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Abstract

In the near future, mobile machines are expected to leavéabiseand perform more and more
complex tasks in environments designed for human beingste8y based on legged and espe-
cially bipedal locomotion have the potential of outperforgiwheel-based locomotion systems in
certain scenarios. Yet, at the current point in time, it seems to be a long way to go until legged
systems can unfold their full potential.

Bipedal locomotion is a difficult controls problem due tauies such as underactuation, unilat-
eral constraints and the hybrid nature of stepping. Thikwaons at first reducing the complexity
of the considered problem as much as possible, while tagkiia full problem in a second step.
More explicitly: first, only the center of mass (CoM) dynamaf the robot is considered, which is
areduced but correct representation of its motion. Usirsgrdduced model, analytical controllers
are designed that include multi-step preview for both wagkand running. The walking control
method is based on the concept of Divergent Component ofadd@CM), which extends the
earlier concept of Capture Point to 3D. The proposed runnorgrol framework is called Bio-
logically Inspired Dead-beat (BID) control. It is based e £ncoding of CoM motions as poly-
nomials during stance and explicitly solves for intuitivelesigned running boundary conditions.
Both methods are powerful, purely analytical and very ingig.

In a second step, the locomotion controllers are embeddedhiguadratic programming (QP)
based whole-body control framework. The latter allows f@tantaneous optimal control, which
ensures good trade-offs between the different necesssity & hand.

Both control frameworks are tested extensively in simatatReal experiments are successfully
performed for DCM-based walking control and the whole-bodwgtrol framework.
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CHAPTER 1

Introduction

1.1 Problem statement

Currently, we experience an increasing amount of automatfcour everyday life. The digital
revolution in form of computers, internet and smart phorsem ifull swing. While the central
element of that mentioned revolution is flow and processihipformation, it can be expected
that this focus will widen towards automatic real-world mgg@ns, which involves an increased
demand for mobile machines. These machines should be abl#dmatically perform tasks in
our human environments. In some scenarios, unmanned gehigles (UAV) or wheeled robots
may perform sufficiently. In other cases, it can be advamtagef the machine has human-like
proportions and capabilities, such that it can more ndjurabve through and make use of the
human environment. Biological forms of locomotion - suchhasnan walking and running -
have evolved over millions of years. They are the producteténtless selection and can thus
to some extent be regarded as optimal for traversing nawméaronments. The analysis and
decoding of natural locomotion poses a complex yet excitiglg of research for biomechanics
researchers. Their results can serve as inspiration fatiodkts. From an engineering point of
view, gaited forms of locomotion - once fully understood emise highly increased mobility
of machines as compared to wheel-based locomotion. Ovéngoaset of stepping stones, as
shown in Fig.6.1, is one possible example where a legged robot may have adyembver other
machines of similar size and weight. Once a certain mob#itel has been reached, humanoid
robots may serve humans in many different scenarios inojueinergency relief, service robotics
or space operations, to name but a few. The DARPA RoboticHedige (DRC) B, 4] provided
an impressive insight in the current state of the art in ricsaesearch. In just a few generations,
humanoid robots may reach technology readiness levelsaitizdllow real-world applications
outside of controlled laboratory environments. One of tl@mehallenges that is not yet solved
satisfactorily is to find control algorithms that enable fanmoid robots to locomote in a versatile,
robust and agile way. From a controls perspective, bipaegtalrhotion poses several challenges
such as underactuation, unilateral constraints and théchylature of stepping. Till this day,
bipedal locomotion has not been solved to a satisfactosl,lget.

The main goal of the research work presented in this thetliimigsclear:

To come up with new methods in the field of bipedal humanoidkingl and running control
that enhance the state of the art and thus contribute to thdaned mobilization of machines.
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1 Introduction

1.2 Related work

Aside from robotics in general, the work presented in thissih contributes to three fields of
research: bipedal walking, bipedal running and humanoidlerbody control. In the following,
a short overview of related works in the different fields igegi. Note that these works cannot
always be assigned to only one of the mentioned fields.

1.2.1 Bipedal walking

The first efforts in robotic bipedal locomotion have beenipihe subdomain of bipedal walking.
Over the decades, the field of bipedal walking control hasemadjor progress. Alongside suc-
cesses in passive dynamic walkirsj fnd walking based on the spring-loaded inverted pendulum
(SLIP) [6-8], one of the major breakthroughs has been the introductictem Moment Point
(ZMP) control B, 10] for bipedal walking. Many different works have used prewiimg of feasi-
ble focus points (e.g. ZMPs) in combination with the linearerrted pendulum (LIP) model for
bipedal gait generation and control: Stephens and Atkekstirpfesent a Model Predictive Con-
trol (MPC) method for step adjustment and push recoveryb@/i§l2] proposes a trajectory-free
linear MPC scheme, allowing for compensation of strongypb#tions. Herdt et al1f3] generate
stable bipedal walking motions using an MPC formulationshivaki and Kagamil4] generate
dynamically stable walking patterns by frequently updatnpreview controller. Sugihard 5]
introduces the Best COM-ZMP Regulator facilitating stejuatinent of bipedal robots. Kajita et
al. [16] demonstrate walking on uneven pavement. Urata efl@].dresent an online walking pat-
tern generator that achieves fast changes in walking diredtigh walking speed and strong push
recovery on a real biped platform. Tedrake et &8] [provide a closed-form solution for real-time
ZMP gait generation and feedback control. They achieve miymavalking on the humanoid robot
Atlas by recomputing the optimal controller online.

Several previous work4d P-27] propose to split the center of mass (CoM) dynamics intolalsta
and an unstable part. The state variable related to thehlagtart of the dynamics has been
referred to as ‘(instantaneous) Capture Point’ by Prattkoalen et al. p0-22], ‘Extrapolated
Center of Mass’ by Hof et al19] and ‘Divergent Component of Motion’ (DCM) by Takenaka et
al. [23]. Motivated by the works of Pratt et al., i24, 25] the term ‘Capture Point’ had been used
for the DCM. Yet in 8], a significant difference between the Capture Point (ddfamethe point
on the ground where the robot has to step to come to a stop &styraply) and the Divergent
Component of Motion was depicted, as the DCM is not restti¢tethe ground plane, but is a
point in 3D. For 2D considerations (constant CoM height)pi@ee Point and DCM (projected to
the floor) are equivalent, but not for the three-dimensiaaasle.

The use of the LIP model for bipedal walking control is typigaestricted to horizontal mo-
tions of the CoM ¢ = cons). This motivates the derivation of methods that are nottéohio con-
stant CoM and floor height. Kajita et alL§] introduce the 3D Linear Inverted Pendulum Mode,
which constrains the CoM to a (not necessarily horizonteh@. They present experiments for
walking on spiral stairs. Zhao and Sen@g] introduce the Prismatic Inverted Pendulum dynam-
ics and solve it via numerical integration, allowing fordbrdimensional foot placement planning
on uneven ground surfaces. Yet, lateral foot-placemematdne predefined, but depends on the
sagittal dynamics. Also, the method is restricted to grasur@aces with laterally constant heights.

The walking control framework presented in this thesis jutes certain advantages over the
previously mentioned works. Ir28], a method for three-dimensional bipedal gait planning and
control on uneven terrain was presented that overcomes ofdhg aforementioned restrictions.
Yet, that method lead to discontinuous desired leg forcddtaus desired joint torques, which can
cause perturbations in the actuation system. Therefo[80Jna method for generating Continu-
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1.2 Related work

ous Double Support (CDS) trajectories is presented, whaimHar to the “Multi-Contact Transi-
tions” in [29] - results in smooth enhanced Centroidal Moment Pivot gsqi@CMP, 3D equivalent
of ZMP) and related leg force profiles. The use of toe-off wfiacilitates energy-efficienB[]
and human-like 32] walking. Thus, the CDS trajectory generator froB0] was extended to a
Heel-to-Toe (HT) trajectory generator in the same work, iniolr the eCMP is shifted from heel to
toe during single support. This allows for early toe-off inos, increasing the maximum achiev-
able step length and height. Additionall80] provides a robustness analysis of the DCM tracking
controller with respect to CoM error, constant externatymbation force, mass estimation error
and unknown force lag.

Hopkins et al. B3] enhance the concepts fror@( by introducing the time-varying DCM. By
varying the natural frequency of the DCM, they achieve genartical CoM trajectories during
walking. To smooth discontinuities in the correspondingND@ajectories, Model Predictive
Control (MPC) is applied. Also sectidmof this thesis improves the methods presente@th iy
deriving DCM reference trajectories that correspond to &08D equivalent of ZMP) reference
trajectories that are explicitly designed to lie within thase of support of the robot. Thus, in
contrast to 0], the nominal eCMPs are guaranteed to be feasible.

Aside from reduced dynamic models, such as the LIP, sevathbes propose the use of opti-
mization techniques to either directly design walking s or to derive movement primitives
that can be applied online later. Werner et 84][generate bipedal walking gaits using nonlin-
ear optimization and apply these gaits to the DLR Biped (prinstage of the humanoid robot
Toro [1]) using a ZMP-based stabilizing controller. 185, the same authors generate efficient
walking trajectories for robots with series-elastic atbtus, exploiting the full actuator capabili-
ties. Clever and MombauBg] introduce a new template model for optimization studiebuhan
walking and achieve three-dimensional CoM and foot trajges for walking up and down stairs.
Koch et al. B7] generate humanoid gaits based on movement primitivesatieatearned from
optimal and dynamically feasible motion trajectories. tidinn et al. 38 implement a real-time
nonlinear model predictive footstep optimization for lperobots based on direct shooting and
provide experimental results of their robot LOL3Y] walking under real-world conditions.

1.2.2 Bipedal running and other highly dynamic gaits

Running and hopping are challenging tasks because, duryig, ffome of the robot’s states are
unavoidably non-actuated. Running provides a number etassich as high achievable speed and
efficiency. Back in 1985, Raiberd{] presented his controller that decomposes running ineethr
parts: vertical hopping dynamics, forward velocity andtade control. The controller design is
rather heuristic, yet very powerful. Aside from few exceps such as41-45], most running
algorithms are based on the spring-loaded inverted pend(BLIP) [6]. Dadashzadeh et a4§]
present a SLIP-based two-level controller for running dations of the ATRIAS robot. Carver
et al. 47] show that the number of required recovery steps dependbeogdals of the control
mechanism and present a SLIP-based controller for twotstepvery using synergies. Vejdani
et al. 48] introduce bio-inspired swing leg control for running orognd with unexpected height
disturbances. Wu et a4§] present a deadbeat controller for the 3D SLIP model thatoge with
unknown ground height variations of up to 30% of the leg landtheir method is based on multi-
dimensional look-up tables and achieves deadbeat corftaghex height and heading direction.
Yet, since their model assumes energy conservation, thieasheannot handle dissipative losses
(e.g. during impact). Koepl and HursbQ] control the stance phase impulse of a planar SLIP
model and achieve robust running. Wensing and By $2] compute periodic trajectories of
the 3D-SLIP offline and apply a linearized control law to dtaé the virtual SLIP model around
the periodic solutions. The desired leg forces are passadaioole-body controller and bipedal
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1 Introduction

running of a simulated humanoid robot is achieved. The nietbquires offline computation of
each desired periodic SLIP gait (including particular tuates) to obtain the required look-up
tables and the linearized SLIP feedback controller is omlyable of limited acceleration rates.
Park et al. $3] present quadrupedal galloping with the MIT Cheetah 2 basenpulse control.
They use third-order Bezier polynomials to encode the legefgrofiles. Yet, their method is
nominally unstable and designed for constant speeds, batheuristic PD control laws have to
be applied to achieve stability and speed control.

1.2.3 Whole-body control

Whole-body control is a wide field of research that includestml setups of different levels of
complexity. One can distinguish controllers that take iatoount the whole robot motion over
a time preview window from controllers that are based oramsineous control. The first class
of controllers typically uses offline optimization. Dai dt fb4] present a method for whole-
body motion planning that includes centroidal dynamics fatickinematics and generate highly
dynamic motion plans including bipedal walking and runngaits. Schultz and Mombau#$)
generate optimal gaits via an offline direct multiple shogtnethod.

The second class d@fistantaneousontrollers optimizes only the current control inputs, hi
just few robot states (if any), such as the CoM dynamics, eeei@nved. This class of controllers
typically works in real-time. Sentis and Khatib4, 56] formulate a hierarchical whole-body con-
trol framework for humanoid robots and synthesize wholdyboehaviors using behavioral prim-
itives. Ramos et al.g7] integrate the Capture Point in an operational space iavdy:iamics
controller to achieve whole-body motions that prevent tieot from falling. Hopkins et al.58]
present balancing of a series elastic humanoid robots dahklasterrain using whole-body mo-
mentum control. Feng et ab$] formulate a cascade of online optimizations that allowscfam-
pensation of modelling errors and external forces. Theitrotler was successfully implemented
on the Atlas robot and used during the DARPA Robotics Chghe8]. Wensing and Orin§0]
generate dynamic humanoid behaviors through task spadeoktwiith conic optimization. By
controlling the centroidal momentum of the robot, they obseelf-emergent whole-body behav-
iors such as arm swing.

Passivity-based whole-body controlle&l{65] are a subclass of instantaneous controllers. As
compared to inverse-dynamics based approaches, thesellgnatpromise higher robustness and
more intuitive haptics, which are important for safe humealpet interaction.

1.3 Contributions and overview of the presented research

This thesis provides several contributions in the field ahhnoid locomotion control. It extends
the formerly two-dimensional concept of Divergent Compunef Motion (DCM, also known
as “(instantaneous) Capture Point9] 20, 23]) to a 3D version, which allows to treat all three
spatial directions of the CoM dynamics equivalently andsistently. Also, this work introduces
corresponding DCM trajectory generation methods and faedbontrollers (see Chap). These
facilitate the process of bipedal gait generation and pieunteresting insights into the dynamics
of walking. When using the DCM as system coordinate, thers@vder CoM dynamics can
be split into the instable DCM dynamics and a second nayussdible component. Leaving the
stable component untouched, the original second orderaigmmbblem turns into a first order one,
which explains the mentioned simplicity and comprehefigibdf the DCM control framework.
The presented research also introduces two new pointsntieneed Centroidal Moment Pivot
point (eCMP) and the Virtual Repellent Point (VRP), respety, which encode external (e.g.
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1.3 Contributions and overview of the presented research

leg-) forces and total force acting on the robot's CoM. Thaesiats can be seen as generalizations
of the Zero Moment Point (ZMP) [] and the Centroidal Momentd®{66] point to 3D.

Another major contribution of this work is the introductiof Biologically Inspired adbeat
(BID) control [67—69], which eliminates several drawbacks of state of the amingicontrollers.
BID control is inspired by observations from human runnixgeriments and uses polynomial
splines to encode the robot's CoM motion and leg forces dustance. It is real-time capable,
enables versatile running motions and is very robust ageiternal perturbations. The control
design is very intuitive and purely analytical. This anilyy facilitates unique features such as
online three-dimensional footstep targeting, which - todlathor’s knowledge - is a unique feature
of BID control, i.e. no other available online planning ammhtol framework for running is able
to accomplish that task. The next two upcoming foot aim soimt the ground (i.e. the left and the
right one) are predicted at all times, which facilitates design of appropriate foot trajectories.
Comparisons to human running gaits show major similarigash that BID control may serve as
tool for human running gait analysis.

The embedding of the DCM-based walking controller and BH3dx running controller into
the whole-body control (WBC) framework presented in chagties another contribution of this
work. The implemented WBC framework uses a single weightedicatic program (QP) to solve
an inverse dynamics problem. It contains the walking or mmiask besides other tasks, such as
foot tracking, torso orientation control and overall boagfure control. The combination of these
tasks allows to reproduce several different agile locoomothodes such as walking and running.
All control components can be computed in real-time.

The general concept pursued in both the presented walkithguaming methods is the follow-
ing: Instead of explicitly previewing future constrainblations, constraint-compatible reference
trajectories for a multi-step preview are designed andké&dwia feedback control. The references
are not only compatible with the constraints but also mazénhe corresponding distance in or-
der to increase the margin of stability. That way in many sdke tracking controllers ask for
control actions that do not violate the contraints, suchtti@nominal, stable controller behavior
is actually achieved. The embedding of the CoM-based clbertsanto the presented QP-based
whole-body control framework then guarantees feasibéirgn in case of strong perturbations,
while stability cannot be guaranteled

The thesis is organized as follows: Chafrovides mathematical basics for robotics, which
the derivations in this thesis are based on. These inclatsformations and velocities, robot
kinematics and equations of motion. ChapBeis a collection of useful tools for robotics and
motion design. These include polynomial interpolationjepplacement for PID controller
parametrization, a constraint-compatible tracking methe method for quaternion trajectory
generation and tracking and an overview of task and nullespathe whole-body control (WBC)
framework used in this work is described in chapfer The methods, used in this work for
walking and running are presented in chapteed6. Both the walking and running controllers
use the reduced model of CoM dynamics for trajectory geiweratnd feedback control and are
then embedded into the WBC framework from chagter

Parts of the research presented in this thesis have beeistmlin conference and journal
publications. Tablel.1 gives an overview of the author’s publications as first aytidnile his
publications as coauthor are summarized in tdhke

INote that, depending on the contact scenario and robottactimits, stability (for any possible perturbation) can
never be guaranteed for free-floating robots.
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Table 1.1: List of publications as first author

Reference | Description

Journal, [1] J. Englsberger and Ch. Ott. Gangstabilisierung humandiaddoter mittels Capture Point
Regelung / Walking stabilization for humanoid robots basedontrol of the Capture Point.
at-Automatisierungstechnik, Oldenbourg Wissenschetdisy, pages 692-703, 11/2012.

Journal, [2] J. Englsberger, Ch. Ott, and A. Albu-Schaffer. Three-Disienal Bipedal Walking Control
Based on Divergent Component of MotiodhEEE Transactions on Robotics (TRQJpl. 31,
No. 2, pp. 355-368, 2015.

Journal, [3] J. Englsberger, P. Kozlowski, Ch. Ott, A. Albu-Schaffer. iolBgically Inspired Deadbeat

control for running: from human analysis to humanoid cdnamd back. IEEE Transactions
on Robotics (TROMol. 32, No. 4, pp. 854-867, 2016.

Conference: [4]

J. Englsberger, Ch. Ott, M. A. Roa, A. Albu-Schaffer, andHizinger. Bipedal walking
control based on Capture Point dynamics.Irit Conf. on Intell. Robots and Systemages
4420-4427, 2011.

Conference: [5]

J. Englsberger and Ch. Ott. Integration of vertical COM imo#&nd angular momentum in an
extended Capture Point tracking controller for bipedalkivey. In IEEE-RAS Int. Conf. on
Humanoid Robotpages 183-189, 2012.

Conference: [6]

J. Englsberger, Ch. Ott and A. Albu-Schaffer. Three-disiemal bipedal walking control
using Divergent Component of Motion. Int. Conf. on Intell. Robots and Systemsages
2600-2607, 2013.

Conference: [7]

J. Englsberger, T. Koolen, S. Bertrand, J. Pratt, Ch. Ott,AarAlbu-Schaffer. Trajectory gen-
eration for continuous leg forces during double supportlael-to-toe shift based on divergent
component of motion. lint. Conf. on Intell. Robots and Systerpages 4022-4029, 2014.

Conference: [8]

J. Englsberger, A. Werner, Ch. Ott, B. Henze, M. A. Roa, Go&do, R. Burger, A. Beyer, O.
Eiberger, K. Schmid and A. Albu-Schaffer. Overview of tbegue-controlled humanoid robot
TORO. InIEEE-RAS Int. Conf. on Humanoid Robgtages 916-923, 2014.

Conference: [9]

J. Englsberger, P. Kozlowski, and Ch. Ott. Biologicallygimed Dead-beat controller for
bipedal running in 3D. INEEE/RSJ Int. Conf. on Intell. Robots and Systepagies 989-996,
2015.

Conference: [10]

J. Englsberger, P. Kozlowski, and Ch. Ott. Biologicallygimed Deadbeat control for running
on 3D stepping stones. IEEE-RAS Int. Conf. on Humanoid Robgtages 1067-1074, 2015.
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Table 1.2: List of publications as coauthor

Reference

| Description

Journal, [11]

Ch. Ott, O. Eiberger, J. Englsberger, M. A. Roa, and A. Allaln&Sfer. Hardware and Control
Concept for an Experimental Bipedal Robot with Joint Tor§easorsJournal of the Robotics
Society of Japanvol. 30, No. 4, pp. 378-382, May 2012.

Journal, [12]

Ch. Ott, A. Dietrich, D. Leidner, A. Werner, J. Englsberger,Henze, S. Wolf, M. Chalon,
W. Friedl, A. Beyer, O. Eiberger, A. Albu-Schaffer. Fronrdae-controlled to intrinsically
compliant humanoid robots ASME Dynamic Systems and Control Magazv@. 3, No. 2,
pp. 7-11, June 2015.

Journal, [13]

T. Koolen, S. Bertrand, G. Thomas, T. de Boer, T. Wu, J. SnditEnglsberger, J. Pratt. Design
of a momentum-based control framework and application éohilhimanoid robot Atlas. In-
ternational Journal of Humanoid Roboticgol. 13, No. 1, pp. 1650007 (34 pages) , March
2016

Journal, [14]

N. Perrin, Ch. Ott, J. Englsberger, O. Stasse, F. Lamiraug.[Caldwell . Continuous Legged
Locomotion PlanninglEEE Transactions on Robotics (short paper, accepted)

Conference: [15]

M. Krause, J. Englsberger, P.-B. Wieber, and Ch. Ott. Staibn of the Capture Point
Dynamics for Bipedal Walking based on Model Predictive Caint In 10th IFAC Symposium
on Robot Control - SYROC@ages 165-171, 2012.

Conference: [16]

H. Kaminaga, J. Englsberger, and Ch. Ott. Kinematic opttiin and online adaptation of
swing foot trajectory for biped locomotion. IEEE-RAS Int. Conf. on Humanoid Robots
pages 593-599, 2012.

Conference: [17]

T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff, N. MertD. Stephen, P. Abeles,
J. Englsberger, S. McCrory, J. van Egmond, M. Griffioen, Moy#l, S. Kobus, N. Manor,
S. Alsheikh, D. Duran, L. Bunch, E. Morphis, L. Colasanto;LK.Ho Hoang, B. Layton, P.
Neuhaus, M. Johnson, and J. Pratt. Summary of team IHMQlsalirobotics challenge entry.
In IEEE-RAS Int. Conf. on Humanoid Robgtages 307-314, 2013.

Conference: [18]

B. Henze, A. Werner, M. A. Roa, G. Garofalo, J. Englsbergad,@h. Ott. Control Applications
of TORO - a Torque Controlled Humanoid RobBiegt Video Award). In IEEE-RAS Int. Conf.
on Humanoid Robot2014.

Conference: [19]

G. Garofalo, B. Henze, J. Englsberger and Ch. Ott. On théiatigrdecoupled structure of the
floating base robot dynamics . tonference on mathematical modelling (MATHMQRP15.

Conference: [20]

G. Garofalo, J. Englsberger, Ch. Ott. On the regulation efehergy of elastic joint robots:
excitation and damping of oscillations. American Control Conference (AC015.
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CHAPTER 2

Mathematical basics for robotics

This chapter provides the notation and mathematical b&sidhe methods derived in the subse-
quent chapters of this thesis. For readers with little @epee in robotics, it may serve as compact
introduction to this exciting field of research.

2.1 Notations used in this work
In this chapter, the following notation for arbitrary pandr vectors (denoted hy here) is used:
By . (2.1)

The indicesB, r andk denote the reference frame, the reference point (or linkérarigin) and
the point (or link frame origin) of interest, respectivelg.other words, 2.1) defines a vector from
the point (or link frame origin) indicated by indexto the point (or link frame origin) indicated
by indexk represented in the frame indicated by ingexThe upper left index position is used for
the latter to keep the upper right index position free foension or square terms.

The notation for rotation matrices and homogeneous tramsftoons is

“Ag (2.2)

where “ A denotes a rotation matriX Rz or a homogeneous transformation matf . This
notation represents the rotation or homogeneous tranafamfrom a reference frame with index
a to another frame with indeg. For a more intuitive understanding: The rotation matfiRs
denotes the base vectors of frafheepresented in the frame with index

A wrenchPw, combines a forcé f, and a torquér in a single covector:

Tk

Buwy = [ﬁfk] . (2.3)

As above, the left upper indeg denotes the base (or frame) that the wrench is represented in
while the lower right indeXx denotes the link that the wrench is applied to.
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2 Mathematical basics for robotics

2.2 Homogeneous transformations

A three-dimensional point with indekxcan be transformed from franjeto framei via
ixi’k:ix”_ + iRj ja:Lk . (2.4)
5,—/
Tjk
By augmenting the three-dimensional position (or vectoithwan additional “1” (i.e. creating
homogeneous coordinates), this correlation can be wiiittermore compact form:

[irnli’k]:{oii; iwl”] [J:Bfk} : (2.5)
)

iHJ‘

Here, iHJ- denotes the homogeneous transformation fromilitklink j. If the world frame is
denoted by “0”, the relative rotation matri; can be derived from the global orientatidhR; of
link i and®R; of link j as 'R; = °R] CR;. The relative translation between the two lirlks
can be computed from the corresponding global translatishg; ; = 'z j —' zo; (still using the
frame of linki as base).

