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Abstract

A new CAD-integrated design-through-analysis workflow for shell
structures, named Analysis in Computer Aided Design (AiCAD), is pre-
sented. In contrast to existing workflows AiCAD uses the CAD geome-
try description throughout the entire workflow. Contemporary CAD
systems mainly use a non-uniform rational B-Splines (NURBS)-based
boundary representation (B-Rep) for the description of geometries.
The usage of such models within AiCAD requires an analysis tech-
nique which is able to deal with arbitrarily complex NURBS-based
B-Rep models. For this purpose a new finite element technique is
developed with the name isogeometric B-Rep analysis (IBRA). IBRA
provides the framework for creating a direct and complete analysis
model from CAD in a consistent finite-element-like manner. The
newly developed B-Rep elements are used to handle the discontinu-
ous and trimmed geometries incl. gaps and overlaps for structural
analysis. Thus, IBRA allows analyzing surface CAD models without re-
modeling and meshing, even for highly complex geometries. Various
numerical examples including real industrial problems confirm the
accuracy, flexibility, and robustness of IBRA and thus highlight the
advantages of the realization of a design-through-analysis workflow
with a uniform geometry representation.

The proposed AiCAD concept allows bridging the gap between CAD
systems and FE programs efficiently by using a new analysis approach
which is able to handle CAD models. AiCAD is realized within several
commercial CAD systems and can compete with established analysis
techniques used in industry.
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Zusammenfassung

Ein neuer CAD-integrierter Prozess für den Entwurf und die Berech-
nung von Schalenstrukturen mit dem Namen Analysis in Computer
Aided Design (AiCAD) wird vorgestellt. Im Gegensatz zu anderen Ver-
fahren verwendet AiCAD ausschließlich CAD Modelle für die Geome-
triebeschreibung. Um CAD Modelle für Strukturanalysen verwenden
zu können, wurde die isogeometrische B-Rep Analyse (IBRA), eine
neue Finite-Elemente-Methode (FEM), entwickelt. IBRA liefert den
Rahmen für die Erstellung eines kompletten Berechnungsmodells
auf Basis eines Non-Uniform Rational B-Splines (NURBS)-basierten
Boundary Representation (B-Rep) Modells. Solche Modelle werden
in modernen CAD Systemen am häufigsten verwendet. IBRA ver-
wendet neu entwickelte B-Rep Elemente, um die diskontinuierliche
und getrimmte Geometrie unter Berücksichtigung von Lücken und
Überlappungen für Strukturanalysen zugänglich zu machen. Damit
ermöglicht IBRA die direkte Berechnung von komplexen CAD Flä-
chenmodellen in einem FE Programm ohne Vernetzung und ohne
zusätzlichen geometrischen Modellierungsaufwand. Eine Vielzahl
an numerischen Beispielen inkl. industrieller Problemstellungen de-
monstrieren die Genauigkeit, Flexibilität und Robustheit von IBRA
und unterstreichen die Vorteile eines CAD-basierten Berechnungs-
prozesses.

Das AiCAD Konzept erlaubt eine effiziente Vereinigung von CAD und
FEM durch die Verwendung einer neuen FEM Berechnungsmethode,
welche CAD Modelle für die Geometriebeschreibung verwendet. Ai-
CAD wurde in unterschiedlichen CAD Systemen implementiert und
erweist sich gegenüber in der Industrie etablierten Berechnungsme-
thoden als konkurrenzfähig.
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We can’t solve problems by
using the same kind of
thinking we used when we
created them.

Albert Einstein
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1
INTRODUCTION

The usage of different geometry descriptions for design and analysis is
one of the bottlenecks in a virtual product development process. Histori-
cally, the independent developments in the fields computer-aided design
(CAD) and computer-aided engineering (CAE) caused this "gap". The pre-
dominant method in CAE for solving structural problems is the finite el-
ement method (FEM). Since its origins in the 1950s FEM was developed
primarily with linear respectively quadratic polynomials defined over non-
overlapping parametric domains (the elements). The standard for geom-
etry description in contemporary CAD systems, however, is based on a
non-uniform rational B-Splines (NURBS)-based boundary representation
(B-Rep) which was mainly developed in the 1970s and 1980s (see also
Boehm [14], Boor [15], Cohen et al. [22], Gordon et al. [35], Patrikalakis [62],
Riesenfeld et al. [71], and Sederberg et al. [81]). A design-through-analysis
workflow therefore requires a geometry conversion called meshing which
is a highly complex task in itself because the meshes derived from CAD
models have to fulfill strict criteria (see also Abel Coll Sans [1], Hansen et al.
[37], Knupp et al. [49], and Topping [89]). In addition, meshing leads to a

1



1 Introduction

geometry discretization error because usually a finite element mesh repre-
sents just an approximation of the CAD model. The biggest disadvantage,
however, is that meshing often requires manual interactions and thus it
can not be fully automatized.

To avoid the meshing, a few alternatives for the integration of design and
analysis have been suggested in the past few years. One of these approaches
is the finite cell method (FCM) (see Düster et al. [32], Parvizian et al. [61],
Rank et al. [67], and Schillinger et al. [76, 77]). This approach has high
potential, especially for three-dimensional structures, and it is being devel-
oped continuously by Rank and his co-workers. Other approaches include
the Kantorovich method (see Kantorovich et al. [42]), implemented in
Scan&Solve™(see Scan&Solve [74]), or isogeometric analysis (IGA) intro-
duced by Hughes et al. [40].

IGA entails the use of the same basis functions for representing CAD ge-
ometries as well as for approximating solution fields. Usually, IGA is based
on NURBS (see Cottrell et al. [24] and Hughes et al. [40]) because NURBS
represent the standard for geometry description in contemporary CAD
systems. NURBS have high continuity, allow for refinement on the iden-
tical geometry (see Boehm [14]) and raising the degree of the underlying
polynomial functions (see also Cohen et al. [22], Piegl et al. [65], and Rogers
[72]). NURBS basis functions show very good properties for analysis. In the
past few years, many IGA researchers have demonstrated the advantages
of these properties for analysis purposes, such as robustness and excel-
lent approximation quality. IGA has been applied successfully in many
fields of engineering such as structural mechanics (see Bauer et al. [5],
Belytschko et al. [10], Benson et al. [13], Cottrell et al. [24], Cottrell et al. [25,
26], Hughes et al. [40], Nguyen-Thanh et al. [60], and Philipp et al. [63]),
fluid mechanics (see Bazilevs et al. [8] and Hsu et al. [39]), fluid-structure
interaction (see Bazilevs et al. [6, 9], Hsu et al. [38], and Zhang et al. [93]),
contact mechanics (see Dimitri et al. [29], Lorenzis et al. [54], and Temizer
et al. [88]), and optimization (see Kiendl et al. [45], Qian et al. [66], and Wall
et al. [91]). The usage of the basis functions from design also for analysis
simplifies greatly the integration of these two tasks. However, a general
and consistent concept for creating direct and complete analysis models
from CAD still is not available.

Recent publications have dealt with this shortcoming of IGA and suggested
solutions pertaining to specific fields. Schillinger et al. [76] presented an
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1 Introduction

integrated design-through-analysis workflow that is well suited for solving
three-dimensional problems. Another approach for integrating design and
analysis is the use of T-Splines (see Bazilevs et al. [7] and Sederberg et al.
[82, 83]) or subdivision surfaces for geometric modeling and analysis (see
Burkhart et al. [18], Cirak et al. [20], and Cirak et al. [21]). However, consid-
ering NURBS-based B-Rep models as standard for geometry description
in CAD systems, the approaches mentioned above also require geometric
transformation.

The goal of the proposed CAD-integrated design-trough-analysis workflow,
named analysis in computer aided design (AiCAD), is to use the CAD stan-
dard geometry description (NURBS-based B-Rep models) for the entire
workflow, i.e. for geometric and analysis modeling as well as the analysis
itself (see Breitenberger et al. [17]). AiCAD allows for unification of the
design and analysis models and can be fully automatized and entirely
realized within existing CAD systems. AiCAD uses the newly developed iso-
geometric B-Rep analysis (IBRA) (see Breitenberger et al. [17]) for analyzing
NURBS-based B-Rep models.

IBRA is a general and consequent extension of IGA, which in addition to
the basis functions also uses the B-Rep description of the CAD model.
This is expressed by the extension "B-Rep", a well known term in the CAD
community (see Mäntylä [56] and Mortenson [57]). IBRA can directly use
the design model, coming from a CAD system, for analysis, without mesh-
ing or re-parametrization. Hence, IBRA allows for the creation of a direct
and complete analysis model from the CAD model in a consistent finite-
element-like manner.

Thus far, AiCAD is realized within the integrated CAD/CAE/CAM program
Siemens NX (see Siemens PLM Software [84]), within the CAD program
Rhinoceros (see Rhinoceros [70]), and within the Pre- and Postprocessing
software GiD (see GiD [34]). This demonstrates the general applicability of
the presented concept.

This thesis provides guidelines for the realization of the AiCAD workflow
in existing CAD programs and the implementation of IBRA for surface
models in existing FE solvers. The focus lies on a modular disassembly of
the necessary steps and a clear definition of the data interfaces. Aspects
relevant to practice such as the application of arbitrarily located loads,
local refinement, enforcing weak boundary conditions along trimming
curves, dealing with non-matching multi-patches including gaps and over-
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1 Introduction

laps, and the numerical integration of trimmed surfaces are discussed as
well. For the numerical integration a new adaptive integration scheme
is presented. In addition, the thesis highlights that AiCAD is very attrac-
tive and can be competitive to established workflows by solving industrial
problems of shell structures.

The thesis is outlined as follows:

CHAPTER 2 explains in detail NURBS-based B-Rep surface models which
are used throughout the entire AiCAD workflow and forms the basis for the
proposed isogeometric B-Rep analysis (IBRA). Important aspects of NURBS-
based B-Rep models relevant for structural shell analysis are discussed
such as geometric continuities across edges including non-watertightness,
geometrical refinement, trimming, trimming tolerances, and the topology
of complex multi-patch models.

CHAPTER 3 reviews briefly the finite element method (FEM) for structural
shell problems with a focus on using different geometry discretizations. In
addition, a classification of the finite element techniques: classical FEA,
IGA, and IBRA with respect to their geometry discretization is given.

CHAPTER 4 explains the isogeometric B-Rep analysis (IBRA), in particular
the newly developed B-Rep elements, which can be used to handle dis-
continuous and trimmed geometries with gaps and overlaps for structural
analysis in a finite-element-like manner.

CHAPTER 5 describes the systematic disassembly of CAD models into fi-
nite elements and defines data interfaces for an implementation of IBRA
into existing FE solvers. In addition a new adaptive numerical integration
scheme for trimmed surfaces is presented.

CHAPTER 6 describes the different steps resp. modules for the realization of
the AiCAD workflow by combining existing CAD programs and FE-solvers.

CHAPTER 7 demonstrates the application of the proposed AiCAD workflow
resp. IBRA to some academic and industrial shell problems. For these
examples different aspects like trimming tolerances, non-watertightness,
accuracy, and robustness are discussed.

CHAPTER 8 summarizes the thesis and gives an outlook to further possible
research.
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Where there is matter, there
is geometry.

Johannes Kepler
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2
GEOMETRIC MODELING AND

FUNDAMENTALS

Design or geometric modeling is used for defining the shape and other geo-
metric characteristics of an object. Since every day language is not useful to
describe complex shapes, mathematical concepts and approaches are used
for this purpose (see also Mortenson [57] and Rooney et al. [73]). Nowa-
days, geometric modeling is usually computer based and is performed
using computer-aided design (CAD) systems. Geometric modeling with
CAD systems is thus assumed throughout this thesis.

This chapter explains NURBS-based B-Rep models. They are the standard
for geometry description in contemporary CAD systems for mechanical
engineering and form the basis for the proposed CAD-integrated design-
through-analysis workflow. Thus, important aspects relevant for structural
analysis are discussed such as geometrical refinement, trimming, trimming
tolerances, the topology of complex multi-patch models, and geometric
continuities across edges including non-watertightness. Moreover, the
chapter reviews differential geometry of trimmed surfaces.

5



2 Geometric modeling and fundamentals

a) Object

b) CSG model: composition of simpler solids
(primitives) using Boolean operations

c) NURBS-based B-Rep model: composition of
timmed NURBS surfaces

U

Figure 2.1: Different geometry representations of same object
(after Choi [19])
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2.1 Computer-Aided Design (CAD)

2.1 Computer-Aided Design (CAD)

Computer-aided design (CAD) can be defined as usage of computer sys-
tems to assist in the creation, modification, analysis, or optimization of a
design (see Narayan et al. [59]). Contemporary CAD systems provide many
different modeling techniques to satisfy the increasingly demanding needs
of the users, whereby each modeling technique has its own representation,
like

– cell decomposition,

– boundary representation (B-Rep),

– constructive solid geometry (CSG),

– ...

Owing to the limitations of each representation, a transformation to other
representations is not always possible. Indeed, a CSG model, defined as a
composition of simpler solids (primitives) using Boolean operations can
easily be converted into a NURBS-based B-Rep model (see Figure 2.1), but
in general it is not possible to derive a CSG model from a B-Rep model. This
simple example already shows that NURBS-based B-Rep is very powerful.
In addition, it is compatible with parametric design, which is indispens-
able for developing modern product designs. Thus NURBS-based B-Rep is
included in the standard exchange format IGES (see Reed et al. [68]) and
STEP (see ISO 10303 [41]) and is the industry standard in mechanical engi-
neering especially for free-form geometries. Also commercial geometric
modeling kernels like Parasolid1 and ACIS2, which currently dominate the
kernel market, are also mainly based on NURBS-based B-Rep. For all the
reasons above mentioned, NURBS-based B-Rep models (see Section 2.2)
are assumed as output of geometric modeling.

The structure of such NURBS-based B-Rep resp. CAD models is explained
in the following sections.

1 owned by Siemens PLM Software [84]
2 owned by Spatial Corporation [85] (part of Dassault Systemes [28])

7



2 Geometric modeling and fundamentals

(a) Rendered NURBS-based B-Rep model of an engine bonnet

(b) The CAD model consists of trimmed NURBS surfaces.

Figure 2.2: CAD model of an engine bonnet as a representative
of a typical and complex industrial product described by a
NURBS-based B-Rep model. (CAD model: by courtesy of

Daimler AG [27])

2.2 NURBS-based B-Rep model

An example of a NURBS-based B-Rep model is shown in Figure 2.2, which
illustrates an engine bonnet as a representative of a typical and com-
plex industrial product. The geometry of such models is described by
trimmed NURBS surfaces. This is shown exemplarily in Figure 2.1(c) and
Figure 2.2(b).

In geometric modeling, B-Rep is a method for representing shapes using
boundaries. The boundary representation of an object consist of two parts:

8



2.2 NURBS-based B-Rep model

– shape (geometry), which defines the spatial position, the curvatures,
etc.

– structure (topology), which allows to make links between geometri-
cal entities

The following sections explain the geometrical description i.e. trimmed
NURBS and the topology of NURBS-based B-Rep models with a focus on
surface models.

2.2.1 Non-Uniform Rational B-Splines (NURBS)

NURBS basis functions can be used for parametrizing curves in general as
well as for surfaces and solids within tensor product construction. They can
be used for modeling a large variety of shapes (see also Cohen et al. [23] and
Rogers [72]). The term NURBS stands for Non-Uniform Rational B-Splines
and indicates that NURBS are a generalization of B-Splines. Therefore, a
short introduction to B-Splines is given first. For a detailed description of
NURBS the reader is referred to Cohen et al. [23] and Piegl et al. [65].

B-Splines are non-interpolating, piecewise defined polynomial curves.
They are defined by the following entities:

– set of control points, Pi , i = 1, ..., n

– polynomial degree p

– knot vector Ξ= [ξ1,ξ2, ...ξn+p+1]

– set of basis functions Ni , i = 1, ..., n

Knot vector

The knot vector Ξ is a set of parametric coordinates ξi arranged in as-
cending order. This set divides the B-Spline resp. NURBS into sections. If
all knots are spaced equally, the knot vector is called uniform otherwise
non-uniform. Knot values that appear more than once are called multiple
knots. The intervals between two consecutive, distinct knots are called
non-zero knot spans. In case the first and last entries in knot vectors have a
multiplicity of p +1 they are called clamped. Unclamped knot vectors can
be used for periodic B-Splines resp. NURBS (see Piegl et al. [65]), which
are used to describe a closed shape, like ellipse and torus.

9
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P1
C(ξ1−4)

P2

P3

P4

P5

P6

P7

C(ξ5)

C(ξ6)

C(ξ7)
C(ξ8−11)

(a) B-Spline curve with its control point polygon (dashed lines) and knot
positions on the curve.

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

N1,3

N2,3 N3,3

N4,3
N5,3 N6,3

N7,3

ξ1−4 ξ5 ξ7ξ6 ξ8−11

(b) Corresponding basis functions defined in parameter space

Figure 2.3: Cubic B-Spline curve with the clamped knot vector
Ξ= [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1] and its basis functions
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2.2 NURBS-based B-Rep model

Basis functions

B-Spline basis functions Ni are defined by the knot vector Ξ and the poly-
nomial degree p . They can be computed using the Cox-deBoor recursion
formula (see Boor [16], Cohen et al. [23], and Piegl et al. [65]). The compu-
tation starts with p = 0:

Ni ,0(ξ) =

(

1, ξi ¶ ξ<ξi+1

0, otherwise
(2.1)

For p ¾ 1 it is

Ni ,p (ξ) =
ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ) +

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ) (2.2)

The basis functions are C∞ continuous inside a knot span and C p−1 con-
tinuous across single knots. At knots with multiplicity k the continuity of
the basis functions is reduced to C p−k . The following list contains some
important properties of B-Spline basis functions:

– local support, i.e. a basis function Ni ,p (ξ) is non-zero only in the
interval [ξi ,ξi+p+1].

– partition of unity, i.e.
∑n

i=1 Ni ,p (ξ) = 1

– non-negativity, i.e. Ni ,p (ξ)¾ 0

– linear independence, i.e.
∑n

i=1αi Ni ,p (ξ) = 0 ⇔ αi = 0, i = 1, 2, ..., n

NURBS geometries have an additional weight for each control point, which
can lead to rational basis functions. The weights are necessary for repre-
senting, for example, conical sections exactly. In case that all weights are
equal to one, the basis functions reduce to simple piecewise polynomials.
The formulas for NURBS basis functions are given in Equation (2.4) and
Equation (2.6).
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2 Geometric modeling and fundamentals

(a) B-Spline surface with its control point net (dashed lines) and param-
eter curves (knots)

ξ1−3

ξ4

ξ5−7

η1−3

η5−7

η4

(b) Corresponding basis functions in parameter space

Figure 2.4: Quadratic B-Spline surface with clamped knot
vectors Ξ= H = [0, 0, 0, 0.5, 1, 1, 1] and its basis functions
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2.2 NURBS-based B-Rep model

NURBS curves

B-Spline curves of degree p are computed using linear combinations of
the control point coordinates and the corresponding basis functions. The
formula for determining B-Spline curves is given by

C (ξ) =
n
∑

i=1

Ni ,p (ξ)Pi . (2.3)

NURBS curves have non-uniform knot vectors and the additional weight
wi for each control point Pi must be considered. The formula for NURBS
curves with their basis functions Ri ,p is given as follows:

C (ξ) =
n
∑

i=1

Ni ,p (ξ)wi Pi
∑n

k=1 Nk ,p (ξ)wk

=
n
∑

i=1

Ri ,p (ξ)Pi (2.4)

An example of a cubic B-Spline with a clamped knot vector is shown in
Figure 2.3. Owing to the clamped knot vector, the first and last control
points (P1 and P7) are interpolated.

NURBS surfaces

B-Spline surfaces are constructed as tensor products of B-Spline basis
functions in the parametric dimensions ξ and η. They are defined by a net
of n×m control points, two knot vectors Ξ and H , two polynomial degrees
p and q , and the corresponding basis functions Ni ,p (ξ) and M j ,q (η). The
formula for determining B-Spline surfaces S is

S (ξ,η) =
n
∑

i=1

m
∑

j=1

Ni ,p (ξ)M j ,q (η)Pi j , (2.5)

and NURBS surfaces are defined by

S (ξ,η) =
n
∑

i=1

m
∑

j=1

Ni ,p (ξ)M j ,q (η)wi j Pi j
∑n

k=1

∑m
l=1 Nk ,p (ξ)Ml ,q (η)wk l

=
n
∑

i=1

m
∑

j=1

Ri j (ξ,η)Pi j .

(2.6)

An example of a quadratic B-Spline surface is illustrated in Figure 2.4,
which has the clamped knot vectors Ξ= H = [0, 0, 0, 0.5, 1, 1, 1].
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P1

P6

P7

P8

P9

P10

C(ξ8)

C(ξ9)

C(ξ10)
C(ξ1−4)

P2

P3 P4

P5
C(ξ5−7)

C(ξ11−14)

(a) Refined B-Spline curve with its control point polygon (dashed lines)
and knot positions on the curve

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0
N4,3

N5,3
N6,3

N7,3
N8,3 N9,3

N10,3

ξ8 ξ10ξ9 ξ11−14

ξ5−7

N1,3

(b) Corresponding refined basis functions

Figure 2.5: Knot insertion exemplified by B-Spline curve from
Figure 2.3 with knot vector Ξ= [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1].
After inserting three knots at ξ= 0.1 the knot vector becomes

Ξ= [0, 0, 0, 0, 0.1, 0.1, 0.1, 0.25, 0.5, 0.75, 1, 1, 1, 1] and a C 0 continuity
is introduced at the new knot. The refinement does not change the

curve’s shape.
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P1

P2

P3

P4

P5
P6
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C(ξ1−5)

C(ξ6−7)

C(ξ8−9)

C(ξ10−11)
C(ξ12−16)

P8

P11

P9

P10

(a) Refined B-Spline curve with its control point polygon (dashed lines)
and knot positions on the curve

0 0.2 0.4 0.8 1.00.6
0
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0.8
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N6,4

N7,4

N8,4
N9,4

N10,4

N11,4

(b) Corresponding quartic basis functions

Figure 2.6: Degree elevation exemplified by B-Spline curve from
Figure 2.3. The polynomial degree is increased by one to four. This

results in the new knot vector
Ξ= [0, 0, 0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1, 1, 1]. The

refinement does not change the curve’s shape.
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2 Geometric modeling and fundamentals

2.2.2 Geometry refinement

For the later mentioned purpose of analysis the geometry basis might need
to be enriched to properly describe deformed geometries (see Section 3.5.1
and Hughes et al. [40]).

