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enjoyable discussions and Tobias Göpel who was my office mate much too short. I would

also like to thank my colleagues and friends which made life at the institute (and especially

the coffee breaks) so enjoyable: Georg Bätz, Daniel Althoff, Markus Rank, Raphaela

Groten, Michael Scheint, Klaas Klasing, Mathias Rambow, Martin Lawitzky, Ken Friedl,
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Abstract

The topic of this thesis is the stability and transparency analysis of haptic teleoperation

systems. Such systems enable an operator to manipulate objects in a remote environment

which might be far away, dangerous, or on a scale other than the human workspace. As

is common in literature, the overall teleoperation system including operator and remote

object, is modeled as a linear time-invariant system, and parametric uncertainties are used

to represent the unknown dynamic properties of operator and environment. Two major

objectives are generally pursued when designing teleoperation systems or parametrizing

controllers. On the one hand, the system must be robustly stable when an operator with

unknown impedance interacts with different remote environments. On the other hand, the

system should be as transparent as possible, i.e., the operator should feel as if he is directly

interacting with the remote environment.

To analyze the robust stability of teleoperation systems a new stability analysis method

for time-delay systems with parametric uncertainties is developed in this thesis. The gen-

eral idea is to determine stable regions in a low-dimensional parameter space. As additional

parameters may be unknown but constrained to an interval, the method is well suited for

the controller design of uncertain time-delay systems. The method is based on evaluating

the value set of the characteristic function of the time-delay system, using a combination

of Taylor Models and polynomials in Bernstein form. This allows for the formulation of

an efficient branch and bound algorithm which makes use of the zero-exclusion principle

to first map boundaries to the parameter space and then examine the stability of dis-

joint regions. The method is not limited to teleoperation systems but can be applied to a

large class of time-delay systems including systems with multiple incommensurate delays

and non-affine parameter dependencies. In contrast to existing robust stability analysis

methods for time-delay systems with incommensurate delays which are generally quite

conservative, the conservatism of our method only depends on the specifiable resolution

with which boundaries are determined in the parameter space. Moreover, the results are

non-conservative if stability is evaluated for a set of interval parameters instead of mapping

the results to the parameter space.

The stability analysis method is complemented by a newly developed transparency analy-

sis method: the distortion caused by the teleoperation system is determined for the whole

range of relevant environment parameters which results in an intuitive parameter-space

transparency analysis of teleoperation systems. The newly developed stability and trans-

parency analysis methods are applied to a number of different teleoperation architectures

and the suitability of different architectures is evaluated for different time delays. Stability

and transparency generally deteriorate for increasing time delay, but some architectures,

e.g., the transparency-optimized four-channel architecture and the position-based admit-

tance control architecture can be parametrized so as to offer good transparency for very

small time delays while being robustly stable for larger time delays.

Finally, a natural extension of the stability analysis method towards optimal parametriza-

tion of linear time-invariant systems with incommensurate time delays and parametric

uncertainties is outlined.
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Zusammenfassung

Das Thema dieser Arbeit ist die Stabilitäts- und Transparenzanalyse von haptischen Te-

lepräsenzsystemen. Solche Systeme ermöglichen es einem Menschen Arbeiten in einer ent-

fernten Umgebung durchzuführen. Wie in der Literatur üblich wird das Telepräsenzsystem

als linear zeitinvariantes System modelliert, wobei die unbekannte Dynamik von Mensch

und entfernter Umgebung durch parametrische Unsicherheiten modelliert wird. Zwei Ziele,

die bei der Entwickelung und Reglerparametrierung von Telepräsenzsystemen in der Regel

verfolgt werden sind die robuste Stabilität des Gesamtsystems, unabhängig von der Umge-

bung mit der man interagiert, sowie eine möglichst hohe Transparenz, also eine möglichst

natürliche Darstellung der entfernten Umgebung.

Zur robusten Stabilitätsanalyse von Telepräsenzsystemen wird in dieser Arbeit eine neue

Methode vorgestellt, welche für ein totzeitbehaftetes System stabile und instabile Regionen

in einem niedrig-dimensionalen Parameterraum bestimmt. Die Methode eignet sich auch

zum Reglerentwurf weil weitere Parameter auf ein Interval beschränkt sein können. Die

Grundidee besteht darin, die Wertemenge der charakteristischen Funktion der System-

matrix zu bestimmen und diese auf Nullausschluss zu überprüfen. Wegen der Totzeiten

handelt es sich bei der charakteristischen Funktion um ein Quasipolynom welches durch

ein Taylorpolynom mit Restintervall überapproximiert wird. Das Polynom wird in Bern-

steinform transformiert und ein Branch and Bound Algorithmus bestimmt Nulleinschluss

und -ausschluss. Die Methode ist nicht auf Telepräsenzsysteme beschränkt sondern lässt

sich auf eine große Klasse totzeitbehafteter Systeme mit parametrischen Unsicherheiten

anwenden, auch auf Systeme mit mehreren inkommensurablen Totzeiten. Wie konservativ

die Ergebnisse der vorgestellten Methode sind, lässt sich direkt spezifizieren, wobei ein we-

niger konservatives Ergebnis lediglich zu einer längeren Berechnungszeit führt. Dies steht

im Gegensatz zu existierende Stabilitätsanalyseverfahren für totzeitbehaftete System wel-

che im Allgemeinen sehr konservativ sind, speziell im Fall mit mehreren Totzeiten, aber

auch im Fall mit einer Totzeit und zusätzlichen parametrischen Unsicherheiten.

Die Stabilitätsanalysemethode wird duch eine neu entwickelte Methode zur Transparenz-

analyse von Telepräsenzsystemen ergänzt. Kern dieser Methode ist die Untersuchung der

Abweichung zwischen Umgebungsimpedanz und dem Bediener dargestellter Impedanz im

Parameterraum. Die neu entwickelten Methoden zur Stabilitäts- und Transparenzanalyse

werden verwendet um verschiedene Telepräsenzarchitekturen zu untersuchen. Der Haupt-

fokus dieser Untersuchung ist der Effekt kleiner aber nicht vernachlässigbare Totzeiten

auf die Eigenschaften der verschiedenen Architekturen. Im Allgemeinen nimmt sowohl die

Transparenz als auch die Größe des stabilen Parameterraums für steigende Totzeiten ab.

Einige Architektueren, beispielsweise die transparenzoptimierte Vierkanalarchitektur oder

die positionsbasierte Admittanzregelung mit Kraftaustausch können aber so parametriert

werden, dass sie im Fall sehr kleiner Zeitverzögerungen sehr gute Transparenzeigenschaften

bieten und auch für etwas größere Zeitverzögerungen Stabilität sichergestellt wird.

Abschließend wird ein Ausblick auf eine mögliche Erweiterung des Stabilitätsanalyse-

verfahrens hin zu einer automatischen Parametrierung linear zeitinvarianter Systeme mit

mehreren Zeitverzögerungen und parametrischen Unsicherheiten gegeben.
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Kf force controller gain

Kp, Kd proportional and derivative gain of position controller

b wave damping

md, bd virtual inertia and damping of virtual admittance Yd(s

xdm, ẋdm, ẍdm position, velocity, acceleration of virtual admittance (master side)

xds, ẋds, ẍds position, velocity, acceleration of virtual admittance (slave side)

Towards Optimal Parametrization of LTI Systems

g cost function

f characteristic function

c performance constraints

p tunable parameters

q̄ nominal parameters

t̄d nominal time delays

ωmax upper frequency bound for performance optimisation and constraints

G(s) plant model

K(s) controller model

F (s) prefilter

Gd(s) desired closed-loop transfer function

r reference input

w filtered reference input

e tracking error

em meansured tracking error

eM model matching error

u′ controller output

u actuator signal

y′ plant output

y controlled signal

d1 plant input disturbance

d2 plant output disturbance

n sensor noise

S(s) sensitivity function

T (s) complementary sensitivity function

SK(s) input sensitivity function

SG(s) output sensitivity function

E(s) model matching error function

P a set of admissible parametters
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Notations

P i set of parameters satisfying performance constraint i

P c set of parameters satisfying all performance constraints

P s set of parameters satisfying stability constraints
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1 Introduction

Autonomous robotics have made great strides in the past years and many challenging prob-

lems have been tackled successfully. Nevertheless, the current state of robotic cognition is

still very far from the cognitive skills of humans, especially when considering adaptation

to unknown problems in unstructured environments. In contrast to autonomous robots,

teleoperation systems keep the human in the loop. Using a teleoperation system, an op-

erator can control the actions of a robotic system and thereby perform tasks in a remote

environment which can be separated from the operator by different barriers. The remote

environment can be far away from the operator (e.g., outer space), can be very small (e.g.,

microsurgery) or very large (e.g., construction work), can be dangerous (e.g., nuclear power

plants), etc. For a thorough introduction to teleoperation and all aspects involved, see the

book by Sheridan [2].

command 

signals 

sensor 

information 

b
a

rr
ie

r 

cameras 

microphones 

force/position 

sensors 

local remote 

control 

loop loop 
control 

teleoperatoroperator and human-system interface

Figure 1.1: Principle of a multi-modal teleoperation system taken from [3].

