
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Integrierte Systeme

Dynamic Partial Self-Reconfiguration of FPGAs for
Digital Broadcasting Receiver Systems

Michael Feilen

Vollständiger Abdruck von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Wolfgang Utschick
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Walter Stechele

2. Prof. Raymond Knopp, Ph.D.

Die Dissertation wurde am 05.07.2016 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 21.02.2017
angenommen.

Abstract

Partial reconfiguration of field-programmable gate arrays enhances the design-space by
unconfined repurposing of logic elements to virtually enlarge the available resources of
a programmable device. In this work, the benefits and drawbacks of partial FPGA
reconfiguration in radio receiver systems will be outlined. The analysis comprises de-
sign considerations for self-adapting receiver systems, where resources are shared among
different reconfigurable areas. The derivation of the resource requirements and expla-
nation of the design complexity delivers an insight into the applicability of an adaptive
receiver system using partial reconfiguration. In addition to the analysis of self-adapting
systems, a framework for block-wise execution of receiver chain elements on partially
reconfigurable systems will be introduced. Using this framework, the timing constraints
for the execution and the delay implications of the receiver chain elements will be derived
and analyzed by means of a prototype implementation. Given the previously derived
approaches, an efficient algorithm for receiver chain partitioning will be introduced and
analyzed in terms of efficiency and performance. Finally, it will be concluded that it is
possible to implement resource-efficient adaptive receiver chains using partial FPGA re-
configuration and that new design tools are required to exploit the hardware possibilities
of state-of-the art FPGAs.

i

Acknowledgments

Writing this thesis was an exciting journey, and I thank all people who accompanied me
during the time of my studies with their inspiration and patience. First, I would like
to thank my supervising Professor Walter Stechele for his scientific reasoning and con-
structive advise – without his support, this work would not have been possible. I express
my sincere appreciation to Professor Andreas Herkersdorf, head of the Institute for In-
tegrated Systems for his engagement, for valuable discussions and for allowing me to be
a part of his research team. Furthermore, I am grateful for fruitful discussions and con-
structive criticism by my colleague and friend Matthias Ihmig, who assisted me during
my project work. In addition, I am thankful for the aspiring guidance and constructive
feedback of Dirk Koch, Michael Vonbun and Lothar Stolz, who replied to my questions
with scientific precision and a lively sense of humor. It was a pleasure to be able to
supervise excellent students at the Technical University of Munich, namely, in chrono-
logical order: Stefan Strasser, Yu Qi, Ali Adan Malik, Philipp Schmidbauer, Anton
Zahlheimer, Daniel Münch, Christian Schwarzbauer, Markus Gnadl, Hussein Alasadi,
Andreas Iliopoulos, Michael Ruf and Korbinian Berthold. I am very thankful for their
substantial contribution to my research. With the same gratitude I thank all staff mem-
bers and Ph.D. colleagues at the institute for a brilliant research climate that shaped my
scientific thinking, and Professor Andreas Steil, for his valuable feedback to meaningful
questions. Warm thanks also to Norbert Niklasch, head of the IZ40 Sensor Signal Pro-
cessing department at IABG, who inspired and encouraged me to put my results into
words. Finally, I would like to thank the Bundesministerium für Wirtschaft und Tech-
nologie and TÜV Rheinland for supporting my work in the context of the DEUFRAKO
project under Grant 10 P 8012B.

With gratitude and love I thank Lena, Julius and Carla for their everlasting support.

Munich, June 2016 Michael Feilen

ii

Contents

1 Introduction 1
1.1 Field-Programmable Gate Arrays . 1

1.1.1 Dynamic Partial Self-Reconfiguration of FPGAs 4
1.1.2 Difference-Based DPR System Design Flow 8
1.1.3 Partition-Based DPR System Design Flow 9

1.2 Digital Broadcasting Receivers . 10
1.2.1 Selected Standards . 10
1.2.2 Receiver Design and Properties 12

1.3 Scope of this Work . 13
1.4 Structure of this Work . 14

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers 16
2.1 Related-Work and Contribution . 16
2.2 FM Sound Broadcasting . 18
2.3 A modularized FPGA-based FM Receiver 21

2.3.1 Receiver Modules . 21
2.3.2 Synthesis and Hardware Setup . 34

2.4 An MPX-based SNR Estimator for FM Radio 39
2.4.1 Estimator Requirements and Restrictions 40
2.4.2 FM Demodulation in Presence of Noise 41
2.4.3 MPX-Based Noise Power Estimator Design 44
2.4.4 Hardware Implementation . 50
2.4.5 SNR-Related Reconfiguration Conditions 52

2.5 An SNR-Adaptive FM Receiver using Partial Reconfiguration of FPGAs 54
2.5.1 Single-Island Design . 54
2.5.2 Multi-Island Design . 60

2.6 Resource-Efficient Concurrent Receivers using DPR 62
2.6.1 Motivation . 62
2.6.2 Proposed System . 65
2.6.3 Resource-Shared Dual-Decoder Case Study 65

2.7 Summary . 70

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules 72
3.1 Related-Work and Contribution . 73
3.2 System Model . 75

3.2.1 Cyclic Reconfiguration Flow . 75
3.2.2 Module Throughput and Data Framing 77
3.2.3 Hardware Model . 80

iii

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis 84
3.3.1 Resource Utilization and Dominating Processing Elements 88
3.3.2 Framing and Context Lifespans 90
3.3.3 Receiver Partitioning . 92
3.3.4 Memory Throughput and Execution Time 93
3.3.5 Real-Time Constraints and Latency 97

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware Implementation . . . 100
3.4.1 Static Environment of DPR System 101
3.4.2 DPR Simulation and Bitstream Generation Flow 103
3.4.3 Resource Utilization and Comparison 106
3.4.4 Cyclic DPR Receiver Memory Requirements 109

3.5 Feasibility Analysis for a DVB-T2 Baseband Decoder using Cyclic DPR . 112
3.5.1 System Architecture . 112
3.5.2 Real-Time Constraints . 114
3.5.3 Feasibility Analysis . 116
3.5.4 Memory Constraints . 117

3.6 Summary . 121

4 High-Level Receiver Partitioning for Cyclic FPGA Reconfiguration 122
4.1 Related-Work and Contribution . 122
4.2 The Partitioning Problem . 123
4.3 Performance Metrics for DPR Module Sets 125

4.3.1 Minimum Resource Variance Metric 125
4.3.2 Minimum Output Data Throughput Metric 127
4.3.3 Combined Throughput and Variance Minimization Metric 128

4.4 A Reduced-Complexity Partitioning Problem Solver 128
4.5 DAB Decoder Chain Partitioning . 130

4.5.1 Weighting of Single Resource Elements 131
4.6 Summary . 133

5 Conclusion and Outlook 134

iv

List of Figures

1.1 FPGA application layer resource floorplan. 2
1.2 FPGA configuration layer and application layer tiling. 3
1.3 Schematic diagram of a partially-reconfigurable FPGA system. 5
1.4 Difference-based reconfiguration flow with four DPR modules. 8
1.5 Partition pins and proxy logic locations for partition-based DPR systems. 9
1.6 OFDM receiver signal flow graph. 12
1.7 Structure of this thesis and major units of observation. 14

2.1 Double-sided power spectral density of FM baseband signal. 19
2.2 Windowed one-sided power spectral density of FM multiplex signal. . . . 20
2.3 FPGA-based FM/RDS receiver signal flow-graph. 22
2.4 Arcus-tangent quadrature discriminator for FM demodulation. 25
2.5 FM digital PLL discriminator signal flow. 26
2.6 Digial PLL output signal and intermediate signal. 27
2.7 Digital PLL hardware implementation. 28
2.8 Combined filtering and decimation for FM audio signal extraction. 29
2.9 MPX pilot DPLL angular frequency estimator. 30
2.10 Pilot PLL input and output signals with additive white Gaussian noise. . 31
2.11 FM RDS carrier and bit-clock recovery hardware implementation. 32
2.12 BER performance of different RDS demodulator implementations. 34
2.13 FM receiver development and implementation tool-flow. 35
2.14 Complex FM baseband signaling and clocking. 35
2.15 Xilinx Spartan-3A FPGA with data-flow to PC DAQ board. 36
2.16 FM receiver relative resource consumption on Xilinx XC3SD3400A FPGA. 38
2.17 Xilinx ML506 Virtex-5 FPGA board connected to Spartan-3 USB board. 39
2.18 FM demodulation in presence of AWGN. 42
2.19 Simulation and theory of MPX signal and noise PSD. 43
2.20 MPX noise power in relation to FM signal-to-noise ratio. 44
2.21 Poles of discrete second-order IIR resonator inside z-plane. 46
2.22 Frequency response of cascaded IIR two-pole resonator. 47
2.23 Noise power estimation performance using a six-stage IIR resonator. . . . 48
2.24 Noise power correction fuction. 49
2.25 Root-mean-squared error of FM signal-to-noise estimator output in dB. . 50
2.26 Hardware implementation of an MPX-based noise estimator. 51
2.27 BER approximation for coherent RDS demodulation against FM CNR. . 52
2.28 Single-island reconfigurable FM receiver system design. 55
2.29 FM receiver relative resource consumption of Xilinx XC5VSX50T FPGA. 56
2.30 DPR receiver system design tool-flow. 57
2.31 Microblaze software bringup and reconfiguration loop flowchart. 57

v

2.32 Reconfigurable broadcast FM receiver demo system. 60
2.33 Dual-partition reconfigurable FM receiver design. 61
2.34 MPX dual-decoder accumulated module resources on XC5VSX50T FPGA. 63
2.35 MPX triple-decoder accumulated module resources on XC5VSX50T FPGA. 64
2.36 Dual resource-sharing reconfigurable system design. 65
2.37 Dual resource-sharing reconfigurable FM receiver system design. 66
2.38 Dual resource-sharing reconfigurable system design. 68
2.39 Dual resource-sharing reconfigurable system design. 69
2.40 FPGA floorplan showing routing leakage for adjacent partitions. 70

3.1 Concurrent execution of processing elements in traditional designs. 72
3.2 Trading FPGA resources against time using cyclic DPR. 72
3.3 Sequential chain of processing elements. 75
3.4 Cyclic module reconfiguration flow graph. 76
3.5 Sequential chain of DPR modules. 77
3.6 Cyclic execution flow-graph of DPR modules with throughput annotation. 78
3.7 Module execution timing diagram and DPR processing delay. 79
3.8 Single-island FPGA reconfiguration hardware model. 81
3.9 Memory access pattern during DPR module processing. 82
3.10 Framing structure of DAB baseband stream. 84
3.11 DAB receiver processing element chain. 85
3.12 ZTEX USB-FPGA-Module 1.11c with Xilinx Spartan-6 LX25. 86
3.13 DAB receiver system architecture on ZTEX FPGA platform. 87
3.14 DAB receiver PE synchronization using AXI streaming FIFOs. 88
3.15 Annotated DAB chain graph with different context lifespans. 91
3.16 DAB chain partitioning into three DPR module. 92
3.17 Peak memory throughput during DPR module execution. 96
3.18 Cycle time for DAB frame-based execution with 20MHz ICAP. 98
3.19 Cycle time using a duration of two DAB frames with 20MHz ICAP. . . . 98
3.20 Latency for DAB frame-based execution with 20MHz ICAP. 99
3.21 Cycle time for CIF-based execution with 100MHz ICAP. 100
3.22 Cyclic DPR system and DAB receiver signal and control flow. 101
3.23 Screenshot of the RTL simulation model for DAB receiver modules. . . . 104
3.24 Single-island test system for Spartan-6 FPGA reconfiguration. 105
3.25 Difference-based bitstream generation tool-flow for the DAB receiver. . . 106
3.26 Relative resource consumption for DAB receiver on XC6SLX25. 107
3.27 Relative resource saving using DPR compared to static design. 108
3.28 External memory map of the cyclic DPR DAB receiver. 111
3.29 Signal flow-graph of a DVB-T2 receiver chain and DPR module partitioning.112
3.30 Cyclic execution of FEC and DEMOD modules using DPR. 113
3.31 Number of DPR module execution cycles for DVB-T2 baseband decoder. 118
3.32 Buffer memory and processing delay for DVB-T2 baseband decoder. . . . 120

4.1 Binary tree with possible partitioning solutions inside the leafs. 124
4.2 Weighted resource partitioning of PEs favoring slices and BRAMs. 131
4.3 Non-weighted resource partitioning of PEs favoring slices only. 132
4.4 Non-weighted resource partitioning of PEs favoring BRAMs only. 133

vi

List of Tables

1.1 Xilinx Virtex FPGA configuration interface parameters. 4
1.2 European VHF frequency bands according to ITU-R 432-7. 10

2.1 Overview of possible receiver configurations. 23
2.2 Receiver sampling rates at 36MHz FPGA clock frequency. 24
2.3 FM multiplex signal filter design parameters. 28
2.4 FM receiver resource consumption on Xilinx XC3SD3400A FPGA. 37
2.5 SNR operation thresholds for different FM receiver module configurations. 53
2.6 FM receiver resource consumption on Xilinx XC5VSX50T FPGA. 55
2.7 Reconfiguration performance with HWICAP at PLB without DMA. . . . 58
2.8 Reconfiguration time estimates for single-island DPR partition. 59
2.9 Resource consumption of single-island DPR receiver. 59
2.10 Multi-island receiver resource requirements. 61
2.11 MPX accumulated module resources for resource-sharing implementation. 66

3.1 Cyclic DPR module-related task durations according to Popp and Feilen. 77
3.2 Hardware-related system model parameters. 81
3.3 DPR module implementation-related parameters. 81
3.4 Duration of the different DAB framing units. 85
3.5 DAB receiver processing elements description. 86
3.6 Xilinx implementation options for 2048-point FFT on Spartan-6 FPGA. . 88
3.7 Xilinx implementation options for Viterbi decoder on Spartan-6 FPGA . 89
3.8 Resource utilization and data throughput of DAB receiver PEs. 90
3.9 DAB receiver resource utilization on ZTEX module 1.11c. 90
3.10 DPR module resource utilization and I/O throughput. 93
3.11 Number of cycles for the initialization and execution of the DPR modules. 95
3.12 DPR-based DAB receiver resource utilization on ZTEX module 1.11c. . . 107
3.13 Amount of data transferred between DPR modules per DAB frame. . . . 110
3.14 Buffer memory requirement of the cyclic DPR DAB receiver. 111
3.15 Resource requirements for FEC part on Xilinx Kintex FPGA. 113
3.16 Number of used carriers NC for NFFT FFT bins. 114
3.17 Minimum cycle times for TEX,FEC “ 800µs and TEX,DEM,1k “ 25µs. . . . 117

4.1 Resources and output data rates of the receiver PEs and accumulated
resources of the balanced DPR modules. 130

vii

”Papa, wenn Deine Arbeit fertig ist,
feiern wir ein Fest.”

— Julius - 2015

viii

1 Introduction

Increasing computational demands, stricter power constraints for mobile operation and
ambitions to reduce the chip count put field-programmable gate arrays (FPGAs) in direct
competition with application-specific integrated circuits (ASICs). For the development
of modern receivers for digital broadcasting, cost-effective FPGA-based implementa-
tions with minimum resource utilization are of concern. Dynamic partial reconfiguration
(DPR) of FPGAs provides additional degrees of freedom for the optimization of a design
in terms of resources. In how far partial reconfiguration is feasible for the optimization
of a particular receiver implementation and to what extend it imposes implications on
the FPGA system design is within the scope of the outlined research. Considering the
derived implications, design strategies for the realization of resource-economic receivers
for digital broadcasting will be proposed and analyzed.

Explanations given in the following chapters require an understanding of FPGA archi-
tectures and properties of broadcast receivers. Knowledge required to comprehend the
concepts to be presented will be summarized further on.

1.1 Field-Programmable Gate Arrays

Field-programmable gate arrays are configurable integrated circuits for implementing
logical functions. The internal structure of an FPGA varies among manufacturers and
by device family. Technology-wise, different FPGA memory cell types exist, such as
flash-, anti-fuse- and static random-access memory (SRAM)-based memory cell designs.
In terms of configurability and logic density, SRAM-based FPGAs are the most versatile
choice for many applications. At the time of writing, the two leading manufacturers
of SRAM-based FPGAs are Xilinx and Altera with a combined market share of almost
90%, cf. [Joh11]. The company Xilinx Inc. was founded by Ross Freeman and Bernard
Vonderschmitt in 1984, based on their patented ”Logic Cell Array” technology [Gra04].
Support for dynamic partial reconfiguration of Xilinx FPGAs has been available since
2003 [BBHN04], whereas Altera made DPR officially available with the introduction of
the Stratix V devices in 2013 [Rhe13]. A detailed report about modern FPGA architec-
tures and technologies of various vendors is provided by Kuon et al. in [KTR08].

Due to the better tool support at the time of writing, the hardware-specific analysis
in this work has been accomplished with Xilinx FPGAs. The tools that have been used
for system design, synthesis and software development are Xilinx Integrated Synthesis
Environment (ISE), Xilinx Software Development Kit (SDK), Xilinx Embedded Devel-
opment Kit (EDK) and the latest Xilinx Vivado design suite. Signal processing systems
have been designed using Xilinx System Generator together with Matlab/Simulink from
Mathworks.

1

1 Introduction

FPGA Application Layer

FPGAs provide different resources, such as lookup tables (LUTs), flip-flops (FFs), shift
registers, hardware multipliers denoted as digital signal processing (DSP) units or DSP48
units, block random access memory (BRAM) and other components. Residing in the
application layer, these resources can be configured by the user to perform certain tasks.
Programmable internal routing networks in the same layer allow to interconnect the
mentioned FPGA components and link them to external input and output (I/O) pins.
For physical interaction with these pins, configurable I/O Blocks (IOBs) and special
high-speed interfaces such as multi-gigabit serial I/O transceivers are provided.

Figure 1.1: FPGA application layer resource floorplan.

Figure 1.1 shows a typical resource floorplan of an SRAM-based FPGA. An FPGA-
specific set of LUTs and FFs is denoted as configurable logic block (CLB). The CLB
resources are interfaced to the FPGA wire network using programmable switching matri-
ces (PSM). In addition to this wire network, FPGAs comprise user-programmable clock
signal trees to supply internal sequential logic elements. A clock signal can be distributed
within a certain clock region, either directly driven by an external clock input pin or by
a programmable phase-locked loop (PLL) from a digital clock manager (DCM). Once
configured, the CLB slices, hardware multipliers, dedicated memory blocks and wiring
resources resemble the user-defined logic functionality implemented by the FPGA.

FPGA Configuration Layer

The configuration and memory state of the application layer is controlled by the configu-
ration layer of the FPGA. Once the configuration is accomplished, the FPGA application
layer will resemble the user-defined digital circuity. Xilinx FPGAs are equipped with a se-
lectable microprocessor access port (SelectMAP) and a Joint Test Action Group (JTAG)
configuration access port accessible via external I/O. Additionally, modern FPGAs pro-
vide a serial peripheral interface (SPI) and a byte peripheral interface (BPI). Data written
to these ports is forwarded to a configuration packet processor (CPP), which interprets

2

1.1 Field-Programmable Gate Arrays

the supplied bits and provides read and write access to the frame data register (FDR)
and control registers. In modern Xilinx FPGAs, an internal configuration access port
(ICAP) gives access to the CPP from inside the application layer, on Altera FPGAs
this counterpart is called partial reconfiguration control block (PRCB). By writing to
this controller, FPGA self-reconfiguration can be performed, i.e. triggered internally by
user-defined logic operations.

Figure 1.2: FPGA configuration layer and application layer tiling.

In Figure 1.2, the configuration layer is schematically sketched. It is partitioned into
multiple configuration rows, on modern devices sometimes split into a top half and into a
bottom half. Each configuration row contains multiple configuration columns for the dif-
ferent resource elements, such as CLBs, DSP48 slices, BRAMs or IOBs. A configuration
column holds an integer number of configuration frames, which are the smallest address-
able storage units in an SRAM-based Xilinx FPGA. A configuration frame is composed
of multiple configuration words and the number of bits per configuration frame is ob-
tained by multiplying the configuration interface width by the configuration word count.
It is possible that the data of one configuration frame may affect multiple resource ele-
ments in the application layer, e.g. the wiring of multiple CLBs. Within the application
layer domain, a configuration datastream can be supplied through the ICAP to the CPP.
Upon successful synchronization, the CPP will forward the configuration frame informa-
tion embedded into this stream to the input FDR. After a complete frame has been
written to the FDR, the register contents are transferred to the FPGA configuration
memory and the application layer changes will be applied. For consistency checking and
comparison, it is possible to read back configuration frames through the output FDR.

Table 1.1 depicts the configuration interface parameters for state-of-the-art Xilinx
Virtex FPGAs. Since the parameters are spread across different documents, individual
references have been provided. Xilinx undiscloses the number of frames per column for
newer FPGAs, wherefore they have not been provided in this work for Virtex-6 and
Virtex-7 devices. Configuration interface widths of 32 bits per configuration word are

3

1 Introduction

Xilinx FPGA Generation #Cfg.Words
Cfg.Frame

#CLBs
Cfg.Column

#CLB{DSP{BRAM Cfg.Frames
Cfg.Column

Virtex-7 101 [Xil15a] 50 [Xil14] N/A
Virtex-6 81 [Xil15b] 40 [Xil14] N/A
Virtex-5 41 [Xil12d] 20 [Xil12c] 36, 28, 30 [Xil12d]
Virtex-4 41 [Xil09b] 16 [Xil12c] 22, 21, 20 [Xil08]

Table 1.1: Xilinx Virtex FPGA configuration interface parameters.

used across all Virtex devices, together with a maximum configuration clock frequency
of 100MHz. Thus, read and write access to the CPP via the ICAP can be performed with
a maximum rate of 3.2Gbit/s. Note that the number of frames per column for BRAM
resources refers to the interconnect configuration only, but not to the BRAM content,
which requires a larger number of configuration frames [Xil12d]. It can be observed that,
from one FPGA generation to the next, the configuration frame size increases in terms
of words per frame, leading to an increased minimum configuration period.

FPGA Configuration Bitstream

The configuration datastream presented to the internal or external configuration inter-
faces is typically referred to as bitstream. In addition to command information it contains
the configuration data with header information, such as row and column addresses for
partial writes. In Xilinx FPGAs, synchronization to the bitstream is accomplished by
the 32 bit sync-word 0xAA995566, where 0x indicates hexadecimal notation. The bit-
stream content is FPGA-specific and documented in the respective FPGA configuration
user guide. Bitstreams with configuration data affecting only a subset of configuration
frames are called partial bitstreams. Error detection and intellectual property protec-
tion can be employed by cyclic redundancy checksum (CRC) comparison commands and
symmetric bitstream encryption according to the advanced encryption standard (AES).
Further information on the bitstream format and other hardware-related details about
the configuration architecture can be found in the respective FPGA configuration user
guide.
Replacing specific portions in the FPGA application layer by writing partial bitstreams

to the ICAP will be referred to as partial self-reconfiguration in this thesis. Achieving this
without disturbing other application layer functions will be denoted as dynamic partial
self-reconfiguration. Subsequently, the possibilities and constraints of this reconfiguration
approach will be explained.

1.1.1 Dynamic Partial Self-Reconfiguration of FPGAs

Dynamic partial self-reconfiguration describes the ability of an FPGA to self-reconfigure
an internal application layer partition, without interrupting the surrounding logic of this
partition. A precise specification of the terming can be introduced as:

• Dynamic describes the ability to configure the FPGA (or portions of it) while
a subset of logic resources and clock networks of the device remain operational.
Typically, the continuously operating region is referred to as the static partition.

4

1.1 Field-Programmable Gate Arrays

• Partial describes the ability to change parts of the FPGA application layer by
updating a subset of configuration frames. The area in which one or multiple
adjacent configuration columns and rows are changed is denoted as reconfigurable
partition and is typically of rectangular shape in the resource floorplan.

• Self-Reconfiguration means that the FPGA provides an internal port to access
the configuration layer from within the application layer. In case of Xilinx FPGAs,
this port is called ICAP.

Temporal resource-multiplexing of FPGA resources is a major motivation for using
partial FPGA reconfiguration, because re-using the FPGA resources for different features
means being able to adapt to certain situations. A region of contiguous reconfigurable
resources will herein after be referred to as reconfigurable partition or DPR partition.
Typically, it is interfaced to the static partition using dedicated resource elements, fur-
ther denoted as bus macros or proxy logic. Application subsets or features, specifically
designed to be instantiated and to operate inside a DPR partition, will furthermore be
referred to as DPR module.

Figure 1.3: Schematic diagram of a partially-reconfigurable FPGA system.

In Figure 1.3 a conceptual DPR system is sketched with two DPR partitions A and B
of equal size and multiple DPR modules. Writing the partial bitstream of a DPR module
to the reconfiguration interface updates one of the specific DPR partitions as coded in
the bitstream, i.e. the partition the DPR module has been specifically implemented for.
Since it took about 20 years for DPR to grow from a research topic into a state-of-the-

art design methodology, it is necessary to introduce the research landmarks that lead
to the concepts employed today. Subsequently, the current approaches will be put into
context by a brief historical review.

A Historical Abstract of Dynamic Partial Reconfiguration

Conceptual ideas on dynamic FPGA reconfiguration appeared shortly after the first gen-
eration of FPGA devices emerged on the market in 1986. For example, in 1989, Gray and
Kean announced ”A new paradigm for computation” by the introduction of configurable
array logic, referred to as CAL. The authors emblaze the possibilities of the structure in
different case studies and emphasize the benefit to ”restructure the hardware for a given
algorithm”[GK89]. A few years later, Thomas C. Waugh presented SPLASH[Wau91],
a reconfigurable linear logic array which allowed run-time reconfiguration of 32 indi-
vidual Xilinx XC3090 FPGAs. These FPGAs did not provide self-reconfiguration, but
reconfiguration was triggered externally.

5

1 Introduction

A landmark coining the term dynamic reconfiguration was published in 1994 by Lysaght
and J. Dunlop called ”Dynamic Reconfiguration of FPGAs”, where the authors describe
the possibilities of run-time reconfiguration with state-of the art devices [LD94b]. At
about the same time, the first adaptive signal processing implementation that made use
of dynamic reconfiguration was presented in the work of Patrick Lysaght and Hugh Dick
[LD94a]. In their publication, an implementation of a short-term autocorrelation func-
tion on a Xilinx 4005 and an Atmel AT6005 with externally-triggered reconfiguration is
outlined. Furthermore, the authors compare the system complexity with a DSP system
and conclude that, in terms of complexity, the autocorrelation FPGA setup was ”not
competitive today”, and they predict that a ”new hybrid device” with a microprocessor
integrated into an FPGA would probably make the design competitive to a DSP.

In 1994 DeHon took the idea of time-multiplexed programmable hardware one step
further and presented the concept of the dynamically programmable gate array (DPGA).
The idea behind such a device is to have multiple logic configuration sets, so called ”con-
texts”, stored in an on-chip memory. The DPGA allows to quickly switch between the
different contexts, and thus hardware functionality, at runtime. All context information
is provided on load by a single configuration bitstream. The paper describes the benefits
of ”rapid reconfiguration” and mentions that DPGA array elements could be ”reused in
time”. A first DPGA hardware prototype has been presented by Tau, Chen, Eslick and
Brown at the Artificial Intelligence Laboratory of the Massachusetts Institute of Tech-
nology in 1995 (cf. [TCEB95]). The functionality and the routing of the gate array could
be altered within a single clock cycle, thereby changing the functionality of a 4-input
LUT together with a crossbar configuration. DeHon supervised this project and pre-
sented an analysis on the utilization of DPGAs in ”DPGA Utilization and Application”
one year later (cf. [DeH96]). As far as commercially available DPGAs are concerned, in
2008 Tabula, a company founded 2003 by Steve Teig, released the ABAX2 P1 DPGA
called a 3PLD.

The temporal multiplexing of FPGA logic elements to subsequently execute blocks of
a continuous processing pipeline has first been presented by Villasenor et al. in [VJS95].
The authors used a configurable logic array (CLAy31) and an erasable programmable
read-only memory (EPROM) holding the configuration bitstreams, which were loaded
by an external finite-state machine (FSM) on an Altera EP600 EPLD. Partial reconfig-
uration has not been used but instead the entire configuration of the FPGA has been
swapped in a round-robin fashion. A similar idea for temporal multiplexing of processing
blocks is revisited in Chapter 3 of this thesis.

Another landmark in reconfigurable computing is the work of Wirthlin and Hutch-
ings, who in 1995 presented their Dynamic Instruction Set Computer, called DISC
(cf. [WH95]), one of the first implementations using partial reconfiguration with the
aim to reduce the reconfiguration time. DISC resembles a normal processor with the
benefit of a run-time reconfigurable instruction set. A static ”global controller” inside
the National Semiconductor CLAy31 FPGA contains the necessary CPU components,
such as status, data and address registers, program counter and instruction register.
The column routing resources are used as shared control, data and address lines for
the different reconfigurable modules. The authors quantify the reconfiguration overhead
between 16 % and 71 % of the total operating time. About two years later, Wirthlin
and Hutchings presented a metric to estimate the functional density of static and dy-
namic FPGA designs in [WH97]. The equations lead to the conclusion that, in general,

6

1.1 Field-Programmable Gate Arrays

functional density reduces along with an increase in reconfiguration time. The authors
propose to use partial reconfiguration of FPGAs to reduce the configuration time and
thus increase the functional density of the system. Provided that the reconfigurable par-
tition is small, the authors show that for a system with a high number of execution cycles
per reconfigurable module, the functional density of a reconfigurable system exceeds the
functional density of a static system. Another important work of the same decade is
the time-multiplexed Artificial Neural Network system from Elderedge and Hutchings,
presented 1996 (cf. [EH94]), where the logic of a Xilinx XC3090 FPGA is cyclically
reconfigured between three distinct configurations.
Given the vital research on partial reconfiguration in the 1990s, Trimberger et al.

proposed ”the time multiplexed FPGA” in 1997 (cf. [TCJW97]). The work of Trimberger
builds on top of the ideas of R. Ong, who filed a patent in 1995 for the design of an
FPGA with DPGA functionality. The authors propose a new architecture based on a
Xilinx XC4000E FPGA and suggest three modes of operation:

1. Logic-Engine Mode: Virtually enlarge the combinational logic by re-using, i.e.
re-configuring, the FPGA LUTs within a ”microcycle” or ”user clock cycle”. As
the duration of a microcycle depends on the complexity of the time-multiplexed
circuit, it is equal to one or multiple FPGA clock cycles. Trimberger suggests
using flip-flops as intermediate buffers and also allow to feed-forward combinational
outputs.

2. Time-Share Mode: Multiple LUT and Flip-flop resources can be reconfigured by
a user-defined trigger. In contrast to (1), one reconfigurable module is executed for
multiple FPGA clock cycles and then replaced by another module using dynamic
reconfiguration.

3. Static Mode: The FPGA logic will not be affected by reconfiguration.

The approaches presented in this thesis require the FPGA to operate in time-share
mode, where the configuration layer is re-written to update a subset of FPGA resources.
Additionally, dynamic self-reconfigurability of the device is required, such that a con-
tinuously operating static FPGA partition can perform an update of a DPR partition
by writing to the configuration layer controller. Although the first Xilinx Virtex de-
vices supported partial reconfiguration, they did not provide an internal configuration
controller. Hence, self-reconfiguration by internal wiring was not possible. With the
introduction of the ICAP with the Xilinx Virtex-II Pro FPGA family, dynamic partial
self-reconfiguration became available. Since then, several DPR architectures and ap-
plications for the Virtex-II Pro family have emerged. However, with one configuration
frame spanning all primitives within a full device column, the Virtex-II FPGA applica-
tion layer fabric did not allow a vertical, i.e. CLB row-wise, area partitioning, which
was disadvantageous in terms of routing and area usage. With the introduction of con-
figuration rows with a height of 16 CLBs per configuration column, Virtex-4 FPGAs
abrogated this issue, thus enabling a fine-grained FPGA partitioning as presented in
[LBM`06]. The improved tiling architecture of modern Xilinx FPGAs allow even more
complex reconfigurable system designs with multiple DPR islands.
Today, improved vendor tool support makes the design of DPR systems much simpler

as compared to the time when DPR was first introduced (cf. [Xil14]). However, designing

7

1 Introduction

DPR systems is still challenging and requires to follow certain design steps and adhere to
specific design rules. The process to create partially configurable systems will be referred
to as DPR system design flow. Two popular flows will be subsequently explained: the
difference-based flow and the partition-based flow.

1.1.2 Difference-Based DPR System Design Flow

The difference-based design flow is described in [Xil07] and was originally referred to
as ”Small-bit Manipulation Flow”. Possible use cases are the manipulation of BRAM
contents, LUT equations or changing I/O standards. Albeit intended to be used for
minor application-layer modifications, the flow has also been used for large-scale de-
sign modifications (cf. [KBT08] and [MNH`11a]). A difference-based bitstream can be
generated using the Xilinx Bitgen command line tool with the option -r. The tool
compares the bitstream of a module A with the native circuit description (NCD) of the
destination module B and generates a bitstream with the differences of A and B. The
resulting bitstream will contain the configuration layer modifications for A that lead to
an application layer realization of B. Since generating a differential bitstream for a new
configuration requires the knowledge of the previous configuration, the difference-based
flow is disadvantageous for designs with more than two DPR modules as subsequently
depicted.

Figure 1.4: Difference-based reconfiguration flow with four DPR modules.

The graph in Figure 1.4 shows the differential bitstream configuration flow. Each edge
of the graph represents a partial bitstream and the four DPR modules are represented
by the nodes of the graph. Being able to switch from one module to any other module
requires twelve independent differential bitstreams, and for a system with M DPR mod-
ules MpM ´ 1q partial bitstreams would be required. By using blanking bitstreams this
number can be reduced to 2M , i.e. one bitstream for loading and one for deletion, at the
cost of one additional FPGA configuration cycle. Additionally, when using difference-
based reconfiguration, changes in the signal routing might lead to errors in the static

8

1.1 Field-Programmable Gate Arrays

partition or other reconfigurable partitions. This effect can be mitigated by the use of
blocker macros, which feign that all routing resources outside the DPR partition have
been occupied, thus forcing the routing algorithm to use interconnects inside the DPR
partition only. At the time of writing, there is no vendor tool support for restricting the
routing to certain areas. However, third party tools exist which make use of the Xilinx
design language (XDL) for blocker macro generation [BKT11].
A rather modern design flow supported by Xilinx is the partition-based design flow,

where routing and implementation of the DPR partitions can be performed indepen-
dently as subsequently outlined.

1.1.3 Partition-Based DPR System Design Flow

The partition-based flow is the DPR system design flow recommended by Xilinx and
is documented in [Xil12c] for Xilinx ISE designs and in [Xil14] for designs created with
Xilinx Vivado. It replaces the older module-based reconfiguration flow, which sometimes
is referred to as early access partial reconfiguration (EAPR) flow, in relation to the
naming of the respective Xilinx user guide.

Figure 1.5: Partition pins and proxy logic locations for partition-based DPR systems.

Using the partition-based design flow requires the definition of DPR partition bound-
aries, either by using tools like Xilinx PlanAhead or by manual definition of area con-
straints. The reconfigurable partition is allowed to enclose slices, block RAM and DSP
units. Resources like DCMs, PLLs and I/O resources must reside in the static partition.
For every signal, a LUT in route-through mode is used as proxy logic providing a parti-
tion pin to connect the static and dynamic regions (cf. Figure 1.5). These partition pins
are inserted automatically by the tool chain but can also be specified manually using
location constraints. Since the proxy logic is effectively a part of the static logic, it can
be placed anywhere inside the reconfigurable region. In partition-based designs, LUT
elements are used as proxy logic, providing unidirectional asynchronous communication
between the static and dynamic partitions. Resource-wise one LUT is allocated per
transition wire and signal direction. The locations of the proxy LUTs are fixed within
the area of a DPR partition and must therefore be known at implementation time of
each DPR module. During reconfiguration, the signals inside the DPR partition are
undefined. Therefore, connections to the static parts of the design should be decoupled
to avoid glitching input signals. When using the partition-based design flow, decoupling
can be achieved using enable flip-flops inside the static region as recommended by Xil-
inx in [Xil12c]. Since registering also reduces the combinational path delay, the timing
performance of the circuity can be improved at the cost of a unit delay.

9

1 Introduction

Exploiting the possibilities of DPR for digital broadcast receivers is part of the analysis
presented in the subsequent chapters and will therefore be explained in further detail.

1.2 Digital Broadcasting Receivers

According to the Collins English dictionary, an (analog) radio receiver is defined as
”an apparatus that receives incoming modulated radio waves and converts them into
sound” (cf. [Col11]). Instead of converting radio waves into sound, a digital receiver
converts radio waves into information. Improvements in encoding and decoding of this
information are the main driver for the introduction of new terrestrial, satellite and
cable-wire broadcasting standards deployed world-wide. Efficient coding usually means
low-bitrate high-quality audio and video source-coding as well as near Shannon limit
channel coding (cf. [ESL04]).

The way the information is coded is typically specified by an expert group and the
specification the group members agree on are commonly referred to as standard. Next,
the most important broadcasting standards related to this work will be introduced.

1.2.1 Selected Standards

The analysis presented in this work requires an introduction to the European terres-
trial broadcasting standards terrestrial digital video broadcasting (DVB-T), digital au-
dio broadcasting (DAB) and stereophonic analog frequency modulation (FM) including
the radio data system (RDS). In Europe, these standards are operated mainly in the
very high frequency (VHF) bands I to V according to ITU-R 432-7 (cf. [itu15]) as listed
in Table 1.2.

VHF Band Start of Band End of Band Standard

I 47MHz 68MHz -
II 87.5MHz 108MHz FM/RDS
III 174MHz 230MHz DAB
IV 470MHz 582MHz DVB-T
V 582MHz 960MHz DVB-T

Table 1.2: European VHF frequency bands according to ITU-R 432-7.

For signal reception and physical layer decoding, each standard requires individual ra-
dio frequency (RF) hardware and baseband decoding chains. The baseband decoder can
be implemented in hardware using FPGAs or ASICs or in software using Microproces-
sors. When implemented on an FPGA, dynamic partial reconfiguration can be utilized
to reduce the resource consumption in comparison to static FPGA implementations, as
derived further on in this work.

In order to classify the baseband decoder chains presented in the following chapters,
important historical and technical cornerstones will be outlined in chronological order.

10

1.2 Digital Broadcasting Receivers

FM/RDS

After the ratification of the Copenhagen frequency plan in 1948 the first frequency-
modulated audio broadcasts went on air in Europe. A few years later, the FM stereo-
phonic multiplex (MUX) signal was standardized and enabled broadcasting of two in-
dependent audio channels. The desire to uniquely identify FM broadcasts, to transmit
alternate frequency information and to carry traffic announcement signals lead to the
development of RDS within the years 1975 and 1984 (cf. [Rds]). Later on, RDS was
published as a standard by the International Electrotechnical Commission (IEC) in doc-
ument 62106 Edition 3. The system will be explained in further detail in Chapter 2 in
conjunction with an architecture for a reconfigurable FPGA-based FM receiver.

DAB

Research and development of the DAB system for the transmission of digital audio infor-
mation dates back to the 1980s and was driven by several European research institutes,
broadcasting companies and radio manufacturers within the EUREKA 147 project. First
receiver system concepts based on orthogonal frequency division multiplexing (OFDM)
were presented in 1989 by Floch et al. (cf. [LFHLC89]). Differential quadrature phase-
shift keying (DQPSK) and punctured convolutional coding were proposed for DAB,
allowing for efficient channel decoding using Viterbi’s algorithm and channel equaliza-
tion without dedicated channel estimation. Together with the invention of the MUSI-
CAM audio codec presented in 1991 (cf. [DLU91]), the first generation DAB system
was standardized in the early 1990s. In 2005, DAB+ emerged as next-generation radio
system, using Reed-Solomon coding in concatenation with the convolutional code and
high-efficiency advanced audio coding (HE-AAC) v2 for higher quality audio at lower bi-
trates. Nowadays, DAB and DAB+ are employed in several European countries as major
digital technology for sound broadcasting. The system specification is published by the
European Telecommunications Standards Institute (ETSI) in EN 300 401 [ets06]. The
architecture of an FPGA-based DAB receiver for terrestrial reception in DAB mode I
will be presented in Chapter 3 together with an approach to time-multiplex receiver
components using partial reconfiguration of FPGAs.

DVB-T

In 1993, the Digital Video Broadcasting Group was formed by major European media
interest groups to develop a new standard for digital video broadcasting (cf. [Dvb]). The
standard for terrestrial video broadcasting (DVB-T) was ratified in 1997 and the first
services went on air in Germany in 2002. Similar to DAB, DVB-T uses OFDM and con-
volutional coding. For transmit power efficiency reasons, coherent quadrature amplitude
modulation (QAM) is used instead of DQPSK. Thus, in contrast to DAB, in DVB-T
channel estimation and channel tracking are mandatory. In 2008, the successor DVB-T,
called DVB-T2, was adopted by the ETSI in EN 302 755 [Ets08]. DVB-T2 promises to
be 50% more power efficient than DVB-T by using high-order QAM, fewer pilot signals
and improved forward-error correction by concatenated low-density parity check code
(LDPC) and Bose-Chaudhuri-Hocquenghem (BCH) codes. In terms of computational
complexity, DVB-T2 is the most demanding terrestrial broadcasting standard. A pro-
posal for the design of a reconfigurable FPGA-based DVB-T2 baseband decoder will be

11

1 Introduction

outlined at the end of Chapter 3.

1.2.2 Receiver Design and Properties

Spectral efficiency and the possibility to use low-complexity channel estimation and
equalization routines have made OFDM the modulation scheme of choice for state-of-the-
art digital terrestrial broadcasting. According to Speth et al. an OFDM receiver can be
split into an inner and an outer part (cf. [SFFM99]). The inner receiver compensates for
all signal impairments such as timing offsets, frequency offsets, sampling clock offsets and
channel distortions and forwards the equalized carrier information to the outer receiver,
where channel decoding is performed. Figure 1.6 shows a simplified signal flow-graph of
an OFDM receiver including the inner and outer parts.

Figure 1.6: OFDM receiver signal flow graph.

The received signal is detected by the antenna and then down-converted in frequency
and amplified in power using an RF frontend. Digitization of the frontend output signal is
accomplished using an analog-to-digital converter (ADC) delivering a stream of quantized
in-phase and quadrature values, referred to as complex baseband signal. The complex
baseband signal is subsequently processed by a baseband processing chain, implemented
on an FPGA and subject to optimization. At the output of the chain, the decoded bits
are presented to a payload processor and forwarded to a sink for further processing.
Although the OFDM chain shows the most important blocks for the decoding of various
standards, each specific standard requires a tailored implementation.
The importance of the optimization of the baseband processing chain using DPR will

be elaborated on in the forthcoming sections, whereas the design and optimization of
other components, such as RF frontend, ADC or payload processor will not be concerned.

Baseband Processing Chain

The baseband processing chain is encircled by a blue dotted line in Figure 1.6. For
simplicity reasons the diagram shows a feed-forward-oriented data flow, which hides the
feedback structures of control loops typically used in receivers. The presence of feedback
structures in block-wise executed receiver chains will be further investigated in Chapter 3.
At the input of the baseband chain, the time-domain synchronization stage corrects

the frequency offset, the sampling rate offset and the temporal demodulation window
offset. After the guard interval has been removed, the discrete Fourier transform (DFT)

12

1.3 Scope of this Work

operation converts the signal into the frequency domain. The DFT is typically calculated
using the computationally efficient fast Fourier transform (FFT) algorithm. If present,
the pilot signals are extracted from the modulated carrier bins and subsequently used for
channel estimation. Using simple zero-forcing or more advanced equalization methods,
the impairments of the terrestrial broadcast channel are equalized and the modulated
symbols are demapped. The obtained log-likelihood ratio (LLR) values, also called
soft bits, are fed to a forward error correction (FEC) decoder for channel decoding.
Depending on the type of channel decoder, the LLR values need to be interleaved to
spread error bursts across a frame of data. Broadcast receivers typically use convolutional
interleavers to keep the receiver input-to-output latency at a minimum. The decoded
bits are then post-processed, for example by an energy dispersal sequence, and provided
to a payload processor and a sink.