Homogeneous transformations as2ig can be concatenated as follows:

'Hy = 'H; 'H, . (2.6)

Using @.6), arbitrary transformation chains can be constructed.eNlwt the rotations from one
frame to another are automatically included in this notatio
The inverse of a homogeneous transformation can be comtghé@mputed as

iRT _iRTig. . : iR — IR i
i i 'vl]: JHiZ{ i i L

H ' = (2.7)

01x3 1 0143 1
Remember that the inverse of a rotation matrix is its trasspbe. ‘RJ-‘l = iRJT = IR;, because
rotation matrices are orthogonal and their determinant is 1

2.3 The skew operator

One operation that is particularly convenient for many @& flubsequent derivations is the fol-
lowing: for an arbitrary three-dimensional vector= [vi,V,,V3]", its cross product with another
vectorw can be written as a matrix vector product, vex w = [vx] w for any three-dimensional
vectorw. It can be explicitly written as

0 —V3 V7
[’UX] =1 V3 0 —Vi (28)
-V Vi 0

Obviously, [vx] is a skew-symmetric matrix. One example, where this skewatpeis used, is
the correlation between the spatial angular velocity, (see Sec2.5) and the derivativéR; of a
rotation matrix 'R;, which can be expressed as

[wijx]='R; 'R] . (2.9)
The equivalent correlation for the mapping that consideesoody angular velocitiwu is

[jwiJX]: iR-jr iRj . (2.10)
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2.4 Adjoint transformations

2.4 Adjoint transformations

The transformation of a Jacobian or corresponding veldoityn one frame to another is an op-
eration which is widely used in robotics. This transforratis accomplished by the so called
adjoint transformation Any Jacobian (or corresponding velocity) that is représgin a framej
can be transformed to another framga

T = Adig 1T (2.11)

Here,i, j, k andl denote arbitrary frames (not necessarily different franses below). The
adjoint transformatiomd ip7; USes the homogeneous transformatidi; as input:

R;  [wix] fRJ} (2.12)

Ad gy = |:03><3 'R;
In many applications, the inverse of the adjoint transfdromeis required. It can be computed as:

iRJ-T - iRJ-T [i:cizj x|

Ad7L =
[03><3 'R]

H } — Ady; s (2.13)
An additional useful operation is tHge bracket matrix(presented inq0]) of a 6-dimensional
velocity vectorv, which is defined as

oy | wx] [EX]
adj(v) = [0 wx]| (2.14)
Here,z andw denote the linear and angular components of the six-dirmeak{body or spatial)
velocity vectorv = [, wT|T. This Lie bracket matrix can be used to compute the time dtviy
of the adjoint transformation, for example:

Ad g, = Ad g, adj(ipn ) - (2.15)

Here,éum denotes the body velocity, which is introduced in the negtien.

In addition to Jacobian transformations, the adjoints dam lae used téransform wrenchedf
a wrench represented in a given frame (upper left index, stion @.3)) has to be transformed
to another base, the following correlations can be applied:

Jwy = AdTiHj wi & wi = AdTIEJ gy (2.16)

2.5 Six-dimensional velocity vectors

In [71], Murray et al. describe three different six-dimensionalocities that combine both linear
and angular motion: thieybrid velocity thebody velocityand thespatial velocity These velocities
can be intuitively interpreted as follows:

Thehybrid velocity vectocombines the linear and angular velocity of a lijdelative to another
link i represented in the coordinate frame that is attached ta.fink

Thebody velocity vectocombines the linear and angular velocity of a linkelative to another
link i but now represented in the coordinate frame attached tqlilituitively, this would be the

1This representation correlates to the notation that iallyi referred to, when engineers talk about “the” linead an
angular velocity of a body.
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2 Mathematical basics for robotics

relative velocity between the two links that a person gittim link j would observe. For example:
this velocity is typically used when processing data froniremtial measurement unit (IMU) that
measures the velocity of a body w.r.t. the world, represkeimé¢he body frame.

The spatial velocity vectoiis less intuitive at first. While its angular component equtle
hybrid counterpart (i.e. simply the spatial angular veigciits linear component indicates the
velocity of a point that is attached to link relative to the frame attached to linkith the peculiar
feature that this point momentarily coincides with the origf framei. The spatial velocity vector
is useful for a multitude of operations.

As compared to the notation presented in et.an additional lower left indek (for hybrid), b
(for body) ands (for spatial) is introduced to indicate the three differsimtdimensional velocities.
Using the mathematics introduced by Murray et @ll][but utilizing the notation from Se@.1,
the correlations for thybrid velocitycan be formulated as

. i . . . iR. 0 . T —[im--x] .
i = Lij i Jig = ] 3x3| 1, . — [23x3 i i 217
hi,j [Iwi,j hJi,j 4 033 'R, b, 03,3 Is.5| YU ( )

the correlations for thbody velocityas

. [P ) . iRT 033 1

and the correlations for thepatial velocityas

. ia’:--—iw--xix-- ) . T i:z:"X ) .

The second terms (between the first equal signs) denote theal adefinitions of the
six-dimensional velocity vectors using the correspondimgee-dimensional linear and angular
velocity vectorsz and w. The third terms demonstrate the velocity computations thi&
corresponding Jacobian matriceg being the generalized joint velocities of a robot (see
Sec.2.10), and the subsequent terms represent the intercormetabetween hybrid, body and
spatial velocity.

2.6 Propagation of Jacobians and their derivatives along a
series of links

This section will provide equations for the propagation adabians and their derivatives along a
serial chain of links. This propagation is used to compugeJécobian of a link further down the
chain relating to the base frame.

The equations below are then typically evaluated itertit@ propagate from one link to the
next until the link of interest is reached. Note that the elations are also valid for propagation
of hybrid, body or spatial velocities. The correspondingaligans simply have to be replaced by
the appropriate six-dimensional velocity vectors. In tbiofving, the propagation formulas will
be provided without going into detail (more details can hanfibin [71]):

2Note that typically this is not a unique point on lifout more of a temporary construction.
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2.7 Propagation of hybrid Jacobians

2.7 Propagation of hybrid Jacobians

To obtain the hybrid Jacobid'rpfi,k of a link, the hybrid Jacobian of its pareipIL j Is propagated
using the relative hybrid Jacobian between parent anoﬂlliﬁ-ljg:

i Isis — 'Rj[zjxx] 'Rf] 'Rj 03:3] |
i (48x j LUy, il i Y j 7
nfik |:03><3 I3.3 nlii 03x3 'R; ik (2.20)
~~ —
Aa AB
The derivative of the hybrid Jacobian is propagated via
i 7 033 B] i i 7 'Rj 0s.3] | j 7
hdik = hJij + Aa nJij + o=l T+ Ag M, 2.21
he/i.k [03X3 0g,.3| N0 a hij 033 R, hjk B hjk ( )
where
B = —('Rj[zjxx] 'R] + 'Rj['&jxx] 'R] + 'Rj[\zjxx] 'R]) (2.22)

and iRJ‘ = [iw”_x] iRj.

2.8 Propagation of body Jacobians

The propagation of body Jacobians and their derivativeisnigas to the one for hybrid Jacobians.
The corresponding propagation equations are

STk = Adf L+ Bk (2.23)
for the body Jacobian, and
ki = AdL L — adj(fvi) Ad L L0 + KTk (2.24)

for the time derivative of the body Jacobian.

2.9 Propagation of spatial Jacobians

The propagation of spatial Jacobians and their derivatigzsn works similarly as for the other
Jacobians. The corresponding propagation equations are

Wik = oJij + Adig, Lk (2.25)
for the spatial Jacobian and
Sk = Wiy + Ad gy adj(Ad g g4 ) Wi+ Ad gy Lk (2.26)

for the time derivative of the spatial Jacobian.
The three different Jacobians (hybrid, body and spatial)their propagation are presented in
this chapter to provide a complete overview.
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2 Mathematical basics for robotics

2.10 Robot kinematics

2.10.1 Kinematic robot description

The kinematic structure of a robot is typically describethgs default posturgi.e. a posture in
which all joint angles are defined to be zero. For all robdtdik the default transformation of the
framé is defined as

R
IH, — [de? k de?wo,k] . (2.27)
01x3 1

Here,qeP Ry is the relative rotation between the global frame andkttte link frame anche?:cojk
denotes its displacement, both represented w.r.t. thedviiaine “0”. The default relative trans-
formation between a link and its parent linkp can be computed as

-1
de?Hk = de(f)Hp decf)Hk . (2-28)

In addition to the default link framegy.H , information about the possible directions of motion
of the robot links w.r.t. each other is required to descrifie obot kinematics. One possible
encoding of such motion constraints are thebrelative spatial Jacobiags?j pk- They represent
the possible motion of each lirkw.r.t. its parentp in a six-dimensional vector that is represented
in world frame “0” andin the default postureThese Jacobians will be used 44 to formulate
the exponential of twist formula—§ forward kinematics).

For prismatic (i.e. linear) joints, these relative spalatobians can be derived as

. Ujj
defdpk = [deg "”"‘} : (2.29)
3x1
Here,qeduiin x € R3*! denotes the unit vector pointing in the direction of thedinaxis of thek-th
link represented in world frame “0” and referring to the ddfgose of the robot.
For revolute (i.e. rotational) joints, the relative sphfiacobians can be computed as

defdpx = [[de?}co,qu defrotk (2.30)
3x3
wherege?zo.ax, € R¥*! denotes a point on the axis of rotation represented w.etwibrld frame
“0” and de?urot,k e R31 is the unit vector pointing in the direction of the rotatibaais of the
k-th link, also represented in world frame “0”. Both axis poémd unit vector are represented in
the default pose of the robot.
For screw joint$ the relative spatial Jacobians are computed as:

[de?xo,axk X] + hscrewl3x3 0 (2_31)

0 .
defJpk = I35 defUrot k
X

wherege?ro ax, € R3*! denotes a point on the screw axis represented w.r.t. thelrarne “0”
andde?urot,k e R3*1 is the unit vector pointing in the direction of the screw axighe k-th link,
also represented in world frame “0”, aihgyew is the pitch of the screw. Again, both axis point
and unit vector are represented in the default pose of that.rob

SNote: Link frames do not necessarily coincide with the cgpomding joints.
4Note: Skrew joints can implement the most general one degfrémedom (DOF) motions. They include both
revolute and prismatic joints as special cases.
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2.10 Robot kinematics

The relative spatial Jacobiags?j pk €an be transformed into the relative body Jacobians

Sipk = Ad_gi delipi - (2.32)

const

Note that these relative body Jacobians are constantifig&. = defb*jpx) because the motion
constraints of the link w.r.t. its own frame do not change.eywill be used in 2.54) for the
forward propagation of global body Jacobians. Note that@hel relative Jacobiange?s bk
and 'gjp7k can be interpreted as twists coordinates (see next seetiwhjhus, the methods from
Sec.2.10.2can be applied.

To conclude, the default spatial link fram@§ H  and the relative spatial Jacobian$j pk (Or
alternatively the relative body Jacobieﬁﬁk) are sufficient to specify the kinematics of a robot.

2.10.2 Twists and their exponentials

A mathematical tool that is often used in the analysis of té&fmematics is the so callemlist. It
is a 4x 4 matrix that can be written as

9 = [E’i;";x] ’9“5} . (2.33)

Its correspondingwist coordinates$ consist of the 3 1 linear component}, and a 3x 1 rota-
tional component¥,o; which are stacked as

Diin
9 = [ ﬂrol . (2.34)

Any 6 x 1 Jacobiary that contains a & 1 linear componenyj, stacked on a % 1 rotational
componenygt, i.e.

j= B:'O”J : (2.35)

can be interpreted as such twist coordinates. Thus, the satteematical tools used for twists
and twist coordinates can be applied to such Jacobians.

If the 6x 1 Jacobianyy of a link k describes a pure translation, i.getx = 03«1, the twist
exponential for that Jacobian can be computed as

e(jqu) — [éiii jlin7k q:||(-:| ’ (236)

wheregy denotes the corresponding joint angle. Otherwjgg { # 03x1), the twist exponential
of a Jacobiaryy is

e _ Re (I33 — Re) [Jrotkx] Jiink + Frotk Jror k Jink Ok (2.37)
N 01><3 1] .

Here, R¢ is a rotation matrix that can be computed usitadrigues’ formuld72):

Re = €Utk = I3 3 + [jrorxx] SIN(GK) + [Grotkx]? (1—cogk)) - (2.38)
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2 Mathematical basics for robotics

2.10.3 Forward kinematics: the product of exponentials for mula

Ploen [r3] summarizes different formulations for the forward kingios of robots. To support the
following derivations, thé-th reference fram%Hkref is introduced, which is defined as

°Hy,, = °Hy 4PH, . (2.39)

i.e. itis fixed to the parent link fram%Hp at a constant offse H, (which is the default relative
transformation between linkand its parenp from (2.28). Reordering 2.39 yields

PHy,, = qefH, . (2.40)
Ploen shows that the relative transformation between &laukd its parenp can be expressed as

PH, = 4oRH | € Kipk oK) ) (2.412)
—_— ——
kafef krefHk

Here,jpk denotes the relative body Jacobian between the two gtk %) is the exponential
of the corresponding twist (computed V26 or (2.37)) andgy is thek-th joint angle. The left

brace indicates the equalit@.40. The right brace clarifies that 57« %) encodes the relative
displacement between theth reference frame (as defined &139) and the current frame, i.e.

ket Ff, — ¢l Kipk ) (2.42)

Concatenating the relative transformations of all invdljants, the transformation of theth link
w.r.t. the world frame “0” can be expressed as

k .
°H, = °Hy - 'H,--- ¥Hy = |‘i( “1H) | (2.43)
=

Using the matrix identity de(%Hk e( Egp,k k) de?Hk_l — e(deofHk Egp‘k depr;l Q) — e( dE‘?;p,k Qk),
equation 2.43 can be transformed into the so callgduct of exponentials formula

~ ~ ~ k .
01, = eloefion @) glaefine @) ... gleefirn ) , Qpr, — |—i (e( defi_1 Qi)) 4 H | . (2.44)

Note that here the default spatial relative Jacobi,s@ri’gi,lji (as introduced ir2.10.]) are used
for thei-th link (or joint). This formula provides the direct coragibn between the involved joint
anglesg; and the global transformation of tketh link.

2.11 Inertia computations and transformations

The kinematics of a robot, as presented in the previousosedias a major effect on its dynamics
(see Sec2.12). The second important property that influences the dyraimithe robot’s inertia,
i.e. its mass distribution. Using the notation introducedic.2.1, the inertia of a robot link
represented in its center of mass (denotedtdy;) can be written as

033 Ticom

30



2.12 Derivation of robotic equations of motion

Here,my is the mass of the link anfl.,,, is its moment of inertia around its CoM.
Using the adjoint transformation, arbitrary inertias carttansformed via

M= Ad'y "My Ad i, & M= Adj, My Ad (2.46)

Here, indexk denotes the link, while the other two indices denote the ésat the inertias are
represented in. When the link inertia represented in the fliame is required, 1.46) can be
applied to .45 which yields
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Here, KHy.,, = B?l’iz xk’l"c"M and¥zy ..., denotes the offset of the link CoM from the link

frame origin represented in link frame.

The matrix M in (2.47) is the inertia of linkk represented in its own frame i.e. in body
coordinates. To identify what effect the inertia of a sinlijix has along the generalized system
coordinatesy (i.e. in the direction of the robot joints), it can be mapp@dbdoint space via

IM = §Jo "M §Jox - (2.48)

On the other hand, the total robot inertfd\, (represented in joint space, i.e. along the gener-
alized coordinateg) can be mapped onto theth link space via

kM, = (KJok Mt ';)J({ O L (2.49)

Matrix I‘Mq indicates the projected inertia that the joint space i:ale?‘m4q‘l opposes to an ex-
ternal wrench (expressed in body coordinates) that is eghpdi thek-th end effector. Note that for
the sake of brevity, the joint space inertia matfid/, is denoted byM in (2.56).

2.12 Derivation of robotic equations of motion

Newton’s 29 law relates the time derivative of the generalized momerituiine generalized force:

%(generalized momentyre= generalized force (2.50)

For a single bodk, Newton’s 29 law can be written in body coordinates (s&€]] as

Kng ke K .k Tk k K k k k
M piok +( My adj(pyvox) — adj’ (pok) Mk> b0k = Wkgrav + Wkc +  Wkne

ka kwk

(2.51)
Here, the tenso*M € R6*® denotes the inertia of theth link expressed in its own link coor-
dinates (see247), ¥Cy is the body Coriolis matrix{vox andfok are the body velocity and
acceleration of linkk relative to the world frame “0” andwy denotes the total wrench acting on
link k expressed in its own coordinate frame (the “body wrench’he $ingle elements ofwy
are the gravitational Wrenchwk,gra\, = KMy AdB}fk [0,0,—g,0,0,0]" (gis the gravitational con-
stant), the constraint reaction wren(‘f’wk@ (if constraints are active) and a wrend‘h;k’nc acting
along the non-constrained directions. The teﬁmg( andE:)Qk in (2.51) can be computed as

Kvox = dox d (2.52)
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2 Mathematical basics for robotics

and
Kook = Kok ¢ + KJokd - (2.53)

Here, "JQk and 'gJ'o’k denote the origin-related body Jacobian of likkand its time derivative,
while ¢ and g are the robot’s joint velocities and accelerations, rethelg. Applying (2.23 the
correlation for the body Jacobi%ﬂ(),k relative to the world frame “0” can be expressed as

sJox = Adyy bJop + Kok : (2.54)
~—~—
- [06><17 ey I[;ij(v veey 06><l]

It propagates the origin-related body Jacotﬁdap of the parent linkp to thek-th origin-related
body JacobiaigJQk. Note: EJQk serves as origin-related parent body Jacobian for the ctatipu
of the next link(s) down the kinematic chain. In the relatbely Jacobiat.J,k, the vectorsi,k
(computed viaZ.32) denotes the “local body Jacobian” between lkénd its parenp. It relates
thek-th joint velocity gk (thek-th joint connects link to its parentp) to the relative body velocity
between the two links, i.vpx = Kipk k.

Equivalent to 2.54) the corresponding relative body Jacobian time deriv%tﬁ(ﬁ( is propagated

sJox = Ado bJop — adj(§vpk) Ady PJop - (2.55)

Now, the single link equations of motio2.61) will be transformed into the robot equations of
motion. It is well-known that wrenches can be transformetd joint space via the Jacobian
transpose. Premultiplying both sides @ff1) by {JJ,, insertingiro and oy from (2.52) and
(2.53 and summing up all equations flr= {1 .. Ninks} (Niinks being the number of robot linRY
finally the robot equations of motion are achieved

s (573% “MickJox) G + Z(EJ& O Tox + 90, “MickJox) @ - (2.56)
M C
—Z (IGJ(Ik I(’wk,grav) = Z <Il§J(1)—,k k'wk,c) + Z (EJ(Ik I('wk,nc) .
—_——
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Here, M and C denote the joint space inertia matrix and Coriolis matrespectively. Note
that the constraint wrenche&wy ¢ vanish after the mapping with the Jacobian transposes. The
generalized torques are the torques along the non-constrained directions clytbtem, i.e. along

the generalized coordinatgs For a general free-floating robot with end effectors in aohtvith

the environment, these torques can be composed by

T = Sac Tact"‘JgE WEE (2.57)

whereSj, is @ mapping matrix that maps the actuated joint torgtygdo the generalized torques
7 (for a free-floating robot (with non-actuated base), tyWyc&act = [06x6, Injgexnions) )- The
second term maps external end effector wrenabgs to the generalized torques via the Jacobian
transpose/{ . Finally, the equations of motion of a free-floating robot & written as

MG+ Cq+ Tgrav = Sact ’Tact‘i'JgE WEE (2.58)

The end effector quantitiefzg andwgg may be formulated in hybrid, body and spatial notation.

5Note: Depending on the chosen formulation, the free-flgaiF may be treated as single “links” as well.
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CHAPTER 3

Useful tools for robotics and motion generation

This chapter describes several tools and methods for asbatid motion generation. Some of the
methods are consistently used in robotics. To the authoidsviedge, the constraint-compatible
tracking method and the quaternion interpolation and trecknethod, described here, contain a
certain degree of novelty and may be of interest also for repeed robotics researchers.

3.1 Polynomial interpolation

A common task in motion generation is to find a trajectory thfills certain desired bound-
ary conditions. Typical boundary conditions may includeidel position, velocity and accel-
eration profiles. Polynomials are a class of functions that gatisfy such boundary conditions.
Their advantage as compared to many other non-linear imclasses is that polynomials and
their derivatives can be written #isear functions of the polynomial parameterBhe problem of
boundary condition fulfillment thus is reduced to solvingyatem of linear equations.

A n-th order polynomial - comprising+ 1 polynomial parameters and thus appropriate for
fulfilling n+ 1 boundary conditions - can be written in the form

f(t)=[Lt,t% .. ,t" p, (3.1)
N———
t'(t)
where t denotes the evaluation timef(t) is the function value at that time and
P = [P1,P2,..., Pns1]" is the polynomial parameter vector. The evaluation timetoreg(t)

combines all required time powers. Similar &%), any d-th order derivative (indicated by the
bracketed superscriptd)”) of the polynomial function can be computed as

) =t (t)p (3.2)

wheret@T (t) denotes the-th derivative oft” (t) w.r.t. time. Now, then+ 1 boundary conditions
can be combined in a single equation:

f (dc,l) (tc,l) t(dc‘l)T (tc,l)
5 _ 5 b (3.3)
f(@on1) (tg g t(Gen )T (teq)
Je Tc
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3 Useful tools for robotics and motion generation

Here,d;; denotes the order of theth derivative andc; is the time at which thé-th boundary
condition has to be fulfilled. The vectgi, combines all boundary conditions, while the matrix
T, ¢ RDx("+1) contains all corresponding time mapping vectors. Sifices a square matrix
and full rank, 8.3) can be solved by inversion

b= Tc_l Je s (34)

which provides the solution to the boundary condition peatl Now, for any evaluation timig
the function value and its derivatives can be evaluatedgu8irl) and @.2).

3.2 Mastering P(1)D controllers: pole placement

A common task encountered by control engineers and robt#is the control of linear (or lin-
earized) systems. Often, fometh order system, only the-th state derivative is controllable. In
that case, the closed-loop system dynamics typically lesk®llows:

el e
On-1x1 In-1x(n-1) : (3.5)
N k ... : ’ )
o ke, Kl an-1)
Acl
é e

whereel) denotes thé-th derivative of the state errerand A is the closed-loop system matrix.
The feedback gaing;, . .., ky] map the state error vecterto then-th state error derivative, i.e. to
the control input. The characteristic polynomg}sr of A is computed as

Pehar = det(A Inn— Aql) (3.6)

its roots being the eigenvalues of the closed-loop systeltermatively, the following formula is
used for then-th order characteristic polynomial:

Pehar = (A — A1) *...%x (A —Ap) , (3.7)

whose roots obviously lie a; to A,. By expansion of3.7) and comparison of parameters, the
feedback gaingk, ..., k,| can be expressed as functions of the eigenvalyes A,. The design
of feedback gains using this technique is cafete placemenit74]. As compared to manual gain
tuning, this tool provides more intuitive access to the etbbop system dynamics and is thus
popular in control engineering. The following table praddthe mapping from desired system
eigenvalues\; to A, to the feedback gaing;, . .., k] of first to third order systems:

kq ko ks
15t order system|  A; — —
2"9 order system —Aq A, AL+ Ay —
39 order system| A1 Az A3 —()\1 Ao+A1 A2+ A )\2) A1 +Ax+ Az

An interesting case are PID controllers, which are typjcajpplied to second order systems.
By introducing the error integral as additional systemesttite second order system dynamics can
be transformed into a third order error dynamics system. cdmérol gains are then assigned as
follows: integral gaink, — ki, proportional gairk, — ko, derivative gairky — ks, i.e. the third
row of the table above is applied for corresponding polegaent.
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3.3 Constraint-compatible tracking method

3.3 Constraint-compatible tracking method

PID controllers, as presented in the previous section, atelywsed to track reference trajectories.
Here, a second order PID controller will be used as example:

Gges= PID(Aq,AQ) (3.8)

In this example Aq and Aq stand for joint position and velocity errors, but can be aept by
arbitrary considered quantities (such as Cartesian pasitelocities etc.). This kind of controller
returns a desired acceleratiggsswhich typically doesn’t consider constraints such as sior
velocity limits. Thus, depending on the reference trajgcte.g. in case of operator errors or bad
trajectory design) the controller may exceed both posif@g. hardware end stops) and velocity
(e.g. maximum joint speed) limits.

The motivation of this section is thus to compute accelenatithat follow the desired accel-
erations from 8.8) as far as possible while avoiding constraint violatiornishas to be noted that
this constraint avoidance should be activabeforethe constraint is violated since otherwise the
system dynamics may prohibit a successful constraint anciel. For example, in case of accelera-
tions as input, the velocity towards a position constrdiutigd already be zero once the constraint
is reached, otherwise an overshoot into the constrainteigtatble. To this end, the desired ac-
celerationgges is compared to special reference dynamics (one for eachraont} that, if they
are followed, make the system converge towards the contstrasymptotically. These reference
dynamics can thus be callegymptotic constraint attractoACA). For a position limit, such an
ACA can have the following form:

Gposlimit = —Apos1Apos2 (0 — Qiimit ) + (A posl )\pos,Z) q, (3.9)

which, given the current stafe,q], leads to asymptotic convergence to the position liapiti
for negative (and preferably non-imaginary to avoid oveasimg) eigenvalues os1 andApos2.
Similarly, for a velocity limit, an ACA can be formulated as

Gvetlimit = Avel (G — Cliimit) (3.10)

which converges towards the velocity limjini; asymptotically for a negative (and non-imaginary)
eigenvalueAg. Now, combining all ACA reference dynamics, lower and upliits for the
feasible acceleratiogseascan be formulated. The lower limit is simply the maximum dfiaver
limit ACAs (computed via 8.9) and @.10 usinggiimit = Giowerlimit @NdGjimit = Ciowerlimit)-

qlowerlimit = ma)(qposlowerlimihQVeLIowerIimit) . (3-11)

Accordingly, the upper limit is the minimum of all upper litACAs (computed via3.9 and
(3.10 usingQiimit = Qupperlimit @NdGimit = Qupperlimit):

qupperlimit = min(qposupperlimitaQVeI,upperIimit) . (3-12)
With the lower and upper acceleration limits, the feasiloeeteration is finally computed as

Gteas= MaxX Giowerlimit, MiN(Gupperlimit, Gdes)) (3.13)

i.e. the system dynamics is safely embedded into the ACAdreonk, which usually leaves the
original controller untouched (i.@eas= Gges While converging to the constraint(s) if the original
controller is in danger of violating the constraints.

INote: The same method can be applied to higher derivativests
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3 Useful tools for robotics and motion generation

The speed of convergence 8.9 and @.10 depends on the choices kf pos, Kd, pos andkyel.
Faster gains lead to a wider area in which the original cdletr¢3.8) remains unaffected but
require higher accelerations away from the constraint @mc@&CA is active. Thus, in practice
these gains have to be chosen carefully.

An ACA-based safety framework as presented in this sectimuidcbe implemented as con-
straints in a quadratic program (QP) based whole-body cbftmework. In the author’s previ-
ous research work, the ACA framework was used for a safe ijgiatpolator, while its use in the
presented whole-body control (WBC) framework (see 8¢uwill be evaluated in the near future.