In general, teleoperation systems provide feedback to the operator in different modal-

ities, e.g., visual feedback, auditory feedback, and haptic feedback. The principle of a

multi-modal teleoperation system is illustrated in Fig. 1.1. An example of a highly inte-

grated multi-modal teleoperation system can be found in [3]. That system incorporates

complex solutions for haptic, visual, and auditory feedback. A less complex realization

of visual and auditory feedback is however very straightforward, e.g., by using a webcam

with microphone at the remote site and displaying the video and audio using a computer

monitor and loudspeakers. In contrast, even simple realizations of haptic feedback, are

challenging due to the bilateral energy exchange involved, which can cause instabilities

and potentially harm the operator or cause damage in the remote environment.

In this thesis, we focus on haptic teleoperation which enables the manipulation of ob-

jects in the remote environment and reflects interaction forces back to the operator, and
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1 Introduction

is therefore often referred to as telemanipulation or bilateral force-reflecting teleoperation.

There are two main goals when developing a telemanipulation system: a robustly stable

interaction with a range of unknown remote environments is necessary while a transpar-

ent interaction with the remote environments is desirable. A perfectly transparent tele-

operation system would not distort the impedance displayed to the operator, i.e., when

interacting with a remote environment using this teleoperation system the operator would

feel the same impedance as when directly interacting with the remote environment. In

practice, a perfectly transparent teleoperation system can not be realized [4]. Instead,

a compromise between stability and transparency must be accepted, i.e., a system must

be developed which is robustly stable for different remote objects and at the same time

sufficiently transparent. Haptic teleoperation has been a field of active research for several

decades. An overview of the developments in this field is, e.g., given in [5]. This thesis

introduces new methods for stability and transparency analysis of teleoperation systems.

The general idea is to derive methods which are less conservative than existing methods

and easily interpretable.

1.1 Problem Statement

Stability and transparency analysis of a complex teleoperation system like the one devel-

oped in [3] is extremely challenging. This is due to the fact that the overall system is

very complex, e.g., due to unknown dynamic properties of the remote environment, un-

known dynamic properties of the human operator, time delay between the operator site

and remote site, non-linear dynamics of all subsystems involved (operator, haptic inter-

face, communication channel, teleoperator, environment), as well as time-varying operator

dynamics, environment dynamics, and time delay. As addressing all of these issues is

not possible in practice, some simplifying assumptions are generally made which make a

solution to the stability and transparency analysis feasible1: the teleoperation system is

modeled as linear and time-invariant, and the remote environment and human operator

are modeled as linear mass-spring-damper systems with unknown parameters constrained

to intervals. Using these assumptions we can represent the closed-loop system includ-

ing operator and environment by a Linear Time-Invariant (LTI) time-delay system with

parametric uncertainties.

This represents a rather common system class to which a number of existing stability

analysis methods are applicable. These methods are, however, generally very conserva-

tive. Therefore, a new method for the stability analysis of LTI time-delay systems with

parametric uncertainties is developed in this thesis. This method is not only suitable

for the stability analysis of teleoperation systems as is illustrated by several examples.

When considering the transparency analysis of teleoperation systems, it becomes clear

that existing methods require an in-depth understanding of teleoperation systems by the

system designer, and the results are limited to special cases and not easily interpretable.

In contrast, our new approach to transparency analysis focuses on offering an intuitive

understanding of the effect of a teleoperation system and controller on transparency. The

1 The assumptions are formulated and discussed in greater detail in Section 4.2.1.
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1.2 Contributions and Outline of the Thesis

results are easily interpretable by anyone with a basic understanding of simple impedance

models.

1.2 Contributions and Outline of the Thesis

The first main result of this thesis is a stability analysis method for LTI systems which

can either determine stable and unstable regions in the parameter space with minimal

conservatism or non-conservatively check stability of a system with interval parameters.

This method is not restricted to teleoperation systems but can be applied to arbitrary

LTI systems of retarded type with parametric uncertainties and concentrated (possibly

incommensurate) time delay. The method can handle non-affine dependencies of the char-

acteristic equation on the uncertain parameters, i.e., the coefficients of the characteristic

equation may depend polynomially on the uncertain parameters. Moreover, it is not lim-

ited in the number of uncertain parameters, scales to systems of high order, and can be

used to determine regions in the parameter space which constrain eigenvalues of the system

to a given region in the complex plane, thereby imposing further constraints on system

dynamics, e.g., a desired minimum damping. The resulting stability regions are rigorously

determined with a specifiable amount of conservatism. The method is based on interval-like

computations using Taylor Models which result in polynomials and interval remainders. A

transformation of the polynomial parts into Bernstein form allows for efficient branch and

bound algorithms which allow to rigorously determine bounds on the polynomial parts.

This, in essence, transforms sufficient, conservative conditions into necessary conditions

(with a specifiable amount of remaining conservatism). More concretely, this approach

is used to map regions from the complex plane to the parameter space by computing

the so-called value set and making use of the zero exclusion principle. This results in an

easily interpretable graphical stability check. The stability analysis method is presented

in Chapter 3. It makes use of mathematical foundations introduced in Chapter 2. In

these two chapters a general formulation is chosen which is not restricted to teleoperation

systems. The generality of the developed method is further emphasized in Chapter 3 by

some examples taken from literature on robust stability analysis which are not related to

teleoperation.

The second main contribution is a novel transparency analysis method which is intro-

duced in Section 4.4. Common transparency measures for haptic teleoperation consider

one or two fixed environments only, usually the extreme cases of free space and stiff con-

tact. In contrast, our approach offers insights into the range of environments for which a

system achieves a desired transparency by approximating the impedance displayed to the

operator by means of a simple, physically interpretable mechanical impedance. A numeri-

cal optimization is used to determine the parameters characterizing this impedance model

which results in an intuitive graphical representation of the transparency of a teleoperation

system. As the method is based on a general four-channel architecture it can be used to

analyze a large number of different teleoperation setups.

The third main result is a detailed stability and transparency analysis for a number of

different teleoperation architectures in Chapter 4 which mainly focuses on evaluating the

effect of time delay on stability and transparency. Therefore, we combine our newly de-
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1 Introduction

veloped stability and transparency analysis methods. For each architecture we first design

a controller which stabilizes the teleoperation system for a range of uncertain parameters

(due to unknown environment and operator dynamics) and time delays between the opera-

tor side and teleoperator side. Then, our transparency analysis method is used to evaluate

the transparency for different time delays.

Finally, a possible future extension of the stability analysis algorithm towards an auto-

matic optimal parametrization of LTI systems with parametric uncertainties and (possibly

incommensurate) time delays is outlined in Chapter 5. The proposed method consists of

combining the stability analysis method with performance constraints and a cost func-

tion defined as weighted sum of different frequency-dependent performance metrics and

then solving a constrained global optimization problem. A general formulation is again

chosen which is not restricted to teleoperation. However, one possible application of this

method would be an automatic parametrization of a teleoperation system which optimizes

transparency while assuring robust stability.
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2 Mathematical Foundations

Summary. In this chapter the mathematical foundations used in this thesis are

presented. This includes a short summary of interval arithmetic, Bernstein poly-

nomials, and Taylor Models. Using these mathematical tools a method to evaluate

the value set of a Taylor Model is developed, which results in an inner and outer

approximation of the exact value set. This value set evaluation is the main re-

sult of this chapter, and forms the basis of the robust stability analysis method

developed in this thesis.

The stability analysis method developed in this thesis is based on evaluating the value set of

the characteristic function of a dynamic system with uncertain system parameters. A value

set represents the set of values a function takes for given parameter ranges. As a calculation

of the exact value set of a characteristic function is not possible in general [6, Section 4.4.2],

we develop a method to determine an inner and outer approximation of the value set.

In the case considered, a linear time-invariant system with parametric uncertainties and

time delay, the characteristic function takes the form of an uncertain quasi-polynomial.

