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Abstract

Understanding and analyzing human movements has long been studied and yet
remains an active topic in computer vision field as it is a fundamental task for the
development of more advanced artificial intelligence systems. It is particularly
challenging when the observations are only visual-based, namely, RGB images
from photometric sensors or range data from depth sensors; neither markers
nor inertial sensors are available. This thesis aims at addressing this problem,
which is also known as marker-less human motion capture (mocap.) or in a
more general sense, 4D modeling.

One common approach to this problem is the so-called top-down approach.
That is, given a pre-defined 3D humanoid surface, one recovers its temporal
evolutions in a frame-by-frame manner according to observations from various
modalities. Such model-based strategies generally consist of two steps: 1) es-
timating the associations between primitives of input data and those of the
reference template; 2) estimating the motion parameters based on the corre-
spondences obtained above. The former handles data explanations, typically
involving statistics or machine learning techniques, whereas the latter deals with
parameterizations of motions such as articulations or non-rigid deformations,
which are well studied in robotic and computer graphic fields. As such, top-down
human shape tracking is an applied problem that requires knowledge from vari-
ous background. In particular, this thesis contributes to the two aspects above
respectively.

On one hand, most existing methods adopt the well-known Iterative-Closest-
Point (ICP) framework that alternates between the aforementioned two steps
iteratively. It provides decent results when converges, but requires close initial-
izations which is not always available. To alleviate this problem, we employ a
machine learning technique, random forests, to learn the associations between in-
put data and reference surfaces offline. During the online tracking phase, forests
predict the correspondences discriminatively, discover human shapes in a clutter
scene and initialize the tracking quickly. This strategy is applied to both sur-
face data (visual hulls from 3D reconstruction) and volumetric data (centroidal
Voronoi tessellation). The frame-wise correspondences prevent errors from being
accumulated and hence avoid tracking failures. With this frame-independent
nature, our tracking pipeline shares the similar spirit to the tracking-by-detection
paradigm in image domain, termed 3D tracking-by-detection of human shapes.

On the other hand, in the context of marker-less human mocap, two most
widely-used motion parameterizations are articulated skeletons that follows a
kinematic chain and surfaces that deforms completely non-rigidly. While the
former is a compact representation that resembles human anatomical structures,
the latter is more general and models realistic deformations like loose apparel.
We introduce a versatile joint skeleton-and-surface optimization concept that
holds the merits of the two. As the nature of surface-based method, our approach
is more accurate in shape deformations than traditional skeleton-based methods.
Yet, it also offers correct skeletal poses, which are more semantic meaningful and
often desired in applications. On top of that, a keyframe-based tracking pipeline
is introduced to online identify distinctive skeletal poses as key-frames, which in
turn improves the handling of missing data and large deformations.
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Zusammenfassung

Das Erkennen und Analysieren menschlicher Bewegungen ist eine aktiv unter-
suchte und ungelöste Aufgabe des Fachgebiets Computer Vision und wichtig für
die Entwicklung fortgeschrittener Systeme der Künstlichen Intelligenz. Es ist
besonders anspruchsvoll, wenn es lediglich basierend auf Intensitäts- oder Tiefen-
bildern durchgeführt wird und nicht durch Marker oder Beschleunigungssensoren
unterstützt wird. Diese Dissertation befasst sich mit dieser Problemstellung, die
manchmal auch Bewegungserfassung (motion capture) in Mehrkamerasystemen
oder auch 4D modeling genannt wird.

Ein Ansatz für dieses Problem ist das sogenannte top-down-Verfahren, wel-
ches die Verformung eines 3D-Modells des Menschen über die aufgenommenen
Zeitschritte bestimmt. Dies geschieht in zwei Schritten: Zunächst werden die
Korrespondenzen zwischen dem Modell und den aufgenommenen Daten er-
mittelt. Darauf aufbauend werden anschließend die Bewegungsparameter des
Modells geschätzt. Während der erste Schritt die Daten etwa mittels statistischer
Ansätze oder maschinellem Lernen erklärt, beschäftigt sich der zweite Schritt
mit der Parametrisierung der Bewegung etwa mittels nicht starren Verformungen
oder Gelenkartikulierungen. Da diese Verfahren im Einzelnen bereits intensiv
untersucht wurden, kann der top-down-Ansatz auch als angewandtes Problem
gesehen werden welches Kenntnisse aus verschiedenen Gebieten benötigt. Diese
Arbeit leistet einen Beitrag zu beiden der oben beschriebenen Schritte.

Der erste Beitrag verwendet Random Forests, ein Klassifikationsverfahren
aus unkorrelierten Entscheidungsbäumen. Zur Vermeidung von Fehlerakkumu-
lation werden diskriminative Assoziationen vorgestellt, die zu langzeitstabilen
Systemen führen. Die 3D-Modelle werden sowohl mittels einer oberflächenba-
sierten, als auch einer volumenbasierten Parametrisierung dargestellt. In beiden
Fällen wird das Problem der Assoziationsbestimmung als Regressionsaufgabe
definiert. Mit den diskriminativen Assoziationen funktioniert das System ähnlich
wie tracking-by-detection in 2D, weshalb wir es als 3D tracking-by-detection der
menschlichen Gestalt bezeichnen.

Im zweiten Beitrag wird ein informativerer Suchraum vorgeschlagen, der wei-
che Verformungen zulässt und zugleich die menschliche Körperhaltung beibehält.
Die Körperhaltung wird dabei über die Lage der Gelenkpositionen parametri-
siert. Diese ist in vielen Anwendungen nützlich, allerdings weniger allgemein
als eine Verformungen des Modells. Wir führen die Idee ein, dass man beide
Parametrisierungen gleichzeitig abschätzen kann.
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1
Introduction

During the last few decades, the advent of commodity digital cameras has made a
revolutionary change on how people record, store and transmit snapshots of their
daily lives. Digital cameras have become ubiquitous because the cost of imaging
sensors and computing capabilities has been substantially reduced. As a result,
such prevalence also opens the possibilities to new technologies. Beyond the
acquisition, storage and rendition of appearance enabled by photography, there
is a growing need for tools that automatically measure and interpret the world
underlying the pictures. Computer vision, as a part of artificial intelligence, strives
to enable machines human beings’ visual cognitive perception. A well-studied
subject within this field deals with human subjects. For instance, human detection
and pose estimation from images are fundamental high-level problems that the
community has addressed several times during the past [2, 102, 113, 151].

A great part of vision research is dedicated to measuring three-dimensional
shapes from 2D visual data, usually referred to as a reconstruction problem. In
particular, considerable efforts have been devoted to contrive algorithms that
automatically build models of objects that were observed from multiple views.
Each view offers only partial appearance information of the reconstructed object.
The challenge is to merge all these sources of information. The survey of [120]
and more recent results, e.g. [60] show that precise photometric models can be
recovered from multiple images and that Multiple View 3D Reconstruction has
grown into a mature topic within the computer vision community.

After perceiving static 3D shapes, the next step that follows naturally is to
interpret dynamic 3D objects. The problem has been approached from many
directions [80, 104, 144, 149]. When the aforementioned multi-view 3D recon-
struction algorithms are applied to multiple videos of moving and deforming
objects, most of the available methods treat each frame independently, ignoring
the dynamic nature of the observed event and thus the temporal redundancy
in the data. Understanding dynamics, especially human motion, is an active
topic in the community, with a wide spectrum of applications. In this thesis, we
consider human motion as the temporal evolutions of shapes and aim at capturing
robustly such evolutions with various meaningful motion parameterizations.
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CHAPTER 1: INTRODUCTION

Figure 1.1: 4D modeling refers to the ability to produce animated shape se-
quences using videos of real dynamic scenes [34, 35].

1.1 Applications of Human Motion Tracking

The core interest of this thesis is the inference for human motion in 3D space. It
is sometimes referred to as 4D modeling [49, 74, 103]1 since one estimates not
only static 3D points but also their temporal trajectories as shown in Fig. 1.1.
The automatic computation of four-dimensional descriptions of scenes has a
wide range of applications. In this section, we list a number of representative
ones which we feel already made impacts in the industry.

• Content production. Manipulating digital media content is perhaps the
most important application of spatial-temporal modeling. Consider for
example the task of adding a virtual logo to the shirt of an actor. Editing the
2D video frame-by-frame to draw the logo would be extremely laborious, as
one needs to account for occlusions, foldings of the shirt, self-cast shadows
resulted from various illumination conditions. Drawing on a series of 3D
meshes frame-by-frame and then rendering 2D views would overcome part
of these issues but still remains tedious and impractical. If the 4D model of
the same performance is available, the task becomes rather straightforward.
As 4D models contain the trajectories of each point of the shirt across time,
the logo can be added to the first frame just once and its deformation can
be automatically computed for the rest of frames. In other words, this
information allows to automatically propagate edits through time. Moreover,
the editions are not limited only to the appearance of objects. The geometry
itself can be modified in a temporally consistent fashion, e.g. the actor
can be made taller or skinnier [78]. The captured motion can also be
transfered to a new character [12, 106]. Finally, inserting 4D models into
dynamic simulations also becomes possible. This allows for example to
capture dynamic objects and simulate their influence in particle systems,
or to give an actor virtual long hair or clothing that will interact more
realistically with his captured body.

1Yet note that 4D modeling applies not only to humans but generally to every object that deforms.
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1.1 APPLICATIONS OF HUMAN MOTION TRACKING

Figure 1.2: Marker-less motion capture. (©Captury)

• Marker-less motion capture (mocap.) Prior to content manipulation, an-
other important application of human motion tracking is capturing actors’
movement, because the content to be edited first has to be acquired any-
way. More precisely, motion capture actually aims to solve the equivalent
problem as 4D modeling does, rather than being its application. Currently
the most widespread way of acquisition in the film industry deploys optical
markers, where users are required to wear tight suits [160]. Sparsely
attached on the body, markers are tracked quite accurately by infrared cam-
eras during acting. The background software reasons with their locations
to generate the positions of human joints. Since attaching and detaching
markers are obviously tedious but inevitable, capturing motion without
markers also attracts considerable research efforts in the past decade. As
shown in Fig. 1.2, the techniques get gradually mature and some success
are achieved under certain working conditions (simple uniform background
in this case) [97, 130].

• Compression, transmission, and real-time rendering. 4D models con-
tain explicit information on the motion of objects, and therefore on the
temporal redundancy in the data. This exposed redundancy can appar-
ently be compressed, yielding much more compact descriptions of dynamic
scenes. If a 4D model is available, one can encode the shape information
once, and only transmit one rigid transformation per frame. Such con-
cise representations are of evident interest for storage, transmission over
networks and real-time rendering.

• Human-Machine interaction. Capturing movement at interactive frame
rates opens possibilities for human machine interaction. Measured body
poses can be used as user input to provide intuitive manipulation of virtual
objects or natural interaction with virtual agents. Beyond simple measure-
ment, computed motion cues allow to recognize body gestures or complex
actions and in some sense to use temporal information to evaluate the
context and semantical content of 4D data. For example, tracking human
facial deformations is crucial to understand non verbal communication.
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• Medical applications. Recovering shape and motion can potentially be
applied to medical field. For example, measuring the 3D motion of athletes
allows for the bio-mechanical analysis of skilled movement such as a
golf swing. It is also useful to measure the evolution of a gait pattern
during physiotherapy or to automatically detect, record and document the
evolution of patients for pathologies such as epileptic seizures. Motion
capture also has applications for the observation of medical personnel.
It allows to automatically document procedures and compare them to
established work flow. This can save precious time when writing reports
and help with the training of new staff. Furthermore, knowing the current
stage of a procedure can help predict the end of a surgical intervention and
get the next patient ready so that the usage of the operating room can be
maximized. Other applications of interest include collision avoidance [85]
or the estimation of the cumulated exposure to radiation of personnel in
contact with x-ray sources [86].

1.2 Problem Definition and Challenges

Some progresses have been made recently to simultaneously digitize shape and
motion that lay the foundation of this thesis. In the following, we briefly go
through the standard pipeline, list the state-of-the-art approaches for each step
and define our problem.

Starting from the observed multi-view videos, the objects of interest are
first segmented to yield binary images, usually termed silhouettes, indicating
foreground or background [14, 24, 91]. As depicted in Fig. 1.3, given the
silhouettes from several views, 3D reconstruction methods such as [55, 100] are
able to recover a coarse 3D shape, called visual hulls throughout this thesis. Such
spatial reconstruction methods treat every frame independently, without taking
into account the dynamic nature of moving objects. Thus, there is no temporal
coherency on these raw 3D shapes and it is hard to analyze motion with them.

Figure 1.3: Foreground segmentation [91] and 3D reconstruction [55].
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1.2 PROBLEM DEFINITION AND CHALLENGES

? 

(a) (b) 

Figure 1.4: Two fundamental steps in 3D human shape tracking. Gray: input
data; color: template. (a) data-model association step associates each input
primitive to those of the template (Chapter 3-4); (b) optimization step deforms
the template so that it looks similar to the observed visual hull (Chapter 5-6).

For this reason, people take these raw visual hulls as input and perform
additional model-based tracking to recover the trajectories of each vertex on the
template. It is sometimes also referred to as the top-down approach for human
motion analysis because it already assumes a pre-defined 3D reference surface
and guides its deformation with either 3D visual data2 [35, 128], the processed
2D images (silhouettes) [61, 97] or directly with raw RGB images [115, 130].
With 3D visual hulls as input, the basic process of template tracking is illustrated
in Fig. 1.4. One first associate points of visual hulls to those of the template
(association step) and then deform the reference surface so that it resembles
the input as much as possible (tracking, or optimization step). This procedure
is repeated in a frame-by-frame manner. Many existing approaches [35, 43]
base themselves on the well-known Iterative closest point (ICP) algorithm [37,
17, 158], which actually alternates between these two steps. Several challenges
remain to be solved and questions to be answered in this ICP framework:

1. Initialization: the reference surface has to be aligned properly to the input
of the first frame.

2. Outlier rejection: how to identify outliers? Namely, input points that
cannot be explained by the template should not be associated to any
reference vertices, like the ball in Fig. 1.1 or the desk in Fig. 1.4?

3. Resilience from tracking error: as ICP relies heavily on the previous
tracked outcome to built data-model associations, errors from either of the
two steps are prone to get accumulated and eventually break the tracking.

4. Motion parameterization: what is the accurate and yet meaningful rep-
resentation of motion, surface deformation? skeletal poses? or volumes?

This dissertation concerns itself with these challenges. We build on top of
the state-of-the-art non-rigid EM-ICP [35] and propose answers to the questions
above. Generally speaking, we deal with the first three issues by introducing the

2In contrast, bottom-up approaches like [13] start with detecting human body parts in each 2D
view and assemble them in 3D space afterwards.
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concept of discriminative associations. Exploiting the state-of-the-art machine
learning paradigm random forests, this strategy strives to decrease or even elimi-
nate the dependence on previous frames when establishing new correspondences.
These discriminative associations are in turn used to initialize the reference sur-
face, identify outliers and get recovered from tracking drifting. Discovering
associations in a frame-wise manner is analogous to detecting shapes in 2D
images. Hence, we hereinafter refer to our approach as tracking-by-detection of
3D human shapes, which, to the best of our knowledge, does not exist in the
literature of human shape tracking in multi-camera environments. Secondly, we
proposed a simultaneous optimization framework that estimates shape deforma-
tions and human skeletal poses jointly. Such a versatile motion parameterization
is not only accurate but also delivers richer semantic information.

1.3 Contributions

To achieve our objectives, we introduce a number of novel algorithms for 3D
human motion tracking. The primary contributions of the dissertation are
summarized in below:

• We mitigate the problem of error accumulations by introducing the concept
of discriminative associations. Although the similar idea has been deployed
in human pose estimation with RGBD data [112, 140], we are the first ones
who utilize this concept in human shape tracking with full 3D data. With
the help of regression forests, every input visual hull is warped back to the
rest pose defined by the template. Such a warping is frame-independent
and is learned offline.

• We discuss and analyze the interactions between two distinct motion param-
eterizations: skeletal poses vs. surface deformations and thereby introduce
a joint optimization framework that estimates both simultaneously. The
concept of joint optimization is first introduced in [132] but only used for
refinement. We are the first ones who apply it directly to tracking and look
at the optimization problem from the perspective of Bayesian network.

• The two aforementioned contributions comprise our tracking-by-detection
of 3D human shapes framework. Besides surfaces, the advantage of this
approach is also verified with another frequently-used shape parameter-
izations: volumes. We present a fully volumetric tracking-by-detection
pipeline, which, to the best of our knowledge, is the first one of its kind.

• In order to validate the benefit of our methods, we record some multi-
view datasets that contains outlying geometry. These outliers (specifically,
furniture) are kept in silhouettes after background subtraction and stay con-
sequently in the reconstructed visual hulls. To the best of our knowledge,
none of the online-available datasets present such features.

These contributions will be presented and elaborated in detail in the following
chapters, which are outlined in below:

8



1.4 DISSERTATION OUTLINE

1.4 Dissertation Outline

We provide a short overview for each chapter of the thesis. Most of the methods
and material are published or under submission for a major conference or
journal. Therefore, we additionally provide the related work for each chapter
and encourage the readers to check the material online.

Chapter 2. We review the theoretical background of the thesis. In particular,
we go through the deformable EM-ICP [35] and random forests [27, 45] which
form the basis of our 3D tracking-by-detection model. The terminology and
notations are also defined here for the later chapters.

• Cagniart, C., Boyer, E., Ilic, S.: Free-form mesh tracking: a patch-based
approach. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pp. 1339–1346. IEEE (2010)

• Cagniart, C., Boyer, E., Ilic, S.: Probabilistic deformable surface tracking
from multiple videos. In: European Conference on Computer Vision (ECCV),
pp. 326–339. Springer (2010)

• Criminisi, A., Shotton, J.: Decision forests for computer vision and medical
image analysis. Springer (2013)

Chapter 3. In this chapter, a discriminative model for 3D human body corre-
spondence estimation is introduced. We build our method on a random forest
that regresses an input 3D point on a mesh to the corresponding location on the
template. We describe a 3D surface in an implicit form with volumetric fields.
The advantage of this approach is that one has organized data where features
can be designed much easier than meshed indexed points.
Related work:

• Huang, C.H., Boyer, E., do Canto Angonese, B., Navab, N., Ilic, S.: Toward
user-specific tracking by detection of human shapes in multi-cameras. In:
Computer Vision and Pattern Recognition (CVPR), pp. 4027–4035. IEEE
(2015)

Chapter 4. Continuing on this direction, in this chapter, we utilize different
3D shape parameterizations and formulate 3D tracking-by-detection in a fully
volumetric manner. Instead of triangular meshes, centroidal Voronoi tessellation
(CVT) is chosen to represent a 3D shape as uniform and anisotropic cells. The
shape representation, deformation model, feature description, and primitive
association are all built on the CVT volumetric representation.
Related work:

• Huang, C.H., Allain, B., Franco, J.S., Navab, N., Ilic, S., Boyer, E.: Volumet-
ric 3d tracking by detection. In: CVPR 2016-IEEE Conference on Computer
Vision and Pattern Recognition (2016)
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• Allain, B., Franco, J.S., Boyer, E.: An efficient volumetric framework for
shape tracking. In: Computer Vision and Pattern Recognition (CVPR). IEEE
(2015). URL https://hal.inria.fr/hal-01141207

Chapter 5. We introduce a simultaneous optimization scheme that jointly
recovers surface deformations and skeletal poses. This is a more versatile de-
formation framework, offering expressive motion parameterizations for various
applications. This joint optimization scheme and the discriminative data-model
associations estimated above form our complete 3D tracking-by-detection of
human shapes pipeline.
Related work:

• Huang, C.H., Boyer, E., Ilic, S.: Robust human body shape and pose tracking.
In: 3DV. IEEE (2013)

• Huang, C.H., Cagniart, C., Boyer, E., Ilic, S.: A bayesian approach to multi-
view 4d modeling. International Journal of Computer Vision 116(2),
115–135 (2016)

Chapter 6. We step back from the problem of discriminative data-model as-
sociation and concentrate on generic temporal tracking method. Specifically,
we argue that always sticking to the reference model in the same pose can be
inaccurate and, for that reason, we propose a keyframe-based tracking strategy
that changes the referenced pose of the template to improve the robustness.
Related work:

• Huang, C.H., Boyer, E., Navab, N., Ilic, S.: Human shape and pose tracking
using keyframes. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3446–3453. IEEE (2014)

Chapter 7. We conclude our work by presenting our findings, the limitations
of the proposed methods and our directions for future work.

Appendix A. We present our comparison study on three different local-coordinate-
frame approaches and conclude that the one based on signed distance field leads
to best repeatability and it is therefore used in Chapter 3.
Related work:

• Huang, C.H., Tombari, F., Navab, N.: Repeatable local coordinate frames
for 3d human motion tracking: From rigid to non-rigid. In: 3D Vision
(3DV), 2015 International Conference on, pp. 371–379. IEEE (2015)

• Petrelli, A., Di Stefano, L.: On the repeatability of the local reference
frame for partial shape matching. In: Computer Vision (ICCV), 2011 IEEE
International Conference on, pp. 2244–2251. IEEE (2011)

Appendix B. We investigate an alternative output label space to learn the cor-
respondences, where data are more naturally aligned. The key advantage is that
one can learn across multi-view datasets despite the distinct mesh connectivity.

10



1.4 DISSERTATION OUTLINE

Appendix C. In order to bridge the gap between 2D and 3D, we take one step
backward and study the common ground among the state-of-the-art methods
in 2D parameter estimation, e.g. homography and fundamental matrix. We
investigate whether these techniques are used in 3D registrations and try to
provide a unified view on these problems.

• Hartley, R., Zisserman, A.: Multiple view geometry in computer vision.
Cambridge university press (2003)
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2
Background

The theoretical background of the thesis stems from Iterative Closest Point (ICP)
algorithm [17, 38, 158], or more specifically, its non-rigid and probabilistic
variant [34, 35], whose principles are briefly reviewed in this chapter for the
sake of completeness. We first define two different shape parameterizations
in 3D and elaborate the ICP procedure using one of them. Meanwhile, as the
readers shall see later in Chapter 3 and 4, we apply a well known machine
learning paradigm Random Forests [45] to draw discriminative predictions. Thus,
the theory of forests are also described here. Despite the rich literature in both
topics, we only outline each method briefly, provide the definition and lay the
needed foundations for this thesis. Table 2.1 and Table 2.2 at the end of this
chapter list a quick reference to the notations and the terminology we use.

2.1 3D Shape Parameterizations

surface 

volume 

data template 

data template 

Figure 2.1: Two major 3D
shape representations.

A shape in 3D Euclidean space defines a con-
tinuous volumetric domain Ω ⊂ R3, whose
border, ∂Ω, defines a 2-manifold surface. As
shown in Fig. 2.1 on the right, the shape pa-
rameterizationM depends on where the dis-
cretization takes place, on ∂Ω or on Ω. In
both cases, it can be parameterized explicitly
as mesh representations, which are pairs of
point locations M and their connectivities T ,
M = (M, T ). Throughout this thesis, we re-
fer to a point on surfaces as a vertex, denoted
as v ∈ V , where V is the set of vertex indices
with triangular connectivities. A volumetric
sample point, on the other hand, is referred
to as a cell s ∈ S, where S is the set of cell in-
dices drawn by centroidal Voronoi tessellation
(CVT) [50]. Without the lost of generality, in the following section we choose
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CHAPTER 2: BACKGROUND

surface representations to elaborate the principles of deformable ICP. Readers are
referred to [5] for an example of volumetric deformable ICP applied in human
shape tracking.

2.2 Surface-based Deformable Probabilistic ICP

A 3D reference surface is represented as X = (X, TX), where X = {xv}
V
v=1 ⊂ R3

are the locations of vertices v, and TX defines the triangles. The essential task
of top-down human motion tracking is to register a template X (source) to
the observed data Y (target), such as fitting the mesh in Fig. 2.2(a) to the
observations in Fig. 2.2(d). Evolving X amounts to parameterizing X as a
function of deformation parameters Θ. As Θ changes over time, so are the
vertex positions, i.e. Xt = X(Θt). X0 refers to template vertex positions in the
rest pose. This also implies that the triangles TX do not change over time, which
is often regarded as no topological changes in the literature and is the assumption
that we follow throughout the thesis.

(a)  (b)  (c)  (d)  

Figure 2.2: Distinct mesh representations. (a) is a watertight reference mesh
with V vertices. (b-c) visualize different deformation structures. (b) is the
standard skeleton-based animation [43, 62, 148], while in (c), the mesh is
decomposed into K patches [34]. (d) is the observed point cloud with O points.

2.2.1 Patch-based Mesh Deformation Framework

The choice of deformation parameter Θ varies from application to application.
It can be a simple global rigid-body motion as in the original ICP papers [17,
37, 158] or the raw vertex positions (namely, X itself) as in Laplacian surface
editing [125]. To characterize the intrinsic nature of human motions, many
authors [62, 98, 140] choose an articulated graph structure that resembles
the human skeleton, as visualized in Fig. 2.2(b). Unlike these approaches, our
interest lies in recovering not only skeletal poses but also details of the shape.
We opt for a surface deformation framework [34] that groups vertices into K
patches (Fig. 2.2(c)) and assign each of them a rigid body motion θ with 6 degree
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2.2 SURFACE-BASED DEFORMABLE PROBABILISTIC ICP

Figure 2.3: Illustrations of patch-based deformation model [34]. Pk and Pl
have their own rigid transform and predict positions for their own vertices (solid
curves) and the vertices of the neighboring patches (dotted curves). The rigidity
energy penalizes the discrepancies in these predictions (dotted lines).

of freedom (dof). Thus, Θ is the collection of all θ, Θ = {θk}
K
k=1, encoding

compactly the global shape pose1 of the surface in a 6K -dimensional space.
More formally, a rigid transformation w.r.t. the world coordinates is associated

with each patch Pk. It is parameterized by the position of the patch center ck
and a rotation matrix Rk ∈ SO(3) (or equivalently by a unit-length quaternion
qk). This rigid transform yields for every vertex of the mesh a predicted position
xk (dotted lines in Fig. 2.3):

xk = Rk(x0 − c0
k) + ck, (2.1)

where the superscript 0 denotes the corresponding variable in the reference pose.
The mesh is deformed by linearly blending the predictions made by different
neighboring patches for each vertex. The weighting functions αk are Gaussians
of the Euclidean distance to the center of the patch ck. As for the support for
blending, we consider only the patch Pk itself and its direct neighbors, i.e. k∪Nk:

x =
∑

s∈k∪Nk

αsxs. (2.2)

Blending weights αs are normalized to add up to 1 and is computed only once
on the template before tracking starts. The deformation parameter Θ is thus
{(Rk, ck)}Kk=1, where K is the total number of patches.

Ideally, patching should follow the intrinsic nature of the shape, e.g. its
rigid parts, which can be learned using the approach like [56]. However, in
the absence of prior knowledge on this structure, they are preferably regularly

1With a slight abuse of terminology, we sometimes abbreviate shape poses to only ‘shapes’ and
the term ‘poses’ refers particularly to human skeletal poses. See Table 2.2 for comparison.
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CHAPTER 2: BACKGROUND

distributed over the surface as those in Fig. 2.2(c), with a parameter that controls
the maximum radius of the patch and consequently the total number of patches
K . Empirically we found that for human motion, K ≈ 150 yields fairly good
results and the resulting dimension of the search space, 150 × 6 ≈ 103, lies
in between skeletal-based animation (typically 102 ) and raw vertex locations
(greater than 104). Note that multi-resolution patching is always possible.

2.2.2 Rigidity constraints

Given this patch-based control structure, we define an energy that penalizes
non-rigid surface deformations w.r.t. its original status. This is inspired by the
theory of elasticity in which deformable objects are defined by their material
properties and a rest configuration. Many works simulate this behavior by
constraining the displacement field [59, 95, 125, 124]. They operate on raw
vertex positions and discourage the displacement fields from changing after
local transformations, which are either expressed as a linear function of vertex
positions [59, 95, 125], or iteratively estimated [124]. On the other hand, [22]
and [135] optimize local transformations rather than vertex positions, and define
elastic constraints between the transformed vertices themselves. Although this
is not as physically accurate as the proper computation of the strain energy, we
pursue this path because it naturally integrates to our patch-based representation.
Our rigidity energy, as defined in Eq. (2.3) and shown in Fig. 2.3, simply enforces
the predictions xk(v) and xl(v) of a vertex v by two neighboring patches, k and
l ∈ Nk, to be consistent:

Er(Θ) =

K∑
k=1

∑
l∈Nk

∑
v∈Pk∪Pl

wkl(v) ‖xk(v)− xl(v)‖2 . (2.3)

The choice of the weights wkl(v) is of importance as it allows to encode material
properties. In all of our experiments, they are proportional to the sum of the
blending weights: αk(v) + αl(v) and is normalized such that all the wkl(v)

depending on the same vertex v sum up to 1, simulating therefore uniform
stiffness. Both Eq. 2.3 and [124] aim to minimize the non-rigidness to achieve
as-rigid-as-possible property. The former defines it in absolute vertex positions
while the latter in the displacement field.

Optimization

Evolving a mesh can then be viewed as an optimization problem balancing the
rigidity energy Er (with a weight λr) and data terms Edata:

argmin
Θ

λrEr(Θ) + Edata (X(Θ)) , (2.4)

where Edata can be manually specified constraints or more sophisticated prob-
abilistic likelihoods [35]. Eq. 2.4 is a non-linear least-squares problem, since
Θ involves rotations. We employ an iterative Gauss-Newton method [40] to
find the minimizer. Instead of directly using elements in the rotation matrix as
parameters with additional soft constrains for matrix-orthogonality, as in [135],
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2.2 SURFACE-BASED DEFORMABLE PROBABILISTIC ICP

we optimize the energy function w.r.t. small affine updates, θk = [uk,vk] ∈ R6.
Specifically, the update in rotation, R̂k, is approximated by the first-order ex-
pansion of the exponential mapping of [uk]×, namely, I + [uk]×, and vk is the
displacement of ck. As shown in Eq. 2.5, this formulation allows to write the
update of coordinates xk linearly in θk, and thus of x linearly in {θk}

K
k=1.

xk 7→ x′k = R̂k(xk − ck) + c′k

= xk + [uk]×(xk − ck) + vk = xk + Kk(xk) θk,

with Kk(xk) =
[
[ck − xk]× I

]
. (2.5)

The first order approximation of Eq. 2.3 then yields a simple quadratic form
in the update parameters.

Er(Θ) '
K∑
k=1

∑
l∈Nk

∑
v∈Pk∪Pl

wkl ‖ (xk + Kk(xk) θk)−(xl + Kl(xl) θl) ‖2. (2.6)

Knowing that Kk(xk) is actually the Jacobian of xk w.r.t. θk, the gradient of
Eq. 2.6 w.r.t. θk can be expressed using the chain rule:[

∂Er
∂θk

]
=

[
∂Er
∂xk

][
∂xk
∂θk

]
=

[
∂Er
∂xk

]
Kk(xk). (2.7)

These first order approximations can be used to compute the gradient and
the minimum of the quadratic approximation of the energy in the tangent space
but the actual energy must be evaluated on the updated Θ. To recover the
Rk ’s we actually perform the update of rotations in quaternion representation
and normalize the result to limit the accumulation of numerical error. The
cost function from Eq. 2.4 is in practice minimized by performing a line search
in tangent space and making sure that the corresponding step taken on the
parameter manifold actually decreases the energy.