There are two ways of refining B-Spline and NURBS geometries, they are
called degree elevation and knot insertion (see Boehm [14], Cohen et al. [22],
and Piegl et al. [65]). Both refinement techniques increase the number of
control points and thus impart the capability to represent a greater number
of shapes. The refinement itself does not change the initial shape of the
geometry.

The continuity of a curve can be decreased by generating knots with multi-
plicity greater than one (see Section 2.2.1). In case of multiplicity equal to
(p +1), the curve becomes interpolating at this knot and can be split easily
into two curves. An example of a similar case is shown in Figure 2.5, which
illustrates the knot insertion refinement of a B-Spline curve by introduc-
ing a C 0 continuity at ξ= 0.1. An example of degree elevation is shown in
Figure 2.6.

For surfaces and solids refinement can be performed in the same manner
and independently for each parameter direction.

2.2.3 Trimming

Trimming is the operation of modifying the visible part of geometries like
surfaces or curves.

Trimmed NURBS curves

A trimmed NURBS curve is a partially visible curve defined by the trimmed
domain

D = {ξ ∈H|ξstart ≤ ξ≤ ξend}, (2.7)

where H is the parameter domain of the curve C defined by the interval
[ξp+1,ξn+1] of the knot vector Ξwith p being the polynomial degree and n
the number of control points. The additional parametersξstart andξend ∈H
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2.2 NURBS-based B-Rep model

C(ξstart)
C(ξend)

Cvisible

(a) Trimmed B-Spline curve with its start and end parameter on the
curve. The dashed curve shows the remaining inactive curve segments.

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

ξstart ξend

D

H

(b) Corresponding basis functions defined on trimmed domain

Figure 2.7: Trimmed B-Spline curve from Figure 2.3 defined by
the trimmed (active) domain D with ξstart = 0.055 and ξend = 0.6.

The trimming does not affect the knot vector
Ξ= [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1] and its basis functions.

are parameter values which bound the visible part of the curve. Thus a
trimmed curve is given by

C visible = {C (ξ) | ξ ∈D} (2.8)

An example of a trimmed curve is shown in Figure 2.7.

Trimmed NURBS surfaces

A trimmed NURBS surface is described by a NURBS surface and a set of
M properly ordered boundary (trimming) curves C̃ k (ξ̃)with k = 1, ..., M
lying within the parameter domain H = [ξp+1,ξn+1]× [ηq+1,ηm+1] of the
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2 Geometric modeling and fundamentals

(a) Trimmed B-Spline surface with its control point net (dashed lines)

ξ1−3

ξ4

ξ5−7

η1−3

η5−7

η4

(b) Corresponding basis functions defined on trimmed domain D

Figure 2.8: Trimmed B-Spline surface and its basis functions on
trimmed domain D, which is defined by trimming curves.

18



2.2 NURBS-based B-Rep model

surface (see also Piegl et al. [64]). Thus, a trimmed surface is a partially
visible surface, defined by the trimmed domain

D = {(ξ,η) ∈H|∂D =
M
⋃

k=1

C̃ k }. (2.9)

Here, ∂D describes the boundary of the closed trimmed domain D.

In general, trimming curves C̃ k (ξ̃) can be of any form, however, when
dealing with NURBS entities, it is desirable to represent these with NURBS3,
too

C̃ k (ξ̃) =





ξk (ξ̃)

ηk (ξ̃)



=
nk
∑

i=1

R (k )i ,l (ξ̃) P̃ k
i , k = 1, 2, ..., M . (2.10)

Here, l is the polynomial degree, ξ̃ is the curve parameter, ξk and ηk are
parameters of the surface representing the trimming curve C̃ k and P̃ k

i are
the control points of the trimming curve in the parameter space of the
surface. The curves C̃ k (ξ̃) are joined properly to form outer and inner
loops. The outer loops are oriented counter-clockwise, whereas the inner
loops are oriented clockwise (see also Section 2.3.3). The boundary of the
surface is given by

∂ Svisible =
M
⋃

k=1

∂ Sk , (2.11)

where ∂ Sk are implicitly defined curves, described by the basis functions
of the surfaces as follows

∂ Sk = S (C̃ k (ξ̃)) =
n
∑

i=1

m
∑

j=1

Ri j (C̃ k (ξ̃))Pi j , k = 1, 2, ..., M . (2.12)

Figure 2.9 shows exemplarily such basis functions for the trimmed sur-
face in Figure 2.8(a). Since an explicit description of the boundary ∂ Sk is
needed for geometric modeling, the trimming curves C̃ k (ξ̃) are mapped
onto the surface as an explicit space curve C k (ξ̃) (see also Renner et al.
[69]):

3 within CAD systems in most cases just B-Splines are used
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C1(ξ̃)

C6(ξ̃)
C5(ξ̃)

C4(ξ̃)

C3(ξ̃)

C2(ξ̃)

C7(ξ̃)

(a) Explicitly defined (approximated) space
curves C k of the trimming curves C̃ k

R (1)i j

R (2)i j

R (4)i j

R (3)i j

R (5)i j
R (6)i j

R (7)i j

(b) Implicitly defined basis functions on the
boundaries

Figure 2.9: Description of the boundaries of the trimmed
surface in Figure 2.8(a) with its implicitly defined basis functions

and its explicitly defined (approximated) space curves.

Here, non-trivial mappings i.e. trimming curves which do not coincide
with parameter lines, are usually approximated by using NURBS curves of
third order (e.g. C 3 and C 7 in Figure 2.9(a)).

A trimmed surface is given by

Svisible = {S (ξ,η) | (ξ,η) ∈D}. (2.13)

An example of a trimmed B-Spline surface with its basis functions, defined
on a trimmed domain D, is illustrated in Figure 2.8. The corresponding
untrimmed B-Spline surface with its basis functions is shown in Figure 2.4.

Trimming operation

Trimming refers to the operation of creating trimmed geometries, e.g. by
performing a Boolean or blending (see Choi [19]) operation. For curves, a
point inversion algorithm (see Ma et al. [55]) can be used to determine the
boundaries (ξstart and ξend) of the trimmed domain D. For surfaces, math-
ematically this results in a surface-to-surface intersection (SSI) problem
(see Choi [19], Krishnan et al. [50], Patrikalakis [62], and Sederberg et al.
[81]), where the trimming curves C̃ of the intersection are determined in
the parameter space.
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2.2 NURBS-based B-Rep model

d) Intersecting surfaces after trimming operations

a) Original B-Spline surface 1 b) Original NURBS surfaces 2 and 3

Boolean operations
- approximation of the intersection
curve in the parameter space (C̃
curves) of each surface using an SSI
algorithm
- determination of the trimmed
domain D (visible part) for each
surface
- approximation of the space curves C
by mapping the trimming curves C̃
onto the corresponding surface

S(1)

S(2)

S(3)

c) Intersecting surfaces before trimming operations

S(1)visible

S(2)visible S(3)visible

Figure 2.10: Boolean operations including trimming of
intersecting surfaces
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Figure 2.10 shows an example of trimming operations with three intersect-
ing surfaces before and after the execution of several Boolean operations.
A trimming operation consists of the following steps:

– approximation of the intersection curve with the trimming curves
C̃ k (ξ̃) in the parameter space of each surface using an SSI algorithm
(see Krishnan et al. [50], Patrikalakis [62], and Sederberg et al. [81])

– determination of the trimmed domain D for each surface

– approximation of the space curves C k (ξ̃) by mapping the trimming
curves C̃ k (ξ̃) onto the corresponding surface (see Renner et al. [69])

Note that the specification of the trimmed domain (visible part) depends
on the type of Boolean operation (see also Figure 2.10).

For solving the SSI problem and mapping the trimming curves onto the
surfaces most CAD systems use approximation algorithms, even if the
mapping could be done exactly by using polynomials of high degrees (e.g.
p=27) (see Renner et al. [69]). Indeed, the use of approximation techniques
requires the specification of tolerances but it reduces the computational
cost and increases the robustness against numerical instabilities (see Ren-
ner et al. [69]).

Tolerances

Figure 2.11 shows two different representations of the trimmed B-Spline
surface S(1)visible in Figure 2.10(d). These have been created by using two
different trimming tolerances. The trimmed surface shown in Figure 2.11(a)
and Figure 2.11(b) was created in the CAD program Rhinoceros 5 (see
Rhinoceros [70]) by using a trimming tolerance of 10−1 units, while the
surface described in Figure 2.11(c) and Figure 2.11(d) was created using a
tolerance of 10−8 units. It can be seen that the more accurately trimmed
surface requires a greater number of control points for the trimming curves
(see C̃ 3 and C̃ 7) and space curves (see C 3 and C 7) to approximate the
intersection curves.

An example of a very inaccurate approximated space curve is illustrated in
Figure 2.12. The geometry has been created in the CAD program Rhinoceros
5 by using a very high trimming tolerance of 1 unit. The obvious inaccuracy
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C̃ 1
C̃ 2

C̃ 3

C̃ 4

C̃ 5

C̃ 6
C̃ 7

(a) Trimming curves in the parameter
space determined by using a trimming
tolerance of 10−1 units

C 1

C 2

C 3

C 4

C 5

C 6

C 7

(b) Corresponding trimming space curves in the ge-
ometry space determined by using a trimming toler-
ance of 10−1 units

C̃ 1
C̃ 2

C̃ 3

C̃ 4

C̃ 5

C̃ 6
C̃ 7

(c) Trimming curves in the parameter
space determined by using a trimming
tolerance of 10−8 units

C 1

C 2

C 3

C 4

C 5

C 6

C 7

(d) Corresponding trimming space curves in the ge-
ometry space determined by using a trimming toler-
ance of 10−8 units

Figure 2.11: Two different representations of trimmed B-Spline
surface created in Figure 2.10 based on different trimming

tolerances
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visualization mesh

inaccurate trimming space curve

last knot line before boundary

obvious inaccuracy

Figure 2.12: Very inaccurate approximated space curve of a
trimming curve which is used as boundary for a cylindrical shape.
The geometry has been created in the CAD program Rhinoceros 5
by using a very high trimming tolerance of 1 unit. The dashed lines
show the control point net. The obvious inaccuracy is highlighted.

of the trimming space curve is highlighted. Note that the visualization
mesh which is used for representing trimmed surfaces within CAD systems
uses the space curve as its boundary even though it lies not on the surface.
This is mainly done to visually hide the mathematical non-watertightness
(see also Section 2.4.1). The example demonstrates how CAD systems deal
with inaccuracies caused by tolerances.

2.2.4 Topology of B-Rep

In addition to the geometric description of surfaces and curves, the topol-
ogy of B-Rep needs to be discussed. The main topological entities are the
following:

– faces (F )

– edges (E )

– vertices (V )

These topological entities are supported by their geometric forms: surfaces
(S), curves (C), and points (P).

With B-Rep a three dimensional object is described by its closed "skin"
between "model" and "non-model" (see Figure 2.1), whereas a dimension
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Face 1

Face 2

Face 3

Edge 1

Edge 2

Edge 3

Edge 4
Edge 5

Edge 6

Edge 7

Vertex 2

Vertex 1

Vertex 3

Vertex 4

Vertex 9

Vertex 5

Vertex 6

Vertex 7

Vertex 8

Vertex 10

Edge 8

Edge 10

Edge 9

Edge 11

Edge 12

Figure 2.13: Simple surface model with its B-Rep topology
entities (faces, edges and vertices). The object is represented by its

"skin".

reduced object (surface model) is described by the "skin" itself (see Fig-
ure 2.13). In both cases the skin is composed of a set of adjacent bounded
surface elements i.e. trimmed NURBS surfaces (see Section 2.2.3)) called
faces.

In the following, the explanation of topology is restricted to those parts
which are needed for surface models. Figure 2.13 shows a simple surface
model with its main topology entities and Figure 2.14 shows its decompo-
sition into topological and geometrical entities.

Face

Each face consists of one trimmed surface and a set of properly joined
edges, which define inner (clockwise oriented) and outer (counter-clockwise
oriented) loops. The description of trimmed surfaces is described in Sec-
tion 2.2.3 and is illustrated exemplarily in Figure 2.14 for the surface model
in Figure 2.13.
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Figure 2.14: NURBS-based surface B-Rep model
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Edge

Edges are topological entities of

– common parts of trimming curves, which bound surfaces (faces) on
either side of an edge (see Edge 3 and Edge 7 in Figure 2.13), or

– free trimming curves (see e.g. Edge 1 in Figure 2.13).

Within CAD systems an edge is described by one space curve bounded
by two vertices given in spatial coordinates. The corresponding trimming
curves for the adjacent surfaces within their parameters spaces are pro-
vided by the CAD system. The parameters ξ̃start and ξ̃end of the trimmed
domain D̃ of the trimming curve within the parameter space of the surface
(see also Section 2.2.3) which defines the edge need to be computed by a
point inversion algorithm (see Ma et al. [55]) using the spatial coordinates
of the vertices which bound the edge.

Vertex

Vertices given in spatial coordinates are the topological entities of points
where several edges meet and thus they define the boundaries of edges.

Depending on the purpose, the face-edge-vertex data model can also be
augmented by additional elements such as shells and/or loops (see topology
in Figure 2.14). For more information about B-Rep the reader is referred to
Mäntylä [56] and Stroud [86].

2.3 Differential geometry of trimmed surfaces

This section reviews all basics of differential geometry of trimmed surfaces
which are used within this thesis. Remember that within this thesis the Ein-
stein summation convention as well as the convention that Latin indices
like i,j,k,l take letters {1, 2, 3} and Greek letters like α,β ,γ,δ take the values
{1, 2} is used. In addition, derivatives w.r.t. to a quantity i are abbreviated
by (·),i .
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Figure 2.15: Geometry description of a trimmed surface

2.3.1 Differential geometry of surfaces

A spatial point X surf(θ 1,θ 2) ∈ Svisible of a trimmed NURBS surface can be
computed with Equation (2.6) using parameters θ α ∈ D. The covariant
basis Aα with contravariant coordinates θ α are given by

Aα =
∂ X surf

∂ θ α
, (2.14)

whereas the contravariant basis Aα with their covariant coordinates θi can
be computed as

Aα =
∂ X surf

∂ θα
. (2.15)

Since a trimmed surface is a parametrically two-dimensional geometry
and each point on the surface is described by two curvilinear coordinates
θ α, the two covariant base vectors Aα can be obtained with Equation (2.14).
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The third covariant base vector A 3 is defined as a normalized vector, or-
thogonal to Aα as

A 3 =
A 1×A 2



A 1×A 2





2

(2.16)

with the property

A 3 = A3. (2.17)

The metric tensor A of a surface can be expressed in the covariant and
contravariant basis as

A= AαβAα⊗Aβ = AαβAα⊗Aβ . (2.18)

Here, covariant metric coefficients Aαβ can be obtained with the so called
first fundamental form of surfaces by the scalar product of covariant base
vectors (see also Klingbeil [48]):

Aαβ = Aα ·Aβ (2.19)

and the contravariant metric coefficients Aαβ can be computed by invert-
ing the covariant coefficient matrix

[Aαβ ] = [Aαβ ]
−1. (2.20)

The metric coefficients can be used to switch between the two different
bases

Aα = AαβAβ resp. Aα = AαβAβ . (2.21)

The explicit description of contravariant base vectors using covariant base
vectors (see also Equation (2.17)) is given by

A1 =
1

det[Aαβ ]
(A22A 1−A12A 2) (2.22)

A2 =
1

det[Aαβ ]
(−A21A 1+A11A 2) (2.23)

with det[Aαβ ] being the determinate of the covariant metric, which can be
computed as follows:

det[Aαβ ] = A11A22−A12A21 (2.24)
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2 Geometric modeling and fundamentals

Curvature tensor

The second fundamental form of surfaces describes the curvature prop-
erties of a surface. The covariant tensor coefficients of the curvature (see
also Basar et al. [4] and Klingbeil [48]) are defined as :

Bαβ =−Aα ·A 3,β =−Aβ ·A 3,α = Aα,β ·A 3 (2.25)

2.3.2 Differential geometry of surface boundaries

A spatial point X B-Rep(θ̃ 1) ∈ ∂ Svisible of a surface boundary can be com-
puted with Equation (2.6) using parameters θ α(θ̃ 1) ∈ ∂D. The covariant
basis A i (see Equation (2.14)) is not useful since their orientation is in-
dependent of the boundary description. Thus a new orthonormal local
coordinate system Ti aligned with the boundary curve is introduced

Ti =
T̆i

T i

(2.26)

with T̆i being the not normalized basis defined by

T̆2 =
∂ Xsurf

∂ θ̃ 1
=A1

∂ θ 1

∂ θ̃ 1
+A2

∂ θ 2

∂ θ̃ 1
,

T̆3 =A1×A2,

T̆1 = T̃2× T̃3,

(2.27)

and T i being the length of the vectors T̆i

T i =


T̆i





2
. (2.28)

Here, the base vector T̆2 represents the tangent vector of the space curve,
T̆3 is the not-normalized vector of the surface normal and T̆1 is the vec-
tor perpendicular to T̆1 and T̆3 pointing outwards from the surface (see
Section 2.2.3 for the correct curve direction).

For the sake of implementation, it is more elegant to rewrite the vector T̆1

with the pseudo parameter θ̃ 2 by using the triple product expansion as

T̆1 =A1
∂ θ 1

∂ θ̃ 2
+A2

∂ θ 2

∂ θ̃ 2
(2.29)
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2.3 Differential geometry of trimmed surfaces

Trimmed domainD

ξ

η

ξ̃ C̃ (1)

C̃ (2)
ξ̃

ẽ1

ẽ2

ẽ1
ẽ2

Figure 2.16: Differential geometry of trimming curves within
parameter space. Considering correctly oriented curves the vector
ẽ2 points always towards the visible domain i.e. the latter is always

on the left hand side of the trimming curves.

where the derivatives ∂ θ
α

∂ θ̃ 2
are determined by

∂ θ 1

∂ θ̃ 2
= T̆2 ·A2 and

∂ θ 2

∂ θ̃ 2
=−T̆2 ·A1. (2.30)

Curvature tensor

The curvature tensor at the boundary can be computed as described in
Section 2.3.1, but for the determination of curvature continuities (see Sec-
tion 2.4.3) across edges it is advantageous to express the curvature within
the above defined local coordinate system Ti (see Equation (2.26)) with
the coefficients cγδ.

cγδ = bαβ (Tγ ·Aα)(Aβ · Tδ) (2.31)

2.3.3 Differential geometry of trimming curves

The surface parameters ξ and η ∈ ∂D of a spatial point X B-Rep ∈ ∂ Svisible

can be computed with Equation (2.10) using the corresponding curve

31



2 Geometric modeling and fundamentals

parameter ξ̃. The tangent of the trimming curve C̃,ξ̃ within parameter
space can be computed as

T̃= C̃,ξ̃ =





∂ θ 1

∂ θ̃ 1

∂ θ 2

∂ θ̃ 1



 (2.32)

where C̃,ξ̃ is the derivative of the trimming curve and the normalized tan-
gent is defined by

ẽ1 =
T̃



T̃




2

. (2.33)

Assuming ẽ1 in R3 the vector ẽ2 ∈R3 can be computed as

ẽ2 = ẽ3× ẽ1, (2.34)

with ẽ3 ∈R3 given by

ẽ3 =











0

0

1











. (2.35)

Figure 2.16 illustrates an example of a trimmed domain with the local
orthonormal coordinate system ẽi .

2.4 Geometric continuities

This section deals with different orders of geometric continuity G k with
k ∈ N indicating the order of continuity, across a common edge E (see
Section 2.2.4) of two adjacent faces, i.e. trimmed surfaces (see Section 2.2.3)
defined by S (α)visible. The edge E as a topological entity links two boundary
subsets

∂ SE ⊂ ∂ S (α)visible, (2.36)

such that within the B-Rep description (see Section 2.2.4) they belong
together.
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2.4 Geometric continuities

Face 1

Face 2

Face 1

Face 2

ToleranceEdge 7
C 7

C 8

Figure 2.17: Non-watertightness of NURBS-based B-Rep models.
Since trimming (space) curves only approximate the exact

intersection curve a gap within the specified tolerance can occur.
Here, the trimming is done with a very unusual high tolerance of

0.1 units. For illustrating the gap each face uses its own space
curve for representing the common edge. Note that CAD systems
use just one curve for both faces (see also Figure 2.12) such that

the non-watertightness can not be seen (see also Figure 2.18).