More concretely, the characteristic function consists of a complex-valued polynomial de-

pending on parameters constrained to given intervals and exponential terms with complex-

valued exponent, again depending on interval parameters. Therefore, we must determine

the value set of a complex-valued function with interval parameters (to deal with the

parametric uncertainty) and exponential terms (to deal with time delay).

In this chapter, a method which is based on [7] is developed which evaluates the value

set of such a function using Taylor Models and Bernstein polynomials. While the method

in [7] is limited to value sets of polynomials, our method can determine the value set

of arbitrary holomorphic functions. A function is holomorphic on the domain U if it is

complex differentiable at every point u ∈ U [8]. A holomorphic function maps domains,

i.e. open connected sets, to domains [9]. Polynomials, trigonometric functions, exponential

functions, and quasi-polynomials are holomorphic functions [8]. In contrast to the method

presented in [7] our method is therefore applicable to linear time-invariant systems with

time delay as these can be described by a quasi-polynomial.

This chapter is structured as follows. In Section 2.1, the definition of a value set is

given and the general approach used to determine the value set is described. Interval arith-

metic, which offers the most straightforward approach to computing bounds of arbitrary

functions, is introduced in Section 2.2. Then, multivariate polynomials are defined, the

Bernstein transformation is introduced, and it is shown how the value set of a polynomial

can efficiently be determined using algorithms for subdivision and derivative estimation

that operate directly on Bernstein coefficients in Section 2.3. Finally, Taylor Models are

introduced in Section 2.4. Taylor Models represent an arbitrary function as a polynomial

and additional interval remainder, and allow an efficient evaluation of the value set of a

holomorphic function using the novel method presented in Section 2.4.5.
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2 Mathematical Foundations

2.1 Definition of Value Set

In this thesis we consider a complex-valued function f(x) : Rl → C. We would like to

determine the set of values this function takes for a given set of l-dimensional parameter

values x ∈X. In the following we call this the value set f(X) which is defined as

f(X) : = {f(x) | x ∈X} . (2.1)

Throughout the rest of the thesis we consider the set X to be a closed l-dimensional

interval box.

An exact calculation of the value set f(X) is not possible in general. When considering

the characteristic function of a time delay system, e.g., an analytic solution can only be

found for a few special cases [6, Section 4.4.2]. Instead, we calculate an outer approx-

imation and an inner approximation of the value set. The complex function, evaluated

for any parameter within the given parameter-set is always contained within the outer

approximation, i.e., the exact value set is a subset of the outer approximation of the value

set. Likewise, the exact value set contains the inner approximation of the value set, i.e.,

the inner approximation is a subset of the exact value set.

In this thesis, the following novel method is used to calculate an inner and outer ap-

proximation of the value set of a complex-valued function. First, the function is evaluated

using Taylor Models. This results in a complex Taylor Model, i.e., a complex normalized

multivariate polynomial and complex interval remainder. The polynomial part is then

transformed into Bernstein form resulting in complex Bernstein coefficients. Inner and

outer approximations of the polynomial part can efficiently be determined directly from

the complex Bernstein coefficients [7], see Section 2.3.7. Finally, inner and outer approx-

imations of the complete Taylor Model are determined by taking the interval remainder

into account as presented in Section 2.4.5. As a prerequisite, a definition of intervals as

well as interval arithmetic is required which is introduced in the following section.

2.2 Intervals

Interval arithmetic in its current form was introduced by R. E. Moore around 1960. No-

table publications include his dissertation [10] and shortly afterwards the well known book

Interval Analysis [11]. Interval arithmetic offers the most straightforward approach to

rigorously determine the value set of arbitrary functions.

A closed interval X ∈ [R] with lower bound X and upper bound X is defined as

X : =[X,X] = {x ∈ R | X ≤ x ≤ X}.
An l-dimensional interval box X ∈ [R]l is defined as

X : =[X1 ×X2 × . . .×Xl] = {x ∈ Rl | Xk ≤ xk ≤ Xk ∀ 1 ≤ k ≤ l}.
For future use, we also define the unit interval U and unit interval box U of dimension l

as

U : ={u ∈ R | 0 ≤ u ≤ 1} (2.2)

U : =[U1 × U2 × . . .× Ul] = {u ∈ Rl | 0 ≤ uk ≤ 1 ∀ 1 ≤ k ≤ l}. (2.3)

6



2.2 Intervals

2.2.1 Arithmetic

Arithmetic operations on intervals are defined in such a way that the inclusion property

[ min
a∈A, b∈B

(a ◦ b), max
a∈A, b∈B

(a ◦ b)] ⊆ A ◦B

holds for all operations ◦ on the two intervals A and B where the result is again an interval.

Exact definitions may be given for all arithmetic operations.

Addition and multiplication are defined as

A+B : =[A+B, A+B]

AB : =[min(AB, AB, AB, AB), max(AB, AB, AB, AB)]

where min() and max() return the minimum and maximum of the elements respectively.

Subtraction and division are achieved with the help of unary operations for negation and

multiplicative inverse, i.e.

A−B : =A+ (−B)

−B : =[−B, −B]

A/B : =A(1/B)

1/B : =

{
[1/B, 1/B] for 0 6∈ B
NaI for 0 ∈ B

where NaI stands for Not an Interval. This is the interval-equivalent to Not a Number

and implies that any operation involving NaI again returns NaI.

2.2.2 Elementary Functions

In addition to the arithmetic operations, elementary functions for the exponential ex or

alternatively the trigonometric functions sin(x) and cos(x) are required to represent time

delays. Such elementary functions f(A) may be determined using the inclusion property

as

[min
a∈A

f(a), max
a∈A

f(a)] ⊆ f(A).

For monotonic functions the interval is given by the value at the end-points. For non-

monotonic functions (e.g. the trigonometric functions) minima and maxima between the

two end-points must be taken into account!

2.2.3 Complex Intervals

In the following complex functions are evaluated, i.e., complex intervals are required in

addition to real intervals. A closed complex interval X ∈ [C] with lower bound X and

upper bound X is defined as

X : =[X,X] = {x ∈ C | Re(X) ≤ Re(x) ≤ Re(X), Im(X) ≤ Im(x) ≤ Im(X)}.

7



2 Mathematical Foundations

Unit interval U and unit interval box U of dimension l may be defined for the complex

case as

U : ={u ∈ C | 0 ≤ Re(u) ≤ 1, 0 ≤ Im(u) ≤ 1, } (2.4)

U : ={u ∈ Cl | 0 ≤ Re(uk) ≤ 1, 0 ≤ Im(uk) ≤ 1 ∀ 1 ≤ k ≤ l}. (2.5)

Arithmetic operations and elementary functions on complex intervals may be determined

directly from the definition of arithmetic operations and elementary functions on complex

numbers. E.g., addition and multiplication of the complex intervals A,B ∈ [C] are defined

as

A+B : = Re(A) + Re(B) + j(Im(A) + Im(B))

and

AB : = Re(A) Re(B)− Im(A) Im(B) + j (Re(A) Im(B) + Im(A) Re(B))

where the operations on real intervals (Re(A),Re(B), Im(A), Im(B)) are given in Sec-

tion 2.2.1.

2.2.4 Approximation of Value Set

Interval arithmetic can be used to directly calculate outer bounds of a function with inter-

val parameters and thereby approximate the value set. However, due to the dependency

problem interval arithmetic generally suffers from a large overapproximation when deter-

mining outer bounds of functions with dependent terms, see, e.g., the recent Introduction

to Interval Analysis by Moore et al. [12]. Thus, pure interval arithmetic is not employed

in this thesis to calculate bounds of functions.

2.3 Polynomials

In this section a definition of multivariate polynomials is given. Then, the Bernstein Trans-

formation is introduced which results in Bernstein polynomials and Bernstein coefficients.

The Bernstein coefficients can be used to efficiently determine bounds of a polynomial and

thereby approximate the value set of a polynomial. In the following, first a multi-index is

introduced which is then used for a compact formulation of multivariate polynomials.

2.3.1 Notation

A multi-index I of length l is an l-tuple defined as

I : =(i1, i2, . . . , il) with ik ∈ N0, 1 ≤ k ≤ l. (2.6)

We define several operations on multi-indices to allow for a compact formulation in the

following sections. Let I and J be multi-indices of length l as defined in (2.6) and x ∈ Rl,

then

xI : =
l∏

k=1

xikk (2.7)
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2.3 Polynomials

which is used to compactly formulate polynomials in Section 2.3.2. A compact formulation

of binomial coefficients for multi-indices is defined as

(
I

J

)
: =

l∏
k=1

(
ik
jk

)
(2.8)

where (
ik
jk

)
=

ik!