3.4 Controlling rotations: unit quaternions as powerful
representation

Rotations can be represented in multiple ways, for examigldeuler angles, angle-axis repre-
sentation, rotation matrices or (unit) quaternions. Is thork, both rotation matrices (since they
are part of the homogeneous transformations that the fdriiaematics presented in S&10.3
works with) and quaternions are used to represent threerdiional rotations. Rotation matrices
have the advantage of being intuitively comprehensibleestheir columns are simply the orthog-
onal basis vectors of the corresponding frame, while on therside being redundant (9 elements
for 3 rotational degrees of freedom). Both Euler and angls-gepresentation suffer from (algo-
rithmic, i.e. non-physical) singularities, which this Wdries to avoid. With their four elements,
guaternions are the most compact representation of thneendional rotations that doesn’t suffer
from singularities. For this reason quaternions are useafation reference generation and track-
ing control. The basic quaternion mathematics is taken {fés) while the presented quaternion
trajectory generation and tracking control are the aushaohtribution.

3.4.1 Theoretical background on (unit) quaternions

This section will give a short overview on the theoreticatkground of unit quaternions. A
quaternion is a four-dimensional vector that can be coatstdias

¢= m : (3.14)

Here, n denotes the scalar component of the quaternion ane [e1,&,&]" is its
three-dimensional vector compongnt Note that throughout this work, wherever not stated
differently, when the term “quaternion” is used, actuallyit quaternionsare meant. In contrast
to arbitrary quaternions, unit quaternions have a length o&. the constraint

¢'¢=1 (3.15)

is fulfilled. This equation defines a four-dimensional hgpérere of radius 1. Compared to ro-
tation matrices, quaternions as four-dimensional veatdtts scalar and vector elements are less
comprehensible. Yet, unit quaternions can be derived ftwrahgle-axis representation via

-

) = |sin(2=) umgn| 819

2Note: In some textbooks the elementseadre interpreted as coordinates along three imaginary awek in this
work vector and matrix calculus is used for all required guaibn operations.
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3.4 Controlling rotations: unit quaternions as powerfyresentation

whereuangax denotes the unit vector indicating the axis of rotation agg ax is the rotation angle.
Equation 8.16 facilitates the intuitive understanding of (unit) quatiens, especially when the
rotation vectoruangax and angledangax are derived explicitly.

A useful tool in quaternion calculus is the quaternion magpnatrix defined as

n —& —-& —&
- _|& n —& &
Z=2Q)=\g & n -&| (3.17)

& —& & n

It uses an arbitrary quaterniahas input. This quaternion mapping matikis orthogonal and
thus its inverse is equal to its transpose, i.e.

zt=2z". (3.18)

The quaternion mapping matri¥ allows relative quaternion operations. For example apglyi
(.17 t0%,, i.e. °Zy = Z(%,), the relative quaterniofiy between a quaternidig, and another
quaterniorf¢, can be computed:

.
% = 2% o % =2,%. (3.19)

Note that instead of a simple subtraction (as used for Gartegctors) the transpose of the quater-
nion mapping matrix is used to compute the relative quaderniThe index “0” denotes spatial
guantities and, for brevity, is sometimes omitted througtibis thesis. EquatiorB(19) is equiva-
lent to the following standard operations applied to cqroesling rotation matrices i3

R, = R.°R, <+ 2Ry = °RL°Ry , (3.20)

which can be verified using the following mapping from quaien to rotation matrix:

R(¢)=R(n,e) =2 (n*Isx3+e€€ +n[ex])—Izs (3.21)

Here,[e x] denotes the skew-symmetric matrix as define®iB)( By closer inspection of3.21)
it becomes obvious that the mapping from quaternions tdiootanatrices is not unique: instead,
a quaternion¢ correlates to the same rotation matrix as its antipedg i.e. R(¢) = R(—().
This duality problem has to be considered in the design ofeqo@n trajectories and tracking
controllers.

For completeness, the inverse mapping R0, i.e. the mapping of a rotation matrix to a
corresponding unit quaternion (its scalar and vector eis)ewill be presented here:

1
n=s V1+Ri1+Ro2+Rss (3.22)
1 Ro3—Rs»
€=—- Rs1—Ruz| (3.23)
L Ri2—R1

whereR; ¢ denotes the elements in rovand columrc of the rotation matrixR.

As discussed belowd(19), the computation of relative quaternions or quaternioorsris more
complex than for Cartesian quantities. A possible candifat quaternion error quantification is
the arc length, i.e. the length of the shortest path conmgdtvo quaternions on the hypersphere
(see Fig3.2). For two quaterniong; andg; it is defined as

lare = acog¢' ¢j) - (3.24)

For (i = ¢j, the arc length becomes zero. It may thus serve as error neeasut.
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3 Useful tools for robotics and motion generation

3.4.2 Design of smooth trajectories in quaternion space

This section provides a method for the generation of smooa#ttegnion reference trajectories that
may connect an arbitrary number of waypoint quaternionghiBeend, first a set of desired quater-
nion waypoints is preprocessed to yield the shortest plesgéihs, the waypoints are interpolated
via polynomials (yielding non-unit quaternion trajeces) and then the non-unit quaternion tra-
jectories are consistently projected onto the unit quaiaroonstraint manifold to finally achieve
smooth unit quaternion reference trajectories.

Quaternion waypoints

Given Nquat arbitrary desired quaternion waypoirggpdesi (With i € {1,..,Nguat}), the first step
in the presented quaternion waypoint interpolation is &pwise swap the desired quaternion
waypoints¢wpdesi t0 their antipodes (that represent the same rotation 328)), if the antipodes
are closer (i.e. shorter arc length, s8e28) and Fig.3.1) to the previous quaternion waypoints:

pri _ pr,desi CV-I\-/p,i_1CWp,desi >0 (3.25)
" —Cwpdesi CV-I\-/p,i_1pr,desi <0

Starting with{wp1 = Cwpdes1, €quation 8.29 is iterated forward fof = 2 .. Nguar. This ensures
that each interpolation segment takes the shorter paththieepath from the previous quaternion
to thecloserone of the two antipodal quaternions that represent the seagpoint orientation.

In R3, the longer path (i.e. the one between the previous quatermd the more distant one
of the antipodal quaternion candidates) would correspona rotation about the same axis but
by an angle of Zr— omin > amin (Where 0< amin < 1 denotes the smallest spatial angle which
the rotation may be constructed with), which is undesirablenost cases. Additionally, this
shorter path interpolation decreases the non-lineartsffe#fc¢he unit quaternion projections from
equations §.26), (3.28 and @.30 that are presented in the next sections and ensures that the
interpolated trajectories keep away from the oriffir0,0,0]" of the hypersphere, which would
lead to division by zero in the projections.

Euclidean interpolation

The next step in the quaternion reference trajectory dgsigoess is a Euclidean interpolation
between the quaternion waypoirgigpi. Any interpolation method (such as B-splines, for exam-
ple) could be used. In this work, due to the typically limitedmber of quaternion waypoints,
polynomial interpolation as presented in Séd. was applied, starting from and ending with zero
quaternion velocity and acceleration (at the initial andlfiquaternion waypoints) and interpo-
lating through the quaternion waypoints without internagéelistops. This process yields a C2-
continous (non-unit) quaternion reference trajec{Qrys nu s é’remu , fref,NU], where(ret nu IS the
(non-unit) quaternion reference pOSiti(ﬁ:}ef’NU is the (non-unit) quaternion reference velocity
andfremu is the (non-unit) quaternion reference acceleration.

Consistent projection onto unit quaternion manifold

It is clear that, while providing a smooth interpolationweéen the quaternion waypoints in Eu-

clidean space, the Euclidean interpolation introducedhéngrevious section (in almost all cases)
violates the unit quaternion constraiBt 15 that is required for the rotation representation. Thus,
a method to project the Euclidean (non-unit) quaternioereafce to the more appropriate unit

quaternion space (see FRB)1) is provided.
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3.4 Controlling rotations: unit quaternions as powerfyresentation

¢y (t)

¢(t)
CWPZ ol \\\\AMHHU i il i,

v pr,3 = pr,des3

pr,l = pr,desl £

pr74

pr,des4 o

pr,desz

Figure 3.1: Projection of quaternion spline to hyperspligiillustration).

The following derivations will show how an arbitrary non+Uquatern|on setCNU,CNU,CNU]
can be projected to the closest feasible unit quatermon{(setg] Unit quaternions have unit
length, i.e. the constrainB(19 holds. It can be shown that

q:—J@L— (3.26)

v/ $hu U

fulfills this constraint, while being closest to the origiman-unit quaternior{yy. Differentiation
of (3.15 yields a constraint for the unit quaternion veloafty

¢"¢=0. (3.27)

This constraint is fulfilled by the quaternion velocity comtgd via differentiation of3.26):

E=(Ia—¢¢T) SN (3.28)

\/ SRy Snu

Differentiating @8.27) once more yields a constraint for the unit quaternion a&ragébn:
¢¢=-¢"¢. (3.29)

This constraint is fulfilled by the quaternion acceleration

.. . . é‘NU
(=—(T¢ ¢+ (Ipa—¢ T —— (3.30)
é: dial \/ C&U CNU

~~

Ctangent

which is achieved by differentiatin@(28). Here,¢;agial Can be interpreted as centripetal acceler-
ation that ensures that the quaternion remains on the upérbghere, whil€iangentis the quater-
nion acceleration in the hypersphere’s tangent spacercotet in the current quaterni@n
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3 Useful tools for robotics and motion generation

Now, using 8.26, (3.28 and @.30, the (non-unit) quaternion reference trajectory
[Cref’NU,éref7NU,é:ref’NU] from the previous section is projected to a unit quaternigference
trajectory[cref,C'ref,é}ef] that is closest to the original reference trajectory. THhig guaternion
reference is smooth (typically C2-continuous, dependingh® chosen interpolation method),
fulfills the unit quaternion constraint8.(L5), (3.27) and @.29 and isconsistent

3.4.3 Tracking of quaternion trajectories

This section presents a method for quaternion trackingrabnifo this end, first a general quater-
nion regulation controller is presented which is then agapto the case of relative quaternion reg-
ulation to finally yield a quaternion tracking controller.

For theregulation casdi.e. et = 0, Cret = 0), the following suitable control law was found

tangential unit vectomang _
arc length hye damping term

. T — Ina—CCT) Crete —
aes= —CTEC +kepacogChic) Jaxa =€) Ce. —kea¢ . (331
o VGt caxa—C CT) Greto+A2

tangential space control

radial constraint

which for ¢ = {4es makes the the quaternighconverge to the reference quaterni¢grc. The
main components of the controller are the radial const(aisin @.30) and the tangential space
control, which consists of a proportional feedback and aplagterm. The proportional feedback
component unreels the arc lendgth between the commanded reference quatergign: and the
current quaterniorg onto the tangential space of the hypersphere via the taagemit vector
Utang (S€€ Fig3.2). The tangential unit vectaiang points from the current quaternigntowards

the commanded reference quaternisr . as good as possible while being constrained to the
tangential space. A small damping term<OA? < 1 is used that keeps the fractional term in
(3.3]) from exploding in cas& = (retc. Similar to 3.25), the commanded reference quaternion
Cref c IS either chosen to bger or —(ref, depending on which of the two antipodes is closeg:to

o Cref C;refc > 0
Cref,c = {—Cref CrTefC <0 (3-32)

Equivalently, the commanded reference quaternion vgricfcgﬁjc is chosen to be

: o éref C;I(-afc > 0
Cretc = {—éref C;Il;fc <0 (3-33)

For a positive proportional gaky ,, > 0 and damping gaik; 4 > 0 (pole placement as presented
in Sec.3.2can be applied alternatively), the regulation control I&81) was found to be stable.
The regulation controller3(31) can also be applied to the regulation of relative quatesiio

rel. tangential unit vectomsang
(I4x4 - Crel C;I(-el) Cref,rel
\/CrLde (I4><4 - Crel Cr;) Cref,rel + e

rel. arc length brc rel

.. . . *
Crel.des= — CrTe|CreI Crel + kz,p aCOS{CrTede Crel)

- kZ‘d érel )

(3.34)
Here, Cretrel = [1,0,0,0]T is the reference relative quaternion, whig, denotes the relative
quaternion between a commanded reference quategpippand the current quaterniaf) which
can be computed as

Grel = Zyps e € - (3.35)
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3.4 Controlling rotations: unit quaternions as powerfyresentation

larc Utang

Cref,c /

Figure 3.2: Unreeling of arc length for quaternion trackiB® illustration).

Here, Zetc is derived from(erc via (3.19. Note that a matrix operation is used instead of
a Euclidean difference (which might have the forfr) = ¢ — (retc) to define the relative
quaternion. Also note that faf = (rerc, the relative quaternion becomgs0,0,0]" (instead

of 0441). This means that by regulating the relative quaternjan to the reference relative
quaternion(refrel = [1,0,0,0]T (or its antipode, respectively), converges t(rerc, i.€. the
quaternion tracking error vanishes. Differentiati®y36), the relative quaternion velocitge is
computed as

Crel = Ziorc ¢+ Zrerc € - (3.36)
Differentiating 8.36) once more yields the relative quaternion acceleration
é:rel = ZI:Iéf,C C+2Z.|:[:‘f,cé+z;(ref,cé: : (3-37)

Solving 3.37) for C sett_ipgf = (4esand using the desired relative quaternion acceleratian fro
(3.39) (i.e. setting(rel = Crel.des), the desired quaternion acceleration is found as

é:des: Zref,c (é:rel,des— Zrztc C -2 Z.rTefvc C) . (3.38)

Finally, the combination of3.34 and @3.38 forms the quaternion tracking control which
asymptotically tracks the quaternion reference trajgctc}ref,('ref,fref]. In combination with
the planning method presented in the previous sectiorsctnitrol provides a powerful tool for
multi-waypoint quaternion reference trajectory generatind tracking.

3.4.4 Transformations between quaternion and angular spac e

Orientation control is typically performed in angular spaice. using angular velocities and accel-
erations. Therefore, the quaternion velocities and ara@@s derived in this section need to be
transformed into angular space. Given a quaternion vgldcithe corresponding angular velocity
w can be computed as

w=4E"(. (3.39)
The matrixE is defined as
1 ET 4
E=-Z e RS . 3.40
2 |:[€><]—f] I3><3:| ( )
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3 Useful tools for robotics and motion generation

Note thatFE is not square and thus cannot be inverted directly. The seveperation of3.39) -
i.e. the mapping of an angular velocityto the corresponding quaternion velocdty is

(=Ew. (3.41)
Differentiating .39, quaternion acceleratioscan be mapped to angular acceleratiéns
W =4(E"C+E"¢) = 4E"({-Ew) , (3.42)

where £TE = I,z and ET = —4 ETEET was used. The derivative d3.40) is

Jo J e RM3 (3.43)
B [éx]_h I3x3 ) '

The inverse mapping oB(40 can be computed via differentiation &.41) as

(=FEw+E& =4EE¢+Ew . (3.44)

3.5 Task and null spaces

This section gives a short overview of different types ofyskenverses and null space projectors,
which can be used to find control inputs that satisfy giveks@s good as possible.
In many cases, a linear (or linearized) correlation

diask = Drasku (3.45)

can be found, which maps the input vectoe R™? to the task vectotlask € R™? via the task
space mapping matrik;,sx € R™", i.e. there are control inputs available fomtasks. Now, the
aim is to find an input vector that either perfectly fulfilletdesired tasks, i.e.

diask = diaskdes (3.46)

or minimizes a corresponding cost function. Here, threeidiht cases have to be distinguished:
m=n, m>nandm< n. These cases are examined in the following sections.
3.5.1 Fully determined case

The task mapping3(45 is fully determined if the number of tasks equals the nunderontrol
inputs available (i.em = n) and the robot is in a non-singular configuration. In thaec#% 5k is
square and, iDyaskis full rank, 3.45 can be solved via inversion

u' = Dt_aékdtaskdes ) (3.47)

which fully determines all available control inputs andfifld the desired tasks3(46).

3.5.2 Over-determined case

If the number of tasks is bigger than the number of controliigfavailable (i.em > n), the task
mapping 8.45) is over-determined, i.e. there are not enough controltsypuailable to completely
fulfill all tasks at hand. One possibility to handle this gt is to split the over-determined task
into several under-determined tasks (as presented in titesaetion) to build up a hierarchical
control policy that ensures that higher-priority tasks pegfectly fulfilled, while lower-priority
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3.5 Task and null spaces

tasks may be violated. Another possible approach is to dafgwst function that leads to a good
trade-off between the subtasks. Such a scalar cost funtiignhave the following form:

1 1
G = 5 Ad" Wiask Ad + 5 uAu . (3.48)

Here, Ad = diask— diaskdes = Drask ¥ — diaskdes Wiask € R™ ™ is the (typically diagonal) task
weighting matrix and\ is a damping matrix that minimizes the input vectorBy differentiating
(3.48 by u and setting the result to zero, the optimal input veetdis found as
ut = (Dt-l;\skWasthask + A)ilDt-;skVVtask dtaskdes ) (3-49)
(S}

#
Dtask

which minimizesG and thus optimally trades off the desired tasks. This optsolation is highly
dependent on the chosen weighting maW#ask. The pseudoinvers®y _, € R™™ maps the de-
sired task vectod;askdes to the optimal control input vector. Due to the minimizatiofithe input
vectoru via the (typically positive definite and diagonal) matiixn (3.48 and the corresponding
element in®, the latter is guaranteed to be invertible, even when sortteedfisks become singu-
lar. The corresponding solution frorB.49 behaves well, such thd®f, (including the damping

termA) is also called damped pseudoinverse.

3.5.3 Under-determined case

If the number of tasks is smaller than the number of contjolis available (i.em < n), the task
mapping 8.45 is under-determined. This means that all original taskstmafulfilled, while in
their null space additional DOF remain available for otleesks. The solution for that case is

Here, D"

hsk € R™Mis the pseudoinverse ddask which is defined as

DtJer\sk = Dt-l:alsk(DtaSth-l:a\sk)il (3.51)

To distinguish this pseudoinverse from the one3m9), the superscript{" is used instead of
“#". For the inversion to workD;ask needs to be of full row rank.
The matrixNp € R™"in (3.50) is the corresponding null space mapping:

Np = (Inxn—Dthlsthask) . (3.52)

Inserting .50 in (3.45 fulfills the desired correlation3(46) since DiaskD;g = Imxm and
DiaskNp = Omxn. The vector@ € R™1 in (3.50 can be used to pursue additional tasks.
This vector, just likeu, is n-dimensional, yet via the projection throud¥ip, m DOF become
unavailable for the additional tasks. The redundancy irvéetora can be undesirable. Thus, the

next section will present a non-redundant solution to thibfem.

3.5.4 Reduced null space matrix

Several works such a3§] and [77] present approaches that avoid the redundancy problem men-
tioned in the previous section. To this end, similar to theradation Dask/Np = Omxn, @ reduced
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3 Useful tools for robotics and motion generation

null space matrixNp req € R™ ("™ is designed such thdiask Np red = Omy (n_m)» I-€-

ND.red.u er
[Dtasksquare Dtaskrem] [ reGupp = Omx(n—m) = DtasksquareND,red,upper + Dtaskrem .

~ I(nfm)x(nfm)
Diask ND' d
Jre

(3.53)
Here, Dyasksquare € R™™ is the square submatrix combining the firstrows and columns of
Diask, and Dyaskrem € R™("-M combines the remaining columns. The appropriate upperixmatr
Nb redupper € R™ ("M is found via inversion 0Dasksquare SUCH thatVp req becomes
-1
_DtasksquareDtaSKfem

3.54
I(nfm)x(nfm) ( )

ND,red =

Obviously, this only works itDtasksquare is invertible. Otherwise, a collection ofi independent
columns ofDy,sk may be used. The advantagel¥p req Over the original null space mapping ma-
trix Np is that it has only(n— m) columns. It matches the dimensions of the- m)-dimensional
input vectorueq that encodes the whole remaining null space such ghaf)(can replaced by

u' = Dtt\skdtaskdes + IND red Ured - (3.55)

This way, the redundancy problem mentioned above is sobad.to the lower dimensionality of
the reduced null space vectfq the complexity of derivations may be reduced.
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cHAPTER 4

Whole-body control framework

The previous chapters provided some basic mathematicadinttion to robotics and a collection
of useful tools for robotics and motion design. Many of thethmds presented in this work
are based on these tools. The previous chapters also forivatig for the whole-body control
framework presented in this section.

Humanoid robots can be expected to take over a multitudes&btan the near future. Their
typically high number of joints and thus high number of degref freedom (DOF) have the
potential of fulfilling a multitude of tasks. Often, the nuertof desired tasks is even higher than
the number of available DOF. For a legged humanoid robot itstifree-floating base, some of
the most important tasks are balancing and locomotion. nQfteese tasks are carried out by the
legs of the robot, while the arms are mostly dedicated to pudaiion tasks. Yet, situations where
the arms are used for balance (multi-contact) or a leg is f@adanipulation (e.g. when kicking
a ball) are not uncommon either. The main challenge in wholgy control (WBC) is to find
the optimal control outputs, which best fulfill the desiredks (e.g. contact force control) while
fulfilling the given constraints.

The particular choice of the control architecture has atgedfect on the achievable robot
performance. Prominent examples for whole-body controhigectures include Virtual Model
Control [78, 79], passivity-based whole-body controller§1{65] and inverse dynamics base
approaches such as presented 56, B0-83]. Most approaches work with local optimizers
(optimizing for the current time step only) with preview tyally limited to CoM dynamics,
while whole-body model predictive control approaches, assented in 4], due to the
highly increased complexity, are still in their beginningBhis work uses an inverse dynamics
architecture which, as in many other recent works, is eméedito a quadratic program (QP)
based optimization framework. In this work, the actuatadtjtorques and linear contact forces
are used aeptimization variablegor control inputs) and the optimization problem is formath
as a quadratic program (QP). This chapter presents the psedzation framework.
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CoM frame
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Figure 4.1: Outline of CoM frame and polyhedral convex copgraximation.

4.1 Contact representation and adapted equations of motion

One of the challenges in the control of humanoid or otherfi@ating' robots is how the different
contact scenarios and the corresponding feasible wrergdre®e encoded. One basic idea is
to approximate continuous contact surfaces (such as a fobtvia contact points and make
assumptions about the feasible contact forces that canfied@mt these contact points. For a
robot foot, the constraints for the feasible contact foinescontact point are typically formulated
as friction cone constraints: only forces that lie withimstfriction cone (centered around the
ground normal at the contact point) are feasible. This cepeesentation is non-linear. Although
there are solvers that can handle conic constraints (asxéongle presented by Wensing et al.
[6Q]), often (e.g. in BO-83)]) these constraints are approximated via polyhedral conwaes (see
Fig. 4.1) that span the original friction cone as best as possibkretly turning the constraints
into linear ones and thus simplifying the problem. In thigkyahis approximation via polyhedral
convex cones is used.

In the polyhedral convex cone framework, the feasible aamaenches are encoded via linear
contact forcesf; € R3*! that are composed of a unit vectar;, indicating the force direction in
space and a scalar paramgbedenoting the contact force magnitude, i.e.

fi = Oufi Pi - (4.1)

That way, all friction cones considered for a given contangrio are represented by a total
number ofn, linear contact forces. The feasible directidhs;, are typically determined by the
given contact configuration. The contact force magnitudestypically (at least when friction
cones are approximated) constraint to be positivegj.ex 0. The contact force magnitude vector

1The term “free-floating” is not necessarily related to spaxt®ots but to robots whose base link is not rigidly con-
nected to the environment.
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4.1 Contact representation and adapted equations of motion

p combines alh, contact force magnitudes as

P1
p=1:1]" (4.2)
Pn,,

The contact force magnitudgs can be mapped to six-dimensional spatial (i.e. represented
world frame “0”) wrencheSwgg, via

OwEEk = OAp,kP s (43)

wherek is the index of end effectdE Ex. Each%,%k denotes a special adjoint matrix that maps
the vector of contact force magnitudedo thek-th spatial wrench. If thé-th (i € 1..n,) contact
force is associated with tHeth end effector, the corresponding cqumrPAhk is

0
Oap’k = [[Oxo’;ifi Oufi] . (4.4)

Otherwise, the corresponding columnoispjk = Ogx1. Here,oufi is the contact force direction
vector as used in4(1), while %z denotes the spatial position of the contact painthat the
contact forcef; is associated with. In this work, four contact points in tleeners of each foot
and four contact forces at each contact point are used thabxdmate the corresponding friction
cone. This leads to a total af, = 16 contact forces per end effector/foot such tdad)(involves a
10-dimensional null space in the mapping from contact fonegnitudes to foot wrenches. The
control input regularization as presented in Sk2.5assures stability of that null space.

It has to be noted that the contact forcgsare only assured to actually be feasible if the
estimated friction coefficients and ground normals areveggd correctly and if the assumption
that a certain contact point is in contact at all is correctthebwise the computed contact
forces/wrenches are invalid which may lead to major stgtidisues.

Using the contact wrench encoding J), the general robot equations of motiéh%8 become

Nee

. . T
MG+Cq+T1gav = SactTact + z (SOJQEEk %p,k p) (4.5)
—_———— &1 ——
n 0
wEEk
NEE T T
— [Saa, 0y 04 k} [ act}
[ act kzl(s 0EE “*p, ) p
——
TAu u

Here,nge denotes the number of considered end effectorsdahik g, is the corresponding spatial
end effector Jacobian that corresponds tokitie spatial end effector wrenSaweg,. In this work,
the actuated joint torques,: and the contact force magnitudpsare chosen asontrol inputs
They are stacked in the control input vectoas

u = {T;"t} . (4.6)

The matrix’A, in (4.5 combines both the actuated torque mapping magix and the contact
force mapping matrices into a single operator that mapsrbet ivectoru to generalized joint
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4 Whole-body control framework

torques. In the subsequent task derivations, often thelation between control inputs and
generalized joint acceleratioidsis required. It can be derived from.f) via inversion ofM':

jg=-Mn+ M1T7A, u 4.7
dms Q

Here,@Q maps the control inputa to generalized acceleratiogs while gyg are the accelerations
due to multi-body effects, such as gravitational and Criatcelerations.