2.4.1 Positional continuity – G 0 (Watertightness)

Positional continuity (watertightness) on the set of points of an edge ∂ SE

is given if the subsets ∂ S (α)E coincide geometrically:

∂ S (1)E = ∂ S (2)E = ∂ SE (2.37)

In CAD systems, the intersection curve of two intersecting surfaces is de-
fined by one trimming curve on each surface and represented by the corre-
sponding space curves (see Section 2.2.3). Since all these curves are usually
approximated, gaps between boundaries, but representing the same edge,
can occur. Such gaps pertain to non-watertightness (see also Sederberg
et al. [80]). The maximum tolerance for such gaps depends strongly on the
application. In contemporary CAD systems, the user can usually specify the
desired (relative and/or absolute) tolerance. In Rhinoceros (see Rhinoceros
[70]) for instance the default value for large models is 0.01 units and that
for small models is 0.001 units.

Figure 2.17 illustrates the non-watertightness between two trimmed sur-
faces (face 1 and 2) of the example in Figure 2.10 and Figure 2.14. It can
be seen that the space curve C 7 of the surface S(1)visible as well as the corre-
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2 Geometric modeling and fundamentals

(a) Coarse visualization mesh (b) Fine visualization mesh

Figure 2.18: Comparison of two different visualization meshes
of the same trimmed surface (see Figure 2.8). The space curves are
independent of the fineness of the visualization mesh and thus in

both figures the same.

sponding space curve C 8 of the surface S(2)visible do not match. For a better
illustration of the gap the trimming in Figure 2.17 is done with a very unusu-
ally high tolerance of 0.1 units and each face uses its own space curve for
representing the common edge. Note that CAD systems usually use just one
curve for both faces (see also Figure 2.12) such that the non-watertightness
can not be seen (see also Figure 2.17).

In practice such gaps are not problematic as long as they are within the
required tolerance which can be specified within the CAD system.

Beside the above mentioned non-watertightness caused by approximating
the intersection curves, a visual non-watertightness caused by representing
trimmed surfaces by visualization meshes exists as well. In case the mesh
is too coarse like in Figure 2.18(a), one might see gaps between surfaces.
Such gaps can easily be reduced by using a finer visualization mesh (see
Figure 2.18(b)) and are not related to the quality of the CAD model itself.

2.4.2 Tangential continuity – G 1

Tangential continuity on the edge E is given if at each point X B-Rep ∈ ∂ SE

with

X B-Rep = X (1)B-Rep = X (2)B-Rep (2.38)
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2.4 Geometric continuities

the vectors T (α)1 of the locally defined coordinate systems T (α)i (see Equa-

tion (2.26)) aligned to the edge (different orientation of T (α)2 possible) point
in opposition direction.

T (1)1 =−T (2)1 (2.39)

Kinks

In the case, only the vectors T (1)2 are collinear, a kink exists with an angle

φ around T (α)2 at the corresponding position

φ =±arccos(T (1)1 · T (2)1 ) (2.40)

2.4.3 Curvature continuity – G 2

Curvature continuity on the edge E is given if at each point X B-Rep ∈ ∂ SE

besides tangential continuity also the curvature tensor, with its coefficients
c (α)αβ (see Equation (2.31)) coincides.

c (1)αβ = c (2)αβ with T (1)3 =−T (2)3

c (1)αβ =−c (2)αβ with T (1)3 = T (2)3

(2.41)

Depending on the geometric continuity, CAD models are classified to be of
standard or high quality. The latter require a high geometrical continuity
with a low tolerance level. They are used for aesthetic purposes, such as
car bodies and consumer product outer forms. The higher geometrical
continuity is mainly required for a better light reflection. Figure 2.19 shows
the light and zebra pattern reflection of an edge with different geometrical
continuities, representing almost the same shape. One can see that the
higher the continuity the smoother the transition of the reflection becomes.
In Figure 2.19 the "zebra pattern" reflection, which gives visual feedback
for geometric continuities, illustrates that for G 0 the pattern is not contin-
uous, for G 1 it has a kink and for G 2 and higher it is smooth. In addition,
Figure 2.19 shows the curvature distribution perpendicular to the edge.
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light reflection

"zebra pattern" reflection

G 0

Positional
continuity

G 1

Tangential
continuity

G 2

Curvature
continuity

G 3

Change of curvature
continuity

curvature

Figure 2.19: Comparison of different geometrical continuities
along an edge, representing the curvature perpendicular to the

edge and the reflection of light as a "zebra pattern".
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2.4 Geometric continuities

Summary and conclusion of Chapter 2

The chapter explains NURBS-based B-Rep models which are used in in-
dustry for describing complex geometrical shapes (see Figure 2.2). The
chapter explains the aspects which need to be considered for IBRA. These
are the following:

– geometrical refinement

– description of trimmed surfaces

– trimming tolerances

– topology of complex multi-patch geometries

– geometric continuities across edges

Moreover, the chapter briefly explains the differential geometry of trimmed
surfaces as a basis for the following chapters.
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Nature always tends to act in
the simplest way.

Daniel Bernoulli
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3
FINITE ELEMENT METHOD FOR

STRUCTURAL SHELL ANALYSIS

This chapter briefly reviews important aspects of the finite element method
(FEM) for structural shell analysis in order to differentiate

– classical finite element analysis (FEA) (see Section 3.4),

– isogeometric analysis (IGA) (see Section 3.5), and

– isogeometric B-Rep analysis (IBRA) (see Chapter 4),

w.r.t. their geometrical discretizations used for analysis. The chapter ex-
plains the different element definitions used for classical FEA and IGA as
well as their shape functions, and data structures.

In addition, the different refinement strategies (h, p and k-refinement) for
IGA are briefly reviewed.
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3 Finite element method for structural shell analysis

3.1 Shell structures

Shells are thin-walled, curved structures like car bodies, roof shells or cool-
ing towers. For the analysis of such structures, shell formulations are at-
tractive because they concentrate on the mechanically relevant effects
and thus the computational effort can be reduced significantly. For solving
shell problems two main theories are widely used: the Reissner-Mindlin
(RM) and the Kirchhoff-Love (KL) theory.

3.2 Kirchhoff-Love shell theory

Within this thesis the Kirchhoff-Love (KL) shell theory is used as basis for
solving structural shell problems. The assumptions of this theory are the
following:

– the director remains straight and perpendicular to the midsurface
during deformation

– no transverse shear deformation is taken into account

– the thickness t remains constant

– the ratio R
t of the characteristic radius R and the thickness t is larger

than 20

The geometrical description and the strong form of the static equilibrium
for KL shell problems is given in the sequel, whereas the weak form of the
static equilibrium is described in Section 3.3.2 and Section 4.2.

3.2.1 Geometrical description

The body resp. physical domain of a KL shell can be described by the
position vector X resp. x in the reference resp. in the current configuration
as follows:

X(θ 1,θ 2,θ 3) =Xsurf(θ
1,θ 2) +θ 3A3,

x(θ 1,θ 2,θ 3) = xsurf(θ
1,θ 2) +θ 3a3,

(3.1)
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3.3 Finite element method

where Xsurf and xsurf are the midsurfaces in the different configurations
and θ α are the contravariant coordinates. The third contravariant coordi-
nate θ 3 is the parameter for the thickness t defined in the range

�

− t
2 ,+ t

2

�

,
whereby t remains constant. The displacement of the physical domain
between the two configurations can thus be described by using the dis-
placement of the midsurface

usurf = xsurf− X surf. (3.2)

3.2.2 Strong form of equilibrium

The equilibrium for a geometrically nonlinear KL shell is given by the two
vectorial equations in the current configuration (Basar et al. [4]) by

nα|α+p= 0,

mα|α+aα×nα = 0,
(3.3)

where 2|α is the covariant derivative w.r.t. the parameters θ α, aα are the
covariant base vectors, nα (normal forces) and mα(moments) are the stress
resultants derived from the Cauchy stress tensor and p is the external load.

3.3 Finite element method

Structural analysis problems, e.g. Equation (3.3) with a geometrical de-
scription and appropriate boundary conditions, are usually solved with the
finite element method (FEM) by using the same discretization for geometry
and solution fields (isoparametric concept – introduced by B. M. Irons [3]).

3.3.1 Definition of nomenclature

To avoid confusions in the usage of different nomenclature within FEM
important terms are defined for this thesis as follows:

– The set of parameters A used for a function f (A) is called parameter
(trimmed) domain.

– A parametric domain is the geometry defined by G(A) =
∑

i f i (A)
which at its turn is described by the functions f i (A) sharing the same
parameter domain A.
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3 Finite element method for structural shell analysis

– An integration domain is a domain on which an integration scheme,
e.g. Gaussian quadrature, is applied.

– With respect to the above mentioned terms a finite element is de-
fined differently for classical finite element analysis (see Section 3.4.1),
isogeometric analysis (Section 3.5.3) and isogeometric B-Rep analysis
(Section 4.3).

3.3.2 Weak form of equilibrium

For arriving at a solution to a structural problem using approximation
methods like FEM, the internal and external forces need to be in equilib-
rium in a weak sense. This can be expressed by the principle of virtual
work, which is defined as the sum of the internal and external virtual work
(see also Zienkiewicz, O.C. and Taylor, R.L. and Zhu, J.Z. [94]) and is given
by

δW =δWint+δWext = 0. (3.4)

The internal and external virtual work for a KL shell in the reference config-
uration on the physical domain (no boundary contributions considered –
see also Section 4.2) can be formulated as follows (see also Basar et al. [4]):

δWint =−
∫

Ω

�

N δε+M δκ
�

dΩ,

δWext =

∫

Ω

p δu dΩ,

(3.5)

where Ω is the midsurface of the physical domain in the reference con-
figuration, N (normal force) and M (moments) are the stress resultants
derived from the 2nd Piola Kirchhoff (PK2) stress tensor, δε (virtual normal
strain) and δκ (virtual change in curvature) are the energetically conju-
gated quantities derived from the virtual Green-Lagrange strain tensor
all given in Voigt notation, p is the external force, and δu is the virtual
displacement of the midsurface.

The equilibrium condition in Equation (3.4) resp. Equation (3.5) must also
be fulfilled for the variation w.r.t. the virtual displacement field δu:

δW =
∂W

∂ u
δu= 0 (3.6)
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3.3 Finite element method

3.3.3 Discretization

Applying a discretization for Equation (3.6) the equilibrium can be written
as

δW =−R ·δuh = 0, (3.7)

which means that for an arbitrary virtual discretized displacement vector
δuh the corresponding residual force vector R must vanish. The nonlin-
ear expression in Equation (3.7) is linearized to solve it with an iterative
solution approach such as the Newton-Raphson method. This results in
the linear expression

K∆u= R , (3.8)

where the tangential stiffness matrix K and the residual force R are used
iteratively to obtain the displacement increment∆u until equation (3.7) is
satisfied. The components of K and R are given by

Rr =−
∂W

∂ ur
=−

∂Wint

∂ ur
−
∂Wext

∂ ur
=R int

r +R ext
r , (3.9)

Kr s =
∂ Rr

∂ us
=−

∂W 2

∂ ur ∂ us
=−

∂W 2
int

∂ ur ∂ us
−
∂W 2

ext

∂ ur ∂ us
= K int

r s +K ext
r s , (3.10)

where r, s ∈N are indices used for the discretization components.

Basis functions

Following the isoparametric concept the discretized solution uh i.e. the
displacement of the midsurface for a KL shell problem can be written as

uh = xh− X h =
∑

r

Nr (x̂
r − X̂ r ) =

∑

r

Nr ûr , (3.11)

with Nr being the basis functions, x̂r resp. X̂ r the corresponding geom-
etry discretization parameters in vector form, and ûr the corresponding
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3 Finite element method for structural shell analysis

variables for the displacement field uh. Considering that for the basis func-
tions usually more than one parameter domain is used, the virtual work
expressions in Equation (3.5) can be computed as

δWint =−
∑

k

∫

Ω(k )

�

N δε+M δκ
�

dΩ(k ),

δWext =
∑

k

∫

Ω(k )
p δu dΩ(k ),

(3.12)

whereΩ(k ) is the parametric domain k . Since the KL shell formulation relies
on the evaluation of curvature resp. second derivatives of the shape func-
tions, the formulation requires at least C 1 continuity within all parametric
domains and G 1 continuity (see also Section 4.2) across their boundaries.

The equilibrium condition in Equation (3.4) with Equation (3.5) does not
consider any virtual work contributions on boundaries of parametric do-
mains and thus it requires the strong fulfillment of

– continuity on common boundaries of parametric domains i.e. tan-
gential continuity G 1 including positional continuity G 0 (see also
Section 2.4), and

– Dirichlet boundary conditions.

Neither classical finite element analysis (FEA), which usually uses Lagrange
polynomials as basis functions, nor the NURBS-based isogeometric analy-
sis (IGA) fulfill these requirements. The advantage of NURBS-based IGA is
that one parametric domain i.e. a NURBS geometry (see also Section 2.2.1)
resp. patch is able to represent a large amount of complex shapes and
also allows for an accurate approximation of the solution field due to the
possibility of geometry refinement (see also Section 2.2.2).

Classical FEA with its low order polynomials is mainly restricted to RM shell
formulations which only require G 0 continuity across parametric domains.
The latter can be achieved easily by sharing degrees of freedom (DOFs) at
common boundaries. In contrast to that for NURBS-based IGA a strong
fulfillment of G 0 across parametric domains represents a huge restriction
in geometric modeling and analysis because it requires matching patches
over the entire physical domain. Nevertheless the high continuity within
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3.4 Classical finite element analysis (FEA)

patches allows for KL shell formulations (see Kiendl et al. [44]) as well as
matching multi-patch geometries by using the bending-strip method (see
Kiendl [46]).

Chapter 4 explains how these limitations for design and analysis can be
overcome by considering virtual work contributions on arbitrarily defined
boundaries of parametric domains which finally allow for the direct analy-
sis of surface CAD models. As reference for Chapter 4 the following sections
briefly explain the geometry description of surface models for classical
FEA and IGA.

3.4 Classical finite element analysis (FEA)

The classical finite element analysis usually uses linear polynomials for
solving RM shell problems, whereby they are used as basis for representing
geometry and solution fields (isoparametric concept). The basis function
Ni of a node i (see also Figure 3.1) is given by

Ni =
⋃

k

Ñ (k )
i with k ∈N (3.13)

where k is the index used for the parametric domains, which contribute
to node i , and Ñ (k )

i are the corresponding shape functions (see also Fig-
ure 3.1(b)).

3.4.1 Definition of classical finite elements

In classical FEA an element is described by a parametric domain whose
parameter domain coincides with the integration domain (see also Sec-
tion 3.3.1). This definition of an element usually leads to fully populated
element stiffness matrices and allows for a simple and efficient implemen-
tation.

3.4.2 Geometry description (finite element mesh)

For a structural shell analysis of a given CAD model (see Chapter 2) the
classical finite element analysis (FEA) requires a geometry transformation
called meshing (see Figure 3.2). The resulting discretization is named finite
element (FE) mesh and is used for describing the geometry and solution
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Node i

Ni

(a) Basis function of node i as a composition of bilinear shape functions (b) of adjacent
parametric domains (elements)

Ñ1 =
1
4 (1+ξ)(1+η) Ñ2 =

1
4 (1−ξ)(1+η)

Ñ3 =
1
4 (1−ξ)(1−η) Ñ4 =

1
4 (1+ξ)(1−η)

ξ

η

ξ

η η

ξ

ξ

ηLocal node 1

Local node 2

Local node 3

Local node 4

for node i

(b) Bilinear shape functions of a quadrilateral element

Figure 3.1: Example of a basis function used within classical FEA
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3.4 Classical finite element analysis (FEA)

(a) CAD (NURBS-based B-Rep) model of an oil sump

(b) A corresponding finite element mesh

Figure 3.2: Comparison of a CAD geometry and a classical FE
geometry discretization representing the same object. The

operation of creating a FE mesh from a CAD model is called
meshing.
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Node ID X Y Z

2016 1.2452 5.6546 8.1116

4908 9.8787 5.1315 8.8454

... ... ... ...

Table 3.1: Exemplary list of FE nodes with coordinates

Elem ID Node IDs

342 2016 2017 3015 1554

757 15 6476 3645

7588 151 6541 2415

... ... ... ...

Table 3.2: Exemplary list of elements with quadrilateral and
triangular elements

fields. Since the discretization parameters of the classical FEA use low order
Lagrange polynomials, the meshing represents just an approximation of
the CAD model and thus it introduces an error. In addition, the link to the
shape parameters of CAD models gets lost and last but not least meshing
is a highly complex task in itself because FE meshes have to fulfill strict
criteria (see also Abel Coll Sans [1], Hansen et al. [37], Knupp et al. [49],
and Topping [89]). An example of a FE mesh derived from a CAD model is
illustrated in Figure 3.2.

A FE mesh can be described by

– a list of nodes (e.g. Table 3.1) and

– a list of elements which defines the topology of the mesh (e.g. Ta-
ble 3.2).

3.5 Isogeometric analysis (IGA)

The idea behind isogeometric analysis (IGA), introduced by Hughes et al.
[40], is to avoid the meshing required in classical FEA by using the basis
functions used for representing CAD geometry also for approximating
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solution fields. Usually, IGA is based on NURBS because these represent the
standard for geometry description in current CAD systems (see Chapter 2).
A detailed description of NURBS basis functions and surfaces is given in
Section 2.2.1. Since NURBS surfaces used for representing the shape of
an object are usually not able to represent solution fields with a satisfying
accuracy, NURBS surfaces need to be refined resp. enriched with control
points (see also Section 2.2.2). Note that such a refinement neither affects
the initial shape nor its parametrization.

3.5.1 h-,p-,h-p-, and k-refinement

Depending on the sequence of applying knot insertion and degree elevation
one distinguishes between h-,p-,h-p, and k-refinement (see also Cottrell
et al. [24] and Hughes et al. [40]):

– For h-refinement additional single knots are added to the knot vector
but no degree elevation is performed. Note that each inserted knot
reduces the continuity C at its position.

– p-refinement is achieved by performing degree elevation, with the
result that the polynomial degree within each non-zero knot span is
increased without modifying the continuities at knots.

– h-p-refinement is achieved by performing degree elevation after h-
refinement, with the result that the polynomial degree within each
non-zero knot span is increased without modifying the continuities
at knots.

– k-refinement is achieved by first applying degree elevation and then
knot insertion. With this sequence one ends up with the same num-
ber of non-zero knot spans as with h-refinement and the same poly-
nomial degree as with p-refinement but with a higher continuity
between non-zero knot spans than h-p-refinement.

Since high continuity is beneficial for KL shell analysis, k-refinement is
assumed in the sequel.

49



3 Finite element method for structural shell analysis

Node ID X Y Z W

2016 1.2452 5.6546 8.1116 1.0000

3015 2.3524 6.1297 8.3435 1.0000

4908 9.8787 5.1315 8.8454 1.0000

... ... ... ... ...

Table 3.3: Exemplary list of FE nodes with coordinates and
weights

Patches Description

NurbsID=1561 id of NURBS surface

p=2 polynomial degree in ξ-direction

q=2 polynomial degree in η-direction

U=[0,0,0, ... 1,1,1] knot vector Ξ

V=[0,0,0, ... 1,1,1] knot vector H

NodeIDs=[101,87,12-16,...,12] list of node ids

NurbsID=243 id of NURBS surface

... ...

Table 3.4: Exemplary list of patches with their NURBS
description consisting of polynomial degrees, knot vectors, and

node ids

3.5.2 Geometry description

In contrast to a classical FE mesh, which consists of a list of nodes and a
list of elements (see Section 3.4.2), a description of an isogeometric surface
model requires

– a list of nodes, which contain node coordinates and their weights
(e.g. Table 3.3), and

– a list of patches (e.g. Table 3.4).

For a complete data set in Table 3.4 the following holds

nnodes ξ-dir = (nknots ξ-dir−p −1) (3.14)
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(b) Index space
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Ω̃4,4

(c) Parameter space with the shape functions of the ele-
ment

Figure 3.3: Example of an isogeometric element within
geometry, parameter, and index space

nnodes η-dir = (nknots η-dir−q −1) (3.15)

nnodes = nnodes ξ-dir ·nnodes η-dir (3.16)

nnode ids = nnodes (3.17)

where n2 stands for the number of different entities.

51



3 Finite element method for structural shell analysis

3.5.3 Definition of isogeometric elements

Within this thesis isogeometric elements are defined as proposed in Hughes
et al. [40] by non-zero knot spans i.e. on parameter subdomains which are
also used as integration domains. This element definition usually leads
to fully populated element stiffness matrices and allows for a simple and
efficient assembly. Thus from an implementation point of view it is better
suited than an element definition according to the classical finite element
analysis (see also Section 3.4.1).

For creating isogeometric elements the parameter domain H of a patch
(see also Section 2.2.3 and Table 3.4) needs to be decomposed into knot
spans resp. parameter subdomains Hi j ⊂H with i , j ∈N

H=
⋃

i

⋃

j

Hi j . (3.18)

The isogeometric surface element Ωi j is then described by the parameter
subdomain Ω̃i j which corresponds to the non-zero knot span Hi j

Ωi j = {S(ξ,η) | (ξ,η) ∈ Ω̃i j }, where

Ω̃i j =Hi j = [ξi ,ξi+1[×[η j ,η j+1[⊂H with ξi 6= ξi+1 and η j 6=η j+1.

(3.19)

The identification of an element within a given patch (surface), is given by
the knot indices i , j ∈N of the knot span Hi j . An example of an isogeomet-
ric surface element within the geometry space is shown in Figure 3.3(a),
whereas Figure 3.3(b) and Figure 3.3(c) illustrate the corresponding ele-
ment within the parameter resp. index space (see also Cottrell et al. [24]).