(ik − jk)! jk!
. (2.9)

The operator ≤ is used to define the set of all multi-indices for which all elements of each

multi-index are smaller than or equal to the corresponding index of a given multi-index

N , i.e.

I ≤ N ⇔ I ∈ {(i1, i2, . . . , il) | ik ≤ nk ∀ 1 ≤ k ≤ l} . (2.10)

Subtraction of two multi-indices is defined as

J − I : =(j1 − i1, j2 − i2, . . . , jl − il) (2.11)

and we define an operation to modify one element of a multi-index of length l as

Ir,µ : =(i1, . . . , ir + µ, . . . , il). (2.12)

This notation is mostly adopted from [7] which is the publication this section is largely

based on.

2.3.2 Definition

A multivariate polynomial p(x) for x ∈ Rl may be written as

p(x) =
∑
I≤N

aIx
I

where all definitions are given in Section 2.3.1, the multi-index N is referred to as the

degree of the polynomial, and aI ∈ R is a scalar coefficient of the multivariate polynomial.

Any multivariate polynomial in l variables of order N may be described by a set of multi-

indices I ≤ N and corresponding coefficients aI . The number of multi-indices is uniquely

defined by the order of the multivariate polynomial N . An arbitrary number of coefficients

aI with I ≤ N may however be zero.

The stability analysis in the following chapters involves multivariate polynomials with

complex coefficients and complex variables. These may be defined analogously, with vari-

ables x ∈ Cl and scalar coefficients aI ∈ C.
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2 Mathematical Foundations

2.3.3 Normalization

The methods introduced in the following sections require a normalized multivariate poly-

nomial where each variable is in the range U = [0, 1] (real case) or U = [0, 1] + j[0, 1]

(complex case). Any multivariate polynomial p(x) on the l-dimensional interval box X

can be transformed to the unit interval box U using a coordinate transformation, i.e.

p(x) =
∑
I≤N

aIx
I =

∑
I≤N

ãI(X)uI = p̃(u,X), (2.13)

where the multi-index N is referred to as the degree of the polynomial, operations on multi-

indices are defined in Section 2.3.1, and u ∈ U with U the l-dimensional unit interval box

(real or complex).

2.3.4 Bernstein Transformation

In this section the multivariate polynomial is transformed into Bernstein form. As will

become evident in the following, this allows for an efficient evaluation of the value set

of a multivariate polynomial. See Section 2.3.1 for the definitions of the operations on

multi-indices which are used here for a compact formulation.

A normalized multivariate polynomial p̃(u,X) (see Section 2.3.3) may be transformed

into Bernstein form by

p̃(u,X) =
∑
I≤N

ãI(X)uI =
∑
I≤N

bI(X)BN,I(u), (2.14)

where I is a multi-index which is element-wise smaller or equal to the multi-index N which

is the degree of the polynomial (see Section 2.3.1), and bI(X) are the Bernstein coefficients

while BN,I(u) are Bernstein polynomials.

The Bernstein coefficients bI(X) are computed from the coefficients ãJ(X) (J is another

multi-index) by

bI(X) =
∑
J≤I

(
I

J

)
(
N

J

) ãJ(X) (2.15)

and BN,I(u), the Ith Bernstein polynomial of degree N is1

BN,I(u) =

(
N

I

)
uI(1− u)(N−I).

The Bernstein transformation and calculation of Bernstein coefficients is valid for real as

well as complex polynomials.

1 An approximation of the value set as well as the other necessary algorithms (subdivision and derivative

estimation) only require the Bernstein coefficients bI(X). Therefore, it is not actually necessary to

calculate the Bernstein polynomials BN,I(u).
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2.3.5 Approximation of Value Set

For real polynomials the Bernstein transformation has two interesting properties with

respect to evaluating the value set2. On the one hand, an outer bound for the range

of a real polynomial is given by the smallest and largest coefficient of the corresponding

Bernstein polynomial, i.e.

min
I≤N

(bI(X)) ≤ min
x∈X

(p(x)) ≤ p(x)|x∈X≤ max
x∈X

(p(x)) ≤ max
I≤N

(bI(X)). (2.16)

On the other hand, an inner bound for the range of the polynomial can easily be determined

from the multi-indices S0 of the Bernstein polynomial corresponding to the vertices of the

interval box X, which are given by

S0 : = {(i1, i2, . . . , il) | ik = 0 ∨ ik = nk ∀ 1 ≤ k ≤ l} , (2.17)

where nk is element k of multi-index N . The Bernstein coefficients of the multi-indices S0

on the vertices of the interval box are exact, i.e., they have exactly the same value as the

polynomial when evaluated for the values corresponding to these vertices. Therefore, these

Bernstein coefficients represent inner bounds of the polynomial, i.e.

min
I∈S0

(bI(X)) ≥ min
x∈X

(p(x)) ∧max
I∈S0

(bI(X)) ≤ max
x∈X

(p(x)). (2.18)

Combining the properties for inner and outer bounds we can derive an approximation of

the minimum value minx∈X(p(x)) and maximum value maxx∈X(p(x)) of the polynomial

for all values x ∈X as

min
I≤N

(bI(X)) ≤min
x∈X

(p(x)) ≤ min
I∈S0

(bI(X)) (2.19)

max
I≤N

(bI(X)) ≥max
x∈X

(p(x)) ≥ max
I∈S0

(bI(X)). (2.20)

This represents an approximation of the value set of the polynomial.

If the upper and lower bound for the minimum or maximum value are identical we know

the minimum or maximum value exactly, i.e., the bound of the value set is sharp. This

can be checked using the following conditions:

min
I∈S0

(bI(X)) = min
I≤N

(bI(X))→ min
x∈X

(p(x)) = min
I≤N

(bI(X)) (2.21)

max
I∈S0

(bI(X)) = max
I≤N

(bI(X))→ max
x∈X

(p(x)) = max
I≤N

(bI(X)) (2.22)

2.3.6 Bernstein Algorithms

As described in the previous section, Bernstein polynomials offer a fast approximation of

the value set of a polynomial. The resulting value set suffers from two difficulties.

2 These properties also hold for the real and imaginary part of complex polynomials. More elaborate

results for the value set of complex polynomials may however be determined by the method described

in Section 2.3.7.
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On the one hand, the value set is not sharp in general, i.e., we can only determine that

the minimum value and maximum value of the polynomial lie within certain ranges which

may be very large in practice. Therefore, two Bernstein algorithms are presented in this

section which allow to determine the value set of the polynomial up to a desired accuracy3

On the other hand, the stability analysis algorithm in Chapter 3 requires a subdivision

of the original interval box X so as to find regions in X for which the value set of the

polynomial is within a given range. The same two Bernstein algorithms can be used to

efficiently solve this problem within a branch and bound algorithm which is presented in

Chapter 3.

The algorithms presented in the following are a subdivision algorithm and a derivative

estimation algorithm. The subdivision algorithm efficiently determines Bernstein coeffi-

cients of sub-boxes from the Bernstein coefficients of the original interval-box, i.e., the

original interval box is split into two new interval-boxes and the Bernstein coefficients of

these interval-boxes are determined from the Bernstein coefficients of the original interval

box. This subdivision algorithm was first introduced in [13]. We could simply split the

original box along each dimension in turn, until the desired accuracy is reached for the

value set, or an interval-box is found, for which the value set is within a given range. This

is however very inefficient. Instead, the subdivision direction is selected using a derivative

estimation algorithm which efficiently estimates partial derivatives of the polynomial. This

algorithm was first introduced in [7].

Subdivision Algorithm

Consider a Bernstein polynomial with Bernstein coefficients bI(X), I ≤ N as defined in

(2.14) and (2.15) on the l-dimensional interval box X. The algorithm presented in [13],

reformulated in [7], and summarized in this section allows to split the interval box X along

dimension r at point λ into two interval boxes Y , Z so that

Yi = Zi = Xi ∀ 1 ≤ i ≤ l, i 6= r (2.23)

Yr = [Xr, Xr + λ(Xr −Xr)] (2.24)

Zr = [Xr + λ(Xr −Xr), Xr] (2.25)

and then determine the Bernstein coefficients bI(Y ) and bI(Z) directly from the Bernstein

coefficients bI(X), i.e., without performing a Bernstein transformation. The value of λ is

restricted to 0 < λ < 1, for subdivision into two equally sized parts λ = 0.5 is used.