Numerical Considerations

In the Gauss-Newton algorithm, the Hessian matrix is approximated by G>G

where G is the Jacobian matrix. In our case, G>G is a 6K × 6K sparse matrix,
with only a few 6 × 6 non-zero blocks. This structure is fixed and reflect the
connectivity in the graph of patches. Since Eq. 2.7 offers an analytic formulation,
it is more practical to compute directly the matrix, rather than computing first
G and then G>G. This computation can be mostly parallelized thanks to the
sparse blocky structure. For example, the off-diagonal 6× 6 blocks come from
the rigidity terms of Eq. 2.6 and require for block (k, l) to accumulate gradient
terms over Pk∪Pl. These operations can be distributed on multiple processors as
they access different parts of the memory. Finding a minimizer of the quadratic
approximation at each step of the Gauss-Newton algorithm can then be tackled
by any available sparse solver, either direct or iterative, as discussed in [20]. We
use sparse Cholesky factorization [89] in Ceres [1].
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2.2.3 Iterative Closest Point Search

So far we have introduced how the template should evolve according to the
deformation parameter Θ. To take one step further, one would like to make it
data-driven. Given an observed visual hull Y = (Y, TY ), where Y = {yi}

O
i=1 ⊂

R3, the goal is to register X non-rigidly to Y . In other words, one would like
to estimate the optimal Θ̂ such that X(Θ̂) resembles Y as much as possible.
It requires a good data term Edata in Eq. 2.4 to account for automatic data
explanations. It generally boils down to two sub-problems:

1. Association: matching each point in Y to the points in X to build the
correspondence set C .

2. Tracking/Optimization: estimating Θ̂ by minimizing an energy E that
describes the discrepancies between pairs in C : Θ̂ = argminΘ E(Θ; C).

More formally, let VY and VX denote respectively the set of point index in data
and the template, i.e. i ∈ VY and v ∈ VX . The association step aims at finding
the matched pairs (i, v) between the VY and VX : C = {(i, v)} ⊂ VY × VX .
Relaxing the hard correspondences to soft assignments extends the algorithm to
its probabilistic counterpart.

Matching two point sets accurately and reliably in the presence of noise is
still an on-going challenge. If Y and X(Θ) lie in vicinity, correspondences C
can be built directly by local proximity search. The deformation parameter Θ

is initialized with such coarse associations and X is evolved accordingly. Given
the new X(Θ), correspondences C are refined by a new nearest neighbor search.
One thus keeps refining C and Θ iteratively till convergence. Applying simple
proximity search for C and alternating between the association and optimization
steps is actually the trait of ICP. In the context of human motion tracking, this
strategy has been adopted in many existing approaches [35, 43, 62]. In particular,
[35] explains the association and optimization steps together in an Expectation
and Maximization (EM) fashion. To meet the requirement that Y and X(Θ) lie
in vicinity, the nearest neighbor search is always performed between Yt and
Xt−1 = X(Θt−1). Since the changes between successive frames are generally not
too large, this usually leads to satisfactory results even when fast motions happen,

Figure 2.4: Results of [35] on Flashkick sequence. The kickflip itself consists
of extremely fast motion as it spans over 10 frames.
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as shown in Fig. 2.4. However, as the construction of correspondences Ct relies
heavily on the previous result Xt−1, the error in Θt−1 will propagate to Ct and
in turn influence all the subsequent estimations. In the standard ICP procedure,
there is no mechanism to recover from this vicious circle. Furthermore, ICP is
also notorious for its slow convergence.

2.3 Random Forests

Given the aforementioned limitations, this thesis strives to provide an alternative
for the association step. It does not rely on a proximity search on Xt−1 to
construct correspondence Ct as in ICP framework. Instead, it estimates Ct directly
using random forests. For this reason, we also describe the basic principles of
random forests and define the terminology that will be used in the later chapters.

Figure 2.5: An illustration of random forests.

As implied by the name, a forest consists of multiple trees. Decision trees
have been around for a number of years [27]. Their recent revival is mostly
due to the discovery that ensembles of slightly different trees tend to produce
higher accuracy on previously unseen data, a property known as generalization.
An ensemble of trees is called a forest. A randomized forest comprise trees
that grown differently with some randomness injected, e.g. random bootstrap
samples [27] , or randomized node optimization [68]. The former strategy
actually leads to an alias of random forests called tree bagging .
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A decision tree is a special type of graph. It is a data structure made of
a collection of nodes and edges organized in a hierarchical fashion (Fig. 2.5).
Nodes are divided into internal (or split) nodes and terminal (or leaf) nodes. We
denote internal nodes with circles and terminal ones with squares. All nodes
have exactly one incoming edge. In contrast to general graphs a tree cannot
contain loops. In this thesis, we particularly concentrate on binary trees for its
simplicity, where each internal node has exactly two outgoing edges.

The functioning of decision trees can be separated into an offline phase
(training) and an online one (testing). Here we describe these two phases as well
as the other components of forests used in these phases. We start with the concept
of features, introduce the functionality of one single tree and finally discuss how
to aggregate hypotheses from multiple trees. Since forests are deployed to draw
predictions on 3D surfaces in this thesis, we hereinafter denote a data point
as v, representing a vertex on a mesh. To balance between being general and
specific, we take an intermediate approach that on one hand keeps definitions
and explanations at an abstract level yet on the other hand elaborate only the
concepts and techniques applied in the following chapters. For instance, we do
not assume any particular type of feature at this point, keeping the descriptions
generic. Yet, we will explain only one type of splitting functions at branch
nodes considered in this thesis for its simplicity to train, which is axis-aligned
thresholding. Readers are referred to [45] for more sophisticated techniques.

Features. A data point v is described as a high-dimensional vector in a feature
space, f (v) =

(
f1, · · · , fκ , · · · , fd

)
∈ F 2. Each component κ represents some

attributes of the data point v. The number of features naturally depends on the
type of the data point as well as the application. In theory, the dimensionality
of the feature space F , d, can be very large, even infinite. In practice, it is
often not possible, and further not necessary, to extract all d dimensions of f

ahead of time. Instead, we extract only a small portion of d as needed basis.
Based on this let us formulate the features of interest that are computed at
any single time to be a subset selected from the set of all possible features.
In most applications, d can be very large but the dimension of the subspace
Fd′ ⊂ F is much smaller d′ � d. It is therefore of crucial importance that the
construction of feature vector f is dimension-wise, namely, the computation
of each attribute fκ is independent from each other. For this reason, many
well-known histogram-based 3D descriptors that require normalization after
construction, e.g. SHOT [142] and FPFH [118], can still be applied for random
forests but do not take advantages of its virtue.

Online tree testing. The basic principle of tree testing is simple. The goal is to
route the data point to traverse down the tree. Given a previously unseen data
point f , a decision tree hierarchically applies a number of predefined tests (see
Fig. 2.6). Since each channel of f can be computed individually, this test is often
chosen as simple axis-aligned thresholding [121, 137, 138]. The parameters of
test functions, denoted as φ, are thus the selected feature attribute κ and the

2Whenever it is not crucial or it is clear from the context, we drop the dependency of v, or use it
as a suffix fv , in order to keep notations uncluttered.
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Figure 2.6: Illustrations of the functionality in tree testing and training.
During testing a data point is routed through the tree by simple axis-aligned
thresholding, whose parameters are learned during training.

applied thresholding value τ , i.e. φ = (κ, τ), that have to be determined during
training. Starting at the root, each split node applies its associated test function
to f . Depending on the result of this binary test the data is sent to the right
or left child. This process is repeated recursively until the data point reaches a
leaf node. The leaf nodes contain a predictor/estimator (e.g. a classifier or a
regressor) which associates an output (e.g. a class label or a continuous value)
with the input f .

Offline tree training. Three things have to be determined during training:

• The weak learners (split functions) in each branch node.

• The tree structure.

• The statistics stored at each leaf node.

We follow this order to discuss each of them in below.
The split functions stored at the internal nodes are key for the functioning of

the tree. One may think of designing these functions manually. However, this
approach would only be possible for very simple problems. For more realistic
problems the test functions need to be learned automatically, from exemplar
data. Thus, the training phase takes care of selecting the type and parameters
of the test function associated with each split node by optimizing a chosen
objective function defined on an available training set. The optimization of the
split functions proceeds in a greedy manner. At each node, depending on the
subset of the incoming training set DN we learn the function that “best” splits
DN into DR and DL:

DL = {v ∈ DN |fκ(v) ≥ τ} (2.8a)

DR = {v ∈ DN |fκ(v) < τ}. (2.8b)

This problem is formulated as the maximization of an objective function
at that node. A commonly used objective function in supervised learning is
information gain I :

φ∗ = argmax
φ

I (φ), (2.9)
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with

I (φ) = H (DN )−
∑

i∈{L,R}

|Di(φ)|
|DN |

H (Di(φ)). (2.10)

The entropy H can be viewed as a measure of uncertainty. The choice of H
depends on the label space L. For discrete probability distributions (classification
tasks) one uses the Shannon entropy:

H(D) = −
∑
c

P (c) log (P (c)) . (2.11)

The letter c indicates the class label and P (c) indicates the empirical distribution
extracted from the training points within the set D. When it comes to continuous-
valued labels and continuous distributions (regression tasks), the differential
entropy is instead used:

H(D) = −
∫
y

P (y) log (P (y)) dy. (2.12)

Here y is a continuous label of interest and p is the probability density function
estimated from the training points in the set D. It can be estimated either
using parametric distributions or non-parametric methods such as Parsen density
estimator as in [64]. One of the most popular parametric choice is to use
Gaussian-based models to approximate the density P (y) due to their simplicity.
The differential entropy of a d-variate Gaussian is defined analytically as:

H(D) =
1

2
log
(

(2πe)
d |Λ(D)|

)
. (2.13)

Eq. 2.13 is monotonically increasing with respect to the determinant of covari-
ance matrix Λ of D. When assuming isotropic Gaussian distributions, it is propor-
tional to the variance of continuous labels, σ2. Thus, many works [63, 71, 137],
including this thesis, apply only the variance σ2 as the measure of uncertainty to
save some computation overhead.

Besides weak learners, one also need to optimize the tree structure (shape).
Training starts at the root node, where the optimum split parameters φ are found.
One then construct two child nodes, each receiving a different disjoint subset
of the training set. This procedure is then applied to all the newly constructed
nodes and the training phase continues. The structure of the tree depends on
how and when we decide to stop growing various branches of the tree. Diverse
stopping criteria can be applied. For example it is common to stop the tree
when a maximum number of levels has been reached. Alternatively, one can
impose a minimum value of the maximum maxφ I, in other words one stops
when the seeked-for attributes of the training points within the leaf node are
similar to one another. Tree growing may also be stopped when a node contains
too few training points. Avoiding growing full trees has been demonstrated to
have positive effects in terms of generalization. In this survey we avoid further
post-hoc operations such as tree pruning [57, 114] to keep the training process as
simple as possible. At the end of the training phase we obtain: (i) the (greedily)
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optimum weak learners associated with each node, (ii) a learned tree structure,
and (iii) a different set of training points at each leaf.

Last but not least, during training we also need to learn how to make predic-
tions. After training, each leaf node remains associated with a subset of (labeled)
training data. During testing, a previously unseen point traverses the tree until it
reaches a leaf. Since the split nodes act on features, the input test point is likely
to end up in a leaf associated with training points which are all similar to itself.
Thus, it is reasonable to assume that the associated label must also be similar
to that of the training points in that leaf. This justifies using the label statistics
gathered in that leaf to predict the label associated with the input test point. In
the most general sense, the leaf statistics have to make summarizations on all
the labels that arrive at this leaf, captured by the posterior distributions. One
usually store empirical class distributions for classification tasks P (c|f ), while
kernel density estimators, e.g. mean-shift [39, 42] are used for regression to
approximate P (y|f ) as a set of confidence-weighted modes H = {(h, ω)}, where
h is the mode location in the label space L and ω is a scalar weight.

Prediction aggregation. A random decision forest is an ensemble of randomly
trained decision trees. The key aspect of the forest model is the fact that its
component trees are all randomly different from one another. This leads to
decorrelation between the individual tree predictions and, in turn, results in
improved generalization and robustness. All trees are trained independently
(and possibly in parallel). During testing, each test point is simultaneously
pushed through all trees (starting at the root) until it reaches the corresponding
leaves. Tree testing can also often be done in parallel, thus achieving high
computational efficiency on modern parallel CPU or GPU hardware. Combining
all tree predictions into a single forest prediction may be done by a simple
averaging operation. For instance, in classification:

P (c|f ) =
1

T

T∑
ι=1

pι(c|f ), (2.14)

where Pι(c|f ) denotes the posterior distribution obtained by the ιth tree. In
regression, a popular choice is performing again mean-shift [64] on all the P (y|f )

from the reached leaves.

2.4 Data and metric of evaluations

As this thesis addresses the problem of recovering temporal human shapes and
poses, we consider sequences recorded from multiple-view studios, e.g. Fig 2.7,
for evaluation purposes. The profiles of these sequences are largely summarized
in Appendix D. More detailed information will be provided whenever we choose
the subsets of them in the experiments of each following chapter.

Depending on the provided ground truths, four different following error met-
rics are considered. The first two measure the goodness of surface deformations
while the latter two validate human skeletal poses:
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1. 2D silhouette overlap error: this is the most widely-used error metric
in the community. Given the estimated surfaces projected back to image
domains, it measures the discrepancies between the rendered silhouettes
and the observed ones by simple XOR operations. Despite the popularity,
note that silhouette images are nevertheless the results of background-
subtraction algorithms, which are not perfect. The magnitude of overlap
error hence does not always reflect the quality of 3D shape estimation.

2. 3D surface registration error: currently the temporal evolutions of in-
frared markers can be tracked efficiently with high fidelity using motion
capture systems, such as Vicon-Peak3. When subjects wear suits with
markers sparsely attached, this error metric measures how much is the
estimated surface deviated from these markers. It is a very faithful error
metric but the tight-suit requirement limits its applicability.

3. 3D error of human poses: if the infrared markers are attached on some
semantic-meaningful locations, the 3D positions of joints can be calculated
and considered as ground truths. This metric therefore measures the
discrepancies between the recorded joint positions and the estimated ones.

4. 2D error of human poses: this metric measures also the pose errors, with
the ground truths manually annotated in 2D images.

Figure 2.7: Multi-camera studio Kinovis. ©INRIA Grenoble Rhône-Alpes

3http://www.vicon.com/
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2.4 DATA AND METRIC OF EVALUATIONS

Data notations Descriptions

Ω
A continuous volumetric domain defined by a shape in 3D.
A surface is expressed as the border of Ω, i.e. ∂Ω.

S The index set for points (cells) sampled from a domain Ω.
S = {1, · · · , s, · · · , |S|}.

V The index set for points (vertices) sampled from a surface
∂Ω. V = {1, · · · , v, · · · , |V |}.

M A mesh/CVT is a pair of vertex/cell positions M ⊂ R3 and
their connectivity T , i.e. M = (M, T ).

(·)X , (·)Y
Subscripts representing entities of templates X and obser-
vations Y respectively.

X
The reference entity, or template. X = (X, TX), where
X = {xv}v∈V

X
if it is a surface;

X = {xs}s∈SX if it is a volume.

Y
Observations, input data. Y = (Y, TY ), where
Y = {yi}i∈V

Y
if it is a surface;

Y = {yi}i∈SY if it is a volume.
V The number of vertices, i.e. V = |VX |.
O The number of observed points, i.e. O = |VY |.

N Neighbors of graph structure, e.g. Ni denotes the set of
1-ring neighborhood for input point i.

C
The set of correspondences (i, p) associating each input
point i to point p on the template. p is either a surface
vertex v or a CVT cell s.

Θ
A set of rigid body motions θ of each deformation primitives,
e.g. patches of vertices, clusters of cells.

K
The number of deformation primitives, e.g. the number of
patches for surfaces, the number of clusters for CVT cells.

T Same as Θ but expressed in matrices, i.e. Tk ∈ SE(3).

J
The poses of human skeletons, J = {xj}j=1:J ⊂ R3,
where J is the number of joints.

F A feature space where data points are described.

f
A vector describing a data point in a feature space.
f =

(
f1, · · · , fκ , · · · , fd

)
∈ F .

L The label space of forests.
I Information gain.
H Entropy.
τ Axis-aligned thresholding values.
φ Parameters of testing functions, or called split candidates.
T The number of trees for each forest.

Table 2.1: Notations.
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CHAPTER 2: BACKGROUND

Our primary term Other terms in use

surface visual hull (refers only to observations)
correspondence association

reference template
shape shape poses, surface deformations, encoded by Θ.
pose skeletal poses, encoded by J.

random forest decision trees, randomized forest
split function weak learner, testing function

dimension channel, attribute, component

Table 2.2: Common terms used interchangeably in this thesis.
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Discriminative Associations
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3
Mesh-based Discriminative

Associations

The first step towards 3D tracking-by-detection of human shapes is discriminative
data-model associations. In this chapter, we address the problem of estimating
frame-wise discriminative correspondences. We aim to associate each vertex of
input visual hulls to the vertex of template.

This is essentially a 3D shape matching problem and has long been studied
in graphic community [28, 88]. Our problem is nevertheless, more challenging
because significant topological noise is usually presented in visual hulls. We
adopt a machine learning approach to learn from previously observed deformed
meshes. Following the notations in Sect. 2.3, a number of questions need to be
answered to fully characterize a machine-learning approach. 1) Which learning
technique to use? 2) What is the feature? Or say, how to express data points
v as vectors f in the feature space F ? 3) Last but not least, what is the output
label space L? We choose an ensemble learning method, random forest [45],
as our learning algorithm. We follow the Vitruvian framework [112, 140] that
considers a continuous 2-manifold surface domain ∂Ω defined by the template
as a output space. The forest therefore performs a regression task. A different
label space will be investigated in Appendix B. During training, a mapping that
returns every vertices on the deformed meshes back to their original locations
on the template is learned. During prediction, points on input visual hulls are
thereby mapped to the locations of potential matches. In the following sections
of this chapter, we detail our algorithm and the principles of regression forests.

At first, the literature is reviewed and the related work on 3D human shape
tracking is presented. We discuss about detection-based (i.e. discriminative)
and temporal-tracking-based (i.e. generative) approaches. Then we present our
algorithm which is robust to outlying geometries or noise, as demonstrated in
the evaluation part. We further compare our discriminative model with related
work on publicly available datasets. At the last part of the chapter, we summarize
the advantages and disadvantages of our model and discuss aspects that can be
further addressed.
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CHAPTER 3: MESH-BASED DISCRIMINATIVE ASSOCIATIONS

(a) ref. surface (b) input data (c) detected shape (d) results 

Figure 3.1: Discriminative associations. Given a reference surface (a), our
method discovers reliable data-model correspondences by random forests, color-
coded in (c). Unlike temporal tracking, this strategy detects user-specific shapes
in a frame-wise manner, preventing erroneous associations from accumulations.

3.1 Introduction

Visual shape tracking is the process of recovering temporal evolutions of a
template shape using visual information, such as image silhouettes or 3D points.
It finds applications in several domains including computer vision, graphics and
medical imaging. In particular, it has recently demonstrated a good success in
marker-less human motion capture (mocap). Numerous approaches assume
a user-specific reference surface, and the objective is to recover the skeletal
poses [148], surface shapes [35], or both simultaneously [73].

Most of these model-based methods [35, 62, 98, 73, 148] can be viewed
as extensions of Iterative-Closest-Point (ICP) framework [17, 38, 158], which
attempts to explain newly observed data using the previous outcomes. As long as
the initialization is close to the optimum solution, it is able to produce outstand-
ing results. However, they also suffer from inherent weaknesses of generative
strategies, e.g. the slow convergence. Moreover, when large deformations or
outliers occur, discovering associations between data and models is particu-
larly difficult. Unreliable associations result in ambiguous situations that yield
erroneous numerical solutions and, consequently, break the tracking process.

In contrast, discriminative approaches that ‘detect’ rather than track models
have shown better robustness over the past decade, for instance, in human
pose estimation with Kinect [121, 140]. These approaches operate frame-
independently, and are generally drift free. In this chapter, we explore this
direction in order to get robust observation-model associations, regardless of
the results from previous frames. We further present a discriminative ‘tracking-
by-detection’ human mocap framework, as in Fig. 3.1. Inspired by Taylor et
al. [140], we make use of regression forests to improve the associations. Shape
geometries are characterized by volumetric representations, and are fed into
user-specific forests to predict correspondences in one shot. Contrary to genera-
tive methods, this prediction does not require close initializations from a nearby
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3.2 RELATED WORK

frame. In addition, it allows a single model to be used as a reference surface
for several different sequences, again even if large deformations or outliers
exist. We combine this strategy with a generative tracking approach that takes
our one-shot associations as input. Experiments demonstrate that this hybrid
discriminative-generative framework leads to better, or comparable results than
purely generative approaches, e.g. [35, 43], reducing error accumulations and
hence increasing the stability.

The contribution of this chapter is a one-shot correspondence inference with
complete 3D input (rather than 2.5D as in [121, 140]) that unlike other ICP-like
methods [35, 62, 98, 73]), relies little on former results.

3.2 Related work

Among the vast literature on human pose estimation [102], we focus on top-
down approaches that assume a 3D model and deform it according to input data,
either directly with pixels as in [62, 98, 132], or with 3D points as in [35, 43, 73].
These methods typically decompose into two main steps: (i) data association,
where observations are associated to the model, and (ii) deformation estimation,
where deformation parameters are estimated given the associations. Our primary
objective in this chapter is to improve the first part. Existing approaches for this
issue are discussed below.

Generative approaches. Methods in this category do not require any train-
ing. They follow the association strategy in ICP while extending the motion
model to more general deformations than the one in the original method [17].
Associations are addressed by searching for closest points, with various dis-
tance measures such as point-to-point [35], point-to-plane [37], or Mahalanobis
distances [132]. This strategy heavily relies on the fact that observations in
consecutive frames are in vicinity. Klaudiny et al. [84] generalize the idea from
the previous frame to a certain frame in the considered sequences, finding
the best non-sequential order to track, but the proximity assumption remains.
Gall et al. [62] establish 3D-2D correspondences by considering both texture
in images, and contours in silhouettes. Later, Liu et al. [98] include image
segmentation information in order to differentiate multiple interacting subjects.
These approaches implicitly assume that observations only describe the tracking
subjects, which does not necessarily hold in 3D data that often contain fake
geometries. Cagniart et al. [35] introduce an additional outlier class to reject
associations with noisy observations. Data is explained by Gaussian Mixture Mod-
els (GMM) [18] in an Expectation-Maximization (EM) manner [18]. Huang et
al. [73] follow a similar concept, but aggregate the outlier likelihood over every
Gaussian component and offer better robustness. All these generative methods
are highly likely to fail in large deformations. Furthermore, they are prone
to error accumulations and, as a result of matching several successive frames
wrongly (whether sequentially or not), they are prone to drift.
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CHAPTER 3: MESH-BASED DISCRIMINATIVE ASSOCIATIONS

voxelization 

input data  

 

Volumetric  
distance field 

R
e

f.
 s

u
rf

ac
e 
𝒳

 

Regression  
forest  

p
re

d
ic

te
d

 c
o

rr
es

. 

NN search 

Figure 3.2: Pipeline of prediction. Correspondences are visualized in the same
color. Black means no correspondence found for that data point.

Discriminative approaches. Recently, discriminative approaches have demon-
strated their strengths in tracking human poses with depth images [10, 140].
Taylor et al. [140] propose a single-frame, or so called one-shot strategy, which
yields decent dense correspondences without iterative refinements. With the
help of regression forests, they map each foreground pixel to a weighted point
in 3D, and thereby search the closest point within a predefined surface. Later,
Pons-Moll et al. [112] train forests with a new objective in metric space, and
couple the one-shot strategy with ICP. In the case of full 3D, Kanaujia et al. [81]
use shape context histograms as descriptors, segment visual hulls into body
parts with a pre-trained Support Vector Machine (SVM) [44], and build the
skeletons with the method similar to [121]. Starka et al. [127] formulate the
matching problem as the inference of Markov random field (MRF). Rodola et
al. [117] apply forests to learn the parameters of wave kernel signatures [9]
during training, and facilitate dense matching between two meshes.

To avoid computation overhead, we develop volumetric normal fields to
describe meshes in a discretized volume Ω3, and extend the comparison features
from 2.5D [121, 140] to full 3D data. Our method can be viewed as a tracking-
by-detection approach for human shape tracking.

3.3 Method Overview

In order to build the correspondences (step 1 in Chapter 2), standard ICP-based
approaches [35, 43, 62] consider neighbors in vicinity and alternate between
the association and optimization steps, refining Ct and Θt iteratively. This
generative strategy requires Xt−1 to be sufficiently close to Yt and is usually
slow to converge. Furthermore, when the error occurs inevitably in either Ct or
Θt, it influences all subsequent procedures, gets accumulated and eventually
breaks down tracking.

We develop a different strategy that warps the input data Y to the reference
mesh X , denoted as Ỹ = (Ỹ, TY ) and visualized as a triangular mesh in Fig. 3.2.
If the warping is perfect, this mesh will look clean and resemble X as much as
possible. Incorrect mapping, on the other hand, can be told from huge edges.
Vertex positions Ỹ represent the locations of potential matches between Y and
X . Thus, C can be built directly by doing nearest neighbor search between Ỹ

and X just once, as illustrated in Fig. 3.2.
Specifically, we consider this R3 → R3 mapping as a composite one: R3 →
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N3 → R3. The former mapping is voxelization (Sect. 3.4.1), while the latter is
regression (Sect. 3.5). A forest is trained with many voxelized meshes off-line
(Sect. 3.5.1). During runtime, yi is first mapped to a voxel vi, and then regressed
to a 3D point ỹi ∈ Ỹ, where it is matched to a vertex xv by nearest neighbor
search. Fig. 3.2 illustrates the whole matching pipeline.

3.4 Implicit surfaces and voxel-based features

We cast each mesh M into a volumetric scalar field D : N3 ⊂ R3 → R, and
design features to describe surface geometries in volumes.

3.4.1 Truncated Signed Distance Transform (TSDT)

Voxelizing a mesh in general consists of two parts: (1) finding voxel positions
for every vertex and (2) testing the overlap between triangles and voxels. The
first part can be viewed as a quantization mapping from Euclidean space to a
discretized space v : R3 → N3:

v(TM(x)) =

⌊[
I −µ

0> s

] [
TM(x)

1

]⌋
, (3.1)

where s is the voxel size and µ is the volume origin in R3. TM ∈ SE(3)

represents the rigid transformation from world coordinate to PCA-like coordinate
of M; see the paragraph Subject coordinate frame below. The size of the
volume is large enough to include all possible pose variations, and its center
is aligned with the mean of the surfaces. The voxel size is chosen to be close
to the average edge length of meshes, so that a single voxel is not mapped by
too many vertices. To check the intersection of triangles with voxels, we apply
separating axis theorem which is known to be efficient for collision detection in
graphic community [3].

After determining voxels occupied by the surface, referred to as vsuf, we fur-
ther identify voxels located inside and outside the surface, denoted respectively
as vin and vout. Together they define a truncated signed distance transform:

D(v) =



+ε if vout and d(v,M) > ε.

+d(v,M) if vout and d(v,M) ≤ ε.
0 if vsuf

−d(v,M) if vin and d(v,M) ≤ ε.
−ε if vin and d(v,M) > ε.

(3.2)

d(v,M) denotes the shortest Euclidean distance from the voxel center to the
mesh, which can be computed efficiently via AABB trees using CGAL library [141].
If the distance is bigger than a threshold ε, we store only ±ε to indicate the
inside/outside information. It is empirically set to be three times the physical
length of diagonal of voxels. In the earlier version of this work [71], we store
averaged surface normals at each vsuf. However, such representations yield
high memory footprint and thereby limit the amount of training meshes we
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Figure 3.3: The intuition behind adjusting offset vectors. (a) original offset
pair ψ. (b) η = 0 results in ψ without re-orientation, i.e. R = I. (c) η = 1. ψ is
re-orientated by a rotation matrix R = [e1, e2, e3] characterized by a LCF.

can incorporate later in Sect. 3.5.1. The TSDT representation naturally encodes
the spatial occupancies of a mesh and the required memory footprint is only
one-third of the former (each voxel now stores just a scalar rather than a vector).
It shares a similar spirit with implicit surface representations, e.g. level-set, and
has been widely employed in RGBD-based tracking or reconstruction [83, 105].

3.4.2 Voxel-based features

Next, we present the features f for describing the above TSDT, which are later
used to train the forests. Since we are interested in predicting correspondences
for vertices not triangles, from now on we concentrate only those surface voxels
vsuf that are occupied by mesh vertices v, denoted as vv.

As mentioned previously in Sect. 2.3 and we shall see later in Sect. 3.5.1,
conventionally, only one feature dimension κ is selected to separate data at each
branch node of the tree (axis-aligned thresholding) [45]. A great advantage of
forests is that features can be computed on the fly, i.e. while traversing trees.
One does not have to prepare the whole high-dimensional feature vector for
predictions, because only a few dimensions are needed. To make use of such
property, the calculation of f is suggested to be dimensionally independent. We
therefore avoid descriptors that requires normalization, like MeshHOG [157],
FPFH [118], or SHOT [142], and resort to comparison features used in [46, 121].

As depicted in Fig. 3.3, for each surface voxel vv (blue), we shoot two offsets
(red vectors) ψ = (o1,o2) ∈ N3 × N3, reaching two neighboring voxels (green).
To describe the local geometry, we take the TSDT values within a cuboid around
two respective voxels (yellow squares in Fig. 3.3(c)), perform element-wise
subtractions and sum them up. Let ε denotes this sum-of-difference operation.
By definition, ε of different offsets ψ can be evaluated independently and thus
fully parallelizable, which is an useful trait since this computation will be carried
out multiple times with thousands of randomly generated ψ for the same vv.

The feature vector f consist of ε resulted from many offset pairs ψ. More
precisely, it is a function of vv but takes an offset pair ψ, a binary variable η
(whether to use Local Coordinate Frame (LCF) or not), and a rotational matrix
R ∈ SO(3) (the orientation of LCF) as parameters. Every possible combination
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Figure 3.4: Local coordinate frame. Our method leads to quasi pose-covariant
LCFs.

of offset pairs ψ and binary variables η results in one independent feature
attribute κ, in notations: fκ(vv) = ε(vv; R

η(ψ)). The dimensionality of f is
virtually infinite. Binary variables η determines the alignment of the offset ψ
with respect to a LCF, whose transformation is specified by R. The intuition
behind this adjustment is to make features f invariant to poses, c.f. Fig. 3.3(b)
and (c). Without re-orientations, ψ might land on different types of voxel pairs,
c.f. Fig. 3.3(a) and (b), and hence cause different feature responses ε, despite
the fact that the current voxels are located on the same position on the body.
Both offset pairs ψ and binary variables η are learned during forest training,
while the rotational matrix R is characterized by a LCF obtained as follows.

3.4.3 Local coordinate frame

Defining local coordinate frames for 3D primitives (voxels, vertices, points) has
long been studied and usually comes with their 3D descriptor counterparts,
see [109] for a comprehensive review. An ideal LCF is supposed to follow
whatever transformations the meshes undergo, namely, as co-variant as possible,
such that the consequent feature representations are as invariant as possible.
Constructing a LCF consists in defining three orthonormal vectors as [x, y, z]

axes. To do that, the state-of-the-art methods in the field of LCFs for rigid
matching of 3D meshes and point clouds mainly rely on the neighboring points
within a local support [41, 101, 107, 110, 142]. The way they leverage spatial
distributions can in general be classified into two categories: (1) EigenValue-
Decomposition (EVD) [101, 107, 142], and (2) signed distance (SignDist.) [41,
110]. Since it is impractical to repeat EVD process for all surface voxels vv, in
the following, we propose an adaptation of SignDist. approach to our volumetric
representations [75]. This conclusion is drawn after an extensive study and
comparison of three LCF approaches presented in Appendix A.

