while fulfilling the given constraints and limitations typically involves
optimization. One possible candidate for such an optimization is the use of aquadratic program
(QP). Such a QP exhibits a quadratic cost function and linearconstraints which yields a convex
and thus comparably simple problem with only one single global optimum. A QP solves the same
optimization problem as an over-determined pseudo inversein Sec.3.5.2, only that it additionally
considers constraints. The over-determined pseudo inverse as presented in (3.49) is the analytical
solution for a quadratic program without constraints.

Inspired by the works of Koolen [81], Righetti [80,82] and Wensing [51,52] (besides others),
this work formulates a QP, which takes the tasks as presentedin the previous sections, certain
robot hardware limitations and contact constraints into account. All tasks are treated at the same
level, their priorities solely determined by a weighting matrix (single-weighted QP). Hierarchical
QP formulations, as for example presented in [52, 87, 88], strictly ensure certain higher-priority
tasks to be fulfilled, while lower-priority tasks are overruled, if necessary. This may be viewed
as advantage. Yet, most of such hierarchical QPs are not robust against singularities. This is a
drawback as compared to single-weighted QPs, which may contain damping terms that drastically
reduce such singularity issues. This was the main motivation of using a single-weighted QP in this
work.

The previous sections introduced the desired task vectorsdi,des and task mappings matricesDi

(here, “i” stands for the different tasks from the previous sections,i.e. “CoM”, “left foot”, “right
foot”, “torso”,“posture” and “damping”), which encode thelinear and direct mapping from the

control input vectoru =

[
τact

ρ

]
to the desired tasks. These direct linear mappings are used to

express the task errors as

∆di = di − di,des = Di u− di,des . (4.29)

Now, a quadratic cost function can be formulated as

G =
1
2 ∑

i

(
∆dT

i Wtask,i ∆di

)
(4.30)

=
1
2
uT ∑

i

(
DT

i Wtask,i Di︸ ︷︷ ︸
HQP,i

)

︸ ︷︷ ︸
HQP

u − ∑
i

(
dT

i,desWtask,i Di︸ ︷︷ ︸
fT

QP,i

)

︸ ︷︷ ︸
fT

QP

u +
1
2 ∑

i

(
dT

i,desWtask,i di,des

)

︸ ︷︷ ︸
const.

where the indexi stands for all task indices “CoM”, “left foot”, “right foot”, “torso”,“posture”
and “damping” and the sum in the first line adds up the weightederror squares for all tasks.
The task weighting matricesWtask,i (one for each taski) are typically chosen to be diagonal to
independently weight the different task elements. The second line of (4.30) shows that, for each
task, a square Hessian matrixHQP,i ∈R

nu×nu and a row vectorfT
QP,i ∈R

1×nu can be independently
computed (nu is the total number of elements ofu). The final Hessian matrixHQP and QP-
defining row vectorfT

QP are then simply the sums of these quantities over all tasks. One advantage

3optimal w.r.t. a chosen cost function
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over task stack formulations (where all task mapping matrices and desired task vectors are stacked
in one big matrix and vector, respectively) is that the size of the Hessian matrices and QP-defining
vectors is equal for each of the subtasks. This is particularly convenient if the exact structure of the
optimization problem is changed, e.g. when new tasks are added. The combined Hessian matrix
HQP and vectorfT

QP are forwarded to a QP solver. Note that the right term in the second line of
(4.30) is constant and can thus be omitted.

Finally, the considered optimization problem in this work is formulated as

min.
u

G =
1
2
uT HQP u − fT

QP u

s.t. τ act ≤ τact ≤ τ act

0≤ ρ≤ ρ

. (4.31)

The operators• and• in the inequality constraints denote lower and upper limits. The contact
force magnitudesρ are constraint to be positive, such that the contact constraints are ensured.
Note that by the use of (4.7) in the previous subsections, the robotic equations of motion are
implicitly considered. When a foot is in contact with the environment, the motion constraints
have to be modeled which is typically accomplished by setting the corresponding accelerations to
zero. A peculiarity in the presented QP formulation is that the contact constraints (i.e. zero foot
acceleration during stance) are not implemented as hard equality constraint but as standard tasks.
The corresponding task weights are chosen to be very high such that the constraints are typically
fulfilled well4. As compared to the hard equality constraint, the presentedformulation is less
sensitive against ill-posed situations such as singular configurations. This may help the QP solver
find a solution, which otherwise may fail to converge. Of course, choosing to implement these
constraints as hard constraints could be considered as well. This choice of soft or hard contact
constraints is subordinate as compared to the following issue: any possible contact scenario, unless
the environment surrounding the robot including its compliance parameters is perfectly known to
the programmer, is always just a collection ofassumptions. In case of interaction with natural
environments, the exact motion constraints and interaction forces can never be predicted perfectly.
The mismatch between assumed and actual contact can have severe effects on the achieved robot
dynamics and stability. Contact estimation and robustification is a research field that requires
further investigation, but out of the scope of this work.

The solution to (4.31) is the optimal control input vectoru∗ =

[
τ ∗

act
ρ∗

]
that trades off between

the different tasks according to the cost function (4.30), while fulfilling maximum joint torque and
contact constraints. In this work, to achieve this optimal solution the qpOASES software [89] is
used, which is based on an online active set strategy described in [90]. The optimal joint torques
τ ∗ resulting from (4.31) are commanded to the robot.

4Note: during stance, very high task weights for the foot accelerations are used, while during swing these weights are
lowered by a factor of about 100.
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CHAPTER 5

Bipedal walking control based on Divergent Component of Motion

The previous section gave an overview of the whole-body control framework used in this work,
while, with regard to robust walking and running (see chapter 6) control, referring to this section.
This section will present the walking trajectory generation and feedback control framework used
in this work, which is based on the CoM dynamics. The latter can be analyzed and controlled
in a particularly elegant and comprehensible way by using the so called Divergent Component of
Motion (DCM), also known as “(instantaneous) Capture Point”, as system coordinate.

Note that, due to the linearity of the CoM dynamics of a general robot, the equations and control
laws, derived in this chapter1 and in chapter6 on running, hold for general free-floating robot
models and not only for simplified models, such as the telescopic or linear inverted pendulum.

The contributions of this chapter are (i) the extension of the concept of Divergent Component of
Motion (DCM) to 3D, (ii) the introduction of Enhanced Centroidal Moment Pivot point (eCMP)
and Virtual Repellent Point (VRP) to encode external and total force acting on the CoM, (iii) the
design of smooth and constraint-compatible eCMP and DCM trajectories and their tracking, (iv)
the introduction of an analytical step adjustment method and (v) the introduction of a CoM distur-
bance observer to compensate for unknown perturbations. The Linear Inverted Pendulum-based
derivations in Sec.5.1provide a comprehensible introduction to walking reference generation and
tracking, while later the general CoM dynamics is used as model instead of the LIP.

5.1 Controlling the Linear Inverted Pendulum using the
concept of Capture Point

The following sections will recapitulate the Linear Inverted Pendulum (LIP) model and present
simple Capture Point (CP) based methods for basic planning and feedback control. The purpose
of these sections is to familiarize the reader with the concept of LIP and CP. Section5.3 will
then present the author’s current more advanced state of research which is based on the three-
dimensional Divergent Component of Motion (DCM) and allowsfor smooth and robust planning
and control of bipedal walking motions.

1aside from the introductory sections on LIP/ZMP-based Capture Point control
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Figure 5.1: Linear inverted pendulum (LIP) model.

5.1.1 Linear Inverted Pendulum model as starting point

The basic challenge in robotic locomotion research is to maneuver the robot (or more precisely: its
CoM) from one point A to another point B in space. The CoM dynamics are inertially decoupled
from the rest of the robot dynamics [91] and are only affected by gravity and the external (e.g. leg)
forces (Newton’s second law on momentum conservation):

ẍ=
1
m

Fcom=
1
m

(Fg+Fext) (5.1)

Here, ẍ= [ẍ ÿ z̈]T denotes the CoM acceleration,Fext is the sum of all external forces,
Fg = m [0 0− g]T is the gravitational force andg is the gravitational constant. As the CoM
dynamics is a second order dynamics, the CoM position at a given pointt in time can be derived
by double integration of the CoM acceleration. One difficulty arises from the fact, that there exists
an infinite number of different time-transient total forcesFcom for which the CoM motion would
fulfill the constraintsx0 = xA andxend= xB. This poses the problem that no unique solution to
the problem exists. Additionally, in order to be physicallyfeasible, the line of action of the sum
of external forces acting on the robot has to pass through thebase of support (e.g. convex hull of
robot’s stance feet). The use of arbitrary CoM reference trajectories[xre f , ẋre f , ẍre f ] combined
with standard tracking controllers of the formFcom= kp (xre f −x)+kd (ẋre f − ẋ)+m ẍre f

typically disregards this physical constraint and is therefore not well suited for bipedal walking
(and running, see chapter6) control. One idea to solve this feasibility issue for the problem of
bipedal walking is the following: Instead ofcheckingif the lines of action of the leg forces
intersect the base of support, a point of intersection (focus of all lines of action of external
forces) isdesignedand related to a corresponding force via an appropriate force law. TheLinear
Inverted Pendulum(LIP) model [92] follows this idea. Its torque-free base joint represents the
mentioned focus point. This torque-free focus point is alsoknown aszero moment point(ZMP),
as introduced by Vukobratovic et. al [9], or center of pressure(COP). Note: these two terms
denote the same quantity, namely a point on the foot (or base of support) of the robot that is most
appropriate to support the external forces (or more exactly: wrenches), while the corresponding
torque in that point is minimized. The term “ZMP” is traditionally used for flat floor walking and
the corresponding control, while the CoP can be applied to the 3D case (see Sec.5.2.2) as well.
For that reason, both terms are used in this thesis.

The LIP model uses the following assumptions:
• no horizontal torque around ZMP (by definition)→ leg force passes through ZMP
• no torque around CoM→ leg force passes through CoM
• constant vertical height→ vertical component of leg force compensates for gravity

58



5.1 Controlling the Linear Inverted Pendulum using the concept of Capture Point

Using these assumptions, the relation between leg force andZMP position becomes particularly
simple. By inspecting Fig.5.1, the following relation between the force acting on the CoM,the
CoM position and the ZMP position is found:

Fχ

Fz
=

m χ̈
m g

=
χ − pχ

z− pz
. (5.2)

The variableχ represents both horizontal directions of the CoM position,i.e., χ ∈ {x,y}. The
ZMP heightpz equals the floor height. Reordering (5.2) yields the second order CoM dynamics

χ̈ = ω2 (χ − pχ) , (5.3)

with

ω =

√
g

z− pz
. (5.4)

The complete horizontal system dynamics of the LIP model is given by

[
χ̇
χ̈

]
=

[
0 1

ω2 0

] [
χ
χ̇

]
+

[
0

−ω2

]
pχ . (5.5)

Using (5.1) and (5.3), the three-dimensional force acting on the CoM can be written as

Fcom,LIP =




0
0

−mg




︸ ︷︷ ︸
Fg

+
m g

z− pz
(x−p)

︸ ︷︷ ︸
Fleg

= mω2




x− px

y− py

0


 , (5.6)

whereFg andFleg are the gravitational and leg force,x= [x y z]T denotes the position of the CoM
andp= [px py pz]

T are the LIP base joint coordinates. The vertical componentsof Fg andFleg

cancel each other, so that ¨z= 0 holds. Note that the termmg
z−pz

= mω2 is constant and might even
be combined into one single constant. Due to the torque-freebase and the point mass assumption,
all forces pass through the CoM and the LIP base joint, which therefore can be seen as a focus
point of all lines of action of leg forces. When the LIP is usedfor bipedal walking control, the
ZMP [9] is assumed to be equivalent to the LIP base jointp and is designed to be within the base
of support. In a real robot, the resulting ZMPs generally deviate from the planned focus points
due to the model inaccuracies, but often not far enough to make the robot tilt and fall. This way,
preplanning a feasible set of focus points (e.g. ZMP’s) is a successful method for bipedal gait
generation and control: Stephens and Atkeson [11] present a Model Predictive Control (MPC)
method for step adjustment and push recovery. Wieber [12] proposes a trajectory free linear MPC
scheme, allowing for compensation of strong perturbations. Nishiwaki and Kagami [14] generate
dynamically stable walking patterns by frequently updating a preview controller. Sugihara [15]
introduces the Best CoM-ZMP Regulator facilitating step adjustment of bipedal robots. Kajita et
al. [16] demonstrate walking on uneven pavement.

5.1.2 Derivation of the two-dimensional Capture Point

Pratt et al. [20–22] introduced the (instantaneous)Capture Point(CP) as the point on the floor,
where a robot (modeled as a LIP) has to step (more precisely, where the ZMP of the robot has to
be) to come to a complete rest, which means that the CoM is exactly located over the ZMP and its
velocity is zero. Pratt et al. derive the CP from the linear inverted pendulum orbital energy. This
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5 Bipedal walking control based on Divergent Component of Motion

work provides an alternative derivation of the CP. To this end, the explicit solution of (5.5) for a
constant ZMP positionpχ is computed as

[
χ(t)
χ̇(t)

]
=

[
cosh(ωt) 1

ω sinh(ωt)
ω sinh(ωt) cosh(ωt)

] [
χ0

χ̇0

]
+

[
1−cosh(ωt)
−ω sinh(ωt)

]
pχ , (5.7)

whereχ0 andχ̇0 are the initial CoM position and velocity, respectively. Asannounced above, the
particular ZMP positionpχ towards which - if applied to the robot - the CoM position converges
when time goes to infinity is sought-after. Using this information in the first row of (5.7) yields

χ |t→∞ = pχ = χ0 cosh(ωt)+
χ̇0

ω
sinh(ωt) + pχ − pχ cosh(ωt) , (5.8)

which can be solved forpχ as

pχ = χ0+
χ̇0

ω ✘
✘
✘
✘
✘
✘✘✿

1
tanh(ωt)|t→∞ . (5.9)

By inserting (5.9) into the second row of (5.7) it can be shown that for this choice ofpχ the
horizontal velocity of the CoM tends to zero fort → ∞. The derived pointpχ is equivalent to the
definition of the Capture Pointξ . For arbitrary CoM positionsχ and velocitiesχ̇ it is defined as

ξχ = χ +
χ̇
ω

. (5.10)

Note: As proposed by several previous works [19–27], the overall CoM dynamics (5.5) can be
split into a stable and an unstable part via diagonalization. Interestingly, the unstable part yields
exactly the same definition as in (5.10). This unstable component has been referred to as ‘(in-
stantaneous) Capture Point’ (iCP or CP) by Pratt et al. [20–22], as ‘extrapolated Center of Mass’
(eCOM) by Hof et al. [19] and, due to its instability, as ‘Divergent Component of Motion’ (DCM)
by Takenaka et al. [23]. Note that in some of the author’s previous works [24, 25], motivated
by the works of Pratt et al., the term ‘Capture Point’ was usedfor the DCM. Therefore, in this
section the expression Capture Point is utilized, while starting from Sec.5.2.1 the term (three-
dimensional) Divergent Component of Motion (DCM) will be used, since it gives a better impres-
sion of its diverging characteristics. Throughout this work, the symbolξ is used to represent both
the two-dimensional Capture Point (or 2D DCM) and the three-dimensional Divergent Component
of Motion (DCM). Combining both horizontal directionsx andy of (5.10), the definition of the
two-dimensional Capture Point (or 2D DCM) becomes

ξ = x+
1
ω

ẋ , (5.11)

i.e., the Capture Point is composed of the horizontal CoM position x = [x,y]T and velocityẋ =
[ẋ, ẏ]T scaled by the LIP time-constant1

ω . Reordering (5.11) yields the CoM dynamics

ẋ=−ω (x−ξ) , (5.12)

which forω > 0 is a stable first order dynamics, i.e., the CoM naturally follows the Capture Point.
Differentiating (5.11) and inserting (5.3) yields the Capture Point dynamics

ξ̇ = ω (ξ−p) , (5.13)

Here,p = [px, py]
T denotes the horizontal components of the ZMP position. Forω > 0, (5.13) is

an unstable first-order dynamics, i.e., the Capture Point ispushed away from the ZMP. Note that
here the second order overall CoM dynamics (5.5) was decoupled into the naturally stable first
order CoM dynamics (5.12) and the instable first order Capture Point dynamics (5.13). As shown
later, this simplifies the design of planning and control algorithms which is the main motivation
for the use of the concept of Capture Point (or DCM) in this work.
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po xo =ξo
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pend=ξend= xend
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ξend,1 =ξini,2
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p3

ξend,2 =ξini,3

p4

ξend

Figure 5.2: Design of two-dimensional Capture Point reference trajectory:
(a) Foot to foot shift (b) Preview of next three steps for CP reference
Note: the reference trajectory is not affected by the current/measured Capture Point.