Baseband Data-Flow

Although feedback is typically employed for synchronization and equalization control
loops, the data flow inside the receiver is mostly feed-forward-oriented. The data rate of
the sequentially processed information stream is typically decreasing from the baseband
input to the decoder output, i.e. the data rate of the complex baseband stream is the
highest and the data rate of the output payload bitstream the lowest in the chain. Due
to the DFT operation, data needs to be processed block-wise, which inherently leads to a
latency in decoding. Additionally, the DFT block-size may be increasing or decreasing at
integer rates due to transmission framing. In case of broadcasting receivers, interleaver
frames or large FEC frames typically determine the latency of the system. The listed
data-flow properties are important for the analysis in Chapter 3 and Chapter 4.

Subsequently, the scope and structure of this work will be outlined by a description of
the research focus covered in the following chapters.

1.3 Scope of this Work

The research outlined in this work focuses on analyzing the benefits, limitations and
possibilities of temporal hardware resource multiplexing for digital receiver chain imple-
mentations using dynamic partial reconfiguration of FPGAs. Contributions of this thesis
and references to related works cover:

• Design aspects and benefits of reconfigurable hardware for self-adapting broadcast
receivers.

• Impacts of cyclic partial reconfiguration for block-wise execution of radio receiver
components by time-multiplexing of FPGA resources.

• Receiver chain partitioning for cyclic partial reconfiguration.

Since the scope of this work affects interdisciplinary subjects, the elaborated results
comprises contributions in the fields of signal processing and digital circuit design for
real-time systems.

13

1 Introduction

1.4 Structure of this Work

In each of the following chapters one individual aspect of temporal FPGA resource
multiplexing for digital signal processing chains will be discussed. Figure 1.7 shows
the structure of this thesis in a hierarchical diagram together with the major units of
observation. The first chapter is mostly self-contained, which means that despite minor
referencing it is possible to follow the analysis of the second and third chapter without
reading the first chapter. The description of related works, related contributions and
bibliography are explained individually in each chapter. An overview of the structure
and content of the subsequent chapters is given further on.

Thesis

Dynamic Partial Self-Reconfiguration of FPGAs
for Digital Broadcasting Receiver Systems

Chapter 2

Resource-efficient
adaptive receivers

using DPR

Multi-module
FM/RDS re-
ceiver design

MPX noise
estimator de-
sign and SNR

region definition

Dual MPX decoder
using resource-
sharing DPR

Chapter 3

Sequential exe-
cution of receiver
modules using
cyclic DPR

Cyclic DPR
system model

DAB receiver
implementation
using cyclic DPR

DVB-T2 re-
ceiver real-time

feasibility analysis

Chapter 4

Receiver partition-
ing for sequential
execution using
cyclic DPR

Weighted parti-
tioning problem

description

DAB receiver
partitioning

feasibility analysis

Figure 1.7: Structure of this thesis and major units of observation.

• Chapter 2: The design of a dynamically self-adapting FM/RDS radio receiver
using DPR of a Xilinx Virtex-5 FPGA will be presented, where partial reconfig-
uration of the receiver is triggered using a signal-to-noise ratio (SNR) metric. In
order to gain insight into the hardware complexity and system functionality, the
receiver implementation, the hardware setup and the resource requirements will be
outlined in detail. In addition, a method for receiver partitioning will be presented
and a novel FM signal quality estimator will be proposed. Switching criteria for
the reconfiguration of the dynamic partition will be derived from a receiver noise
disturbance model and the tool-flow of the dynamically self-adapting system will
be presented. Finally, a feasibility analysis for a multi-island resource-sharing re-
configurable system using vendor tools will be presented and the possibilities and
limitations of the resource-sharing approach will be discussed.

• Chapter 3: The implications of cyclic reconfiguration for the sequential execu-
tion of signal processing chain elements will be presented in the third chapter.

14

1.4 Structure of this Work

Starting from a system model for cyclic reconfiguration, the requirements for a
frame-wise execution of data will be derived. After presenting the buffering and
latency implications on the processing chain, two feasibility studies for two digi-
tal broadcast receiver systems will be presented. Resource estimates for a low-cost
Xilinx Spartan-6 FPGA will then be used to quantify the potential FPGA resource
savings and the effect of buffering latency for real-world receivers.

• Chapter 4: An efficient method for processing chain partitioning of FPGA hard-
ware designs using cyclic DPR will be elaborated. The partitioning problem will
be formulated after the presentation of related works and an approach to solve the
partitioning problem will be introduced. Using a weighted resource and latency
metric, an approach for selecting suitable partitioning candidates will be derived
and a novel approximation algorithm with linear time complexity will be presented.
The chapter is concluded by a case study for the partitioning of a real-world DAB
decoder chain.

• Chapter 5: A summary of the contributions and findings of this thesis will be
presented in the last chapter, followed by an elaboration of potential future works.

15

2 FPGA Self-Reconfiguration for
Adaptive Radio Receivers

The terrestrial broadcast transmission channel imposes impairments on the transmission
signal leading to a signal degradation at the receiver. Since the signal reception quality
influences the amount of information that can be recovered without error at the receiver,
working groups usually define minimum receiver requirements by means of an impair-
ment model. Thus, in conjunction with the specification of new radio standards, channel
models, simulation parameters and receiver performance values are defined to ensure that
a specified minimum performance can be achieved across all receiver implementations.
Compared to implementations targeting a reception performance close to the theoretical
optimum, minimum receiver requirements contain margins, leaving the developer with
headroom for complexity of the employed decoding algorithms. Exploiting this head-
room allows to use more or less complex algorithms and implementations. Adaptively
switching between these more or less complex implementations using an FPGA is possi-
ble by dynamic partial reconfiguration. The analysis of reconfigurable architectures and
the derivation of reconfiguration constraints for adaptive FPGA-based receiver systems
is the research focus of this chapter.
Given an SNR-based reception quality metric, an adaptive FM receiver implementation

using DPR will be presented. For this purpose, a novel SNR estimation routine will be
derived and a set of meaningful SNR threshold values will be introduced. In addition
to single-island and multi-island DPR solutions, a feasibility analysis for sharing FPGA
resources of a single DPR partition between two DPR modules will be presented, where
dynamic partial reconfiguration has been accomplished on a Xilinx Virtex-5 FPGA and
the DPR system has been implemented using the vendor tool-flow as recommended by
Xilinx.
The evaluation and design of adaptive signal processing chains is a wide research topic

with many scientific contributions. Explaining the scope and categorizing the contri-
butions of others is essential to put the matters of this work into context. Therefore,
related works will be subsequently outlined together with a presentation of the achieve-
ments described in this work.

2.1 Related-Work and Contribution

Dynamic partial reconfiguration of FPGAs is used for various applications in reconfig-
urable computing, audio and video processing as well as in software-defined radio (SDR)
systems. Works related to adaptive receiver chains and cognitive SDR systems are related
to the analysis presented in this chapter and of particular importance in the following
depiction of adaptive FPGA-based receivers.
In [DGRB04], Roland et al. dynamically reconfigure a phase-shift keying (PSK) filter

16

2.1 Related-Work and Contribution

on a Virtex 1000E FPGA for a cellular communication system using a modular design ap-
proach. The presented system is not self-adapting and an external DSP is controlling the
reconfiguration process. Similarly, Delahaye et al. presented a partially reconfigurable
software-defined radio system in [DPML07], where the exchange of a constellation map-
per, convolutional coder and finite impulse response (FIR) filter using DPR is described.
An SNR-driven reconfiguration system for WiMAX systems on a Xilinx Virtex-4 SX35
FPGA has been developed by Chitty et al. in [CKPLM10]. In his work, he describes
a link-adaption algorithm using an SNR estimation stage and SNR threshold values as
reconfiguration trigger, which is similar to the work presented in this chapter. The sys-
tem is designed using the Xilinx modular design flow with a fixed DPR partition, and,
in comparison to the approaches presented in this work, Chitty does not use the ICAP
for internal reconfiguration but uses an external computer to trigger a reconfiguration
by writing the partial bitstream to the SelectMAP interface.
Lotse et al. have investigated in bit error rate (BER)-adaptive reconfiguration of mod-

ulation schemes and dynamically adapted the constraint length of a convolutional code
given a certain channel scenario (cf. [LFDN09]). The authors used a Virtex-II Pro and
operated the BER decision engine on the Power PC core, which is also used to trigger the
reconfiguration. To save power, the authors propose to clear the DPR region if no receive
signal is present. In contrast to the subsequently presented approaches, the signal qual-
ity detection engine is operating in a fixed-size reconfigurable partition. Furthermore,
the system in [LFDN09] requires a feedback path to the transmitter for link-adaption.
In [MMT`08], Manet et al. describe the benefits and drawbacks of dynamic partial re-
configuration for signal processing applications. He describes the problem of partition
fragmentation, i.e. when the DPR partition size can not be changed during runtime, by
”wasted” resources. The described problem affects all previous works.
In this work, a hierarchical reconfiguration approach is described to overcome parti-

tion fragmentation and share resources between otherwise fixed DPR partitions. Design
approaches based on new third-party tools that show the feasibility of hierarchically
reconfigurable systems have been presented in [KB14]. In the subsequent sections, prac-
tical use-cases for the application of these new tools will be illustrated by means of a
self-adapting FM receiver system. Serving as a basis of the outlined work, the concept of
a resource-sharing SNR-adaptive receiver was first discussed in [MF10]. Two years later,
a similar reconfigurable FM receiver prototype was presented in [KTB`12]. In addition
to the published material, the major contribution of the work described in this chapter is
the comprehensible description of the processing chain complexity, modularization pos-
sibilities and reconfiguration approaches to realize an SNR-adaptive system with vendor
tools. The results highlight the limits and possibilities of reconfigurable receiver systems
and provide insights into the practical feasibility of reconfigurable FPGA-based receiver
systems in addition to the theory.
Given the outlined state-of-the art, the major contributions of this work are:

• The design of an FPGA-based SNR-adaptive FM receiver system using multiple
DPR partitions.

• The evaluation of hierarchical partial reconfiguration for FPGA resource-sharing
between two adaptive receivers.

• The design of a novel SNR estimation method based on estimating the noise power

17

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

in the band-gaps of the demodulated FM signal.

• A comprehensive description of the FM receiver implementation and complexity
analysis in context of dynamic partial reconfiguration.

Understanding the following sections requires an introduction to FM sound broadcast-
ing at VHF band II to be provided further on. In addition, hardware implementations
of FM receiver components and the design of a self-adapting FM receiver system using
multiple DPR partitions will be described.

2.2 FM Sound Broadcasting

Frequency modulation is a wide-spread analog modulation scheme used for audio and
voice communications. In order to understand the derivations in the subsequent sections,
a brief introduction to the baseband representation of an FM signal will be outlined. The
notation follows that of Werner in [WM06] and Kammeyer in [Kam08]. In the further
course of this section, the FM multiplex (MPX) signal structure will be presented and
the implications of noise disturbances in FM broadcasting will be explained.
Given is the complex-valued angular-modulated baseband signal xFMptq with constant

amplitude AFM and time-variant phase φptq as follows

xFMptq “ AFM ¨ ejφptq, (2.1)

where underlining indicates complex baseband notation and j denotes the imaginary
unit with the property j2 “ ´1. The carrier power of the constant-envelope signal in
Equation 2.1 at a resistive load of 1Ohm is equal to A2

FM. The signal xFMptq has a
time-variant angular frequency ωptq and the instantaneous angular frequency at a time
instant t is equal to the first derivative of the phase function φptq, i.e.

ωptq “
dφptq

dt
. (2.2)

Equation 2.2 states that the information carried in ωptq is represented by the changes of
the angular frequency over time, and this implies that the maximum frequency deviation
of the baseband signal xFMptq is determined by the peak values of ωptq. Therefore, the
peak frequency deviation of xFMptq can be expressed by

∆fMAX “
1

2π
max p|ωptq|q ,

where | ¨ | means taking the absolute value. Relating to a complex baseband represen-
tation of the FM signal, the peak frequency deviation reflects the maximum deviation of
the instantaneous frequency from 0Hz. Let the information carried in ωptq be represented
by a continuous real-valued signal xLFptq, e.g. xLFptq could be an audio signal. According
to the definition of frequency modulation, the instantaneous angular frequency ωptq is a
linear function of xLFptq, i.e.

ωptq “ KFM ¨ xLFptq, (2.3)

18

2.2 FM Sound Broadcasting

´80 ´60 ´40 ´20 0 20 40 60 80
´20

0

20

40

f in kHz

Φ
F
M

pf
q
in

d
B

Figure 2.1: Double-sided power spectral density of FM baseband signal.

where KFM denotes the modulation coefficient. Given a source-signal peak-to-peak
constraint of ´1 ď xLFptq ď 1, a modulation coefficient of KFM “ 2π∆fMAX and the
formulation in Equation 2.2, Equation 2.3 can be rewritten to

dφptq

dt
“ 2π∆fMAX ¨ xLFptq. (2.4)

Finally, Equation 2.4 can be reformulated by applying the second fundamental theorem
of calculus to obtain the a signal model for frequency-modulated signals as

φptq “ 2π∆fMAX

tż

0

xLFpτqdτ ` φ0,

where φ0 describes a the phase offset at t “ 0. Figure 2.1 depicts the power spectral
density (PSD) of a modulated FM audio baseband signal ΦFMpfq showing an approx-
imately triangular-shaped spectrum, which is characteristical for frequency-modulated
signals. The PSD was calculated using a received on-air audio program of 1 second
duration.
In the early days of FM sound broadcasting, a monophonic low-frequency signal xLFptq

has been used, either taken from a single channel audio source or from the sum of a stereo
audio program. For stereo broadcasts, the LF signal has been modified while preserving
backward-compatibility with older monaural receivers. According to the International
Telecommunication Union (ITU) in ITU-R BS.450-3 [Itu01b], this is achieved by using
the pilot-tone-based stereophonic multiplex signal, commonly referred to as MPX signal.
Decoding the FM signal resembles the real-valued MPX signal. The windowed one-sided
PSD of an audio broadcast is plotted in Figure 2.2.
As stated by the ITU in [Itu01a], in most countries the MPX signal consists of 4

components, where the continuous time-domain signals of the left and right MPX audio
channels are denoted by Lptq and Rptq, respectively:

• The sum audio channel Sptq “ 1
2
pLptq ` Rptqq, starting at around 15Hz with a

bandwidth of 15 kHz. Before MPX insertion, a pre-emphasis filter of first order
with a time constant of 75µs or 50µs is applied to Sptq.

19

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

0 5 10 15 20 25 30 35 40 45 50 55 60
´20

0

20

40

f in kHz

d
B

Figure 2.2: Windowed one-sided power spectral density of FM multiplex signal.

• The sinusoidal pilot tone at a frequency of 19 kHz, contributing at maximum 8%
to 10% to the peak frequency deviation.

• The difference audio signal Dptq “ 1
2
pLptq ´ Rptqq, located at 38 kHz with a one-

sided bandwidth of 15 kHz. The difference signal is generated using amplitude
modulation with suppressed carrier. Before MPX insertion, a pre-emphasis with a
time constant of 75µs or 50µs is applied to Dptq.

• The RDS signal is represented by a continuous stream of differentially-encoded
binary phase-shift keying (DEBPSK) symbols centered around 57 kHz in the FM
multiplex. Manchester coding is used for DC free transmission to avoid potential
cross-talk in existing stereo decoder PLLs [KM99]. The encoded bits are shaped
with a square root-raised cosine pulse with a roll-off factor of βSRRC “ 1. With a
gross data rate of 1187.5 bit/s, the Manchester-coded RDS signal has a one-sided
bandwidth of 2.375 kHz and hence a two-sided bandwidth of roughly 4.8 kHz.

From the audio sum and difference signals, the left and right audio channels can be
recovered by:

Lptq “ Sptq ` Dptq “
1

2
¨ rpLptq ` Rptqq ` pLptq ´ Rptqqs

Rptq “ Sptq ´ Dptq “
1

2
¨ rpLptq ` Rptqq ´ pLptq ´ Rptqqs . (2.5)

For a perfect audio channel separation based on Equation 2.5, a coherent demodula-
tion of the difference signal is mandatory. Since the difference signal is in-phase with
the 19 kHz pilot tone, coherent demodulation can be achieved by using a phase-locked
oscillator running at 38 kHz. The RDS signal can be demodulated similarly, although
an RDS carrier frequency estimation can also be performed by an independent carrier
recovery loop.

In the next section, an SNR-adaptive receiver chain will be presented for an FM/RDS
broadcast receiver chain.

20

2.3 A modularized FPGA-based FM Receiver

2.3 A modularized FPGA-based FM Receiver

The design of a digital FM receiver is similar to the design of its analog counterpart.
However, in terms of linearity, the digital receiver has advantages over an analog design,
which in case of an FM broadcast receiver results in a better stereo separation and RDS
demodulation. Since the complexity of the decoding algorithms of a digital receiver de-
termines the FPGA resources needed for the actual implementation, the algorithms and
implementation-specific considerations will be introduced. Depicting the implementa-
tion also helps understanding the design approaches outlined in the following sections
focusing on partial reconfiguration.

2.3.1 Receiver Modules

The receiver has been designed with the goal in mind to obtain a modular hardware
implementation for an SNR-adaptive operation in the FPGA. Therefore, the receiver
chain has been sub-partitioned into four major processing blocks:

1. FM demodulator: The FM demodulator provides an estimate of the instanta-
neous frequency of the input signal. After FM demodulation, the FM multiplex
signal is obtained, which contains the audio sum signal, the audio difference signal,
a 19 kHz pilot carrier and the differentially-encoded BPSK data signal at 57 kHz.

2. Monaural sum signal audio decoder: The decoder extracts the monaural
signal, which contains the sum of the left and right audio channels. It contains a
combined decimation and low-pass stage to limit the LF audio signal to a frequency
of 15 kHz.

3. Difference signal stereo decoder: The difference signal decoder coherently de-
modulates the audio difference signal L-R at 38 kHz and extracts the left and right
audio components using the monaural sum signal. For coherent demodulation, i.e.
in-phase signal combining, the stereo decoder requires a reference oscillator. The
decoder derives the 38 kHz demodulation signal from the pre-filtered 19 kHz pilot
carrier in the FM multiplex, which is in-phase to the 38 kHz modulated audio. This
19 kHz pilot tone is extracted using a digital phase-locked loop.

4. The radio data system decoder: The RDS decoder demodulates the DEBPSK
data signal at 57 kHz. The decoder comprises of a carrier-recovery stage, a symbol
clock recovery stage, a filtering stage and a differential decoding sage. The decoded
bits are forwarded to a Xilinx Microblaze microcontroller to post-process the data
and extract the payload information.

The presented blocks can be used in different configurations to satisfy certain func-
tional requirements with different amounts of resources. Five different FM receiver con-
figurations have been defined in total, using either all or only a subset the presented
processing blocks as shown in Table 2.1.
The signal flow graph of the FM receiver is drawn in Figure 2.3. The blocks belonging

to a certain configuration subset are highlighted in blue. Before the design and im-
plementation of the receiver components will be described in detail, it is important to
mention the sample rates used in the receiver.

21

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

F
igu

re
2.3:

F
P
G
A
-b
ased

F
M
/R

D
S
receiver

sign
al

fl
ow

-grap
h
.

22

2.3 A modularized FPGA-based FM Receiver

FM receiver configuration Processing block

Demod + Stereo + RDS 1, 2, 3, 4
Demod + Mono + RDS 1, 2, 4
Demod + Stereo 1, 2, 3
Demod + Mono 1, 2
Demod + RDS 1, 4

Table 2.1: Overview of possible receiver configurations.

Sampling Rates and FPGA Clock Frequency

Designing a digital demodulator for a frequency-modulated signal gives the designer a
certain amount of freedom when it comes to selecting the demodulation sample rates.
The higher the sample rate, the more signal energy can be used in the demodulation
process, but the higher the computational complexity. In turn, lower sampling rates
reduce the computational burden, at the cost of a worse signal-to-noise and distortion
ratio (SINAD) at the FM demodulator output (cf. [Ros89]). However, in the presence of
strong noise or adjacent channel interference at the FM demodulator input, narrowband
demodulation can increase the SINAD at the FM demodulator input, such that a higher
sampling rate system with a narrow pre-filter performs similar to a system with lower
sampling rate. Hence, in channels with negligible co-channel interference and noise,
selecting the sampling rate and the FM demodulation bandwidth is a trade-off between
complexity and error performance. For the FM receiver prototype presented in this work,
the input sample rate of the FM demodulation stage has been selected according to the
following criteria:
Criterion 1: The sampling frequency must satisfy the Nyquist constrains for the

complex FM baseband signal, i.e. it must be chosen to be high enough to sample at
least 90% of the signal energy but as small as necessary to minimize the computational
complexity.
Carson derived an estimate of the FM RF bandwidth for sinusoidal source signals

in [Car22]. Since the spectrum of a frequency-modulated signal is infinite, the Nyquist
rate must be related to Carson’s constraints to involve a minimum percentage of signal
energy in the demodulation process. For signal energy values of 90% and 99% the
amount of RF signal energy intended to be used in the process of demodulation can be
upper bounded by

B90% “ 2 p∆fMAX ` fMAX,LFq ď fS

B99% “ 2 p∆fMAX ` 2fMAX,LFq ď fS,

where fMAX,LF is the highest frequency component in the unmodulated multiplex sig-
nal and fS is the FM demodulation sampling rate for the high frequency (HF) baseband
signal. For VHF transmissions the ITU-R BS.412-9 planning standards [Itu98] recom-
mend a peak frequency deviation of ∆fMAX “ 75 kHz. The highest frequency component
in the MPX is defined by the RDS signal bandwidth, such that fMAX,LF « 59 kHz. For
broadcast FM, the Carson bandwidth is equal to B90% “ 268 kHz and B99% “ 386 kHz,
which means that the sample rate should be selected to be within this range. In this
context it is important to mention that the Carson bandwidth is not related to the

23

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

sample rate required for reasonable FM baseband demodulation. Although in practice
it may be beneficial if the demodulation sample rate is close to the Carson bandwidth,
some demodulation algorithms require rates above B90% or B99% to ensure distortion-free
signal decoding as stated in [Ros89].

Criterion 2: Sample rates that are a rational fraction of the RF input sample rate
and the audio output sample rate are preferable, in order to simplify interpolation and
decimation.

The Audio Codec 97 (AC97) on the FPGA board uses a sampling rate of 48 kHz and
the FM demodulation sampling rate has been defined as an integer factor of the audio
output sample rate. Thus, the HF sampling frequency can be selected between 288 kHz,
336 kHz or 384 kHz. Due to the fact that a sample rate closer to a bandwidth of B90%

reduces adjacent channel interference, a sample rate of fS “ 288 kHz has been selected
as FM demodulation rate.

Prior to demodulation, a sample rate conversion module is required to convert the
RF input sample rate of 500 kHz to the FM demodulation sample rate of fS “ 288 kHz.
Before resampling, a low-pass filter with a bandwidth of « 280 kHz is applied to avoid
aliasing during down-sampling. In hardware, the sample rate conversion stage has been
realized by a combined fractional rate polyphase resampling and filtering implementation
as presented in [PM06].

Sampling Rate Receiver Stage FPGA cycles/sample

500 kS/s RF front-end 72
288 kS/s FM demodulation and MPX pre-filtering 125
48 kS/s AC97 Audio output 750
24 kS/s RDS sampling output 1500

Table 2.2: Receiver sampling rates at 36MHz FPGA clock frequency.

From the sampling rates listed in Table 2.2 an FPGA clock frequency of 36MHz has
been determined as the least common multiple of the RF sample rate (500 kHz) and
demodulation sample rate (288 kHz).

As already stated, the goal of the implementation was designing a modularized receiver
system for self-adaptive dynamic partial FPGA reconfiguration. Hence, the algorithms
have been selected to be reasonably efficient and state-of-the art, but apart from mi-
nor optimizations, the workflow was neither focused on building a high-quality receiver
system, nor on finding a highly optimized design.

Fixed-Point Number Format

For most parts of the receiver chain, a fixed-point representation in 16.14 two’s com-
plement notation has been used, such that a 16 bit value comprises of 2 integer bits
and 14 fractional bits, i.e. 1p“214 and ´1p“ ´ 214. Using this notation, signals within
the range of ´2 to 1.999 . . . can accurately be represented with a dynamic range of
20 ¨ log10 p2´14q « ´84.3 dB full-scale (dBFS), where 0 dBFS refers to a value of 1.

In the next sections the receiver components and their respective FPGA implementa-
tion will be discussed and compared to the state of the art.

24

2.3 A modularized FPGA-based FM Receiver

Figure 2.4: Arcus-tangent quadrature discriminator for FM demodulation.

FM Demodulation

Demodulation of the FM signal requires an accurate estimate of the instantaneous fre-
quency of the received signal by calculating the time derivative of the phase. Various
methods for digital FM demodulation have been proposed in literature (cf. [Ros89]). In
this section, two popular demodulation principles will be presented together with a dis-
cussion of their properties and performances. Further on, the normalized complex-valued
demodulator input signal will be denoted by

s0rks “
rHFrksa

ℜtrHFrksu2 ` ℑtrHFrksu2
,

where rHFrks is the complex baseband FM receive signal and k P N denotes the sample
index. The phase-derivative operation of an FM demodulator can well be depicted using
the arcus-tangent quadrature discriminator. This forward-discriminator evaluates the
phase difference of two consecutive complex samples to estimate the temporal derivative
of the phase angle (cf. Equation 2.4). One can observe from the schematic in Figure
2.4 that the circuit requires one complex multiplication, one real multiplication and an
arcus tangent look-up per input sample to generate one output sample.
The discriminator uses a forward structure to achieve a sample-wise differentiation

of the phase by a complex conjugate multiplication. The mathematical relationship
between the complex conjugate multiplication and the estimation of the phase difference
is given by

s1rks “ s0rks ¨ s˚
0rk ´ 1s “ ejφrks ¨ e´jφrk´1s “ ejpφrks´φrk´1sq

The signal at the output of the discriminator s2rks is an estimate of the phase deriva-
tive, scaled by the sampling interval TS “ 1{fS, as formulated in Equation 2.6.

s2rks “ arg ps1rksq “ φrks ´ φrk ´ 1s “ ∆φptq

“
∆φptq

TS

¨ TS

«
dφptq

dt
¨ TS

(2.6)

The output of the discriminator is normalized by a scaling constant kFM to project
the output to the desired interval, e.g. kFM “ 2π clamps the output to values of ´1 ď
yrks ď 1, i.e.

yrks “
arg ps1rksq

TS ¨ kFM
.

25

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

The quadrature discriminator is suboptimal as it is prone to amplitude modulation
of the FM signal, degrading the SNR at the demodulator output (cf. [Ros89]). Instead
of using a forward demodulator, a feed-back structure can be used to reduce the AM
distortion. A common principle for phase estimation is known in literature as PLL. A
digital variant of the PLL is the digital phase-locked loop (DPLL), which operates on
the same principles as its analog counterpart, i.e. it steadily minimizes the error between
a reference signal and a feedback signal using a certain error metric. In the case of FM
demodulation, the error signal is generated using a phase differentiation operation. This
error signal is cascaded to a low-pass filter (loop filter) for image rejection and to increase
the performance in the presence of noise. The error signal of the PLL is used to generate
a feedback signal to continuously minimize the error.

Due to its computational simplicity, the PLL is widely used in communication systems
for instantaneous frequency estimation. In [RPN09] Rice compared the resource utiliza-
tion of different FM demodulator implementations for a Xilinx Virtex-4 FPGA and came
to the conclusion that the DPLL is the most resource-efficient implementation. Regard-
ing detector performance, the simplicity of the DPLL comes at the cost that it is not
the optimum detector in terms of minimum mean square error performance in Gaussian
noise channels, as shown by Boashash in [Boa92].

Figure 2.5: FM digital PLL discriminator signal flow.

The DPLL FM demodulation circuit is shown in Figure 2.5. The complex-valued input
signal is multiplied by a phasor signal from the PLL feedback loop, which performs the
discrimination of the phase as follows:

s1rks “ s0rks ¨ e´jpφrk´1s “ ejpφrks´pφrk´1sq.

The phase difference information is included in the real and imaginary parts of the
signal. The imaginary part yields the signal s2rks, with

s2rks “ ℑts1rksu “ sinpφrks ´ pφrk ´ 1sq,

where ´1 ď s2rks ď 1. The arcsin function linearizes the output of the DPLL and
the phase difference is obtained. The difference signal is then fed to a loop filter with
transfer function F pzq and order K ´ 1. The DPLL has the order of K, which means
that for a first-order DPLL the loop filter reduces to a simple gain value, i.e.

s3rks “ arcsinps2rksq “ φrks ´ pφrk ´ 1s «
dφptq

dt
¨ TS.

26

2.3 A modularized FPGA-based FM Receiver

An estimate of the phase is obtained by the integration of the loop output in the
feedback path, such that

pφrks “ pφrk ´ 1s `
fS

kFM
¨ yrks.

The loop filter design is important for the DPLL to function in a noisy environment. By
adjusting the loop filter transfer function, the SNR threshold performance of a DPLL can
be improved by 2-3 dB compared to the previously introduced quadrature discriminator.
Furthermore, the higher the loop filter order, the more degrees of freedom in designing
for robustness. However, it is shown in [Ros89] that even a second order DPLL performs
only 0.4 dB worse than higher order filters and in case of a first order DPLL, the difference
is at maximum 1dB.
The different output signals of the forward part of the DPLL are compared in Fig-

ure 2.6. Comparing the signals s2rks and s3rks indicates that in case of small phase
differences the arcsin-operation is not necessary to recover the instantaneous frequency.
In this case, the imaginary part of s1rks yields a sufficient approximation of the PLL
output signal yrks [Ros89]. This leads to a considerable simplification of the hardware
implementation since the PLL can be implemented without trigonometric calculation
routines. Furthermore, using the sinusoidal instead of the linear phase differences a
non-linear low-pass filtering of the output signal is implicit. Hence, in a computational
efficient setup, the loop filter could also be omitted. The computational complexity
of the modified loop is approximately equal to the previously presented forward FM
demodulator (cf. Figure 2.4).

´1.5 ´1 ´0.5 0 0.5 1 1.5
´1.5

´1

´0.5

0

0.5

1

1.5

∆φ “ φrks ´ pφrk ´ 1s

s2rks “ ℑt∆φu
s3rks “ arcsinpℑt∆φuq

Figure 2.6: Digial PLL output signal and intermediate signal.

The FPGA implementation of the DPLL FM demodulator is shown in Figure 2.7.
It is similar to the DPLL discriminator shown in Figure 2.5 including the previously
stated simplifications. A single multiplexed DSP48 slice has been used for complex
multiplication of the input signal with the estimated phasors using a two step multiply-
accumulate cycle. The complex multiplication phasors have been derived using a Xilinx
direct digital synthesis (DDS) intellectual property (IP) core. As the loop filter is zero

27

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

order, just the gain stage kFM is present. The scheduling is accomplished by an FSM
inside the demodulation subsystem of the Xilinx System Generator design.

Figure 2.7: Digital PLL hardware implementation.

The demodulated FM multiplex signal is fed to the audio and RDS decoder chains,
where it is post-processed for audio and data extraction. It is important to remark that
all post-processing units use separate filtering and modulation stages as depicted by the
architecture diagram of the receiver (cf. Figure 2.3). This means that low-pass and
band-pass filtering for the extraction of the different spectral components is performed
in the MPX signal domain, followed by down-conversion and filtering stages. Albeit
easy to implement, filtering and multiplying the narrow-band FM components on the
MPX sampling frequency is not efficient. A more efficient approach would use combined
filtering and decimation on the output sampling frequency, i.e. 48 kHz, which has not
been implemented in the presented FPGA receiver. However, combined decimation and
filtering has been used to efficiently extract the audio information.

MPX Pre-Filtering

Prior to further processing, low-pass and band-pass filters have to be applied to the
different MPX signal components. The narrow gaps between the different spectra of the
different MPX components require a filter transition bandwidth of « 4 kHz. Given a
fixed-point representation of 16 bits, the stop-band attenuation has been chosen to be in
the order of 70 dBfs. Meeting these requirements at the MPX sampling rate of 288 kS/s
requires to use filter of high order as summarized in Table 2.3.

Signal yLP15,L`Rrks yBP19rks yBP38rks yBP57rks

Filter type FIR low-pass FIR band-pass FIR band-pass FIR band-pass
Filter order 124 124 124 124

Passband / kHz 0-13.5 18.9-19.1 23.7-52.3 55.2-58.8, 63-144
Stopband / kHz 19-144 0-14.8, 23.2-144 0-18.5, 56-144 0-51, 63-144

Table 2.3: FM multiplex signal filter design parameters.
.

Given a resolution of 16 bit per filter coefficient and 125 coefficients 2 kbit of memory
are required per filter. Although linear-phase FIR filters require more hardware resources

28

2.3 A modularized FPGA-based FM Receiver

for the presented application, they have been preferred over the use of infinite impulse
response (IIR) filters to avoid non-linear group-delays. Given an FPGA clock frequency
of 36MHz, a direct-form FIR filter with 125 coefficients requires one single DSP48 unit
per MPX sample for the multiply-accumulate operation to finish. Hence, four DSP units
are sufficient to filter all four branches in real-time.

Monaural Audio Decoder Design

Extracting the sum signal can be accomplished by subsequently decimating the monaural
audio channel to a sampling rate of 48 kHz. Both operations can be combined by using
an FIR structure as shown in Figure 2.8. Every fS clock cycle one sample of the pre-
filtered audio sum signal yLP15,L`Rrks is fed to the combined filter. The sum signal is
then post-filtered with another low-pass filter and sub-sampled at the audio output rate
of 48 kHz, where the signal yL+Rrks is obtained.

Figure 2.8: Combined filtering and decimation for FM audio signal extraction.

The FIR decimator is switched at a rate of 1/6-th and uses 96 coefficients. As the
coefficients are symmetric only 48 multiplications are required per output sample. The
de-emphasis filter was not implemented as part of the audio decoder and will therefore
not be discussed in this work.
In the next section, the extraction of the stereo difference signal and the derivation of

the left and right audio components will be described.

Stereo Difference Signal Decoder Design

The audio difference signal is centered around 38 kHz in the FM MPX with suppressed
carrier. For coherent demodulation the carrier can be regenerated by the 19 kHz pilot
tone. To accomplish this task, a sinusoidal with two times the angular frequency of the
pilot signal must be generated. Furthermore, the generated tone must have a constant
amplitude and be in-phase with the reference signal. In literature, different methods
for carrier regeneration have been described (cf. [Kam08]). As discussed in the FM
demodulation section, a DPLL is a suitable candidate for the estimation of the angular
frequency as the output of the DPLL control loop is phase-locked to the input. The
signal flow of a DPLL for angular-phase estimation is shown in Figure 2.9.

29

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

Figure 2.9: MPX pilot DPLL angular frequency estimator.

The band-pass filtered real-valued continuous wave pilot tone yBP19rks with a frequency
of f0 “ 19 kHz and an angular frequency of ω0 “ 2π

fS
¨f0 is fed to the PLL. Given a noiseless

MPX signal, this tone can be modeled by

yBP19rks “ cospω0 ¨ kq. (2.7)

If there is residual noise on the band-pass filtered MPX signal, the input signal exhibits
an additional additive noise term. Due to the fact that the receiver oscillator is not
perfectly synchronized to the oscillator of the transmitter, the angular frequency at the
receiver deviates from the transmitted value. Since the deviations are assumed to be
small, the angular frequency is known to be roughly ω0 « 2π

fS
¨ 19 kHz. However, a

more precise estimate of the angular frequency is required to coherently down-convert
the stereo difference signal. At the input of the estimation circuit, a Hilbert filter with
transfer function HH is used to generate a complex-valued pilot tone signal, which is then
fed to a phase comparator. The comparator is equal to that of the FM demodulator,
where the imaginary part of the complex multiplication is taken and the arcsin-function
is used to calculated the phase error eωrks within each sampling interval according to
Equation 2.8.

eωrks “ arcsin
“
ℑ

ejω0k ¨ e´jpω0rksk

(‰

“ pω0 ´ pω0rksq ¨ k (2.8)

The error signal reflects the phase difference of the estimated phase and the phase of
the pilot tone. The signal is amplified or attenuated by a gain constant ki and the result
is fed to two concatenated integration stages. The gain constant ki is used to trade-off
the noise robustness against the PLL lock time. The first integration stage accumulates
the error signal to obtain an estimate of the angular phase, denoted by pω0rks. In case the
PLL is locked, the error signal approaches zero and the integrator output stays constant
where

pω0rks « ω0,

for sufficiently large values of k. The second integrator acts as a phase accumulator,
where the estimated angular phase is used to generate the output signal pω0rks ¨ pk ´ 1q.
In the next phase-comparison cycle at the input of the PLL, the estimated phase angle

30

2.3 A modularized FPGA-based FM Receiver

1.88 1.88 1.88 1.88 1.89 1.89 1.89 1.89 1.89 1.9

¨104

´1

0

1

k

CNR = 20 dB, ki “ 0.005, f0 “ 10 kHz

eωrks
yBP19rks
ℜty

LO38
rksu

Figure 2.10: Pilot PLL input and output signals with additive white Gaussian noise.

is used to generate a new instance of the error signal. Figure 2.10 shows the steady-
state carrier-to-noise ratio (CNR) performance of the PLL in the presence of additive
white Gaussian noise (AWGN). An oscillator frequency of 10 kHz has been chosen for
better visualization at a sample rate of 288 kHz. The plot shows that the PLL is able to
generate a clean carrier output signal at twice the input angular frequency, even of the
MPX pilot carrier is noisy. The complex-valued PLL output signal y

LO38
rks is used to

coherently down-convert the band-pass filtered difference signal such that

yLP15,L´Rrks “ ℜty
LO38

rks ¨ yBP38rksu.

Then, another filtering and decimation stage equal to that in the monaural output chain
is used to obtain the difference signal yL-Rrks from yLP15,L´Rrks according to Figure 2.8.
Finally, the band-limited sum and difference signals are added and subtracted to obtain
the left and right audio channels, yLrks and yRrks, respectively, as follows:

yRrks “ 0.5 ¨ pyL+Rrks ` yL-Rrksq

yLrks “ 0.5 ¨ pyL+Rrks ´ yL-Rrksq.

The hardware implementation of the pilot PLL is similar to the hardware implemen-
tation of the FM demodulation PLL. It uses one DSP48 slice on the FPGA and no
trigonometric operation due to the approximate nature of the arcsinp¨q and its argu-
ment, cf. Figure 2.6. Due to the similarity to the FM demodulator DPLL, a hardware
flow-graph of the pilot PLL will be omitted.
Having explained the extraction of the audio components, the following section will

describe the implementation of the RDS demodulator.

RDS Demodulator Design

The RDS BPSK decoder implementation needs to be self-synchronizing to operate as a
stand-alone DPR module. Although incoherent detection of differentiallycoded BPSK
is possible, it increases the bit error rate at the output of the detector [Kam08]. For
coherent demodulation, the RDS carrier and the bit-clock have to be recovered from
yBP57rks. Afterwards, the detected bits have to be passed to a differential decoder and

31

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

a block synchronization circuit. If the receiver is synchronized, the payload bits can
be extracted and interpreted. Carrier synchronization could also be employed using
the 19 kHz pilot tone. Given the goal of designing a modular receiver, in this work
the carrier signal is derived from the bi-phase signal itself using a PLL with squaring
feedback together with a band-pass filter.

Figure 2.11: FM RDS carrier and bit-clock recovery hardware implementation.

The carrier recovery circuit is depicted in Figure 2.11. Since the FPGA clock frequency
is significantly higher than the sample rate, the multiply and accumulate (MAC) unit is
multiplexed within one sample cycle and used for squaring of the input signal, band-pass
filtering of the squared signal, low-pass filtering of the DPLL output and for multipli-
cation of the DPLL phasor signal. The circuit works as follows: First, one MPX input
signal sample is fed to the MAC unit for squaring. The squared result is then written
to an output shift register, which functions as delay line for a band-pass FIR filter to
extract the second-order harmonic wave of the RDS signal. The FIR filter order is 14
and the coefficients are stored in one of the ROM tables at the MUX input and fed to
the MAC unit together with the samples stored in the filter delay line. After processing,
the band-pass filtered output is stored in one of the output registers. Re-using the MAC,
the filtered signal is multiplied by the complex output of the DDS, which is locked to
the second-order harmonic of the filtered signal. The resulting signal is then fed to the
DPLL loop-filter for image rejection. For this purpose, the MAC unit is re-used again
and the low-pass filter coefficients are provided by another ROM table. The order of
the low-pass FIR filter is 62. The filtered output is then scaled and fed to the DPLL
accumulator, which reflects the residual phase error of the DPLL. Subsequently, the error

32

2.3 A modularized FPGA-based FM Receiver

phasor signal is fed to the DDS to generate a cosine and sine output signal at the RDS
carrier frequency. The cosine DDS output line is tapped and fed to a rising-edge detector
for bit-clock recovery. The resulting clock signal is down-sampled by a factor of 48 such
that it can be used for bit detection in the following circuit. The filtered RDS baseband
signal yRDSBBrks is subsequently fed to a 1023 order low-pass FIR filter and decimated by
a factor of 12 to obtain the RDS baseband signal with a sampling frequency of 24 kS/s.
The low-pass filter is matched to the pulse-shape of the RDS transmission signal and has
been realized using a single multiplexed DSP48 slice. Performing 1023 MAC operations
within a sample interval is possible since there are 36MHz

24 kS{s
“ 1500 clock cycles available

per RDS sample. Using the derived clock signal yRDSCLKrks, the differentially-coded RDS
bits are detected by the signum function, i.e. by using the most significant bit (MSB)
of the two’s complement sample value. The stream of demodulated RDS bits is then
forwarded to the Microblaze CPU for block synchronization and message extraction.
The complexity of the RDS decoder is depicted in sufficient detail to understand

the implementation-specific demands in terms of FPGA resources. A more detailed
description of the RDS detector and the recovery circuits can be found in [Str10].

RDS Demodulator Performance

In order to be able to derive meaningful SNR values for an adaptive receiver, it is
important to describe the RDS detector performance in theory and in practice. For
the subsequent analysis, it is assumed that the noise at the RDS demodulator input is
approximately white and Gaussian. In this case, optimum detection (in the minimum
mean square error sense) of the bi-phase-coded RDS bits requires a filter matched to
the transmit pulse as stated in [Pro01]. In addition, Proakis states that the bit-error
probability of coherent differentially-decoded BPSK Pb,coh under AWGN conditions can
be calculated by

Pb,coh “ Q

ˆc
Eb

N0

˙
¨

„
1 ´

1

2
¨ Q

ˆc
Eb

N0

˙
(2.9)

where Eb is the energy per bit, N0 is the one-sided power spectral density of the noise at
the demodulator input and Qp¨q is the error function. In the RDS system specification, a
simple rectangular low-pass filter is proposed, which is commonly referred to as integrate
and dump (ID) filter. Although this filter functions as low-pass integrator, it is not
optimum in terms of noise performance since the RDS transmit pulse has a square
root-raised cosine transfer shape. The FIR band-pass filter in the previously described
demodulator circuit has a bi-phase square-root-raised cosine transfer function and is
thus matched to the RDS transmission pulse shaping. In order to decide in how far ID
approaches the matched filter bound, BER simulations have been performed as outlined
in Figure 2.12. The ID filter is close to the theoretical bit-error probability but, as
explained, does not reach the matched filter bound.
The RDS payload data is framed into four 16 bit blocks, each one protected with a

10 bit shortened cyclic code checkword for bit-error detection and correction. The code-
words are transmitted to a Xilinx Microblaze CPU in chunks of 32 bit via a memory-
mapped interface connected to the processor local bus (PLB). Frame synchronization
and payload decoding are done inside the CPU and upon successful decoding, the RDS
information such as station label and text messages are displayed on a 16x2 charac-
ter display using memory-mapped general purpose input and output (GPIO) pins. A

33

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

´4 ´2 0 2 4 6 8 10 12 14 16
10´6

10´5

10´4

10´3

10´2

10´1

100

Eb{N0 in dB

B
E
R

Integrate & Dump
Matched Filter

Pb,coh

Figure 2.12: BER performance of different RDS demodulator implementations.

detailed overview of the RDS data processing chain is outlined in [Str10].