Specifically, for each vv, we consider its surface normals nv as z axis, and
obtain y axis by z × x. The task remained is to identify a repeatable x axis. To
this end, the class of SignDist. approaches look for a discerning point within
the support (yellow voxel in Fig. 3.4(b)). We first open an local cuboid support
(pink) around each vv (green) as visualized in Fig. 3.4(a). The search involves

35



CHAPTER 3: MESH-BASED DISCRIMINATIVE ASSOCIATIONS

only the peripheral voxels ṽ (cyan) lying on the intersection of support borders
and the surface. The discernibility is defined as the maximum signed distance to
the tangent plane [41]:

v̂ = arg max
ṽ∈S̃

(
(ṽ − vv)

>nv
)
, (3.3)

where S̃ is the intersection of support borders and the surface. The x axis is
the projection of the vector directed from vv towards v̂. Fig. 3.4(b) illustrates
the full procedure. Note that there is no guarantee that the discerning point
v̂ from Eq. 3.3 is always repeatable: in particular, if different directions yield
similar values of the signed distance, the x axis will be ambiguous, hence the
resulting LCFs could rotate about the z axis. Therefore, as shown in Fig. 3.4(c),
this approach produces LCFs quasi-covariant to pose changes, and as a result,
only quasi-pose-invariant features f . We leave such noise for forests to take care
of during learning.

3.5 Correspondence inference

Now we proceed to the second mapping: N3 → R3, where the surface voxel vv
traverses a pre-trained regression forest according to the feature responses f

above, and attains a point in R3 that lies on the surface embedding defined by
the vertices of the reference model X.

3.5.1 Random forest

As briefly reviewed in Sect. 2.3, a forest is an ensemble of T binary decision trees,
each separating data with split functions at branch nodes and storing statistic
models at leaf nodes. The training objectives, split functions, and statistical
models vary from task to task. We refer readers to [45] for a comprehensive
review.

Forest training

To incorporate abundant training variations, we animate X to a variety of poses
with a method similar to [134]. After voxelizing all animated meshes, we
associate each surface voxel to their locations at rest pose, and obtain a pool of
sample-label pairs D = {(vv,xv)}. Each tree is trained with a random subset of
D. Our splitting candidate φ is the pair of testing channels κ and thresholds τ ,
φ = (κ, τ), where κ is represented by offset pairs ψ and binary variables η. Let
DN denotes the samples arriving at a certain branch node. The training process
is to partition DN recursively into two subsets DL and DR, based on randomly
generated φ:

DL(φ) = {vv ∈ DN |fκ(vv) = ε(vv; R
η(ψ)) ≥ τ} (3.4a)

DR(φ) = {vv ∈ DN |fκ(vv) = ε(vv; R
η(ψ)) < τ}. (3.4b)
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3.5 CORRESPONDENCE INFERENCE

Whether φ is a good split or not depends on whether it produces more homo-
geneous subsets. In supervised learning, this is often measured by information
gain:

I (φ) = H(DN )−
∑

i∈{L,R}

|Di(φ)|
|DN |

H(Di(φ)), (3.5)

where H = σ2(·) is the entropy, measured by the variance of all xv in the sample
set as in [63] . The split that maximizes the information gain, φ∗ = argmaxφ I (φ),
is stored for the later prediction use. The tree recursively splits samples and
grows until one of the following stopping criteria is true: (1) it reaches the
maximum depth, or (2) the number of samples |DN | is too small. Once a
leaf node is reached, we perform mean-shift clustering [39] to represent the
distributions of xv as a set of confidence-weighted modes H = {(h, ω)}. h ∈ R3

is the mode location and ω is a scalar weight.

Hough forest. Outliers such as false geometries, or un-removed background
often exist in visual hulls, drastically deteriorating tracking results. If their
models are available, we also include them in the training process, so that forests
can identify and reject them online. In this case, the goodness of a split φ should
be evaluated in terms of both classification and regression. We follow Fanelli et
al. [52] and adapt the entropy to be:

H(D) = −
∑
c

p(c|D) log p(c|D) + (1− e δα )σ2(D), (3.6)

where p(c|D) is the class probability of being foreground or background. It is the
weighted sum of the aforementioned regression measure σ2 and the classification
entropy measure. Forests trained with Eq. 3.6 as entropy measure are often
referred to as Hough forests. During training it learns two task simultaneously:

1. how to distinguish between valid and invalid samples (outliers).

2. how to match valid samples to the template.

The regression part gets increasing emphasis when the current depth δ gets larger
(i.e. the tree grows deeper), and the steepness is controlled by the parameter α.

Subject coordinate frame. To achieve global rotation invariance, we always
rotate meshes into a canonical orientation before the voxelization. In the training
phase, since each animated mesh is accompanied with a skeletal pose, we
compute two unit-length vectors from the skeleton, and align them to x- and
z-axis respectively. The first one is the common perpendicular vector of bone
RShoulder-Torso and bone LShoulder-Torso, while the second one is the sum of
them. See Fig. 3.5 for illustrations.

Further recall that the volume center is aligned with the barycenter of meshes,
which brings translation invariance. Together these two steps characterize a
subject coordinate system, simulating the PCA process on a whole mesh. This
strategy substantially reduce the needed amount of training surfaces because the
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LShoulder RShoulder 

Torso 

Figure 3.5: Illustrations of two reference vectors from the skeleton.

global rotations are canceled. Nevertheless, in order to repeat this process during
tracking, we approximate the skeletal pose using results of the last frame. Forest
prediction is therefore not completely frame-independent but subject to the
previous outcome. We anyway point out that as tracking drifting often happens
at the limbs not at the torso, this approach still manage to align the orientations
and draw reasonable forest predictions.

Forest prediction

In the prediction phase, a voxel lands on T leaves containing different collections
of modes, denoted together as G = {H1 · · ·HT }. A standard way of aggrega-
tion is doing mean-shift clustering [39] and keeping the cluster with largest
weight. This is usually done for each input point independently. For instance,
in Fig. 3.6(a), the green vertex aggregates with only green leaves, and black
vertices aggregate with their respective black leaves as well. The consequent Ỹ
is however, often noisy, where vertices of same triangles are mapped to locations
distant from each other as in Fig. 3.6(b).

We utilize the triangles TY to ameliorate this problem. All input vertices
yi are first mapped to voxels, sent into the forest and return in total O × T
predictions. For each vertex i, we consider not only its own predictions, but also
those from the neighbors Ni, e.g. all green and black leaves in Fig. 3.6(a). We
sort the union set Gi ∪ GNi descendingly according to their weights ω, and do
mean-shift only with the first half of them. The new mode location with highest
confidence is the final output ỹi. This strategy respects the mesh connectivity
and results in more structured forest predictions. Compare Fig. 3.6(c) to (b) to
observe the improvements. To further exploit the connectivity TY , spatial mesh
smoothing techniques like Taubin smoothing [139] are also possible options.
In the next subsection, we will demonstrate how to aggregate leaves more
contextually with the well-known Markov Random Field (MRF) machinery [94].
However, due the computational overhead, this strategy is not deployed in the
final tracking-by-detection pipeline.
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Figure 3.6: Comparisons of different local aggregation approaches. (a) Tra-
ditional approach aggregates leaves of each vertex (green) independently, while
we also take the 1-ring neighbors (black) into account. (b) Forest output Ỹ by
aggregating each Gi separately. (c) Forest output Ỹ by aggregating Gi ∪ GNi .

Nearest neighbor search. Given the regression results ỹi, each vertex i in
input gets a closest vertex p in the reference vertex set V :

p = argmin
v∈V

X

‖ỹi − xv‖2. (3.7)

Similar to [35], we reject the searched correspondences if their normals differ
from each other too much. Our advantage over [35] is that X and its normals
are fixed throughout tracking. One does not have to re-compute normals online,
and other speed up algorithms like kd-tree [16] are also feasible. Each corre-
spondence pair (i, p) is associated to a weight wip = exp(−d2(i, p)/2l2), where
d(·) stands for Euclidean distance, and l is the averaged edge length onM. wip
can be used to weight each residual differently in the least-square-based data
terms, such as Eq. 5.22. Since the forest gives relatively good initial guess of the
matches. It is much easier to find the right matches in this way.

MRF-based global aggregation

As readers shall see later in the experiment section, the TSDT-forest combination
proposed above already predict sufficiently decent correspondences C . In this
subsection, however, we would like to shortly deviate ourselves from the pursuit
of full 3D tracking-by-detection and continue investigating how to draw contex-
tual predictions. Note that due to the computation overhead, even though the
method presented in this subsection yield smoother data-model associations, we
do not include it in the final tracking-by-detection pipeline.

One fundamental issue in machine learning is: how to make the predictions
transit smoothly according to the structures of data. In other words, how to
respect the structures of data to predict. When operating on images, this structure
is the geometry represented by the changes in intensity values; when it comes
to 3D shapes, it is the triangle connectivity. This is usually known as structural
learning and has a enormous body of literature; see [108] for a complete review.

Generally speaking, vertices that are close to each other should obtain closer
predictions. The spatial closeness is measured more accurately by geodesic
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Figure 3.7: Illustrations of our global aggregation concept. We apply MRF to
preserve neighborhood relationships, i.e. geodesic distances between vertices.
The left side depicts an input frame, the right side shows the reference frame.

distances, a metric operating on surface manifolds rather than in Euclidean space.
Ideally, a pair of neighboring points on the input mesh i and j should be matched
to a pair of neighboring vertices on the template, vi and vj as well, yielding
small geodesic distance. The geodesic distances can be involved in both learning
and prediction phases. Usually the former increases training time significantly
and hence we use it only in the prediction phase. Since the tree structure and
the split functions are already determined and are difficult to change, geodesic
information is incorporated only at the leaf-node aggregation stage, where we
formulate the inference as an MRF problem which has been well studied in
computer vision [94], as illustrated in Fig. 3.7.

Given O input points yi, the forest returns O × T leaf predictions H. As
described in Fig. 3.6, the standard way of aggregation clusters each T -leaf group
parallelly using mean-shift [42, 121], followed by an NN search to assign a
corresponding vertex for the most dominant cluster. We move the NN search
prior to aggregations, yielding O × T corresponding vertices. Each point i hence
has T candidates vi to select from. This selection is highly interdependent
among neighboring points. To decide which one is the best candidate vi, one
should consider not only its own leaves but also those from the 1-ring neighbors
Ni. Taking this into account, we find the overall best vi by solving the Markov
Random Field problem below:

argmin


∑
i

− ln(ωvi)︸ ︷︷ ︸
unary

+
∑
i

∑
j∈Ni

geoDist(vi, vj)︸ ︷︷ ︸
pairwise

 , (3.8)

where ωvi are the scalar weights of the most dominant modes in the reached
leaves. Eq. 3.8 encourages candidates vi with high confidence (unary term) and
yet prevents two neighboring points i, j from being mapped too far away in the
geodesic sense (pairwise term). It can be solved either with Simulated Annealing
(SA) [30], or more efficiently with Loopy Belief Propagation (LBP) [53].
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mean-shift
(vertex-wise)

MRF
(mesh-wise)

Figure 3.8: Comparisons of mean-shift and MRF-based global aggregation.

Figure 3.9: Results for frame 81 of Bouncing during different stages of LBP
optimization. From left to right: iterations 1, 2, 4, and 10.

Global vs. local aggregation. Unlike methods in Fig. 3.6 which aggregate
leaves more or less locally, Eq. 3.8 is a global aggregation approach that takes all
O ×T leaves as input and finds the overall best correspondences C for the whole
shape. We contrast the improvement in Fig. 3.8 and also visualize in Fig. 3.9 the
behavior of Eq. 3.8 in each LBP iteration. One can see that erroneous matches
first get accumulated and then eliminated altogether. Quantitatively, Eq. 3.8 also
lead to substantial improvement against mean-shift, as depicted in Fig. 3.10.
Please refer to the experiment section for the error metric of this figure.

Note that this approach actually behalves similar to image de-noising, where
MRF has been widely used. One critical assumption is that the majority of points
in the local region are matched correctly. Otherwise, Eq. 3.8 tends to dilate the
wrong matches and deteriorate the final results. See the right knee/hand of the
person on the left in Fig. 3.8 for example.

41



CHAPTER 3: MESH-BASED DISCRIMINATIVE ASSOCIATIONS

Figure 3.10: Accuracy comparison of MRF with mean-shift.

3.6 Experiments

The proposed discriminative model is evaluated briefly in this section. Since
data-model associations are not the final goals but the intermediate results of
our 3D tracking-by-detection pipeline, we only aim to show that the TSDT-forest
combination is more or at least equally descriptive than other well-known 3D
descriptors, e.g. Heat Kernel Signature (HKS) [29, 136], Wave Kernel Signature
(WKS) [9] and MeshHOG [157]. The whole pipeline will be evaluated exten-
sively later in Chapter 5. We describe each vertex with these descriptors and
match them either using forests (HKS and WKS) or NN search (MeshHOG). We
demonstrate, both visually and quantitatively, that the presented TSDT-based
feature is indeed more informative than the existing state-of-the-arts.

Two datasets are chosen for the evaluation purpose: FAUST [19] and Crane
sequence [148]. The former contains 100 static 3D scans from various subjects,
while the latter is a temporal sequence of 173-frame from one single subject,
reconstructed in multiple-view studios. The accuracies on these two datasets
tell us how well the TSDT-forest framework deals with motion sequences and
human shape variations, respectively. Given one input mesh, the task is finding
correspondences on the reference surface. Due to the availability of ground-truth
vertex indices, we consider the registrations of the template as input. To this
end, we apply an non-rigid ICP-based method to register the reference surface to
each frame in Crane, while registrations are already provided in FAUST. For each
dataset, we train one forest consisting of T = 50 trees. At branch nodes, 5000

splitting candidates φ are randomly generated and the best one is stored. For
Crane, we animate the reference into 140 meshes as training data and test on
the 173 registrations. In FAUST, half the registrations (50 meshes) are chosen for
training and the other half for testing. The error measure is the geodesic distance
between predicted vertices and ground-truths. If the error is smaller than a
certain threshold, we consider the point matched correctly. The percentage of
correct matches in varying thresholds fully characterizes the performance of one
algorithm and is commonly used in many matching papers [36, 154].
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Figure 3.11: Cumulative errors on FAUST [19].

FAUST. The 100 scans in FAUST comprise 10 subjects in 10 poses. One can
partition them in different ways to test the generalization to unseen shapes
or poses. The results are shown in Fig. 3.11, with x-axis normalized by the
averaged edge length of the template. The keyword pose means that the forest is
trained with all 10 subjects but with only 5 poses, whereas shape represents the
other way around. To compare with other methods fairly, we keep the Vitruvian-
manifold label space unchanged while replacing the TSDT-based features with
30-dimensional scale-invariant HKS [29] or WKS feature vectors [9].

In Fig. 3.11, we see that the proposed TSDT-forest combination yields overall
best accuracy. It suggests that the volumetric TSDT-based feature is indeed
more informative than H/WKS. Comparing the blue solid curve to the dashed
one, we notice that our approach handles unseen shapes better than unseen
poses. This is most likely due to the fact that our feature relies mainly on 3D
geometry and pose variations lead to significant changes in 3D space more than
shape variations. Although this is not observed in the curves of H/WKS because
they exploit the spectral domain for better pose invariance, they suffer from the
confusion between symmetric parts as visualized in Fig. 3.16. Nevertheless, we
would like to point out that as 5000 different splitting candidates are randomly
generated at each branch node, our feature vector has a dimensionality virtually
longer than 5000, while it is only 30 for H/WKS. To conclude that our TSDT-based
feature is certainly a better 3D descriptor than HKS and WKS requires more fair
and thorough comparisons but is not the main goal of this thesis.

Crane. We compare the results of Crane with MeshHOG [157] which is the
extension of image-based histogram of oriented gradient (HOG) to surface
manifolds. The correspondences are predicted by searching for the closest point
in the MeshHOG feature space.

43



CHAPTER 3: MESH-BASED DISCRIMINATIVE ASSOCIATIONS

20%
30%
40%
50%
60%
70%
80%
90%

100%

0,00 0,05 0,10 0,15 0,20 0,25 0,30

%
 o

f 
co

rr
e

ct
 m

at
ch

e
s 

 

Max allowed geodesic distance to ground truth 

TSDT-forest MeshHOG-1NN 3xAvg. edge length LowArmBL cubeSize

75.47% 

48.39% 

Figure 3.12: Matching error comparison of our method and MeshHOG of
Crane. We yields more locally consistent correspondences.

(a) (b) (c) (d) 

Figure 3.13: Visual comparisons of MeshHoG and our approach. (a) refer-
ences surface of Crane (vertex indices encoded in colors). (b) testing mesh.
(c-d) matching results from MeshHOG and the proposed TSDT-forest framework,
respectively. Our framework attains apparently visually smoother results.

Fig. 3.12 depicts the proportion of vertices whose errors are less than a certain
distance. The TSDT-forest framework gives overall 29.34% exact matches, while
searching the vertex with closest MeshHOG response gives 46.07%. However,
when increasing the tolerance of correctness, our method presents a significant
improvement, and yet MeshHOG gains only a little. In order to have more
informative analysis, the x-axis is not normalized as in Fig. 3.11. We observe
that the accuracy starts increasing when the tolerance reaches approximately the
size of voxels (cyan dashed line). With our method, 75.47% of vertices obtain
correspondences no farther than three times averaged edge length (green dashed
line), and 48.39% for MeshHOG. Moreover, almost half of matches from Mesh-
HOG lie outside the range of roughly the length of lower arms (orange dashed
line) from the ground truths. Such a phenomenon is confirmed in Fig. 3.13.
Taking Fig. 3.13(b) as input, MeshHOG returns results as in Fig. 3.13(c), whereas
our method gives visually smoother matches like Fig. 3.13(d). The proposed
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(a) (b) (c) 

source 
surface target points 

(d) 

Figure 3.14: Our discriminative associations bring better initializations. (a)
the source surface and target points. (b) registration results (green) of EM-
ICP [35] after 30 iterations. (c) results of TSDT-forest framework (no EM-ICP
applied). (d) results of TSDT-forest framework plus 14 iterations of EM-ICP.

TSDT-forest framework certainly provides more locally consistent associations,
which, as we will show later in Chapter 5, are sufficiently accurate to guide
plausible deformations.

To support this claim, we further visualize in Fig. 3.17 the predicted data-
model accusations on noisy reconstructed visual hulls, where no ground truths
are available. Black colors means that the predicted correspondences are rejected
by simple normal compatibility check [35]. As one can see, our approach is
capable of predicting reasonable associations even for noisy meshes. This is of
importance since noisy visual hulls are the real input data of the final tracking-by-
detection pipeline. HKS and WKS are known for their sensitivity to topological
noises, e.g. the merging of arms and torso, hence working only for clean meshes.
In Fig. 3.17(b), we also shortly demonstrate the efficacy of Eq. 3.6 on outlier
rejection. Chair meshes are included into training data and the forest is grown
with Eq. 3.6 as the entropy measure. As a result, we can identify observations
on the chair online and remove them, so that they do not affect the subsequent
tracking stage. In this scenario, the task of forests is throwing away the points of
known outlier classes and in the meanwhile also predicting correspondences for
the remaining points.

Registration. Next, we shortly demonstrate the capacity of the proposed
method on registration tasks. With the source surface and distant target points as
in Fig. 3.14(a), ICP-like approach only produces results like Fig. 3.14(b), where
many discrepancies still remain after 30 iterations. Instead, our TSDT-forest
framework brings the source mesh closer to the target points in one shot as in
Fig. 3.14(c). After 14 ICP-iterations it refines the results as in Fig. 3.14(d). Later
in the experiments of Chapter 5, if reference surfaces are not aligned with the
first frames, we also register them like this before the tracking starts. Namely,
one does not have to manually align the template and the input of first frame
for initializations. The whole pipeline becomes fully automatic thanks to the
discriminative correspondences presented in this chapter.
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Figure 3.15: The conceptual comparison between discriminative associa-
tions and ICP-based tracking strategies.

Application in tracking. In Fig. 3.15, we again highlight the difference be-
tween two correspondence search strategies in tracking. The goal is to associate
primitives in Yt to those in X 0. As they are too far away from each other, it is
infeasible to get decent correspondences by a simple local proximity search (NN)
on them. However, during tracking one always has the previous-frame results
X t−1 which is closer to Yt. Initializing correspondences C by a NN search on
X t−1 (orange block) and refining it while evolving X t−1 amount to the standard
deformable ICP framework. Our approach presents an alternative, where a NN
search is done between X 0 and Ỹt (blue block), which is the output of regres-
sion forests. It has two advantages over the previous approach, both of which
result from the fact that X 0 stays fixed throughout tracking. First, as forests
draw predictions quasi frame-independently, X 0 and Ỹt are less affected by the
tracking errors, while they directly corrupt X t−1 and in turn the subsequent
correspondences. In other words, our approach is more robust for its resilience
to error and its capacity to recover from drifting. Second, one can speed up the
NN search by learning a kd tree [16] on X 0 offline. This is, however, impractical
for ICP-based strategy because both X t−1 and Yt change each frame. The kd
tree has to be re-learned online which costs more computation than it saves.

Limitation. One clear limitation of the presented approach is inherited from the
voxel-based framework: high memory footprints. This in turn limits the number
of training meshes and consequently the accuracy of forest prediction. Later in
Chapter 4, we will present a more memory-efficient volumetric discriminative
association approach based on centroidal Voronoi tessellation (CVT) [50].

3.7 Conclusion

We present an alternative data-model association strategy. With the help of re-
gression forests, we learn from pre-animated/pre-registered meshes to discover
better correspondences on input visual hulls. We devise features that exploit
directional distance fields to describe 3D geometry. Our learning framework
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contributes to locally consistent correspondences, which speeds up the conver-
gence of ICP when used as the initializations. The reliability of the proposed
method is confirmed by the experiments on numerous public datasets. Future
directions include alleviating problems of topological changing and incorporating
photometric information.
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Figure 3.16: Qualitative matching results on FAUST.
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(a) standard entropy Eq. 3.5 on Crane

(b) standard entropy Eq. 3.5 on Goalkeeper

(c) joint classification and regression entropy Eq. 3.6 (Hough forest)

Figure 3.17: Predicted data-model associations on noisy visual hulls. Block
color means that the points are either outliers, or the inferred correspondences
are rejected due to incompatible normals.
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4
Volumetric Discriminative

Associations

In the previous chapter, we present how to predict surface associations discrim-
inatively with regression forests, where triangular meshes are represented as
implicit surfaces with regular voxel grid. This opens the question how solid
volumetric representations may help matching hollowed surfaces.

Indeed, surface-based models are dominant in the vision and graphics com-
munities to represent and track shapes for several reasons, primarily due to
the fact that visual observations generally lie on the shape surface, but also to
the availability of efficient tools to manipulate them. Yet, it has been observed
that certain forms of volume-preserving properties are beneficial to model shape
deformations in applications [4, 21], or more of our interest, in capturing actors’
motions [47] since human movements are largely volume-preserving. Facili-
tating volumetric discriminative correspondences and eventually a volumetric
tracking-by-detection pipeline can be favorable for 3D human shape tracking.

In this chapter, we opt for centroidal Voronoi tessellations (CVTs) to represent
volumes and contrive an algorithm that applies again regression forests to match
CVT cells of input to those of the reference. The difference of CVTs from voxels
is contrasted in Fig. 4.1 and its advantages will be shown in the experiments.

voxel grid CVT

Figure 4.1: Voxels vs. centroidal Voronoi tessellations. Image courtesy: [5]
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Figure 4.2: Volumetric discriminative associations. We represent 3D shapes
using centroidal Voronoi tessellations. The goal of this chapter is to match
volumetric cells of the observations to those of the template.

4.1 Introduction

3D visual shape tracking aims to recover the temporal evolution of a 3D template
shape using visual information. It finds applications in many domains including
computer vision, graphics, medical imaging, and has proven successful for
marker-less motion capture in recent years. A standard tracking process consists
in an alternation of the following two steps. First, finding associations from each
primitive of the observed data, e.g. 3D points acquired from camera systems,
to corresponding primitives of the template 3D surface, typically based on the
proximity in Euclidean space (ICP) [17] or a feature space. Second, given
such associations, recompute the pose of the template under the constraint of a
deformation model, typically based on kinematic skeletons [62, 112, 140, 148],
or the piecewise-rigid assumption [6, 35], among others.

Recently, a number of alternative approaches and enhancements have been
explored for both stages independently. On one hand, progress has been made
in the deformation stage by introducing volumetric deformation models instead
of purely surface-based ones. Thanks to its inherent local volume preservation
property, this strategy has shown significantly improved robustness to various
tracking situations, such as shape folding and volume bias of observed shapes. On
the other hand, alternatives have also been proposed for the association problem
by discovering them discriminatively using machine learning techniques [117,
140]. This in turn yields the possibility for 3D tracking techniques that are
robust to partial tracking failure, while also improving the rate of convergence.
Although surface-based features are used in many cases to describe local shapes
and construct the associations, volumetric features have proven to be a promising
direction for 3D shape description with surface-based templates [71], which we
generalize to a fully volumetric pipeline.

In this chapter, we propose a unified volumetric pipeline, where the shape
representation, deformation model, feature description, and primitive associa-
tion are all built on a single volumetric representation, the centroidal Voronoi
tessellation (CVT) [50]. Specifically, the observed and template shapes are all
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tessellated as a set of uniform and anisotropic cells (see Fig. 4.2), which bring
benefits at all stages and yield a volumetric representation of regular cell shape
and connectivity with controllable cell complexity.

While benefiting from local volume preservation properties inherent to this
representation and the associated deformation model, we leverage the config-
urations of cells to build volumetric distance fields which we use to construct
our volumetric feature space. On this basis, we propose a full framework to
register a template shape to an observed shape, as two generic CVT cell sets.
Because features are expressed in the volume, the proposed method is well suited
to obtain fully volumetric detections, in turn helping the volumetric template
tracking to be more robust. Thanks to its significantly low memory footprint, we
use the representation to propose a multi-template learning framework, where
large training sets can be assembled from multiple tracked action sequences for
several human subjects. Specifically, every different subject’s template is mapped
to a generic, subject-agnostic template where the actual learning takes place,
to benefit all subsequent tracked subjects. This framework consequently yields
better or comparable detection and tracking performance than current state of
the art 3D temporal tracking or tracking by detection methods.

4.2 Related Work

3D tracking by detection. The tracking by detection strategy applied to hu-
man skeletal poses estimation (Kinect) [121, 155] has shown robustness to
tracking failure and reasonable convergence efficiency in real-world applica-
tions. It was first transposed to the problem of 3D shape tracking through the
work of Taylor et al. [140] and presented similar targeted benefits, with the
initial intention to substitute ICP-based optimization. The method achieves this
goal by learning the mapping from input 3D points from depth sensors, to the
human template surface domain, termed the Vitruvian manifold. This yields
discriminative associations that replace the step of proximity search in ICP-based
tracking methods. Variants of this work have explored changing the entropy
function used to train random forests from the body-part classification entropy
to the variance on surface embeddings for better data separation [112], or re-
placing surface-based features with 3D volume features computed on a voxel
grid in a local coordinate frame [71]. Both increase the precision by finishing
convergence with an ICP-based loop after the discriminative association stage.
All these methods are nevertheless based on surface points, thus relying on
heterogeneous shape representations, deformation models, target primitives and
feature spaces. Our proposal builds a unified framework for all these purposes
and takes advantage of volumetric tracking strategies as described below. Also,
we introduce a multi-template strategy, where a template is assigned to each
subject and mapped to a generic template, allowing to learn from all subject
motions sequences for the benefit of any subsequent subject tracking task.

3D features. In many cases, surface-based features are used for recognition or
shape retrieval, such as heat kernel signatures (HKS) [136] and wave kernel sig-
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natures (WKS) [9] . Both exploit the Laplacian-Beltrami operator, the extension
of the Laplacian operator to surface embeddings. These features are nonetheless
known for their lack of resilience to artifacts present in noisy surface acquisitions,
especially significant topology changes. MeshHoG [157] and SHOT [142] attach
a local coordinate frame at each point to achieve invariant representations and
reach better performance for noisy surfaces. More detailed reviews can be found
in [25] and [65] for triangular surfaces and point clouds, respectively. In the
context of discriminative 3D tracking, depth difference features have been used
to build random forests on depth data [121, 140]. One common trait of the
aforementioned features is that the computation involves only surface points.
Huang et al. [71] show that features can be built based on local coordinate
frames in a regular-grid volume. However, these features are only computed on
surface vertices and do not address the need for fully volumetric correspondences
as proposed in our work.

4.3 Preliminaries and Method Overview

Given a volumetric domain Ω defined by a shape in R3, CVT is a clipped Voronoi
tessellation of Ω which holds the property that the seed location of each cell
coincides with its center of mass [50]. Cells are of regular size and shapes as in
Fig. 4.1. A surface is expressed as the border of Ω, i.e. ∂Ω.

Let S denote the set of all cell centroids. Both the template shape ΩX
and the observed data ΩY are expressed by their CVT samplings, SX and SY
with locations X ⊂ ΩX and Y ⊂ ΩY using the method in [150]. We adopt a
volumetric deformation framework [5] that groups cells into K clusters, each
having a rigid transformation Tk ∈ SE(3). The collection of all transformations,
T = {Tk}

K
k=1, encodes the pose of the shape. As a result, the problem amounts

to estimating the best T̂ such that the deformed template cells X(T̂) resembles
Y as much as possible. Matching cells i ∈ SY with cells s ∈ SX is therefore an
indispensable task. To this end, each point in Y is first mapped to the template
domain ΩX , where the closest point in M is sought as the correspondence (as
represented by the green line in Fig. 4.5). This mapping r : R3 → R3 is accounted
for by a regression forest which is learned off-line with many pre-tracked CVTs
(Sect. 4.5). Given the detected associations, the best pose T̂ is estimated using
an EM-ICP algorithm in Sect. 5.5.

4.4 Features

The feature f proposed in the last chapter cannot be adopted here since it relies
on regular voxel grids. We design our new feature f with several principles in
mind. In order to be discriminative for shape matching, our feature should be
able to characterize the local neighborhood of any point of the volumetric shape.
This rules out the descriptors that rely on surface normals such as SHOT [142].
For time and memory efficiency of forest training and prediction, we want our
feature vector coefficients to be computable separately. This requirement is not
met by the descriptors that rely on unit length normalization. In order to be able
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Figure 4.3: Illustrations of our feature. Left: the distance field defined by a
CVT sampling S, where each cell stores the distance d(s, ∂Ω). Blue to red colors
means from close to far. Red dot: cell center s to be described. Right: illustration
of our feature f . L = 5 in this toy example. See text for more explanations.

to match any deformed pose with the template, we would like our feature to
be pose-invariant. Therefore, we build it on the Euclidean distance from cell
centroids s to the surface ∂Ω: d(s, ∂Ω) = minp∈∂Ω d(s, p) because it naturally
encodes the relative location with respect to the surface and it is invariant to
rotations, translations and quasi-invariant to changes of poses. Finally, our
feature needs to be robust to the topological noise present in the input data.

