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Abstract

Thanks to the rapid development of brain-computer interfaces (BCIs), users can control

and communicate with external devices without performing a single muscle movement.

BCIs allow this by detecting the control and communication signals directly at their

source, i.e. the brain. This renders BCIs highly applicable in different domains and of

special importance to users with physical impairments. However, despite the great progress

made to date, one should not expect BCIs to replace keyboards in the near future due to

several factors. Firstly, the process of decoding brain activity remains error-prone due to

the presence of noise and nonstationarity in the measured brain activity. Secondly, the

bandwidth and bit rate of current BCIs compare poorly to conventional user interfaces.

Furthermore, immersive robotic embodiment applications, which are the driving force

behind this work, pose additional challenges to BCIs due to the varying time scales in which

robots operate. To circumvent the current limitations, efforts were made firstly to improve

the accuracy and reliability of the detection of the brain signals used in BCIs. On this

account, we have focused on the detection of steady-state visual evoked potentials (SSVEPs)

and proposed a new detection method that slightly outperforms state-of-the-art competing

methods. Given the stereo-vision requirements of immersive applications, we have also

explored and compared different stimuli presentation methods. Additionally, we have

tackled the problem of detecting interaction error-related potentials due to their possible

integration within BCI systems. Since reliable classification of these potentials typically

requires long training sessions, special focus has been laid upon the classifier transferability

problem. Application-specific improvements were also discussed for immersive robotic

embodiment systems, where contextual and adaptive BCIs were proposed as a way to

overcome the bandwidth limitations of current BCIs. Recognizing the importance of user

intention recognition for effective interface self-adaptations, we have focused on developing

a user-agnostic Bayesian framework to track and infer hidden user target goals within the

context of navigation. A variety of experiments with human subjects were conducted to

evaluate and numerically validate the proposed methodologies and algorithms.
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1 Introduction

1.1 Background and Motivation

Brain-computer interfaces (BCIs) are direct communication and control channels between

the brain and artificial devices like computers, prosthetic limbs or robots. The directness

here refers to the fact that BCIs bypass the natural neural (outside the brain) and muscular

pathways [1] which are required for all other kinds of human-human and human-machine

interaction.

Due to different social, economic and scientific driving forces, BCIs have drawn the

interest of a wide spectrum of scientists since its inception in 1970’s by Vidal [2]. Most

importantly, due to its directness, BCIs have a great potential use in assistive technology

(AT) and rehabilitation for people with physical disabilities [3, 4]. Interest in AT, on the

other hand, is driven by the emergence of ageing societies worldwide, and the social and

economic implications this has in the future. The continuously increasing global population

has been experiencing unprecedented shifts with respect to its age distribution throughout

the past decades. According to estimates of the United Nations, the number of older

persons has tripled throughout the past 50 years and is expected to more than triple in

the next 50 years [5]. This will lead to a great imbalance between the number of people in

need of health care due to age-related physical impairments, and the number of available

caregivers. AT lends itself to counteract this foreseenable imbalance and, at the same time,

it is expected to result in direct and indirect economic benefits [6]. In this regard, BCIs

play an enabling role, especially when it comes to patients with locked-in syndrome and

Amyotrophic Lateral Sclerosis (ALS) among others. Furthermore, BCIs have a restorative

function as they can be combined with conventional therapy for rehabilitation in stroke

people [7]. Additionally, according to different predictions, BCI-based gaming will probably

be the first mass market of non-medical BCIs [8] and, albeit in its infancy, some promising

examples already exist [9]. The field of BCIs is also driven by scientific enthusiasm and

curiosity. Thanks to the integration of BCIs and assistive and immersive technologies, many

questions like body ownership [10] and mind-brain dualism [11] are currently addressed in

a systematic way.

Typically in BCIs, the users’ brain signals are decoded into machine actions using a

mapping that is known to both the users and the devices they control or communicate with.

Due to its non-invasiveness, portability and relatively low cost, the Electroencephalography

(EEG) technique is the most common way of measuring the brain activity in BCIs, and

therefore we primarily discuss EEG-based BCIs throughout this work. One can also

differentiate between two major categories of BCIs. Firstly, passive BCIs make use of

spontaneous brain signals without demanding active user participation or voluntary mental

effort. These include affective BCIs and workload monitoring systems [12]. On the other

hand, active BCIs require user engagement in performing some sort of mental activity

2



1.1 Background and Motivation

or another, e.g. by attending to a specific stimulus among others or imagining a limb

movement. For their relevance to communication and control applications, active BCIs are

the main concern of this work.

From the continuous stream of EEG data, active BCIs make use of particular tem-

poral and spectral patterns that occur in time about precisely timed events and at well

localized brain sites. These include, but are not limited to, P300, steady-state visually

evoked potentials (SSVEPs), error-related potentials (ErrPs), and event-related synchro-

nization/desynchronization (ERS/ERD). SSVEPs are natural responses to repetitive visual

stimulation patterns, whereby e.g. when the retina is excited by a flickering light in the

range 4− 100 Hz [13], the observed brain activity over the visual cortex is typically charac-

terized by a power increase at the same and higher harmonics of the driving frequency of the

stimulus. While presented with concurrent stimuli with different flickering rates, users may

choose to attend to one of them and thereby actively convey to the system their action of

choice. The P300 signal, on the other hand, is elicited in the brain around 300 ms following

rare stimuli presented randomly intermixed with more frequent standard stimuli. BCIs

based on P300 often present, highlight or intensify all possible user commands in a random

sequential order and users, similar to the SSVEP-based BCIs, are required to attend to the

command they intend to choose. Error-related potentials (ErrPs) spontaneously appear

time-locked to feedback presentations that indicate committed or observed errors. For

ErrPs to be evoked, users need to be attentive when the feedback is presented. ERD/ERS

refer to the case when events induce a reduction or an increase in the synchrony of the

underlying brain activity in specific frequency bands [14]. To use ERD/ERS for control

and communication purposes in BCIs, users need to learn by themselves a strategy how to

modulate their brain signals, e.g. by imagining movements of different parts of the body.

Being observable under different conditions and with a certain level of repeatability and

being characterized with relatively high signal-to-noise ratio (SNR), the aforementioned

EEG patterns lend themselves relatively well to the decoding process. Therefore, they

have been integrated within BCI applications spanning a wide spectrum of conventional

human-machine interaction. These include, but are not limited to, controlling powered

wheelchairs [15], telepresence robots [16], prosthetic limbs [17], gaming [9], web browsers [18]

and spelling applications [19, 20]. Recently there has been an increasing interest, including

this work, in using BCIs for physical embodiment systems and control of robotic avatars [21–

23]. Such technology is beneficial to people with disabilities and healthy people alike,

enabling them to be present in remote environments, and engage in physical interaction.

Fig. 1.1 shows an overview of a typical BCI-based immersive physical embodiment system,

highlighting the main components of state-of-the-art BCIs. The data acquisition step is

commonly achieved with the EEG technique, but other methods were used as well [24, 25].

The signal processing step aims at improving the quality of the brain signals, by filtering

out what is considered as noise, where the definition of noise varies according to the

situation. The feature extraction and the classification steps are tightly connected, as the

former step aims at providing the best features that can be used for reliable and robust

classification. Stimulation (in active BCIs) and feedback (in general) are presented often

through the visual modality, but again, different modalities can be and were frequently

used, e.g. proprioceptive, auditory or even direct cortical stimulation.
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1 Introduction
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Data
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Signal
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Stereoscopic video stream

Brain Signals

Brain-computer interface

Figure 1.1: General overview of a BCI-based physical embodiment system. At the heart of
the system is the BCI main modules typically found in almost all BCI systems.
The device side here represents a robot avatar but can be replaced with any other
external device, e.g. a wheelchair or prosthetic limb.

1.2 Problem Definitions, Challenges and Possible

Remedies

Typically, the human user in immersive physical embodiment systems receives a continuous

3D stereoscopic video stream from the ego-perspective of his/her robot avatar, which he/she

views through a head-mounted display (HMD), as depicted in Fig. 1.1. The locality of the

robot is not relevant here, but we assume that the robot resides in a remote environment.

BCI visual stimulation hereby is provided overlaid on the video stream and users selectively

attend to one of the available commands. Ultimately, the goal is to enable users to interact

with objects and other humans in the remote environment through intuitive and fluent

BCI-based interaction, so that they act in the remote environment as if they were there, and

move the robot’s body as if it were theirs. This indeed requires a complex transformation

matrix of the afferent and efferent pathways in the nervous system of the human user.

The fact that BCIs do not require body movements at the user side allows e.g. to explore

integrating multiple afferents in a congruent way to the robotic movements perceived

through the visual modality. This is believed to be essential in order to embody an external

object [26].

There are yet some limiting factors that make the realization of this objective a highly

challenging task. These limitations are common to all BCI applications, but are more

pronounced for robotic embodiment applications due to the varying time scales in which

they, similar to own-body control, operate.

Firstly, decoding of brain signals is prone to errors due to artifacts and spontaneous

background EEG which can be measured alongside the signals of interest. This “lost in

translation” problem [11] has been addressed in the literature in many different ways,

that literally investigated all aspects of the BCI pipeline, from the data acquisition to the
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classification step. In the acquisition step, there is a continuous effort to come up with novel

neuroimaging techniques that overcome the limited temporal and/or spatial resolution of the

techniques currently available in the repertoire. In the signal processing step, novel methods

are sought aiming at more powerful separation of the signals of interest from noise and

other artifacts. Among these methods, spatial filters have proved to be powerful in many

different BCI systems. On the other hand, the feature selection module highly benefits from

advances in the field of neuroscience and findings that better identify the neural correlates of

different cognitive functions. Such findings might guide the feature selection process in the

temporal, spectral and spatial domains. The reliability and robustness of the classification

step is highly dependent on the steps that precede it in the pipeline. Classification is done

typically in a supervised fashion where a set of representative examples is obtained per

subject from training sessions, and used to learn the discrimination boundaries between

the different classes under consideration. Sometimes, as it is the case for interaction ErrPs

classification, the required training sessions last for long time, and small changes in the

experimental task typically require recording the lengthy training sessions anew. Classifier

transferability is therefore highly desirable. On this account, there have been great efforts

tackling classifier transferability across tasks and subjects and over time.

Secondly, the bandwidth and bit rate of BCIs are generally beyond the requirements

of fluent interaction and is still far beyond than that of other classical user interfaces like

keyboards and joysticks. This is partially due to the imperfect decoding of brain signals,

but mainly due to limitations in the number of commands available for interaction, and

the relatively long time required to issue a single command. What essentially contributes

to the relatively poor temporal resolution of BCIs, is the trial averaging step which is

often required to enhance the SNR, e.g. as in P300-based BCIs, and involves repeating the

presentation of the different stimuli multiple times.

Thirdly, there is a great discrepancy between the temporal resolution and the degrees

of freedom (DoFs) of the user interface and that of the robotic system, which is equipped

with manipulation and locomotion capabilities. This implies a similar discrepancy between

what the robot is able to do, and what the interface is able to mediate.

Taking uncertainty in user commands into consideration is therefore necessary to arrive

at reasonable trade-offs between speed and accuracy of interaction. Adaptive BCIs, on

the other hand, offer a way to overcome the limitations on the bit rate and the number

of commands available for interaction. Additionally, adequate levels of robot autonomy

are required to bridge the gap between the DoFs/temporal resolution of the robot avatar

and the user interface, so that delayed user commands do not block the robot avatar

from responding quickly to the rapid environmental changes in the remote environment.

Controlling for the possible autonomy levels, that range from fully manual to goal-oriented

or fully autonomous control, further allows for multilevel communication channels between

the user and his/her robot avatar, with varying time scales. Together, these methods can

push the limits of current BCI systems by making the best use of available contextual

information, from the user, environment and history of interaction.
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1.3 Organization and Main Contributions

This thesis deals with the problem of designing fluent and intuitive EEG-based BCI systems

for immersive physical embodiment systems. In a general sense, BCIs mediate between

the user (intentions) and the devices they communicate with or control (actions). It is

this synergy between the intentions and actions and vice versa, from which we expect the

fluency of interaction to emerge. Given the interdisciplinary nature of BCIs and their

applications, we tried to approach the interaction problem from within different modules

in its pipeline. Different methods and algorithms were developed to this end, and were

evaluated and empirically validated with a series of experiments and studies with human

subjects. All these studies are part of a larger project, which is approved by the Ethics

Committee of the Faculty of Medicine of the Technical University of Munich (TUM).

The remaining of this thesis is organized as follows. Chapter 2 introduces the funda-

mentals and related topics required to understand the thesis. Chapters 3 and 4 address

the problem of detecting EEG patterns typically used in BCIs aiming at reducing error

rates and the implications of these errors. Chapter 5 presents adaptive, contextual and

application-specific BCIs to overcome the bandwidth limitations of current BCIs, where a

special focus is laid upon navigation tasks in robotic embodiment systems. Finally, this

thesis concludes in chapter 6 with a summary of the main results in the core chapters and

an outlook onto the future of BCIs and BCI-based robotic embodiment systems. The main

contributions are outlined below.

Chapter 3 provides a genuine theoretical analysis to the foundations of the state-of-the-

art detection methods of SSVEPs and the spatial filtering step involved in all of them.

By considering the canonical correlation analysis (CCA) as a basis for this analysis, it is

shown how these methods relate to each other and how they are essentially variants of

the CCA. Empirical analysis shows that in low SNR regimes, most of these methods fail

to provide reliable estimates as they ignore the presence of noise and interferences from

background EEG activity, especially from the alpha brain waves, which might overlap

with the driving frequencies of the different stimuli. The minimum energy combination

(MEC), on the other hand, estimates the signal and noise powers from the spatially filtered

signals, and therefore can handle different SNR regimes. Spatial filtering hereby involves a

step of dimensionality reduction that is performed with discarding 90% of the noise power,

where noise is defined here as the projection of the EEG signals onto the null space of the

assumed SSVEP signals. Though this dimensionality reduction has proved to be effective,

the criterion, on which it is based, seems somehow artificial. Based on this analysis, a

new detection method is proposed, namely CVARS. The new method combines the power

of the canonical variates and that of the autoregressive spectral analysis in estimating

the signal and noise power levels, respectively. When evaluated with real EEG data in

an unsupervised fashion, CVARS is shown to slightly outperform other state-of-the-art

methods. We also show the tight relation between the standard procedures in the CVARS

and MEC methods, and why the new method would be favored over MEC. Finally, we

show that CVARS, when used in a supervised fashion, is able to provide reliable, accurate

and rapid detection of SSVEPs, regardless of the SNR level in the raw EEG signals. On

a parallel vein, comparative evaluation of different stimuli presentation/viewing methods

shows that visual stimulation through HMDs is effective, and indeed results in higher
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accuracies compared to monitors. Results also show that binocular stimuli viewing results

in either binocular summation or inhibition, according to whether the stimulation is done

with flickers that are completely in-phase or anti-phase, respectively. To our knowledge,

the latter result has not been shown before.

Chapter 4 deals with the interaction error-related potentials (interaction ErrPs) and

their classification. The importance of interaction ErrPs to BCIs stems from their potential

use as a validation step for the decoding results obtained with other BCI paradigms.

As classification of interaction ErrPs typically requires long training sessions to collect

representative examples of EEG epochs that correspond to correct and incorrect trials, the

problem of classifier transferability is examined in detail. Hereby, it is mainly discussed

whether there are invariant features of interaction ErrPs and the consequences these

invariants, if any, might have for their classification. Possible invariants are examined with

respect to: (1) human mental processes that are required to assess interface actions (2)

time (3) subjects (4) the way the continuous data is pre-processed. The three different

experiments, designed in order to answer these questions, are presented. Results thereof

show that interaction ErrPs are quite invariant with respect to (2) and (3) and exhibit high

variability with respect to (1) and (4). These results translate directly to whether a trained

linear discriminant analysis (LDA) classifier from one condition can be potentially used with

other subjects, in other times, or for other tasks, and whether ErrPs obtained with slightly

different processing pipelines can be compared with each other. Prior research on ErrPs

have partially tackled some of these issues at separate occasions, which helped to formulate

first hypotheses and guided the design of the three interfaces/experiments reported in this

chapter. With this work, the aim is to ground irrelevant factors in the experimental design

and in the preprocessing step so that concrete conclusions can be drawn with respect to

the different sources of invariance and variability under consideration. A new task for

P300 interaction is further proposed, which simulates adaptive BCIs in the sense that the

interface elements dynamically change. Additionally, results from the analysis of interaction

ErrPs, suggest that the novel inplace feedback presentation strategy, introduced with one

of the experiments, is expected to circumvent the identified transferability problem among

tasks as the mental processes needed to assess interface actions as correct or incorrect

should be the same regardless of the nature of the underlying application. However, such

claim needs to be verified with further experiments.

Chapter 5 addresses the specifics of robotic embodiment applications with emphasis

on navigation tasks and proposes interface adaptations as one way, and perhaps the only

way, out of the bandwidth bottleneck of current BCIs. Hereby, it is argued that in order

for adaptive BCIs to be of any benefit, they should be able to reason about hidden user

intentions, so that interface initiatives can be done in line with what the user has in mind. In

particular, the problem of user intention recognition within the context of avatar navigation

is treated in this chapter. Navigation is assumed to take place in structured environments

with known maps and predefined and enumerable set of goal locations, whereas interaction

between the robot avatar and the user is mediated with discrete interfaces, including

SSVEP-based BCIs, and is limited to incremental commands that determine the direction

of the robot’s rotation or translation. The robot is assumed additionally to operate in

the collision avoidance mode. To this end, a novel recursive Bayesian update rule is

formulated so that it continuously tracks and infers users’ end goals from user commands,
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information about their gaze direction, and the relevant history of interaction (i.e. from

the moment the robot starts to recede away from one of the defined goals). The output of

the intention recognition module comes in the form of a belief vector, that sorts all goals

according to how probable they are given the previously observed evidence. The intention

recognition module additionally provides a measure of prospective confidence in its beliefs

on the basis of the non-uniformness of these beliefs. A new metric is proposed to this end.

The novelty of the Bayesian approach stems from the novel intuitive heuristics used in

modeling user commands, user gaze and history of interaction. These heuristics are based

on behavioral patterns observed in the general population during task execution, and thus

the Bayesian inference system can be used in a plug-and-play fashion with the general

population. Moreover, the proposed system allows to asynchronously respond to arriving

evidence from different source (i.e. user commands and user gaze). Direct and indirect

measures are adopted as performance metrics of the resulting Bayesian model. Direct

measures reflect the accuracy of the inferred belief vectors, whereas indirect measures can

be obtained only by making use of the belief vector in one way or another. To this end,

we developed a simple probabilistic shared control scheme that builds upon the belief and

the confidence of the intention recognition module, and silently modulates the magnitude

of the translational and rotational steps. The number of commands needed to finish

specific navigation tasks therefore is used as an indirect measure of the efficiency of the

intention recognition module. This chapter additionally details the empirical evaluation of

the intention recognition system with experiments with human subjects. To our knowledge,

this the first time these experiments are done in BCI-based immersive physical embodiment

settings. Most recruited subjects were able to complete the assigned tasks. Experimental

results demonstrate the ability of the user-agnostic Bayesian intention recognition to infer

the hidden user goals after a number of interactions. Additionally, the integration of the

output of the intention recognition into shared control is shown to result in less user effort,

measured as the number of commands required to accomplish the assigned tasks, indirectly

proving the efficiency of the inference system. Several complementary implementation

details guaranteed task completion.

Finally, chapter 6 summarizes the merits of the thesis and highlights future directions of

possible improvements.
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Brain-computer interfaces bypass the natural muscular and neural pathways distributed

over the human body by extracting useful control and communication information directly

from the brain signals and directing this information towards external and artificial devices,

e.g. prosthetic limbs. As has been shown in Fig. 1.1, BCIs (including the ones that will be

encountered in this work) typically consist of data acquisition, processing, feature extraction,

classification and stimulation modules. The following sections try to shed some light at

each of these modules, and at other foundations necessary to understand this thesis. The

limitations and the DoFs inherent in current EEG-based BCIs will be highlighted where

appropriate.

This chapter proceeds as follows. Sec. 2.1 introduces the different neuroimaging tech-

niques used in the data acquisition module and highlights, in particular, the fundamentals of

electroencephalography (EEG) technique and the nature of the neural activity it measures.

Sec. 2.2 outlines the main temporal and spectral patterns found in EEG signals. Sec. 2.3

provides a general overview of the signal processing methods that are typically used to

enhance the SNR of these patterns. In Sec. 2.4, feature extraction and classification methods

used in the thesis are presented. A brief description of popular types of BCI is provided

in Sec. 2.5. The stimulation module is briefly described in Sec. 2.6 with emphasis on the

visual stimulation modality and the visual neural pathways. A summary of this chapter is

provided in Sec. 2.7.

2.1 Neuroimaging Data Acquisition

The data acquisition is the first step in any BCI and concerns itself with providing some sort

of measure of the brain neural activity. There are several, direct and indirect, techniques

that are typically used to this end. Direct methods either measure the electric field produced

by this activity as in Electroencephalography (EEG) or the produced magnetic field as in

Magnetoencephalography (MEG). On the other hand, indirect methods build on the premise

that neural activity in the brain is accompanied by chemical and metabolic activity that can

be measured e.g. with positron emission tomography (PET), functional magnetic resonance

imaging (fMRI), functional near-infrared spectroscopy (fNIRS) or single photon emission

computed tomography (SPECT), just to mention some. Each of these methods comes along

with a unique set of advantages and disadvantages. Due to its absolute noninvasiveness,

superior temporal resolution, mobility and relatively low cost, scalp EEG is the mostly

used technique in BCIs and in monitoring brain activity in general [27]. For the same

reasons, EEG-based BCIs will be the main focus of this work. Sec. 2.1.1 provides a general

introduction to the neural activity in the brain, and Sec. 2.1.2 introduces the specific aspects

of this activity that can be measured with EEG. Standards for EEG electrode placement

are introduced in Sec. 2.1.3.
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Figure 2.1: The structure of a typical neuron and its synaptic connections with adjacent neurons.
Neurons vary in size and in structure, e.g. some neurons lack the dendrites or the
myelin shealth.

2.1.1 Neural Activity in the Human Brain

Most of the brain functions, like memory, motor control, or supervision of glandular secretion,

just to mention some, are carried out by the neurons and their complex interconnections,

i.e. neural networks. Around 85 billion neurons are found in the human brain [28] immersed

in a fluid known as the interstitial fluid. Neurons are typically made of a cell body (soma),

dendrites and an axon, all enclosed by the cell membrane that separates the interiors of

the cell from the outside world. The cell body is composed of a nucleus and other typical

cellular metabolic machinery. Dendrites are the receiving terminals of neurons, and often

form a forked array of tree-shaped branches extending from the cell body. The axon, on the

other side, is a tapering cylindrical projection that joins to the cell body at a cone-shaped

elevation called the axon hillock [29]. Fig. 2.1 depicts the structure of a typical neuron.

The different neurons communicate with each other through two types of special junctions,

referred to as electrical and chemical synapses. Electrical synapses are faster than their

chemical counterpart as they facilitate direct ion flow between neighboring neurons in both

directions. They are however a distinct minority [30]. On the other hand, the flow of

electrical nerve impulses in chemical synapses is strictly unidirectional and requires the

release of special chemical neurotransmitters from the presynaptic neuron (i.e. the sending

neuron) into the interstitial fluid that separates it from the postsynaptic neuron (i.e. the

receiving neuron). The released neurotransmitters are received by the postsynaptic neurons

through specialized receptors.

Neurons, similar to other cells in the human body, maintain a specific potential difference
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across their membranes, often called the membrane potential 1. In resting state, the value of

the membrane potential is typically around -70 mV. Deviations of the membrane potential

from its resting level is the source of all electrical neural activity. Such deviations are

triggered by internal (e.g. blood pressure or activity of other neurons) or external stimuli

(e.g. touch or light). When such stimuli bring the membrane potential at the axon hillock

to a level that is larger than the firing threshold (typically -55 mV), a nerve impulse or

action potential (AP) is fired and propagates downstream across the axon towards the axon

terminals and from there to the postsynaptic cells (i.e. downstream neurons, muscular

or glandular cells). An AP lasts for a few milliseconds only. Should the stimulus not

be strong enough to bring the membrane potential to a level that surpasses the firing

threshold, an AP does not form, and the neuron returns shortly back to its resting state.

Similarly, an AP does not fire when the incoming stimuli make the membrane potential

more negative (i.e. hyperpolarization). With respect to its effect on the postsynaptic AP, a

neurotransmitter can be inhibitory (i.e. leading to hyperpolarization) or excitatory (i.e.

brings the membrane potential towards the firing threshold). The resulting membrane

potential at the postsynaptic neuron for the two cases are respectively called the inhibitory

postsynaptic potential (IPSP) and excitatory postsynaptic potential (EPSP). A postsynaptic

neuron might be subjected to multiple IPSPs and EPSPs, in which case, the net postsynaptic

potential determines whether an AP is going to be initiated or not.

2.1.2 Electroencephalography (EEG)

Electric field potentials recorded from multiple electrodes placed at different locations on the

scalp is called scalp EEG. When electrodes are surgically implanted under the skull (but not

within the brain) the technique is called intracranial EEG (iEEG) or electrocorticography

(ECoG) [31]. When electrodes are placed inside the brain, the recording is referred to as

local field potentials (LFPs). Magnetoencephalography (MEG) is closely related to EEG,

and alternatively measures the weak magnetic field produced by the underlying neural

activity using superconducting sensors placed at short distances around the head, and

often such setup is done inside a magnetically shielded room, rendering MEG of inferior

portability and higher cost compared to EEG.

Typically, large populations of spatially aligned neurons with temporally overlapping

activity (not necessarily initiating APs) are required in order for EEG and MEG to be

observable at the recording sites [32, 33]. As argued in [34, 35], EEG (and MEG) mainly

reflects the activity of IPSPs and EPSPs rather than the stronger action potentials. This is

due to their longer duration which allows for their superposition to take place compared to

the briefly lasting APs. The net activity of neurons is often modeled as current dipoles [36].

This way, fluctuations in EEG and MEG can be thought of as manifestations of changes in

the magnitude, position and orientation of these dipoles. Source localization concerns itself

with reconstructing these dipoles from the observed potentials or magnetic field. A major

difference between EEG and MEG is that EEG is sensitive to neural sources of arbitrary

orientations but mostly sensitive to activity oriented perpendicular to the surface of the

head, whereas MEG is mainly sensitive to tangential sources [37]. The presence of such

1The membrane potential results from concentration of potassium (K−) and chloride (Cl−) ions inside
the cell and the concentration of sodium (Na+) and calcium ions (Ca+2) outside.
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tangential and radial sources in the head results from the folding of the cerebral cortex.

Cortical pyramidal cells in the cerebral cortex are believed to be the main contributors to

the measured scalp EEG. These neurons, making up around 70% of the neocortex [38],

have elongated apical dendrites that are aligned perpendicular to the scalp [35].

Due to the remoteness of the recording sites in scalp EEG from the sites of the underlying

brain activity, neural currents need to pass through the surrounding tissue and through

different mediums e.g. cranial meninges, skull and scalp, with different conductivities and

complex geometries [39]. Consequently, the recorded EEG activity is a spatially smoothed

version of the underlying source activity as these mediums act mostly as spatial filters.

This is often referred to as the volume conduction of the head.

2.1.3 EEG Electrode Placement

In order to reduce measurement variability in repeated EEG recordings on different times

and with different subjects, EEG electrodes are typically placed over the scalp according to

the international 10-20 system. Hereby, measurement sites are defined with respect to each

other and relative to four anatomical references, i.e. the nasion, inion, left pre-auricular

point (LPA), and right pre-auricular point (RPA). The distance between the nasion and

inion defines the total posterior-interior distance, and the distance between LPA and RPA

defines the total right-left distance. The distance between adjacent electrodes is set to either

10% or 20% of the total posterior-anterior distance or the right-left distance, and hence the

10-20 name of the standard. Recording sites are typically identified with a combination

of letters and numbers, that are derived from the different lobes and sides of the cerebral

cortex that underly them. Frontal, parietal, temporal and occipital sites thereby identified

with the letters “F”, “P”, “T” and “O” respectively. Frontal pole and central electrodes are

identified with the letter “C” and the letter combination “Fp”. Left and right hemisphere

sites are given respectively odd and even numbers, whereas midline sites are appended with

the letter “z”.

There are 21 sites defined with the 10-20 system in total. Since this is not large enough

for most purposes, extensions to the system are available such that extra electrodes are

introduced between the already defined ones and are identified accordingly. For instance,

sites that lie between frontal and central sites are identified with the letter combination

“FC” and those that lie in between parietal and occipital sites are identified with “PO”.

Fig. 2.2 shows the distribution of the electrodes in the extended 10-20 standard (sometimes

referred to as the 10-10 standard). Electrode placement throughout this work is done

according to the defined sites in this system. State-of-the-art commercial EEG acquisition

systems often come with elastic EEG caps where recording sites are accurately marked.

Often, electrical activity at each site is measured with respect to one or more reference

electrodes. Additionally, a ground electrode is used for common mode rejection in the

differential amplifiers used in the acquisition apparatus [40].
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electrode is placed at the right earlobe throughout this work and the ground
electrode at Fpz. Illustration modified from original by Marius ’t Hart licensed
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2.2 Patterns in the EEG Signals

Scalp EEG signals can be fully represented either in the time or the frequency domain,

where each representation can also be fully reconstructed from the other. In different

BCI applications, however, one representation or the other might be more convenient for

analyzing the EEG patterns under consideration. The following subsections outline the

main spectral and temporal patterns in EEG signals.

2.2.1 EEG Patterns in the Time Domain

EEG data in the time domain is characterized by continuous fluctuations that instanta-

neously reflect the underlying brain activity. These fluctuations lie normally in the range

[−100, 100] µV as they unfold over time [35]. Due to the high complexity of interpreting

continuous data, and attributing them to the underlying source activity, EEG is primarily

investigated in controlled experiments about precisely timed events, that can be paced

externally (e.g. presentation of auditory, tactile or visual stimuli) or internally (e.g. mental

thought or activation of muscles). In the latter case, however, the time of the event onset

can be revealed only in an indirect way (e.g. with EMG).

Reproducible brain activity observed in EEG about the onset of specific experimental

events is referred to as event-related potentials (ERPs). The amplitude of typical ERPs

ranges from 1 to 20 µV [41], which is clearly below the noise level. Noise in EEG signals can

be of encephalic origin (e.g. cerebral background activity) and non-encephalic sources (e.g.

movement of the eye or the head). During experiments, non-encephalic noise can be reduced

by restricting subject movements, but these cannot be completely eliminated. A standard

post-experiment noise reduction practice in ERP research is to average all epochs extracted

about the events of interest (after manually or automatically rejecting artifact-contaminated

epochs). This leaves ERPs reflecting mainly time-and-phase-locked brain activity to the

onset of events under consideration. Averaging epochs per experimental condition and

across trials and groups (i.e. different subjects) is typically referred to as grand averaging.

Traditionally, ERPs were referred to as evoked potentials since it was believed that they

were primarily evoked by the presentation of stimuli. The neutral term currently used,

that is ERPs, reflects the fact that these potentials might as well arise from the cognitive,

affective and motor demands of the situation [35].

Observed ERP peaks, i.e. local minima and maxima, should be carefully distinguished

from the underlying cortical and subcortical activity that is associated with particular

neural or psychological processes, referred to as components [42]. More on this in Sec. 2.3.

ERP components are often differentiated and named according to their polarity, latency,

duration and spatial distribution.

The following presents some of the commonly encountered ERPs and their component(s),

and some of the experimental conditions in which they are typically observed. The interested

reader might refer to [42] for more details.

• P300 is a positive deflection that is typically observed in oddball experimental

paradigms around 300 ms following infrequent and irregular target stimuli presented

intermixed with other standard and frequent nontarget stimuli. P300 is mostly
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visible at the parietal and central electrodes and its peak amplitude was found to be

negatively correlated with the frequency of the target stimuli. In three-stimuli experi-

mental paradigms (target, nontarget and distractor stimuli), it is often differentiated

between two subcomponents of P300, namely the frontally distributed P3a and the

centroparietal P3b. Active attention to stimuli is required for P300 to be elicited.

• The Mismatch Negativity (MMN) is typically observed in oddball paradigm exper-

iments after an auditory (or somatosensory) stimulus that deviates from repeated

standard stimuli. The deviant stimulus might differ in terms of its frequency, duration,

intensity or locus of origin from the standard stimulus [42]. MMN is characterized

with a negativity that spans the post-stimulus time range from 100 ms to 250 ms

and is largest at central midline sites. MMN can be elicited even when subjects are

instructed to pay no attention to the stimuli.

• N400 and P600 are language-related ERPs, where N400 appears in reading tasks as

a response to contextually inappropriate words and P600 appears after contextually

correct but physically deviant words (e.g. for words shown with larger font than other

words) [42].

• Visual-evoked potentials (VEPs) are responses to brief visual stimulation e.g. by

a flash of light or pattern reversal. For instance, a brief stimulation with flashing

light gives rise to several components that vary in their locus and latency. Short-

latency components appear mostly at periocular sites, the midrange components

appear mostly at the vertex (Cz) and parietal sites (e.g. P3), and the long-latency

components appear in the vertex as a peak around 50-70 ms (C1), a positive peak

around 100 ms (P100), a negative peak around 130 ms (N130) and another negative

peak at about 200 ms (N200) [42]. These components can be written as C1-P100-N130-

N200 pattern. Similarly, brief pattern reversal (e.g. checkerboard pattern reversal

without luminance change) gives rise to a N70-P100-N135 pattern that appears mostly

at the occipital sites referenced to the anterior scalp [42, 43]. Furthermore, recordings

from experiments where stimulation was performed within individual hemifields, a

reversal is observed such that the ipsilateral occipital sites showed NPN pattern

where the contralateral sites showed a PNP pattern [42]. These VEPs are often

referred to as transient VEPs or TVEPs. On the other hand, when flashing or pattern

reversal stimulation is performed for an extended period of time and with a high

rate, the TVEPs will overlap as a manifestation of the overlap in the activity of the

underlying neural circuitry. This gives rise to what is often referred to as steady-state

VEPs or SSVEPs. Chapter 3 provides in-detail description of the SSVEPs and their

detection methods. Furhtermore, motion-onset VEPs (mVEPs) are characterized

with P1-N2-P2 pattern and appear as a response to visual motion.

