

Namberstän June 1984

Acta Horticulturae

Technical communications of ISEs International Society for House Utural Science

Nitroepikäynämies ni bark competstas dependention urodustion mielhods: Plodelähiris

Barcelona Spain 28 Aug. - 2 Sept. 1982

NITROGEN DYNAMICS IN BARK COMPOST AS DEPENDENT ON PRODUCTION METHODS I. MODEL TRIALS

R. Gutser Institute for Plant Bayer.Hauptversuchs-

K. Teicher

Nutrition

anstalt f.Landwirtschaft

Technical University Munich 8050 Freising-Weihenstephan

P. Fischer Institute for Soil Science and Plant Nutrition Fachhochschule Weihenstephan 8050 Freising-Weihenstephan

Abstract

In model trials without plants (25° C, 90 % of water holding capacity), the change of soluble (0.025 N CaCl $_2$) mineral N (NO $_3$, NH $_4$) in bark composts was studied for 17 weeks without and with N-application (80 mg N as ${\rm NH_4NO_3/20}$ g compost dry matter). 8 bark composts, produced by different fermentation procedures, were compared with sphagnum peat:

- 4 long-term composts + N-application for fermentation
- 3 short-term composts + N-application for fermentation
- 1 bark compost from a depot (about 25 years old) - N-application

The amounts of C $_{\rm t}$ varied between 27 and 42 %, N $_{\rm t}$ between 0.66 and 1.16 % i.dry matter.

Long-term fermented bark composts showed nearly a constant supply of soluble N during the first 10 weeks; lateron the amounts of N min decreased slowly similar to peat (N-fixation). The depot-bark strongly fixed fertilizer-NH $_4$ (C/N = 47). Short-term composts were very variable in N -contents (N-fixation and remineralization).

The great differences in nitrification capacity of tested bark composts were independent of method of fermentation respectively pH of compost (pH 5.2-7.6); this may be mainly explained by different degrees of pollution with soil.

1. Introduction

In horticulture, more recently fermented barks - commonly called bark composts - are added to substrates for peat - and container cultures up to 60 % by volume. Bark compost usually is rich in nutrients (K, P, trace elements) - sometimes toxic amounts of Mn are reported (Solbraa and Selmer-Olsen 1981, Scharpf 1981), - and its physical properties are viewed favourable with the only exception of a reduced buffering capacity for water (pF 1.7-2.0) as compared to sphagnum peat (Cappaert et al., 1973). Hoitink (1980) mentions antiphytophatogenic effects of bark composts.

In culture substrates with higher amounts of bark composts, an optimal N-nutrition of plants is sometimes difficult to achieve, since bark composts can fix nitrogen depending on fermentation methods (e.g. Fischer et al., 1980). According to Zöttl (1981), a nitrogen content of about 1 % is a quality criterion for bark composts with

balanced N dynamics. In this investigation it was tested whether total N alone or also the method of fermentation - especially the turnover time (long-term and short-term composts) - should be put forward to assess the quality of bark products with regard to N-turnover.

2. Material and methods

Turnover of N as measured by changes of nitrate and ammonium contents with and without N application was tested on 8 different bark composts and compared with sphagnum peat.

Experimental composts and their preparation (table 1)

TABLE 1 - BARK COMPOSTS - METHODS OF FERMENTATION

MARKING KINDS OF BARK RESP. METHODS OF FERMENTATION

peat (=control)		sphagnum peat + lime (2.5 g CaCO ₃ /1) +trace elements (75 mg Flory 1o/1)
LC 2	oak -	fermentation for 24 months: no N
LC 3	70 % spruce 30 % pine -	8 months pre-composting, 3 months controlled fermentation: 1,5 g N as urea/l - 0,5 g N as Crotodur/l
LC 4	85 % spruce 15 % pine	- 8 months pre-composting, 2 1/2 months controlled fermen- tation: 1,4 g N as urea/l
LC 5	conifers	- 9 months fermentation (8-lo times mixing): 1,o g N as urea/l
	 conifers	- from a depot - about 20-35 years old: no N
 SC 7	spruce	- fermentation with principle "Ufheil": 40 minutes, +about 4 g N _t as chicken-manure/l; about 5 weeks post -composting
SC 8	spruce	- fermentation with principle "Tepe": 1 week, +0,9 g N as $Ca(NO_3)_2$ + 2 g CaO +6 mg Cu as $CuSO_4/1$ be stored for 6 months in plastic bag
SC 9	like SC 8	- but +12 mg Cu +4 mg Fe as Fe-chelat be stored for 4 weeks in plastic bag