Table 3.5 contains indicators which can be used for categorizing knot spans
of patches. After the assignment of these indicators isogeometric elements
can be derived from the patches straight forward by considering the se-
quence of nodes (see also Figure 3.3(a)) and the relation between number
of knots and nodes per direction (see Equation (3.14) and Equation (3.15)).

Geometrical description of isogeometric elements

Like classical finite elements (see Section 3.4.2) isogeometric elements
also require a set of nodes (control points) and "shape functions" for their
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3.5 Isogeometric analysis (IGA)

Indicators Description

in non-zero knot span

z zero knot span

Table 3.5: Indicators for distinguishing different types of knot
spans

Element (i , j ) Description

id=1433 unique id of the element

p=2 polynomial degree in ξ-direction

q=2 polynomial degree in η-direction

U=[ξi−p , ...,ξi+p+1] knot vector Ξ

V=[η j−q , ...,η j+q+1] knot vector H

NodeIDs=[54,56,...,78,89] list of element node ids

Table 3.6: Example of an isogeometric element and its geometry
discretization

geometrical description. Table 3.6 exemplarily summarizes the geometry
description of a NURBS-based surface element.

Besides the nodes (see also Figure 3.3(a)) an isogeometric element needs
its polynomial degrees and relevant parts of the knot vectors i.e. U =
[ξi−p , ...,ξi+p+1] and V = [η j−q , ...,η j+q+1] for computing the basis func-
tions and their derivatives (see e.g. algorithm A2.3 in Piegl et al. [65]).
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3 Finite element method for structural shell analysis

Summary and conclusion of Chapter 3

This chapter explains the difference between classical FEA and IGA w.r.t.
to their geometry discretizations used for analysis and serves as reference
for IBRA (see Chapter 4). The geometrical element description used for
classical FEA and IGA, including their shape functions and possible data
structures are explained as well.

IGA in its original form provides the basis for developing element for-
mulations capable of analyzing CAD models but it does not provide the
framework for handling the topology of complex (trimmed multi-patch)
CAD models (see also Chapter 2). This gap will be closed with the new
isogeometric B-Rep analysis (IBRA) which is explained in Chapter 4 for
geometrically nonlinear KL shell problems.
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"Das geht nicht." Dann kam
einer, der wusste das nicht,
und hat es gemacht.

Hilbert Meyer,
Professor für Schulpädagogik
an der Universität Oldenburg
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4
ISOGEOMETRIC B-REP ANALYSIS

Isogeometric B-Rep analysis (IBRA) introduced by Breitenberger et al. [17]
is a finite element approach which enables the direct analysis on surface
CAD models (see also Section 2.2). IBRA extends isogeometric analysis
(IGA), introduced by Hughes et al. [40] (see also Section 3.5), by adapting
the basis functions as well as the B-Rep description of the CAD model for
approximating solution fields. IBRA provides a consistent framework to
deal with the geometry and topology of CAD models for structural analysis
in a finite-element-like manner and closes the gap between CAD models
and the finite element method (FEM).

The chapter explains IBRA for geometrically nonlinear Kirchhoff-Love (KL)
shell problems. A data structure for isogeometric (trimmed) elements as well
as for B-Rep elements is proposed. Moreover, a B-Rep element formulation
based on a penalty approach is introduced which can be used to couple
discontinuous and trimmed geometries and to enforce Dirichlet boundary
conditions.
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4 Isogeometric B-Rep analysis

Geometry space

Parametric space

Ω̃(1)

Ω̃(2)

Γ̃ (1)c

Γ̃ (1)d

Γ̃ (2)n

Γ̃ (2)c

Γ (2)n

Γ (1)d Γ (2)c

Ω(2)Ω(1)

Γ (1)c

H(1) H(2)

Figure 4.1: Description of a shell with arbitrarily defined
boundary conditions denoted with the indices c,d, and n within

isogeometric B-Rep shell analysis

4.1 Geometrical description of shells

In the context of IBRA the midsurface of a KL shell structure Ω ⊂ R3 is
described resp. given by a NURBS-based B-Rep (CAD) model (see also
Section 2.2) and thus it is a composition of open and bounded setsΩ(a ) ⊂R3

Ω =
⋃

a

Ω(a ), (4.1)
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4.2 Weak form of equilibrium

with a ∈ N (see also Figure 4.1). Each subset Ω(a ) is represented by one
trimmed surface S (a )visible and its boundary Γ (a ) by ∂ S (a )visible. The correspond-
ing trimmed domains and trimming curves are denoted with Ω̃(a ) =D(a ) ⊂
H(a ) and Γ̃ (a ) = ∂ Ω̃(a ) in the parameter space, respectively (see also Sec-
tion 2.3). Figure 4.1 exemplarily shows a shell in geometry and parameter
space, with a decomposition of the boundaries Γ (a ) resp. Γ̃ (a ) into subsets:

Γ (a ) =

�

⋃

k

Γ (a ) k
d

�

∪

�

⋃

l

Γ (a ) l
n

�

∪

�

⋃

m

Γ (a ) m
c

�

,

Γ̃ (a ) =

�

⋃

k

Γ̃ (a ) k
d

�

∪

�

⋃

l

Γ̃ (a ) l
n

�

∪

�

⋃

m

Γ̃ (a ) m
c

�

,

(4.2)

where the following indices are used for expressing the different types of
boundary conditions:

– d for Dirichlet boundary conditions (e.g. displacement, rotation)

– n for Neumann boundary conditions (e.g. pressure load)

– c for coupling (internal) boundary conditions (preservation of conti-
nuities)

Mechanical boundary formulations like cables (see Philipp et al. [63]) or
beams (see Bauer et al. [5]) are not considered in the remainder of this
thesis. An example of an internal boundary is shown in Figure 4.1 where
the sets Ω(1) and Ω(2) share a common boundary Γc

Γc = Γ
(1)
c = Γ

(2)
c . (4.3)

4.2 Weak form of equilibrium

In contrast to classical FEA and IGA isogeometric B-Rep analysis (IBRA)
requires the consideration of virtual work contributions along domain
boundaries because a strong fulfillment of Dirichlet boundary conditions
on arbitrarily defined trimming curves is not possible (see also Section 3.3).
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4 Isogeometric B-Rep analysis

The weak form of the static equilibrium in Equation (3.3) for a geometrically
nonlinear KL shell including boundary terms is given by (see Basar et al.
[4], Eq. 8.3.141 – other notation is used)

δW =

∫

Ω

p δu dΩ−
∫

Ω

N δε+M δκ dΩ

+

∫

Γ

nΓδu+mT2
δωT2

dΓ .

(4.4)

The first two integrals are the same as they are already used in Equa-
tion (3.12). The third one represents the virtual work contribution on the
domain boundary with nΓ (traction force) and mT2

(moment around the
boundary tangent T2) being the stress resultants derived from the 1st Piola-
Kirchhoff (PK1) stress tensor using the local coordinate system as it is
defined in Equation (2.26). The term δωT2

expresses the virtual rotation
around the local base vector T2 on the boundary (see also Figure 4.5). The
rotationωT2

is given by

ωT2
= arcsin(ω ·T2), (4.5)

whereω is the rotation vector (see Basar et al. [4]) that is defined as

ω= T3×w, (4.6)

with w being the displacement of the tip of the local base vector t3 in the
current configuration, given by

w= t3−T3. (4.7)

Because the arcsin function is involved, the rotations at the shell bound-
aries are restricted to be less than Π

2 .

4.2.1 Equilibrium along internal boundaries

Considering common internal boundaries as exemplarily given in Equa-
tion (4.3) the equilibrium needs to be fulfilled also on those boundaries
and is given by

nΓ =n(1)Γ =−n(2)Γ (4.8)
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4.2 Weak form of equilibrium

for the traction forces and for the moments it is given by

mT2
=m (1)

T2
=±m (2)

T2
. (4.9)

Note that the traction forces n(α)Γ point in opposite directions and the sign
in Equation (4.9) depends on how the tangent vectors T2 of the involved
boundary curves are oriented with respect to each other. The negative sign
is used in the case that both tangent vectors T2 point in the same direction.

The virtual work along a common internal boundary can thus be computed
as follows

δW displacement
coupling =

∫

Γ (1)c

nΓ (δu(1)−δu(2)) dΓ (1)c , (4.10)

δW rotation
coupling =

∫

Γ (1)c

mT2
(δω(1)T2

±δω(2)T2
) dΓ (1)c , (4.11)

using the sign convention explained above. Applying a test function δu
which fulfills the required continuity conditions

– G 0 continuity for Equation (4.10)

– G 1 continuity for Equation (4.11)

The corresponding virtual work term for coupling geometrical continuity
along element edges vanishes. For isogeometric B-Rep analysis (IBRA) the
test function (NURBS-based B-Rep model) is not able to meet these re-
quirements thus the corresponding boundary terms need to be considered
for analysis.

As a remark, for RM shells within classical FEA the boundary terms can be
neglected because the test function fulfills the required G 0 continuity (see
also Section 3.4) by sharing all DOFs at common elements.

4.2.2 Equilibrium used for isogeometric B-Rep analysis

In the context of IBRA for KL shell problems the virtual work contributions
on the boundaries (see third integral in Equation (3.5) , Equation (4.10),
and Equation (4.11)) are collected within the expression δWB-Rep because
their geometrical description is provided by the entities of the boundary
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4 Isogeometric B-Rep analysis

representation (B-Rep) i.e. edges resp. trimming curves of the B-Rep model.
The equilibrium for IBRA can thus be written as

δW =δW ∗
int+δW ∗

ext+δWB-Rep = 0, (4.12)

with δW ∗ being virtual work expressions explicitly without boundary con-
tributions. Hence for solving Equation (4.12) the terms in Equation (3.9)
and Equation (3.10) known from classical FEA and IGA need to be enriched
by the components derived from the B-Rep contributions i.e. the entries
of the residual force vector and the stiffness matrix

Rr =−
∂W ∗

int

∂ ur
−
∂W ∗

ext

∂ ur
−
δWB-Rep

∂ ur
=R int

r +R ext
r +R B-Rep

r , (4.13)

Kr s =−
∂W ∗

int

∂ ur ∂ us
−
∂W ∗

ext

∂ ur ∂ us
−
∂WB-Rep

∂ ur ∂ us
= K int

r s +K ext
r s +K B-Rep

r s .

(4.14)

4.3 Definition of elements

In the context of IBRA the following two types of elements need to be
defined:

– isogeometric (trimmed) elements and

– isogeometric B-Rep elements or just B-Rep elements.

After the definition of these two element types the following sections ex-
plain corresponding element formulations which can be used for KL shell
problems.

4.3.1 Isogeometric (trimmed) elements

Within this thesis an isogeometric (trimmed) element is basically defined as
it is done in Section 3.5.3 just with the extension of considering the trimmed
domain D ⊂H of the trimmed NURBS surface (see also Section 2.2.3) with

D =
⋃

i

⋃

j

Di j and Di j ⊂Hi j . (4.15)
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(b) Index space

ξ1−3
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η5
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η7−9

Ω̃3,5

η4

(c) Parameter space with the basis functions of the
trimmed element

Figure 4.2: Example of an isogeometric trimmed element within
geometry, parameter, and index space
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4 Isogeometric B-Rep analysis

An isogeometric (trimmed) surface element Ωi j is thus described by a sub-
domain Ω̃i j which corresponds to the trimmed domain of the non-zero
knot span Hi j with

Ωi j = {Svisible(ξ,η) | (ξ,η) ∈ Ω̃i j }, where

Ω̃i j =Di j ⊂ [ξi ,ξi+1[×[η j ,η j+1[⊂H with and ξi 6= ξi+1 η j 6=η j+1.

(4.16)

Note that in contrast to isogeometric elements as defined in Section 3.5.3
the numerical integration of isogeometric trimmed elements can require the
usage of more than just one integration domain I (h )i j (see also Section 5.4.2)
such that

Hi j =
⋃

h

I (h )i j (4.17)

where the following holds

Di j =
⋃

h

D(h )i j with D(h )i j ⊂ I (h )i j (4.18)

An example of an isogeometric trimmed surface element within the geome-
try space is shown in Figure 4.2(a), whereas Figure 4.2(b) and Figure 4.2(c)
illustrate the corresponding element within the parameter resp. index
space. The indicators applied within the index space are used for catego-
rizing knot spans of the patch. Table 4.1 contains an overview of possible
indicators for such a categorization. The first three indicators describe
active elements which contribute to the virtual work expression in Equa-
tion (3.5) and the rest describes inactive elements. The fine distinction
within active resp. inactive elements allows for a more efficient numerical
integration resp. a better visualization of analysis results.

Geometrical description of isogeometric (trimmed) elements

In addition to a set of nodes and "shape functions" (compare Table 3.4)
isogeometric trimmed elements require a set of properly oriented (trimmed)
curve segments which lie inside the element and define the visible domain
of the element. The additional flag FaceNormal ∈ {TRUE, FALSE} indicates
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4.3 Definition of elements

Indicators Description

active

in completely inside trimmed domain with no boundary curve

it completely inside trimmed domain with boundary curves

t trimmed i.e. only partially contributing to trimmed domain

inactive

st trimmed knot span with negligible contribution to trimmed domain

ot outside with basis functions contributing to trimmed domain

out outside without any contribution to trimmed domain

z zero knot span

Table 4.1: Extension of the indicators in Table 3.5 for
distinguishing different types of knot spans

whether the orientation of the face, from which the element is derived, cor-
responds to the one of the element given by the surface normal (see base
vector A3 in Section 2.3.1) which at its turn depends on its parametrization.
Such flags are used in CAD systems for simplifying the usage of geome-
try models with equally oriented faces. Moreover, isogeometric trimmed
elements make use of the indicators (see Table 4.1) assigned to the cor-
responding knot span. Table 4.2 summarizes exemplarily the geometry
description of a trimmed NURBS-based surface element.

4.3.2 B-Rep elements

B-Rep elements are finite elements derived from B-Rep entities such as
vertices and edges. They can be used for imposing analysis properties. The
following list contains some examples of such properties

– Neumann boundary conditions (e.g. forces, moments)

– Dirichlet boundary conditions (e.g. displacements, rotations)

– Internal (coupling) boundary conditions (see also Section 4.2.1)

– Mechanically motivated entities (e.g. cables, beams)
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4 Isogeometric B-Rep analysis

B-Rep edge element defined by the
non-zero knot span [ξ̃h , ξ̃h+1[ of
the trimming curve C̃

Geometry space

Parameter space

C̃(ξ̃h ) C̃(ξ̃h+1)

S(ξ(ξ̃h ),η(ξ̃h ))

S(ξ(ξ̃h+1),η(ξ̃h+1))

overlapping B-Rep edge element

non-overlapping B-Rep edge
element

Figure 4.3: Examples of untrimmed B-Rep edge elements in
parameter and geometry space, with arbitrarily chosen

discretizations of the trimming curves. The figure shows an
example of an overlapping and a non-overlapping B-Rep edge

element, as well as the general definition of a B-Rep edge element.

64



4.3 Definition of elements
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(a) Non-overlapping B-Rep edge element Γi within geometry space. The B-Rep element is located
within the element Ω3,5

ξ1−3

ξ4

ξ5

ξ6

ξ7−9

η1−3

η5

η6

η7−9

η4

Basis functions of the B-Rep
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1
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Basis functions of nodes
{13−15, 19−21, 25−27} on Γ̃

(b) Parameter space with the basis functions of the B-Rep edge element

Figure 4.4: Example of a non-overlapping B-Rep edge element
within geometry, parameter, and index space.
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4 Isogeometric B-Rep analysis

Element (i , j ) Description

id=2345 id of the element

p=2 polynomial degree in ξ-direction

q=2 polynomial degree in η-direction

U=[ξi−p ,ξi+p+1] knot vector Ξ

V=[η j−q ,η j+q+1] knot vector H

NodeIDs=[54,56,...,78,89] list of element node ids

FaceNormal=true flag used for face orientation

Indicator=t indicator from Table 4.1

Curve segments id [ξ̃start,ξ̃end] curve id and active range

23 [0,0.3]

...

Table 4.2: Example of an isogeometric trimmed element and its
geometry discretization

The basis functions of NURBS-based B-Rep elements adapt the properties
of their underlying functional basis (see also Section 2.2.1) like

– partition of unity, i.e.
∑n

i=1 Ni ,p (ξ) = 1.

– non-negativity, i.e. Ni ,p (ξ)¾ 0.

– linear independence, i.e.
∑n

i=1αi Ni ,p (ξ) = 0 ⇔ αi = 0, i = 1, 2, ..., n

because they are defined on subsets of the functional parameter domain.

4.3.3 B-Rep edge elements

A B-Rep edge element Γi is a one-dimensional B-Rep element embedded
into a surface description. It is defined by the parameter subdomain Γ̃i

which corresponds to the non-zero knot span Hi of the trimming curve C̃
(see also Section 2.2.3)

Γi = {∂ Svisible(ξ,η) | (ξ,η) ∈ Γ̃i }, where

Γ̃i = {C̃(ξ̃)|ξ̃ ∈Hi = [ξ̃i , ξ̃i+1[⊂Ξwith ξ̃i 6= ξ̃i+1}.
(4.19)
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4.3 Definition of elements

In this thesis, B-Rep edge elements are embedded into NURBS surfaces
and make use of the basis functions from these surfaces. Figure 4.3 shows
examples of such elements. For B-Rep elements one distinguishes between
non-overlapping and overlapping elements. Non-overlapping elements
extract the non-zero basis functions from only one underlying isogeo-
metric element but overlapping elements extract them from more than
one underlying elements. Figure 4.4(b) exemplarily illustrates the basis
functions of a non-overlapping B-Rep edge element. Usually, no explicit
description of these basis functions is available, but this is not required for
IBRA because only the evaluation at quadrature points is necessary.

B-Rep edge element Description

id=234 id of the B-Rep element

CurveID=44 id of trimming curve

Range=[0, 0.5] active range where the B-Rep element is defined

ElementID=23 id of the underlying surface element

Table 4.3: Example of a trimmed non-overlapping B-Rep edge
element description which can be used for free edges i.e. no

coupling

B-Rep edge element Description

id=433 id of the B-Rep element

master

CurveID=165 id of the trimming curve (master)

Range=[0, 0.1] active range of master curve where the element is defined

ElementID=11 id of the underlying surface element (master)

slave

CurveID=44 id of the trimming curve (slave)

Range=[0.4, 0.3] active range of slave curve where the element is defined

ElementID=12 id of the underlying surface element (slave)

Table 4.4: Example of the description of a trimmed
non-overlapping B-Rep edge coupling element
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4 Isogeometric B-Rep analysis

Description of trimmed B-Rep edge elements

In analogy to trimmed curves (see Section 2.2.3) B-Rep elements can also
be trimmed. The variable Range in Table 4.3 extends B-Rep edge elements
by the trimming concept. Trimmed B-Rep edge elements are more flexible
w.r.t. the definition of non-overlapping B-Rep edge elements and make a
refinement of trimming curves unnecessary.

Description of trimmed B-Rep edge coupling elements

B-Rep edge coupling elements establish a connection between isogeometric
(trimmed) elements of different patches. Table 4.3 describes exemplarily a
trimmed B-Rep edge element. A description of a trimmed coupling B-Rep
edge element is given in Table 4.4.

B-Rep vertex element Description

id=24 id of the B-Rep element

u=0.86 ξ parameter which describes the position of the element

v=0.67 η parameter which describes the position of the element

ElementID=3 surface element id

Table 4.5: Example of a B-Rep vertex element description

4.3.4 B-Rep vertex elements

A B-Rep vertex element is defined by the surface parameters which describe
the geometrical position of the vertex element. Table 4.5 contains the
exemplarily description of such an element. A vertex element can also be
extended for a pointwise coupling of patches analog to the edge coupling
elements (see Section 4.3.3).

4.4 NURBS-based Kirchhoff-Love shell formulation

The element formulation for geometrically nonlinear KL problems can be
derived from the internal virtual work (see also Equation (3.5)) given by

δWint =

∫

Ω

N δε+M δκ dΩ. (4.20)
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4.5 B-Rep edge element formulations

For a detailed description of such a shell element formulation, using a
NURBS discretization, the reader is referred to Kiendl [46].

4.4.1 Alternative shell formulations

Besides the NURBS-based KL shell formulation of Kiendl et al. [44] there
are also other NURBS-based shell formulations available like the RM shell
formulations of Benson et al. [12] and Dornisch et al. [30, 31], the hierar-
chical shell formulation of Echter et al. [33] or the blended shell of Benson
et al. [11]which can also be used for IBRA.

4.5 B-Rep edge element formulations

This section explains a B-Rep edge element formulation which can be
used for coupling parameteric domains (see also Equation (4.10) and Equa-
tion (4.11)). It is based on a penalty approach and can be used for geometri-
cally nonlinear KL shell problems (see Breitenberger et al. [17]). Alternative
formulations are possible of course.

4.5.1 Internal boundary conditions – penalty approach

The virtual work contribution for the proposed element formulation can
be written as follows:

δW coupling
B-Rep =δW disp

B-Rep+δW rot
B-Rep, (4.21)

where δW disp
B-Rep and δW rot

B-Rep represent the terms in Equation (4.10) and
Equation (4.11).