5.1.3 Planning Capture Point reference trajectories for co nstant ZMPs

In this section, Capture Point (CP) reference trajectoriesfor nominally constant ZMPs will be
designed that have instantaneous transitions (no double support) between them. To this end, the
CP dynamics (5.13) are solved for a constant ZMPp which yields

ξ(t) = p+eω t (ξini −p) . (5.14)

This equation shows, that, starting from its initial position ξini , the CP diverges exponentially.
The main idea of the CP reference trajectory planning in thiswork is to generate a “controlled
divergence” of the CP, i.e., to align the natural divergenceof the CP with the locomotion task
at hand. To this end, a set of(N− 1) Capture Point reference trajectories is designed that are
consistent with theN given ZMP positions (see Fig.5.2). Therefore, starting withξre f,end,N−1 =

pre f,N (corresponding to theterminal constraintξ̇ = 0), the following backwards iteration is used:

ξre f,end,i−1 = ξre f,ini,i = pre f,i +e−ω Ti (ξre f,end,i −pre f,i) , (5.15)

which tells what positionξre f,ini,i the CP reference should start from in order to be pushed by
the constant reference ZMP positionpre f,i to the final desired CP reference positionξre f,end,i of
that step during thei-th step timeTi . In order to have continuous transitions between the sub-
trajectories, the final CP reference pointsξre f,end,i−1 of the (i −1)-th step has to equal the initial
CPξre f,ini,i of the i-th step. That way all initial CP reference positionsξre f,ini,i are computed and
can be combined with (5.14) to provide CP reference trajectories

ξre f,i(ti) = pre f,i +eω ti (ξre f,ini,i −pre f,i) . (5.16)

Here,ti ∈ [0,Ti ] is thei-th time in step (Ti being thei-th step duration). Insertingpre f,i andξre f,i(ti)
into (5.13) yields the same solution for the CP reference velocities asdifferentiation of (5.16):

ξ̇re f,i(ti) = ω (ξre f,i(ti)−pre f,i) = ω eω ti (ξre f,ini,i −pre f,i) . (5.17)

The current CP reference positionξre f,1(t1) and velocityξ̇re f,1(t1) will be used for CP tracking
control in the next section. Note: in this work, indexi = 1 always relates to the first/current step.
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5 Bipedal walking control based on Divergent Component of Motion

5.1.4 Capture Point tracking control

In section5.1.2 the CoM was found to have a stable first order dynamics (5.12) that naturally
follows the DCM. This section relies on the natural stability of the CoM dynamics while focusing
on the stabilization of the naturally unstable Capture Point dynamics (5.13). In order to locally
track the desired CP reference trajectory from the previoussection, the following stable first-order
behavior for the CP dynamics is eligible:

ξ̇− ξ̇re f,1︸ ︷︷ ︸
∆ξ̇

=−kξ (ξ−ξre f,1︸ ︷︷ ︸
∆ξ

) , (5.18)

i.e., the CP error∆ξ asymptotically converges towards zero. This behavior is achieved by the
following control law for the desired ZMP:

pdes= pre f,1+
(

1+
kξ

ω

)
(ξ − ξre f,1︸ ︷︷ ︸

∆ξ

) , (5.19)

which can be verified by inserting (5.19) back into (5.13) and using (5.17). Note that the first (i.e.
current) CP reference positionξre f,1 and velocityξ̇re f,1 are used here, since the tracking controller
acts on a purely local level. The CP reference velocityξ̇re f,1 does not appear in (5.19) explicitely,
since the relation (5.17) was applied. It turns out that the controller - forkξ > 0 - asks for a ZMP
positionpdes that is located at a certain deviation from the current ZMP reference positionpre f,1.

This deviation is bigger than the current CP error∆ξ (since(1+
kξ
ω )> 1), which yields the desired

convergence behavior with respect to the CP reference trajectory.

5.2 Extension of the Capture Point to 3D

The use of the LIP model for bipedal walking control is restricted to horizontal motions of the
CoM (z= const). This motivates new methods, which are not limited to constant CoM and floor
height. Zhao and Sentis [29] introduce the Prismatic Inverted Pendulum dynamics and solve
it via numerical integration, allowing for three-dimensional foot placement planning on uneven
ground surfaces. Yet, the lateral foot-placement cannot bepredefined, but is dependent on the
sagittal dynamics and on the desired CoM Surface. Additionally, the method is restricted to ground
surfaces with laterally constant heights (“roughness” of terrain only in forward direction).

In [30] - motivated by the capabilities of CP control [25] - a method for bipedal gait planning
and control on uneven terrain is derived, facilitated by theuse of the linear properties of the Di-
vergent Component of Motion (DCM) dynamics and suffering from none of the afore mentioned
restrictions. In the following sections, the methods from [30] will be further improved: The plan-
ning method now guarantees smooth and safe point to point interpolation (replacing unsafe in-
terpolation heuristics from [30]) of enhanced Centroidal Moment Pivot points (eCMPs) (replac-
ing ZMPs, see below). Also, new methods for reactive step adjustment and increased robustness
against strong and continuous perturbations are provided.

5.2.1 Three-dimensional Divergent Component of Motion (DC M)

As shown in [30], there exists a significant difference between the CapturePoint (defined as the
point on the ground where the robot has to step to come to a stopasymptotically) and the (three-
dimensional)Divergent Component of Motion(DCM), as the 3D DCM is not restricted to the
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5.2 Extension of the Capture Point to 3D

ground plane, but can be interpreted as three-dimensional state. For 2D considerations (constant
CoM height), Capture Point and DCM (projected to the floor) are equivalent, but this is not true
in 3D. Motivated by the performance of Capture Point controlin [24, 25] and by the definition
of the Capture Point (or two-dimensional DCM) in [20, 23], Englsberger et al. introduced the
three-dimensional Divergent Component of Motion (DCM) in [30] as

ξ = x + b ẋ, (5.20)

whereξ = [ξx,ξy,ξz]
T is the DCM,x= [x,y,z]T andẋ= [ẋ, ẏ, ż]T are CoM position and velocity

andb > 0 is the time-constant of the DCM dynamics. Note the similarity of (5.20) to the state
transformation proposed by Slotine and Li [93] used for adaptive control. In contrast to the def-
inition of the Capture Point in [19–25], the DCM as defined in equation (5.20) lies at a certain
distance in front of the CoM (w.r.t. its current moving direction), i.e., it is generally not located on
the ground but somewhere in space. By reordering (5.20), the CoM dynamics can be derived

ẋ=−
1
b
(x − ξ). (5.21)

This shows that the CoM has a stable first order dynamics forb> 0 (→ it follows the DCM). By
differentiating (5.20) and inserting (5.21) and (5.1), the DCM dynamics is found

ξ̇ =−
1
b
x +

1
b
ξ+

b
m

Fcom . (5.22)

This shows thatFcom directly influences the DCM dynamics.

5.2.2 Enhanced Centroidal Moment Pivot point (eCMP)

Generally, a robot is subject to gravity and external forces. As proposed further above, exter-
nal forces aredesignedto be appropriate for the locomotion task while fulfilling the feasibility
constraint (center of pressure (COP) in base of support). Tosimplify this design process, a force-
to-point transformation similar as in the LIP model is used.Remember that the termmg

z−pz
in (5.6)

is constant. This motivates the encoding of external (e.g. leg-) forces in a linear repelling force law
based on the difference of the CoM and the so calledEnhanced Centroidal Moment Pivotpoint
(eCMP), denoted byrecmp:

Fext = s(x−recmp) . (5.23)

Here,s> 0 is a constant that will be determined later. The eCMP is closely related to the CMP
[66], but not restricted to the ground surface. This allows to encode not only the direction of the
external force, but also its magnitude. The CMP in contrast is located at the intersection of the
line between CoM and eCMP with the ground (see fig.5.3). The total force acting on the CoM is

Fcom= Fext+Fg = s(x−recmp)+mg , (5.24)

with the gravity vectorg = [0 0 −g]T . Inserting (5.24) into (5.22) yields the DCM dynamics

ξ̇ =
(bs

m
−

1
b

)
x+

1
b
ξ−

bs
m

recmp+bg . (5.25)

This shows that the statesx andξ are coupled in general. Though, by the choices= m
b2 , the DCM

dynamics is decoupled from the CoM dynamics:

ξ̇ =
1
b
ξ−

1
b
recmp+bg . (5.26)
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Figure 5.3: Force encoding via eCMP and VRP.

This decoupling of the DCM dynamics from the CoM dynamics clearly facilitates planning and
control for bipedal walking. Here, in contrast to methods that yield decoupling via feedback
control, the decoupling is achieved via the appropriate choice of the constants. The equation for
the sum of external forces becomes

Fext =
m
b2 (x−recmp) =

mg
∆zvrp

(x−recmp) . (5.27)

Here, the identityb=
√

∆zvrp/g was already used, which will be derived in the next section.

5.2.3 Virtual Repellent Point (VRP)

To further simplify (5.26), theVirtual Repellent Point(VRP) is introduced, which is defined as

rvrp = recmp+
[
0 0 b2g

]T
= recmp+

[
0 0 ∆zvrp

]T
. (5.28)

Thex− andy− components of the eCMP and the VRP are equal. Their vertical componentszecmp

andzvrp differ by ∆zvrp = b2g, which is a constant that is used as design variable in this work.
Note: ∆zvrp can be interpreted as “average height” of the CoM over the ground surface. With
(5.28), the time-constant of the DCM dynamics is found as

b=

√
∆zvrp

g
. (5.29)

In this work, b can always be equated with
√

∆zvrp

g . With (5.28) the DCM dynamics (5.27) is
rewritten as

ξ̇ =
1
b
(ξ−rvrp) . (5.30)

This shows that the DCM has an unstable first order dynamics (if the VRP stays at a constant
location, the DCM is “pushed” away from it on a straight line), whereas the CoM follows the
DCM with the stable first order dynamics (5.21) (see fig.5.3). The overall open-loop dynamics is

[
ẋ

ξ̇

]
=

[
−1

b
1
b

0 1
b

][
x

ξ

]
+

[
0
−1

b

]
rvrp . (5.31)
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Figure 5.4: Point relations for general robot dynamics.

The VRP encodes gravity and external forces in one single point. With (5.24), (5.27), (5.28) and
∆zvrp = b2g, the relation between the total forceFcom acting on the CoM and the VRP is found as

Fcom=
m
b2 (x−rvrp) =

mg
∆zvrp

(x−rvrp) . (5.32)

If required, a desired VRPrvrp,descan be translated into the required external (e.g. leg-) force via

Fext,des=
m
b2 (x− (rvrp,des−

[
0 0 ∆zvrp

]T

︸ ︷︷ ︸
recmp,des

)) . (5.33)

Geometrical interpretation of eCMP and VRP

Figures5.3 and5.4 graphically delineate the relations between the introduced points, eCMP and
VRP, and the corresponding forces. Figure5.3shows that the VRP encodes the sum of all forces
(gravity and external forces)Fcom via (5.32). The Enhanced Centroidal Moment Pivot (eCMP)
encodes the external forcesFext via (5.27) and is located at a vertical offset∆zvrp below the VRP.
Note that by means of appropriate scaling (length of force arrow equals∆zvrp/(mg) times force
magnitude) the force vectors can be geometrically related to correspondent point distances (comp.
to (5.32) and (5.27)). Figure5.4 depicts the relations between eCMP, CMP and CoP in a general
bipedal robot. The CMP is found at the intersection of the line CoM-to-eCMP with the ground.
The line of actionlact of the leg force can be shifted by means of a torqueτ around the CoM, so
that the CoP does generally not coincide with the CMP.

5.3 Mature method for DCM planning and control

In the previous sections, the LIP model was recapitulated and basic methods for Capture Point
based trajectory generation and feedback control were presented. Then, the three-dimensional Di-
vergent Component of Motion (DCM) and a useful force-to-point transformation was introduced,
which resulted in the definitions of the Enhanced CentroidalMoment Pivot point (eCMP) and the
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Figure 5.5: Generation of VRP/eCMP and DCM references; trajectories in space and time.

Virtual Repellent Point (VRP). These definitions had helpedto raise the two-dimensional con-
cepts of Capture Point [21, 24] and ZMP/CMP to the third dimension. The following sections
will provide a detailed derivation and overview of the author’s current state of research regarding
DCM-based planning and control for three-dimensional walking.