• Error-related potentials (ErrPs) is a family of ERPs that appear in human EEG

time-locked to the occurrence of errors committed by the subjects themselves, or by

other humans or interfaces. Due to the relevance of ErrPs to BCIs as a potential

validation step, chapter 4 discusses this kind of ERPs in details.
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• Anticipation potentials. In ERP research, one comes across three special ERPs

characterized by negative slow waves and are typically linked to anticipation. These

are: the Bereitschaftspotential (BP), the contingent negative variation (CNV) and

the stimulus-preceding negativity (SPN). BP and CNV are sometimes considered

as response-related potentials [44]. BP or the readiness potential can be observed

mainly prior to voluntary and self-paced movements. Usually, one can differentiate

between an early slow negative wave or early BP (2000 to 1500 ms pre-movement)

and a steeper negative-going wave or late BP (400 to 500 ms pre-movement) [42, 45].

CNV, on the other hand, is observed in between two stimuli presented in sequence

with predictable inter-stimulus interval, where the first stimulus is a warning of the

second one which demands a quick response (e.g. button press) [35, 46]. The CNV

was observed to reach its maximum at the onset of the second stimulus. The SPN

is another slow negative shift preceding anticipated stimuli that provide significant

information [42].

2.2.2 EEG Patterns in the Frequency Domain

The first meaningful piece of information that was extracted from EEG recordings is related

to the presence of alpha and beta waves, and hence the names, as the inventor 2 of EEG

discovered these waves. Ever since, many other regular waves have been observed in the

brain activity recorded with EEG (or MEG). All these waves/bands are defined by a

band-limited frequency range. The major waves are listed below in the order they appear

on the spectral axis.

• delta band (0-4 Hz) appears mostly during sleep, and often is considered as an index

of the deepness of sleep.

• theta band (4-7.5 Hz) is associated with access to unconscious material, deep medita-

tion and is probably related to the level of arousal [47].

• alpha band (8-13 Hz) is most visible in the occipital lobe when eyes are closed and

declines with background illumination [48]. The tau waves appear in the same

frequency band over the midtemporal cortical regions and are blocked by auditory,

rather than visual, stimulation. Likewise, the so called Rolandic mu waves (or upper

alpha) are observed over the sensorimotor cortical areas and decline with simple

motor movements like moving a finger or a toe [34].

• beta band (13 - 30 Hz) is most visible in the frontal and central regions in waking

state. It is typically associated with active thinking and attention, and declines over

central areas with motor activity or tactile stimulation [47].

• gamma band (>30 Hz) is modulated by sensory input and associated with working

memory and attention [49].

2Hans Berger (1873 - 1941)
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In addition to the presence of these rhythms, EEG exhibits a 1/f spectral profile, resembling

the profile of pink noise 3. According to the logic in [34], due limitations of the axon

conductivity and synaptic delays, the 1/f profile can be partially explained by the fact

that the slower the oscillation in the brain, the greater the number of neurons that can

get engaged, the wider the cortical areas being recruited and the larger the resulting mean

power will be.

Different peaks representing strong activity from one or more of the aforementioned

waves are typically observed superimposed on the 1/f profile [41]. In most subjects, a peak

within the alpha band can be observed. These characteristics of the EEG signals in the

frequency domain have serious implications on the SSVEPs and their detection. This will

be explained in detail in chapter 3.

2.2.3 EEG Patterns in the Time-Frequency Domain

Trial averaging, albeit helpful in making most of the event-unrelated potentials die away, fails

to extract the non-phase-locked activity related to special events that induce a reduction or

an increase in the synchrony of the underlying brain activity in a specific frequency band [14].

This decrease/increase in synchrony are referred to as event-related desynchronization (ERD)

and event-related synchronization (ERS), respectively. Voluntary movements, for instance,

are characterized by pre-movement contralateral ERD in the mu (upper alpha) and beta

bands over the sensorimotor areas. The ERD in these frequency bands becomes bilaterally

symmetrical shortly before the movement. Movements are often followed by ERS in the beta

band. Quantitatively, ERD/ERS can be assessed with event-related spectral perturbation

(ERSP) analysis or the band power method, just to mention some [14].

2.3 EEG Signal Processing

The main objective of EEG signal processing is to increase the SNR of typical patterns

found in EEG signals, like the ones presented in previous section, contaminated with noise.

The following subsections highlight the main methods used for this purpose throughout

this work.

2.3.1 Signal Processing in the Time Domain

Based on the nature of EEG signals that was described earlier, the continuous EEG data

can be modeled linearly as a superposition of a mixture of source activity and additive

noise. Formally, we can write that

yT (t) = xT (t) ·A +ψT (t), (2.1)

where y(t) ∈ RNy denotes the reading from the multichannel EEG system at time instant

t, Ny denotes the number of recording electrodes, x(t) ∈ RNx denotes the activity of Nx

cortical or subcortical sources, and ψ(t) ∈ RNy denotes the additive noise at each electrode

3This type of frequency profile is frequently observed in nature, as it is the case in e.g. many biological
(from cellular level to behavioral level) signals [50] and speech and music signals [51].
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site. The mixing or weighting matrix is denoted with A ∈ RNx×Ny and is assumed to be

unknown constant over a short time segment. For digitized EEG data, the time index k is

used instead in (2.1). It is worth repeating here that the noise includes the background

EEG activity and possible artifacts and typically is defined according to the situation

under consideration. In ERPs, for instance, the signal is defined as the activity of the

population of neurons which get recruited in response to stimulus presentation and the

noise corresponds to all other background activity plus possible artifacts. Since ERPs by

definition are of limited length around the event of stimulus presentation, the model for

ERPs can be rewritten in matrix form as

Y = XA + Ψ, (2.2)

where Y ∈ RN×Ny denotes the EEG epoch of N samples, X ∈ RN×Nx denotes the sources

activity for the same N samples, Ψ ∈ RN×Ny denotes the noise and A is defined as before.

Typically, N � Nx and N � Ny.

The ultimate goal in ERP research is to reveal the source activity X from multiple

observations of EEG epochs, i.e. Y(i), where i = {1, 2, · · ·M}, time-locked to the same

events or experimental conditions. The most straightforward method on this account

has been already described, which is epoch averaging. Hereby, the average signal or the

observed ERPs is computed with Y = 1
M

∑i=M
i=0 Y(i), which asymptotically converges to

the true mean value XA, since according to the central limit theorem, the noise will decay

with
√
M . Obviously, what is being revealed with averaging is not the underlying source

activity, but rather a mixture thereof. To illustrate this, we consider a simulated situation

similar to [42] in Fig. 2.3. Hereby, we assume, without loss of generality, three cortical

sources that respond to a specific stimulus (i.e. three ERP components). The activity

of these sources within a specific period of time is denoted by x(t) = [x1(t), x2(t), x3(t)]
T ,

giving rise to the observed signals y(t) = [y1(t), y2(t), y3(t)]
T . For the moment, we ignore

the presence of noise, so that epoch averaging is not necessary to enhance the SNR. For

arbitrary choice of the mixing matrix in Fig. 2.3, it can be easily seen that the different

peaks in the observed ERP signals do not map one-to-one to the underlying source activity

or the ERP components. Most importantly, the signal y2(t) has no trace of the ERP

components originating at x2(t) and x3(t). The inevitable presence of noise in observed

epochs is expected to complicate the story even further.

Noise is often considered to be uncorrelated white noise and independent of the signal

under consideration. Both assumptions, ignore the fact that the background EEG ( a

typical ingredient in the overall noise) is influenced by the experimental events. For instance,

it has been shown that the EEG activity undergoes a reduction with visual stimulation [52].

Additionally, the well-observed reduction in alpha waves with eyes open strengthens our

belief that this model does not hold in general.

2.3.2 Signal Processing in the Spatial Domain

From our hypothetical example in Fig. 2.3, we note that if the mixing matrix is known

and it happens to be nonsingular, the ERP components can be recovered with X̂ = YA−1.
In general, the inverse only exists if Ny = Nx = rank(A), in which case recovery happens
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Figure 2.3: A simulated example, similar to [42], highlighting the effect of volume conduction
of the head on the observed ERPs with respect to the ERP components. This
example clearly shows that, even in absence of noise, the peaks in the observed
ERPs do not necessarily map one-to-one to the underlying source activity

with certainty. For the case when the number of recording sites is larger than the number

of sources, i.e. Ny > Nx, which is the most common case, we will still have an exact

solution X̂ = YA+. For completeness, the case Ny < Nx has infinitely many solutions.

This is another reason why it is desirable to record as many electrodes as necessary to have

Ny > Nx. However, the matrix A and the underlying source activity are often unknown,

not to mention the noise which might survive the averaging process.

Spatial filtering concerns itself with the problem of estimating the matrix W, such

that we can compute S = YW as a plausible estimate of what the underlying source

activity might be. The matrix W ∈ RNy×Ns denotes the matrix of Ns spatial filters,

[w1,w2 · · · ,wNs ]. Note here that we used Ns instead of Nx as the number of the underlying

sources is also unknown.

Obviously, estimating W is only possible if additional assumptions can be made about the

data. To this end, spatial principal component analysis (PCA) and independent component

analysis (ICA) offer a solution based on assumptions about the statistical properties of the

underlying components, i.e. statistical independence and non-Gaussianity in ICA and linear

uncorrelatedness in PCA. PCA and ICA have been used often in ERP research [53, 54].

However, when other assumptions can be made about the nature of the source signals,

whatever these are, this extra knowledge can be used to guide the derivation of W. This is

the case for SSVEPs, and will be thoroughly discussed in chapter 3.

The observed EEG signals are spatially correlated with each other (due to volume

conduction) with a true (but unknown) auto-covariance matrix Cyy ∈ RNy×Ny . Note that

EEG signals are non-stationary in general but can be assumed stationary in the wide sense

for short time segments only, i.e. the covariance matrix Cyy is a function of time. The

time index is dropped for simplicity. If the forward model in (2.2) is known, then the

auto-covariance matrix can be computed with Cyy = ATCxxA + Cψψ, assuming the noise

and the source activity are uncorrelated. Since neither the forward model nor the true
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value of the covariance matrix is known a priori, the (unbiased) estimate of the covariance

matrix can be computed from the sample data with

Qyy =
1

N − 1

i=N∑
i=1

(yi − y) (yi − y)T . (2.3)

This equation is written throughout this work in the form Qyy = 1
N

YTY, where the

observation matrix Y is centered around the mean. Using N in the formula instead

of N − 1 is an approximation with negligible effect on the computation since N � Ny.

For completeness, the cross-covariance matrix between two random vectors X and Y , of

dimensions p and q respectively, is denoted by Cxy ∈ Rp×q. The sample cross-covariance

matrix can be similarly estimated from N samples of X and Y with Qxy = 1
N

XTY. Unless

explicitly stated otherwise, all sample matrices encountered in this work will be centered or

made centered by subtracting the sample mean from all observations.

A common practice in a wide range of spatial filtering techniques involves a step of

spatial pre-whitening on the observed signals. Spatial pre-whitening concerns itself with

finding the matrix W, such that Yw = YW has the identity auto-covariance matrix. An

obvious and straightforward solution is W = Q
−1/2
yy . Another feasible and straightforward

solution is W = R−1 which can be computed from the QR-decomposition of the sample

data Y = QR.

2.3.3 Signal Processing in the Frequency Domain

EEG data at each recording site in Y can be transformed into its Discrete Fourier Transform

(DFT) representation using

Yi[k] =
1

N

N−1∑
n=0

yi[n]e−jk(2π/N)n, where j =
√
−1, k ∈ {0, 1, · · ·N − 1}. (2.4)

Fast Fourier Transform (FFT) is the golden method used in DFT computations. The power

spectral density (PSD) can be estimated with the FFT of the autocorrelation function of

the EEG signal, where the result is often referred to as the periodogram.

Alternatively, autoregressive (AR) models can be used to estimate the PSD for individual

channels in EEG data segments. Generally speaking, any time series s[n] can be represented

by an AR model of the form

m=p∑
m=0

αms[n−m] = u[n], u[n] ∼ N (0, σ2
u) (2.5)

where p defines the order of the process, which is often denoted as AR(p), αi ∈ R,∀i ∈
{1, 2, · · · p} define the p-parameters of the model, and u[n] are sampled from a white noise

process of zero mean and σ2
u power. By definition, α0 = 1. The spectral representation of

AR(p) can be easily obtained with the Z-transform. Let S[z] and U [z] be the Z-transform

of the sequences s[n] and u[n] respectively, which results in
∑m=p

m=0 αmz
−mS[z] = U [z]. This
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yields the transfer function of the AR model, i.e. H[z] to be

H[z] =
S[z]

U [z]
=

1∑m=p
m=0 αmz

−m . (2.6)

Straightforwardly, we can compute the power spectral density of the process with

PAR(ω) = σ2
u|H(ejω)|2 =

σ2
u

|∑m=p
m=0 αme

−jωm|2 (2.7)

=
σ2
u

|1 + α1e−jω + α2e−j2ω · · ·αpe−jpω|2
, (2.8)

where j =
√
−1. We note here that the set of model parameters completely defines

the process in its temporal and spectral representations. AR model parameters can be

estimated from data by solving Yule-Walker equations [55] or using multiple linear regression

models [56]. By the latter method, all the αi parameters can be estimated at once with

[α̂1, α̂2, · · · α̂p]T = (XTX)−1(XT s) from the vector of the observed data s and the matrix

X that contains p-lagged versions of the same data. The power of the driving white noise

σ̂u can be estimated from the power of the error term in the fitted model. The biggest

advantage of the AR power density estimation is the continuity of its estimated power profile.

Yet, the adequateness of a fitted model is highly dependent on its assumed order [57].

2.3.4 Signal Processing in the Time-Frequency Domain

To quantify non-phase-locked brain dynamics around experimental events, i.e. ERD/ERS,

Makeig [58] has introduced the event related spectral perturbation analysis (ERSP), that is a

localized and slightly modified version of Short-Time Fourier Transform (STFT) around the

events of interest. Hereby, ERSPs are computed from the amplitude spectra of short and

overlapping data segments extracted with respect to the experimental events and smoothed

with a moving average filter. These spectra are normalized by a baseline computed from

the EEG data segments immediately preceding the events of interest. The computation of

average ERSP from multiple epochs follows straightforwardly, with

ERSP(f, t) =
1

M

i=M∑
i=1

|Fi(f, t)|2,

where Fi(f, t) is the spectral representation of trial i at time t computed from STFT as

previously described [59]. Relevantly, the inter-trial coherence (ITC) provides a measure

for phase synchronization in multiple EEG segments time-locked to the same event. It can

be computed with

ITC(f, t) =
1

M

i=M∑
i=1

Fi(f, t)

|Fi(f, t)|
.

The ERSP and ITC measures will be primarily used in chapter 4 to quantify the spectral

dynamics of interaction ErrPs.
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2.4 Feature Extraction and Classification

As has been mentioned earlier, the two problems of feature extraction and classifications

are tightly related. The goal of classification in general is to find a mapping function

h : X → Y , that maps from the domain of the d-dimensional feature space X = Rd to the

range of class labels Y = {ω1, ω2, · · ·ωl}, where l is the number of classes available. Feature

extraction, on the other hand, concerns itself with finding the features that can represent

the different classes under consideration in a way that facilitates classification. Features

used to discriminate different ERPs are usually extracted temporally from EEG segments

time-locked to the events of interest and spatially over the brain regions that are believed

to give rise to them. Classification of ERPs, on the other hand, is typically achieved in

a supervised fashion, whereby representative examples for each class are collected from

one or more training sessions. Hereby, ĥ is learned from a training dataset (D) containing

n = n1 + n2 + · · ·nl tuples of observations and their labels, i.e.

D =
{(

x(1), h
(
x(1)
))
,
(
x(2), h

(
x(2)
))
, · · ·

(
x(n), h

(
x(n)

))}
,

where n1, n2, · · ·nl are the number of available examples for class ω1, ω2, · · ·ωl, respectively.

2.4.1 Multi-class Linear Discriminant Analysis (LDA)

Gaussian-based linear discriminant analysis (LDA) assumes a normal distribution for each

class, such that x|ωi ∼ N (µi,Σi), where i ∈ {1, 2, · · · l}, or in long form

f(x|ωi) =
1

(2π)d/2|Σi|1/2
e−

1
2
(x−µi)TΣ−1

i (x−µi). (2.9)

LDA additionally assumes that all classes share a common covariance matrix (Σi = Σ,∀i).
The mapping function hLDA(x) is defined hereby with

ĥLDA(x) = argmax
i∈{1,2···l}

log (f (x|ωi)) (2.10)

= argmax
i∈{1,2···l}

− log
(
(2π)d/2|Σ|1/2

)
− 1

2
(x− µi)TΣ−1(x− µi) (2.11)

= argmax
i∈{1,2···l}

− 1

2
(x− µi)TΣ−1(x− µi) (2.12)

= argmax
i∈{1,2···l}

xTΣ−1µi −
1

2
µTi Σ−1µi (2.13)

= argmax
i∈{1,2···l}

wT
i x + bi, (2.14)

where we substituted bi = −1
2
µTi Σ−1µi and wi = Σ−1µi. The multi-class LDA will be used

in supervised SSVEP detection in chapter 3.
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2.4.2 Two-class LDA

The two-class LDA will be encountered in the classification of P300 and ErrPs signals

in chapter 4. Hereby, the class labels are defined as ω1 = 1, ω2 = −1 and the mapping

function can be simplified to hLDA(x) = sign(wTx + b), where w = Σ−1(µ1 − µ2) and

b = −1
2

(µ1 + µ2)
Tw.

Since the true means and covariance matrices for each class are unknown, estimates

thereof are substituted for the computations of w and b. The sample means are computed

with µ̂1 = 1
n1

∑i=n1

i=1 x(i) and µ̂2 = 1
n2

∑i=n
i=n1+1 x(i), and the pooled sample covariance matrix

is computed with Σ̂ = 1
n−2

[
(n1 − 1)Σ̂1 + (n2 − 1)Σ̂2

]
, where Σ̂1 and Σ̂2 are the within-

class sample covariance matrices, which can be estimated with Σ̂1 = 1
n1−1

∑i=n1

i=1 (x(i) −
µ̂1)(x

(i) − µ̂1)
T and similarly for Σ̂2. These estimates of the covariance matrices are

known as the maximum likelihood (ML) estimates, which fail to provide invertible Σ̂

when n < d [60]. As a remedy, we adopted the analytical shrinkage covariance estimator

proposed in [60] (using function cov_shrink() from BCILAB [61]). Throughout this work,

we will refer to the LDA with ML covariance estimator as ML-LDA and with the shrinkage

estimator as shrinkage-LDA.

2.4.3 Discrimination Power of Features

In order to quantitatively assess the discrimination power of the spatial and temporal

samples that contribute to the feature vectors in D, often the signed r2 discrimination test

is used [62, 63]. Hereby, the signed r2 is computed with

r2k =
sign (cov (xk,ω)) cov(xk,ω)2

Var(xk)Var(ω)
,∀k ∈ {1, 2, · · · d}, (2.15)

where the vector ω is constructed from all the sample labels, i.e. ω =

[h(x(1)), h(x(2)), · · ·h(x(n))]T and xk is constructed by concatenating the kth element of all

sample feature vectors. The signed rs will be encountered in chapter 4 when we discuss the

main temporal and spatial features of interaction ErrPs.

2.5 Types of EEG-based BCIs

There are several types of BCIs that provide relatively reliable communication and control

channels. For the sake of consistency, we will refer to all possible commands which a user

can pass to the interface as interface elements. ERPs and ERD/ERS are so far the mostly

used pieces of information about the underlying brain activity that is used in BCIs. For

this purpose, certain ERPs lend themselves better than others, e.g. due to high SNR

and/or the nature of the tasks in which they can be elicited. Of these, P300, SSVEP and

MI-based BCIs are the primary types found in state-of-the-art BCIs. This is not to say

that other patterns were not already or have the potential to be used reliably in BCIs.

Single-trial CNV was proposed to be integrated as a master switch within BCI systems

in [64]. CNV [46] and/or BP [45] were proposed to be exploited as an evidence for control
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commands. Moreover, mVEPs were used to communicate with a 5 and 6-button virtual

keyboard in [65, 66].

P300-based BCIs (or P300-BCIs), in its most recent versions, adopt a visual (or tactile)

matrix-like presentation of the interface elements, e.g. alphanumerals in spelling tasks.

Users continuously attend to a target element of their choice in the visual matrix which

undergoes random flashing (or intensification) of its rows and columns. Flashing of the

target elements is expected to elicit P300 whereas flashing of nontarget elements is not.

Therefore, careful segmentation and classification of the continuously acquired EEG can

reveal the hidden interface element, at which the user was attending. Classification of

acquired trials as target/nontarget is done in a supervised fashion, whereby per subject

and per condition representative trials are collected during training sessions. In training

sessions, users attend to cued target elements and flashing is done as usual. The mode,

in which P300 systems run with cued targets, is often referred to as copy spelling mode,

whereas when targets are chosen freely by subjects, e.g. in online sessions, is referred to as

free spelling mode.

In SSVEP-based BCIs (or SSVEP-BCIs), users are continuously presented with different

interface elements that concurrently flicker but with different frequencies. Similar to P300-

based interfaces, users can select their element of interest simply by attending to it. P300

and SSVEP-based BCIs are often referred to as selective-attention-based BCIs as they

require attending to one out of several stimuli.

MI-BCIs are completely asynchronous and do not require external stimulation, but

typically require intensive training so that users can modulate their brain waves. Most

of motor-imagery-based BCIs (or MI-based BCI) are realized by discriminating between

ERD/ERS spatial patterns associated with different motor imagery tasks, e.g. imagining

the movement of the right hand vs. the left hand. MI-BCIs typically offer few interface

elements (in this case the interface is not visible to the user except for the feedback, if

any). The mostly popular MI-BCIs typically discriminate between two classes of MI (left

hand vs. right hand). Yet, systems that discriminate between 3-5 classes have been already

realized [15, 67–69]. Some evidence is available and hints that discriminating features

exist between simple limb motor imagery and compound limb motor imagery [70], which

potentially allows to discriminate between 7 different classes. However, increasing the

number of interface elements in MI-BCIs comes at the expense of reduced accuracies. On

the other hand, P300 and SSVEP-BCIs can offer much more interface elements, without

sacrificing accuracy that much. Yet, this might come at the expense of poorer temporal

resolution of interaction. Different BCI types are usually compared with respect to their

information transfer rate (ITR).

2.5.1 Information Transfer Rate (ITR)

Wolpaw et al. [71] have suggested a formula based on mutual information to compute

bit rate for BCI interfaces. Generally speaking, for an interface with (M)-equiprobable

elements, where elements can be correctly selected with a probability (P ) and wrongly

with the remaining probability, i.e. (1 − P ), where the probability (1 − P ) is uniformly

distributed over the M − 1 undesired elements, the bit rate (b) in bits/selection can be
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computed with

b = log2M + P log2 P + (1− P ) log2

(
1− P
M − 1

)
. (2.16)

The bit rate in bits/second can be easily computed with r = b/T , where T is the interaction

resolution of the interface in seconds, i.e. the mean time in seconds required to make one

selection.

Due to the high bandwidth demands of immersive robotic applications, we rely primarily

in this work on SSVEP and P300-BCIs since they typically offer relatively high values of

M and P and thus for b. Chapter 5 proposes adaptive and contextual BCIs to overcome

the current limitations of b in SSVEP and P300-BCIs.

2.6 Stimulation

In BCIs that rely on external stimuli, like P300-BCIs, stimuli can be presented to users

through one of the main sensory modalities, i.e. visual, auditory [72] or tactile [73, 74].

Of these, visual stimulation is the mostly used in general and the only used modality

throughout this work. The next subsection details the human visual system aiming at

providing some insights into the basic neural pathways of the visual stimulation. This

information can be regarded as a reference when we discuss the different viewing conditions

of SSVEP stimuli in chapter 3.

2.6.1 Human Visual System

The human visual system is composed of the eye, optic nerve and the brain regions that

are recruited for multilevel image processing in the occipital lobe. Visual signals need to

travel all way back from the eyes at the anterior side of the head to the visual cortex at

the posterior side. When the retina in each eye gets excited by light, neural signals are

initiated at its photoreceptive cells, referred to as rods and cones, and pass through bipolar

neurons to special neurons called ganglion cells . The axons of all these ganglion neurons

form a bundle that is called the optic nerve [29]. The two optic nerves meet at the optic

chiasm, where axons from each hemifield form two contralateral groups called optic tracts.

Signals that travel through the axons of the ganglion cells are forwarded to neurons in the

lateral geniculate nucleus (LGN) of the thalamus, which relay them to the visual cortex.

The visual pathways are depicted in Fig. 2.4.

In BCI research, there are continuous efforts to identify possible ways, by which the visual

pathways can be utilized for control and communication. The most successful example in

this regard is the SSVEP-based BCI. As previously mentioned, when the human eye is

stimulated by flickering light with specific frequencies, EEG recorded over the visual cortex,

i.e. at the very end of the visual pathways, can reveal the frequency of that stimulation.

Other successful examples exist, e.g. mVEPs as reported in [65, 66].
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Figure 2.4: The human visual system and visual pathways.

2.7 Summary

This chapter has detailed the different modules that make up the BCI pipeline. In particular,

from the discussion of the EEG neuroimaging technique, it became clear that the electrical

potentials measured with EEG are manifestations of the activity of temporally overlapping

and spatially aligned large populations of neurons. However, only a spatially filtered version

of the source activity is measured with EEG due to volume conduction of the head. One

main objective in EEG signal processing is to reverse this process, i.e. to estimate the

source activity through spatial filtering of the EEG signals. This is the main topic in

chapter 3. Additionally, the processing of EEG signals in time domain has been shown

to rely mainly on epoch averaging. Despite its simplicity, the averaging technique has

uncovered many ERPs, of which the most commonly observed were described alongside

the tasks in which they can be observed. A brief treatment to the problems of feature

extraction and classification has been given. In particular, the presented LDA classifiers

will find application in chapters 3 and 4. Furthermore, the most popular types of BCIs

were introduced, where it was shown that BCIs based on selective attention can offer larger

number of interface elements than other popular alternatives and thus they are selected

in this work as appropriate means for control and communication in immersive robotic

embodiment systems. Since these types of BCIs rely heavily on the visual modality to deliver

stimulation, the visual neural pathways have been detailed. This aimed at highlighting the

role these pathways play in SSVEP-BCIs in particular and the ongoing research efforts to

come up with new EEG-based communication paradigms.
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Steady-state visual evoked potentials (SSVEPs) refer to the involuntary brain response

to repetitive visual stimulation of the eye in humans and some non-human primates [75].

The measured scalp EEG potentials are characterized in the frequency domain by constant

amplitude and phase at the Fourier components of the stimulation frequency and its higher

harmonics. SSVEPs can be observed when the driving frequency of the stimulus is in the

range 4− 100 Hz [13], below which the electrical excitations of the visual system are able to

abate before the new stimuli are presented, and in this case, it is the transient VEPs that

can be observed [76]. Capilla et al. [77] showed that steady-state VEPs can be accurately

predicted from the linear summation of appropriately constructed transient responses and

concluded that both can be attributed to the same underlying neural mechanism.

Due to several factors, SSVEPs have been a core concept in non-invasive EEG-based BCI

applications. Among these are its robustness and relatively high SNR, the high information

transfer rate (ITR) it delivers and the short training time required, if any, before it can be

used for online applications. Typically, in SSVEP-based BCIs, different frequency-tagged

stimuli are displayed simultaneously with each stimulus given a predefined mapping to a

system command. This mapping is also known to the user, who can control or communicate

with the system, simply by attending to the stimulus corresponding to the command of

interest. Relatively easy discrimination between the different frequencies is facilitated by the

fact that selective attention to stimulus location modulates SSVEP [78]. In one study, 48

SSVEP-based interface elements were used for a generic remote control application, allowing

for a transfer rate of around 60-90 bit/min [79]. Other applications in which SSVEPs

were integrated include, but are not limited to, telephone dialing applications [80], spelling

applications [81, 82], video games [83] and robot control [84]. Additionally, SSVEP-BCIs

were proposed to be used as a possible means to communicate breathing conditions in

patients suffering respiratory disorders [85].

Though these applications might differ in terms of the interaction temporal resolution

they ask for, they all strive for higher SSVEP detection accuracies. To this end, spatial

filtering has proved to be a powerful pre-processing step for SSVEP detection and boosted

typical detection rates both in offline analysis and online SSVEP-BCI applications. What

essentially makes spatial filtering very effective in SSVEP detection compared to other

scenarios, is that some concrete assumptions about the source signals can be made and

therefore unmixing matrices (i.e. the matrix of spatial filters) can be searched for in a

constrained space. This is a common feature in most, if not all, state-of-the-art detection

methods, which additionally build upon the second order statistics of the acquired EEG

data, that is, its spatial auto-covariance and cross-covariance with what is assumed to be

a pure SSVEP response. In this chapter, these methods are analyzed theoretically and

empirically and the similarities/discrepancies between them are examined, by considering

canonical correlation analysis (CCA) as a basis for analysis. This analysis shows that most
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of these methods fail to provide reliable detection in low SNR regimes, mainly as they ignore

the contribution of noise at each possible driving frequency. MEC includes the estimation

of noise in the computation of its scores, and therefore it has proved to outperform other

methods. However, MEC incorporates additionally a dimensionality reduction step, which

despite its proven effectiveness, is based on an artificial criterion. On the basis of these

results, a new detection method, namely CVARS, is proposed. CVARS gets its detection

power from combining the power of the canonical variates and that of the autoregressive

spectral analysis in estimating the signal and noise power levels. The new method shows

superior results to other state-of-the-art methods.

Since our interest in SSVEPs stems from their potential use in immersive robotic

embodiment applications, appropriate presentation/viewing methods of the visual stimuli

using HMDs are also considered. The work in [86] compared stimulation with an LCD

monitor to HMD stimulation for a virtual reality (VR) game. Results have shown an

increase of 10% in ITR with HMDs and improved user engagement. This is taken a bit

further with a study that compares monocular and binocular viewing with an LCD monitor

and an HMD. Results show that monocular viewing of the SSVEP stimuli provides reliable

detection results, both with the LCD monitor and the HMD device, but higher for the

HMD. Importantly, we found that anti-phase dichoptic stimulation results in binocular

inhibition, most likely due to binocular rivalry, whereas in-phase stimulation of the two

eyes leads to binocular summation.

This chapter proceeds as follows. Sec. 3.1 presents the basic source model for SSVEPs.

Sec. 3.3 highlights the foundations of the state-of-the-art detection methods and emphasizes

the points where they converge or diverge and proposes the CVARS method as an alternative.

Sec. 3.4 provides in-detail information about the materials and methods used to collect

real EEG data from healthy subjects for different viewing methods. Results concerning the

different detection and stimuli viewing methods are presented respectively in Sec. 3.5 and

Sec. 3.6. The chapter concludes in Sec. 3.7.

3.1 SSVEP Source Model

We assume that after the retina is excited by flickering light, and after the transient VEPs

vanish [87], pure SSVEP responses appear as multiple phase-shifted sinusoidal waves whose

frequencies are integer multiple (up to Nh) of the driving frequency. The assumed pure

waves propagate to the scalp where EEG signals are measured. Due to volume conduction of

the head, a linear combination of these source signals corrupted with noise will be observed

at each measurement location, i.e. electrode. The additive noise might have encephalic or

non-encephalic sources, and is generally non-stationary. However, for short EEG segments,

it is often assumed to be stationary in the wide sense [88]. No statistical knowledge about

the noise is additionally assumed here.

Formally, we state that in response to flickering light with driving frequency f , the values

recorded over time at each electrode i can be written as

yi(t) =

Nh∑
h=1

ai,h sin (2πhft+ φi,h) + ψi(t), (3.1)
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Figure 3.1: Matrix representation of the EEG model containing SSVEPs.

where i ∈ {1, . . . , Ny} and Ny is the total number of recording electrodes. The terms ai,h
and φi,h ∈ ]−2π, 0] respectively denote the harmonic-specific amplitude and phase lag at

electrode i. The additive noise contributing to yi(t) is denoted by ψi(t). For the digitized

EEG with sampling rate of Fs (in Hz), (3.1) becomes

yi[k] =

Nh∑
h=1

ai,hxi,h[k] + ψi[k], where

xi,h[k] = sin

(
2πhf

k

Fs
+ φi,h

)
= sin

(
2πhf

k

Fs

)
cos (φi,h) + cos

(
2πhf

k

Fs

)
sin (φi,h) .

With conformable transformation of the amplitude values ai,h, the above notation can

be rewritten for a collection of N samples from all Ny electrodes (see Fig. 3.1) in matrix

form as

Y = XA + Ψ. (3.2)

Here, Y =
[
y1 y2 · · · yNy

]
,Ψ ∈ RN×Ny and the mixing (or propagation) matrix

A ∈ R2Nh×Ny . The source model matrix X ∈ RN×2Nh is defined now as

X =
[
X1 X2 · · · Xh · · · XNh

]
, (3.3)

where Xh = [sin(2πhfk′) cos(2πhfk′)] ∈ RN×2, and k′ = 1
Fs
, 2
Fs
, . . . , N

Fs
.

In absence of any statistical knowledge about the noise, A can be estimated from the

source model and the acquired EEG data by ALS = (XTX)−1XTY which minimizes

the total least squares error, i.e. ‖Y − XA‖2F . Equivalently, the LS estimate of ALS

can be written as ALS = Q−1xxQxy, where Qxx and Qxy respectively denote the sample

spatial auto-covariance matrix of the pure SSVEP response and the sample cross-covariance

between the acquired EEG data and the assumed source model, both are estimated from

N observations. Despite the fact that the source signals are defined deterministically, they

can be modeled as stochastic with empirical means computed on segments of length N ,

which can be approximated with the zero-vector 0 for large N . Due to the orthogonality

of the basis vectors in X, the sample covariance matrix Qxx, for centered and normalized

X, can also be approximated for relatively large N with INx , where Nx = 2Nh. In this

formulation, the number of harmonics in the SSVEP response, i.e. Nh, is not a random
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variable but rather an unknown deterministic value.

For completeness, if the noise is known to be spatially correlated and its non-

singular covariance matrix Cψψ is known, the estimate of A can be improved with

AGLS =
(
XTC−1ψψX

)−1
XTC−1ψψY, where AGLS is the generalized least squares estimate

that minimizes the squared Mahalanobis distance, i.e. (Y −XA)T C−1ψψ (Y −XA). It

might be tempting to try estimating the noise from training sessions with no visual stim-

ulation and plug that into the formula for the GLS estimate. However, we refrain from

doing that for two simple reasons. First, EEG is in general non-stationary (we only assume

weak stationarity for short time segments). Second, there is evidence in the literature that

visual stimulation reduces background EEG activity [52].