Applying a penalty approach, the traction force nΓ in the boundary is
assumed to be

nΓ =−αdisp(u
(1)
B-Rep−u(2)B-Rep), (4.22)

where αdisp is the penalty factor which can be seen as spring stiffness and
is selected manually. Guidelines for selecting an appropriate penalty factor
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4 Isogeometric B-Rep analysis
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Figure 4.5: Internal boundary: for coupling two parametric

domains two local Cartesian coordinate systems T (α)i are used
which are alinged on the boundary curve.

are given at the end of this section. The virtual work term for the force
equilibrium within an internal boundary can then be expressed as

δW disp
B-Rep =−αdisp

∫

Γ (1)c

�

u(1)B-Rep−u(2)B-Rep

��

δu(1)B-Rep−δu(2)B-Rep

�

dΓ (1)c . (4.23)

Thus, the components of the residual force vector and the tangential stiff-
ness matrix are given by

R B-Rep disp
r =αdisp

∫

Γ (1)c

�

u(1)−u(2)
��

u(1),r −u(2),r

�

dΓ (1)c , (4.24)
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4.5 B-Rep edge element formulations

K B-Rep disp
r s =αdisp

∫

Γ (1)c

�

u(1),s −u(2),s

�

·
�

u(1),r −u(2),r

�

dΓ (1)c . (4.25)

Applying a penalty approach, the moment along the boundary mT2
is as-

sumed to be

mT2
=−αrot(ω

(1)
T2
−ω(2)T2

), (4.26)

where αrot is the penalty factor which can be seen as a rotational spring
stiffness and is selected manually as well (see also end of this section).

The virtual work term for the moment equilibrium within an internal
boundary (see also Section 2.3.2) can be expressed as

δW rot
B-Rep =−αrot

∫

Γ (1)c

�

ω(1)T2
±ω(2)T2

��

δω(1)T2
±δω(2)T2

�

dΓ (1)c (4.27)

and its residual force vector and the tangential stiffness matrix components
are

R B-Rep rot
r =αrot

∫

Γ (1)c

�

ω(1)T2
±ω(2)T2

��

ω(1)T2,r ±ω
(2)
T2,r

�

dΓ (1)c , (4.28)

K B-Rep rot
r s =αrot

∫

Γ (1)c

h
�

ω(1)T2,s ±ω
(2)
T2,s

��

ω(1)T2,r ±ω
(2)
T2,r

�

+

�

ω(1)T2
±ω(2)T2

��

ω(1)T2,r s ±ω
(2)
T2,r s

�
i

dΓ (1)c .

(4.29)

The first and second variations of the rotation ωT2
(Equation (4.5)) are

given by

ωT2,r =
ω,r ·T2

p

1− (ω ·T2)2
, (4.30)
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4 Isogeometric B-Rep analysis

ωT2,r s =
ω,r s ·T2

p

1− (ω ·T2)2
+
(ω,r ·T2)(ω ·T2)(ω,s ·T2)

�

1− (ω ·T2)2
�

3
2

, (4.31)

where the variations of the rotation vectorω (Equation (4.6)) and the dis-
placement w (Equation (4.7)) are given by

ω,r = T3×w,r , ω,r s = T3×w,r s , (4.32)

w,r = t3,r , w,r s = t3,r s . (4.33)

The variations of t3 correspond to those of a3 and can be found in Kiendl
[46].

Penalty factors

Since the penalty factor should be in the range of the usual stiffness char-
acterized by the Young’s modulus E , a relative penalty factor is used, which
is defined as follows:

αrel =
α

E
(4.34)

A relative penalty factor in the range of 102−105 usually gives good results
(see also Section 7.5 and Breitenberger et al. [17]).

For patches with C 0 continuity inside the parametric domain, this B-Rep
element formulation can also be used for preserving the relative angle
within the domain as well. One simply needs to add parameter curves
along the knots with C 0 continuities.

4.5.2 Dirichlet boundary conditions – penalty approach

The B-Rep element formulation for Dirichlet boundary conditions can be
formally written in the same way, as the coupling from the previous section,
with the exception that the displacements resp. rotations for reference
boundary are set to zero. The virtual work contribution for an edge Γd can
thus be written as follows:

δW Dirichlet
B-Rep =δW disp

B-Rep+δW rot
B-Rep, (4.35)
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4.5 B-Rep edge element formulations

p

Γn

Figure 4.6: Example of a B-Rep edge load

where the virtual work term for constraining the displacements is given by

δW disp
B-Rep =−αdisp

∫

Γd

�

u(1)B-Rep

�

·
�

δu(1)B-Rep

�

dΓd, (4.36)

and the term for constraining the rotations is given by

δW rot
B-Rep =−αrot

∫

Γd

�

ω(1)T2

��

δω(1)T2

�

dΓd. (4.37)

The corresponding variations can be computed in a straight forward man-
ner, as shown in Section 4.5.1.

4.5.3 Neumann boundary conditions

A B-Rep edge element as an integration domain can also be used for Neu-
mann boundary conditions. The virtual work contribution of a load p on
an edge Γn can be computed as follows:

δW Edge load
B-Rep =

∫

Γn

p dΓn. (4.38)

The corresponding residual force vector and possibly stiffness matrix (see
also Section 4.2) in the case of deformation dependent loads can be derived
straight forward. The numerical integration is explained in Section 5.4.1.
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4 Isogeometric B-Rep analysis

4.6 B-Rep vertex element formulations

Element formulations for vertex elements can be adapted from B-Rep edge
elements like e.g. Section 4.5.1 by using a Dirac function within the integral
resp. by just evaluating the basis functions of the surface at the vertex
location.
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4.6 B-Rep vertex element formulations

Summary and conclusion of Chapter 4

This chapter explains the isogeometric B-Rep analysis (IBRA) which allows
the usage of NURBS-based B-Rep (CAD) models for structural shell analysis.
The newly developed B-Rep elements can be used to couple discontinuous
and trimmed geometries with gaps and overlaps (see also Section 7.5).
A corresponding element formulation based on a penalty approach is
explained as well. Moreover a data structure for isogeometric (trimmed)
elements and B-Rep elements is proposed.

With IBRA a new method has been developed which provides the frame-
work for analyzing CAD models without any modifications considering all
the aspects mentioned in Chapter 2. The implementation of IBRA and its
integration into a CAD system is explained in the following chapters.
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I have not failed. I’ve just
found 10,000 ways that won’t
work.

Thomas A. Edison
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5
IMPLEMENTATION OF THE

ISOGEOMETRIC B-REP ANALYSIS

This chapter explains the systematic disassembly of NURBS-based B-Rep
models (see Section 2.2) into finite elements resp. integration domains and
defines clear data interfaces for an implementation of the isogeometric
B-Rep shell analysis into existing FE-solvers. In addition, a new adaptive
quadrature scheme for the numerical integration of trimmed domains is
introduced. The new procedure is named adaptive Gaussian integration
procedure and is abbreviated with AGIP. Moreover special aspects of IBRA
like local refinement, flying nodes, and clipping are discussed.

5.1 Overview

Figure 5.1 gives an overview of the required steps for analyzing CAD models
directly with the isogeometric B-Rep analysis and using an existing FE solver.
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5 Implementation of the isogeometric B-Rep analysis

CAD model

described by

List of nodes (see Table 3.3)

List of patches (see Table 5.1)

List of trimming curves (see Table 5.2)

List of edges (see Table 5.3)

Create trimmed elements (see Section 5.3.1)

Create B-Rep elements (see Section 5.3.2)

Generation of elements

List of nodes (see Section 5.3.1)

List of elements (see Table 5.4 and Table 5.5)

FE solver

Finite element program

CAD based
geometry description

FE based
geometry discretization

B-Rep element formulations

Lists of nodal values

Postprocessing

isogeometric element formulations

Edge element formulations (see Section 4.5)

Vertex element formulations (see Section 4.6)

affected by
refinement

(+) to get deformed
geometry

IBRA model

IBRA elements

Lists of quadrature point evaluations

IBRA solution

analysis related data
like material properties
are assigned to elements

Figure 5.1: Overview of the components which are involved for
analyzing CAD models directly and using an existing FE solver.
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5.2 Data structure of IBRA model

Patches (B-Rep faces) Description

NurbsID=1561 id of NURBS surface

p=2 polynomial degree in ξ-direction

q=2 polynomial degree in η-direction

U=[0,0,0, ... 1,1,1] knot vector Ξ

V=[-1,-1,-1, ... 5,5,5] knot vector H

NodeIDs=[101,87,12-16,...,12] list of node ids

FaceNormal=true flag used for face orientation

CurveIDs=[23,54,23,...,13] list of trimming curve ids

NurbsID=243 id of NURBS surface

... ...

Table 5.1: Exemplary list of B-Rep faces resp. patches with their
description of NURBS (see also Table 3.4) and their visible
domains defined by trimming curves. The flag FaceNormal

indicates whether the face has the same orientation as the surface
normal.

5.2 Data structure of IBRA model

For describing a NURBS-based B-Rep surface model within IBRA (see also
Section 2.2) the following data are required:

– a list of nodes (e.g.Table 3.3)

– a list of B-Rep faces resp. patches (e.g. Table 5.1),

– a list of trimming curves (e.g. Table 5.2), and

– a list of B-Rep edges (e.g. Table 5.3).

List of B-Rep faces

Table 5.1 shows exemplarily a list of B-Rep faces resp. patches which can
be used for IBRA. The table extends the content of a patch in Table 3.4 by
a list of trimming curve ids (see CurveIDs) and a flag (see FaceNormal).
The trimming curves define the visible domain (see also Section 2.2.3 and
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5 Implementation of the isogeometric B-Rep analysis

Trimming curves Description

NurbsID=23 id of NURBS trimming curve

p=2 polynomial degree

U=[0,0,0, ... 1,1,1] knot vector Ξ

Range=[0, 1] defines active range of knot vector

Ctrlpts (ξ,η,w ) list of control points

3.445 2.234 1.00

3.179 1.954 1.00

... ... ...

NurbsID=24 id of NURBS trimming curve

... ...

Table 5.2: Exemplary list of trimming curves with their
description of NURBS (see also Section 2.2.3). Note that these

curves lay within the parameter spaces of surfaces. A control point,
therefore, requires just two coordinates (ξ and η) and its weight w .

Figure 2.16) of the patch (see also Section 2.2.3 and Figure 2.16). The addi-
tional flag FaceNormal ∈ {TRUE, FALSE} indicates whether the orientation
of the B-Rep face corresponds to the one of the surface normal (see also
Section 4.3.1).

List of trimming curves

Table 5.2 contains a list of all trimming curves which are used to describe
the trimmed domains of the patches in Table 5.1. Note that IBRA requires
only the trimming curves within the parameter space. For an efficient
implementation it might be useful to assign the geometrical description
of trimming curves directly to the NURBS surfaces.

List of B-Rep edges

Last but not least the topology of patches needs to be described by the edges.
Table 5.3 shows exemplarily a description of a free and an internal edge
which connects two adjacent faces resp. patches (see NurbsIDs). Within
IBRA thus an edge is described by one or a pair of trimming curve seg-
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5.3 Generation of elements

ments (see CurveIDs) bounded by curve parameters (see Range). Since two
curve segments belonging to the same edge are just approximated, gaps
between the curves can occur (see Section 2.2.3). The tolerance describes
the maximal distance (see Tol) between two space curve segments and can
be used to check the desired quality of the model. Usually, this tolerance is
provided by the CAD model resp. system.

Patches Description

EdgeID=23 id of the edge

NurbsID=165 id of the patch

CurveID=11 id of the trimming curve (master)

Range=[0, 0.5] active range of master curve which defines the edge

EdgeID=24 id of the edge

master

NurbsID=165 id of the patch (master)

CurveID=11 id of the trimming curve (master)

Range=[0, 0.5] active range of master curve which defines the edge

slave

NurbsID=32 id of the patch (slave)

CurveID=12 id of the trimming curve (slave)

Range=[0, 0.9] active range of slave curve which defines the edge

Tol=0.001 absolute coupling tolerance

Table 5.3: Exemplary list of B-Rep edges which define the overall
topology of the geometry model composed of the patches in

Table 5.1

5.3 Generation of elements

This section describes how one can straight forward derive a set of finite
elements from the data structure described in Section 5.2. These elements
can then be used to solve Equation (4.4) for NURBS-based B-Rep models
in a finite-element-like manner.
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5 Implementation of the isogeometric B-Rep analysis

Trimmed domainD

Di j

Figure 5.2: The intersection points of trimming curves and
(refined) knot lines are determined as curve parameters for each

curve.

5.3.1 Isogeometric (trimmed) elements

For creating isogeometric (trimmed) elements (see Section 4.3.1), all in-
tersections between each trimming curve and the knot lines of the cor-
responding refined patch, need to be determined (see also Figure 5.2)
as parameters of the trimming curve. For sake of simplicity the remain-
der of this thesis terms such curve parameters as intersection parameters.
The latter can then be used to define (trimmed) curve segments (see also
Section 2.2.3) lying within one knot span Hi j (see also Equation (3.18)).
Following a systematic disassembling procedure these curve segments are
assigned to the corresponding knot span.

After the identification of all trimmed knot spans and considering the curve
directions (see also Figure 2.16) one can assign to each knot span Hi j one
of the indicators given in Table 4.1. The assigned indicators allow to create
a list of active elements (see also Section 4.3.1) considering the trimming
curve segments for trimmed elements.

Optimized element description

Isogeometric elements as parameter subdomains are not well suited for visu-
alizing IBRA results e.g. deformed geometry because within CAD systems
NURBS are handled patch-wise. Thus isogeometric (trimmed) elements are
purely used for numerical integration. This means that one can replace the
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Element (i , j ) Description

id=2345 id of the element

p=2 polynomial degree in ξ-direction

q=2 polynomial degree in η-direction

U=[ξi−p ,ξi+p+1] knot vector Ξ

V=[η j−q ,η j+q+1] knot vector H

NodeIDs=[54,56,...,78,89] list of element node ids

FaceNormal=true flag used for face orientation

Quadrature points id (ξk ,ηk ) w̃ list of quadrature points with weighting factors

12 (0.342, 0.433) 0.324

13 (0.434, 0.656) 0.333

... ...

Table 5.4: Example of an isogeometric element description
which is optimized for numerical integration. This description can

be used for untrimmed and trimmed elements.

trimming curves by a set of quadrature points which consider the trimmed
domain Di j of the element Ωi j .

Therefore the element description in Table 4.2 is replaced by the one in
Table 5.4. Having just a list of quadrature points with

– global ids (used for postprocessing e.g. stress evaluations),

– coordinates of the quadrature points expressed as surface parame-
ters ξ and η, and

– quadrature weighting factors w̃ (used for numerical integration)

allows to treat trimmed and untrimmed elements in exactly the same way.
Section 5.4 explains the determination of the locations and weighting
factors of the quadrature points.

5.3.2 B-Rep elements

Having all intersection parameters, the B-Rep edge elements can be derived
straight forward from the active range of the trimming curve belonging to
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master curve

master patch

slave patch

(a) Closest point projection of slave curve pa-
rameters to the master curve space.

clipped master curve

master patch

slave patch

mapped intersection parameters

(b) Clipped master curve of the edge. All inter-
sections are given as parameters of the master
curve.

Figure 5.3: Clipping operation using a closest point projection

an isogeometric trimmed element. Note, that the creation of B-Rep cou-
pling elements from Table 5.3 requires an additional step, called clipping.

Clipping

Clipping is required for an accurate integration along an edge between
two non-conforming patches. It describes the step of mapping intersection
parameters from the slave curve to the parameter space of the master curve
using a closest point projection (Newton-Raphson scheme is used within
this thesis) within the geometry space. These mapped parameters are
named mapped intersection parameters. Figure 5.3 illustrates clipping for
a simple example. Having also the mapped intersection parameters for the
master curve one can straight forward derive trimmed non-overlapping
B-Rep edge coupling elements. Table 4.4 contains the description of such
elements not yet optimized for numerical integration.

Optimized element description

An exemplary element description of a B-Rep coupling element optimized
for numerical integration is given in Table 5.5. It requires just the coor-
dinates of the evaluation points on the master and slave patch and the
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5.4 Numerical integration of elements

corresponding tangent vectors T̃ of the trimming curves (see also Equa-
tion (2.32)). A pair of evaluation points is computed by using a closest point
projection (Newton-Raphson scheme is used within this thesis). The basis
functions used by the evaluation points are provided by the isogeometric
elements where the evaluations points are located in (see ElementIDs).
Moreover, a global id and a weighting factor is assigned to the evaluation
points on the master side for a later stress evaluation and for numerical
integration along the B-Rep edge (see Section 5.4.1).

B-Rep edge element Description

id=433 id of the B-Rep element

master

ElementID=11 id of patch (master)

Quadrature points id (ξk ,ηk ) T̃ w̃ list of quadrature points

34 (0.32, 0.43) [0.0, 0.1] 0.32

35 (0.32, 0.45) [0.0, 0.1] 0.33

... ...

slave

ElementID=12 id of patch (slave)

Slave points (ξk ,ηk ) T̃ list of evaluation points

(0.32, 0.55) [0.1, 0.0]

(0.33, 0.55) [0.1, 0.0]

... ...

Table 5.5: Example of the description of a trimmed
non-overlapping B-Rep edge coupling element optimized for

numerical integration.

5.4 Numerical integration of elements

This section deals with numerical integration of B-Rep edge and isogeo-
metric (trimmed) surface elements.
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5.4.1 B-Rep edge elements

For the numerical integration of B-Rep edge elements given in Table 4.3 and
Table 4.4 a Gaussian quadrature scheme is applied with ng =max{p , q }+
1 quadrature points where p and q are the highest polynomial degrees
occurring within the master and slave patches, respectively. The length |Γe|
of a B-Rep edge element can be computed as

|Γe|=
∫

Γe

dΓe =

∫

θ̃ 1

J̃1 dθ̃ 1 =

∫

G
J̃1 J̃2 dG, (5.1)

whereΓe is the boundary segment of the B-Rep element and J̃1 the mapping
from the geometry space to the parameter space

J̃1 =









d Xsurf

d θ̃ 1









2

=


T̆2





2
=









A1
∂ θ 1

∂ θ̃ 1
+A2

∂ θ 2

∂ θ̃ 1









2

. (5.2)

J̃2 is given as the mapping from the parameter space of the trimming curve
to the Gaussian domain G = [−1, 1]

J̃2 =
∂ ξ̃

∂ ξG
, (5.3)

withξG being the parameter of the Gaussian space. Introducing the weight-
ing factor w̃l

w̃l = J̃2(ξ̃l )wl , (5.4)

with wl being the Gaussian quadrature weights, the numerical integration
of a B-Rep edge element can be computed as

|Γe| ≈
ng
∑

l=1

J̃1(ξ̃l ) w̃l . (5.5)

5.4.2 Isogeometric (trimmed) elements

Since a trimmed domainDi j of an element (see also Section 5.3.1) is decou-
pled from the underlying surface parametrization a Gaussian quadrature
scheme can not directly be used as it is the case for untrimmed surfaces
(see also Hughes et al. [40]).
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5.4 Numerical integration of elements

Existing integration approaches

For the numerical integration of trimmed domains in the context of struc-
tural analysis, several techniques have been proposed. Kim et al. [47] use
NURBS-enhanced triangles, Breitenberger et al. [17] use NURBS surfaces,
while Wang et al. [92] use a cell based approach for parametrizing the
trimmed domain of a trimmed element within the parameter space. Other
approaches are the quad- resp. octree techniques or the smart octree ap-
proach developed by Kudela et al. [51, 52]. The latter mentioned techniques
are mainly used for the finite cell method (FCM)(see Parvizian et al. [61]).
Moreover, Nagy et al. [58] introduced an integration technique for deter-
mining a set of quadrature points and their weights satisfy the moment
fitting equations up to a predefined tolerance. However it requires a non-
trivial optimization process for determining the number and locations
of the quadrature points as well as their weights for trimmed domains
approximated by polygons.

An alternative approach to the integration within parameter space is pre-
sented in Schmidt [78], which makes use of the space curves of the trimmed
domain.

A general answer to the question of the most robust and efficient integra-
tion scheme is very difficult because it strongly depends on the shape of
the trimmed domain resp. surface and the required accuracy.

New integration approach

Within this thesis an adaptive quadrature scheme termed adaptive Gaus-
sian integration procedure (AGIP) (see Section 5.5) is used. The applica-
tion of AGIP allows to unify the numerical integration of trimmed and
untrimmed elements and is very accurate (see also Section 7.2). AGIP only
requires the fulfillment of two conditions for each integration domain (see
next paragraph) and allows for a straight forward determination of the
quadrature points (locations and weights). In case the required conditions
for AGIP are violated the integration domain is subdivided until each inte-
gration domain is AGIP conform. AGIP allows the usage of the optimized
element description given in Table 5.4. The computation of stiffness matrix
and residual force vector of all elements can thus be treated in exactly the
same way.
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I (h )i j

D(h )i j

IW

IH

ξ

η

ηs

ηe

ξs ξe

Figure 5.4: Example of an AGIP conform integration domain
described by its bounding box (ξs,ξe,ηs, and ηe) within the

parameter space of a surface.

Definition of AGIP conform integration domains

Within this thesis an integration domain I (h )i j as it is used in Equation (4.17)
can be described by a bounding box which at its turn is described by four
surface parameters (see ξs,ξe,ηs, and ηe). An example of an integration
domain is illustrated in Figure 5.4. The bounding box defines the size
and position of the integration domain within the parameter space of the
surface. For applying AGIP (see Section 5.5) the following two conditions
must be fulfilled for the integration domain:

– the integration domain must not have more than one assigned de-
coupled and not closed trimming curve segment C̃(ξ̃) defined by

ξ̃ ∈ [ξ̃s, ξ̃e] (see also Section 5.3.1),

– the curve segment must not have undercuts at least for one of the
two directions ξ and η.