Given a distance field defined by a CVT sampling S, our feature is similar
in spirit to Haar feature in the Viola-Jones face detector [147], except that the
rectangular neighborhood is replaced with a sphere. As visualized in Fig. 4.3,
we open an L-layer spherical support region in the Euclidean space around each
cell. An L-dimensional vector u is defined accordingly, where each element ul is
the sum of the distances of all cells falling within layer l. The feature value is the
linear combination of all ul, with coefficients cl chosen from a set Υ = {−1, 0, 1}.
Formally, suppose c are L-dimensional vectors whose elements are the bootstrap
samples of Υ . Let cκ denote one particular instance of c, i.e. , cκ ∈ ΥL . The
feature value is then expressed as an inner product: u>cκ , corresponding to
one feature attribute κ. We consider all possible cκ and also take the distance d
itself into account. f is hence a vector of (3L + 1) dimensions, where 3L is the
cardinality of ΥL and each element fκ is defined as:

fκ ,

{
u>cκ =

∑
l c
κ
l ul, κ < 3L , c

κ
l ∈ {−1, 0, 1}

d(s, ∂Ω), κ = 3L
. (4.1)

Since each dimension fκ is computation-wise independent, f is suitable for
decision forests, which select feature channels κ randomly to split the data
during training. Being derived from d(s, ∂Ω), f inherits the invariance to rigid-
body motions. In addition, we normalize distances by their standard deviation
in one surface, achieving scale invariance to a certain extent. However, f is
not invariant to pose changes as the contained cells in each layer vary with
poses. Although considering geodesic spherical supports instead of Euclidean
ones would overcome this issue and yield quasi-invariance to pose changes, the
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Figure 4.4: Pipeline of volumetric association prediction. Correspondences
are visualized in the same color. It is essentially the same as Fig. 3.2 but operating
on CVT data.

resulting feature would be highly sensitive to topological noise. Thus, we keep
the Euclidean supports and let forests take care of the variations caused by pose
changes in learning.

4.5 Correspondences inference

We explain in this section how to learn the mapping r : R3 → R3 from the
observation domain to the template domain with a regression forest [45], which
is a set of T binary decision trees. An input cell is first described as a feature
vector f in Sect. 4.4. Taking f as input, during training each tree learns the split
functions that best separate data recursively at branch nodes, while during testing
the cell is routed through each tree, reaching T leaves that store statistics (a
mode in R3 in our case) as predictions (Sect. 4.5.1). We first discuss the scenario
with one single template and then generalize to multiple ones in Sect. 4.5.2.

4.5.1 Training and prediction

The aim of forests is to map an observed cell to the template domain ΩX , typically
chosen to be in the rest pose. Given a set of CVTs corresponding to the template
ΩX deformed in various poses, we associate each cell s ∈ SX to its locations at
the rest pose, denoted as x0

s ∈ X0, forming a pool of sample-label pairs
{

(s,x0
s)
}

as the dataset. Suppose DN is the set of samples arriving at a certain branch
node. The training process is to partition DN recursively into two subsets DL and
DR by simple thresholding on a chosen feature channel. Our splitting candidate
φ = (κ, τ) is therefore the pair of thresholds τ and feature attribute indices κ in
Eq. 4.1. In branch nodes, many candidates φ are randomly generated and the
one that maximizes the information gain I , φ∗ = argmaxφ I (φ), is stored for the
later prediction use.

We use the typical definition of information gain:

I (φ) = H(DN )−
∑

i∈{L,R}

|Di(φ)|
|DN |

H(Di(φ)), (4.2)

where H is the entropy , measured as the variance in Euclidean space, i.e.
H = σ2. We do not apply the more sophisticated measure [112] because (1)
our continuous labels x0

s lie in a volumetric domain Ω and (2) templates are
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Figure 4.5: The schematic flowchart of the multi-template learning frame-
work. Red arrows: mappings gµ that associate the indices from each subject-
specific template Sµ to the common template Ŝ. Xt

µ are the temporal evolutions
of each template. Blue: training; green: prediction.

usually chosen in canonical T or A poses. The Euclidean approximation holds
more naturally here than in [71, 112], where the regression is performed along
the surface manifold. The tree recursively splits samples and grows until one of
the following stopping criteria is met: (1) it reaches the maximum depth, or (2)
the number of samples |DN | is too small. A mean-shift clustering is performed in
a leaf node to represent the distributions of x0

s as a set of confidence-weighted
modes H = {(h, ω)}. h ∈ R3 is the mode location and ω is a scalar weight.

In the prediction phase, a cell i ∈ SY traverses down the trees and lands
on T leaves containing different collections of modes: {H1 · · ·HT }. The final
regression output ri is the cluster centroid with largest weight obtained by
performing mean-shift on them. Each observed cell then gets a closest cell p in
the reference SX : p = argmins∈SX

∥∥ri − x0
s

∥∥
2
. The correspondence pair (i, p)

serves as input to the volumetric deformation framework described in Sect. 5.5.

4.5.2 Multi-template learning

The above training scenario requires deformed CVTs of consistent topology such
that one can easily assign each cell sample s a continuous label which is its rest-
pose position x0

s. It hence applies only to one template. However, the amount of
training data for one single template is often limited because a fully volumetric
shape and pose modeling framework is still an open challenge. To avoid over-
fitting, the rule of thumb is to incorporate as much variation as possible into
training. This motivates us to devise an alternative strategy that learns across
different CVT topologies.

Given U distinct CVT templates: {Sµ}Uµ=1
1, whose temporal evolutions are

recovered with the method in [5], resulting in a collection of different templates
deformed in various poses: {{Xt

1} · · · {Xt
U}} as our dataset. To include all of

them into training, we take one generic template Ŝ as the reference. Intuitively,
if there exists a mapping g that brings each cell s ∈ Sµ to a new cell g(s) = ŝ ∈ Ŝ,

1The template suffix X is dropped to keep notations uncluttered.
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(a) (b) 

side view top view 

Figure 4.6: Generalized skinning weights and matching results. (a): illustra-
tion of our strategy adapting skinning weights to CVT cells. Distances d(s, ∂Ω)

are reflected in normalizations. (b): result of matching two templates.

one only needs to change the template-specific labels x0
s to the corresponding

x0
ŝ, which are common to all templates, and the training process in Sect. 4.5.1

can again be applied. In other words, we align topologies by matching every
template Sµ to Ŝ. Fig. 4.5 depicts this multi-template learning scheme.

Although various approaches for matching surface vertices exist, only a
handful of works discuss matching voxels/cells. Taking skinning weights as an
example, we demonstrate in the following how to adapt a surface descriptor to
CVTs. Note that our goal is not to propose a robust local 3D descriptor. With
proper modifications, other descriptors can be used as well for shape matching.

Generalized skinning weights. Skinning weights are originally used for
skeleton-based animations, aiming to blend the transformations of body parts
(bones). Usually coming as a side product of the skeleton-rigging process [11], it
is a vector w of B -dimensions, each corresponding to a human bone b and B is
the number of bones. The non-negative weight wb indicates the dependency on
that part and is normalized to sum up to one, i.e.

∑
b wb = 1. As such, a skinning

weight vector w is actually a probability mass function of body parts, offering
rich information about vertex locations. To extend it from surface vertices to CVT
cells, we first relax the unity-summation constraint as w is not used to average
transformations of bones but only as a descriptor here. The intuition behind
the adaptation is that, a CVT cell should have bone dependencies similar to the
closest surface point. Therefore, for a cell whose distance to the surface is d, its
skinning weight is simply the one of its closest surface point, scaled by ed. When
the shortest distance does not exactly correspond to a vertex but to a point in
the middle of a triangle, we use barycentric coordinates as the coefficients to
linearly combine the skinning weights of the three vertices. Note that this does
not violate the unity-summation constraint for surface vertices as their distance
d is still zero. We illustrate this concept in Fig. 4.6(a). The mapping g is then
determined by searching for the nearest neighbor in the skinning weight space:
g(s) = arg minŝ∈Ŝ ‖wŝ −ws‖2.

In practice, we use Pinocchio [11] to computes skinning weights, extend
them from surface vertices to CVT cells, and match all cells to those of the
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common template Ŝ. The resulting skeletons are not used in our method.
Fig. 4.6(b) visualizes one example of matching results. Our approach yields
reasonable matches, regardless of the difference in body sizes. Due to the
descriptiveness of skinning weights, symmetric limbs are not confused. Note that
this computation is performed only between user-specific templates Sµ and the
generic one Ŝ off-line once. Input data SY cannot be matched this way, because
rigging a skeleton for shapes in arbitrary poses remains a challenging task.

Probabilistic inverse mapping g−1. In Sect. 4.5.2, we align the topologies of
different templates so that forests are learned based in a topology-consistent
domain. To this end, we utilize skinning weights w and develop a mapping g
that maps each cell s on a subject-specific template Sµ to a cell ŝ on the common
template Ŝ:

gµ(s) = arg min
ŝ∈Ŝ
‖wŝ −ws‖2,∀s ∈ Sµ. (4.3)

During tracking, forests predict the correspondences that lie on the generic
template Ŝ and one has to revert it back to the cell index on the subject-specific
template Sµ.

We assume users know the tracking subject, i.e. µ is known. Since gµ is
constructed by nearest neighbor search, leading to a many-to-one function,
the inverse mapping (gµ)−1 is by nature ill-defined. We therefore resort to a
probabilistic formulation. Specifically, given a predicted cell ŝ on the common
template Ŝ, all the possible s ∈ Sµ being mapped to ŝ are taken into account.
When they are used to construct the least-square-based energy formulations, we
weight them differently according to their distances to ŝ in the skinning-weight
space. This strategy fits naturally to the EM-ICP framework presented later in
Sect. 5.5.

4.6 Experiments

We validate our approach with numerous multi-view sequences, whose profiles
are summarized in Table 4.1. For each frame, a coarse visual hull is reconstructed

Template / #Vertex / #Cell Sequence Frames

Ballet / 6844 / 5000
Seq1 [5] 500

Seq2 [69] 936

Goalkeeper / 5009 / 5000
SideJump [5] 150

UpJump [6] 239

Thomas / 5000 / 4998
Seq1 [69] 1500

Seq2 [69] 1400

Table 4.1: Sequences used in the experiments in Sect. 4.6. For each subjects,
the training set is the random 250 tracked CVTs sampled from first sequences
and testing on the unseen second sequence.
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Sect. Forest T Testing data

4.6.1
template-

20
1. tracked CVTs of seq1 (Tr)

specific2 2. unseen tracked CVTs of seq2 (Te)

5.6.3
multi-

50 unseen raw CVTs of seq2
template

Table 4.2: Different experimental settings in two sections.

by a shape-from-silhouette method [55], followed by [150] to draw CVT sam-
plings (raw CVTs). Given a CVT template, we then perform an EM-ICP based
method [5] on the raw CVTs to recover temporal coherent volumetric deforma-
tions (tracked CVTs). We evaluate our method in two aspects: detection accuracy
(Sect. 4.6.1) and tracking results (Sect. 5.6.3). For the sake of completeness
and clarity, we describe the setting of two experiments here together. Unless
otherwise specified, we follow the experimental protocol below.

Experimental protocol. We first explain the settings common to two experi-
ments. For each subject, up to 250 tracked CVTs are randomly chosen from the
first sequence as the training dataset, while the second sequences are completely
left out for testing. We open L = 8 sphere layers for the feature computation.
Each tree is grown with 30% bootstrap samples randomly chosen from the dataset
and trees are grown up to depth 20.

Two experiments, however, differ in the input data for testing. To evaluate
the quality of estimated associations, we feed the tracked CVTs into forests due to
the availability of ground truth indices (Sect. 4.6.1), whereas raw CVTs are used
as the input for tracking experiments in Sect. 5.6.3. Some distinct experimental
settings of the two are exposed in Table 4.2.

4.6.1 Single-template learning

We draw a careful and thorough comparison to the discriminative associations
presented in [71], which is the early version of the approach presented in
Chapter 3. The contributions of CVT on improving the correspondences detection
are evaluated with two folds.

First, we follow the learning framework in [71] but replace their voxel-based
features with ours in Sect. 4.4, denoted as CVTfeature. Next, we further change
the regression domain from surfaces to volumes, as described in Sect. 4.5.1
(fullCVT). We test on the tracked CVTs and report the results on all frames of
training sequences (Tr) and testing ones (Te). The drop between them is a natural
phenomenon for every machine learning algorithm and indicates the ability to
generalize. If the Euclidean distances between the predicted cell index and the
ground truth are smaller than a certain threshold, it is considered as correct. To
align the experimental setting, here the regression forests are subject-specific
and consist of only T = 20 trees.

2More precisely, forests in Sect. 4.6.1 are all single-template based except for the one in “multi-
template learning” paragraph.
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(a) Ballet (b) Goalkeeper 

(c) Thomas 

Figure 4.7: Qualitative matching results on the raw CVTs. Best viewed in pdf.

Some visual results of the fullCVT approach on raw CVT input are shown in
Fig. 4.7. Fig. 4.8 shows the percentage of correct matches in varying thresholds
for Thomas and Ballet. Since CVTfeature and [71] are regressing to surfaces
whereas fullCVT regresses to volumes, we normalize the x-axis by the average
edge length of templates to yield fair comparisons. While the results of CVTfeature
are comparable to [71] (green vs. red or orange), fullCVT attains the improved
accuracies (blue vs. red or green), demonstrating the advantages of our fully
volumetric framework.

Discussion. It is worth a closer analysis to compare our approach against [71].
Compared to volumes of regular grids, CVT is certainly a more memory-efficient
way to describe 3D shapes. In practice, [71] describes each mesh with 1503

voxels, while we need only 5k cells3. Consequently, [71] is not able to include a
sufficient amount of training shapes, leading to a major drawback that forests
are limited to one single subject and learn merely pose variations. To further
decrease the needed number of training meshes, [71] exploits skeletal poses
to cancel the global orientation. This in turn makes every mesh in the training
dataset face the same direction. It follows that during tracking the input data
has to be re-oriented likewise using the estimated skeletal poses from the last
frame. Our approach, on the other hand, considers distance fields of CVTs which

3Further note that [71] stores a 3D vector in each voxel, whereas we store a scalar in each CVT
cell. So the ratio is 3× 1503 to 5k.
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Figure 4.8: Cumulative matching accuracy of different approaches. The x-
axis is normalized with respect to the average edge length of the templates. The
number of trees T is 20 in this experiment. Dashed and solid lines are accuracies
on training (Tr) and testing (Te) sequences respectively.

is naturally invariant to rotations and hence does not require re-orientations.
We anyway compare to [71] in both settings. Orange curves in Fig. 4.8 shows
the results with re-orientation, which is better than the proposed strategy in
Ballet. Nonetheless, without re-orienting data, the accuracy drops substantially
during testing (compare red to orange). The efficiency on memory and the
invariance of our features are two determining reasons why the presented
method is better than [71] and needs just one forest for different subjects in the
following experiment.

4.6.2 Multi-template learning

We use the sequences of Goalkeeper to verify the advantages of the multi-template
learning strategy in Sect. 4.5.2. It is a particularly difficult dataset because
motions in the testing sequence UpJump have little overlap with those in the
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Figure 4.9: Cumulative matching accuracy of single and multi-template
strategy on Goalkeeper.

training SideJump. We report in Fig. 4.9 the correctness of correspondences in
fullCVT setting. Both curves represent the accuracy on testing UpJump sequence.
The blue curve corresponds to a forest only trained with Goalkeeper tracked CVTs,
whereas the green curve corresponds to a forest trained with tracked CVTs of
Ballet and Thomas. For both forests, UpJump sequence is unseen during training.
Compared with the forest of the blue curve, the one of the green curve is trained
with twice the amount of meshes from different subjects, and yet it leads to
better prediction accuracy on unseen testing poses. This suggests that including
more variation of motions indeed results in better generalization to unseen data.
It also confirms the necessity and efficacy of our multi-template strategy. We
anyway point out that due to the lack of adequate amount of training data, these
encouraging preliminary results need to be confirmed on datasets consisting of
more subjects and sequences.

4.7 Conclusion

In this chapter, we present a fully volumetric approach for discriminative associa-
tions. Centroidal Voronoi tessellation is chosen to be the unified representation
used in feature computations, predicting domains, and deformation models
(later in Sect. 5.5 ). Such informative and consistent representations have shown
better detected correspondences than other discriminative strategies. We further
devise a multi-template learning strategy to enrich the training variation. This
leads to one single forest for different subjects and yields cross-subject learning
of discriminative associations. The method opens several research directions,
and thanks to low memory-footprint characteristics, it can be tested on much
larger training sets for discriminative 3D tracking in the future. The method-
ology can easily be transposed to other volumetric features emphasizing other
discriminative characteristics.
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notations descriptions

Ω A volumetric domain; Ω ⊂ R3.
∂Ω A surface (the border of a volume).
S A set of indices representing CVT cells/centroids.

(·)X , (·)Y
Subscripts representing variables of templates (X) and observa-
tions (Y ) respectively.

s, i
Indices of CVT cells on templates (s) and observations (i);
s ∈ SX , i ∈ SY .

X,Y

Sets of 3D locations of CVT centroids; X ⊂ ΩX ,Y ⊂ ΩY . Note
that locations X,Y and index sets SY are time dependent vari-
ables, while index set SX is constant during tracking.

x
3D locations of CVT centroids on the template;
xs ∈ X, s ∈ SX .

K
Number of clusters of CVT cells;
K = 150 for Ballet and Goalkeeper; K = 250 for Thomas.

L Number of layers clusters for feature computation; L = 8.
B Number of bones for skinning-weight computation; B = 17.
µ Denoting S of different templates; µ = 1 · · ·U .

Table 4.3: Notations and the setting of parameters in Chapter 4.
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5
Energy Minimization

Framework

In the previous chapters, we have addressed the problem of discriminative
correspondences in different parameterizations. This chapter continues the
quest on tracking-by-detection of 3D human shapes. Now that the data-model
associations have been estimated, one needs to deform the template accordingly
so that it resembles the observations. This requires the motion parameterization,
namely, the search space to be determined first. On one hand, the skeleton-based
parameterization has semantic meanings corresponding to the human anatomical
structure and is therefore more preferable in many applications; on the other
hand, the pure surface-based parameterization holds the ability to explain highly
non-rigid deformations, usually leading to more accurate results.

In this regard, we propose to infer skeletal information from surface de-
formations. This is a complete opposite concept compared to skeleton-based
animation, which controls surfaces by the underlying kinematic chain. Instead,
we advocate guiding the skeletons by surface deformations. The skeletal pose
comes as a by-product of the deformation framework in [35] and fits naturally
to its probabilistic formulation. Together they form a simultaneous optimization
framework, which can also be interpreted properly from a Bayesian network
perspective. Unlike [132], who use this idea only in refinement, we directly
use it for tracking [72]. To the best of our knowledge, in the context of 3D
human tracking, this is the first work which recovers both human shapes and
poses with a single optimization objective. In extension to the work in [72], this
chapter provides additional analysis on the simultaneous optimization strategy
and presents an improved solution for the pose estimation from surface shapes.

We first derive the formulation of joint optimization in this chapter and verify
its strength with experiments. The mesh-based discriminative associations from
Chapter 3 is then integrated into it to complete the full tracking-by-detection
pipeline. Last but not least, we also elaborate a CVT-based deformation model [5]
that takes discriminative correspondences from Chapter 4 as input and realize
the tracking-by-detection concept in a fully volumetric fashion.
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Figure 5.1: Our approach tracks both the shape and the pose of humans
simultaneously. Results with three different datasets are shown above. Left:
Skirt in [62]. Top right: Bouncing in [148]. Bottom right: Free in [128].

5.1 Introduction

Marker-less human motion capture from multiple camera videos is a fundamental
task in many applications including sport science, movie industry, and medical
diagnostics. Since human motion is defined by both articulated motion and
surface deformation they should ideally be estimated simultaneously. However,
this requires sophisticated physics-based models that capture the real relation-
ships between pose and shape. Since such models are hard to build and also
involve complex parametrization, researchers often decouple them and treat
each problem separately. One line of approaches considers only the estimation
of surface deformations by fitting a reference model to the incoming image
observations, e.g. [34, 35, 47, 48]. Another line of approaches parameterizes
the model deformations with an articulated human skeleton represented as
a kinematic chain [62, 92, 129, 148]. While the latter are less generic and
strongly depend on the skeleton parametrization, the former are more generic
and require less priors, hence allowing for larger classes of model deformations.
Since the human anatomical structure can not be perceived by traditional visual
sensors such as color cameras, approaches that model and track shapes instead
of internal and unobserved skeletons tend to give more reliable results with
visual data. Nevertheless, in many graphical applications that involve human
body models, the pose is required as much or more than the shape surface1. To
this objective, we introduce a method that simultaneous recovers both the shape
surface, in the form of a mesh, and its pose with articulated skeleton parameters.
This method builds on two related works. First, the patch-based deformable
surface registration framework proposed in [35] that relies on soft observation
assignments and handles outliers. Second, the bone binding energy presented

1Recall that with a slight abuse of terminology, ‘shape’ refers to the shape pose of surfaces while
‘pose’ only to skeletal pose. See Table 2.2.
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in [132] that forces the skeleton model to stay inside the deformed human body
shape. The combination of these two strategies allows us to devise an approach
that benefits from a robust surface registration when recovering human body
pose and without the need for complex inverse kinematic parametrizations.

This chapter has several contributions. Different from [35] or [62], pose and
shape are recovered at the same time. The rest of this chapter is organized as
follows. In Sect. 5.2 we review the most relevant related work. Details of the
proposed method are described in Sect. 5.3 to 5.5. Validation experiments and
results are provided in Sect. 5.6, and we conclude this chapter in Sect. 5.7.

5.2 Related Work

Human motion tracking/capturing has been long studied in both computer vision
and graphic communities. Based on the way of parameterizing motion, existing
works can be categorized into three classes:

Mesh-based approaches. In this class of methods, motion is solely parameter-
ized on the humanoid surface which evolves in time, without incorporation of a
skeleton model. Authors usually introduce some constraints among vertices such
that implausible deformations are avoided. Aguiar et al. [48] propose a scene-
flow-based deformation scheme. To overcome the accumulated flow estimation
error, they utilize Laplacian deformation framework [23] as a refinement step.
In their follow-up work [47], they first deform a low-resolution tetrahedral mesh
to roughly estimate the pose, and then transfer it to a high-resolution scanned
model. Surface details are again preserved by Laplacian constraint. Cagniart et
al. [34] advocate to divide the mesh into small cells called patches. A rigidity
constraint is imposed among neighboring patches which smooths model defor-
mation. In [35], they further improve the data term and the whole deformation
framework acts like a probabilistic iterative closest point (ICP) approach. The
advantage of these purely-mesh-based methods is that they can generalize to
non-humanoid surface tracking, and they better handle non-rigid deformation
such as loose apparel.

Skeleton-based approaches. Since human motion is highly articulated, many
authors use skeleton-based models. Motion is then parameterized in a low-
dimensional pose parameter space. However, in the observations, whether 3D
point clouds or silhouettes, one does not observe the skeleton directly. A mesh
surface is still needed for the fitting purpose but it is controlled by the underlying
skeleton. As a result, skeleton plays the role of prior deformation model. From
this point of view it is actually much more constrained than purely-mesh-based
methods. There are mainly two concerns in this family of work: first, how to
parameterize motions in terms of the skeleton, and second, how this skeleton
should interact with the reference mesh. Vlasic et al. [148] parameterize motions
as transformation of local coordinate of each joint. Vertex transformation is
computed by the linear combination of different joint transformations, known as
linear blend skinning [92]. With similar parameterizations, Gall et al. [62] adopt
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quaternion blend skinning [82] which produces less artifacts. In both methods,
the skeleton acts as a kinematic chain where local transformations are transferred
from the parents to the children. Energies between mesh and observations
are defined in pose parameter space, based on the simple assumption that
surface deformation is explained only by the skeleton. A second stage of surface
refinement is usually required.

Hybrid approaches. The first category of approaches emphasizes more on the
surface consistency, whereas the second category of approaches focuses on the
pose. Straka et al. [132] advocate the integration of both categories into one
energy function. They introduce differential bone coordinates as an implicit
skinning approach, and therewith they formulate a skeleton-binding energy term
defined on the parameters of both mesh surface and skeleton. This allows them
to jointly estimate pose and shape, and they show that optimizing in this coupled
space results in more robustness. Moreover, skeletons are parameterized only
in terms of joint location. Although losing some rotational degree of freedom
(DoF) for each joint, this makes the energy term quadratic in terms of both, body
joint positions and mesh vertex positions. Therefore, the optimal solution can be
obtain via standard optimization method.

The difference of our approach compared to [132] is that we compute the
bone energy per patch rather than per vertex. In addition, our observations are
3D visual hull reconstructions instead of 2D silhouettes. With 3D information,
we are able to handle ambiguous situations that one cannot do with only image
observations. Furthermore, we partition observations into body part regions
according to learned partitioning in the previous frames. This allows us more
efficient matching of the reference mesh and the input 3D observations, which
combined with optimization with soft assignments from [35] makes it more
robust to outliers and missing data.

3D volumetric tracking. While many visual tracking techniques employ skele-
tons [62, 148] or surface-based representations [6, 84], volume-based repre-
sentations have also been proposed to address various issues. On one hand,
topology changes or online surface reconstructions are better handled if sur-
faces are implicitly represented in volumes as e.g. truncated signed distance field
(TSDF) [58, 105, 104], with high memory cost due to regular grids storing empty
space information. On the other hand, volumetric techniques have also been
devised for robustness in long term tracking, as a way to alleviate the so-called
candy-wrapper artifacts, namely, collapsing surfaces in animations. Without
explicitly tessellating surface interiors, Zhou et al. [161] introduce internal nodes
to construct a volumetric graph and preserve the volumes by enforcing Laplacian
constraints among them. Instead, Budd et al. [31] and De Aguiar et al. [47]
perform a constrained tetrahedralization on surfaces to create interior edges.
Allain et al. [5] generate internal points by CVT decomposition and thereby pro-
pose a generative tracking strategy that yields high quality performance. These
techniques are nevertheless based on ICP-variants, whereas we aim at detecting
associations discriminatively.
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5.3 Skeleton

The patch-based deformation framework evolves a surface with a low dimen-
sional set of parameters. It is not limited to humanoid surfaces, holding the
possibility to handle complex scenes. Nonetheless, in the context of human
motion tracking, many authors use an intrinsic data structure to guide the de-
formation in an even lower dimensional space [61, 148], followed by a shape
refinement stage. This structure often resembles the skeleton of human bod-
ies, and each node actually corresponds to one human body joint. Due to this
anatomical meanings, an articulated skeletal structure is usually preferred than
the 3D surface shape in many applications. Thus, in this section, we extend
the pure-surface framework so that it retains the generality of surface-based
methods, while providing skeletal poses as side products.

5.3.1 Initialization and Pose Parametrization

Our skeleton is a hierarchical tree structure consisting of J nodes (joints). It has
to be placed properly inside the mesh such that the root is close to the pelvis of
the body, and each vertex v is assigned to a branch-node joint, as in Fig. 5.2(a).
This rigging process and vertex-joint associations are automatically accomplished
off-line once on the reference surface, using the software Pinocchio [11] prior
to the tracking process.

After rigging, many authors attach a local coordinate frame on each joint and
parameterize the pose as the rigid transformations of these coordinates [43, 61,
148]. Meshes are thereby controlled by these transformations based on blend
skinning techniques. However, surface deformation is by nature high dimensional
and difficult to be fully characterized by only few rigid transformations. For
humanoid surfaces, typically K ≈ 150 yields plausible surface shapes, while J
is usually less than 20. We therefore advocate for the reverse strategy: guiding
the skeleton by the surface deformation, i.e. inverse skinning. Formally, the
pose is represented as a set of positions for each joint j : J = {xj}

J
j=1 and is

parameterized as a function of shapes, J(Θ). As illustrated in Fig. 5.2(b), patch
transformations can be regarded as intermediate controlling primitives that lie
in between complex vertex positions and overly simplified skeletons. Both high
dimensional surface shapes and low dimensional skeletal poses are controlled
by the transformations of patches. To this end, we associate each patch Pk to
a joint j(k) by a taking majority vote on vertex-joint assignments. Given the
patch-joint associations, there are two ways to devise J(Θ): either through
bones, or directly through joints.

5.3.2 Inverse Skinning through Bones

On the reference mesh, we compute the beta-coordinate proposed by [132] in
a per-patch manner. It represents the displacement between the bone and the
patch center: β0

k = δ0
k − c0

k, where δ0
k is the linear combination of the positions

of joint j(k) and its child:
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patches 

skeletons 

vertex positions 

(a) rigged ref. surface (b) controlling structure 

Figure 5.2: Our skeleton (a) and deformation-controlling structure (b). Ver-
tices associated to the same joint have the same color.

δ0
k = γkx

0
j + (1− γk)x0

child(j). (5.1)

γ is chosen such that β is orthogonal to the bone, as shown in Fig. 5.3(a). We
drop the dependency notation (k) in order to keep equations uncluttered.

By preventing β from varying after deformation, we encourage bones to
follow their corresponding patches. More specifically, if a patch undergoes a rigid
transformation Tk during tracking, it predicts the new δk as Tk(δ0

k) = ck+Rkβ
0
k.

Substituting into Eq. 5.1, one can formulate the new position of a bone as:

γkxj + (1− γk)xchild(j) = ck + Rkβ
0
k. (5.2)

Here γ stays fixed to prevent bones from sliding along the surface. Eq. 5.2 shows
the linear relation between the transformation of a patch and the location of
its associated joint. Since there are two unknown variables, xj and xchild(j), we
need at least two equations (i.e. two patches) to determine the new position of
one bone. In practice, we stack this linear relation for every patch and form a
linear system:


...

...
. . . γkI . . . (1− γk)I . . .

...
...


︸ ︷︷ ︸

B



...
xj
...

xchild(j)

...


︸ ︷︷ ︸

j

=


...

ck + Rkβ
0
k

...


︸ ︷︷ ︸

∆

, (5.3)

where B is a 3K × 3J matrix, j is a 3J × 1 vector containing the positions of
all joints, and ∆ is 3K × 1 vector containing all Tk(δ0

k). In general, K is larger
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Figure 5.3: Two inverse skinning strategies. In (b), the bone is shown in
dashed line because there is no explicit concept of bone.

than J , so Eq. 5.3 is an over-determined system whose optimal solution can be
obtained via pseudoinverse [89]:

j = (B>B)−1B>∆. (5.4)

Eq. 5.4 demonstrates that the pose of the subject can be parameterized as
the function of the shape parameter (encoded in ∆), namely, J(Θ). Thus, each
time a when humanoid surface is deformed, the pose of the skeleton can be
computed via Eq. 5.4 accordingly. Since pseudo-inverse solves a linear system in
the least-square sense, one can also formulate an equivalent energy term:

Ebone(Θ,J) =

K∑
k=1

κk
∥∥Tk(δ0

k)− δ′k
∥∥2

2
, (5.5)

where δ′k = γkxj + (1 − γk)xchild(j). It simply enforces the right-hand and the
left-hand side of Eq. 5.2 to be consistent. This way we can also weight the
contribution of each patch differently with κk.