2.3.2 Synthesis and Hardware Setup

The described receiver components were developed using Xilinx System Generator ver-
sion 11 with Matlab version 7.9. The Microcontroller code has been compiled using
the Xilinx SDK and the Microblaze PLB FPGA system was designed using the Xilinx
EDK. The Microblaze has been imported to System Generator using the EDK pcore.
The final design has then been converted to very high speed integrated circuit hardware
description language (VHDL) and imported to Xilinx ISE, where it has been synthesized
and implemented using the toolchain version 11.4. Xilinx Plan Ahead has been used for
I/O configuration and floorplanning. The generated bitstream can be loaded via JTAG
using Xilinx Impact or via compact flash using the System ACE controller. Figure 2.13
visualizes the described development and implementation tool-flow.
After successful testing of the individual components, the receiver chain has been

synthesized and implemented on a Xilinx Spartan-3A XtremeDSP 3400A development
board. The digital baseband signal has been supplied from a PC to the FPGA using a
Xilinx FMC Debug breakout board and a National Instruments data acquisition (DAQ)
card with 8 bit digital I/O. The FPGA design runs fully synchronous and the clock-
domain crossing happens between the PC and FPGA on the I/Q data path, i.e. the
I/Q samples are provided by the first-in first-out buffer (FIFO) of the PC DAQ card
and are extracted by the read clock signal of the FPGA. Thus, the FPGA functions as
clock master providing a 1MHz sampling clock to the DAQ card (IQ CLK). On every
rising clock edge, one FM baseband sample is clocked out of the DAQ card FIFO in an
interleaved I/Q stream format. The values in the I/Q stream are represented in 7 bit two’s
complement integer notation (IQ DATA) and streamed with a sampling rate of 500 kS/s.
The MSB of the 8 bit signal is used as an I/Q synchronization signal (IQ SYNC) and
is high in case IQ DATA carries an in-phase component and low in case a quadrature

34

2.3 A modularized FPGA-based FM Receiver

Figure 2.13: FM receiver development and implementation tool-flow.

component is signaled. The related I/O timing diagram is shown in Figure 2.14. In
the diagram, the wire delays are indicated in IQ DATA and IQ SYNC by a small time
shift relative to the edges of IQ CLK. The Spartan-3A hardware setup and FPGA I/O
schematic are shown in Figure 2.15.

Figure 2.14: Complex FM baseband signaling and clocking.

Multiple Receiver Configurations

As already pointed out, the receiver design should follow a modularized approach to be
able to re-use these modules in a DPR system. Modularization is required to obtain in-
dependent and interchangeable reconfigurable design elements. Interchangeable, because
in a reconfigurable system, the number of I/O interfaces from and to the reconfigurable
partition are fixed during design time. Also, to avoid signal glitches inside the FPGA
fabric, the I/O gateway positioning inside the FPGA must be fixed [Xil12c], which is
why different reconfigurable modules must have identical I/O port pins. Since clock
administration components like BUFG, DCM, MMCM and PLL can not be used inside
a reconfigurable partition, cf. [Xil12c], a common clock frequency for all modules is de-
sirable. The modules must be independent to avoid interfering with the static partition
and with other DPR modules.
For the system evaluation, five different receiver configurations have been synthesized

and implemented on the Spartan-3A DSP FPGA:

• Demod+Stereo+RDS: All FM receiver components are present in the design.

35

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

RDS

F
igu

re
2.15:

X
ilin

x
S
p
artan

-3A
F
P
G
A

w
ith

d
ata-fl

ow
to

P
C

D
A
Q

b
oard

.

36

2.3 A modularized FPGA-based FM Receiver

Configuration Slices DSP48 18k BRAM

Demod + Stereo + RDS 4564 20 29
Demod + Mono + RDS 3098 13 23
Demod + Stereo 3391 14 19
Demod + Mono 2519 7 13
Demod + RDS 2068 11 16

XC3SD3400A 23872 126 126

Table 2.4: FM receiver resource consumption on Xilinx XC3SD3400A FPGA.

• Demod+Mono+RDS: The FM pilot PLL and stereo decoding parts are left out
in the design.

• Demod+Stereo: The RDS processing chain is not part of the receiver.

• Demod+Mono: Only the FM demodulator and audio sum decoder are present
in the design.

• Demod+RDS: Only the FM demodulator and the RDS decoder are present in
the design.

In order to react on user input via GPIO, the Microblaze core has been kept as a part
of the system in all configurations, even if RDS could not be provided to the processor.
Keeping the Microblaze in the system also enables to use it for reconfiguration triggering
in a reconfigurable setup, as described in the next section.
Table 2.4 depicts the resource requirements of the different configurations in terms of

slices, DSP48 units and 18 kb BRAMs for a Spartan-3A DSP FPGA running at 36MHz.
The number of FIR filters and the high FIR filter orders (cf. Table 2.3) are responsible
for most of the BRAM utilization in the design. Due to the pilot PLL and additional
mixing, the stereo decoder consumes most of the DSP48 slices. In terms of Slices, the
Demod+RDS configuration seems to be the least demanding. However, without the
additional logic to control the AC97 output circuit the Demod+Mono configuration is of
equal complexity. To get a notion of the complexity in terms of resources it is important
to mention that each Spartan-3A FPGA slice contains two 4-input look-up tables and
two flip-flop registers [Xil11c]. The receiver configurations presented in the table have in
common, that the FM demodulator is always present, whereas the MPX decoder modules
are different. For the reconfigurable FPGA demonstrator derived further on in this
chapter, only the demodulated MPX signal will be of concern and the FM demodulator
will be static.
In Figure 2.16 a bar graph shows the relative resource consumption of the different

module configurations. In the most complex configuration, which isDemod+Stereo+RDS,
the receiver uses about 4564 slices, resulting in a rather small device utilization of 19.1%.

Preparing the design for DPR

Although in literature [BY08] it has been reported that partial reconfiguration of a
Spartan-3A FPGA is possible, self-reconfiguration requires external I/O wiring to the

37

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

0 5 10 15 20 25 30 35 40 45 50

Slices

DSP48

18k BRAM

8.7

8.7

12.7

10.6

5.6

10.3

14.2

11.1

15.1

13.0

10.3

18.3

19.1

15.9

23.0

%

Demod + Stereo + RDS
Demod + Mono + RDS
Demod + Stereo
Demod + Mono
Demod + RDS

Figure 2.16: FM receiver relative resource consumption on Xilinx XC3SD3400A FPGA.

SelectMAP port. Furthermore, the Spartan-3A FPGA has not been designed for partial
reconfiguration and, hence, there exists no vendor tool support. Therefore, the design was
migrated to the Xilinx ML506 Virtex-5 FPGA board, which natively supports dynamic
partial reconfiguration and provides an ICAP interface for internal wiring. The Virtex-5
FPGA is an XC5VSX50T with an FFG1136 package and the ML506 board is equipped
with components which are mostly identical to the Spartan-3A board (cf. [Xil11b]).
Most importantly, the XCCACE System Ace Interface, the XCF32 Platform Flash, the
AD1981BJSTZ AC97 Codec and 2x16 character display/controller could be re-used. The
FM receiver laboratory setup using the Virtex-5 FPGA board is shown in Figure 2.17.
It is different from the setup shown in Figure 2.16 as instead of using a DAQ card, the
baseband is supplied from the PC via the universal serial bus (USB) to a Cypress-FX2
microcontroller. The microcontroller sends the baseband data to a Xilinx Spartan-3
FPGA, which generates the previously described 8 bit digital I/O format. Inside the
Spartan-3 a dual-port BRAM is used for clock-domain crossing and the digital output
is connected to the input pin header of the ML506 board.

For the evaluation in a single-island reconfigurable system, three of the five module
configurations have been migrated to the ML506 board, namely Demod+Stereo, De-
mod+Mono and Demod+RDS. These modules were later partitioned to obtain a more
fine-grained modularization, which will be discussed in the following section. For partial-
configuration support, the Microblaze design on the Spartan-3A was extended by an ad-
ditional Xilinx HWICAP IP core, connected to the PLB. To increase the reconfiguration
speed, the PLB and the HWICAP core were configured for a clock frequency of 100MHz
and a data width of 32 bit. Furthermore, a double data rate random-access memory
(DDR-RAM) controller, a System ACE controller and a GPIO controller were added to

38

2.4 An MPX-based SNR Estimator for FM Radio

Figure 2.17: Xilinx ML506 Virtex-5 FPGA board connected to Spartan-3 USB board.

the design.

In the FPGA startup phase, the partial configuration bitstreams are buffered in the
DDR2 memory to be accessible with negligible latency and high throughput during
runtime. A partial reconfiguration controller based on the Xilinx EDK IP template has
been used in the Virtex-5 design. It enhances the Microblaze CPU with memory mapped
I/O. A DPR control unit was added to the design to enable or disable the gate registers
from and to the reconfigurable partition. As explained in Section 1.1, these gate registers
are necessary to decouple the logic in the static region from the reconfigurable partition.
The DPR controller will also be used to reset and initialize the reconfigurable modules
as subsequently discussed. Also, a more recent toolchain was used for development,
namely the Xilinx System-Generator version 13, the Xilinx ISE version 13.1 and the
Matlab/Simulink in version 7.10.

As outlined in the motivation of this chapter, the reconfigurable receiver should be self-
adapting to the channel conditions. The realization of a self-adaptive system requires the
knowledge of the signal quality and channel disturbances. Therefore, a novel estimation
approach is motivated in the following section. The algorithm is based on a mean noise
energy detection criterion and allows the design of a hardware-efficient SNR estimation
stage for FM broadcast systems.

2.4 An MPX-based SNR Estimator for FM Radio

It can be observed that the noise power spectral density at the output of the FM demod-
ulator is not constant but increases along with the frequency (cf. [Kam08]). Hence, the
audio difference signal, which is required for stereo reception, is disturbed by a higher
noise level than the audio sum signal. If the signal is weak compared to the noise, it
might be better to output only the monaural signal since adding the difference signal
will degrade the audio quality. In this case also the RDS decoding performance will be
degraded. These circumstances motivate the design of an MPX decoder that can be
adopted according to the receive signal quality, expressed by the SNR at the receiver

39

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

input. For the presented metric, threshold values can be derived, which can trigger a
change in receiver complexity according to a certain constraint, for example:

• Minimum power consumption: Try to minimize the overall FPGA power con-
sumption by minimizing the logic utilization and switching times, leading to a
design where the allocated logic resources are kept at a minimum with respect to
the minimum decoding quality requirements.

• Maximum decoding quality: The amount of FPGA resources occupied by the
decoding algorithm is maximized in order to achieve a minimal decoding error rate,
i.e. maximum SNR performance.

• Service reliability: The quality is balanced according to the channel conditions to
optimize the service reliability for multiple receivers, e.g. to assure an acceptable
error rate. In turn, also the amount of resources will be balanced among these
receivers.

The choice of the optimization strategy depends on the use-case. In this work, the
receiver is designed for maximum service reliability, such that the complexity of the
demodulation algorithms is continuously adjusted in relation to the SNR at the input
of the FM demodulator. The realization of this approach requires an SNR estimation
device to be part of the receiver system. The design and FPGA implementation of an
MPX-based SNR estimation algorithm for continuous operation in a reconfigurable FM
receiver will in the following be presented.

2.4.1 Estimator Requirements and Restrictions

As described in the previous section, the FM demodulator is always part of the system
and only the MPX decoder modules are different. Thus, in order to be independent of
the FM demodulator implementation, an SNR estimation routine evaluating the MPX
signal would be a preferable solution. This restriction prohibits the use of statistical
methods evaluating the second and fourth order moments of the FM demodulator input
signal as described in [PB00] and [XGXZCY13]. By providing the MPX signal, the SNR
estimator should back-calculate the FM demodulator input SNR and trigger a change of
the MPX decoder modules using partial reconfiguration. Furthermore, since in a DPR
system the MPX decoders are changing, the SNR estimator should also be independent
from the MPX decoder implementation. Another concern is that the estimator should
be economic in terms of FPGA resources.
In summary, for the estimation scheme to be applicable, the following requirements

have been formulated:

1. The estimation must be performed on the demodulator output signal to be inde-
pendent from the FM demodulator implementation (analog or digital).

2. The estimation must not rely on other MPX-related implementations, e.g. it should
work without evaluating the 19 kHz pilot tone or the RDS signal.

3. The estimation must be accurate enough to detect SNRs in the range between 0 dB
to 30 dB with tolerable deviations.

40

2.4 An MPX-based SNR Estimator for FM Radio

4. The estimator must be realizable by a resource-efficient FPGA implementation.

The second requirement excludes methods based on the evaluation of the PLL track-
ing error variance or RDS bit-error statistics as presented in [DDHSW01] and [Trp91].
Bearing the formulated requirements in mind, an estimation approach will be proposed,
which evaluates the MPX noise-energy to determine the SNR at the input of the FM
demodulator. The approach is based on the fact that the noise in the FM signal can
be detected after demodulation within the MPX PSD band-gaps where no audio signal
energy is present. Averaging the noise power within the MPX band-gaps enables to
estimate the SNR at the FM demodulator input. Since the mentioned approach was
elaborated independently by Texas Instruments, it is necessarry to put it into historical
context:

In December 2010, first theoretical feasibility studies of the proposed SNR estima-
tion method were performed. In June 2011, Daniel Münch implemented the algorithm
as part of his Master’s Thesis with the title ”Receive signal-dependent adaption of an
FPGA-based Software Defined Radio” [Mü11]. The thesis was submitted to the Institute
for Integrates Systems in September 2011. In his thesis, Münch presented a feasibility
study and a possible hardware implementation. In 2013 Texas Instruments filed a patent
describing the same estimation method, with minor implementation-specific differences
(cf. [GMBV14]). In the patent, Gupta et al. utilize an FIR filter for noise power estima-
tion, whereas in this work a resource-efficient high-order IIR resonator is used. Another
difference is that the authors do neither specify the FIR filter requirements nor its com-
plexity. The patent was published in November 2014 under the US patent publication
number US 2014/0348328 A1.

In the next section, the effects of a noisy signal at the FM demodulator input are set
in context to the noise at the demodulator output. Then, given the spectral character-
istics of the FM MPX signal, the design of a band-gap-based noise estimator similar to
[XSSK10] is proposed, that fulfills the previously formulated requirements.

2.4.2 FM Demodulation in Presence of Noise

The effects of noise on the FM demodulation process is covered in various text books
and research articles. A comprehensive description of the problem has been presented
by Rice in [Ric63]. Using the notation of Kammeyer (cf. [Kam08]), a brief summary on
the effects of noise on the FM demodulation process will be given next. Following the
convention introduced in Section 2.2, underlining indicates complex baseband notation.

In a distortion-free communication channel, where the transmitted FM signal xFMptq
is disturbed by zero-mean complex additive white Gaussian noise nptq, the receive signal
rFMptq can be described by:

rFMptq “ xFMptq ` nptq

Let the power of the FM transmit signal be defined by A2
FM and N0{2 be the two-

sided power spectral density of the white Gaussian noise in W/Hz. Given a typical
stereophonic FM broadcast signal, the highest frequency component in the unmodulated
MPX signal fMAX,LF is generated by the RDS at a center frequency of 57 kHz. With
an RDS bandwidth of approximately 3 kHz the frequency fMAX,LF can be defined as
fMAX,LF « 60 kHz [SS08]. Using the bandwidth rule of Carson, as introduced in the

41

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

previous section, the carrier-to-noise ratio of the FM receive signal can be defined by

ρFM “
A2

FM

N0 ¨ 2p∆fMAX ` 2fMAX,LFq
. (2.10)

The expression in Equation 2.10 defines a relation of signal and noise power and thus
depends on the signal bandwidth term in the denominator. In the following it will be
shown how to use the expression in Equation 2.10 in a real-world receiver.

Figure 2.18: FM demodulation in presence of AWGN.

Figure 2.18 shows an FM demodulator flow-graph of a receiver with a low-pass filter in
front of the FM demodulator and a low-pass filter at the output of the FM demodulator.
The HF filter is required for noise suppression and adjacent channel rejection. Since in
theory the FM signal is infinite in bandwidth, a portion of signal spectral energy is lost
during the HF filtering process. This band-limitation is not necessarrily harmful as in
channels where N0 is close to the FM signal PSD, the variation of the HF filter bandwidth
can enhance the SNR at low-frequencies of the demodulator output (cf. [Kam08]). An
exact quantification of the influences of the filtering process is difficult and requires the
knowledge of the noise power and the HF filter characteristics. Therefore, in the following
analysis it is assumed that the HF filter bandwidth is fixed and equal to the sampling
frequency of the receiver, which had been chosen to comply with the Carson’s banwidth
rule as described in the receiver design Section 2.3, such that

fS “ BHF.

The signal-to-noise ratio at the output of the HF filter is defined by ρHF, which will
further on be used as an indication for the demodulation quality. Given the formulated
assumptions of using a fixed HF filter bandwidth close to the Carson bandwidth, the
signal-to-noise ratio at the demodulator input approaches

ρHF « ρFM. (2.11)

In a digital receiver, the HF filter could also be interpreted as a band-limiter before
analog-to-digital conversion, where the filter bandwidth would determine the minimum
frequency required for sampling. To emphasize this relation, the HF filter bandwidth
BHF is defined to be double-sided and not time-variant, which creates an analogy to the
required sampling frequency satisfying the Nyquist-Shannon theorem. For the following
theoretical analysis, low-pass filtering is assumed to be ideal, i.e. both filters have a
linear phase response and a rectangular spectral shape.
According to Equation 2.4, the LF signal yptq at the output of the FM demodulator

is obtained by differentiating the phase of the filtered FM signal. Since the presence of

42

2.4 An MPX-based SNR Estimator for FM Radio

0 5 10 15 20 25 30 35 40 45 50 55 60
´100

´50

0

50

f in kHz

d
B

∆fMAX “ 75 kHz, ρFM “ 50 dB, BHF “ 288 kHz

pΦS,LFpωq
pΦN,LFpωq
Equation 2.14

Figure 2.19: Simulation and theory of MPX signal and noise PSD.
.

AWGN adds an error phasor to the unit phasor, the phase differentiation stage, i.e. the
FM demodulator, returns an erroneous LF signal. For further analysis the demodulation
is assumed to be performed by a differential FM discriminator as stated in Equation 2.12
and as formulated by Kammeyer in [Kam08].

yptq “ ℑ

"
drHFptq{dt

rHFptq

*
(2.12)

The demodulated signal is then processed by an ideal low-pass filter with transfer
function HLFpfq to obtain the filtered output signal yptq.

HLFpfq “

#
1, if ´ BLF ď f ď BLF

0, else
, (2.13)

where BLF “ fMAX,LF. Given the assumption that the signal power of the transmitted
signal is greater than the noise power, according to Kammeyer the differentiation of
the phase error leads to a quadratic shaping of the noise power spectral density at the
demodulator output. Kammeyer furthermore mentions that the coloring of the noise
term can be approximated by a frequency-dependend density function, such that

ΦN,LFpωq “
N0

2A2
FM

¨ ω2 (2.14)

where N0{2 is the two-sided power spectral density of the noise at the demodulator
input. The presented linear approximation is accurate as long as the FM receive signal
to noise ratio is above the FM threshold. The integration of the noise PSD within the
LF bandwidth fMAX,LF then gives the mean noise power

NMPX “
1

2π
¨ 2

fMAX,LFż

0

N0

2A2
FM

¨ ω2dω “
2

3
p2πq2

N0

2A2
FM

f 3
MAX,LF, (2.15)

43

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

as also derived in [Kam08]. Figure 2.19 shows the right-sided theoretical PSD stated

in Equation 2.14 together with the simulated noise power spectral density pΦN,LFpωq and

the MPX signal power spectrum pΦS,LFpωq. The simulations were conducted within a
time frame of 1 second with a peak frequency deviation of ∆fMAX “ 75 kHz, a carrier-
to-noise ratio of ρHF “ 50 dB and an HF bandwidth of BHF “ 288 kHz. The slopes of
the curves confirm that within the MPX bandwidth of fMAX,LF « 60 kHz, the theoretical
line follows the simulated values.

0 5 10 15 20 25 30 35 40 45 50
´60

´40

´20

0

ρHF in dB

N
oi
se

p
ow

er
in

d
B

NMPX Equation 2.15
NMPX Simulation

Figure 2.20: MPX noise power in relation to FM signal-to-noise ratio.

In Figure 2.20, the accumulated noise power inside the MPX signal is compared against
the theory as stated in Equation 2.15 for fMAX,LF “ 60 kHz and a carrier-to-noise range
between 0 ď ρHF ď 50 dB. The plot shows a good match between simulation and theory
for carrier-to-noise ratios of 10 dB and higher. The FM threshold is responsible for the
degradation of the estimation accuracy when ρHF ď 10 dB (cf. [Ric63]), such that the
approximation stated in Equation 2.14 does not describe the noise influences well enough
anymore. Above that region, the estimated values closely approach the real MPX noise
power. This motivates the idea to estimate the noise power within the MPX signal band-
gaps and use this information as a metric for an SNR-adaptive receiver using DPR.
Further on, the design and hardware implementation of such an estimator will be

presented, followed by a discussion on FPGA resources and computational complexity.

2.4.3 MPX-Based Noise Power Estimator Design

In the last section, it has been presented that the noise disturbance at the FM demod-
ulator output increases quadratically in power with a linear increase in frequency. This
might lead to a situation where the noise perturbation for high frequency signals in the
MPX is too high to be decoded with an acceptable quality. Since the carrier-to-noise ra-
tio at the demodulator input determines the noise power at the demodulator output, the
SNR at the input of the FM demodulator determines whether decoding of high-frequency
components in the MPX signal is feasible. Such a decision furthermore enables the de-
sign of an SNR-adaptive activation and deactivation stage for demodulator components
of the receiver.
The MPX PSD shown in Figure 2.2 shows a gap of « 4 kHz between the pilot tone

and the audio signals, i.e. between 15 kHz and 19 kHz. Signals appearing within this

44

2.4 An MPX-based SNR Estimator for FM Radio

region are mainly caused by noise at the demodulator input. Furthermore, Equation 2.14
states that this noise is linearly affected by the SNR of the HF input signal. Given these
relations, an efficient bandpass-filter-based noise energy estimator will be introduced.
Given an ideal band-pass filter with transfer function

HBPpωq “

#
1, if ωa ď |ω| ď ωb

0, else,
(2.16)

the mean noise power within the filter bandwidth of ωa and ωb can be obtained by
integration of the two-sided noise PSD as stated by Equation 2.14. This relation is
depicted by Equation 2.17.

NBP “
1

2π
¨ 2

ωbż

ωa

N0

2A2
FM

¨ ω2dω “
N0

2πA2
FM

¨
ω3
b ´ ω3

a

3
(2.17)

Let the ideal bandpass filter in Equation 2.16 have the impulse response hBPptq. Ac-
cording to Parseval’s theorem [PM06], the mean noise power can be estimated by accu-
mulating the energy within the band-gaps of the MPX spectrum as follows:

pNBP “
1

t1 ´ t0

t1ż

t0

|yptq ˚ hBPptq|2 dt t1 ą t0, (2.18)

where ˚ denotes the convolution operation and t0, t1 determine the start and end
times of the averaging window. The estimated noise power pNBP approaches NBP for
pt1 ´ t0q Ñ 8. Given the equality in Equation 2.11 and the HF SNR in Equation 2.10,
the carrier-to-noise ratio at the FM demodulator input can be estimated by reformulating
Equation 2.17 as follows:

pρHF “
ω3
b ´ ω3

a

6π pNBP

¨
1

2p∆fMAX ` 2fMAX,LFq
“

ω3
b ´ ω3

a

6π pNBPBHF

(2.19)

The presented estimator requires the bandpass filter to be rectangular, which in a prac-
tical system is impossible to realize. Thus, the noise estimate will always be influenced
by the residual energy of the adjacent MPX audio signals. Since the statistical properties
of the audio signal inside the MPX are unknown, it is difficult to derive a mathemat-
ical model to quantify the variance of the estimator. Therefore, the robustness of the
estimator has been evaluated in several simulations.
Before presenting an estimation scheme for pρHF, the design of an efficient type of

bandpass filter will be discussed and a method to use Equation 2.17 for non-rectangular
filters will be derived.

An Efficient Multi-Stage IIR Bandpass Filter

Since the bandwidth of the MPX signal gaps is small compared to the MPX bandwidth,
a bandpass filter of high order is required. As neither of the benefits of an FIR filter
are required for narrowband energy accumulation, i.e. linear phase or finite impulse
response, an IIR filter of low complexity can be used as subsequently described.

45

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

1
4
π3

4
π

5
4
π 7

4
π

ℜtzu

ℑtzu

r
2πf0
fS

r

Figure 2.21: Poles of discrete second-order IIR resonator inside z-plane.

In fixed-point computing, higher order IIR filters are typically implemented as multiple
cascaded IIR second-order filter sections (SOS) [PM06]. The complex-valued transfer
function of a single SOS in the can be stated in the z-domain as

H IIRpzq “
b0 ` b1 ¨ z´1 ` b2 ¨ z´2

1 ` a1 ¨ z´1 ` a2 ¨ z´2
,

where b0, b1, b2, a1 and a2 denote the filter coefficients. Note that albeit z P C, in accor-
dance to literature for z underlining has been omitted. Since the band-gap in the MPX
is narrow, a two-pole IIR resonator can be used instead of an IIR bandpass, which is less
computationally complex as it has only poles and no zeros, thus reducing the number of
multiplications and additions. The transfer function of a two-pole IIR resonator in the
z-domain is formulated by

H IIRpzq “
b0

1 ` a1 ¨ z´1 ` a2 ¨ z´2
. (2.20)

Deriving the difference equation from Equation 2.20 and feeding the demodulated FM
MPX signal yrks as input to the IIR filter, the output of the resonator at each time
instant k can be expressed by

yIIRrks “ b0 ¨ yrks ´ a1 ¨ yIIRrk ´ 1s ´ a2 ¨ yIIRrk ´ 2s. (2.21)

According to [Smi08], the unity-gain filter coefficients for the two-pole resonator can
be calculated given the center frequency f0 and the pole radius r as follows

b0 “ p1 ´ rq
a
1 ` r2 ´ 2r ¨ cos p4πf0{fSq

a1 “ ´2r ¨ cos p2πf0{fSq (2.22)

a2 “ r2.

Figure 2.21 visualizes the relationship between the resonance frequency and the posi-
tion of the two poles inside the unit circle. The distance of the poles to the unit circle
controls the bandwidth of the IIR resonator, i.e. the closer the poles to the unit circle,
the narrower the resonator bandwidth and vice versa. However, moving the poles closer

46

2.4 An MPX-based SNR Estimator for FM Radio

0 5 10 15 20 25 30 35
´80

´60

´40

´20

0

f in kHz

|H
II
R

pf
q|
2
in

d
B

f0 “ 17 kHz, pole radius r “ 0.98

1 stage
2 stages
3 stages
6 stages

Figure 2.22: Frequency response of cascaded IIR two-pole resonator.

to the unit circle reduces the numerical stability of the filter and might render it infeasi-
ble for fixed-point implementations. A better approach is to cascade multiple stages of
a less-sharp resonator to improve the numerical stability and achieve the required side-
band suppression. The frequency response of a cascaded multi-stage IIR resonator with
r “ 0.98 and f0 “ 17 kHz is shown in Figure 2.22. Using Equation 2.22, for a sample
rate of fS “ 288 kS/s the filter coefficients can be calculated as

b0 “ 0.0144, a1 “ ´1.8267, a2 “ 0.9604.

Since the shape of the presented IIR resonator is not rectangular (cf. requirement
stated in Equation 2.16), Equation 2.18 can not be used to estimate the noise energy
within the band-gap ωa and ωb. In order to obtain suitable values for ωa and ωb, the
relation between the energy within the pass-band of the IIR resonator and the pass-
band energy of a rectangular filter must be formulated. Let the pass-band bandwidth
of the filter BIIR be described as the region, where |H IIRpfq|2 ě ´40 dB. The frequency
response of the 6-stage IIR filter in Figure 2.22 shows a pass-band region of BIIR « 4 kHz
at a center frequency of f0 “ 17 kHz. Outside this region, the sideband suppression is
|H IIRpfq|2 ă ´40 dB. A stronger out-of-band rejection requires the concatenation of
more than 6 IIR filter stages. The energy a single-stage resonator can collect within
each side of the pass-band can be calculated by

EIIR “

BIIR{2ż

´BIIR{2

ˆ
1

2

ˇ̌
ˇH IIR

´
e
j2π

f`f0
fS

¯ˇ̌
ˇ
2

`
1

2

ˇ̌
ˇH IIR

´
e
j2π

f´f0
fS

¯ˇ̌
ˇ
2
˙
df, (2.23)

and the energy density within the pass-band becomes

ΦIIR “
EIIR

2πBIIR

.

Likewise, let the pass-band bandwidth of an ideal band-pass filter be defined as B.
Then, the pass-band edges can be expressed by

ωa “
2π

fS

ˆ
f0 ´

B

2

˙
and ωb “

2π

fS

ˆ
f0 `

B

2

˙
. (2.24)

47

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

0 5 10 15 20 25 30 35 40 45 50

´50

0

ρHF in dB

N
oi
se

p
ow

er
in

d
B

NBP Equation 2.17
pNBP IIR

Figure 2.23: Noise power estimation performance using a six-stage IIR resonator.

Given a unity pass-band gain, i.e. an ideal band-pass filter, the accumulated energy
inside the rectangular pass-band is

E “
1

2
pωb ´ ωaq `

1

2
p´ωa ` ωbq “

2π

fS
B, (2.25)

and, clearly, since the filter has a pass-band gain of 1, the mean energy density within
the pass-band is equal to

Φ “ 1.

Equation 2.25 states, that the energy a rectangular filter collects within the pass-band
linearly increases with the bandwidth of the filter. Hence, if the mean energy of the pass-
band of the IIR resonator filter is known, the bandwidth of an equivalent rectangular
filter can be determined by

B “
ΦIIR

Φ
¨ BIIR “ ΦIIR ¨ BIIR, (2.26)

where ΦIIR ă 1 and, hence, B ď BIIR. In conclusion, Equation 2.26 enables the
translation of the IIR filter bandwidth into values for ωa and ωb using Equation 2.24. An
analytical solution for the integral in Equation 2.23 has not been derived in this work but
numerical simulations for a six-stage IIR resonator with BIIR “ 4 kHz, f0 “ 17 kHz and
r “ 0.98 have revealed a value of ΦIIR « 0.18. Inserting these values into Equation 2.26
results in an IIR resonator filter that collects the energy of an equivalent ideal rectangular
filter with B « 720Hz.

SNR Estimation given the Mean Noise Power

Inserting the band-edges formulated in Equation 2.24 and the bandwidth translations in
Equation 2.26 into Equation 2.19 and normalizing the HF bandwidth in the denominator
to BHF{fS “ 1 allows for deriving an estimated SNR value according to

pρHF “

´
2π
fS

¯3 ´
3f 2

0B ` B3

4

¯

6π pNBP

, (2.27)

48

2.4 An MPX-based SNR Estimator for FM Radio

where using the values of the system the estimated SNR results in

pρHF “

`
2π

288 kHz

˘3 ´
3p17 kHzq2 ¨ 720Hz ` p720Hzq3

4

¯

6π pNBP

(2.28)

“
3.4394 ¨ 10´4

pNBP

.

Note that in this expression pNBP refers to the mean accumulated power of the IIR
filter output signal yIIRrks (cf. Equation 2.21). Given that the calculation is perfomed
within an averaging period of NS samples, the estimated mean noise power at the k-th
sampling instant can be expressed by

pNBP “
1

NS

NS´1ÿ

i“0

|yIIRrk ´ is|2. (2.29)

´80 ´75 ´70 ´65 ´60 ´55 ´50 ´45 ´40 ´35 ´30 ´25 ´20 ´15

´15

´10

´5

0

pNBP in dB

β
p
p N
B
P

q
in

d
B

Figure 2.24: Noise power correction fuction.

The modified IIR-based noise estimator was tested in a simulation environment using
the demodulator model as shown in Figure 2.18 and the equations presented in this
section. Figure 2.23 shows that the carrier-to-noise ratio at the demodulator input can
sufficiently be determined by the energy detection within the band-gaps of the MPX
signal. The noise power in the simulation has been estimated by averaging one second of
IIR in-band power. Furthermore, for high SNRs the estimation results in the simulations
concur with the theory as stated in Equation 2.17. Since Equation 2.14 is inaccurate for
low SNRs (cf. [Kam08]), the estimation increasingly deviates for ρHF ă 15 dB.

pNBP,C “ pNBP ¨ βp pNBPq (2.30)

The non-linearity can be partially compensated by introducing a noise-energy depen-
dent correction value βp pNBPq, stated in Equation 2.30, to improve the estimation at low

SNRs. The function βp pNBPq reflects a fraction of the theoretical noise value and the
asymptotical estimated noise power and can been determined by simulations (cf. Fig-
ure 2.23 and the correction values in Figure 2.24). The slope of the correction function

49

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

ρHF in dB

R
M
S
E
(p ρ

H
F
)
in

d
B

pNBP

pNBP,C

Figure 2.25: Root-mean-squared error of FM signal-to-noise estimator output in dB.

indicates that in case ρHF is low at the demodulator input, i.e. the noise power is high,
the noise power estimate on average deviates up to 15 dB from the real value. The root
mean-square error (RMSE) of the corrected and uncorrected SNR estimation values for
different values of ρHF is plotted in Figure 2.25. The plot visualizes that post-correction
improves the estimate for low ρHF values. The mean deviation for one second of aver-
aging is within the range of 0.1 dB and 2.2 dB. The question in how far the detection
performance is sufficient for SNR-adaptive reconfiguration of FPGA modules will be
answered further on. Next, the hardware design and implementation complexity of the
presented noise detector will be outlined.

2.4.4 Hardware Implementation

In hardware, the noise variance estimation is accomplished by a sequential execution of
a single IIR second-order filter stage. This is possible since the FPGA clock frequency
is more than 125 times the baseband sampling rate. The hardware implementation of
the MPX-based noise estimator is shown in Figure 2.26. For block-wise processing in
hardware, the sliding-window in Equation 2.29 has been implemented recursively, where
the accumulated noise energy is calculated by

pNACCrks “ pNACCrk ´ 1s ` |yIIRrks|2,

with pNACCr0s “ 0. An estimate of the noise variace is then obtained by

pNBP “
pNACCrNSs

NS

.

The IIR memory registers of the SOS filters are implemented as a multiplexed register
bank, i.e. in each filter iteration cycle the delay register corresponding to the active IIR
filter is used. Generating a valid sample at the output of one SOS requires 7 FPGA clock
cycles. Hence, the processing of one input sample to generate one output sample in a
6-SOS filter cascade requires 42 clock cycles in total. At the filter output, the sample
energy is calculated by a squaring device and accummulated to obtain an estimate of
the noise energy pNBP. The energy calculation and accumulation take another 3 FPGA
clock cylces, such that one noise energy accumulation cycle takes 45 FPGA cycles.

50

2.4 An MPX-based SNR Estimator for FM Radio

Figure 2.26: Hardware implementation of an MPX-based noise estimator.

The FPGA synthesis of the noise estimation algorithm resulted in a resource consump-
tion of 193 slices, 2DSP48 units and 1 BRAM. In conclusion, the hardware overhead for
the estimator is neglible, given the available amount of resources in the XC5VSX50T
FPGA. However, the synthesized design includes only the estimator and the control
FSM, but no correction mechanism according to Equation 2.30. Before the estimation
procedure starts, the output accumulation register is cleared to zero. Then, the noise
power accumulation is perfomed and the output of the estimator is be fed to a DPR
control unit, where the evaluation and correction of the value is performed. If the re-
ceiver is stationary, the more samples involved in the averaging, the closer the estimate
pNBP approaches NBP. In the fixed-point implementation of the system, a number of
NS “ 5 ¨105 samples has been evaluated as acceptable averaging duration [Mü11], result-
ing in a period of

5 ¨ 105 samples

288 ¨ 103 samples{s
« 1.74 s

per estimation cycle. The precision of the output accumulator will be concerned next.

Recall that the output of the FM demodulator DPLL generates values between -1 to
1, cf. Section 2.3, in two’s complement fixed-point notation with 14 fractional bits. The
number of fractional bits doubles after squaring in the DSP48 unit and the number of
integer bits increases by log2pNsq. Hence, in the worst case, the unsigned integer register
at the estimator output requires

1 ` 2 ¨ 14 `
P
log2p5 ¨ 105q

T
“ 48 bits

to store the accumulated output in full precision, where r¨s denotes rounding towards
infinity. However, in practical scenarios the regions of operation of ρHF will be small, such
that the power of the noisy samples at the output of the IIR filter will be significantly
below 1.

The function and design of the SNR evaluation unit is subsequently layed out in
detail. Before that, meaningful SNR-related reconfiguration conditions will be presented,
which will be used by a decision logic in the reconfigurable design, to switch from one
configuration to another.

51

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

2.4.5 SNR-Related Reconfiguration Conditions

The SNR values obtained by the estimation unit are evaluated and used to trigger
an FPGA reconfiguration when rising above or falling below a certain SNR threshold.
Threshold values for the SNR have been derived for the receiver operation modes De-
mod+Mono, Demod+Stereo and Demod+RDS. A threshold will subsequently be defined
as a lower bound on the SNR, where below this bound, the receiver will fail to function
if in this mode.
Finding suitable switching SNR thresholds for monaural decoding is difficult since it

depends on human perception whether the audio quality is acceptable or not. For exam-
ple, the FM threshold could be taken as a switching value, since the FM decoding gain
rapidly degrades if the SNR falls short on this level (cf. [Ric63]). However, as outlined
by Rosenkranz in [Ros89], the FM threshold can vary for different FM demodulator im-
plementations. Laboratory experiments outlined in [KTB`12] have revealed that, given
the DPLL receiver implementation presented in Section 2.3, at an SNR of ρFM “ 4 dB
the audio signal is becoming so noisy, that it makes sense to switch-off audio decoding
completely. Hence, if an SNR below ρFM “ 4 dB is detected, the mono decoder can be
removed from the reconfigurable partition and the partition can be used for the execution
of other functions.
It has been derived in [SS08] that for stereo decoding the SNR at the demodulator

input must be approximately 21 dB above the mono threshold for the audio quality to
be sufficient. This is related to the fact that the audio difference signal is more prone to
noise than the monaural sum signal since it is located at a center frequency of 38 kHz
(cf. Equation 2.14). Thus, in case of stereo broadcasts it is feasible for the receiver to
switch from stereo to mono if the estimated SNR falls below ρFM “ 25 dB.

0 2 4 6 8 10 12 14 16 18 20 22 24
10´6

10´5

10´4

10´3

10´2

10´1

100

ρHF in dB

B
E
R

fMAX,LF “ 60 kHz, ∆fMAX “ 75 kHz, BHF “ 288 kHz

∆fRDS “ 2 kHz
∆fRDS “ 3 kHz
∆fRDS “ 4 kHz

Figure 2.27: BER approximation for coherent RDS demodulation against FM CNR.

For RDS a decoding threshold can be formulated by means of the maximum bit-error-
ratio that can be tolerated for error-free decoding. In [PS95] a BER of 10´2 before the

52

2.4 An MPX-based SNR Estimator for FM Radio

error correction code is taken as a threshold value for acceptable decoding performance.
Comparing this BER with the theoretically achievable BER formulated by Equation 2.9,
an MPX SNR requirement of Eb{N0 ą 12 dB is required at a center frequency of 57 kHz
in the MPX signal. The energy per bit Eb can be derived from the FM carrier power,
the FM frequency deviation proportion for RDS transmission and the RDS datarate
of 1187.5 bit/s. In [Itu01b] an FM frequency deviation proportion of ∆fRDS “ ˘2 kHz
is recommended for RDS transmissions. Combining the FM peak frequency deviation
∆fMAX and the FM carrier power A2

FM gives the signal energy of one RDS bit as

Eb “
A2

FM ¨
´

∆fRDS

∆fMAX

¯2

1187.5 bit{s
.

Assuming that the additive noise within in RDS band is approximately white, Equa-
tion 2.14 can be used to approximate the noise power spectral density N0 at a frequency
of 57 kHz and a HF bandwidth of BHF “ 288 kHz. Thus, Equation 2.9 can be used to
express the relation between FM carrier power, RDS frequency deviation, MPX noise
power and RDS bit-error-rate. In Figure 2.27 the relation is visualized for different RDS
FM peak frequency proportions. The curves show that for ∆fRDS “ ˘2 kHz a bit-error
rate of 10´2 is achieved when ρHF ě 14 dB. Below that threshold, the RDS decoder could
be switched-off since it produces too many bit errors for reliable RDS decoding. In a
reconfigurable FPGA design, it could alternatively be removed from the reconfigurable
partition.

Configuration SNR Threshold

Demod + Mono ρHF ě 4 dB

Demod + RDS ρHF ě 14 dB

Demod + Stereo ρHF ě 25 dB

Table 2.5: SNR operation thresholds for different FM receiver module configurations.

Hence, if the SNR estimator signals that the SNR has fallen below a certain threshold,
the reconfiguration controller in the FPGA can initialize a DPR of the FM multiplex
decoder partition to become more or less complex. The SNR thresholds for the different
reconfigurable partitions are summarized in Table 2.5, where ρHF denotes the CNR at
the FM demodulator input. It becomes apparent that the SNR threshold distance is
approximately 10 dB from one configuration to another. This means that, for example,
if RDS is working at a BER of 10´2, the signal power needs to be increased by a factor of
10 for stereo reception to be feasible. From mono to stereo, the required increase in power
is even higher with roughly a factor of 100. These relatively large SNR gaps motivate the
use of a dynamically-adaptable receiver, where the active decoder is switched according
to the estimated SNR. In a reconfigurable FPGA design, the presented approach can be
used to trade the resources inside the reconfigurable region with respect to the resource
and SNR requirements. The possibilities and limits of such a receiver implementation
will be described in the next section.

53

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

2.5 An SNR-Adaptive FM Receiver using Partial

Reconfiguration of FPGAs

In the previous section, SNR thresholds for feasible demodulation of the three main
FM signal components have been derived, which will be used for the design of three
different reconfigurable FPGA receiver prototypes. These prototypes will be presented
with incremental complexity, i.e. the simplest approach is presented first and the most
complex approach is presented last. The first approach uses a single reconfigurable
partition for receiver operations, furthermore denoted as single-island design. In this
design, the receiver configurations presented in the SNR threshold table will be exchanged
according to the FM demodulator SNR. Subsequently, a multi-partition reconfigurable
receiver will be presented, comprising of multiple demodulation chains. In this multi-
island design, multiple reconfigurable partitions will be reconfigured according to the
derived SNR constraints. In the last section an approach will be presented, where a
single partition is sub-divided into smaller partitions for a fine-grained reconfiguration.
This approach will be referred to as resource-sharing design.

2.5.1 Single-Island Design

In the single-island design, the logic of one particular receiver configuration is placed
inside a single reconfigurable partition. The static logic is enclosing the reconfigurable
partition and the signals are gated from and to the different logic areas using flip-flops
at the reconfiguration borders. A soft-core Xilinx Microblaze CPU is used to initiate
reconfiguration tasks and to handle system events. The CPU is configured to use an
8 kB BRAM for data and instruction caching and one DSP48 unit for hardware multi-
plication. The PLB clock frequency is set to 100MHz with a bus width of 32 bit and
interfaces a DDR2 RAM controller via data-cache link and instruction-cache link, an
XPS HWICAP module, a DPR control module and a compact flash module. The Xilinx
HWICAP module is described in [Xil11a] and is operated without direct memory access
(DMA). It is reported in [LKLJ09] that using the HWICAP PLB interface without DMA
is not optimum in terms of ICAP data throughput. For high-performance reconfigura-
tion, DMA-based implementations would be preferable (cf. [HP11]). The DPR control
unit is memory-mapped via registered I/O and is used to enable or disable the reconfig-
uration gateways and to reset the logic inside the reconfigurable partition. Aside from
the configuration and RDS signal gateways, there is one 8 bit baseband I/Q input gate-
way and one 16 bit pulse-code modulation (PCM) audio output gateway. The hardware
configuration and generation was accomplished using Xilinx XPS. A clock distribution
unit is used to generate the different clock frequencies in the design. Figure 2.28 shows
the described configuration. The partition-based DPR flow was used for the design of
the reconfigurable partitions (c.f. [Xil12c]). The bitstreams for the different configura-
tions are cached in an external on-board DDR2 memory and loaded on demand by the
configuration control block.
In relation to the three different SNR threshold regions, three partial bitstreams have

been generated for the different configurations. The required resources of these bit-
streams are summarized in Table 2.6. Comparing the required number of slices with the
Spartan-3A resource consumption in Table 2.16, the Virtex-5 design seems to require
fewer logic and BRAM resources, whereas the number of DSP48 units stayed the same.