Where it is necessary, in order to avoid ambiguity when we refer to the source model for

the different driving frequencies, the subscript fl will be added to matrix Xfl to indicate

the source model of the driving frequency under consideration.

The previously assumed source model can generalize with little modification to different

visual stimulation patterns, other than the flickering light. For instance, visual stimulation

can be done with pattern (e.g. checkerboards) reversal stimuli. The only difference between

the two cases, is that SSVEPs are modulated at the fundamental stimulus frequency for

the flicker, and at the stimulus reversal rate (i.e. twice the stimulus frequency) for pattern

reversal stimuli [89, 90].

In addition to the stimuli’s driving frequency, the amplitude of the SSVEPs is highly

sensitive to other parameters of the stimulator, like the spatial frequency, contrast, hue,

orientation and the used equipment [78]. There exists in the literature a plethora of work

which tried to estimate the correlation between these parameters and the evoked potentials.

For instance, Teng et al. [91] have found that square waves with 50% duty cycle produced

significantly higher discriminative power than sinusoidal and triangular waves displayed

with a light-emitting diode (LED). Campbell and Maffei [92] found that a linear relation

governs the amplitude of the SSVEP and the log of contrast of a phase-alternating grating

stimulus. Additionally, it was found that it is necessary to keep the contrast level ratio

as
√

2 between the monocular and binocular viewing conditions in order to obtain evoked

potentials that have comparable amplitudes among the two conditions. Clearly, such

information can be integrated to provide more realistic models for SSVEPs. This, however,

remains to be solved with more research in the field.

3.2 Problem Statements and Challenges

During concurrent repetitive visual stimulation, an SSVEP detector aims at finding the

stimulus, at which the user is attending, based on multi-channel EEG data segments

Y ∈ RN×Ny , obtained online from continuous scalp EEG data by means of buffering (with

buffer length N and buffer overlap O where 0 ≤ O < N). Based on the requirements

of the application at hand, the buffer length and the interaction temporal resolution (T )

are determined. T is defined as the shortest time (in samples) between two consecutive

commands. The overlap can be computed from O = max(0, N − T ).

The problem of stimulus identification from EEG data thus can be formulated as having

M spatially-distributed flickering lights, driven by different frequencies f1, f2, . . . , fM , and
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Figure 3.2: Schematic of a general SSVEP detector from continuous EEG data. Different
scoring functions can be used to provide the score vector s ∈ RM+1, whereby a
decision about the user intention can be made every T samples.

a mapping function ĝ is sought, where ĝ : RN×Ny 7→ {f0, f1, . . . , fM}, and f0 denotes the

idle state, i.e. when the user does not attend to any of the stimuli. Often, ĝ(Y) is defined

as the argument which maximizes a score function or a test statistic s. SSVEP detection

can be formally written as

f̂l = ĝ(Y) = argmax
fl∈{f0,f1,...,fM}

s(Y,Xfl). (3.4)

We denote by g(Y) the ground truth frequency of the stimulus, to which the user attends

while Y is being acquired. The score s(Y,Xf0) is considered here as to test whether or not

a given response is statistically significant and not due to noise fluctuations and background

EEG. More often than not, it is defined as a constant threshold which is either computed

from the EEG data segments themselves or a priori computed from training data. For

completeness, let s ∈ RM+1 denote the vector containing the score value for all frequencies

plus the idle state.

Fig. 3.2 depicts the schematic model of SSVEP detection in continuous EEG data.

Available scoring functions used in (3.4) will be discussed in section 3.3.

The user in SSVEP-mediated applications continuously shifts his/her gaze between the

M spatially distributed stimuli for active control and towards the stimuli-free areas of

the display for the idle control state. Obviously, such interaction is asynchronous and

completely paced with the user actions. However, and regardless of the SSVEP detection

method used, recognition of these asynchronous spatial attention shifts does not happen

usually on the spot due to inherent limiting factors of the buffering stage. The shorter

the buffer size (small N and T ), the faster is the response of the system. With larger

buffer sizes, however, the temporal random fluctuations in the score function s(Y,Xfl) are

made less severe as the noise (the assumed source of variability in the evoked potentials)

attenuates typically in proportion to the square root of the number of time averages done on

the data. On the other hand, larger buffer sizes introduce delays into the system and reduce

the achievable bit rate. Consequently, finding a trade-off between interaction accuracy and

speed is of high importance for practical systems.
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3.3 SSVEP Detection Methods

Early investigated methods for SSVEP analysis and detection have relied mainly on Power

Spectral Density Analysis (PSDA) with Fast Fourier Transform (FFT) applied on single-

channel EEG data. Herewith, the temporal EEG signal is transformed into its Fourier

representations where test statistics can be derived from obtained information about

the power (or amplitude) [76, 93–96], phase [97] or both [98], at all considered driving

frequencies. FFT-based methods require relatively long data segments to give reasonable

detection results since the frequency resolution (∆f) in the Fourier domain is determined

by the reciprocal of the temporal data length available (e.g. it is required to have a 4 s

data segment to get a frequency resolution of ∆f = 0.25 Hz). Known issues with FFT like

the grid effect (Fourier components cannot be computed for frequencies that are not an

integral multiple of ∆f) and spectral leakage (energy spillover from one frequency bin to

adjacent ones due to rectangular windowing) highly affect the calculated amplitude and

phase precision and should be accounted for by choosing suitable window functions and

segment lengths [78, 99, 100]. In [101], authors argue that for an arbitrary recording, there

might not be enough information to benefit from phase information in SSVEP detection.

Recently, there has been a great tendency towards different methods that rely on spatial

filtering of multi-channel EEG data, which proved to be more efficient and stable than FFT-

based methods. The basic idea here is to find a spatial filter that transforms the original

multi-channel EEG signals into single or multi-channels with desirable characteristics.

Friman et al. [102] proposed the minimum energy combination (MEC) spatial filter, which

aims at minimizing the noise energy, with the noise defined as the projection of the

EEG signals onto the null space of the pure SSVEP vectors. Alternatively, the canonical

correlation analysis (CCA) aims at finding a pair of spatial linear combinations for both, the

EEG signals and the assumed pure SSVEP responses, which jointly maximizes the correlation

between the resulting canonical variates [103]. The maximum contrast combination (MCC)

filter maximizes the SNR, defined with the generalized Rayleigh quotient [102, 104]. Finally,

the multivariate synchronization index (MSI), through spatial whitening, extracts a single

metric that reflects the synchronization level between the EEG signals and assumed pure

SSVEPs [105]. Additionally, parametric spectral density analysis, as in autoregressive

methods, can be used to provide an estimate for the noise power levels after removing the

total energy of the driving frequencies from the spatially filtered signals. This was shown to

provide reliable test statistics for SNR, on which SSVEP detection can be based [102, 106].

In the next subsections, we theoretically show the similarities between the spatial

filters and the scoring functions used by the standard unsupervised CCA, MSI and MCC

approaches to SSVEP detection, where we conclude also that their detection accuracies

should not differ significantly. Based on the theoretical analysis of the state-of-the-art

methods, we propose a new method, namely the canonical variates with autoregressive

spectral analysis (CVARS) that estimates the signal and noise power levels from the canonical

variates which leads to slight improvement in correct detection rates. We additionally show

the conditions on which the MEC and CVARS provide similar results.
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3.3.1 Canonical Correlation Analysis (CCA)

Lin et al. [103] used canonical correlation analysis (CCA) to recognize the narrow-band

driving frequency of SSVEPs from EEG data. The CCA-based method was found to

outperform the FFT-based spectrum estimation method in terms of classification accuracy.

This result has been repeatedly reported in [95, 107]. The superior performance can be

attributed to the ability of CCA to reveal spatial coherence in data contaminated by either

white Gaussian noise or colored noise fields, should the data have high SNR [108].

CCA [109] does that by finding the maximally correlated pairs among all possible linear

combinations of two zero-mean multivariate random variables X and Y , where x ∈ RNx×1

and y ∈ RNy×1. Without loss of generality, we assume in the following that Nx ≤ Ny.

Formally, we look for the canonical weight vectors wx and wy where x = wT
xx and

y = wT
y y, such that the correlation coefficient between the canonical variates x and y,

ρ1(x, y) is maximized. By definition,

ρ1(x, y) =
E[xy]√

(E[x2]E[y2])

=
E[wT

xxyTwy]√
E[wT

xxxTwx]E[wT
y yyTwy]

=
wT
xE[xyT ]wy√

wT
xE[xxT ]wxwT

y E[yyT ]wy

=
wT
xCxywy√

wT
xCxxwxwT

y Cyywy

. (3.5)

Since scaling of wx and wy doesn’t affect the objective function, the search space is limited

by constraining the variance of the variates x and y to be 1 [110]. This leads to the new

optimization problem

wx,wy = argmax
wx,wy

wT
xCxywy

subject to wT
xCxxwx = wT

y Cyywy = 1

By introducing Lagrange multipliers, one can easily obtain the following generalized

eigenvalue problems

CxyC
−1
yy Cyxwx = ρ21Cxxwx (3.6)

CyxC
−1
xxCxywy = ρ21Cyywy. (3.7)

Due to the fact that Cxx and Cyy denote covariance matrices, which are symmetric

positive semi-definite, (3.6) and (3.7) can be rearranged into two standard symmetric
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eigenvalue problems,

TTTw′x = ρ21w
′
x, (3.8)

TTTw′y = ρ21w
′
y, (3.9)

where T = C
−1/2
xx CxyC

−1/2
yy , w′x = C

1/2
xx wx and similarly w′y = C

1/2
yy wy. The matrix T is

referred to as the coherence matrix and denotes the cross-covariance between the whitened

vectors C
−1/2
xx x and C

−1/2
yy y. This yields that ρ1(x, y) = σmax(T) =

√
λmax(TTT ), i.e.

respectively the maximum singular value and the square root of the maximum eigen-

value. The matrix product TTT is often referred to as squared coherence matrix [111].

Other uncorrelated canonical variates can be found using the remaining eigenvectors and

eigenvalues [110].

For later use, we define the decomposition TTT = W′
yP

2W′T
y , where W′

y ∈ RNy×Nx

and P has all the canonical correlations on its diagonal, i.e. P = diag(ρ1, ρ2, . . . , ρNx) =

diag(
√
λ(TTT )). Similarly, TTT = W′

xP
2W′T

x , where W′
x ∈ RNx×Nx .

The score function in (3.4) can thus be defined for the standard CCA method as scca = ρ1.

Alternatively, other score functions can be derived as an arbitrary function of (ρ1, . . . , ρNx),

in the form sfcca = f(σ(T)).

Since true covariance matrices are not known a priori, the coherence matrix is defined

with the empirical estimates thereof. Recall that Qxx ≈ INx . Given enough samples for Y,

i.e. N � Ny, then Qyy will be full rank and invertible.

Equivalently, the canonical correlations [112] can be found by first applying the QR

decomposition of Y = QyRy and X = QxRx, to obtain the orthonormal matrices Qx and

Qy and the full rank Rx and Ry matrices. The second step involves the singular value

decomposition of QT
xQy as UPVT .

This formulation is computationally more efficient and provides more insights on the

geometric interpretation of CCA. Hereby, the canonical correlations correspond to the

cosine of the principal angles between the two subspaces spanned by the column spaces

of Qx and Qy or formally, σ(QT
xQy) =

(
cos(θ1), . . . , cos(θmin(Ny ,Nx))

)
. Geometrically, the

maximum canonical correlation is the cosine of the smallest angle possible between any

two vectors in the subspaces spanned by Qx and Qy. Fig. 3.3 illustrates this relation.

3.3.2 Multivariate Synchronization Index (MSI)

More recently, Zhang et al. [105] introduced the multivariate synchronization index (MSI)

for online SSVEP detection, where the synchronization level between the source model and

the acquired EEG is measured based on the S-estimator [113]. The joint covariance matrix

CX,Y which includes the auto and cross-covariance matrices of X and Y can be written in

block form as

CX,Y =

[
Cxx Cxy

Cyx Cyy

]
. (3.10)

The transform U that orthogonalizes the diagonal block matrices, i.e. whitens the
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Figure 3.3: Principal angles between the subspaces spanned by the different source models
and the acquired EEG data. Each is a subspace in RN and is represented by a
convex cone. Note also that the column spaces of the different Xfl may intersect
if they share, at least, one basis vector, as it is the case with Xf1 and Xf3 , where
f1 = 15 and f3 = 10, and Nh = 3.

original data matrices X and Y, was applied such that R = UCX,Y UT and

U =

[
C
−1/2
xx 0

0 C
−1/2
yy

]
,R =

[
INx T

TT INy

]
, (3.11)

where T = C
−1/2
xx CxyC

−1/2
yy is the coherence matrix already encountered. Let P = 2Nh+Ny,

λ(R) = (λ1, . . . , λP ), and the normalized eigenvalues to be defined as λ′i = λi
P

. The

synchronization index then can be obtained from the entropy-like quantity

smsi = 1 +

∑P
i=1 λ

′
i log(λ′i)

log(P )
. (3.12)

The MSI-based score is tightly related to scca. In order to find the exact relationship, we

need to find the eigenvalues of the matrix R defined in (3.11), which involves solving the

characteristic equation det(R− λI) = 0. Hereby,

det

([
INx − λINx T

TT INy − λINy

])
= 0 (3.13)

Without loss of generality, we assume in the following that Ny ≥ Nx. Using the Schur
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determinant identity we can rewrite (3.13) as

0 = det
(
INy − λINy

)
· det

(
(1− λ)INx −

1

1− λTTT

)
= (1− λ)Ny · det

(
1

1− λ
(
(1− λ)2 INx −TTT

))
= (1− λ)Ny · 1

(1− λ)Nx
· det

(
(1− λ)2 INx −TTT

)
= (1− λ)Ny−Nx · det

(
(1− λ)2 INx −TTT

)
,

which means that either λ = 1 or (1− λ)2 is one of the eigenvalues of TTT . Consequently,

there are exactly (Ny −Nx) eigenvalues of R that take the value 1. The remaining 2Nx

eigenvalues can be related to the canonical correlations (Sec. 3.3.1) with λ = 1∓ ρi, where

i = 1, . . . , Nx. This renders smsi as a mere nonlinear function of all canonical correlations,

and as a special case of the score sfcca. Additionally, the filtering step (i.e. whitening)

involved is similar to that in the CCA method.

3.3.3 Minimum Energy Combination (MEC)

Friman et al. [102] proposed to apply the spatial filter WMEC ∈ RNy×Ns , which minimizes

the noise energy in S = YWMEC ∈ RN×Ns , where Ns ≤ Ny. The noise here is defined

as the difference between the original EEG signal and its best LS approximation in the

subspace spanned by the SSVEP sinusoids, and thus estimated as

Ψ̃ = Y −XALS = Y −XQ−1xxQxy. (3.14)

Note that scca(Ψ̃,X) = 0. In fact this is another way to say that the noise estimate Ψ̃ is

orthogonal to the subspace spanned by the columns of X. The sample noise covariance

matrix can be written as Qψψ = Qyy−QyxQ
−1
xxQxy with the eigendecomposition QψDψQT

ψ .

The spatial filter WMEC is then obtained by concatenating the last Ns vectors in Qψ which

correspond to the least proportion of energy in Ψ̃, e.g. correspond to the eigenvalues whose

sum does not exceed Tr(Qψψ)/10 [102].

A test statistic can be derived from the filtered signals, to which we will refer as

smec(Y,X) and is obtained with [102]

s(Y,X) =
1

NsNh

Ns∑
l=1

Nh∑
k=1

P̂kl
σ̂2
kl

, (3.15)

where P̂kl = ‖XT
k sl‖2/N estimates the signal power and σ̂kl provides an estimate to the

noise power at the kth harmonic in the lth spatially filtered signal. σ̂kl is obtained by fitting

a p-order autoregressive AR(p) model, with parameters {α̂l1, . . . , α̂lp, σ̂2
l } to the data of

each column (l) in the matrix S̃ = S−X(XTX)−1XTS = Ψ̃WMEC ∈ RN×Ns [15], where
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l ∈ {1, . . . Ns}. Noise power can be computed by substituting ω = 2πf/Fs to (2.8) as

σ̂2
kl =

σ̂2
l

|1 +
∑p

m=1 α̂lm exp(−j2πmkf/Fs)|2
, (3.16)

where Fs is the sampling frequency and f is the stimulation frequency.

The discrimination power of the statistic in (3.15) stems from its ability to incorporate

the noise power estimate at the frequencies under consideration. So far, the score functions

in CCA and MSI reflected the signal power only.

Furthermore, we can write the noise covariance matrix as

Cψψ = Cyy −CyxC
−1
xxCxy

= Cyy

(
INy −C−1yy CyxC

−1
xxCxy

)
= Cyy

(
INy −C−1/2yy TTTC1/2

yy

)
= Cyy

(
INy −C−1/2yy W′

yP
2W′T

y C1/2
yy

)
= Cyy

(
C−1/2yy W′

y

(
INy −P2

)
W′T

y C1/2
yy

)
= C1/2

yy W′
y

(
INy −P2

)
W′T

y C1/2
yy (3.17)

= CyyWy

(
INy −P2

)
WT

y Cyy. (3.18)

Multiplying both sides with WT
y from the left and Wy from the right, yields the following

relation

WT
y CψψWy = INy −P2. (3.19)

Therefore it is possible to diagonalize the noise covariance matrix with the canonical weights

matrix Wy, which is generally not orthogonal, as by definition WT
y CyyWy = INx . Recall

that the diagonalization of Cψψ = QψDψQT
ψ in the original paper of the MEC method

was done with eigendecomposition [102]. Should the EEG data be spatially white or

pre-whitened, i.e. Cyy = INy before running the MEC procedure, and Ns is fixed to 2Nh,

then Wy = W′
y = WMEC. This result provides another intuitive insight on the MEC

filtering. When the original EEG signals are spatially pre-whitened, MEC maximizes

the canonical correlation coefficients while aiming at minimizing the noise energy since

the smallest diagonal elements in Dψ and
(
INy −P2

)
correspond to the largest canonical

correlations.

3.3.4 Maximum Contrast Combination (MCC)

The goal of the maximum contrast combination (MCC) method is to find the linear spatial

filter that maximizes the generalized Rayleigh quotient [102, 104]. Formally, we are after

w which maximizes λ = wTCyyw

wTCψψw
subject to ‖w‖2 = 1. The true covariance matrices are

not known and thus they are substituted with their sample estimates. The sample noise

covariance matrix Qψψ can be found the same way as in section 3.3.3. With the help

of Lagrangian multipliers, one can show that λ attains its maximum with the dominant
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eigenvector of the matrix C−1ψψCyy, which can be rewritten with the result in (3.17) as

C−1ψψCyy = C−1/2yy W′
y

(
INy −P2

)−1
W′T

y C1/2
yy . (3.20)

Thus, λi(C
−1
ψψCyy) = 1/(1−ρ2i ) = fmcc(ρi) , ∀i ∈ {1, . . . ,min(Nx, Ny)}, and consequentially,

λmax = 1/(1 − ρ2max). The spatial filter w which attains the maximum quotient can be

found by normalizing the columns C
−1/2
yy W′

y = Wy with respect to the Euclidean norm,

and picking the one corresponding to ρmax. This proves that MCC and the CCA methods

have exactly the same discrimination power since the function fmcc(ρ1) is monotonically

increasing in ρ1.

3.3.5 Canonical Variates with Autoregressive Spectral Estimation of

Noise (CVARS)

As stated earlier, the standard CCA method is able to reveal spatial coherence in high SNR

regimes. When SNR� 1, however, the canonical coefficients mainly reflect the correlation

between the noise and the assumed source signals, which often leads to erroneous detection

as the separate contribution of the signal and the noise to the total values of ρi cannot be

determined.

Therefore, we propose to estimate the noise at each frequency for each signal after spatial

filtering with parametric spectral density estimation. That is, the noise power is estimated

by fitting an autoregressive model to canonical variates after cleaning them from all energy

at the SSVEP driving frequencies and their higher harmonics. The test statistic scvars is

computed exactly as in (3.15) with the AR(p) models fitted on S̃ = S−X(XTX)−1XTS,

where S = YWy and Wy ∈ RNy×Nx is the canonical weighting matrix. Additionally, we

observe that XTS = NWxP and therefore P̂kl = ρ2l (w
2
kl,1 + w2

kl,2), where wkl,1 and wkl,2
denote the respective weight of the sine and cosine signals of the kth harmonic in the lth

canonical variate.

3.3.6 Discussion

In the light of the previous analysis and findings, it is obvious that the scores of the CCA,

MCC and MSI methods correspond to different functions of the canonical correlations (ρi),

and their scores can all be considered special cases of sfcca. Common to all of them is the

spatial pre-whitening step of both, the EEG signals and the assumed SSVEP pure response,

which is spatially white by construction. Though it is not necessary to do so to obtain the

scoring functions scca and smcc, these methods additionally involve applying the transform

C
−1/2
yy to the left singular vectors of the coherence matrix in order to obtain the optimal

spatial filter. The spatial filtering of the MEC and CVARS methods is accomplished with

the eigenvectors of the noise covariance matrix and the canonical weighting matrix Wy,

respectively. Additionally, both involve spectral analysis of AR(p) models fitted on the

spatially filtered data cleaned from the energy at the driving frequencies of the SSVEP.

The rationale behind using (3.16) in [102, 106] is that the temporally colored noise in

each column s̃l in the matrix S̃, can be modeled as discrete-time autoregressive random

process of order p. As a result, this modeling allows to whiten the temporally colored noise,
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and produce an unbiased (or with small bias [106]) estimate for the noise power at each

stimulation frequency and its higher harmonics. The CVARS method, therefore, involves

whitening the data, both spatially and temporally, before it can provide the scoring function

scvars. If the data is spatially pre-whitened before applying the MEC method, then results

will be very similar to those of the CVARS method, but not exactly the same as Ns used

to compute smec is governed by a fraction of the total energy in the noise signal and in case

of CVARS, Ns = 2Nh is fixed.

3.4 Material and Methods

Several experiments with volunteer subjects were conducted. The objective of these

experiments is twofold. First, to provide a means to evaluate the different detection

methods. Second, to apply the newly proposed CVARS method for investigating the

adequateness of HMD in viewing SSVEP visual stimuli, and whether binocular stimulation

is necessary in this case to provide reliable detection of SSVEPs.

3.4.1 Subjects

A total of 10 healthy adults (1 female) aged 29.3 ± 5.5 (range 22 − 39) with normal

or corrected-to-normal vision served as paid volunteer subjects in this study. During

the experiments, the participants were seated 0.65 m away from an LCD monitor on

a comfortable armchair in a slightly dimmed room. All participants gave their written

informed consent. Participants were additionally asked to fill in pre- and post-questionnaires,

that were meant to collect data about the level of tiredness before and after the experiment

in addition to some demographical data.

Scalp EEG signals were recorded from 16 electrodes positioned according to the interna-

tional extended 10-20 electrode system over the parieto-occipital scalp areas at P3, Pz, P4,

PO9, PO7, PO3, POz, PO4, PO8, PO10, O9, O1,Oz, O2, O10 and Iz. Electrodes were

referenced to the right earlobe and the ground electrode was positioned at FPz. The signals

were acquired with sampling rate of 512 Hz using g.USBamp acquisition system (g.tec

medical engineering GmbH, Schiedlberg, Austria) and band-pass filtered at 0.5− 60 Hz.

The power line interference at 50 Hz was removed with a 4th order butterworth notch-filter

with 48− 52 Hz stop band. All electrodes were filled with highly conductive gel in order to

reduce impedance.

3.4.2 Experimental Paradigm

A 22 ′′ liquid-crystal display (LCD) monitor and a head-mounted display (HMD) from

Oculus VR, United States, both having 60 Hz refresh rate, were used to view the stimuli

which consisted of four spatially distributed flickering rectangles presented simultaneously

to participants. The driving frequencies of the stimuli were chosen as integer divisors of

the display refresh rate, namely 15, 12, 10 and 8.57 Hz. The chosen and fixed driving

frequencies are known to evoke moderate to high SSVEP’s amplitude strength [114]. The

spatial distribution of the stimuli is shown in Fig. 3.4. The EEG acquisition and visual
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Forward

TurnL TurnR

Stop

Figure 3.4: Stimulus presentation. In synchronization with the display refresh rate, four white
rectangles were flickered on and off against a black screen at rates of 15 Hz
(Forward), 12 Hz (TurnL), 10 Hz (TurnR) and 8.57 Hz (Stop). The labeling of
the different rectangles serves robotic control applications. The size proportions
between the flicker and the display are preserved in the figure.

stimulation were running on two different computers, and synchronized with the screen

overlay control interface (SOCI) [115, 116].

Each subject sequentially viewed the stimuli on both displays (i.e. the monitor and the

HMD) with either their left eye only, right eye only, or both eyes. This resulted in a total of

2× 3 different viewing conditions which were pseudo-randomized across subjects. Subjects

were assigned either to finish all the HMD or the LCD conditions at first to minimize

electrode displacement that might take place after mounting/unmounting the HMD. Two

consecutive sessions per condition were recorded for later offline analysis. In total, each

subject underwent 12 sessions, each of around 5 min duration. The whole experiment lasted

around two hours including preparations and rest breaks between sessions. Participants

used an eye patch to view the LCD monitor in the monocular viewing conditions. This is

not necessary in case of the HMD, since stimulating individual eyes can be achieved with

software by rendering (or not) the stimuli separately on each of the two displays that make

up the HMD. Importantly, when stimuli were rendered for binocular vision with the HMD,

the right and left eyes were stimulated differently as the on-off flickering of each stimulus

on the right display was the complement version to that on the left display (i.e. anti-phase

dichoptic stimulation). During the experiments, no head stabilizer was used and subjects

were free to move their head. This means in the monitor case, that the subjects were able

to place the stimuli of interest in the fovea by jointly moving their head and the eyes (the

contribution of the eye movement to the gaze is likely to be minimal). On the other hand,

in the HMD conditions, only eye movement could bring the stimulus of interest to the

fovea.

Each recording session started with a blank screen for around 15 seconds followed by

the presentation of the flickering stimuli. During stimulation, subjects were instructed to

overtly sustain the spatial attention on the cued stimulus. Stimuli were highlighted in turn

with a green rectangle as shown in Fig. 3.4 for 10 seconds followed by a rest period of
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Figure 3.5: Trigger timing for one complete stimulation sequence. When stimulation is on,
all flickering stimuli are presented concurrently. Each stimulus is highlighted for
10 seconds as shown with the stimulation train signal.

3.5 seconds, in which the screen went blank. The stimuli were cued in the descending order

of their driving frequencies (i.e. the sequence will be top, left, right and bottom according

to the stimuli constellation shown in Fig. 3.4). Detailed timing of one complete sequence is

shown in Fig. 3.5. Each recording session consisted of five such full sequences.

3.5 Experimental Results - Detection Methods

The different detection methods are compared with regard to their average accuracy (P̄D),

which is computed from labeled EEG segments as the ratio of the correctly classified

segments to the total number of available segments. Average misclassification error can be

easily computed with Em = 1− P̄D. In order to provide results that can be compared with

those in the literature, we will base our evaluation throughout this section solely on the

two recording sessions obtained with binocular viewing in the LCD monitor condition. The

results for other viewing conditions are reported comparatively in Sec. 3.6

The accuracy for each of the different detection methods is highly influenced by the

choice of the key system parameters, e.g N, T,Nh and Fs. In the following, we will firstly

highlight the effect of each of these parameters individually on unsupervised CCA detection

accuracy. We chose the CCA method here as the other scoring functions can be obtained

from the canonical coefficients, canonical variates and the canonical weights, and thus it can

serve as an indicator of the information gain/loss that accompanies parameter change. By

fixing these parameters in the light of the empirical evaluation of CCA, the unsupervised

detection accuracy of the CVARS is then compared to the state-of-the-art methods.

3.5.1 CCA Results with Varying Key System Parameters

Labeled non-overlapping EEG data segments (i.e. O = 0) are extracted from the two

available recording sessions per subject. The segment size was varied between 0.5−5 seconds

with steps of 0.5 seconds, respectively yielding 200, 100, 60, 50, 40, 30, 20, 20, 20 and 20

segments, per stimulation frequency. Segments which were obtained during the idle state

were not included in the evaluation since we consider unsupervised CCA at this stage.
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Figure 3.6: Average misclassification error for CCA computed as Em = 1− P̄D for varying
buffer length, Nh = 1.

Fig. 3.6 shows the average misclassification error (Em) for all subjects as a function of

the buffer size, when the CCA method was used with Nh = 1 and Fs = 512 Hz. With larger

buffer sizes, one can observe that misclassification errors for all subjects get suppressed due

to enhanced SNR and more accurate estimates of Qyy and Qxy.

Fig. 3.7(a) shows the average misclassification error of the CCA method (averaged over

all subjects) for different number of harmonics Nh that ranges from 1 to 6 as a function of

buffer length. For Nh > 3, no further improvement is observed, which cannot be explained

by the fact that EEG data itself was lowpass-filtered with a cutoff frequency 60 Hz since the

fourth harmonic of the maximum stimulation frequency is not rejected thereby. However,

the fourth harmonic of the driving frequency f2 = 12 Hz, lies within the stop band of the

notch filter. In order to fully isolate the influence of the notch filter, we reevaluated the

average misclassification error of the unsupervised CCA method, excluding f2 from the

analysis. Again, the results shown in Fig. 3.7(b), suggest that no further improvement for

Nh > 3. The increased accuracy for Nh > 1 is however not statistically significant as it was

also reported in [107]. The value of Nh is set to 3 throughout the remaining of this work.

As has been mentioned earlier, one can derive arbitrary scoring functions sfcca from the

canonical correlations ρi. Fig. 3.8 shows the results for sfcca =
∑k

1 ρi, while fixing Nh = 3,

and k ∈ {1, 2, . . . 2Nh}. The performance degradation of sfcca for k > 1 suggests that the

fluctuations in ρi,∀i > 1 over time cannot be used in winner takes all (WTA) assignment

as ρ1 for SSVEP detection.

The effect of changing the sampling rate is shown in Fig. 3.9. Downsampling with a

factor of 2 or 4, which respectively resembles sampling frequency of 256 and 128 Hz leads to

accuracies that are comparable with the full data segments (with Fs = 512). Estimation of

covariance matrices Qyy and Qxy is not, therefore, significantly affected by downsampling.

This behavior suggests that adjacent samples in Y are correlated (and they are) and that

allowing for ∆t between samples that is larger than the expected maximum correlation

lag would not affect the obtained results. Going to downsampling factor of 8 (Fs = 64)

deteriorates the performance significantly, as this would introduce aliasing and loss of

information of the higher harmonics (with frequencies larger than Fs/2). Throughout the

42



3.5 Experimental Results - Detection Methods

Buffer Size [s]

A
v
e
ra

g
e
m
is
c
la
ss
ifi
c
a
ti
o
n

e
rr
o
r
(E

m
)

 

 

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Nh = 1
Nh = 2
Nh = 3
Nh = 4
Nh = 5
Nh = 6

(a)

Buffer Size [s]

A
v
e
ra

g
e
m
is
c
la
ss
ifi
c
a
ti
o
n

e
rr
o
r
(E

m
)

 

 

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Nh = 1
Nh = 2
Nh = 3
Nh = 4
Nh = 5
Nh = 6

(b)

Figure 3.7: Average misclassification error for CCA computed with different number of har-
monics. For Nh > 3, no further improvement in accuracy is observed. Evaluation
is based on (a) all stimulation frequencies (b) and excluding f2 = 12 Hz.

Buffer Size [s]

A
v
e
ra

g
e
m
is
c
la
ss
ifi
c
a
ti
o
n

e
rr
o
r
(E

m
)

 

 

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

Figure 3.8: Average misclassification error for CCA averaged over all frequencies and subjects
computed for different scoring functions sfcca =

∑k
i , with k ∈ {1, 2, . . . , 2Nh}.
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remaining of this chapter, we use Fs = 512 Hz. Sampling rates Fs ∈ {256, 128} are expected

to produce similar results in terms of the reported scores and the reported misclassification

rates.
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Figure 3.9: Average misclassification error for CCA averaged over all frequencies and subjects
for different downsampling factors. Hardly any difference is noticed for d ∈ {1, 2, 4}.
When the downsampling factor is set to 8 (the dotted purple line), significant
reduction in accuracy is observed.

The estimates of the detection accuracies obtained so far using the non-overlapping data

segments can be a bit misleading as classification is performed only on homogeneous EEG

data segments, during which subjects attended to one single driving frequency. However,

during online usage, EEG data collected in one segment can reflect two or more different

states of user attention (e.g. user shifts his attention from one stimulus to another or

from the idle state to one of the active states within the segment). This behavior becomes

more probable with larger buffer sizes. To simulate this case, maximally overlapping

data segments (i.e. T = 1 sample) were continuously extracted from the data and used

to plot the CCA score evolution of the different stimulation frequencies over time. The

resulting segments thus contain both homogeneous and heterogeneous data. In order to

additionally provide more insights about the inter-subject variability in Fig. 3.6, the score

evolution will be shown for the subjects S5 and S2, whose CCA results were among the

best and the worst, respectively. CCA score evolution during the first full sequence (after

viewing all stimulation frequencies once) for (N, T ) = (1024, 1) samples is shown in the

upper row of Fig. 3.10. These plots show, to some extent, that during stimulation with fl,

the score s(Y,Xfl) increases over time and surpasses the scores of the other frequencies.

Additionally, among the used stimulation frequencies, one can observe for each subject,

that a specific frequency is somewhat dominant throughout the whole sequence (12 Hz for

S5 and 10 Hz for S2), and to this specific frequency most of the faulty detections and false

alarms can be attributed. While high scores for the dominant frequency (most likely due to

interference from the alpha brain band waves, within which a peak can be observed in most

subjects’ EEG[41]) starts to appear during the idle state, they get suppressed (though not
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always) when subjects shift their visual attention to flickering light. This is in line with the

results in [52] which indicates that visual stimulation reduces EEG background activity.

Furthermore, one can categorize the SSVEPs of the two subjects into high and low SNR

with respect to the obtained CCA score values, where S2 is the one with the low SNR.