4.2 Tasks used for whole-body control in this work

Whole-body control of humanoid robots is an exciting fieldre$earch which comprises chal-
lenges regarding stability, robustness and safety, to rarha few. A humanoid robot has the
physical ability to perform a multitude of useful tasks sltaneously. The issues of stability and
robustness have to be tackled with highest priority. Onesdlrather physics-related tasks are
solved, humanoid robots can use their additional availBiid- to perform actually useful tasks.
This work focuses on robot stability. Most of the tasks dibsct in the following subsections are
at least to some extent related to the stability of the roBditwhole-body control tasks will be

formulated using the control input vectar = [T;ﬂ in the following form:

dides = Diu . (4.8)

Here,d; gesdenotes the desired task space vector of-tihetask andD; is the corresponding task
mapping matrix.

4.2.1 Balance and locomotion: linear and angular momentum c ontrol

As mentioned above, balance is one of the most critical ssButhe control of humanoid robots,
which due to their underactuation is a difficult control desh. Locomotion can be seen as dy-
namic balance which makes proper trajectory generatiorfegtiback control even more impor-
tant as compared to static balancing. The centroidal dyc&®%] of a robot (including linear and
angular momentum dynamics) is strongly connected to itre&. This motivates the derivation
of momentum-based control strategies in this work (sedosech and6). The two following
subsections present how these tasks are preprocessed fanale-body control framework.

Embedding linear CoM dynamics for walking and running

Newton'’s second law of motion provides a fundamental cati@h for the CoM dynamics that can
be applied to any multi-body system such as a humanoid rétieimportant to note that the CoM
dynamics is aeducedmodel rather than simplifiedmodel, since it captures the most prominent
part of the overall robot dynamics while not making any sifigations or introducing errors. In
sections5 and6, two frameworks for humanoid walking and running controll we introduced
that are based on CoM dynamics. For walking, the correspgrdiesired linear external force on
the COM Feyt desfrom (5.63) is used while for runningg.49) is used. The use of force control for
the linear CoM balance and locomotion task is directly catibfawith the torque-based control
framework presented in this work, since the contact forcgnitadesp can be directly mapped to
the desired external forces (s€el(l)).
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4.2 Tasks used for whole-body control in this work

Regulation of angular momentum

The angular momenturhnof a robot can be computed from its generalized joint velegivia
l=A4Ag) ¢ . (4.9)

Here,Ag, denotes the part of the centroidal momentum madgy introduced by Orin et al 8],
that relates to the angular momentiinif a reference trajectory for the angular momentum of the
robot[liet,lef] IS given, it can be tracked via the following controller

ides = iref - kh.,I (l - lref) ) (4-10)
~~

Tcomdes

which is stable fork,; > 0. In this work, both the reference angular momentliga and its
rate of changée; are chosen to be zere( regulation cask which, for moderate walking and
bipedal running, yields satisfactory results. Yet, forastforms of locomotion such as galloping
or faster locomotion (e.g. high speed running) a non-zegulan momentum reference seems
to be highly desirable or even necessary. The interplay efatigular momentum task with the
overall posture task (see Séd.9 is a particularly important, yet challenging issue. In man
cases these two tasks seem to compete and thus trade-off4chbe accepted. The design of
appropriate angular momentum references (as for examgdepted by Herzog et aB§)) that fit
well the requirements of a particular locomotion form whiking well feasible regarding the robot
hardware limitations and other tasks at hand is a challemgehias to be investigated further. In
contrast to offline optimizations, online generation offsangular momentum references would
support arbitrary and sudden changes in the locomotiomnpattand thus facilitate more agile
and versatile humanoid locomotion. Methods for online gatien of nominal references that
reconcile both tasks, to the author’'s knowledge, do nott exisar. Such considerations will be
part of future research.

Embedding the linear and angular momentum task into whole-b ody control

The desired linear external force on the Cd¥qesfrom (5.63) or (6.45 and the desired torque
around the CoMrcomdes from (4.10) are related to the chosen optimization variables as fallow

[F e’“dﬂ = [Opxna; ™) u . (4.11)
Tcomdes —_—

D
dcomdes com

Here,n,t denotes the number of actuated joints. The m&tid, can be computed as

Nee
comy , = AdTOHcom Z(%p’k) ) (4.12)

It maps the linear contact forcep to a combined external wrench in the CoM frame:
COMpext = ©Mw, = ™4, p. The matrices’A, x map the contact forcep to spatial wrenches
via (4.3). The adjoint transposﬂdTOHcom (computed via2.16)) acts as transformer from world

frame (index “0”) to CoM frame. Here, the CoM fram¥H ¢om (see Fig4.1) is defined as:

T 0
OHCOm — |: 3x3 $O7com:| , (413)
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4 Whole-body control framework

Whereochcom is the spatial position of the CoM. The corresponding rotatnatrix is a unit
matrix, i.e. the CoM frame is not rotated w.r.t. the worldnfim“0”. The centroidal momentum
task mapping matriXD¢om and the corresponding desired task vedgdesin (4.11) compactly
represent the CoM wrench task and will be merged with therdtsks in Sec4.3.

4.2.2 Foot acceleration tasks

Unlike wheeled robots, legged robots have to execute agdésseries of footsteps in order to move
forward. The robot feet alternate between phases of startewing. During the stance phase,
a foot supports the weight of the robot, transmitting theunegl forces to the ground. During
swing phases, the swing foot moves from its previous foptkieation to the next one. This foot
relocation has to be thoroughly coordinated with the pregk CoM motion, i.e. the foot needs
to target the previewed footstep location precisely enamghwith the right timing. This section
presents the six-dimensional foot trajectory generatiwh teacking control method used in this
work and its embedding into the whole-body control framdwohlthough the section is about
foot control, the more general term “end effector” is usestéad of “foot” to indicate that other
end effectors can be controlled using the very same methods.

Design and tracking of translational swing leg trajectorie S

In this section, the polynomial interpolation method fromcS3.1is used. The linear foot tra-
jectory generation presented in this work typically uset fifrder polynomials (i.e. with 6 un-
knowns) for the horizontal directiong € x,y and a sixth order polynomial (with 7 DOF) for the
vertical direction:

]

|
=

~

o
~—
1

1

T
[ t](0 - - z zee(0) T
Hoy | [0 0 | | 5o
X( ) XEE(O) T
50 || el o |
PxEE= TX =E PzEE = t;(%”) ZEE(T%V) (4.14)
T
f(Tow | | Xee(Tow tT(Taw) | |22E(Tow)
t.;(TSW) Xee(Tsw) %I' SW Zee (Tow)
iT (Tow) | Xee(Tsw) ] tz (Tow) " TSW
LY \'sw) | ~—_—— __EZT (TSW)_ _ZEE( SW)_
TC7X fC’X T fcz

Here, equation 3.4) from Sec.3.1 is applied. The time in swing phase is denoted by
tsw € [0, Tsw], WhereTgy, is the total swing time. Applying3.1) and @.2), the time mapping
vectors can be computed &5(tsw) = [1, tswt3,, t taws towl, £y (tsw) = [0, 1, 2sw, 3t5,, 43, 5te),

t)-(r (tSW) - [Ov 0,2, 6tsw, 1ZSZW7 ZGSW], t-zr (tSW) - [17 tsw, t52W7 tng tng t55W7 tSGV\I]f tZT (tSW) -
(0,1, 2tgy, 32, 4t3,, 5t 6t3,] and ] (ts,) = [0,0,2, 6tsy, 122, 203,302, ], wherets, = 0 and
tsw = Tsw, respectively, is used i(14) to compute the time mapping matric&s, andT;,. The
latter are square and full rank, and thus invertible. Equat#.14) provides the polynomial
parameter vectorgy g andp,ee that comply with the boundary condition vectofsy, and fc ;.
Typically, zero initial and final velocities and acceleoas are used as boundary condition, i.e.
Xee(0) =0, Xee(0) =0, Xee(Tsw) =0, Xee(Tsw) = 0, Zee(0) =0, Ze£(0) = 0, Zeg(Tsw) = 0 and
Zee(Tsw) = 0. As initial and final position boundary conditions the poess stance foot position
and the foot target position (which may be adjusted onliee, Sec5.3.3 are used. As seventh
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4.2 Tasks used for whole-body control in this work

vertical boundary condition, a vertical foot position atdnswmngE(TSW) is used, which yields
the required ground clearance during foot swing.

Now, with the solution for the polynomial parameter vectpyse andp, g, the foot position,
velocity and acceleration reference for the current timawimgts, is found using

XEE ref t (tsw) ZEE ref t] (tsw)
XE Eref (tsw) = t)-(r (tsw) Dx ZE Eref ('[SW) — tZT (tSW) ps . (4 15)
XEE ref £y (tsw) ZeE ref £T (tsw)

All spatial directions X, y, 2 are now combined in the end effector reference coordinates

LEEref = [XEE7ref7YEE,ref7ZEEJef]T- The corresponding referenquEJehi:EE,refvjEEJef] is
tracked by applying a second order tracking control law asrdeed in Sec.3.2):

LEE des= LEEref — AEE1 AEE2(TEE — TEEref) + (AEE1+AEE2)(EEE — EESFEf) . (4.16)

Here,Agg 1 andAgg » denote the desired eigenvalues of the end effector trackingmics. Equa-
tion (4.16) returns the desired linear end effector (here: foot) areébn.

Design and tracking of rotational swing leg trajectories

For quaternion trajectory generation, the methods predeint Sec.3.4.2are used. The initial
quaternionog"EE,pre\,stance computed from the previous stance foot rotation, the finaiteunion
targetOCEE;arget as terminal rotation and optionally several quaternionpaayts distributed over
the swing time are used as desired waypoints for the quatemeiference. The latter may be
used for example for features such as toe-off motions andttieehdown preparation (i.e. heel
lower than toes right before touchdown to lower the impattsaise of premature landings). These
desired quaternion waypoints are then preprocessed3\28) (and interpolated via polynomials
(timings and equations similar td.(L4 and @.15)) using zero initial and final quaternion veloc-
ities and accelerations as additional boundary condit{tmsachieve smooth interpolation). The
resulting non-unit quaternion trajectory is then consigyeprojected to the unit quaternion mani-
fold via (3.26), (3.28 and (3.30 (see Sec3.4.2. The gained unit quaternion reference trajectory
is then tracked via the quaternlon tracklng controIBaB(l) and @.38, which yields the desired
end effector quaternion acceleratlcj@E des Settingé = CEE desin (3.42) yields the desired angu-
lar acceleration of the end effector

WeE des= 4 (Egg Ceedes + Efg Cee) - (4.17)

Implementation of 6-DOF foot acceleration tasks

In [71], Murray et al. introduced three types of different vel@st spatial velocity, body
velocity and hybrid velocity (see also S&t5). The hybrid velocity combines the translational
velocity?> and the spatial angular velocity of a link in a single six-dimional vector:
RV jink = [%g’”nk,%g‘”nkﬂ. The concept of hybrid velocity suits the end effector tragkasks
(4.16 and @.17) very well. The hybrid velocity (see Se2.5) of an end effector is computed as

Wvoee = RJoEeq - (4.18)

Here, P Joee denotes the hybrid Jacobian of the end effector arate the generalized joint
velocities. Differentiation of4.18) yields the hybrid end effector acceleration:

Wooee = nJoged + nJogedq - (4.19)

2in spatial frame, however not to be confused with spatiadaigy.
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4 Whole-body control framework

During foot swing, the desired hybrid end effector acceilenacombines4.16) and @.17) into:

0. 5C.EE,des
h VOEEdes = | . , (4.20)
WEE.des

while during the stance phase it is assumed that the endafiecg. foot) is not accelerating since

it is in firm contact, i.ehofjojEE’des: 06x1. This isjust an assumption, of course, which may cause
problems regarding robustness in case it is not true (elgotrstanding on soft or unstructured
grounds). Now, using4.7) and settingP:)QEE :hOf/O,EE,desin (4.19, the end effector acceleration
task can be expressed as function of the control variakles

WDoEEdes — KJoged — KJoee v = RJoEe Q u . (4.21)
——
deE des Dee

This equation provides the desired end effector (or foatpkeration task vectadegg ges and the
corresponding task mapping matifiXz g, which is embedded into the WBC framework in S&&

4.2.3 Torso orientation control

The torso orientation tracking control implemented in therk is equivalent to the angular com-
ponent of the end effector tracking task in the previousieectThe spatial angular velocity can
be computed as

0‘-‘JO,torso = a?JO,torso q, (4.22)
whereaE’JO,torSO denotes the angular Jacobian of the torso@atk the generalized joint velocities

(including the free-floating joints).
Differentiation of @.22) yields the angular acceleration of the torso:

0‘»Z’Qtorso = a?thorso q + o.?JQtorso q . (4-23)

The angular Jacobian’JmOrso and its time derivativegjomrso correspond to the angular com-
ponents of the hybrid Jacobian of the toy%bolytorso and its time derivativé)jomso, respectively.
Inserting @.7) and settind’wo‘,torso = %ojtorsqdes, the following desired task mapping for the torso
orientation is found:

0- 07 . 0 . 0
Wotorsades — h JO,torso 9 — w JO,torso aquB = w JO,torso Q u . (4.24)

dtorsqdes Dyorso

Here,%ojtorsqdes is the desired angular torso acceleration which can be ctadpia @.42 as

0. T 0x ST 04
Wotorsades = 4(Etorso Ctorsqdes + Etorso Ctorso) ’ (4-25)

Whereoftorsqdesdenotes the desired torso quaternion acceleration whigbeid to track the torso
quaternion referenc@iorsaret: %rorsaret: %rorsaret]-  The latter can be designed by averaging
the vertical components of the left and right foot refereqoaternion trajectories (the detailed
derivation is omitted here). The quaternion transfornmatiwatricesEqrso and Eigrso in (4.25 are
computed from the torso quaterniBiorso and its derivativ€(iorso via (3.40 and 3.43.

Equation &.24) provides the desired torso acceleration task veditpg,desand the correspond-
ing task mapping matriD;qrso, Which will be embedded into the WBC framework in S4cS.
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4.2 Tasks used for whole-body control in this work

4.2.4 Joint posture reference

The tasks introduced in the previous subsections are nfitieuat to determine all desired robot
DOF (at least for high-DOF humanoid robots). In other wottig, null space of these tasks in
non-empty and needs to be controlled. One convenient oidm add a posture task, which
typically involves all actuated robot joints. A possiblesited task space dynamics for the joint
posture task can be defined as follows:

(jpostdes = dpostref - )\postl)\ post2 (Spost q— onstref) + ()\ post1l + )\posLZ)(Spost q - (jpostref) )
(4.26)

whereS 05t maps the generalized joint coordinate® the actuated onegt (i.€. gact = Spost @,

in this work Spost= SIo, [@postret,dpostref; dpostret]| IS the postural reference anghost1 and

Apost2 are the corresponding desired eigenvalues (see3S8c.While such a dynamic postural

reference including corresponding joint velocities andedgrations would be conceivable, this

work uses a constant reference postgpgsirer for all actuated joints (i.e.qpostret = 0 and

dpostref = 0) such that4.26) turns into the regulation case.

Reordering 4.7), premultiplying withSost and settingSpost § = Gpostdes Yields

(.I-postdes_ Spost(.I-MB = SpostQ u , (4.27)
N——
dposi;des Dpost

which provides the desired torso acceleration task veligsqesand the corresponding task map-
ping matrix Dpost. These will be embedded into the WBC framework in Se8.

4.2.5 Control input regularization

In the section about over-determined pseudo inverses, @idgrterm% u" A u was introduced
in the cost function .48 which ensures good behavior of the resulting input veatdn case
of singularities. The latter typically occur when the (unmgieed) matrix that would have to be
inverted is not full rank. Here, a “damping” task is introéd¢ which fulfills the same function
as in 3.48. Its main task is to prevent the control input vectofrom growing to infinity when
singularities occur. To this endyges= 0 Will be used as desired input vector. By considering this
task in the subsequent optimization this instable behasisuccessfully avoided.

For control inputs chosen in this work, as mentioned in 8€k;.the mapping of linear contact
forces to contact wrenched.®) is by default under-determinedThus, at least the null space
that correlates to that mapping has to be damped (or regeithri Additionally, depending on the
tasks and robot configuration at hand, further singularitiely occur such that the damping of all
elements of the input vectar is advisable. That way situations such as fully stretcheskkr(as
often observed in humanoid robots, e.g. in case of pertormsbr when taking very long steps
while walking) can be handled well, while without dampingytcan lead to total loss of control.
The desired input vector from above can be mapped to thelacpuda vector via

Udes = Inyxn, w (4.28)
ddampdes Ddamp

where, as proposed aboveges= 0 is chosen as desired damping task ved@{npdes and the
damping task mapping matrqampis simply Iy, «n, (Ny denotes the total number of elements in
the control input vectot:). Via dgampdes aNd Dyampdes the damping task will be embedded into
the WBC framework in Seal.3.
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4 Whole-body control framework

4.3 Optimizing the task objectives via quadratic programmi ng

In humanoid robotics the number of desired tasks (as deiivede previous sections) is typi-
cally higher than the number of available robot DOF, i.e. heblem is over-determined (as in
Sec.3.5.2. Additionally, the robot hardware limitations have to betrand ground contact con-
straints have to be fulfilled. Therefore, finding the optifreslution, which is the best trade-off
between the desired tasks while fulfilling the given coristsaand limitations typically involves
optimization. One possible candidate for such an optirignas the use of @uadratic program
(QP). Such a QP exhibits a quadratic cost function and liceastraints which yields a convex
and thus comparably simple problem with only one single gloiptimum. A QP solves the same
optimization problem as an over-determined pseudo invarSec.3.5.2 only that it additionally
considers constraints. The over-determined pseudo mnaerpresented ir8(49 is the analytical
solution for a quadratic program without constraints.

Inspired by the works of KoolerB[l], Righetti [80,82] and Wensing %1, 52] (besides others),
this work formulates a QP, which takes the tasks as presémtdte previous sections, certain
robot hardware limitations and contact constraints intmaat. All tasks are treated at the same
level, their priorities solely determined by a weightingtma(single-weighted QP). Hierarchical
QP formulations, as for example presented58, B7, 88|, strictly ensure certain higher-priority
tasks to be fulfilled, while lower-priority tasks are oveed, if necessary. This may be viewed
as advantage. Yet, most of such hierarchical QPs are nostra@lgainst singularities. This is a
drawback as compared to single-weighted QPs, which maaicodamping terms that drastically
reduce such singularity issues. This was the main motivatiasing a single-weighted QP in this
work.

The previous sections introduced the desired task vediQes and task mappings matricés;
(here, 1” stands for the different tasks from the previous sectides,"CoM”, “left foot”, “right

foot”, “torso”,“posture” and “damping”), which encode ttieear and direct mapping from the

control input vectoru = [T;")Ct} to the desired tasks. These direct linear mappings are osed t

express the task errors as
Adi = di — diges = Dju— dides - (4.29)

Now, a quadratic cost function can be formulated as

1
G = 3 .Z<AdiT Wias Ad ) (4.30)

= %UT > <D.T Whaski Di) u— 3 <dIdesW/}aski Di) u + % > <di1:des"vtaski di,des)
—_— T N— T

Hapi Fpi
Hoe £

where the index stands for all task indices “CoM”, “left foot”, “right foot"“torso”,“posture”
and “damping” and the sum in the first line adds up the weigletedr squares for all tasks.
The task weighting matriceBiask; (one for each task are typically chosen to be diagonal to
independently weight the different task elements. Thersdioe of @.30 shows that, for each
task, a square Hessian matfkop; € R™*™ and a row vectogf(gei e R™" can be independently
computed 1, is the total number of elements af). The final Hessian matrid{gp and QP-
defining row vectorf(gP are then simply the sums of these quantities over all taske.a0vantage

const

Soptimal w.r.t. a chosen cost function
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4.3 Optimizing the task objectives via quadratic prograngni

over task stack formulations (where all task mapping medgrand desired task vectors are stacked
in one big matrix and vector, respectively) is that the sizthe Hessian matrices and QP-defining
vectors is equal for each of the subtasks. This is partigutanvenient if the exact structure of the
optimization problem is changed, e.g. when new tasks aredadtihe combined Hessian matrix
Hqp and vectorf{, are forwarded to a QP solver. Note that the right term in tioerse line of
(4.30 is constant and can thus be omitted.

Finally, the considered optimization problem in this wasKarmulated as

. 1
min. G = EUT Hopu — fgpu

s.t. Tact < Tact < Tact (4'31)

0<p<p

The operator® ande in the inequality constraints denote lower and upper limitse contact
force magnitudegp are constraint to be positive, such that the contact can&rare ensured.
Note that by the use of4(7) in the previous subsections, the robotic equations of enctire
implicitly considered. When a foot is in contact with the eomment, the motion constraints
have to be modeled which is typically accomplished by sgttiive corresponding accelerations to
zero. A peculiarity in the presented QP formulation is tihat tontact constraints (i.e. zero foot
acceleration during stance) are not implemented as haiggoonstraint but as standard tasks.
The corresponding task weights are chosen to be very hightsat the constraints are typically
fulfilled well*. As compared to the hard equality constraint, the presefoiedulation is less
sensitive against ill-posed situations such as singulafigurations. This may help the QP solver
find a solution, which otherwise may fail to converge. Of @ayrchoosing to implement these
constraints as hard constraints could be considered as Weib choice of soft or hard contact
constraints is subordinate as compared to the followinggisany possible contact scenario, unless
the environment surrounding the robot including its comnptie parameters is perfectly known to
the programmer, is always just a collectionasfsumptions In case of interaction with natural
environments, the exact motion constraints and intena¢ticces can never be predicted perfectly.
The mismatch between assumed and actual contact can hare sffects on the achieved robot
dynamics and stability. Contact estimation and robustificais a research field that requires
further investigation, but out of the scope of this work.

The solution to 4.31) is the optimal control input vecton™ = 7;*? that trades off between

the different tasks according to the cost functidr8Q), while fulfilling maximum joint torque and
contact constraints. In this work, to achieve this optinmiliton the gpOASES softward9] is
used, which is based on an online active set strategy descib90]. The optimal joint torques
7* resulting from 4.31) are commanded to the robot.

“Note: during stance, very high task weights for the foot keretions are used, while during swing these weights are
lowered by a factor of about 100.
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CHAPTER D

Bipedal walking control based on Divergent Component of Motion

The previous section gave an overview of the whole-bodyrobfitamework used in this work,
while, with regard to robust walking and running (see chaf}eontrol, referring to this section.
This section will present the walking trajectory genenatémd feedback control framework used
in this work, which is based on the CoM dynamics. The latter lsa analyzed and controlled
in a particularly elegant and comprehensible way by usiegsthcalled Divergent Component of
Motion (DCM), also known as “(instantaneous) Capture Poag system coordinate.

Note that, due to the linearity of the CoM dynamics of a gelmettaot, the equations and control
laws, derived in this chapteland in chapte6 on running, hold for general free-floating robot
models and not only for simplified models, such as the tefd@sawr linear inverted pendulum.

The contributions of this chapter are (i) the extension efabncept of Divergent Component of
Motion (DCM) to 3D, (ii) the introduction of Enhanced Cerittal Moment Pivot point (eCMP)
and Virtual Repellent Point (VRP) to encode external andl tiwrce acting on the CoM, (iii) the
design of smooth and constraint-compatible eCMP and DCpMdiaries and their tracking, (iv)
the introduction of an analytical step adjustment methati(ahthe introduction of a CoM distur-
bance observer to compensate for unknown perturbations.Liftear Inverted Pendulum-based
derivations in Sec.1provide a comprehensible introduction to walking refeeegeneration and
tracking, while later the general CoM dynamics is used asahiodtead of the LIP.

5.1 Controlling the Linear Inverted Pendulum using the
concept of Capture Point

The following sections will recapitulate the Linear InvaatPendulum (LIP) model and present
simple Capture Point (CP) based methods for basic planmiddeedback control. The purpose
of these sections is to familiarize the reader with the cphoé LIP and CP. Sectio.3 will
then present the author’s current more advanced state edings which is based on the three-
dimensional Divergent Component of Motion (DCM) and alldessmooth and robust planning
and control of bipedal walking motions.

1aside from the introductory sections on LIP/ZMP-based @apPoint control
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5 Bipedal walking control based on Divergent Component ofitfo

Z= Ccons

Pz

Figure 5.1: Linear inverted pendulum (LIP) model.

5.1.1 Linear Inverted Pendulum model as starting point

The basic challenge in robotic locomotion research is toauaar the robot (or more precisely: its
CoM) from one point A to another point B in space. The CoM dyitanare inertially decoupled
from the rest of the robot dynamic8]] and are only affected by gravity and the external (e.g. leg)
forces (Newton’s second law on momentum conservation):
.1 1
€T = ﬁFcom: m (Fyg+ Fex) (5.1)
Here, & = [)'('VZ]T denotes the CoM acceleratiorfey IS the sum of all external forces,
Fy=m[00-g|" is the gravitational force ang is the gravitational constant. As the CoM
dynamics is a second order dynamics, the CoM position atengdointt in time can be derived
by double integration of the CoM acceleration. One diffigaltises from the fact, that there exists
an infinite number of different time-transient total ford8s,,, for which the CoM motion would
fulfill the constraintseg = xa andxeng = xg. This poses the problem that no unique solution to
the problem exists. Additionally, in order to be physicdiasible, the line of action of the sum
of external forces acting on the robot has to pass througbdhke of support (e.g. convex hull of
robot’s stance feet). The use of arbitrary CoM referencedtaries|zet, ret, Lret] COMbined
with standard tracking controllers of the fortcom= Kp (Tret — ) +Kg (Zret — &) + MEres
typically disregards this physical constraint and is tfaee not well suited for bipedal walking
(and running, see chapté} control. One idea to solve this feasibility issue for thelgem of
bipedal walking is the following: Instead afheckingif the lines of action of the leg forces
intersect the base of support, a point of intersection Gootbiall lines of action of external
forces) isdesignedand related to a corresponding force via an appropriate flase. TheLinear
Inverted PendulunfLIP) model P2] follows this idea. Its torque-free base joint represehts t
mentioned focus point. This torque-free focus point is &sown aszero moment poinZMP),
as introduced by Vukobratovic et. &@][ or center of pressuréCOP). Note: these two terms
denote the same quantity, namely a point on the foot (or blasepport) of the robot that is most
appropriate to support the external forces (or more exauthgnches), while the corresponding
torgue in that point is minimized. The term “ZMP” is traditially used for flat floor walking and
the corresponding control, while the CoP can be appliedad3ih case (see Se8.2.2 as well.
For that reason, both terms are used in this thesis.
The LIP model uses the following assumptions:

e no horizontal torque around ZMP (by definitior) leg force passes through ZMP

e no torque around CoM- leg force passes through CoM

e constant vertical heights vertical component of leg force compensates for gravity
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5.1 Controlling the Linear Inverted Pendulum using the egmof Capture Point

Using these assumptions, the relation between leg forc&siRIposition becomes particularly
simple. By inspecting Figh.1, the following relation between the force acting on the Ca,
CoM position and the ZMP position is found:

Fx _mX _ X—Px

= = . 5.2
F, mg z-p; 62

The variabley represents both horizontal directions of the CoM positiom, x € {x,y}. The
ZMP heightp, equals the floor height. Reordering 2) yields the second order CoM dynamics

X = (X—py) (5.3)

0= \/E . (5.4)

The complete horizontal system dynamics of the LIP modeivisrgby

i L of [ el 65

Using (6.1) and 6.3), the three-dimensional force acting on the CoM can be evritts

with

mg X Px
Feomup = | 0 | +_— (x—p)=maw?® |y—py|, (5.6)
—mg Pz 0
K
Fy &

whereFy and Fieg are the gravitational and leg force,= [x y 7T denotes the position of the CoM
andp = [px py p|" are the LIP base joint coordinates. The vertical componeh#g, and Fieg
cancel each other, so that="0 holds. Note that the terrﬁ% = mw? is constant and might even
be combined into one single constant. Due to the torquebiase and the point mass assumption,
all forces pass through the CoM and the LIP base joint, whienefore can be seen as a focus
point of all lines of action of leg forces. When the LIP is udedbipedal walking control, the
ZMP [9] is assumed to be equivalent to the LIP base jpiaind is designed to be within the base
of support. In a real robot, the resulting ZMPs generallyiatevfrom the planned focus points
due to the model inaccuracies, but often not far enough tcerttek robot tilt and fall. This way,
preplanning a feasible set of focus points (e.g. ZMP’s) isiecessful method for bipedal gait
generation and control: Stephens and Atkestlj present a Model Predictive Control (MPC)
method for step adjustment and push recovery. Wielirdroposes a trajectory free linear MPC
scheme, allowing for compensation of strong perturbatidtishiwaki and Kagamil4] generate
dynamically stable walking patterns by frequently updatnpreview controller. Sugihard 5]
introduces the Best CoM-ZMP Regulator facilitating stefusinent of bipedal robots. Kajita et
al. [16] demonstrate walking on uneven pavement.