First, set

b
(0)
I (Y ) = bI(X) (2.26)

for all I ≤ N . Then, calculate b
(k)
I recursively for k = 1, 2, . . . , nr using

b
(k)
I (Y ) =

{
b
(k−1)
I (Y ) for 0 ≤ ir < k

(1− λ)b
(k−1)
Ir,−1

(Y ) + λb
(k−1)
I (Y ) for k ≤ ir ≤ nr

(2.27)

where for each value of k, the computation is carried out for all I ≤ N in order of increasing

ir, i.e., starting with ir = 0 and continuing with ir = 1, 2, . . . , nr. Note that apart from

the order of ir the order within I ≤ N is not relevant.

3 Only limited by machine precision.
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2.3 Polynomials

The Bernstein coefficients bI(Y ) and bI(Z) of the two new interval boxes Y and Z are

then given by

bI(Y ) = b
(nr)
I (Y ) (2.28)

b(i1,...,nr−k,...,il)(Z) = b
(k)
(i1,...,nr,...,il)

(Y ) (2.29)

for all multi-indices I ≤ N .

Derivative Estimation

Two different cases must be considered when deciding in which direction the interval box

should be split.

On the one hand, we would like to determine an accurate value set. Therefore, we would

like to split the interval box in the direction where the bounds of the polynomial become

as accurate as possible. We can make use of the fact that the bounds of a polynomial

which is linear in all variables are exact. This is known as the linear precision property of

the Bernstein approximation, see, e.g., [14]. The second derivative of a polynomial which

is linear in all variables is zero. Therefore, we try to minimize the second derivative by

splitting the interval box in the direction where the absolute value of the second partial

derivative is largest.

On the other hand, we would like to determine the value set of the polynomial as exactly

as possible for different sub-boxes. Therefore, we would like to split the interval box in

the direction where the sizes of the value sets of the resulting sub-boxes are minimal. The

size of the value set of a polynomial with first derivative zero is zero. Therefore, we try to

minimize the first derivative by splitting the polynomial in the direction where the absolute

value of the first partial derivative is largest.

An efficient method exists to estimate the µth partial derivative of a Bernstein polyno-

mial and thereby select a direction for subdivision of the Bernstein polynomial which was

first presented in [7].

Using the difference operator ∆
(k)
r defined as

∆(k)
r bI(X) : =

{
bI(X) for k = 0

∆
(k−1)
r bIr,1(X)−∆

(k−1)
r bI(X) for k > 0

(2.30)

the µth partial derivative of the polynomial p̃(u,X) in direction r may be determined by

∂µp̃(u,X)

∂uµr
=

nr!

(nr − µ)!

∑
I≤Nr,−µ

∆(µ)
r bI(X)BNr,−µ,I(u). (2.31)

See, e.g., [15] for a detailed derivation of this result. Equation (2.31) may be used to

determine the partial derivative of a polynomial given in Bernstein form for any point in

the normalized interval box u ∈ U .

From (2.31) an efficient algorithm for estimating the maximum partial derivatives

max
u∈U
|∂

µp̃(u,X)

∂uµr
| ≤ Ĩ(µ)r (2.32)

13
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is derived in [7] as

Ĩ(µ)r =
nr!

(nr − µ)!
max

I≤Nr,−µ
|∆(µ)

r bI(X)| (2.33)

by employing the triangle inequality and properties∑
I≤N

BN,I(u) = 1 ∀ u ∈ U (2.34)

BN,I(u) ≥ 0 ∀ u ∈ U , I ≤ N (2.35)

of the Bernstein polynomial4.

2.3.7 Value Set of Complex Polynomials

A complex multivariate polynomial may be described by

p(x) =
∑
I≤N

aIx
I (2.36)

=
∑
I≤N

Re(aIx
I) + j

∑
I≤N

Im(aIx
I). (2.37)

with x ∈ Cl and aI ∈ C for all I ≤ N where N is a multi-index of the degree of the

polynomial (see definitions in Section 2.3.1).

When determining the value set of such a complex polynomial using Bernstein coeffi-

cients two approaches are possible. On the one hand, we can separately determine Bern-

stein coefficients for the real and imaginary part of the complex polynomial. The resulting

approximations of the value set are conservative in general, as the result is constrained to

a complex interval-box with horizontal and vertical edges. On the other hand, complex

Bernstein coefficients bI(X) can be determined which results in a more exact outer ap-

proximation than when separately considering the real and imaginary part. In addition,

this allows to determine inner approximations of the value set.

The calculation of complex Bernstein coefficients bI(X) from the polynomial is identical

to the calculation of real coefficients. First, the multivariate polynomial is normalized (see

Section 2.3.3) resulting in

p(x) =
∑
I≤N

aIx
I =

∑
I≤N

ãI(X)uI = p̃(u,X). (2.38)

Then, the complex Bernstein coefficients bI(X) are calculated as described in Section 2.3.4.

These Bernstein coefficients are used in the following to determine inner and outer approx-

imations of the value set.

4 In [7] equation (2.32) is given as approximation instead of inequality. The inequality given here is a

more precise formulation.

14



2.3 Polynomials

Outer Approximation

According to [7] the region in the complex plane in which the polynomial p̃(u,X) lies for

u ∈ U is bounded by the convex hull H(X) of the complex Bernstein coefficients bI(X)

which is given by

H(X) = hullI≤N(bI(X)) (2.39)

where the operation I ≤ N is described in Section 2.3.1 and hull represents an operation to

determine the convex hull of a set of complex values. Efficient algorithms exist to determine

the convex hull of a set of 2D points, e.g., Graham’s Scan [16]. These algorithms are directly

applicable to a set of complex values. This results in an outer approximation of the value

set of p̃(u,X) for u ∈ U which can be used to determine whether a point (or interval) is

excluded from the exact value set.

Inner Approximation

A more complicated approach is necessary to determine an inner approximation of the value

set. Here, the method developed in [7] is used which is summarized below. The general

idea is as follows: A simple method exists to determine the outer approximation of a value

set. Instead of determining such an outer approximation for the complete parameter set an

outer approximation of the value set is determined for different edges of the parameter set.

An inner approximation of a face of the value set is then given by the region surrounded

by the outer approximation of the edges surrounding this face. This inner approximation

is then completely included in the exact value set.

This method is illustrated in Fig. 2.1 for a case with three parameters. On the left

the parameter cube is depicted where one face has been selected (red) and the edges

surrounding this face are marked in different colors. On the right, the convex hulls of the

Bernstein coefficients associated with the different edges are depicted in the same colors.

The red region surrounded by the four convex hulls represents an inner approximation of

the value set for parameters on the red face of the parameter cube.

For the general case we consider a complex normalized polynomial p̃(u,X) depending

on l parameters u ∈ U ∈ [R]l. There are

nf = 2l−2
(
l

2

)
(2.40)

faces on the l-dimensional parameter hyper-cube. Each face has 4 edges of which the

corresponding multi-indices E1, E2, E3, E4 can easily be determined as

Ei : = {(e1, e2, . . . , ek, . . . , el) | 0 ≤ ek ≤ nk ∧ ej = fj ∀ j 6= k} (2.41)

with index fj an element of the multi-index F which is fixed for the edge and defined as

F : =(f1, f2, . . . , fl) with fj = 0 ∨ fj = nj, 0 ≤ j ≤ l, (2.42)

i.e., each entry fj of F can have one of the two extreme values 0 and nj. Therefore, for

an edge Ei where variable k is varied, there are nk + 1 multi-indices in Ei and the k-th

entry of the multi-index takes each value from 0 to nk. For all of the multi-indices in Ei
all entries j with j 6= k are fixed to the values in F which depend on which edge of the

parameter set is being considered.
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x1

x2

x3 selected face

Re(s)

Im(s)

H1
H2

H3

H4

⊆ p̃(U ,X)

Figure 2.1: Inner approximation of the value set of a complex polynomial. The parameter

box (in this case 3 parameters) is depicted on the left. One face of the parameter box (red)

is selected and the parameter values associated with Bernstein coefficients on these edges are

marked in different colors. On the right, the corresponding Bernstein coefficients are depicted

in the same colors together with the convex hull of the Bernstein coefficients associated with

each edge. The red region on the right then represents an inner approximation of the Bernstein

polynomial for parameters from the red face on the parameter box. By considering different faces

of the parameter box different inner approximations may be derived.

The convex hullsH i of the edges may then be determined from the Bernstein coefficients

of the edges by

H i(X) = hullI∈Ei(bI(X)). (2.43)

These hulls represent outer approximations of the value sets of the different edges of

the parameter set. Thus, an inner approximation of the value set associated with the face

of the parameter set surrounded by these edges is given by the region surrounded by the

value sets of the four edges. Such an inner approximation can be determined for each face

of the parameter set which results in different inner approximations of the value set of

p̃(u,X) for u ∈ U that can be used to determine whether a point (or interval) is included

in the exact value set of p(x).