3.5.2 Distribution of Canonical Correlations

In the following, we will refer to the canonical correlation values obtained when users

attended to a specific stimulus with frequency f as the target canonical correlations (or

target scores) for that frequency. Nontarget scores of a stimulation frequency f , on the other

hand, refer to the values obtained when the user attended to other or no stimuli. By fixing

Nh = 3 and (N, T ) = (1024, 1) samples, we computed the target and nontarget correlation

coefficients for all stimulation frequencies from the two recording sessions recorded per

subject in the monitor/binocular viewing condition. We assigned a data segment to a

frequency f , if the most recent sample in that segment was obtained when the corresponding

stimulus was then cued for viewing.

From the histogram of all these values, we estimated the distribution of all target and

nontarget canonical correlations which are shown in Fig. 3.11. These plots show that the

difference between the distributions of the target and nontarget canonical correlations ρi is

most pronounced for ρ1. Most importantly, we could see that the typical means (for all

canonical correlations) per stimulation frequency differ significantly, in a way that reflects

the general power density of EEG data which exhibits a characteristic 1/f profile [41, 117].

The mean and standard deviation of all target and nontarget canonical correlations are

shown in Fig. 3.12 as a function of stimulation frequency f . Besides the 1/f profile, we can

observe a peak at 10 Hz, which stems from interference of the dominant alpha brain waves

at the same frequency. The distributions of the target and nontarget ρi’s clearly justify why

sfcca defined as the sum of canonical correlations did deteriorate detection performance when

compared to scca, as the bias towards the low frequencies and the subject-dependent peaks

in the alpha band, increases by adding further correlations to the value of ρ1. Therefore,

the CCA scores need to be scaled differently for each frequency in order to correct for the

observed bias. This scaling is done efficiently in the CVARS method.

3.5.3 Comparison of the Different Methods

The same non-overlapping EEG segments from section 3.5.1 were used to compare the CCA,

MCC, MSI, MEC and CVARS methods. The mean misclassification error averaged over all

subjects is shown in Fig. 3.13 for Nh = 3 and Fs = 512 Hz. MEC and CVARS were used

with AR(7) model. By visual inspection, the results of the CCA, MCC and MSI methods

don’t differ significantly. The MEC and CVARS methods outperform CCA for all buffer

lengths, except for 0.5 s buffers, in which case, all methods have comparable accuracies.

The CVARS method performs slightly better than the MEC for almost all buffer lengths.

Furthermore, the upper three rows in Fig. 3.10 compare the CCA, MEC and CVARS

with respect to their score evolution during the first full stimulation sequence with (N, T ) =

(1024, 1) samples. CVARS and MEC methods show significant improvement over CCA for

the subject with the low SNR (S2), especially for the stimulation frequency f1 = 15 Hz and
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Figure 3.10: Score evolution for S5 (left) and S2 (right) obtained during the first stimulation
sequence of the first recording session for buffers of 2 seconds (except for the last
row this was 5 s), T = 1 sample and Nh = 3 with the CCA, MEC, and CVARS
methods. AR(7) models were used when necessary. The trigger is shown as a
staircase with 4 levels, each level corresponds to one stimulation frequency. For
example, level 2 corresponds to f2 = 12 Hz. The zero level corresponds to the
idle state. The fourth level (i.e. for f4) is scaled to the largest score obtained for
better visibility.
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Figure 3.11: Distribution of target (solid) and nontarget (dotted) canonical correlations
averaged over all subjects from overlapping EEG segments. For instance, the
distributions of target ρi for f1 = 15 Hz were obtained by computing the canonical
correlations of EEG segments Y ∈ R1024×16 where g(Y) = f1 with scca(Y,Xf1).
The nontarget distributions were obtained from segments with g(Y) 6= f1.

less for f2 = 12 Hz. Less or no improvement can be observed for the subject with the high

SNR (S5).

From the score evolution (N = 1024, T = 1) data of the two recording sessions, we

have computed the average accuracy per subject over all stimulation frequencies (excluding

the idle state) for the unsupervised CCA, standard MEC and CVARS. The results are

summarized in the boxplot1 of Fig. 3.14. A repeated measures ANOVA determined

that mean classification accuracy differed statistically significantly between the three

methods, F (2, 18) = 19.902, p = 0.0012, partial η2G = 0.13, where η2G is the generalized

eta squared [118]. Post hoc tests using the Bonferroni correction revealed statistically

significant (p = 0.005) improvement of unsupervised CVARS (mean± std: 0.739 ± 0.099)

over unsupervised CCA (mean± std: 0.64 ± 0.137). Furthermore, we found a trend for

unsupervised CVARS being superior over unsupervised standard MEC, which given the

current number of subjects though is not significant (p = 0.069). Unsupervised standard

MEC (mean± std: 0.72 ± 0.107) performed significantly better than the unsupervised

CCA (p = 0.003).

The effect of choosing longer buffers (N = 2560) with CVARS method is shown in the

lower panel of Fig. 3.10. We can easily observe that fluctuations in the score function

are reduced for both S2 and S5, with the side effect of introducing delays into the system

1Analysis was done using R software package and the report can be interactively viewed at
http://rpubs.com/moh-marwan/detection-methods-evaluation
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Figure 3.12: Mean and standard deviation of target (solid) and nontarget (dotted) ρi computed
for the different stimulation frequencies.

(rise-up and decaying delays). This, however, did not guarantee reliable SSVEP detection

for S2.

3.5.4 Supervised CVARS Method for SSVEP Detection

The unsupervised detection methods discussed so far provided estimates of the driving

frequency in a WTA fashion. This way, the system is always in the control loop and the

idle state is never reached. Furthermore, the target and nontarget scores distributions in

Figs. 3.11 and 3.10 suggest that the simple argmax function in (3.4) will provide faulty

detections due to the large visible difference in the mean scores for the different driving

frequencies, and the resulting bias towards the lower frequencies. Learning a simple

threshold from labeled data (obtained from a training session for each user), although can

reduce the rate of false alarms and faulty detections, can lead also to a larger rate of misses

as can easily be seen for CCA from the plots in Fig. 3.11 and for all methods in Fig. 3.10.

For instance, setting a CCA threshold of 0.5 in Fig. 3.11 would result in a high probability

of miss, as can be computed from the area under the curves of the target distributions for

ρ1 < 0.5. It can be additionally observed that it is more probable to miss the detection of

higher frequencies than the lower ones. Linear Discriminant Analysis (LDA) lends itself

naturally to such a problem, where labeled score vectors are obtained from one training

session and an LDA classifier is thereby learned. In online sessions, the scores are computed

as usual to produce the vector s ∈ RNf×1. The LDA classifier is then applied on s to

provide the final estimate of the hidden attended stimulus. We summarize the comparison

between the unsupervised and supervised CVARS with (N, T ) = (1024, 128) in the form of

the confusion matrices shown in Fig. 3.15, for subjects S5 and S2, in addition to the average

over all subjects. We chose CVARS here as it provided the best results in the unsupervised

case. The confusion matrices were computed with each method applied on the two available

recording sessions. In case of the supervised CVARS, a classifier was learned from each
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Figure 3.13: Average misclassification accuracy averaged over all frequencies and subjects. As
expected, classification accuracies for CCA (plotted with thick line to highlight
this fact) and MCC are the same.

session and applied on the other one, and results therefrom were averaged (i.e. a total of

two classifiers were used per subject). These results clearly show a reduction in the rate of

false alarms on the expense of higher probability of misses. The probability of miss and

that of correct detections are quite uniform with respect to the stimulation frequencies,

on the contrary to what is expected if a single threshold were used. Furthermore, a large

portion of the probability of miss in the supervised CVARS replaces some of the wrong

detections in the unsupervised case. Falsely detecting one control state as the idle state is

generally favored over confusing it with another control state.

3.5.5 Discussion

From the results in the previous subsections, we can see that there are conflicting factors

that affect the detection accuracy of SSVEP. On one hand, accuracy is a monotonically

increasing function of the buffer size (i.e. N), should the buffer contain only homogeneous

data, which is not the most probable case in online applications. On the other hand, larger

buffer sizes introduce rise-up and decaying delays, as the old samples which contain no

information about the currently attended stimulus still inhabit the buffer Y and contribute

to the different values s(Y,Xfl), leading to false alarms and faulty detections.

Comparing Figs. 3.6 and 3.16, which respectively show the misclassification results of

non-overlapping segments as a function of buffer length for CCA (Nh = 1) and CVARS

(Nh = 3), we can see that buffer lengths, at which acceptable accuracies are obtained, differ

from one subject to another, regardless of the detection method used. Therefore, a trade-off

between accuracy and speed should be optimized for each subject, based on a short training

session. The same session is also used to learn the LDA classifier from the obtained scores.

Additionally, with our theoretical analysis and empirical results, we have shown that CCA

and MCC give exactly the same estimates and thus the same misclassification error rates.
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Figure 3.14: Pairwise comparisons between the unsupervised CCA, MEC and CVARS detection
methods.

MSI and CCA have shown similar misclassification error rates, suggesting that ρ1 plays a

major role in calculating smsi. This can be seen by rewriting (3.12) as smsi =
∑2Nh

i=1 f(ρi),

where

f(ρ) =
(1 + ρ) log(1 + ρ) + (1− ρ) log(1− ρ)

P log(P )
. (3.21)

Fig. 3.17 plots f(ρ) in the range of [0, 1] in addition to the function q(ρ) = ρ2/C, where

C is a constant. The quadratic function q(ρ) approximates f(ρ) relatively well when

ρ < 0.5. Therefore, for the case when all ρi < 0.5, the MSI score function (and its quadratic

approximation) gives more weight to greater ρi’s. On the other hand, when ρ1 > 0.5, the

contribution of ρ1 becomes more emphasized as the difference f(ρ1) − q(ρ1) grows very

rapidly. The latter is the more probable case given the empirical values of target ρi’s shown

in Fig. 3.11.

Furthermore, we have shown that MEC outperforms CCA. This result differs from what

was shown in [119]. However, the score function smec used there was defined with σ̂kl = 1,

which ignores the noise power at the stimulation frequencies and consequently MEC scores

will be biased towards the low frequencies. This reaffirms the need to scale the different

correlations with regard to estimates about the noise power, which is done efficiently with

the test statistics used in standard MEC and CVARS procedures. In [102], a test statistic

similar to smec is used with the MCC spatial filter, where the spatial filter is obtained from

a subset of the columns in Wy. Again, this statistic should give similar results to the

CVARS when the data is pre-whitened before applying the MCC filter.

Alternatively, Yin et al. [82] proposed the supervised CCA-RV method for the same

purpose of reducing the variability in the final target scores of the different stimulation
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f0 f1 f2 f3 f4

f̂0 0.00 0.00 0.00 0.00 0.00

f̂1 0.19 0.82 0.00 0.01 0.01

f̂2 0.52 0.17 0.99 0.14 0.16

f̂3 0.13 0.00 0.01 0.83 0.01

f̂4 0.16 0.01 0.00 0.01 0.82

(a) Unsupervised (S5)

f0 f1 f2 f3 f4

f̂0 0.80 0.34 0.29 0.32 0.37

f̂1 0.04 0.63 0.00 0.00 0.00

f̂2 0.07 0.02 0.71 0.02 0.05

f̂3 0.03 0.00 0.00 0.66 0.00

f̂4 0.06 0.00 0.00 0.00 0.57

(b) Supervised (S5)

f0 f1 f2 f3 f4

f̂0 0.00 0.00 0.00 0.00 0.00

f̂1 0.06 0.39 0.02 0.01 0.01

f̂2 0.18 0.03 0.48 0.03 0.02

f̂3 0.63 0.56 0.48 0.95 0.29

f̂4 0.13 0.02 0.02 0.02 0.69

(c) Unsupervised (S2)

f0 f1 f2 f3 f4

f̂0 0.64 0.30 0.32 0.34 0.25

f̂1 0.06 0.63 0.00 0.02 0.01

f̂2 0.11 0.02 0.66 0.02 0.01

f̂3 0.11 0.04 0.02 0.61 0.05

f̂4 0.08 0.01 0.01 0.01 0.68

(d) Supervised (S2)

f0 f1 f2 f3 f4

f̂0 0.00 0.00 0.00 0.00 0.00

f̂1 0.15 0.70 0.03 0.02 0.02

f̂2 0.31 0.09 0.74 0.08 0.10

f̂3 0.40 0.18 0.19 0.86 0.21

f̂4 0.14 0.04 0.04 0.04 0.66

(e) Unsupervised (Average)

f0 f1 f2 f3 f4

f̂0 0.69 0.29 0.31 0.32 0.30

f̂1 0.06 0.65 0.01 0.01 0.01

f̂2 0.10 0.02 0.63 0.02 0.03

f̂3 0.08 0.02 0.02 0.61 0.04

f̂4 0.08 0.02 0.02 0.04 0.62

(f) Supervised (Average)

Figure 3.15: Confusion matrices for the unsupervised and supervised CVARS methods. The
supervised CVARS method produces reliable results for all participants including
S2, whose data has been shown to have low SNR. This proves the ability of
supervised CVARS to deal with wide range of SNR levels.
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Figure 3.16: Average CVARS-method misclassification error computed as a function of buffer
length for non-overlapping segments.

frequencies where scca-rv was computed with

scca-rv(Y,Xf ) =
scca(Y,Xf )− scca-nt(Y,Xf )

scca(Y,Xf ) + scca-nt(Y,Xf )
, (3.22)

where scca-nt(Y,Xf ) is the mean nontarget scores of a frequency f computed from a training

session. Since the CCA-RV method was published very recently, we could not fully and fairly

compare it to the CVARS method, especially also that real-time biofeedback mechanisms

were employed in [82]. However, we claim that the supervised CVARS method described in

this paper should outperform the supervised CCA-RV (when we ignore the effect of the

biofeedback). Firstly, CVARS has been shown to outperform CCA when results for all

subjects were averaged and therefore plugging the CVARS scores instead of CCA in (3.22)

is expected to provide, on average, better results. Additionally, LDA learns from the

available training session the optimal mapping from the CVARS scores to the stimulation

frequencies as it takes into account not only the mean values as it is the case in (3.22) but

also the variances and covariations of the individual scores.

Throughout this work, we had a number of channels Ny = 16, which was larger than the

number of signals assumed in the source model Nx = 2Nh = 6. Reversing this relation does

not affect the obtained results. For the CCA method, the number of canonical correlations

is upper bounded by min(Nx, Ny), which will be Ny in this case. The eigenvalues in the

MSI method, will be defined the same way as in section 3.3.2 except that there are Nx−Ny

eigenvalues which have the value 1. The CVARS method, in this case, will provide no

dimension reduction, as the number of canonical variates will be the same as the original

EEG channels. On the contrary, the MEC method usually produces less output channels

than available in the original EEG signals. Friman et al. [102] reported typical values for

Ny = 6 and Ns ∈ {4, 5} which are comparable to 2Nh = 4. For our dataset, we got typical

values of Ns ∈ {14, 15, 16} for Ny = 16 and Nh = 3. The result we proved here regarding

the conditions when WMEC = W′
y makes the CVARS method more consistent with the
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assumptions about the number of source model signals.

3.6 Experimental Results - Viewing Methods

The experimental paradigm reported in Sec. 3.4.2 was designed to additionally investigate

the effect of the different viewing and display methods on detection accuracy, and thus,

to provide a first application of the different examined detection methods. The detection

accuracy is considered here as an indirect measure that reflects to which extent SSVEPs

are elicited by the different methods. The experiment as a whole is a repeated-measures

design with two fully crossed within-subject factors. Display is the first factor and has

two levels (monitor or HMD), whereas the second factor corresponds to the three viewing

conditions (monocular left eye, monocular right eye and binocular viewing). To this end,

the average unsupervised CVARS classification accuracy (i.e. the dependent variable)

was computed for each subject and per viewing and display condition with maximally

overlapping EEG segments of 2 s length (i.e. N = 1024, T = 1). The average was computed

over all stimulation frequencies in the two recording sessions per condition. The segments

corresponding to the idle state were not included in the average computation since they

result in faulty detection in all display and viewing conditions. Obtained results are

summarized in the boxplots 2 of Fig. 3.18 and the standard error barplots in Fig. 3.19.

Two-way repeated measures ANOVA was conducted to test the effects of the two main

factors (i.e. Display type and Viewing Condition) on classification accuracy. A statistically

significant interaction was found between the effects of the two factors, F (2, 18) = 9.13, p <

0.005, and therefore, a series of follow-up simple effect tests has been conducted. The

results thereof are summarized as follows.

2The complete analysis can be found in http://rpubs.com/moh-marwan/viewing-methods-evaluation
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Figure 3.18: Classification accuracy for the different conditions summarized in boxplots.
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Figure 3.19: Classification accuracy for the different conditions summarized in standard error
barplots.
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• In the monitor case, the viewing condition was found statistically significant,

F (2, 18) = 12.3, p < 0.005. Follow-up pairwise comparisons subjected to Bonferroni

corrections revealed that binocular viewing resulted in accuracies that are significantly

better than monocular left (p < 0.005) and right (p < 0.05) eye viewing. There was

no significant difference between the monocular right and left eye viewing (p = 0.62).

• In the HMD case, no significant difference was found between the viewing conditions.

• In monocular left eye viewing, the HMD resulted in significantly higher accuracies

than the monitor, F (1, 9) = 10.42, p < 0.05.

• In monocular right eye viewing, there was a trend for significance, F (1, 9) = 4, p =

0.077 between the HMD and the monitor conditions favoring the HMD.

• In binocular viewing, a trend for significance, F (1, 9) = 4.56, p = 0.061 was found

between the HMD and the monitor conditions favoring the monitor.

3.6.1 Discussion

The previous results suggest that the main source of the significant interaction between the

display type and the viewing condition was the data obtained from the binocular viewing

with the HMD, which also can be seen from the barplots in Fig. 3.19. This can be attributed

to the fact that in this case, the right and the left eyes were stimulated anti-phase with

respect to each other, but with the same frequency. This leaves us with the following

three observations. Firstly, based on the monitor data alone, it can be concluded that

stimulation of both eyes simultaneously results in significantly higher detection accuracies

when compared to single eye stimulation. This is an expected result as binocular stimulation

recruits larger populations of neurons when compared to monocular stimulation. This is in

complete agreement with [92], where it is argued that summation of the signals in case of

binocular vision arise from or subsequent to binocular neurons in the visual cortex. Secondly,

comparing results of the binocular viewing between the HMD and the monitor suggests

that for binocular summation to take place, SSVEP stimulation of both eyes needs to be

completely synchronized so that the eye-specific populations of neurons that respond to the

flickering light can act in complete synchrony as well. Reciprocally, in case of anti-phase

dichoptic stimulation as it was done in our experiment for the HMD/binocular viewing

condition, results suggest that binocular inhibition (most likely due binocular rivalry) is

brought about. Thirdly, comparing results of the monocular viewing between the HMD and

the monitor, we observe that the HMD results in higher classification accuracies. Similar

results were observed in [86] when comparing the two displays with binocular viewing. This

observation is most likely due to the closeness of the stimulus to the eye in case of the

HMD, which again results in recruitment of a larger population of neurons. Therefore,

binocular stimulation is recommended for both eyes, yet monocular stimulation may provide

satisfactory results as well. In-phase stimulation of the two eyes enhances the SSVEPs.

There is converging evidence in the literature about the first and the third observations.

However, we believe the second observation is completely new and therefore deserves

more clarification. Prior research in [120] comparing binocular and monocular sinusoidal
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gratings stimulation has shown that binocular summation/inhibition may occur differently

for different spatial frequencies. The work in [121] designed a visual stimulus composed of

two halves, both flickering with the same frequency but were anti-phase. The setup herein

allowed each half-field of the stimulus to separately excite the two halves of the retina,

and consequently, out of phase SSVEPs are observed in the two sides of the visual cortex

(i.e at the sites O1 and O2). Additionally, in case of dichoptic stimulation with flickering

lights having frequencies fr and fl for the right and the left eye respectively, gave rise to

second order inter-modulation components in the SSVEP signals [122], i.e. the sum and

the difference of the two modulation frequencies. Our result hereby is complementary to

these results, and shows that binocular interaction is sensitive to the phase difference in

dichoptic stimulation when stimuli have the same frequency. Noteworthy here is that most

of the cited works hereby relied on FFT measure for their comparisons, while we adopted

the resulting detection accuracies as a basis for our evaluation, which only indirectly reflects

the strength of the SSVEP signals.

3.7 Conclusions

Detection of SSVEP in continuous EEG signals lies under the general problem of detecting

sinusoids in noisy measurements, a problem that has been thoroughly investigated in

the array signal processing field in general and in EEG signal processing. We have

theoretically shown the conditions in which state-of-the-art SSVEP detection methods

share similar spatial filters, a step required to enhance the overall SNR. The equivalence

of the discrimination power of the MCC and CCA methods has been proven and it was

conjectured that MSI should have very similar results as well. Empirical evaluation was in

line with results from the theoretical analysis.

The methods CCA, MCC and MSI rely on a single metric that is computed from the

canonical correlations to provide an estimate about the stimulation frequency, to which a

user is attending. Thereby they fail to provide reliable estimates when the signal is lost

in the noise floor. On the other hand, the MEC method, bases its discrimination upon

the estimated signal and noise powers in the spatially filtered signals at each considered

frequency, i.e. the fundamental stimulation frequency and its higher harmonics. MEC thus

outperforms other state-of-the-art methods, especially in low SNR regimes. However, MEC

poses an artificial criterion for dimensionality reduction within the spatial filtering step.

To overcome these issues combined, a novel method, namely CVARS, was proposed. The

CVARS method was shown empirically to slightly outperform the standard MEC method.

We have also shown that the CVARS and the MEC scores are the same, given that the

EEG signal is spatially whitened before running the MEC algorithm and Ns is fixed to the

number of canonical correlations rather than being artificially determined from the levels

of the noise power.

It has been also shown that the supervised CVARS method based on a short training

session can be used to learn a mapping function rather than the maximizer (argmax) that

estimates the hidden driving frequency and the idle state from the obtained scores, reliably

and accurately. The training session should also serve the purpose of finding the optimal

buffer size for a specific subject to be used in online applications.
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3.7 Conclusions

Due to its superior accuracy, the CVARS method can be applied to different fields other

than BCIs, e.g. in physiological or vision studies of SSVEP signals. To our knowledge,

theoretical analysis of the different SSVEP detection methods in this depth was not

done before. As such, results provided here help to understand the sources of diverging

results regarding the comparison of the different methods. For instance, MSI was found

to outperform CCA and MEC in [105]. The result that MSI outperformed MEC can be

attributed to the fact that the computation of the MEC scores ignored the noise power

σ̂kl as was computed in (3.16). On the other hand, the result that MSI was significantly

better than CCA suggests that the number of channels used (at most 8 channels were used

in [105]) might have an effect on the difference between the accuracy of the CCA and MSI

methods, which we have argued here to be insignificant with a larger number of channels,

i.e. Ny = 16.

Our application example targeting a comparative study of the visual stimuli presentation

on the monitor has shown that binocular viewing of stimuli leads to higher classification

accuracies. Additionally, conforming with other results in [86, 123], the HMD has shown

superior results to the monitor. Results also suggest that anti-phase dichoptic stimulation

with the HMD results in binocular inhibition.

Despite the reported advancement with the CVARS over other existing methods in

detecting SSVEPs, we believe further research is needed to improve detection accuracies.

Better understanding of the effects that repetitive visual stimulation has on ongoing EEG

signals seems necessary in this regard. We have seen that the unsupervised CVARS scores

of nontarget stimuli were suppressed when attention was directed to a target stimulus.

This means that, in addition to the unsupervised CVARS scores, first order derivate of

these scores for all frequencies, can be used in the feature vector for supervised detection.

Additionally, throughout this work, we considered data from all recorded channels in our

analysis under the assumption that spatial filtering, will be able to weight these channels

accordingly. Though this assumption is valid to high extent, removing channels which

contain no information from the analysis will make it easier for the spatial filters to arrive

at better estimates. Therefore, it might be necessary to explore optimizing the channel

selection process alongside the spatial filtering step. This can be for example performed on

the same training session which is used to learn the LDA classifier. Unfortunately, simple

approaches like exhaustive search are computationally expensive as the number of searches

required grows exponentially with the number of electrodes, i.e. the number of searches

equals
∑i=Ny

i=1

(
Ny

i

)
= 2Ny − 1. For Ny = 16, this is about 65K.
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4 Interaction Error-related Potentials

The occurrence of errors in BCI-based systems seems inevitable at this stage of their

development. In the previous chapter for instance, it was shown that even the best existing

detection methods for SSVEP signals are prone to errors. It was also shown that while long

data segments contribute to enhancing class separability, they lead to rise-up and decaying

delays, which in turn can lead to false alarms, faulty detections and/or lower bandwidth,

not to mention the effects all these have on the fluency of interaction. On the other hand,

interaction error-related potentials (or interaction ErrPs) are typically observed in scalp

EEG after feedback that indicates erroneous interface actions, and therefore potentially can

be used to (in-)validate a previously selected interface element. However, classification of

interaction ErrPs itself is a noisy process, and the fact that it is performed on single EEG

trials brings along a new set of challenges. Often, quite long training sessions are required

in order to arrive at adequate classification boundaries that can generalize to unseen EEG

single trials time-locked to feedback presentations. Besides, classification algorithms which

prove to be useful in one situation/interface, usually face generalization difficulties in new

situations/interfaces.

Classification of interaction ErrPs is addressed in this chapter only in an indirect way.

Our main focus was laid on extending the understanding for invariance and variability

sources in interaction ErrPs, and the effects such sources have on classification and classifier

transferability. The discussion hereby is based on results from three different experiments,

specifically designed for this purpose and having a hybrid and adaptive P300-ErrP BCI in

mind as an ideal application field. In particular, we examined the invariance and variability

of interaction ErrPs with respect to (1) the mental processing required to assess interface

actions (2) time (3) subjects and (4) the pre-processing of the raw EEG data. Scattered

results from the ErrPs literature helped in formulating initial hypotheses about these four

factors and to define our experimental design. We have found that interaction ErrPs are

quite invariant with respect to (2) and (3) and exhibit high variability with respect to (1)

and (4). Additionally, we found that the results from transferred classifiers agreed with the

observed degrees of invariance and variability.

We have also introduced a new task that simulates adaptive and dynamic P300-based

interfaces, whereby interface elements are updated with every new run to new ones.

Additionally, the novel inplace feedback presentation feedback that is introduced in this

chapter offers an application-agnostic form of feedback, that is expected to require the

same mental assessment processes regardless of the nature of the P300 application. Our

results suggest that inplace feedback is of great importance to adaptive and dynamic BCIs.

This, however, requires further research.

This chapter proceeds as follows. Section 4.1 introduces the family of ErrPs and highlights

some of the important aspects of interaction ErrPs. Section 4.2 provides a short review on

related work and similar experiments in ErrPs research. Section 4.3 reports the materials
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and the design of the different experiments which were conducted to answer the research

questions. Experimental results are presented in section 4.4 followed by a discussion in

section 4.5. This chapter concludes with section 4.6.

4.1 Background and Objectives

Error processing and awareness mechanisms in the brain lead to reproducible brain activity

patterns, which can be observed time-locked to events of errors in scalp EEG. In general,

these patterns are referred to as error-related potentials (ErrPs) and are typically taxono-

mized into four types: response, observation, feedback and interaction ErrPs [124]. This

taxonomy basically reflects the variability in the error potentials with respect to the nature

of tasks, in which they are observed. Response ErrPs were found to be elicited after incorrect

responses in speeded choice reaction tasks [125, 126]. Observation ErrPs, on the other hand,

have been shown to be elicited after observing errors committed by other humans [127] or

virtual devices [128, 129]. Feedback ErrPs are elicited after negative feedback (e.g. feedback

of unfavorable results in time estimation tasks) [130–132]. Finally, interaction ErrPs were

observed after feedback that indicates erroneous interface actions [133, 134], and therefore

they can be thought of as a special case of observation and feedback ErrPs.

The average difference waveform in the ERP structure between the error and correct trials

(error-minus-correct) is usually used to highlight the ErrP components. For instance, the

difference waveform in speeded choice reaction tasks has been characterized by Falkenstein

et al. [125] with a negativity Ne (sometimes referred to as error-related negativity ERN)

and a later, more extended positivity Pe. The sharp negative component, Ne, peaked at

about 80 ms and Pe peaked in the interval 200-500 ms [135]. The negativity was also

observed in correct trials, however with smaller amplitudes (referred to as correct-related

negativity CRN). This observation made the authors believe that the negativity Ne reflects

the comparison process itself (between the correct and performed response) and not its

outcome, and that the independent component Pe reflects a later aspect of the error

processing.

In addition to the temporal (phase-locked) signature of errors in scalp EEG, spectral

(phase- and non-phase-locked) signatures were observed starting just before incorrect presses

in speeded motor responses manifested as an increase in mid-frontal theta band activity

accounting for 57% of ERN peak amplitude [136], and an increase in delta-power [126].

The respective temporal and/or spectral signatures vary across the different types of

ErrPs. However, independent of the specific type of error potentials and independent

of the task performed, EEG and fMRI studies [130, 135, 137, 138] have suggested the

anterior cingulate cortex (ACC), the supplementary motor Area (SMA), and/or pre-SMA

as candidates for a common neural generator.

Schalk et al. [133] were the first to report that EEG signals that follow erroneous and

correct selections by a computer interface differ significantly. The term interaction ErrPs

has been coined later by Ferrez et al. [134] to refer to this type of ErrPs. Thereafter, there

has been a special interest in interaction ErrPs within the field of BCIs, mainly due to its

potential use as a validation step to confirm a first-stage BCI selection.

First efforts to decrease error rates during BCI-mediated interaction considered adding a
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Figure 4.1: Potential use of interaction ErrPs as a validation step in BCIs (adopted and
modified from [142]). User hidden input (u) is decoded by the first stage classifier
into û. The feedback presentation might evoke interaction ErrPs (e) which is then
decoded by a specialized classifier into ê. In this work, we refer to EEG epochs
collected for e = 1 as ErrP trials, and as noErrP otherwise.

response verification step[139], where users needed to confirm each selection by communicat-

ing an additional one to the system. This approach while improving the accuracy, degrades

the achievable bit rates. On the other hand, integrating the detection of ErrPs into different

BCI systems [133, 134, 140, 141], improved both the accuracy and the achieved bit rates.

However, this gain does not come cost-free. Long training sessions are required to obtain

considerable amount of ErrP/noErrP training examples that are used to learn classification

boundaries between the correct and erroneous trials. Fig. 4.1 depicts a schematic view of

how ErrPs might be integrated into BCIs. The first selection is typically mediated based

on P300 or motor-imagery signals.

Therefore, it is desirable to find ErrPs classifiers which transfer across interfaces and over

time. This was a concern of Schmidt et al. [143], who showed that a linear discriminant

analysis (LDA) classifier for interaction ErrPs trained with data from a keyboard-based

spelling task can transfer, however with a reduced performance, to a similar P300-based

spelling task. Herein, visual inspection of the grand averages of the error and correct

trials reveals a great similarity across the two tasks with respect to the general shape and

timing of the different deflections. Furthermore, Kim and Kirchner [129] designed a task

to compare observation ErrPs (users observed the movement of a cursor with no input

whatsoever) and interaction ErrPs (users controlled the movement of a cursor with a noisy

keyboard). Hereby, it can be observed that the grand average difference waveforms exhibit

similar time courses for both ErrPs types, but with different amplitudes and latencies.

The authors have shown that a linear support vector machine (SVM) classifier learned

from the observation ErrPs successfully transfered to interaction ErrPs. In experiments

of cursor movement task [134], when motor-imagery was used to mediate user input, a

delay of 30 ms was observed in the difference waveform relative to the keyboard case [144].

This delay has been attributed by the authors to the extra time needed by subjects to stop

focusing on the motor imagery as feedback was continuously shown to them. These results

altogether suggest that if two tasks differed with respect to the type of the user input, and

a sufficient time gap was introduced between the user input and the feedback about the

60



4.2 Related Work

interface actions, then any observed variability in average waveforms consequent to the

feedback onset across the two tasks is most likely caused by other factors than the different

types of user input.

In this chapter, assuming invariance with respect to the type of user input, it is in-

vestigated whether there are other invariants of interaction ErrPs and the consequences

these invariants, if any, might have for their classification. The main focus was laid on

examining possible invariants with respect to: (1) human mental processes that are re-

quired after feedback onset (2) time (3) subjects and (4) the way the continuous data is

pre-processed. In order to answer these questions, three different experiments and tasks

were designed and conducted with different subjects. The first experiment is quite similar

to the keyboard-based cursor movement in [134] and the other two experiments, similar

to [141], were targeting P300-mediated interaction.

4.2 Related Work

There is a plethora of work in the literature that examined the presence of interaction

ErrPs and their detection with many different interfaces and tasks. It can be observed

across these studies that many aspects remained invariant whereas many others have shown

great variability. Hereby, a brief summary of these studies is provided.

4.2.1 Invariance with respect to Human Mental Processes

Consequent to the Feedback Onset

In one-dimensional cursor control using motor-imagery-based BCI (based on modulation of

mu and beta rhythms) [133], it has been shown that the difference waveform is characterized

by a positive potential centered at the vertex peaking around 180 ms. Despite that the

cursor was required to be moved incrementally towards the goal, the error and correct

trials were defined solely based on the correctness of the final destination. In quite similar

experiments [134], the motor-imagery-based interface was simulated by keyboard presses

and each intermediate step towards the goal was labeled either as a correct or erroneous

trial. The time-locked difference waveform to cursor movements was shown to have a sharp

negative peak after 250 ms (N2) followed by a positive peak after 320 ms (P3) and a second

broader negative peak after 450 ms (N4). These peaks/components clearly differ from those

in [133], and this difference can be attributed to the different mental processes required

to evaluate whether or not a cursor arrives at the target goal and whether or not it just

moves towards it [140]. Similarly, in experiments where subjects observed and evaluated

the movements of a virtual device towards cued goals, Iturrate et al. [63] have shown that

slight changes in the performed tasks lead to a statistical difference in the latencies of

observation ErrPs components. The tasks differed only in the way the virtual device moved

with respect to a cued goal (either with incremental steps in a horizontal and vertical grids

or with a single jump). The observed signal variations were shown additionally, to make

it difficult for a classifier trained with data from one task to straightforwardly transfer to

other ones. Yet, recalibration and adaptation of the learned classifier (by adapting the

means of correct and incorrect trials to the new task) provided fairly good results when a
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few training examples were available for the new task [63].