5.3.1 Planning smooth DCM reference trajectories for multi -step previews

This section will provide a method for smooth reference trajectory generation. In the author’s
view, two key criteria for a sound walking reference generator are that it includes a preview of
sufficiently many (for typical dynamic walking cases about three or more) future steps in order
to avoid/ease discontinuities at the contact transitions and that it is well feasible with regard to
the previewed contact sequences at hand. Feasibility here relates to the question if the forces that
correlate to the reference trajectories can be generated bythe available contacts, which is typically
expressed as unilaterality constraints (no forces pullingtowards ground allowed) or more gener-
ally as friction cone constraints. To reduce complexity, walking reference generators typically
work with the assumption of zero nominal torque around the CoM. With that constraint and as-
suming sufficient friction, the feasibility problem in walking generators is reduced to the problem
of finding eCMP trajectories (corresponding to ZMP trajectories in 2D) that lie well within the
previewed base(s) of support. This work designs DCM reference trajectories that correspond to
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feasible eCMP trajectories while fulfilling a certainterminal constraint. To comply with minimal
bases of support such as point or line contacts, the desired eCMP trajectories are implemented as
smooth piecewise point-to-point interpolations. These are encoded via the following(nprev− 1)
fifth order polynomials between thenprev previewed eCMP waypoints (see Fig.5.5):

recmp,re f,i(ti) = recmp,re f,ini,i +
( ti

Ti

)3 (
10−

15 ti
Ti

+6
t2
i

T2
i

)
(recmp,re f,end,i −recmp,re f,ini,i ) (5.34)

ṙecmp,re f,i(ti) =
30 t2

i

T3
i

(
1−

ti
Ti

)2
(recmp,re f,end,i −recmp,re f,ini,i ) (5.35)

r̈ecmp,re f,i(ti) =
60 ti
T3

i

(
1−

3 ti
Ti

+
2 t2

i

T2
i

)
(recmp,re f,end,i −recmp,re f,ini,i ) (5.36)

Here,recmp,re f,ini,i denotes the starting eCMP waypoint (red points in Fig.5.5) andrecmp,re f,end,i the
end eCMP waypoint of thei-th transition phase2. Each time in transition is denoted byti ∈ [0,Ti ],
whereTi is the total time for each transition phase. Equations (5.34)-(5.36) fulfill the following
boundary conditions: 



recmp,re f,i (0)
ṙecmp,re f,i (0)
r̈ecmp,re f,i (0)
recmp,re f,i(Ti)
ṙecmp,re f,i(Ti)
r̈ecmp,re f,i(Ti)



=




recmp,re f,ini,i

0
0

recmp,re f,end,i

0
0




. (5.37)

Both eCMP velocity and acceleration start from and end with zero, i.e., (5.35) smoothly interpo-
lates betweenrecmp,re f,ini,i andrecmp,re f,end,i during thei-th transition phase. The term “transition
phase” is used here instead of “step”, since a single step mayconsist of several transition phases
(such as a heel-to-toe transition followed by another transition from toe to upcoming heel, or more
complex). With (5.34) and (5.28), the corresponding VRP reference trajectories become

rvrp,re f,i(ti) = recmp,re f,i (ti)+ [0 0 ∆zvrp]
T . (5.38)

Now, to find the DCM reference trajectories that fit these smooth VRP trajectories, the following
ordinary differential equation (ODE) (as in (5.30)) has to be solved:

ξ̇re f,i(ti) =
1
b
(ξre f,i(ti)−rvrp,re f,i(ti)) (5.39)

As boundary conditions, the DCM positions at the end of each transition phaseξre f,i(Ti)= ξre f,end,i

are used. The solution to ODE (5.39) is

ξre f,i(ti) = rvrp,re f,ini,i + εi(ti) (ξre f,end,i −rvrp,re f,ini,i)+si(ti) (rvrp,re f,end,i −rvrp,re f,ini,i) (5.40)

whereεi(ti) = e
ti−Ti

b andsi(ti) is

si(ti) =
1

T3
i

(
60b2 γi (ti +b− εi (Ti +b))+30b γi (t

2
i − εi T2

i )+ (5.41)

+ 10γi (t
3
i − εi T3

i )+
(
−

15
Ti

+
30b

T2
i

)
(t4

i − εi T4
i )+

6

T2
i

(t5
i − εi T5

i )
)

2Note: in the more trivial case that the eCMP is supposed toremainat a certain eCMP waypoint during a “transition”
phase, that eCMP waypoint is simply used as start and end point in equations (5.34)-(5.36)
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with γi = 1− 6 b
Ti

+ 12b2

T2
i

. To determine the actual solution for the DCM trajectories,the DCM

trajectory are designed to nominally come to a stop at thenprev-th previewed VRP waypoint, i.e.,
ξre f,end,nprev−1(Tnprev−1) = rvrp,re f,end,nprev. This means that the robot “thinks” it will come to a
stop afternprev steps. Yet, due to the receding horizon, this terminal constraint is not forcingly
required to ever be reached. Given the terminal constraint and using (5.40), the DCM trajectories
are iterated backwards from the final (i.e.(nprev−1)-th) to the first transition phase3. For all future
steps other than the current one, it is sufficient to evaluate(5.40) for ti = 0, i.e.,

ξre f,ini,i = ξre f,i(0) = rvrp,re f,ini,i + ε0,i (ξre f,end,i −rvrp,re f,ini,i )+s0,i (rvrp,re f,end,i −rvrp,re f,ini,i )
(5.42)

whereε0,i = e
−Ti

b ands0,i = si(ti = 0). In the presented backwards iteration, the final DCM refer-
ence position of the(i −1)-th transition phase is thei-th initial DCM reference position:

ξre f,end,i−1 = ξre f,ini,i . (5.43)

Using (5.42) and (5.43) as backward iteration, all “end of step” reference DCMsξre f,end,i are found
until the first one. The first “end of step” reference DCMξre f,end,1 is used in (5.40) to compute the
DCM reference positionξre f,1(t1) for the current time in transitiont1 ∈ [0,T1]:

ξre f,1(t1) = rvrp,re f,ini,1 + ε1(t1) (ξre f,end,1 −rvrp,re f,ini,1)+s1(t1) (rvrp,re f,end,1 −rvrp,re f,ini,1)
(5.44)

With ξre f,1(t1), the current VRP referencervrp,re f,1(t1) (computed from (5.34) and (5.38)). These
DCM reference trajectories are drawn blue in figure5.5. With (5.40), the current DCM reference
velocity can be computed as

ξ̇re f,1(t1) =
1
b
(ξre f,1(t1)−rvrp,re f,1(t1)) . (5.45)

The current DCM reference positionξre f,1(t1) and velocityξ̇re f,1(t1) are used in the DCM tracking
controller, which will be presented in the next section.

5.3.2 Three-dimensional DCM tracking control

By choosing the deviation∆x = x− ξ of the CoM from the DCM and the DCM error∆ξ =
ξ−ξre f,1 as new states, the open-loop system dynamics (5.31) can be rewritten as

[
∆ẋ
∆ξ̇

]
=

[
−1

b −1
b

0 1
b

] [
∆x
∆ξ

]
+

[
rvrp−ξre f ,1

b
rvrp,re f ,1−rvrp

b

]
, (5.46)

wherervrp is the control input. Note that the matrix elements±1
b could be replaced by matrices

B−1, which might assign different dynamics to each spatial direction. In this work, all spatial
directions are treated the same, such that the scalar notation is chosen. To stabilize the open-loop
dynamics (5.46), the following feedback controller is applied:

rvrp,des= rvrp,re f,1+[r1 r2]

[
∆x
∆ξ

]
, (5.47)

which with (5.45) leads to the following closed-loop dynamics:
[

∆ẋ
∆ξ̇

]
=

[ r1−1
b

r2−1
b

− r1
b − r2−1

b

]

︸ ︷︷ ︸
Ax,ξ

[
∆x
∆ξ

]
+

[
−ξ̇re f,1

0

]

︸ ︷︷ ︸
∆ f eed f orward

. (5.48)

3As mentioned above: thei-th transition phasedenotes the transition from thei-th to the(i+1)-th contact point.
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The eigenvalues of the system matrixAx,ξ are

λ1,2 =
r1− r2 ±

√
r2
1−2 r1 r2+(r2−2)2

2 b
. (5.49)

Solving for the control gainsr1 andr2 yields

r1 = (1+b λ1)(1+b λ2) (5.50)

r2 = 1+b2 λ1 λ2 , (5.51)

which can be seen as pole placement equations. Forλ1 < 0 andλ2 < 0 the system is stable. This
choice for the control gains leads to the following VRP feedback control law:

rvrp,des= rvrp,re f,1+(1+b λ1)(1+b λ2) (x−ξ)+ (1+b2 λ1 λ2) (ξ−ξre f,1) , (5.52)

which can be transformed into a desired CoM force via (5.32) as

Fcom,des=−mλ1 λ2 (x−ξre f,1) + m(λ1+λ2) ẋ +
m
b
ξ̇re f,1 . (5.53)

Comparison to second order force-based tracking controlle rs

Equation (5.53) shows certain similarities to standard force-based tracking controllers. For the
pureregulationcase (i.e.,ξre f,1 = xre f andξ̇re f,1 = 0), the desired force becomes

Fcom,des=−mλ1 λ2︸ ︷︷ ︸
kp

(x−xre f) + m(λ1+λ2)︸ ︷︷ ︸
−kd

ẋ , (5.54)

i.e., the controller shows the exact same behavior as a standard force-based PD regulation con-
troller. For that case, any desired PD-gainskp andkd can be achieved4.

In some use cases, the DCM-based controller might be used totrack a general second order
CoM reference[xre f , ẋre f , ẍre f ]. To this end, the input reference is converted into corresponding
DCM referencesξre f,1 =xre f +b ẋre f andξ̇re f,1 = ẋre f +b ẍre f , which inserted into (5.53) yields

Fcom,des=−mλ1λ2︸ ︷︷ ︸
kp

(x−xre f) + m(λ1+λ2)︸ ︷︷ ︸
kd

(ẋ− ẋre f ) + mẍre f +
m
b
(1+bλ1)(1+bλ2) ẋre f

︸ ︷︷ ︸
Fẋre f

.

(5.55)
It turns out that the corresponding controller differs froma standard force-based PD tracking
controller by the termFẋre f . That extra term would corrupt the desired tracking behavior. In order
for that term to vanish (i.e.Fẋre f = 0), one of the two eigenvaluesλ1 andλ2 has to be chosen as
−1

b. Here,λ1 =−1
b andλ2 =−kξ is chosen, such that (5.55) turns into

Fcom,des=−
m kξ

b︸ ︷︷ ︸
kp

(x−xre f) − m
(1

b
+kξ

)

︸ ︷︷ ︸
kd

(ẋ− ẋre f) + m ẍre f , (5.56)

4Note: PD gains that correspond to imaginary eigenvalues maybe undesirable since they can lead to overswinging
transient responses. This might make the desired eCMP leavethe base of support and thus conflict with feasibility.
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which achieves the desired tracking behavior for a second order CoM reference trajectory. It has
to be noted though that for the particular choice ofλ1 =−1

b the PD gainskp andkd arecoupled:

kd = b kp+
m
b

. (5.57)

Note that (forkp > 0) a lower bound for the damping gainkd,min =
m
b exists. In practical appli-

cations this may cause problems since the sensitivity against noise in the CoM velocity estimate
cannot be eased by choosing arbitrarily low damping gainskd.

Specific choice of system eigenvalues

As shown in the previous section, while arbitrary eigenvalues for the system matrixAx,ξ from
(5.48) may be chosen theoretically, for proper tracking of a second order CoM reference one of
the eigenvalues has to be chosen asλ1 = −1

b. As shown later, the same choice is desirable for
the DCM controller since other choices would lead to deviations from the desired DCM tracking
dynamics. To this end, the left hand side of (5.48) is set to zero and - using the control gainsr1

andr2 from (5.50) and (5.51) - solved for the steady state deviations

[
∆x
∆ξ

]

steadystate

=

[
−b −b

(1+bλ1)(1+bλ2)
bλ1λ2

λ1+λ2+bλ1λ2
λ1λ2

]

︸ ︷︷ ︸
A−1

x,ξ

[
−ξ̇re f,1

0

]

︸ ︷︷ ︸
∆ f eed f orward

. (5.58)

It turns out that for the steady state DCM error∆ξsteadystateto vanish, one of the two eigenvalues
has to be chosen as−1

b. This is the exact same condition as the one from the previoussection on
second order CoM trajectory tracking. Againλ1 = −1

b andλ2 = −kξ are chosen. This leads to
new control gainsr1 = 0 andr2 = 1+b kξ . The closed-loop system dynamics (5.48) becomes

[
∆ẋ
∆ξ̇

]
=

[
−1

b kξ
0 −kξ

]

︸ ︷︷ ︸
Ax,ξ

[
∆x
∆ξ

]
+

[
−ξ̇re f,1

0

]

︸ ︷︷ ︸
∆ f eed f orward

. (5.59)

The first row of (5.59) can also be expressed asẋ=−1
b (x−ξ). This is equivalent to the naturally

stable CoM dynamics (5.21) that is not affected by the controller. In contrast, the instable DCM
dynamics (5.30) is stabilized which results in the following stable first order dynamics:

ξ̇ − ξ̇re f,1︸ ︷︷ ︸
∆ξ̇

=−kξ (ξ − ξre f,1︸ ︷︷ ︸
∆ξ

), (5.60)

It is obvious that forkξ > 0 the system is stable. It has to be noted, that this stabilityanalysis
neglects physical limitations such as limited base of support. The VRP control law (5.52) becomes

rvrp,des= rvrp,re f,1+(1+b kξ ) (ξ−ξre f,1︸ ︷︷ ︸
∆ξ

) . (5.61)

Just as in the corresponding Capture Point control law (5.19), the desired VRP is located at a
certain deviation from the current VRP reference positionrvrp,re f,1. Again, the DCM error∆ξ is
scaled by a factor(1+b kξ )> 1 and added to the nominal VRP reference, which yields the desired
DCM convergence. As the DCM error∆ξ converges asymptotically, also the commanded VRP
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rvrp,desand its corresponding eCMPrecmp,desconverge to their referencesrvrp,re f,1 andrecmp,re f,1

after a perturbation. The force-based DCM control law (5.53) can finally be written as

Fcom,des = −
m kξ

b
(x−ξre f,1) − m

(1
b
+kξ

)
ẋ +

m
b
ξ̇re f,1

=
m
b2

(
x−rvrp,re f,1− (1+b kξ )(ξ−ξre f,1)

)
. (5.62)

Finally, the desired external (e.g. leg-) forceFext,desbecomes

Fext,des=
m
b2

(
x−rvrp,re f,1− (1+b kξ )(ξ−ξre f,1)

)
−Fg . (5.63)

Note that the only equations that are finally needed are (5.34), (5.42), (5.43) and (5.44) for three-
dimensional DCM trajectory generation and (5.63) for force-based DCM tracking control. They
can easily be computed in real-time on any computer.

If no actuation limits are violated and no unknown perturbations occur, the DCM tracking con-
troller (5.63) is asymptotically stable. In [30], its robustness w.r.t. CoM error, unknown external
perturbation forces, unknown force lag and errors in the total robot mass estimation was examined.
It turns out that the nominal controller is powerful and well-behaved even under the mentioned im-
perfections. However, in case of severe perturbations, thephysical constraints of the robot, such
as its limited base of support, may corrupt the nominal performance of the controller and lead to
divergence of the robot state. The next section introduces amethod for footstep adjustment that
considerably increases the robustness of the robot gait.

5.3.3 Increasing walking robustness via step adjustment

Depending on the perturbation at hand, the whole-body controller presented in chapter4 translates
the desired forceFext,des from the DCM controller (5.63) into a leg forceFleg that either doesn’t
or does produce a torqueτcom around the CoM. These two modulation modes are referred to as
“ankle strategy” and “hip strategy”, although in both casestypically all robot joints are involved.
However, in case of continuous or strong perturbations, thedesired eCMPs (corresponding to the
desired VRPs from (5.61)) are not necessarily feasible, i.e., within or close to thebase of support.
Thus, modification of eCMP within (or close to) the current and future preplanned bases of support
may not suffice to keep the robot’s CoM from diverging. Unlikethe CoP, it is physically feasible
for the eCMP to (temporarily) leave the base of support. Yet,the associated torque around the CoM
leads to growing angular momentum and thus clashes with the body posture task (see chapter4)
in the long run. Therefore, the eCMP should usually be held inside the base of support, which in
turn limits the possible controls actions.

An additional powerful stabilization mechanism is the adjustment of footsteps, i.e., the positions
of one or more future footsteps - or more generally speaking:contact points - are adjusted such
that the new contact situation is more suitable for stabilizing the given CoM state. Additionally, the
step adjustment should lead to fast and smooth recovery to the original reference trajectories and
preplanned contacts. To this end, in this section, a method for footstep adjustment (see Fig.5.7)
will be derived that leads to highly increased robustness against external perturbations.