5.3.3 Inverse Skinning through Joints

An alternative way to guide the skeleton is more straightforward: predicting the
positions of joints by every associated patch, as illustrated in Fig. 5.3(b). When a
patch k moves to a new position ck with rotation Rk, it assumes the associated
joint moves together:

xk(j) = Rk(x0
j − c0

k) + ck. (5.6)

The position of each joint is then recovered by linearly blending the predictions
from different patches:

xj =
∑
k

τkxk(j), (5.7)

where the weights τk are determined similarly as α in Eq. 2.2. This approach fits
naturally into the patch-based deformation framework, and it requires at least
only one patch to predict two joint positions.
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It is informative to combine Eqs. 5.6 and 5.7 together in one formulation, as
it emphasizes the difference of our approach from the others:

xj =
∑
k

τkTk(T0
k)−1x0

j . (5.8)

Here (T0
k)−1 means (x0

j − c0
k) in Eq. 5.6, and Tk means rotating with Rk

and moving to the new center ck. Eq. 5.8 mirrors the linear-blend skinning
formulation:

xv =
∑
j

wjTj(T
0
j )
−1x0

v, (5.9)

where one first represents the vertices in local bone coordinate frames, applies
new transformations, and blend the predictions from relevant joints. We clearly
see that Eqs. 5.8 and 5.9 share the same mathematical computations, only the
opposite operands. We argue that inferring skeletons from surfaces because it
is a logical way to determine low dimensional representations (skeletal poses)
from high dimensional deformations (surface shapes), instead of doing the other
way around with unrealistic rigid-body-part assumptions.

Eq. 5.7 provides the second way to parameterize the pose J as a linear
function of the shape parameter Θ, encoded in xk(j). Let J ′ denotes the patches
connected to joint j or the parent of j. Similar to the first approach, we also
formulate an equivalent energy term:

Ejoint(Θ,J) =

J ′∑
j=1

∑
k∈Nj

τjk ‖xj − xk(j)‖22 . (5.10)

5.3.4 Optimization

Given the two different ways to obtain the pose J from the shape Θ (Eqs. 5.4
and 5.7), one can, during tracking, first get the optimal Θ via Eq. 2.4 and then
compute the pose J as a post-processing step. The alternative, as suggested by
[132], is to simultaneously estimate the two, with Eq. 2.4 is augmented into:

argmin
Θ,J

λrEr(Θ) + λsEskl(Θ,J) + Edata (X(Θ)) . (5.11)

Eskl is either Ebone or Ejoint, and λs is the balancing weight. This is again a non-
linear least-squares problem. The quadratic approximation in Sect.. 2.2.2 applies
here as well to both Ebone or Ejoint, so the numerical considerations basically
remain unchanged; only the approximated Hessian matrix G>G becomes a
(6K + 3J )× (6K + 3J ) matrix. Although solving Eq. 5.11 recovers poses and
shapes at once, we anyway stress that, due to the difference in the numeric
scales, poses J behave like side products of shapes Θ. As discussed later in
Sect. 5.6.1, it has negligible effects on shape deformations.

5.4 Simultaneous Surface and Skeleton Tracking

As discussed in Sects. 5.1 and 5.2, we deal with data-driven mesh deformation
and cast the problem as a geometric registration of 3D point sets. For this
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purpose, the data term Edata in Eq. 5.11 has to be designed carefully. In [35],
Cagniart et al. consider the optimization problem of Eq. 2.4 from Bayesian’s
point of view and model the data term (likelihood function) as Gaussian Mixture
Model (GMM). The optimization process then behalves like the well-known
Expectation-Maximization algorithm. Since our Eq. 5.11 is the extension of
Eq. 2.4, it also fits naturally into the probabilistic framework, which amounts to
the Bayesian network below.

We aim at estimating the shape Θ of the surface and the pose J of the
skeleton simultaneously. In a Bayesian context, this means that given a set of
observed 3D points, the estimation of shape and pose is achieved by maximizing
the a posteriori (MAP) probability:

max
Θ,J

P (Θ,J|Y). (5.12)

Considering P (Y) as a constant, maximizing Eq. 5.12 is equivalent to maximize
the joint distribution, which can be decomposed as follows:

max
Θ,J

P (Y,Θ,J) = P (Y|Θ,J) · P (J,Θ). (5.13)

5.4.1 Bayesian Network Model

We employ two assumptions which further simplify Eq. 5.13:

1. surface-based approach:

P (J,Θ) = P (J|Θ) · P (Θ). (5.14)

2. conditional independence between J and Y:

P (Y|Θ,J) = P (Y|Θ). (5.15)

The first assumption comes from the fact that we rely on the shape parameter
Θ to determine the pose parameter J, as described in Sect. 5.3. P (J,Θ) is
thus factorized as in Eq. 5.14, not P (Θ|J) · P (J). Here, P (J|Θ) represents
the probability of the skeleton pose given the shape, and P (Θ) is the prior
knowledge on possible shape deformations. Secondly, we assume that J is
conditionally independent of Y given Θ, i.e. Y ⊥⊥ J|Θ. It is a reasonable
assumption, since from the input data perspective, one usually observes only the
surface of human bodies (shape) rather than the anatomical structure (skeleton).
It makes sense that when conditioning on the shape, the observations and the
skeleton can no longer influence each other. Eq. 5.15 holds as the property of
conditional independence [18], and P (Y|Θ) is considered as the likelihood
between observations and the shape.

Based on Eqs. 5.14 and 5.15, the joint distribution is:

P (Y,Θ,J) = P (Y|Θ) · P (J|Θ) · P (Θ). (5.16)

Alternatively, one can decompose the joint distribution as follows:

P (Y,Θ,J) = P (Y,J|Θ) · P (Θ), (5.17)
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(a) ours (surface-based) (b) skeleton-driven

Figure 5.4: Directed graphical models of two strategies.

and see directly that the conditional independence between J and Y lead us
to Eq. 5.16 by definition. Note that Eq. 5.16 is actually a Bayesian network
model, whose directed graph is illustrated in Fig. 5.4(a). From the graph we see
straightforwardly that the joint distribution is decomposed into three different
terms as in Eq. 5.16, and the property of conditional independence is also
demonstrated in the graph [18]. The figure also shows, in (b), the dependence
graph corresponding to skeleton-based motion parameterizations. Next we
proceed with each term in Eq. 5.16.

5.4.2 Shape Prior and Pose Posteriors

In the absence of knowledge on the nature of the shape, we model a probability
distribution over the range of shape deformations by seeding patches on a
reference surface and making the approximation:

P (Θ) ∝ e−λrEr(Θ), (5.18)

where Er(Θ) is the rigidity energy defined in Eq. 2.3. This energy emulates
elastic behavior with respect to the patched reference mesh. Because our patching
approach infers the topology of the object from the vertex connectivity, this
reference mesh has to be topologically suitable, that is it has to be split wherever
the surface might split during the sequence. See Sect. 5.6.1 for more discussion
on this aspect.

The pose posteriors measure the probability of a pose given a certain shape,
approximated as:

P (J|Θ) ∝ e−λsEskl(Θ,J), (5.19)

where Eskl(Θ,J) is the skeleton energy in Eq. 5.11. This approximation assumes
that the connectivity between the skeleton and the surface is stable, or say, the
patch-joint association j(k) does not change during tracking, which usually holds
for human subjects.
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Figure 5.5: Our full 3D tracking-by-detection pipeline. The correspondence
prediction part (Fig. 3.2) is colored in orange. We feed the predicted data-model
associations into the simultaneous optimization framework in this chapter and
deform the reference surface accordingly.

5.4.3 Likelihood

Recall that our goal is to estimate deformation parameter Θ, whose resulting
X(Θ) best explains Y. The goodness of explanation is accounted for by the data
term Edata, or in the perspective of probability, the likelihood function P (Y|Θ):

P (Y|Θ) ∝ e−Edata(X(Θ)). (5.20)

Omitting the vertex position X, in the following discussion, we denote data term
only as Edata(Θ) to keep notations uncluttered and highlight the dependency.

Generative EM-based Data Term

Cagniart et al. [35] adopt probabilistic ICP in patch-based deformation frame-
work. Instead of a deterministic correspondence, each target point yi has a soft
assignment wik to every patch Pk. They define a data term as:

Edata(Θ) =

O∑
i=1

K+1∑
k=1

wik‖yi − x(vik)‖22. (5.21)

They also introduce one additional outlier class which is modeled as a constant
uniform distribution (therefore K + 1). Since wik are obtained by simple near-
est neighbor search, minimizing Eq. 5.21 directly with Gauss-Newton solver
might lead to sub-optimal outcome due to erroneous associations. Instead, they
perform just one Gauss-Newton iteration and update wik accordingly. The alter-
nating process be viewed as Expectation-Maximization algorithm. In E-step, soft
assignments wik are computed and in M-step, the energy is minimized in terms
of model parameters Θ.

Discriminative Correspondences

Minimizing Eq. 5.21 in an EM manner is able to refine correspondences C
and Θ progressively. Still, it needs close initializations in order to reach the
convergence, i.e. Y and the current X(Θ) are supposed to be close enough to
each other, which does not always hold. On the other hand, heavily relying on the
previous status X(Θt−1) also make the whole tracking pipeline apt to drifting.
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Providing quasi frame-independent discriminative data-model associations, the
TSDT-forest framework in Chapter 3 is devised to address this problem. Given
correspondences C from the forest (Eq. 3.7), a data term is formulated as:

Edata(Θ; C) =
∑

(i,p)∈C

wip‖yi − xp(Θ)‖22, (5.22)

Given an input Y the regression forest returns a fixed response Ỹ, and hence
a fixed C. We therefore apply standard Gauss-Newton method to directly find
the minimizer of Eq. 5.22. There is no need to alternate between optimizing
C and Θ as in EM-ICP [35]. Note anyway that refining C afterwards with ICP
is always possible. Two techniques are actually complementary to each other,
leading us to the ‘discriminatively initialized, generatively refined’ paradigm. In
this case, the regression forest provides better initializations than using last frame
results, reducing the number of needed ICP-iterations. Later on our experiments
show that, using our results as initializations rather than the results in the
previous frame, methods like [35] yield comparable accuracy but less iterations
to converge.

5.5 Volumetric Tracking

As the surface-based discriminative correspondences from chapter 3 are fed into
the joint shape and pose optimization framework introduced above, so are the
volumetric discriminative associations from chapter 4 fed into a volumetric defor-
mation model [5]. Although it is not the contribution of this thesis, we anyway
briefly explain in this section on the basic principles of [5] and how to apply
the predictions from chapter 4 to track a sequence of temporally inconsistent
observations.

In short, unlike the current state-of-the-art 3D shape tracking methods [6]
that employ non-rigid ICP algorithms to search extensively over all possible
associations, we directly use the correspondence pair (i, p) detected by the forest
as initializations. This results in a faster shape-pose estimation. Although we
adopt the CVT-based deformation framework proposed in [5], the approach
described here can easily be adapted to other ICP variants.

5.5.1 Bayesian Tracking

Bayesian tracking such as [6] consists in maximizing the a posteriori probability
P (Θ|Y) of the deformation parameters Θ given the observations Y. It can
be further simplified as P (Θ|Y) ∝ P (Θ,Y) = P (Θ) · P (Y|Θ), where the
deformation prior P (Θ) discourages the implausible shape poses [5] and the
likelihood term P (Y|Θ) expresses the compatibility between the observations
and the shape estimate Θ. Since maximizing a probability P (·) is equivalent to
minimizing − logP , it leads us to the following problem:

Θ̂ = argmin
Θ

(− logP (Θ)− logP (Y|Θ)) . (5.23)
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In EM-ICP algorithms [35], the conditional likelihood P (Y|Θ) is expressed
by introducing a set of latent selection variables {ki}i that explicitly associate
the cell ki of the deformed template model to the observed cell i.The prior on
the latent association variables is usually uniform, which means that an observed
point can be associated to any template point with the same probability. This
leads to a long exhaustive search among all possible associations and produces a
high number of residuals, slowing down the EM-ICP algorithms. Moreover, it
is the source of wrong associations that guides the optimization to suboptimal
local minimum.

EM-ICP with forest predictions

With a small number of possible associations provided by forests, our algorithm
averts the need for an exhaustive search, and therefore highly decreases the
running time of each optimization iteration. Moreover, it removes a lot of wrong
association hypotheses. We integrate the predictions from the forest as a prior
on the selection variable k. The selection variable ki (for the observed cell i)
follows a probability distribution where only the cell predicted by the forest has
a non-zero probability.

Usually the forest outputs only one prediction per cell, which is at the mode
with higher weight resulting from the mean-shift algorithm. However, because of
the symmetry, the good match is often not the mode with highest weight. Thus,
it makes sense to consider several modes instead of one in the prediction phase.
The robust scheme described in the next section will usually select the good one.

5.6 Experiments

So far we have introduced our full 3D tracking-by-detection pipeline in two
distinct representations, which are surface-based (Chapter 3 + Section 5.4) and
volume-based (Chapter 4 + Section 5.5). Since we propose new methods in
different stages of the pipeline, we employ three experiment settings to highlight
their advantages respectively:

1. Generative ICP-based surface tracking (Sect. 5.6.1). This setting is to
demonstrate the benefit of simultaneous skeleton-and-surface optimization
framework in Sect. 5.4. We assume that the template is closely aligned to
the first frame and apply Eq. 5.21 as the data term.

2. Discriminative surface-based tracking (Sect. 5.6.2). This is our full
surface-based tracking-by-detection setting. For each frame, the template
is initialized with correspondences C predicted by forests in Chapter 3 and
we consider Eq. 5.22 as the data term. Results are refined by the ICP above.

3. Volumetric tracking-by-detection (Sect. 5.6.3). This is the same tracking-
by-detection setting but in CVT representations. Predictions are drawn by
forests in Chapter 4 and we follow Eq. 5.23 to estimate the deformations.
Please refer to Table 4.2 for the setting of this experiment.
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Each experimental setting considers different sets of sequences that contrast the
advantages of the proposed methods most. We will summarize their profiles in
the beginning of the subsections.

5.6.1 Generative ICP-based Surface Tracking

In this subsection, we present the results of our algorithm on 8 publicly available
multi-view sequences, ranging from rapid motions, e.g. free [128] to non-rigid
deformations, e.g. Samba [148]. We evaluate the shapes and the poses separately
and analyze the results both qualitatively and quantitatively. Table 5.1 lists a
overview of these sequences and the corresponding error measure. As input,
we used the resulting visual hulls from a rudimentary shape from silhouette
method [55]. The resulting visual hulls, although only a coarse approximation
of the true shape, are enough to drive the deformation of the provided template
mesh through the sequences.

Sequence Views Frames Metric
Samba [148] 8 175 A
Fighting [98] 12 500 B
S4_walking [122] 4 350 C & D
Free [128] 8 200 A
Skirt [62] 8 720 A
Dance [62] 8 573 A
Wheel [62] 8 280 A
Handstand2 [62] 8 400 A

Table 5.1: Sequences used for evaluation in Sect. 5.6.1. Several error mea-
sures are applied depending on the provided ground truths. A: silhouette overlap
error. B: distances in R3 between markers and associated vertices. C: 3D error
on joints positions. D: 2D pixel error on re-projected joint positions. A and B are
metrics for shapes while C and D are for poses.

Evaluation on human shapes

First we evaluate our algorithm on shape estimation. The metric is either
silhouette overlap error in 2D, or distance to markers in 3D. For sequences
evaluated with 2D error, we follow [62, 148] who directly use silhouettes as
input data and minimizes the re-projection error as a refinement step. This
procedure relies on the same optimization framework defined in Sect. 5.3.4, uses
considerably small patches and minimizes the residual error in silhouette overlap.
The gradient of this energy is approximated by guessing from the current pose
estimation which vertices are on occluding contours and pulls their projections
towards the observed contours in the images. As shown in this section, compared
with the state-of-the-art approaches, our algorithm provides satisfactory or even
better results in both metrics.

We used the multi-view image data made public by MIT CSAIL group [148]
and by MPI-Informatik [62] to run a simple shape from silhouette algorithm [55].

80



5.6 EXPERIMENTS

Figure 5.6: Results on Samba sequence. Input visual hulls (1st row) and
results (2nd and 3rd rows) on frame 10 − 38 − 68 − 78 − 84 − 100 − 118 − 124

of Samba sequence. Here the skeletons are obtained via Ejoint. Our approach
yields visually convincing results on the tracking of a skirt.

In Samba sequence, skirts are difficult to handle for methods deforming a refer-
ence mesh as the interpolated surface between the bottom of the skirt and the
legs has to undergo severe compression and stretching. We show in Fig. 5.6 that
our approaches produces visually convincing results. We report better results
than [62] and [132] in Table 5.2.

Wheel Dance Skirt Handstand2
ours 3961 3780 3413 4573

Gall et al. [62] 4168 5098 3678 5028

Straka et al. [132] 4300 4100 4100 4900

Table 5.2: Silhouette overlap errors (pix) for Wheel, Dance, and Handstand2
sequences. Image resolution: 1004× 1004.

Temporal Consistency. In addition to silhouette overlap error which measures
the discrepancies on 2D images, we also evaluate shapes in 3D. In Fighting
sequence, the raw marker positions are provided for almost 500 frames. We
follow [98] who associated each marker to the closet vertex on the reference
surface at frame zero and obtain 7.98mm initial distance. After tracking the
whole sequence, the average distance between markers and the corresponding
vertices becomes 38.49mm ± 32.39mm, which is reasonably small. Note that
this includes measurement errors introduced by the marker-based system. It
demonstrates the strength of our method on recovering temporal consistent
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Figure 5.7: Exemplar visual results of Fighting sequence. Frames 190 and 250

in two views. Skeletons are obtained simultaneously via Ejoint. Our approach
applies well to multiple human subjects. Yellow circle: tracking is sometimes
affected by close interaction, but is soon recovered.

meshes. The average time per frame for this sequence is 7 seconds. Compared
to [98] who attain more accurate results (29.61mm ± 25.50mm), but require
several minutes per frame for tracking, and to [130] which is fast (around 6

frames per second), but less accurate (44.93mm ± 27.16mm), our approach
certainly offers a good compromise between performance and accuracy. In
Fig. 5.7, we overlay the estimated meshes and skeletons on images. We see that
close interaction between subjects does not effect the results too much, which
demonstrates that our method generalizes well to multiple humans.

Evaluation on human poses

It is also crucial to evaluate skeletal poses in the context of human tracking.
The widely-used benchmark HumanEva-II [122] is challenging for 4D modeling
because it contains too few cameras. We anyway test our algorithm on S4
sequence walking section. Frames 298− 335 are excluded due to the reported
ground truth corruption. For the remaining frames, our method presents errors
around 65mm in average (Table 5.3). According to [123], errors smaller than
80mm typically correspond to correct poses, which verifies the reliability of
our method in terms of human pose estimation. Compared with [43] who use
visual hulls as well and report 80mm ± 13mm errors, our approach is certainly
more accurate and stable. Note that their approach is articulated ICP where
deformations are guided by the underlying skeleton. This confirms the advantage
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Inverse Skinning Bone (simul.) Bone (post) Joint (simul.) Joint (post)
3D error (mm) 65.48± 7.74 65.78± 7.52 64.45± 7.14 65.06± 7.10

Cam. 1 (pix.) 9.28± 1.31 9.31± 1.31 9.14± 1.19 9.21± 1.23

Cam. 2 (pix.) 8.32± 1.34 8.38± 1.29 8.26± 1.23 8.36± 1.22

Cam. 3 (pix.) 8.33± 1.36 8.35± 1.36 8.21± 1.31 8.26± 1.34

Cam. 4 (pix.) 9.99± 2.43 10.08± 2.39 9.96± 2.27 10.07± 2.29

Table 5.3: 3D error in millimeter and 2D errors in pixel number for
S4_walking. Image resolution: 656× 490.

of our inverse skinning strategy over conventional skeleton-based methods: when
observations are noisy, a generic but robust surface-based approach offers better
estimates on poses than approaches that constrain the search space with object-
specific intrinsic deformation model. Still, we would like to stress that our goal is
to track arbitrary objects and simultaneously provide a low-dimensional motion
parametrization (which are skeletal poses) when the subjects are humans. We
do not aim to estimate precise human joint locations since modeling a real
human joint as a single 3D point is anyway an over-simplified assumption. The
numerical error here is only a coarse measure of how well the pose is estimated.
Further optimizing on this error does not necessarily improve the estimation.

Lastly, more qualitative results are shown in Fig. 5.8. Even in the challenging
Free sequence, the skeletal poses are tracked properly. Our method is able to
produce convincing results in terms of both shape and pose.

Figure 5.8: Example frames of input videos and overlaid results.

Discussions

The role of Eskl in optimization. In Sect. 5.3.4 and 5.4.1, we emphasize that
skeletal poses are side products of surface shapes. We verify this numerically by
reporting again the raw silhouette overlap errors on Crane sequence in Fig. 5.9.
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Figure 5.9: Sil. overlap error with different skeleton energies. Three strate-
gies yield almost same errors in terms of shape. Image resolution: 1600× 1200.

Without the skeleton energy terms Eskl (λs = 0 in Eq. 5.11), the averaged
error of surface shapes is 6938.73, whereas Ebone and Ejoint get 6939.65 and
6938.69, respectively. Such a negligible difference confirms that in our inference
framework, skeletal poses contribute little to surface shapes. Eskl plays the role
as an augmentation term that recovers poses J in no time during optimizations.
Recall that in Table 5.3, λs = 1 already yields good numeric solutions for poses
J. In Eq. 5.11, the magnitude of Eskl is therefore relatively small compared to
the other two terms and hence contribute little to the gradient of shapes Θ.

Ebone vs. Ejoint. To further select between Ebone and Ejoint, we mark two
observations in Table 5.3:

1. Simultaneous optimization yields equivalent or even slightly better results
than post processing, which confirms our descriptions in Sect. 5.3.

2. Inverse skinning via joints attains consistently better and more stable
results than via bones.

It is worth a closer look to contrast two approaches. We particularly choose
Samba sequence which contains both rigid (arms) and non-rigid deformations
(skirts). Results of frame 70 are shown in Fig. 5.10. Firstly, two surface shapes
look visually the same, again confirming the above discussions that Eskl con-
tribute little to the gradient of the shape Θ. To analyze how different deforma-
tions affect the poses, one can see that two strategies present similar poses on
the arms but different behaviors on the legs. Since there is no ground truth for
poses provided in this sequence, we check how the bone lengths of six body parts
vary during tracking: the right hip bone (RHip), the right upper and lower legs
and arms (RULeg, RLLeg, RUArm, and RLArm), and the torso spine. The results
are shown in Table 5.4 and Fig. 5.11. In general, bone lengths in Ejoint strategy
are more correct (smaller bias) and more stable (smaller oscillations). For rigid
body parts like arms and torso, variations are rather small and the differences
are still negligible. For non-rigid body parts e.g. RULeg, the margins become
significant (see the fluctuations of red and green solid curves in Fig. 5.11). We
therefore conclude that Ejoint is a more effective way to realize inverse skinning.
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(a) Ebone (b) Ejoint

Figure 5.10: Visual comparison of two different inverse skinning strategies.
Results are from frame 70 in Samba sequence.

Body
part

Initial bone
length (m)

Bias (mm)
Standard de-
viation (mm)

Ebone Ejoint Ebone Ejoint
RHip 0.224 12.60 1.75 20.91 7.01

RULeg 0.377 7.13 4.84 27.92 9.98

RLLeg 0.454 19.16 6.45 21.97 13.99

RUArm 0.268 2.49 1.74 14.48 9.18

RLArm 0.249 5.90 4.26 9.33 4.29

Torso 0.322 5.47 7.22 6.40 5.19

Table 5.4: Bone length variation on 6 body parts of Samba sequence. Bias
means the absolute difference between average length during tracking and its
original length.

Comments on the approach. One fundamental premise of our approach is
that no drastic variations are presented in the topology. The reference frame
has to be topologically suitable, that is, it has to be split wherever the surface
might split in the sequence. In other words, a moderate amount of disappearing
geometry, e.g. self-intersections or close interactions of different subjects as in
Fig. 5.7 can be handled, but it is highly likely to fail when any creation of new
geometry occurs. Moreover, when the arms and body are merged, the local
density of points in the input data does not double, which clearly indicates that
the data generation by two overlapping patches on the arm and the body is not
independent. In that sense, our method, which implicitly assume independent
and identically distributed (i.i.d.) observed data, are only approximations. Since
both Ebone and Ejoint behave like auxiliary energy terms to compute poses from
the given shapes, we set λs = 1 throughout all experiments.
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Figure 5.11: Bone length variation on 6 body parts of Samba sequence.
Solid curve: Ebone. Dotted curve: Ejoint.

5.6.2 Initialized with Discriminative Associations

Now since the behavior of the proposed simultaneous optimization is discussed
and analyzed, we take one step further to evaluate the full tracking-by-detection
pipeline. Namely, we take the predicted correspondences C from Chapter re-
fchapDiscSurf and consider Eq. 5.22 as the data term. The full tracking-by-
detection pipeline is evaluated extensively on 9 sequences, whose profiles are
summarized in Table 5.5. An individual forest is trained for each subject with
up to 200 meshes, depending on the number of vertices per mesh. For S1 − 3

we train standard regression forest; for S4 & S5 we apply the adaptation in
Eq. 3.6 due to the un-properly segmented chairs and tables in input data (α = 2).
Growing T = 20 trees to depth 25 with 15000 testing offset pairs ψ takes about
8 hours. The performance of our method is analyzed in different aspects, both
qualitatively and quantitatively. We evaluate shapes with the widely-used sil-
houette overlap error, and evaluate poses with the 2D distances between ground
truths and the projected joint locations.

Tracking without outliers. For sequences without outliers, we compare with
surface-based ICP (surICP) [35] and articulated ICP (artICP) [43], both of which
explain data with GMM using the Expectation-Maximization algorithm. We run
an additional ICP step to reduce the errors (ours + ICP) for all testing sequences.
The averaged silhouettes overlap errors are shown in Fig. 5.18(a-d). In general,
our method performs much better than artICP, and yields comparable results
with surICP. However, our method requires less ICP-iterations to converge, as in
Table 5.7. This demonstrates that, compared with using results of previous frames
as initializations, our method is capable of providing better ones. It follows that,
compared with using results of previous frames as initializations, our method is
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Figure 5.12: Qualitative results. (a) input visual hulls and the estimated
correspondences in colors. Black color means no correspondence found for that
vertex. Top: Handstand; bottom: jumping. (b) estimated shapes and poses
of Goalkeeper. (c) estimated shapes and poses of Cutting, WalkChair2, and
WalkChair1, overlayed on images. Blue: our results. Yellow: Cagniart et al. [35].

capable of providing better ones. Examples of the estimated correspondences,
the deformed surfaces and the skeletons are shown in Fig. 5.12(a).

ours + ICP surICP [35]
error # ICP-itr. error # ICP-itr.

Crane 8015 17 8138 20

Jumping 7976 16 7648 21

Bouncing 7569 34 7826 44

Handstand 9767 27 9963 60

Table 5.7: Average silhouette overlap error in pixels, and the average ICP-
iterations (itr.) of 4 sequences. Image resolution: 1920× 1080.

We further investigate what happens when there are tracking errors in pre-
vious frames. Fig. 5.13(a) shows the results of frame 91 in sequence bouncing.
Note that left/right legs are crossed due to their close interaction with each
other. In the next frame, when they are separate in the visual hull, the forest
discovers correspondences more correctly, as in Fig. 5.13(b) (c.f. the colors ofM
in Fig. 3.2), and lead us to results in Fig. 5.13(c) without self-intersections. ICP
strategy discover wrong associations and gives results in Fig. 5.13(d) under the
same softness parameter λ. Errors propagate to the next frame, and gradually
deteriorate the tracking, unless luckily regularization terms implies the opposite.

Tracking with outliers. Four of our testing sequences, Cutting, WalkChair1,
HammerTable, and WalkChair2 contain tables or chairs in observations, which
play the roles as static outliers. We compare with other outlier rejection strategies
such as, fixed outlier proportion (fixOL) [35], removing outliers by body-part
classifications with SVM (bpSVM) [72], and modeling outlier likelihood dynami-
cally by aggregating over all patches (patchedOL) [73].

As shown in Fig. 5.18(e-h), conventional outlier strategy fixOL drifts quickly
and soon fail to track (green curves). ICP with robust outlier treatment, patche-
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result of frame #91 
vhull of frame #92 

and the corres. 

results of #92 

(ours) 

results of #92 

(surICP) 

(a) bouncing

ours surICP 

frame #85 frame #85 frame #86 frame #86 

(b) WalkChair1

Figure 5.13: Recovery from tracking error. Our method is capable of recover-
ing from tracking error while surICP [35] cannot.

dOL, is able to sustain noisy input to a certain extent. Once it starts drifting,
the error only gets higher due to its ICP nature (yellow curves). When subjects
and outliers are sperate components in visual hulls, we cast them into VNF, and
feed them separately into the joint classification-regression forest. If they are
connected to each other, forests inevitably associate some outliers to vertices
on the model, and cause undesirable deformations, as the spike in blue curves
in Fig. 5.18(d). Nonetheless, since we rely less on previous frames for data
associations, the results can always get recovered when they are separated again.
In average, we still yield low errors throughout the whole sequences, as in Ta-
ble 5.6. We remark that such ability to recover is the essence of our discriminative
approach, which is the biggest advantages over the existing generative methods.

We also verify the efficacy on pose estimations and compare to another
frame-wise approach from Straka et al. [131, 132]. The error metric is the
discrepancy between estimated joint positions and the annotated ground truths.
Fig. 5.17 plots the results of HammerTable and WalkChair2, where we confirm
again considerably better accuracy than bpSVM [72] (red curves), Straka et
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CHAPTER 5: ENERGY MINIMIZATION FRAMEWORK

al. [131, 132] (green), and comparable results with patchedOL [73]. The
recovered shapes and poses are also presented in Fig. 5.12(c), superimposed on
original images.

5.6.3 Discriminative Volumetric Tracking

After evaluating the surface-based tracking-by-detection framework, now we
turn to evaluate the volumetric one. We compare in two quantitative metrics
against the whole pipeline in [71], which is the early version of our surface-based
tracking-by-detection approach. We also show its resilience to large pose changes
and its generalization capacities on an unknown subject.

Unlike the matching experiment in Sect. 4.6.1, here we apply the multi-
template strategy in Sect. 4.5.2 to train one universal regression forest, with
Goalkeeper chosen as the common template Ŝ. Training T = 50 trees up to depth
20 where each one is grown with around 200 CVTs (approximately one million
samples) takes about 15 hours on a 24-core Intel Xeon CPU machine. For each
subject, we track the testing sequence, which is not part of the training set. Track-
ing inputs are raw CVTs which have no temporal coherence. Correspondences
are predicted by the forest and fed into the volumetric deformation framework
described in Sect. 5.5. The number of clusters K is 250 for Ballet and Goalkeeper
and 150 for Thomas.

Some visual results are shown in Fig. 5.14 and in the supplemental video2.
With the help of regression forests, our approach is able to discover volumetric
associations even in challenging poses found in Thomas and deform the templates
successfully.

Quantitative evaluation and comparison

We also evaluate our tracking approach with two different metrics. On one hand,
evaluation with marker-based motion capture evaluates the correctness of the
surface pose, but only for a sparse set of surface points. On the other hand, the
silhouette overlap error evaluates the shape estimate, but it does not evaluate
the estimated pose. Hence these metrics are complementary.

Silhouette overlap error. We evaluate the tracking approach by computing
the overlap error between the ground truth silhouette and the projection of the
estimated surface. The metric we use is the pixel error (number of pixels that
differ). Statistics are computed on all frames of all cameras.