5.1.2 Derivation of the two-dimensional Capture Point

Pratt et al. 20-22] introduced the (instantaneou€gpture Point(CP) as the point on the floor,
where a robot (modeled as a LIP) has to step (more precisbitenthe ZMP of the robot has to
be) to come to a complete rest, which means that the CoM idlgtacated over the ZMP and its
velocity is zero. Pratt et al. derive the CP from the lineaented pendulum orbital energy. This
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5 Bipedal walking control based on Divergent Component ofitfo

work provides an alternative derivation of the CP. To thid,aghe explicit solution of3.5) for a
constant ZMP positiom,, is computed as

0] = [ aameny omen | )+ | Zamon [P 67

wherexo and xo are the initial CoM position and velocity, respectively. &wmounced above, the
particular ZMP positiorp, towards which - if applied to the robot - the CoM position cerges
when time goes to infinity is sought-after. Using this infation in the first row of %.7) yields

Xo

Xlt—e0 = Px = Xo cosh{wt) + ® sinh(wt) + py — pycoshat) , (5.8)

which can be solved fopy as

v 1
_ . Xo
Px = Xo+ 7 tanhetyi e . (5.9)

By inserting £.9) into the second row of%7) it can be shown that for this choice @f the
horizontal velocity of the CoM tends to zero for— o. The derived poinpy is equivalent to the
definition of the Capture Poir&. For arbitrary CoM positiong and velocitiesy it is defined as
X
Ex =X+ o
Note: As proposed by several previous work8427], the overall CoM dynamics5(5) can be
split into a stable and an unstable part via diagonalizatlaterestingly, the unstable part yields
exactly the same definition as i6.00. This unstable component has been referred to as ‘(in-
stantaneous) Capture Point’ (iCP or CP) by Pratt et2@-22], as ‘extrapolated Center of Mass’
(eCOM) by Hof et al. 19] and, due to its instability, as ‘Divergent Component of Mat (DCM)
by Takenaka et al.2f3]. Note that in some of the author’s previous worl2g,[25], motivated
by the works of Pratt et al., the term ‘Capture Point’ was ugedhe DCM. Therefore, in this
section the expression Capture Point is utilized, whiletisi; from Sec.5.2.1the term (three-
dimensional) Divergent Component of Motion (DCM) will beadss since it gives a better impres-
sion of its diverging characteristics. Throughout this kydhe symbol is used to represent both
the two-dimensional Capture Point (or 2D DCM) and the thdiemeensional Divergent Component
of Motion (DCM). Combining both horizontal directionsandy of (5.10), the definition of the
two-dimensional Capture Point (or 2D DCM) becomes

(5.10)

E:x—ko%:b, (5.11)

i.e., the Capture Point is composed of the horizontal CoMtiposz = [x,y]" and velocityz =
[x,y]" scaled by the LIP time—consta&t Reordering %.11) yields the CoM dynamics

&=—w(x—§), (5.12)

which for w > 0 is a stable first order dynamics, i.e., the CoM naturallipfes the Capture Point.
Differentiating 6.11) and inserting §.3) yields the Capture Point dynamics

E=w(E-p), (5.13)

Here,p = [px, py]" denotes the horizontal components of the ZMP position.dFor0, (5.13) is

an unstable first-order dynamics, i.e., the Capture Poiptished away from the ZMP. Note that
here the second order overall CoM dynamigsb was decoupled into the naturally stable first
order CoM dynamicsH.12) and the instable first order Capture Point dynamic&3. As shown
later, this simplifies the design of planning and controbalthms which is the main motivation
for the use of the concept of Capture Point (or DCM) in this kvor
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5.1 Controlling the Linear Inverted Pendulum using the egmof Capture Point

Pend =&end = Xend

€end2 =&ini 3

D4

D3
fend

£end,1 :gini,z
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Figure 5.2: Design of two-dimensional Capture Point refeestrajectory:
(a) Foot to foot shift  (b) Preview of next three steps for Ciénence
Note: the reference trajectory is not affected by the cuhmezasured Capture Point.

5.1.3 Planning Capture Point reference trajectories for co  nstant ZMPs

In this section, Capture Point (CP) reference trajectdieesnominally constant ZMPs will be
designed that have instantaneous transitions (no doupleosi) between them. To this end, the
CP dynamics§.13 are solved for a constant ZMpwhich yields

Et) =p+e” (&ni—p) - (5.14)

This equation shows, that, starting from its initial pasit&;,, the CP diverges exponentially.
The main idea of the CP reference trajectory planning inask is to generate a “controlled
divergence” of the CP, i.e., to align the natural divergeotéhe CP with the locomotion task

at hand. To this end, a set 6N — 1) Capture Point reference trajectories is designed that are
consistent with thé\ given ZMP positions (see Fi§.2). Therefore, starting witlfief endn—1 =
Pret N (corresponding to theerminal constraint = 0), the following backwards iteration is used:

Eref,endifl = 'Eref,ini,i = Pref,i +e—w'ﬁ (gref,endi —pref,i) s (5.15)

which tells what positior§erinij the CP reference should start from in order to be pushed by
the constant reference ZMP positipke¢; to the final desired CP reference positi§@s end; Of

that step during théth step timeT,. In order to have continuous transitions between the sub-
trajectories, the final CP reference poidtss endi—1 Of the (i — 1)-th step has to equal the initial
CP&etinii Of thei-th step. That way all initial CP reference positidfis inij are computed and
can be combined withb(14) to provide CP reference trajectories

Ereti(t) = Prefi +€°Y (&refinii — Prefi) - (5.16)

Heret; € [0, Ti] is thei-th time in step Tj being the-th step duration). Insertingyer; and&rer.i(ti)
into (5.13 yields the same solution for the CP reference velocitiedifferentiation of £.16):

Ereti(t) = @ (€reti(t) — Drefi) = WY (&retinii — Pref.) - (5.17)

The current CP reference positigpf1(t1) and veIocityérem(tl) will be used for CP tracking
control in the next section. Note: in this work, indiex 1 always relates to the first/current step.
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5 Bipedal walking control based on Divergent Component ofitfo

5.1.4 Capture Point tracking control

In section5.1.2the CoM was found to have a stable first order dynamic&? that naturally
follows the DCM. This section relies on the natural stapitit the CoM dynamics while focusing
on the stabilization of the naturally unstable Capture Pdymamics $.13. In order to locally
track the desired CP reference trajectory from the prevsegtion, the following stable first-order
behavior for the CP dynamics is eligible:

é— éref,l = —k.f (5 - ﬁref,l) s (5-18)
N—— ~——
AE Ag

i.e., the CP erroAé asymptotically converges towards zero. This behavior lexed by the
following control law for the desired ZMP:

k
Pdes= Pref,1+ <1‘|‘ BE) (& — £ref,l) ) (5.19)
Ag

which can be verified by insertin (L9 back into £.13 and using $.17). Note that the first (i.e.
current) CP reference positi@p 1 and veIocityérem are used here, since the tracking controller
acts on a purely local level. The CP reference veloé,igyi does not appear irb(19 explicitely,
since the relation§,17) was applied. It turns out that the controller - fgr> 0 - asks for a ZMP
positionpgesthat is located at a certain deviation from the current ZM@resce positiompyes 1.

This deviation is bigger than the current CP edsdr(since(1+ %) > 1), which yields the desired
convergence behavior with respect to the CP referencetoaje

5.2 Extension of the Capture Point to 3D

The use of the LIP model for bipedal walking control is regé&d to horizontal motions of the
CoM (z= cons). This motivates new methods, which are not limited to camsCoM and floor
height. Zhao and Senti9] introduce the Prismatic Inverted Pendulum dynamics ardeso
it via numerical integration, allowing for three-dimens& foot placement planning on uneven
ground surfaces. Yet, the lateral foot-placement cannqgtrbdefined, but is dependent on the
sagittal dynamics and on the desired CoM Surface. Addiligriae method is restricted to ground
surfaces with laterally constant heights (“roughness’eafain only in forward direction).

In [30] - motivated by the capabilities of CP contr@4q] - a method for bipedal gait planning
and control on uneven terrain is derived, facilitated byubke of the linear properties of the Di-
vergent Component of Motion (DCM) dynamics and sufferirapirnone of the afore mentioned
restrictions. In the following sections, the methods fr@@] jwill be further improved: The plan-
ning method now guarantees smooth and safe point to pomtpioiation (replacing unsafe in-
terpolation heuristics from3p]) of enhanced Centroidal Moment Pivot points (eCMPs) @epl
ing ZMPs, see below). Also, new methods for reactive stepsaaijent and increased robustness
against strong and continuous perturbations are provided.

5.2.1 Three-dimensional Divergent Component of Motion (DC M)

As shown in BQ], there exists a significant difference between the Capfwiat (defined as the
point on the ground where the robot has to step to come to aastppptotically) and the (three-
dimensional)Divergent Component of Motio(DCM), as the 3D DCM is not restricted to the
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5.2 Extension of the Capture Point to 3D

ground plane, but can be interpreted as three-dimensitaigl. $or 2D considerations (constant
CoM height), Capture Point and DCM (projected to the floog equivalent, but this is not true
in 3D. Motivated by the performance of Capture Point conind24, 25] and by the definition
of the Capture Point (or two-dimensional DCM) iaQ 23], Englsberger et al. introduced the
three-dimensional Divergent Component of Motion (DCM)30][as

E=x + b, (5.20)

where¢ = [&,&,,&;]" is the DCM,z = [x,y,Z" andd = [X,V,2]" are CoM position and velocity
andb > 0 is the time-constant of the DCM dynamics. Note the siniifani (5.20) to the state
transformation proposed by Slotine and BBJ used for adaptive control. In contrast to the def-
inition of the Capture Point in19-25], the DCM as defined in equatio®.Q0 lies at a certain
distance in front of the CoM (w.r.t. its current moving ditiea), i.e., it is generally not located on
the ground but somewhere in space. By reorderingdj, the CoM dynamics can be derived

i:—%@—&) (5.21)

This shows that the CoM has a stable first order dynamicbk fel0 (— it follows the DCM). By
differentiating 6.20) and inserting%.21) and 6.1), the DCM dynamics is found

: 1 1 b
£:_Bm+B£+EFcomo (5.22)

This shows thafom, directly influences the DCM dynamics.

5.2.2 Enhanced Centroidal Moment Pivot point (eCMP)

Generally, a robot is subject to gravity and external farcAs proposed further above, exter-
nal forces aralesignedto be appropriate for the locomotion task while fulfillingetfeasibility
constraint (center of pressure (COP) in base of supportsiriplify this design process, a force-
to-point transformation similar as in the LIP model is usBémember that the tergﬂ‘— in (5.6
is constant. This motivates the encoding of external (egqy) forces in a linear repellmg force law
based on the difference of the CoM and the so callatianced Centroidal Moment Pivpbint
(eCMP), denoted byecmp

Feyi =s(x—1recmp - (5.23)

Here,s > 0 is a constant that will be determined later. The eCMP isetyoelated to the CMP

[66], but not restricted to the ground surface. This allows tooele not only the direction of the
external force, but also its magnitude. The CMP in contrasbéated at the intersection of the
line between CoM and eCMP with the ground (see3i@). The total force acting on the CoM is

Feom= Fext+ Fyg=S(x —Tecmp + Mg (5.24)

with the gravity vectog = [0 0 —g]". Inserting 6.24) into (5.22) yields the DCM dynamics

: bs 1
= (B D)t e Sreamptbg (5.25)
This shows that the statesandg are coupled in general. Though, by the chaiee 7, the DCM
dynamics is decoupled from the CoM dynamics:

1 1

f=6-+

5 5 TecmptDg . (5.26)
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Tvrp

ground

Figure 5.3: Force encoding via eCMP and VRP.

This decoupling of the DCM dynamics from the CoM dynamicsadiefacilitates planning and
control for bipedal walking. Here, in contrast to methodatthield decoupling via feedback
control, the decoupling is achieved via the appropriatéaghof the constans. The equation for

the sum of external forces becomes

mg

— (x — . 5.27
AZvrp(w Tecm[) ( )

m
Feyi = E (113 - "'ecmp) =
Here, the identityo = /Az,p/g was already used, which will be derived in the next section.

5.2.3 Virtual Repellent Point (VRP)
To further simplify 6.26), the Virtual Repellent PoinfVRP) is introduced, which is defined as

Tyrp = Tecmpt [O 0 bzg]T = TecmpTt [O OAZ\/rp}T . (5.28)

Thex— andy— components of the eCMP and the VRP are equal. Their vertitaponentsecmp
andz,, differ by Az,p = b?g, which is a constant that is used as design variable in thi&.wo
Note: Az, can be interpreted as “average height” of the CoM over thergicsurface. With
(5.28), the time-constant of the DCM dynamics is found as

b:,/% . (5.29)

In this work, b can always be equated wi %. With (5.28 the DCM dynamics §.27) is
rewritten as

€= % (& —7up) - (5.30)

This shows that the DCM has an unstable first order dynamiidbdiVRP stays at a constant
location, the DCM is “pushed” away from it on a straight lin@hereas the CoM follows the
DCM with the stable first order dynamic5s.21) (see fig.5.3). The overall open-loop dynamics is

e-[o Y[ e
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Figure 5.4: Point relations for general robot dynamics.

The VRP encodes gravity and external forces in one singletpiith (5.24), (5.27), (5.28 and
Dzyp = b?g, the relation between the total ford,m acting on the CoM and the VRP is found as

mg

—(x — . 5.32
szrp(m Tvrp) ( )

m
Feom= @(CB —Tvrp) =
If required, a desired VRPrp desCan be translated into the required external (e.g. legegfora

m
Feytdes= ?(«’B - ("“vrp,des— [O OAZvrp]T)) . (5.33)

Tecmpdes

Geometrical interpretation of eCMP and VRP

Figures5.3and5.4 graphically delineate the relations between the introdyzants, eCMP and
VRP, and the corresponding forces. Figbrdshows that the VRP encodes the sum of all forces
(gravity and external forcedcom Via (5.32. The Enhanced Centroidal Moment Pivot (eCMP)
encodes the external forcé$,: via (5.27) and is located at a vertical offsét,, below the VRP.
Note that by means of appropriate scaling (length of forcevaequalsAz,,/(mg) times force
magnitude) the force vectors can be geometrically relat@ditrespondent point distances (comp.
to (5.32 and 6.27). Figure5.4 depicts the relations between eCMP, CMP and CoP in a general
bipedal robot. The CMP is found at the intersection of the IBoM-to-eCMP with the ground.
The line of actionly¢ of the leg force can be shifted by means of a torguound the CoM, so
that the CoP does generally not coincide with the CMP.

5.3 Mature method for DCM planning and control

In the previous sections, the LIP model was recapitulateti keasic methods for Capture Point
based trajectory generation and feedback control werepted. Then, the three-dimensional Di-
vergent Component of Motion (DCM) and a useful force-toApdiansformation was introduced,
which resulted in the definitions of the Enhanced Centrdidianent Pivot point (€CMP) and the
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Tvrp,ref.endl = Tvrp,ref,ini,2

foot
Tvrp,ref,ini,1
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Figure 5.5: Generation of VRP/eCMP and DCM referencesedtajies in space and time.

Virtual Repellent Point (VRP). These definitions had helpedaise the two-dimensional con-

cepts of Capture Poin2[L, 24] and ZMP/CMP to the third dimension. The following sections
will provide a detailed derivation and overview of the auth@urrent state of research regarding
DCM-based planning and control for three-dimensional walk

5.3.1 Planning smooth DCM reference trajectories for multi -step previews

This section will provide a method for smooth referenceettijry generation. In the author’s
view, two key criteria for a sound walking reference germratre that it includes a preview of
sufficiently many (for typical dynamic walking cases abdutee or more) future steps in order
to avoid/ease discontinuities at the contact transitiors that it is well feasible with regard to
the previewed contact sequences at hand. Feasibility blres to the question if the forces that
correlate to the reference trajectories can be generatételgvailable contacts, which is typically
expressed as unilaterality constraints (no forces putiimgards ground allowed) or more gener-
ally as friction cone constraints. To reduce complexity)kivey reference generators typically
work with the assumption of zero nominal torque around th&Cé/ith that constraint and as-
suming sufficient friction, the feasibility problem in watig generators is reduced to the problem
of finding eCMP trajectories (corresponding to ZMP trajeet® in 2D) that lie well within the
previewed base(s) of support. This work designs DCM refardrajectories that correspond to
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5.3 Mature method for DCM planning and control

feasible eCMP trajectories while fulfilling a certagrminal constraint To comply with minimal
bases of support such as point or line contacts, the desibtPdrajectories are implemented as
smooth piecewise point-to-point interpolations. Theseearcoded via the followingnprey — 1)
fifth order polynomials between thgy., previewed eCMP waypoints (see Fi5):

tj 15¢;
Tecmpref,i (t ) = Tecmpref,ini,i + < I ) <10— — +6 5 ) (""ecmpref,end,i - Tecmpref,ini,i) (5.34)

Ti Ti
) 30t? t
Tecmpref,i (ti) T3 (1_ ?I) (Tecmpretendi - Tecmpref.,inhi) (5-35)
i
. 60t 3t 2t?
Tecmpref,i (ti) = T3I (1— ?I + T—I2> ("“ecmpref,endi - "“ecmpref,ini,i) (5.36)
I i

Here,recmpret,inii denotes the starting eCMP waypoint (red points in i) andrecmpret endi the
end eCMP waypoint of theth transition phase Each time in transition is denoted by [0, Tj],
whereT; is the total time for each transition phase. Equatidn84-(5.36) fulfill the following
boundary conditions:

_’recmpref i (0) [ Tecmpref,ini,i i
f‘ecmprefl( ) 0
’Fecmpref |( ) _ 0 (5 37)
Tecmpref,i (TI) Tecmpref,endi ’ .
”.°ecm pref,i (TI) 0

_Fecm pref,i (TI) L 0 J

Both eCMP velocity and acceleration start from and end wétto zi.e., 6.35 smoothly interpo-
lates betweemecmpref,inij aNdrecmprefendi during thei-th transition phase. The term “transition
phase” is used here instead of “step”, since a single stepcamasist of several transition phases
(such as a heel-to-toe transition followed by another tti@msfrom toe to upcoming heel, or more
complex). With .34 and 6.28), the corresponding VRP reference trajectories become

Tvrp,ref,i (ti) = Tecmpref,i (ti) + [0 0 AZ'vrp]T . (5-38)

Now, to find the DCM reference trajectories that fit these sim®@R P trajectories, the following
ordinary differential equation (ODE) (as i6.80)) has to be solved:

éref,i(ti) = % (Eref,i (ti) - "“vrp,ref,i(ti)) (5.39)

As boundary conditions, the DCM positions at the end of emtsition phaséeri(Ti) = &ref endi
are used. The solution to ODE.89) is

€ref7i (t ) = Tvrp,ref,ini,i + gl( ) (gref endi — Tvrp,ref,ini |) +S(tl) (Tvrp,retendi - Tvrp7ref,ini7i) (5-40)

whereg; () = e'n’ ands(tj) is

s(t) = %<6Ob2y.(ti+b—si (Ti+b))+30by (12— & T?) + (5.41)
30b 6
- 10y.(ti3—siTi3)+( 1?‘:3+T )(- & TH+ TZ( s,T5)>

2Note: in the more trivial case that the eCMP is supposedrtminat a certain eCMP waypoint during a “transition”
phase, that eCMP waypoint is simply used as start and endipaquations %.34)-(5.36)
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with yy =182+ 1%22. To determine the actual solution for the DCM trajectorigs DCM
trajectory are design'ed to nominally come to a stop ahthg-th previewed VRP waypoint, i.e.,
Eref endnpre—1(Tnpe—1) = Turpref.endnyrev- This means that the robot “thinks” it will come to a
stop afternprey Steps. Yet, due to the receding horizon, this terminal caimgtis not forcingly
required to ever be reached. Given the terminal constraithtuaing 5.40, the DCM trajectories
are iterated backwards from the final (i(@prey— 1)-th) to the first transition phadeFor all future

steps other than the current one, it is sufficient to eval(at) fort; =0, i.e.,

£ref,ini,i = Eref,i (O) = Tyrpref,ini,i T €0, (éref,endi - "“vrp,ref,ini,i) + So,i ("“vrp,ref,end,i - ”“vrp,ref,ini,i)
(5.42)
-T . . .
wheregy; = e andsy; = S(tj = 0). In the presented backwards iteration, the final DCM refer-
ence position of théi — 1)-th transition phase is theth initial DCM reference position:

Eref,endifl = éref,ini,i . (5-43)

Using (.42 and 6.43 as backward iteration, all “end of step” reference DQJW$ end; are found
until the first one. The first “end of step” reference D&Mt end1 is used in $.40 to compute the
DCM reference positioges 1(t1) for the current time in transitiof € [0, Tq]:

éref,l(tl) = Tvrp,ref,ini,1 + El(tl) (Eref,endl - "“vrp,ref,ini,l) + Sl(tl) (”"vrp,ref,endl - ”“vrp,ref,ini,l)
(5.44)
With &ret,1(t1), the current VRP referenoprer,1(t1) (computed from$.34) and 6.38). These
DCM reference trajectories are drawn blue in figirg With (5.40), the current DCM reference
velocity can be computed as

éref,l(tl) = % (éref,l(tl) - "“vrp,ref,l(tl)) . (5.45)

The current DCM reference positigt.1(t1) and velocityérem(tl) are used in the DCM tracking
controller, which will be presented in the next section.