The main idea here is to adjust the foot target locations in such a way that the new initial DCM
reference location at the moment of step transition (or moreprecisely: at the switch to the first
transition phase that is affected by the contact point adjustments) is equivalent to the previewed
DCM at that moment. To this end, the effect an arbitrary adjustment of the adjustable subset
of contact points on the corresponding initial DCM reference positionsξre f,ini,i is first computed
and then the achieved relation is inverted. It would be possible to use multiple different contact
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Figure 5.6: Stabilization strategies.

point adjustments, but for reasons of brevity and simplicity in the following derivation, this work
assumes that all adjustable contact points are adjusted by the same offset∆recmp (violett arrows
in Fig. 5.7). To distinguish adjustable contact points from non-adjustable ones, an adjustment
vectorvad j ∈ R

1×nc is defined that indicates for allnc contact points if they are adjustable (→
vad j,i = 1) or non-adjustable (→ vad j,i = 0). Foreach adjustablecontact point,∆recmpis added to
the corresponding initial and final eCMP positionsrecmp,re f,ini,i andrecmp,re f,end,i and recompute
equation (5.42). That way, all adjusted initial DCM reference positionsξre f,ini,ad justed,i (i.e., the
ones that incorporate the step adjustment∆recmp) can be computed via

ξre f,ini,ad justed,i = ξre f,ini,i +αi ∆recmp , (5.64)

where thei-th adjustment gainαi is denoted by

αi = vad j,i + ε0,i (vad j,i+1 αi+1 −vad j,i)+s0,i (vad j,i+1 − vad j,i) . (5.65)

That way allnc adjustment gainsαi are found by starting withαnc = 0 and propagating backwards.
As in (5.43), also the DCM reference is propagated backwards viaξre f,end,i = ξre f,ini,ad justed,i+1.
Equation (5.64) would return the adjusted initial DCMs if the step adjustment was known. As
mentioned above, here the goal is the opposite namely to find an appropriate step adjustment
∆recmp which corresponds to an adjustment of the original DCM trajectory. This adjustment
should lead to perfect cancellation of the previewed initial DCM tracking error∆ξini,FA,previewedat
the beginning of the first transition phase that is affected by the step adjustment (“FA” stands for
“first affected”). In other words: the starting pointξre f,ini,FA of the first affected DCM trajectory is
adjusted to equal the previewed DCM positionξini,previewedat the switching instant. That way any
DCM tracking error that has accumulated until the end of the last non-modifiable transition phase
will vanish (with respect to the adjusted DCM reference trajectory) after the step adjustment.
Reordering (5.64) and

∆ξre f,ini,FA = ξre f,ini,ad justed,FA −ξre f,ini,FA = ∆ξini,FA,previewed (5.66)
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yields the step adjustment (violett arrows in Fig.5.7)

∆recmp=
∆ξini,FA,previewed

αFA
=

ξ(t1)−ξre f,1(t1)

αFA
. (5.67)

Here, the assumption that the initial DCM error∆ξini,FA,previewed at the transition phase switch
(green arrows in Fig.5.7) will be equal to thecurrent DCM error ∆ξ(t1) = ξ(t1)− ξre f,1(t1) is
already inserted, i.e., the current DCM error is assumed to persist until the switch (see alsoξprev(t1)
(bright blue curve) in Fig.5.7). This assumption is a compromise between a more conservative
approach that might preview further grows of the DCM error (e.g. due to under-actuation) and
a more optimistic perspective that might preview DCM error convergence (e.g. following the
nominal DCM tracking control dynamics). That way, the chosen approach is less sensitive and
prone to noise as compared to the conservative approach while being less inert against actual
perturbations as compared to the optimistic approach. In any case, at the instant of transition
phase switching, the assumption∆ξini,FA,previewed= ∆ξ(t1) holds true, since for that instant the
preview horizon has decreased to zero. Equation (5.67) is the main result of this section. From the
current DCM tracking error∆ξ(t1) = ξ(t1)− ξre f,1(t1) the appropriate step adjustment∆recmp is
computed that allows for state recovery even after strong perturbations.

Despite the discrete step adjustment the proposed method leads to smooth and continuous
VRP/eCMP reference trajectories, because the step adjustment (and the corresponding adjustment
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of the swing foot trajectory) occursbeforethe first phase transition is initiated which is affected
by the adjustment (see also Fig.5.7). If no further perturbation occurs, DCM and VRP are
smoothly routed back to comply with the originally planned footsteps (or contact points).

5.3.4 Increasing robustness against strong continuous per turbations

To increase robustness, a third stabilization method is applied. With the methods derived so far, a
steady state deviation of both DCM and VRP (and eCMP accordingly) arises if the perturbation
force persists. The desired eCMP from the DCM tracking law may even become unfeasible (or
hard to produce for the QP) which may lead to a fall sooner or later. In this work, the solution is
to estimate the external force via a disturbance observer and explicitly account for it in the DCM
dynamics. The derivations for the DCM dynamics have to be adjusted accordingly to account for
the external force. That way, the DCM reference trajectory is modified such that it “leans against
the external force”, i.e., gravity compensates for the external force.

Momentum-based disturbance observer

In this section, a momentum-based disturbance observer will be derived which is based on the
ideas of DeLuca [94]. Newton’s 2nd law gives a relation between the linear momentump = m ẋ

and the total forceFcom acting on the CoM as

ṗ= Fcom= Fknown+Fperturb , (5.68)

i.e., the rate of change of the linear momentumṗ equals the forces acting on the CoM. The CoM
forceFcom is composed of a known partFknown and an unknown perturbation forceFperturb. If
Fperturb would be known (e.g. measured) it could directly be includedin the controller. This work
assumes that it cannot be measured directly. Therefore, it will be estimated using a momentum-
based observer. For bipedal walking the sum of forces actingon the CoM is typically assumed
to beFknown= Fext+Fg (i.e., the sum of all known external forces (e.g. leg forces)Fext and the
gravitational forceFg). For brevity, the combined expressionFknown will be used in this section.
Equation (5.68) is reused for the observer:

ˆ̇p= Fknown+ F̂perturb . (5.69)

Here, ˆ̇p is the corresponding estimated rate of change of linear momentum andF̂perturb denotes
the estimated perturbation force. Since no a priori knowledge aboutFperturb exists, it is - for
the observer design - assumed to be constant, i.e., its derivative to be zero. This motivates the
formulation of the following desired observer dynamics:

˙̂
F perturb= kF (Fperturb− F̂perturb) , (5.70)

which for kF > 0 describes a stable PT1 behavior, i.e., the estimated perturbation forceF̂perturb

converges towardsFperturb if the latter is constant and follows it with a lag otherwise.An ex-
act and lag-free estimation of non-constant perturbation forces would require knowledge on their
derivatives and is thus not considered here. Integrating the desired behavior (5.70) yields

F̂perturb(t) = kF

(∫ t

0
Fperturb(t) dt −

∫ t

0
F̂perturb(t) dt

)
. (5.71)

The actual and estimated momentum can be computed via integration of (5.68) and (5.69):

p(t) = p0+
∫ t

0
(Fknown(t)+Fperturb(t)) dt (5.72)
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Figure 5.8: Overview of the momentum-based disturbance observer.

and

p̂(t) = p0+

∫ t

0
(Fknown(t)+ F̂perturb(t)) dt . (5.73)

Here,p0 = m ẋ(0) denotes the initial linear momentum. Combining (5.72) and (5.73) yields
p(t)− p̂(t) =

∫ t
0Fperturb(t) dt−

∫ t
0 F̂perturb(t) dt, such that (5.71) can be written as

F̂perturb= kF (p− p̂) = kF (m ẋ− p̂) . (5.74)

Here, the time dependancy “(t)” was omitted for brevity andp= m ẋ was substituted. Equations
(5.73) and (5.74) are the actualobserver equations. The overall observer design is outlined in
Fig. 5.8. In a discrete system, the observer equations have to be discretized, which yields

F̂perturb,k = kF (m ẋ− p̂k) (5.75)

and
p̂k+1 = p̂k+(Fknown+ F̂perturb,k) ∆t . (5.76)

Here,∆t denotes the sampling time. Fork= 0, p̂k is initialized asp̂0 = m ẋ(0).
In this section, a momentum-based disturbance observer wasderived that allows to estimate

external perturbations and thus to increase the robustnessof the overall control framework. The
two finally required observer equations (for discrete sampling times) are (5.75) and (5.76). Note
that for practical purposes, it makes sense to limit the estimated force to a maximum to avoid
over-compensation, e.g. in the case when the robot is perturbed by a rigid obstacle.

Leaning against perturbation forces

If the perturbing forcesFperturb are known (or estimated,̂Fperturb) they can be explicitly included
in the definition of the Virtual Repellent Point (VRP). Equation (5.28) can be adjusted accordingly:

rvrp = recmp+[0 0∆zvrp]
T −

b2

m
Fperturb (5.77)

The force scaling term can also be written asb2

m =
∆zvrp

m g ≥ 0. The negative sign in front of this term

implies that the VRP is shifted towards the perturbing force. Note: the nominal offset[0 0∆zvrp]
T

accounting for gravity would also be achieved if the gravitational force was inserted as “perturbing
force”, i.e.,Fperturb = Fg = [0 0 −m g]T . Likewise, if an estimate of the perturbing force is

available, the original VRP reference trajectoriesrvrp,re f,i from (5.34) are shifted by−b2

m F̂perturb

rvrp,re f,i,shi f ted= rvrp,re f.i −
b2

m
F̂perturb , (5.78)
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5 Bipedal walking control based on Divergent Component of Motion

i.e., they are shifted towards the perturbing force and the robot “leans into” the perturbation. Here,
F̂perturb is used instead ofFperturb to indicate that in this section the estimated force is used instead
of the actual unknown perturbing force. For brevity time dependancies are omitted in this section.
While the original DCM dynamics (5.30) remains unaffected, due to the shift of the VRP refer-
ences in (5.78), also the original DCM referencesξre f,i from (5.40) are shifted by−b2

m F̂perturb:

ξre f,i,shi f ted= ξre f,i −
b2

m
F̂perturb . (5.79)

For a given perturbing force estimateˆ̇F perturb, (5.79) could be differentiated to yield

ξ̇re f,i,shi f ted= ξ̇re f,i −
b2

m
ˆ̇
F perturb . (5.80)

Then, the following DCM tracking dynamics (similar to (5.60)) could be asked for:

ξ̇− ξ̇re f,1,shi f ted=−kξ

(
ξ−ξre f,1,shi f ted

)
, (5.81)

which would track the shifted DCM trajectories asymptotically for kξ > 0. The following ideal
DCM velocity would correspond to the ideal DCM tracking behavior (5.81):

ξ̇ideal = ξ̇re f,1−
b2

m
ˆ̇
F perturb−kξ

(
ξ−ξre f,1+

b2

m
F̂perturb

)
. (5.82)

Since no estimate of the perturbation force derivativeˆ̇
F perturb is available in the presented setup,

it is assumed to be zero, which yields the new desired DCM velocity

ξ̇des= ξ̇re f,1 − kξ

(
ξ − ξre f,1+

b2

m
F̂perturb

︸ ︷︷ ︸
−ξre f,1,shi f ted

)
. (5.83)

Using this desired DCM rate and with (5.70), the following closed-loop dynamics is found:
[
˙̂
F perturb

∆ξ̇

]
=

[
−kF 0

− kF b2

m −kξ

] [
F̂perturb

∆ξ

]
+

[
kF

kF b2

m

]
Fperturb . (5.84)

The DCM error∆ξ = ξ− ξre f,1,shi f ted is here defined as the difference between the actual DCM
and the shifted DCM reference from (5.79) and∆ξ̇ denotes its derivative. The eigenvalues of the
system matrix are stable forkF > 0 andkξ > 0 such that for a boundedFperturb the preconditions

for bounded input bounded output (BIBO) stability are fulfilled. With rvrp,des= ξ−b ξ̇des from
(5.30), the desired VRP, that corresponds to the desired DCM rate from (5.83), is found as

rvrp,des= (1+kξ b) ξ − kξ b ξre f,1 − b ξ̇re f,1 +
kξ b3

m
F̂perturb . (5.85)

Substituting (5.85) in (5.33) and with (5.45), the desired external force, that includes the compen-
sation of the estimated external force, can be written in thefollowing condensed form:

Fext,des=
m
b2

(
x − rvrp,re f,1 − (1+b kξ )(ξ−ξre f,1)

)
− Fg − (1+b kξ ) F̂perturb . (5.86)

Note that the original non-shifted DCM referenceξre f,1 from (5.40) is used here. When comparing
(5.86) to (5.63), the effect of the perturbation force estimate on the forcecontrol law is apparent.
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Figure 5.9: Simulation of a Prismatic Inverted Pendulum [29]. Walking direction: left to right.
The biped is modeled as a point mass with two point feet. The red lines denote a
lateral disturbance corresponding to 10 % of the robot’s weight. The pink lines denote
a horizontal and a vertical push, each corresponding to a sudden velocity change of
1 m/s. The black points on the ground denote the preplanned footstep locations.

Comparison to integral controllers

Standard integral controllers (combined with PD components in a PID controller) typically in-
crease the robustness against external perturbations. Forconstant or slowly changing perturba-
tions, they typically lead to good tracking of the desired reference trajectories with no (or low)
steady state deviations. In case of a constant external force for example, the integral part of a
corresponding force PID controller gradually builds up a counterforce which compensates for the
perturbation force. Yet, such an integral compensation comes with a drawback when applied to
walking robots with limited support. The compensation of strong perturbations may correspond to
eCMPs far outside the base of support, which would require high and continuous rates of change
of angular momentum or otherwise be unfeasible, i.e., the desired force could not be produced.

In contrast, the method presented in this chapter shifts thenominal VRP and DCM trajectories
such that the robot “leans against” the external force. Thatway gravity helps compensating for
the external perturbation, while the commanded eCMP converges back to the nominal one, which
increases the system’s robustness w.r.t. new perturbations.

5.4 Evaluation of DCM-based walking

5.4.1 Prismatic Inverted Pendulum simulations (point mass )

To evaluate the performance of the DCM controller (5.63), which the walking in this work is
based on, simulations based on the Prismatic Inverted Pendulum model [29] (the robot is modeled
aspoint masswith two masslesspoint feet) were carried out. For DCM planning and feedback
control, the methods from Sec.5.3 are used. Yet, for simplicity, instantaneous transitions of the
eCMPs from one foot to the next are simulated (no double support). Also, these transitions
are assumed to be impact-free. Figure5.9 shows a screenshot of a simulation, in which the
robot traverses a crater. The stepping time is set to 0.5 seconds. The modeled mass is 60kg.
The approximate “average height” of the CoM over the ground is set to∆zvrp = 0.8m. The
surface height varies between plus 50cm and minus 10cm. An unknown lateral disturbance of
58.86 N (10 % of robot’s weight) - active fromt = 2.25s till t = 6.75s - was perturbing the
robot. Additionally, att = 2.75s andt = 3.75s the robot suffered lateral and vertical pushes, each
resulting in a sudden velocity change of 1 m/s.