Marker-based motion capture. The Ballet/Seq2 sequence has marker-based
motion capture data: fifty markers were attached to the body of the subject. The
3D tracking of the markers provides a sparse ground truth for surface tracking.
First, each marker is associated to a surface vertex of the template. Then, for
each marker, in each temporal frame, we measure the distance between the
marker location and the estimated vertex location. Statistics on the distance
are reported on Table 5.11. We observe that our approach gives slightly better

2https://hal.inria.fr/hal-01300191
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Figure 5.14: Qualitative tracking results on three sequences. Gray: input
observed visual hulls; purple: deformed templates.

performances than a state of the art ICP-based approach, and outperforms a
learning-based tracking approach which mostly fails to correctly register the legs
of the subject.

Discussion. As discussed above, the high memory footprint of voxel-based
volume in Chapter 3 limits the allowed training variations. Consequently, we
choose to align the orientations for both training and input data such that
forests only need to learn the pose variations of one single subject. In [71], we
rely on the skeletal poses of previous frames to re-orient the input data of the
current frame (Sect. 3.5.1). This leads to not fully frame-independent forest
predictions and makes tracking subject to the potential risk of drifting. On
the other hand, the approach presented in Chapter 4 attempts to incorporate
rotational, pose, and even shape variations during training, yielding completely
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method mean stddev. median max
Proposed 15221 6843 14754 57748

Huang et al. [71] 19838 14260 15607 109428
Allain et al. [5] 14773 6378 14355 43359

Table 5.8: Silhouette pixel error on sequence Goalkeeper/UpJump. Image
size is 2048×2048.

method mean stddev. median max
Proposed 2620 1041 2557 8967

Huang et al. [71] 5427 2809 4863 39559
Allain et al. [5] 2606 1008 2571 7642

Table 5.9: Silhouette pixel error on sequence Ballet/Seq2. Image size is
1920×1080.

method mean stddev. median max
Proposed 9991 7089 7968 78242

Huang et al. [71] 28731 23421 22991 354293
Allain et al. [5] 10199 7379 8022 81649

Table 5.10: Silhouette pixel error on sequence Thomas/Seq2. Image size is
2048×2048.

method mean (mm) stddev. (mm)
Proposed 26.37 16.67

Huang et al. [71] 124.02 200.16
Allain et al. [5] 27.82 18.39

Table 5.11: Statistics of surface registration error at marker locations, on
the Ballet/Seq2 sequence.

frame-wise forest predictions. To facilitate a fully 3D tracking-by-detection
framework, the information of previous frames is preferred no to participate in
the discriminative correspondence estimation.

Therefore, to yield a fair experimental setting, we do not align the orienta-
tions of meshes when implementing our method and [71] here. As reported in
Fig. 4.8, without canceling rotational variations, the accuracies of correspon-
dences drop substantially on the testing sequences for the method in [71]. This
means that voxel-based framework and the corresponding features do not gen-
eralize well to unseen rotations. When deployed in tracking applications, such
unreliable associations eventually result in tracking failure. In particular, one can
observe in Table 5.10 that [71] attains really high silhouette overlap discrepancy,
most likely due to the fact that the subject rotates himself in many different
orientations and thus confuses the forest.
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5.7 CONCLUSION

Tracking at low frame rate. One of the expected benefits of our framework
over purely ICP-based methods is improved resilience with large pose changes.
We test this assertion by tracking the Thomas sequence at low frame rate (5fps).
Figure 5.15 shows how our method recovers from tracking failures while [5]
does not. This improvement is confirmed by the median silhouette overlap
pixel error, which we found to be twice lower with our method (10054 pixels
compared to 19998 pixels).
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Figure 5.15: Tracking results of Thomas dataset at low frame rate.

Testing with a new subject. We tested the generalization capacities of our
framework with a subject (Dancer dataset [6]) which is not in the training data.
For this purpose, one can either select an existing template from the training
sequences, or build a template model by matching one of the samples from the
test sequence to the common reference model using skinning weights, as we
do in multi-template training. We use the latter, which is more subject specific
and can be expected to yield better results. Most poses are correctly tracked
in our experiment (see Fig. 5.16). Not unexpectedly for this type of approach,
some failures occur on more complex poses unseen in training data and would
probably be improved with a larger training set.
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Figure 5.16: Tracking results with a new subject, Dancer dataset. Input mesh
(left) and tracked mesh (right).

5.7 Conclusion

In this chapter, we first present, for the optimization step, an approach that
jointly estimates poses and shapes of the human body. To this end, we augment
the probabilistic deformable surface registration approach based on patched
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representation of the reference human body model with a skeleton energy. We
demonstrate two approaches to estimate skeletal poses from surface deforma-
tions, which fits naturally to the Bayesian formulation of mesh registration.

Next, when combined with the discriminative associations, our full tracking-
by-detection of 3D human shape pipeline is finally complete. This is a hybrid
human shape tracking approach. The one-shot property of associations effectively
prevents errors from accumulating, yielding more stability compared to other
generative ICP extensions. We present numerous qualitative and quantitative
analysis, confirming that we can recover meaningful deformations in spite of
fast motions, large deformations and significant reconstruction artifacts. Such
benefits are also confirmed in volumetric shape representations.

0

5

10

15

20

25

30

35

1 21 41 61 81 101 121 141

av
e

ra
ge

 jo
in

t 
e

rr
o

r 
 

Time (frame) 

ours patchedOL

Straka et al. bpSVM

(a) WalkChair2

0

20

40

60

80

100

120

1 21 41 61 81

av
e

ra
ge

 jo
in

t 
e

rr
o

r 
 

Time (frame) 

ours patchedOL

Straka et al. bpSVM

(b) HammerTable

Figure 5.17: Averaged joint errors of four different approaches: ours (blue),
bpSVM [72] (red), Straka et al. [131, 132] (green), and patchedOL [73] (or-
ange). Image resolution: 1000× 1000.
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Figure 5.18: Pixel overlap error of 8 sequences, averaged over all cameras.
Image resolution: (a-d): 1920× 1080. (e-h): 1000× 1000
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6
Keyframe-based Tracking

The main scope of the thesis is to address the problem of 3D human shape
tracking in multi-camera environments. Up to this point, we have approached
the problem from a discriminative perspective and from a generative points of
view. The former aims to discover the deformed template in observations using
random forests; the latter assumes close initializations and fits the reference
surface to the input with two motion parameterizations. In both cases, it has
been assumed that the pose of the template that we refer to, called rest pose
(typically in T or A poses) is the same during tracking. In other words, Θ is
always relative to X0 where the regularization is imposed upon as well. Since
the local configurations of patches vary with poses, sticking to solely one pose
for regularizing deformation is clearly a suboptimal option. In this Chapter, we
explore the possibility to change the rest poses of the reference surface. We
term the chosen poses as keyframes and contrive algorithms to identify them
online during tracking phase, without any offline process. We follow the simpler
generative experiment setting in order to contrast the strength of this concept.

(a)  (b)  (c)  (d)  

Figure 6.1: Illustrations of the advantages of multi-keyframe strategy.
(a) reference surface of Skirt [62] as the first keyframe. (b) second keyframe
identified at t = 95. At t = 102, the left arm is missing in the observations, as in
Fig. 6.2. Using (a) as the reference yields (c) while using (b) yields (d).
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image silhouette point cloud others ours 

Figure 6.2: Comparisons of various approaches. Our approach recovers the
shape and the pose despite missing data (top row) and outliers (bottom row)
whereas other approaches (top: [35] and bottom: [131] + [132]) fail.

6.1 Introduction

Marker-less human motion capture consists in tracking human shape and pose
using visual information. This has become an important research area with many
applications in motion analysis or digital content production. Perhaps the most
widespread approach to solve this problem is to deform a pre-defined reference
surface so as to fit data derived from image observations, e.g. silhouettes or 3D
points. This model-based strategy has demonstrated a good success over the
past few years [35, 62, 98, 72, 132, 148], because of its ability to enforce strong
consistencies over time through the prior models of shape and deformation.

However, this strategy still relies on the assumption that image observations
are complete and relevant, i.e. they do not describe another shape. In practice, it
appears to be difficult to maintain such assumption when considering more real-
istic dynamic scenarios and with fewer constraints on the capture environment.
As shown in Fig. 6.2, top row, background subtraction is often erroneous with the
consequence of missing data, e.g. the missing arm. Another type of errors occurs
when image observations describe a shape that is not in consideration, and can
therefore mislead the surface as well, e.g. the chair in Fig. 6.2 bottom row. Our
aim is to propose an alternative strategy that better handles such situations
and hence contributes to the general objective of unconstrained human motion
tracking in real environments.

Our framework is inspired by keyframe-based methods, e.g. [146] in cam-
era/object tracking, and by non-sequential surface registration methods [32, 84].
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In these works the tracking task is eased by reducing the discrepancy between
the model and the input data to be matched. We exploit a similar idea that
consists in having multiple reference shape models that can be fit to the obser-
vations. Numerous existing approaches rely on a one-fit-all strategy where a
single reference model is deformed to fit to all observations. This strategy is
likely to fail when observations describe a shape significantly different from the
model, due to the presence of missing data or outliers. Instead, we propose to
build a set of reference models called keyframes, which correspond to several
representative shapes and poses that have been explored during tracking. They
are identified online using mean-shift clustering and without the need for offline
pre-processing. At each frame, the best keyframe is chosen as the reference
model. We combine this strategy with a robust surface deformation method.
Comparisons with the state-of-the-art confirm the advantages of this approach
with real and inaccurate data.

This chapter has several contributions. First we introduce the notion of
keyframes in 3D human motion tracking, and further propose a keyframe-based
tracking framework that updates the keyframe pool incrementally. Second, a
new outlier rejection method is presented with the benefit of high integrability
into previous probabilistic surface deformation framework. Both contributions
increase the robustness and significantly limit the impact of missing data and
outliers. To evaluate our method, we recorded new sequences that include
static outliers. To the best of our knowledge, none of the current public dataset
presents such feature.

6.2 Related work

Existing methods that track human poses and shapes generally express the
problem as maximum a posteriori (MAP) estimation which involves a data term
modeling the likelihood of the estimation and a regularization term modeling
the adequacy to the prior information. Methods differ then by the input data
and the assumed prior knowledge.

6.2.1 Data term

Data terms measure how well the model explains the observations. In general,
silhouettes, point clouds, and photometric information are considered for this
purpose.

Silhouettes. Many approaches deform the model such that the contour of the
projected surface coincides with the contour of the observed silhouettes, e.g.
[47, 148, 62, 132]. In [62], Gall et al. consider also photometric information to
establish 3D-2D model-data correspondences. Later in [98], additional image
segmentation information are used to differentiate multiple interacting subjects.
In these works, silhouette overlap error is often regarded as a standard error
measure, which is sensible only when silhouettes are accurate and fully describe
shapes. Also note that distances in 2D images do not necessarily reflect distances
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in 3D and small errors along the silhouette contour can correspond to large
distances in 3D. As a result, some authors, e.g. [35, 72] advocate for considering
3D points as input data.

Point clouds. Given a set of points reconstructed from multiple silhouettes,
i.e. [54, 60], some authors first estimate correspondences between the model
and the 3D observations, and then deform the model accordingly. Although the
reconstruction suppresses artifacts resulting from 2D noise, it also introduces new
errors, such as missing body parts or fake geometry elements like ghost limbs. To
robustly track in the presence of outliers, Huang et al. [72] train a linear support
vector machine (SVM) that classifies the input data into different body parts.
Outliers are then rejected based on the posteriors given by the SVM classifier.
This approach depends heavily on the classifier, and is time-consuming since the
SVM must be trained at each frame. In [35], Cagniart et al. model outliers as
an additional component of a Gaussian Mixture Model (GMM) equipped with
a uniform distribution defined a priori. The adjustment of this distribution is
however difficult and has a strong influence on the results. We propose a more
robust outlier rejection that does not depend on user defined parameters.

6.2.2 Regularization term

Evolving a surface with discrete observations is ambiguous by nature and some
prior information on the model is usually required. This information varies from
generative spatial shape models to discriminative models that are learned from
already known shapes and poses.

Spatial shape models. Several works employ Laplacian coordinates [125] to
preserve local shapes, e.g. [62, 132], while others define a rigidity term that
serves similar purposes, e.g. [34]. Note that all these methods refer to a
single static reference shape to constrain local deformations. This reference
shape model is usually in rest pose and built prior to the tracking [35, 47,
148]. However, the observations can significantly deviate from the reference
model along time. The shapes and poses that were already recovered during
tracking can help in that respect, which motivates the multiple-keyframe concept
presented in this chapter. During tracking this knowledge might change as the
surface evolves. It is more beneficial if we can utilize the new prior knowledge,
which is achieved by our multiple-keyframe-based tracking framework.

Learned deformation models. A few works also make use of pre-collected
information to help the tracking. They seek to learn the possible deformations in
advance to regularize the results. In a non-sequential strategy, Budd et al. [32]
and Klaudiny et al. [84] assume that the complete input sequence is available
beforehand and they find the best order to traverse it using a minimum spanning
tree algorithm. They further propose a cluster tree to balance between drift
and jumps [84]. Duveau et al. [51] propose a supervised learning strategy that
regularizes the results based on the learned distribution in a latent parameter
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space. These methods require a pre-processing step either to build a shape-
similarity tree from the input sequence [32, 84], or to learn a low-dimensional
representation from the gathered motion training data [51, 145].

Our multiple-keyframe approach also exploits temporal information. As
opposed to the mentioned approaches, we learn the reference models online in
an unsupervised manner and do not require any preliminary step. Note anyway
that our framework could also take advantage of already tracked sequences and
generate the keyframe pool offline.

6.3 Overview

In this section we state our problem and give an overview of the proposed
method. At every time frame t, a point cloud Yt ⊂ R3 is reconstructed from
silhouettes using EPVH [54]. The goal is to deform a reference model such that it
fits the observations Y = {yi}i=1:O

1. Our model comprises a reference triangle
surface and an intrinsic skeleton. We adopt the patch-based model proposed in
[34], where vertices are grouped into K patches. Without the prior knowledge
of motion, patches are better to distribute uniformly on the surface as shown in
Fig. 2.2(b). Our skeleton is a tree structure of J nodes (3D joints) and the root
is set at the pelvis, as shown in Fig. 2.2(c). The skeleton is rigged into the mesh
using Pinocchio [11], which gives the associations between vertices v and joints
j. Deformations are parameterized with respect to: (i) the shape of the surface;
(ii) the pose of the skeleton. The shape parameters Θ = {(Rk, ck)}Kk=1 are
the orientation and position pair for each patch k and encode the deformation
of the reference mesh model. The pose parameters J = {xj}

J
j=1 are the 3D

joint positions of the skeleton. Although loosing some rotational degree of
freedom, parameterizing directly on joint position leads to a quadratic energy
term that keeps optimization feasible [132]. The problem is then formulated as
the maximization of the joint probability distribution of the data and model:

max
Θ,J

P (Y,Θ,J). (6.1)

This above distribution can be decomposed into P (Y|Θ) ·P (J|Θ) ·P (Θ), which
represents respectively the likelihood of the shape given the observations, the
probability of the pose given the shape, and the prior knowledge on shape
deformations. Hence Eq. 6.1 can be rewritten as:

min
Θ,J

[Er(Θ) + Eskl(Θ,J)− ln P (Y|Θ)] , (6.2)

where Er(Θ) = − lnP (Θ) is the rigidity energy in Eq. 2.3 and Eskl(Θ,J) =

− lnP (J|Θ) is the skeleton energy proposed in Sect. 5.3, both of which behave
like regularization terms. The likelihood P (Y|Θ) is similar to [35] and uses
Gaussian Mixture Model (GMM) where every patch explains every observations

1The superscript variable t is dropped whenever it is clear from the context.
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yi according to:

P (yi|Θ) =

K+1∑
k=1

ΠkP (yi|zi = k,Θ). (6.3)

zi is the latent variable for each yi: zi = k means that yi is generated by the
mixture component associated with patch k. Πk = P (zi = k|yi,Θ) represents
the probability that patch k explains observation yi. For each patch, when the
closest vertex vki with a compatible normal vector exists, the likelihood that yi
is generated by the k-th component is modeled as a multivariate Gaussian with
a mean located at the position xvki of vki and isotropic variance; otherwise the
likelihood is a negligible number ε:

P (yi|zi = k,Θ) =

{
N (yi|xvki , σ

2) if vki exists

ε otherwise.
(6.4)

Solving Eq. 6.2 yields both the pose and the shape. In [35], the tracking over
a complete sequence is achieved by deforming the model on a frame-by-frame
basis. That is, using (Θt−1,Jt−1) as the initialization to solve Eq. 6.2 at frame
t. To increase the robustness of this framework with respect to missing data
and outliers better, we propose two methods that improve the deformation prior
P (Θ) (Sect. 6.4) and the likelihood P (Y|Θ) (Sect. 6.5), respectively.

6.4 Multiple-Keyframe Tracking Framework

The rigidity energy Er(Θ) enforces neighboring patches to keep the original
local configurations they have on the reference model, usually the shape at a
given time t (e.g. t = 0). However, such local configurations do not always
match with the current frame. This is particularly critical with missing data since
patches without close observations tend to keep a possibly wrong prior reference
configuration, as illustrated in Fig. 6.1.

Therefore, to effectively handle missing data, we introduce a framework that
exploits multiple reference models or keyframes. While already used in image

Algorithm 1 Keyframe-based human motion tracking

1: Q ← {0}, Ψ← {(Θ0
0,J

0)}
2: Overall shape parameters Θ̂t0 ← {(I, c0

k)}k=1:K .
3: for t in timeFrames do
4: Choose the reference model fref based on Yt.
5: Θt−1

fref
← Θt−1

0 ∗ (Θfref
0 )−1

6: With (Θt−1
fref

,Jt−1) as initialization, solve Eq. 6.2 to obtain (Θt
fref
,Jt).

7: Θt
0 ← Θt

fref
∗Θfref

0

8: if new keyframe detected then
9: Update Q and Ψ.

10: end if
11: end for

102



6.4 MULTIPLE-KEYFRAME TRACKING FRAMEWORK

tracking [146], keyframes have not yet, as far as we know, been applied to 3D
human motion tracking problems. Multiple keyframes correspond to different
instances of a shape that better represent the shape variability than a single pose
at a given frame t. Our framework learns online keyframes and, at each frame,
selects the best one as the reference model to be fitted to the observations. Let
Q = {fq}q=1:Q denote the keyframe pool where fq is the frame index andQ is the
total keyframe number, and let Ψ = {(Θfq

0 ,J
fq )}q=1:Q denote the corresponding

parameter set. Our keyframe-based tracking method is summarized in Alg. 1,
where Θf

0 corresponds to the accumulated rotation and translation from t = 0 to
t = f , and (Θf

0 )−1 represents the inverse transformation. Allowing for different
reference models enables different prior knowledge to be taken into account in
the rigidity energy Er(Θ). Two crucial steps in Alg. 1 are:

• Line 4: how to select the best reference model from the keyframe pool?

• Line 8: when to add a new keyframe in the pool?

We tackle the former issue with shape dissimilarity and the latter with key pose
detection. More details are elaborated in the following two subsections.

6.4.1 Keyframe detection

We first explain how new keyframes are added (i.e. Line 8 in Alg. 1). The essence
of the multiple keyframe strategy lies in its ability to identify and record, during
tracking, new local patch configurations. When the observed shape takes a pose
at t that is very different from the reference pose, it is worth considering adding a
new keyframe corresponding to frame t. Such analysis can be performed offline
if knowledge on the shape poses is available prior to tracking. However, we
consider here the more generic situation with little prior knowledge and where
keyframes are detected online during tracking.

Pose descriptor. In order to incrementally identify distinctive poses, we explore
the previously-obtained skeleton poses J. For each new pose Jt, the pelvis of the
skeleton is aligned to the global origin. The 3D coordinates of the remaining 14

joints are then concatenated to form a 42-dimensional human body pose vector
v. Aligning the pelvis to the origin cancels the global position and similar poses
at different locations get similar representations. Here the skeleton is not rotated
into a canonical direction and v still encodes orientation, which may not be a
desirable attribute. We address this issue later. Similar poses yield vs that are
close in R42 whereas different poses correspond to vs that are distant. Using this
descriptor, we cast the key pose detection as a clustering problem in R42. In this
scenario, the number of clusters is supposed to be the output of the clustering
technique and not a prior knowledge. Hence mean-shift clustering naturally
appears as a well adapted solution.

Mean-shift based key pose detector. Assume Q keyframes are already iden-
tified. Intuitively, there should be also Q clusters of poses. When a new pose
vector v is obtained, mean-shift is performed and returns a number of clusters
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Figure 6.3: Illustrations of Algorithm 2. (a): time frame t = 6, Q = {0},
and flast = 0. (b): t = 8, Q becomes {0, 6}, and flast becomes 6. (c): t = 9,
Q = {0, 6}, and flast = 6. Only 5 instances (9− 6 + 2) are left for mean-shift.

nc. If nc = Q, the number of clusters has not changed and we proceed to the
next frame. If nc = Q+ 1, it means that the shape pose has changed enough to
justify a new cluster of poses. In general, poses in the same cluster also distribute
closely in the time domain. Hence, starting from the current frame and going
backward, the transition frame t̃ where the new cluster starts is determined (e.g.
t̃ = 6 in Fig. 6.3(b)) and added as a new keyframe to Q; its pose (Θt̃

0,J
t̃) being

added to Ψ. Fig. 6.3 illustrates this principle, where flast is the last element
included in the keyframe set. The algorithm is sketched in Alg. 2, where Line 3
to 9 correspond to Line 8 to 10 in Alg. 1.

Algorithm 2 Mean-shift-based key pose detector

1: Compute the bandwidth. Last keyframe flast ← 0

2: for each new incoming pose Jt do
3: De-pelvis the skeleton to obtain vt ∈ R42.
4: De-pelvis all Jf in Ψ and obtain VQ = {vf}.
5: Do mean-shift clustering on {vflast+1 . . .vt} ∪VQ.
6: if the number of clusters = Q+ 1 then
7: Add transition frame t̃ to Q and (Θt̃

0,J
t̃) to Ψ.

8: flast ← t̃

9: end if
10: end for

Note that, in general, t̃ 6= t but t̃ < t, which means that new keyframes are
created online with some delay. For example, in Fig. 6.3(b), frame at t = 6

is detected as a keyframe with a 2 frame delay since in Fig. 6.3(a), v6 is still
in cluster no. 1. When a new keyframe at t̃ is added, all the pose vectors
before t̃, except the existing keyposes, are left out for further clustering (e.g. see
Fig. 6.3(c)). This brings two advantages: first, the number of poses considered
for clustering, i.e. (t − flast + Q), is significantly reduced compared to the full
set of poses; second, if a pose re-appears during tracking, the new collected
vt is very likely to be clustered with existing keyframes, avoiding this way the
occurrence of duplicated keyframes.
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Mean-shift bandwidth. One concern with Alg. 2 is the bandwidth of mean-
shift. A small bandwidth leads to many clusters while a large bandwidth gives few
clusters. Since the intrinsic scale of the pose variation varies among sequences,
an automatic way to determine this bandwidth is desirable. We achieve this
using virtual pose vectors. Specifically, the de-pelvised skeleton model at t = 0

is rotated for 360◦ with steps of 10◦, creating Ns = 36 virtual pose vectors
accordingly. Although they map to different points in R42, it is reasonable to
cluster them together since they actually correspond to a single pose. We thus
compute all

(
Ns
2

)
pairwise distances and set the bandwidth as the half of their

maximum. This way we ensure that they converge to the same mode with mean-
shift. Recall that when a pose vector v is built from the estimated skeleton J,
only the position is canceled but not the orientation. Using the above bandwidth,
we expect pose vectors that differ only by a rotation to be clustered together
hence canceling the rotation as well. More analysis on the influence of the
bandwidth are presented in the experiment section.

6.4.2 Choosing the best keyframe

Given a new set of observations Y, the problem is now to determine the best
keypose in Q to be matched to these observations (Line 4 in Alg. 1). When
the shape associated to such a keypose is close to the observed shape Y, it
simplifies the estimation of the shape parameters and reduces the chances to fall
in local minima. Therefore, we apply a shape similarity criterion to select the
best keypose. This criterion uses shape histograms [8] to describe 3D shapes
and the L2 distance between normalized histograms as the dissimilarity measure
[76]. The keyframe that presents the smallest dissimilarity with Y is chosen as
the reference frame.

6.5 Patch-based Outlier Modeling

Besides missing data, sometimes point clouds contain false segmented foreground
as the chair in Fig. 6.2 bottom row. In order to be robust to such outliers, care
must be taken when designing the likelihood function P (Y|Θ). Note that
the association of an observation yi to a patch, i.e. Eq. 6.4, applies only for
zi = k ∈ [1,K ] and that zi = K + 1 is a special case introduced to model the
outliers yi that are not explained by any patch. However, there is no physical
outlier patch in the model to be associated to. In [35], Cagniart et al. use a
uniform distribution to model P (yi|zi = K + 1,Θ) which basically assumes a
certain proportion of the observations to be outliers and requires therefore some
ad-hoc knowledge. Here we present a patch-based outlier modeling technique
that takes into account spatial information and is based on the fact that the
observations at frame t usually lie in the vicinity of the estimated surface at
frame t− 1.

Before modeling the general outlier event zi = K + 1, we first consider the
outlier event just for patch k, denoted as Wk. The likelihood between yi and
Wk can be interpreted as how “bad" yi is explained by patch k. Since Eq. 6.4
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Figure 6.4: Comparison of outlier rejection in [72] (c-d) and ours (g-h). (a-
b): reference surface colored in patches and body parts, respectively. (c): point
cloud classified into body parts using the SVM trained on (b) from the previous
frame, as suggested in [72]. (d): corresponding outlier likelihood from SVM.
(e-f): two examples of Eq. 6.5. (g): point cloud colored based on Eq. 6.6. (h):
points with outlier likelihood higher than 0.5 are colored in red.

expresses how well patch k explains yi under shape parameter Θ, we define the
likelihood P (yi|Wk,Θ) as:

P (yi|Wk,Θ) ≡ 1−P (yi|zi = k,Θ) =

{
1−N (yi|xvki , σ

2) if vki exists

1− ε otherwise.
(6.5)

Eq. 6.5 also expresses, given shape parameter Θ and from the point of view of
patch k, how likely yi is to be an outlier. Checking over all patches how poorly
they explain yi, and assuming independence between Wk, we can approximate
the overall outlier likelihood as:

P (yi|zi = K + 1,Θ) ≈
K∏
k=1

P (yi|Wk,Θ). (6.6)

From Eq. 6.6, we see that observations that are well explained by patches can
not be outliers, where [35] considers equal chances for each observation to be an
outlier. Fig. 6.4 illustrates this strategy. Fig. 6.4(a) and (b) shows the reference
model represented in patches and body parts respectively. In [72], Huang et al.
train a linear SVM on Fig. 6.4(b) obtained at t− 1 to classify Yt into different
rigid body parts, as shown in Fig. 6.4(c). Chair observations are classified as
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body parts because of the linear assumption of SVM. If we consider the SVM
output for the outlier likelihood, as in Fig. 6.4(d), we cannot distinguish between
chair and human observations. However, our patch-based outlier modeling is
able to assign high values to chairs, as in Fig. 6.4(g), and to identify them by
simple thresholding.

Optimization We follow the optimization framework in [35, 72] which alter-
nates between estimating associations, i.e. Eq. 6.3, and solving for the model
parameters, i.e. Eq. 6.2. These two steps correspond to the E-step and the M-step
in the Expectation-Maximization framework [18] . The advantage of our outlier
strategy is that it easily integrates into this method. In practice, outliers are not
removed once and for all with hard thresholding, but Eq. 6.6 is substituted in
Eq. 6.3. This means that outliers are estimated during the EM optimization, and
that there is no need to add any other sophisticated learning-based method to
improve outlier rejection.

6.6 Experiments

The method was evaluated on 4 publicly available sequences as well as on 3 new
sequences: WalkChair, HammerTable, and SideSit that contain static occlusions.
These sequences were recorded with 9 cameras at 1000× 1000 resolution. The
occlusion objects are considered as foreground by the background subtraction
and they remain in silhouettes and hence appear in the resulting point cloud
observations, as shown in Fig. 6.12(c) and (d). We manually annotate the joint
positions in 5 cameras to evaluate the poses of the skeleton. Due to the lack of
realistic dynamic 3D surface ground truth, we use silhouette overlap error to
evaluate the shape parameter estimation. If the occlusion objects are separated
from the human body in silhouettes, we manually remove them and consider
only the human parts as ground truth. These sequences are available at the 4D
Repository2. To draw fair comparisons with other approaches, we do not refine
the surfaces with silhouettes after tracking. These 7 sequences serve different
purposes in the experiments and we summarize them in Table 6.1. Results
are analyzed with respect to missing data and outliers, both qualitatively and
quantitatively. In all the presented experiments, both the multiple keyframes
strategy and the outlier rejection mechanism were used.

6.6.1 Robustness to missing data

Skirt and Dance demonstrate the effectiveness of the multiple keyframe strategy.
The average silhouette overlap error for these sequences is shown in Table 6.2.
In [62], Gall et al. refine the shape using silhouettes as a second stage of their
method. Such refinement could fail if occlusion objects are close to the subject
and appear in the silhouettes (e.g. Fig. 6.2 bottom row). We thus compare to
their first stage results only. In WalkChair, missing data can be observed when
the arms are too close to the torso. With the shape at t = 0 as the reference

2http://4drepository.inrialpes.fr/
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Cagniart [35] Gall [62] Prev. ours
Skirt 7283 6900 7466 6715

Dance 7881 7600 fail 6940

Table 6.2: Average silhouette overlap error with different approaches. Im-
age resolution: 1004× 1004. Note that comparisons with [62] concern only their
first stage results. Prev. are the results obtained when using the previous frame
as the reference model. See Sect. 6.6.3 for more discussion.

(a)  (c)  (b)  

Figure 6.5: Benefit of keyframe strategy. Results of frame t = 119 in WalkChair,
with and without multiple keyframe strategy. Black dots are the observed point
cloud where right arm gets merged into the torso. (a): estimated shape using
surface at t = 0. (b): estimated shape at t = 32. (c): estimated shape using (b)
as the reference surface.

model result in Fig. 6.5(a) are obtained. The right arm stays in its configuration
at t = 0 since not enough observations support the patches on the arm. Using
another keyframe, as in Fig. 6.5(b), as the reference yields better result as shown
in Fig. 6.5(c).

The influence of the mean-shift bandwidth. We report here on the influence
of the mean-shift bandwidth on key pose detection and on the final tracking
results. Tests were conducted on Skirt, HammerTable, and Fighting with varying
bandwidths. Results on the keyframe numbers as well as on the corresponding
errors are depicted in Fig. 6.6(a-c). The first two sequences were chosen for
the repeating actions and the third one for its different numerical scale, see
Fig.6.6(d). In general, small bandwidths lead to more keyframes (green curves)
and it appears that the errors (blue curves) also decline as the bandwidth de-
creases. However, small bandwidths have higher chances to identify tracking
failures as keyframes and therefore accumulate errors. This explains why the er-
ror slightly rises when the bandwidth gets really small. We noticed that due to the
different numerical scales, resulting from different recording setups, there is no
fixed bandwidth that guarantees the best performance over the three sequences.
This indicates that manually fixing the bandwidth is difficult. However, our
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WalkChair HammerTable
Cagniart [35] 18482 fail
Huang [72] 18063 fail
Straka [131, 132] 12219 17285

ours 6803 3593

Table 6.3: Average silhouette overlap error of WalkChair and HammerTable
from different approaches. Silhouette resolution: 1000× 1000.