54

2.5 An SNR-Adaptive FM Receiver using Partial Reconfiguration of FPGAs

Figure 2.28: Single-island reconfigurable FM receiver system design.

This is because the logic and BRAM resources of the Spartan-3A FPGA are not directly
comparable to the Virtex-5 fabric, as Virtex-5 FPGA slices contain four 6-input LUTs
and four flip-flop registers in contrast to the two 4-input LUTs and two flip-flop registers
available in the Spartan-3A FPGA. Additionally, as far as BRAMs are concerned, a
Virtex-5 FPGA BRAM can store twice as much data as compared to its counterpart on
the Spartan-3A FPGA. Given the reconfiguration interface logic and resource floorplan-
ning for DPR, the reconfigurable Virtex-5 FM receiver is considerably more complex as
compared to the previously introduced static Spartan-3A design.

Configuration Slices DSP48 36k BRAM

Demod + Stereo 1963 14 10
Demod + Mono 1375 7 8
Demod + RDS 1449 11 10

XC5VSX50T 8160 288 132

Table 2.6: FM receiver resource consumption on Xilinx XC5VSX50T FPGA.

For example, in the Virtex-5 design the FPGA area constraints must be tailored to the
FPGA resource and configuration layout, i.e. the constraints must be defined such that
they span an integer multiply of configuration frames, which is the smallest reconfigurable
entity of a Xilinx FPGA (cf. Section 1.1 in Chapter 1). Furthermore, the reconfigurable
area must enclose enough CLBs, BRAMs and DSP48 units to implement the design.
As stated in [Xil12c], a Virtex-5 configuration frame is 1CLB column wide and 20CLB
rows high, and one CLB includes 2 slices. The XC5VSX50T FPGA has 120 rows and
34 columns available for floorplanning [Xil12e]. As a consequence, module-based partial
reconfiguration is more feasible in horizontal direction, i.e. across the CLB columns.
The PLB components and the Microblaze CPU have been generated using the Xilinx
EDK. The exported pcore has been used as target platform for the software compilation

55

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

0 5 10 15 20 25 30

Demod + Stereo

Demod + Mono

Demod + RDS

7.6

6.1

7.6

4.9

2.4

3.8

24.1

16.9

17.8

%

Slices
DSP48
36k BRAM

Figure 2.29: FM receiver relative resource consumption of Xilinx XC5VSX50T FPGA.

process in the Xilinx SDK. The DPR control software has been provided as C code and
compiled using the Xilinx SDK. Xilinx System Generator has been used to design the
reconfigurable module configurations as listed in Table 2.6.

Generating a SystemACE configuration from the implemented designs involves multi-
ple steps (cf. Figure 2.30). First, a VHDL description of the top-level entity needs to be
available, which comprises of the static system and the initial configuration of the recon-
figurable module. Therefore, the Microblaze design, the DPR decoupling logic, the input
processing logic and the AC97 output logic in the static partition must be available. In
case of the FM receiver, the first configuration is the Demod+Stereo configuration. Next,
auto-generated VHDL code is exported from within System Generator and synthesized
afterwards. Upon successful synthesis, the netlist of all partitions is available. Area-
constrained mapping, placing and routing is performed by a tool command language
(TCL) script using the options RUN NGDBUILD, RUN MAP and RUN PAR. For each configu-
ration, area constraints have been provided by a user constraint file (UCF), which can be
created manually or can alternatively be generated using Xilinx PlanAhead [Mü11]. The
TCL script also generates a directory structure for a unique identification of every DPR
configuration. After the static design and the reconfigurable modules have been jointly
implemented, the initial (full) bitstream and the partial bitstreams are generated1. The
bistreams are further on provided to Xilinx GenAce and copied to the compact flash
memory card together with the compiled DPR control code for the Microblaze design.
Using the partition-based design flow, the size of the partial bitstreams is proportional
to the size of the reconfigurable area. More specifically, the size does not depend on the
logic utilization inside the reconfigurable area, but on the size of the rectangular parti-
tion that spans the FPGA floorplan. Furthermore, since the Xilinx toolchain does not
provide a shrinking of the reconfigurable partition during FPGA operation, re-allocating
unused resources inside one reconfigurable partition to other partitions is not possible.

In the final design, the software must initiate a reconfiguration when a trigger signal
is being received. The trigger signal may be provided by the DPR control circuit at the
PLB or via GPIO. The DPR-related software tasks of the Microblaze CPU are depicted
in the flowchart in Figure 2.31, showing three states:

1The partial bitstream is generated using Xilinx Bitgen with the options -w -g ActiveReconfig:Yes.

56

2.5 An SNR-Adaptive FM Receiver using Partial Reconfiguration of FPGAs

system.ace

cfg1.bit

cfg2.bit

...

cfgM.bit

Figure 2.30: DPR receiver system design tool-flow.

Figure 2.31: Microblaze software bringup and reconfiguration loop flowchart.

57

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

• FPGA startup: During the startup phase, the bitstreams are read from the
compact flash card, converted into the HWICAP format by swapping the byte
endianess and stored in the external DDR RAM. Subsequently, the receiver enters
the idle state and wait for a reconfiguration trigger signal.

• Idle: In the idle state the CPU waits for a reconfiguration trigger and the reconfig-
urable partition continuously processes the incoming data. Upon trigger detection,
the Microblaze CPU enters the DPR active state to initiate a reconfiguration of
the DPR partition.

• DPR active: When entering the DPR active state, the DPR gate registers are
disabled to decouple the reconfigurable partition from the static partition. Then,
the partial bitstream of the DPR module is loaded from the external DDR memory
and written to the HWICAP. After successful reconfiguration, the gate registers
interfacing the DPR partition are enabled and the DPR module is reset. Finally,
the CPU goes back into the idle state.

The reconfiguration interface throughput mainly depends on the clock frequency of
the HWICAP and PLB. The reconfiguration time can be estimated from the mean re-
configuration throughput and the size of the partial bitstream. For the single-island
Virtex-5 design, the HWICAP has been configured to a clock frequency of 100MHz
and a width of 32 bits, which gives a theoretical peak throughput of 400MBytes/s. In
practical systems, this rate is seldom achieved (cf. [LKLJ09]) and requires dedicated
reconfiguration engines. For example, in [HP11] Hoffman et al. have presented a high-
speed dynamic partial reconfiguration controller (HSDPRC) for Virtex-5 FPGAs with
a maximum write throughput of 418.5MB/s using a DMA engine, a PowerPC mem-
ory controller (PPC440MC) and overclocking the ICAP to 133MHz. Using a 200MHz
Microblaze, a Xilinx multi-port memory controller IP and a 100MHz ICAP clock fre-
quency, the maximum reconfiguration speed Hoffman could achieve was 178.6MB/s.
For the DPR setup in this work, the reconfiguration throughput has not been measured
but has been bounded by measurement results presented in literature. Table 2.7 sum-
marizes the reconfiguration port throughput reported for comparable systems using the
HWICAP block at the PLB without DMA.

DPR System and Clock Frequencies DPR Throughput
FPGA CPU ICAP Max. Theory Measured

Virtex-4 FX20 [LKLJ09] MB@100MHz 100MHz 400MB/s 14.5MB/s
Virtex-4 FX20 [LKLJ09] PP@300MHz 100MHz 400MB/s 19.1MB/s
Virtex-5 XC5VFX70T [KDHS14] MB@100MHz 100MHz 400MB/s 19MB/s
Spartan-6 XC6SLX45T[Sch11] MB@66MHz 20MHz 40MB/s 4.8MB/s

MB: Xilinx Microblaze Soft Core, PP: PowerPC Hard Core

Table 2.7: Reconfiguration performance with HWICAP at PLB without DMA.

The values emphasize that the measured throughputs are more than an order of mag-
nitude below the theoretical maximum. Due to the fact that the data needs to be
transferred across the CPU local bus, the slowdown can most effectively be counteracted
by using direct memory transfers to the ICAP interface. For a Virtex-5 FPGA, Kulkarni

58

2.5 An SNR-Adaptive FM Receiver using Partial Reconfiguration of FPGAs

quotes an effective DPR throughput of 19MB/s. Given the size of the partial bitstream
of 622, 795Bytes, the duration to load a new set of configuration frames into the single-
island DPR partition equals 33ms. For the bitstream size of the prototype system,
the reconfiguration duration for other systems and throughput values are outlined in
Table 2.8.

Publication ICAP Interface DPR Throughput DPR Duration

Liu in [LKLJ09] PLB 14.5MB/s 43ms
Kulkarni in [KDHS14] PLB 19MB/s 33ms
Hofmann slow in [HP11] DMA 178.6MB/s 3.5ms
Hofmann fast in [HP11] DMA 418.5MB/s 1.6ms

Table 2.8: Reconfiguration time estimates for single-island DPR partition.

The resource requirements of the complete single-island DPR system is given in Ta-
ble 2.9. In comparison to the previously stated resource consumption of the receiver (cf.
Table 2.6), the new design is quite large consuming 67% of the available FPGA slices.
Measures to overcome this drawback are presented in the following section, where the
receiver FM demodulator is separated from the MPX decoders. As already pointed out,
the noise estimator is quite resource efficient, consuming only 2.3% of the FPGA slices
plus two DSP48 units and one BRAM.

Configuration Slices DSP48 36k BRAM

Noise Estimator 193 2 1
Complete DPR Design 5466 19 43

XC5VSX50T 8160 288 132

Table 2.9: Resource consumption of single-island DPR receiver.

The final demonstration platform is shown in Figure 2.32, consisting of a PC, a Xilinx
Spartan-3 FPGA and a reconfigurable Xilinx Virtex-5 FPGA (XC5VSX50T). The PC
generates a complex baseband signal at a sample frequency of 500 kHz and transmits the
data to the Spartan-3 FPGA via USB. The reconfigurable Virtex-5 device reads the data
from a parallel GPIO interface and processes it internally. The PC generates a modulated
FM stereo broadcast signal including an RDS service and the SNR of these signals can
be varied by adding white Gaussian noise to the respective stream. The reconfigurable
FM receiver prototype demonstrates the concept of an SNR-adaptive cognitive radio and
serves as a template for further investigations of more complex applications.
In the presented setup, the FM baseband signal is received, decoded and the respective

SNR is estimated in the Virtex-5 FPGA. According to the SNR of the received FM
signal, the MPX decoding routines are self-adapting. When switching between different
designs using one reconfigurable partition, in terms of resources this partition needs
to provide enough headroom to satisfy the requirements of the most demanding DPR
module implementation. For the FM receiver, this means that the reconfigurable area
must include enough resources to allow for stereo decoding. The single-island design does
then allow for an SNR-adaptive switching between different receiver configurations. As a

59

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

Figure 2.32: Reconfigurable broadcast FM receiver demo system.

future work, it would be interesting to analyze the savings in dynamic power consumption
if the reconfigurable partition are de-activated, i.e. in case the SNR falls below a given
threshold.
In the following section, a modified multi-island DPR receiver design will be presented,

where multiple MPX decoders operate in different DPR partitions.

2.5.2 Multi-Island Design

In the scope of this work, two multi-island systems were designed and implemented: a
dual-island and a triple-island reconfigurable receiver system, where the FPGA com-
prises one static and two or three reconfigurable partitions. Due to the fact that the
demodulation part is required to be present in all DPR configurations, the FM demod-
ulator was separated from the MPX decoder in the multi-island design. This leads to a
considerable reduction in resource utilization for the reconfigurable partitions as outlined
further on.
Equal to the single-island design, the static partition includes a Microblaze microcon-

troller and a reconfiguration control unit. Additionally, multiple PLLs and estimation
stages are employed for FM demodulation and SNR estimation. The DPR modules con-
tain the MPX signal decoders, which are supplied by the data of the FM demodulation
DPLLs in the static partition. Each partition can hold one of the following demodulator
types: Stereo demodulator, mono demodulator and RDS decoder. Figure 2.33 shows the
described hardware setup with two reconfigurable islands. The reconfigurable partitions
are denoted as DPR partition 1 and DPR partition 2 and each partition can be recon-
figured individually without interrupting the other. The reconfigurable system has been
implemented using the tool-flow as presented in the previous section, cf. Figure 2.30.
In Table 2.10, the resource requirements for the different reconfigurable MPX decoding

modules are quantified. With FM demodulator and MPX decoder being split, the dual-
partition system occupies 73.2% of the slice resources. In comparison to the single-
island design, which requires 67% of the slice resources, the dual-partition design is

60

2.5 An SNR-Adaptive FM Receiver using Partial Reconfiguration of FPGAs

Figure 2.33: Dual-partition reconfigurable FM receiver design.

more efficient in terms of resources per MPX decoder. Regarding the interfacing, the
FM receiver input and demod units require 10.8% of the slice resources as each I/O unit
includes a PLL and a fractional polyphase resampler to down-convert from 500 kS/s to
288 kS/s baseband rate. The stereo configuration is the most demanding MPX decoder
in terms of slices and DSP48 units, whereas the RDS configuration requires most of
the BRAM resources. Similar to the single-island design, the amount of available logic
resources inside each DPR partition has to be defined with respect to the most complex
design to handle the complexity of all DPR modules. Using the multi-island receiver,
different configuration permutations can be operational on the device, e.g. the receiver
can have two stereo demodulators, or one mono and one RDS demodulator, two RDS
demodulators, etc.

Type Configuration Slices DSP48 36k BRAM

FM receiver input Demod 888 5 5
FM receiver output AC97 31 0 2

MPX DPR module Stereo 804 9 3
MPX DPR module Mono 458 2 2
MPX DPR module RDS 503 6 5

Dual-partition DPR system 5976 31 47
Triple-partition DPR system 6934 40 52

XC5VSX50T FPGA 8160 288 132

Table 2.10: Multi-island receiver resource requirements.

In case the SNR estimator of a specific decoding branch detects a value below the
previously introduced decoding threshold, the respective partition is replaced, similar
to the approach presented in [CKPLM10]. If the noise power increases above a level

61

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

where decoding is not feasible anymore, the MPX decoder in question is replaced by
an empty bitstream. The CPU evaluates the estimated SNR values and is able to
trigger a reconfiguration of DPR partition 1 or 2. While the FM-MPX decoding chain is
reconfigured via DPR, the SNR estimation and the FM signal demodulation stay active
in the static part of the device.
Possibilities on how to achieve a sharing of FPGA resources among different DPR

partitions will be evaluated in the next section. Furthermore, it will be described in how
far a fine-grained resource-sharing approach is possible to implement with state-of-the-
art Xilinx tools.

2.6 Resource-Efficient Concurrent Receivers using DPR

The multi-island prototype represents a flexible FM demodulation system, where differ-
ent decoders can be swapped on-the fly using the SNR of the input signal as triggering
metric. However, although the presented implementation exemplifies that SNR-adaptive
reconfiguration can be applied to multiple islands, it also shows that with fixed-size DPR
partition areas there are limited possibilities of re-using the unused logic resources when
switching from complex MPX modules to simpler MPX modules. Thus, using multi-
island reconfiguration does not bring benefits in terms of resource savings as, similar
to the single-island design, each MPX decoder partition utilizes the same number of
configuration columns and rows.
Using the previously discussed DPR approaches, the logic resources of the reconfig-

urable areas need to hold the most complex DPR module designed to be executed inside
the DPR partition. In case of a non-uniform module resource-distribution, the design
suffers from resource fragmentation, resulting in a sub-optimum resource utilization.
Thus, if DPR modules utilize only a small fraction of the available resources in a DPR
partition, it would be desirable to free the unused resources and allocate them to adja-
cent DPR regions. In this section, the concept of such a resource-sharing approach will
be described and the possibilities to utilize reconfiguration on a more fine-grained level
will be discussed.

2.6.1 Motivation

In a multi-module DPR design, a set of modules can be mapped in various ways to the
reconfigurable partitions by permutation. Given M DPR modules and P reconfigurable
partitions, the number of configuration sets with unique partition-to-module mapping
is MP . If the order of the modules is ignored, such a set of modules is denoted as
multiset [Knu97] and the number of element permutations can be calculated by

K “

ˆ
M ` P ´ 1

P

˙
,

where
`

¨
¨

˘
denotes the binomial coefficient. Hence, for a dual-module design with M “ 3

modules and P “ 2 partitions the number of possible module-to-partition mappings is
K “ 6. Given the premise that always a minimum of two MPX modules are active
in the reconfigurable design, Figure 2.34 shows the amount of resources required for a
resource-shared dual-module DPR implementation using the values of Table 2.10. The

62

2.6 Resource-Efficient Concurrent Receivers using DPR

accumulated utilization of slices, BRAMs and DSP48 units is indicated in the figure
by dashed lines. Similarly, for a triple-module receiver, Figure 2.35 shows the different
set realizations of MPX decoders with K “ 10. The dual-decoder bargraphs show that
in terms of slices and DSP48 units the set (6) is the most demanding, whereas set (1)
requires most of the BRAM resources. The amount of resources available in the DPR
partition is a design criterion that defines the limit on the realizable tuple. In practice,
a limit must be defined for each of the three resource elements and all tuples that do not
exceed this limit in terms of resources are suitable candidates to operate inside the DPR
region. Or the other way around, if the amount of resources inside the reconfigurable
partition is insufficient to operate a set of resource-demanding module pairs, the design
can not be realized.

1608

0 500 1,000 1,500 2,000 2,500 3,000

Stereo, Stereo (6)

Stereo, Mono (5)

Stereo, RDS (4)

Mono, Mono (3)

Mono, RDS (2)

RDS, RDS (1)

Slices

DPR module 1
DPR module 2

10

0 2 4 6 8 10 12 14 16 18 20

Stereo, Stereo (6)

Stereo, Mono (5)

Stereo, RDS (4)

Mono, Mono (3)

Mono, RDS (2)

RDS, RDS (1)

36 kBRAM

DPR module 1
DPR module 2

18

0 5 10 15 20 25 30 35 40

Stereo, Stereo (6)

Stereo, Mono (5)

Stereo, RDS (4)

Mono, Mono (3)

Mono, RDS (2)

RDS, RDS (1)

DSP48

DPR module 1
DPR module 2

Figure 2.34: MPX dual-decoder accumulated module resources on XC5VSX50T FPGA.

Following the Xilinx tool-flow requirements, in partition-based dual-island designs,
enough resources must be reserved to realize the most complex module configuration
in both DPR partitions. Hence, more resources must be allocated than eventually
required. In the following, approaches are introduced that potentially lead to more
resource-economic implementations.

63

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

2412

0 500 1,000 1,500 2,000 2,500 3,000

Stereo, Stereo, Stereo (10)

Stereo, Stereo, Mono (9)

Stereo, Stereo, RDS (8)

Stereo, Mono, Mono (7)

Stereo, Mono, RDS (6)

Stereo, RDS, RDS (5)

Mono, Mono, Mono (4)

Mono, Mono, RDS (3)

Mono, RDS, RDS (2)

RDS, RDS, RDS (1)

Slices

DPR module 1
DPR module 2
DPR module 3

15

0 2 4 6 8 10 12 14 16 18 20

Stereo, Stereo, Stereo (10)

Stereo, Stereo, Mono (9)

Stereo, Stereo, RDS (8)

Stereo, Mono, Mono (7)

Stereo, Mono, RDS (6)

Stereo, RDS, RDS (5)

Mono, Mono, Mono (4)

Mono, Mono, RDS (3)

Mono, RDS, RDS (2)

RDS, RDS, RDS (1)

36 kBRAM

DPR module 1
DPR module 2
DPR module 3

27

0 5 10 15 20 25 30 35 40

Stereo, Stereo, Stereo (10)

Stereo, Stereo, Mono (9)

Stereo, Stereo, RDS (8)

Stereo, Mono, Mono (7)

Stereo, Mono, RDS (6)

Stereo, RDS, RDS (5)

Mono, Mono, Mono (4)

Mono, Mono, RDS (3)

Mono, RDS, RDS (2)

RDS, RDS, RDS (1)

DSP48

DPR module 1
DPR module 2
DPR module 3

Figure 2.35: MPX triple-decoder accumulated module resources on XC5VSX50T FPGA.

64

2.6 Resource-Efficient Concurrent Receivers using DPR

2.6.2 Proposed System

Given are multiple decoder implementations with different FPGA resource requirements,
in the following denoted by large and small. The decoders will be implemented as DPR
modules and connected either to the left or to the right border of the reconfigurable
partition, cf. Figure 2.36. Regarding the application, it is assumed that either the left
partition or the right partition is holding a large decoder configuration, but never both
at the same time. The resources in the reconfigurable partition will be shared among
both configurations and the area will be constrained such that the following setup can
be realized:

1. A large decoder may be present in the left DPR module implementation and a
small decoder in the right DPR module implementation.

2. A small decoder may be present in the left and right DPR module implementation.

3. A small decoder may be present in the left DPR module implementation and a
large decoder in the right DPR module implementation.

Figure 2.36: Dual resource-sharing reconfigurable system design.

In the proposed system, the resources in the center of the reconfigurable island among
the left and right DPR modules are shared. For a multi-island DPR system as presented
in Section 2.5.2, the reconfigurable area must be large enough to hold two times the
largest design. In a resource-sharing design the required area can be reduced since only
the largest and the small design will ever be part of the system. Clearly, the bigger the
difference between the large designs and the small design, the more resources can be
saved compared to the traditional multi-island DPR design.
Considering the presented MPX decoder modules, the small implementation may re-

fer to the mono MPX decoder and the large implementation may refer to the stereo
MPX decoder or the RDS MPX decoder. The accumulated resources of four interesting
dual-decoder configurations are summarized in Table 2.11 including the relative resource
requirements compared to a dual-stereo decoder. The table shows that the resource
consumption is reduced for all configurations except for the BRAM utilization in config-
uration II. This motivates the evaluation of a resource-sharing MPX decoding system,
as further on proposed.

2.6.3 Resource-Shared Dual-Decoder Case Study

In the following, a case-study for a dual-decoder resource-sharing system will be pre-
sented. For the case-study, only the stereo and mono MPX decoders have been analyzed,

65

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

Configuration Slices DSP48 36k BRAMs

I: Mono, Mono 916 (57%) 4 (22%) 4 (67%)
II: Stereo, RDS 1307 (81%) 8 (44%) 8 (133%)
III: Stereo, Mono 1262 (78%) 15 (61%) 5 (83%)
IV: Stereo, Stereo 1608 (100%) 18 (100%) 6 (100%)

Table 2.11: MPX accumulated module resources for resource-sharing implementation.

leading to an implementation as depicted in Figure 2.37 with configurations I, III and
IV (cf. Table 2.11).

...

Figure 2.37: Dual resource-sharing reconfigurable FM receiver system design.

Two demod block partition interfaces exist at the left and right border of the recon-
figurable partition. The resource-sharing approach prohibits the use of two concurrently
operating large decoders, i.e. two stereo MPX decoder blocks. Given this constraint and
comparing the requirements of a multi-island implementation with the resource-sharing
approach, theoretically, the number of slices can be reduced by 22%, compared to an un-
optimized static implementation. For SNR-adaptive switching a prioritization between
the left and right stereo DPR module must be included. Note that prioritization also
means decision-coupling in terms of reconfiguration since the DPR module with higher
priority can decide whether the other module will be reconfigured in case more resources
are needed.
Next, the realization of the resource-sharing approach will be evaluated in a feasibility

study.

Technical Feasibility and Floorplanning Considerations

Before putting effort into the design of a resource-sharing DPR system, it has to be
ensured that the Xilinx FPGA fabric is capable to implement the required functionality,
which, upon request, was positively confirmed by Xilinx. In addition, reconfigurability is

66

2.6 Resource-Efficient Concurrent Receivers using DPR

only ensured when the area constraints for the resource-sharing partitions are correctly
defined. For example, the area must be partitioned in multiples of a configuration
column. In reference to Table 1.1 in the introduction, a Virtex-5 configuration frame is
20CLBs high and 1CLB wide. Sharing the resources of a configuration column among
two reconfigurable areas leads either to a failing implementation (ERROR:XCad) or to a
situation where one receiver is likely to disturb the other (cf. [Mü11]). Since the static
part of the system is imported after implementation, it is theoretically possible to share a
configuration column with the reconfigurable partitions. However, practical evaluations
have shown that this procedure leads to glitches in the static partition, which is why it
is not recommended. Another reason not to mix the static and reconfigurable partition
within one configuration column is that the reconfigurable areas should be aligned to the
clock region boundaries, which are also 20CLBs high and aligned with the configuration
column layout. This is also the reason why the design of a horizontally expanding DPR
area is preferred over a vertically expanding DPR area. Bearing these considerations
in mind, constraining the placement of the sub-module to a limited resource region is
accomplished using the following area group directives:

• Area constraints for Black Box:

AREA_GROUP "dpr_partition" RANGE=SLICE_X38Y20:SLICE_X53Y99;

AREA_GROUP "dpr_partition" RANGE=DSP48_X4Y8:DSP48_X5Y39;

AREA_GROUP "dpr_partition" RANGE=RAMB36_X3Y4:RAMB36_X4Y19;

• Area constraints for Stereo 1:

AREA_GROUP "stereo_left" RANGE=SLICE_X38Y20:SLICE_X47Y99;

AREA_GROUP "stereo_left" RANGE=DSP48_X4Y8:DSP48_X4Y39;

AREA_GROUP "stereo_left" RANGE=RAMB36_X3Y4:RAMB36_X3Y19;

• Area constraints for Mono 1:

AREA_GROUP "mono_left" RANGE=SLICE_X38Y20:SLICE_X43Y99;

AREA_GROUP "mono_left" RANGE=DSP48_X4Y8:DSP48_X4Y39;

AREA_GROUP "mono_left" RANGE=RAMB36_X3Y4:RAMB36_X3Y19;

• Area constraints for Mono 2:

AREA_GROUP "mono_right" RANGE=SLICE_X44Y20:SLICE_X53Y99;

AREA_GROUP "mono_right" RANGE=DSP48_X5Y8:DSP48_X5Y39;

AREA_GROUP "mono_right" RANGE=RAMB36_X4Y4:RAMB36_X4Y19;

• Area constraints for Stereo 2:

AREA_GROUP "stereo_right" RANGE=SLICE_X48Y20:SLICE_X53Y99;

AREA_GROUP "stereo_right" RANGE=DSP48_X5Y8:DSP48_X5Y39;

AREA_GROUP "stereo_right" RANGE=RAMB36_X4Y4:RAMB36_X4Y19;

67

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

For the feasibility study, audio drop-outs in adjacent partitions have not been con-
cerned, i.e. the continuity of both MPX decoders is not a strict requirement. Hence, it is
acceptable if the audio output of an MPX decoder turns silent during the reconfiguration
of another DPR partition.
The approaches for the realization of a resource-sharing DPR design will be subse-

quently presented.

Evaluated Approaches

In this section, the approaches for a resource-sharing DPR FPGA system according
to Figure 2.37 will be discussed. The Xilinx ISE 14.4 toolchain has been used for all
subsequently described DPR implementations.

Hierarchical Partition-Based DPR Approach

In the first approach, hierarchical reconfiguration has been used with the partition-based
design concept as described in Section 1.1.3 in the introduction. In opposition to the
standard partition-based flow, for this approach the reconfigurable region is split into
sub-regions, which are implemented by nested partitions (sub-partitions) inside the main
DPR partition as visualized in Figure 2.38. For the realization of the three different
modes of operation, four partial bitstreams are required. The main DPR partition is
still required to block the resources for the sub-partitions during the implementation of
the static design, such that no static logic is placed inside that area. Interfacing the
sub-partitions is possible by forcing the partition pins to static locations inside the left
and right sides of the DPR partition using the constraint directive PIN "<instance>"

LOC=<slice>". With the presented approach, the monaural decoder on one side could
continue to operate without interruption, even if the decoder on the opposite side is
being reconfigured from mono to stereo or vice versa. Moving the stereo decoder from
the left side to the right side or vice versa needs two reconfiguration cycles. However,
the reconfiguration from stereo to mono requires only one reconfiguration cycle.

Figure 2.38: Dual resource-sharing reconfigurable system design.

Implementing the described hierarchical DPR system with the Xilinx toolchain failed
with error 152 (ERROR: HierarchicalDesignC) due to missing support for nested recon-
figurable partitions. Xilinx technical support [Mü11] confirmed that the implementation
of resource-sharing systems by nested area groups is not possible. Since the partition-
based flow turns out to be not suitable for hierarchical reconfiguration, in the next
section, a difference-based resource-sharing system design approach will be introduced.

68

2.6 Resource-Efficient Concurrent Receivers using DPR

Difference-Based DPR Approach

The second resource-sharing system will be implemented with the difference-based par-
tial reconfiguration flow as explained in Section 1.1.2 in the introduction. Similar to the
partition-based flow, the difference-based flow requires the I/O interfaces between the
static part and the DPR partition to be constrained to a fixed location. Additionally,
it must be ensured that the clock networks of the left and right configurations are not
interrupting each other during reconfiguration. Therefore, the difference-based flow re-
quires to provide clock inputs to the left and right sub-modules at fixed locations. The
position of the clock inputs are fixed by pin location constraints together with the I/O
interfaces, similar to the partition-based implementation.

Figure 2.39: Dual resource-sharing reconfigurable system design.

Figure 2.39 shows the work-flow for bitstream generation. The initial system has
been implemented from scratch using a stereo decoder on the left side and a mono
decoder on the right side enclosed by the static partition. A black box system is then
generated comprising of the static system and an empty DPR partition. Finally, four
different MPX decoder realizations are implemented, each constrained as stated above
and with a black box dummy region. Using the black box system and the implemented
MPX decoder realizations, Xilinx Bitgen is used with the -r option to generate four
differential bitstreams. Equal to the partition-based system, moving the stereo decoder
from one side to another needs two reconfiguration cycles and the reconfiguration from
stereo to mono requires only one cycle.
The analysis of the bitstreams using Xilinx Impact revealed that the placement of

the resources could be constraint correctly, whereas the routing was leaking out of the
constraint area into the neighboring partitions. The leakage is shown in Figure 2.40 and,
since the routing crosses the black box region, leads to malicious configurations and inter-
ference with the neighboring DPR modules. Upon observation, the Xilinx technical sup-
port suggested using the undocumented area group constraint options BOUNDARYCROSS=NO

69

2 FPGA Self-Reconfiguration for Adaptive Radio Receivers

Figure 2.40: FPGA floorplan showing routing leakage for adjacent partitions.

and CONTAINED=ROUTE. However, even by using these constraints the routing was still
prone to leaking into the neighboring partitions. Hence, using the difference-based sys-
tem design approach the resource-sharing design could not be realized with Xilinx tools.

Since a resource-sharing DPR design could not be implemented using the vendor
toolchain, the possibility of constraining the routing by using third-party tools is pro-
posed. In [KB14] Koch et al. describe the tool-flow for hierarchical reconfiguration with
the tool GoAhead. Instead of black boxes, the GoAhead tool utilizes blocker macros
to constrain the routing to a certain region. The blocker macros are defined by XDL
and added to the respective module before implementation. GoAhead has not been used
in this work but has been reported to work with Virtex-5 FPGA designs in [BWF`13]
together with a bus-macro reconfiguration approach.

2.7 Summary

A discussion of the related work for SNR-adaptive reconfigurable systems revealed that
literature is missing a detailed analysis of SNR-adaptive receivers for partially reconfig-
urable FPGA systems and that resource-sharing self-adapting FPGA receiver systems
are currently not employed. Therefore, a detailed outline of the design and implemen-
tation of a digital FM broadcast receiver has been given, together with an insight on
the DPR module complexity. Next, the resource consumption of the receiver using a
Xilinx Spartan-3 FPGA and the interfacing to audio and baseband I/O has been de-
scribed. For the system to be self-adaptive, a novel FM SNR estimation technique based
on the estimation of MPX band-gap noise has been presented and the routine has been
dimensioned for the receiver in question. Furthermore, SNR threshold values for the dif-
ferent MPX decoding modules have been derived, by applying the ITU recommendations
to the FM receiver design parameters. Since the Spartan-3A FPGA does not support

70

2.7 Summary

partial self-reconfiguration, the FM receiver and SNR estimator have been ported to a
Xilinx Virtex-5 FPGA (XC5VSX50T) and the resource consumption for receiver real-
izations with different complexity has been outlined. Subsequently, the implementation
of a self-adapting system using dynamic partial reconfiguration has been presented and
the resource requirements for such a system have been quantified. Further on, a more
fine-grained multi-island receiver implementation was obtained, by separating the MPX
decoders from the FM demodulation stage. In the modified design, the MPX decoder
modules strongly varied in resource consumption, which motivated the idea to share the
resources of a DPR partition among multiple MPX decoders using hierarchical partial
reconfiguration. It has been outlined that with such a system the number of slices can
be reduced by 22% compared to an unoptimized static implementation. Albeit Xilinx
confirmed that the hardware supports hierarchical reconfiguration, the realization of the
resource-sharing system failed since the Xilinx tool chain does neither support nested
DPR partitions, nor does it support constraining the routing when difference-based re-
configuration is used. The chapter is concluded by a proposal on how to circumvent
these drawbacks using third-party tools like GoAhead, which support hierarchical recon-
figuration on Xilinx Virtex-5 FPGAs. Note that the elaborated results are not limited
to Xilinx Virtex-5 devices but are also applicable to newer Xilinx FPGAs.
The feasibility of continuous temporal multiplexing of FPGA resources for the sequen-

tial execution of receiver chain elements will be analyzed in the following chapter.

71

3 Cyclic FPGA Reconfiguration for
Sequential Processing of Receiver
Modules

Sharing the logic resources among different DPR partitions can potentially reduce the
resource occupation of a particular implementation as discussed in the previous chap-
ter. In this chapter, approaches for sharing the logic resources in time by continuous
reconfiguration of one single-island DPR partition will be of concern.
In traditional FPGA designs, a processing chain typically consists of concatenated

processing elements (PEs), concurrently processing the data, i.e. all PEs may be active
in parallel. An example of such a processing chain with the PEs p1, p2, . . . , p5 is depicted
in Figure 3.1.

Figure 3.1: Concurrent execution of processing elements in traditional designs.

Figure 3.2: Trading FPGA resources against time using cyclic DPR.

For the subsequent analysis, it is assumed that only a subset of concatenated PEs
process the data concurrently. Such a PE subset will in the following be referred to
as DPR module. DPR modules will be activated sequentially in time, i.e. one after
another, and thus can not process the data concurrently anymore but must process
the data block-wise. Sequential processing of data is achieved by time-multiplexing the
FPGA resources inside a DPR partition as expressed by Figure 3.2, where the first two

72

3.1 Related-Work and Contribution

PEs are processed concurrently in DPR module 1 and the last three PEs are processed
concurrently in DPR module 2. After a portion of data has been processed inside each
DPR module, the DPR partition is reconfigured. The outlined approach trades FPGA
resources against execution time and will subsequently be referred to as cyclic DPR1.
Sequential module-wise processing requires the data to be processed in chunks. A

chunk or frame refers to a finite portion of data propagating through a DPR module
within one execution period. In this section, it will be shown that for real-time decoding
the duration of a frame is tightly coupled to the processing delay and buffer capacity.
Furthermore, the implications of cyclic DPR on the DPR module clock frequency will be
outlined and it will be discussed how existing receiver chains have to be modified in order
to be capable to work in a cyclic DPR environment. Hardware parameters of the DPR
environment and of the DPR modules will be described by means of a system model
for the feasibility analysis of cyclic DPR systems. The presented aspects are strongly
connected and need to be analyzed in a combined context as shown further on.
Before the introduction of a suitable system model for cyclic DPR, the prior-art on

time-multiplexing of FPGA resources will be provided and the contribution of this work
will be classified. As a proof of concept, the effects of partitioning and sequential ex-
ecution on a DAB receiver chain will be discussed in terms of real-time performance,
FPGA resources and latency. In addition, the same DAB receiver chain will be used in-
side a cyclic DPR hardware implementation and analyzed in further detail. A feasibility
study for a cyclic DPR system for DVB-T2 baseband decoding and a brief summary will
conclude this chapter.

3.1 Related-Work and Contribution

As outlined in the first chapter of this work, the idea of time-multiplexing FPGA re-
sources to virtually enlarge the available logic gained momentum with Trimberger’s pub-
lication ”A Time-Multiplexed FPGA” (cf. Section 1.1). An architecture for real-time
operation of run-time reconfigurable signal processing systems was introduced by Eilers
et al. in [ESK03]. The authors present an analysis of different buffering schemes to hide
the reconfiguration latency of a Xilinx Virtex-II 1500 FPGA. In contrast to this work,
cyclic reconfiguration or the design of a reconfiguration system model are not in the
scope of their research. In 2007 Claus et al. presented a reconfigurable design based on a
Xilinx Virtex-II Pro FPGA, where multiple reconfiguration columns can be dynamically
reconfigured to switch between different video-processing functions [CZMS07]. Here,
similar to previous works, the FPGA is not cyclically reconfigured, but the DPR module
configurations are written to the ICAP on demand. The idea of cyclic time-multiplexing
of FPGA resources to realize a resource-efficient radio receiver was presented by Ihmig et
al. in 2008 and introduced as ”Reconfigurable sequential approach” (cf. [IAH08]). Ihmig’s
work includes a specification of the system components for a sequential reconfigurable
architecture, for example: external memory, a reconfiguration scheduler and a buffer
manager. Similar components will be introduced in the cyclic DPR system model of
this work. Ihmig also provides a task-graph for time-slotted processing of DAB receiver
components, which can be directly related to the reconfiguration flow model presented
in this chapter. Since no analytic framework is derived to determine the reconfiguration

1In literature, sometimes the term time-multiplexed FPGA or TM-FPGA is used.

73

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

system performance, the influence of buffering on the processing delay of the system
are not further analyzed by Ihmig. Based on a modified DAB receiver implementation
for non-reconfigurable systems, a receiver implementation tailored for cyclic DPR will be
outlined in the next sections. Inspired by the idea of cyclic reconfiguration, in [PLMK09]
Popp et al. derived a high-level reconfiguration cost model given a ”basic reconfigurable
architecture” comprising of a reconfigurable FPGA, a configuration controller and ex-
ternal memory. Popp’s hardware architecture and timing model is equal to the model
presented in this work, albeit Popp did not explicitly distinguish between context loading
and saving time, but assumed intermediate data loading and saving to have the same
duration. Popp’s work does consider memory throughput for context loading and sav-
ing, but not for intermediate buffering during module execution. Similarly, in [FIZS11]
saving and loading of the DPR module context was not explicitly distinguished but com-
bined in a single term. In turn, Becker et al. mention buffering and buffer sizes given the
throughput constraints in [BLC09], but do not include context loading and saving in their
model and also not the delay induced when multiple modules are processed sequentially.
Finally, although Popp and Becker introduce system parameters for cyclic DPR, they
miss to show detailed architectures depicting how such a reconfigurable system could be
realized in practice.
Based on the outlined works of others, and on own works related to cyclic DPR, an

extended cyclic DPR system model will be presented. Using a modified DAB receiver
implementation, potential resource savings and real-time performance of the sequentially
executed DAB module chain will be quantified as discussed in [FIIS12]. In addition, the
effects of cyclic sequential processing of DVB-T2 baseband decoder modules will be
outlined in a proof-of-concept study, as published in [FISS12].
In relation to the state-of-the art, the major contributions presented in this chapter

comprise of:

• A framework for the analysis of cyclic DPR system including processing delay,
memory capacity and throughput constraints.

• A feasibility analysis and implementation of a DAB receiver chain for the usage
inside a cyclic DPR system.

• A hardware implementation and reconfiguration scheduler to quantify the resource
consumption of a cyclic DPR receiver system for DAB.

• A feasibility analysis of a cyclic DPR-based accelerator for DVB-T2 baseband
processing.

Prior to giving a profound explanation in how far the previously mentioned design
parameters are related, a system model of a single-island time-multiplexed FPGA archi-
tecture will be derived next.

74

3.2 System Model

3.2 System Model

Although time-multiplexing models have been discussed in related works, it is necessary
to enhance these frameworks for the modularization of reconfigurable sequential process-
ing chains with explicit focus on using DPR for real-time processing. In this section, a
timing and delay model for the sequential execution of receiver chain elements will be
presented. The model covers the influences of partial FPGA reconfiguration on real-time
constraints and resource consumption and assists in quantifying the real-time capability
of a specific DPR-based hardware implementation.

3.2.1 Cyclic Reconfiguration Flow

A functional element of a processing chain will further be denoted as PE. A PE is
defined to have a known execution time, no feedback to previous elements and a pre-
defined maximum input and output data throughput required for real-time processing.
Inside the processing chain, the PE execution order is assumed to be strictly sequential
and inherently cyclic. Digital receiver chains belong to this class of processing chains
and the functional subset of a signal processing chain such as filtering, channel decoding
or demodulation can be defined as a processing element (cf. [SFHB12]). Furthermore, it
is assumed that a processing element mainly interacts with his adjacent neighboring PE
and that the data throughput of feedback paths can be neglected.
Let a processing chain be defined by a sequence of N independent concatenated PEs as

depicted in Figure 3.3, where the output data throughput of the n-th element is denoted
by γn. Since the input data throughput of the n-th PE is equal to the output data
throughput of PE n ´ 1, the input data throughput of the n-th PE is γn´1.

p1 p2 . . . pN´1 pN
γ0 γ1 γ2 γN´2 γN´1 γN

Figure 3.3: Sequential chain of processing elements.

It is important to mention, that the data throughput is related to the PE functionality
and is not to confuse with the maximum throughput of the hardware interface used to
carry the information from or to a PE. Given an FPGA hardware implementation of
the processing elements, it is assumed that the resource consumption and the number
of execution cycles of all PEs are known a priori and that there exists a hardware com-
munication interface with a fixed maximum data throughput for the data transfer from
and to the PEs. The linear data dependency of the PEs allows to wrap a concatenated
subset of PEs into a larger PE entity, while still preserving the properties stated in this
section. Such a larger PE entity will be further be referred to as reconfigurable module
or DPR module. A DPR module will be defined to include the hardware functionality
of one or multiple PEs. Since a DPR module only contains a subset of the PEs of the
chain, the resource requirements to realize the functionality of one module is smaller in
comparison to the accumulated logic utilization of all PEs in a static system, which is
the major motivation for the cyclic DPR approach.
In accordance to the properties of the PEs, a chain of DPR modules is assumed to

have no feedback elements and each module is carrying the functionality of one or more

75

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

Initial FPGA configuration

m “ 0

Load Bitstream m

Load Module Context

Execute Module

Save Module Context

m “ m ` 1

m ă M
true

false

Figure 3.4: Cyclic module reconfiguration flow graph.

disjoint processing elements. Within each module reconfiguration cycle a new bitstream
is presented to the ICAP and the m-th DPR module is loaded into the DPR partition.
The DPR module is then reset and the context memory of the DPR module is eventually
restored. During the execution a frame, a chunk of data is transferred from memory to
the input of the module and the output produced by the DPR module is written back
to memory. Upon completion of a frame the state of the DPR module (i.e. its context)
is written to memory. Then, the bitstream of the next DPR module is written to the
ICAP. The process starts over with the first DPR module after the M -th DPR module
has been processed. The outlined sequence is shown in Figure 3.4. According to Popp
and Feilen (cf. in [PLMK09] and [FIZS11]), the duration of one DPR module chain
execution cycle will be denoted by TCYC and can be expressed by

TCYC “
Mÿ

m“1

TDPR,m ` TLD,m ` TEX,m ` TSV,m, (3.1)

where TDPR,m represents the time to write the bitstream of the m-th DPR module to
the ICAP, TLD,m represents the time to initialize the m-th DPR module, TEX,m is the
time to process a frame with the m-th DPR module and TSV,m is the time to save state
of the m-th DPR module to memory. As a reference, the cycle time parameters are
summarized in Table 3.1.
Many broadcasting standards follow a certain transmission framing (cf. Section 1.2),

such that processing states become cyclically finite, which can be exploited in the design
of DPR systems to reduce the effort for context storage and recovery. This can also be
beneficial in case context saving and recovery can not be realized, e.g. if access to the
internal DPR module state is not provided.