On a different vein, some variability in the different grand average waveforms can

be observed across the different hybrid P300-ErrP systems, where different feedback

presentation methods have been deployed. For instance, the feedback about the estimated

character of interest in [145] was presented in the area above the P300 matrix. The observed

grand average difference waveform at the Cz site exhibited a negative peak around 300 ms

and a later positivity around 400 ms. In an attempt to avoid ocular artifacts that accompany

this style of feedback, authors in [140, 143, 146] adopted a central feedback presentation,

whereby the selected character was shown overlaid at the center of the spelling matrix,

1 second or more after the row-column flashing is stopped. The central feedback strategy

was also employed in a modified way in [141], where the character presentation is preceded

by a presentation of an empty square at the center of the display aiming at attracting

the user visual attention to that spot before the estimated character is presented at the

same location on the display. This way, ocular artifacts can be further minimized. The

observed grand average difference waveform at Cz for a group of healthy subjects was

characterized by a negativity at around 348 ms and a later positivity at around 465 ms [141].

Alternatively, the feedback in [147] was done by replacing all the matrix elements with the

estimated one.

It can be observed from this short review of the available hybrid P300-ErrP systems

that the main concern of designing the feedback presentation was to avoid possible ocular

artifacts that accompany the onset of the feedback. However, we argue that changing the

way feedback was presented led also to different mental processing of the feedback stimulus,

and therefore observed ErrPs signals varied as a byproduct. For instance, the central

feedback, when used in language spelling tasks, requires that the users remember (though

for a very short time) the last character, to which they attended, and compare it with the

estimated one. Users may not need to perform this comparison (or even memorization)

when the replacement feedback in [147] is used, since in this case a change of the letter

at the attended place in the P300 matrix simply means that the interface made an error.

Additionally, one can observe a great discrepancy in the two grand average difference

waveforms in [141] and [147] (polarities of the different peaks in the two signals appear to

be reversed).

4.2.2 Invariance with respect to Subjects, Time and Pre-processing

of Continuous EEG Data

Iturrate et al. [148] have shown that despite existing inter-subject variability with respect

to the non-stationarity of EEG, spatio-temporal filtering revealed stable and invariant

features across subjects. Correct responses were found additionally to enjoy less variability

across subjects when compared to error responses. In [141], no significant difference in the

peak latency of interaction ErrPs has been observed across the groups of healthy subjects,

subjects with motor impairment and subjects diagnosed with ALS.

With respect to time, Ferrez et al. [134] have shown interaction ErrPs potentials to be

stable as the average waveforms and scalp topographies remained similar for two recordings

spaced about three months.
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Obviously as well, the way the continuous EEG data is pre-processed leads to different

average ErrPs waveforms and scalp topographies, and the way features are extracted

therefrom affects the obtained classification accuracies. For instance, it has been shown

in [63] that most discriminability between error and correct trials comes from fronto-central

electrodes when extracted trials were filtered with spatial ICA and otherwise from frontal

electrodes. Furthermore, advanced spatial and spatio-temporal filtering methods were used

to enhance SNR and proved to increase classification accuracy in [132, 149].

4.3 Material and Methods

In order to examine the different sources of invariance/variability a series of experiments

were conducted. The experimental design for each of the experiments is described in the

following subsections, and a summary that relates the respective tasks and explains the

reasons behind their choice will be presented in Sec. 4.3.2

4.3.1 Subjects

A total of 12 healthy adults (4 female) aged 27.7 ± 5.6 (range 19 − 39) served as paid

volunteer subjects in this study. S10 was left-handed and all subjects except S2 had normal

or corrected-to-normal vision. S2 had extreme hyperopia in the left eye. Subject S11

was excluded from the study for not being able to use the P300 speller. During these

experiments, the participants were seated 0.7 m away from an LCD monitor on a comfortable

armchair in a slightly dimmed room. All participants gave their written informed consent.

Participants were additionally asked to fill in pre- and post-questionnaires, that were meant

to collect data about the level of tiredness before and after the experiment in addition to

some demographical data.

Scalp EEG signals were recorded from 28 electrodes positioned according to the interna-

tional extended 10-20 electrode system at F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6,

T7, C3, Cz, C4, T8, CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8, PO7, POz and PO8

as shown in Fig. 4.2. Similar to [150], the horizontal EOG (HEOG) was obtained from

electrodes F9 and F10 whereas the vertical EOG (VEOG) was recorded from FP2 and an

additional electrode placed directly below the right eye. EEG and EOG electrodes were

referenced to the right earlobe and the ground electrode was positioned at FPz.

EEG and EOG data were measured with sampling rate of 256 Hz at full DC using

g.USBamp acquisition system (g.tec medical engineering GmbH, Schiedlberg, Austria). All

electrodes were filled with highly conductive gel in order to reduce impedance. Participants

were free to move their eyes during the recordings, but were instructed to reduce all

unnecessary muscular activity.

4.3.2 Experimental Paradigms

Participants visited the laboratory on three separate occasions spaced few days apart, and

completed one experiment per visit. Each experiment consisted of multiple sessions, where

each session lasted around 11 min. Since it is important to maintain a high attention
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Figure 4.2: EEG/EOG electrode placement.
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Figure 4.3: System overview showing the main hardware and software modules used in the
experimental setup. Recording and stimulation were done on the same machine
for experiment I.

level during task operation, breaks were given between sessions and subjects were free to

stop a recording session at any time if they felt tired. Each experiment lasted for around

2 hours, including the preparation and break times. Break times varied between subjects

and therefore number of recorded sessions and trials varied across subjects. Participants

performed experiment I on the second visit, and the order of the remaining two experiments

was counterbalanced across participants. Additionally, in order to examine the invariance

vs. variability of ErrPs over time, some participants were invited to revisit the lab for

additional times, where they performed one or more experiments for a second or third

time. In all experiments, participants were instructed to mentally evaluate the interface

actions as correct or erroneous. Fig. 4.3 shows the main modules used for the experimental

setup in all three experiments, where the acquisition of the data and offline processing was

facilitated with Simulink/MATLAB software (MathWorks, Massachusetts, United States).

Visual stimulation in the different experiments was provided with a conventional LCD

monitor.

Experiment I: Keyboard-mediated Ball Game Task

Very similar to [134], participants were instructed to use the left and the right arrow

keyboard keys in order to move a ball towards a hole (respectively the sphere and the

rectangle in Fig. 4.4), where both were aligned to the same horizontal line at the middle of

the display. Each game run started with the ball randomly placed 5 steps away from the

hole, either to the right or to the left with equal probabilities. Following each key press

issued by the participant, the ball moved one step in the direction of the pressed key with

a probability of 80% and in the other direction with the remaining probability. In order to

isolate motor-related potentials due to key presses from potentials following the feedback

presentation, the ball appeared in the new location τ s after each key press, where τ is

uniformly drawn in the interval [0.9, 1.1] s. Immediately after key presses, the color of the

ball turned from green into red, indicating that further key presses will be ignored and the

ball remained red for a period of 2 s. Subjects were instructed not to try to interact with
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Figure 4.4: Key events in the keyboard-based interaction experiment. At time t1, the user
presses the key which brings the ball towards the hole (left key in the shown case).
In the next display frame, the ball turns red and stays in place for a duration
randomly drawn from the interval [0.9, 1.1] s. Afterwards at t3, the ball moves one
step either to the right or the left according to user input and the error random
generation. The ball remains inactive (red) after this movement till t4. Shown is
the correct case here and therefore EEG data time-locked to t3 is considered a
correct trial (noErrP). Note that t4 − t1 = 2 s.

the ball during this time. Once the ball reached the hole, a new game run was started after

2 s. Each subject finished multiple sessions and depending on the individual interaction

pace, each session consisted of a varying number of runs and consequently a varying number

of ErrP/noErrP trials.

Experiment II: P300-based Interaction with Central Feedback

A training session for P300 was first performed in copy spelling row-column flashing mode

using the 6x6 spelling matrix, shown in Fig. 4.5 containing the alphanumerals. During

this session, which lasted around 4 minutes (flashing of the first character started always

after around one minute), users were instructed to copy spell 5 characters, with each new

character cued for a short time before flashing starts. A full flashing sequence per character

consisted of 16 repetitions, where in each repetition all rows and columns were flashed in

a random order. In every flashing, a row or a column was highlighted on the screen for

100 ms, and the time between two consecutive flashes was set to 183.34 ms. An ML-LDA

classifier was learned from this training session and was later used to estimate the hidden

user intentions in the following online P300 sessions. In order to facilitate the acquisition

of ErrP and noErrP training examples in the online P300 sessions, we have designed a

simple mathematical task, wherein participants were instructed to attend to the maximum

number in a 5x5 P300 matrix (example is shown in Fig. 4.6).

The P300 matrix in every new trial was filled with new random numbers, generated so

all of them except one, were either 1 or 2-digit numbers. The remaining number, which

was the maximum, consisted of 3 digits. Participants were informed about the fact that
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Figure 4.5: The alphanumerals P300 spelling matrix used in training sessions.

only one number consisted of 3 digits. This renders the mathematical task very simple or

rather reduced to a simple visual search task, where the possibility a user makes a mistake

by him/herself is minimized or rather nulled. Every ErrP/noErrP trial started with a

new set of numbers randomly drawn and distributed within the P300 matrix, so that the

location of the target maximum number was changed with every new trial. The update

of the P300 matrix was facilitated by the XML interface described in [151]. In order to

collect as many labeled ErrP and noErrP trials as possible, the flashing sequence in each

trial was restricted in most cases to two repetitions. The accuracy of spelling, however, was

monitored throughout the different sessions and the number of repetitions was sometimes

modified to keep a relatively balanced number of ErrP and noErrP trials for each subject.

After a decision was made about the user intent in the online P300 sessions, flashing was

stopped and the mask was completely emptied for a duration of one second. Then, an

empty square was shown at the center of the display for one second, aiming at directing the

user’s gaze to this location [141]. The estimated user intent (number) was shown afterwards

inside the square for another second. The time between the end of the last flash and the

presentation of the estimated number was therefore 2 seconds. Fig. 4.6(a) shows the key

events in a single ErrP/noErrP trial. Each subject underwent a different number of sessions,

each consisted of a different number of ErrP/noErrP trials.

Experiment III: P300-based Interaction with Inplace Feedback

This experiment shared all details of experiment II except the way the feedback was shown

to users. Hereby, the mask remained displayed after flashing was stopped for 2 s and the

estimated number was then highlighted for 1 s with a red square as shown in Fig. 4.6(b).

After highlighting the estimated number, the P300 matrix was updated with a new set of

random numbers.
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(a) Central feedback presentation (Experiment II)

(b) Inplace feedback presentation (Experiment III)

Figure 4.6: Key events in experiments II and III.

Summary of the Experiments

Experiments II and III differ with respect to the feedback presentation and consequently

lend themselves to examining invariance/variability of interaction ErrPs during P300-

mediated interaction with respect to the different mental processes required to assess correct

and incorrect interface actions. The reasons the maximum number task was introduced

in these experiments are threefold. Firstly, this task requires no memorization of the last

attended letter at the time of feedback onset as it is the case in spelling P300 applications

with central feedback. Secondly, the task allows to collect ErrP/noErrP trials without

relying on copy spelling and sham feedback modes. Thirdly, with the continuous updating of

the P300 matrix, the task simulates the case of interacting with an adaptive P300 interface,

which updates its contents based on the current context in a dynamic environment. This is

of high importance to immersive robotic BCI applications (chapter 5).

Both experiments differ from experiment I with respect to the user input (keyboard

vs. P300), where we also introduced about 1 s delay between the user input and the

feedback onset in experiment I and 2 s in experiments II and III. The main difference,

however, in our understanding is the mental processing required to assess the movement of

the ball in experiment I compared to the processing of the central and inplace feedback

in the P300-based interaction. As will become more clear in the following sections, both

experiments I and II require a comparison step to assess the interface actions, which is

absent in experiment III. Additionally, the presence of EOG artifacts that accompany

feedback onset in experiment I will be useful to understand the effect of these artifacts

in experiments I and III. These interrelations of the performed experiments can provide
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more insights about the observed variability in ErrPs signals with respect to the mental

processing that takes place after the feedback onset.

4.3.3 Analysis of Interaction ErrP Invariance and Variability

We base our analysis on the grand average of the correct and error potentials, to which

we will refer as as the GAC, GAE respectively. The grand average difference waveform is

simply the difference between GAE and GAC waveforms, and is referred to as GAD. The

average waveforms are mainly computed from epochs time-locked to the feedback onset and

plotted for a period of 1.5 s, i.e 0.5 s pre-stimulus and 1 s post-stimulus. In Appendix A,

we reproduce the same waveforms for a period of 6 s centered around the time of feedback

onset, i.e. 3 s pre-stimulus and 3 s post-stimulus. We chose this relatively long temporal

epochs (when compared to other studies in the literature) to demonstrate the signal-to-noise

ratio (SNR) of the obtained ErrP signals and other ERPs which can also be observed

preceding and following the feedback onset (at t = 0). All waveforms will be shown for

either the frontocentral electrode FCz or the vertex (i.e. Cz), as it is a common practice

to do so and since the ERN is believed to have a frontocentral distribution [131]. Unless

explicitly specified otherwise, the waveforms are computed for the epochs extracted from the

pre-processed EEG data, where the continuous EEG data was first bandpass-filtered in the

range 1−10 Hz and then re-referenced to the common spatial average (i.e. the spatial mean

was subtracted from each channel). The post-stimulus data in each epoch was corrected for

baseline computed from the pre-stimulus data. The noisy trials, in which the EEG and

EOG amplitudes surpassed certain thresholds, were excluded from the computation, aiming

at preventing strong artifacts from appearing in the average signals. Additionally, the

signed r2 discriminability test is performed to highlight the spatial and temporal sources of

variance between correct and error trials in the different experiments/tasks.

4.3.4 P300 Feature Extraction and Classification

The P300 feature extraction and classification pipeline is adopted from [152]. Hereby, only

a subset of the EEG electrodes (Fz, Cz, P3, Pz, P4, PO7, POz and PO8) were used for

P300 classification during experiments II and III. The continuous raw data from these

8 electrodes were first notch-filtered at 50 Hz, bandpass-filtered in the range (0.5− 20 Hz)

and downsampled to 64 Hz. Event-locked EEG epochs of 700 ms duration were extracted

from the pre-processed continuous data after the onset of each target/nontarget flash.

Features per electrode were obtained then by correcting these epochs for 100 ms pre-

stimulus baseline followed by downsampling with a factor of 3. Features from the selected

subset of electrodes were finally concatenated to form the labeled feature vectors (with a

resulting dimensionality of 120). Each training session produced respectively around 160

and 800 target and nontarget training trials, which were used to train an ML-LDA classifier.

In online sessions, feature vectors were obtained with the same pre-processing and feature

extraction pipeline, where the unknown label of each feature vector was estimated with the

learned classifier. Noteworthy here is that we did not aim at optimizing the accuracy of the

P300-based interaction during the performed experiments, but rather at collecting as many

ErrP/noErrP single trials as possible, with a reasonable number of flashing repetitions.
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4.4 Experimental Results

4.4.1 Experiment I

The GAC, GAE and GAD for experiment I are shown in Fig. 4.7(a). The GAD exhibits an

early negativity around 280 ms (N2) followed by a positivity around 340 ms (P3) and a

later wider negativity around 460 ms (N4). By comparing the GAE and GAC waveforms, it

becomes clear that these three deflections (especially P3 and N4) are specific to error trials.

The GAD waveform is also plotted in Fig. 4.8(a) alongside the GAD waveform obtained

with the similar experiment in [134]. A considerable shift (around 20 ms) can be observed

between the different peaks obtained in the two studies.

Furthermore, since the direction of the correct ball movement in experiment I was

randomly alternating between the right and the left direction with each new run, correct

and incorrect trials for these two conditions obviously resulted in different HEOG artifacts as

can be seen in Fig. 4.9. This discrepancy in the HEOG signals, however, did not propagate

to the electrode site FCz, as one can hardly observe any difference in the GAD waveforms

computed separately for the two conditions. These results are in agreement with [134].

4.4.2 Experiment II

The GAD waveform at FCz, plotted in Fig. 4.7(b), is characterized with a negative peak at

around 320 ms and a later positive peak at around 420 ms. Comparing the GAE and GAC

waveforms reveals that these two deflections are specific to error trials. The GAD is also

computed at Cz and compared to the results in [141, 146] in Fig. 4.8(b), where a difference

in the latency and amplitude of the different peaks can be observed.

4.4.3 Experiment III

The GAD waveform at FCz, plotted in Fig. 4.7(c), is characterized by a negative peak at

around 250 ms and a later positive peak at around 380 ms. These two deflections are a

result of a small delay that can be noticed between the components of the GAE and GAC

waveforms, which in turn can be attributed to the extra time required to notice the flash

on the screen in case of error trials. The activity at the FCz site after t = 0 cannot be

explained by the ocular artifacts that accompany errors, since similar activity is observed

in correct trials where no eye movement is required. This can be easily seen by comparing

the GAE and GAC signals. Additionally, it is expected that the ocular artifacts which

accompany eye movement in case of errors to disappear as a result of averaging, since

eye movements can be from any place to any other one on the P300 matrix. The ocular

artifacts have been shown in the results of experiment I, even when these artifacts were

more consistent within left and right trials, not to affect the respective GAD waveform at

the FCz site.
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Figure 4.7: The GAC, GAE and GAD waveforms were computed from the average of all
subjects and recordings for all experiments.
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Figure 4.8: Comparison of the obtained GAD waveforms with reported averages in the literature.
(a) The GAD waveform at electrode FCz obtained with experiment I is compared
to the GAD reported in [134]. There is a considerable shift between the two signals,
but the shape remains very similar. The GAD is also shown when computed for
detrended raw data, where it shows that the peaks observed for the raw data is
closer to the ones in [134]. (b) The GAD waveform at Cz obtained from the data
of experiment II, compared to the GAD in [141, 146].
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Figure 4.9: The GAD waveforms computed for from the left and right trials in experiment I at
the electrode site FCz and for HEOG.
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4.5 Discussion

4.5.1 Invariance with respect to Human Mental Processing of

Interface Actions

In the previous section, we have compared the GAE and GAC waveforms to reason about the

observed components in the GAD waveform for each experiment. In this section, we compare

the GAC and GAE waveforms across experiments to reason about the variability/invariance

in the computed GAD waveforms. To this end, figures 4.10(a), 4.10(b) and 4.10(c) rearranges

the GAE, GAC and GAD waveforms from Fig. 4.7 and plots them over experiments.

Experiment II vs. III

Both the GAD waveforms of experiment II and III are characterized by a negativity and a

later positivity. So far, we have seen that not only the timing of the two deflections was

different, but also their relation to the time course of the GAC and GAE waveforms. In

experiment II, the two deflections were specific to error trials, whereas in experiment III,

the deflections appeared as a result of the time delay of processing the error trials relative

to the correct ones. With respect to mental processing of the interface actions (signaled

to users by the feedback), no comparison whatsoever is necessary to assess whether these

actions were correct or not in case of experiment III, as noticing that the visual feedback

is not shown on the previously attended place on the P300 matrix is sufficient to realize

that an error has occurred. Should the central method be used for feedback presentations

as in experiment II, the subjects need to test whether the presented number was a 3-digit

number or not. Obviously, the two feedback strategies required different mental processes

to arrive at a decision whether the estimated number is correct or not, and this might

explain the observed discrepancy in the GAD signals in Fig. 4.10(c). This discrepancy in

the mental processing of interface actions manifested itself in a larger difference in the GAE

waveforms across experiments when compared to the difference in the GAC waveforms, as

can be seen from Figs. 4.10(a) and 4.10(b).

Experiment I vs. II

So far, we have seen that the deflections in the GAD waveforms of both experiments I and

II are a result of similar deflections which were specific to incorrect trials. Additionally,

one can observe in Fig. 4.10(a) a considerable similarity between the GAE of experiments I

and II, which can be explained by the fact that both require a comparison step after the

feedback onset, whereas this step is not required in experiment III.

Summary

Altogether, the observed invariance/variability in the GAE, GAC and GAD waveforms can

be attributed to differences in the mental processing required to assess interface actions.
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Figure 4.10: The GAE, GAC and GAD waveforms for the three experiments.
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Therefore, different studies and the results obtained therefrom should be carefully compared,

and a similarity in the GAD waveform should be always confirmed with respect to the

separate averages of error and correct trials. It would have been certainly misleading to

just show the similarity of GAD waveforms in experiments II and III, or to claim that the

late N4 component is specific to experiment I.

4.5.2 Invariance and Variability in ErrPs over Time

Fig. 4.11 shows the GAD computed for some selected participants who completed one

experiment or more for multiple times. Obviously, these plots show that the different

components of ErrPs are empirically invariant over time for the same experiment/interface.

This observation which is valid for all our three interfaces agrees with [134], who showed

the same using an interface very similar to the one in experiment I. The SNR of the ErrPs

per subject and per interface can also be seen quite stable over time.

4.5.3 Invariance and Variability in ErrPs with respect to Subjects

Fig. 4.12 shows the GAD waveforms for all subjects in experiment I. One can observe

inter-subject variability with respect to the amplitudes and SNR of the different deflections,

whereas the timing of the different deflections seems to be consistent across subjects.

4.5.4 Invariance and Variability in ErrPs with respect to

Pre-processing

In order to show how the pre-processing stage affects the obtained signals, we have introduced

a simple modification to our pre-processing pipeline, whereby the grand average waveforms

were also computed for all the EEG epochs extracted from the raw data of experiment

I. These epochs were linearly detrended to remove the DC offset. The resulting GAD

at FCz is shown in Fig. 4.8(a), suggesting that the relative shift and discrepancy of the

amplitude values between our waveform and that in [134] can be attributed to a difference

in the filtering stage or some other pre-processing details. In fact, the temporal filtering

introduces time shifts in the data, and spatial mean subtraction reduces the amplitude of

the observed deflections. Similarly, the discrepancies between our GAD waveform and those

of [141, 146] for experiment II plotted in Fig. 4.8(b), can be attributed to differences in the

pre-processing pipelines. However, one cannot rule out the contribution of the different

mental processing to these discrepancies, as the maximum number and the language spelling

tasks could have required different mental processing to assess interface actions.

Furthermore, the results for the signed r2 discriminability test performed for the two

classes (ErrP vs. noErrP) problem is shown for the different experiments in Fig. 4.13. The

test was performed twice. Firstly, with the trials extracted from the continuous EEG data,

immediately after the step of the bandpass filtering. The second run was performed with

the trials extracted from the continuous EEG after bandpass filtering and spatial mean

subtraction (SMS). In both cases, noisy trials were removed by checking the EEG and

EOG amplitudes, and therefore the only difference between the two runs was the step of

the spatial mean subtraction. The plots show that, for all experiments, the discrimination
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Figure 4.11: Examples of the GAD waveforms computed for the different experiments for
some subjects who performed one experiment or more on multiple occasions.
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Figure 4.12: The average difference computed for all subjects in experiment I.

power between the ErrP and noErrP trials is temporally concentrated in the first second

after the feedback onset.

4.5.5 Effects of Variabilities on the Classification of ErrPs

Feature Extraction and Classification

The nature of the observed ErrP signals guided the feature selection process. Hereby, EEG

epochs were extracted as previously explained and features per electrode were obtained

from downsampled post-stimulus data in the range [τ1, τ2]. Downsampling is achieved with

averaging every 8 samples. Feature vectors were then obtained by concatenating features

from 5 midline electrodes (Fz, FCz, Cz, CPz and Pz), leading to a dimensionality of 135,

for [τ1, τ2] = [0.15, 1] s. Shrinkage-LDA (see Sec. 2.4.2) was adopted to separate the correct

(noErrP) and incorrect (ErrP) trials, assuming that the two classes differ only in their mean

values.

Classification Results

A 10-fold cross-validation was used to evaluate the performance of the shrinkage-LDA

classifier in predicting the noErrP and ErrP trials obtained during the different experiments.

The results for each subject and per class are shown in table 4.1 for τ1 = 0.15 s and

τ2 = 1.0 s. In order to better estimate the classification accuracy in online sessions, all

extracted trials, including the ones with strong artifacts, were used for the classifier training

and testing. The numbers of trials for each class per subject and per experiment are listed

in table 4.2. The average accuracies are comparable with other results obtained with other

interaction ErrPs studies. However, according to [153], most of these studies, including this

one, involve a rather small number of subjects, and therefore performance differences might

be a consequence of inter-subject variability.

Table 4.3 shows the classification accuracy of the shrinkage-LDA trained with data

obtained from one experiment on one day, and applied to data from the same experiment

on other days. The table only shows the results for the subjects who performed one or more
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Figure 4.13: Results for the signed r2 test when (left) bandpass filtering was used for pre-
processing and (right) when bandpass filtering and spatial mean subtraction were
used in the pre-processing step.
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Table 4.1: Mean classification accuracy

Subject Class Experiment I Experiment II Experiment III
S1 ErrP 0.76 ± 0.09 0.84 ± 0.13 0.78 ± 0.21

noErrP 0.90 ± 0.03 0.80 ± 0.13 0.81 ± 0.15
S2 ErrP 0.80 ± 0.10 0.83 ± 0.17 0.87 ± 0.06

noErrP 0.90 ± 0.04 0.86 ± 0.10 0.89 ± 0.10
S3 ErrP 0.58 ± 0.10 0.87 ± 0.17 0.95 ± 0.09

noErrP 0.71 ± 0.05 0.84 ± 0.10 0.86 ± 0.11
S4 ErrP 0.57 ± 0.05 0.91 ± 0.04 0.88 ± 0.09

noErrP 0.68 ± 0.04 0.85 ± 0.14 0.82 ± 0.17
S5 ErrP 0.66 ± 0.08 0.56 ± 0.14 0.62 ± 0.12

noErrP 0.77 ± 0.05 0.45 ± 0.15 0.57 ± 0.18
S6 ErrP 0.70 ± 0.11 0.85 ± 0.13 0.71 ± 0.13

noErrP 0.90 ± 0.02 0.65 ± 0.15 0.65 ± 0.19
S7 ErrP 0.73 ± 0.09 0.74 ± 0.13 0.85 ± 0.09

noErrP 0.76 ± 0.05 0.82 ± 0.08 0.90 ± 0.07
S8 ErrP 0.78 ± 0.09 0.75 ± 0.14 0.88 ± 0.08

noErrP 0.89 ± 0.03 0.68 ± 0.15 0.87 ± 0.06
S9 ErrP 0.66 ± 0.09 0.79 ± 0.09 0.87 ± 0.06

noErrP 0.80 ± 0.03 0.65 ± 0.11 0.88 ± 0.12
S10 ErrP 0.81 ± 0.04 0.73 ± 0.07 0.78 ± 0.08

noErrP 0.89 ± 0.03 0.63 ± 0.17 0.69 ± 0.12
S12 ErrP 0.82 ± 0.11 0.80 ± 0.17 0.82 ± 0.17

noErrP 0.90 ± 0.02 0.77 ± 0.09 0.88 ± 0.10
S1(day 2) ErrP - 0.72 ± 0.10 0.85 ± 0.08

noErrP - 0.69 ± 0.12 0.83 ± 0.11
S1(day 3) ErrP - 0.83 ± 0.13 -

noErrP - 0.81 ± 0.10 -
S3(day 2) ErrP - - 0.86 ± 0.08

noErrP - - 0.88 ± 0.06
S4(day 2) ErrP 0.57 ± 0.09 - 0.89 ± 0.05

noErrP 0.67 ± 0.05 - 0.92 ± 0.05
S5(day 2) ErrP - - 0.73 ± 0.13

noErrP - - 0.67 ± 0.14
S7(day 2) ErrP - 0.74 ± 0.18 -

noErrP - 0.93 ± 0.04 -
S12(day 2) ErrP 0.76 ± 0.07 0.79 ± 0.08 -

noErrP 0.92 ± 0.02 0.76 ± 0.09 -
S12(day 3) ErrP 0.76 ± 0.06 - -

noErrP 0.88 ± 0.03 - -
mean ErrP 0.71± 0.09 0.78± 0.08 0.82± 0.08

noErrP 0.83± 0.09 0.75± 0.12 0.81± 0.11
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Table 4.2: Number of extracted trials written in the form (Number of incorrect trials/Total
number of trials). Percentage of incorrect to total trials is shown in parentheses.

Subject Experiment I Experiment II Experiment III
S1 274/1315 (20.8%) 68/149 (45.6%) 62/125 (49.6%)
S2 228/1099 (20.7%) 71/149 (47.7%) 77/191 (40.3%)
S3 273/1382 (19.8%) 64/139 (46.0%) 111/186 (59.7%)
S4 337/1664 (20.3%) 164/245 (66.9%) 85/147 (57.8%)
S5 262/1381 (19.0%) 135/215 (62.8%) 152/248 (61.3%)
S6 340/1675 (20.3%) 124/191 (64.9%) 119/190 (62.6%)
S7 277/1432 (19.3%) 81/250 (32.4%) 88/278 (31.7%)
S8 285/1539 (18.5%) 174/295 (59.0%) 122/289 (42.2%)
S9 327/1532 (21.3%) 194/294 (66.0%) 190/313 (60.7%)

S10 307/1611 (19.1%) 212/331 (64.0%) 241/323 (74.6%)
S12 170/760 (22.4%) 111/211 (52.6%) 87/277 (31.4%)

S1(day 2) - 174/341 (51.0%) 162/309 (52.4%)
S1(day 3) - 174/338 (51.5%) -
S3(day 2) - - 156/326 (47.9%)
S4(day 2) 313/1408 (22.2%) - 178/333 (53.5%)
S5(day 2) - - 184/302 (60.9%)
S7(day 2) - 66/286 (23.1%) -

S12(day 2) 296/1594 (18.6%) 187/433 (43.2%) -
S12(day 3) 290/1469 (19.7%) - -

experiments for multiple times. Despite the reduction in obtained accuracies, these results

reemphasize our belief that ErrPs are empirically invariant to some extent over time for

the same experiment/interface, which has been previously supported by the similar GAD

waveforms in different days. On the other hand, when a classifier was learned from the

data of one experiment and applied on data from another one, the classification accuracies

were very close to random levels.

Table 4.4 shows the classification accuracy of the shrinkage-LDA when tested on the data

of each subject and trained from the data of all other subjects for each experiment. The

obtained accuracies are inferior to those in table 4.1, but they are clearly above chance-level

on average and for most subjects, and therefore they suggest that stable features across

subjects can be obtained, even with a simple pre-processing pipeline like the one we used

in this work.

The relative robustness of the shrinkage-LDA classifier for all experiments/interfaces

over time, rules out the possibility that the obtained chance-level classification accuracy

of the shrinkage-LDA classifier, when trained with data from one experiment/interface

and tested on a different one, was due the fact that the different interfaces were used on

different days. Given that we used the same pre-processing and trial extraction pipeline for

all experiments, this observation strengthens our belief that the discrepancies in the GAE,

GAC and GAD waveforms for the different interfaces are a result of the different mental

processes needed to evaluate the interface actions. Additionally, the GAD waveforms plotted

throughout this work were mainly the difference between the means of ErrP/noErrP classes,
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Table 4.3: Mean classification accuracy for classifiers trained on one day and tested on a
different one.

Experiment Subject Training day Testing day ErrP noErrP
I S4 day 1 day 2 0.53 0.71

S12 day 1 day 2 0.69 0.93
S12 day 1 day 3 0.47 0.93
S12 day 2 day 3 0.60 0.90

II S1 day 1 day 2 0.47 0.83
S1 day 1 day 3 0.57 0.86
S1 day 2 day 3 0.74 0.75
S7 day 1 day 2 0.77 0.86
S12 day 1 day 2 0.79 0.68

III S1 day 1 day 2 0.69 0.75
S3 day 1 day 2 0.88 0.75
S4 day 1 day 2 0.70 0.85
S5 day 1 day 2 0.69 0.59

Table 4.4: Accuracies of LDA classifier tested on each subject when trained from data of all
other subjects.

Experiment I Experiment II Experiment III
Subject ErrP noErrP ErrP noErrP ErrP noErrP
S1 0.83 0.76 0.84 0.41 0.81 0.30
S2 0.84 0.80 0.87 0.51 0.81 0.74
S3 0.55 0.73 0.77 0.49 0.82 0.85
S4 0.35 0.81 0.75 0.80 0.86 0.61
S5 0.43 0.81 0.53 0.47 0.57 0.53
S6 0.48 0.90 0.82 0.37 0.83 0.37
S7 0.75 0.54 0.65 0.64 0.76 0.86
S8 0.74 0.78 0.64 0.70 0.53 0.87
S9 0.57 0.83 0.78 0.44 0.95 0.61
S10 0.86 0.79 0.59 0.59 0.83 0.49
S12 0.79 0.82 0.50 0.88 0.63 0.82
mean 0.66 0.78 0.70 0.57 0.76 0.64
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i.e. µ1 −µ2. Recall that for classification, we assumed that the two classes differ only with

respect to their means. The differences observed in GAD, GAE and GAC waveforms across

experiments, suggest that one needs to at least recalibrate trained classifiers for the new

means, which requires to acquire new training examples. The effectiveness of recalibration

with respect to the mean values has been already shown in [63].

4.6 Conclusions

Interaction ErrPs are special EEG manifestations of user’s awareness of the incidents, at

which the interface fails to recognize his/her intention in a first stage selection. As such,

detecting signatures of interaction ErrPs in the brain activity after feedback presentations

might be used to (in-)validate previous selection. By considering three different noisy

interfaces, this chapter has analyzed the invariance vs. variability of interaction ErrPs

with respect to: (1) the mental processes required to assess interface actions (2) time (3)

subjects and (4) the pre-processing of the raw EEG data.

With a fixed pre-processing pipeline for all experiments, it has been shown that the

interaction ErrPs for each experiment enjoyed invariance to some extent across subjects

and over time. This invariance in turn resulted in a relative robustness of the shrinkage-

LDA classifier across subjects and over time. On the other hand, the mental processes

which are required to assess interface actions were shown to highly affect the observed

interaction ErrPs. This has been supported by the differences in the observed GAC, GAE

and GAD waveforms across interfaces/experiments. The observed variability with respect

to the respective mental processes has also been shown to make it difficult for a classifier

learned from the data of one experiment/interface to straightforwardly transfer to other

experiments/interfaces. In particular, despite the similarity of the GAD waveforms in

experiments II and III, where subjects performed exactly the same task but with different

feedback presentation methods, shrinkage-LDA classifier which was learned from data of

one experiment showed chance-level accuracies when tested on data from the other interface.