LC=LONG-TERM COMPOST/SC=SHORT-TERM C./DC=C. FROM A DEPOT

Incubation trial: 20 g dry matter of bark compost resp. sphagnum peat/pot (viz. Zöttl, 1981) series 1: without N series 2: 80 mg N as NH_ANO₃/pot

All samples were incubated at 70 % of their max. water capacity in a growth chamber with 25 $^{\circ}$ C and 80 % relative humidity (pots were

covered with "parafilm"). After 1 day, 1, 2, 3, 5, 7, 10, and 17 weeks N -nitrogen (NO $_3$, NH $_4$, partly NO $_2$) soluble in 0.025 N CaCl $_2$ was determined. Since chemical analysis of these composts showed in some cases high contents of Cu and N $_{\rm min}$, N-turnover was tested on some selected samples with addition of Cu und lower N-application (40 mg

Analytical methods for composts

- Volume-weight, pH, salinity, CAL-P₂O₅ and -K₂O, Mg, Mn, Fe, Zn, Cu in O.5 M EDTA acc. to VDLUFA-methods

 C_t by means of thermic ashing (550°C)

 N_t acc. to Kjeldahl

- Mmin 1 N MgSO₄ (substrate/solvent = 1/10) N_{min} = soluble mineral N

CaCl_-extraction (substrate/solvent = 1/10) determination of $\mathrm{NH_4}$ by destillation, of $\mathrm{NO_3}$ by destillation after reduction with Arnd's alloy, partly also by means of HPLC (together with NO2)

3. Results

Physical and chemical analysis of bark composts (table 2)

Bark composts showed weights of volume between 520 and 750 g/l fresh matter and C-contents of 25 up to 42 % (table 2). Excepting the bark compost from a depot, N_{+} contents were generally above 0.8 % with maximum values of 1.1 and 1.2 % i. D.M. C/N-ratios differed between 28 and 52 independent of production methods, as well as pHvalues varying from 5.2 up to 7.6. Short-time composts showed somewhat higher salinities (e.g. no. 7: addition of poultry manure = high K-contents); with the exception of the latter K-contents differed only little, P-contents to a partly greater extent. Among heavy metal data, MgSO,-extraction of Mn differentiated distinctly in contrast to EDTA-extraction (high values for the short-term composts 7 and 9), and altogether greater differences for Cu- and

TABLE 2 - PHYSICAL AND CHEMICAL CHARACTERISTICS OF BARK COMPOSTS

COMPOSTS		DRY	C _T	N _T	c/N	PH	SOLUBLE N (mg/l)			
	WEIGHT g/l	MATTER %	% I. DRY	MAT.			NO ₃	NH ₄	sum = N _{MIN}	
peat	240	37			_	5.5	5	35	40	
LC 2	750	35	25	0.88	28	6.9	5	10	15	
LC 3	590	34	33 -	0.84	39	7.0	5	200	205	
LC 4	580	. 42	38	0.85	45	6.3	170	80	250	
LC 5	610	3 9	35 – ~	0.93	38 _	_5.9_	230	_ 20	240	
DC 6	740	42	31	0.66	47	7.1	0	15	15	
					- 1 -	'	- <i>-</i>			
SC 7	520	38	37	1.16	32	5.2			270	
SC 8	590	31	39	1.09	36	7.5	520	20	540	
SC 9	650	27	42	0.81	52	7.2	60	10	70	