76

3.2 System Model

Symbol Description

TDPR,m Time to write the DPR module m into the DPR partitions.
TLD,m Time to reset, load the state and initialize the m-th DPR module.
TEX,m Time to process a chunk of data inside the m-th DPR module.
TSV,m Time to save the state of the m-th DPR module.

Table 3.1: Cyclic DPR module-related task durations according to Popp and Feilen.

1 2 . . . M ´ 1 M
Γ0 Γ1 Γ2 ΓM´2 ΓM´1 ΓM

Figure 3.5: Sequential chain of DPR modules.

In order to quantify the duration of a reconfiguration cycle in Equation 3.1, the tim-
ing parameters need to be expressed by implementation-specific parameters of a DPR
module. Furthermore, it will be shown that the execution time, i.e. the processing dura-
tion, of the sequential chain of modules also depends on the throughput of the memory
interface and ICAP controller. For both it is necessary to include the hardware-related
parameters in the system model and relate them to the parameters of the DPR module.

3.2.2 Module Throughput and Data Framing

As discussed in the beginning of this chapter, a chunk of data will be fed to each DPR
module, denoted as frame2. A frame corresponds to a portion of data with a certain
duration and with a defined rate. It is assumed that each frame supplied to the DPR
chain has a constant average data rate of γ0 and a pre-defined duration TFRAME.

In the following, Γm´1 will describe the minimum DPR module input throughput and
Γm will express the minimum output throughput of a DPRmodule as shown in Figure 3.5.
During the execution period of a DPR module, an equivalent of TFRAME seconds of data
must be consumed and produced. The chain of DPR modules is defined to be real-time
capable, if it can consume the periodically sampled data from the source at the same or
at a higher rate as the source produces the data. Therefore, the instantaneous input and
output throughput of a DPR module must be higher than the average data throughput
of a PE. From this observation follows that, in order to be real-time capable, the input
and output data throughput of the DPR module must at least be increased by a factor
of TFRAME

TEX,m
, which increases the data rate at the input and output of a DPR module

according to

Γm´1 ě
TFRAME

TEX,m

¨ γIN,m

Γm ě
TFRAME

TEX,m

¨ γOUT,m,

(3.2)

2In this chapter, a frame is defined as a portion of data taken from a periodically sampled source and
must not be confused with an FPGA configuration frame.

77

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

where γIN,m describes the throughput of the PE or chain input feeding the m-th DPR
module and γOUT,m denotes the throughput of the first PE of the subsequent DPR
module in the chain or, alternatively, of the chain output. The outlined relations are
depicted in Figure 3.6.

Figure 3.6: Cyclic execution flow-graph of DPR modules with throughput annotation.

Recall that, if the DPR module input and output throughput values can not be
achieved, the real-time requirements of the system are not satisfied. If the input and
output throughput values are higher than the required minimum, there will be an idle
time left until the arrival of the next input frame, i.e. in this case TCYC ă TFRAME and
TIDLE “ TFRAME ´TCYC. This leads to the following observation: Since the data arrives
at the first DPR module with a rate of γ0 and since Γ0 ą γ0, it is impossible to use
the DPR system without prior buffering. In the following, buffering is assumed to be
accomplished by a FIFO buffer with capacity TBUF ě TFRAME. In case the FIFO buffer
can not be written to and read from at the same time, a double-buffer with capacity
2 ¨ TBUF will be required as shown in [FIZS11]. To avoid an infinite growth of the input
buffer, the sequential chain of DPR modules must process the data within a duration of
at least TCYC, where the first module consumes a whole input frame, such that the DPR
cycle time is upper bounded by the duration of the input data frame, i.e.

TFRAME ě TCYC. (3.3)

Due to time-multiplexing of the DPR partition and execution of the DPR modules,
the DPR chain exhibits a processing delay. Buffering of the input signal introduces an
additional latency in the order of a duration of a frame. The accumulated DPR system
latency will subsequently be referred to as TDELAY. Expressing the delay exactly requires
precise knowledge of the access latency and execution timing of the DPR modules. The
relations of the timing parameters described so far are depicted in Figure 3.7. By inspect-
ing the timing diagram, the DPR processing delay can be defined as the time between
the arrival of the first sample of an input frame to the time the first output sample of
the last DPR module has been written to memory. Alternatively, the delay could be de-
scribed by the time where the first DPR module just finished processing the last sample
of an input frame to the time the last output sample of the last DPR module has been
written to memory. There are other possibilities to describe the input-to-output delay,
but they will always be related to the execution time of the first DPR module and the
last DPR module in a subsequent DPR cycle. In the figure, the input-to-output delay is

78

3.2 System Model

F
ig
u
re

3.
7:

M
o
d
u
le

ex
ec
u
ti
on

ti
m
in
g
d
ia
gr
am

an
d
D
P
R

p
ro
ce
ss
in
g
d
el
ay
.

79

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

defined as the time between the end of the execution of the first module and the end of
the execution of the last module in the next cycle, such that

TDELAY “ TFRAME ´ TEX,1 ´ TLD,1 ´ TCFG,1 ` TCYC ´ TSV,M . (3.4)

In case no implementation knowledge about the DPR module is available, the worst-
case delay must be defined as the time between the beginning of the execution of the
first module and the end of the execution of the last module in the next cycle, i.e.

TDELAY “ TFRAME ´ TLD,1 ´ TCFG,1 ` TCYC ´ TSV,M .

Given that the sum of the idle time, the configuration time and the loading and
saving times are negligible in relation to the cycle time, the worst-case delay can be
upper bounded by

TDELAY ď 2 ¨ TFRAME. (3.5)

Note that Equation 3.5 serves also as an upper bound for real-time processing, i.e. for
Equation 3.3 to be satisfied. The presented reconfiguration flow and the DPR module
constraints will be used for the analysis in the following sections of this chapter.
Next, a hardware model will be introduced to determine the application-specific pro-

cessing delay and buffering requirements of a cyclic DPR implementation.

3.2.3 Hardware Model

The hardware model describes all hardware components which have an influence on the
reconfiguration timing. Consequently, it enables to express the timing parameters that
make up the cycle time in Equation 3.1 by hardware-related parameters. A signal-flow
diagram of the components of the system model is shown in Figure 3.8, which is similar to
the models presented in literature (cf. [ESK03], [PLMK09] and [IAH08]). In this work,
the hardware model comprises of a dynamically reconfigurable FPGA with an ICAP
reconfiguration interface and an external memory peripheral. The external memory is
interfaced by a memory controller from which access is provided to the static partition
of the FPGA. Although modern FPGAs have internal BRAM resources which could be
used as storage memory, these resources are rather limited in capacity as compared to
external memory. Therefore, without loss of generality, external memory will be used in
the model for bitstream storage for the DPR modules and as an input and intermediate
buffer for processing. Also, due to the restrictions that I/O elements can not be placed
inside the reconfigurable partition (cf. Section 1.1), the model implies that external
memory will only be accessible from within the static FPGA partition. For internal
buffering, i.e. for intermediate buffering inside the DPR module, the BRAM resources
of the DPR partition can be used as scratch buffers.
Upon startup, the FPGA is configured with one static partition containing the recon-

figuration FSM, a memory controller and a dynamic partition for the execution of the
DPR module. The baseband input and data output ports are bridged to the static part of
the FPGA via external I/O pins. For the description of the system, two sets of parameters
will be introduced: hardware-related parameters, listed in Table 3.2, and reconfigurable
system design parameters, outlined in Table 3.3. Typically, the hardware-related param-
eters are defined by an FPGA platform, whereas the design-related parameters depend
on the functionality of the DPR modules. Thus, if the platform is fixed, the designer can

80

3.2 System Model

Figure 3.8: Single-island FPGA reconfiguration hardware model.

only have an influence on the DPR system performance by modifying the design-related
parameters, which are determined by the actual DPR module implementation.

Symbol Description

fEX DPR partition clock frequency in cycles/s.
fICAP Configuration interface (ICAP) clock frequency in cycles/s.
WB,ICAP Configuration interface width in bits.
ΓICAP Configuration interface throughput in bits/s.
γMEM Mean memory controller I/O throughput in bits/s.

Table 3.2: Hardware-related system model parameters.

Symbol Description

NB,BIT,m Configuration bitstream size in bits.
NC,EX,m Execution duration in clock cycles.
NC,LD,m Number of clock cycles for context loading.
NC,SV,m Number of clock cycles for context saving.
NB,LD,m Context loading interface width in bits.
NB,SV,m Context saving interface width in bits.

Table 3.3: DPR module implementation-related parameters.

Recall that the reconfiguration flow depicted in Figure 3.4 is cyclic and a priori defined.
Hence, the memory access pattern for the different reconfiguration activities is also pre-
defined. The memory access pattern of the model for one reconfiguration and execution
cycle is presented in Figure 3.9, where the memory controller is assumed to have a
minimum of two write ports and two read ports. The graph shows four different memory
access states, related to the four DPR cycle time parameters as outlined in Table 3.1, i.e.
FPGA configuration, context loading, DPR module execution and context writeback.
Receiving a continuous stream of input data at a fixed rate of γ0 and transmitting a
continuous output stream at a rate of γN (cf. Figure 3.3) is depicted in the diagram by
a continuous write/read I/O transfer spanning all four DPR module processing tasks.

81

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

Let the average throughput of the external memory interface be defined by γMEM.
For cyclic DPR operation to be possible, it is required that the memory interface can
provide at least the throughput needed for a continuous transfer of frame information
from the baseband source to the input buffer and from the output buffer to the output
port. Hence, in order to leave enough headroom for other I/O operations it is necessary
that

γMEM ą γ0 ` γN .

Deducting the throughput required for continuous transfer to the input buffer and
from the output buffer, the mean memory throughput is reduced, such that

ΓMEM “ γMEM ´ γ0 ´ γN , (3.6)

where ΓMEM reflects the memory throughput available for other tasks during DPR
module execution. Note that the output FIFO buffer included in Figure 3.6 might be
omitted if the FPGA data output port is able to cope with the high-throughput bursts
of the last DPR module. This is the case if the data sink provides a buffer itself as shown
in the subsequently presented DAB receiver feasibility study. In this case, the external
memory interface gains a throughput margin of γN . In case the external memory exhibits
access latencies, it is important to optimize the memory access pattern for input and
output data streaming for maximizing the average memory throughput ΓMEM.
For further analysis the maximum ICAP throughput will be defined by

ΓICAP “ fICAP ¨ WB,ICAP, (3.7)

where fICAP is the ICAP clock frequency and WB,ICAP the interface width in bits.
Typically, the throughput of the external memory interface is much higher than the
throughput of the ICAP interface, i.e. ΓMEM " ΓICAP. In this case, the ICAP throughput
is dominating the reconfiguration time (cf. [BLC09]). On the other hand, if the memory
interface is slower than the ICAP, the memory throughput determines the reconfiguration
time. Accounting for both cases, the reconfiguration time of the DPR partition can be
expressed by

TDPR,m “ max

ˆ
NB,BIT,m

ΓICAP

,
NB,BIT,m

ΓMEM

˙
, (3.8)

Figure 3.9: Memory access pattern during DPR module processing.

82

3.2 System Model

where NB,BIT,m defines the size of the partial bitstream in bits. Although the DPR
partition is assumed to be constant in area, in case differential reconfiguration is used,
the size of the partial bitstream may vary for different DPR modules. Given the clock
frequency of the FPGA and the number of execution cycles per DPR module, the module
execution time parameter as listed in Table 3.1 can be expressed as

TEX,m “ max

ˆ
NC,EX,m

fEX
,
Γm´1 ` Γm

ΓMEM

¨ TFRAME

˙
, (3.9)

with NC,EX,m being the number of execution cycles of the m-th DPR module required
to process one frame of duration TFRAME and fEX being the clock frequency of the DPR
module. This means that the execution time is either limited by the processing rate of
the FPGA or by the data throughput of the memory interface. Reducing the module
execution time by optimizing the implementation reduces the processing delay and the
memory transfer overhead of the system. Clearly, the number of execution cycles per
DPR module is one of the most important parameters and depends on the amount of
data that has to be processed while the DPR module is active. Given a fixed portion
of input data, the faster the data can be processed within one reconfiguration cycle, the
smaller the input frame duration (cf. Equation 3.3). In turn, the longer the activity
time, the longer the data at the input must be held back to be processed in the next
iteration. Holding back the data at the input introduces processing delay, which might
not be tolerable for the processing system in question (cf. [FIZS11]). The effects of
reducing or increasing the data throughput of a DPR module will be discussed in the
next section.

The time to load and save the FPGA context, i.e. the bringup and shutdown time
of a DPR module, depends on the functionality of the module itself. Clearly, stateless
modules are preferable as they reduce the configuration cycle time with TLD,m “ TSV,m “
0. If the modules are not stateless, the times for context switching can be evaluated by

TLD,m “ max

ˆ
NC,LD,m

fEX
,
NB,LD,m

ΓMEM

˙
and

TSV,m “ max

ˆ
NC,SV,m

fEX
,
NB,SV,m

ΓMEM

˙
,

(3.10)

whereNC,LD,m andNC,SV,m refer to the number of cycles for context loading and saving.
Similar to the other cycle time parameters, the context recovery process is dominated
by the slowest interface, which means that either the memory throughput or the FPGA
clock frequency will be dominating.

Using Equations 3.8, 3.9 and 3.10 all timing parameters in Equation 3.1 can be ex-
pressed by hardware-related and implementation-related parameters. In the next sec-
tion, an existing DAB receiver implementation will be modified to operate in a cyclic
DPR environment and the cycle time parameters will be determined by FPGA platform
parameters and implementation-specific parameters of the DPR modules.

83

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility

Analysis

In addition to the brief introduction to DAB outlined in Section 1.2, for the following
analysis it is important to introduce the DAB framing architecture for transmission mode
I as presented in Figure 3.10. The complex baseband signal is transmitted as a sequence
of DAB frames, where each DAB frame comprises of four common interleaved frames
(CIFs), one fast information channel (FIC) frame, a null OFDM symbol and a phase
reference OFDM symbol. A CIF is made up of 18 OFDM symbols and the FIC comprises
of three OFDM symbols. At a sample rate of 2.048MS/s a continuous stream of 2552
complex baseband samples make up one OFDM symbol with 2048 samples enclosing
the useful carrier information and 504 samples of guard interval, also denoted as cyclic
prefix. Hence, a DAB frame consists of 76 OFDM symbols of duration TS and one null
symbol of duration T0. If the null symbol is being transmitted, no energy is radiated,
such that it can be used to determine the start of a DAB frame. The reference symbol
is needed for differential demodulation of the first OFDM symbol in the DAB frame and
can optionally be used for channel estimation. The lengths of the described entities are
listed in Table 3.4. From the CIFs the main service channel (MSC) can be extracted by
decoding a selected set of OFDM symbols as defined in the FIC. The MSC carries the
audio and program associated data (PAD) payload information and the FIC is used to
signal configuration parameters and service information. The information in the MSC
and in the FIC are both encoded by a convolutional channel code and subsequently
interleaved and DQPSK-mapped onto the orthogonal subcarriers. A DAB receiver needs
to synchronize to the transmitted baseband signal to subsequently decode the payload
information of the FIC and MSC for appropriate audio playback.

Figure 3.10: Framing structure of DAB baseband stream.

An FPGA-based DAB baseband receiver chain is shown in Figure 3.11. The receiver
chain was developed by Ihmig et al. (cf. [IAH10]) to operate on a high-performance
Lyrtech SDR platform using a Xilinx Virtex-4 SX35 FPGA. In order to operate on a low-
cost FPGA platform from ZTEX equipped with a Xilinx Spartan-6 FPGA the receiver
chain was migrated and extended by Gnadl in [Gna12]. In the Spartan-6 implementation,
the FPGA acts as a baseband decoder accelerator for a PC, where the baseband is

84

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

Frame type Symbol Duration

OFDM symbol TS
2,552
2,048

ms

Null symbol T0
2,656
2,048

ms

FIC TFIC 3 ¨ TS

CIF TCIF 18 ¨ TS

DAB frame TDAB T0 ` TS ` TFIC ` 4 ¨ TCIF = 96ms

Table 3.4: Duration of the different DAB framing units.

supplied via USB and the decoded audio transport stream is send back via the same
interface to the PC for playback. Although a Spartan-6 FPGA has been used for the
implementation, the methods described in this chapter can be applied to all Xilinx
FPGAs with partial self-reconfiguration support. Similar to the FM receiver presented
in Chapter 2, the DAB receiver has been implemented with the goal in mind to develop
a laboratory prototype for research. It has neither been explicitly optimized in terms of
reception robustness nor in terms of resource utilization.

Figure 3.11: DAB receiver processing element chain.

The receiver has been designed for terrestrial reception and decodes DAB signals in
transmission mode I [ets06]. Although the architectural concepts derived in this sec-
tion can be transferred to all DAB transmission modes, the DAB receiver timings are
different in modes II, III and IV. The PC provides the complex baseband signal with
a sample rate of 2.048MS/s in 8 bit two’s complement notation for the in-phase and
quadrature channels to the FPGA. After frequency offset compensation, the baseband
signal is amplified by an automatic gain control (AGC) stage and subsequently processed
by a guard-interval correlation unit and energy-detection unit to estimate and track the
frequency offset and the DFT window offset. The DQPSK-modulated carriers are ob-
tained by feeding the unguarded part of the OFDM symbol to a 2048-point FFT of which
1536 useful carriers are subsequently evaluated. Next, incoherent (differential) demod-
ulation is used to equalize the channel distortions in the frequency-domain. Amplitude
and phase information of the carriers are then fed to a frequency-domain de-interleaver
and a payload bit extraction and time de-interleaving stage for the MSC. Finally, the
soft-bits of the FIC and MSC are supplied to a Viterbi decoder for channel decoding.
The post-processing stage includes a pseudo-random binary sequence (PRBS) for energy

85

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

Chain Element Functional Description

1: Freq. Correct Frequency offset compensation by complex multiplication.
2: AGC Automatic gain estimation and correction for valid amplitude range.
3: Time Sync. DAB frame and DFT window offset estimation and tracking.
4: Freq. Est. Frequency offset estimation by guard interval correlation.
5: Guard Int. Remove Guard interval removal.
6: FFT Fast Fourier transform with 2048 bins.
7: DQPSK Frequency-domain differential quadrature phase-shift keying.
8: Freq. Deint. Carrier de-interleaving of current symbol.
9: Stream Cutter Extracting the MSC bits needed for time-deinterleaving.
10: Time Deint. Bit-wise convolutional de-interleaving.
11: Viterbi Decode Viterbi channel decoding.
12: Post Proc. Payload frame post-processing.

Table 3.5: DAB receiver processing elements description.

Figure 3.12: ZTEX USB-FPGA-Module 1.11c with Xilinx Spartan-6 LX25.

86

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

dispersal and forwards the payload bits to the USB transport layer and then back to the
PC. The receiver chain elements are listed in sequential order in Table 3.5.

The receiver has been implemented on a ZTEX USB-FPGA module 1.11c mounted
on a debug board (cf. [ZTE]) as shown in Figure 3.12. The ZTEX module comprises of
an XC6SLX25 Spartan-6 FPGA, a Cypress CY7C68013A EZ-USB FX2 microcontroller
(cf. [Cyp]) running at a clock frequency of 48MHz, an external 64MByte DDR syn-
chronous dynamic random access memory (SDRAM) with a clock frequency of 200MHz
and a 128 kbit electrically erasable programmable read-only memory (EEPROM). The
clock frequency of the FPGA can be derived from the 48MHz clock signal provided by
the crystal connected to the EZ-USB microcontroller using DCM and PLL resources in
the FPGA. The firmware of the microcontroller handles the USB communication to the
FPGA and is read from the EEPROM on startup.

Figure 3.13: DAB receiver system architecture on ZTEX FPGA platform.

A schematic of the FPGA system environment is shown in Figure 3.13. Two advanced
extensible interface bus (AXI) streaming FIFOs are used to decouple the DAB receiver
I/O channels with the USB COM FSM module and handle the clock domain crossing.
The USB COM FSM module controls the communication between the EZ-USB FX2
microcontroller and the AXI FIFOs by evaluating and translating the FX2 FIFO control
signals FX CTR and FX RDY to corresponding ready and valid signals from and to the
AXI FIFOs. Back-pressure is used in the receiver chain to control the data-flow from
the last PE to the first PE using AXI streaming FIFOs as shown in Figure 3.14. The
ARM Advanced Microcontroller Bus Architecture (AMBA) specification defines that the
AXI master supplies the AXI slave with data using the handshaking signals tready and
tvalid. If both signals are asserted, the data transfer will be initiated. Using AXI
FIFOs between all PEs allows an arbitrary partitioning of the receiver chain into sub-
chains without changing the data-flow control among the PEs, which is useful for DPR
module chain partitioning.

87

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

Figure 3.14: DAB receiver PE synchronization using AXI streaming FIFOs.

3.3.1 Resource Utilization and Dominating Processing Elements

The processing element with the longest processing duration in relation to the duration
of a DAB frame determines the minimum clock frequency of the system in order to be
real-time capable. For the receiver in question, the FFT requires most of the FPGA
cycles in the chain as it has been designed for minimum resource usage. The FFT core
has been generated using the Xilinx LogiCORE IP generator as documented in [Xil12a].
In Table 3.6 multiple FFT implementations are listed together with their latencies and
resource requirements. The Radix-2 Lite implementation has been used in the Spartan-6
receiver and requires 26,600 cycles to perform an FFT operation for one OFDM symbol
with 2048 bins.

Implementation Latency3 Queue Time4 Slices BRAMs DSP48

Pipelined Streaming 4,223 cycles 2,048 cycles 994 12 18
Radix-4 5,267 cycles 7,313 cycles 752 15 18
Radix-2 13,434 cycles 15,582 cycles 359 11 6

Radix-2 Lite 24,612 cycles 26,660 cycles 298 7 4

Table 3.6: Xilinx implementation options for 2048-point FFT on Spartan-6 FPGA.

Given the FFT processing time of 26,660 cycles per OFDM symbol and a DAB frame
duration of 96ms, a minimum FPGA clock frequency of 21.1MHz is required to demodu-
late all 76 OFDM symbols in real-time as stated in Equation 3.11. Here, it is important
to mention that DAB does not require a continuous FFT operation to demodulate a
single audio stream in the MSC as employed by Stolz et al. in [SFS12]. In case the FFT
processing time can be reduced, the Viterbi decoder is likely to dominate the processing
chain as subsequently laid out.

fEX,MIN “
76 ¨ 26, 660 cycles

96ms
“ 21.106MHz (3.11)

The Viterbi decoder is the second most demanding block in the decoding chain and is
used to decode the punctured convolutional code with constraint length 7. The convo-
lutional code has a mother code rate of r “ 1{4 using 3 different polynomials. Similar
to the FFT, different implementations were analyzed for the Spartan-6 FPGA imple-
mentation using the Xilinx LogiCORE IP Viterbi Decoder (cf. [Xil12b]) with 4 bits per
LLR and a traceback length of 84. In Table 3.7, two different implementation options
are listed, i.e. parallel and serial.

3Number of clock cycles from first input sample to first output sample.
4Number of cycles until 2048-point FFT calculation is complete.

88

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

Implementation Latency5 Queue Time6 Slices BRAMs DSP48

Parallel 363 1 2,076 2 0
Serial 354 14 594 2 0

Table 3.7: Xilinx implementation options for Viterbi decoder on Spartan-6 FPGA

The serial Viterbi decoder implementation has been used in the DAB receiver imple-
mentation as it requires fewer slices compared to the parallel implementation. However,
the number of cycles per output bit is increased by a factor of 14. Given an audio broad-
cast with a worst-case data rate of 384 kbit/s, unequal error protection (UEP) encoding
at a code rate of r « 0.35 in protection level 1 results in 26,624 LLR soft-bit quadru-
ples which need to be processed within the duration of one CIF. Since there are 4CIFs
per DAB frame 4 ¨ 26, 624LLR quadruples are received during a DAB frame. On top
comes the FIC with a fixed code rate of r “ 1{3 with 3072 depunctured LLR quadruples
per DAB frame. For such a configuration, the minimum FPGA clock frequency can be
calculated to be 16.24MHz as shown by Equation 3.12.

fEX,MIN “
4 ¨ 14 ¨ p354 ` 26, 624q ` 14 ¨ p354 ` 3072q cycles

96ms
“ 16.237MHz (3.12)

The resource utilization of the processing elements of the DAB receiver are outlined in
Table 3.8 and the resource utilization of the receiver together with the USB communica-
tion interface is stated in Table 3.9 (cf. system design in Figure 3.13). Note that the USB
communication logic and AXI FIFO buffers resemble the environment of the receiver and
do not contain any baseband decoder functionality. Synthesis and implementation has
been accomplished using Xilinx ISE 13.4.

As already discussed, the FFT and Viterbi implementations are the most demanding
in terms of processing time and resources. The frequency estimation block comes third in
complexity followed by the frequency synchronization and gain amplification stage which
both operate at baseband rate. In the implementation of Gnadl (cf. [Gna12]) the time
deinterleaver has been placed inside the FPGA BRAM memory occupying 29BRAM
units. To relax the memory requirements of the receiver system, the external SDRAM
has been used to store the time deinterleaver values, reducing the BRAM consumption
from 29 to 2 in this configuration. Another difference to the work of Gnadl is that in
the present implementation only 2 BRAMs instead of 6 BRAMs have been used for the
USB COM FSM, which has shown to be sufficient for real-time operation of the receiver.
It needs to be remarked that the additional SDRAM memory interface resources for the
external time deinterleaver memory have not been traced in the receiver design phase
and are thus not listed as a part of the system environment in Table 3.9. However,
the resources of the system environment are not of concern in this section but will be
addressed in the next section, where the static receiver system resources will be compared
against the cyclic DPR implementation.

The output throughput of the PEs and the relative resource consumption are also
presented in Table 3.8. From the input to the output of the chain, the throughput is

5Number of input LLRs the decoder will consume to produce the first output bit.
6Number of cycles required for the computation of one output bit given an input LLR quadruple.

89

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

n pn Slices FFs LUTs BRAMs DSP48 γn
Mbit{s

1 Freq. Correct 127 306 344 0 4 32.768
2 AGC 99 195 148 0 3 32.768
3 Time Sync. 64 86 85 0 0 32.325
4 Freq. Est. 291 581 811 2 5 32.325
5 Guard Remove 7 10 9 0 0 25.941
6 FFT 358 1024 625 7 8 25.941
7 DQPSK 37 76 49 2 6 25.941
8 Freq. Deint. 49 29 50 3 0 9.1
9 Stream Cut. 38 31 46 0 0 4.533
10 Time Deint. 52 63 71 3 0 4.533
11 Viterbi 713 1946 1415 3 0 0.416
12 Post Proc. 14 17 4 0 0 0.416

Table 3.8: Resource utilization and data throughput of DAB receiver PEs.

Description Slices FFs LUTs BRAMs DSP48

DAB Receiver 1849 4364 3657 20 26
USB COM FSM 175 416 297 2 0

AXI FIFOs 34 60 70 2 0

Total 2058 4840 4024 24 26
XC6SLX25 3758 30064 15032 52 38

Table 3.9: DAB receiver resource utilization on ZTEX module 1.11c.

continuously decreasing. For the output throughput of the last PE an audio broad-
cast with a worst-case rate of 384 kbit/s has been assumed. Together with an output
throughput of 32 kbit for the FIC, the maximum throughput at the Viterbi decoder
output results in 416 kbit/s.
Reducing the resource utilization by partitioning the DAB receiver into DPR modules

and sequentially executing these modules using cyclic DPR will be subsequently depicted.

3.3.2 Framing and Context Lifespans

The color of the nodes in the receiver flow-graph in Figure 3.15 reflect the context lifespan
of each processing element. The graph visualizes the framing period after which the
context of an element reaches a pre-defined state. For example, the context of an orange
element reaches a pre-defined state after one CIF has been processed. Recall that context
lifespans are important when designing a cyclic DPR system since during one DPR
module execution cycle it is beneficial to store as little context information as possible
to minimize the cycle time (cf. Equation 3.1). For DAB receiver elements with infinite
framing, the context information must always be saved and restored. It is important to
keep in mind that the framing is implied by the constraints of the broadcasting standard,

90

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

whereas the context lifespan is defined by the actual implementation. The context of

Figure 3.15: Annotated DAB chain graph with different context lifespans.

a module is sometimes not accessible as there are no signals provided to the memory
elements of the module, which typically is the case for IP cores. As shown in Figure 3.15,
the Viterbi decoder IP and the FFT IP blocks hide their internal state such that it can not
be accessed for context storage and recovery. Apart from these two blocks, the elements
in the DAB chain provide access to context information. It is important to bear in mind
that elements with a non-finite framing and an inaccessible context can not easily be
used inside a reconfigurable architecture. In this case only an ICAP read-back enables
to realize a cyclic DPR design, cf. [JTHT10] and [LD09], which has not been considered
in this work. Regarding context information the convolutional time-deinterleaver is a
special case since its execution basically means modifying its context. Hence, no explicit
context loading and saving are required. Given the context lifespans and accessibility
information in the annotated graph, a suitable framing unit for cyclic DPR needs to be
defined. Special attention must be paid to PEs with inaccessible context as they are likely
to determine the minimum frame duration. For example, for the Viterbi decoder and
the demodulator at least one CIF needs to be processed to assure that the PE context
settles in a known state. As the FFT PE context is related to an OFDM symbol-wise
framing, which is a subset of one CIF, the Viterbi decoder determines the framing of the
DPR design by having the longest frame duration. Following this idea, either a DAB
frame-based or a CIF frame-based execution cycle can be used, i.e.

• DAB frame-based execution with TFRAME “ TDAB, and

• CIF-based execution with TFRAME “ TCIF.

Using CIFs instead of DAB frames enforces to store and to recover the context of the
DQPSK demapper, as the context is valid for the duration of one DAB frame. For
DAB frame-based execution, the context of the AGC and frequency estimator may be
neglected, as the memory used for averaging by an exponential window can be reset at
the beginning of a DAB frame period. Since the time deinterleaver state is stored in the
external memory, the whole chain can be executed without context saving and recovery

91

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

when a DAB frame-based processing is employed. Since context storage and recovery
makes the system design more complicated, DAB frame-based processing has been used
for the cyclic DPR prototype. Having described the possible durations of a cyclic DPR
input frame, in the next section the partitioning of the receiver processing elements into
DPR modules will be presented.

3.3.3 Receiver Partitioning

Partitioning the DAB receiver requires the data-flow to be controlled by the PEs them-
selves rather than having an additional data-flow control unit, which is accomplished by
the AXI FIFO design as previously outlined. Partitioning criteria and metrics have to be
defined in order to find suitable DPR modules for the DAB receiver. Both are accurately
laid out in detail in Chapter 4 together with a partitioning proposition for the DAB re-
ceiver in question and will therefore not be discussed further in this section. In short,
the approach for finding suitable DPR modules for cyclic DPR is based on finding the
candidates where the resulting DPR modules require approximately the same amount
of resources, i.e. have minimum variance in terms of resources. In addition, minimizing
the DPR module output throughput is of concern for finding suitable partitioning can-
didates. Applying these constraints, the DAB receiver has been partitioned into three
DPR modules as shown in Figure 3.16 with the accumulated resource utilization and
throughput as provided in Table 3.10.

Figure 3.16: DAB chain partitioning into three DPR module.

The input data rate of the first DPR module is determined by the resolution and
sample rate of the complex baseband signal fed to receiver using 16 bit per complex
value at a rate of 2.048MS/s. The output rate of DPR module 1 (i.e. the input rate
of DPR module 2) is related to the 2048 samples of an OFDM symbol quantized with
16 bit per complex value and transmitted within a period of approximately 1.246ms. For
continuous operation, this gives a throughput of approximately 26.3Mbit/s. Considering
the length of the null symbol in relation to the DAB frame length, the average throughput
at the output of module 1 reduces down to 25.941Mbit/s. The LLR values at the output
of module 2 are fed to the time-deinterleaver with 4 bits per soft-bit. In the worst-case
scenario, the MSC interleaver sequence comprises of 26624LLRs per CIF. Given the soft-
bit resolution of 4 bits and 4CIFs per DAB frame, the maximum MSC LLR throughput

92

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

from DPR module 2 to DPR module 3 results in

26624 ¨ 4 ¨ 4

96ms
“ 4.4373Mbit{s.

Together with the FIC throughput of 96 kbit/s, the maximum output throughput of
module 2 turns out to be 4.533Mbit/s. Since this configuration represents the highest
throughput scenario, the following analysis is based on decoding a single DAB service
using this worst-case configuration.

m PEs Slices FFs LUTs BRAMs DSP48
γIN,m

Mbit{s

γOUT,m

Mbit{s

1 p1, p2, p3, p4, p5 588 1178 1397 2 12 32.768 25.941
2 p6, p7, p8, p9 482 1160 770 12 14 25.941 4.533
3 p10, p11, p12 779 2026 1490 6 0 4.533 0.416

Table 3.10: DPR module resource utilization and I/O throughput.

When comparing the resources of the DPR modules to the total system resources
outlined in Table 3.8, a sequential execution of DPR modules seems promising for a
resource-economic implementation. However, for the operation of the cyclic DPR system
additional control logic in the static region of the FPGA is required. Before the hardware
requirements of the static and reconfigurable regions are elaborated, in the next section
the real-time constraints of the system will be determined given the DPR modules as
defined in Table 3.10 and the data framing as outlined in Section 3.3.2.

3.3.4 Memory Throughput and Execution Time

Recalling the cyclic DPR system model, the execution time of a DPR module is either
upper bounded by the memory interface throughput or by the number of execution
cycles per frame in relation to the clock frequency of the DPR module (cf. Equation 3.9
and 3.8). In order to determine the correct upper bound, it is necessary to derive the
external memory throughput of the system. The theoretical maximum memory transfer
rate can be obtained by the interface clock rate, bit width and access methodology.
On the ZTEX hardware platform the 64Mbyte DDR memory is interfaced using a bi-
directional 16 bit data bus at a clock rate of 200MHz, which gives a theoretical maximum
throughput of

γMAX
MEM “ 200MHz ¨ 2 ¨ 16 bit “ 6.4Gbit{s,

Access latency of SDRAM or inefficient memory controller implementations might
reduce the maximum throughput, such that the theoretical maximum can not be achieved
in practical systems. Therefore, for the subsequent analysis a conservative throughput
of 50% of the maximum rate will be assumed. Given this assumption, the maximum
memory throughput available in the cyclic DPR system becomes

γMEM “
γMAX
MEM

2
“ 3.2Gbit{s,

As stated in Equation 3.6, the I/O throughput of the DPR chain has to be deducted
from this value, such that the remaining available throughput for other memory accesses

93

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

can be formulated to be

ΓMEM “ 3.2Gbit{s ´ pγIN,1 ` γOUT,3q « 3.167Gbit{s, (3.13)

where γIN,1 “ 32.768Mbit/s and γOUT,3 “ 0.416 Mbit/s, as stated in Table 3.10. Hav-
ing derived the available memory throughput of the ZTEX system, the correct upper
bound on the execution times for reconfiguration and module execution will be deter-
mined next.

Memory Throughput during Reconfiguration

Before deriving the DPR system parameters, it is important to mention that Xilinx does
not officially support partial reconfiguration with the Spartan-6 FPGA series. However,
several authors report that difference-based DPR on the Spartan-6 FPGA is feasible (cf.
[KBT10] and [BYT11]). The Spartan-6 FPGA provides an ICAP with a data width of
WB,ICAP “ 16 bits. As mentioned by Xilinx in [Xil11d], the ICAP clock signal should
be limited to a maximum frequency of fICAP “ 20MHz, although ICAP clock rates of
fICAP “ 100MHz have also been successfully tested in [MNH`11b].
According to Equation 3.7 of the cyclic DPR model, the ICAP throughput for 100MHz

clock rate can be derived as

ΓICAP “ 100MHz ¨ 16 bit “ 1.6Gbit{s,

where for 20MHz the maximum data rate becomes

ΓICAP “ 20MHz ¨ 16 bit “ 320Mbit{s.

For the subsequent analysis both values will be taken into account. Since the avail-
able memory throughput is much higher than the required throughput of 1.6Gbit/s at
100MHz ICAP clock rate, i.e. ΓMEM " ΓICAP, the reconfiguration time is dominated by
the throughput of the ICAP interface and not by the throughput of the memory inter-
face. Looking at the memory access pattern in Figure 3.9 underlines this observation as
no other task is accessing the external memory during reconfiguration. Given the ICAP
throughput, the configuration time can be deducted from the size of the partial bitstream
to be written to the ICAP during reconfiguration. The uncompressed bitstream of the
ZTEX Spartan-6SLX25 comprises of 6,440,432 bits (cf. [Xil15c]). Given the resources of
the DPR modules as outlined in Table 3.10 and taking into account the Spartan-6 FPGA
resources listed in Table 3.8, the differential bitstream is assumed to have an average size
of 1/3rd of the FPGA bitstream size7, which equals NB,BIT,m “ 2, 146, 810 bits. Accord-
ing to Equation 3.8 the reconfiguration time for an ICAP clock frequency of 100MHz
can be calculated as

TDPR,m “
2, 146, 810 bit

1.6Gbit{s
« 1.34ms,

for all m, i.e. for all DPR modules, and for 20MHz ICAP clock frequency the reconfig-
uration time resembles to

TDPR,m “
2, 146, 810 bit

320Mbit{s
« 6.71ms.

7An evaluation with DPR modules for the DAB receiver revealed an average differential-bitstream
size of approximately 983,040 bits (cf. [Ili12]). More conservative values have been chosen for the
evaluation in this work.

94

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

The configuration time of the DPR partition will subsequently be used to determine
the execution delay and the real-time capability of the system.

Memory Throughput during DPR Module Execution

In order to determine the execution time and the effective module throughput of the
DPR modules, the number of execution cycles have to be evaluated. The number of
cycles for the initialization and execution of a DPR module for DAB frame-based and
CIF-based execution are provided in Table 3.11. In the receiver implementation, no
context loading and saving has been employed, which is why NC,SV,m “ 0 for all m.
The values for NC,LD,m in the table refer to the number of cycles for the initialization
of the m-th module. Due to the cyclic nature of the DPR module context, in case
of DAB frame-based processing ignoring the context is not an issue as elaborated in
Section 3.3.2. In contrast, a CIF-based receiver can not be realized without context
saving and loading. Since the amount of context information required to store and load
is negligible, it is still possible to compare the values derived for the CIF-based receiver
to the DAB frame-based receiver within the scope of a feasibility study.

DPR module TFRAME “ TDAB TFRAME “ TCIF

m NC,LD,m NC,SV,m NC,EX,m NC,LD,m NC,SV,m NC,EX,m

1 15 0 155,648 15 0 38,912
2 11 0 2,229,900 11 0 557,475
3 5 0 1,562,101 5 0 390,532

Table 3.11: Number of cycles for the initialization and execution of the DPR modules.

Inspecting the numbers in Table 3.11 reveals that the second DPR module requires
most of the processing cycles. The reason for the dominant cycle count is that the
second module includes the FFT block with the FFT queue time dominating the system
as stated in Section 3.3.1. The third module requires about 70% of the cycles of the
second module, where the Viterbi implementation is the dominant processing element.
In terms of execution cycles, the first module is able to process the data more than
14 times faster than the second module. Moreover, as shown by the resource listing in
Table 3.10, the input and output throughput of the first module is the highest among
all modules.
Therefore, in relation to the memory access pattern in the system model (cf. Fig-

ure 3.9), the effective module throughput of the first DPR module determines the peak
memory throughput during one module execution cycle. Note that the effective module
throughput is related to the module execution time, which in turn is determined by
the FPGA execution frequency. Given the number of execution cycles as outlined in
Table 3.11, an DPR module execution frequency of fEX and the DPR module input and
output throughput values in Table 3.10, the effective DPR module throughput can be
calculated according to Equation 3.2. Recall that the peak memory throughput during
the execution period of a DPR module is defined by the accumulated effective input and
output throughput rates of the DPR module as outlined in Equation 3.9. Figure 3.17
shows the peak memory input and output throughput during the execution of the DPR
modules for different FPGA module execution clock rates. In addition, the previously

95

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

50%
limit

0 0.5 1 1.5 2 2.5 3 3.5 4

36 MHz

42 MHz

48 MHz

54 MHz

60 MHz

66 MHz

72 MHz

3.554 ¨ 10´2

3.598 ¨ 10´2

3.643 ¨ 10´2

3.687 ¨ 10´2

3.732 ¨ 10´2

3.776 ¨ 10´2

3.821 ¨ 10´2

7.479 ¨ 10´2

8.178 ¨ 10´2

8.877 ¨ 10´2

9.576 ¨ 10´2

0.103

0.110

0.117

1.336

1.554

1.771

1.988

2.205

2.423

2.640

Throughput in Gbit/s

f
E
X

DPR module 1
DPR module 2
DPR module 3

Figure 3.17: Peak memory throughput during DPR module execution.

96

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

introduced limit of 50% of the maximum theoretical throughput is shown by a dashed
vertical line. As already pointed out, the first DPR module exhibits the highest memory
throughput during execution as it can process data much faster than the other mod-
ules. It can also be observed that even for an execution frequency of fEX “ 72MHz the
memory interface can cope with the throughput emerging during the execution of DPR
module 1. It can be concluded from the graph that the execution time of a DPR module
is not limited by the memory interface but determined by the FPGA clock frequency
and the number of execution cycles per DPR module (cf. left term in Equation 3.9).
In conclusion, the memory interface is fast enough to cope with the transfer rates

during reconfiguration and during the DPR module execution period. In the next section,
the execution times of the cyclic DPR system will be determined.

3.3.5 Real-Time Constraints and Latency

The cyclic DPR system model presented in Section 3.2 applies timing restrictions to the
sequential execution of the DPR module chain. For real-time operation it is important
that the processing of the current frame has been finished before the arrival of a new
frame. As stated in the system model, the processing duration is referred to as cycle
time and it can be calculated with the knowledge of the execution times according to
Equation 3.1. Recall that it is important that TFRAME ě TCYC is satisfied for real-time
operation to be possible. Considering this constraint, for the DAB receiver chain the
minimum clock frequency for real-time operation can be determined by

fEX,MIN “
1

TFRAME ´ 3 ¨ TDPR,m

3ÿ

1

NC,LD,m ` NC,EX,m. (3.14)

For DAB frame-based processing with TFRAME “ 96ms and 20MHz ICAP clock
frequency, using Equation 3.14 gives a minimum module execution clock frequency of
fEX “ 52MHz for real-time processing. Feeding the ICAP with a 100MHz clock leads
to a minimum DPR module execution clock frequency of fEX “ 43MHz. For DAB
frame-based execution, the module execution timing diagram is presented in Figure 3.18
for various module execution clock frequencies and an ICAP clock frequency of 20MHz.
Since the number of load cycles NC,LD,m are negligible in comparison to the number of
execution cycles, both values are combined in the graph. The reconfiguration time is
indicated in yellow, the execution and initialization times of the modules in dark blue
(1), light blue (2) and red (3) and the idle time is shown in gray. The frame duration is
indicated by a vertical dashed line. If the DPR cycle time crosses this line, the real-time
constraint is violated and module clock frequency or ICAP throughput are not feasible.
The upper plot shows the DPR processing cycle timing for a frame duration of one DAB
frame and the lower plot for two DAB frames. When comparing the system with a
single DAB frame to the dual DAB frame system shown in Figure 3.19, the minimum
execution frequency decreases by 11.7% since the reconfiguration time is lower in pro-
portion to the cycle time. Comparing the minimum clock frequency of the non-DPR
system stated in Equation 3.11 to the DPR implementation, the execution frequency
is increased by more than a factor of two, and albeit fewer resources being active at a
time when using cyclic DPR system, the increase in clock frequency is a major drawback
since it leads to a linearly proportional increase in dynamic power consumption of the

97

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

TFRAME “
1 ¨ TDAB

0 20 40 60 80 100 120 140

36 MHz

42 MHz

48 MHz

54 MHz

60 MHz

66 MHz

72 MHz

Time in ms

f
E
X

fEX,MIN “ 52.03MHz

TDPR TLD,1 ` TEX,1 TLD,2 ` TEX,2 TLD,3 ` TEX,3 TIDLE

Figure 3.18: Cycle time for DAB frame-based execution with 20MHz ICAP.

FPGA8 (cf. [Xil09a]). In addition to the increased dynamic power consumption, the
steady communication with external memory also leads to more power being consumed
by the cyclic DPR system.