Again, this proves the sensitivity of the ErrPs to the nature of the mental processing of

correct and incorrect interface actions, which takes place immediately after the feedback

onset.

Hereby, we didn’t try to compare the many existing advanced spatial and spatio-temporal

filtering methods that enhance the SNR of the ErrPs. But using a simple alteration of

the pre-processing pipeline, we have shown that great variability can be introduced with

respect to the timing and amplitude of the different components of interaction ErrPs. In

summary, the main source of variability in the different interaction ErrP studies (including

ours) was found to be the different mental processing required to assess interface actions.

Conversely, given two interfaces which require the exact mental processing after feedback

onset in correct and incorrect trials, our results suggest that any discrepancy with respect

to the amplitude and latency of the different ErrP components are most likely caused

by inter-subject variability, the non-stationarity of the EEG data or differences in the

pre-processing pipeline. These discrepancies propagate as well to the classification step and

affect the obtained accuracies.

Some relevant observations about the different sources of invariance can be found
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scattered in different studies of related work. To our knowledge, this is the first time such

invariance analysis is carried out for interaction ErrPs to this scale. This undoubtedly

helps to extend the understanding of the different sources of invariance and variability

in observed average ERPs across tasks and across different studies, which in turn might

guide the design of transferable classifiers. In this regard, we have provided a sensible

explanation to the necessary recalibration of class means for classifiers to transfer well across

different interfaces, should these interfaces differ with respect to the mental processing of

the feedback. The novel inplace presentation method, introduced in this work, has proven

its adequateness as an alternative strategy for feedback in hybrid P300-ErrP systems.

Assessing interface actions with this method boils down to assessing the correctness of

the highlight location on the P300 mask, regardless of the nature of the application under

consideration. This can be of great importance to adaptive interfaces, where the meaning

of the interface elements change over time. On the contrary, the popular central feedback

strategy might require application-specific assessment processes, since the feedback itself is

application-specific. For instance, feedback of estimated letters in spelling tasks requires

to assess if these letters match the previously attended ones and giving feedback in the

max number task (introduced in this work), requires to assess if the shown numbers are

composed of three digits. However, these claims need to be empirically tested in further

research.

Despite the concrete results which we have found in this work, many aspects thereof

still can be improved. As previously discussed in chapter 2, the peaks and troughs in

observed ERPs do not have simple one-to-one mappings to the underlying source activity

in the brain, and this is the main reason we did not try to give any interpretation to the

observed peaks in the different experiments/interfaces. It might be beneficiary, therefore,

to explore the different existing spatial and spatiotemporal filtering techniques to reveal

possible source activity. Analyzing invariance and variability at the level of source activity is

more fundamental to understand the discrepancies between the different mental assessment

processes of interface actions.

Additionally, the problem of integrating interaction ErrPs in hybrid SSVEP-ErrPs

systems has not been addressed so far. Since interaction with SSVEP happens usually in a

faster rate than with P300, considering ErrPs within SSVEP-based interaction might bring

some overhead, as it is required to block other stimulation (to reduce noise) around 1 s

post-feedback in order to observe single trial ErrPs.
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5 Adaptive BCIs for Robotic Embodiment

So far, the focus was laid upon advancing BCIs in a way that is relevant to many application

fields. In particular, we aimed at increasing the rate of correct detections (chapter 3) and

integrating interaction ErrPs into BCIs as a validation stage (chapter 4). In the present

chapter, our focus is turned to the specifics of BCI applications in immersive robotic

embodiment systems and the challenges inherent to them.

Fig. 5.1 depicts a schematic of a closed loop BCI-based immersive robotic embodiment

system. Users continuously receive perceptual feedback from their robot avatar embedded

in the remote environment and communicate their intentions by selectively attending (i.e.

gazing) to one of the available interface elements. Other paradigms like motor imagery

are possible [21], but we mainly consider BCIs based on selective attention. Ultimately, in

order to fully immerse users in the remote environment, the perceptual channels from the

local environment should be replaced by the ones that reflect the state of the avatar in the

remote environment. In this regard, vision is the most important perceptual modality, but

other modalities undoubtedly would enhance the user subjective experience of immersion

and embodiment.

The robot, on the other side, continuously receives user commands and translates them

using available low and high level controllers into robotic actions, that change the state of

the environment or the robot itself. The objective of embodiment systems is to allow users

to exercise physical and social interaction in the remote environment through their avatars,

which are typically equipped with locomotion and manipulation capabilities in order to

allow for enhanced interaction. Hereby, several successful demonstrations of BCI-based

robotic embodiment systems are reported in the literature. In [21], a HOAP3 humanoid

robot is teleoperated with MI-BCI on the basis of decoding fMRI scans, where the user

moves the robot according to instructions. The work in [23] uses a teleoperated android
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Figure 5.1: Closed loop BCI-based robotic embodiment system. Users communicate their
intentions by selectively attending to one of the interface elements. An SSVEP-
based interface is shown as an example here.
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with MI-BCI to study embodiment and its effects on MI learning. In [22], the human-size

humanoid robot HRP-2 is controlled to perform different tasks in the environment (e.g.

navigation and object manipulation). Navigation here is performed either with incremental

commands or in a goal-oriented fashion. Object manipulation includes touching/grasping

objects, and handing objects to users.

Nonetheless, at each time during BCI-based interaction, only a limited number of

interface elements can fit into the interface, whether that be based on P300, SSVEP or

MI and consequently, only a few commands will be available to users. This gives rise to

the primary challenge in robotic applications of BCIs, that is, the considerable mismatch

between the low-bandwidth interface and the bandwidth-hungry application. Adaptive

BCIs offer a way, and perhaps the only way, to overcome the bandwidth mismatch.

Adaptive user interfaces (AUIs), in general, have been thoroughly investigated within the

field of human-computer interaction (HCI) aiming at reducing the cognitive load of users

during interaction. In this regard, the reader might recall the new “New Tab” feature in

modern web browsers, that shows the most recently and/or frequently visited websites. In

graphical user interfaces (GUIs), adaptivity is often reserved for a small area in the interface,

e.g. to present the user with the mostly used interface elements. Interface self-adaptation is

expected to bring savings in time and in the user effort needed to arrive at the commands

of interest. Savings can be computed for example as the difference between the cost of

selecting a command through the adaptive interface (Ca) and the cost of selecting the

same command with a deterministic hierarchical interface (Ch) [154]. Ca can be computed

from the time needed to visually scan the predicted interface elements till the element

of interest is found plus the required time for selecting that specific element. Ch, on the

other hand, is computed from summation of the cognitive time needed to formulate the

sequence of interface selections, and the time needed to make these selections. The design

of AUIs is a highly challenging task due to the fact that interface self-adaptations need

to (1) be unobtrusive to users (2) keep the users in control of the system (3) allow the

user to maintain a coherent mental model of the interface. Adaptive BCIs inherit all these

challenges, but given the limited bandwidth of the interface, self-adaptation is a necessity,

rather than an extra feature.

In order for interface self-adaptations to be of any benefit, the system should be able to

infer the hidden goals, which the user tries to achieve in the domain. This way, initiatives

made by the interface can be received positively by the user. The problem of inferring user

goals from observations is typically referred to as goal or intention recognition (IR), and is

the main concern of this chapter. By considering navigation tasks in BCI-based robotic

embodiment systems, a general user-agnostic Bayesian framework is proposed. Hereby,

novel intuitive heuristics are used to model the user behavior, on the basis of general

behavioral patterns that are observed in humans during task execution. The Bayesian

framework is designed for the general population allowing to infer user intentions, without

any prior training. The output of the Bayesian inference module is a belief vector that

sorts all target goals in the environment according to how probable they are given the

observed evidence. Moreover, a novel metric that measures the non-uniformness of the belief

vector is proposed as to reflect upon the confidence of the inference system in its computed

beliefs. To show the usefulness of the computed beliefs and confidence measures, a simple

probabilistic shared control scheme is devised so that some adaptations are applied to the
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5 Adaptive BCIs for Robotic Embodiment

robot movements, according to the belief/confidence information. In order to evaluate the

performance of the Bayesian inference module, experiments were conducted with healthy

subjects in an immersive robotic embodiment setup and in simulation. Results show that

the intention recognition system is able to track the hidden user goals with relatively

high accuracy. When the belief of the intention recognition module is used to modulate

parameters of the robot movement, less user effort (measured by the number of interaction)

is required to accomplish the assigned tasks.

This chapter proceeds as follows. Sec. 5.1 provides background information about

adaptive interfaces in the context of robotic embodiment systems, to motivate the work on

intention recognition. Sec. 5.2 provides a short review on state-of-the-art approaches to

intention recognition for robotic navigation tasks. The problem statement for intention

recognition and our Bayesian inference systems are detailed in Sec. 5.3. Detailed information

about the experiments used to evaluate the proposed methods is described in Sec. 5.4.

Experimental results are reported in Sec. 5.5 followed by a discussion in Sec. 5.6. This

chapter concludes in Sec. 5.7.

5.1 Background and Motivation

User commands in BCI-based robotic navigation applications range from commanding the

mobile base to move for some distance in one direction, to commanding the mobile base

to move to a specific location or to autonomously perform complex maneuvers like “move

to the kitchen” or “walk through the doorway”. Obviously, the varying degrees in the

goal-directness of incoming user commands require adequate levels of autonomy at the

robot side. And conversely, by deciding first on the level of autonomy, adaptive interfaces

can suggest conforming sets of commands for interaction. The exact relation between the

interface and the level of autonomy, therefore, can be decided upon either by the interface

itself or by the user. Either way, the higher the robot autonomy, the less control is left to

the user. In a general sense, robot autonomy is thought of here as a continuum where the

fully autonomous and fully manual control modes are its extremes. Often the selection of

the optimal point on the autonomy continuum is done in two steps. First, the continuum

is discretized into different general levels (or modes) and the appropriate mode is selected.

The optimal point of automation is then selected within that mode.

The autonomy continuum in teleoperation systems is discretized into several major levels

by Sheridan et al.[155] with respect to the nature of the feedback given to the human

user and the sharing of functions required to control the machine. Similarly, but for a

wider set of applications, Endsley and Kaber [156] differentiates between 10 different levels.

The functions which need to be shared are monitoring, generating and selecting plans and

executing a selected plan. Clearly, the different levels of autonomy/assistance are dependent

on the application at hand. In the context of robotic navigation applications, we borrow

from the aforementioned taxonomies and that in [157] and adopt the 6 basic levels or robot

operation modes shown in Fig. 5.2.

In goal-oriented control mode, users only communicate the end goal location they have

in mind, and the robot autonomously navigates towards it. This requires global knowledge

of the environmental map and path planning capabilities at the robot side. In the help with
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Figure 5.2: Robot operational modes for navigation tasks. The level of automation can be
modulated within each mode of operation as well.

some tasks mode, like walking through a door, the robot needs to plan a safe local trajectory,

by which it remains e.g. equidistant from the doorjamps. In the obstacle avoidance mode,

it is the robot’s job to execute maneuvers that avoid obstacles while the human user is

issuing commands that move it through the environment. In the collision avoidance mode,

a typical behavior of the robot is to halt movement in the face of obstacles. During the

movement of the robot in these modes, the user might maintain supervisory control of the

robot, e.g. to stop movement in case of emergency or a plan change. As hinted previously,

the different automation levels define the nature of interface self-adaptations. For instance,

in the goal-oriented mode, the interface might provide the user with the most probable next

goals (or goal locations) in the environment. Such predictions can be performed on the

basis of the transition probabilities between the different goals in the environment, which

can be learned e.g. from the history of user interaction with the system. In absence of any

knowledge about the user preferences in the domain, other interface adaptation strategies

should be devised. One possible approach, is to allow users to interact with the robot in a

lower autonomy mode, so that some evidence can be gathered throughout interaction and

used to predict the target goals of the user.

In this work, we mainly focus on the problem of goal recognition during interaction

within the collision avoidance mode, where user input is also restricted to incremental

commands that translate or rotate the robot in the different directions with predefined steps.

The reason for this is threefold. First, it has been noted in [158], that powered wheelchair

users want to actively drive the wheelchair rather than being merely its passengers. The

same can be said about the users of teleoperation/embodiment robots, and therefore, it is

imperative to give users the sense of control they need [159], as much as can be allowed by

other existing constraints like the safety of the human, the machine and the environment,

the capabilities of the robot and the abilities/disabilities of the human users. The collision

avoidance mode leaves most of the control in the hands (or rather the brains) of the users,

and at the same time guarantees navigation safety. Second, and most importantly, it allows
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5 Adaptive BCIs for Robotic Embodiment

us to develop the methodologies, by which gathered evidence from user commands in low

autonomy levels can guide the interface self-adaptations in the higher autonomy modes.

Third, with long term interaction with the robot, transition probabilities can be learned,

and used later to guide interface adaptations in higher autonomy modes. The next section

will provide a brief review on the problem of goal/intention recognition in general, with

some emphasis on intention recognition in navigation tasks.

5.2 Related Work

The term plan recognition has been defined by Schmidt et al. [160] as the process of inferring

an agent’s goals from observing the actions the agent is performing in the domain and

organizing these actions into a plan structure which explicitly describes the goal-subgoal

relations among them. Conformingly, recent research on human action understanding

within navigation contexts shows that a machine equipped with inverse planning is able to

efficiently model this cognitive process [161]. We refer interchangeably to the agent whose

actions are observed as the actor or the user, whereas the observing agent that makes the

inference is referred to as the recognizer.

The goals refer to desired states of the world or states of knowledge about the world.

In order to arrive at these states, an actor needs to perform a sequence of actions that

defines a plan. Actions taken might change the state of the world, or the state of the actor’s

knowledge about the world. Actions are defined by their preconditions, i.e. possible states

in which they can take place, and effects that describe the state transition when the action

is performed. In some domains, it is possible to enumerate all possible goal states and

plans an actor might have. The set of these plans is referred to as plan library. In the

kitchen domain for example, goals might refer to meals the actor wishes to prepare and a

cookbook defines the plan library, where the term plan in this case will refer to a recipe

in the cookbook [162]. For the general domain of human plan recognition, the set of web

pages in the website wikihow [163] might be considered as a linguistic encoding of a quite

large set of possible plans pursued by humans.

The problems of plan and goal recognition have many details in common. Systems which

try to infer the final target state only are referred to as goal recognition systems, and those

which additionally predict the sequence of actions which moves the world from its current

state to the desired final state are referred to as plan recognition systems. In navigation

applications, these refer respectively to inferring the final goal location the user has in

mind and the full trajectories, with which the user wants to arrive at these target locations.

Depending on the level of abstraction used in recognition, both systems might be referred

to as intention recognition systems 1.

Intention recognition systems can be classified with respect to the actor’s attitude towards

the recognizer into three categories. First, the keyhole recognition refers, as the term suggests,

to the case when the actor is not aware of the existence of the recognizer [164, 165]. In

the second category, which is referred to as intended recognition, the actor cooperatively

chooses actions which reduce the ambiguity about his/her hidden intentions [166]. Finally,

1Other abstraction levels exist. For instance, the user might want to move to the kitchen to prepare a
meal, and this very objective of the user can be considered the user intention.
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adversarial recognition concerns itself with the case when the actors actively try to confuse

the recognizer by choosing misleading actions [165, 167].

Charniak and Goldman [168] argue that the problem of intention recognition is largely a

problem of inference under conditions of uncertainty, rendering the probabilistic approaches

of best fit. Such approaches introduce a numerical measure of belief that reflects how

likely or probable individual plans are and can thus, explicitly represent the uncertainty

associated [169]. The vector that contains the probability of all plans is often referred to as

the belief vector. Bayesian networks, and in particular, dynamic Bayesian networks (DBNs)

are probably the mostly used probabilistic method for intention recognition in different

domains, e.g. for predicting user plans in a game [164].

In robotic navigation contexts, Perrin et al. [170] use a DBN for goal recognition, in

a system, with which the user interacts by either confirming or rejecting its propositions.

The proposed Bayesian network additionally includes variables that integrate the time of

the day, whether the phone is ringing and the previously visited goals. The conditional

probability distributions (CPDs) used in the network are learned from training sequences.

Alternatively, goal recognition is realized in [158] on the basis of simple metrics that are

computed from the distances and relative orientations the wheelchair has to available goal

locations (available doors in this case).

The works in [171, 172] use a recursive Bayesian update for plan recognition based on

environmental data and history of interaction. The Bayesian update hereby is defined with

Pk(ik−m:k | uk−m:k) = (posterior)

P (uk | ik−m:k, uk−m:k−1) (user model)

P (ik | ik−m:k−1, uk−m:k−1) (plan process model)

Pk−1(ik−m:k−1 | uk−m:k−1) (prior)

η, (normalization)

(5.1)

where ik is the user mental plan to move from the current location to the target location in

mind, uk is the user input at time instant k, uk−m:k is the sequence of the user input from

time instant k −m to k, and m defines the past time instances that influence the plan and

the user input at any time. Hereby, for instance, the user model defines the likelihood of the

user input given that the user has the plan evolution ik−m:k and issued previous commands

uk−m:k−1. The user and plan process models are defined differently for a variety of systems

and inputs. For a BCI-based input and free space area [171], the user model is defined

with a simple heuristic function that takes into consideration the relative orientations of

the robot to the different goals and the distances to each of them. The plan process model

is computed such that when the robot moves from the pose xk−1 to xk, the straight path

between xk−1 and the jth goal is transformed into the straight path between xk and the jth

goal, and the jth probability is transferred to the new path. More detailed user and plan

process models are proposed in [172] for joysticks and deterministic discrete interfaces for

different kinds of environments.

The different approaches to IR make use of available information about the environment

and the history of interaction to arrive at good estimates about the user’s hidden goals or
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plans. The Bayesian approach allows to model this information in a sparse representation,

and yet achieves reliable estimates. We conjecture that, in navigation tasks with discrete

interfaces, the information that can be obtained with goal recognition (rather than the

full plan recognition [171, 172]) is sufficient to guide interface adaptations. Moreover, the

plans which were computed in [172] were obtained by path planners, and in [171] they were

assumed to be straight lines from the robot to the different goals. Our approach to the

goal recognition problem uses the previously computed (by a global planner) path plans

to all goals as extra evidence regarding the probability of the target goals. In comparison

to the approach in [170], we aim at intention recognition systems that require no training

whatsoever, so that users can benefit from the recognition system in their first use of the

system. On the other hand, straightforward methods like [158] may not be able to exploit

all useful available information.

5.3 Intention Recognition in Obstacle Avoidance Mode

5.3.1 Problem Statement

The objective of the intention recognition module is to infer users’ target goals throughout

interaction, where evidence is gathered from observed users’ commands and their directions

of gaze. It assumed here that the users are unaware of the existence of the recognizer, i.e.

keyhole intention recognition.

We denote the set of enumerable goals in the environment with G =

{ g1 W , g2 W , · · · , gn W}, where each goal is defined by its pose with respect to the global

coordinate system of the available map (W ), such that gm W = [ xm W , ym W , zm W , θm W ]T ,

where m ∈ {1, 2, · · · , n} and θm W ∈ [−π, π] is the smallest angle between the x-coordinate

of the mth goal frame and that of the global frame (W ), where the z-coordinate of all goals

is parallel to that of the world frame. We assume that the number (n) and the poses of

these goals, which might represent the location of salient objects the user frequently use,

are accessible by the intention recognition system. For the sake of simplicity in the notation,

the postscript W is dropped when we refer to goals and their poses in the global coordinate

system. The unknown target goal, which the user has in mind, is defined here as a discrete

random variable G with a sample space G.

While having a goal location gm in mind at time instant k, the user updates the mental

path plan im k of how to arrive there from the robot’s current pose xk = [xk, yk, θk]
T . We

write this in the form, im k = xk → gm . Additionally, we define the length of a path

plan (in meters) with l( im k) = lm k. In order to follow the plan in mind, the user issues

a command uk ∈ U . In this work, we only consider incremental commands that can be

issued with discrete interfaces (e.g. keyboard or SSVEP-BCI), and therefore, the set of

all possible commands is enumerable, i.e. U = {move forward, move backward, move left,

move right, turn left, turn right, stop}. User commands are translated into robot actions

ak that change the state of the robot from xk to xk+1. The change in the robot pose that is

triggered by translational and rotational commands is set respectively to the default values

δddef (m/command) and δθdef (rad/command).

In order to make the math easier to follow, we introduce the dummy user command u0,
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which implies x0 = x1 and im 0 = im 1 for all m. The user’s gaze direction at time instant

k is denoted by hk, which we assume here to be defined with the rotational angles of the

gaze direction relative to an arbitrary reference frame.

We assume that the localization module provides a reliable estimate of xk, and that the

mental path plans to all goals (i.e. xk → gm ) of the user can be estimated reliably with

a global path planner on the basis of the 2D cost map of the environment, denoted by

Mk. Implicitly, with this assumption we hypothesize that users in the navigation domain

act approximately optimally (rationality assumption [161]) and try to follow the path that

minimizes some cost function. The global path planner is expected to find paths similar to

the ones the user plans for the different goals.

Therefore, we can assume that at time instant k, the IR module has access to the

following information

• The observed sequence of user commands up to time instant k, which is denoted by

u0:k = (u0, · · · , uk).

• The observed sequence of user gaze up to time k, which is denoted by h0:k =

(h0, · · · ,hk).

• The sequence of plans computed to all goals up to time instant k, denoted by

i1:n
0:k = ( i1 0:k, . . . in 0:k), where im 0:k = (x0 → gm , · · · ,xk → gm ).

The problem of goal recognition can be then formally defined as estimating the probability

Pm k = Pk(G = gm | u0:k,h0:k, i1:n
0:k),∀m, (5.2)

where
∑n

m=1 Pm k = 1 for all k.

The probabilities of all goals can be concatenated in the n-dimensional belief vector

Pk which encodes the system belief about the user’s hidden goal at time instant k, where

Pk = [ P1 k, P
2

k, · · · , Pn k]
T .

We assume that before the user starts navigating in the remote environment, the IR

module has no prior knowledge about the next pursued goal, and therefore Pm 0 = 1/n,∀m.

Additionally, the subscript k is reset to 0 each time the robot arrives at one of the available

goals, which automatically resets the belief vector to a near-uniform distribution, wherein

the last visited goal is assigned a smaller probability relative to other available goals, i.e.

Pm 0 = 0.1/n if goal m was the last visited goal and Pi 0 = 1/n,∀i 6= m. The belief vector

P0 is then normalized to obey probability axioms.

5.3.2 Bayesian Framework to IR in Navigation Tasks

The objective of this section is to devise a recursive Bayesian update rule for the belief

about user goals based on available information to the IR module. We begin by assuming

that the recognizer has access to the true user input uk, e.g. keyboard-based interface, but

later, the update rule is extended to noisy interfaces, e.g. BCIs. At a later point in this

section, it is discussed how to deal with the fact that the user commands and information

about the user’s gaze typically arrive asynchronously.
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The conditional probability of a goal m given previous observations can be computed

recursively according to

Pk( gm | u0:k,h0:k, i1:n
0:k) = (posterior)

P (uk | gm , u0:k−1,h0:k, i1:n
0:k) (user input model)

P (hk | gm , u0:k−1,h0:k−1, i1:n
0:k) (user gaze model)

P ( i1:n
k | gm , u0:k−1,h0:k−1, i1:n

0:k−1) (plans evolution model)

Pk−1( gm | u0:k−1,h0:k−1, i1:n
0:k−1) (prior)

η, (normalization)

(5.3)

where η is a normalization factor which guarantees
∑n

m=1 Pk( gm | u0:k,h0:k, i1:n
0:k) = 1

for all k. The major difference between the two rules in (5.3) and (5.1), is that i1:n
0:k is

assumed known for all possible goals in 5.3, whereas in (5.1) its computation is the target

of the update rule.

In the following, generic and user-agnostic models for the user input, the user gaze and

the path plans evolution will be proposed.

User Input Model

The term P (uk | gm , u0:k−1,h0:k, i1:n
0:k) models the likelihood a user issues a command

uk at time k, while having the goal gm in mind and given the sequence of current and

previous path plans to all goals i1:n
0:k, the sequence of previously issued commands u0:k−1

and the sequence of user gaze h0:k up to time instant k. We assume that the user input

uk is conditionally independent of u0:k−1,h0:k and im′
0:k, for all m′ 6= m, given the current

target goal and the mental path plan at time instant k. This reduces the user input model

to P (uk | im k). Intuitively, this means that the user command at time instant k is only

influenced by the mental path plan that brings the robot to the target goal location at

that time instant. We assume additionally that the issued command is mainly influenced

by the local surroundings of the robot, and in particular by a sub-goal or a viapoint on

the path im k, referred to as gm k. Subgoals are determined on each path to each defined

goal, i.e. xk → gm k → gm as the furthest point, to which a straight line can be drawn

from the current robot position without touching any obstacle. This definition is similar to

the one proposed in [172, 173] for discrete interfaces. Sub-goals are searched for within a

predefined circle around the robot with a radius dsubgoal. The process of finding the subgoals

is depicted in Fig. 5.3. These assumptions lead to the new approximation for the user

model as P (uk | im k) ≈ P (uk | xk, gm k).

Once the user command uk arrives, the relative orientations of the robot with respect

to the computed sub-goals are used to compute the approximated likelihood function

P (uk | xk, gm k) as shown in Fig. 5.4. For instance, when a turn left command is issued by

the user, all computed sub-goals which lie in the left semi-circle with respect to the robot’s

heading are assigned a higher probability than those which lie in the right semi-circle. The

user model ignores the z-component (the altitude) of the available goals.
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Goal 1 ( g1 )

Goal 2 ( g2 )
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g1 k
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Plan i1 k
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Figure 5.3: An example of estimating subgoals for goals 1 and 2. Subgoals in the figure are
indicated by the red crosses and the black rectangle corresponds to an obstacle.

User Gaze Model

The term P (hk | gm , u0:k−1,h0:k−1, i1:n
0:k) denotes the likelihood of a user’s gaze hk given

the sequence of user commands u0:k−1, the previous gaze sequence h0:k−1 and the sequence of

all computed plans i1:n
0:k, where the user has the goal gm as a target goal. We assume that

the user always tries, if feasible, to bring the final goal gm into sight from the current robot

location xk. This assumption is supported by the work in [174], where it has been concluded

that, in natural settings, look-ahead fixations represent a task-dependent strategy. In our

application, look-ahead user fixations are assumed necessary to update the navigation plan

every time the robot moves or objects in the environment move. This obviously ignores the

possibility that the user’s focus of attention can be shifted towards sub-goals, which he/she

is trying to reach on the path towards the final goal. Nonetheless, such sub-goals can be

accounted for by the user input model. The user gaze model can then be approximated as

P (hk | gm ,xk).

In order to compute P (hk | gm ,xk), we note that the field of view of human vision is

typically divided into an inner (i.e. foveal vision) and an outer (i.e. peripheral vision) part.

The foveal vision corresponds to the sight area which maps on the central part of the retina

with the highest receptor density and highest visual resolution. Thus, for sharp vision, one

has to align the eyes/head to look directly at the point of interest. The peripheral vision,

on the other hand corresponds to the remaining area of the visible field of view with lower

resolution.

Inspired by these characteristics of the human vision system, we define two regions for

the focus of attention. An inner region that is defined by the two angles ε0 and δ0, which

respectively determine the horizontal and vertical openings around the gaze direction, as

depicted in Fig. 5.5. Similarly, the outer region can be determined by the angles ε1 and δ1.

With these assumptions, target goals are classified into three categories at any time instant
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x

y

s = 0.7

s = 0.9

s = 1.0

(a) Forward
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s = 1.0
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turn left

(b) Turn left

x

y
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s = 0.7
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(c) Turn right

Figure 5.4: The user input model shown for the translational and rotational commands.
Subgoals are assigned a score depending on their location relative to the robot
heading (corresponds to the x-axis in the plots). The lighter the area, the lower
the score, e.g. subgoals, which are located in the negative x direction and have
an angle greater than 180◦ (behind the robot) get the lowest scores assigned if a
forward command were issued. The shown scores are exemplary.

k, according to their position with respect to the two regions of attentional focus, i.e. in

the inner or outer region or out of sight. By conforming transformation, the goal locations

(ignoring their relative orientation, i.e. θm ) can be defined with respect to the moving gaze

frame as

gm H = THW · gm W , (5.4)

where THW denotes the transformation matrix from the fixed world frame (W ) to the

moving gaze frame (H).

Consequently, three conditions need to be fulfilled for a goal m to be assigned to the

inner region. These are

xm H > 0 (5.5)

atan( ym H , xm H) < ε0 (5.6)

atan( zm H , xm H) < δ0 (5.7)

where xm h, ym h and zm h are the x, y and z components of the goal location in the moving

gaze frame (H). Similar conditions can be derived for the outer region using the limiting

angles ε1 and δ1.

Based on our assumption that users occasionally bring their goals into their field of view,

we consider the gaze mode as

P (hk | xk, gm ) ∝


a if gm lies within inner fov

b if gm lies within outer fov

c otherwise,

(5.8)

where a > b > c are constants to be chosen at design time.
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Figure 5.5: The inner and outer spatial regions of attentional focus are shown with respect to
the coordinates system of the moving gaze frame.

Plans Evolution Model

The path plans evolution model denoted by P ( i1:n
k | gm , u0:k−1,h0:k−1, i1:n

0:k−1) defines

the likelihood that the robot currently has the path plans i1:n
k given that the user has

gm in mind, and the sequences of issued commands and gaze points and all path plans

previously computed for all goals up to time instant k−1. Assuming that the plans i1:n
k are

conditionally independent of the previously issued commands and gaze points given previous

path plans and the target goal, the path evolution model reduces to P ( i1:n
k | gm , i1:n

0:k−1).
Despite this simplification, the computation of this model remains a bit tricky. In the

following, a series of approximations allows to arrive at a reasonably simple model. Hereby,

we consider first the path plan length, i.e. ( lm k), as an approximate sufficient statistic of

the plan im k. This yields P ( l1:n
k | gm , l1:n

0:k−1) as an approximation of the plan evolution

model, where l1:n
k denotes the path plan lengths to all goals at time instant k. With this

approximate statistic, only the lengths of the plans, rather than the complete path plans,

need to be stored in memory in order to compute the score of the plans evolution model.

With further simplification, the memory requirements are reduced to a single value. Fig. 5.6

shows a simple example with three different goals, and the evolution of their path plans.

At each time instant k, the current and previous path plans are used to reason about the

possible target goals.

As a heuristic estimate of the plan evolution model, we use the relative changes in path

lengths returned by the path planner at each update to capture special trends towards

(or away from) one (or more) end goals. Formally, we define ∆ lm k =
lm k− lm k−1

lm k+C
as the

relative difference in length at time k for goal m, where division by zero is mitigated

by the constant C ∈ R+. Dividing by the current path length assures that closer goals

are favored over farther ones. To account for path length differences further back in

time, a weighted moving average over ∆ lm k denoted by ∆ l̃m k is adopted and computed

with ∆ l̃m k = α∆ lm k + (1 − α)∆ l̃m k−1, where 0 < α < 1 is a forgetting factor, and

∆ lm 1 = ∆ l̃m 1 = 0 for all m since x0 = x1.

The values of ∆ l̃m k summarize approach (and depart) trends with respect to the different

target goals in the environment, and thereby the plan evolution score can be approximated
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Figure 5.6: A simple example showing the evolution of trajectories towards three target goals.
The plan evolution model assigns more scores to the goals whose record so far
shows a trend of approach (e.g. g1 in the figure since l1 3 < l1 2 < l1 1).

with

P ( l1:n
k | gm , l1:n

0:k−1) ∝ f(∆ l̃m k), (5.9)

where only the sequence of path plans towards goal m are used to compute f(∆ l̃m k). This

is rather a simplification, but given that P ( l1:n
k | gm , l1:n

0:k−1) needs to be computed for

all goal in the environment, all available information from the computed path plans will be

made use of.

f(∆ l̃m k) = β1 ·

1− 1

exp
(
−β2 ·∆ l̃m k

)
+ 1

+ β3, (5.10)

where the parameters β1, β2 and β3 to be chosen at design time.

Intuitively, the score function in (5.10) favors goals whose new plans are shorter than

the previously computed and among those, favors the closer end goals to the farther ones.

IR in Noisy Interfaces

For noisy interfaces, the recognizer does not have access to the true user command uk, but

rather to a noisy version ûk thereof. Using the law of total probability, the update rule

can be modified, similar to [171], to account for the partially observable user input in the
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following manner:

Pk( gm | û0:k,h0:k, i1:n
0:k) =

∑
u1:k∈Uk

Pk( gm | u0:k, û0:k,h0:k, i1:n
0:k) · P (u0:k | û0:k,h0:k, i1:n

0:k)

(1)
=

∑
u1:k∈Uk

Pk( gm | u0:k,h0:k, i1:n
0:k) · P (u0:k | û0:k)

(2)
=

∑
u1:k∈Uk

Pk( gm | u0:k,h0:k, i1:n
0:k) ·

i=k∏
i=1

P (ui | ûi) (5.11)

The simplification of (1) is based on the assumption that u0:k is conditionally independent

of h0:k and i1:n
0:k given û0:k. On the other hand, (2) is based on the assumption that

consequent user commands are independent of each other and only depend on the current

noisy measure thereof.

The formulation in (5.11) means that the recognizer should keep a record of all possible

hypotheses about the user input which can be traced back to the first observation received,

i.e. û1. The number of these hypotheses, however, grows exponentially with k, i.e. |U|k.
Therefore, in this work, we limit tracing these hypotheses to the last issued command only,

which implies that the uncertainty about each command is only accounted for once. In

case of SSVEP-based interaction, the probabilities P (ui | ûi) correspond to the individual

elements in the interface confusion matrix, similar to the ones shown in Fig. 3.15. Hereby,

(5.11) also includes the possibility that the BCI issues a command while the user wants to

be in the idle state (i.e. NOOP command). However, this is taken into consideration in

updating the posterior of the belief vector. The wrongly classified commands propagate to

the execution phase.

Asynchronous Posterior Updates

In absence of any additional information, e.g. user navigation preferences, the system starts

with P0 = [1/n, · · · 1/n]. The update rule in (5.3) can be triggered either by the arrival of

a user command or a new gaze point at the time instant k. Obviously, both triggers arrive

in an asynchronous manner, and the probability that both will arrive exactly at the same

time can be neglected. It is possible here for example to wait for the availability of the two

signals to trigger the update synchronously. However, in this case many useful information,

from which the recognizer can benefit will be lost. The other possibility is to trigger the

update with every new information observed about the user. Consequently, the user input

model contribution to the posterior in (5.3) will be ignored in case of gaze-based trigger,

and the user gaze model contribution will be ignored when a new user command arrives.