The desired footprints are preplanned on the known three-dimensional ground surface (black
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Figure 5.10: Appropriate step adjustment for point-foot robots on 3D ground surface.

points in the figure)5. Due to the model assumptions (point mass and point foot), only the direction
CoM-to-foot is feasible for the external forces, while the other two spatial directions are unactuated
(robot follows its unstable natural dynamics). Therefore,the desired eCMPrecmp,des has to be
projected via

recmp, f eas= x+ux, fu
T
x, f (recmp,des−x) (5.87)

whererecmp, f eas is the best feasible eCMP andux, f is the unit vector pointing from the CoM to
the point foot. To comply with the constraint that the feet can only push the CoM off, desired
eCMPs “above” the CoM are projected onto the CoM itself, resulting in zero external force (i.e.
free-falling robot). To compensate for the lack of controllability, the robot adjusts its target
location for the subsequent step (see Fig.5.10) using the method presented in Sec.5.3.36.
Throughout each stance phase, the current state is numerically integrated to provide estimates
for the initial DCM ξini,est,2 and CoMxini,est,2 at the step transition. Reordering (5.42), the ideal
VRP rvrp,re f,des,2 (and the corresponding eCMPrecmp,re f,des,2) is computed, which would shift
the DCM from the estimated initial DCMξini,est,2 to the final desired DCMξre f,end,2 of that step
within the next stepping time (dashed blue line in Fig.5.10). The intersectionrecmp,re f,ad j,2 of
the linexini,est,2-to-recmp,re f,des,2 with the ground is chosen astarget locationfor the adjusted
step. The adjusted nominal VRPrvrp,re f,ad j,2 is found∆zvrp further above. Withrvrp,re f,ad j,2 and
ξre f,end,2, the desired initial DCMξre f,ini,ad j,2 is computed via (5.42). Now, the adjusted DCM
reference (solid blue line in Fig.5.10) is computed via (5.40) and (5.45). This step adjustment
has two beneficial properties: i) Since the initial commanded eCMPrecmp,des,ini , computed from
the initial DCM error∆ξini,2 via (5.61) and (5.28), is perfectly in the actuated direction (line
CoM-to-foot, note parallelisms), good convergence in the beginning of the subsequent step

5Note that online planned footsteps could be handled by the control framework as well.
6As mentioned above, constant eCMP reference positions and instantaneous transitions between them were chosen

for the point-mass simulations.
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Figure 5.11: Prismatic Inverted Pendulum simulation. Top:desired (black) and real DCMs, Bot-
tom: desired (point foot position, black) and real eCMPs

is assured. ii) If the DCM error converges to zero, the commanded eCMP becomes perfectly
consistent with the point-foot constraint.

Figure5.11presents the achieved DCM and eCMP tracking. The robot was able to compensate
for the perturbations. After the perturbations, the desired foot locations were tracked very well
after a couple of steps. Note that in this simulation neithera finite-sized foot nor torques around
the CoM were available, showing the robustness of the proposed underlying control laws and the
proposed step adjustment method.

Other simulation setups including (unknown) constant and impulsive perturbations in different
directions as well as mass estimation errors also showed a very robust performance of the simu-
lated robot. The robustness increases for shorter times persteptstepand bigger DCM gainskξ .

5.4.2 Whole-body simulations and experiments

The proposed DCM trajectory generator and tracking controller from sections5.3.1and5.3.2were
thoroughly tested in numerous simulations and experimentswith DLR’s humanoid robot TORO
( [1,95], see Fig.5.14, left) and IHMC’s Atlas robot [96]. The following sections describe several
different whole-body simulations and experiments.

Whole-body simulations

The walking algorithms, described in this thesis, were initially based on Capture Point (i.e.
the two-dimensional equivalent of the DCM, see Sec.5.1) control that was embedded into an
admittance-based whole-body controller. Toro was operated using position control, while an
admittance controller (see [25] for details) was used to achieve the required ZMP control. After
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5 Bipedal walking control based on Divergent Component of Motion

Figure 5.12: OpenHRP3 simulation [2] of DLR’s humanoid robot TORO. Walk-
ing over a set of stairs of variable height. (step height differences:
[+12,+12,+12,−12,−12,−12,+10,+5,+3,−18] cm)

the extension of the concept of Capture Point to the three-dimensional DCM, the corresponding
controllers were adjusted. Figure5.12shows Toro walking over a set of stairs in OpenHRP3 [2]
while using 3D DCM and admittance control. Figure5.13 presents the corresponding DCM
and eCMP trajectories, which are tracked precisely. Note the vertical components (blue) that
smoothly follow the stair surface.

During the preparations for DARPA’s Virtual Robotics Challenge (VRC) [30, 81], two
DCM-based trajectory generators were developed [30, 81] (the DCM reference trajectory
generator presented in Sec.5.3.1is an advancement of these original generators). Based on these
walking pattern generators, the simulated Atlas robot achieved a maximum step length of up to
70 cm (see Fig.5.15 (left)) in both IHMC’s simulation environment [97] and the official VRC
simulator Gazebo [98].

Figure5.14, right, show a simulation, in which Toro is subject to an unknown sidewards pointing
perturbation force. As shown in the lower plot in Fig.5.16, this force continuously grows from 0 to
150 N within ten seconds. The disturbance observer presented in section5.3.4is used to estimate
the perturbation force. Toro is well able to counteract thisperturbation by leaning towards it. The
upper plot in Fig.5.16shows the three-dimensional DCM tracking and the corresponding CoM
motion. In they-direction, the leaning of the DCM towards the perturbationbecomes apparent.

Walking experiments

The Capture Point (CP) based walking controller, as presented in the author’s early publications
[24, 25] and recapitulated in Sec.5.1, was extensively tested in hardware experiments, including
online obstacle avoidance [99] and foot trajectory optimizations [100], and applied in different
demonstration scenarios. Figure5.17shows a plot of corresponding ZMP, CP and CoM trajecto-
ries from experiments in which Toro was controlled via a joystick input. The CP references are
tracked well, while the CoM smoothly follows the actual DCM.The desired ZMPs are tracked
well by the underlying ZMP controller.

The same algorithms as for the Virtual Robotics Challenge (VRC) were also used by team
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Figure 5.13: OpenHRP3 simulation of humanoid robot TORO. Top: desired (black) and real
DCMs, Bottom: desired (black) and real eCMPs

IHMC for the DARPA Robotics Challenge Trials [3] and Finals [4]. Figure 5.18 shows an
experimental result of Atlas walking on flat ground while using the Continuous Double Support
(CDS) trajectory generator presented in [30]. The plot shows a series of seven steps. It displays
estimated and desired eCMP and DCM trajectories inx (forward) andy (sideward) direction. The
estimated DCM and eCMP are attained via a Kalman filter [81] and by mapping joint torques
to ground reaction forces. Apart from deviations due to impacts at the foot touch-downs, both
eCMP and DCM trajectories are tracked well. The eCMP transition during double support is
continuous, resulting in continuous leg forces and joint torques. The whole-body controller used
by IHMC for these experiments is similar to the one presentedin chapter4, the most prominent
difference being that IHMC’s problem formulation was fullydetermined, in contrast to the
over-determined formulation in this work.

Experiments that evaluate the DCM controller, embedded into the WBC control framework
presented in chapter4, are subject to the author’s current research. Figure5.19 shows a first
result of Toro taking a single step using WBC-embedded DCM control. Due to problems with
the state estimation, the actual DCM trajectories are shaky. Apart from this effect, the desired
DCM trajectories (black) are tracked very well, which is a promising intermediary result. Stable
torque-based walking is expected to be achieved in the near future. While the Capture Point and
admittance-based walking algorithm is executed on the realrobot with a 1ms rate, the torque-based
WBC framework is running at three different rates: the dynamics computations (based on [70])
run in a 3ms rate, the QP-based WBC runs at a 2ms rate and the high level torque controller uses
a 1ms rate.
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5 Bipedal walking control based on Divergent Component of Motion

Fperturb

Figure 5.14: left: humanoid robot Toro and author; right: Toro fighting against perturbation force
in OpenHRP simulation.

Figure 5.15: left: Atlas robot [96] doing 70 cm steps in IHMC’s simulation environment (Simula-
tionConstructionSet [97]) using toe-off motion.
right: Physical Atlas robot walking over cinder blocks during DRC Trials.
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CHAPTER 6

Bipedal running based on Biologically Inspired Dead-beat control

stepping stones foot trajectories

CoM trajectory force profiles

Figure 6.1: Bipedal point-mass model running on 3D steppingstones based on Biologically
Inspired Deadbeat (BID) control.

In terms of locomotion speed, bipedal running typically exceeds the locomotion form of walking,
as presented in the previous section, considerably, i.e. for certain applications bipedal humanoid
running may be of interest. Humans and certain running birdshave developed astonishing mech-
anisms and control approaches that allow for fast and agile running gaits. In the research pre-
sented in this thesis, inspired by human running experiments in a gait laboratory, a new concept
for bipedal running, the so called Biologically Inspired Deadbeat (BID) control, was developed,
which is a major contribution with regard to the state of the art. BID control encodes the CoM mo-
tion of a robot and the corresponding leg forces during stance via polynomials and uses intuitive
boundary conditions as design parameters. All required equations can be solved analytically. This
results in significant advantages over the use of the spring-loaded inverted pendulum (SLIP, [6])
for running, due to the non-linearity of the latter. This chapter will present the BID method in
detail.

6.1 Human running experiments as motivation

The main idea used in this chapter is todesign desired CoM trajectoriesthat produceapproxi-
mately natural GRF profileswhile fulfilling severalboundary conditions. It is well known that
some physical template models, such as the SLIP, generate ground reaction forces (GRF) similar
to the ones observed in human running. Back in 1985, Raibert stated in his book “Closed form ex-
pressions relating forward foot placement to net forward acceleration for the one-legged machine
are not known” [40]. The lack of closed form solutions e.g. for the SLIP motivates the search for
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Figure 6.2: Comparison of experimentally measured human leg forces (blue/green) and polyno-
mial approximations (red).

alternative ways of encoding the leg force (Fleg, equivalent to GRF). Figure6.2 shows a typical
GRF profile recorded during a human running experiment via a force plate. Except for the impact
phenomenon at the beginning and the lower slope in the end of stance, the human GRF profiles
can be approximated quite well by polynomials of order 2 in the vertical direction and of order 3
in the x−direction. Therefore, the original idea in [67] was to approximate the leg force profile
during stance via polynomials. The total forceFCoM acting on the CoM can be computed from the
leg forceFleg and the gravitational forceFg via

FCoM = Fleg+Fg = Fleg+mg . (6.1)

Here,m is the robot’s total mass andg = [0 0 −g]T denotes the gravitational acceleration vector.
The constant offset betweenFCoM andFleg in (6.1) and Newton’s 2nd law (CoM acceleration
ẍ = FCoM

m ) motivates - during stance - the use of a 4th order polynomialto encode the vertical
CoM positionzand 5th order polynomials to encode the horizontal CoM positionsx andy, as this
correlates to 2nd and 3rd order polynomials for the CoM accelerations ¨x, ÿ, z̈ and thus leg forces.
This polynomial encoding can be written as:




σ(t)
σ̇(t)
σ̈(t)


=




1 t t2 t3 t4 t5

0 1 2t 3t2 4t3 5t4

0 0 2 6t 12t2 20t3




︸ ︷︷ ︸



tT
σ (t)
tT

σ̇ (t)
tT

σ̈ (t)




pσ , σ ∈ {x,y,z} (6.2)

Here,tT
σ (t), t

T
σ̇ (t) andtT

σ̈ (t) denote the time-mapping row vectors that - for a given timet - map the
polynomial parameter vectorspσ to CoM positionsσ(t), velocitiesσ̇(t) and accelerations̈σ(t).
The last elements of the vectors are greyed out to indicate that they are only used for the horizontal
directions, but not for the vertical one.

6.2 Outline of BID control method

This work uses a preview of at least two upcoming stance and flight phases, as shown in Fig.6.3.
The desired relative apex and touch-down heights∆zapex,des and∆zTD,des are used as design pa-
rameters. They indicate how high over the floor the apex of each flight curve (i.e. ˙z= 0) should
be and at what CoM height the touch-down (TD) is supposed to happen.zf loor,i denotes the height
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6.3 CoM dynamics during flight

level of thei-th step. Another design parameter, used in this work, is thetotal stance timeTs (it
can vary from step to step), whereas the total flight timeTf results from the boundary conditions
chosen in section6.4.1. To keep track of the current running state, a state machine is used. It
switches from flight to stance, if the CoM is belowzTD = zf loor,i +∆zTD and the vertical velocity
is negative, and from stance to flight when the total stance time is over. A timer provides the time
in stancets ∈ [0,Ts] and the time in flightt f ∈ [0,Tf ]. They are reset at state transitions.

6.3 CoM dynamics during flight

Running is a locomotion pattern, which employs alternate flight and (single leg supporting) stance
phases. During flight, the CoM cannot be controlled, i.e. it follows its natural dynamics (parabolic
path through space). For a given timet, the CoM positionx(t) = [x(t),y(t),z(t)]T and velocity
ẋ(t) = [ẋ(t), ẏ(t), ż(t)]T can be computed as

x(t) = x0+ ẋ0 t +g
t2

2
, (6.3)

ẋ(t) = ẋ0+g t , (6.4)

wherex0 andẋ0 are the initial CoM position and velocity. One typical task in running control is to
achieve a certain apex height. The apex is the highest point in the ballistic flight curve, i.e. vertical
CoM velocity żapex= 0. Using this condition and the current vertical CoM velocity ż instead ˙z0 in
the third row of (6.4), the current time to apex∆tapex is found as

∆tapex=
ż
g

. (6.5)

The remaining time until touch-down (TD) is computed as

∆tTD = ∆tapex+

√
∆t2

apex+
2
g
(z−zTD) . (6.6)

Here, zTD = zf loor +∆zTD is the CoM height at which the touch-down (flight to stance transi-
tion) is previewed to happen. With (6.3), (6.4) and (6.6), the previewed touch-down state can be
precomputed for any CoM state[x, ẋ] as

[
xTD

ẋTD

]
=

[
x+∆tTD ẋ+

∆t2
T D
2 g

ẋ+∆tTD g

]
. (6.7)

In this work, the relative touch-down height is computed as

∆zTD = min(∆zTD,des, z−zf loor +
ż2

2g
−∆apex,TD,min) , (6.8)

i.e. nominally the desired relative touch-down height∆zTD,des is achieved, while in case of pertur-
bations a minimum height difference between apex and touch-down∆apex,TD,min is guaranteed and
the solution of (6.6) is assured to be real.

87



6 Bipedal running based on Biologically Inspired Dead-beatcontrol

zTD

zapex

∆z
T

D
,d

es

∆z
a

p
ex
,d

es

z

x
f1 f2

zf loor

x

xapex,0 xapex,1 xapex,2

xTD,1 xTD,2 xTD,3

flight 0 flight 1 flight 2stance 1 stance 2
TD1 TD2 TD3TO1 TO2

Figure 6.3: Preview of upcoming flight and stance phases (planar sketch) - used for design of
boundary conditions. For readability, a constant floor height zf loor is shown here.

6.4 Deadbeat control via boundary condition satisfaction

6.4.1 Vertical planning and boundary conditions

As mentioned above, the vertical CoM trajectory during stance is encoded via a 4th order poly-
nomial, i.e. it has 5 polynomial parameters. These can be derived using 5 boundary conditions.
Fig. 6.3 graphically displays the used preview of upcoming flight andstance sequences and the
corresponding boundary conditions. In this work, - for eachpreviewed contact phase - four linear
vertical boundary conditions are used that can be combined as




zTD,i

żTD,i

−g
−g




︸ ︷︷ ︸
bz,i

=




tT
z (0)
tT

ż (0)
tT

z̈ (0)
tT

z̈ (Ts,i)




︸ ︷︷ ︸
Bz,i

pz,i . (6.9)

Here, i denotes the index of the considered step andbz,i , Bz,i andpz,i denote the corresponding
boundary condition vector, boundary condition mapping matrix and vertical polynomial parameter
vector, respectively. The first two elements inbz,i imply that CoM position and velocity at the
beginning of stance equal the CoM touch-down state. The other two elements say that the CoM
acceleration at beginning and end of stance equals minus gravity, i.e. the vertical leg force is zero.