5.3.2 Three-dimensional DCM tracking control

By choosing the deviatiohx = x — £ of the CoM from the DCM and the DCM errdk§ =
& — &ret,1 @S new states, the open-loop system dynansicl) can be rewritten as

Azl [-3 —%] [Ax
.| = 1 +
AE 0 ] [A¢
wherery,, is the control input. Note that the matrix elememé could be replaced by matrices
B~1, which might assign different dynamics to each spatialaioe. In this work, all spatial

directions are treated the same, such that the scalarariatchosen. To stabilize the open-loop
dynamics $.46), the following feedback controller is applied:

Tvrp*&ref‘l

Tl

, (5.46)

Tvrpref,1—Tvrp
b

A
Tvrp,des= ”'vrp,ref7l+[rl rZ] |:AZ] s (5-47)
which with (56.45) leads to the following closed-loop dynamics:
Ax] [t 221 TAg .
Jl— b b ref,1
e =17 2] el 50 ©49)
N————— ——
Ax,f Afeed forward

3As mentioned above: theth transition phaselenotes the transition from thh to the(i + 1)-th contact point.
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The eigenvalues of the system matdx s are

ri—ro i\/rf—2r1r2+(r2—2)2

A= 4
12 55 (5.49)
Solving for the control gaing; andr; yields
ri=(14+bA1)(1+bAy) (5.50)
ro=1+b>A1 Az, (5.51)

which can be seen as pole placement equationsAfar0 andA, < 0 the system is stable. This
choice for the control gains leads to the following VRP feszkbcontrol law:

Turpdes= Turpref,1 + (1+D A1) (1+bA2) (x — &) + (1+ b7 A1 A2) (€ — Eret ) (5.52)
which can be transformed into a desired CoM force 882 as
. m .
Feomdes= —MA1 A2 (x —&rer1) + M(A1+A2) & + o Eref1 - (5.53)

Comparison to second order force-based tracking controlle rs

Equation 6.53 shows certain similarities to standard force-based ingckontrollers. For the
pureregulationcase (i.e.&ret.1 = xret and&rer 1 = 0), the desired force becomes

Feomdes= —MA1 A2 (x —xrer) + M(A1+A2) &, (5.54)
Kp —ky

i.e., the controller shows the exact same behavior as aathiidrce-based PD regulation con-
troller. For that case, any desired PD-gaipsindky can be achieved

In some use cases, the DCM-based controller might be useddo a general second order
CoM referencxyet, &ref, Tref]. TO this end, the input reference is converted into cornedjny
DCM referencegrer 1 = ref + b &ret andérer 1 = &ret + b #res, which inserted into.53) yields

. m .
Feomdes= —mA1A; (513_33ref) + m()\l+)\2) (& —Tret) + Mirer + b (1+DbA1)(1+ b)\z) Tref -

kp kd Fa’c

ref

(5.55)
It turns out that the corresponding controller differs franstandard force-based PD tracking
controller by the tern¥y, .. That extra term would corrupt the desired tracking behraWwoorder
for that term to vanish (i.eF; ., = 0), one of the two eigenvaluely andA; has to be chosen as
—t. Here,Ay = —{ andA, = —k; is chosen, such thab(55) turns into

m ke 1 .. .
Feomdes= b (T —Tret) — M (B+kf) (T —®ref) + Mires , (5.56)
—— —_—
Kp Ky

4Note: PD gains that correspond to imaginary eigenvalues lmeayndesirable since they can lead to overswinging
transient responses. This might make the desired eCMP tea\mse of support and thus conflict with feasibility.
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which achieves the desired tracking behavior for a secoderaoM reference trajectory. It has
to be noted though that for the particular choice\pt= —% the PD gains, andky arecoupled

kd:bkp+%. (5.57)

Note that (fork, > 0) a lower bound for the damping gakgmin = § exists. In practical appli-
cations this may cause problems since the sensitivity agawise in the CoM velocity estimate
cannot be eased by choosing arbitrarily low damping gajns

Specific choice of system eigenvalues

As shown in the previous section, while arbitrary eigengalfor the system matrid, s from
(5.48 may be chosen theoretically, for proper tracking of a sdoomer CoM reference one of
the eigenvalues has to be chosemas- —%. As shown later, the same choice is desirable for
the DCM controller since other choices would lead to dewraifrom the desired DCM tracking
dynamics. To this end, the left hand side 6f48) is set to zero and - using the control gaims
andr, from (5.50 and 6.5]) - solved for the steady state deviations

Az —b —b _£
{J = | (1+bA)(LebAe)  AgidprbAiy [ E{)‘”’l} : (5.58)
steadystate bA1A2 Ao
~—
A‘% Afeed forward
X

It turns out that for the steady state DCM erffsteadystatl0 Vanish, one of the two eigenvalues
has to be chosen as%. This is the exact same condition as the one from the pre@eason on
second order CoM trajectory tracking. Again = —% andA, = —k;g are chosen. This leads to
new control gaing; = 0 andr, = 1+ b ks. The closed-loop system dynami&48) becomes

A -1 k] [Ax s
- b '3 ref,1
MEERN RN 559
S——— ~——
Ax,E Afeed forward

The first row of £.59 can also be expressedas- —% (x—€). This is equivalent to the naturally
stable CoM dynamics5(21]) that is not affected by the controller. In contrast, thddabe DCM
dynamics $.30 is stabilized which results in the following stable firster dynamics:

é - éretl = —Kks (§ — &ret,1), (5.60)
N——— SN———
AE A&

It is obvious that fork; > 0 the system is stable. It has to be noted, that this stalaitiglysis
neglects physical limitations such as limited base of supfde VRP control law§.52) becomes

Turpdes= Tvrpref,1 + (1+0Ks) (§ —&ret1) - (5.61)
——
A&

Just as in the corresponding Capture Point control a9, the desired VRP is located at a
certain deviation from the current VRP reference posittgief,1. Again, the DCM erroAé is
scaled by a factofl+b kg ) > 1 and added to the nominal VRP reference, which yields thieades
DCM convergence. As the DCM errd&é¢ converges asymptotically, also the commanded VRP
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Tvrpdes@nd its corresponding eCMRcmpdes CONverge to their referencegp ret,1 andrecmpret,1
after a perturbation. The force-based DCM control 1&68 can finally be written as

Feomdes = —$ (x—&ref1) — M (%+kf) T + %éref,l
= b_n; (fc_rvrp.,retl—(1+bké)(€—5ref,1)) : (5.62)

Finally, the desired external (e.g. leg-) forBgdes becomes

m
Feytdes= 2 <CC — Tvrprefl— (1+Db k{)(& - Eref,l)) —Fy . (5.63)

Note that the only equations that are finally needed 2u®4), (5.42), (5.43 and 6.44) for three-
dimensional DCM trajectory generation ari&l@3 for force-based DCM tracking control. They
can easily be computed in real-time on any computer.

If no actuation limits are violated and no unknown pertuidoret occur, the DCM tracking con-
troller (5.63 is asymptotically stable. 1r8[], its robustness w.r.t. CoM error, unknown external
perturbation forces, unknown force lag and errors in thed tobot mass estimation was examined.
It turns out that the nominal controller is powerful and wed#haved even under the mentioned im-
perfections. However, in case of severe perturbationspliysical constraints of the robot, such
as its limited base of support, may corrupt the nominal parémce of the controller and lead to
divergence of the robot state. The next section introduaeethod for footstep adjustment that
considerably increases the robustness of the robot gait.

5.3.3 Increasing walking robustness via step adjustment

Depending on the perturbation at hand, the whole-body obbetipresented in chaptdrtranslates
the desired force ey des from the DCM controller .63 into a leg forceFieq that either doesn’t
or does produce a torqugem around the CoM. These two modulation modes are referred to as
“ankle strategy” and “hip strategy”, although in both casgscally all robot joints are involved.
However, in case of continuous or strong perturbationsdésred eCMPs (corresponding to the
desired VRPs fromH.61)) are not necessarily feasible, i.e., within or close tolthse of support.
Thus, modification of eCMP within (or close to) the currend &mure preplanned bases of support
may not suffice to keep the robot's CoM from diverging. Unltke CoP, it is physically feasible
for the eCMP to (temporarily) leave the base of support. thetassociated torque around the CoM
leads to growing angular momentum and thus clashes withdbtg posture task (see chap®r

in the long run. Therefore, the eCMP should usually be heddlenthe base of support, which in
turn limits the possible controls actions.

An additional powerful stabilization mechanism is the atijoent of footsteps, i.e., the positions
of one or more future footsteps - or more generally speakiagitact points - are adjusted such
that the new contact situation is more suitable for stahilizhe given CoM state. Additionally, the
step adjustment should lead to fast and smooth recovenretortginal reference trajectories and
preplanned contacts. To this end, in this section, a metbotbbtstep adjustment (see Figy.7)
will be derived that leads to highly increased robustnesénatyexternal perturbations.

The main idea here is to adjust the foot target locations éh suway that the new initial DCM
reference location at the moment of step transition (or npoeeisely: at the switch to the first
transition phase that is affected by the contact point aajests) is equivalent to the previewed
DCM at that moment. To this end, the effect an arbitrary ddjest of the adjustable subset
of contact points on the corresponding initial DCM refe@positionsé et ini i is first computed
and then the achieved relation is inverted. It would be fsgd use multiple different contact
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leg force modulation leg force modulation .
without CoM torque with CoM torque stepping
(“ankle strategy”) (“hip strategy”)

Fleg

Tcop = Tecmp

ground new base of support

Figure 5.6: Stabilization strategies.

point adjustments, but for reasons of brevity and simplittitthe following derivation, this work
assumes that all adjustable contact points are adjusteldebyaime offsefArecmp (violett arrows
in Fig. 5.7). To distinguish adjustable contact points from non-adjole ones, an adjustment
VEeCtor vaqdj € R*" is defined that indicates for afti. contact points if they are adjustables(
Vadji = 1) or non-adjustable- vaqj; = 0). Foreach adjustableontact pointArecmpis added to
the corresponding initial and final eCMP positiongmpref,inii @Ndrecmpref.endi @Nd recompute
equation $.42. That way, all adjusted initial DCM reference positic§}st ini adjustedi (i-€., the
ones that incorporate the step adjustmiri.,) can be computed via

£ref,ini,adjustedi = 'Eref,ini,i + a; A"“ecmp ) (5-64)

where the-th adjustment gaim; is denoted by
Qi = Vadji + €0j (Vadji+1 Oi+1 — Vadji) +S0j (Vadji+1 — Vadji) - (5.65)

That way alln. adjustment gaing; are found by starting withr,, = 0 and propagating backwards.
As in (5.43, also the DCM reference is propagated backwardst\igendi = &ref,ini,ad justedi+1-
Equation 6.64) would return the adjusted initial DCMs if the step adjustineas known. As
mentioned above, here the goal is the opposite namely to fingparopriate step adjustment
Arecmp Which corresponds to an adjustment of the original DCM ttajg. This adjustment
should lead to perfect cancellation of the previewed ihii@M tracking errorAfini ra, previewedat
the beginning of the first transition phase that is affectedhle step adjustment (“FA’ stands for
“first affected”). In other words: the starting poigwt+ ini ra Of the first affected DCM trajectory is
adjusted to equal the previewed DCM posit§i, previewedat the switching instant. That way any
DCM tracking error that has accumulated until the end of &#s¢ hon-modifiable transition phase
will vanish (with respect to the adjusted DCM referenceettiry) after the step adjustment.
Reordering $.64) and

AEref,ini,FA = éref,ini,adjustedFA - éref,ini,FA = A";hini,FA,previewed (5-66)
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Figure 5.7: Step adjustment; trajectories in space and time

yields the step adjustment (violett arrows in Fag?)

Agini,FA,previewed _ f(tl) - Eref,l(tl)
0=\ 0=\ .

A"“ecmp—

(5.67)

Here, the assumption that the initial DCM erdini Fa previewed at the transition phase switch
(green arrows in Fig5.7) will be equal to thecurrent DCM error A& (t1) = &(t1) — &rer.1(t1) is
already inserted, i.e., the current DCM error is assumedtsigt until the switch (see alg@rev(t1)
(bright blue curve) in Fig5.7). This assumption is a compromise between a more consearvati
approach that might preview further grows of the DCM errog.(edue to under-actuation) and
a more optimistic perspective that might preview DCM erronwergence (e.g. following the
nominal DCM tracking control dynamics). That way, the chos@proach is less sensitive and
prone to noise as compared to the conservative approacke Wwhihg less inert against actual
perturbations as compared to the optimistic approach. yncase, at the instant of transition
phase switching, the assumptidgini Fa previewed= A&(t1) holds true, since for that instant the
preview horizon has decreased to zero. Equato®/ is the main result of this section. From the
current DCM tracking errofg(t1) = £(t1) — &rer,1(t1) the appropriate step adjustme®tecmpis
computed that allows for state recovery even after stromgifmtions.

Despite the discrete step adjustment the proposed metlad ® smooth and continuous
VRP/eCMP reference trajectories, because the step adjos{and the corresponding adjustment
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of the swing foot trajectory) occutseforethe first phase transition is initiated which is affected
by the adjustment (see also Fig.7). If no further perturbation occurs, DCM and VRP are
smoothly routed back to comply with the originally plannedtsteps (or contact points).

5.3.4 Increasing robustness against strong continuous per turbations

To increase robustness, a third stabilization method iehbp/Vith the methods derived so far, a
steady state deviation of both DCM and VRP (and eCMP accgigirarises if the perturbation
force persists. The desired eCMP from the DCM tracking lawy exaen become unfeasible (or
hard to produce for the QP) which may lead to a fall soonerter.ldn this work, the solution is
to estimate the external force via a disturbance obsenaegplicitly account for it in the DCM
dynamics. The derivations for the DCM dynamics have to bastdfl accordingly to account for
the external force. That way, the DCM reference trajectemnodified such that it “leans against
the external force”, i.e., gravity compensates for the revetieforce.

Momentum-based disturbance observer

In this section, a momentum-based disturbance observeb&itlerived which is based on the
ideas of DeLucad4]. Newton’s 2nd law gives a relation between the linear maomap = mz
and the total forcd,om acting on the CoM as

15 = Fcom = Fknown+ Fperturb ) (5-68)

i.e., the rate of change of the linear momentgrequals the forces acting on the CoM. The CoM
force Fyom is composed of a known pakinown and an unknown perturbation fordéerturn. If
Fperturb Would be known (e.g. measured) it could directly be inclunteithe controller. This work
assumes that it cannot be measured directly. Thereforell ibgvestimated using a momentum-
based observer. For bipedal walking the sum of forces acimthe CoM is typically assumed
to be Finown= Fext + Fy (i.€., the sum of all known external forces (e.g. leg forcEs} and the
gravitational forceFy). For brevity, the combined expressidinown Will be used in this section.
Equation 6.68) is reused for the observer:

P = Fanown+ Fperturb . (5.69)

Here, p is the corresponding estimated rate of change of linear mUmeandF‘perturb denotes
the estimated perturbation force. Since no a priori knogdedboutFperyrn €XiSts, it is - for
the observer design - assumed to be constant, i.e., itsatleevto be zero. This motivates the
formulation of the following desired observer dynamics:

Fperturb = kF (Fperturb_ Fperturb) s (5-70)

which for ke > 0 describes a stable PT1 behavior, i.e., the estimatedrpation forceﬁ‘perturb
converges toward# perturs If the latter is constant and follows it with a lag otherwis@&n ex-
act and lag-free estimation of non-constant perturbatiwoes would require knowledge on their
derivatives and is thus not considered here. Integratiagléisired behavio5(70 yields

A t t A
Fperturb(t) = kF </0 Fperturb(t) dt — /0 Fperturb(t) dt) . (5-71)

The actual and estimated momentum can be computed viaatitayof 6.68 and 6.69):

p(t) =po+ /0 t (Finowr(t) + Fperturb(t)) dt (5.72)
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Figure 5.8: Overview of the momentum-based disturbancerubs

and
t ~
P =0+ | (Fiooult) + Frenun(t)) dt (5.73)

Here, po = m&(0) denotes the initial linear momentum. Combinirg72 and 6.73 yields
p(t) — p(t) = [ Foerturb(t) dt — f5 Foerturb(t) dt, such that$.71) can be written as

Fperturb: ke (p_ﬁ) = k¢ (mdj _ﬁ) . (5.74)

Here, the time dependancyt}” was omitted for brevity angg = m& was substituted. Equations
(5.73 and 6.74 are the actuabbserver equationsThe overall observer design is outlined in
Fig. 5.8 In a discrete system, the observer equations have to hetitsd, which yields

Fperturhk =k (m T — ﬁk) (5-75)

and
ﬁk-’,—l - ﬁk + (Fknown+ Fperturhk) At . (5-76)

Here,At denotes the sampling time. FHor 0, pi is initialized aspo = ma(0).

In this section, a momentum-based disturbance observederasd that allows to estimate
external perturbations and thus to increase the robustidkge overall control framework. The
two finally required observer equations (for discrete samgptimes) are%.75 and 6.76). Note
that for practical purposes, it makes sense to limit thereded force to a maximum to avoid
over-compensation, e.g. in the case when the robot is pedury a rigid obstacle.

Leaning against perturbation forces

If the perturbing forcedperturb are known (or estimated?perturb) they can be explicitly included
in the definition of the Virtual Repellent Point (VRP). Eqigat(5.28 can be adjusted accordingly:

b2
Tvrp = Tecmpt [0 OAZvrp]T “m Fherturb (5.77)

The force scaling term can also be written?as- Amirg" > 0. The negative sign in front of this term

implies that the VRP is shifted towards the perturbing foidete: the nominal offs€D OAz\,rp]T
accounting for gravity would also be achieved if the grdigtzal force was inserted as “perturbing
force”, i.e., Fpertub = Fg=[00 —m d'. Likewise, if an estimate of the perturbing force is

available, the original VRP reference trajectorigs, ret, from (5.34) are shifted by—b—; Fperturb

b? .
Tvrpref,ishifted = Tvrpref.i — E Fperturb ) (5.78)
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5 Bipedal walking control based on Divergent Component ofitfo

i.e., they are shifted towards the perturbing force anddbetr“leans into” the perturbation. Here,
ﬁ‘penurb is used instead aFpertury to indicate that in this section the estimated force is usstbad

of the actual unknown perturbing force. For brevity time elegiancies are omitted in this section.
While the original DCM dynamicsy(30) remains unaffected, due to the shift of the VRP refer-
ences in%.78), also the original DCM referencés+; from (5.40 are shifted by—b—:] F‘perturb:

b? .
€ref7i7shifted = €ref7i - E Fperturb . (5-79)

For a given perturbing force estimaifépenurb, (5.79 could be differentiated to yield

. . b? 2
Eref,i,shifted = Eref,i - E Fperturb . (5-80)

Then, the following DCM tracking dynamics (similar t6.60)) could be asked for:

€ — Eref 1shifted= —Ks (E - Eref.,l;hifted) , (5.81)

which would track the shifted DCM trajectories asymptdticéor k; > 0. The following ideal
DCM velocity would correspond to the ideal DCM tracking beba (5.81):

. . b? b? .
£ideal = fretl - E Fperturb_ k.f <€ - Eref,l + E Fperturb) . (5-82)

Since no estimate of the perturbation force derivaﬁi/@rturb is available in the presented setup,
it is assumed to be zero, which yields the new desired DCMcitglo

. . b2 ~
fdes: gref,l - k{ (5 - fretl‘f‘a Fperturb) . (5-83)

—&ref 1 shifted

Using this desired DCM rate and with.70), the following closed-loop dynamics is found:

Fper}urb _ _kkT)z 0 [Fperturb] +
JAYS — B —k,f JAYS

m
The DCM errorA§ = £ — &ret,1shifted IS here defined as the difference between the actual DCM
and the shifted DCM reference fror.79 andA¢ denotes its derivative. The eigenvalues of the
system matrix are stable fég > 0 andks > 0 such that for a boundeHpertur, the preconditions
for bounded input bounded output (BIBO) stability are fidfil. With rypdes=& —b édes from
(5.30, the desired VRP, that corresponds to the desired DCM raite (6.83), is found as

ke
ke b? Fperturb . (5-84)
m

. ke b3
Tvrp,des= (1‘|‘ kE b) 5 - kE béref,l - béref,l + % Fperturb . (5-85)

Substituting 5.85 in (5.33) and with 6.45), the desired external force, that includes the compen-
sation of the estimated external force, can be written irfdewing condensed form:

m A
Fextdes: ? (33 — Tvrprefl — (1+b ké)(g_gref,l)) - Fg - (1+b k{) Fperturb . (5-86)

Note that the original non-shifted DCM referenges 1 from (5.40 is used here. When comparing
(5.86) to (5.63), the effect of the perturbation force estimate on the famerol law is apparent.
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Figure 5.9: Simulation of a Prismatic Inverted Pendull2€].] Walking direction: left to right.
The biped is modeled as a point mass with two point feet. THedines denote a
lateral disturbance corresponding to 10 % of the robot'gieiThe pink lines denote
a horizontal and a vertical push, each corresponding to desudelocity change of
1 m/s. The black points on the ground denote the preplanrasdtép locations.

Comparison to integral controllers

Standard integral controllers (combined with PD compasiémta PID controller) typically in-
crease the robustness against external perturbationscoRstant or slowly changing perturba-
tions, they typically lead to good tracking of the desireférence trajectories with no (or low)
steady state deviations. In case of a constant externa forcexample, the integral part of a
corresponding force PID controller gradually builds up arderforce which compensates for the
perturbation force. Yet, such an integral compensationesowith a drawback when applied to
walking robots with limited support. The compensation obisy perturbations may correspond to
eCMPs far outside the base of support, which would requigh Bhd continuous rates of change
of angular momentum or otherwise be unfeasible, i.e., tsgetkforce could not be produced.

In contrast, the method presented in this chapter shiftedn@nal VRP and DCM trajectories
such that the robot “leans against” the external force. Tt gravity helps compensating for
the external perturbation, while the commanded eCMP cgegdback to the nominal one, which
increases the system’s robustness w.r.t. new perturisation

5.4 Evaluation of DCM-based walking

5.4.1 Prismatic Inverted Pendulum simulations (point mass )

To evaluate the performance of the DCM controllBr6@, which the walking in this work is
based on, simulations based on the Prismatic Inverted Rendnodel P9 (the robot is modeled
aspoint masswith two masslesgoint feej were carried out. For DCM planning and feedback
control, the methods from Seb.3 are used. Yet, for simplicity, instantaneous transitiohthe
eCMPs from one foot to the next are simulated (no double stippd\lso, these transitions
are assumed to be impact-free. Fig&.® shows a screenshot of a simulation, in which the
robot traverses a crater. The stepping time is set to 0.5ndscoThe modeled mass is 60kg.
The approximate “average height” of the CoM over the groumaet toAz,, =0.8m. The
surface height varies between plus 50cm and minus 10cm. Anown lateral disturbance of
58.86 N (10 % of robot’s weight) - active from= 2.25s till t = 6.75s - was perturbing the
robot. Additionally, at = 2.75s andt = 3.75s the robot suffered lateral and vertical pushes, each
resulting in a sudden velocity change of 1 m/s.

The desired footprints are preplanned on the known thneedasional ground surface (black
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Figure 5.10: Appropriate step adjustment for point-foditais on 3D ground surface.

points in the figure). Due to the model assumptions (point mass and point fodty,tba direction
CoM-to-foot is feasible for the external forces, while thlear two spatial directions are unactuated
(robot follows its unstable natural dynamics). Therefdhes desired eCMRBecmpdes has to be
projected via

Tecmpfeas= L + Ux,fulf ("“ecmpdes— CC) (5.87)

whererecmpreas IS the best feasible eCMP ang ¢ is the unit vector pointing from the CoM to
the point foot. To comply with the constraint that the feet caly push the CoM off, desired
eCMPs “above” the CoM are projected onto the CoM itself, ltewyin zero external force (i.e.
free-falling robot). To compensate for the lack of conabllity, the robot adjusts its target
location for the subsequent step (see Fgl0 using the method presented in Sé&c3.3.
Throughout each stance phase, the current state is nutheiitaegrated to provide estimates
for the initial DCM &inj est2 and CoMzxin; est2 at the step transition. Reordering.42, the ideal
VRP ryrpret.des2 (@nd the corresponding eCMRcmpret des2) IS computed, which would shift
the DCM from the estimated initial DCMNini est2 to the final desired DCMet end2 Of that step
within the next stepping time (dashed blue line in FBgl0. The intersectionrecmpref,adj2 Of
the line xinj est2-t10-recmpref.des2 With the ground is chosen darget locationfor the adjusted
step. The adjusted nominal VR ref.adj2 iS foundAz,, further above. Withry p ref adj2 and
&refend2, the desired initial DCMEret ini adj2 IS computed viag.42. Now, the adjusted DCM
reference (solid blue line in Figs.10 is computed via%.40 and 6.45. This step adjustment
has two beneficial properties: i) Since the initial commahd€MPrecmpdesini, computed from
the initial DCM errorAgini» via (5.61) and 6.28), is perfectly in the actuated direction (line
CoM-to-foot, note parallelisms), good convergence in tlegifining of the subsequent step

5Note that online planned footsteps could be handled by thealdramework as well.
6As mentioned above, constant eCMP reference positionsretanitaneous transitions between them were chosen
for the point-mass simulations.
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Figure 5.11: Prismatic Inverted Pendulum simulation. Tagsired (black) and real DCMs, Bot-
tom: desired (point foot position, black) and real eCMPs

is assured. i) If the DCM error converges to zero, the conadedneCMP becomes perfectly
consistent with the point-foot constraint.

Figure5.11presents the achieved DCM and eCMP tracking. The robot was@bompensate
for the perturbations. After the perturbations, the deksfiot locations were tracked very well
after a couple of steps. Note that in this simulation neithénite-sized foot nor torques around
the CoM were available, showing the robustness of the pegpasderlying control laws and the
proposed step adjustment method.

Other simulation setups including (unknown) constant amgllsive perturbations in different
directions as well as mass estimation errors also showedyaaofust performance of the simu-
lated robot. The robustness increases for shorter timest@gtsiepand bigger DCM gaink; .

5.4.2 Whole-body simulations and experiments

The proposed DCM trajectory generator and tracking cdetrélom section$.3.1and5.3.2were
thoroughly tested in numerous simulations and experimeiits DLR’s humanoid robot TORO
([1,99), see Fig5.14 left) and IHMC's Atlas robot 96]. The following sections describe several
different whole-body simulations and experiments.

Whole-body simulations

The walking algorithms, described in this thesis, wereidltjt based on Capture Point (i.e.
the two-dimensional equivalent of the DCM, see S&d) control that was embedded into an
admittance-based whole-body controller. Toro was opératng position control, while an
admittance controller (se@%] for details) was used to achieve the required ZMP contrdterA
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Figure 5.12: OpenHRP3 simulation 2][ of DLR’s humanoid robot TORO. Walk-
ing over a set of stairs of variable height. (step height eddhces:
[+12,+12 +12 —-12 —12 —12,+10,+5,+3,—18 cm)

the extension of the concept of Capture Point to the threeedsional DCM, the corresponding
controllers were adjusted. Figubel2shows Toro walking over a set of stairs in OpenHRP3 [
while using 3D DCM and admittance control. Figusel3 presents the corresponding DCM
and eCMP trajectories, which are tracked precisely. Nogevértical components (blue) that
smoothly follow the stair surface.

During the preparations for DARPAs Virtual Robotics Clalge (VRC) BO, 81], two
DCM-based trajectory generators were developd@, 81] (the DCM reference trajectory
generator presented in Sé&c3.1is an advancement of these original generators). Basedese th
walking pattern generators, the simulated Atlas roboteadd a maximum step length of up to
70 cm (see Fig5.15 (left)) in both IHMC'’s simulation environment9[f/] and the official VRC
simulator Gazebadg].

Figure5.14 right, show a simulation, in which Toro is subject to an umkn sidewards pointing
perturbation force. As shown in the lower plot in Figl§ this force continuously grows from 0 to
150 N within ten seconds. The disturbance observer prasantection5.3.4is used to estimate
the perturbation force. Toro is well able to counteract g@gturbation by leaning towards it. The
upper plot in Fig.5.16 shows the three-dimensional DCM tracking and the corredipgnCoM
motion. In they-direction, the leaning of the DCM towards the perturbati@eomes apparent.

Walking experiments

The Capture Point (CP) based walking controller, as preskeintthe author’s early publications
[24, 25 and recapitulated in Seb.1, was extensively tested in hardware experiments, incfudin
online obstacle avoidanc®9] and foot trajectory optimizationslp(, and applied in different
demonstration scenarios. Figsel7shows a plot of corresponding ZMP, CP and CoM trajecto-
ries from experiments in which Toro was controlled via a jmksinput. The CP references are
tracked well, while the CoM smoothly follows the actual DCWhe desired ZMPs are tracked
well by the underlying ZMP controller.