TFRAME “
2 ¨ TDAB

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

36 MHz

42 MHz

48 MHz

54 MHz

60 MHz

66 MHz

72 MHz

Time in ms

f
E
X

fEX,MIN “ 45.94MHz

TDPR TLD,1 ` TEX,1 TLD,2 ` TEX,2 TLD,3 ` TEX,3 TIDLE

Figure 3.19: Cycle time using a duration of two DAB frames with 20MHz ICAP.

As expected, it can be observed that for fEX ą fEX,MIN the system exhibits an idle
time. Although idle times indicate that the execution clock frequency is higher than
necessary, they lead to a reduction in DPR system latency, as derived in the system
model (cf. Equation 3.4). Figure 3.20 shows the additional system latency due to cyclic
DPR operation for an ICAP clock frequency of 20MHz and DAB frame-based processing.
The dashed line in the Figure shows the upper bound on the delay for real-time systems as
presented in Equation 3.5. For values crossing the delay bound, the execution frequency
is not sufficient for real-time operation. From the figure can be deducted that systems

8Note that the DPR operation itself leads to an increase in power consumption, albeit the logic elements
inside the DPR partition being idle during DPR as evaluated in [Cla11].

98

3.3 Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis

with idle times exhibit a lower DPR system latency compared to systems without idle
time. For the DAB receiver system, the additional delay is around 192ms if one DAB
frame is processed and twice as much if two DAB frames are processed within one
DPR cycle. The worst-case end-to-end playback delay of the DAB system due to the
convolutional time-interleaving is 384ms as stated in [ets06]. Using cyclic DPR on a
DAB frame basis, the overall system delay increases to 576ms. The additional DPR
delay can be minimized by using smaller frame sizes within a DPR processing cycle as
discussed further on.

Eq. 3.5

0 100 200 300

36 MHz

42 MHz

48 MHz

54 MHz

60 MHz

66 MHz

72 MHz

Delay in ms

f
E
X

TFRAME “ 1 ¨ TDAB

(a) Frame duration TDAB

Eq. 3.5

0 200 400 600

36 MHz

42 MHz

48 MHz

54 MHz

60 MHz

66 MHz

72 MHz

Delay in ms

f
E
X

TFRAME “ 2 ¨ TDAB

(b) Frame duration 2 ¨ TDAB

Figure 3.20: Latency for DAB frame-based execution with 20MHz ICAP.

Although CIF-based processing is not realizable in a DPR system without context
handling, the behavior can be an approximated by the cycle times calculated in Ta-
ble 3.11. Using the cycle times to determine the minimum execution frequency according
to Equation 3.14 leads to a system where fEX,MIN “ 254.79MHz for fICAP “ 20MHz.
The significant increase in execution clock frequency is related to the fact that an ICAP
clock frequency of 20MHz with CIF-based execution does not leave a lot of margin for
execution given that three reconfiguration cycles require 20.13ms of a 24ms CIF dura-
tion. In this case the reconfiguration interface throughput has a stronger influence on
the real-time capability of the system and the problem can be mitigated by increasing
the ICAP frequency to 100MHz. The cycle time of the DPR system for CIF-based
processing with an ICAP frequency of 100MHz is depicted in Figure 3.21. In this case,
the minimum execution frequency for real-time operation is 49.41MHz which is roughly
1/5th of the execution frequency when using an ICAP clock of 20MHz.
The worst-case DPR system delay of the CIF-based system is 48ms which is 1/4th of

the delay of the DAB frame-based system. Hence, for CIF-based processing, the end-to-
end DAB system delay can be calculated to be 432ms, resulting in a reduction of 25%
over the DAB frame-based design.

Discussion

A scheme for the sequential execution of DPR modules has been presented together with
equations to determine the real-time capability and cyclic DPR system delay. Deriving

99

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

TFRAME “
1 ¨ TCIF

0 5 10 15 20 25 30 35 40 45 50 55 60

36 MHz

42 MHz

48 MHz

54 MHz

60 MHz

66 MHz

72 MHz

Time in ms

f
E
X

fEX,MIN “ 49.41MHz

TDPR TLD,1 ` TEX,1 TLD,2 ` TEX,2 TLD,3 ` TEX,3 TIDLE

Figure 3.21: Cycle time for CIF-based execution with 100MHz ICAP.

DPR modules from an existing chain of processing elements requires the clock frequency
of the cyclic DPR design to be higher than the clock frequency of the non-DPR design
for the system to be real-time capable. If increasing the clock frequency is not possible
due to latency or timing violations in the design, the PEs must be redesigned to ac-
complish the task in fewer cycles, which in turn might increase the resource utilization
(cf. FFT implementation in Table 3.6). If the PE requires fewer cycles for the task to
finish, the throughput of the memory interface might saturate the execution time (cf.
limit in Figure 3.17). In cases where increasing the clock frequency is infeasible, either
the reconfiguration time must be reduced or the duration of the input frame must be
increased (cf. Equation 3.14). A side-effect of increasing the input frame duration is
a proportional increase of the DPR system delay according to Equation 3.5. Reducing
the frame duration might increase the requirements for context handling, making the
implementation more complex and requiring more resources and memory bandwidth.
For a real-time feasibility evaluation early in the design phase it might be sufficient to
look at dominating blocks like the FFT and Viterbi cores for the DAB receiver (cf.
Section 3.3.1).

Given the system model for round-robin execution as derived in Section 3.2, the design
of a hardware-based reconfiguration engine will be outlined, intended to serve as a generic
platform for cyclic DPR systems [Ili12]. The implementation has been used to test the
feasibility of the DAB receiver prototype and will be described in the subsequent sections.

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware

Implementation

A hardware-based DPR framework for the DAB receiver has been developed and a
Spartan-6 FPGA has been chosen as implementation target since it promised to be the
lowest-cost Xilinx FPGA platform with partial self-reconfiguration capability. Although
partial reconfiguration is not officially supported by Xilinx it has been reported to be
possible by Koch, Bayar and Meyer et al. up to an ICAP frequency of 100MHz (cf.

100

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware Implementation

[KBT10], [BYT11] and [MNH`11b]). The DAB receiver DPR modules have been im-
plemented on the ZTEX Spartan-6 FPGA as described in the last section. For DPR to
be applicable, the system environment of the DAB receiver needed to be enhanced as
subsequently explained.

NOT

Figure 3.22: Cyclic DPR system and DAB receiver signal and control flow.

3.4.1 Static Environment of DPR System

The static logic resources required for the operation of the DAB receiver will in the
following be referred to as static environment. In a DPR system, the static environment
resides in the static partition. The major components of the static environment of the
cyclic DPR system are presented in Figure 3.22. The Cypress FX2 microcontroller and
the DDR memory are interfaced to the Spartan-6 SLX25 FPGA via external I/O pins as
discussed in Section 3.3 and the cyclic reconfiguration tasks are handled without addi-
tional microprocessors. Baseband and bitstream information are transferred across the
USB 2.0 port to the DDR memory using a configurable memory controller block (MCB)
provided by Xilinx (cf. [Xil10]). Prior to buffering the bitstream in memory, the bit- and
byte-order of the data are swapped in order to be compatible to the native ICAP format

101

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

(cf. [Xil15c]). The MCB provides up to 6 different 32 bit memory ports of which two
can be used for bi-directional read/write operations and the entity has been interfaced
to the system using a Xilinx memory interface generator (MIG) IP core. The MIG has
been configured to provide three uni-directional 32 bit ports, one for reading and two for
writing. FIFO buffers are used inside the MIG core to optimize read and write access
to and from memory and to decouple the memory clock frequency of 200MHz and the
FPGA clock frequency of 48MHz. Control signals to the memory interface are indicated
by blue lines in the graph. According to Figure 3.9 in the system model, memory ac-
cesses between the ICAP bitstream loader state-machine and the DPR partition read
operations are non-overlapping in time. Therefore, the memory read port is multiplexed
between the ICAP loader FSM and the reconfiguration controller. In contrast, trans-
fers from the reconfigurable module to memory overlap with the continuous transfer
of baseband data into memory. Therefore, the USB communication interface and the
reconfiguration controller utilize independent 32 bit write interfaces. The ICAP loader
encapsulates the logic required to read the bitstream data from memory and write it into
the ICAP interface, thereby changing the logic configuration inside the DPR partition.
A dual-port FIFO is used to decouple the memory transfer cycles from the ICAP write
cycles and as soon as the FIFO receives new data, it will be written into the ICAP with a
clock frequency of 100MHz. Real-time operation is feasible with this setup as the FPGA
clock frequency exceeds the minimum FPGA clock frequency of 43MHz as outlined in
Section 3.3.5.

Subsequently, the functionality of the different blocks inside the static environment
will be explained.

• USB comm. interface: The USB communication controller handles the syn-
chronous data transfer from and to the USB host using the Cypress FX2 microcon-
troller. It is responsible for writing the bitstream data to external memory and the
bitstream addresses to an internal BRAM. After the bitstreams have been stored,
the communication controller enters a streaming mode in which the baseband data
is written to memory and where the MP2 audio payload data is transferred back
to the host.

• Reconfiguration Controller: The reconfiguration controller evaluates the state
signal provided by the reconfiguration FSM through the ICAP loader FSM. The
output signal of the FSM reflects the index of the reconfigurable module of the
DPR chain. This module index is evaluated by the ICAP loader FSM, which is
explained in the next section.

• Reconfiguration FSM: In case the active DPR module completed processing the
input frame, the reconfiguration FSM signals the index of the next bitstream by
counting the rising edges of the mod ready signal.

• ICAP loader FSM: The bitstream address information is evaluated by the ICAP
loader FSM, which evaluates the next state signal from the reconfiguration FSM
and presents the address of the pending DPR module to the memory controller.
The bitstream information then passes through the bit-swap block and a rate-
transition FIFO before it is written to the ICAP data port.

102

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware Implementation

• Gate registers: During reconfiguration the signals from the reconfigurable par-
tition to the static partition might randomly change during the reconfiguration
process. Therefore, the static and dynamic partition are separated by registers to
avoid signal glitches.

• Memory control interface: The MCB of the Spartan-6 FPGA is interfaced
using the MIG IP core, which is a wrapper providing read and write interfaces to
the external DDR memory. The memory control interface provides two dedicated
ports to the reconfiguration controller for baseband streaming and data writeback
via the USB communication interface.

The following signals have been used for communication between the static and dy-
namic partitions:

• Data input (din): Complex baseband signal transferred from memory and sup-
plied to the DPR partition.

• Data output (dout): Decoded MP2 payload data streamed to the USB commu-
nication interface from the active DPR module.

• Write enable (wr en): Enable signal from the static partition to the DPR par-
tition indicating that the current sample at the data input port is valid.

• Read enable (rd en): Enable signal from the DPR partition to the static parti-
tion indicating that the current sample at the data output port is valid.

• Enable (gate en): Enables or disables the gate registers to decouple the static
partition from the DPR partition.

• Reset (reset): Reset the reconfigurable module to the initial state.

• Ready (mod ready): If the processing task of a DPR module has been com-
pleted, the ready signal is asserted for one clock cycle. The reconfiguration FSM
evaluates this signal and decides if it is necessary to switch to the next configura-
tion. The mod rdy signal is raised after a FIC frame has been processed and after
an MSC frame has been processed.

A detailed explanation of the system architecture can be found in [Ili12] and will be
omitted in this work. In the following, the bitstream generation flow will be outlined
together with the observations made during Spartan-6 dynamic partial reconfiguration.

3.4.2 DPR Simulation and Bitstream Generation Flow

Prior to implementing the DPR system, the DAB receiver system outlined in Figure 3.22
and the functionality of the DPR modules have been verified in a simulation testbed.
A screenshot of the components of the simulation testbed is provided in Figure 3.23,
where the DPR modules 1, 2 and 3 are denoted by block a, block b and block c. The
testbed includes all three DPR modules and the static logic inside a single static system
configuration. The DPR modules are virtually loaded and unloaded by multiplexing
their I/O ports. In comparison to Figure 3.22, the CE signal of the ICAP has been

103

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

tied to constant low and an additional FSM resets the dual-port FIFO every 4 clock
cycles, thus simulating the ICAP consuming the bitstream data. After successful testing
and debugging, the DPR system has been prepared for the use in a real reconfiguration
environment as subsequently explained.

Figure 3.23: Screenshot of the RTL simulation model for DAB receiver modules.

The configuration bitstreams have been generated using the differential generation
tool-flow as described by Meyer et al. in [MNH`11b] and by Schmidbauer in [Sch11].
Given the mentioned tool-flow, a functional prototype DPR system with five small DPR
modules has been realized as documented in [Sch11]. This test system has been developed
independently of the DAB receiver and solely for DPR evaluation purposes of Spartan-6
FPGAs. In the test system, the size of the DPR modules was small in comparison to the
DPR partition size as shown in Figure 3.24. In the evaluation DPR system, the ICAP
was driven with a 12MHz clock frequency and the DPR modules have shown to be fully
functional, indicating a successful reconfiguration process. Upon successful evaluation of
the Spartan-6 DPR test system, the same bitstream generation tool-flow has been used
for the cyclic DPR DAB receiver system.
For the DAB receiver the exported VHDL code, generated by Xilinx System Generator

for all three DAB receiver modules, is synthesized in addition to the static logic of the
top-level design. For each synthesis operation one netlist file with constraint information
(NGC) is obtained, which is required for successive implementation. Since the static
partition needs to be operational during reconfiguration, the logic placement and wire
routing need to be the same for all DPR modules. Therefore, the static logic needs to
be implemented before the implementation of the DPR modules and the placement and
routing information of the static partition are imported and subsequently supplied to
the DPR module implementation process. For differential DPR, a total number of four

104

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware Implementation

Figure 3.24: Single-island test system for Spartan-6 FPGA reconfiguration.

bitstreams are required, comprising of the initial non-differential bitstream including the
first DPR module configuration, and three differential bitstreams containing the differ-
ences between the DPR modules. Figure 3.25 shows the bitstream generation procedure
in a simplified diagram.

Finally, albeit intensive testing and debugging of the DPR system, a functional
DPR design for the DAB receiver could not be realized reliably with the
approaches outlined by Meyer and Schmidbauer, i.e. with the same techniques that have
successfully been applied in the evaluation phase. The reason for the malfunctioning
of the system is that although the Xilinx tools constrain the logic placement by the
area constraints provided, the routing constraints are ignored by the tools, such that
the a reconfiguration of the DPR partition might lead to a reconfiguration of a wire
routing matrix inside the static partition. This has been observed to be the case if
the DPR module requires too many routing resources, such that the Xilinx place and
route tool starts using wires outside the DPR partition. This issue did not appear in
the test and evaluation system since the DPR module has sufficiently been separated
from the static partition (cf. Figure 3.24). In case the DPR partition resources are
sufficiently utilized, such that routing resources outside the DPR partition are occupied,
routing matrix reconfigurations inside the static region can then lead to glitches in the
static logic during DPR module reconfiguration. Note that this issue has already been
reported in Section 2.5, where the use of blocker macros has been proposed to circumvent
this drawback. As already pointed out, blocker macros or other tools for XDL macro
generation have not been evaluated in this work. Since the system architecture could
be verified by means of a DPR simulation model on the ZTEX board, the feasibility of
the cyclic DPR implementation could be verified and the remaining uncertainty of the
cyclic DPR systems constitutes in the size of the partial bitstreams.

The resource utilization and system constraints of the DPR-based design will be com-

105

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

Figure 3.25: Difference-based bitstream generation tool-flow for the DAB receiver.

pared to the static DAB receiver system in the next section.

3.4.3 Resource Utilization and Comparison

The resource occupation of the three DPR modules has previously been outlined in Ta-
ble 3.10. Inside the single-island cyclic DPR receiver system, enough space needs to
be reserved for the DPR partition, where the minimum amount of required resources
elements is determined by the worst-case resource occupancy of the DPR modules. Re-
garding slices and, hence, also FF and LUT resources, the third DPR module dominates
the size requirements with 779 slices. In terms of BRAM resources, the second DPR
module is the most demanding with 12 BRAMs, where the FFT is the dominating pro-
cessing element in the chain. In terms of DSP48 units, the second module is the most
demanding among the DPR modules with a total requirement of 14 DSP units. The
resource requirements of the DPR partition and the components of the static partition
of the DPR system are summarized in Table 3.12.

In the following, the DAB receiver implementation as presented in Section 3.3 will be
denoted as original implementation. The static DPR system environment requires no
DSP resources and only a few BRAM resources for the USB I/O FIFOs and for the ICAP
loader FIFO, which is where the bitstream memory addresses are stored. In comparison
to the DAB receiver interface resources listed in Table 3.9, the USB COM FSM requires
more slice resources in the DPR design due to the increased complexity for bitstream
uploading, address uploading and memory interface communication. In comparison to
the static environment of the DAB receiver implementation presented in Section 3.3, the
required amount of slices is roughly increased by a factor of 4.

At this point it is important to bear in mind that the resource listing of the static

106

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware Implementation

Description Slices FFs LUTs BRAMs DSP48

DPR Partition 779 2026 1490 12 14
USB COM FSM 471 747 841 4 0
DPR MEM I/O 117 165 314 0 0
ICAP LOADER 77 143 241 1 0
DPR FSM 7 7 8 0 0
DPR I/O GATE 1 37 1 0 0
Others 160 229 374 0 0

Total 1612 3354 3269 17 14
XC6SLX25 3758 30064 15032 52 38

Table 3.12: DPR-based DAB receiver resource utilization on ZTEX module 1.11c.

environment in the original system misses the resource requirements of the DDR mem-
ory interface controller. However, the original DAB receiver implementation can also
function without external memory by using an additional amount of 29 BRAMs. This
modification in turn would make the area constraining of the DPR partition impracti-
cal on the XC6SLX25 FPGA. Therefore, the following resource comparison between the
static environment of the original system and the DPR system, i.e. between Table 3.9
and Table 3.12, is considered as biased in favor of the original system. Albeit this bias,
it will be shown that the cyclic DPR system is still more resource-efficient in comparison
to the original implementation since the increased amount of resources of the static envi-
ronment in the cyclic DPR system is compensated by the reduction in FPGA resources
for the DAB receiver. In comparison to the original system, in the cyclic DPR system
the amount of DAB receiver slices is approximately reduced by a factor of 2.4. Since the
DAB receiver occupies the major proportion of the FPGA slices, the DPR system turns
out to require fewer resources in comparison to the original implementation.

0 10 20 30 40 50 60 70 80 90 100

DPR

Original

36.8

68.4

32.7

46.2

21.7

26.8

11.2

16.1

42.9

54.8

Relative utilization in %

Slices
FFs
LUTs
BRAMs
DSP48

Figure 3.26: Relative resource consumption for DAB receiver on XC6SLX25.

107

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

0 10 20 30 40 50 60 70 80 90 100

DPR vs. non-DPR

46.2

29.2

18.8

30.7

21.7

Relative savings in %

Slices
FFs
LUTs
BRAMs
DSP48

Figure 3.27: Relative resource saving using DPR compared to static design.

The relative resource utilization of the original non-DPR design and the cyclic DPR
implementation is outlined in Figure 3.26 with respect to the resources available on the
Xilinx Spartan-6 XC6SLX25 FPGA on the ZTEX board. For all resource elements,
the cyclic DPR system turns out to require fewer resources in comparison to the static
design. The relative resource savings are depicted in Figure 3.27. The graph expresses
that, especially in terms of DSP48 resources, the cyclic DPR design is 46% more resource-
efficient in comparison to the original design.

Note that when presenting these resource reductions there is a caveat, which in general
has to be considered when speaking about resource reduction in DPR systems: Recall
that each Xilinx FPGA is organized in configuration rows and columns of fixed size (cf.
Section 1.1) and that the DPR partition size must be fixed in the floorplanning phase.
This means that, unless the DPR partition size fits exactly the resources available in
the rectangular reconfigurable FPGA area, there will be a remaining amount of unused
resources inside the DPR partition. Moreover, it is unlikely that the DPR modules oc-
cupy exactly the same amount of resources inside the DPR partition. Hence, although
the cyclic DPR system can still beat the original system in terms of resource occupa-
tion, the mentioned resource fragmentation leads to an effective reduction of available
resources, meaning that the freed resources can neither be assigned back to the static
environment nor to other DPR modules, and that due to these circumstances it is likely
that more resources will be occupied or blocked than required in total. Considering
these remarks and the constraints induced by the cyclic DPR system model, it is still
possible to reduce the effective amount of resources of a cyclic DPR system, which is
the case for the presented DAB receiver system. Since DSP48 and BRAM resources
are of special concern in digital broadcast receiver systems, time-multiplexing of these
components increases the degrees of freedom for the design of DSP systems. Given that
low-cost FPGAs usually provide fewer DSP48 and BRAM resources in comparison to
their expensive counterparts, cyclic DPR seems to be a viable optimization option in
terms of system costs, especially for DSP applications.

So far the resource benefits of the DAB receiver have been evaluated and a DPR flow
architecture tailored to the DAB receiver has been presented. The implementation of
the DPR DAB system requires a more complex static environment system architecture
in comparison to the original implementation. The presented DPR static environment
architecture can be adopted for similar receiver chains by changing only a few design pa-
rameters, such as the memory mapping and the DPR control state machines. Compared

108

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware Implementation

to the original design, in the cyclic DPR design intermediate data buffers and bitstream
storage memory are required, which increases the memory requirements of such a sys-
tem as outlined in Section 3.2. In the next section, these increased requirements will be
quantified for the DAB receiver.

3.4.4 Cyclic DPR Receiver Memory Requirements

In Section 3.2 it has been explained that a cyclic DPR system requires input data
buffering and intermediate data buffering to function. Furthermore, for independent
operation it is necessary to buffer the DPR bitstreams. The static environment of the
DAB receiver must store the incoming data and the bitstream information.

Baseband Input Buffer

Since the DAB receiver operates on DAB frames with TFRAME “ 96ms duration, the
input buffer has been designed to store the complex baseband samples of at least two
DAB frames, which at a sample rate of 2,048MHz and 8 bits per I and Q sample results
in a memory requirement of

2 ¨ 2.048 ¨ 2MByte{s ¨ 96ms “ 786.432 kBytes.

Intermediate DPR Module Data Buffer

The buffer size of the symbol buffer bridging the DPR modules 1 and 2 is mainly related
to the useful symbol duration and the number of symbols per DAB frame. As defined in
Table 3.4 and shown in Figure 3.10, one CIF contains 18 OFDM symbols and one DAB
frame consists of 4 CIFs carrying the MSC information. Hence, a DAB frame carries
72 MSC symbols. In addition, a DAB frame includes 3 FIC symbols and one reference
symbol, which is required by the DQPSK stage. Altogether, 76 OFDM symbols have
to be stored in the intermediate buffer to be transferred from DPR module 1 to DPR
module 2. Since only the useful part of the OFDM symbols are forwarded, each symbol
has a duration of 1ms in time, which results in

76 ¨ 1ms ¨ 2.048MS{s ¨ 2Bytes “ 311.296 kBytes

of required symbol storage memory. As already mentioned, the time deinterleaver
has been redesigned to allow for storing the values in the external memory with 4 bits
per LLR. The design decision to use external memory instead of BRAMs resulted from
the fact that the memory resource consumption of the time deinterleaver is very high
compared to the amount of logic resources (cf. [Gna12]). Although increasing the number
of bits per LLR increases the reliability information of a demapped bit and thus improves
the channel decoding performance, a choice of 4 bits per LLR shows a good trade-
off between memory requirement and decoding robustness since the BER performance
only improves marginally by spending more bits. Given a worst-case MSC bitrate of
386 kBit/s (using UEP) the deinterleaver memory requirement becomes

416CUs

CIF
¨ 16CIFs ¨

4 bit

LLR
¨
64 LLRs

CU
“ 1, 703, 936 bit “ 212.992 kBytes,

109

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

which is the amount of data that has to be transferred per DAB frame from DPR
module 2 to DPR module 3. Apart from the MSC information stored in the time
deinterleaver, the FIC information needs to be stored in memory before it can be decoded
in the third DPR module. The intermediate FIC buffer capacity is designed to hold 3
FIC symbols with 768 bits per symbol and 4 bit per LLR, such that

3 sym ¨
768 LLRs

sym
¨
4 bit

LLR
“ 9, 216 bit “ 1.152 kBytes

of additional memory is required to store the FIC soft-bit information. The amount of
data per DAB frame in the cyclic DPR DAB receiver is summarized in Table 3.13. Note
that the output of the third DPR module does not need to be buffered but is fed to
the USB communication interface and forwarded to the USB host PC. The output of
DPR module 1 dominates the memory requirements and the intermediate buffer must be
designed to store at least 311.296 kBytes of data. Since the context of the convolutional
time deinterleaver depends on the previously decoded DAB frame its memory needs to
be persistent, which is why an additional amount of 212.992 kBytes of data needs to be
available for continuous deinterleaving. Since the OFDM symbol buffer is only required
as intermediate buffer for the DPR modules 1 and 2, the OFDM symbol buffer can be
re-used and overwritten by the FIC LLR values generated by the second DPR module,
such that no additional buffer space needs to be allocated.

Description Transfer direction Size in kBytes

OFDM symbol buffer Module 1 Ñ Module 2 311.296
MSC LLR buffer Module 2 Ñ Module 3 212.992
FIC LLR buffer Module 2 Ñ Module 3 1.152

Table 3.13: Amount of data transferred between DPR modules per DAB frame.

Bitstream Buffers and Memory Map

The memory requirements of the cyclic DPR system are summarized in Table 3.14.
As already explained, in comparison to the original receiver implementation, the cyclic
DPR system requires additional memory for buffering and bitstream storage. Although
the amount of memory can be reduced by CIF-based processing, changing the frame
duration imposes other challenges on the system design, as explained in Section 3.3.5.
Using BRAMs for buffering is not recommended as they are likely too small and typically
required for buffering tasks in the PEs of the receiver. Given that the external memory
has already been available on the ZTEX board, it could be utilized without additional
cost. Hence, for FPGA systems with external memory, using cyclic DPR to reduce the
system resources is feasible. For tailored FPGA systems it needs to be investigated
whether the reduction in FPGA resources by using cyclic DPR justifies the costs of
adding a dedicated external memory chip to the bill of materials.
The size of the DPR bitstreams typically increases with the size of the DPR partition

area. Since a stable cyclic DPR system could not be established with the Spartan-
6 FPGA, no reliable bitstream size information is available to determine the memory

110

3.4 Cyclic DPR for DAB Receivers - Part II: Hardware Implementation

Description Size in kBytes

Baseband buffer 786.432
Intermediate buffer 311.296
Time deinterleaver 212.992

Bitstream buffer
ř3

m

NB,BIT,m

8

Table 3.14: Buffer memory requirement of the cyclic DPR DAB receiver.

requirements for bitstream storage. For a complete device reconfiguration 6,440,432
configuration bits need to be written to the XC6SLX25 FPGA (cf. [Xil15c]). Thus, in
the worst case scenario, roughly 3 ¨ 6,440,432

8¨1000
« 2400 kBytes of bitstream storage capacity

must be reserved in the cyclic DPR receiver system.

Figure 3.28: External memory map of the cyclic DPR DAB receiver.

The memory partitioning of the respective components is shown in Figure 3.28. The
memory is word addressable with 16 bits per word and apart from the bitstream mem-
ory region, all other buffer memory regions are of fixed size. The cyclic DPR system
environment as well as the memory partitioning approach can be applied to new cyclic
DPR broadcast receiver designs.

In the next section, a feasibility study for a DVB-T2 baseband decoder using cyclic
DPR will be presented, where in contrast to the cyclic DPR DAB receiver presented
in this section, the system feasibility will be evaluated given estimates of the resource
occupation and timing behavior of the receiver implementation.

111

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

3.5 Feasibility Analysis for a DVB-T2 Baseband

Decoder using Cyclic DPR

In this section, a feasibility study for a DVB-T2 baseband decoder chain on a Xilinx
Kintex FPGA using cyclic DPR will be presented with the help of the cyclic DPR
system model. Given realistic system constraints, the DPR system model allows for an
exploration of the real-time capability and latency of the cyclic DPR system, such that
it is not strictly necessary to have an implementation of the system available. Taking
a DVB-T2 baseband decoder as an example, the following analysis will introduce the
necessary steps for conducting such an feasibility study to explore the cyclic DPR design
space. Similar to the previously introduced baseband chains, the feasibility analysis
encloses baseband demodulation only, which means that decoding and interpretation of
the baseband frames including the transport stream is not part of this work.

An overview on the DVB-T2 baseband system, the receiver architecture and DPR
module partitioning will be outlined next.

3.5.1 System Architecture

The DVB-T2 baseband receiver shown in Figure 3.29 is assumed to be similar to the
generic OFDM receiver presented in Section 1.2.2. For cyclic DPR, the receiver chain
will be split into two parts with approximately equal computational complexity, namely
a demodulator part, in the following denoted by DEMOD and a forward error correction
part, referred to as FEC. The motivation for splitting the system into two parts is that
the resources inside the DPR partition can be reused in time by both parts. The DEMOD
part contains frequency and time offset estimation and compensation routines, the FFT
stage, channel estimation and equalization routines as well as a cell deinterleaver whereas
the FEC part contains an LLR deinterleaver, a demapper, an LDPC decoder and a BCH
decoder.

Figure 3.29: Signal flow-graph of a DVB-T2 receiver chain and DPR module partitioning.

To simplify the calculations, the following analysis does not include L1 signaling
frames, i.e. no P1 and P2 header symbols, but only the data symbols, which make
up the major payload in the DVB-T2 receiver system as outlined in [Ets08]. In terms
of hardware complexity the FEC decoder is likely to consume most of the resources
(c.f. [KVW`10] and [CA11]). When the LDPC codeword must be calculated using a
high number of iterations, high DVB-T2 payload data rates of up to 50.3Mbit/s make

112

3.5 Feasibility Analysis for a DVB-T2 Baseband Decoder using Cyclic DPR

real-time decoding a computationally complex task. Therefore, in the following it is pro-
posed to allocate both channel decoders to a separate DPR module. Let the DVB-T2
receiver be partitioned into two modules, namely FEC and DEMOD, which are subse-
quently executed and reconfigured.
The DPR modules are executed in a dedicated DPR partition and the design follows

the single-island reconfiguration design similar to the DAB receiver prototype presented
in Section 3.3. After a certain number of module execution cycles, the DPR partition
is reconfigured and another module is made ready for processing. The proposed time-
multiplexing approach is depicted in Figure 3.30. Each DPR module is executed a certain
number of times before it is replaced by the other DPR module, i.e. the DEMOD part
is executed NEX,DEM times and the FEC part is executed NEX,FEC times. After one
execution cycle the DEMOD module is replaced by the FEC decoder module and vice
versa.

Figure 3.30: Cyclic execution of FEC and DEMOD modules using DPR.

Implementation Slices 36k BRAMs DSP48

Xilinx Kintex 7K160T 25350 325 600

Xilinx LDPC/BCH decoder IP 14008 (55.3%) 71 (21.8%)9 16 (2.7%)

Table 3.15: Resource requirements for FEC part on Xilinx Kintex FPGA.

Literature reports that real-time capability and acceptable decoding performance for
the DVB-T2 LDPC decoder requires either spending many FPGA resources (cf. [LNJ`11])
or using higher clock rates to achieve a minimum number of iterations for belief prop-
agation. This is an indication that the FEC decoder is the most performance-critical
part of the system. Therefore, a DVB-C2 LDPC/BCH decoder IP core [Xil] offered by
Xilinx and developed by Creonic has been taken as a reference to determine the size of
the DPR partition. The IP core includes all components as defined in DEMOD module,
i.e. a soft-decision demapper, a block deinterleaver, an LDPC decoder, a BCH decoder
and a descrambler (cf. Figure 3.29). The resource requirements of the implementation
generated with Xilinx ISE 13.4 are presented in Table 3.15. An uncompressed bitstream
for a complete configuration of the Kintex 7K160T FPGA comprises of 53,540,576 bits
(cf. [Xil15a]). Since the decoder IP consumes 55.3% of the slice resources, the num-
ber of bits for the partial bitstream will subsequently be defined in proportion to the
resource utilization. To account for fragmentation when defining the reconfigurable area

9The datasheet provided by Xilinx does not specify whether the number of BRAMs refers to
18k BRAMs or 36k BRAMs.

113

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

(cf. Section 2.6), a total of 60% FPGA utilization is assumed to be allocated to the
DPR partition. Hence, the proportional size of the partial bitstream to configure the
DPR partition will be conservatively estimated to be 32,124,346 bits. This portion of the
FPGA can then be used for both, the DEMOD and the FEC module implementations.
Xilinx 7 series FPGAs provide an ICAP interface and full DPR support and as defined
in [Xil14], where the ICAP interface has a width of 32 bit and supports a maximum clock
frequency of 100MHz. Considering the outlined values, the reconfiguration time for the
DPR partition can be estimated to be

TDPR “
32, 124, 346 bits

32 bits ¨ 100MHz
« 10ms. (3.15)

After the introduction of the time-multiplexing approach using partial reconfigura-
tion, the realtime constraints of such a system will be presented and parameters for the
execution times NEX,DEM and NEX,FEC will be derived.

3.5.2 Real-Time Constraints

For a broadcast receiver to be realtime capable, the implementation must cope with
the data throughput defined in the system specification. Since in DVB-T2 different
bandwidths, guard interval lengths and different FFT sizes may be used, an analysis for
all configurations of the system might become cluttered. In order to account for the
computationally most demanding scenario, a DVB-T2 signal bandwidth of 8MHz with
an elementary period of τ “ 7{64µs is considered for the analysis. Additionally, the
guard interval fraction will be defined to be ∆ “ 1{128. In this configuration the OFDM
symbol duration TS can be calculated by

TS “ p∆ ` 1q ¨ τ ¨ NFFT “
903

8192
µs ¨ NFFT, (3.16)

where NFFT defines the number of complex samples for the Fourier transform opera-
tion. To allow for Doppler shifts, tone reservation and pilot carriers only NC of NFFT bins
are used as data carriers. Table 3.5.2 gives an overview on the number of used carriers
for the different FFT sizes.

NFFT 1024 2048 4096 8192 16384 32768

NC 853 1705 3409 6817 13633 27265

Table 3.16: Number of used carriers NC for NFFT FFT bins.

For the data carriers either 4-, 16-, 64- or 256-QAM mapping with either 2, 4, 6 or 8
bits per constellation point can be used, such that the number of bits per OFDM symbol
can be specified to be

NLLR “ NC ¨ q,where q P t2, 4, 6, 8u.

Concerning the channel coding, the broadcaster can decide between two FEC codeword
lengths together with different code rates. Since the performance for the worst case
processing load is of major concern, the analysis is based on the LDPC long code with

114

3.5 Feasibility Analysis for a DVB-T2 Baseband Decoder using Cyclic DPR

64800 bits per codeword, neglecting the LDPC short code. Decoding one long codeword
requires the FEC module to be executed

µ “
NLLR

64800

times per OFDM symbol. Hence, the higher the constellation alphabet and the more
carriers are in use, the higher the required execution frequency of the FEC decoder
per OFDM symbol. With the derived system constraints, the execution time of the
cyclic DPR system can be evaluated. Let the execution time per OFDM symbol of the
FEC part further be denoted by TEX,FEC and the execution time of the DEMOD part
by TEX,DEM. Furthermore, it is assumed that context recovery can be neglected, i.e.
TSV,FEC “ 0 and TSV,DEM “ 0. With the parameters derived so far it can be stated that
in a system without reconfiguration delay and without setup times, realtime processing
is possible if the following inequality is satisfied

TEX,DEM ` TEX,FEC ¨ µ ` C ď TS, (3.17)

where C ą 0 since the reconfiguration time TDPR is nonzero and the FEC and DEMOD
modules exhibit an initialization time. Considering that the processing is done on a
symbol-wise basis in bursts of NSYM OFDM symbols, the execution time to process
NSYM symbols, including the reconfiguration and setup delays, reflects the cycle time
TCYC of the DPR system, i.e.

TCYC “ NSYM ¨ TS.

According to the cyclic DPR system model the upper bound on the cycle time for
real-time operation is

TFRAME ď NSYM ¨ TS. (3.18)

With the knowledge of TLD,DEM reflecting the initialization time for the DEMOD
implementation to start the processing and TLD,FEC being the setup time for the FEC
implementation, the maximum frame duration TFRAME can be derived by

TFRAME “ NSYM ¨ pTEX,DEM ` TEX,FEC ¨ µq ` TLD,DEM ` TLD,FEC ` 2 ¨ TDPR, (3.19)

where in this case the constant additive part C in Equation 3.17 is determined by

C “
TLD,DEM ` TLD,FEC ` 2 ¨ TDPR

NSYM

. (3.20)

Hence, with an arbitrary large number of processed OFDM symbols NSYM the con-
stant C can be made arbitrary small and the condition for realtime-capability in the
reconfigurable system can be stated with

TEX,DEM ` TEX,FEC ¨ µ ă TS. (3.21)

Bearing this condition in mind, it is possible to define the minimum number of symbols
NSYM required to achieve real-time capability. In the following part of the analysis
the question on suitable parameters for TLD,DEM and TLD,FEC will be answered and the
execution times TEX,DEM and TEX,FEC for a DVB-T2 receiver system will be specified.

115

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

3.5.3 Feasibility Analysis

The execution times of the FEC and DEMOD accelerators must be specified in order
to cope with the worst-case throughput of a DVB-T2 broadcast, i.e. when a 32k FFT
together with a 256-QAM modulation is used. The symbol duration in this mode is
TS “ 3612µs and the number of FEC executions per symbol is approx. µ “ 3.4.
Since the complexity of the demodulation part varies with the FFT size and modulation
alphabet. The number of execution cycles for the 2048-point pipelined streaming FFT
implementation is stated to be 4223, cf. Table 3.6 in the previous section. For a DPR
module execution frequency of 100MHz the execution time of a 2048-point FFT results
in 42.23µs. For the execution time of half the FFT size, i.e. for 1024 FFT bins, the
execution time is further on assumed to be TEX,DEM,1k “ 25µ. Linearly scaling this value
returns an execution time of TEX,DEM,1k ¨ 32 “ 800µs for a 32k FFT.
In contrast to the DEMOD part, the FEC decoder must be designed to operate on a

finite frame length and, thus, the execution time TEX,FEC should be fixed as well. Given
the previously derived parameters and reformulating Equation 3.21, the limit for the
FEC execution time can be calculated as

TEX,FEC ă
TS ´ TEX,DEM,1k ¨ 32

µ
“ 835µs (3.22)

The value derived in Equation 3.22 requires an FEC throughput of 78Mbit/s. With
respect to the inequality, the analysis can be started from a value of TEX,FEC “ 800µs, i.e.
with a throughput of 81Mbit/s. Next, the initialization latency of the FEC and DEMOD
modules will be approximated by TLD,DEM “ 0.5 ¨ TEX,DEM and TLD,FEC “ 0.5 ¨ TEX,FEC.
Up to this point, all important parameters of the cyclic DPR system have been derived.
Next, system aspects such as memory consumption and DPR module throughput will
be discussed.

DPR Module Throughput

For the configuration derived in the last section, the minimum number of execution cycles
for the FEC and DEMOD parts are depicted in Table 3.5.3. The numbers show that the
minimum number of execution cycles for the DEMOD part NEX,DEM linearly increases
with the FFT size, which is due to the fact that the symbol duration TS also linearly
increases with an increase of the FFT size, cf. Equation 3.16. Since the produced
data throughput at the FFT output stays almost constant with a varying FFT size,
also the minimum number of execution cycles for the FEC part NEX,FEC “ NSYM stays
constant. If the mapping constant q increases, i.e. if the QAM cells carry more bits,
both accelerators have to cope with a higher data throughput and, hence, the number
of execution cycles per multiplex cycle increases.
Figure 3.31 shows in how far the FEC decoder throughput influences the number of

execution cycles for the FEC and DEMOD parts. It can be observed that the higher the
FEC throughput the smaller the number of execution cycles per reconfiguration cycle.
In the most demanding configuration, i.e. using a 32k FFT with 256QAM mapping,
the throughput of 81Mbit/s exceeds the plot with approximately 600 execution cycles
for the FEC decoder module. For an FEC throughput of around 100Mbit/s, which is
around twice the maximum throughput of a DVB-T2 BB frame, the implementation
starts becoming feasible even for the most complex configuration. Due to the finite

116

3.5 Feasibility Analysis for a DVB-T2 Baseband Decoder using Cyclic DPR

4-QAM 16-QAM 64-QAM 256-QAM
FFT NEX,DEM NEX,FEC NEX,DEM NEX,FEC NEX,DEM NEX,FEC NEX,DEM NEX,FEC

1k 319 9 466 25 863 69 5869 619
2k 160 9 233 25 431 69 2897 610
4k 80 9 117 25 216 69 1441 607
8k 40 9 59 25 108 69 720 606
16k 21 9 30 26 55 70 361 608
32k 11 10 15 26 28 71 182 613

Table 3.17: Minimum cycle times for TEX,FEC “ 800µs and TEX,DEM,1k “ 25µs.

LDPC code length, the number of FEC cycles reduces with the number of QAM cells
per second produced at the output of the demodulator. Hence, in a 4k FFT / 16QAM
configuration the number of FEC execution cycles is always lower than the number of
DEMOD cycles. A reversal of this trend can be observed if more bits are required to be
processed in time, for example when using a 32k FFT / 256QAM configuration. In this
case, the FEC becomes the dominant block. If the FEC throughput is sufficiently high,
i.e. at 108Mbit/s, a higher order FFT results in a reduced the number of execution cycles
for the DEMOD module because the duration of an OFDM symbol increases linearly
with the FFT length (cf. Equation 3.16). Given the OFDM symbol duration TS the
execution duration of the DEMOD module can be derived from the number of execution
cycles.
So far the relationship between the number of execution cycles NEX,FEC and NFFT

and the throughput of the FEC and DEMOD modules have been described. Next, the
relation between the number of execution cycles and the memory consumption of the
system will be outlined, including an analysis of the DPR system latency as described
by the cyclic DPR system model.

3.5.4 Memory Constraints

In each of the DEMOD and FEC decoders a burst of NSYM symbols must be processed
during the DPR module activity cycle. This requires to pre-buffer NSYM symbols of data
before the cyclic DPR processing of the FEC and DEMOD modules can be initiated (cf.
Figure 3.7). While the two DPR modules are reading the first NSYM symbols from the
buffer, the incoming stream of the following NSYM symbols needs to be buffered to be
processed next. If double-buffering is used the input buffer must be designed to hold two
complete frames, i.e. TBUF “ 2 ¨ TFRAME. If the input FIFO can be read and written
at the same time, only one frame needs to be buffered. Hence, the number of symbols
should be kept as small as possible in order to reduce the memory consumption and thus
the cyclic DPR system delay. For the DVB-T2 receiver system, this requires the FEC
decoder throughput to be as high as possible. In the following, the delay and buffer
memory requirements for different FEC decoder rates will be determined.
The complex baseband stream is fed to the input of the DEMOD part. Given an

elementary period of 7{64µs and a spectral bandwidth of 8MHz, the OFDM sample
rate required for demodulation is approximately 9.143MS/s. Streaming the complex
baseband signal with 8 bits per complex component results in an baseband datarate of

117

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

0 50 100 150 200

324

216

162

130

108

93

81

15

16

17

18

20

22

25

67

72

78

85

94

104

117

F
E
C

in
p
u
t
th
ro
u
gh

p
u
t
in

M
b
it
/s

16 QAM, 4k FFT

NEX,DEM

NEX,FEC

0 50 100 150 200

324

216

162

130

108

93

81

23

26

30

35

42

52

69

36

41

47

55

65

82

108

F
E
C

in
p
u
t
th
ro
u
gh

p
u
t
in

M
b
it
/s

64 QAM, 8k FFT

NEX,DEM

NEX,FEC

0 50 100 150 200

324

216

162

130

108

93

81

23

27

31

36

42

52

70

18

21

24

28

33

41

55

F
E
C

in
p
u
t
th
ro
u
gh

p
u
t
in

M
b
it
/s

64 QAM, 16k FFT

NEX,DEM

NEX,FEC

0 50 100 150 200

324

216

162

130

108

93

81

34

41

51

64

91

162

10

12

15

19

27

48

182

F
E
C

in
p
u
t
th
ro
u
gh

p
u
t
in

M
b
it
/s

256 QAM, 32k FFT

NEX,DEM

NEX,FEC

Figure 3.31: Number of DPR module execution cycles for DVB-T2 baseband decoder.