The latter mentioned condition can mathematically be expressed by ful-
filling at least one of the following conditions

sign (ẽ1(ξ̃) ·e1) = sign (ẽ1(ξ̃s) ·e1) ∀ξ̃ ∈ [ξ̃s, ξ̃e] (1) and/or

sign (ẽ1(ξ̃) ·e2) = sign (ẽ1(ξ̃s) ·e2) ∀ξ̃ ∈ [ξ̃s, ξ̃e] (2),
(5.6)

where eα are the unit base vectors aligned to the parameterization of the
surface and ẽα are the unit base vectors aligned to the trimming curve (see
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C̃

e1

e2

C̃ (ξ̃s)

C̃ (ξ̃e)
ξ̃

ẽ1

ẽ1

(a) AGIP conform: No undercuts in
the direction of e1 and thus condition
(1) in Equation (5.6) is fulfilled whereas
condition (2) is violated.

C̃

e1

e2

C̃ (ξ̃s)

ξ̃

ẽ1
ẽ1C̃ (ξ̃e)

ẽ1

(b) Non AGIP conform: Undercuts in
both directions and thus both, condi-
tions (1) and (2) in Equation (5.6) are
violated.

Figure 5.5: Comparison of two different integration domains
with one curve segment.

Section 2.3.3). Figure 5.5 shows exemplarily a comparison of an invalid
(not AGIP conform) and valid (AGIP conform) integration domain.

In case an integration domain contains more than one disconnected curve
segment and/or both conditions in Equation (5.6) are violated the integra-
tion domain is bisected.

Bisecting integration domains

In case an integration domain is not AGIP conform it requires a decom-
position. There are many ways of decomposing such domains. One can
for example halve each subdomain until all subdomains fulfill the require-
ments or using the bounding boxes of each curve segment as basis for bi-
sectioning or a combination of it. To keep the development simple within
this thesis a halving strategy is used.

Description of integration domains

For the sake of implementation it is advantageous to save the integration
domains within a binary tree data structure. Table 5.6 describes exemplarily
the data structure of an integration domain which is used within this thesis.
Each integration domain consists of a bounding box (RangeU and RangeV )
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which indicates the size and position of the integration domain within the
parameter space of the surface, a list of curve segments, an indicator from
Table 5.6, and two links to possible child domains.

Integration domain Description

RangeU=[0.1, 0.2] surface parameters ξs and ξe

RangeV=[-0.05, 0.1] surface parameters ηs and ηe

Indicator=bs indicators from Table 5.7

List of curve segments

Curve 1

CurveID=11 id of trimming curve

Range=[0, 0.5] active range of curve segment (interaction parameters)

Curve 2

CurveID=13 id of trimming curve

Range=[0, 0.4] active range of curve segment (interaction parameters)

... ...

ChildDomain1=2 id of first child domain

ChildDomain2=3 id of second child domain

Table 5.6: Example of a description of an integration domain

The indicator bs is used to describe non AGIP conform domains which
require a bisectioning. The indicator in and out label domains which are
completely inside resp. outside the trimmed domain. The indicators st
is used for domains with a negligible visible part and trim is used for all
trimmed integration domains which are AGIP conform. Note that bisec-
tioning of integration domains is rarely required for appropriate refined
surfaces for analysis purposes.

5.5 Adaptive Gaussian integration procedure (AGIP)

The adaptive Gaussian integration procedure (AGIP) can be used for inte-
grating the trimmed domain within an AGIP conform integration domain
(see Section 5.4.2) and thus it can also be used for computing stiffness
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Indicators Description

mother indicator

bs domain is split into two domains

child indicators

in completely inside the trimmed domain

trim AGIP conform domain

st domain with negligible contribution to trimmed domain

out completely outside the trimmed domain

Table 5.7: Indicators used for integration domains

matrices and residual force vectors for isogeometric (trimmed) elements
(see Section 4.3.1 and Section 3.5.3).

The idea of AGIP is to handle the trimming of integration domains within
the Gaussian space. Thus the curve segment of a trimmed integration
domain is mapped (shifting, scaling, and rotating) into the Gaussian space
such that only the height GH of the adaptive Gaussian domain GA varies
w.r.t. ξG (see Figure 5.6). For an AGIP conform integration domain and
allowing a rotation mapping (0◦, 90◦, 180◦, or 270◦) this can always be done.

As an example the area |Ω(h )i j | of an isogeometric (trimmed) element seg-

ment Ω(h )i j ⊂Ωi j defined by the trimmed domain D(h )i j ⊂ I (h )i j (see also Equa-
tion (4.18)) can be computed as

|Ω(h )i j |=
∫

Ω(h )i j

dΩ(h )i j =

∫

GA

J1 J2 dGA, (5.7)

where GA is the adaptive Gaussian domain (see Figure 5.6). The Jacobian
J1 indicates the mapping from the geometry to the parameter space and is
expressed as

J1 =


A 1×A 2





2
. (5.8)
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Figure 5.6: Overview of the different spaces relevant for AGIP
integration for trimmed surfaces

Here Aα are the base vectors as defined in Section 2.3.1. The Jacobian J2

indicates the linear mapping (scaling and rotating) from the parameter
space to the Gaussian space G = [−1, 1]× [−1, 1] and is given by

J2 =

�

�

�

�

∂ ξ

∂ ξG

∂ η

∂ ηG

�

�

�

�

, (5.9)

for a rotation of 0◦ and 180◦ or

J2 =

�

�

�

�

∂ ξ

∂ ηG

∂ η

∂ ξG

�

�

�

�

, (5.10)
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for a rotation of 90◦ and 270◦ with ξG and ηG being the parameters of the
Gaussian space. Using ng quadrature points, the area of an isogeometric

(trimmed) element segment Ω(h )i j ⊂Ωi j can be computed as

|Ω(h )i j | ≈
ng
∑

l=1

J1(ξ̂
A
l , η̂A

l ) J2(ξ̂
A
l , η̂A

l )w
A
l , (5.11)

where (ξ̂A
l , η̂A

l ) are the coordinates obtained by an appropriate rotation
(0◦, 90◦, 180◦, or 270◦) of the coordinates (ξA

l ,ηA
l ) of the adaptive Gaussian

quadrature points determined within the Gaussian space. w A
l are the corre-

sponding adaptive quadrature weights. The determination of the adaptive
Gaussian quadrature points is explained in the following two sections.

For sake of implementation and simplicity Equation (5.11) is rewritten as

|Ω(h )i j | ≈
ng
∑

l=1

J1 w̃l , (5.12)

where the newly introduced weighting factor w̃l is given by

w̃l = J2 w A
l . (5.13)

The weighting factor w̃l remains constant during analysis and thus it must
be computed just once. The adaptive Gaussian quadrature points are
mapped (rotating, scaling, and shifting) to the parameter space of the
surface and can then be used for the element description in Table 5.4.

5.5.1 Full Gaussian domain

In the special case GH is constant and equal to 2, i.e. the area of GA = 4
and no rotation is performed, a full integration of the Gaussian domain
G = [−1,1]× [−1,1] is performed (classical Gaussian integration). This is
the case for isogeometric untrimmed elements (see Section 3.5.3). For a
more efficient numerical integration a reduced integration scheme analog
to the one presented in Dornisch et al. [31] can be used for full elements
lying completely inside the trimmed domain (indicator in in Table 4.1).
Within this thesis only the integration scheme proposed in Hughes et al.
[40] (p +1 integration points per direction) is used.
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(a) Example of an AGIP conform integration do-
main described by its bounding box (ξs,ξe,ηs,
and ηe) within the parameter space of a surface.
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(b) Trimming curve segment which is mapped
(shifting, scaling, rotating) into the Gaussian space.
The dashed lines show the control point polygon of
the trimming curve.
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(c) The trimming curve is used for creating a sur-
face Ŝ which parametrizes the adaptive Gaussian
domain GA. The dashed lines show the control
point net of the surface.
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(d) The locations (ξA
l ,ηA

l ) and weights (w A
l ) of

the adaptive quadrature points can be determined
by applying the integration scheme proposed in
Hughes et al. [40] to the untrimmed surface Ŝ . The
highest occurring polynomial degree (here p = 3
for the trimming curve and p = q = 3 for the sur-
face to be integrated with AGIP) is used as reference
for the integration scheme. Thus here 4x4 quadra-
ture points are used as integration scheme for the
non-zero knot span of the untrimmed surface Ŝ .

Figure 5.7: Procedure for determining the locations and weights
for the adaptive quadrature points.
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5.5.2 Trimmed Gaussian domain

In the case of trimmed Gaussian domains, i.e. the area |GA|< 4, the adaptive
Gaussian quadrature points (ξA

l ,ηA
l ) and the corresponding quadrature

weights wl need to be determined such that

– all quadrature points lie within the adaptive Gaussian domain

– the moment fitting equations are fulfilled

– the sum of all adaptive Gaussian quadrature weights w A
l corresponds

to the area of GA i.e.
∑ng

l=1 w A
l = |G

A|

An efficient way to obtain an appropriate set of such quadrature points is to
parametrize GA with an untrimmed NURBS surface Ŝ using the trimming
curve segment which is mapped for each trimmed integration domain
into the Gaussian space (see also Figure 5.7). Note that C 0 continuities
needs to be generated at the boundaries of the trimming curve segment
(see also Figure 2.5) if not already given. The surface Ŝ can then be used to
determine the adaptive quadrature points as it is explained in the following
paragraph.

Determination of the adaptive quadrature points

Using the integration scheme proposed by Hughes et al. [40] for integrating
the untrimmed surface Ŝ, a set of quadrature points A can be determined.
Within this thesis the highest occurring polynomial degree of the trimming
curve and surface, which is to be integrated with AGIP, is used as reference
for the integration scheme. Having these quadrature points the coordinates
(ξA

l ,ηA
l ) of the adaptive quadrature points can be computed as

(ξA
l ,ηA

l ) = Ŝ(ξl ,ηl ) with (ξl ,ηl ) ∈A. (5.14)

The corresponding adaptive quadrature weights w A
l are given by

w A
l = J̃1(ξl ,ηl ) J̃2(ξl ,ηl ) wl , (5.15)

where wl are the Gauss quadrature weights used for integrating the sur-
faces Ŝ and J̃1 resp. J̃2 represent the mapping analogously to Equation (5.8)
resp. Equation (5.9).

The example in Section 7.2 underlines the accuracy of AGIP in the context
of IBRA.
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surface 1

surface 3 (refined)

surface 2 (refined)

coupling

coupling

Figure 5.8: Local refinement within IBRA. After trimming the
surface, the desired regions are refined and the boundaries are

coupled.

5.6 Special aspects

This section contains some aspects which are different for IBRA in contrast
to classical FEA. Thus they are briefly explained.

5.6.1 Local refinement

By considering coupling boundary conditions (see Section 4.5.1) within
IBRA, quasi arbitrary local refinement can be realized easily. One simply
needs to split the surfaces into different pieces, refine the desired trimmed
regions and couple the boundaries. An example of local refinement within
IBRA is shown in Figure 5.8. Note that this local refinement differs from
those presented in previous publications like Kuru et al. [53], Schillinger
[75], Scott et al. [79], and Vuong et al. [90].

5.6.2 Flying nodes

In IBRA, control points with very small influence on the trimmed domain
are termed flying nodes, because it is possible that the displacements of
these nodes change during nonlinear analysis. Nevertheless, the solution
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converges owing to the negligible contribution of the flying nodes on the
trimmed domain resp. solution.

These flying nodes are closely related to the control points in the fictitious
domain (FCM), which also make a minor contribution to the solution.
According to Schillinger [75], these points should “. . . ‘move’ as freely as
possible to permit a smooth extension of the physical solution into the
fictitious domain”. This rationale can be applied to the flying nodes as well.
For structural problems, the small contribution of the flying nodes has no
influence on the solution. It only influences the conditioning of the linear
system of equations which needs to be solved. In consequence this might
require an additional preconditioning step which is provided by most of
the commercial solvers.
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5 Implementation of the isogeometric B-Rep analysis

Summary and conclusion of Chapter 5

This chapter describes the process of creating a set of finite elements from
a NURBS-based B-Rep model which is provided by a CAD system. The
elements can then be used to solve structural shell problems in a finite-
element-like manner within an existing FE-solver. Possible data structures
are provided as well. In addition, a new adaptive integration scheme is
presented which allows to treat all integration domains (untrimmed and
trimmed) in exactly the same way.

All decisions made for IBRA had the goal to develop a simple and robust
analysis approach which can analyze complex CAD models without any
modifications and can be implemented easily into an existing FE-solver.
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6
ANALYSIS IN COMPUTER AIDED DESIGN

The goal of an efficient design-through-analysis workflow is to simulate
the real behavior of a structure within a short time. The chosen analysis
approach must therefore deliver solutions which

– meet a specified level of reliability and

– are obtained under minimal usage of resources (human effort, com-
putational cost, etc.).

In times of almost unlimited and relatively cheap computer power, one of
or probably the biggest challenge for an efficient design-through-analysis
workflow is the minimization of human effort. Because the latter is time
consuming and thus expensive from a business point of view.

This chapter introduces a new concept for minimizing the human effort for
structural shell problems by using the proposed isogeometric B-Rep analy-
sis (IBRA, see Chapter 4). The resulting CAD-integrated design-through-
analysis workflow is named Analysis in Computer Aided Design (AiCAD)
(see also Breitenberger et al. [17]). The implementation of an AiCAD work-
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6 Analysis in Computer Aided Design

flow requires a CAD system, a FE-solver, and an interface software. After
a short description of the boundary conditions given by well established
product development processes this chapter explains how the compo-
nents mentioned above need to be linked for realizing a CAD-integrated
design-through-analysis workflow.

6.1 Product development process using CAx systems

A product development process driven by computer-aided systems (CAx)
can be simplified as it is shown in Figure 6.1. The first step of such a pro-
cess is to model a first shape of a product within a computer-aided design
(CAD) system. As a next step the CAD model needs to be evaluated with
computer-aided engineering (CAE) tools, which at their turn usually lead to
CAD model updates. These steps have to be repeated until all requirements
on the product are fulfilled. Usually this process leads to many geometry
updates within the design-through-analysis (CAD-CAE) workflow. An effi-
cient analysis modeling thus plays a crucial role for the efficiency of the
overall process. Especially because an optimal use of resources requires
the creation of multiple different analysis models.

The remainder of this section summarizes a few important aspects of
design and analysis modeling with special attention to the two analysis
approaches

– classical FEA (see also Section 3.4) and

– isogeometric B-Rep analysis (IBRA) (see also Chapter 4)

for solving structural shell problems.

6.1.1 Design modeling

An important aspect for design modeling is the fast creation and modifica-
tion of geometrical shapes. A NURBS-based B-Rep model is well suited for
this task. This is one reason why it is standard in industry especially for free-
form geometries (see Section 2.2). To allow for easy shape modifications
such models are fully parametrized. An example of such a parametrized
CAD model is shown in Figure 6.2, where the angle of a line is changed by
moving a point – the CAD parameter. This parameter modification entails
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product idea

CAE
geometric
modeling

final product

CAM

...

analysis
model 2

analysis
model 3

support

manufacturing

CAx

design model

analysis
model 1

improvement/optimization
CAD

analysis
modelingupdates

Figure 6.1: Simplified overview of a product development
process using computer-aided systems (CAx) with special attention
on design-through-analysis workflow (CAD-CAE) including CAD

model updates
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CAD parameter

(a) Initial shape of the CAD model with the red point as CAD parameter which controls the angle
of the black curve which in its turn defines the region around the hole.

Update of CAD
parameter

(b) Updated CAD model: the angle of the line is changed by modifying the CAD parameter (posi-
tion of the red point)

Figure 6.2: Example of a CAD parameter update on a fully
parametrized CAD model within Siemens NX
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the update of the entire CAD model. Within a design-through-analysis
workflow, analysis models are therefore derived from NURBS-based B-Rep
models.

6.1.2 Analysis modeling for classical FEA

In this thesis, analysis modeling refers to the preparation of a model for
analysis itself. In industry, structural problems are solved predominantly
with classical finite element analysis (FEA), which typically uses linear or
quadratic polynomials defined over non-overlapping parametric domains
(the elements) for describing the geometry of the analyzed model (see also
Section 3.4). Thus, within the standard analysis workflow, illustrated in
Figure 6.3, the NURBS-based B-Rep model needs to be converted into a
finite element mesh. This change of geometry description is called meshing
(see Section 3.4.2).

Another step to obtain the analysis model is the introduction of analysis-
related data, e.g. material properties and boundary conditions. They can
either be applied directly to the finite element mesh, e.g. by selecting the
elements or nodes (option 1 in Figure 6.3), or to the CAD model (option
2). In option 2, properties are assigned as attributes to the B-Rep entities
(e.g. edges) and after meshing they are transferred to the finite element
mesh. This can be done automatically, option 2 is thus more convenient for
the user, especially when re-meshing of the CAD model is necessary. The
analysis itself is performed using a finite element (FE) solver. An example
of a CAD model with analysis related data is illustrated in Figure 6.4.

The steps in the standard design-through-analysis workflow can be per-
formed by using either different programs (CAD and FE program) or by
using an integrated CAD/CAE system.

6.1.3 Analysis modeling for IBRA

In contrast to the standard analysis (CAD-CAE) workflow, in AiCAD the
geometry representation of the design and the analysis models is the same.
The design model just needs to be refined for the analysis (see Section 2.2.2),
which does not change the representation of the model but only its de-
scription. The refinement is necessary to approximate the solution with
adequate accuracy and can be assigned to the B-Rep faces as a property. In
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based on classical finite element analysis

Standard design-through-
analysis workflow

Analysis in computer aided design
workflow

CAD geometry kernel

design model

analysis model

Definition of analysis-
related data e.g.
- boundary conditions
- material properties
- ...

FE kernel meshing

option 2

option 1

design model

analysis model

Definition of analysis-
related data e.g.
- boundary conditions
- material properties
- ...

CAD geometry kernel

isogeometric
refinement

based on isogeometric B-Rep analysis

Figure 6.3: Difference between standard analysis (CAD-CAE)
workflow based on classical finite element analysis (FEA) and

proposed analysis in computer aided design (AiCAD) workflow
based on isogeometric B-Rep analysis (IBRA)
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Figure 6.4: CAD model of an oil sump with analysis related data
in the integrated CAD/CAE/CAM software Siemens NX (see

Siemens PLM Software [84]). Analysis data like loads and supports
can be visualized whereas material properties cannot. All data are

saved as attributes at the CAD model.

AiCAD, not only the introduction of analysis-related data can be achieved
in the CAD environment (option 2 in the standard analysis workflow) but
also the postprocessing of the analysis. Here, of course, the CAD system
needs to be extended to include the desired postprocessing functionalities,
e.g. visualization of the stresses on the CAD model. This is usually done by
using the API (Application programming interface) of the CAD software
(see Figure 6.5).

The difference between standard analysis and the AiCAD workflow lies
in the representation of the analysis model and its solution. In classical
FEA, the (deformed and undeformed) geometries are represented by a
finite element mesh, whereas in AiCAD, the geometries are represented by
a NURBS-based B-Rep model.

6.2 Realization of an AiCAD worflow

In this section, the most important aspects for realizing an AiCAD workflow
within an existing CAD system and using an existing FE solver are outlined.
The AiCAD workflow has the following four main components:

105



6 Analysis in Computer Aided Design

– CAD system

– AiCAD interface software

– FE Solver

– eventually external postprocessing tool (e.g. HTML based)

The workflow can be seen in an abstract form independent of the im-
plementation of AiCAD, as shown in Figure 6.5. In the following text, the
various components and their tasks are briefly explained.

6.2.1 CAD system

The design component of an AiCAD workflow is realized in a CAD program,
where the geometry kernel is used for the following tasks:

– geometric modeling (see section 6.1.1)

– pre- and eventually postprocessing for IBRA

Geometric modeling is the intrinsic function of the CAD program, whereas
pre-and postprocessing may be seen as additional functionalities. The pre-
and postprocessing in a CAD program require an API, which endows the
CAD software with missing functions, such as

– assigning analysis related data to B-Rep entities (see section 6.1.3)

– assigning refinement parameters (see section 6.1.3)

– visualizing deformed geometries (see figure 6.6)

– ...

Depending on the CAD program, some of these functions are already avail-
able. To give an example, the integrated CAD/CAE/CAM software Siemens
NX (see Siemens PLM Software [84]) can assign analysis related data to
B-Rep entities (see figure 6.4), whereas in the CAD program Rhinoceros
(see Rhinoceros [70]), this needs to be realized by the API of Rhinoceros.
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generation
of elements
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elements

extract (incl. analysis properties)
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require

internal
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read

read

write

Alternative

external
postprocessing

e.g. HTML, external FE
postprocessing tools,
other CAD systems, ...

AiCAD interface

Figure 6.5: Overview of software components of an AiCAD
workflow (see also Figure 5.1)

Note that in this thesis, it is assumed that a CAD program provides access
to geometric data and functions such as the visualization of NURBS sur-
faces and space curve mapping (see section 2.2.3). From experiences, this
assumption holds for almost all major CAD programs. At the author’s chair,
the AiCAD workflow has been realized using three different programs:
Rhinoceros (Rhinoceros [70]), Siemens NX (Siemens PLM Software [84]),
and GiD (GiD [34]).
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Figure 6.6: IBRA postprocessing of an oil sump in the pre- and
postprocessing software GiD (see GiD [34])

6.2.2 AiCAD interface software

The AiCAD interface software is used for communicating between the
CAD program and the FE-solver. The interface software needs to provide,
among others, the following functions:

– reading data from the CAD program

– generating isogeometric elements and B-Rep elements for the FE-
solver (see Section 5.3)

– supporting pre- and postprocessing for IBRA in the CAD program

For this thesis, the interface is realized with the software TeDA (Tool to
Enhance Design by Analysis), developed at the author’s chair. TeDA is a C++
library, which can be used for the API in Rhinoceros and the integrated
CAD/CAE/CAM software Siemens NX.