The same algorithms as for the Virtual Robotics ChallengBQY were also used by team
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tlg

Figure 5.13: OpenHRP3 simulation of humanoid robot TORO: Tdesired (black) and real
DCMs, Bottom: desired (black) and real eCMPs

IHMC for the DARPA Robotics Challenge Trial8][and Finals #]. Figure 5.18 shows an
experimental result of Atlas walking on flat ground whilengsthe Continuous Double Support
(CDS) trajectory generator presented 3®][ The plot shows a series of seven steps. It displays
estimated and desired eCMP and DCM trajectories(ifiorward) andy (sideward) direction. The
estimated DCM and eCMP are attained via a Kalman filgdl pnd by mapping joint torques
to ground reaction forces. Apart from deviations due to iotpat the foot touch-downs, both
eCMP and DCM trajectories are tracked well. The eCMP tramsitluring double support is
continuous, resulting in continuous leg forces and joingtes. The whole-body controller used
by IHMC for these experiments is similar to the one preseiriezhapterd, the most prominent
difference being that IHMC’s problem formulation was fultietermined, in contrast to the
over-determined formulation in this work.

Experiments that evaluate the DCM controller, embeddeal ime WBC control framework
presented in chaptet, are subject to the author's current research. Fidgui® shows a first
result of Toro taking a single step using WBC-embedded DChtrob Due to problems with
the state estimation, the actual DCM trajectories are sh&part from this effect, the desired
DCM trajectories (black) are tracked very well, which is ampising intermediary result. Stable
torque-based walking is expected to be achieved in the néawef While the Capture Point and
admittance-based walking algorithm is executed on therogal with a 1ms rate, the torque-based
WBC framework is running at three different rates: the dyitancomputations (based ofd])
run in a 3ms rate, the QP-based WBC runs at a 2ms rate and théeskig torque controller uses
a lmsrate.
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5 Bipedal walking control based on Divergent Component ofitfo

- Fperturb

Figure 5.14: left: humanoid robot Toro and author; rightrarighting against perturbation force
in OpenHRP simulation.

Figure 5.15: left: Atlas robotJ6] doing 70 cm steps in IHMC’s simulation environment (Simula
tionConstructionSetd7]) using toe-off motion.
right: Physical Atlas robot walking over cinder blocks digfiDRC Trials.
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Figure 5.16: OpenHRP simulation of Toro leaning againstnomkn external perturbation force.
Top: desired and achieved DCM trajectories and correspgndoM motion.
Bottom: actual and estimated perturbation force.

0.6
0.5
0.4r-

0.3

0.1

01

-0.2-

22

Figure 5.17: Real experiment: Toro walking based on CP ob(position controlled).
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Figure 5.18: Real experiment. IHMC's Atlas robot walkingrithg DRC Trials. Pink/red: esti-
mated/desired eCMP, blue/black: estimated/desired DCM

0.9+ {
0.8 Ez Eref,z
0.7
0.6/
0.5

[m] 0.4

Figure 5.19: Real experiment: Toro takes single step usiBEV¢mbedded DCM-control.
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CHAPTER O

Bipedal running based on Biologically Inspired Dead-beat control

CoM trajectory force profiles
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Figure 6.1: Bipedal point-mass model running on 3D stepptanes based oni@ogically
Inspired radbeat (BID) control.

In terms of locomotion speed, bipedal running typicallyeeds the locomotion form of walking,
as presented in the previous section, considerably, irecefidain applications bipedal humanoid
running may be of interest. Humans and certain running liied®e developed astonishing mech-
anisms and control approaches that allow for fast and agil@ing gaits. In the research pre-
sented in this thesis, inspired by human running experisigna gait laboratory, a new concept
for bipedal running, the so called Biologically Inspiredda&eat (BID) control, was developed,
which is a major contribution with regard to the state of thte BID control encodes the CoM mo-
tion of a robot and the corresponding leg forces during statie polynomials and uses intuitive
boundary conditions as design parameters. All requiredtgans can be solved analytically. This
results in significant advantages over the use of the sposded inverted pendulum (SLIF]J}
for running, due to the non-linearity of the latter. This ptea will present the BID method in
detail.

6.1 Human running experiments as motivation

The main idea used in this chapter isdesign desired CoM trajectorigbat produceapproxi-
mately natural GRF profilesvhile fulfilling severalboundary conditions It is well known that
some physical template models, such as the SLIP, gene@aiedjreaction forces (GRF) similar
to the ones observed in human running. Back in 1985, Raitsedsin his book “Closed form ex-
pressions relating forward foot placement to net forwaiktation for the one-legged machine
are not known” #0]. The lack of closed form solutions e.g. for the SLIP motdsthe search for
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Figure 6.2: Comparison of experimentally measured humgrideces (blue/green) and polyno-
mial approximations (red).

alternative ways of encoding the leg fordBd;, equivalent to GRF). Figur6.2 shows a typical
GRF profile recorded during a human running experiment viaeefplate. Except for the impact
phenomenon at the beginning and the lower slope in the enthofes, the human GRF profiles
can be approximated quite well by polynomials of order 2 mhbrtical direction and of order 3
in the x—direction. Therefore, the original idea i67] was to approximate the leg force profile
during stance via polynomials. The total forEg,\ acting on the CoM can be computed from the
leg force Fieg and the gravitational forcéy via

Foom = Fiegg+ Fy= Fiegg+Mg . (6.1)

Here,mis the robot’s total mass angl= [0 0 —g|" denotes the gravitational acceleration vector.
The constant offset betweeftov and Fieg in (6.1) and Newton’s 2nd law (CoM acceleration
T = Fc—ng“") motivates - during stance - the use of a 4th order polynotoiancode the vertical
CoM positionz and 5th order polynomials to encode the horizontal CoM fosix andy, as this
correlates to 2nd and 3rd order polynomials for the CoM a&raéibnsx;y, Z and thus leg forces.
This polynomial encoding can be written as:

o(t) 1t t2 38 4 t°
ot)] =10 1 2 3> 43 5t*|p, o0c{xyz (6.2)
a(t) 0 0 2 & 122 208

ty(t)

to()

t5(t)

Here,tl(t), tL(t) andt] (t) denote the time-mapping row vectors that - for a given timeap the
polynomial parameter vectogs, to CoM positionsa(t), velocitiesd(t) and accelerationg (t).
The last elements of the vectors are greyed out to indicatdtiry are only used for the horizontal
directions, but not for the vertical one.

6.2 Outline of BID control method

This work uses a preview of at least two upcoming stance agldk fihases, as shown in F§.3
The desired relative apex and touch-down heigiig,exdes aNdAzrp ges are used as design pa-
rameters. They indicate how high over the floor the apex df daght curve (i.e.z= 0) should
be and at what CoM height the touch-down (TD) is supposedgpédtazsioori denotes the height
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6.3 CoM dynamics during flight

level of thei-th step. Another design parameter, used in this work, iddta stance timdy (it
can vary from step to step), whereas the total flight tifneesults from the boundary conditions
chosen in sectio®.4.1 To keep track of the current running state, a state mackinsed. It
switches from flight to stance, if the CoM is bel@wp = zti00ri +Azrp and the vertical velocity
is negative, and from stance to flight when the total stamae s over. A timer provides the time
in stances € [0, Ts|] and the time in flights € [0, T]. They are reset at state transitions.

6.3 CoM dynamics during flight

Running is a locomotion pattern, which employs alternagifland (single leg supporting) stance
phases. During flight, the CoM cannot be controlled, i.eollbfvs its natural dynamics (parabolic
path through space). For a given timehe CoM positionz(t) = [x(t),y(t),z(t)]" and velocity
x(t) = [X(t),y(t),z(t)]" can be computed as

t2
z(t) =zo+dot+g > (6.3)
z(t)=ao+gt, (6.4)

wherexg andxg are the initial CoM position and velocity. One typical taskuiinning control is to
achieve a certain apex height. The apex is the highest poiheiballistic flight curve, i.e. vertical
CoM velocity Zapex= 0. Using this condition and the current vertical CoM velpainsteadz, in
the third row of 6.4), the current time to apeXtapexis found as

z
Atapex — a . (6.5)

The remaining time until touch-down (TD) is computed as

2

Here, zrp = Zf100r + AZrp is the CoM height at which the touch-down (flight to stancendra
tion) is previewed to happen. Witl6.Q), (6.4) and 6.6), the previewed touch-down state can be
precomputed for any CoM stale, | as

TTD| _
TTD

In this work, the relative touch-down height is computed as

T+ AMrp g

. Mg
z+blrod+=32g) 6.7)

Azrp = MiN(AZrp des, Z— Zfloor + 2_9 - Aapex,TD,min) ) (6.8)

i.e. nominally the desired relative touch-down heiflfp gesis achieved, while in case of pertur-

bations a minimum height difference between apex and tolo®m A pext p,min IS guaranteed and
the solution of 6.6) is assured to be real.
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Figure 6.3: Preview of upcoming flight and stance phaseséplaketch) - used for design of
boundary conditions. For readability, a constant floor hiezg.or is shown here.

6.4 Deadbeat control via boundary condition satisfaction

6.4.1 Vertical planning and boundary conditions

As mentioned above, the vertical CoM trajectory during stais encoded via a 4th order poly-
nomial, i.e. it has 5 polynomial parameters. These can bigedeusing 5 boundary conditions.

Fig. 6.3 graphically displays the used preview of upcoming flight atahce sequences and the
corresponding boundary conditions. In this work, - for epadviewed contact phase - four linear
vertical boundary conditions are used that can be combiged a

Zrp, t;(0)

Zrpi| _ | t0) |

g = tfzr(o) Dz - (6-9)
-9 t;(Ts,i)

b By

Here,i denotes the index of the considered step by B,; andp,; denote the corresponding

boundary condition vector, boundary condition mappingriaind vertical polynomial parameter

vector, respectively. The first two elementstiyy imply that CoM position and velocity at the

beginning of stance equal the CoM touch-down state. The éotveeelements say that the CoM

acceleration at beginning and end of stance equals minugygiice. the vertical leg force is zero.
The general solution of the linear systdBy; p;i = b, is

Dzi = BZi(BzJ Bzi)il bz7i + 7z ﬁzj . (6-10)

The (reduced) nullspace base vettey; ensures thaB,; rzj = 0. The whole (one-dimensional)
nullspace ofB;; is represented by the scalar variaplg. The vecton,; is computed as
-1

Tzi = _Bz’i’sq”"’}{eBZ’i’ﬂnal ) (6.11)
whereB;;| final IS the last column i3y, while By squareconsists of all other columns. Equation
(6.9) encodes the fouiear previously described vertical boundary conditions. Thih fifound-
ary condition used in this work is the apex heighfeyi of the CoM during the-th upcoming flight

1see Sec3.5.40n reduced nullspace matrices.
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6.4 Deadbeat control via boundary condition satisfaction

phase (see Fig.3). The vertical CoM state of thieth take-off (at end of i-th stance tin¥g;) can
be computed viag.2) as

zroi =t; (Tsi) Pz (6.12)
zroi=t5 (Tsi) pzi - (6.13)
With (6.3) and 6.5), thei-th apex height can be computed as
72
Zapexi = Zr0,i + ;—gl . (6.14)

The sought-after parameter vectaf has to correspond to the desired apex hedghi des, Which
can be computed as

Zapexi,des = Zfloor,i+1 + AZapexdes - (6.15)
Note that here the heiglztoori1 Of the upcoming step is used. Insertirgy12 and .13 into
(6.14) leads to a quadratic equation in the unknown scalar varigbl

T +. 4T, . T T
Tz ty 1, Tzi t; Pzio0 t, Tzi

0 = T f’zJ + (t;r'r'z,i + ) f’Z,i +
tT .2
+ (& Peio)” 22570) — Zapexides + 1 Pzio (6.16)

The only valid solution to§.16) (yielding positive vertical take-off velocities) is

- 27rpi —0Tsi—T
= AL 6.17
pZ,I 4T§| 9 ( )

r = \/g(gTsfi —4z77pi Tsi +8 (Zapexi,des— ZTD,i))

Note: finally only 6.11) and €.17) are necessary as inputs f@.10 to compute polynomial
parameterg,; for each previewed step that fulfill all desired vertical bdary conditions.

6.4.2 Horizontal planning and boundary conditions

In this work, the derivation for the- andy-component is equivalent. The lettgris used to
indicate horizontal quantities, i.¢. € {x,y}. For each previewed contact phase, the following five
linear horizontal boundary conditions are used:

XTDii t}(O)
XTDi t;(0)
0o |- £1(0) Pyi - (6.18)
0 t5(Tsi)
TD,i+1des _t; (Tsi) + Tii t}(Ts,i)_
by By,

Here, by, By; andpy; denote the horizontal boundary condition vector, boundanydition
mapping matrix and polynomial parameter vector, respelgtivAs in Sec.6.4.1, the first two
elements ob, ; imply that the initial CoM state is equal to the CoM touch-aostate. The next
two elements assure that initial and final CoM accelerati@zaro, i.e. horizontal leg forces are
zero. The fifth element - as intermediate control target eiéigs the horizontal CoM touch-down
position XTp,i+1.des Of the upcoming step. Since - in case of no perturbations -htrezontal

89



6 Bipedal running based on Biologically Inspired Dead-tweattrol

ITD LTD ITD

Bx 7 B Br = Bx Px # By

Figure 6.4: Effect ofpy on force ray focusing (lines of action).

velocity during flight is constant, the take-off state canpbepagated to each upcoming touch-
down position via

XTDji+Ldes= XT0i + Tti Xroi = (tyi(Tsi) + Tri t5(Tsi)) Pxi (6.19)

Thei-th time of flight T; ; is computed via@.5) and 6.6). Note: zro; andZro; (used as and
zin (6.5 and 6.6)) depend on the vertical polynomial parameter vegtgr Thus, the vertical
boundary conditions are solved before the horizontal onles.general solution o6(18) is

Px.i = By i(Byi By;) tbyi+ryi Py - (6.20)

Pyx,i,0

The nullspace base vectpy ; is computed via the equivalent @.01). The horizontal directions
have one more polynomial parameter than the vertical oee, ane more degree of freedom
(DOF). This DOF, represented by the scatgs; in (6.20), has an effect on the geometry of the
leg force rays in space (see F&4). Now, the goal is to find the value fqu, ;, which produces
the best possible focusing of leg forces, such that thesbestefeasible for finite-sized (or even
point-) feet. To this end, for each previewed step, the titependent intersection poimfn; =
[Xint i Yint.i» Zfloori| Of the leg force with the floor is computed and the integrahef inean square
deviation from its mean valugy ; is minimized. For a given time in the i-th stanige= [0, Tg;], its
horizontal components are

fieg xi (ts) _
Tregzi(ts) (2(ts) — Zfioor,i) (6.21)

- (] (ts)Pzi — Zfioori) t (ts)
X t] (ts)pzi +9

dyi(ts)

Xinti(ts) = X(s) —

) Dyx.i -

Here, fieg x.i (ts) @and fieg i (ts) are the horizontal and vertical components of the leg fdfigg and
Z(ts) is the height of the CoM. The explicit solution 16.10) is given by

9 ot B Bl (6.22)

Pzi = [ZTDji » ZTD;j >

Remember: the scalar nullspace varialpgsare given in 6.17). Although the horizontal poly-
nomial parameter vectogs, ; are not determined yet, - using the third and fourth line6ot§ as
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6.4 Deadbeat control via boundary condition satisfaction

constraints - they can be expressed as
[ Px.i.1
Px.i.2
0

Dyi= 1072 . (6.23)
X —2Tsi Pxis — —3= Py.i6

Px.i5
Px.i6

Using 6.2 and 6.22), the termd;’i(ts) in (6.21) is expanded to

0,0,0, 6ts, 122, 20t3
dyi(ts) = [1,t, 0,83t t ]+[3(ts)[ 5 125, 205

= , 6.24

1255 ts (Tsj — ts) ( )
f;:r(ts)

wheref(ts) = zrp; — Zfloori + 21D, ts— 9% _ 20, Tsj t + Pz t¢. TheO symbol indicates that the

corresponding term has no effect on the prodigg ts) Dy.i due to the 0 in the third element of
py,i and is thus not considered. Now, cancellimgﬁeldsf;i (ts) = m[o 0,0,3, 6ts, 102].

When the produc]f;i (ts) py.i is evaluated, the terr(ils; —ts) can be cancelled as well and the
product is equivalently written as

- ts+ Tsi)| Pxi - (6.25)

T _
£ pxi = 0000, = 22

g

fx,i (tS)

Settingf(ts) = f1,(ts) and) = 0 in (6.24), one finds

dyi=[1,1t,0,t3, 2+ _lf(ts) ,t§’+i(ts)(ts+Tsi)]T . (6.26)
Pz; 30

Now, the horizontal components of the mean intersectiontp@ht = [)_(im’i,yim’i,Zﬂoor’i] can be
computed via

1 Tsi 1 Tsi T
Xint,i (ts) dts = d (ts) dts Dy - (6.27)

7. ti = 7 -
! TS,I ts=0 Tsi Jie=0

T

eX'i

Here, ey ; is a constant vector. The simple form &.26) as compared to6(24) facilitates the
integration which yields the following analytical solutidor ey ;:

1
T
2
0
ey i— I (6.28)
X‘,I 4 .
ZrpiTsi |, 9% 4
Zfloori —ZTD,i—— 5 +T + TS,I
Pz 2 s
STsi . . 5zr D iTsi 79 19T3|
_zTPZJ(ZfIOOT7I —ZTD)i — + 36 )+ 8 |
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6 Bipedal running based on Biologically Inspired Dead-tweattrol

where p;; is the scalar variable fron6(17). The deviation of theé-th time-varying intersection
point from its mean value is

AXint,i (ts) = Xinti (ts) — Xine = (dy i (ts) —eyi) Py - (6.29)
kyi(ts)
The square of the deviation at a given titpés
DXinei(ts) = Py kxilts) kyi(ts) pyi - (6.30)

In order to obtain the mean square of the deviagipn ms, 6.30is integrated once more an@l.20)
is inserted to achieve

1 /Tsi
Xotims = Pyi 0 [ Lyilts) dis by (6:31)
S, 5=

My
_ TT-M'T'~2-+2 T-M' 0 By i T M. )
iV Txi Py i Ty iy i Px,i,0 Px,itPyioMx,iPyxio -

The analytical solutiong.28) facilitates the (also analytical) computation of mathik, ; which is
finally found as

Mx,i = q’focusi Tfocusi q)-fl—ocusi . (6.32)
Here, the matrid@® tocysi IS
[0 0 0 0 O]
1 0 0 0 0
0 0 0 0 0
Procusi = 0 0 1 0 0| » (6.33)
ZTDi
—Ft g 2T 00
_3§z.i VioV2 V3} % _%_

With vi = (Zfioori — ZTDji — ZTD,i Tsji), Vo = % —zrpj andvz = ZﬁZ‘,iT&Zi + %. All time integrals are
combined in

314 T 5TS 7
12 12 40 15 84
TS o4Ts TS 8T 5T,
12 45 12 105 72

4 TS5 9t8 317 5T8
T, =% Is 9 3l Sl 6.34
focusi 2 12 T2 40 72 ( )
TS 8TS  3TS 1618 TS

15 105 40 225 15
58 TS 2511
L84 72 72 15 396 -
With the matrixM, ; and differentiating §.31) with respect tgy ;, the optimal parameter is found

Sk

rvi Myi pyio
By = —

6.35
PT My vy (6.35)

which minimizes the mean square deviation as defined aboith.(8/35), (6.20) turns into

;
Txi Txi My -
pyi=I— ﬁ) By i(ByiByi) by (6.36)
xi Myi Txi

B,
Qy i X
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6.4 Deadbeat control via boundary condition satisfaction

current staten 1% stance phase 2" stance phase """ Nth stance phase
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Figure 6.5: CoM touch-down adjustment for foot targeting.

which directly maps the horizontal boundary conditidgs to appropriate polynomial parameter
vectorspy; (including best force focus). If - as ir6]] - horizontal CoM touch-down target
positions (or similarly: take-off velocities) are used aaibdary conditions,&,36) provides the
solution to the problem.

6.4.3 Foot step targeting and leg cross-over avoidance

In [67], foot positions could not be controlled directly, whiclusad problems with leg cross-over
(see Fig6.7). Also when precise foot placement is required - e.g. wheming over stepping
stones as in Fig.1- the method failed to provide any guarantee of safe stepiogddress these
drawbacks, this work aims at an explicit solution for fotgstargeting. Settingiy;; = Xfooti in
(6.27), and inserting .36), one can solve for the desired upcoming CoM touch-downtiposi
XTD,i+1des Which corresponds to the desired foot locatjoi. Re-substituting this particular
XTDi+1desin (6.36) yields

XTDii
pyi =T — €ey;) Quillyi, ep] | Xroi | (6.37)
g Xfoot,i

ATpyii

Here, Atpy;i maps thei-th touch-down state topy; and the specific pseudo-inverse

T of ey, maps thei-th foot position. The matrixI, ; combines the first two

ei‘?ai = e;‘i Qi yi
column vectors ofB, ;, while 7y is its final column. Note: the third and fourth boundary
conditions in 6.18 are implicitly accounted for. Now, all previewedesired footholds
Xfooti = Xfootdesi (€xcluding the first one) and the final take-off velocityon = 0 will be used
as constraints and the first foothgtgl,ot,1 (control variablg and all future horizontal polynomial
parameter vectorp, ; will be solved for, which yield perfect tracking of the fueudesired

footholds. By combining the touch-down state intg; = [XTDJ,XTDJ]T, (6.37) becomes

Py, :ATD,X,i Tyt ei@ Xfooti - (6.38)

2This is why X7 p,i+1desWas called an “intermediate control target” earlier.
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6 Bipedal running based on Biologically Inspired Dead-tweattrol
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R

Figure 6.6: BID preview of Toro (displayed as stickman) rimgnin OpenHRP. All desired foot
positions (except the first one) are previewed to be peyféeitked.

Each upcoming touch-down state can be previewed as

XTDji+1 tyi(Tsi) + Tt t;!—((Tgi):|
e R e i 6.39
‘Tx,l-i-l |:XT D,i+l:| |: t; (Ts,i) pX-,I ( )
Si

Starting fromi = 1 and propagating6(38 and 6.39 forward, the following expression for the
polynomial parameter vector of ti-th (i.e. final) previewed stance phase is found:

PxN=Gy1 Atpy1 Tx1 + Z (Gxi eyi Xfooti) - (6.40)
i—TN

The matricesyy j = Gyi+1 ATp,y,i+1 Si are evaluated by starting witiy n = Iy and iterating
backwards until = 1. Now, with 6.2) and 6.40), the horizontal take-off velocity after the final
previewed stance phase is found as

Xron =t (Tsn) PyN - (6.41)

To guarantee stabilityyron = O is chosen as terminal constraint, i.e. the controllerypres the
CoM to come to a full stop after the final previewed contactsgha

Note that in the same way for the computation of the final galfpolynomial parameter vector,
the terminal constrairdron = 0 is used instead of a desired apex height.

As mentioned above and shown in F&5, the terminal constraint and all desired foot targets
Xfootdesi are used as target quantities, other than the first one (whishcrificed in order to
serve as a control variable). Therefor@.40-(6.41) are solved fortoot1 Which finally yields the
sought-after first foot placement

—t3(Tsn) (Gy,1 ATp 1 Tx,1+1)
ty(Tsn) Gx1€ys

Xfootl = , (6.42)

n= Z (Gy.i e% Xfootdesi) -
i=2..N

94



6.5 State feedback control
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Figure 6.7: Leg cross-over avoidance,
left: scheme (depicted for left pass), right: simulatiompot

Now all horizontal polynomial parameter vectgeg; are solved for by alternately evaluating
(6.39 and 6.39. As foot positions in €.38, Xtooti € {Xfoot.1, Xfootdes2,--XfootdesN } are
used. During stance the first foot positigfioer1 and the polynomial parameter vectpy 1
(feed-forward) are frozen and the second foothgldo» is used as control variable instead.
That way - even in face of unknown perturbations - the foajdts are continuously adjusted.
Equation 6.42) is adopted accordingly.

One feature of the presented framework is that due to thei-stafp preplanning, both future
foot aim pointsxtoot1 @and Xtoot2 (i.€. the aim points of the left and right foot) are known dt al
times, which facilitates foot trajectory generation. listivork, the foot trajectories are imple-
mented as polynomials. The achieved precise foot targetipgrticularly interesting for running
over 3D stepping stones or other restricted surfaces.

An additional feature of precise foothold targeting is thed cross-over can be explicitly
avoided. This is especially helpful for running in sharpngi(see Fig6.7). Therefore, the
originally preplanned footholds can be adjusted such tiateft foot always passes by the right
foot on the left, and vice versa. At the same time, the Eualiddistance of the adjusted footholds
from the originally planned ones should be minimal. This wthg legs can be prevented from
twisting around each other. To achieve this goal, an adjstrheuristic as shown in Fi§.7 is
used. In the shown example, four foot positions are preuieive. two for each foot. The method
adjusts the second/third desired footstep (i.e. the piiojeshown in Fig.6.7, left, is applied
twice), such that the swing feet can safely swing from th&/$iesond foothold to the third/fourth
one. The fourth foothold remains unchanged to achieve goiogl term tracking of the original
desired foot locations.

6.5 State feedback control

In the nominal case (no perturbations), the force profiles fant aim points as derived in the
previous sections assure that - for any initial conditignafter the first stance phase, all desired
boundary conditions from sectiors4.1and 6.4.2 are fulfilled (deadbeat control). Therefore,
planning once per step or even pre-planning a whole sequehopcoming steps would be
sufficient. Yet, to cope with perturbations, this work preps a state feedback control method,
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6 Bipedal running based on Biologically Inspired Dead-tweattrol

which is based on continuous re-planning of the desiredacbribrces throughout both flight
and stance phases. During flight the previewed CoM touchdstate is updated (see Fig.8)
via (6.7). In contrast to 7] (no feedback during stance), during stance, the first tdkstate is
predicted via

Oro1 o t5(Ts1) — t;(ts)}

ot = L+ f , g€ {xy,z 6.43

[GTOJ] {U} Lg(Tsl)—tg(tS) bot vz (6.43)
feedback preview

Here,tl (t) andt] (t) are the time-mapping row vectors fro@.2). They are evaluated for the first
total stance timds; and the current time in stantgc [0, Ts 1] to predict how much of an offset
is expected if for the remaining time in step the currentéquoofile (encoded by, 1) is applied.
This offset is added to the current measured state to prisdi¢ake-off state, which in turn is used
to compute the upcoming CoM touch-down state. Note: aftechiedown, the force profile of the
current stance phase is frozen and commanded to the robe¢@ddrward. The main advantage
of the presented state feedback during stance is that thaifogoints are continuously updated
to avoid discontinuities in the foot reference trajecterie

During flight, the first upcoming foot position is one of thentrol inputs(see 6.42). Whilst all
other future footsteps are previewed to coincide with tregrdd foot target locations (see F&y6),
the nominal position of the first foot is an output of the cotiér. Depending on the limitations
at hand (e.g. limited allowable supporting area) - this m@hfoot aim point may have to be
projected to a feasible one, resulting in deviations froertominal deadbeat behavior.