In case of updates triggered by new user commands, a multiplication of the user input

probability, the plan evolution probability and the prior followed by a normalization step

yields the posterior. Since the path evolution model is independent of the user command

which triggers the update, we compute its contribution every time the robot state x changes

in order to react as quickly as possible to the arrival of user commands. In the case of

SSVEP-based interaction, uncertainty in user commands is accounted for with the formula

in (5.11). Gaze-triggered updates are computed in a similar manner.
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Belief Confidence

The belief vector is of great importance on its own, but it is also necessary sometimes

to have a metric that summarizes the confidence of the IR in such beliefs. To this end,

we chose a novel metric (s) that reflects the non-uniformness of the belief vector. The

new metric can be computed for any probability mass function (like the belief vector)

characterizing a random variable X with n possible values, with the following steps:

1. The probability masses are ordered in ascending order, and the cumulative distribution

function (CDF) is computed.

2. The zeroth moment M0 and the first moment M1 of the CDF are computed with

M0 =
∑

m cdf [m] and M1 =
∑

mm · cdf [m].

3. The x-coordinate of the centroid of the CDF is evaluated with c = M1/M0.

4. The non-uniformness metric is computed by normalizing c in the range [0, 1] with

s = (c− cmin)/(cmax − cmin), where cmin = (2 · n+ 1)/3 and cmax = n.

The metric s is a function of the belief vector, i.e. s(Pk) that ranges from 0 (for fully

uniform beliefs) to 1 (for unit mass beliefs). The values of s can be considered as to

reflect the recognizer’s confidence about its belief, since the concentration of probability

at one mass point typically reflects the accumulation of enough evidence about a specific

goal location. One desired feature of the new metric is its linearity with respect to the

number of goals that share the total probability. This is shown in Fig. 5.7 comparing the

non-uniformness metric of Ui to Kullback-Leibler divergence KL(Ui‖Un), where Un is the

uniform assignment over the n possible values of X, i.e. Un = [1/n, · · · , 1/n]T and Ui is

the uniform assignment of total probability over a subset i ≤ n of the sample space, e.g.

Ui = [1/2, 1/2, 0, · · · 0]T for i = 2. In Fig. 5.7, the KL-divergence measure is normalized

with respect to the value KL(U1‖Un).

5.3.3 Performance Metrics for Intention Recognition

IR methods can be evaluated directly by calculating prediction accuracies from labeled

and successful sequences (i.e. sequences that ended at the target goal). The predictions of

the IR (i.e. the belief vectors) remain useless unless they are used in one way or another

to improve interaction. Therefore, we adopt a shared control application of the belief

vector, whereby when the IR module is confident about its belief, online modulation of

the translational and rotational steps is performed so that the robot gets closer to high

probable goals. A reliable IR system is expected to reduce the number of user commands

required to accomplish navigation tasks. This way, shared control can provide indirect

measures of the reliability of the IR method. It is worth repeating here, that SC should

be performed in an unobtrusive way, so that users can benefit from its deployment, or

otherwise, no reduction in the number of commands is expected. The following subsections

formally defines the direct and indirect measures used to evaluate the IR method.
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Figure 5.7: The KL-divergence measure compared to the non-uniformness metric.

Direct Measures

Recall and precision metrics are adopted in [175–177] to provide detailed evaluation of the

performance of different IR methods. Recall is defined as the fraction of belief updates which

has the true user’s end goal in the set of N -best predictions. Precision is defined as the ratio

of belief updates, in which the recognizer is confident and the true goal is among the N -best

predictions, to the total number of belief updates, in which the recognizer is confident. The

recognizer’s confidence is defined here, as in Sec. 5.3.2, by the non-uniformness metric of

its belief vectors , i.e. when s(Pk) > sthresh. Formally, let mP1:k = {mP1,
mP2, . . .

mPk} be

the sequence of belief updates during which the true user’s hidden goal is gm , recall and

precision can be computed as follows

Recall =

∑k
i=1 IN(mPi)

k
,

Precision(st) =

∑k
i=1 IN(mPi) · IS(mPi)∑k

i=1 IS(mPi)
, (5.12)

where the indicator function IN(mPi) = 1 if the goal m is among the N -best predictions

and 0 otherwise and the indicator function IS(mPi) = 1 if the non-uniformness metric of

the belief vector s(mPi) > st and 0 otherwise.

Indirect Measures with Shared Control

A simple shared control (SC) application of the belief vector is designed to help evaluate

the performance of the intention recognition (IR) module. Hereby, we consider modulating

the magnitude of the translational and rotational steps that define the robot movements in
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the directions signaled by the user. The modulation is obtained with

x =

{
xdefault if s < sthresh

s · xopt + (1− s) · xdefault if s ≥ sthresh,
(5.13)

where xdefault is the default translational (δddef) or rotational steps (δθdef), s ∈ [0, 1] is the

modulation factor and xopt is chosen in a way so that the robot gets more attracted to the

goals with the highest belief scores. Furthermore, we define sthresh as a threshold, below

which online parameters modulation is disabled. The modulation factor is chosen here to be

the confidence of the IR module in its belief, i.e. s = s(Pk). The optimal translational and

rotational magnitudes can be computed by considering the distance and relative orientation

of the robot to all available subgoals (defined as described in Sec. 5.3.2), and the belief

which the recognizer has about the corresponding goals.

(1) Optimal Translational Step

In order to compute the optimal translational step when the recognizer is quite confident

about its belief, we model the different goals as different point attractors on a 2D plane.

Hereby, the different goals (represented by their corresponding subgoals from the user

input model in Sec. 5.3.2) exert different forces on the robot’s translational movement in

proportion to their squared probabilities, i.e. Pm k
2.

We define δdopt as the minimizer of the energy function

f(δd) =
1

2

∑
m

Pm k
2 · ‖T (xk, δd)− gm k‖22, (5.14)

where δd ∈ [0, δdmax] and T (xk, δd) defines the new position of the robot after translating

δd meters in the direction of travel. The term ‖T (xk, δd)− gm k‖2 can be computed with

( xm k − xk − δd cos(θk))
2 + ( ym k − yk − δd sin(θk))

2, (5.15)

where [ xm k, ym k]
T denotes the position of the subgoal m, and [xk, yk]

T and θk, respectively

denote the robot’s position and heading at time instant k. Intuitively, minimizing the

energy function in (5.14) minimizes the squared distance to all goals jointly, where the

importance of each goal is weighted by its squared probability. For instance, when all the

probability is concentrated on one goal (e.g. goal 2 in Fig. 5.8), δdopt will be chosen so

that it brings the robot very close to its corresponding subgoal. However, it is rare that

IR converges to a point mass probability vector Pk, and therefore the distance to all goals

are taken into consideration in the minimization of (5.14). Noteworthy here is that the

effectiveness of δdopt is highly dependent on the accuracy of the Pk.

Since the energy function is defined such that it has a single minimum, i.e.

∂2

∂x2
f(δd) =

N∑
m=1

Pm k
2 > 0 ∀δd. (5.16)
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Figure 5.8: An example illustrating the quantities used in the computation of the optimal
translational and rotational steps. Computed subgoals on the path to the different
end goals often lie on a circle of radius dsubgoal. The optimal steps are computed so
as to minimize an energy function determined by attraction forces of the different
goals. The angle 1φk = atan2( y1 k − yk, x1 k − xk)

Solving ∂
∂x
f(δd) = 0, yields the following value of δdopt,

δdopt =

∑n
m=1 Pm k

2 · [( xm k − xk) cos(θk) + ( ym k − yk) sin(θk)]∑n
m=1 Pm k

2
. (5.17)

(2) Optimal Rotational Step

Similarly, different goals apply different forces on the robot’s rotational movements in

proportion to their squared probabilities. The optimal rotational step δθopt ∈ [−π, π] is

defined as the global minimizer of the energy function

f(δθ) =
1

2

∑
m

Pm k
2 · (d(xk, gm k)− δθ))2,

where d(xk, gm k) is defined as

d(xk, gm k) =

{
atan2( ym k − yk, xm k − xk)− θk. if ‖xk − gm k‖ ≥ dg

θm − θk if ‖xk − gm k‖ < dg,
(5.18)

where dg is a distance threshold, below which the robot is assumed close to an end goal.

Intuitively, this means that when users get very close to specific goals, they are more likely

willing to align the robot with the heading of that goal, or otherwise, they rather align the

robot to face the corresponding subgoals. The value of dg is set to 0.5 m. The optimal

rotational step can be computed with

δθopt =

∑
m Pm k

2 · d(xk, gm k)∑
m Pm k

2
. (5.19)
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5.4 Experimental Evaluation

In order to empirically evaluate the Bayesian framework from Sec. 5.3, experiments were

conducted with healthy subjects with a real and a simulated robot. Evaluation is based on

the direct and the indirect measures from Sec. 5.3.3.

5.4.1 Hypotheses

Based on the characteristics of the Bayesian inference system, we have formulated the

following hypotheses with respect to the direct and indirect measures from Sec. 5.3.3. First,

the integration of shared control (SC) and intention recognition (IR) into the robotic system

is expected to result in a fewer number of user commands when compared to the situation

when intention recognition and shared control are disabled (H1). Second, the incorporation

of gaze information into the intention recognition system should produce more accurate

estimates about the hidden goals and consequently should result in a fewer number of user

commands when shared control is enabled (H2). Third, we expect the intention recognition

system, though mostly designed with 2D path planning for 2D navigation commands,

to generalize to flat floor 3D environments, but perhaps with reduced performance (H3).

Fourth, BCIs are expected to require higher number of user commands when compared to

deterministic interfaces like keyboards (H4).

5.4.2 Conditions and Experimental Design

The experiments required that subjects drive a robot in a remote physical and a simulated

environment and to visit a predefined subset of goal locations within these environments.

We have varied the experimental setup within three factors:

1. The type of the robot/environment used (RBT ): simulated 2D (S) or physical 3D

(P ).

2. The type of the interface (INTFC): keyboard (K) vs. SSVEP-based BCI (B).

3. The type of the IR-SC (SCTRL): IR is based on user commands only with no SC is

applied (L1), SC is applied on the basis of command-triggered belief updates only

(L2) or SC on the basis of command and gaze-triggered belief updates (L3).

A fully crossed design was not feasible, since the gaze (estimated with the head orientation)

cannot be incorporated within the IR system for the 2D simulated robot/environment.

Fig. 5.9 visualizes the resulting factorial design with the black cells referring to the infeasible

conditions. The following subsections provide more details about the implementation of

the different conditions.

5.4.3 Experimental Setup

Physical Robot

Fig. 5.10 shows the robot avatar used in the physical robot conditions (P ). The robot

has two 7 DoFs arms with a human-like reachable working space for manipulation and a
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L1 L2 L3

K 1 2

B 3 4

L1 L2 L3

K 5 6 7

B 8 9 10

Simulated environment (S) Physical environment(P)

Figure 5.9: Experimental factorial design consisting of 10 different experimental conditions.
Black cells correspond to infeasible conditions.

non-holonomic omnidirectional mobile base with rectangular footprint (dimensioned 68 cm

× 82 cm) that consists of four wheels. For safety consideration, the mobile base is enclosed

with a pressure sensitive bumper, which halts the robot immediately once it makes any

contact with any rigid body. Additionally, a pan-tilt-roll unit is mounted onto the torso of

the robot and serves as a 3 DoFs neck, where an emotional head is attached. Two RGB

cameras (Point Grey, Richmond, Canada) serve as the eyes of the robot. Furthermore, two

SICK S300 laser scanners (Waldkirch, Germany) are mounted on two opposite corners of

the base to provide a 360◦ view and used for obstacle detection. However, since the scanners

are static, they only can detect obstacles in the 2D plane parallel to the floor plane (which

is assumed to be a flat surface) and having a distance d = 10 cm to it. A Kinect (Microsoft,

USA) camera is fixed to the robot’s chest, which is typically used in manipulation tasks

to detect objects in front of the robot. Processing is done with two computers running

Ubuntu 12.04 with real-time kernel patch. The Robot Operating System (ROS) [178] is

used as the default interprocess communication infrastructure.

During the experiments, the robot received incremental commands from the user that

define the direction of translation or rotation only. These commands were translated in turn

into linear and angular velocity commands which the low-level controller of the mobile base

can understand. The linear velocity is denoted by ν = [νx, νy]
T and the angular velocity

by ω, which were assigned the default values: νx = νy = ±0.25 m/s and ω = ±0.25 rad/s.

The reason we chose such slow speeds is to keep a lower rate of optical flow in the visual

feedback, which is known to be correlated with cybersickness [179]. A position controller,

which continuously received the robot’s location, made sure that the robot moved according

to the received translation and rotations steps defined. The navigation stack from ROS

was used for path planning and the AMCL ROS package [180] for robot’s localization.

Simulated Robot

For simulated robot conditions (S), a 2D simulated version of the physical robot was

constructed using stage simulator package in ROS [181]. Hereby, only the hardware

components which are related to navigation were simulated, namely the robot body, the

mobile base and the laser scanners.
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Figure 5.10: The robot avatar. The labels shown in gray indicate robot parts irrelevant to the
scope of this work.

Collision Avoidance Mode

The collision avoidance behavior is realized with a velocity filter, whereby if the distance

from the robot’s body to the closest obstacle in the direction of travel (r) gets less than a

predefined threshold rsafe, the incoming velocity commands undergo a reduction before they

get delivered to the low-level controller (i.e. the robot slows down). The actual reduction

is determined in proportion to the observed distance. If the distance to the closest obstacle

in the direction of travel becomes equal to a second predefined threshold 0 < rstop < rsafe,

the robot halts and any further velocity commands which might lead the robot closer to

this obstacle will be filtered out and blocked. Consequently, this means that the robot

always keeps at least rstop distance to the closest obstacle. The default values are set to

rstop = 0.3 m and rsafe = 0.6 m during all experiments. For a wide range of applications,

these values for rstop and rsafe seem reasonable, but they can be tuned online as well, if it is

required that the robot gets closer to a specific obstacle (or rather a possible target), e.g.

to perform some manipulation tasks on objects located on top of a table.

User Interface

The robot avatar was embedded in a remote physical or a simulated environment and

received teleoperation commands from the user who conveyed his/her commands to the

system with a chosen interface, namely with an SSVEP-based BCI (B) or a keyboard

(K). During physical robot operation, subjects received a continuous 3D stereoscopic
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video stream from the ego-perspective of the robot avatar, which they viewed with the

help of a head-mounted display (HMD) weighting 380 gram (Oculus VR, United States).

Additionally, the user’s head movement was continuously tracked, via the built-in head

tracker available in the HMD, and transmitted to the robot side to be mapped into similar

movements at the robot’s neck. In the simulated environment conditions, the environment

was shows on an LCD monitor. In the BCI conditions, visual stimuli were presented

overlaid on the received video stream or the simulated environment, as can be seen in

Figs. 5.11 and 5.12. The temporal resolution of the SSVEP-based interaction depends on

the size of the EEG segment used for classifying user’s commands and the level of overlap

between two consecutive segments as has been pointed out in chapter 3. The segment

size and the temporal resolution were respectively set by default to 2 and 0.25 s. The

interaction rate of the BCI (4 Hz) was chosen higher than that of the control loop (e.g. a

translational command takes on average 1 s), as it was also important to provide continuous

visual feedback about the performance of the interface, so that users could better predict

the responsiveness of the interface. This rate mismatch was more pronounced for the

keyboard-based interaction, and therefore user commands which arrived while the robot

was moving were completely ignored by the interface unless they were meant to stop the

robot while it was moving. The SSVEP detection was based on the supervised CVARS

algorithm.

Whereas keyboard interfaces potentially can provide a large set of commands using single

buttons or combinations thereof, SSVEP-BCIs can only provide a limited set of commands.

This is mainly due to the immersive nature of the application which necessitates that

SSVEP stimuli to be shown overlaid on the video-stream received from the remote robot.

The more stimuli are shown for display, the less will be the quality of the visual feedback.

As a sensible trade-off, we fixed the number of possible commands to 4. By default, the

commands move forward, turn left, turn right and stop are available to users. These

commands, to which we will refer as normal mode commands, were chosen as they allow

for human-like navigation around and in the direction of the symmetry plane. Naturally,

backward and sideways movements are the exceptions, not the norm [182]. In situations

where the robot receives a command which gets completely blocked as to avoid collisions,

the set of user commands gets automatically replaced by a second set that includes move

backward, move right, and move left. The set of the new commands is referred to as

the recovery mode commands. Most if not all the time, the recovery commands will be

sufficient to bring the robot to a free space, where the normal mode of operation can be

resumed by the user through a dedicated interface element. Adaptations to the interface

were accompanied by an auditory feedback that produced the speech of “normal mode

commands” or “recovery mode commands”, signaling the interface change to subjects.

Extraction of Gaze Direction

Typically, humans adjust their gaze by moving both their head (or more precisely the neck)

and eyes in order to bring the focus of attention to the spatial regions of interest around

them. Specific to immersive embodiment applications, the user’s eye movement might

not be spontaneous all the time, as it is the case in natural settings. In SSVEP-based

interaction in particular, users overtly attend to one of the stimuli distributed at the sides
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Figure 5.11: SSVEP stimuli overlaid on stereoscopic images coming from the remote physical
environment. Recognized user commands are typically highlighted in green. The
“Menu1” command in recovery mode resumes the normal mode commands. The
scene shows an example target location, where a glass bottle can be observed
behind the AR marker (which is highlighted in the figure with green). Part of
the robot base is visible at the bottom side of the images. The visible lens barrel
distortion (at the capturing side) is counteracted by the HMD which magnifies
the images it receives (i.e. pincushion distortion).

Figure 5.12: Simulated environment with SSVEP stimuli overlaid at the sides of the display.
The stimuli constellation allows for intuitive interaction.

of the display when they decide to issue a control command. Therefore, the user’s focus of

attention in this work is estimated based on the head orientation only. This simplification

is supported by the results in [183], which shows that the head orientation contributes 70%

to the overall gaze direction on average and that head orientation data alone is sufficient to

accurately estimate the focus of attention.

The gaze movements of a user observing a scene can be, for the sake of simplicity, broadly
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separated into two classes. The first is characterized by sudden and rapid gaze movements

known as saccades, and the second is characterized by a relative stability of the gaze for

typically 200-600 ms [184] and is referred to as fixations. Ignoring the contribution of eye

movements to gaze direction implies that fixations in this work are approximated by the

steady head orientations which last for a certain amount of time, i.e. fixations of the head

rather than the gaze.

At the technical level, we define the gaze frame (H) as a moving coordinate system,

whose origin is positioned at the midpoint between the robot’s eyes, x-axis is aligned with

the gaze direction and z-axis is parallel to the robot’s face plane and pointing upwards, i.e.

from the neck to the forehead. In the following, we limit the tracking data to the yaw (Θ)

and pitch (Φ) angles of head rotations, as the roll component, i.e. the head rotation around

the axis of view, hardly affects the actual gaze direction.

In order to extract the gaze information from the raw head tracking data, we adopt a

two-stage filter, to which we will refer as the gaze filter. In the first stage, fixation points

are extracted from the head tracking data as the sample mean of consecutive yaw-pitch

pairs, during which the head movements do not exceed a certain velocity threshold for a

period of e.g. t = 200 ms. This stage is very similar to the I-VT filter algorithm used

to classify eye movements [185]. In the second stage, the sample mean of the incoming

classified fixations in the yaw-pitch plane is recursively computed to determine the sample

gaze mean [Θ̄, Φ̄]. The newly incoming fixations continuously update the old sample mean

as long as their Euclidean distance to the current mean is below a certain threshold denoted

by dthresh. Otherwise, i.e. if the distance is larger than dthresh, the sample mean is set to

the new fixation, as shown in Fig. 5.13. Every time the sample mean is set anew, it gets

broadcasted as a new gaze point, i.e. hk = [Θ̄k, Φ̄k]
T . With the help of this information and

the available transformation tree to the system, the transformation from the fixed world

frame (W ) to the moving gaze frame (H), i.e. THW , can be easily computed.

Φ̄k

Θ̄kΘ̄k−1

Φ̄k−1

Φ

Θ

d
thresh

fnew

Figure 5.13: Mean gaze estimation from incoming fixation points (indicated as black crosses).
When a new fixation is received, its distance to the old mean is checked against
dthresh and the new mean [Θ̄k, Φ̄k] is computed accordingly either by updating
the old mean [Θ̄k−1, Φ̄k−1], or by setting the mean to the new value.
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Intention Recognition and Shared Control

The IR module was active in all conditions, but its computed belief vectors were used

to modulate the translational and rotational steps only in the conditions L2 and L3.

Additionally, the recovery mode and stop commands were excluded from the user input

model as they are not typically oriented towards the final goal but rather dictated by the

presence of obstacles in the robot’s surroundings. In some cases, users might need to recede

away from a goal in order to avoid the immediate obstacles. Additionally, it is expected

that these commands are used for short periods of time only. The exact parameters which

were used for IR and SC are reported in Appendix B. Fig. 5.14 shows a block diagram of

the whole robotic embodiment system for navigation which highlights the interconnections

and message passing between the IR and SC blocks with other components.

5.4.4 Subjects

A total of 22 healthy adults (5 females) aged 27.59± 5.66 (range 20− 38) with normal or

corrected-to-normal vision served as paid volunteer subjects in this study.

5.4.5 Task and Procedure

A 2D occupancy grid of the physical 3D remote environment (a cluttered laboratory space,

with many desks, tables and other robots) was built using a laser-based SLAM algorithm

available in ROS, i.e. the gmapping package [186]. In total, 16 different goals were manually

defined on the map, e.g. at the lab doors and other salient spots like desks, and were

additionally marked in the physical environment with augmented reality (AR) markers.

The occupancy grid of the environment and the set of all goals are shown in Fig. 5.15. The

same occupancy grid was used to build a simulated environment with the stage simulator
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Figure 5.15: The environmental map was built using laser-based SLAM. The 2D poses of the
16 goals are shown, with respect to the world frame.

package in ROS [181].

Participants were instructed to accomplish the same navigational task in all conditions

as fast as possible. The task was to drive the robot with the chosen interface and visit 4

target goals out of the available 16, where the different subjects were assigned different sets

of goals. Participants were free to decide the order, in which they might visit the target

goals, but they were instructed to stick to the same order in all yet to be performed sessions.

Since the target goals were unfamiliar to the participants, exactly as the non-target ones,

glass bottles were placed besides the AR markers of the target goals (on target desks or

tables) to allow the participants to recognize them from afar, especially if neighboring goals

were very close. A sample screenshot from the ego-perspective of the robot in a front of a

target goal is shown in Fig. 5.11. Since doors have less ambiguity, they were only marked

with the AR markers. Additionally, in the simulated environment, target goals were colored

in red whereas the remaining ones were marked in green. The simulated environment for

subject S1 is shown as an example in Fig. 5.12. A goal was considered reached if its distance

to the robot became less than or equal to 0.8 m and its relative orientation with respect

to the robot’s heading was less than or equal to 0.5 rad. Additionally, the goal had to be

positioned within the range[−0.2, 0.2] m with respect to the y-coordinate of the robot’s

frame. Subjects were instructed simply to bring the robot to face each of the assigned goals.

An auditory feedback signal was played back to participants when the robot arrived at any

goal location. This way, we guaranteed that participants did not recede from a goal earlier

(assuming they arrived) or later (assuming they did not arrive yet) than they should.

Upon their arrival at the laboratory, subjects were provided in written form, all informa-

tion they needed about the course of the experiment and the different conditions they were

going to perform. All participants gave their written informed consent. Participants were

additionally asked to fill in a pre-questionnaire to collect some demographical data. They

were additionally given a printed floor plan of the remote environment and were asked to

decide upon the order in which they wanted to traverse the subset of goals consistently

across conditions.

Each participant was assigned 1 session per condition and 10 sessions in total. The

order of the experimental conditions was counterbalanced across subjects, where half of

the participants were assigned to complete all simulated robot conditions first, and the

other half were assigned the physical robot conditions first. If a subject was found to spend

relatively long time trying to reach the first end goal in the BCI conditions, these sessions

109



5 Adaptive BCIs for Robotic Embodiment

were stopped since otherwise experiments might have extended over uncomfortable time

lengths to participants, let alone the effect of long recordings on the quality of the EEG

setup. Prior to the actual experiments, participants were familiarized with the different

system components in the physical and simulated environments, e.g. the head tracking and

mapping to the robot’s head movement, 3D visual feedback and keyboard interface. In

SSVEP-based interaction conditions, electrode placement and setup were done exactly as

described in Sec. 3.4, and EEG signals were acquired with a sampling rate of 256 Hz at

full DC. Two SSVEP training sessions were additionally collected during experiments with

each subject. One training session preceded the simulated environment conditions with

stimuli presented against a dark screen on an LCD monitor and viewed binocularly by the

participants. The other session was collected immediately before the physical environment

conditions. Stimuli in the latter case were presented on the HMD against a static view from

the remote environment and were viewed binocularly as has been described in chapter 3.

Training data were used to learn two linear discriminant analysis (LDA) classifiers for the

CVARS scores as described in Sec. 3.5.4, which were later used in online SSVEP-based

interaction conditions, i.e. conditions 3 and 4 for the first classifier and 8, 9 and 10 for the

second one. The full training sessions were used to train the LDA classifier but a 5-fold

cross validation classifier accuracies were used to estimate P (ui | ûi) from Sec. 5.3.2. To

elicit natural behavior, participants were not informed about the existence of the recognizer

or the fact that online modulation of the system parameters was active in some conditions.

On the other hand, participants were instructed to pay great attention to auditory feedback

signaling task completion after each visited goal and signaling the automatic entry to

the recovery mode of interaction. Again, if the familiarization phase of an individual

subject took relatively long times, experiments were discontinued for him/her, as the actual

experiments are predicted thereby to extend to longer times.

5.4.6 Performance Metrics

Direct Measures

The precision and recall are computed as described in Sec. 5.3.3. Evaluation based on these

metrics takes into consideration all the 4 goals visited by each subject and per experimental

condition.

Indirect Measures

As described in 5.3.3, the performance of the IR module can be indirectly measured by

considering the effect of shared control on the number of commands issued to complete each

task. The number of issued commands can also indirectly reflect the user workload or effort

associated with each condition. Aiming at generalizing our results with respect to the task

space, each subject was assigned a different set of goals, and hence the observed number of

commands per condition and subject can be affected by the varying complexity and path

length of each sequence of goals. In order to correct for this, a baseline was computed for

each sequence, relative to which the observed number of commands can be computed. The

baseline is computed as the expected number of discrete normal mode commands needed

to visit these goals in the same order which was undertaken by the individual subjects,
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Figure 5.16: Baseline computation example showing 4 different goal poses visited in the order
g1 , g2 , g3 and g4 starting from the initial pose x0. The baseline number of

commands is computed as
∑4

i=1 li +
∑j=8

j=1 θj

but assuming free space. Fig. 5.16 illustrates the computation of the baseline number of

commands with a simple example.

5.5 Results

5.5.1 Task Completion

Experiments lasted for around 3 hours, including the time for reading the instructions,

familiarization, training for SSVEPs, actual task performance and breaks between conditions.

12 subjects were able to complete all conditions. 2 subjects completed all conditions except

the three PB conditions, i.e. the physical robot with BCI conditions. This was for a reason.

These two subjects, namely S1 and S3 were the first to use the system, where at this stage

of the experiment, we recorded only one training session for SSVEPs using the monitor

stimulation. Since the PB conditions require visual stimulation through the HMD for

online interaction, it has been observed with these two subjects that the classifier learned for

the monitor-based stimulation could not generalize very well to the HMD stimulation, and

therefore we decided hereafter to record another training session for the HMD stimulation as

described earlier in Sec. 5.4.5. We decided to keep the incomplete data of these two subjects

in our data analysis since other conditions still compare well to the procedure used for other

subjects. Additionally, 3 other subjects were able to complete all the keyboard conditions,

but none of the BCI’s, as the accuracies for their SSVEP detection were relatively low. The

familiarization step took longer than expected with 4 subjects, and therefore experiments

were discontinued with them. 1 subject felt motion sickness during the familiarization stage

and decided to drop out.
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Figure 5.17: Belief evolution shown for subject S2 in condition PKL3. The shaded area
shows the time interval(s), during which the recovery mode was active and belief
updates were not. The vertical lines correspond to the time instants when the
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5.5.2 IR Evaluation based on Direct Measures

Fig. 5.17 shows an example of the belief vector Pk (in condition PKL3 for subject S2)

as it unfolds over time during the complete session in the form of 16 staircase plots. The

rising and falling edges correspond to time instances, at which the belief vector underwent

gaze or command-triggered updates. Upon arrival at any goal, the belief vector is reset.

Correspondingly, Fig. 5.18 shows the robot’s pose during the complete session. These two

figures combined can give a first insight about the performance of the Bayesian IR system.

Fig. 5.19 summarizes the results from all subjects and all finished sessions with respect

to the precision and recall metrics introduced in Sec. 5.4.6, where precision was evaluated

for different values of sthresh. The recall plots indicate that the recognizer was able to

correctly estimate the user’s hidden end goals around 40% of the time in all experimental

conditions. This rate increases with increasing N , e.g. it becomes around 70% for N = 4.

On the other hand, the increased recall observed with higher sthresh in Fig. 5.19(b) indicates

the suitability of our proposed non-uniformness metric as a confidence measure for the

recognizer.

5.5.3 IR Evaluation based on Indirect Measures

As previously mentioned, the relative number of commands issued to complete the task

is adopted as the comparison criterion (i.e. the dependent variable) using the indirect

measures. Since this measure reflects in a way the user’s effort needed to accomplish the

assigned tasks, we will hereafter refer to it as the user effort.

Our experiment in this study is a partially crossed 2× 2× 3 repeated-measures within-

subjects factorial design (with missing data). The fact that the incorporation of gaze into
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the IR system is only feasible in the physical robot conditions renders it legitimate to run

the analysis in two steps. Firstly, we consider the fully crossed 2×2×2 design that excludes

the level (L3) in the factor SCTRL which leaves us with the levels S/P , K/B and L1/L2

of the main factors in the experiment. Secondly, we consider the L3 level within the fully

crossed 2× 3 design corresponding to the K/B and L1/L2/L3 levels of the INTFC and

SCTRL main factors, respectively.

Statistical Analysis of the 2× 2× 2 Design (RBT × INTFC × SCTRL)

The data obtained from all subjects and all sessions (excluding L3 sessions) was analyzed

using linear mixed-effects model, where the subject factor was treated as a random factor,

and the RBT , INTFC and SCTRL were treated as fixed factors. To this end, the function

lmer from R lmerTest package 2 was used since it is able to handle unbalanced data, as it

is the case here, by approximating the denominator degrees of freedom using either Satterth-

waite’s or Kenward-Roger’s approximations [187]. The three-way ANOVA of type III has

shown no significance in the three way interaction, F (1, 97.12) = 0.045, p = 0.83. However,

the two-way interaction terms of RBT × INTFC and INTFC ×SCTRL were significant,

respectively with F (1, 97.97) = 4.68, p < 0.05 and F (1, 97.12) = 4.33, p < 0.05. The main

factors INTFC and SCTRL were found to be significant as well. Follow-up simple effects

tests were performed with the help of multcomb [188] and lsmeans [189] packages. The

results are summarized in figures 5.20. Hereby, the RBT was found non-significant across

all levels INTFC, whereas the levels INTFC were found to be significantly different

across the levels of the RBT , as can be seen in Fig. 5.20(a). Additionally, one can see in

Fig. 5.20(b) that all simple effects of INTFC×SCTRL were significant, but with different

significance levels and therefore we can attribute the significant interaction to these different

levels of significance.

Statistical Analysis of the 2× 3 Design (INTFC × SCTRL)

The two-way ANOVA of type III tests revealed significance for the two main factors, i.e.

INTFC and SCTRL, with no significant interaction. Post hoc pairwise comparisons with

Bonferroni corrections revealed that the L2 required significantly less effort than L1. There

was also a trend that in case of L3 less user effort is required, but given our sample size this

did not reach significance. Conforming with the three-way ANOVA from previous section,

the BCI required higher effort.

5.6 Discussion

The precision and recall results have shown that the IR system was able to infer the correct

target goals, as the best prediction, 40% of the time. Comparing the L1 and L2 conditions

shows that a small reduction in recall is observed, despite that IR was exactly the same in

2The complete analysis can be viewed in this link http://rpubs.com/moh-marwan/rembodiment
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the two conditions. This can be explained by the fact that SC is applied in L2, which yields

a smaller number of user commands and therefore less evidence about the possible target

goals is available to the goal recognition module. The non-uniformness metric, i.e. s(Pk),

was shown additionally to be an adequate measure for the confidence of the IR module,

as higher values of s(Pk) resulted in higher precision of the IR module as can be seen in

Fig. 5.19(b). Our statistical analysis, on the other hand, has demonstrated that SC based

on IR beliefs resulted in less user effort (H1). The incorporation of gaze information into the

IR module did not help to enhance the performance of our IR-SC system as was expected

(H2). Several reasons might have contributed to this result. First, we have assumed a

simple model for the user gaze based on the hypothesis that users frequently fixate their

vision at the goal of interest to help update their global plans. While this is true in general,

the constant time which we assumed in this work (i.e. 200 ms) for head fixations seems

not suitable to capture fixation times realistically. Second, users tend to look more often

at the immediate vicinity of the robot for better local trajectory planning. Therefore, we

predict that considering these details into the user gaze model in future developments will

be beneficial.

The results from the three-way ANOVA have shown no significant difference between the

simulated and the physical robots/environments (H3). This is indeed a desirable feature

of simulation systems as further developments in IR can be, if feasible, tested first in

simulation. Additionally, it comes as no surprise that the BCI resulted in higher user effort,

with average increase of around 30% compared to the keyboard (H4). This is mainly due

to the imperfect detection of the SSVEP signals. However, most of the participants were

able to use the system and accomplished relatively complex navigation tasks during the

different conditions. Subjects, for which the SSVEP detection did not get over 70% accuracy,

encountered difficulties to accomplish the task in the BCI conditions, and therefore, BCI

sessions were discontinued with them as has been previously reported. With respect to

the BCI inclusion in the IR algorithm, Fig. 5.19(a) clearly shows that this did harm the

precision of the IR module. Importantly, the effect of L2 shared control has been shown to

be more significant in the BCI sessions compared to the keyboard case as can be seen in

Fig. 5.20(a). This also should come as no surprise since shared control is certainly more

useful for noisy interfaces.