6.2.3 FE-solver

The FE-Solver is used for solving the IBRA problem described by isogeomet-
ric and B-Rep elements. Of course the corresponding element formulations
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Figure 6.7: Visualization of vMises stresses on the CAD model of
an oil sump (see also Figure 6.4) using the CAD software

Rhinoceros (see Rhinoceros [70])

(see Section 4.4, Section 4.5, and Section 4.6) need to be implemented in
the FE-solver like any other classical element formulation. Usually widely
used FE-solver provide an API for implementing new elements. All the
examples in this thesis have been computed with the FE-solver Carat++
developed at the authors’ chair.

6.2.4 Postprocessing

The output of IBRA basically consists of the displacement field of active
nodes, meaning the ones that influence the trimmed domain. The dis-
placement field can be used for determining the deformed geometry and
stresses. For visualizing deformed geometries, the following data are suffi-
cient:

– description of trimmed and refined NURBS surfaces (see also Sec-
tion 2.2.3)

– displacements values of active control points resp. nodes

Note that the inactive nodes do not have displacement because they have
no influence on the trimmed domain. An example of a deformed CAD
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Figure 6.8: Visualization of a CAD model for special
postprocessing functionalities within a website.

model in the pre- and postprocessing software GiD (see GiD [34]) is illus-
trated in Figure 6.6. In addition Figure 6.7 shows an example of a stress plot
on a CAD model created with the CAD program Rhinoceros (see Rhinoceros
[70]). For customized postprocessing functionalities also a HTML(web)-
based visualization can be very useful. An example of such a website is
shown in Figure 6.8
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Summary and conclusion of Chapter 6

This chapter describes the steps required for realizing an CAD-integrated
design-through-analysis workflow (AiCAD) within an existing CAD sys-
tem. AiCAD has been realized within three different programs: Rhinoceros
(Rhinoceros [70]), Siemens NX (Siemens PLM Software [84]), and GiD (GiD
[34]). This demonstrates the flexibility of the developed concept.

In addition, the difference between AiCAD and a standard design-through-
analysis workflow is explained.
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7
EXAMPLES AND INVESTIGATIONS

To highlight the accuracy, flexibility and robustness of IBRA, some well se-
lected examples with increasing complexity are discussed. To demonstrate
the correctness and to quantify the approximation errors of IBRA, the re-
sults are compared to solutions that are either computed analytically, with
isogeometric analysis (IGA), or with commercial finite element software.
The examples range from geometrically linear plates in membrane action
to geometrically nonlinear shells, including weak boundary conditions
(see also Section 4.5). For all examples, a linear elastic, isotropic material
is used.

This chapter can be separated into three parts. The first part deals with
problems that are discretized with one trimmed NURBS surface for investi-
gating the Adaptive Gaussian Integration Procedure (AGIP) (see Section 5.5)
and the influence of trimming tolerances on analysis results. The second
part deals with B-Rep edge elements (according to Section 4.5) which are
used to enforce different types of weak boundary conditions. The third
part deals with the application of IBRA to industrial problems.
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7 Examples and investigations

PART 1 starts with an example of a simple plate in membrane action to
show the accuracy of the integration scheme AGIP. The second example
deals with a geometrically linear (i.e. applying linear kinematics) plate in
bending, which is used to show the robustness of AGIP against geometric
distortions. The last example within the first block deals with a geometri-
cally nonlinear shell problem to demonstrate the application of IBRA also
to mechanically challenging problems and the flexibility of IBRA in terms
of trimming tolerances.

The first example of PART 2 deals with a geometrically nonlinear cantilever
subjected to an end moment, a so called mainspring. This example is used
for discussing weak coupling boundary conditions for different discretiza-
tions, the influence of "dirty" geometries (gaps and overlaps) on the result,
and the choice of appropriate penalty factors (according to Section 4.5.1).
The second example deals with a geometrically nonlinear shell problem
discretized with two trimmed surfaces focusing on weak coupling condi-
tions.

PART 3 shows the application of IBRA to real industrial CAD models of an
oil sump and an engine bonnet.

Moreover, all examples highlight the simplicity and straightforwardness of
analysis model preparation using IBRA even for very complex geometries.
All geometries for the examples are created either with the CAD program
Rhinoceros 5 (see Rhinoceros [70]) or the integrated CAD/CAE/CAM soft-
ware Siemens NX (see Siemens PLM Software [84]). The trimming tolerance
(according to Section 2.2.3) used for the examples is denoted separately
for each example. For some few examples, it would be possible to repre-
sent the geometries exactly, i.e. without any trimming error, but this is
not the goal of the proposed method. The goal of IBRA is to use the CAD
model "as it is". For all presented examples, the geometries therefore are
created in a CAD system, and they are analyzed directly. The analysis itself
is performed with the in-house finite element program CARAT++. The
results of the classical finite element analysis are computed in ANSYS (see
ANSYS [2]) or NASTRAN NX (see Siemens PLM Software [84]) by using
quadrilateral-dominant meshes with bi-linear quadrilaterals and trian-
gular Reissner-Mindlin (RM) shell elements. For IBRA, the NURBS-based
Kirchhoff-Love (KL) shell element (see Kiendl et al. [44]) is used. Note that
KL theory is not always mentioned explicitly. The postprocessing for IBRA
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is realized with the interface software TeDA (see Section 6.2.2) used within
the API of the CAD program Rhinoceros 5.

7.1 Definition of error measures

In order to verify the proposed technique, a few quantitative error measures
need to be defined for the examples. The error over a parametric domain
Ω can be expressed by the sum of the L 2-norms of each component of the
stress tensor as follows:

er =
∑

i

‖σi exact−σi num ‖L 2(Ω), (7.1)

where i represents the components {x x , y y , x y }. In cases where a com-
puted result (e.g. displacement) at a specific point is compared to a refer-
ence solution, the following relative error measure is used:

er =
|uref−uIBRA|
|uref|

(7.2)

For a general comparison of the relative difference between two results
(res 1 and res 2) the following formula is used:

dr =
|ures1−ures2|
|ures1|

(7.3)

7.2 Infinite plate with circular hole

The first example deals with the two-dimensional linear elastic problem
shown in Figure 7.1. This setup is used to solve an infinite plate with a
circular hole under in-plane tension at infinity. The exact solution to this
problem is given in Gould [36], and is solved with IGA in Hughes et al. [40].
Moreover, the problem had already been solved by Kim et al. [47] using a
trimmed NURBS surface. Since just another numerical integration scheme
is applied (see AGIP in Section 5.5), one should obtain similar results as
those published in Kim et al. [47].
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Far-field traction: Tx = 10.0

Geometry: L = 4.0 R = 1.0
Material: E = 105 ν= 0.3

σ ·n= 0

Parameters:

Analytical solution:

σr r (r,θ ) = Tx
2 (1−

R 2

r 2 ) +
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Figure 7.1: Example of infinite plate with hole - problem
description and exact solution

To compare the results of IGA and IBRA, as well as the analytical solution,
the stress distributionsσθθ along the hole are plotted (see Figure 7.4), and
the error as the sum of the L 2-norm of each stress tensor component (see
Equation (7.1)) over the parametric domain is investigated (see Figure 7.6).

The different discretizations for IGA and IBRA are shown in Figure 7.2. The
untrimmed surface used for IGA employs the same definition as proposed
in Hughes et al. [40], and the trimmed surface used for IBRA is created
using the CAD program Rhinoceros with a very low trimming tolerance of
10−8 units (see Section 2.2.3). For this specific example, one could define
the trimmed NURBS surface without any trimming error by using an exact
NURBS description of the trimming curve, but this is not common when
using a CAD system, and doing so would contradict the proposed philoso-
phy of integrating design and analysis (see Chapter 6). Note that due to
the reduced modeling effort, the standard approach in practice would be
to create a trimmed surface as it is shown in Figure 7.2(b) even if it does
not represent the geometry in Figure 7.1 exactly. IBRA allows the usage of
such trimmed surfaces directly for analysis without any modifications. In
contrast to that IGA in its original form works on the exact geometry, how-
ever, requires complicated and costly geometric models with untrimmed
surfaces suitable for analysis (see Figure 7.2(a)). Independent of the chosen
geometry discretization one needs to refine the surface for analysis accord-
ing to the desired solution accuracy. This is a requirement of mechanics,
but not of the workflow. Different levels of refinement for the initial dis-
cretizations (see Figure 7.2) are shown in Figure 7.3. In both cases, existing
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7.2 Infinite plate with circular hole

(a) Untrimmed NURBS surface description
used for IGA

(b) Trimmed NURBS surface description used
for IBRA

Figure 7.2: Different geometric descriptions (trimmed and
untrimmed NURBS surfaces) of the geometry in the example,
shown in Figure 7.1. The dashed lines show the control point
polygons, and the black points represent the control points.

non-zero knot spans in the parameter space are subdivided sequentially in
both directions. Note that in the step from the geometry in Figure 7.3(a) to
the one in Figure 7.3(b), only one direction is divided in order to ensure that
the number of elements in both directions is the same. Figure 7.3 graph-
ically summarizes the refinement strategy for untrimmed and trimmed
surfaces. These discretizations are the basis for a comparative evaluation
of the analysis results of both approaches.

Figure 7.4 shows a comparison of the stress distributionσθθ at r =R = 1
along the boundary of the hole for different geometry refinements (see
Figure 7.3). Each plot shows the analytical, IGA, and IBRA solution using a
specific number of elements. The polynomial degree is p=q=3 for each
plot. Owing to the global definition of the basis functions (see Figure 7.5(b))
along the hole boundary for the trimmed version with 4x4 elements, the
IBRA solution oscillates slightly around the analytical solution (see Fig-
ure 7.4(a)). In contrast, the basis functions of the untrimmed discretization
have local support (see Figure 7.5(a)), which allows for better approxima-
tion of the tangential stresses along the boundary of the hole. The same
effect can be observed for geometries with 8x8 elements (see Figure 7.3(d)
and Figure 7.3(h)). Again, for this level of refinement, the trimmed dis-
cretization has only three elements for approximating the stresses at the
hole boundary, as opposed to eight elements for the untrimmed case. In
the trimmed case result, one can again observe small oscillations around
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7 Examples and investigations

(a) IGA geometry 1 (b) IGA geometry 2 (c) IGA geometry 3 (d) IGA geometry 4

(e) IBRA geometry 1 (f) IBRA geometry 2 (g) IBRA geometry 3 (h) IBRA geometry 4

Figure 7.3: Different (refined) geometry descriptions of the
example shown in Figure 7.1

the analytical solution. With a greater number of elements, the approxi-
mations become better and converge towards the exact solution. Similar
plots obtained by using the B-Spline version of finite cell method (FCM)
have been published by Schillinger et al. [76]. For this example the only
difference between the B-Spline version of FCM and IBRA lies in different
numerical integration procedures of the trimmed resp. visible domain.

The conclusion out of these observations is that the untrimmed discretiza-
tion uses a better-suited parametrization for this specific problem. Thus,
it is not surprising that the trimmed discretization does not perform as
well as the untrimmed one. Nevertheless the convergence behavior with
trimmed surfaces is remarkable which is also affirmed by the following
investigations.

To confirm overall convergence to the exact solution, the sum of the L 2-
error norm of each stress tensor component over the parametric domain
(see Equation (7.1)) is plotted for different refinements in Figure 7.6. This
figure shows the error norm versus the largest diameter found in the ge-
ometry and the number of degrees of freedom (DOF). It can be seen that
the plots of the untrimmed and trimmed discretization cases are similar.
As expected, the untrimmed discretization shows a slightly faster conver-
gence. This is because the largest deviations for the stresses are in the
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7.2 Infinite plate with circular hole
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Figure 7.4: Stress distribution ofσθθ at hole boundary r = 1 for
different refinements. Comparison of results of untrimmed and

trimmed discretizations.
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(a) Basis functions of hole boundary for
untrimmed discretization shown in Figure 7.3(c)
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(b) Basis functions of hole boundary for trimmed
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Figure 7.5: Comparison of the basis functions at the hole
boundary for different discretizations

region around the hole, where the untrimmed version is optimally refined,
as explained before.

The plot in Figure 7.6(a) shows the same behavior as the one presented
in Hughes et al. [40], even though the geometry refinement is different.
In the present work, the parameter space is refined uniformly, whereas
in Hughes et al. [40], the geometry is refined uniformly. The results of the
plots in Figure 7.6(b) and Figure 7.6(d) are similar to those published in
Kim et al. [47] but with much more levels of refinement to underline the
high accuracy of the proposed integration scheme. Note that the leveling
off in the range of 10−8 is caused by the trimming tolerance of 10−8 units,
which has been used for generating the geometry.

Summary and conclusions

From this example, it can be concluded that the untrimmed discretizations
match the resolution requirement of the problem’s mechanics slightly bet-
ter than the trimmed discretizations. The price to be paid for this ideal
discretization is greater geometrical modeling effort. In addition, it can
be stated that restricting the parameter domain of a surface to a trimmed
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1e-010

1e-008

1e-006

0.0001

0.01

1

100

10 100 1000 10000

E
rr

o
r

in
L

2
-n

o
rm

Number of DOFs

p=2
p=3
p=4
p=5

(d) Error measured in L 2-norm versus number of
degrees of freedom for IBRA (trimmed)

Figure 7.6: Convergence of sum of L 2-norm of each stress
tensor component in Cartesian coordinates x,y and xy (see

Equation (7.1))
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Geometry: L = 10.0 R = 3.0

Parameters:

Material: E = 107 ν= 0.0
Load: f = 10.0

Thickness: t = 0.1

Figure 7.7: Example of a plate in bending - problem description

domain and using an accurate integration scheme neither influences the
convergence properties nor the accuracy of the underlying functional ba-
sis for analysis purposes. Having the same slopes for the untrimmed and
trimmed discretizations means that the proposed AGIP integration scheme
(see Section 5.5) fulfills the moment fitting equation. IBRA only takes over
the geometrical modeling error from CAD caused by the predefined trim-
ming tolerance within the CAD system (see also Section 7.4) but this is
done on purpose.

7.3 Plate in bending with circular hole

This example deals with a linear (i.e. linear kinematics) plate in bending.
The setup is described in Figure 7.7. The goal of this example is mainly
to investigate the robustness of IBRA against distortions in the geometric
description. Note that the trimmed geometries of the previous example
have no such distortions because the parameter domain and the geometry
coincide i.e. the mapping between these two domains is one resp. constant.
Independent of the initial parametrization of the geometry, the results of
the refined geometries should converge to the same solution. Thus, the
distortion of the geometric description must not influence the (converged)
results, but only lead to a difference in the convergence rate.

The example described in Figure 7.7 is solved for different geometric de-
scriptions, where one set of descriptions has a geometric distortion. This
geometric distortion is described in Figure 7.8, where the red curve (CP
2 - CP 8) represents a parameter curve defined in the middle of the pa-
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7.3 Plate in bending with circular hole

CP 1 (0, 0) CP 2 (5, 0) CP 3 (10, 0)

CP 4 CP 6 CP 5

CP 7 (0, 10) CP 8 (5, 10) CP 9 (10, 10)

(0, 5) (15, 5)(10, 5)

x

y

D A

BC

Figure 7.8: Distortion of geometric description of example
shown in Figure 7.7

rameter domain. It is used to illustrate the distortion of the geometric
description. By intention, the distortion is quite substantial, which allows
for a demonstration of the robustness of the proposed integration scheme
against numerical errors in the J1 mapping.

The different geometric descriptions for this example are shown in Fig-
ure 7.9, where the trimming was performed with a tolerance of 10−8 units.
The geometries in Figure 7.9 (a-d) are described by four untrimmed NURBS
surfaces, those in (e-h) are described by simple trimmed NURBS surfaces,
and those in (i-l) are described by trimmed NURBS surfaces with a dis-
torted geometric description (see also Figure 7.8).

The problem is solved for the geometric descriptions shown in Figure 7.9
and for some further refinements following the same logic. For the NURBS-
based KL shell element, a polynomial degree of p = q = 3 is used. For the
untrimmed geometry bending strips have to be used (see Kiendl et al. [43])
even if the collinearity of the control points at the four corner points can
not be provided (kink). In addition, the problem is solved with classical
finite elements by using quadrilateral-dominant meshes with bi-linear RM
elements.

Figure 7.10 shows the convergence of displacement in z-direction at point
A (see Figure 7.7) for the four different types of discretizations. The dis-
placement at point A converges for all types of discretizations using the
KL theory to uz = −6.3499 and for the RM theory to uz = −6.3748. This
results in a difference of 0.0249, which corresponds to a 0.3% discrepancy
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7 Examples and investigations

(a) Untrimmed 1 (b) Untrimmed 2 (c) Untrimmed 3 (d) Untrimmed 4

(e) Trimmed 1 (f) Trimmed 2 (g) Trimmed 3 (h) Trimmed 4

(i) Trimmed geometry
with a distorted geomet-
ric description 1

(j) Trimmed geometry
with a distorted geomet-
ric description 2

(k) Trimmed geometry
with a distorted geomet-
ric description 3

(l) Trimmed geometry
with a distorted geomet-
ric description 4

Figure 7.9: Different geometry descriptions of geometry shown
in Figure 7.7

which can be explained by the different mechanical models. The Dirichlet
boundary condition for this example is applied strongly for all discretiza-
tions.

As expected the IBRA solution with geometric distortion shows slightly
different convergence behavior than the simple trimmed discretizations
but converges to exactly the same result. Moreover, it can be seen that the
untrimmed descriptions with the bending strips initially behaves too soft,
but also converge to the same solution. Just the influence of the bending
strip method (penalty factor) and the trimming tolerance causes very little
deviations. For the bending strip factor, a value of 5 is used, which corre-
sponds to a penalty factor of 105 times E (Young’s modulus). According to
Kiendl et al. [43], this is within the optimal range.
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Figure 7.10: Displacement of point A in z-direction (see
Figure 7.7) using different discretizations. For the NURBS-based

discretizations a polynomial degree of p=q=3 is used.

For highlighting the good convergence behavior of IBRA, the convergence
of the displacements at points A and E (see Figure 7.7) of the simple
trimmed IBRA geometries are further investigated. The convergence plots
of the displacement in z-direction for these two points are plotted in Fig-
ure 7.11 by using different polynomial degrees. The convergence behavior
of point E is shown for illustrating the very good point-wise convergence
achieved at points on internal hole boundaries as well.

A typical deformed geometry within IBRA is shown in Figure 7.12, where the
result of the plate in bending example using a simple trimmed geometry is
given. The points resp. nodes in the middle of the hole have no influence
on the solution and thus they are called inactive.

Summary and conclusions

The conclusion of this example is that in contrast to the previous example,
the trimmed geometries perform better than the untrimmed ones and
yet can be modeled with greater ease. It is shown that IBRA is very robust
against distortions in the geometric description owing to the use of the
proposed integration scheme AGIP (see Section 5.5). In addition, the ex-
ample confirms very good point-wise convergence achieve at points on
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Figure 7.11: Convergence plots of displacement in z-direction
for points A and E shown in Figure 7.7 for trimmed geometries.

active nodes

inactive nodes

Figure 7.12: Deformed geometry of the example shown in
Figure 7.7, including control point net and examples of active and

inactive nodes resp. control points

126



7.4 Doubly curved shell with circular hole
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Figure 7.13: Example of a doubly curved trimmed shell with a
circular hole - problem description

boundaries. Moreover, the difference between active and inactive nodes is
shown.

7.4 Doubly curved shell with circular hole

The last example of the first part deals with a geometrically nonlinear
doubly curved shell problem. This example illustrates that IBRA works for
geometries with challenging mechanics as well. In addition, the influence
of trimming tolerances (see Section 2.2.3) on the analysis result is discussed.
Additionally the load is applied to the trimmed domain.

The example is described in Figure 7.13. Note that easy modeling of such
a geometry with untrimmed NURBS surfaces is almost impossible. Thus
only trimmed discretizations are used. The trimming is performed with a
high tolerance of 10−2 units, which is higher than the default CAD tolerance
for such an example, as well as with a very low tolerance of 10−7 units. The
results for the different trimming tolerances are compared for judging from
the analysis perspective the influence of trimming tolerances. The IBRA
results are verified against solutions of classical finite element analysis
computed by the commercial FE program ANSYS.

For a better understanding the example and illustration of the geomet-
rical non-linearity of the problem, the load-displacement curve for the
displacement in z-direction of point C is shown in Figure 7.16. It can be
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Figure 7.14: Displacement in z-direction of points C and E (see
Figure 7.13) using trimming tolerance of 10−2 units

seen that the displacement is quite substantial and the structure softens
after reaching a load factor of approximately 0.55.

To show the point-wise convergence also for this example, the two points
C and E (see Figure 7.13) are investigated. Figure 7.14 shows the displace-
ment in z-direction at points C and E for different polynomial degrees. For
these plots, a trimming tolerance of 10−2 units is used. A comparison of
the results obtained using different trimming tolerances will be shown
later. Figure 7.14(a) additionally shows the convergence of classical FEA
using quadrilateral-dominant meshes with bi-linear and triangular RM
elements. It can be seen that classical FEA needs approximately 2000 DOFs
for yielding an accurate (converged) solution, whereas with IBRA employ-
ing p=q=3 almost converged results can already be achieved with only
400 DOFs. Nevertheless all solutions converge to almost the same result
(see Figure 7.14). For the displacement along the z-direction at point C, the
IBRA results converge to −2.66029, whereas the FEA results converge to a
slightly higher value of −2.6973. Again, the discrepancy can be explained
by the use of different shell theories.