WalkChair HammerTable SideSit
Huang [72] 24.6± 10.7 fail 75± 40

Straka [131, 132] 20.6± 22.0 64.2± 53.9 84.4± 59.3

ours 15.9± 6.3 10.1± 3.0 19.3± 7.9

Table 6.4: Average joint 2D re-projection error in pixels of WalkChair, Ham-
merTable and SideSit. Image resolution: 1000× 1000. We attain overall lowest
error.

strategy considers the numerical scale of the sequence and adjusts the bandwidth
accordingly. This provides optimal or close to optimal performance (red dots).
Adding more keyframes in the keyframe pool does not bring much improvement
in terms of error, sometimes even worse. Therefore we argue that the way we
estimate the bandwidth is sufficient to discover distinguished poses and produce
decent results, which is automatic and requires no tweaking. Note also that
in Skirt, the subject raises up both arms and slowly rotates herself for a while,
which leads to many similar poses only differing in orientations. As a result of
our approach to cancel rotations, and the way we perform mean-shift with VQ,
duplicate key poses do not occur. Keyframe pools of all testing sequences are
shown in Fig 6.10.

6.6.2 Robustness to outliers

Static outliers. WalkChair, HammerTable and SideSit were used to demonstrate
the robustness to outliers. Methods using silhouettes as input like [62, 132],
are prone to be confused by the close occluding objects. Our approach was
compared with [35], [72] and the tracking framework proposed by Straka et
al. ([131]+[132]). The silhouette overlap error as well as the discrepancies
between the projected skeletons and the manually annotated joint positions in
5 cameras were measured. As reported in Table 6.3 and Table 6.4, our method
attains consistently lowest errors in both pose and shape estimations. It is worth
noting that in HammerTable, around 41% of the observations are not from the
human subject, but we still get decent results (see Fig. 6.12(c) and (d)). We
notice also that when the occlusions are closely touching the subject, it confuses
the method in [131] that deforms the skeleton model according to the observed
skeletal graph in the point cloud, and thus the shape adaptation [132] cannot
improve significantly the results. Please refer to Fig. 6.11 and the accompanying
video of [73] for more comparisons.
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Figure 6.6: Accuracy and the number of keyframes v.s. bandwidth; various
dataset scale. (a-c): Blue curves are the corresponding error (left y-axis) while
green curves represent the number of keyframes (right y-axis). (a): HammerTable.
(b): Skirt. (c): Fighting. (d): the heights of the subjects in 3 sequences.

Dynamic outliers. Due to the lack of public datasets with dynamic outliers, we
evaluate our approach with two multi-subject sequences where we track only one
subject and consider the others as outlier observations. For Basketball, the human
subject is tracked against the ball observations. For Fighting, the subject with
markers is tracked and the observations from the other subject are considered
as outliers. The results are shown in Fig. 6.12(a) and (b). First we confirm that
without the outlier rejection strategy presented in Sec. 6.5, the method in [35]
fails with this experimental setting, which is expected since it also fails to track
against static outliers as in Table 6.3. Following the metric in [98], our approach
attains 40.95 mm of average vertex position error with a standard deviation of
15.34 mm over 500 frames. Although the corresponding error in [98] is 29.61 mm
and 25.50 mm, respectively, we would like to point out that their task is different
from ours. Our objective is to robustly track in noisy environment whereas [98]
simultaneously track two surfaces. Every observations is, in this case, associated
to a patch or a vertex, and thus outliers are not to be considered. We observe
anyway that, despite the presence of strong dynamic outliers (i.e. the ball and
the second subject), our approach still provide reasonable results.

6.6.3 Discussions

Influence of mean-shift bandwidth. In Fig. 6.7 we visualize the generated
keyframe pools of Skirt and HammerTable in different bandwidths. Two se-
quences are chosen because the subjects repeat the actions. With small band-
widths, we observe many similar key poses, which however does not guarantee
smaller error. With the estimated bandwidths we not only obtain distinctive key
poses but also provide comparable performance.
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Figure 6.7: Generated keyframe pool of Skirt [62] (top) and HammerTable
(bottom) in varying mean-shift bandwidths.

Further quantitative analysis. Table 6.2 shows the overall average pixel over-
lap error of Dance and Skirt. In Fig. 6.8, we report the error in each frame.
Broadly speaking, our approach attains smaller error over the whole sequences,
compared with Cagniart et al. [35] and Huang et al. [72]. In Fig. 6.11, we
further report the 2D joint error of WalkChair, HammerTable, and SideSit. We see
that while [72] fails to track at a certain point, and Straka et al. [131] + [132]
produces sporadic high errors, our approach obtains consistent low error over
sequences.

To further justify the advantage of our keyframe-based framework, we make
a comparison with following two strategies:

1. Adhering to t = 0 as the reference model.

2. Adhering to previous frame as the reference model.
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(b) Dance

Figure 6.8: Pixel overlap error of Dance and Skirt [62] in each frame, av-
eraged over 8 cameras. Image resolution: 1004 × 1004. Blue: ours. Green:
Cagniart et al. [35]. Red: Huang et al. [72]. Orange: using the previous frame
as the reference model.

The benefit of our approach over the first strategy (i.e. ref: t = 0) is already
presented in Fig. 6.1, Fig. 6.5 and the corresponding text above. Here we concen-
trate on comparing with the 2nd strategy, which always uses the tracked result of
previous frame as the reference model for the current frame. In Fig. 6.9(a-c),
we overlay the corresponding results of t = 102 in Skirt sequence. For this
frame only, using the previous frame result as reference actually yields smallest
error. We demonstrate in Fig. 6.9(d-f) the potential drawback of this strategy:
drifting. We see that the blue patch is supposed to be at the back side of the
subject (t = 31), but it moves along the surface embedding during tracking,
and ends up at the front side of the body (t = 462). In the very beginning of
the tracking, drifting is difficult to be observed via overlap error because the
silhouette does not differ too much (orange curves in Fig. 6.8). However, as
the errors accumulates, drifting gradually deteriorate the results, and eventually
leads to noticeably large errors (Skirt), or even a tracking failure (Dance).

Generated keyframe pool. We show the identified keyframes of all testing
sequences and the associated estimated bandwidth (BW) in Fig. 6.10. Thanks to
the way we create virtual samples, we do not observe duplicate keyframes in the
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CHAPTER 6: KEYFRAME-BASED TRACKING

same sequences, and the delay time are all within acceptable range.

Further qualitative results. In Fig. 6.13, we further demonstrate the effective-
ness of our approach on taking care of outliers and missing data. In Fig. 6.13(b),
we observe that the hand of the subject is connected to the table in both the
silhouette and the point cloud. Such observations confuse methods like [131]
which results in the high peak error in Fig. 6.11, whereas our method still esti-
mates the pose and the shape successfully. In Fig. 6.13(c), despite that the ball
observations have close interaction with the subject, we still obtain correct shape
around the right leg. In Fig. 6.13(d), we see that our method properly handles
merging body parts (the right hand), and excludes outliers, while [35] does not
manage to do so.

6.7 Conclusion

We present an approach that captures human performances from multi-view
video without markers. Considering realistic cases, we propose a multiple-
keyframe-based tracking framework that uses mean-shift clustering to update a
keyframe set online. A patch-based outlier modeling method is also presented to
identify outliers more efficiently and effectively. Combining these two techniques
into a surface deformation framework increases the robustness and enables
the estimation of human shape and poses against missing data and outliers.
The reliability of the proposed method is confirmed by the experiments on
various public sequences as well as newly recorded sequences. Future directions
include alleviating the requirement for background subtraction by considering
photometric information.
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(a) ref: t = 0 (b) ref: prev. (t = 101) (c) ours (ref: t = 95)

(d) prev. t = 31 (e) t = 256 (f)
t = 462

Figure 6.9: Comparison of three different strategies (a-c), and the draw-
backs of sticking to the previous frame result as the reference model (d-f).
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(a) WalkChair

(b) WalkChair

(c) WalkChair

Figure 6.11: The curves of 2D joint error of three newly recorded sequences.
Image resolution: 1000× 1000. Blue: ours. Green: Straka et al. [131] + [132].
Red: Huang et al. [72].
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(b)  (a)  

(c)  

(d)  

Figure 6.12: Visual results of (a) Fighting, (b) Basketball, (c) SideSit, and
(d) HammerTable. Black dots represent the observed point clouds.

(a)  (b)  

(d)  

Cagniart et al.  
ECCV`10 [5] 
(no skeleton) 

(c)  

Figure 6.13: Qualitative results of (a) Dance, (b) HammerTable, (c) Basket-
ball, and (d) WalkChair. Black dots are the point clouds.
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7
Conclusion and Outlook

7.1 Summary and Findings

This thesis is devoted to the study of 3D human shape tracking in multi-camera
environments. We follow the traditional ICP paradigm and contribute to the
two stages of it: association and optimization steps respectively. We advocate
using regression forests to draw discriminative associations, both in surface
parameterizations (meshes) and volumetric ones (CVTs). In the optimization
step, we do not rely on one particular motion representations but propose a joint
optimization framework that simultaneously recovers both surface deformations
and skeletal poses. For all these problems, we propose novel algorithms and
also provide theoretical derivations. To evaluate our methods, we rely not only
on standard multi-view datasets but also introduce a number of challenging
sequences that contain outlying geometries. Furthermore, we dedicate a chapter
to study the usage of keyframes, which could be eventually employed in the
human shape tracking algorithms.

First of all, we commence with the quest for discriminative associations. In
Chapter 3, we work with regression forests, introducing a novel discriminative
model for 3D human shape correspondences. To profit the most from the
strengths of forests, we avoid pure hand-crafted features but resort to a less
engineered one, voxel-based offset feature. Each pair of offsets corresponds
to one individual feature attribute whose computation is independent from
each other. Using such features, the regression forest learns to map every
vertex on the input visual hull to the location of its potential matches on the
template. In Chapter 4, we argue that the same concept applies to another
shape parameterization, volumetric centroidal Vonoroi tessellation as well. For
that reason, we devise a Haar-like distance-field-based feature and a multi-
template learning strategy to learn from abundance of shapes and motions. We
point out the following observations empirically from our experiments: 1) our
voxel-based feature performs better than pure surface-based descriptors like
Heat/Wave Kernel Signatures; 2) regressing to the whole shape volume yields
better accuracy than only to surface domains; 3) when features are 3D-geometry-
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based, e.g. our offset-pair features and the distance-field-based features, unseen
poses are more difficult to generalize than unseen shapes due to the drastic
changes in geometry. One should hence give pose variations higher priority than
shape variations when arranging training data.

In Chapter 5, we orient our research towards the optimization step, where
motion parameterizations play a crucial role. The most prevalent choices are
non-rigid deformations and articulated human poses. Instead of selecting one
from the two, we propose to estimate them jointly in one single energy objective
by parameterizing skeletal poses as the function of surface deformations. Thanks
to the explanatory power of surface-based approaches, this strategy is sufficiently
accurate and yet provides an informative skeletal poses that resembles human
anatomical structure. When integrated with the surface-based discriminative
associations, they amount to a hybrid human shape tracking approach, which we
term tracking-by-detection of human shapes throughout this thesis. It effectively
prevents tracking errors from accumulating, yielding more stability compared
to other generative ICP extensions. The volumetric discriminative associations
also contribute to the volumetric shape tracking in the similar fashion. We
thereby present a fully volumetric tracking-by-detection framework. Centroidal
Voronoi tessellation is chosen to be the unified representation used in feature
computations, predicting domains, and deformation models. Such informative
and consistent representations have shown better detected correspondences than
other discriminative strategies.

In Chapter 6, we propose a multiple-keyframe-based tracking framework that
uses mean-shift clustering to update a keyframe set online. We argue against
adhering to the same rest pose throughout tracking and show that exploiting the
already-tracked poses of the template is beneficial because the regularization
could in turn be enforced upon various patch configurations. The reliability of the
proposed method is confirmed by the experiments on various public sequences
as well as newly recorded sequences.

In the thesis, all proposed models offer an algorithmic solution to a certain
problem under some assumptions. Next, we discuss the limitations of our
methods and afterwards we will propose a number of directions for future work.

7.2 Limitations

We work on the problem of 3D human shape tracking in multi-camera environ-
ments and deliver a number of methods for addressing it. In Chapter 3 and 4,
we apply discriminative models for one-shot 3D human shape correspondences.
Avoiding spectral descriptors that are sensitive to topological noise, we directly
describe the 3D geometry. We also rule out the histogram-based features to take
the most advantages of forests. Our first attempt is voxelizing meshes and trans-
pose the offset-pair features in human pose estimation with RGBD data [121]
to our problem. It requires 3D shapes to be close and watertight in order to
distinguish internals from externals, which does not always hold. Storing those
empty space information also consumes considerable amount of memory, in turn
limiting the training data it can incorporate. To overcome this limitation, we
then resort to a more memory-efficient volumetric representation, CVT. This
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indeed significantly reduces the required memory and is definitely a better pa-
rameterization to tackle the problem of human shape correspondence estimation.
As it allows including more training datasets, we further devise a multi-template
learning strategy to learn from a variety of shapes and poses. Nevertheless, a
coherent mesh connectivity is always required to yield consistent output labels
(3D points in our case), which is in general the limitation of Vitruvian framework.
We propose to replace the labels by matching each template to the generic one,
which is a workaround but not a solution in the long run.

Putting it in a more general way, since we adopt machine-learning techniques,
generalization is inevitably an inherited problem. Namely, the algorithm works
reasonably well on the observed training data but maybe not on the unseen
testing samples. For example, when the input visual hull is way too different,
forests might yield undesirable correspondences that even deteriorate tracking
rather than gain robustness. This is the reason why we always advocate combin-
ing discriminative associations with the generative ICP-based tracking (initialize
discriminatively, refine generatively). As our problem concerns itself with human
shapes, the variations of data one should consider range from positions, rotations,
poses, scales, to shapes of the subjects. One usually strives to achieve some
invariance property at the feature level and leaves the rest to be learned by
the learning algorithms. Thinking from the perspective of features and training
variations is certainly an informative way to analyze the limitations of models.

Beside the learning algorithms, a more fundamental limitation stems from
the observations. As we perform 3D reconstructions from silhouettes to obtain
input visual hulls, foreground is supposed to be segmented properly from the
background. Currently this only holds in studio environments with uniform and
static background, which for sure limits the applicability of our method.

7.3 Future Work

To address the aforementioned limitations, we propose a number of research
ideas for future directions.

• Exploiting photometric information. To get away from the strong re-
quirement of background subtractions, one has to reason with color in-
formation to track. A first attempt could be assuming close initializations,
devising a generative ICP-based method (namely, no machine-learning
techniques involved) that guides the deformations with only colors. Blobby
man representations [116, 126, 130] pioneer in this direction and are
certainly worth a look.

• Learned feature. When it comes to pure geometry-based approach, we
believe discriminative associations are definitely one direction to proceed.
Our experiences in the former chapters show that, features are critical to
the performance. Recently the vision community has witness the success
of deep learning that learns the features from data instead of engineering
them [15]. Some work have been proposed in this direction for shape
retrieval and recognition [133, 156].
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• Better output label space. On the other hand, an uniform and coherent
label space where points from all datasets are naturally aligned is also
favorable for learning human body correspondences. In this case, our
preliminary results in Appendix B suggest that considering skinning weights
is one direction to pursue.

7.4 Epilogue

It has been a long, exciting and inspiring way to reach these last lines of the thesis.
We have not yet solved the problem of 3D human shape tracking, but we have set
the milestone for the future research on this topic and substantially contributed
to the computer vision community. We focused on discovering data-model
associations discriminatively by utilizing machine learning models. In this thesis,
we present models that can be applied to different shape parameterizations and
distinct motion parameterizations.

122



Part IV

Appendix

123





A
A Comparison Study on
Three LCF Approaches

A.1 Introduction

Local coordinate frame (LCF) is a key component deployed in most 3D descrip-
tors for invariant representations of 3D surfaces. Attaching a LCF has been long
employed in matching rigid objects but less discussed when it comes to non-
rigidly deforming ones. In this appendix we addresses this problem, in particular
focusing on humanoid surfaces. We facilitate this by (1) consider the LCF ap-
proach in our previous work [71] and (2) extending two current LCF paradigms
for rigid surface matching to the non-rigid case. Such an adaptation is motivated
by the assumption that interpolating locally rigid movements often amounts
to smooth globally non-rigid deformations. All three approaches leverage spa-
tial distributions, based on normals, signed distance and principal component
analysis, respectively. To perform a thorough comparison study, ground truth
for non-rigid LCFs are synthetically generated by interpolating locally-rigidly
transformed LCFs. Therefore, three LCF proposals are evaluated extensively in
terms of repeatability, robustness on estimating correspondences, and accuracy
of final tracking results. All the experiments demonstrate the benefits of the
proposed methods with respect to the state-of-the-art.

A.2 Related Work

This appendix aims at developing a LCF-based approach used for correspondence
estimation in 3D human motion tracking. In the following, the previous work is
therefore briefly reviewed and discussed from the two different perspectives of
LCFs and 3D human motion tracking.

LCFs are usually proposed with their 3D descriptor counterparts. Here,
we provide an overview, whereas a comprehensive review and evaluation is
available in [109]. Constructing a LCF consists in defining three orthonormal
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vectors as [x, y, z] axes. To this end, the local geometry has to be taken into
account, involving all neighboring points pi (hereinafter referred to as support)
that lie within a sphere of a certain radius centered at the feature point p.
Current approaches can be broadly classified into eigenvalue-decomposition-
based [101, 142], which establish three axes at once, and methods that identify
them one by one separately [41, 71, 109, 110, 157].

The first category relies on computing the Principal Component Analysis
(PCA) [79] or EigenValue Decomposition (EVD) [89] of the local spatial dis-
tribution of points. In [101], a covariance (or scatter) matrix is constructed
as:

Σ =
1

k

k∑
i=0

(pi − p′)(pi − p′)>, (A.1)

where p′ is the centroid of k+1 support points pi. Later in [142], the centroid p′

is replaced with the feature point p itself for higher efficiency. The contribution of
each support point pi to the covariance matrix is also weighted by its Euclidean
distance to p. The three axes are provided by the three normalized eigenvectors
obtained from scatter matrix decomposition. Conventionally, the one with the
largest eigenvalue (principal direction) is defined as the x axis, while the one
with the smallest eigenvalue is considered as the z axis. One of the major issue
of these methods is that EVD defines only the directions of the axes but not their
signs, which have to be disambiguated with additional efforts. For instance, the
sign of z axis is usually the one that yields positive inner product with the surface
normal n.

Another family of work defines three axes individually [41, 71, 109, 110,
157]. Typically, y axis is attained as z × x to keep the orthogonality constraint.
z axis is either the surface normal vector itself [71], the averaged surface nor-
mal [157] across the 5-ring neighborhood, or the normal of a fitted plane within
a smaller support [41, 109, 110], where the signs are again disambiguated by
considering surface normals. More efforts are devoted to facilitate a stable x axis.
Some approaches [71, 109, 157] rely on higher order information (normals or
curvatures) to identify prominent geometry and determine the orientations of
x axis. Instead of high order information which is prone to be noisy in visual
3D data, [41, 110] considers the signed distances of each support point to the
tangent plane defined by z axis, and yields more repeatability as demonstrated
in [110].

A.3 Method

A.3.1 Preliminaries and Overview

We first provide a overview of [71] and then outline our method. A human
surface is denoted asM = (M, T ), where M = {xv}Nvv=1 ⊂ R3 are the locations
of vertices v, and T defines the triangles. To attach a LCF for each vertex v,
Huang et al. consider its normal nv as z axis, and search for a reference vector
in a local cuboid to establish x axis. Formally, the surface is first voxelized
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Figure A.1: Cuboid neighborhood and support voxels. (a) visualizes the
volumetric framework. Green: voxel vv mapped by the current vertex v; pink:
cuboid neighborhood; red line: normal vector. (b) The LCF method in [71] and
EVD involve all the surface voxels (cyan) within the cuboid, whereas (c) SignDist.
considers only those lying on the border. Best viewed in colors and in pdf.

into a volumetric field N : Ω3 ⊂ R3 → R3, where each voxel v holds either
a unit-length normal n averaged from the containing triangles, or a number
indicating inside or outside:

N(v) =


+ε if lies outside surfaces

n ∈ [−1,+1]3 if overlap with surfaces

−ε if lies inside surfaces.

(A.2)

A vertex v is first mapped to a voxel vv
1, by discretization of the space. We

consider a cubic support of neighbors centered on the voxel vv, S ⊂ Ω3, as
depicted in Fig A.1(a). A surface voxel v is selected based on the following
criteria:

v̂ = arg max
v∈S

(
d̂+ N(vv)

>N(v)
)
. (A.3)

where d̂ is the distance between vv and v, normalized with respect to the size of
cuboids. The projection of (v̂ − v) onto the plane define by nv is then taken as x
axis of the LCF. Finally, the y axis is obtained as z × x.

We retain the volumetric framework to keep the property of organized data,
i.e. , accessing spatial neighbors simply by indexing without iteratively parsing
the triangles like nearest neighbor search. We also consider nv as z axis, and
obtain y axis as z × x. Differently, we pay more attention on the characteristic
voxel/vector for x axis. Eq. A.3 favors the voxel that is far from the center
voxel vv, and yet holds least normal changes. As an important trait of our
approach, since it is well known that higher order information, e.g. normals and
curvatures in visual 3D data, are particularly noise prone, we resort to rely on
robust zeroth-order information such as spatial distributions.

1With a slight abuse of notations, in the remainder of this chapter, v refers only to voxels that
overlap with meshes (intersected with either vertices or triangles), since the other two cases, inside
and outside, are both not of our interest. In particular, vv refers to voxels containing mesh vertices.
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A.3.2 LCF Proposals

Analogous to what proposed in [71], the state-of-the-art methods in the field
of LCFs for rigid matching of 3D meshes and point clouds mainly rely on the
neighboring points within a local support [41, 101, 107, 110, 142]. As reviewed
in Section 3.2, the way they leverage spatial distributions can in general be
classified into two categories: (1) EigenValue-Decomposition (EVD) [101, 107,
142], and (2) signed distance (SignDist.) [41, 110]. In the following, we propose
an adaptation of both classes of methods to volumetric representations, so to be
able to use them within the human motion tracking framework.

EVD. Methods within this class define the LCF as the principal directions of
the point distribution within the support. Since the z axis is already defined,
we project all the Nv support surface voxels v onto the plane defined by nv,
denoted as v̄. This way the resulting vectors defining the principal directions
lie naturally on the xy plane. It is given by the normalized eigenvectors of the
covariance matrix:

ΣS =
1

Nv − 1

∑
v̄∈S̄

(v̄ − vv)(v̄ − vv)
>, (A.4)

where S̄ is the projection of all surface voxels falling within the support. The
centroid of S̄ is replaced with the voxel vv itself to speed up the computation,
without decreasing much repeatability as in [142]. The eigenvector of largest
eigenvalue is chosen as x axis. Note that at this point, the sign of the x axis
is not uniquely determined, due to the inherent ambiguity of the sign of the
eigenvectors obtained from the EVD process [142]. Because of this, the computed
LCF might flip 180◦ along the z axis. In our work [75], we propose a specific
feature to tackle this undesired effect, so to make the overall approach invariant
to such ambiguity.

SignDist. This class of approaches look for a discerning point within the
support. As contrasted in Fig. A.1(b-c), the search involves typically only the
peripheral points ṽ lying on the intersection of the cuboid border and the surface,
unlike EVD-based method where all points contribute to the covariance matrix.
The discernibility is defined as the maximum signed distance to the tangent
plane [41].

We propose to adapt this idea to volumetric representations as follows:

v̂ = arg max
ṽ∈S̃

(
(ṽ − vv)

>nv
)
. (A.5)

where S̃ is the intersection of the surface and the border of local cuboids. The x
axis is the projection of the vector directed from vv towards v̂. Note that there is
no guarantee that the discerning point v̂ from Eq. A.5 is always repeatable: in
particular, if different directions yield similar values of the signed distance, the x
axis will be ambiguous, hence the resulting LCFs could rotate about the z axis.
Purposely, we incorporate such an ambiguity in our new proposed features to
make our method robust to this phenomenon, as explained in the next section.
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Sequence Frames Metric Subject / #Vertex

Crane [148] 173

A, B, C

S1 / 3407
Jumping [148] 149

Handstand [148] 149
S2 / 3848

Bouncing [148] 173

Cutting [73] 81
S3 / 5211

Hammer [73] 93

Table A.1: Sequences used in the experiments in Sect. A.4. Depending on
the evaluation tasks, we apply different error measures. A: deviated angle. B:
repeatability score as defined in [110]. C: vertex index for correspondences.

A.4 Experimental Results

In this section, we evaluate our approach under two aspects. First, we verify the
repeatability of the proposed LCF methods by measuring how much they deviate
from the ground truth. Secondly, we demonstrate the benefits of averaged LCF
features for 3D human motion tracking by measuring how much they improve
the correspondence task between input data and the template surface. The
profiles of our sequences are summarized in Table A.1.

A.4.1 Ground truth generation

Due to the lack of ground truth LCFs from real visual data, we resort to synthetic
transformations. For each method to be evaluated, we first compute a LCF
for each vertex on the reference mesh M0, denoted as LCF 0 and depicted
in Fig. A.2(a). The mesh is then animated with a data-driven patch-based
approach [35], and the goal is to see if the newly obtained LCFs follow such
transformations. This deformation framework models global non-rigidness as a
sparse set of control bases called patches that move locally rigidly. The animation
is done by tracking with real visual hulls as input, so that we have realistic
deformations.

Figure A.2: Synthetically-generated ground truth LCFs. A LCF is first com-
puted in the original configuration in (a). When the mesh deforms, the new LCF
is the linear combination of the predicted LCFs from the neighboring patches.

Specifically, a mesh is decomposed into several small patches. Each patch
k has a rigid body motion (Rk, tk). When the meshM0 deforms intoMt, the
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new vertex position is the linear combination of its transformed location and
all the predictions from the neighboring patches Nk, visualized as dot circles
in Fig. A.2(b). The final position of each vertex is determined by interpolating
their predicted locations from the neighboring patches, where the coefficients αk
encode the desired physical property and are normalized to sum up to 1. More
details can be found in [35]. The attached LCF 0 follows the same operations:

LCFk = RkLCF
0, (A.6)

LCF ′ =
∑

s∈k∪Nk

αsLCFs. (A.7)

In Eq. A.6, it is rotated according to either its own rigid body motion, or
those from the neighboring patches. In Eq. A.7, multiple predictions, e.g. blue
LCFs in Fig. A.2(b), are blended to yield the final local coordinate frame LCF ′

(all axes normalized to unit length), which is considered as ground truth in our
experiments.

A.4.2 LCF Repeatability

We compute our LCF methods, i.e. EVD (Eq. A.4) and SignDist (Eq. A.5), for all
vertices onMt, and check respectively their discrepancies to the ground truth
LCF ′ by computing cosine scores as in [109]. Fig. A.5 shows the results in
degrees for each sequences, aggregated by averaging across every frame. For
z-axes, all the approaches yield consistently low errors regardless the radius of
the cuboid. For x-axes, on the other hand, the differences are more obvious. We
see that the error suggests a monotonous decreasing trend when the support gets
larger. EVD has relatively poor performance with small radius, due to the fact
that the support is insufficient to fully characterize the local point distributions.
SignDist. shares the same concern in smallest cuboid size 7, but the error drops
faster than EVD and attains most of the time the best results also with respect
to [71]. In the remainder of this section, we always use the largest cuboid size
15 for comparisons and analysis.

We also apply the repeatability score Ā in [110], which is defined as the
number of points whose cosine scores are higher than a certain threshold TA,
measured in percentage and averaged across every frames in the sequence. The
scores in varying thresholds are presented in Fig. A.6. It actually reflects the angle
errors in Fig. A.5 faithfully. SignDist. attains better (S1 and S2) or comparable
(S3) repeatability compared with [71]. This confirms that spatial distributions
are more reliable in 3D data than higher order information such as normals used
in [71]. On the other hand, we notice that EVD does not always present such a
merit (S3), which is worth further investigation.

To understand why EVD performs badly in S3, we look into the cosine scores
for x-axes, and plot the histogram in Fig. A.3(a). One can clearly see that a
considerable portion of vertices have scores less than −0.8, presenting a bimodal
distribution. This indicates that EVD method indeed suffers from the sign-
ambiguity and explains the low repeatability score. For SignDist, the similar
problem also exists but, as indicated in Fig. A.3(b), is much less severe. In
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Fig. A.4, we visualize for each vertex of a 3D mesh taken from the test sequences
the angle error of x-axes in colors and show the distribution of cosine scores for
each method. Overall, we can qualitatively observe how both SignDist. and EVD
attain in average better cosine scores than [71]. Interestingly, while SignDist.
has a more scattered error, EVD shows a more piece-wise distribution (compare,
e.g. , the left leg with the right leg), this highlighting the previously discussed
disambiguation problem affecting EVD-based LCFs. In addition, the plotted
cosine distributions in Fig. A.4 again confirm the aforementioned discussions.

(a) EVD (b) SignDist.

Figure A.3: The distributions of cosine scores of x axes for two different
methods on Hammer and Cutting.

Figure A.4: Qualitative results on Handstand. From left to right, the averaged
cosine score is 0.565 and 0.626, respectively.

A.4.3 Correspondences prediction

In addition to previous results, we investigate how different LCF strategies
influence surface matching in terms of accuracy of the retrieved correspondences.
The task is to find correspondences between input meshes and the reference
template X0. For each subject, we learn separate regression forests using 3 LCF
methods (length of cuboid side 15): Huang et al. [71], SignDist. (Eq. A.5),
and EVD (Eq. A.4) respectively. For the latter two cases, we also consider the
proposed extensions to averaged representation. To draw a fair comparison, all
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the other parameters remain the same: 20 trees, 15000 testing neighbor pairs ψ
at each branch node, and maximum tree depth 20. We consider the animated
meshes Xt as input data, where ground truth vertex indices are available. The
error measure here is the geodesic distances on template surfaces X0.

If the geodesic distance between the estimated and ground truth vertex in-
dices is lower than a certain threshold, we consider it as a correct match. Fig. A.7
shows the percentage of right matches in varying thresholds. We highlight half
of the length of lower arms in orange dashed line for better interpretation of
the estimated correspondences. Two observations can be remarked. First of all,
among the 3 approaches, SignDist. always yields more than 90% of matches that
falls within the range of half of lower arms and achieve best results. Secondly,
the averaged representations are consistently better than their counterparts.
These observations confirm that the proposed LCF methods improve the state-of-
the-art and furthermore, the strategy of averaged LCF results in more invariant
representations, and hence better matching accuracy.

Last but not least, since the end application is human mocap, we evaluate
the tracking results as well. Given the data-model associations from the forests
trained with different LCF approaches, we deform the template surfaces using
the method similar to [72]. Differently, we do not run ICP refinements, so as to
see the direct impact of correspondences in the end results. The metric is the
silhouette overlap error that measures the discrepancy between the deformed
reference surfaces and the silhouettes. As reported in Fig. A.8, the averaged
LCF method always yield lower errors than their counterparts. Moreover, both
presented LCF methods improve the tracking compared to the LCF in [72].