The general solution of the linear systemBz,i pz,i = bz,i is

pz,i =BT
z,i(Bz,i B

T
z,i)

−1 bz,i +rz,i p̃z,i . (6.10)

The (reduced) nullspace base vector1 rz,i ensures thatBz,i rz,i = 0. The whole (one-dimensional)
nullspace ofBz,i is represented by the scalar variable ˜pz,i . The vectorrz,i is computed as

rz,i =

[
−B−1

z,i,squareBz,i, f inal

1

]
, (6.11)

whereBz,i, f inal is the last column inBz,i , whileBz,i,squareconsists of all other columns. Equation
(6.9) encodes the fourlinear previously described vertical boundary conditions. The fifth bound-
ary condition used in this work is the apex heightzapex,i of the CoM during thei-th upcoming flight

1see Sec.3.5.4on reduced nullspace matrices.
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phase (see Fig.6.3). The vertical CoM state of thei-th take-off (at end of i-th stance timeTs,i) can
be computed via (6.2) as

zTO,i = tT
z (Ts,i) pz,i (6.12)

żTO,i = tT
ż (Ts,i) pz,i . (6.13)

With (6.3) and (6.5), thei-th apex height can be computed as

zapex,i = zTO,i +
ż2
TO,i

2g
. (6.14)

The sought-after parameter vectorpz,i has to correspond to the desired apex heightzapex,i,des, which
can be computed as

zapex,i,des= zf loor,i+1+∆zapex,des . (6.15)

Note that here the heightzf loor,i+1 of the upcoming step is used. Inserting (6.12) and (6.13) into
(6.14) leads to a quadratic equation in the unknown scalar variable p̃z

0 =
rT

z,i tż tT
ż rz,i

2g
p̃2

z,i +(tT
z rz,i +

tT
ż pz,i,0 tT

ż rz,i

g
) p̃z,i +

+
(tT

ż pz,i,0)
2

2g
−zapex,i,des + tT

z pz,i,0 (6.16)

The only valid solution to (6.16) (yielding positive vertical take-off velocities) is

p̃z,i =
2 żTD,i −gTs,i −Γ

4 T3
s,i

, (6.17)

Γ =
√

g(gT2
s,i −4 żTD,i Ts,i +8 (zapex,i,des−zTD,i))

Note: finally only (6.11) and (6.17) are necessary as inputs for (6.10) to compute polynomial
parameterspz,i for each previewed step that fulfill all desired vertical boundary conditions.

6.4.2 Horizontal planning and boundary conditions

In this work, the derivation for thex- and y-component is equivalent. The letterχ is used to
indicate horizontal quantities, i.e.χ ∈ {x,y}. For each previewed contact phase, the following five
linear horizontal boundary conditions are used:




χTD,i

χ̇TD,i

0
0

χTD,i+1,des




︸ ︷︷ ︸
bχ,i

=




tT
χ(0)
tT

χ̇(0)
tT

χ̈(0)
tT

χ̈ (Ts,i)

tT
χ(Ts,i)+Tf ,i t

T
χ̇(Ts,i)




︸ ︷︷ ︸
Bχ,i

pχ ,i . (6.18)

Here, bχ ,i , Bχ ,i andpχ ,i denote the horizontal boundary condition vector, boundarycondition
mapping matrix and polynomial parameter vector, respectively. As in Sec.6.4.1, the first two
elements ofbχ ,i imply that the initial CoM state is equal to the CoM touch-down state. The next
two elements assure that initial and final CoM acceleration are zero, i.e. horizontal leg forces are
zero. The fifth element - as intermediate control target - specifies the horizontal CoM touch-down
position χTD,i+1,des of the upcoming step. Since - in case of no perturbations - thehorizontal
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p̃χ 6= p̃∗χ p̃χ = p̃∗χ p̃χ 6= p̃∗χ

xTDxTDxTD

zf loor

Figure 6.4: Effect of ˜pχ on force ray focusing (lines of action).

velocity during flight is constant, the take-off state can bepropagated to each upcoming touch-
down position via

χTD,i+1,des= χTO,i +Tf ,i χ̇TO,i = (tT
χ ,i(Ts,i)+Tf ,i t

T
χ̇(Ts,i)) pχ ,i , (6.19)

The i-th time of flight Tf ,i is computed via (6.5) and (6.6). Note: zTO,i and żTO,i (used asz and
ż in (6.5) and (6.6)) depend on the vertical polynomial parameter vectorpz,i. Thus, the vertical
boundary conditions are solved before the horizontal ones.The general solution of (6.18) is

pχ ,i =BT
χ ,i(Bχ ,i B

T
χ ,i)

−1 bχ ,i︸ ︷︷ ︸
pχ,i,0

+rχ ,i p̃χ ,i . (6.20)

The nullspace base vectorrχ ,i is computed via the equivalent of (6.11). The horizontal directions
have one more polynomial parameter than the vertical one, i.e. one more degree of freedom
(DOF). This DOF, represented by the scalar ˜pχ ,i in (6.20), has an effect on the geometry of the
leg force rays in space (see Fig.6.4). Now, the goal is to find the value for ˜pχ ,i , which produces
the best possible focusing of leg forces, such that these arebest feasible for finite-sized (or even
point-) feet. To this end, for each previewed step, the time-dependent intersection pointxint,i =
[xint,i ,yint,i ,zf loor,i ] of the leg force with the floor is computed and the integral of the mean square
deviation from its mean valuexint,i is minimized. For a given time in the i-th stancets∈ [0,Ts,i ], its
horizontal components are

χint,i(ts) = χ(ts)−
fleg,χ ,i(ts)

fleg,z,i (ts)
(z(ts)−zf loor,i) (6.21)

= (tT
χ(ts)−

(tT
z (ts)pz,i −zf loor,i) t

T
χ̈(ts)

tT
z̈ (ts)pz,i +g

)

︸ ︷︷ ︸
dT

χ,i(ts)

pχ ,i .

Here, fleg,χ ,i(ts) and fleg,z,i(ts) are the horizontal and vertical components of the leg forceFleg,i and
z(ts) is the height of the CoM. The explicit solution to (6.10) is given by

pz,i = [zTD,i , żTD,i , −
g
2
, −2Ts,i p̃z,i , p̃z,i ]

T . (6.22)

Remember: the scalar nullspace variables ˜pz,i are given in (6.17). Although the horizontal poly-
nomial parameter vectorspχ ,i are not determined yet, - using the third and fourth line of (6.18) as
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constraints - they can be expressed as

pχ ,i =




pχ ,i,1
pχ ,i,2

0

−2Ts,i pχ ,i,5 −
10T2

s,i

3 pχ ,i,6
pχ ,i,5
pχ ,i,6




. (6.23)

Using (6.2) and (6.22), the termdT
χ ,i(ts) in (6.21) is expanded to

dT
χ ,i(ts) = [1, ts,�, t3

s , t
4
s , t

5
s ]+β (ts)

[0,0,�,6ts,12t2
s ,20t3

s ]

12 p̃z,i ts (Ts,i − ts)︸ ︷︷ ︸
fT

χ,i(ts)

, (6.24)

whereβ (ts) = zTD,i −zf loor,i + żTD,i ts−
gt2s
2 −2p̃z,iTs,i t3

s + p̃z,i t4
s . The� symbol indicates that the

corresponding term has no effect on the productdT
χ ,i(ts) pχ ,i due to the 0 in the third element of

pχ ,i and is thus not considered. Now, cancelling 2ts yieldsfT
χ ,i(ts) =

1
6p̃z,i (Ts,i−ts)

[0,0,�,3,6ts,10t2
s ].

When the productfT
χ ,i(ts) pχ ,i is evaluated, the term(Ts,i − ts) can be cancelled as well and the

product is equivalently written as

fT
χ ,i(ts) pχ ,i = [0,0,0,0,

−1
p̃z,i

,
−5
3p̃z,i

(ts+Ts,i)]

︸ ︷︷ ︸
f̆T

χ,i(ts)

pχ ,i . (6.25)

SettingfT
χ ,i(ts) = f̆T

χ ,i(ts) and�= 0 in (6.24), one finds

dχ ,i = [1 , ts , 0 , t3
s , t4

s +
−β (ts)

p̃z,i
, t5

s +
−5β (ts)

3p̃z,i
(ts+Ts,i)]

T . (6.26)

Now, the horizontal components of the mean intersection point xint,i = [xint,i ,yint,i ,zf loor,i ] can be
computed via

χ int,i =
1

Ts,i

∫ Ts,i

ts=0
χint,i(ts) dts =

1
Ts,i

∫ Ts,i

ts=0
dT

χ ,i(ts) dts
︸ ︷︷ ︸

eT
χ,i

pχ ,i . (6.27)

Here,eχ ,i is a constant vector. The simple form of (6.26) as compared to (6.24) facilitates the
integration which yields the following analytical solution for eχ ,i :

eχ ,i =




1
Ts,i

2
0

T3
s,i

4

zf loor,i−zTD,i−
żTD,i Ts,i

2 +
gT2

s,i
6

p̃z,i
+

T4
s,i

2
5Ts,i

2p̃z,i
(zf loor,i −zTD,i −

5żTD,iTs,i

9 +
7gT2

s,i

36 )+
19T5

s,i

18




(6.28)
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where p̃z,i is the scalar variable from (6.17). The deviation of thei-th time-varying intersection
point from its mean value is

∆χint,i(ts) = χint,i(ts)− χ int,i = (dT
χ ,i(ts)−eT

χ ,i)︸ ︷︷ ︸
kT

χ,i(ts)

pχ ,i . (6.29)

The square of the deviation at a given timets is

∆χ2
int,i(ts) = pT

χ ,i kχ ,i(ts) k
T
χ ,i(ts)︸ ︷︷ ︸

Lχ,i (ts)

pχ ,i . (6.30)

In order to obtain the mean square of the deviationχint,i,ms, 6.30is integrated once more and (6.20)
is inserted to achieve

χint,i,ms = pT
χ ,i

1
Ts,i

∫ Ts,i

ts=0
Lχ ,i(ts) dts

︸ ︷︷ ︸
Mχ,i

pχ ,i (6.31)

= rT
χ ,iMχ ,i rχ ,i p̃2

χ ,i +2rT
χ ,iMχ ,i pχ ,i,0 p̃χ ,i +pT

χ ,i,0 Mχ ,i pχ ,i,0 .

The analytical solution (6.28) facilitates the (also analytical) computation of matrixMχ ,i which is
finally found as

Mχ ,i =Φ f ocus,i T f ocus,i Φ
T
f ocus,i . (6.32)

Here, the matrixΦ f ocus,i is

Φ f ocus,i =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0

−
żTD,i

p̃z,i

g
2p̃z,i

2Ts,i 0 0
5

3p̃z,i

[
v1 v2 v3

]
5Ts,i

3 −2
3




, (6.33)

With v1 = (zf loor,i −zTD,i − żTD,iTs,i), v2 =
gTs,i

2 − żTD,i andv3 = 2p̃z,iT2
s,i +

g
2. All time integrals are

combined in

T f ocus,i =




T2
s,i

12
T3

s,i

12
3T4

s,i

40
T5

s,i

15
5T6

s,i

84
T3

s,i

12
4T4

s,i

45
T5

s,i

12
8T6

s,i

105
5T7

s,i

72
3T4

s,i

40
T5

s,i

12
9T6

s,i

112
3T7

s,i

40
5T8

s,i

72
T5

s,i

15
8T6

s,i

105
3T7

s,i

40
16T8

s,i

225
T9

s,i

15
5T6

s,i

84
5T7

s,i

72
5T8

s,i

72
T9

s,i

15
25T10

s,i

396




(6.34)

With the matrixMχ ,i and differentiating (6.31) with respect to ˜pχ ,i , the optimal parameter is found

p̃∗χ ,i =−
rT

χ ,i Mχ ,i pχ ,i,0

rT
χ ,i Mχ ,i rχ ,i

, (6.35)

which minimizes the mean square deviation as defined above. With (6.35), (6.20) turns into

pχ ,i = (I−
rχ ,i rT

χ ,i Mχ ,i

rT
χ ,i Mχ ,i rχ ,i

)

︸ ︷︷ ︸
Ωχ,i

BT
χ ,i(Bχ ,i B

T
χ ,i)

−1

︸ ︷︷ ︸
B+

χ,i

bχ ,i , (6.36)

92



6.4 Deadbeat control via boundary condition satisfaction

current state
x, ẋ
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Figure 6.5: CoM touch-down adjustment for foot targeting.

which directly maps the horizontal boundary conditionsbχ ,i to appropriate polynomial parameter
vectorspχ ,i (including best force focus). If - as in [67] - horizontal CoM touch-down target
positions (or similarly: take-off velocities) are used as boundary conditions, (6.36) provides the
solution to the problem.

6.4.3 Foot step targeting and leg cross-over avoidance

In [67], foot positions could not be controlled directly, which caused problems with leg cross-over
(see Fig.6.7). Also when precise foot placement is required - e.g. when running over stepping
stones as in Fig.6.1- the method failed to provide any guarantee of safe stepping. To address these
drawbacks, this work aims at an explicit solution for foot-step targeting. Settingχ int,i = χ f oot,i in
(6.27), and inserting (6.36), one can solve for the desired upcoming CoM touch-down position2

χTD,i+1,des, which corresponds to the desired foot locationχ f oot,i . Re-substituting this particular
χTD,i+1,des in (6.36) yields

pχ ,i = [(I − e⊕χ ,i e
T
χ ,i) Ωχ ,i Πχ ,i︸ ︷︷ ︸

ATD,χ,i

, e⊕χ ,i ]




χTD,i

χ̇TD,i

χ f oot,i


 . (6.37)

Here, ATD,χ ,i maps the i-th touch-down state topχ ,i and the specific pseudo-inverse

e⊕χ ,i =
Ωχ,i πχ,i

eT
χ,i Ωχ,i πχ,i

of eχ ,i maps thei-th foot position. The matrixΠχ ,i combines the first two

column vectors ofB+
χ ,i, while πχ ,i is its final column. Note: the third and fourth boundary

conditions in (6.18) are implicitly accounted for. Now, all previeweddesired footholds
χ f oot,i = χ f oot,des,i (excluding the first one) and the final take-off velocityχ̇TO,N = 0 will be used
as constraints and the first footholdχ f oot,1 (control variable) and all future horizontal polynomial
parameter vectorspχ ,i will be solved for, which yield perfect tracking of the future desired
footholds. By combining the touch-down state intoτχ ,i = [χTD,i , χ̇TD,i ]

T , (6.37) becomes

pχ ,i =ATD,χ ,i τχ ,i + e⊕i χ f oot,i . (6.38)

2This is whyχTD,i+1,deswas called an “intermediate control target” earlier.
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Figure 6.6: BID preview of Toro (displayed as stickman) running in OpenHRP. All desired foot
positions (except the first one) are previewed to be perfectly tracked.