2.4 Taylor Models

The Bernstein transformation introduced in the previous section allows to efficiently ap-

proximate the value set of multivariate polynomials. For the methods developed in the

following chapters it is however necessary to determine the value set of quasi-polynomials.

A quasi-polynomial is a polynomial where the coefficients are not fixed but depend on some

variable non-linearly.

Value sets of a quasi-polynomial could be determined directly by evaluating the quasi-

16
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polynomial using interval arithmetic. This would however lead to a large overapproxima-

tion of the bounds due to the dependency problem. To avoid this problem, different cen-

tered forms and higher order inclusion functions have been developed over the years [17]. In

this work we use Taylor Models, a higher order inclusion function which can be calculated

efficiently and offers a tight enclosure of the exact function. For a thorough introduction

to Taylor Models, see [18]. For a critical discussion on Taylor Models and related methods,

see [17].

A Taylor Model may represent an arbitrary non-linear function with uncertainties using

a multivariate polynomial and interval remainder. The approach to determine a Taylor

Model of a function, which is introduced in [19] and used in this thesis, consists of first

determining one Taylor Model for each uncertain parameter (specified by an interval).

The Taylor Model of the complete function is then determined by evaluating the function

using the arithmetic operations and intrinsic functions given in Section 2.4.2. In contrast

to directly determining the Taylor Model of the complete function this has the advantage

that no complex symbolic calculations are necessary5.

Once the Taylor Model of the complete complex-valued function has been determined

the value set of the polynomial part may be calculated by using the Bernstein transforma-

tion from the previous section. The value set of the overall function is then determined by

taking the interval remainder into account, see Section 2.4.5.

2.4.1 Definition

A Taylor-Model T (X) defined on the interval box X consists of a polynomial part p̃(u,X)

of order m which is normalized to the unit interval boxU (see Section 2.3.3) and an interval

remainder R(X), i.e.

T (X) = (p̃(u,X), R(X)).

A Taylor Model can be used to approximate any arbitrary function. As p̃(u,X) may be a

multivariate polynomial, any multivariate function f(x) may be approximated by a Taylor

Model. The exact value of the function must then always lie within an interval (the interval

remainder) around the value of the polynomial, i.e.,

f(x) ∈ p̃(x̃,X) +R(X) ∀ x ∈X (2.44)

where

x̃ =
x−X
X −X

. (2.45)

To determine the Taylor Model of a mathematical expression, first each uncertain pa-

rameter is transformed to a Taylor Model. Given the l-dimensional uncertain parameter

box X the corresponding Taylor models normalized to the unit interval box U are

Ti(X) = (p̃i(u,X), Ri(X))

p̃i(u,X) = X i + (X i −X i)ui

Ri = [0, 0]

5 It must however be pointed out that calculating a Taylor Series expansion of the complete function

might lead to a smaller interval remainder.
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with 1 ≤ i ≤ l, i.e., each uncertain parameter Xi is represented as Taylor Model Ti
with a polynomial of order one (offset X i, scale (X i −X i)) and empty interval remainder

Ri = [0, 0].

Then, the Taylor Model of the overall function f(x) may be evaluated using the arith-

metic operations and intrinsic functions given in Section 2.4.2.

For use in the following sections an operation to determine outer bounds of the value

set of a Taylor model or polynomial is defined which is denoted by B(. . .). To bound the

polynomial we can, e.g., use the Bernstein transformation as shown in Section 2.3.4. The

bounds of the complete Taylor Model are then determined by the sum of the bounds of

the polynomial part and the interval remainder:

B(T (X)) = B(p̃(u,X)) +R(X). (2.46)

The definitions given in this section are valid for real and complex Taylor Models. In

the following, we first consider the case of real Taylor Models. Special considerations for

complex Taylor Models are discussed in Section 2.4.5.

2.4.2 Arithmetic

Arithmetic operations and many elementary functions have been defined for real Taylor

Models [18]. For our case, the arithmetic operations addition, multiplication, negation,

and multiplicative inverse are required. Note, that in the following round-off errors which

arise in practical implementations are not taken into account6.

Let T1(X) and T2(X) be two distinct Taylor Models with different polynomial part and

interval remainder but same interval box X:

T1(X) = (p̃1(u,X), R1(X)) = (p̃1, R1) (2.47)

T2(X) = (p̃2(u,X), R2(X)) = (p̃2, R2) (2.48)

To shorten notation, the dependence of the polynomial part and remainder on X and u

is not given explicitly in the following definitions of arithmetic operations and required

intrinsic functions.

Addition

An addition of two Taylor Models is performed by separately adding the polynomials and

interval remainders, i.e.

T1(X) + T2(X) : =(p̃1 + p̃2, R1 +R2). (2.49)

Negation

Negation of a Taylor Model is achieved by simply negating the polynomial part and interval

remainder, i.e.

−T1(X) : =(−p̃1,−R1). (2.50)
6 In general, floating-point implementations have a finite precision and therefore only some values are

exactly representable. For all other values, round-off errors occur. This must be taken into account in

practical implementations to assure the inclusion property of Taylor Models.
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Multiplication

The multiplication of two Taylor Models is slightly more complex as multiplication of two

polynomials of order m would result in a polynomial of order 2m. Thus, the Taylor Model

multiplication is defined as

T1(X)T2(X) : =(deg−m(p̃1p̃2), R3) (2.51)

with

R3 : =B(deg+
m+1(p̃1p̃2)) +B(p̃1)R2 +B(p̃2)R1 +R1R2) (2.52)

where deg−m(p̃1p̃2) corresponds to all terms of p̃1p̃2 with degree smaller or equal m and

deg+
m+1(p̃1p̃2) corresponds to all terms of p̃1p̃2 with degree larger or equal m+ 1.

Multiplicative Inverse

The multiplicative inverse of a Taylor Model T (X) is determined using the Taylor Series

expansion as

1

T (X)
: =

m∑
k=0

(
(−1)k

T̄ (X)k

ck+1
T

)
+

(
(−1)m+1 T̄ (X)m+1

cm+2
T

(
1 + U T̄ (X)/cT

)m+2

)
(2.53)

where U is the unit interval as defined in (2.2), cT is the constant part of the Taylor Model

T (X), i.e.,

cT : = p̃(0,X) (2.54)

and T̄ (X) is the constant-free Taylor Model defined as

T̄ (X) : =T (X)− cT . (2.55)

The last term of (2.53) which contains the unit interval U (see (2.2)) represents a pure

interval while the sum contributes to the polynomial part and interval remainder.

2.4.3 Elementary Functions

In addition to the arithmetic operations, elementary functions for the natural exponential

function ex (also written as exp(x)) or, alternatively, the trigonometric functions sin(x)

and cos(x), are required to represent time delays. Using the definitions (2.54) and (2.55)

the natural exponential function, Sine, and Cosine are derived using the Taylor Series
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expansion as

exp(T (X)) : = exp(cT )
m∑
k=0

(
T̄ (X)k

k!

)
+ exp(cT )

T̄ (X)m+1

(m+ 1)!
exp(U T̄ (X)) (2.56)

sin(T (X)) : =
m∑
k=0

(
trig(cT , k)

T̄ (X)k

k!

)
+ trig(cT ,m+ 1)

T̄ (X)m+1

(m+ 1)!
trig(cT + U T̄ (X),m+ 1) (2.57)

cos(T (X)) : =
m∑
k=0

(
trig(cT , k + 1)

T̄ (X)k

k!

)
+ trig(cT ,m+ 2)

T̄ (X)m+1

(m+ 1)!
trig(cT + U T̄ (X),m+ 2) (2.58)

where the function trig(a, i) is defined as

trig(a, i) : =


sin(a) for mod(i, 4) = 0

cos(a) for mod(i, 4) = 1

− sin(a) for mod(i, 4) = 2

− cos(a) for mod(i, 4) = 3

(2.59)

and the last terms again represents a pure interval while the sum contributes to polynomial

part and interval remainder.

2.4.4 Approximation of Value Set

The result of evaluating a mathematical expression using Taylor Models is a multivariate

polynomial of maximum order m and an interval remainder. Therefore, bounds of an

arbitrary function may be determined by bounding the multivariate polynomial and adding

the interval remainder.

The main difficulty in determining tight bounds of a Taylor Model lies in determining

tight bounds of the multivariate polynomial. The simplest approach to determine bounds

of the polynomial is to use interval arithmetic. Herefore, each variable in the polynomial is

replaced by the corresponding interval and interval arithmetic is used to determine bounds

for the value of the polynomial. Much tighter bounds on the polynomial may be determined

using more complex algorithms. In [18] a linear-dominated bounder is used to determine

tighter bounds of the polynomial than would be achieved using pure interval arithmetic.