118

3.5 Feasibility Analysis for a DVB-T2 Baseband Decoder using Cyclic DPR

146.29Mbit/s. The DVB-T2 physical layer pipe (PLP) stream is generated after inner
and outer channel decoding have been accomplished and can have a maximum data rate
of 50.3Mbit/s. The sum of the input and output data rates is 196.6Mbit/s. Thus, the
required buffer capacity in bits for the input sample stream becomes

NB,IO “ pγOUT ` γINq ¨ 2 ¨ TFRAME.

Since TFRAME depends on the number of OFDM symbols the required memory for
input buffering increases with an increase of NEX,DEM “ NSYM. At the output of the
DEMOD module a burst of complex equalized carrier values are forwarded to the channel
decoder, which must be buffered at the output of the QAM cell10 deinterleaver (cf.
Figure 3.29). The carrier information is assumed to be quantized with 8 bit for in-phase
and 8 bit for quadrature component. The buffer memory at the output of the DEMOD
module must be designed to have a storage capacity of

NB,CELL “ NC ¨ NSYM ¨ 16 bit. (3.23)

Using a receiver configuration with 32k FFT bins and 256 QAM mapping the QAM
cell memory storage requirement per OFDM symbol reaches its maximum. In conclusion,
the memory capacity of the system must be large enough to store at least

NB “ NB,CELL ` NB,IO ` 2 ¨ NB,BIT (3.24)

bits of information, where NB,BIT « 32.1Mbit per partial bitstream. In Figure 3.32,
the memory consumption and the delay induced by the cyclic DPR operation is shown
in relation to the FEC decoder throughput. The bargraph shows that at high FEC
throughput rates the buffer memory and delay values for different FFT and QAM con-
figurations converge because the processing duration of the FFT becomes the dominating
part in the system. The memory required for bitstream storage dominates the buffer
capacity with approximately 8MBytes in total. For the cyclic DPR system it is proposed
to use the configuration with a FEC throughput of 108Mbit/s. In this configuration the
worst-case input buffer size required for real-time operation is NB “ 13.7MByte and the
worst case delay induced by cyclic DPR is 195ms. Using a 4k FFT with 16 QAM, in
the best case an additional latency of 84.9ms can be observed. The buffer values and
the delay values seem feasible for the operation in professional broadcast receivers.

Discussion

Without in-depth implementation knowledge the conducted feasibility study delimits the
requirements for the real-time capability of a cyclic DPR system for a DVB-T2 baseband
decoder. Reusing the hardware resources available in the DPR partition of the FPGA
enables to reduce the logic resources required to implement a DVB-T2 baseband decoder
in comparison to a static system. In the DVB-T2 system, the area re-use has been
assumed to be 60% of the overall Kintex FPGA resources (cf. Section 3.5.1). Reduced
execution clock frequencies or resource-economic DEMOD and FEC implementations11

can be employed if larger DPR system delays and buffer I/O buffers are acceptable.
In the next section, the benefits and drawbacks of a cyclic DPR system will be sum-

marized.
10A QAM cell is defined as the complex value of the equalized FFT carrier bin.
11In the sense that resource-economic implementations require fewer FPGA resources but more execu-

tion cycles per operation.

119

3 Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules

0 5 10 15 20 25

324

216

162

130

108

93

81

10.1

10.5

11.2

12.0

13.7

18.1

9.9

10.2

10.5

11.0

11.5

12.3

13.8

9.9

10.2

10.5

10.9

11.4

12.3

13.7

9.8

9.9

10.1

10.3

10.5

10.8

11.1

NB in MByte

F
E
C

in
p
u
t
th
ro
u
gh

p
u
t
in

M
b
it
/s

16 QAM, 4K FFT
64 QAM, 8K FFT
64 QAM, 16K FFT
256 QAM, 32K FFT

0 100 200 300 400 500

324

216

162

130

108

93

81

72.2

86.7

108.4

137.3

195.0

346.8

65.0

75.9

86.7

101.1

119.2

148.1

198.7

65.0

74.0

84.9

99.3

117.4

148.1

195.0

60.5

65.0

70.4

76.8

84.9

93.9

105.7

TDELAY in ms

F
E
C

in
p
u
t
th
ro
u
gh

p
u
t
in

M
b
it
/s

16 QAM, 4K FFT
64 QAM, 8K FFT
64 QAM, 16K FFT
256 QAM, 32K FFT

Figure 3.32: Buffer memory and processing delay for DVB-T2 baseband decoder.

120

3.6 Summary

3.6 Summary

Related work on cyclic dynamic partial FPGA reconfiguration revealed that existing
analytical frameworks for cyclic DPR are incomplete. This motivated the introduction
of a cyclic DPR model as presented in Section 3.2. The model enables deriving the tim-
ing parameters for the execution of DPR modules given the FPGA platform and DPR
module implementation. Using these timing parameters, real-time constraints for the
cyclic execution have been formulated. The elaborated theoretical framework has been
applied to an existing hardware system from ZTEX and a receiver chain implementation
for DAB. After the introduction of the system parameters, the timing constraints of
the DAB receiver elements have been discussed and it has been derived that the FFT
implementation of the DAB receiver is the bottleneck of the system. This bottleneck de-
termines the minimum execution frequency of 21.2MHz in the non-DPR receiver system.
Together with a suitable partitioning of the DAB receiver into three DPR modules, the
frame duration of the receiver elements have been discussed and it has been concluded
that a DAB frame-based processing leads to a receiver system with negligible context
handling. In relation to the duration of a DAB frame the real-time constrains of the
cyclic DPR implementation have been analyzed. The analysis revealed that the memory
throughput of the ZTEX platform does neither impose limitations on the transfer load
during DPR module execution nor on the bitstream write cycle. Using the number of cy-
cles per DPR module as an upper bound on the execution duration, the analysis revealed
that for a 20MHz ICAP frequency a minimum execution frequency of 52MHz is required
for the DPR modules to be real-time capable. Furthermore, for DAB-based processing
a worst-case system delay of 192ms has been determined. A hardware implementation
of the cyclic DPR system on the ZTEX FPGA platform has been outlined. Albeit that
DPR on Spartan-6 FPGAs has been reported to be feasible, cyclic DPR could not be
realized on this platform, due to insufficient constraining of the signal routing, resulting
in interference with the static partition. Using a DPR simulation model the system could
be proven as functional. The resource occupation in the cyclic DPR receiver is reduced
by a minimum of 18% per resource element in comparison to the static implementation.
The effects of cyclic DPR can also be evaluated without detailed implementation knowl-
edge, as shown by a feasibility study for a DVB-T2 baseband decoder. Using two DPR
modules and a minimum FEC throughput of 108MBit/s the DPR delay of such a sys-
tem lies between 80ms and 200ms. In this configuration 14MBytes of external memory
will be required for intermediate buffers and partial bitstream storage. Finally, as the
PEs in cyclic DPR systems typically operate at a higher clock frequency compared to
non-DPR designs and since the ICAP and memory resources are continuously accessed,
cyclic DPR systems are in general less power efficient compared to non-DPR designs.
The problem of partitioning a sequential chain of PEs into suitable DPR modules

for the cyclic execution inside a DPR partition will be addressed in the next chapter.
In order to minimize the resource fragmentation when a fixed-size DPR partition is
employed, the subsequently presented approach enables finding partitioning solutions
with minimum resource variance while also considering the DPR module communication
constraints.

121

4 High-Level Receiver Partitioning for
Cyclic FPGA Reconfiguration

The benefits and drawbacks of cyclic DPR systems have been discussed in Chapter 3. As
these systems use a single-island DPR partition, it is necessary to appropriately design
the DPR modules for this kind of operation. In Chapter 2 it has been concluded that
the size of the DPR partition needs to be defined in the design phase and can not be
changed during the cyclic DPR operation. Hence, it is beneficial to utilize as many of
the limited resources inside the single DPR partition as possible. Since resource elements
such as DSP48 slices or BRAMs are of prime importance for signal processing systems,
the optimization should be performed with respect to all reconfigurable FPGA resource
elements and not solely to a specific type of resource. While this is one goal when
partitioning the processing chain into DPR modules, another major concern is reducing
the DPR module throughput in the cyclic DPR system, as outlined in the previous
chapter. Given both objectives, a partitioning scheme for weighted resource partitioning
and joint data throughput minimization will be presented, using a linear combination of
partitioning metrics to find DPR module candidates with minimum data throughput and
minimum resource utilization variance. In order to classify the approach to be presented,
an overview on related works on time-multiplexing of FPGA resources will be given in
the next section.

4.1 Related-Work and Contribution

Methods for the identification of suitable partitioning candidates, derived from a pre-
defined set of processing elements and for the operation in single-island cyclic DPR
system are of concern in this chapter. Graph-based partitioning approaches for static
and time-multiplexed FPGA designs have been presented by Chang, Andersson and
Kao et al. in [CMS99], [AK00] and [KTHL07]. Operating on a net-list representation of
the processing chain, the major objective in the presented works is to find an optimum
schedule for partitions of the processing graph. As the schemes require a circuit descrip-
tion of the chain to be applicable and since neither the memory transfer implications of
the cyclic DPR system nor the problem of resource fragmentation are considered, the
approaches can not be used to obtain suitable partitioning sets for cyclic DPR. High-
level partitioning of sequential modules for cyclic DPR systems is not directly covered
in existing literature to the best of the authors’ knowledge. However, the partitioning
of sequential processing elements as described in this work is related to the problem of
partitioning sequential number sequences, for which Zobel et al. presented a solution in
[Zob00]. Zobel’s partitioning concept has been adopted to be applicable to a set of PR
resources in a sequential processing chain as presented in [FIIS12] and [FIVS13]. The
analysis is based on the assumption that the number of resources of a PE is approxi-

122

4.2 The Partitioning Problem

mately constant for different synthesis and implementation runs as presented in [IFH12].
Considering this constraint, the contributions of this chapter are:

• The presentation of a partitioning approach to derive a set of DPR modules with
minimized resource variance and memory throughput for cyclic DPR systems.

• The derivation of a low-complexity tree traversal algorithm to efficiently solve the
partitioning problem by exploiting the properties of digital receiver chains.

• A case study for the high-level partitioning of a DAB receiver, which has been
introduced in Chapter 3.

The partitioning method to be proposed does not require full PE implementation knowl-
edge, but can also be applied using resource and throughput estimates. Before describing
the approach in detail, an introduction to the partitioning problem will be given.

4.2 The Partitioning Problem

Let the set of PEs of a sequential processing chain with N elements be defined by

P “ tp1, p2, . . . , pNu.

The elements in P are linearly ordered and appear in ascending order with respect
to their position in the sequential processing chain as defined by the cyclic DPR system
model the previous chapter. The goal is to sub-partition the chain into M different
sequential modules, where 1 ď M ď N , such that the set P is divided into M mutually
disjoint sub-sets Lm,n, each forming a sub-sequence of processing elements

Lm,n “ă pn, pn`1, pn`2, . . . ą, @m “ 1, . . . ,M,

where the set index n is the index of the first PE in the set, and the elements of the
set Lm,n form a DPR module. As

ŤM

m“1 Lm,nm
“ P , all PEs are included in the DPR

module sets. In the following, an example with P “ tp1, p2, p3, p4u PEs and M “ 2 DPR
modules will be provided to better elucidate the partitioning approach. In this case, the
following three valid partitioning sets exist:

L1,1 “ ă p1 ą,L2,2 “ă p2, p3, p4 ą

L1,1 “ ă p1, p2 ą,L2,3 “ă p3, p4 ą

L1,1 “ ă p1, p2, p3 ą,L2,4 “ă p4 ą

(4.1)

Subsequently, let the set Tk contain a sequence of reconfigurable module sub-sets Lm,n,
i.e.

Tk “ tL1,n1
,L2,n2

, . . . ,LM,nM
u,

where the number of valid partitioning sets Tk is defined by K. As shown in the example
in Equation 4.1, the first set in Tk is always L1,1 since n1 “ 1 for the first element in the
set. This means that the first set L1,n1

always contains p1, i.e. the first PE, as the first
element in the set. This leads to the conclusion that the problem of PE chain partitioning
can be interpreted as finding suitable starting indices n2, n3 . . . , nM of the DPR module

123

4 High-Level Receiver Partitioning for Cyclic FPGA Reconfiguration

sets Lm,n in Tk. Since all PEs of the chain can be characterized by a common set of
parameters, e.g. their resource consumption, processing time, output data rate, etc. ,
different chain partitionings lead to different realizations of the DPR modules. This in
turn has an effect on the overall system performance as some realizations might be more,
some might be less efficient given the throughput and area constraints of a cyclic DPR
system.
In the following, an approach for finding suitable partitioning candidates will be de-

rived, reflected by the partition starting indices n2, n3 . . . , nM . Given these candidates,
a decision metric will be defined to obtain a set of DPR modules with minimum resource
variance and minimum output data transfer rate in order to reduce the effects of resource
fragmentation in the DPR partition and to reduce the memory transfer load during DPR
module operation.

Figure 4.1: Binary tree with possible partitioning solutions inside the leafs.

As already stated, the position of the first PE in L1,1 is fixed. Thus, solving the
partitioning problem reduces to finding M ´ 1 indices out of N ´ 1 possible values.
The number of solutions K for finding a suitable set of starting indices n2, n3 . . . , nM is
reflected by the binomial coefficient

K “

ˆ
N ´ 1

M ´ 1

˙
“

pN ´ 1q!

pM ´ 1q!pN ´ Mq!
, N ą M ą 1. (4.2)

Clearly, for N “ M and for M “ 1 the problem is trivial as there exists only a single
solution, i.e. K “ 1. Using exhaustive search reveals all K partitioning sets as follows:
As a first step, the set S “ tL1,n“1 “ă pn“1 ąu, i.e. n “ 1, must be be formed. Then,
subsequently all possible partitioning sets can be generated by applying the operators
extension and composition to the PE sets in the steps n “ 2, . . . , N as defined by Zobel
in [Zob00], where the operator ` is used for composition, which means adding another
element to the current set Lm,nm

in S “ tL1,1, . . . ,Lm´1,nm´1
,Lm,nm

u, and the operator
¨ as extension, which means close the current set Lm,nm

and extend S with the new set
Lm`1,nm`1

“ă pnm`1
ą. This procedure can be visualized by a binary tree of depth

N , where each of the K leafs contain a valid partitioning solution Tk as depicted in
Figure 4.1.

124

4.3 Performance Metrics for DPR Module Sets

The values inside the nodes of the tree reflect the cardinality |S| and the leafs of
the tree reflect the partitioning solutions Tk. To avoid creating a set with less than M

partitions, new composition nodes are not created if M ´ |S| ď N ´ n. If |S| ě M the
creation of extension nodes is omitted created to avoid generating sets with more than
M modules. Partitioning candidates of interest are obtained by comparing all leafs and
selecting a candidate that fits best certain performance metrics. As previously outlined,
the goal is to find a candidate in the leafs, where the resource occupation of the modules
is balanced and the memory throughput is minimal. Performance metrics to find such a
candidate will be derived in the next section.

4.3 Performance Metrics for DPR Module Sets

Before formulating a suitable partitioning metric, it is necessary to discuss the charac-
teristics of a partitioning solution in terms of logic resource balancing and in terms of
memory throughput minimization. Given the observations made in the previous chap-
ters, the performance of a partitioning candidate will be classified by how it fulfills the
following criteria:

(a) Minimum resource variance: As outlined in the previous chapters, it is impor-
tant to minimize the difference in resource consumption among the reconfigurable
modules to reduce the effect of resource fragmentation in the DPR partition and
increase the resource utilization of the FPGA.

(b) Minimum output data throughput: According to the cyclic DPR system model,
reducing the data throughput at the output of the DPR modules leads to a reduction
in memory load. Hence, it is desirable that the accumulated data at the output of
the set of DPR modules is minimum (cf. Table 3.8 in previous chapter). Following
this criterion, a partitioning candidate with reduced memory data transfer load can
be obtained.

Clearly, if the output data rate in the chain decreases or increases from the first PE
to the last PE, an optimal solution satisfying criterion (a) is not very likely to satisfy
criterion (b). Hence, optimizing for both rules results in a compromise solution, and
it is important to formulate an optimization approach where the DPR system designer
has the choice to prefer either the one or the other criterion. Therefore, cost functions
considering FPGA resources and DPR module throughput will be introduced and later
merged to derive a combined partitioning metric to jointly account for (a) and (b).

4.3.1 Minimum Resource Variance Metric

In order to get a suitable metric to account for optimization criterion (a), an error metric
expressing the resource utilization variance of the DPR module sets has to be defined.
The amount of resources of the DPR partition is usually defined in terms of number
of slices rS,DPR, lookup-tables rL,DPR, flip-flops rF,DPR as well as BRAM rB,DPR and
DSP units rD,DPR (cf. [BSSK09]). In relation to the available resources inside the DPR
partition, let the normalized resource occupation of a processing element be reflected by

125

4 High-Level Receiver Partitioning for Cyclic FPGA Reconfiguration

the utilization vector

rpppnq “

ˆ
rS,n

rS,DPR

,
rF,n

rF,DPR

,
rL,n

rL,DPR

,
rB,n

rB,DPR

,
rD,n

rD,DPR

˙
,

where the number of slices of pn is reflected by rS,n, the number of lookup-tables by rL,n,
the amount of flip-flops by rF,n and the number of BRAMs and DSP units is expressed
by rB,n and rD,n. The notation includes a certain redundancy as flip-flops and LUTs are
nested inside the slice resources. This property can subsequently be exploited to obtain
a more fine-grain or more coarse-grain resource partitioning. Clearly, for all processing
elements pn, the entries in the vector rpppnq must not exceed a value of 1 since this would
mean that there are not enough resources inside the reconfigurable partition to carry the
logic of the respective processing element, i.e.

rrpppnqsi ď 1, @ pn P P , i P rpppnq, (4.3)

where r¨si denotes the i-th element of a vector or an ordered set. Using the definition
of the normalized resource occupation vector for a processing element, the normalized
resource occupation of a reconfigurable module can be formulated by

rLpLm,nq “

n`|Lm,n|´1ÿ

k“n

rpppkq,

where | ¨ | denotes the cardinality of the set. The same resource occupation limit as
formulated in Equation 4.3 holds for the resources of a reconfigurable module. This
means that a module is realizable if all resource elements do not exceed a value of 1, i.e.

rrLpLm,nqsi ď 1, @ Lm,n P T , i P rLpLm,nq.

In addition, the mean resource occupation of a set of DPR modules can be defined by

rµ “
1

M

Mÿ

m“1

rLpLm,nq “
1

M

Nÿ

n“1

rpppnq,

which is equal to the area cost definition of Moullec as defined in [Mou11]. The resource
assignment with minimum-variance among the reconfigurable modules is reached if the
partition sets inside Tk satisfy

rLpLm,nq “ rµ, @ Lm,n P Tk, (4.4)

which means that all reconfigurable modules have the same resource utilization, i.e. the
resources of the DPR modules exhibit no variance and the system is optimally balanced
with respect to criterion (a). Finding a set of DPR modules with minimum resource
variance can be accomplished by using the root mean square error function as distance
metric for the reconfigurable modules Lm,n inside a set Tk, such that

ǫrpTkq “

gffe 1

M

Mÿ

i“1

prLprTksiq ´ rµq2. (4.5)

126

4.3 Performance Metrics for DPR Module Sets

Hence, the values of the elements in the vector ǫrpTkq reflect the performance of the
set with respect to criterion (a). Depending on the implementation of the PEs and on
the amount of FPGA resources, some resources such as DSPs or BRAMSs may have
higher or lower importance in the cost function ǫrpTkq. Therefore, a weighting vector

ω “ pωS, ωF, ωL, ωB, ωDq,

is introduced, with the elements ωS, ωF, ωL, ωB and ωD linearly reflecting the importance
of the different FPGA resources during optimization. The scalar product of the normal-
ized weighting vector and the distance metric in Equation 4.5 give an indication for the
accumulated weighted distance by

ǫrwpTkq “
ǫrpTkq ¨ ω

p1, 1, 1, 1, 1q ¨ ω
.

The values of ǫrwpTkq indicate how good or bad criterion (a) is satisfied for a weighted
set of resources. A set Tk̂ can be considered optimal according to criterion (a) if ǫrwpTk̂q is
minimal compared to all other sets. Note that there might exist multiple partitioning sets
with equal values for ǫrwpTkq, i.e. for which criterion (a) is equally satisfied. Generally, if
ǫrwpTkq “ 0 the set has minimum resource variance and is optimum according to criterion
(a).
Next, a cost function to derive suitable partitioning candidates according to criterion

(b) will be described.

4.3.2 Minimum Output Data Throughput Metric

Reducing the accumulated throughput at the output of all DPR modules minimizes the
buffering overhead and the memory transfer load of the DPR system, which is a require-
ment formulated by optimization criterion (b). Let the normalized data throughput at
the output of a processing element be defined as

γpppnq “
γn

γMEM

,

where γn is the data throughput of the n-th PE and γMEM is the data throughput of the
memory interface to the intermediate buffer as described in the previous chapter. Given
that the last PE of a DPR module defines the amount of data that has to be transferred
to the intermediate memory, a throughput function for the m-th DPR module needs to
be defined, reflecting the throughput of the last element in the set Lm,n by

γLpLm,nq “ γpprLm,nsn`|Lm,n|´1q. (4.6)

In relation to the previous definitions, a DPR system can be considered to be realizable
if Equation 4.6 satisfies the maximum throughput condition

γLpLm,nq ď 1, @ Lm,n P Tk.

Since the partitioning goal is minimizing the accumulated throughput inside the DPR
system, it is sufficient to minimize the mean throughput of all DPR modules inside Tk,
defined by

ǫγpTkq “
1

M

Mÿ

i“1

γLprTksiq.

127

4 High-Level Receiver Partitioning for Cyclic FPGA Reconfiguration

Hence, the partitioning set Tk minimizing ǫγpTkq can be referred to as optimum with
respect to to criterion (b). In order to jointly consider criterion (a) and (b), i.e. min-
imum module throughput and minimum FPGA resource variance, a cost function will
be presented in the next section.

4.3.3 Combined Throughput and Variance Minimization Metric

Since minimizing either the functions ǫrwpTkq or ǫγpTkq produces candidates which are
either optimum in the sense of (a) or (b), for joint optimization a linearly-weighted
combination metric will be formulated as

ǫpTk, λq “ λǫγpTkq ` p1 ´ λqǫrwpTkq, (4.7)

where λ ă 0.5 leads to partitioning candidates in favor of resource balancing and where
λ ą 0.5 leads to candidates with minimum data throughput. Hence, minimizing ǫpTk, λq
returns a compromise between throughput minimization and resource balancing. In
general, the best partitionings with respect to (a) and (b) minimize the values for ǫpTk, λq
given the weighting constraints of the designer. Since the cost function is applied to a
finite set of partitioning candidates Tk, there might exist multiple partitioning solutions
with the same metric value.

4.4 A Reduced-Complexity Partitioning Problem Solver

Performing the leaf comparison requires that all partitioning sets of the tree have been
generated. Since the problem is of factorial complexity (cf. Equation 4.2), brute-force
methods might become infeasible in case the problem is not well conditioned as subse-
quently explained.
For a worst-case value of M “ rN{2s the perpendicular foot of Pascal’s triangle points

to the maximum value of Equation 4.2, where r¨s denotes rounding to the nearest integer
towards infinity. In this case, the number of leafs in the partitioning tree in Figure 4.1
can be calculated by

KMAX “
pN ´ 1q!`P

N
2

T
´ 1

˘
! ¨
`
N ´

P
N
2

T˘
!
. (4.8)

Exhaustively calculating and comparing the joint metric values of ǫpTk, λq using Equa-
tion 4.7 for all KMAX solutions might become infeasible since, for example, for a chain
with N “ 50 PEs and M “ 25 desired DPR modules, there are as much as KMAX «
6.3 ¨ 1013 possible partitioning solutions. Given the joint metric formulated the previous
section, it is possible to describe a heuristic algorithm to reduce the search space and to
efficiently obtain a suitable partitioning set for a signal processing chain with many PEs.
Deriving this simplified approach requires the introduction of the following observations
and assumptions:

I. If the data rate at the output of the PEs is monotonically increasing or decreasing
with increasing PE index n, also ǫγp¨q increases or decreases monotonically.

II. If rLp¨q is small in relation to rµ, the resource error ǫrwp¨q is likely to dominate the
joint error function ǫp¨, λq.

128

4.4 A Reduced-Complexity Partitioning Problem Solver

Algorithm 1: Heuristic linear chain partitioning
Data: Set of PEs P

Result: A heuristic partitioning set S P Tk

S “ tL, “ă p1 ąu
startdepth “ 1
mincost = Infinity(1,M)
for m = 1 : M do

for n = startdepth : N do

if numelgreat(rLpLm,nq, rµ, 2) then

if ǫpS, λq ă mincost(1,m) then

mincostp1,mq Ð ǫpS, λq
store Ð S

if m ´ |S| ă N ´ n then

composition(S, pn)
end

else

startdepth “ n

break

end

else

if m ´ |S| ă N ´ n then

composition(S, pn)
end

end

end

if m ď M then

extension(S, pstartdepth´1)
end

end

III. The PEs are assumed to exhibit a moderate variance in terms of FPGA resources.

From these constraints Algorithm 1 can be formulated, which traverses the binary
partitioning tree from top to bottom and in each step discards the node with the higher
cost. The algorithm works as follows: After the initialization of the set S with the first
PE, a composition is performed (e.g. enlarging the current partition) after at least two
resource elements have surpassed their mean values in rµ. If the accumulated resources
cross this threshold, the throughput error ǫγpSq is going to dominate the error function
ǫpS, λq. At this point, the costs of the partition in the current step n are being checked
in accordance to assumption II. If the costs are smaller than the minimal costs seen
so far, the mincost vector is updated and the current configuration is stored before
proceeding to the next step n` 1. In case the actual costs exceed the minimal costs, the
break condition ends the loop and an extension operation with the last PE is performed,
thus creating a new partition, since the previous configuration was the best seen so far.
In conclusion, the two optimization goals stated in Section 4.3 determine the branch
selection in the algorithm:

• Extension is likely to be applied, if the accumulated resources of the current par-
tition is equal or greater than the ideal one, cf. goal (a).

• Composition is likely to be applied, if the accumulated throughput can be reduced,
cf. goal (b).

The branch selection can be modified by adjusting λ, i.e. for λ “ 1, the algorithm
solely optimizes for memory throughput (favor compositions) and for λ “ 0 the algorithm
solely optimizes for weighted resources (favor extensions). Since the output data rate of

129

4 High-Level Receiver Partitioning for Cyclic FPGA Reconfiguration

the PEs in the signal processing chain is likely to decrease with increasing n, the elements
in the mincost vector increase monotonically, cf. observation I. The algorithm terminates
after all PEs have been assigned, with the partitioning candidate being stored in the leaf.
Next, the suitability of the metrics derived in the last section and the performance of the
heuristic algorithm will be evaluated by partitioning the DAB receiver chain as presented
in the previous chapter.

4.5 DAB Decoder Chain Partitioning

In this section the proposed metrics will be used to find a weighted partitioning candidate
for the DAB receiver implementation as presented in Chapter 3. The receiver comprises
of N “ 12 PEs and has been designed for a Xilinx Spartan-6 XC6SLX25 FPGA. The
feedback path from the frequency offset estimator to the correction unit is resolved in
the implementation by using a DAB frame-based processing as previously outlined. The
number of DPR modules have been defined to be M “ 3 and in order to favor slice and
BRAM resources over FFs and LUTs, the resource weighting vector has been defined
to be w “ p10, 1, 1, 5, 1q. Since the memory throughput of the DAB receiver PEs is low
compared to the throughput of the FPGA memory interface, the memory throughput is
preferred over the resource variance reduction by setting λ “ 0.9.

n pn Slices FFs LUTs BRAMs DSP48 γn

Mbit{s

1 Freq. Sync. 127 306 344 0 4 32.768
2 AGC 99 195 148 0 3 32.768
3 Time E.+Sync. 64 86 85 0 0 32.325
4 Freq. Est 291 581 811 2 5 32.325
5 Guard Rem. 7 10 9 0 0 25.941

DPR module m1 588 1178 1397 2 12 25.941

6 FFT 358 1024 625 7 8 25.941
7 DQPSK 37 76 49 2 6 25.941
8 Freq. Deint. 49 29 50 3 0 9.1
9 Bitcut 38 31 46 0 0 4.533

DPR module m2 482 1160 770 12 14 4.533

10 Time Deint. 52 63 71 3 0 4.533
11 Viterbi 713 1946 1415 3 0 0.416
12 Post Process 14 17 4 0 0 0.416

DPR module m3 779 2026 1490 6 0 0.416

Table 4.1: Resources and output data rates of the receiver PEs and accumulated re-
sources of the balanced DPR modules.

Given these optimization parameters, the partitioning solution selected by the heuristic
algorithm is identical to the optimum candidate found by exhaustive search. This is due
to the fact that the parameters of the DAB receiver PEs are well conditioned given the
optimization constraints in Section 4.4. Since the algorithm has no memory, it might
only find a local optimum and optimizing the algorithm for different processing element
chains can be regarded as future work.

130

4.5 DAB Decoder Chain Partitioning

The resource consumption and the output data rate of the different PEs are listed in
Table 4.1 as well as the accumulated resources of the three DPR modules of the optimum
partitioning candidate. The available resources of the Spartan FPGA are included in
the last row of the table. Since from the numbers it is hard to determine in how far
the resources are balanced in relation to the average number of resources, Figure 4.2
illustrates the accumulated resource consumption of the DPR modules by five stacked
graphs for each of the three DPR modules, including a plot of the PE output throughput.
The mean value rµ of the different resource elements is indicated by a blue horizontal
line. The closer the top of the resource stacks approaches this line, the more balanced
the partitioning solution is according to criterion (a). It can be observed from the graph
that the slice and BRAM allocation per module are balanced according to the weighting
vector w.

1 2 3
0

0.13

0.26
Slices per mod.

N
o
rm

.
S
li
ce
s

1 2 3
0

0.04

0.08
FFs per mod.

N
o
rm

.
F
F
s

1 2 3
0

0.1

0.2
LUTs per mod.

N
o
rm

.
L
U
T
s

1 2 3
0

0.15

0.3
BRAMs per mod.

N
o
rm

.
B
R
A
M
s

1 2 3
0

0.3

0.6
DSPs per mod.

N
o
rm

.
D
S
P
s

2 4 6 8 10 12
0

20

M
B
it
/
s

PE output rates

Figure 4.2: Weighted resource partitioning of PEs favoring slices and BRAMs.

In the throughput graph, the output data rates are monotonically decreasing from the
first PE to the last PE in the chain, which reinforces the assumptions made in Section 4.4.
The blue vertical lines reflect the intercept point of the modules in the chain, with their
respective output rate γL. Recall that if λ “ 0 the data throughput per module is
neglected and only the FPGA resources are considered in the partitioning problem. In
this case the guard interval removal stage is allocated to the second module m2 instead
of m1 causing the memory load to increase by approx. 20% (cf. Table 4.1) at the output
of DPR module m1. Although this partitioning solution is marginally better in terms of
resources, the difference in data rate is significant.

4.5.1 Weighting of Single Resource Elements

In this section it will be evaluated how the resource allocation looks like if only one
resource element can be considered in the DAB receiver partitioning process. In this

131

4 High-Level Receiver Partitioning for Cyclic FPGA Reconfiguration

case, it can be shown that the formulated requirement to obtain a weighted partitioning
solution for slices and BRAMs can not be met. For w “ p1, 0, 0, 0, 0q an optimized
partitioning for slices only has been generated. To jointly optimize for throughput,
lambda is again set to λ “ 0.9. For this configuration, the partitioning set depicted in
Figure 4.3 is obtained.

1 2 3
0

0.13

0.26
Slices per mod.

N
o
rm

.
S
li
ce
s

1 2 3
0

0.04

0.08
FFs per mod.

N
o
rm

.
F
F
s

1 2 3
0

0.1

0.2
LUTs per mod.

N
o
rm

.
L
U
T
s

1 2 3
0

0.15

0.3
BRAMs per mod.

N
o
rm

.
B
R
A
M
s

1 2 3
0

0.3

0.6
DSPs per mod.

N
o
rm

.
D
S
P
s

2 4 6 8 10 12
0

20

M
B
it
/
s

PE output rates

Figure 4.3: Non-weighted resource partitioning of PEs favoring slices only.

Regarding an uniform distribution of slices among the DPR modules, the partition-
ing solution in Figure 4.3 shows to be slightly superior to the weighted partitioning in
Figure 4.2. However, the slices-only optimization comes at the downside of a peak in
BRAM occupation in DPR module m2. Thus, this implementation would require 20%
more BRAM resources in the reconfigurable partition as compared to the weighted par-
tition solution, which in comparison requires only 7.2% more slices. By looking at the
graphs it can be observed that the resource distribution is worse than in Figure 4.2 but
still acceptable, i.e. for the DAB receiver example optimizing for slices only would give
a reasonably good partitioning candidate.

For a further evaluation, the weighting vector is defined to be w “ p0, 0, 0, 1, 0q to
generate a partitioning set with a minimum variance in BRAM occupation. The results
of this design choice are outlined in Figure 4.4. The graphs show that the amount of re-
quired BRAMs can be reduced by 25%, while in turn the utilization of all other resources
increased, resulting in a strongly imbalanced resource partitioning. The outlined exam-
ples show that without proper weighting, the resulting partitioning might turn out to be
imbalanced in terms of resources and that using a weighting vector with multi-resource
preference is likely to result in a better partitioning candidate selection.

132

4.6 Summary

1 2 3
0

0.13

0.26
Slices per mod.

N
o
rm

.
S
li
ce
s

1 2 3
0

0.04

0.08
FFs per mod.

N
o
rm

.
F
F
s

1 2 3
0

0.1

0.2
LUTs per mod.

N
o
rm

.
L
U
T
s

1 2 3
0

0.15

0.3
BRAMs per mod.

N
o
rm

.
B
R
A
M
s

1 2 3
0

0.3

0.6
DSPs per mod.

N
o
rm

.
D
S
P
s

2 4 6 8 10 12
0

20

M
B
it
/
s

PE output rates

Figure 4.4: Non-weighted resource partitioning of PEs favoring BRAMs only.

4.6 Summary

The problem of partitioning a sequential chain of processing elements into reconfigurable
modules has been described and a suitable metric to evaluate the quality of the distri-
bution of the resources among a set of DPR modules has been presented. Together
with an adjustable resource weighting vector, which allows the designer to prefer certain
resource elements in the metric calculation, the presented evaluation approach jointly
allows for finding a partitioning candidate with minimal memory throughput. Using the
metrics derived, a heuristic algorithm with linear complexity has been proposed in order
to quickly obtain a partitioning solution. The DAB receiver partitioning case study has
shown that the presented approach has advantages when a weighted set of FPGA re-
sources is considered in the partitioning process. Compared to net-list-based approaches,
the given approach is applicable for high-level analysis early in the DPR system design
phase, given an a priori knowledge of the resources or even PE resource estimates.
The major findings of this thesis are concluded in the next chapter together with an

outlook on future prospects on dynamic partial reconfiguration of FPGAs for digital
broadcasting receivers.

133

5 Conclusion and Outlook

Analyzing the benefits, limitations and possibilities of hardware resource multiplexing for
digital receiver chain implementations using dynamic partial reconfiguration of FPGAs
constitutes the major focus of this work. In this context, the feasibility of adaptive re-
configuration of broadcast receivers using DPR of Xilinx FPGAs has been evaluated by
means of an adaptive FM receiver system implementation, where the adaptation rou-
tines have been included in the static system to autonomously trigger a reconfiguration
of the dynamic partition. Routines and metrics for signal quality estimation have been
elaborated and evaluated for the use inside this adaptive system. It could be shown that
the noise power within the spectral gaps of the FM MPX signal can be evaluated for
signal quality estimation with low computational complexity. Given the output of the
estimation routine, switching thresholds for the FM multiplex component decoders have
been defined in relation to the FM receiver demodulation algorithms. Analyzing the
DPR system components revealed that in certain scenarios a resource reallocation can
reduce the resource consumption of an adaptive FPGA system. The achievable resource
gain increases if the DPR modules exhibit a high variance in resource utilization. Freeing
and reallocating resources to other reconfigurable partitions is possible using hierarchical
partial reconfiguration. The analysis conducted in this work revealed that hierarchical
reconfiguration is promising for implementing resource-economic receiver systems on
FPGAs. However, it could be shown that even with differential reconfiguration hierar-
chical DPR systems can not be realized reliably with existing vendor tools. Hierarchical
reconfiguration using nested area groups has turned out to be not supported either.
However, third party tools exist that leverage hierarchical DPR and make it possible to
exploit the DPR possibilities of the Xilinx FPGA fabric.

The sequential execution of receiver modules using cyclic DPR has been discussed and
proposed as a feasible method to weigh processing time against FPGA resources. The
introduction of a cyclic reconfiguration system model enabled to quantify the trade-offs
between area consumption, execution time and context handling of the DPR modules.
Compromising between DPR system latency and processing frame duration is possible,
if the reconfiguration time can be made arbitrary small in comparison to the DPR mod-
ule execution time. In case the reconfiguration interface is slow, longer frames need to
be processed, increasing the system latency and buffer memory requirements. A feasi-
bility study furthermore outlined the correlation between framing duration and context
handling for a DAB receiver. In order to minimize context write and read operations,
frames of longer duration in relation to the transmission framing of the DAB system
turned out to be preferable. Using AXI FIFOs for processing element communication
simplified the partitioning of the DAB receiver chain processing elements since the AXI
protocol implicitly handles the control-flow among the elements. This allowed using the
same processing elements inside the DPR modules without major modifications. The
implementation of the cyclic DPR receiver system on a Spartan-6 FPGA outperformed
the static implementation in terms of resource usage at the cost of an increased process-

134

ing element clock frequency. However, although reported in literature, DPR could not
be accomplished reliably with the vendor DPR tool flow since the routing of the design
can not be constraint. It is recommended to use third party tools to reliably use DPR
on the Spartan-6 FPGA platform.
Evaluating the feasibility of cyclic DPR receiver systems has shown to be possible even

without full implementation knowledge, as presented by means of a case study for a DVB-
T2 receiver. This allows to gain insights into the feasibility of cyclic DPR systems early in
the design phase of a certain implementation. Partitioning the receiver processing chain
into a set of DPRmodules requires to account for the properties of the cyclic DPR system.
It has been derived that it is desirable to use a set of DPR modules with minimum output
data throughput and minimum variance in resource utilization. For the DAB receiver
system it could be concluded that a weighting of resource elements, such as slices, DSP
units and BRAMs, is necessary to obtain suitable partitioning candidates. Although
solving the partitioning problem is of factorial time complexity, the analysis revealed
that for a chain of receiver processing elements with monotonically decreasing output
throughput and low variance in resource utilization a heuristic partitioning algorithm
with linear time complexity is feasible.
Recapitulating, the results of the preceding chapters have shown that dynamic par-

tial self-reconfiguration provides additional degrees of freedom when optimizing exist-
ing FPGA-based digital broadcasting receiver systems in terms of resource utilization.
Taking advantage of cyclic DPR by partitioning existing receiver implementations into
reconfigurable modules can potentially lead to a reduction in FPGA resources. Reducing
the resource requirements means that smaller FPGAs might provide a sufficient amount
of resources for the task in question, thus reducing the system cost. Severe limitations
arise from the DPR vendor tool support, imposing design constraints to DPR floor-
planning tasks such as signal routing and area allocation. With the development of
new and more versatile tools, future work could potentially include an analysis on how
hierarchical configuration can be used on a fine grain level to share resources between
multiple small DPR partitions. Refining the insights of SNR-adaptive receiver systems
and investigating in how far DPR can be used in bi-directional communication systems
with timing restrictions is considered as another major field of research. Analyzing the
trade-off between the number of DPR modules and resource occupation for cyclic DPR
systems with a larger number of processing elements is a subject that also needs further
investigation.

135

Bibliography

[AK00] P. Andersson and K. Kuchcinski. Performance Oriented Partitioning for
Time-multiplexed FPGAs. In Proceedings of the 26th Euromicro Confer-
ence, volume 1, pages 60 –66 vol.1, 2000. doi:10.1109/EURMIC.2000.

874616.

[BBHN04] B. Blodget, C. Bobda, M. Huebner, and A. Niyonkuru. Partial and
Dynamically Reconfiguration of Xilinx Virtex-II FPGAs. In Jürgen
Becker, Marco Platzner, and Serge Vernalde, editors, Field Programmable
Logic and Application, volume 3203 of Lecture Notes in Computer Sci-
ence, pages 801–810. Springer Berlin Heidelberg, 2004. doi:10.1007/

978-3-540-30117-2_81.

[BKT11] C. Beckhoff, D. Koch, and J. Torresen. Migrating Static Systems to Par-
tially Reconfigurable Systems on Spartan-6 FPGAs. In IEEE Interna-
tional Symposium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), pages 212–219, May 2011. doi:10.1109/IPDPS.
2011.144.

[BLC09] Tobias Becker, Wayne Luk, and Peter Y. K. Cheung. Parametric
Design for Reconfigurable Software-Defined Radio. In Proceedings of
the 5th International Workshop on Reconfigurable Computing: Architec-
tures, Tools and Applications, pages 15–26, March 2009. doi:10.1007/

978-3-642-00641-8_5.

[Boa92] B. Boashash. Estimating and Interpreting the Instantaneous Frequency
of a Signal. II. Algorithms and Applications. Proceedings of the IEEE,
80(4):540–568, April 1992. doi:10.1109/5.135378.

[BSSK09] P. Banerjee, M. Sangtani, and S. Sur-Kolay. Floorplanning for Partial
Reconfiguration in FPGAs. In 22nd International Conference on VLSI
Design, pages 125–130, January 2009. doi:10.1109/VLSI.Design.2009.
36.

[BWF`13] C. Beckhoff, A. Wold, A. Fritzell, D. Koch, and J. Torresen. Building
partial systems with GoAhead. In 23rd International Conference on Field
Programmable Logic and Applications (FPL), pages 1–1, September 2013.
doi:10.1109/FPL.2013.6645634.

[BY08] S. Bayar and A. Yurdakul. Self-reconfiguration on Spartan-III FPGAs
with compressed partial bitstreams via a parallel configuration access port
(cPCAP) core. In Research in Microelectronics and Electronics, 2008.
PRIME 2008. Ph.D., pages 137–140, June 2008. doi:10.1109/RME.2008.
4595744.

136

http://dx.doi.org/10.1109/EURMIC.2000.874616
http://dx.doi.org/10.1109/EURMIC.2000.874616
http://dx.doi.org/10.1007/978-3-540-30117-2_81
http://dx.doi.org/10.1007/978-3-540-30117-2_81
http://dx.doi.org/10.1109/IPDPS.2011.144
http://dx.doi.org/10.1109/IPDPS.2011.144
http://dx.doi.org/10.1007/978-3-642-00641-8_5
http://dx.doi.org/10.1007/978-3-642-00641-8_5
http://dx.doi.org/10.1109/5.135378
http://dx.doi.org/10.1109/VLSI.Design.2009.36
http://dx.doi.org/10.1109/VLSI.Design.2009.36
http://dx.doi.org/10.1109/FPL.2013.6645634
http://dx.doi.org/10.1109/RME.2008.4595744
http://dx.doi.org/10.1109/RME.2008.4595744

Bibliography

[BYT11] S. Bayar, A. Yurdakul, and M. Tukel. A Self-Reconfigurable Plat-
form for General Purpose Image Processing Systems on Low-Cost
Spartan-6 FPGAs. In 6th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1–9, June
2011. doi:10.1109/ReCoSoC.2011.5981513.

[CA11] Xiaoheng Chen and Venkatesh Akella. Exploiting Data Level Parallelism
For Energy Efficient Implementation of LDPC Decoders and DCT on
a FPGA. ACM Trans. Reconfigurable Technol. Syst., 4(4):37:1–37:17,
December 2011. doi:10.1145/2068716.2068723.

[Car22] John R. Carson. Notes on the Theory of Modulation. Proceedings of the
Institute of Radio Engineers, 10(1):57–64, February 1922. doi:10.1109/
JRPROC.1922.219793.