Each upcoming touch-down state can be previewed as

τχ ,i+1 =

[
χTD,i+1

χ̇TD,i+1

]
=

[
tT

χ ,i(Ts,i)+Tf ,i tT
χ̇ (Ts,i)

tT
χ̇ (Ts,i)

]

︸ ︷︷ ︸
Si

pχ ,i . (6.39)

Starting fromi = 1 and propagating (6.38) and (6.39) forward, the following expression for the
polynomial parameter vector of theN-th (i.e. final) previewed stance phase is found:

pχ ,N =Gχ ,1 ATD,χ ,1 τχ ,1 + ∑
i=1..N

(Gχ ,i e⊕χ ,i χ f oot,i) . (6.40)

The matricesGχ ,i =Gχ ,i+1 ATD,χ ,i+1 Si are evaluated by starting withGχ ,N = I6x6 and iterating
backwards untili = 1. Now, with (6.2) and (6.40), the horizontal take-off velocity after the final
previewed stance phase is found as

χ̇TO,N = tT
χ̇(Ts,N) pχ ,N . (6.41)

To guarantee stability,̇χTO,N = 0 is chosen as terminal constraint, i.e. the controller presumes the
CoM to come to a full stop after the final previewed contact phase.
Note that in the same way for the computation of the final vertical polynomial parameter vector,
the terminal constraint ˙zTO,N = 0 is used instead of a desired apex height.
As mentioned above and shown in Fig.6.5, the terminal constraint and all desired foot targets
χ f oot,des,i are used as target quantities, other than the first one (whichis sacrificed in order to
serve as a control variable). Therefore, (6.40)-(6.41) are solved forχ f oot,1 which finally yields the
sought-after first foot placement

χ f oot,1 =
−tT

χ̇(Ts,N) (Gχ ,1 ATD,χ ,1 τχ ,1+η)

tT
χ̇(Ts,N)Gχ ,1 e

⊕
χ ,1

, (6.42)

η = ∑
i=2..N

(Gχ ,i e⊕χ ,i χ f oot,des,i) .
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Figure 6.7: Leg cross-over avoidance,
left: scheme (depicted for left pass), right: simulation output

Now all horizontal polynomial parameter vectorspχ ,i are solved for by alternately evaluating
(6.38) and (6.39). As foot positions in (6.38), χ f oot,i ∈ {χ f oot,1,χ f oot,des,2, ...χ f oot,des,N} are
used. During stance the first foot positionχ f oot,1 and the polynomial parameter vectorpχ ,1
(feed-forward) are frozen and the second footholdχ f oot,2 is used as control variable instead.
That way - even in face of unknown perturbations - the foot targets are continuously adjusted.
Equation (6.42) is adopted accordingly.

One feature of the presented framework is that due to the multi-step preplanning, both future
foot aim pointsχ f oot,1 andχ f oot,2 (i.e. the aim points of the left and right foot) are known at all
times, which facilitates foot trajectory generation. In this work, the foot trajectories are imple-
mented as polynomials. The achieved precise foot targetingis particularly interesting for running
over 3D stepping stones or other restricted surfaces.

An additional feature of precise foothold targeting is thatleg cross-over can be explicitly
avoided. This is especially helpful for running in sharp turns (see Fig.6.7). Therefore, the
originally preplanned footholds can be adjusted such that the left foot always passes by the right
foot on the left, and vice versa. At the same time, the Euclidean distance of the adjusted footholds
from the originally planned ones should be minimal. This way, the legs can be prevented from
twisting around each other. To achieve this goal, an adjustment heuristic as shown in Fig.6.7 is
used. In the shown example, four foot positions are previewed, i.e. two for each foot. The method
adjusts the second/third desired footstep (i.e. the projection shown in Fig.6.7, left, is applied
twice), such that the swing feet can safely swing from the first/second foothold to the third/fourth
one. The fourth foothold remains unchanged to achieve good long term tracking of the original
desired foot locations.

6.5 State feedback control

In the nominal case (no perturbations), the force profiles and foot aim points as derived in the
previous sections assure that - for any initial conditions -, after the first stance phase, all desired
boundary conditions from sections6.4.1 and 6.4.2 are fulfilled (deadbeat control). Therefore,
planning once per step or even pre-planning a whole sequenceof upcoming steps would be
sufficient. Yet, to cope with perturbations, this work proposes a state feedback control method,
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6 Bipedal running based on Biologically Inspired Dead-beatcontrol

which is based on continuous re-planning of the desired contact forces throughout both flight
and stance phases. During flight the previewed CoM touch-down state is updated (see Fig.6.8)
via (6.7). In contrast to [67] (no feedback during stance), during stance, the first take-off state is
predicted via [

σTO,1

σ̇TO,1

]
=

[
σ
σ̇

]

︸︷︷︸
f eedback

+

[
tT

σ (Ts,1)− tT
σ(ts)

tT
σ̇ (Ts,1)− tT

σ̇(ts)

]
pσ ,1

︸ ︷︷ ︸
preview

, σ ∈ {x,y,z} (6.43)

Here,tT
σ (t) andtT

σ̇ (t) are the time-mapping row vectors from (6.2). They are evaluated for the first
total stance timeTs,1 and the current time in stancets ∈ [0,Ts,1] to predict how much of an offset
is expected if for the remaining time in step the current force profile (encoded bypσ ,1) is applied.
This offset is added to the current measured state to predictthe take-off state, which in turn is used
to compute the upcoming CoM touch-down state. Note: after touch-down, the force profile of the
current stance phase is frozen and commanded to the robot as feed-forward. The main advantage
of the presented state feedback during stance is that the foot aim points are continuously updated
to avoid discontinuities in the foot reference trajectories.

During flight, the first upcoming foot position is one of thecontrol inputs(see (6.42)). Whilst all
other future footsteps are previewed to coincide with the desired foot target locations (see Fig.6.6),
the nominal position of the first foot is an output of the controller. Depending on the limitations
at hand (e.g. limited allowable supporting area) - this nominal foot aim point may have to be
projected to a feasible one, resulting in deviations from the nominal deadbeat behavior.

6.6 Guaranteeing leg force feasibility

The desired 3D force acting on the CoM can be computed for a given time in stancets as

FCoM,des(ts) = m



tT

ẍ (ts) px,1

tT
ÿ (ts) py,1

tT
z̈ (ts) pz,1


 , (6.44)

i.e. the polynomial of the first force profile is evaluated. The corresponding desired external (e.g.
leg-) forceFext,des is found by reordering (6.1):

Fext,des= FCoM,des−Fg . (6.45)

The polynomial parameters were chosen in order to achieve the best focus of the leg forces with
the ground. Yet, for physical robots feasibility is not guaranteed.

Point-mass point-feet model

One obvious example is when the robot is modeled as point-mass with point feet. In that case,
the leg force is constrained to point along the unit vectorux, f from CoM to point foot. As the
other two spatial directions are unactuated, the desired external (i.e. leg-) forceFext,des has to be
projected to the feasible direction3:

Fext, f = ux, fu
T
x, fFext,des . (6.46)

Assuming sufficient ground friction,Fleg, f can be safely commanded to the point-mass/foot model.

3Note: for more complex robots this projection may not be necessary.
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Articulated multi-body model

As in chapter5 on walking, the main idea of the BID control concept is to firstfocus on the
robot’s CoM dynamics and the problem of foot placement, which in the author’s view are the
key challenges of locomotion. Once CoM dynamics and foot placement are solved, they need to
be embedded into a more general control framework, such as the QP-based whole-body control
(WBC) framework presented in chapter4, to make them available for complex robots, such as
humanoids. The mentioned WBC framework tries to reconcile the specified tasks as best as
possible while guaranteeing feasibility. Note that feasibility here only relates to ground reaction
wrenches and joint torques, whereas stability or balance (depending on the physical limitations of
the given robot) cannot be guaranteed.

6.7 Enhancing kinematic feasibility

A major issue concerning the porting of BID control to kinematically restricted robot models (such
as humanoid robots) is that the BID controller does not naturally consider any kinematic limita-
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6 Bipedal running based on Biologically Inspired Dead-beatcontrol

tions. In case of high desired velocities and accelerationsor strong perturbations, BID control may
result in unrealistic high required leg lengths. In the nexttwo subsections, two methods to ease this
problem (while not guaranteeing feasibility) will be presented: one for finding nominally feasible
gait parameters and one for online touch-down leg length adjustment. Both methods assume that
the distance from CoM to foot in the BID preview correlates with the leg length in a multi-body
model. This is an approximation of course.

6.7.1 Nominally feasible gait design

For a periodic running gait (assumed here), the CoM height attouch-downzTD equals the one at
take-offzTO (see Fig.6.9). With energy conservation (˙z2

TO= 2g ∆zTD,apex) and with (6.5), the time
of flight Tf (i.e. from TO to TD) can be derived as

Tf =

√
8 ∆zTD,apex

g
. (6.47)

Here,∆zTD,apex denotes the height difference between apex and touch-down.For a desired flight

percentagef f light =
Tf

Ts+Tf
and with the mean horizontal speed (e.g. derived from a joystick input)

vmean=
∆xstride
Ts+Tf

one gets

Tf = f f light (Ts+Tf )︸ ︷︷ ︸
∆xstride
vmean

≤ f f light
∆xstride,max

vmean
. (6.48)

Here, the inequality indicates, that the time of flight should be small enough, such that a maximum
desirable stride length∆xstride,max is not exceeded. By combining (6.47) and (6.48), a condition
for the maximum allowable height difference between apex and touch-down is found:

∆zTD,apex ≤
g
8
( f f light

∆xstride,max

vmean
)2

︸ ︷︷ ︸
∆zTD,apex,max

. (6.49)

A second condition for nominal kinematic feasibility is that a maximum allowable touch-down leg
length l leg,T D,max is not exceeded. By inspection of Fig.6.9 (left), the following condition for the
CoM touch-down height is determined to be

∆zTD ≤

√
l2
leg,T D,max− (

∆x̂stride−∆x̂f light

2
)2

︸ ︷︷ ︸
∆zTD,max

. (6.50)

Here,∆x̂stride= vmean(Ts+Tf ) and∆x̂f light = vmeanTf denote the approximated (assuming con-
stant horizontal velocity) distances traveled during a whole stride and during a single flight phase,
respectively. With the described adjustments of apex (6.49) and touch-down height difference
(6.50), the nominal desired touch-down and apex height difference become

∆zTD,des= min(∆zTD,nominal, ∆zTD,max) and (6.51)

∆zapex,des= ∆zTD,des+min(∆zTD,apex,nominal, ∆zTD,apex,max) ,
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6.8 Simulations and evaluation of BID control

where∆zTD,nominal and∆zTD,apex,nominal act as upper limits. Also, the nominal stance time can be
computed with (6.47) as

Ts =
1− f f light

f f light

√
8 ∆zTD,apex

g
. (6.52)

That way, the design parameters introduced in Sec.6.2(i.e. ∆zTD,des, ∆zapex,desandTs) are deduced
from desired flight percentagef f light , maximum desired stride length∆xstride,max, maximum de-
sired touch-down leg lengthl leg,T D,maxand mean horizontal speedvmeanto maximize the kinematic
feasibility.

6.7.2 Active leg length control

In case of strong perturbations, the leg lengths resulting from the BID controller may not comply
with kinematic limitations of multi-body robots. To ease this problem, the original BID plan is
adjusted via the following iteration scheme (see Fig.6.9(right))

∆zTD,i,n+1 = min(∆zTD,des ,
l leg,T D,max

l leg,T D,i,n
∆zTD,i,n)) . (6.53)

The touch-down height difference is iteratively adjusted (if it doesn’t exceed the nominal touch-
down height∆zTD,des) such that for each stance phasei the resulting touch-down leg lengthl leg,T D,i

does not exceed the maximum desired touch-down leg lengthl leg,T D,max (similar the rest length of
SLIP models). Here,n denotes the iteration count. For each iteration the complete BID preview
has to be re-evaluated.

6.8 Simulations and evaluation of BID control

6.8.1 BID-based point-mass simulations

To test the performance and robustness of the proposed control framework, numerous simulations
were performed. For the first set of simulations, a point-mass with two massless point-feet was
considered. Figure6.10shows the results of a robustness examination for three different constant
external forces. From top to bottom, the figure shows phase plots for three simulations. Each sim-
ulation was setup in the following way: no perturbation during the first 4 seconds, then 4 seconds
of constant force acting (magnitude: -50N (corresponding to ≈ 10% of the robot’s mass (here
50kg)), force direction: purelyx, y andz, respectively), followed by 4 seconds without perturba-
tion. Here,∆x= x− x joystick and∆y= y− y joystick denote the errors w.r.t. the nominal horizontal
CoM positionx joystick= [x joystick,y joystick]

T , which was computed from a virtual joystick input.
The stars denote the initial states. The phase plots show that for perturbed and unperturbed phases,
the system quickly converges to corresponding limit cycles. Note: the perturbation forces in the
shown simulations were kept comparably low to increase readability of the plots.

Many further BID-based simulations with a bipedal point-mass robot were performed, which
showed a very high robustness of the basic BID controller. Ithas to be mentioned, that for extreme
perturbations, the leg length could grow to unrealistic levels (due to the constant touch-down
height). To assure leg length feasibility, the method from Sec.6.7.2can be applied. The controller
is most sensitive against strong unknown perturbations that point towards the ground. In the
simulation, the maximum permanent force the controller could withstand was−750N, i.e. 1.5
times the robots weight. For higher forces, the robot’s CoM would hit the ground.

Figure6.11 shows the result of a simulation in which the point-mass robot was running over
three-dimensional stepping stones (see also Fig.6.1). The left subplot shows the robot’s foot
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Figure 6.10: Robustness examination (point-mass) for different constant external forces.
Perturb. inactive: stance green, flight blue. Perturb. active: stance red, flight blue.
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that theforces are not projected (in contrast to other point-mass simulations).

positions (bars, only active during stance) and CoM positions (continuous curves). The right
subplots show the difference between desired and achieved foot positions. Nominally, the foot
target positions are tracked well, whereas in case of perturbations they deviate. This is necessary
to stabilize the CoM motion against the perturbation. Afterthe perturbation is removed, good
tracking is regained after a single step.

Figure6.12 shows how far the force intersection pointχint(ts) deviates from the mean inter-
section pointχ int (i.e. the stance foot position) for the case that thedesired force profilesare
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6.8 Simulations and evaluation of BID control

not projected. In the shown simulation, the robot starts at zero speed and then runs at 2ms . The
stance time is set to 150ms4. The initial range of deviation is about 22mm, while for stationary
running it is about 6mm. This shows that the original (non-projecting) method is well applicable
for small-footed robots and that equation (6.46) typically has minor influence.

Figure 6.13: Toro [1] running in OpenHRP [2] at 5 m/s.

1 2 3 4 5

0

5

10

15

1 2 3 4 5
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

1 2 3 4 5

0.8

0.9

1

∆x
[m

]

∆y
[m

]

∆z
[m

]

t [s]t [s]t [s]

Figure 6.14: Toro’s CoM while running in OpenHRP at 0−5 m
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4Along the time-axis, the stance phases are pieced together.
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6 Bipedal running based on Biologically Inspired Dead-beatcontrol

6.8.2 QP-based multi-body simulations

To proof the applicability of the biologically inspired deadbeat (BID) control framework, it
was embedded into the QP-based whole-body controller from Sec. 4 and full-body simulations
of the humanoid robot Toro [1] in OpenHRP [2] were performed. It has to be noted, that
Toro’s joint torque and velocity limits were omitted in the simulations. Figure6.13shows Toro
running at 5m/s. The gait parameters∆zTD,des, ∆zapex,des andTs were computed via the method
from Sec.6.7.1 to make such high running speed kinematically feasible for Toro. Following
intuitive design parameters (as described in Sec.6.7.1) were chosen: desired flight percentage
f f light = 0.7, maximum desired stride length∆xstride,max= 1.4 m, maximum desired touch-down
leg length l leg,T D,max= 0.86m, nominal touch-down height∆zTD,nominal= 0.86m and nominal
height difference between touch-down and apex∆zTD,apex,nominal = 0.06m. The target velocity
(derived from a virtual joystick input and used asvmean) ramped up from 0m/s to 5 m/s until
second 3 and then stayed constant. Two important human-likefeaturesevolved: first, natural arm
swing motions (see also multimedia attachment) that facilitate the angular momentum regulation
and contribute to the CoM manipulation and second, stretched hind legs at the end of stance. This
shows that the combination of BID and whole-body control canautomatically create human-like
motions, such that the effect of the various cost functions and their weights can be examined.