To show the influence of trimming tolerance on the IBRA results, the ex-
ample is also solved for various geometries with two different trimming
tolerances, namely 10−2 and 10−7. Figure 7.15 shows the relative difference
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Figure 7.15: Relative difference (see Equation (7.3)) in
displacement of points C and E along z-direction in Figure 7.13

using trimming tolerance of 10−2 and 10−7 units
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Figure 7.16: Load-displacement curve for point C, shown in
Figure 7.13
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Figure 7.17: Example of mainspring - problem description

(see Equation (7.3)) between the results at points C and E by using two
different trimming tolerances. For point C the relative difference is less
than 10−4 and for point E it is less than 2 ·10−2. This clearly indicates that
the trimming tolerance, i.e., using a low resp. high trimming tolerance
introduces the geometrical modeling error which at its turn influences the
analysis result (see also Figure 7.6). For practical applications this influence
can be neglected which is also done in industry using classical FEA which
even worse introduces an additional meshing error.

Summary and conclusions

The conclusion of this example is that the analysis results slightly deviate
for different trimming tolerances but from a practical point of view this
effect can be neglected. Note that the trimming error is a geometrical mod-
eling error which will be introduced to any analysis method which takes
over the geometry from CAD. Within classical FEA the error coming from
the mesh approximation, however, is an additional source of inaccuracies.
This latter source of error is not introduced in an IBRA geometry. Moreover,
this example demonstrates the good point-wise convergence behavior of
IBRA also for mechanically challenging shell problems.

130



7.4 Doubly curved shell with circular hole

Single patch

Matching patches

Strong Dirichlet boundary condition Weak Dirichlet boundary condition

Non-matching patches

Straight-trimmed patches

Curved-trimmed patches

12

1

1

1

1

1

102

102

102

102

12

1

1

1

1

1

102

102

102

102

- Not applicable -

Patches with a gap

1

102

1

102

Arbitrarily-
trimmed
patches

1

12

Figure 7.18: Different geometry descriptions of problem in
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Figure 7.19: IBRA solutions of problem in Figure 7.17 with
M =Mmax using different geometry descriptions from Figure 7.18

7.5 Cantilever subject to end moment

In the first example of the second part several aspects of weak Dirichlet
and coupling boundary conditions are discussed. In addition, the effect
of gaps and overlaps (see also non-watertightness in Section 2.4.1) for
multi-patches is investigated.

Coupling of parametric domains and Dirichlet boundary conditions are
enforced by B-Rep edge elements (see Section 4.3.3) following the element
formulation from Section 4.5.1 resp. Section 4.5.2. The proposed formu-
lations are purely geometry based and use a penalty approach. Thus, it
requires the estimation of penalty factors. For this thesis, only one globally
defined factor is used, which is applied for both constraining the displace-
ments and rotations at common boundaries. Similar to bending-strips
(see Kiendl et al. [43]), the proposed formulation achieves good results
for a wide range of penalty factors. However, in contrast to the bending-
strip method, the proposed formulation in Section 4.5.1 can handle non-
matching patches along trimming curves including gaps and overlaps.
For the following examples a relative penalty factor of αrel = 100 (see also
Section 4.5.1) is used, if not indicated differently. This choice of the relative
penalty factor will be explained later within this section.

The example itself treats the mainspring problem. The problem descrip-
tion is given in Figure 7.17 (see also Sze et al. [87]). This example is used
for demonstrating the flexibility of IBRA from the perspective of the prob-
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Figure 7.20: Error of displacement in z-direction (middle of tip)
for the problem in Figure 7.17 by using different geometry

descriptions with M =Mmax

lem’s geometry description. Thus, the problem is solved with IBRA for the
different geometry descriptions shown in Figure 7.18. Here, for all geome-
tries, a polynomial degree of p=q=4 is used. The multi-patch geometries
use weakly enforced coupling boundary conditions (see Section 4.5.1).
The Dirichlet boundary conditions can be enforced strongly or weakly,
where strong boundary conditions are restricted to the patch boundaries
(untrimmed surface). The geometry "arbitrarily-trimmed patches" demon-
strates the necessity of weakly enforced boundary conditions along trim-
ming curves. The acting moment is also applied with B-Rep elements refer-
ring to the rotation at the boundary.

The IBRA solutions corresponding to the different geometries are shown
in Figure 7.19. All of them represent the expected solution of a closed ring
for M =Mmax.

For a detailed investigation of the solution quality, two convergence plots
are discussed in Figure 7.20. The two plots show the displacement of the tip
(point in the middle) in z-direction for the "non-matching" and "straight-
trimmed" geometries (see Figure 7.18). It can be seen that both geome-
tries have an absolute error of less than 10−4 in displacement along the
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Figure 7.21: Displacement in z-direction for solution of problem
in Figure 7.17 using "matching patches" geometry shown in
Figure 7.18 with M =Mmax versus relative penalty factor for

rotations. The displacement is strongly coupled for both
investigations.

z-direction for an equilibrium accuracy of 10−6. Note that a small discrep-
ancy is introduced by using the penalty approach.

For discussing the influence of the penalty factor on the solution Figure 7.21
shows the z-displacement versus the relative penalty factor for rotations.
Here, the displacements at the common boundary are coupled strongly
to isolate the effect of rotation coupling. It can be observed that a relative
penalty factor larger than 10 gives good results regardless of the polyno-
mial degree. For quantifying the error of rotation at the boundary, the
relative difference between the angles at the common edge versus the rela-
tive penalty factor is plotted in Figure 7.22. Here, again, the displacement
coupling is enforced strongly. It can be observed that by increasing the
relative penalty factor, the error decreases uniformly, independent of the
polynomial degree. Thus, it can be stated that the higher the penalty factor,
the smaller the error will be. Note that too high penalty factors lead to
numerical problems (see also Kiendl [46]).
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Figure 7.22: Difference of angles (between adjacent boundaries)
for solution of the problem in Figure 7.17 using "matching

patches" geometry (see Figure 7.18). As in Figure 7.21, in this study
the displacement is strongly coupled.

overlap

gap

Figure 7.23: IBRA solution of problem in Figure 7.17 using
extremely non-watertight model (see "patches with gap" geometry

in Figure 7.18)
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7 Examples and investigations

For the considered problem, Figure 7.22 shows that for a relative penalty
factor of 100, the difference in the angles is less than 10−6.

The same behavior can be observed for weak displacement coupling. Thus,
a globally defined relative penalty factor of 100 is used within this thesis
because it can be considered sufficiently high for achieving good results
and not too high to avoid numerical problems.

For practical applications, IBRA needs to deal with non-watertight models
because almost all CAD models are non-watertight as explained in Sec-
tion 2.2.3. Figure 7.23 shows the solution of an extremely non-watertight
model (see "patches with gap" geometry in Figure 7.18) for the problem
shown in Figure 7.17. For the proposed B-Rep element formulation (see
Section 4.5.1), the gaps are simply preserved, as can be seen in Figure 7.23.
The displacements and rotations at the master and slave boundaries are
the same. Thus, the overlap in Figure 7.23 corresponds to the gap size
which at its turn is kept constant throughout the analysis. Note that such a
non-watertight model is an extreme case and that all analysis techniques
(FEA, IGA, FCM, ...) need to interpret such ("dirty") geometries somehow
by e.g. adding material and/or preserving the gap.

Figure 7.24 investigates the influence of non-watertightness (see also Sec-
tion 2.2.3) on the analysis result. It shows the "curved-trimmed patches"
geometry shown in Figure 7.18 with the gap-overlap variable f . The vari-
able is used to describe the size of the gap resp. overlap. A positive value
expresses a gap, whereas a negative value indicates an overlap.

Figure 7.25 shows the influence of the gap-overlap variable f on the differ-
ence in the displacement along the z-direction, which is given by

d1 = |uTip( f )−uref|, (7.4)

where uref is the z-displacement when f = 0. For describing the function
d1, the total length L = 1.37+ 10.63+ f is used as position for applying
the moment which additionally introduces a small deviation caused by
physics.

In Figure 7.25, it can be seen that the displacement difference in the final
result for a small | f |, especially within the default CAD tolerance of 0.001
units (see also Section 2.2.3), is negligible. The reason for the different
influence of gaps resp. overlaps is shown in Figure 7.24. In this example,
given that the coupling technique is based on the closest point projection
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1.37

L = 1.37 + 10.63 + f

10.63

Closest point projection
f

gapoverlap

f

Master

Slave

f

gap situation

overlap situation

Closest point projection

Figure 7.24: Problem description for investigating
non-watertight (gaps and overlaps) models used in the problem
shown in Figure 7.17 with the "curved-trimmed patch" geometry
with additional gap description shown in Figure 7.18. The variable
f expresses non-watertightness in the horizontal direction. For the

coupling formulation, the closest point projection is used. The
master-slave relationship for the gap and overlap situation is

shown in detail.
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Figure 7.25: Influence of non-watertightness on analysis result
of problem in Figure 7.17 with M =Mmax using "curved-trimmed

patch" geometry with additional gap shown in Figure 7.18 to a
gap/overlap of f compared with a gap/overlap of f = 0. The

default CAD tolerance of 0.001 units is represented by the light
orange colored bar.

approach (master-slave), the behavior for gaps is better because there is
a unique assignment of the quadrature points for the master and slave
curves. For the overlaps, the assignment of quadrature points is not unique
on the interface.

Summary and conclusions

The conclusion of this example is that IBRA is very flexible from the view-
point of the geometric description of a problem, regardless of how "stupid"
the geometric description may look like. Of course, a simple geometry de-
scription is generally better suited for analysis. Nevertheless, IBRA with its
B-Rep elements provides the framework to handle complex composed and
"dirty" geometries in a robust manner as well.

7.6 L-shaped cantilever

The second example of the second part is used for demonstrating that the
proposed coupling formulation (see Section 4.5.1) can preserve kinks as
well. Since kinks are treated in exactly the same way as the previous exam-
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7.7 Doubly curved multi-patch shell with circular hole

F

fixed

Figure 7.26: IBRA for shell structures with kinks. The kink is
preserved by the proposed B-Rep element formulation (see

Section 4.5.1)

ple this example is not evaluated quantitatively. An exemplary deformation
of an L-shaped cantilever is shown in Figure 7.26.

7.7 Doubly curved multi-patch shell with circular hole

The third example of the second part is used for testing the B-Rep element
formulation (see Section 4.5.1) for a mechanically complex shell problem.
The problem is exactly the same as that presented in Section 7.4, albeit
with a different geometry representation. Instead of using a single-patch
geometry, two weakly coupled non-matching patches are used (see Fig-
ure 7.27).

For this example, the slave patch uses two more elements per direction
than the master patch. The displacement of point C in z-direction is shown
in Figure 7.28. It can clearly be seen that the multi-patch results converge
to the same solution as those for the single-patch (see Figure 7.14(a)).

Summary and conclusions

The conclusion of this example is that the proposed B-Rep element formu-
lation works also for complex nonlinear (doubly curved) shell problems as
well producing accurate results regardless of the discretization.
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Figure 7.27: Benchmark example of doubly curved trimmed
shell including weak coupling boundary conditions - problem

description
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Figure 7.28: Displacement in z-direction for the problem shown
in Figure 7.27 using different polynomial degrees. For the coupled
multi-patches, the single-patch solution can be used as reference.

Therefore, the figure contains the single-patch solution with
p=q=5 from Figure 7.14(a) as well.
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7.8 Industrial application: oil sump

Parameters:

Material: E = 2.1 ·105 ν= 0.2
Load: p = 0.5

Thickness: t = 1.0

x

z
y

pressure p

clamped

440

50

240
A

Figure 7.29: Problem description of oil sump example. The blue
region is loaded. The Dirichlet boundary conditions is applied to
the edge with the dashed curve. The model consist of 50 trimmed
surfaces and 120 edges and has been generated with the software

Siemens NX.

7.8 Industrial application: oil sump

The first industrial example, described in Figure 7.29, deals with the struc-
tural analysis of an oil sump. This example is used for demonstrating that
IBRA can be used for industrial problems. In addition, a strategy for an
uniform geometry refinement for complex geometries is highlighted which
is required for complex CAD models. To validate the IBRA results they are
compared to solutions obtained by the commercial FE program NASTRAN
NX.

Figure 7.30 shows the convergence of the von-Mises stresses and the dis-
placement in z-direction for IBRA and the classical FEA. It can clearly be
seen that the IBRA solutions with a polynomial degree of p = q = 3 con-
verge much faster than the linear basis functions used within classical FEA.
As expected the RM shell, denoted with NASTRAN, converges towards a
slightly higher value than the KL shell used for IBRA. The refinement strat-
egy used for Figure 7.30 is demonstrated exemplary in Figure 7.31. Here the
size units per element indicates the approximate maximum dimension of
each element of the corresponding refined CAD model. Figure 7.32 shows a
qualitative comparison of the von-Mises stresses using IBRA and classical
FEA. One can see a clear match between the two stress plots.
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Figure 7.30: Convergence plots for the displacement in
z-direction and von-Mises stresses at point A for the problem

given in Figure 7.29. The IBRA solution uses a polynomial degree
of p = q = 3.

Summary and conclusions

IBRA is able to deliver highly accurate solutions also for complex industrial
CAD models even with less DOFs. This can be really advantageous for
problems where the solution process of the linear system of equation
represents the bottleneck. A key feature to be competitive with classical
FEA is an uniform refinement strategy i.e. creating elements with uniform
dimensions, to avoid unnecessary DOFs. Moreover the robustness of IBRA
applied to real CAD models is demonstrated.

7.9 Industrial application: engine bonnet

The last example is used to demonstrate that IBRA can already be used for
CAD models which are used as geometrical basis for production lines in
industry. The example is described in Figure 7.33 and the corresponding
result is illustrated demonstratively in Figure 7.34. The CAD model consist
of 428 trimmed surfaces (see also Figure 2.2(b)) and 1224 edges and is
created with the CAD program CATIA (see Dassault Systemes [28]). The
geometry is kindly provided by Daimler AG [27].
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7.9 Industrial application: engine bonnet

(a) Original CAD model parametrization (10329
DOFs) without refinement

(b) Refined CAD model using 20 units per ele-
ment (13647 DOFs)

(c) Refined CAD model using 10 units per ele-
ment (21561 DOFs)

(d) Refined CAD model using 5 units per element
(44199 DOFs)

Figure 7.31: Different refinement levels for the CAD model used
in Figure 7.29. The size units per element indicates the

approximate dimensions of each element for the corresponding
refined CAD model. In addition, the number of DOFs considering

the KL shell formulation is indicated.

6850

0

von-Mises

(a) IBRA solution (Visualization with TeDA in
the CAD program Rhinoceros)

(b) Solution obtained by the commercial FE pro-
gram NASTRAN NX within Siemens NX.

Figure 7.32: Comparison of von-Mises stress results for the
problem given in Figure 7.29 using IBRA and classical FEA.
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Parameters:

Material: E = 2.1 ·105 ν= 0.2
Load: p = 0.5

Thickness: t = 1.0

1655

1355 fixed

fixed

symmetric pressure load

x

z
y

Figure 7.33: Problem description of engine bonnet example.
The dark grey patches are loaded. The Dirichlet boundary

conditions are applied to the edges with the dashed curves. (CAD
model: by courtesy of Daimler AG [27])

z-disp.

min

max

Figure 7.34: Displacement in z-direction for the problem given
in Figure 7.33
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7.9 Industrial application: engine bonnet

Summary and conclusion of Chapter 7

The following list contains some important aspects elaborated within this
chapter:

– Section 7.2 shows that restricting the parameter domain of a surface
to a trimmed domain and applying an accurate integration scheme
neither influences the convergence properties nor the accuracy of
the underlying functional basis for analysis purposes. The accuracy is
just limited by the trimming tolerance (geometrical modeling error).

– Section 7.3 demonstrates the robustness of IBRA against distortions
in the geometric description as well as the good point-wise conver-
gence even on trimmed boundaries.

– Section 7.4 demonstrates the influence of trimming tolerances on
analysis results (geometrical modeling error) for nonlinear shell prob-
lems.

– Section 7.5 illustrates that IBRA is very flexible and able to deal with
"dirty" geometries.

– Section 7.7 shows the accuracy of B-Rep coupling elements for geo-
metrically nonlinear shell problems.

– The examples in Section 7.8 and Section 7.9 demonstrate that IBRA
can compete with established analysis approaches.

The various numerical examples including real industrial problems pre-
sented in this chapter confirm the accuracy, flexibility, and robustness of
IBRA.
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SUMMARY AND CONCLUSION

A new concept of a CAD-integrated design-through-analysis workflow for
Kirchhoff-Love (KL) shell structures, named Analysis in Computer Aided
Design (AiCAD), has been developed. AiCAD is realized within the commer-
cial CAD Systems Siemens NX (see Siemens PLM Software [84]), Rhinoceros
(see Rhinoceros [70]), and GiD (see GiD [34]). In contrast to other workflows
AiCAD uses the CAD geometry description, to be more specific NURBS-
based B-Rep models (see Section 2.2), throughout the entire workflow.

For analyzing NURBS-based B-Rep models, the isogeometric B-Rep analysis,
a new finite element technique, has been developed as well. IBRA can be
seen as an extension of isogeometric analysis (IGA) introduced by Hughes
et al. [40] by considering the B-Rep topology of the CAD model for the
analysis. Thus, it provides the framework for creating a direct and complete
analysis model from CAD in a consistent finite-element-like manner. The
new type of finite elements called (isogeometric) B-Rep elements are used to
handle discontinuous and trimmed geometries with gaps and overlaps for
structural analysis and to enforce weak Dirichlet and Neumann boundary
conditions. Corresponding B-Rep element formulations are introduced.
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8 Summary and Conclusion

Appropriate solutions for local refinement and the application of arbitrarily
located loads within IBRA are presented as well. In addition, a new adaptive
Gaussian integration procedure (AGIP) for integrating trimmed surfaces is
introduced. For applying AGIP the parameter domain of trimmed surfaces
is subdivided into integration domains such that all of them can be handled
by following one single procedure. The accuracy of this approach is shown
by numerical examples.

Moreover a concept for implementing IBRA within an existing FE-program
and realizing AiCAD within an existing CAD system is outlined and thus a
new concept of bridging the gap between CAD and FEM is presented.

Various examples clearly demonstrate the power of IBRA. IBRA is flexible
for trimming tolerances, robust against geometric distortion, and can han-
dle non-watertight CAD models. These features have been demonstrated
by the examples, which cover a gamut of problems ranging from simple
linear shells to real industrial problems.

The newly developed isogeometric B-Rep analysis seems to be general and
robust enough to be competitive with established analysis approaches
used in industry. Although the general concept has been established suc-
cessfully, further research is necessary. Some interesting fields are the
following:

– development of alternative B-Rep element formulations for shell
coupling better suited for structural dynamics

– development of B-Rep element formulations for further applications
(contact, shape optimization, FSI,...)

– defeaturing i.e. neglecting small details of the CAD model by treating
them e.g. as rigid objects in oder to concentrate on the mechanically
relevant effects and thus to avoid unnecessary computational cost

There is still a long way to go until the proposed techniques are mature
enough to use them in daily engineering life but the ingredients for a CAD-
integrated design and analysis workflow for shell structures are provided by
this thesis.

148



BIBLIOGRAPHY

[1] Abel Coll Sans. “Robust volume mesh generation for non-watertight
geometries.” PhD thesis. Barcelona: CIMNE, May 2014.

[2] ANSYS. http://www.ansys.com.

[3] B. M. Irons. “Engineering applications of numerical integrationin
stiffness methods.” In: AIAA J. 4 (1966), pp. 2035–2037.

[4] Y. Basar and W. Krätzig. Mechanik der Flächentragwerke. Theorie,
Berechnungsmethoden, Anwendungsbeispiele. Braunschweig:
Vieweg, 1985. ISBN: 3-528-08685-8.

[5] A. M. Bauer, M. Breitenberger, B. Philipp, R. Wüchner, and
K.-U. Bletzinger. “Nonlinear isogeometric spatial Bernoulli beam.”
In: Computer Methods in Applied Mechanics and Engineering 303
(2016), pp. 101–127. DOI: 10.1016/j.cma.2015.12.027.

[6] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes. Isogeometric
Fluid–structure Interaction Analysis with Applications to Arterial
Blood Flow. 2006. DOI: 10.1007/s00466-006-0084-3.

[7] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton,
M. Scott, and T. Sederberg. “Isogeometric analysis using T-splines.”
In: Computer Methods in Applied Mechanics and Engineering
199.5-8 (2010), pp. 229–263. DOI: 10.1016/j.cma.2009.02.036.

[8] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, and G. Scovazzi.
“Variational multiscale residual-based turbulence modeling for
large eddy simulation of incompressible flows.” In: Computer
Methods in Applied Mechanics and Engineering 197.1-4 (2007),
pp. 173–201. DOI: 10.1016/j.cma.2007.07.016.

149

http://dx.doi.org/10.1016/j.cma.2015.12.027
http://dx.doi.org/10.1007/s00466-006-0084-3
http://dx.doi.org/10.1016/j.cma.2009.02.036
http://dx.doi.org/10.1016/j.cma.2007.07.016


Bibliography

[9] Y. Bazilevs, M.-C. Hsu, and M. Scott. “Isogeometric fluid–structure
interaction analysis with emphasis on non-matching
discretizations, and with application to wind turbines.” In:
Computer Methods in Applied Mechanics and Engineering 249-252
(2012), pp. 28–41. DOI: 10.1016/j.cma.2012.03.028.

[10] T. Belytschko, R. W. Lewis, D. Perić, and R. L. Taylor. “Isogeometric
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