[CKPLM10] Sri Hanuma Chitti, Gaurav Kulkarni, Andreas Popp, and Yannick
Le Moullec. Flexible and Reconfigurable Implementation of Link Adapta-
tion Algorithms. Wireless Personal Communications, 54(1):83–93, 2010.
doi:10.1007/s11277-009-9712-5.

[Cla11] Christopher Claus. Zum Einsatz dynamisch rekonfigurierbarer einge-
betteter Systeme in der Bildverarbeitung. Dissertation, Technische
Universität München, München, 2011. (Accessed May 11 2016).
URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:

91-diss-20110218-1002365-1-2.

[CMS99] D Chang and M Marek-Sadowska. Partitioning Sequential Circuits on
Dynamically Reconfigurable FPGAs. IEEE Transactions on Computers,
48(6):565 –578, June 1999. doi:10.1109/12.773794.

[Col11] Collins English Dictionary. Collins UK, 11th edition, 2011.

[Cyp] Cypress Semiconductor Corporation. Datasheet for EZ-USB FX2LP USB
Microcontroller High-Speed USB Peripheral Controller.

[CZMS07] C. Claus, J. Zeppenfeld, F. Müller, and W. Stechele. Using Partial-Run-
Time Reconfigurable Hardware to accelerate Video Processing in Driver
Assistance System. In Design, Automation Test in Europe (DATE) Con-
ference and Exhibition, pages 1 –6, April 2007. doi:10.1109/DATE.2007.
364642.

[DDHSW01] N. Da Dait, M. Harteneck, C. Sandner, and A. Wiesbauer. Numerical
modeling of PLL jitter and the impact of its non-white spectrum on the
SNR of sampled signals. In Southwest Symposium on Mixed-Signal Design
(SSMSD), pages 38–44, 2001. doi:10.1109/SSMSD.2001.914934.

[DeH96] André DeHon. DPGA Utilization and Application. In Proceedings of the
1996 ACM Fourth International Symposium on Field-programmable Gate
Arrays, FPGA ’96, pages 115–121, New York, NY, USA, 1996. ACM.
doi:10.1145/228370.228387.

137

http://dx.doi.org/10.1109/ReCoSoC.2011.5981513
http://dx.doi.org/10.1145/2068716.2068723
http://dx.doi.org/10.1109/JRPROC.1922.219793
http://dx.doi.org/10.1109/JRPROC.1922.219793
http://dx.doi.org/10.1007/s11277-009-9712-5
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20110218-1002365-1-2
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20110218-1002365-1-2
http://dx.doi.org/10.1109/12.773794
http://dx.doi.org/10.1109/DATE.2007.364642
http://dx.doi.org/10.1109/DATE.2007.364642
http://dx.doi.org/10.1109/SSMSD.2001.914934
http://dx.doi.org/10.1145/228370.228387

Bibliography

[DGRB04] Jean-Philippe Delahaye, Guy Gogniat, Christian Roland, and Pierre
Bomel. Software Radio and Dynamic Reconfiguration on a DSP/FPGA
platform. Frequenz Journal, 58(5-6):152–159, 2004.

[DLU91] Y.F. Dehery, M. Lever, and P. Urcun. A MUSICAM source codec for digi-
tal audio broadcasting and storage. In International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), pages 3605–3608 vol.5,
April 1991. doi:10.1109/ICASSP.1991.151054.

[DPML07] J.-P. Delahaye, J. Palicot, C. Moy, and P. Leray. Partial Reconfiguration
of FPGAs for Dynamical Reconfiguration of a Software Radio Platform.
In 16th IST Mobile and Wireless Communications Summit, pages 1 –5,
July 2007. doi:10.1109/ISTMWC.2007.4299250.

[Dvb] History of Digital Video Broadcasting (DVB). (Accessed May 11 2016).
URL: https://www.dvb.org/about/history.

[EH94] J.G. Eldredge and B.L. Hutchings. RRANN: The Run-time Reconfig-
uration Artificial Neural Network. In Proceedings of the IEEE Custom
Integrated Circuits Conference, pages 77–80, May 1994. doi:10.1109/

CICC.1994.379763.

[ESK03] D. Eilers, H. Steckenbiller, and R. Knorr. Architecture Template with
Dynamic Buffering for Runtime Reconfiguration of Adaptive Embedded
Communication Systems. In Proceedings of IEEE International Confer-
ence on Field-Programmable Technology (FPT), pages 383–386, December
2003. doi:10.1109/FPT.2003.1275782.

[ESL04] M. Eroz, Feng W. Sun, and Lin N. Lee. DVB-S2 low-density-parity-
check-codes with near Shannon limit performance. International Journal
of Satellite Communications and Networking, 22(3), May 2004. doi:10.
1002/sat.787.

[ets06] EN 400 401: Digital Audio Broadcasting (DAB) to mobile, portable
and fixed receivers v1.4.1. European Standard, European Telecommu-
nications Standards Institute (ETSI), January 2006. (Accessed May 11
2016). URL: http://www.etsi.org/deliver/etsi_en/300400_300499/
300401/01.04.01_40/en_300401v010401o.pdf.

[Ets08] EN 302 755: Digital Video Broadcasting (DVB) Second generation fram-
ing structure (DVB-T2) v1.1.1. European Standard, European Telecom-
munications Standards Institute (ETSI), August 2008. (Accessed May 11
2016). URL: http://www.etsi.org/deliver/etsi_en/302300_302399/
302307/01.02.01_60/en_302307v010201p.pdf.

[FIIS12] M. Feilen, A. Iliopoulos, M. Ihmig, and W. Stechele. Partitioning and
Context Switching for a Reconfigurable FPGA-based DAB Receiver. In
Conference on Design & Architectures for Signal & Image Processing
(DASIP), pages 22 –28, October 2012.

138

http://dx.doi.org/10.1109/ICASSP.1991.151054
http://dx.doi.org/10.1109/ISTMWC.2007.4299250
https://www.dvb.org/about/history
http://dx.doi.org/10.1109/CICC.1994.379763
http://dx.doi.org/10.1109/CICC.1994.379763
http://dx.doi.org/10.1109/FPT.2003.1275782
http://dx.doi.org/10.1002/sat.787
http://dx.doi.org/10.1002/sat.787
http://www.etsi.org/deliver/etsi_en/300400_300499/300401/01.04.01_40/en_300401v010401o.pdf
http://www.etsi.org/deliver/etsi_en/300400_300499/300401/01.04.01_40/en_300401v010401o.pdf
http://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf
http://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf

Bibliography

[FISS12] M. Feilen, M. Ihmig, C. Schwarzbauer, and W. Stechele. Efficient DVB-
T2 decoding accelerator design by time-multiplexing FPGA resources.
In 22nd International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 75–82, August 2012. doi:10.1109/FPL.2012.

6339244.

[FIVS13] M. Feilen, A. Iliopoulos, M. Vonbun, and W. Stechele. Weighted par-
titioning of sequential processing chains for dynamically reconfigurable
FPGAS. In 23rd International Conference on Field Programmable Logic
and Applications (FPL), pages 1–8, September 2013. doi:10.1109/FPL.
2013.6645521.

[FIZS11] M. Feilen, M. Ihmig, A. Zahlheimer, and W. Stechele. Real-time signal
processing on low-cost-FPGAs using dynamic partial reconfiguration. In
13th International Symposium on Integrated Circuits (ISIC), pages 110–
113, December 2011. doi:10.1109/ISICir.2011.6131921.

[GK89] J. P. Gray and T. A. Kean. Configurable Hardware: A New Paradigm
for Computation. In Proceedings of the Decennial Caltech Conference on
Advanced Research in VLSI, pages 279–295, Cambridge, MA, USA, 1989.
MIT Press. URL: http://dl.acm.org/citation.cfm?id=90897.90945.

[GMBV14] P. Gupta, S. Murali, J. Balakrishnan, and S. Vishwakarma. Signal quality
estimation and control, November 27 2014. US Patent App. 13/899,868.

[Gna12] Markus Gnadl. A Digital Audio Broadcasting (DAB) Receiver on
Low-Cost Spartan-6 FPGAs. Bachelor’s Thesis, Technische Universität
München (TUM), Lehrstuhl für Integrierte Systeme, February 2012.

[Gra04] T. Grant. International Directory of Company Histories. Number Bd. 64
in Gale virtual reference library. St. James Press, 2004.

[HP11] John C. Hoffman and Marios S. Pattichis. A High-Speed Dynamic Par-
tial Reconfiguration Controller Using Direct Memory Access Through
a Multiport Memory Controller and Overclocking with Active Feed-
back. International Journal of Reconfigurable Computing, 2011:10, 2011.
doi:10.1155/2011/439072.

[IAH08] M. Ihmig, N. Alt, and A. Herkersdorf. Resource-efficient Sequential Ar-
chitecture for FPGA-based DAB Receiver. In Proceedings of the 5th Karl-
sruhe Workshop on Software Radios, pages 101–107, March 2008.

[IAH10] M. Ihmig, N. Alt, and A. Herkersdorf. Implementation and fine-grain
partitioning of a DAB SDR receiver on an FPGA-DSP platform. In Pro-
ceedings of the 6th Karlsruhe Workshop on Software Radios, March 2010.

[IFH12] M. Ihmig, M. Feilen, and A. Herkersdorf. On the Accuracy of sum-based
Logic and Power Estimates in Hardware-accelerated SDR Systems. In
Proceedings of the 6th Karlsruhe Workshop on Software Radios, March
2012.

139

http://dx.doi.org/10.1109/FPL.2012.6339244
http://dx.doi.org/10.1109/FPL.2012.6339244
http://dx.doi.org/10.1109/FPL.2013.6645521
http://dx.doi.org/10.1109/FPL.2013.6645521
http://dx.doi.org/10.1109/ISICir.2011.6131921
http://dl.acm.org/citation.cfm?id=90897.90945
http://dx.doi.org/10.1155/2011/439072

Bibliography

[Ili12] Andreas Iliopoulos. Sequential Execution of DAB Receiver Modules us-
ing DPR on Spartan-6 FPGAs. Master’s thesis, Technische Universität
München (TUM), Lehrstuhl für Integrierte Systeme, September 2012.

[Itu98] ITU-R BS.412-9: Planning standards for terrestrial FM sound broadcast-
ing at VHF. Recommendation, International Telecommunication Union,
December 1998. (Accessed May 11 2016). URL: https://www.itu.int/
rec/R-REC-BS.412/en.

[Itu01a] ITU-R BS.1194-2: System for multiplexing frequency modulation (FM)
sound broadcasts with a sub-carrier data channel having a relatively
large transmission capacity for stationary and mobile reception. Tech-
nical report, International Telecommunication Union, June 2001. (Ac-
cessed May 11 2016). URL: https://www.itu.int/rec/R-REC-BS.

1194-2-199812-I/en.

[Itu01b] ITU-R BS.450-3: Transmission standards for FM sound broadcasting at
VHF. Technical report, International Telecommunication Union, Novem-
ber 2001. (Accessed May 11 2016). URL: https://www.itu.int/rec/
R-REC-BS.450/en.

[itu15] ITU-R V.431-8: Nomenclature of the frequency and wavelength bands
used in telecommunications. Recommendation, International Telecom-
munication Union, June 2015. (Accessed May 11 2016). URL: https:
//www.itu.int/rec/R-REC-V.431/.

[Joh11] Jeff Johnson. List and comparison of FPGA companies, 2011. (Ac-
cessed May 11 2016). URL: http://www.fpgadeveloper.com/2011/07/
list-and-comparison-of-fpga-companies.html.

[JTHT10] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada. A Novel Mechanism
for Effective Hardware Task Preemption in Dynamically Reconfigurable
Systems. In International Conference on Field Programmable Logic and
Applications (FPL), pages 352 –355, September 2010. doi:10.1109/FPL.
2010.76.

[Kam08] K.-D. Kammeyer. Nachrichtenübertragung. B.G. Teubner, Reihe Infor-
mationstechnik, Stuttgart, Deutschland, 4th edition, March 2008.

[KB14] D. Koch and C. Beckhoff. Hierarchical reconfiguration of FPGAs. In 24th
International Conference on Field Programmable Logic and Applications
(FPL), pages 1–8, September 2014. doi:10.1109/FPL.2014.6927491.

[KBT08] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder - A Novel Tool and
Technique to Build Statically and Dynamically Reconfigurable Systems
for FPGAs. In International Conference on Field Programmable Logic
and Applications (FPL), pages 119–124, September 2008. doi:10.1109/
FPL.2008.4629918.

140

https://www.itu.int/rec/R-REC-BS.412/en
https://www.itu.int/rec/R-REC-BS.412/en
https://www.itu.int/rec/R-REC-BS.1194-2-199812-I/en
https://www.itu.int/rec/R-REC-BS.1194-2-199812-I/en
https://www.itu.int/rec/R-REC-BS.450/en
https://www.itu.int/rec/R-REC-BS.450/en
https://www.itu.int/rec/R-REC-V.431/
https://www.itu.int/rec/R-REC-V.431/
http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html
http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html
http://dx.doi.org/10.1109/FPL.2010.76
http://dx.doi.org/10.1109/FPL.2010.76
http://dx.doi.org/10.1109/FPL.2014.6927491
http://dx.doi.org/10.1109/FPL.2008.4629918
http://dx.doi.org/10.1109/FPL.2008.4629918

Bibliography

[KBT10] D. Koch, C. Beckhoff, and J. Tørrison. Advanced partial run-time
reconfiguration on Spartan-6 FPGAs. In International Conference on
Field-Programmable Technology (FPT), pages 361–364, December 2010.
doi:10.1109/FPT.2010.5681426.

[KDHS14] A. Kulkarni, T. Davidson, K. Heyse, and D. Stroobandt. Improving Re-
configuration Speed for Dynamic Circuit Specialization using Placement
Constraints. In International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig), pages 1–6, December 2014. doi:10.1109/

ReConFig.2014.7032534.

[KM99] D. Kopitz and B. Marks. RDS: The Radio Data System. Artech House
mobile communications library. Artech House, 1999.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 3rd edition, 1997.

[KTB`12] Dirk Koch, Jim Torresen, Christian Beckhoff, Daniel Ziener, Christopher
Dennl, Volker Breuer, Jürgen Teich, Michael Feilen, and Walter Stechele.
Partial Reconfiguration on FPGAs in Practice - Tools and Applications.
In ARCS Workshops, pages 1–12, February 2012.

[KTHL07] C. C. Kao, T. C. Tai, Y. Y. Hwang, and Y. T. Lai. A Sequential Circuit
Partitioning Algorithm for Dynamically Reconfigurable FPGAs. In In-
ternational Conference on Communications, Circuits and Systems (ICC-
CAS), pages 1185–1188, July 2007. doi:10.1109/ICCCAS.2007.4348258.

[KTR08] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA Architecture: Sur-
vey and Challenges. Found. Trends Electron. Des. Autom., 2(2):135–
253, February 2008. URL: http://dx.doi.org/10.1561/1000000005,
doi:10.1561/1000000005.

[KVW`10] C. Kocks, A. Viessmann, A. Waadt, C. Spiegel, A. Burnic, G.H. Bruck,
P. Jung, Jaeyoel Kim, YeonJu Lim, and Hyeon Woo Lee. A DVB-T2
receiver realization based on a software-defined radio concept. In 4th
International Symposium on Communications, Control and Signal Pro-
cessing (ISCCSP), pages 1 –4, March 2010. doi:10.1109/ISCCSP.2010.
5463488.

[LBM`06] Patrick Lysaght, Brandon Blodget, Jeff Mason, Jay Young, and Brendan
Bridgford. Invited Paper: Enhanced Architectures, Design Methodolo-
gies and CAD Tools for Dynamic Reconfiguration of Xilinx FPGAs. In
International Conference on Field-programmable Logic and Applications
(FPL), pages 1–6. IEEE, 2006. doi:10.1109/FPL.2006.311188.

[LD94a] Patrick Lysaght and Hugh Dick. Implementation of Adaptive Signal Pro-
cessing Architectures Based On Dynamically Reconfigurable FPGAs. In
Proceedings of European Association for Signal Processing (EUSIPCO),
pages 1871–1874, 1994.

141

http://dx.doi.org/10.1109/FPT.2010.5681426
http://dx.doi.org/10.1109/ReConFig.2014.7032534
http://dx.doi.org/10.1109/ReConFig.2014.7032534
http://dx.doi.org/10.1109/ICCCAS.2007.4348258
http://dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1109/ISCCSP.2010.5463488
http://dx.doi.org/10.1109/ISCCSP.2010.5463488
http://dx.doi.org/10.1109/FPL.2006.311188

Bibliography

[LD94b] Patrick Lysaght and John Dunlop. Dynamic Reconfiguration of FPGAs.
In Selected Papers from the Oxford 1993 International Workshop on
Field Programmable Logic and Applications on More FPGAs, pages 82–
94, Oxford, UK, UK, 1994. Abingdon EE&CS Books. URL: http:

//dl.acm.org/citation.cfm?id=188565.188605.

[LD09] V. Lai and O. Diessel. ICAP-I: A reusable interface for the inter-
nal reconfiguration of Xilinx FPGAs. In International Conference on
Field-Programmable Technology (FPT), pages 357 –360, December 2009.
doi:10.1109/FPT.2009.5377616.

[LFDN09] Jörg Lotze, Suhaib A Fahmy, LE Doyle, and J Noguera. An FPGA-
based Autonomous Adaptive Radio. ACM SIGCOMM Conference, 2009.
(Accessed May 11 2016). URL: http://conferences.sigcomm.org/

sigcomm/2009/demos/sigcomm-pd-2009-final57.pdf.

[LFHLC89] B. Le Floch, R. Halbert-Lassalle, and D. Castelain. Digital sound broad-
casting to mobile receivers. IEEE Transactions on Consumer Electronics,
35(3):493–503, August 1989. doi:10.1109/30.44309.

[LKLJ09] Ming Liu, W. Kuehn, Zhonghai Lu, and A. Jantsch. Run-time Partial
Reconfiguration speed investigation and architectural design space explo-
ration. In International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 498–502, August 2009. doi:10.1109/FPL.2009.
5272463.

[LNJ`11] Meng Li, C.A. Nour, C. Jego, Jianxiao Yang, and C. Douillard. A shuffled
iterative bit-interleaved coded modulation receiver for the DVB-T2 stan-
dard: Design, implementation and FPGA prototyping. In IEEE Work-
shop on Signal Processing Systems (SiPS), pages 55 –60, October 2011.
doi:10.1109/SiPS.2011.6088949.

[MF10] Walter Stechele Michael Feilen, Matthias Ihmig. Concept and Design of an
SNR-adaptive DRM+/FM Receiver using Dynamic Partial Reconfigura-
tion (DPR) of FPGAs. In 11th Workshop Digital Broadcasting, Erlangen,
Germany, September 2010.

[MMT`08] P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. Di Ciano,
J.-D. Legat, D. Aulagnier, C. Gamrat, R. Liberati, V. La Barba, P. Cuve-
lier, B. Rousseau, and P. Gelineau. An Evaluation of Dynamic Partial Re-
configuration for Signal and Image Processing in Professional Electronics
Applications. EURASIP Journal on Embedded Systems, 2008:1–11, 2008.
doi:http://dx.doi.org/10.1155/2008/367860.

[MNH`11a] J. Meyer, J. Noguera, M. Hübner, L. Braun, O. Sander, R.M. Gil, R. Stew-
art, and J. Becker. Fast Start-up for Spartan-6 FPGAs using Dynamic
Partial Reconfiguration. In Design, Automation and Test in Europe
(DATE) Conference, pages 1–6, March 2011. doi:10.1109/DATE.2011.

5763244.

142

http://dl.acm.org/citation.cfm?id=188565.188605
http://dl.acm.org/citation.cfm?id=188565.188605
http://dx.doi.org/10.1109/FPT.2009.5377616
http://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final57.pdf
http://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final57.pdf
http://dx.doi.org/10.1109/30.44309
http://dx.doi.org/10.1109/FPL.2009.5272463
http://dx.doi.org/10.1109/FPL.2009.5272463
http://dx.doi.org/10.1109/SiPS.2011.6088949
http://dx.doi.org/http://dx.doi.org/10.1155/2008/367860
http://dx.doi.org/10.1109/DATE.2011.5763244
http://dx.doi.org/10.1109/DATE.2011.5763244

Bibliography

[MNH`11b] J. Meyer, J. Noguera, M. Hübner, L. Braun, O. Sander, R.M. Gil, R. Stew-
art, and J. Becker. Fast Start-up for Spartan-6 FPGAs using Dynamic
Partial Reconfiguration. In Design, Automation Test in Europe (DATE)
Conference and Exhibition, pages 1 –6, March 2011.

[Mou11] Y. Le Moullec. A First Step Towards High-Level Cost Models for the
Implementation of SDRs on Multiprocessing Reconfigurable Systems. In
14th International Symposium on Wireless Personal Multimedia Commu-
nications (WPMC), pages 1–5, October 2011.

[Mü11] Daniel Münch. Receive signal dependent adaption of an FPGA-based
software-defined radio receiver system. Master’s thesis, Technische Uni-
versität München (TUM), Lehrstuhl für Integrierte Systeme, September
2011.

[PB00] D.R. Pauluzzi and N.C. Beaulieu. A comparison of SNR estimation tech-
niques for the AWGN channel. IEEE Transactions on Communications,
48(10):1681–1691, October 2000. doi:10.1109/26.871393.

[PLMK09] A. Popp, Y. Le Moullec, and P. Koch. Fast Feasibility Estimation
of Reconfigurable Architectures. In 4th IEEE Conference on Indus-
trial Electronics and Applications (ICIEA), pages 117 –122, May 2009.
doi:10.1109/ICIEA.2009.5138181.

[PM06] John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 4th edition, 2006.

[Pro01] John G. Proakis. Digital Communications. Electrical Engineering Series.
McGraw-Hill, 2001.

[PS95] R. Andersson P. Scomazzon. A high bit-rate data broadcasting sys-
tem using the terrestrial FM radio network. Technical review, European
Broadcasting Union (EBU), May 1995. (Accessed May 11 2016). URL:
https://tech.ebu.ch/docs/techreview/trev_264-scomazzon.pdf.

[Rds] History of the Radio Data System (RDS). (Accessed May 11 2016). URL:
http://www.rds.org.uk/2010/RDS-History.htm.

[Rhe13] Sven Rheindt. Dynamisch Partielle Rekonfiguration auf Altera 28 nm
FPGAs. Bachelor’s Thesis, Technische Universität München (TUM),
Lehrstuhl für Integrierte Systeme, July 2013.

[Ric63] S.O. Rice. Noise in FM Receivers. In New York M. Rosenblatt(ed.) Wiley,
editor, Symposium of Time Series Analysis Proceedings, 1963.

[Ros89] Werner Rosenkranz. Digitale Systeme und optimierte Algorithmen zum
Empfang frequenzmodulierter Signale. Habilitationsschrift, Universität
Erlangen-Nürnberg, 1989.

143

http://dx.doi.org/10.1109/26.871393
http://dx.doi.org/10.1109/ICIEA.2009.5138181
https://tech.ebu.ch/docs/techreview/trev_264-scomazzon.pdf
http://www.rds.org.uk/2010/RDS-History.htm

Bibliography

[RPN09] M. Rice, M. Padilla, and B. Nelson. On FM Demodulators in Software
Defined Radios Using FPGAs. In IEEE Military Communications Confer-
ence (MILCOM), pages 1–7, October 2009. doi:10.1109/MILCOM.2009.
5379759.

[Sch11] Philipp Schmidbauer. Rekonfiguration von Spartan 6 FPGAs. Bachelor’s
thesis, Technische Universität München (TUM), Lehrstuhl für Integrierte
Systeme, September 2011.

[SFFM99] M. Speth, S.A. Fechtel, G. Fock, and H. Meyr. Optimum Receiver Design
for Wireless Broad-Band Systems Using OFDM. IEEE Transactions on
Communications, 47(11):1668–1677, November 1999. doi:10.1109/26.

803501.

[SFHB12] Nimish Sane, John Ford, Andrew I. Harris, and Shuvra S. Bhattacharyya.
Prototyping scalable digital signal processing systems for radio astronomy
using dataflow models. Radio Science Journal, 2012. arXiv:arXiv/1204.
4696, doi:10.1029/2011RS004924.

[SFS12] L. Stolz, M. Feilen, and W. Stechele. An Optimized Software-defined
Digital Audio Broadcasting (DAB) Receiver for x86 Platforms. In 7th
Karlsruhe Workshop on Software Radios (WSR), Karlsruhe, Germany,
March 2012.

[Smi08] Julius O. Smith. Introduction to Digital Filters: With Audio Applications.
Music signal processing series. W3K, October 2008.

[SS08] Felix Schad and Andreas Steil. Laboruntersuchung über Versorgungskri-
terien für eine UKW-FM Monoabstrahlung. Technical Report, Fach-
hochschule Kaiserslautern im Auftrag der Landeszentrale für Medien und
Kommunikation Rheinland-Pfalz (LMK), September 2008.

[Str10] Stefan Strasser. Entwicklung eines FM-Empfängers für die Xilinx Spartan-
3A FPGA-Plattform. Master’s thesis, Technische Universität München
(TUM), Lehrstuhl für Integrierte Systeme, September 2010.

[TCEB95] Edward Tau, Derrick Chen, Ian Eslick, and Jeremy Brown. A First Gen-
eration DPGA Implementation. In In Proceedings of the Third Canadian
Workshop on Field-Programmable Devices, pages 138–143, 1995.

[TCJW97] S Trimberger, D Carberry, A Johnson, and J Wong. A Time-multiplexed
FPGA. In Proceedings of the 5th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 22 –28, April 1997.
doi:10.1109/FPGA.1997.624601.

[Trp91] Z. Trpovski. Reliability testing method for RDS based on the PI code
statistics. IEEE Transactions on Consumer Electronics, 37(4):884–891,
November 1991. doi:10.1109/30.106954.

144

http://dx.doi.org/10.1109/MILCOM.2009.5379759
http://dx.doi.org/10.1109/MILCOM.2009.5379759
http://dx.doi.org/10.1109/26.803501
http://dx.doi.org/10.1109/26.803501
http://arxiv.org/abs/arXiv/1204.4696
http://arxiv.org/abs/arXiv/1204.4696
http://dx.doi.org/10.1029/2011RS004924
http://dx.doi.org/10.1109/FPGA.1997.624601
http://dx.doi.org/10.1109/30.106954

Bibliography

[VJS95] J. Villasenor, C. Jones, and B. Schoner. Video Communications Using
Rapidly Reconfigurable Hardware. IEEE Transactions on Circuits and
Systems for Video Technology, 5(6):565–567, Dec 1995. doi:10.1109/

76.475899.

[Wau91] T.C. Waugh. Field programmable gate array key to reconfigurable ar-
ray outperforming supercomputers. In Proceedings of the IEEE Cus-
tom Integrated Circuits Conference, pages 6.6/1–6.6/4, May 1991. doi:

10.1109/CICC.1991.164051.

[WH95] M.J. Wirthlin and B.L. Hutchings. A Dynamic Instruction Set Computer.
In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, pages 99–107, April 1995. doi:10.1109/FPGA.1995.477415.

[WH97] M. J. Wirthlin and B. L. Hutchings. Improving Functional Density
Through Run-Time Constant Propagation. In In ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, pages 86–92,
1997.

[WM06] M. Werner and O. Mildenberger. Nachrichten-Übertragungstechnik:
Analoge und digitale Verfahren mit modernen Anwendungen. Studium
Technik. Vieweg+Teubner Verlag, 2006.

[XGXZCY13] Chun Xian Gao, Yong Xiu Zhang, En Cheng, and Fei Yuan. Investigation
of SNR Estimation Algorithms of FM Signal for the Underwater Acoustic
Channel. Journal of Computers, 8(8):2042–2050, August 2013. doi:10.

4304/jcp.8.8.2042-2050.

[Xil] Inc. Xilinx. DVB-C2 LDPC/BCH Decoder IP Core. (Ac-
cessed May 11 2016). URL: http://www.xilinx.com/products/

intellectual-property/1-411yls.html.

[Xil07] Difference-Based Partial Reconfiguration v2.0. XAPP290, Xilinx, Inc.,
December 2007. (Accessed May 11 2016). URL: http://www.xilinx.
com/support/documentation/application_notes/xapp290.pdf.

[Xil08] Correcting Single-Event Upsets in Virtex-4 Platform FPGA Configura-
tion Memory v1.0. XAPP988, Xilinx, Inc., March 2008. (Accessed
May 11 2016). URL: http://application-notes.digchip.com/077/
77-43209.pdf.

[Xil09a] Power Consumption at 40 and 45 nm v1.0. WP298, Xilinx, Inc., April
2009. (Accessed May 11 2016). URL: http://www.xilinx.com/support/
documentation/white_papers/wp298.pdf.

[Xil09b] Virtex-4 FPGA Configuration User Guide v1.11. UG071, Xilinx, Inc.,
June 2009. (Accessed May 11 2016). URL: http://www.xilinx.com/
support/documentation/user_guides/ug071.pdf.

145

http://dx.doi.org/10.1109/76.475899
http://dx.doi.org/10.1109/76.475899
http://dx.doi.org/10.1109/CICC.1991.164051
http://dx.doi.org/10.1109/CICC.1991.164051
http://dx.doi.org/10.1109/FPGA.1995.477415
http://dx.doi.org/10.4304/jcp.8.8.2042-2050
http://dx.doi.org/10.4304/jcp.8.8.2042-2050
http://www.xilinx.com/products/intellectual-property/1-411yls.html
http://www.xilinx.com/products/intellectual-property/1-411yls.html
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://application-notes.digchip.com/077/77-43209.pdf
http://application-notes.digchip.com/077/77-43209.pdf
http://www.xilinx.com/support/documentation/white_papers/wp298.pdf
http://www.xilinx.com/support/documentation/white_papers/wp298.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

Bibliography

[Xil10] Spartan-6 FPGA Memory Controller v2.3. UG388, Xilinx, Inc., August
2010. (Accessed May 11 2016). URL: http://www.xilinx.com/support/
documentation/user_guides/ug388.pdf.

[Xil11a] LogiCORE IP XPS HWICAP v5.01a. DS586, Xilinx, Inc., June
2011. (Accessed May 11 2016). URL: http://www.xilinx.com/

support/documentation/ip_documentation/xps_hwicap/v5_01_a/

xps_hwicap.pdf.

[Xil11b] ML505/ML506/ML507 Evaluation Platform v3.1.2. UG347, Xilinx, Inc.,
May 2011. (Accessed May 11 2016). URL: http://www.xilinx.com/
support/documentation/boards_and_kits/ug347.pdf.

[Xil11c] Spartan-3 Generation FPGA User Guide v1.8. UG331, Xilinx, Inc., June
2011. (Accessed May 11 2016). URL: http://www.xilinx.com/support/
documentation/user_guides/ug331.pdf.

[Xil11d] Xilinx LogiCORE IP AXI HWICAP v2.0 Data Sheet. DS817,
Xilinx, Inc., June 2011. (Accessed May 11 2016). URL: http:

//www.xilinx.com/support/documentation/ip_documentation/axi_

hwicap/v2_00_a/ds817_axi_hwicap.pdf.

[Xil12a] LogiCORE IP Fast Fourier Transform v8.0 Data Sheet. DS808, Xilinx,
Inc., July 2012. (Accessed May 11 2016). URL: http://www.xilinx.
com/support/documentation/ip_documentation/ds808_xfft.pdf.

[Xil12b] LogiCORE IP Viterbi Decoder v8.0 Data Sheet. PG027, Xil-
inx, Inc., January 2012. (Accessed May 11 2016). URL: http:

//www.xilinx.com/support/documentation/ip_documentation/

viterbi/v8_0/pg027_viterbi_decoder.pdf.

[Xil12c] Partial Reconfiguration User Guide v14.1. UG702, Xilinx, Inc., May
2012. (Accessed May 11 2016). URL: http://www.xilinx.com/support/
documentation/sw_manuals/xilinx14_1/ug702.pdf.

[Xil12d] Virtex-5 FPGA Configuration User Guide v3.11. UG191, Xilinx, Inc.,
October 2012. (Accessed May 11 2016). URL: http://www.xilinx.com/
support/documentation/user_guides/ug191.pdf.

[Xil12e] Virtex-5 FPGA User Guide v5.4. UG190, Xilinx, Inc., March 2012.
(Accessed May 11 2016). URL: http://www.xilinx.com/support/

documentation/user_guides/ug190.pdf.

[Xil14] Vivado Design Suite User Guide: Partial Reconfiguration v2014.4.
UG909, Xilinx, Inc., November 2014. (Accessed May 11 2016).
URL: http://www.xilinx.com/support/documentation/sw_manuals/

xilinx2014_4/ug909-vivado-partial-reconfiguration.pdf.

[Xil15a] 7 Series FPGAs Configuration v1.10. UG470, Xilinx, Inc., June 2015.
(Accessed May 11 2016). URL: http://www.xilinx.com/support/

documentation/user_guides/ug470_7Series_Config.pdf.

146

http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap/v5_01_a/xps_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap/v5_01_a/xps_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap/v5_01_a/xps_hwicap.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_00_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_00_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_00_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf
http://www.xilinx.com/support/documentation/ip_documentation/viterbi/v8_0/pg027_viterbi_decoder.pdf
http://www.xilinx.com/support/documentation/ip_documentation/viterbi/v8_0/pg027_viterbi_decoder.pdf
http://www.xilinx.com/support/documentation/ip_documentation/viterbi/v8_0/pg027_viterbi_decoder.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug909-vivado-partial-reconfiguration.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

Bibliography

[Xil15b] Virtex-6 FPGA Configuration v3.9. UG360, Xilinx, Inc., November
2015. (Accessed May 11 2016). URL: http://www.xilinx.com/support/
documentation/user_guides/ug360.pdf.

[Xil15c] Xilinx Spartan-6 FPGA Configuration User Guide v2.8. UG380, Xil-
inx, Inc., November 2015. (Accessed May 11 2016). URL: http:

//www.xilinx.com/support/documentation/user_guides/ug380.pdf.

[XSSK10] Haifeng Xiao, Y.Q. Shi, Wei Su, and J. Kosinski. An Investigation
of Non-Data-Aided SNR Estimation Techniques for Analog Modulation
Signals. In IEEE Sarnoff Symposium, pages 1–5, April 2010. doi:

10.1109/SARNOF.2010.5469706.

[Zob00] Zobel, Justin and W. Dart, Philip. Partitioning Number Sequences into
Optimal Subsequences. In Journal of Research and Practice in Informa-
tion Technology, volume 32, pages 121–129, May 2000.

[ZTE] ZTEX GmbH. USB-FPGA-Module 1.11c with Spartan-6 XC6SLX25.
(Accessed May 11 2016). URL: http://www.ztex.de/usb-fpga-1/

usb-fpga-1.11.d.html.

147

http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://dx.doi.org/10.1109/SARNOF.2010.5469706
http://dx.doi.org/10.1109/SARNOF.2010.5469706
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.d.html
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.d.html

List of Personal Publications

[FIIS12] M. Feilen, A. Iliopoulos, M. Ihmig, and W. Stechele. Partitioning and context switching for
a reconfigurable FPGA-based DAB receiver. In Conference on Design and Architectures for
Signal and Image Processing (DASIP), pages 1–8, October 2012.

[FIS10] M. Feilen, M. Ihmig, and W. Stechele. Concept and Design of an SNR-adaptive DRM+/FM
Receiver using Dynamic Partial Reconfiguration (DPR) of FPGAs. In 11th Workshop Digital
Broadcasting, Erlangen, Germany, September 2010.

[FISS12] M. Feilen, M. Ihmig, C. Schwarzbauer, and W. Stechele. Efficient DVB-T2 decoding
accelerator design by time-multiplexing FPGA resources. In 22nd International Confer-
ence on Field Programmable Logic and Applications (FPL), pages 75–82, August 2012.
doi:10.1109/FPL.2012.6339244.

[FIVS13] M. Feilen, A. Iliopoulos, M. Vonbun, and W. Stechele. Weighted partitioning of sequential
processing chains for dynamically reconfigurable FPGAS. In 23rd International Conference
on Field Programmable Logic and Applications (FPL), pages 1–8, September 2013. doi:

10.1109/FPL.2013.6645521.

[FIZS11] M. Feilen, M. Ihmig, A. Zahlheimer, and W. Stechele. Real-time signal processing on low-
cost-FPGAs using dynamic partial reconfiguration. In 13th International Symposium on
Integrated Circuits (ISIC), pages 110–113, December 2011. doi:10.1109/ISICir.2011.

6131921.

[FSHS11] M. Feilen, L. Stolz, C. Hausl, and W. Stechele. Improving the performance of Digital Radio
Mondiale Plus (DRM+) by LDPC channel coding. In IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), pages 1–5, June 2011. doi:

10.1109/BMSB.2011.5954939.

[IFH12a] M. Ihmig, M. Feilen, and A. Herkersdorf. Analytical Design Space Exploration Based on
Statistically Refined Runtime and Logic Estimation for Software Defined Radios. In 15th
Euromicro Conference on Digital System Design (DSD), pages 445–452, September 2012.
doi:10.1109/DSD.2012.23.

[IFH12b] M. Ihmig, M. Feilen, and A. Herkersdorf. On the Accuracy of sum-based Logic and Power
Estimates in hardware-accelerated SDR systems. In 7th Karlsruhe Workshop on Software
Radios (WSR), ”Karlsruhe, Germany”, March 2012.

[KTB`12] D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer, J. Teich, M. Feilen,
and W. Stechele. Partial reconfiguration on FPGAs in practice; Tools and applications. In
ARCS Workshops (ARCS), pages 1–12, February 2012.

[SFS12] L. Stolz, M. Feilen, and W. Stechele. ”An Optimized Software-defined Digital Audio Broad-
casting (DAB) Receiver for x86 Platforms”. In ”7th Karlsruhe Workshop on Software Radios
(WSR)”, ”Karlsruhe, Germany”, March 2012.

[VWF`13] M. Vonbun, S. Wallentowitz, M. Feilen, W. Stechele, and A. Herkersdorf. Evaluation of
hop count advantages of network-coded 2D-mesh NoCs. In 23rd International Workshop
on Power and Timing Modeling, Optimization and Simulation (PATMOS), pages 134–141,
September 2013. doi:10.1109/PATMOS.2013.6662166.

148

http://dx.doi.org/10.1109/FPL.2012.6339244
http://dx.doi.org/10.1109/FPL.2013.6645521
http://dx.doi.org/10.1109/FPL.2013.6645521
http://dx.doi.org/10.1109/ISICir.2011.6131921
http://dx.doi.org/10.1109/ISICir.2011.6131921
http://dx.doi.org/10.1109/BMSB.2011.5954939
http://dx.doi.org/10.1109/BMSB.2011.5954939
http://dx.doi.org/10.1109/DSD.2012.23
http://dx.doi.org/10.1109/PATMOS.2013.6662166

List of Abbreviations

AC97 Audio Codec 97
ADC analog-to-digital converter
AES advanced encryption standard
AGC automatic gain control
AMBA Advanced Microcontroller Bus Architecture
ASIC application-specific integrated circuit
AWGN additive white Gaussian noise
AXI advanced extensible interface bus

BCH Bose-Chaudhuri-Hocquenghem
BER bit error rate
BPI byte peripheral interface
BRAM block random access memory

CIF common interleaved frame
CLB configurable logic block
CNR carrier-to-noise ratio
CPP configuration packet processor
CRC cyclic redundancy checksum

DAB digital audio broadcasting
DAQ data acquisition
DCM digital clock manager
DDR-RAM double data rate random-access memory
DDS direct digital synthesis
DEBPSK differentially-encoded binary phase-shift keying
DFT discrete Fourier transform
DMA direct memory access
DPGA dynamically programmable gate array
DPLL digital phase-locked loop
DPR dynamic partial reconfiguration
DQPSK differential quadrature phase-shift keying
DSP digital signal processing
DVB-T terrestrial digital video broadcasting

EAPR early access partial reconfiguration
EEPROM electrically erasable programmable read-only memory
EPROM erasable programmable read-only memory
ETSI European Telecommunications Standards Institute

149

FDR frame data register
FEC forward error correction
FF flip-flop
FFT fast Fourier transform
FIC fast information channel
FIFO first-in first-out buffer
FIR finite impulse response
FM frequency modulation
FPGA field-programmable gate array
FSM finite-state machine

GPIO general purpose input and output

HE-AAC high-efficiency advanced audio coding
HF high frequency

I/O input and output
ICAP internal configuration access port
ID integrate and dump
IEC International Electrotechnical Commission
IIR infinite impulse response
IOB I/O Block
IP intellectual property
ITU International Telecommunication Union

JTAG Joint Test Action Group

LDPC low-density parity check code
LLR log-likelihood ratio
LUT lookup table

MAC multiply and accumulate
MCB memory controller block
MIG memory interface generator
MPX multiplex
MSB most significant bit
MSC main service channel
MUX multiplex

NCD native circuit description
NGC netlist file with constraint information

OFDM orthogonal frequency division multiplexing

PAD program associated data
PCM pulse-code modulation
PE processing element

PLB processor local bus
PLL phase-locked loop
PLP physical layer pipe
PRBS pseudo-random binary sequence
PRCB partial reconfiguration control block
PSD power spectral density
PSK phase-shift keying
PSM programmable switching matrices

QAM quadrature amplitude modulation

RDS radio data system
RF radio frequency
RMSE root mean-square error

SDR software-defined radio
SDRAM synchronous dynamic random access memory
SelectMAP selectable microprocessor access port
SINAD signal-to-noise and distortion ratio
SNR signal-to-noise ratio
SOS second-order filter sections
SPI serial peripheral interface
SRAM static random-access memory

TCL tool command language

UCF user constraint file
UEP unequal error protection
USB universal serial bus

VHDL very high speed integrated circuit hardware description language
VHF very high frequency

XDL Xilinx design language

	Introduction
	Field-Programmable Gate Arrays
	Dynamic Partial Self-Reconfiguration of FPGAs
	Difference-Based DPR System Design Flow
	Partition-Based DPR System Design Flow

	Digital Broadcasting Receivers
	Selected Standards
	Receiver Design and Properties

	Scope of this Work
	Structure of this Work

	FPGA Self-Reconfiguration for Adaptive Radio Receivers
	Related-Work and Contribution
	FM Sound Broadcasting
	A modularized FPGA-based FM Receiver
	Receiver Modules
	Synthesis and Hardware Setup

	An MPX-based SNR Estimator for FM Radio
	Estimator Requirements and Restrictions
	FM Demodulation in Presence of Noise
	MPX-Based Noise Power Estimator Design
	Hardware Implementation
	SNR-Related Reconfiguration Conditions

	An SNR-Adaptive FM Receiver using Partial Reconfiguration of FPGAs
	Single-Island Design
	Multi-Island Design

	Resource-Efficient Concurrent Receivers using DPR
	Motivation
	Proposed System
	Resource-Shared Dual-Decoder Case Study

	Summary

	Cyclic FPGA Reconfiguration for Sequential Processing of Receiver Modules
	Related-Work and Contribution
	System Model
	Cyclic Reconfiguration Flow
	Module Throughput and Data Framing
	Hardware Model

	Cyclic DPR for DAB Receivers - Part I: Feasibility Analysis
	Resource Utilization and Dominating Processing Elements
	Framing and Context Lifespans
	Receiver Partitioning
	Memory Throughput and Execution Time
	Real-Time Constraints and Latency

	Cyclic DPR for DAB Receivers - Part II: Hardware Implementation
	Static Environment of DPR System
	DPR Simulation and Bitstream Generation Flow
	Resource Utilization and Comparison
	Cyclic DPR Receiver Memory Requirements

	Feasibility Analysis for a DVB-T2 Baseband Decoder using Cyclic DPR
	System Architecture
	Real-Time Constraints
	Feasibility Analysis
	Memory Constraints

	Summary

	High-Level Receiver Partitioning for Cyclic FPGA Reconfiguration
	Related-Work and Contribution
	The Partitioning Problem
	Performance Metrics for DPR Module Sets
	Minimum Resource Variance Metric
	Minimum Output Data Throughput Metric
	Combined Throughput and Variance Minimization Metric

	A Reduced-Complexity Partitioning Problem Solver
	DAB Decoder Chain Partitioning
	Weighting of Single Resource Elements

	Summary

	Conclusion and Outlook