Here, we instead transform the polynomial into Bernstein form [20]. Bernstein coefficients

can be used to efficiently determine bounds of a polynomial. Moreover, Bernstein polyno-

mials allow to determine bounds of complex polynomials which arise when evaluating the

value set of a characteristic equation of a dynamic system.

The second aspect influencing how tight the bounds of a Taylor Model are, is the interval

remainder. The size of the interval remainder is of order m + 1 with respect to the size
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of the interval-box X of the Taylor Model [18]7. Thus, the size of the interval remainder

may be reduced efficiently by subdividing the interval-box X of the Taylor Model. Note

that a one sided normalized polynomial (U ∈ [0, 1]) is used in our definition of Taylor

Models compared to a centered normalization (U ∈ [−1, 1]), e.g., in [18]. On the one hand,

this leads to a larger interval remainder (for the same size of X) which, however, retains

the convergence order. On the other hand, the domain of the Taylor Model is the unit

interval box and, therefore, no additional normalization is necessary before determining

the Bernstein coefficients.

2.4.5 Value Set of Complex Taylor Models

The method presented in Section 2.3.7 can be used to determine the value set of complex-

valued polynomials. In this section we extend the method and make it applicable to

complex-valued Taylor Models. Thereby, arbitrary holomorphic functions can be examined

which allows analyzing stability of time-delay systems.

A complex Taylor Model consists of a complex polynomial and complex interval remain-

der. Arithmetic operations and elementary functions on complex Taylor Models may be

determined straightforwardly from the definition of arithmetic operations and elementary

functions on complex numbers. These definitions describe how to determine the real and

complex part of the result from the real and complex parts of the argument(s). Thus, the

result of arithmetic operations and elementary functions on complex Taylor Models may

be determined separately for the real and complex part using these definitions for complex

numbers and the rules for real Taylor Models from Section 2.4.2 and Section 2.4.3.

We consider a complex Taylor Model T (X) = (p̃(u,X), R(X)) with complex nor-

malized polynomial p̃(u,X) and complex interval remainder R(X). This Taylor Model

represents an approximation of the complex function f(x) : Rl → C, i.e.,

f(x) ∈ p̃(x̃,X) +R(X) ∀ x ∈X (2.60)

where

x̃ =
x−X
X −X

. (2.61)

The goal is to determine an inner and outer approximation of the value set f(X). There-

fore, the method developed in [7] and summarized in Section 2.3.7 is modified to incorporate

the interval remainder.

Outer Approximation

Calculating an outer approximation of the value set of f(X) is relatively straightforward.

First, an outer approximation of the polynomial part p̃(U ,X) is determined as in Sec-

tion 2.3.7. Then, this is enlarged by adding the complex interval remainder to each point

7 This means that if a Taylor model of order m is recomputed for an interval box with half the size, the

size of the new interval remainder will be (1/2)m of the size of the original interval remainder.
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Re(s)

Im(s)

R(X)

hullI≤N(bI)

Re(s)

Im(s)

hullI≤N(bI(X))

hullI≤N(bI(X)) +R(X)

Figure 2.2: Outer approximation of the value set of a complex Taylor Model. The convex hull

of the Bernstein coefficients (dark blue) and the interval remainder (light green) are depicted on

the left. The convex hull enlarged by adding the interval remainder, i.e. the outer approximation

of the value set of the Taylor Model, is shown on the right (light green and dark blue region).

of the resulting value set. Graphically, the resulting value set can be constructed by mov-

ing the interval remainder rectangle along the edge of the value set of the polynomial part

as illustrated in Fig. 2.2. The outer approximation of the value set of f(X) is depicted on

the right. It consists of the light green as well as the dark blue regions.

Inner Approximation

An inner approximation of the value set of f(X) may be calculated analogously. As

described in Section 2.3.7, an inner approximation of the polynomial part p̃(U ,X) is

determined using edges of the parameter set. Instead of directly using the convex hulls

H i of the Bernstein coefficients of the edges, these convex hulls are enlarged. This is done

by adding the interval remainder to each point of each convex hull or, graphically, as in

the previous section, by moving the interval remainder along the edges of the convex hulls.

The area surrounded by the enlarged convex hulls represents an inner approximation of

the value set of f(X).

The method is illustrated in Fig. 2.3 for the same polynomial part as in Fig. 2.1. Note

that the inner approximation of f(X) (surrounded by the black line) is smaller than the

inner approximation of the polynomial part p̃(U ,X). As in the case of a pure polynomial,

several different inner approximations may be determined by determining inner approxi-

mations for different faces of the parameter set.

A property of holomorphic functions, which is necessary in order for this inner ap-

proximation to be valid, is the so-called preservation of domains [9]. This states that a

holomorphic function maps an open connected set to another open connected set. This

implies that the exact value set cannot have any holes, which is essential for the inner

approximation to be valid8.

8 Consider the case where the value set can have holes and edges of the parameter set are mapped to the

complex plane and surround some region in the complex plane. As there can be a hole in the value

set, the function does not necessarily take every value within this region for some parameter value on

the corresponding face of the parameter set. Therefore, we cannot determine an inner approximation

of the value set in this case, i.e., a region in the complex plane of which the function takes every value

for some parameter value within the parameter set. Hence, the preservation of domains is a property

of holomorphic functions which is essential for this inner approximation to be valid.
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Figure 2.3: Inner approximation of the value set of a complex Taylor Model. The parameter box

(in this case 3 parameters) is depicted on the left. One face of the parameter box (red) is selected

and the parameter values associated with Bernstein coefficients on these edges are marked in

different colors. On the right, the corresponding Bernstein coefficients are depicted in the same

colors together with the convex hull of the Bernstein coefficients associated with each edge. The

red region on the right then represents an inner approximation of the Bernstein polynomial for

parameters from the red face on the parameter box. This region is shrunk by enlarging each of

the convex hulls of the edges by the interval remainder. This then results in the inner region

surrounded by the black line, which represents an inner approximation of the value set of the

complete complex Taylor Model. By considering different faces of the parameter box different

inner approximations may be derived.

Implementation Details

Considering the implementation of complex Taylor Models it is important to distinguish

between a complex Taylor Model with imaginary value zero and a purely real Taylor Model.

This is important when considering multiplication with an unbounded Taylor Model. Mul-

tiplying two real Taylor Models should again result in a real Taylor Model, even if the real

part of one of these Taylor Models is unbounded. If a real Taylor Model were simply a

complex Taylor Model with imaginary value zero this would not be the case, as multiplying

zero with an unbounded interval results in NaI, i.e. Not an Interval.

2.5 Summary

In this chapter, algorithms to evaluate the value set of holomorphic functions are intro-

duced. These are based on algorithms which were first introduced by Zettler, Garloff,

et al. in [7, 21]. They make use of the convex hull of Bernstein coefficients as well as the

property that some Bernstein coefficients are sharp, to efficiently evaluate inner and outer

approximations of a value set.
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The main contribution of this chapter is an extension of these algorithms to examine the

value set of Taylor Models instead of polynomials, thereby making it possible to consider

holomorphic functions, e.g., quasi-polynomials. The result is an inner and outer approxi-

mation of the value set of the complex-valued function. The inner and outer approximation

of the value set can be used to check whether a point is included in or excluded from the

exact value set. If the point is excluded from the outer approximation it must also be

excluded from the exact value set. Similarly, if a point is included in the inner approxima-

tion it must also be included in the exact value set. This property is used in the following

chapter within a robust stability analysis method for time-delay systems.
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Systems

Summary. In this chapter a method for stability analysis of Linear Time-

Invariant (LTI) systems with incommensurate time delays and parametric un-

certainties is developed. The method is based on interval-like computations using

Taylor Models and polynomials in Bernstein form. In addition to examining Hur-

witz stability, eigenvalues of a system may also be restrained to a region in the

complex plane, e.g., to impose desired damping properties. The final result is a

stability analysis method which can

• non-conservatively check stability of time-delay systems with interval param-

eters or

• map stable regions to a low-dimensional parameter space while taking addi-

tional interval parameters into account.

This chapter introduces a stability analysis method for LTI systems with parametric uncer-

tainties and time delay. More precisely, we consider time-delay systems of retarded type1

with pointwise delays. This class of systems is found in many practical applications, e.g.,

teleoperation systems, chemical processes, transportation systems, and economics.