Even when the IR module was highly confident about its prediction, the correct target

goal was sometimes confused with other goals in the environment. The belief evolution

plots for all subjects and conditions show that such confusion happens most of the time

with adjacent goals. Therefore, the performance of the IR module is expected to improve

for environments with less goal density. Reciprocally, with a higher goal density, the

performance of the system might be negatively affected. The number of goals in the

environment per se is not expected to have a high influence on the precision or recall, but

will definitely affect the processing speed. This is due to the fact that the computation of

the path plans to all goals, which takes place at the end of each movement, constitutes the

processing bottleneck of the IR system. In order to efficiently generalize to environments

with higher number of goals, and environments with higher goal density, a hierarchical

structure of target goals in the environment might be of high benefit. Hereby, target goals

are clustered, with respect to their distance to each other, within different levels. IR is

applied to the goal hierarchy from the coarse to the refined representation. In other words,
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recognition is applied first between clusters, and then between the goals within each cluster.

Further investigation of this approach is required.

Furthermore, online modulation of the system parameters on the basis of the IR belief

resulted in an average reduction by a factor of 30% (for level L2) in the total number of

commands required to accomplish the tasks. Given the observed precision levels of the

IR system shown in Fig. 5.19, more proactive assistance can also be provided in further

developments to the system, e.g. to autonomously maneuver the robot towards a goal,

when the system is highly confident about its predictions. This brings us back to the

autonomy continuum we discussed in Sec. 5.1, where the belief vector lends itself as a

plausible criterion to automatically change the operational mode of the robot. Additionally,

the belief vector can be used to automatically trigger interface adaptations, whereby e.g.

the most probable goals are shown for selection.

During the experiments reported in this chapter, most subjects had difficulties, which

were also reported verbally by some of them, to issue stop commands as quick as required in

the BCI conditions. This is due to the limiting factors of the buffering step in the SSVEP

detection method. Therefore, devising a reliable way to stop the robot, e.g. with an EMG

channel [190], if feasible, might be necessary to ensure that users can maintain supervisory

control over the actions of the robot.

We assumed throughout this work that the map of the remote environment and the

possible goal locations are known a priori. If not available, this information can be also

learned throughout interaction with users. For instance, states of interest (goals or sub-goals)

were extracted from successful task episodes based on the averaged occurrence frequency

in [191]. The map itself is easily obtained with the SLAM algorithm, e.g. with gmapping

ROS package [186] which was used for the purposes of this work.

We assumed additionally that users, at each time, have a specific end goal in mind. The

proposed IR module is expected to perform also well in situations when users change the

targeted goal during movement. The reason for adopting a keyhole approach in this work

was primarily to elicit natural behavior of users so that neglecting user cooperation while

evaluating the performance of the IR-SC algorithms becomes legitimate. In this regard,

intended IR approaches might be appropriate for robotic embodiment systems as well. For

instance, should the user become aware of gaze-triggered belief updates about their end

goals, users might choose to fixate purposely at these goals for extended periods of time, so

that some ambiguity can be resolved at the recognizer side.

Due to the length of our experiments, we were not able to include another factor to test

the effects of the adaptive BCI. However, we argue that adaptations to the BCI played a

major role in making the task easy to complete and in keeping the number of interactions

required to complete the assigned tasks comparable with the baseline. For instance, consider

the scenario where the robot is facing a desk where the target goal is only some tens of

centimeters away from the robot. With the normal mode commands only, the user needs

to convey several commands to arrive at the goal, e.g. perform a half-turn, move forward,

perform a 90◦ turn, move forward, move for another 90◦ and move forward. This sequence

is also not guaranteed to arrive at the goal location in case of BCIs. However, with the

adaptive interface, the target goal is only one command away from the user. This very

advantage of the adaptive BCI has been observed often during the experiments.

Throughout this work, we also assumed that the localization module provided perfect
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5 Adaptive BCIs for Robotic Embodiment

estimates about the robot’s location. Given the underlying probabilistic nature of the

AMCL ROS package that implements the adaptive particle filter for localization [180], the

estimated robot’s pose is a noisy version of the true pose. We expect that this noise in

localization affected all experimental conditions uniformly, and therefore its effect on the

obtained results can be ignored. However, future developments might benefit from taking

the uncertainty in the robot’s pose into consideration.

There are some technical details that we skipped so far for the sake of not cluttering the

board with too many details that obscure the most relevant issues to IR, but these details

remain part of the bigger picture of robotic embodiment. For instance, the stereoscopic

visual feedback provided to users did not perfectly match direct line-of-sight. Though the

robot was equipped with cameras that provide large field of view, the complete FOV of

humans was not reached. As a result, the perceived distances through the visual channel did

not map one-to-one to real distances. Obviously, users were able to learn the actual mapping

as they could navigate freely in the remote environment accordingly. Furthermore, the

requirements for real-time video streaming necessitate compression and decompression of

captured images at the robot and the user side, respectively. This leads to some compression

artifacts that reduce the quality of viewed video stream, which is further reduced by the

resolution of the used display, i.e the HMD. Additionally, due to physical constraints, the

3 DoFs neck of the robot did not exactly match the range of human neck movement. As a

result, it has been observed during experiments, that such mismatch often affected the user

ability to explore the environment. Improvement to such technical details will undoubtedly

contribute to improved quality of user experience in robotic embodiment systems.

5.7 Conclusions

In this chapter it is argued that adaptive BCIs offer a way out of the bottleneck of bandwidth

limitation in BCI-based robotic applications. In order for interface-self adaptations to be

effective, reasoning about the user hidden intention is a crucial element in adaptive BCIs. On

this account, we have focused on intention recognition within a specific robotic application,

namely navigation tasks in collision avoidance mode. The proposed intention recognition

module is based on a recursive Bayesian update rule, for which some simplification is

done by considering some intuitive heuristics that can model the behavior of the general

population, and therefore can be used in a plug-and-play fashion. Based on the obtained

belief vector from the intention recognition module and the confidence about such beliefs,

the shared control module adapts the translational and rotational movement steps, so that

the robot can be brought closer to the goals of highest scores. Confidence about the belief

estimates was computed with a new metric, that reflects the non-uniformness of the belief

vectors.

In order to evaluate the proposed intention recognition system, experiments were con-

ducted with healthy subjects within robotic embodiment settings. These experiments varied

along three factors: type of the robot/environment (simulated and physical), type of the

interface (keyboard or BCI), the way intention recognition is used by shared control (IR is

based on user commands only with no shared control, intention recognition is based on user

commands only with shared control applied, and intention recognition is based on user gaze
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and commands with shared control applied). Our results have shown that the intention

recognition algorithm was able to track and infer the hidden user goals with relatively

high precision and recall. Results have shown also that a simple shared control scheme on

the basis of the intention recognition belief/confidence significantly reduced the user effort

needed to accomplish specific tasks, where effort was thought to be reflected in the number

of issued commands. Additionally, we found that there was no significant difference between

the simulated and the real environments, suggesting that the simulated environment can be

used in the test phases of further developments to intention recognition algorithms. Despite

the fact that BCI required higher effort compared to the keyboard conditions, most subjects

were able to complete the assigned tasks. The proposed intention recognition system was

additionally shown able to handle the uncertainty in user input. Indirect measures have

shown that the effect of the intention recognition was more pronounced for BCIs than in

the case of keyboard interfaces in reducing the user effort. However, subjects, who had

relatively low SNR for SSVEPs encountered considerable difficulties in the task. As a result,

corresponding BCI experiments were discontinued with them since otherwise, experiments

would last for extended periods of time, given the fact that frequent erroneous interactions

give rise to oscillatory behavior of the robot, where e.g. random in-place rotations are very

frequent.

Moreover, the collision avoidance mode was adopted since it allows to leave most of

control in the hands of the user. Setting the collision avoidance as the default operational

mode brings other advantages. This mode allows the intention recognition module to benefit

from high rate of user commands, on which inference can be based. In higher autonomy

modes of robot operation, where less user input is available, other intention recognition

methods are required. Additionally, the obtained belief vector from the IR module can

be used for other purposes than the simple shared control application. For instance, it

can be used as a basis for interface self-adaptations. That is, when the belief reaches high

confidence regarding target goals, the most probable goals can be shown to the user for

selection.

In summary, we have devised a recursive Bayesian rule to infer and track the target

goal locations pursued by users while navigating in robotic embodiment systems. Being

based on different intuitive heuristics and assuming that users typically exhibit similar

navigation behavior in structured environments, the proposed method can be used without

prior training of system parameters to individual users. The output of the goal recognition

module lends itself as a plausible criteria to guide more advanced shared control driving

schemes and strategies for interface self-adaptation.
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This thesis tackled the problem of advancing brain-computer interfaces (BCIs) for robotic

embodiment applications, where EEG-based selective attention BCIs were the main focus.

Sec. 6.1 summarizes the main results of the thesis and Sec. 6.2 reflects on potential future

directions for research in BCIs and their deployment for robotic embodiment systems.

6.1 Summary

There are two major limitations that hinder fluent BCI-based interaction in immersive

robotic applications. First, decoding of brain signals is yet error-prone and leads to

erroneous interactions, which often need to be corrected or reversed. In some cases, however,

reversal of wrongly executed actions is not feasible, e.g. entering a narrow dead-end corridor.

Second, the bit rate, bandwidth, temporal resolution and DoFs available with BCIs are far

beyond the requirements of embodiment applications. We have addressed these issues from

different perspectives aiming at minimizing their implications.

On this account, chapter 3 was devoted to the problem of detecting SSVEPs from

continuous multi-channel EEG. With genuine theoretical analysis of the state-of-the-art

methods, it was observed that these methods have many foundations in common, and

particularly, they all build upon the auto-covariance of the EEG signals and the cross-

covariance between the EEG signals and a commonly assumed source model for the

SSVEP signals. Additionally, we found that the maximum contrast combination (MCC)

and multivariate synchronization index (MSI) methods are variations of the canonical

correlation analysis (CCA) method, and it was argued, therefore, that their detection

results should not differ significantly. It was also shown that these three methods ignore

the fact that background activity might overlap with the used stimulation frequencies. The

minimum energy combination (MEC) method was shown to effectively capture the noise

level in the spatially filtered signals. At the same time, it was argued that MEC poses an

artificial criterion for dimensionality reduction. Based on the findings of this analysis, we

proposed the novel CVARS detection method as an alternative. The new method combines

the power of the canonical variates and that of autoregressive spectral analysis in estimating

the signal and noise powers, respectively. The new method was shown to significantly

outperform CCA (and thus MSI and MCC) and slightly outperforms the MEC method.

The supervised version of CVARS proved its accuracy and reliability in estimating the

hidden user intention including the idle state. Furthermore, as an application of the new

method and using a fully crossed factorial experimental design, we compared the effect of

the display (LCD monitor and HMD) and viewing condition (with monocular right eye,

monocular left eye and binocular viewing) on obtained accuracies for the unsupervised

CVARS. Hereby, the HMD has proved its adequateness in delivering the visual stimuli

and was shown to provide higher accuracies than the LCD monitor condition. Moreover,
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it was shown that binocular viewing leads to higher detection accuracies than monocular

viewing, should visual stimulation of the two eyes be done in complete phase synchrony.

Results have suggested that binocular inhibition is brought about by anti-phase dichoptic

stimulation of the two eyes.

Despite the progress made in detecting different EEG patterns, here and elsewhere,

detection errors remain part of the decoding process. In order to further reduce the

effects of these errors, it was demonstrated in chapter 4 that interaction ErrPs can be

used as a validation step. This has been also shown in the literature to improve the bit

rate of typical BCI systems, e.g. P300-based BCIs. Our main focus in this chapter was

laid upon understanding potential invariant features of interaction ErrPs across tasks,

subjects and over time, and the effects of such invariance, if any, on the classification of

ErrPs. In order to answer these research questions, we have designed and conducted three

experiments, by which ErrPs were observed and examined. Our analysis was primarily

based on observed grand average waveforms and classification results. Results have shown

that interaction ErrPs are relatively invariant over time, and to a less extent across subjects,

but not across tasks. The variability of ErrPs across tasks, manifested by different grand

average waveforms and by chance-level classification accuracy for transferred classifiers, was

attributed to the different mental processes engaged in assessing whether interface actions

are correct or not. Altogether, our results suggest that a classifier learned from one task

should be learned anew or recalibrated for new tasks that require different mental processes

to assess interface actions. This new approach to the classifier transferability problem adds

a fundamental layer to the design of transferable classifiers. We have also proposed a new

simple task that simulates adaptive BCI systems, whereby interface elements are updated

continuously throughout interaction. The novel inplace feedback presentation strategy

introduced with one of our experiments lends itself as an alternative to other feedback

strategies in hybrid P300-ErrP BCIs. The inplace feedback is expected to result in better

classifier transferability as the mental process of assessing interface actions should be the

same, regardless of the nature of the P300 application in use.

Chapter 5 discussed application-specific advances to robotic applications, where interface

self-adaptations were proposed as a means to circumvent the limited bandwidth of BCIs.

In particular, the problem of robot navigation was discussed and a taxonomy for the levels

of robot autonomy was suggested. In this regard, we have drawn a link between interface

self-adaptations and the different levels of automation. We have also shown the central

role, which user intention recognition methods play in making interface self-adaptations

effective. The problem of intention recognition was thus the central point in our treatment

of interface self-adaptation. Hereby, we have particularly considered the application of

robot navigation in collision avoidance mode, where it was additionally assumed that the

robot is embedded in a remote environment with a known map, and a well defined set

of goal locations. Moreover, it was assumed that interaction is mediated with discrete

interfaces, and user incremental commands defined only the direction of robot rotation

or translation. To this end, a Bayesian intention recognition framework was devised such

that the probability of each goal was updated as a response to arriving evidence from the

user commands and user gaze and on the basis of interaction history and other available

contextual information. The Bayesian inference system was realized with different novel

and intuitive heuristics. These heuristics, inspired by general behavioral patterns observed
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in navigation tasks, were adopted for the general population and therefore allowed the

system to be used without prior training. Additionally, a novel metric was proposed to

reflect upon the confidence in the obtained beliefs. Direct and indirect measures were

adopted as performance metrics of the resulting Bayesian model. Direct measures reflect

the accuracy of the inferred belief vectors, whereas indirect measures are obtained by

making use of the belief vectors, in one way or another. To this end, we have developed a

simple probabilistic shared control scheme that uses the belief and the confidence of the

intention recognition module, and silently modulates the magnitude of the translational

and rotational robot steps. The number of commands needed to finish specific navigation

tasks therefore was used to indirectly measure the efficiency of the intention recognition

module. Moreover, this chapter provided an empirical evaluation of the proposed approach

with one experiment having 10 different conditions. Hereby, participants were instructed to

visit different goal locations in the remote environment. Experimental conditions varied

with respect to three main factors: type of the environment (simulated or physical), type

of the interface (BCI or keyboard) and the way shared control and intention recognition

were realized (IR based on user commands only with shared control disabled, IR based on

user commands only with shared control enabled, and IR incorporating user commands

and user gaze with shared control enabled). Most of the subjects were able to finish all

tasks, and those who had SSVEP detection accuracies below 70% encountered difficulties in

the BCI conditions. Results have shown that the intention recognition system was able to

estimate the target goals after a number of interactions within all experimental conditions.

Additionally, intention recognition and shared control were shown to reduce the user effort,

measured by the number of interactions required to accomplish the well specified navigation

tasks. The decrease in required effort, and thus the effect of intention recognition and shared

control, was found more significant in case of BCIs compared to the keyboard conditions.

Simulated and physical environments have shown comparable results, and therefore future

development can be firstly tested on simulated environment, reducing the cost of these

tests. The incorporation of gaze information into the intention recognition module did not

show any improvement. Therefore, more accurate models/parameters for modeling user

gaze are necessary to better exploit this available information in the recognition process.

Our experiments are quite unique in the context of BCI robotic embodiment applications.

We believe that the fact that we aimed at a user agnostic adaptive BCIs helped to recruit

many subjects with no prior experience in these systems.

In summary, this thesis has proposed different methods and algorithms that aim at

overcoming some of the limitations in current BCIs and/or at reducing their implications.

Further steps in these directions are yet necessary to allow for easy-to-use intuitive BCIs in

robotic applications.

6.2 Outlook

It has been recognized in [192], that the lack of standardization and the little agreement

on the most promising future directions are currently among the major challenges in the

field of BCI. Efforts in this direction are currently carried out by researchers within the

EU project “BNCI Horizon 2020 project: the future of brain/neural computer interaction”.
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Besides these efforts, BCIs are expected to grow in the following directions.

6.2.1 Applications for Patients

Throughout this work, we have mainly reported results from experiments with healthy

subjects. Generalization of these results to patients remains to be empirically validated. As

a first step in this direction, in [219], we have compared a small group of people with spinal

cord injury (SCI) to a control group of healthy participants during P300-based virtual

and robotic social interactions. Results have shown that both groups used the BCI within

the immersive scenarios with good levels of accuracy and perceived control of the virtual

and robotic avatars. Several other studies with Amyotrophic lateral sclerosis (ALS) and

locked-in syndrome (LIS) patients, as in [193–195], reported that patients were able to

use P300 and SSVEP-based BCIs. The results of all these studies, however, were based

on a limited number of patients. Therefore, there is a need for more studies to examine

applicability of BCIs with larger groups of patients and with patients with different medical

conditions.

6.2.2 Adaptive BCIs

In this work, we have touched the surface of adaptive BCIs. Application-specific adaptive

BCIs, as argued hereby, can be of great importance to enhance the communication and

control channels between the user and the artificial devices under consideration. Probably

the best interface one could think of, is a single-button device by which the user can,

infrequently, object what the controlled device is currently doing completely autonomously.

An impressive step towards this goal has been realized by [196] for navigation tasks,

whereby the interface suggests the most probable actions based on the state of the robot

in the environment. The user either accepts or rejects the propositions using a single-

button interface. Several sequential proposition might be needed to arrive at the user’s

command of interest. Error-related potentials were suggested as a means to communicate

the approval/refusal of the user [196]. The single-button interface based on ErrPs was

successfully used to move a cursor inside a simple grid [197].

In robotic embodiment applications, the single-button interface requires machine actions

to match, within a margin of tolerance, the expectations of the user within different contexts

and for extended periods of time. In fact, there is some evidence that human users tolerate

some deviations of automated actions, and sometimes even attribute completely autonomous

movements to themselves. Since modeling users to the level which enables the realization

of such interfaces is currently not feasible, incremental advancements in the fields of shared

control and user modeling can eventually bring us closer to this hypothetical single-button

interface.

In addition to adaptations in the interface elements, BCIs can benefit from adaptations

to their processing pipeline, including the preprocessing, feature extraction and classification

steps. Shenoy et al. [198] have shown that simple adaptive classification schemes based on

labeled data from online sessions can improve MI-BCI performance significantly. Llera et

al. [142] have proposed to use interaction ErrPs as neural feedback, by which adaptations to

a linear classifier of a first stage selection (i.e. the task classifier) can be performed online.
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These approaches make good use of labeled data collected during online sessions, and

therefore, potentially can improve the generalization power of the used classifiers. Efforts

in this direction are expected to result in more robust and reliable BCIs.

6.2.3 Novel EEG Patterns and Novel Processing Methods

Current BCIs build upon different ERPs that were originally discovered in the field of

neuroscience and related disciplines. It is expected that this trend will continue in the

future and novel ERP patterns will be available for BCI-based interaction. Additionally,

spontaneous EEG signals carry information about ongoing brain activity other than the

time-locked ERPs (which is treated as noise in ERP studies). Motor-imagery-related

spectral perturbations and spectral signatures of errors are good examples here. Extracting

other information from spontaneous EEG has the potential to advance BCIs to a great

extent. Moreover, as we have seen throughout this work, BCIs, especially those based on

selective attention, have a relatively poor interaction temporal resolution (i.e. in the range

of seconds), despite the fact that EEG can be acquired with relatively high sampling rates

(i.e. in the range of milliseconds). Modeling EEG data (e.g. by advanced source localization

techniques) in a way that allows to interpret EEG changes as they unfold millisecond per

millisecond, can further improve the overall temporal resolution of BCIs.

6.2.4 Hybrid BCIs

Throughout this work, the only hybrid BCI we encountered was of the P300-ErrP type.

There are other systems which were successfully used in the literature. For instance, the

works in [199, 200] have developed different hybrid SSVEP-P300 applications. Relying on

more than one source of evidence helps to enhance the discrimination power between target

and nontarget stimuli. Other innovative hybrid BCIs are expected to replace currently used

BCIs which rely on a single type of ERPs. In the same vein, the BCI which was used in our

experiments to control the robot avatar on the basis of SSVEP signals, might benefit from

additionally incorporating motor-imagery-related perturbations into the decoding process.

6.2.5 Portable BCIs

Novel wearable technologies that allow BCI systems to be more convenient and more

portable are highly desirable, as this contributes to bringing the BCI technology to the

market of commercial applications. In this regard, some examples already exist. A prototype

for a wearable BCI is proposed in [201], where a front-end wearable EEG device with

retractable comb-shaped active dry electrodes is used to measure the EEG activity. A

back-end host system (a tablet) receives the EEG signals wirelessly and performs EEG

monitoring and detects MI-related signals.

6.2.6 BCI-based Robotic Embodiment

In this work, we have primarily discussed the specific problem of robot navigation. However,

the objective of robotic embodiment systems is to allow interaction in a general purpose
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manner, where in addition to navigation, applications include object manipulation and social

interaction. To realize such general purpose embodiment systems, further developments are

necessary. The conceptual framework shown in Fig. 6.1 can be used to guide future research

and development. This framework has been developed and envisioned based on discussions

within the EU VERE (Virtual Embodiment and Robotic Re-embodiment) project.

The recognition block comprises of modules that extract information from EEG and

physiological signals. Outputs routed to other modules include high and low-level intentions,

error-related signals, affective and cognitive state of users (fatigue, cognitive load, etc.).

Hereby, the high-level intentions refer to what the user wants to do and to which actions

they aim, and the low-level intentions refer to how they want these actions to be done.

This block additionally provides a quantitative measure for the quality of experience (QoE).

The embodiment optimization agent (EOA) continuously receives subjective measures of

embodiment and QoE from the recognition module and decides upon appropriate operating

points of other modules aiming at maximizing the user’s feeling of embodiment. As can be

seen in Fig. 6.2, this includes deciding upon the appropriate:

• levels of robot autonomy: which operational mode on the autonomy continuum should

be used, and whether shared/collaborative control should be applied.

• feedback: how rich the feedback and which modalities should be used.

• allowed latency: what should the maximum allowed time for a single command be.

• levels of action personalization: to which extent actions should be user-specific, e.g.

by modulating action parameters based on the affective state of the user.

• nature of intentions: whether actions are triggered by user sensorimotor intentions

(e.g. willingness to move) or driven by the user’s willingness to use the visual interface

elements.

The previous list is not exhaustive. Factors that prove to have effect on the feeling of

embodiment should be added to the design of the EOA as well.

The interface manager coordinates transparent interface adaptations (i.e. adaptations in

the interface elements) and decides upon the BCI paradigm that is appropriate for interaction.

Similarly, the action manager takes into account user intentions, error-related signals and

parameters for personalization to decide upon robotic commands and their parameters,

which are forwarded to the robot for execution. Hereby, for instance, incremental movement

commands are directly executed by the low-level control of the robot, while goal-oriented

commands are interpreted and carried out by the action models and motion planning

modules. Furthermore, the interface manager signals the action manager to execute user

inputs provided by the recognition module. Information about the current state of the

environment is continuously gathered from sensory data, and shared between the different

modules, which also borrow knowledge from the task, skill, and preference databases. Such

databases can be gathered throughout long-term interaction.
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Figure 6.1: Conceptual framework for BCI-based immersive robotic embodiment.
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Figure 6.2: Embodiment optimization agent.
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A Further Results on Interaction ErrPs

In Sec. A.1, we first show the average event-related spectral perturbation (ERSP) and

inter-trial coherence (ITC) for the three different experiments reported in chapter 4. These

plots are obtained with the function newtimef from the EEGLAB toolbox [59].

Additionally, in Sec. A.2, we reproduce the GAC, GAE and GAD plots encountered in

chapter 4 for 6 s duration centered around the feedback onset at t = 0. The new figures

give more insights about the SNR level of the interaction ErrPs, and additionally allow to

observe event-related potentials (other than ErrPs) which are associated with the different

experiments prior to the feedback onset.

Experiment I The activity which can be observed similarly in GAC and GAE in Fig. A.4

around t = −1, i.e. 1 s before the feedback onset, represents the EEG potentials related to

the event of pressing the keyboard keys. Recall that there is a jitter between the feedback

onset and the time of the key presses (i.e. the time difference is in the range [0.9− 1.1] s).

Experiment II The strong alpha activity which appears after t = −2 s, i.e. the time

when the flashing of the P300 matrix stops, in GAC and GAE waveforms in Fig. A.5,

might be explained by the fact that subjects tend to defer eyeblinks until task performance

ends [133, 202]. The activity at the FCz site in GAC and GAE waveforms following t = −1

corresponds to the brain response to the central square when it appears on the screen..

Experiment III Exactly as in experiment II, one can observe the strong alpha activity in

the GAC and GAE waveforms in Fig. A.6, time-locked to the event when P300 flashing

stops at t = −2 s. The alpha activity in experiments II and III completely overlaps after

t = −2 s.
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Figure A.1: ERSP and ITC for experiment I. The left, middle and right panels respectively show resluts for error, correct and error-minus-
correct trials.129
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Figure A.2: ERSP and ITC for experiment II. The left, middle and right panels respectively show resluts for error, correct and error-minus-
correct trials.
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Figure A.3: ERSP and ITC for experiment III. The left, middle and right panels respectively show resluts for error, correct and error-minus-
correct trials.
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A Further Results on Interaction ErrPs

A.2 Grand Averge Figures - The Full Picture
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Figure A.4: The GAC, GAE and GAD waveforms were computed from the average of all
subjects and recordings for experiment I
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Figure A.5: The GAC, GAE and GAD waveforms were computed from the average of all
subjects and recordings for experiment II
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A.2 Grand Averge Figures - The Full Picture
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Figure A.6: The GAC, GAE and GAD waveforms were computed from the average of all
subjects and recordings for experiment III
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B Parameters for the Robotic Embodiment
Experiments

User Input Model

(1) Forward command model:

inner opening: π/4 rad

mid opening: 5π/12 rad

inner opening score=1

mid opening score=0.9

elsewhere score=0.7

(2) Turn right model:

left area score=1

right area score=0.7

(3) Turn left model

left area score=0.7

right area score=1

(4) dsubgoal = 1.5 m

User Gaze Model

(1) ε0 = δ0 = 0.1 rad

(2) ε1 = δ1 = 0.2 rad

(3) a = 1, b = 0.9, c = 0.8

Plans Evolution Model

(1) α = 0.8

(2) β1 = 0.8, β2 = 10 and β3 = 0.2. This renders sm k ∈ [0.2, 1]∀m, k

Indirect Measures with Shared Control

(1) δddef = ±0.25 m/command

(2) δθdef = ±π/12 rad/command

(3) For modulating translational commands, sthresh = 0.3

(4) For modulating rotational commands, sthresh = 0.8
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state visual evoked potentials for brain-computer interfaces. IEEE transactions on

biomedical engineering, 54(4):742–750, apr 2007.

[103] Zhonglin Lin, Changshui Zhang, Wei Wu, and Xiaorong Gao. Frequency recognition

based on canonical correlation analysis for SSVEP-Based BCIs. IEEE Transactions

on Biomedical Engineering, 53(12):2610–2614, jun 2006.

[104] Niya Wang, Tianyi Qian, Qing Zhuo, and Xiaorong Gao. Discrimination between idle

and work states in BCI based on SSVEP. In The 2nd IEEE International Conference

on Advanced Computer Control, ICACC 2010, volume 4, pages 355–358, 2010.

[105] Yangsong Zhang, Peng Xu, Kaiwen Cheng, and Dezhong Yao. Multivariate synchro-

nization index for frequency recognition of SSVEP-based brain-computer interface.

Journal of neuroscience methods, 221:32–40, jan 2014.

[106] Carlos E. Davila, Richard Srebro, and Ibrahim A. Ghaleb. Optimal detection of visual

evoked potentials. IEEE transactions on bio-medical engineering, 45(6):800–803,

1998.

[107] Guangyu Bin, Xiaorong Gao, Zheng Yan, Bo Hong, and Shangkai Gao. An online

multi-channel SSVEP-based brain-computer interface using a canonical correlation

analysis method. Journal of neural engineering, 6(4):1–6, aug 2009.

[108] Hongya Ge, Ivars P. Kirsteins, and Xiaoli Wang. Does canonical correlation analysis

provide reliable information on data correlation in array processing? In IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 2113–

2116, 2009.

[109] Harold Hotelling. Relations Between Two Sets of Variates. Biometrika, 28(3/4):321–

377, 1936.

[110] David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation

analysis: an overview with application to learning methods. Neural Computation,

16(12):2639–2664, dec 2004.

[111] Louis L. Scharf and John K. Thomas. Wiener filters in canonical coordinates for

transform coding, filtering, and quantizing. IEEE Transactions on Signal Processing,

46(3):647–654, mar 1998.

[112] Ake Björck and Gene H. Golub. Numerical methods for computing angles between

linear subspaces. Mathematics of Computation, 27(123):579–594, 1973.

143



Bibliography

[113] Cristian Carmeli. Assessing cooperative behavior in dynamical networks with ap-
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Millán. Brain-coupled interaction for semi-autonomous navigation of an assistive

robot. Robotics and Autonomous Systems, 58(12):1246–1255, dec 2010.

150



Supervised Students’ Theses

[197] Inaki Iturrate, Luis Montesano, and Javier Minguez. Shared-control brain-computer

interface for a two dimensional reaching task using EEG error-related potentials.

In Proceedings of the Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, EMBS, volume 2013, pages 5258–5262, jan 2013.

[198] Pradeep Shenoy, Matthias Krauledat, Benjamin Blankertz, Rajesh P. N. Rao, and

Klaus-Robert Müller. Towards adaptive classification for BCI. Journal of neural

engineering, 3(1):R13–R23, 2006.

[199] Minpeng Xu, Hongzhi Qi, Baikun Wan, Tao Yin, Zhipeng Liu, and Dong Ming. A

Hybrid BCI Speller Paradigm combining P300 Potential and the SSVEP Blocking

Feature. Journal of Neural Engineering, 10(2):026001, 2013.

[200] Brendan Z. Allison, Jing Jin, Yu Zhang, and Xingyu Wang. A four-choice hybrid

P300/SSVEP BCI for improved accuracy. Brain-Computer Interfaces, 1(1):17–26,

jan 2014.

[201] Chi Chun Lo, Tsung Yi Chien, Yu Chun Chen, Shang Ho Tsai, Wai Chi Fang, and

Bor Shyh Lin. A wearable channel selection-based brain-computer interface for motor

imagery detection. Sensors, 16(2):1–14, 2016.

[202] Hideki Ohira. Eyeblink activity in a word-naming task as a function of semantic

priming and cognitive load. Perceptual and motor skills, 82(3):835–842, 1996.

Supervised Students’ Theses

[203] Dullal Ghosh. An adaptive brain-computer interface for navigational tasks. Master’s

thesis, KTH Royal Institute of Technology, 2012.

[204] Luis Vergara. Online recognition of error-related potentials during P300-based brain-

robot interaction. Bachelor’s thesis, Technical University of Munich (TUM), 2014.

[205] Felix Ebert. Bayesian intention and plan recognition in BCI-mediated robotic re-

embodiment systems. Master’s thesis, Technical University of Munich, 2014.

[206] Vincent Bobinski. Offline analysis of simultaneous EEG and EOG data after P300

in-place visual feedback. Bachelor’s thesis, Technical University of Munich, 2014.

[207] Sharat Embrandiri. Online detection of steady-state visually evoked potentials using

deep canonical correlation analysis. Master’s thesis, Indian Institute of Technology,

Madras, 2014.

Author’s Publications

[208] Georg Schroth, Robert Huitl, David Chen, Mohammad Abu-Alqumsan, Anas Al-

Nuaimi, and Eckehard Steinbach. Mobile visual location recognition. IEEE Signal

Processing Magazine, 28(4):77–89, 2011.

151



Author’s Publications

[209] Christoph Kapeller, Christoph Hintermueller, Mohammad Abu-Alqumsan, Robert

Prueckl, Angelika Peer, and Christoph Guger. SSVEP based Brain-Computer Interface

combined with video for robotic control. In Proceedings of the Fifth International

Brain-Computer Interface Meeting, 2013.

[210] Nikolas Martens, Robert Jenke, Mohammad Abu-alqumsan, Christoph Kapeller,

Christoph Hintermüller, Christoph Guger, Angelika Peer, and Martin Buss. Towards

robotic re-embodiment using a Brain-and-Body-Computer Interface. In IEEE Inter-

national Conference on Intelligent Robots and Systems, pages 5131–5132. IEEE, oct

2012.

[211] Mohammad Abu-Alqumsan and Angelika Peer. Advancing the detection of steady-

state visual evoked potentials in brain-computer interfaces. Journal of neural engi-

neering, 13(3):36005, 2016.

[212] Christoph Kapeller, Christoph Hintermüller, Mohammad Abu-Alqumsan, Robert

Pruckl, Angelika Peer, and Christoph Guger. A BCI using VEP for continuous control

of a mobile robot. Proceedings of the Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, EMBS, pages 5254–5257, 2013.

[213] Georg Schroth, Robert Huitl, Mohammad Abu-Alqumsan, Florian Schweiger, and

Eckehard Steinbach. Exploiting prior knowledge in mobile visual location recogni-

tion. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal

Processing - Proceedings, pages 2357–2360, 2012.

[214] Mohammad Abu-alqumsan, Robert Jenke, Angelika Peer, and Martin Buss. Robotic

Re-Embodiment using a Brain-Computer-Interface. In Neuroscience, 2012.

[215] Emmanuele Tidoni, Mohammad Abu-Alqumsan, Daniele Leonardis, Christoph

Kapeller, and Gabriele Fusco. Interacting with my virtual and robotic surrogate: a

study on healthy and spinal cord injured people (Abstract). In London Virtual Social

Interaction Workshop, Institute of Cognitive Neuroscience UCL, 2014.

[216] Mohammad Abu-Alqumsan, Nikolas Martens, Robert Jenke, Christoph Kapeller,
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