TABLE 2 -CONTINUED

COMPOSTS	P2 ⁰ 5	AL K ₂ 0 J/l	EDTA MN	Mg SO ₄ MN ng/l	MG	FE	DTA ZN g/l	CU	SOLUBLE SALTS g/l
peat	12	7	_	-	-				0.2
LC 2 LC 3 LC 4 LC 5	40 55 50 140	345 400 400 500	190 310 170 190	< 1 15 10 5	90 173 133 128	250 410 183 207	8 32 12 12	1.5 9 1.2 1.2	0.40 0.95 0.70 1.20
 DC 6	 45	205	265	3	118	318	30 	4.4	0.65
SC 7 SC 8 SC 9	280 90 65	705 350 415	210 265 275	190 38 170	183 100 143	104 22 44	29 20 23	0.7 13 8	2.30 2.70 1.20

Zn-contents have to be mentioned (partly caused by addition for fermentation as known for no. 8 resp. by pollution). High variations of N -contents with partly high amounts of NO resp. NH have to be pointed out. Contents were dependent on N-addition and nitrification capacity of the composts to a greater extent than on the fermentation process (viz. later).

N-turnover in incubation trials

In figures 1 and 2 changes of soluble mineral nitrogen (sum of NO $_3$ + NH $_4$) with and without additional N-fertilization are shown in relation to incubation time.

Long-term composts (fig.1) altogether exhibited a more stable nitrogen curve, very similar to peat on the given starting level; only when N was added, N contents of composts 2, 5, and peat decreased after 10 weeks, in most cases caused by a reduction of NO $_3$ -content (viz. later = biological N-fixation). In contrast, N-contents of short-term composts varied to a greater extent especially with N-fertilization (fig.2). Compost 9 (0.81 % N $_{\rm t}$, C/N = 52) showed in both series (fermentation - as well as fertilizer-N) a quick and marked blocking of N; after 8 weeks, however, mineralization = release of mineral N recommenced. Compost 7 (1.16 % N $_{\rm t}$, C/N = 32) fixed the total given amount of fertilizer (80 mg N/20 g D. M.) within the first 4 weeks; in series without additional application only minimal N $_{\rm total}$ -amounts were left after 1 day.

Relatively stable proved compost 8 with by far highest amounts of N in both series (1.09 % N $_{\rm t}$, C/N = 36).

The bark compost from a depot (no. 6: 0.66 % N_{t} , C/N = 47) was relatively free of soluble nitrogen similar to peat, but did fix more N in the beginning.

Fig. 3 shows a N balance-sheet drawn from these results. The amounts of N -nitrogen calculated in the series with N-addition, by taking into account the control values (compost without N-addition) are plotted as positive resp. negative value on the ordinate if there was an increase resp. decrease with respect to the applied N

level (80 mg N = 0 on the ordinate).

Long-term composts, similar to peat, showed altogether only slight changes of the N-level set by N-fertilization; after about 7 to 10 weeks supply of soluble N decreased in most cases. The available amount of N in short-term composts, however, varied strongly between extreme N-fixation in the beginning (compost 7, 9, 6) followed by remineralization (composts 9, 6). In contrast with compost 8 amounts of N increased after a 5 week lag - phase above the given N-level and decreased after the 10th week very pronouncedly as consequence of N-fixation.

Sphagnum peat did not have any nitrification activity, neither did long-term compost 3 (minimal nitrification only after the 10 week) (fig.4) in contrast to composts 2 and 5 (fig.5; high activity) resp. compost 4 (fig.4: low activity).

Starting with the $10^{\mbox{th}}$ week, NO $_3$ -contents decreased more or less clearly probably as consequence of a biological blocking. In the bark compost from a depot (compost 6) an immediate NH $_4$ -fixation was observed (biological, partly chemical), nitrate contents stayed nearly on the starting level (fig.6) - minimal nitrification took place.