6.6 Guaranteeing leg force feasibility
The desired 3D force acting on the CoM can be computed forendime in stancé, as

£y (ts) pxa
FCoM,des(ts) =m |t} (ts) Dy1| , (6.44)
t; (ts) pz1

i.e. the polynomial of the first force profile is evaluated.eTdorresponding desired external (e.qg.
leg-) force Fextdesis found by reordering@. 1):

Fextdes= Fcomdes— Fy - (6.45)
The polynomial parameters were chosen in order to achievbdbt focus of the leg forces with
the ground. Yet, for physical robots feasibility is not gasteed.
Point-mass point-feet model

One obvious example is when the robot is modeled as poins-mvéh point feet. In that case,
the leg force is constrained to point along the unit veetps from CoM to point foot. As the

other two spatial directions are unactuated, the desirtatred (i.e. leg-) forceeydes has to be

projected to the feasible directitin

Fextf = ux,fUIfFedees . (6.46)

Assuming sufficient ground frictiorfjeq + can be safely commanded to the point-mass/foot model.

SNote: for more complex robots this projection may not be ssagy.
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6.7 Enhancing kinematic feasibility
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Figure 6.8: Computation flow of BID controller (outline).
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Figure 6.9: Correlations for stationary running.

Articulated multi-body model

As in chapter5 on walking, the main idea of the BID control concept is to fiigtus on the
robot's CoM dynamics and the problem of foot placement, Whitthe author’s view are the
key challenges of locomotion. Once CoM dynamics and foatetzent are solved, they need to
be embedded into a more general control framework, suchea®Bibased whole-body control
(WBC) framework presented in chaptérto make them available for complex robots, such as
humanoids. The mentioned WBC framework tries to recondike gpecified tasks as best as
possible while guaranteeing feasibility. Note that feidijohere only relates to ground reaction
wrenches and joint torques, whereas stability or balanepdiading on the physical limitations of
the given robot) cannot be guaranteed.

6.7 Enhancing kinematic feasibility

A major issue concerning the porting of BID control to kingiwally restricted robot models (such
as humanoid robots) is that the BID controller does not adifuconsider any kinematic limita-
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6 Bipedal running based on Biologically Inspired Dead-tweattrol

tions. In case of high desired velocities and acceleratiwistrong perturbations, BID control may
result in unrealistic high required leg lengths. In the next subsections, two methods to ease this
problem (while not guaranteeing feasibility) will be presed: one for finding nominally feasible
gait parameters and one for online touch-down leg lengthsaaijent. Both methods assume that
the distance from CoM to foot in the BID preview correlatestvthe leg length in a multi-body
model. This is an approximation of course.

6.7.1 Nominally feasible gait design

For a periodic running gait (assumed here), the CoM heigtdwth-downzrp equals the one at
take-offzro (see Fig6.9). With energy conservatiorz{,, = 2 g Azrp apey) and with 6.5), the time
of flight T¢ (i.e. from TO to TD) can be derived as

Ty = | 2220 AZTgD’apeX . (6.47)

Here,Azrp apex denotes the height difference between apex and touch-déama desired flight
T

percentagd tjight = L and with the mean horizontal speed (e.g. derived from aifkygiput)
Vinean= AT?S‘%"TT" one gets
AXstridemax
Tt = friignt (Ts+Tr) < Frignp ——— - (6.48)
—_—— Vmean
Dxstride

Vmean

Here, the inequality indicates, that the time of flight slidag small enough, such that a maximum
desirable stride lengthXstrigemax IS NOt exceeded. By combining.47) and 6.48), a condition
for the maximum allowable height difference between apektanch-down is found:

DNXstrig
AZrpapex < g (ffiight M)Z . (6.49)
mean

AZTp,apexmax

A second condition for nominal kinematic feasibility is tlamaximum allowable touch-down leg
lengthlieg T p,max is NOt exceeded. By inspection of F§9 (left), the following condition for the
CoM touch-down height is determined to be

DXstride — DXtlight
AZTDS\/ Rgroma (2 (6.50)

AZrp max

Here, Afstride = Vmean(Ts+ Tr) andAXfjight = Vmean Tt denote the approximated (assuming con-
stant horizontal velocity) distances traveled during allstride and during a single flight phase,
respectively. With the described adjustments of afeA9 and touch-down height difference
(6.50), the nominal desired touch-down and apex height diffexdrecome

Azr D,des— min(AZT D,nominaly Azr D7max) and (6-51)

AZypexdes= AZrp,dest min(Azy D,apexnominal, AZT D,apexmax) )
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6.8 Simulations and evaluation of BID control

whereAzr p nominal @aNAAZT b apexnominal &Ct as upper limits. Also, the nominal stance time can be

computed with6.47) as
T 1 friignt |8AZrpapex . (6.52)
ffiight g

That way, the design parameters introduced in 6&(i.e. Azrp des AZapexdes@ndTs) are deduced
from desired flight percentagign:, maximum desired stride lengfXstrigemax, Maximum de-
sired touch-down leg lenglizg T p maxand mean horizontal speggleanto maximize the kinematic
feasibility.

6.7.2 Active leg length control

In case of strong perturbations, the leg lengths resultiogn the BID controller may not comply
with kinematic limitations of multi-body robots. To easastiproblem, the original BID plan is
adjusted via the following iteration scheme (see Bi§.(right))

AZrpjne1 = MIN(AZTp des s I:egjﬂ(AZTDmn)) . (6.53)
legTD,i,n
The touch-down height difference is iteratively adjustiédt doesn’'t exceed the nominal touch-
down heightAzrp g4eg) Such that for each stance phasiee resulting touch-down leg lengltiby 7 p
does not exceed the maximum desired touch-down leg ldpgith max (similar the rest length of
SLIP models). Heren denotes the iteration count. For each iteration the coméD preview
has to be re-evaluated.

6.8 Simulations and evaluation of BID control

6.8.1 BID-based point-mass simulations

To test the performance and robustness of the proposedtatmework, numerous simulations
were performed. For the first set of simulations, a pointsnaih two massless point-feet was
considered. Figuré.10shows the results of a robustness examination for threerdiff constant
external forces. From top to bottom, the figure shows phasts fir three simulations. Each sim-
ulation was setup in the following way: no perturbation dgrthe first 4 seconds, then 4 seconds
of constant force acting (magnitude: -50N (corresponding=t10% of the robot’s mass (here
50kq)), force direction: purely, y andz, respectively), followed by 4 seconds without perturba-
tion. Here,AX = X — Xjoystick aNdAY = Y — Yjoystick denote the errors w.r.t. the nominal horizontal
CoM position x joystick = [xjoystick,yjoystick]T, which was computed from a virtual joystick input.
The stars denote the initial states. The phase plots shaviothizerturbed and unperturbed phases,
the system quickly converges to corresponding limit cycdste: the perturbation forces in the
shown simulations were kept comparably low to increaseateitity of the plots.

Many further BID-based simulations with a bipedal pointama@obot were performed, which
showed a very high robustness of the basic BID controlldrastto be mentioned, that for extreme
perturbations, the leg length could grow to unrealisticele(due to the constant touch-down
height). To assure leg length feasibility, the method fraen.8.7.2can be applied. The controller
is most sensitive against strong unknown perturbations ghat towards the ground. In the
simulation, the maximum permanent force the controlleriddouthstand was—-750N, i.e. 15
times the robots weight. For higher forces, the robot’s Codld hit the ground.

Figure6.11 shows the result of a simulation in which the point-mass tates running over
three-dimensional stepping stones (see also &ij. The left subplot shows the robot’s foot
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Figure 6.11: CoM trajectories and foot target tracking gerfance in nominal and perturbed case
(point mass simulation over stepping stones). Perturlongef 3N in y-direction.
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Figure 6.12: Deviation of force intersection poj: (ts) from mean intersection poiit,, in case
that theforces are not projected (in contrast to other point-massuations)

positions (bars, only active during stance) and CoM pasitiGcontinuous curves). The right
subplots show the difference between desired and achi®adbsitions. Nominally, the foot
target positions are tracked well, whereas in case of fgetions they deviate. This is necessary
to stabilize the CoM motion against the perturbation. Aftex perturbation is removed, good
tracking is regained after a single step.

Figure 6.12 shows how far the force intersection popxi;(ts) deviates from the mean inter-
section pointy;, (i.e. the stance foot position) for the case that desired force profilesire
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6.8 Simulations and evaluation of BID control

not projected In the shown simulation, the robot starts at zero speed leewi uns at 2. The
stance time is set to 16®%'. The initial range of deviation is about 22n while for stationary
running it is about Bim This shows that the original (non-projecting) method ishapplicable
for small-footed robots and that equatidh46) typically has minor influence.
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Figure 6.14: Toro’s CoM while running in OpenHRP at @ T .

—150N 80N

0
0.1
-0.1
0.05
1 2 3

E02
x
<

Soh AV
Sl

4 5 6 7 8 1 2 3 4 5
t[s ts

-0.3

Figure 6.15: CoM error during push-recovery simulation.

4Along the time-axis, the stance phases are pieced together.
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6 Bipedal running based on Biologically Inspired Dead-tweattrol

6.8.2 QP-based multi-body simulations

To proof the applicability of the biologically inspired d#izeat (BID) control framework, it
was embedded into the QP-based whole-body controller frem4sand full-body simulations
of the humanoid robot Torol] in OpenHRP 2] were performed. It has to be noted, that
Toro’s joint torque and velocity limits were omitted in thiensilations. Figures.13 shows Toro
running at Bn/s. The gait parameterdzrp ges AZapexdes @Nd Ts were computed via the method
from Sec.6.7.1to make such high running speed kinematically feasible fmmoT Following
intuitive design parameters (as described in $€.1) were chosen: desired flight percentage
friight = 0.7, maximum desired stride lengliXsrigemax = 1.4 m, maximum desired touch-down
leg lengthliegTpmax= 0.86m, nominal touch-down heighh\zrp nomina = 0.86 m and nominal
height difference between touch-down and apexp apexnominal = 0.06 M.  The target velocity
(derived from a virtual joystick input and used @gean) ramped up from On/s to 5m/s until
second 3 and then stayed constant. Two important humarelgtaresevolved first, natural arm
swing motions (see also multimedia attachment) that fat#lithe angular momentum regulation
and contribute to the CoM manipulation and second, strdtbirad legs at the end of stance. This
shows that the combination of BID and whole-body control aatomatically create human-like
motions, such that the effect of the various cost functiorgstaeir weights can be examined.

The foot targets were derived from a joystick input. The Colgtion (see Fig6.14, colored)
follows the desired joystick reference (black) nicely. Mg the vertical previewed dynamics
and thus the times to each upcoming touch-down, the foottangere placed at lateral offsets
from the nominal sway-free and continuous joystick refeeen

A very important quality of a running controller is its reizeiness and robustness. Without
that quality, the OpenHRP running simulations would faiéda the overdeterminedness of tasks
(such as CoM force and angular momentum control, posturgataatc.), tracking errors and en-
ergy losses at impact. To investigate this quality of thesgnéed combined BID and whole-body
control framework, multiple simulations were performedendthe robot was subject to external
perturbations. One of these simulations is shown in &ig5 It displays the errors in horizontal
CoM position with regard to the joystick reference. Torogat 3% (after ramping up from @
until second 3). From secondS3- 4.5 it is subject to a backwards pointing external force of
—150N and between second®and 65 to a lateral force of 80l (both constant and unknown).
The controller is well able to compensate for these pertiohs and recovers after just a few steps.
The steady state error of aboufL®nin x-direction can be explained by the fact that fbet step
(not the CoM) is planned to coincide with the joystick refere (aside from a sideward offset)
at theinstant of touch-downwhile the continuous joystick reference keeps movingughmut
stance. The kinematic feasibility of the running gait untferse strong perturbations was facili-
tated by the methods from Seg7.

The OpenHRP simulations of Toro running show the contrah@rvork’s robustness and relia-
bility. It is thus a promising concept for future more detdilcomparison between human and
humanoid running and prediction of human behavior.

6.9 Comparison to human experiment

The BID controller had been inspired by observations frooman running experiments. In the
previous section, its high robustness was shown, whichautistes its applicability for humanoid
running control. Now the question arises, how well the BlDtcol outputs fit the ones observed
in human running experiments. Thus, the loop is closed bypesing the corresponding forces
and CoM trajectories. Figu®16(left) shows a human subject running on a force plate trelhdmi
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~ — —

2

Figure 6.16: Human running experiment. Left: subject ragnon force plate treadmill, right:
trajectories and GRF.

Figure 6.17: Comparison of human experiment da@il[102 (dashed) and output of matched
BID simulation. top: ground reaction forces (GRF), left: NCposition, right: CoM
error.

its posture being tracked via markers. On the right side effijure, the corresponding CoM
and toe trajectories are shown. It becomes apparent thahéseof action of the ground reaction
forces (GRF) in humans are not as strictly focused as the designed in the BID controller
(compare to figure8.3and6.4). This shows that humans make use of angular momentum during
running, while the CoP remains in the ball of the foot (coneptre trajectories). Figurg.17
shows the corresponding force profiles and CoM traject@resoverlays them to a “matchéd”
BID simulation. The force profiles match quite well. The mdifierences are the initial impacts,
slightly higher vertical force maximum and lower final forskpe in humans as compared to
the BID simulation. The CoM positions are very consistetite €rrors are in the range of several
millimeters. The x direction is drifting due to slight tingmmismatch. From these observations it is
inferred that BID control sufficiently approximates the GRFiuman running to allow for decent
insights into human running control. Yet, the observededéhces motivate further examination
of human running control.

5*matching” means that basic gait parameters such as stamegapex and touch-down height and also the human
subject’s and the model’s mass have to be aligned. Otheengeeparison - especially in time domain - would be
impossible/useless.
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6 Bipedal running based on Biologically Inspired Dead-tweattrol

6.10 BID control: discussion and outlook

6.10.1 Strengths and limitations of current control framew ork

In this chapter a closed-form solution to 3D running was fated. The control framework yields
leg force profiles that are independent of the specific hareld@asign of a particular robot, i.e. it
is generic. Also, it might be used to identify required atdna@haracteristics for new robots.

For the running simulations, a standard PC (3.3 GHz, quag-d&in7 64bit) was used. In
the Matlab/Simulink simulation setup,mswas used as sampling time. All BID control related
computations were executed in real-time.

The force profiles as derived in sectidhg.1land6.4.2nominally lead to perfect tracking after
just one stance phase (deadbeat control), i.e. the cantislperfectly stable. In case of actuation
limits, the control commands may have to be adjusted (e&.(Bvit6 for point-mass point-feet
robots), so stability cannot be guaranteed. Yet, the sitionls show the high robustness of the
controller even in case of constraints.

In the presented control framework, impact-free statesitioms are assumed (compare
Fig. 6.2). The impact losses in real systems will cause perturbatidlotwithstanding, due to its
high robustness in simulations, good performance of théralber is expected.

A drawback of the current control setup, when compared toaruranning, is the missing toe-
off motion. In the current setup the feet are aligned withgltaund during contact. Toe-off motion
(especially during single support) is usually classified aballenging task. It has to be tackled in
future research to enhance the capabilities of humanoidimgrand make it more comparable to
its natural counterpart.

6.10.2 Comparison to other works

When compared to SLIP control, the main feature of the pteseBID controller is its analyt-
icity, which allows for explicit solutions for 3D CoM trajearies and foot-step placement during
running. Some features of the work of Raibet@][such as apex height control and forward speed
control via foot placement show major similarities to thisrk Yet, BID control provides ana-
lytic solutions for planning and control as compared to Reib three-parted and rather heuristic
running controller.

6.10.3 Potential usage, extensions and future work

One interesting aspect in human running is the center ogpre’s (CoP) motion from heel to toe
(as observed in jogging). This effect can be observed in@:if (intersection of the black force
lines with the ground). This means that, while in humano@bhotion the nominal CoP is kept as
close to the foot center as possible (as in Big) to increase the likelihood of feasible desired leg
forces, it can be advantageous to move the CoP from heel wutiegy stance. A simple trick to
produce such nominal CoP motion using the proposed BID abitamework is to set the virtual
foot positions below the actual ground. That way the intgfse points of the force lines with the
actual ground (corresponding to the CoP) shows a heeletoattion.

In this work, locally flat stepping stones (see figrd) are used. However, the controller
is expected to handle more complex ground surfaces. Nbtuddlust foot trajectories for blind
running are another interesting research topic. The BIDrdlygm may also be applied to problems
such as hopping and jumping. Also quadrupedal gaits suchwasding/galloping and trotting are
expected to be achievable.
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CHAPTER [

Discussion and conclusion

7.1 Discussion

The main goal of this thesis is to provide control methods theus on the most critical com-
ponent of a robot’s dynamics, namely its CoM dynamics, anthém embed these reduced dy-
namics controllers into a whole-body control framework.thélugh the methods presented for
DCM-based walking in chapté&rand BID-based running in chaptéicover different forms of lo-
comotion, on closer inspection these control methods stestaia similarities. The first analogy
is the preview of several (typically three or more) futuretktieps and the derivation of feasible
force profiles that nominally track them. Note that feagtpihere is purely related to the ques-
tion, if the line of action of the leg forces passes throughtihse of support or not, while frictional
constraints and actuator limits are not considered at thges but only later in the quadratic pro-
gramming (QP)-based whole-body controller from chagteBoth the walking and the running
algorithm are purely analytical, such that the nominalet&gries, DCM trajectories for walking
and CoM trajectories for running, are explicitly known otiee whole multi-step horizon. Both
methods provide a high degree of robustness and allow ferasting insights into the dynamics
of the two locomotion forms. With regard to BID control, treafure of explicit footstep targeting,
to the best of the author’s knowledge, is a unique featurenanamy other existing (online) run-
ning controllers. The second analogy is related to the nadidul and potential projection of the
desired forces, such that they comply with the contact caim$. In case of DCM control, this
modulation/projection can consist of leg force modulatésrd projection of a desired center of
pressure (CoP) to the feasible foot supporting area, résplc The proposed BID controller, in
comparison, modulates the first upcoming stance foot posénd all previewed leg force profiles,
while projecting the foot position to a feasible one in caka limited allowable contact area (see
Fig. 7.1).

The proposed locomotion controllers are embedded intoubdrgtic programming (QP) based
whole-body control (WBC) framework presented in chagterhis framework shows major simi-
larities to other inverse-dynamics based works sucb®5§8,60]. In contrast to most other works,
where joint accelerations are chosen as control variallésaaques are treated as outputs, in this
work the joint torques are chosen eantrol inputs Both formulations are basically equivalent,
yet, the use of joint torques as control variables may bergegaous in certain cases, since they
are the actual physical control quantity. For that choiceanftrol input, joint torque constraints
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Figure 7.1: Analogy of DCM (walking) and BID (running); st@pg stones vs. finite-sized feet.

of the robot can be treated as box constraints, while theg tmbe handled as linear constraints
otherwise, which can be computationally more expensiveth@rother side, the inversion of the
mass matrix in4.7) can be avoided by the joint acceleration-based formuiatio

The combination of the presented walking and running cdletinto the WBC framework
yields smooth and natural looking behaviors of the robotpe€rlly the self-emergent (i.e. not
manually programmed) arm motions resemble natural locimmats observed in humans. One can
conclude that the implemented motions and dynamics are tboheir natural counterparts, such
that insights into the control of the latter can be deducedh Végard to naturalness of achieved
motions, it has to be noted that the presented work has rooimfirovement in the field of foot
and leg motions. These are based on polynomial splinesrhéteeked quite accurately while the
natural counterparts, as observed in humans and animals,rshjor dissimilarities. Also natural
features such as toe-off motions and push-off are missethdhis work. These are expected to
have a very positive effect on the centroidal momentum lalaf the robot and should thus be
investigated in future research.

The different active whole-body tasks are traded-off in@#-based controller and are locally
optimized, i.e. without any preview of the future of the wirddody motion. It has to be noted
though, that the term “optimal” only means that the specifiest function is minimized. Yet, the
task weights and also of the desired task dynamics (e.g.eohegenvalues for foot trajectory
tracking) are typically chosen arbitrarily and may thusuiegjextensive manual gain tuning. Of-
fline optimization of these control gains, which may inclasheevaluation of the overall long-term
behavior of the robot (such as the occurrence of singwdaritir falls during locomotion), might
yield highly improved controller performance.

One of the major issues in whole-body control, especialiyhfghly dynamic locomotion such
as running or galloping, is the interplay of angular momenand posture control. Pure posture
control without considering angular momentum leads to &by of the latter, which quickly
leads to constraint violations and a fall of the robot. $trégulation of the angular momentum
to zero also quickly leads to failure, since the leg swingiomst either require torques around the
center of mass or, if weighted strong enough, interfere thighposture control. Online generation
of consistent angular momentum and postural trajectaidethie author’s knowledge, does not yet
exist and would be an exciting field for future research éftor

Another interesting research question is, if humanoid t®Bhould be position or torque con-
trolled. Recently (17,38,103), several position-based controllers have been showmadyzce
reliable locomotion performance. These controllers tgibjcrely on high quality contact force
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sensing and control (via force-torque sensors in the fegtaative force control), accurate state
estimation and strong and fast actuation. On the other hargije control promises several assets
as well, including the natural and compliant interactiothwinknown or unforeseen elements of
the environment, especially when such unforeseen cordaetmade with robot links that have no
sensing equipment such as torque sensors. In that casgégmpasintrolled robots behave rigidly
and thus pose a threat to humans and other element of themmént. Torque controlled robots,
in contrast, typically show a compliant behavior, which issthappropriate for direct human-robot
interaction. It has to be noted though, that torque comrelhave a higher potential of diverg-
ing in case of model errors or miss-estimated contact assomgp as compared to position con-
trolled approaches. These use explicitly designed motioais- apart from the free-floating base
- can be controlled to not diverge. In the author’s view, thestrappropriate approach for hu-
manoid control might be impedance control, which finds a goaldnce between desired posi-
tions and torques. With regard to safety, passivity-baseehergy-bounded control approached
may achieve desirable behaviors.

7.2 Conclusion

In the first chapters of this thesis, mathematical basicsludtics are recapitulated and useful tools
for robotics and motion design, which the later higherdeomtrollers are based on, are presented.

The main contributions of this thesis are two control apphes, one for humanoid walking and
one for running, that are based on the reduced dynamics mb@&M motion and are embedded
into a quadratic programming (QP) based whole-body cotfteshework (see chaptet). The
general idea pursued in both the presented walking andmgnmethods is the following: Instead
of explicitly previewing future constraint violations, mstraint-compatible reference trajectories
for multi-step previews are designed and tracked via fegdbantrol. Both the presented walking
and running control frameworks design reference trajeetathat maximize the distance to the
constraints and thus the margin of stability. That way in yneases the tracking controllers ask
for control actions that do not violate the constraints,hstltat the nominal, stable controller
behavior is actually achieved. Omitting the consideratboonstraints in the preview allows for
analytical and thus inexpensive computations. The emhgdafithe CoM-based controllers into
the presented QP-based whole-body control framework tharagtees feasibility even in case of
strong perturbations, while stability cannot be guarathtee

The walking control framework is based on the concept of Bjgat Component of Motion
(DCM), which is extended to 3D in this work. Corresponding Nd@ajectory generation and
feedback control methods are presented (see Ghaphich facilitate the process of bipedal walk-
ing generation. Even walking trajectories over unstrieduhree-dimensional terrain can be gen-
erated and tracked in a clean and consistent way. The maintitit DCM control is based on, is
to split the center of mass dynamics into a stable and anhlespart (the DCM) and to control
only that unstable part, while the naturally stable compbmemains untouched. That way, the
second order control problem is reduced to a first order omecomplexity is reduced while com-
prehensibility is increased. Due to the simplicity and gtieity of DCM control, it can be applied
to plan and track three-dimensional walking trajectorieseial-time. This work also introduced
two new points, the enhanced Centroidal Moment Pivot p@@iMP) and the Virtual Repellent
Point (VRP), respectively, with allow for the encoding ofexal (e.g. leg-) forces and total force
acting on the robot's CoM. These points can be seen as gaagi@is of the Zero Moment Point
(ZMP) and the Centroidal Moment Pivot point to 3D. A DCM tr&j@ry generator is proposed
(see chapteb.3.]), that uses predefined smooth eCMP trajectories and a DG@Mrtak constraint
as input and computes a corresponding consistent DCM refereajectory, which is tracked by
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a nominally asymptotically stable DCM tracking control{gsee chapteb.3.2. Additionally, to
increase the robustness of the walking gait against unkrexternal perturbations, methods for
step adjustment and perturbation force estimation andtecagtion are introduced.

In addition to the DCM-based walking controller, the secomain contribution of this work
is the introduction of Biologically Inspired Deadbeat (BlEontrol (see chaptes). BID control
uses polynomial splines to encode CoM motion and leg foragagl stance, which was originally
inspired by observations from human running experimemtsiitive boundary conditions, chosen
by the control designer, are explicitly solved for, whicklygis deadbeat behavior of the controller.
In contrast to the spring-loaded inverted pendulum modelRS6]), the use of polynomials in
BID control allows for purely analytical solutions for anbérary number of future stance and
flight phases. Explicit footstep targeting in 3D can be agdile which - to the author’s knowledge
- is a unique feature as compared to any other online runrongdaler. BID control is real-time
capable, facilitates the design of versatile running nmstiand is very robust due to the deadbeat
behavior. The explicit knowledge about upcoming requilat focations facilitates the design of
corresponding foot trajectories. Comparison to humaningngaits shows promising similarities.

The embedding of the DCM-based walking controller and BH3dd running controller into
the whole-body control (WBC) framework presented in chagtes another contribution of this
work. The implemented WBC framework uses a single weighteticatic program (QP) to solve
an inverse dynamics problem, which contains the walkinguaning task besides other tasks,
such as foot tracking, torso orientation control and ovéwadly posture control. The combination
of these tasks yields a robust and flexible framework thable & reproduce several different
agile locomotion modes such as walking and running. All crtomponents can be computed in
real-time. The whole-body controller assures feasibditthe finally commanded control outputs.
The proposed walking and running controllers and the wholdy control framework are tested
in numerous simulations and partially also in experimerith veal robots.
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