The foot targets were derived from a joystick input. The CoM motion (see Fig.6.14, colored)
follows the desired joystick reference (black) nicely. Knowing the vertical previewed dynamics
and thus the times to each upcoming touch-down, the foot targets were placed at lateral offsets
from the nominal sway-free and continuous joystick reference.

A very important quality of a running controller is its reactiveness and robustness. Without
that quality, the OpenHRP running simulations would fail due to the overdeterminedness of tasks
(such as CoM force and angular momentum control, posture control etc.), tracking errors and en-
ergy losses at impact. To investigate this quality of the presented combined BID and whole-body
control framework, multiple simulations were performed where the robot was subject to external
perturbations. One of these simulations is shown in Fig.6.15. It displays the errors in horizontal
CoM position with regard to the joystick reference. Toro runs at 3m

s (after ramping up from 0ms
until second 3). From second 3.5− 4.5 it is subject to a backwards pointing external force of
−150N and between second 5.5 and 6.5 to a lateral force of 80N (both constant and unknown).
The controller is well able to compensate for these perturbations and recovers after just a few steps.
The steady state error of about 0.1 m in x-direction can be explained by the fact that thefoot step
(not the CoM) is planned to coincide with the joystick reference (aside from a sideward offset)
at the instant of touch-down, while the continuous joystick reference keeps moving throughout
stance. The kinematic feasibility of the running gait underthese strong perturbations was facili-
tated by the methods from Sec.6.7.
The OpenHRP simulations of Toro running show the control framework’s robustness and relia-
bility. It is thus a promising concept for future more detailed comparison between human and
humanoid running and prediction of human behavior.

6.9 Comparison to human experiment

The BID controller had been inspired by observations from human running experiments. In the
previous section, its high robustness was shown, which substantiates its applicability for humanoid
running control. Now the question arises, how well the BID control outputs fit the ones observed
in human running experiments. Thus, the loop is closed by comparing the corresponding forces
and CoM trajectories. Figure6.16(left) shows a human subject running on a force plate treadmill,
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error.

its posture being tracked via markers. On the right side of the figure, the corresponding CoM
and toe trajectories are shown. It becomes apparent that thelines of action of the ground reaction
forces (GRF) in humans are not as strictly focused as the onesdesigned in the BID controller
(compare to figures6.3and6.4). This shows that humans make use of angular momentum during
running, while the CoP remains in the ball of the foot (compare toe trajectories). Figure6.17
shows the corresponding force profiles and CoM trajectoriesand overlays them to a “matched”5

BID simulation. The force profiles match quite well. The maindifferences are the initial impacts,
slightly higher vertical force maximum and lower final forceslope in humans as compared to
the BID simulation. The CoM positions are very consistent. The errors are in the range of several
millimeters. The x direction is drifting due to slight timing mismatch. From these observations it is
inferred that BID control sufficiently approximates the GRFin human running to allow for decent
insights into human running control. Yet, the observed differences motivate further examination
of human running control.

5“matching” means that basic gait parameters such as stance time, apex and touch-down height and also the human
subject’s and the model’s mass have to be aligned. Otherwisea comparison - especially in time domain - would be
impossible/useless.

103



6 Bipedal running based on Biologically Inspired Dead-beatcontrol

6.10 BID control: discussion and outlook

6.10.1 Strengths and limitations of current control framew ork

In this chapter a closed-form solution to 3D running was provided. The control framework yields
leg force profiles that are independent of the specific hardware design of a particular robot, i.e. it
is generic. Also, it might be used to identify required actuator characteristics for new robots.

For the running simulations, a standard PC (3.3 GHz, quad-core, Win7 64bit) was used. In
the Matlab/Simulink simulation setup, 1mswas used as sampling time. All BID control related
computations were executed in real-time.

The force profiles as derived in sections6.4.1and6.4.2nominally lead to perfect tracking after
just one stance phase (deadbeat control), i.e. the controller is perfectly stable. In case of actuation
limits, the control commands may have to be adjusted (e.g. via (6.46) for point-mass point-feet
robots), so stability cannot be guaranteed. Yet, the simulations show the high robustness of the
controller even in case of constraints.

In the presented control framework, impact-free state transitions are assumed (compare
Fig. 6.2). The impact losses in real systems will cause perturbations. Notwithstanding, due to its
high robustness in simulations, good performance of the controller is expected.

A drawback of the current control setup, when compared to human running, is the missing toe-
off motion. In the current setup the feet are aligned with theground during contact. Toe-off motion
(especially during single support) is usually classified asa challenging task. It has to be tackled in
future research to enhance the capabilities of humanoid running and make it more comparable to
its natural counterpart.

6.10.2 Comparison to other works

When compared to SLIP control, the main feature of the presented BID controller is its analyt-
icity, which allows for explicit solutions for 3D CoM trajectories and foot-step placement during
running. Some features of the work of Raibert [40] such as apex height control and forward speed
control via foot placement show major similarities to this work. Yet, BID control provides ana-
lytic solutions for planning and control as compared to Raibert’s three-parted and rather heuristic
running controller.

6.10.3 Potential usage, extensions and future work

One interesting aspect in human running is the center of pressure’s (CoP) motion from heel to toe
(as observed in jogging). This effect can be observed in Fig.6.16(intersection of the black force
lines with the ground). This means that, while in humanoid locomotion the nominal CoP is kept as
close to the foot center as possible (as in Fig.6.4) to increase the likelihood of feasible desired leg
forces, it can be advantageous to move the CoP from heel to toeduring stance. A simple trick to
produce such nominal CoP motion using the proposed BID control framework is to set the virtual
foot positions below the actual ground. That way the intersection points of the force lines with the
actual ground (corresponding to the CoP) shows a heel-to-toe motion.

In this work, locally flat stepping stones (see figure6.1) are used. However, the controller
is expected to handle more complex ground surfaces. Naturally robust foot trajectories for blind
running are another interesting research topic. The BID algorithm may also be applied to problems
such as hopping and jumping. Also quadrupedal gaits such as bounding/galloping and trotting are
expected to be achievable.
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CHAPTER 7

Discussion and conclusion

7.1 Discussion

The main goal of this thesis is to provide control methods that focus on the most critical com-
ponent of a robot’s dynamics, namely its CoM dynamics, and tothen embed these reduced dy-
namics controllers into a whole-body control framework. Although the methods presented for
DCM-based walking in chapter5 and BID-based running in chapter6 cover different forms of lo-
comotion, on closer inspection these control methods show certain similarities. The first analogy
is the preview of several (typically three or more) future footsteps and the derivation of feasible
force profiles that nominally track them. Note that feasibility here is purely related to the ques-
tion, if the line of action of the leg forces passes through the base of support or not, while frictional
constraints and actuator limits are not considered at this stage, but only later in the quadratic pro-
gramming (QP)-based whole-body controller from chapter4. Both the walking and the running
algorithm are purely analytical, such that the nominal trajectories, DCM trajectories for walking
and CoM trajectories for running, are explicitly known overthe whole multi-step horizon. Both
methods provide a high degree of robustness and allow for interesting insights into the dynamics
of the two locomotion forms. With regard to BID control, the feature of explicit footstep targeting,
to the best of the author’s knowledge, is a unique feature among any other existing (online) run-
ning controllers. The second analogy is related to the modulation and potential projection of the
desired forces, such that they comply with the contact constraints. In case of DCM control, this
modulation/projection can consist of leg force modulationand projection of a desired center of
pressure (CoP) to the feasible foot supporting area, respectively. The proposed BID controller, in
comparison, modulates the first upcoming stance foot position and all previewed leg force profiles,
while projecting the foot position to a feasible one in case of a limited allowable contact area (see
Fig. 7.1).

The proposed locomotion controllers are embedded into the quadratic programming (QP) based
whole-body control (WBC) framework presented in chapter4. This framework shows major simi-
larities to other inverse-dynamics based works such as [56,58,60]. In contrast to most other works,
where joint accelerations are chosen as control variables and torques are treated as outputs, in this
work the joint torques are chosen ascontrol inputs. Both formulations are basically equivalent,
yet, the use of joint torques as control variables may be advantageous in certain cases, since they
are the actual physical control quantity. For that choice ofcontrol input, joint torque constraints
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Figure 7.1: Analogy of DCM (walking) and BID (running); stepping stones vs. finite-sized feet.

of the robot can be treated as box constraints, while they have to be handled as linear constraints
otherwise, which can be computationally more expensive. Onthe other side, the inversion of the
mass matrix in (4.7) can be avoided by the joint acceleration-based formulation.

The combination of the presented walking and running controllers into the WBC framework
yields smooth and natural looking behaviors of the robot. Especially the self-emergent (i.e. not
manually programmed) arm motions resemble natural locomotion as observed in humans. One can
conclude that the implemented motions and dynamics are close to their natural counterparts, such
that insights into the control of the latter can be deduced. With regard to naturalness of achieved
motions, it has to be noted that the presented work has room for improvement in the field of foot
and leg motions. These are based on polynomial splines that are tracked quite accurately while the
natural counterparts, as observed in humans and animals, show major dissimilarities. Also natural
features such as toe-off motions and push-off are missed outin this work. These are expected to
have a very positive effect on the centroidal momentum balance of the robot and should thus be
investigated in future research.

The different active whole-body tasks are traded-off in theQP-based controller and are locally
optimized, i.e. without any preview of the future of the whole-body motion. It has to be noted
though, that the term “optimal” only means that the specifiedcost function is minimized. Yet, the
task weights and also of the desired task dynamics (e.g. chosen eigenvalues for foot trajectory
tracking) are typically chosen arbitrarily and may thus require extensive manual gain tuning. Of-
fline optimization of these control gains, which may includean evaluation of the overall long-term
behavior of the robot (such as the occurrence of singularities or falls during locomotion), might
yield highly improved controller performance.

One of the major issues in whole-body control, especially for highly dynamic locomotion such
as running or galloping, is the interplay of angular momentum and posture control. Pure posture
control without considering angular momentum leads to a build-up of the latter, which quickly
leads to constraint violations and a fall of the robot. Strict regulation of the angular momentum
to zero also quickly leads to failure, since the leg swing motions either require torques around the
center of mass or, if weighted strong enough, interfere withthe posture control. Online generation
of consistent angular momentum and postural trajectories,to the author’s knowledge, does not yet
exist and would be an exciting field for future research efforts.

Another interesting research question is, if humanoid robots should be position or torque con-
trolled. Recently ( [17, 38, 103]), several position-based controllers have been shown to produce
reliable locomotion performance. These controllers typically rely on high quality contact force
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sensing and control (via force-torque sensors in the feet and active force control), accurate state
estimation and strong and fast actuation. On the other hand,torque control promises several assets
as well, including the natural and compliant interaction with unknown or unforeseen elements of
the environment, especially when such unforeseen contactsare made with robot links that have no
sensing equipment such as torque sensors. In that case, position controlled robots behave rigidly
and thus pose a threat to humans and other element of the environment. Torque controlled robots,
in contrast, typically show a compliant behavior, which is most appropriate for direct human-robot
interaction. It has to be noted though, that torque controllers have a higher potential of diverg-
ing in case of model errors or miss-estimated contact assumptions, as compared to position con-
trolled approaches. These use explicitly designed motionsthat - apart from the free-floating base
- can be controlled to not diverge. In the author’s view, the most appropriate approach for hu-
manoid control might be impedance control, which finds a goodbalance between desired posi-
tions and torques. With regard to safety, passivity-based or energy-bounded control approached
may achieve desirable behaviors.

7.2 Conclusion

In the first chapters of this thesis, mathematical basics of robotics are recapitulated and useful tools
for robotics and motion design, which the later higher-level controllers are based on, are presented.

The main contributions of this thesis are two control approaches, one for humanoid walking and
one for running, that are based on the reduced dynamics modelof CoM motion and are embedded
into a quadratic programming (QP) based whole-body controlframework (see chapter4). The
general idea pursued in both the presented walking and running methods is the following: Instead
of explicitly previewing future constraint violations, constraint-compatible reference trajectories
for multi-step previews are designed and tracked via feedback control. Both the presented walking
and running control frameworks design reference trajectories that maximize the distance to the
constraints and thus the margin of stability. That way in many cases the tracking controllers ask
for control actions that do not violate the constraints, such that the nominal, stable controller
behavior is actually achieved. Omitting the considerationof constraints in the preview allows for
analytical and thus inexpensive computations. The embedding of the CoM-based controllers into
the presented QP-based whole-body control framework then guarantees feasibility even in case of
strong perturbations, while stability cannot be guaranteed.

The walking control framework is based on the concept of Divergent Component of Motion
(DCM), which is extended to 3D in this work. Corresponding DCM trajectory generation and
feedback control methods are presented (see Chap.5), which facilitate the process of bipedal walk-
ing generation. Even walking trajectories over unstructured three-dimensional terrain can be gen-
erated and tracked in a clean and consistent way. The main idea, that DCM control is based on, is
to split the center of mass dynamics into a stable and an unstable part (the DCM) and to control
only that unstable part, while the naturally stable component remains untouched. That way, the
second order control problem is reduced to a first order one, i.e. complexity is reduced while com-
prehensibility is increased. Due to the simplicity and analyticity of DCM control, it can be applied
to plan and track three-dimensional walking trajectories in real-time. This work also introduced
two new points, the enhanced Centroidal Moment Pivot point (eCMP) and the Virtual Repellent
Point (VRP), respectively, with allow for the encoding of external (e.g. leg-) forces and total force
acting on the robot’s CoM. These points can be seen as generalizations of the Zero Moment Point
(ZMP) and the Centroidal Moment Pivot point to 3D. A DCM trajectory generator is proposed
(see chapter5.3.1), that uses predefined smooth eCMP trajectories and a DCM terminal constraint
as input and computes a corresponding consistent DCM reference trajectory, which is tracked by
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a nominally asymptotically stable DCM tracking controller(see chapter5.3.2). Additionally, to
increase the robustness of the walking gait against unknownexternal perturbations, methods for
step adjustment and perturbation force estimation and counteraction are introduced.

In addition to the DCM-based walking controller, the secondmain contribution of this work
is the introduction of Biologically Inspired Deadbeat (BID) control (see chapter6). BID control
uses polynomial splines to encode CoM motion and leg forces during stance, which was originally
inspired by observations from human running experiments. Intuitive boundary conditions, chosen
by the control designer, are explicitly solved for, which yields deadbeat behavior of the controller.
In contrast to the spring-loaded inverted pendulum model (SLIP, [6]), the use of polynomials in
BID control allows for purely analytical solutions for an arbitrary number of future stance and
flight phases. Explicit footstep targeting in 3D can be achieved, which - to the author’s knowledge
- is a unique feature as compared to any other online running controller. BID control is real-time
capable, facilitates the design of versatile running motions and is very robust due to the deadbeat
behavior. The explicit knowledge about upcoming required foot locations facilitates the design of
corresponding foot trajectories. Comparison to human running gaits shows promising similarities.

The embedding of the DCM-based walking controller and BID-based running controller into
the whole-body control (WBC) framework presented in chapter 4 is another contribution of this
work. The implemented WBC framework uses a single weighted quadratic program (QP) to solve
an inverse dynamics problem, which contains the walking or running task besides other tasks,
such as foot tracking, torso orientation control and overall body posture control. The combination
of these tasks yields a robust and flexible framework that is able to reproduce several different
agile locomotion modes such as walking and running. All control components can be computed in
real-time. The whole-body controller assures feasibilityof the finally commanded control outputs.
The proposed walking and running controllers and the whole-body control framework are tested
in numerous simulations and partially also in experiments with real robots.
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