The given $\mathrm{NH_4}$ - and especially $\mathrm{NO_3}$ -nitrogen was rapidly fixed in the short-term composts obviously mainly by micro-organism (fig.6 and 7); in contrast to product 7, heavy mineralization to nitrate took place in compost 9 starting with the 7 week (good nitrification capacity). Compost 8 did not show any appreciable amount of nitrification activity; applied $\mathrm{NH_4}$ -fertilizer stayed unchanged during the whole incubation time; the result was the same with half the amount of N applied (40 mg N/20 g D. M.), which implies that high $\mathrm{NO_3}$ - resp. salt contents should not inhibit $\mathrm{NH_4}$ -oxidation. The question of correlations between Cu-supply and nitrification capacity was tested in an additional experiment with compost 2; Cu-application did not change any nitrification characteristics of this compost, so that the lacking nitrate oxidation in compost 7 could not be attributed to its high Cu-content (13 mg/1, viz. tab.2) (fig.5).

4. Discussion

This incubation trial clearly differentiates N-turnover in long-term and short-term composts. Long-term composts largely exhibited the same N dynamics (amounts of N $_{\rm min}$) as sphagnum peat with some variation in nitrification capacity; type of bark (conifer - or oak) did not influence N-turnover.

Short-term composts showed partly erratic changes of NO $_3^-$ and NH $_4^-$ nitrogen with or without additional N-fertilizing. Sometimes rapid biological nitrate fixation (2 $^{\rm nd}$ – 5 week) was followed by a similarly distinct N-mineralization (7 $^{\rm nd}$ – 17 week) up to nitrate. These very instable N-dynamics – fixation as well as remineralization-cannot be predicated satisfactorily by the parameters total N content or C/N-ratio of the composts. Strongly N-fixing composts sometimes had N $_{\rm t}$ -contents of more than 1 % and C/N-ratios of about 35.

Thus, the results by Zöttl (1981) could not be verified. Only in the case of bark compost from a depot, it was possible to predict blocking of N by N_t-content (0.66 % i. D. M.) and C/N-ratio (47). Obviously, besides N-content (N_t and N_{min}) the amount of easily decomposable organic matter becomes very important with regard to N-turnover; in long-term composts it should be clearly less than in the examined short-term composts resulting in more favourable N-dynamics (Teicher et al., 1984). Nitrification capacities of the test composts sphagnum peat did not have any activity — did not correlate either with pH or with fermentation procedures (long — or short-term) and may be explained mainly by varied degrees of pollution with soils or possibly by residual inhibitors like tannins, essential oils and so on.

In conclusion, besides total-N and C/N-ratio, data about fermentation procedures, especially turnover time, should be of great importance to assess the applicability of fermented bark for horticultural substrates.

References

- Cappaert, I., Verdonck, O., and De Boodt, M., 1973. Barkwaste as a growing medium for plants. Meded.Fac.Landbouwwet, Rijksuniv.Gent 38: 2013-2022.
- Fischer, P., Rösch, W., and Will, Th., 1980. Vergleich von Rindenkompost und Torfkultursubstraten bei Tomaten. Dtsch.Gartenbau 50: 2154-2156.
- Hointink, H.A.J., 1980. Composted bark, a lightweight growth medium with fungicidal properties. Plant disease 64: 124-147.
- Scharpf, H.C., 1981. Manganüberschuß und Eisenmangel in Rindensubstraten. Taspo, Sh.1981: Rindenprodukte für den Gartenbau. Thalacker Verlag Hamburg, 76S., 12-18.
- Solbraa, K., and Selmer-Olsen, A.R., 1981. Manganesetoxicity in particular when growing plants in bark compost. Acta agric. Skandinavia 31: 29-39.
- Zöttl, H.W., 1981. Bestimmung und Beseitigung der Stickstoffimmobilisierung in Rindenhumus. Taspo, Sh.1981: Rindenprodukte für den Gartenbau. Thalacker Verlag Hamburg, 76S., 7-11.

80+

-07

40

Fig. 3 – Incubation trial with bark composts -Changes in Nmin (△N compared with control = compost without N-fertilizing)
fertilized N (80 mg N/pot) ≥ 0 of the y-axis

Fig.5-Incubation trial with N-fertilizing-Changes in $CaCl_2$ -soluble NO_3 and NH_4

Fig.7 - Incubation trial with N - fertilizing - Changes in CaCl_2 - soluble NO_3 and NH_4