A.5 Conclusion

In this appendix, we study methods that attaches LCFs to non-rigidly deforming
surfaces, with the goal to facilitate correspondence tasks in 3D human motion
tracking. The non-rigidness of human motions is approximated as the interpola-
tions of several locally-rigid motions. We then adapt two LCF paradigms for rigid
surface matching to the non-rigid case. In addition, we incorporate the sources of
unrepeatability in learning, and present a more invariant representation, sparing
the efforts of devising robust LCFs and yet maintaining the descriptiveness of
features. Ground truth LCFs are also produced locally rigidly. Our methods are
thereby evaluated thoroughly, and the experiments suggest that the proposed
LCFs attain higher repeatability than the state-of-the-art approaches, the new
representations from multiple LCFs yield improved correspondences than their
counterparts, and, in turn, better tracking results.
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Figure A.5: Cosine error of six sequences. Error reported by the three evalu-
ated LCF methods with varying cuboid sizes, measured in degrees. Left vertical
axes: error of x axes; right vertical axes: error of z axes. In general,
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Figure A.6: Repeatability scores Ā on three subjects in varying thresholds
TA. Cuboid size: 15.
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(b) S2: Bouncing, Handstand
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(c) S3: Hammer, Cutting

Figure A.7: Comparison of the correspondence error from different LCF
strategies for all subjects.
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Figure A.8: Comparisons of tracking error on Jumping. Image resolution:
1920× 1080.

135



CHAPTER A: A COMPARISON STUDY ON THREE LCF APPROACHES

136



B
Skinning Weights as the

Label Space to Learn

B.1 Introduction

As demonstrated in Chapter 4 and Chapter 5, discriminative data-model asso-
ciations indeed result in a more robust tracking pipeline, both in surface-based
and volume-based representations. The biggest requirement of discriminative
strategy is offline training. To learn the associations, several label spaces L have
been considered in the literature. We briefly analyze their pros and cons in below.

On one hand, people cast matching as a classification problem [117], where
learning machines output categorical labels that are actually the vertex indices
on the reference surface: L = {1 · · · v · · ·V }. On the other hand, another family
of work perform regression [71, 112, 140], where trained models predict points
in continuous 3D space R3, or more specifically, points on a 2-manifold defined
by the template, termed Vitruvian manifold: L = ∂ΩX ⊂ R3. The associations
are built by an additional nearest neighbor search (NN) on the template X0.
During training, both approaches require a reference surface whose mesh con-
nectivity, i.e. vertex index, is shared among all training meshes. The trained
classifiers/regressors apparently can only be applied for matching against this
reference surface, unless other approaches are devised to align the labels as we
do in Section 4.5.2. For this reason, in order to use the abundant online-available
multiple-view datasets [5, 62, 73, 128, 148], these approaches need to align
distinct mesh topologies in advance to yield consistent labels. Instead, they
often resort to human shape models such as SCAPE [7] or SMPL [99] that gener-
ate topology-consistent human surfaces in various shapes and poses. However,
meshes generated by these models are usually naked or in tight suits [19, 111],
whereas multiple-view sequences are recorded with subjects in real apparel.

In [154], Wei et al. take a hybrid approach. Although the learning machine
perform classification tasks, the correspondences are actually established by a NN
search in the feature space learned by convolutional neural networks (CNN) [90].
In both this work and Vitruvian-manifold methods, the aim of learning algorithms

137



CHAPTER B: SKINNING WEIGHTS AS THE LABEL SPACE TO LEARN

V
lasic et a

l. TO
G

`0
8

 

Starck et a
l. C

G
A

`0
7

 

Huang et al.  
CVPR`14 

Liu et al.  
CVPR`11 

Allain et al.  
ECCV`14 

(a)  (b) 

1000x 
zoom in 

Figure B.1: Intuition of the skinning-weight space regression approach. (a)
Templates of various multi-view datasets shown in the same R3 space. (b) The
distributions of four templates in the skinning-weight space (pca is performed
for visualization purposes only). We advocate to learn in skinning-weight space
as vertices from different datasets are naturally aligned.

is not to match points directly but rather to conduct a transformation, mapping
the input to a space where the actual matching procedure (a NN search) takes
place. In the case of Vitruvian-manifold, this space is a 2-manifold ∂ΩX in 3D
defined by the reference surface X0 (the label space that forests regress to),
while in [154], it is the feature space that CNNs learn from the data. To include
different datasets into training, authors in [154] manually annotate several
semantic salient points to roughly align the topologies. To benefit from as many
captured realistic deformations as possible, one needs a more effortless way
to learn across heterogeneous mesh connectivities. To this end, we follow the
feature-transformation paradigm but advocate a space characterized by skinning
weights [92]. When considering it as a label space L to learn, one does not have
to take care of topology alignment because points from different templates are
naturally aligned in this skinning weight space as shown in Fig. B.1.

In short summary, this work has the following contributions. To the best of our
knowledge, we are the first ones that consider skinning weights as labels to learn.
A great advantage is the spared effort on aligning distinct mesh connectivities.
Thus, one can easily make use of numerous multi-view sequences to enrich the
training set, thereby bringing dense human-surface correspondence learning to a
larger scale. For this purpose, we propose a method that exploits random forests
to estimate vertex-wise skinning weights for human meshes in arbitrary poses
without the need to rig a skeleton.

B.2 Method

B.2.1 Skinning weights

Skinning weights usually come from skeleton-rigging process. Aiming to animate
articulated characters such as virtual humans, it is a fundamental operation in
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computer graphics and interactive applications. Character skinning has a long
history in graphics. Related techniques have been used extensively to provide
intuitive animation controls. Readers are referred to the related work section
of [92] for a comprehensive summary. Approaches for rigging character skins by
weighting vertices to an associated skeleton, or by interpolating example defor-
mations, are widely used in video games and the computer animation industry.
There are several reasons for their popularity: most skinning approaches are
conceptually easy to understand and apply; they are capable of approximating
interesting character shapes; the complex mesh deformations are compressed
into a pose space to avoid transmitting raw vertex positions; and skinning can
be hardware-accelerated on almost every commodity graphics card. Among
these reasons, data compression and real-time rendering have wide industrial
applications and have therefore been long studied and investigated [66, 77, 96].

In principle, one attempts to answer the following two questions when
devising rigging algorithms:

1. how to place joints j properly inside meshes?

2. how the transformations of joints j influence vertex v?

As the first question is rather ill-posed, many off-the-shore graphic softwares,
such as Maya and Blender, still rely on users’ manual assistance to determine
the locations of joints inside human bodies. For the second question, a standard
and straightforward approach is linear averaging, which leads to the well-known
linear-blend skinning formulation briefly mentioned in Section 5.3 (Eq. 5.9):

xv =
∑
j

wv,jTj(T
0
j )
−1x0

v, (B.1)

∀wv,j : wv,j ≥ 0,
∑
j

wv,j = 1.

A vertex v is first represented in the local coordinate frame of joint j (multiplied
by the inverse of T0

j ) and then brought to a new position (Tj). This is repeated
for all joints and the final location is simply the linear combination of them.
The skinning weights wv,j are supposed to place different emphasis on each
joint j and are sum up to 1. Given B non-terminate-point joints that have
transformations, one can define a B -vector wv that contains all the weights
for one single vertex v, i.e. wv ⊂ [0, 1]

B . As depicted in Fig. B.2(a), vertex
on the thigh has high weight on hip joint, while vertex around the neck has
non-zero weights for both neck and shoulder. The vector wv apparently encodes
the dependency of v on human body parts and in turn offers a strong cue on its
location along the human surface.

A closer look on the rigging process helps understanding some useful proper-
ties of skinning weights wv. Rigging is typically done offline just once because
it is unnecessary and further, impractical to re-rig the skeleton for each frame
during animation. We follow the approach in [11] to offline rig the skeleton.
Users are required to rotate surfaces into one unified direction (facing outward
the screen) to distinguish symmetric body parts. Meshes are normalized into a
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(a)  (b) 
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Figure B.2: Visualization of skinning weights and its descriptiveness. (a)
The illustration of skeletons and skinning weight vector wv. The leaf-node joints
(yellow) are excluded in wv. (b) A simple nearest neighbor search (NN) in
skinning weight space can yield plausible matches between mesh A and B. Best
viewed in pdf.

unit bounding box to yield scale invariance. Joints are placed by a maximum
margin classifier [33] that learns from various pre-rigged human shapes for
better generality. When the locations of joints are determined, skinning weights
wv,j are computed by heat diffusion. All these contribute to an informative
representation independent of the changes in scale, rotation and shape. See
Fig. B.1(b) for a real visualization. When used as a descriptor, skinning weights
offer satisfactory matches, as shown in Fig. B.2(b) and also confirmed in Sec-
tion 4.5.2 above. Nevertheless, the rigging process in [11] applies only for
meshes in the rest pose. This motivates us to contrive a method that estimates
skinning weights in arbitrary human poses.

Generally speaking, if the skeleton does not slide inside meshes, the relative
location of a vertex with respect the joints and consequently the skinning weight
wv, can be considered unchanged. As such, it is theoretically also invariant to
poses changes, orientations and translations, which are indispensable properties
for a good descriptor. We exploit this assumption to prepare training meshes in
all kinds of poses. Regression forests are again applied to learn from exemplar
data and to predict skinning weights online for a mesh in an arbitrary pose, so
that we can make use of them to estimate the correspondences C .

B.2.2 Random forest

As briefly reviewed in Sect. 2.3, a forest is an ensemble of T binary decision
trees, each separating data with split functions at branch nodes and storing
statistic models at leaf nodes. The training objectives, split functions, and
statistical models vary from task to task. Random forests are employed for
regression tasks in a B -dimensional skinning-weight space. Instead of training
one single forests for B -dimensional regression, which bears the concerns of
curse of dimensionality, we train one forest Rj for each individual skinning-
weight channel w·,j and normalize the regression results to unit-sum. We explain
in the following description only the training and prediction process of one
skinning-weight attribute. It can be easily generalized to all the B forests.
Training and prediction procedure is visualized in Fig B.3.
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Figure B.3: Pipeline of the training and prediction process. This framework
is able to integrate training meshes generated from templates with distinct mesh
connectivity.

Feature and forest training

As visualized in Fig. B.4, we apply scale-invariant Heat Kernel Signature [29] and
Wave Kernel Signature [9] to represent each vertex v as a 50-dimensional vector
f , each of which is also associated to a skinning weight label wv1, forming a pool
of sample-label pairs D = {(fv, wv)}. Each tree is trained with a random subset
of D. Our splitting candidate φ is the pair of testing channels κ and thresholds
τ , φ = (κ, τ). Let DN denotes the samples arriving at a certain branch node.
The training process is to partition DN recursively into two subsets DL and DR,
based on randomly generated φ:

DL(φ) = {v ∈ DN |fv,κ ≥ τ} (B.2a)

DR(φ) = {v ∈ DN |fv,κ < τ}. (B.2b)

The tree recursively splits samples and grows until one of the following stopping
criteria is true: (1) it reaches the maximum depth, or (2) the number of samples
|DN | is too small. Once a leaf node is reached, we perform mean-shift cluster-
ing [39] to represent the distributions of xv as a set of confidence-weighted
modes H = {(h, ω)}. h ∈ R3 is the mode location and ω is a scalar weight.

Forest prediction

In the prediction phase, a input point i lands on T leaves containing different
collections of modes, denoted together as G = {H1 · · ·HT }. We aggregation
them by doing mean-shift clustering [39] and keeping the cluster with largest
weight. This process is repeated for the forests Rj of all skinning-weight channel

1The suffix j is dropped because we describe the training process of one single forest.
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Figure B.4: Visualization of extracted SI-HKS and WKS response. One sees
that different feature channels encode different body part information.

j and the results are stacked into a B -dimensional vector wi, followed by a
unit-sum normalization.

Nearest neighbor search. Given the regression results wi, each point i in
input gets a closest vertex p in the reference vertex set V :

p = argmin
v∈V

‖wi −wv‖2. (B.3)

We apply one intuitive sanity check to reject the potential erroneous correspon-
dences. Since the body-part label is actually the attribute with the highest
skinning-weight, we reject p if it has different body-part label with i.

B.3 Preliminary Results and Conclusion

We brief validate the benefit of using skinning weight as label space with
Faust [19]. As shown in Fig. B.5, it yields comparable accuracy (SKW) with using
the 2-manifold defined by the template (Vitruvian). However, the forest trained
with Vitruvian strategy apparently applies only for matching against the template,
while our approach can match meshes with heterogeneous connectivities.
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C
A Unified View on Geometric

Alignment in Vision Tasks

C.1 Introduction

A great part of work in Computer Vision has been dedicated to understanding
the geometry of our surroundings. Mathematically speaking, by ‘understanding’
it means recovering from the observations a predefined parameterized model
meaningful to machines. This is the very reason why Vision is often also referred
to as ‘inverse Graphics.’ It deals with real-world raw observations and attempts
to come up with some parameterized models that machines can interpret, while
Graphics strives to computationally simulate real-world phenomena using these
models. Among them, the biggest family is perhaps the geometric transforma-
tions that align one group of data {x} to the other {x′}. Since the world we
live in is essentially 3D while images in 2D, the case of alignment varies largely
from 2D-2D, 3D-2D to 3D-3D, as visualized in Fig. C.1 below. The corresponding
transformation is respectively known as homography H , fundamental matrix
F , camera projection matrix P and rigid body motion T ∈ SE(3). Estimating
them robustly plays a fundamental role in many advanced Vision applications,
such as tracking and registration. The problem we have been tackled thus far in
this dissertation actually belongs to the last category and the transformation is
non-rigid (piecewise rigid), commonly denoted as a function N.

Notably, the first two cases in Fig. C.1 have long been studied and the
solutions that work reasonably well exist as described in [67], where several
techniques haven been proposed and discussed to improve the accuracy, e.g.
Gold Standard algorithm, virtual subsidiary correspondences, reprojection error
and Sampson approximation. However, we notice that these techniques are
seldom mentioned or considered (at least not explicitly) in the last case, the
3D registration task. In this chapter, we investigate the reasons by doing a
comparison study. We first thoroughly review the state-of-the-art approaches
in computing homography, camera matrix and fundamental matrix, in order to
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3D-2D: 3D-3D:2D-2D:

Figure C.1: Three fundamental geometric alignment tasks in Vision. These
tasks are essentially finding the relations (red) between two sets of points.

come up with a common ground. We then seek to realize this in 3D registrations
and analyze the prior arts from this point of view.

C.2 Literature Review

For the sake of consistency, we start with the ICP framework in chapter 2, where
one takes care of the associations {(x,x′)} first and then computes the parame-
ters H/F/P. To simply the discussion, we assume 1-to-1 associations are given
but not exact due to the measurement noise. The number of correspondence
pairs is suggested to be more than it is really required and the parameters are
computed in a least-square manner. Taking homography as example:

Ĥ = min
H

∑
i

d(x′i,Hxi)
2 = min

H

∑
i

‖x′i −Hxi‖
2
, where x′i,xi ∈ N2, (C.1)

which is very similar to the data terms used in 3D deformable registrations.
Nonetheless, since image observations are organized data, there is no need for
an explicit closest-point search like in ICP. One simply considers the locations
mapped by the current estimate H as new correspondences and this is already
well embedded in Eq. C.1, explaining why ICP is seldom used in 2D tracking.

C.2.1 Reprojection error (Gold Standard error)

Besides Eq C.1, a few distance measures are also proposed to be minimized:

• Algebraic distance: dalg(x′,Hx)2 = ‖x′ −Hx‖2.

• Symmetric transfer error: d(x′,Hx)2 + d(x,H−1x′)2.

• Reprojection error: d(x, x̂)2 + d(x′, x̂′)2, s.t. x̂′ = Hx̂.

The algebraic distance is the one used in Eq. C.1. With the constraint of
‖H‖F = 1, the solution is unique and can be obtained in a closed-form man-
ner without iterating, which is known as direct linear transformation (DLT)
algorithm. In contrast to algebraic distances, the latter two are referred to as
geometric distances and Figure C.2 illustrates the idea behind them. The sym-
metric transfer error augments algebraic distances by one error term in the other
image, d(x,H−1x′)2, which is more thorough but the computation of inverse
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(a) symmetric transfer error:

(b) re-projection error:

Figure C.2: Two bi-directional error measures. Image courtesy: [67]. Top:.
Bottom:.

matrix is less desirable. The reprojection error follows this line of thought and
take the measurement errors into account. It introduces the notion of exact
correspondences that fulfill the homography relation perfectly and denotes them
as x̂ and x̂′. The problem then boils down to minimizing the distances between
exact correspondences and measured points.

Empirically, reprojection error demonstrates better accuracy than the other
two [67] and is therefore also known as Gold Standard error. Here, we summa-
rize the Gold Standard error for homography, projection matrix and fundamental
matrix:

• Homography:

Ĥ = min
H,{x̂i}

∑
i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 (C.2)

= min
H,{x̂i}

∑
i

d(xi, x̂i)
2 + d(x′i,Hx̂i)

2, where x′i,xi, x̂i ∈ N2. (C.3)

Degrees of freedom: 9 + 2n. 9 for H and 2n for {x̂}, where n = |{x̂}|.

• Projection matrix:

P̂ = min
P,{x̂i}

∑
i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 (C.4)

= min
P

∑
i

d(x′i,Pxi)
2, where x′i ∈ N2,xi = x̂i ∈ R3. (C.5)

Degrees of freedom: only 12 for P. This special case results from the fact
that when computing camera matrices, 3D points have to be given and are
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usually measured in high accuracy. It follows that x̂ = x, d(x, x̂)2 vanishes
and x̂′ = Px̂ = Px.

• Fundamental matrix:

F̂ = min
F,{x̂i}

∑
i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 (C.6)

= min
P′,{X̂i}

∑
i

d(xi,PX̂i)
2 + d(x′i,P

′X̂i)
2, where xi,x

′
i ∈ N2, X̂i ∈ R3.

(C.7)

Degrees of freedom: 12 + 3n. Here, a pair of camera matrices P = [I|0]

and P′ = [M|t] are defined and n subsidiary 3D points X̂i are introduced.
The final fundamental matrix is computed as F̂ = [t]×M.

We see that Gold Standard errors introduce auxiliary unknown variables
as exact correspondences. When one follows the concept of ICP, it might be
tempting to alternate between solving associations and parameters iteratively. As
the matter of fact, this is not needed when one has organized data like 2D images.
Hartley and Zisserman [67] describe methods thats solve them directly in the
joint parameter-correspondence space using Levenberg-Marquardt optimization,
which is the interpolation between Gauss-Newton and gradient-descent [40].
Similar ideas are actually used in [93, 162] for registering 3D range scans as well,
in which case data is generated from organized 2D depth map. Note however
that, despite the improved accuracy, the complexity increases linearly w.r.t. the
number of correspondence pairs (except for projection matrix), which is in all
respects an undesirable property. Sampson error, as described below, provides a
workaround to alleviate this issue.

C.2.2 Sampson error

The Sampson approximation is originally derived in the conic-fitting prob-
lem [119] and is essentially Taylor first-order expansion under the hood. We
explain its idea in homography estimation and then extend it to fundamental
matrices.

Given a single pair of association (x,x′), the algebraic error minimizes the
norm of a residual vector ε of homography equation x′ = Hx, i.e. ε = x′−Hx ∈
R2. Stacking the correspondence (x,x′) into a 4-vector X ∈ R4, we may rewrite
the residual vector as ε(X) to emphasize the dependency on X. To first order,
this residual function may be approximated by a Taylor expansion:

ε(X + δX) = ε(X) +
∂ε

∂X
δX = ε(X) + JδX. (C.8)

If we write δX = X̂−X, minimizing the reprojection error d(x, x̂)2 + d(x′, x̂′)2

is equivalent to minimizing ‖δX‖2. Meanwhile, since (x̂, x̂′) is the subsidiary
unknowns that really satisfy the homography constraint, namely, ε(X̂) = ε(X +

δX) = 0, minimizing the Gold Standard error now becomes:

• Given X, find the vector δX that minimizes ‖δX‖2 subject to JδX = −ε(X).
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The standard way to solve this problem is using Lagrange multipliers [87],
where a vector λ is introduced and the problem reduces to finding the extrema
of the following:

δ>XδX − 2λ>(JδX + ε). (C.9)

Taking derivatives with respect to δX and equating to zero results in:

2δ>X − 2λJ> = 0, (C.10)

leading us to:

δX = J>λ. (C.11)

Likewise, the derivative with respect to λ equals to zero; we have:

JδX + ε = 0. (C.12)

Putting Eq. C.11 and Eq. C.12 together, we finally reach our solution:

δX = −J>(JJ>)−1ε., (C.13)

which has the pseudo-inverse form of J [89]. The norm ‖δX‖2 is the Sampson
error:

‖δX‖2 = ε>(JJ>)−1ε. (C.14)

A few points to note:

1. Sampson error is an approximation of Gold Standard error.

2. Both ε and J do not depend on auxiliary variables (x̂, x̂′). Consequently,
minimizing Sampson error as in Eq. C.14 involves only the entries of H.

3. The spirit of circumventing auxiliary variables X̂ is replacing it using
Eq. C.13: X̂ = X− J>(JJ>)−1ε, which, as discussed below, is actually an
approximation of true X̂.

4. The algebraic residual function ε is typically multilinear in the entries
of X (as the case of fundamental matrix). It is however, linear in the
homography case, the first order approximation in Eq. C.8 is hence exact
(higher order terms are zero), meaning that Sampson error is identical to
Gold Standard error.

Newton-Raphson root finding analogue. All these remarks can also be prop-
erly visualized in Fig C.3, a Newton-Raphson procedure of root-finding [26]. The
measured association X yields a non-zero residual ε (dashed line) corresponding
to the algebraic distance. The Gold Standard error to be minimized is the dis-
tance from zero-crossing X̂ (unknown) to X. Sampson approaches X̂ (the green
arrow) as Newton-Raphson does for roots. In each step, it takes the direction
that compensates the residual most (the concept of steepest descend), where
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algebraic
distance

Gold Standard distance

Figure C.3: Root-finding analogy for Sampson approximation. This figure
illustrates how algebraic error is related to Gold Standard error.

the step size (Sampson error) is determined by the algebraic distance divided
by the slope (Jacobian J) and it approximates the Gold Standard distance. In
this procedure, the residual vector ε and the Jacobian depend on the measured
associations X or in later iterations on the estimated correspondences X̂0. The
subsidiary variables X̂ are never involved in the parameters being optimized,
which is the key advantage of Sampson approximation.

For fundamental matrix, the Sampson approximation of Gold Standard error
is similarly derived:

‖δX‖2 =
ε>ε

JJ>
=

(
x′>Fx

)2
(Fx)

2
1 + (Fx)

2
2 + (F>x′)

2
1 + (F>x′)

2
2

, (C.15)

where (Fx)j represents the j-th entry of the vector Fx and JJ> is a scalar. Again,
this cost function involves only the entries of F so minimizing Gold Standard
error in this way excludes the set of subsidiary variables and keeps the degree
of freedom to only F. It has been used successfully in estimation algorithms
like [143, 159].

C.3 Gold Standard error in 3D

After reviewing these techniques for estimating 2D transformations, we turn
to investigate how to deploy them in 3D, in particular, for deformable surface
registrations. We focus on if and how the concepts of auxiliary correspondences
and Sampson error are implemented in the literature.

C.3.1 Concept of subsidiary points in 3D

Unlike 2D images where one has organized data, currently the most prevalent
data structure in 3D is indexed points, where one has only a set of point coor-
dinates (meshed or not) and the rest is just empty space. Such fundamental
difference explains why one needs to search for associations in 3D but not in
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Figure C.4: Virtual source points.

2D. Nearest neighbor search is hence the very basic routine in 3D geometry that
yields many speed-up algorithms to improve the efficiency.

3D registration aims to align two sets of indexed points: source and target.
The association step in ICP strives to match the index between them so that
one can construct a least-square data term for the subsequent optimization step.
In [93, 162], Li et al. and Zollhöfer et al. present a data term where target points
are unknown variables to be estimated during optimization. This strategy is
feasible for them because their 3D data is generated from organized 2D depth
maps, the so called 2.5D data. The unknown target points are still parameterized
as the 2D coordinates discussed above. To the best of our knowledge, so far no
one considers the full 3D coordinates as unknown variables and solves them
in optimization. That said, we still observe some cases where people implicitly
introduce auxiliary virtual correspondences to improve 3D registrations.

Virtual source points. First we provide an example on virtual source points.
Fig C.4 recalls the patch-based deformation framework in Fig 2.3. Each vertex
has several locations predicted by its neighboring patches (dashed line). These
points do not physically exist but they are involved in the nearest neighbor
search and are associated to the target point, which is a good example that
virtual correspondences are already used in 3D registrations.

Virtual target points. We also give an example of virtual target points. One
of the biggest traits in EM-ICP is the soft-associations. That is, there are no
deterministic 0-1 correspondences but only probabilistic assignments, which
typically corresponds to a weighted least square problem. As noted in the
Eq. C.16 below, due to the property of least square, the minimizer of multiple
weighted squared error is actually the weighted (averaged) target point, meaning
that the source point is associated a synthetic point that may not exist in the
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observed target point set.

min
x

∑
i

wi ‖x− yi‖2 ≡ min
x
‖x−

∑
i

wiyi‖2, where
∑
i

wi = 1. (C.16)

In [35], Cagniart et al. demonstrate that introducing the predicted dashed
points as candidates (virtual source) helps getting out of local minima, and
that EM-ICP (virtual target) usually yields higher accuracy than traditional ICP,
confirming that the superiority of subsidiary correspondences still holds in 3D.

C.3.2 Sampson error

Last but not least, we also derive the Sampson approximation of Gold Standard
error in 3D. Let us consider a typical 2-norm data term:

algebraic error: min
T
‖Tx− x′‖2 , (C.17)

which minimizes the distance between a transformed source point and the
associated target point. Meanwhile, the reprojection error can be likewise
constructed as it is in the case of homography:

reprojection error: min
T,x̂
‖x− x̂‖2 + ‖x′ − x̂′‖2 , s.t. x̂′ = Tx̂. (C.18)

Following Eq. C.14, one has to define the residual vector ε and the Jacobian
matrix J. The transformation in patch-based deformation framework is:

Tx = R(x− c0) + c. (C.19)

Stacking x and x′ into one 6-vector X, we can derive ε and J as follows:

ε3×1 = Tx− x′ = R(x− c0) + c− x′ (C.20)

J3×6 ,
∂ε3×1

∂X6×1
= [R| − I]3×6 . (C.21)

Next we see that:

JJ> = RR> + II> = 2I, (C.22)

∴ ‖δ‖2 = ε>(JJ>)−1ε =
1

2
ε>ε =

1

2
‖Tx− x′‖2 , (C.23)

which means the Sampson error actually equals to the algebraic error. For this rea-
son, most work in the literature already apply Sampson approximation without
mentioning it explicitly.
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C.4 Conclusion

In this chapter, we review several fundamental techniques and theories in 2D
computer vision, with the aim to investigate their usage in 3D geometry pro-
cessing and in turn to provide a unified view point that bridge the gap between
2D and 3D. By showing examples and deriving formula, we mark that, even
though not explicitly mentioned or noted, two useful techniques, virtual corre-
spondences and Sampson approximation, are already considered in the prior
arts of 3D registrations and their efficacies have also been verified.
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D
Multi-view datasets

Sequence Views Frames Error metric Reference
Samba 8 175 A

Vlasic et al. [148]
Crane 8 175 A
Jumping 8 150 A
Bouncing 8 175 A
Handstand 8 175 A
Skirt 8 720 A

Gall et al. [62]
Dance 8 573 A
Wheel 8 280 A
Handstand2 8 400 A
Free 8 200 A Starck et al. [128]
Fighting 12 500 B Liu et al. [98]
S4_walking 4 350 C & D Sigal et al. [122]
UpJump 48 239 A Allain et al. [6]
Ballet_Seq1 9 500 A

Allain et al. [5]
SideJump 48 150 A
Ballet_Seq2 9 936 A & B

Huang et al. [69]Thomas_Seq1 68 1500 A
Thomas_Seq2 68 1400 A
Cutting 9 81 A

Huang et al. [71]
WalkChair1 9 130 A
WalkChair2 9 148 A & D

Huang et al. [73]HammerTable 9 93 A & D
SideSit 9 97 A & D

Table D.1: Sequences used for evaluation in this thesis. Different subsets are
used in previous chapters. Please refer to the summary in each chapter for more
details. Four distinct error measures are considered. A: silhouette overlap error.
B: distances in R3 to markers. C: 3D error on joint locations. D: 2D pixel error
on joint positions. A and B are metrics for shapes while C and D for poses.
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E
Sequences with outliers

To highlight the main contribution of this thesis, i.e. discriminative associations,
against traditional ICP-based approaches, we record sequences that contains
un-removed outliers, such as chairs and tables.

In Fig. E.1, we show one example frame of these new sequences. The
occluding object, i.e. the chair, is kept after background subtraction and therefore
remains in the subsequent reconstructed point cloud. The reference surfaces is
the smoothed reconstructed visual hulls at t = 0. There is no need to register the
surface to the point cloud with a rigid transformation to initialize the tracking.

We provide two different types of ground truths for evaluations. For shape
evaluation, we manually remove the silhouettes of irrelevant objects if they are
not connected to the subjects, as shown in Fig. E.1. The associated metric is the
standard silhouette overlap error which measures the discrepancies between the
contours of the projected surface and the observed silhouettes. To evaluate the
estimated poses, we annotate the positions of joints in five cameras, and see
how close to them the estimated joints are (2D joint error). These sequences are
available at the 4D Repository1.

1http://4drepository.inrialpes.fr/

image clean silhouette annotated joints original silhouette 

Figure E.1: Example frame of newly recorded sequences. From left to right:
images, generated clean silhouettes, and annotated joint positions of WalkChair.
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F
Authored and Co-authored

Publications

Authored:

1. Huang, C.H., Boyer, E., Allain, B., Franco, J.S., Tombari, F., Navab, N.,
Ilic, S.: Tracking-by-detection of 3d human shapes: from surfaces to vol-
umes. Transactions on Pattern Analysis and Machine Intelligence (2017)
(Submitted)

2. Huang, C.H., Allain, B., Franco, J.S., Navab, N., Ilic, S., Boyer, E.: Volumet-
ric 3d tracking by detection. In: CVPR 2016-IEEE Conference on Computer
Vision and Pattern Recognition (2016) (Spotlight oral presentation)

3. Huang, C.H., Cagniart, C., Boyer, E., Ilic, S.: A bayesian approach to multi-
view 4d modeling. International Journal of Computer Vision 116(2),
115–135 (2016)

4. Huang, C.H., Tombari, F., Navab, N.: Repeatable local coordinate frames
for 3d human motion tracking: From rigid to non-rigid. In: 3D Vision
(3DV), 2015 International Conference on, pp. 371–379. IEEE (2015)

5. Huang, C.H., Boyer, E., do Canto Angonese, B., Navab, N., Ilic, S.: Toward
user-specific tracking by detection of human shapes in multi-cameras. In:
Computer Vision and Pattern Recognition (CVPR), pp. 4027–4035. IEEE
(2015)

6. Huang, C.H., Boyer, E., Navab, N., Ilic, S.: Human shape and pose tracking
using keyframes. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3446–3453. IEEE (2014)

7. Huang, C.H., Boyer, E., Ilic, S.: Robust human body shape and pose tracking.
In: 3DV. IEEE (2013) (Oral presentation, best paper award runner-up)
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Co-authored:

1. Wang, X., Habert, S., Ma, M., Huang, C.H., Fallavollita, P., Navab, N.:
Precise 3d/2d calibration between a rgb-d sensor and a c-arm fluoroscope.
International journal of computer assisted radiology and surgery pp. 1–11
(2016)

2. Wang, X., Habert, S., Ma, M., Huang, C.H., Fallavollita, P., Navab, N.:
[poster] rgb-d/c-arm calibration and application in medical augmented
reality. In: Mixed and Augmented Reality (ISMAR), 2015 IEEE International
Symposium on, pp. 100–103. IEEE (2015)
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