Existing methods for stability analysis of LTI systems with parametric uncertainties

and time delay are limited. Only a few methods can simultaneously handle time delay

and parametric uncertainty. In general, these methods are conservative or do not scale to

real-world problems. For an overview of state of the art methods for stability analysis of

systems with parametric uncertainties and/or time delay, see Section 3.1.

The general idea of the stability analysis method developed in this chapter is as follows.

Using a branch and bound algorithm the value set of the characteristic function of a

dynamic system is calculated for some boundary in the complex plane, e.g., the imaginary

axis if asymptotic stability is examined. This allows mapping the boundary from the

complex plane to the parameter space. Then, for each disjoint region in the parameter

space (separated by a boundary), we check whether the region is stable or not using the

same algorithm as for boundary mapping.

The resulting stability analysis method is applicable to time-delay systems with para-

metric uncertainties and incommensurate time delays. It can be used for parameter-space

stability analysis or controller synthesis by determining stable and unstable regions in a

1 For time-delay systems of retarded type, also known as Retarded Functional Differential Equation

(RFDE), the derivative only depends on the current and past states and not on the past derivative,

see [22].
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low-dimensional (e.g., two-dimensional) parameter space. Additional parameters may be

unknown (i.e., lie within a closed interval) and the desired resolution (and thus conser-

vatism) of the boundary mapping may be specified directly in the parameter space (a higher

resolution leads to longer calculation times). The algorithm can also be used to simply

check stability for a complete set of interval parameters instead of mapping stability to

the parameter space. For this simple stability check the results are non-conservative. The

method can handle non-affine dependencies of the characteristic equation on the uncertain

parameters, i.e., the coefficients of the characteristic equation may depend polynomially

on the uncertain parameters.

The usefulness of the value set for robust stability analysis has been known for some

time and is the foundation, e.g., of Kharitonov’s Theorem [23] and the Edge Theorem [24].

The main difficulty in applying this test to systems, where there is a non-affine dependence

of the characteristic equation on the system parameters, lies in the complexity of rigorously

checking for zero inclusion/exclusion. In [7] it is shown that Bernstein Polynomials can be

used to perform this check efficiently for the delay-free case. We build on the results from [7]

and extend the method in several ways. We extend the branch and bound algorithm so as

to not only check stability of a complete set of interval parameters, but also map stable

regions to the parameter space. And, more importantly, by incorporating Taylor Models

our method becomes applicable to time-delay systems, more specifically, to systems with

multiple incommensurate time delays. A C++ implementation of the resulting algorithm

is available for download at http://www.github.com/schauss/glob_stab.

This chapter is structured as follows. First, related work is discussed in Section 3.1. The

problem formulation and general idea of the developed method is presented in Section 3.2.

An overview of the overall algorithm developed for robust stability analysis is then intro-

duced in Section 3.3. A more detailed description of the different steps of the algorithm is

given in the following sections. Different regions in the complex plane are defined in Sec-

tion 3.4 and implications of mapping these regions to the parameter space are discussed.

As these regions are unbounded in general a numerically feasible method to evaluate the

value set of unbounded regions in the complex plane is developed in Section 3.5. Then,

a branch and bound algorithm is used to map bounded regions from the complex plane

to the parameter space in Section 3.6. The stability analysis algorithm is applied to some

simple examples with parametric uncertainties in Section 3.7 and to some examples with

multiple incommensurate time delays in Section 3.8. The chapter ends with a discussion

of our newly developed method in Section 3.9 and a conclusion as well as an outlook on

future work in Section 3.10.

3.1 State of the Art

In this section an overview of existing methods for stability analysis of LTI systems with

time delay and parametric uncertainties is given. As many methods are only applicable

either to systems with parametric uncertainty or time delay, but not both, the literature

review is split into three parts. First, analysis methods for systems with parametric un-

certainty and no time delay are shortly summarized. The emphasis is on methods which

are closely related to or form the basis of the method developed in this chapter. Then, a
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selection of methods for stability analysis of time-delay systems without parametric uncer-

tainty is shortly summarized. Finally, the few methods that are applicable to time-delay

systems with parametric uncertainties are introduced.

3.1.1 Robust Stability Analysis of Delay-Free Systems

The stability analysis of LTI systems with parametric uncertainty has been an active field

of research for several decades. Within this field Kharitonov’s Theorem [23] is probably

the most well known theorem. It states that stability of a polynomial with independent

interval coefficients can be checked by examining stability of four polynomials with fixed

coefficients. On the one hand, this theorem is especially interesting as the number of

polynomials that must be checked is independent of the system order. On the other

hand, only few practical systems possess the required structure as there are generally

dependencies between different coefficients of the polynomial. In this case, Kharitonov’s

Theorem is only a sufficient but not necessary condition and very conservative in general.

The Edge Theorem [24] builds on Kharitonov’s Theorem and extends the (non conser-

vative) applicability to a larger class of systems. Using the Edge Theorem systems with

polytopic characteristic equation, i.e. systems with affine dependence of the coefficients of

the characteristic equation on uncertain parameters, can be examined non-conservatively.

The parameter-space approach [1] is applicable to an even larger class of systems with

polynomial dependence of the coefficients of the characteristic equation on uncertain pa-

rameters. It offers a straightforward intuitive approach to robust stability analysis. How-

ever, it is practically only applicable to systems with up to two (or at the most three)

uncertain parameters as it is a graphical approach and cannot handle time delay. More-

over, the conditions are evaluated by a frequency sweep and depending on the step-width

and upper bound of the frequency sweep instabilities may be missed.

A different approach to robust stability analysis is to use classic stability analysis meth-

ods and evaluate these methods using interval arithmetic. One such approach, based on

evaluating the Routh-Array using interval arithmetic, is presented in [25]. Practical appli-

cability is however limited to very simple systems due to the conservatism introduced by

the dependency problem.

For practical problems with uncertainties the H∞-norm [26] and structured singular

value µ, introduced to robust control by Safonov [27] and Doyle [28], are often used.

These methods can also capture other types of uncertainties, e.g. dynamic uncertainties.

The H∞-norm is conservative in general as it does not take the structure of the uncertainty

into account. In contrast, the structured singular value µ, as the name suggests, takes the

structure of the uncertainty into account and thus reduces conservatism. However, an

exact calculation of the structured singular value is not possible in general. Therefore,

bounds of the singular value must be approximated leading to significant conservatism [6].

For a thorough introduction to the structured singular value, see [29].

Finally, another group of methods is introduced which has achieved considerable re-

sults but is not very widely known. They are based on Bernstein Polynomials and have

mainly been developed by Garloff et al.. In [30], a robustness analysis is carried out using

Bernstein Polynomials. In [13] bounds of the Hurwitz Determinants are determined using

Bernstein Polynomials and a branch and bound algorithm. To circumvent the computa-
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tional complexity of calculating the Hurwitz Determinants, the method is modified in [7,21]

to instead check for zero exclusion using the value set. As the value set is directly given by

the characteristic equation this makes costly intermediate calculations unnecessary. The

characteristic equation is transformed into Bernstein form. The resulting Bernstein coeffi-

cients represent points on the complex plane. Using the convex hull to determine exclusion

of zero and an edge-check to determine inclusion of zero, stability is examined within a

branch and bound algorithm. This results in a fast robust stability check for linear time-

invariant systems which is applicable to systems of high order and with a large number of

uncertain parameters2. This method is the basis of the stability analysis method which is

developed in this chapter. As presented in [7, 21] the method is only applicable to delay-

free systems. In this work, the method is extended so as to become applicable to systems

with time delay.

All of the methods presented here operate in the frequency domain. Thereby, they often

offer some interesting insights into the examined system. There are however also several

time-domain stability analysis methods which allow a computationally efficient robust

stability analysis. These are generally based on solving Lyapunov-functions using linear

matrix inequalities (LMIs), see [31] for one example. Time-domain methods for robust

stability analysis of delay-free systems are not further discussed here as this is outside the

scope of this thesis.

3.1.2 Stability Analysis of Time-Delay Systems

Stability analysis of time-delay system has been studied extensively in the past. A good

overview of many existing methods is given, e.g., in [6, 32, 33]. The presentation in [6]

forms the basis of the literature review in this section. In addition, some newer methods

are shortly summarized.

Two classes of time-delay systems are considered in the following. Systems with com-

mensurate delays, i.e., all time delays of a system are integer multiples of one constant

and systems with incommensurate delays where this condition does not hold. Naturally,

systems with a single delay are a sub-class of systems with commensurate delays, while sys-

tems with commensurate delays are a sub-class of systems with incommensurate delays.

Only few existing stability analysis methods are applicable to systems with incommen-

surate time delays. Moreover, a recent comparison of several methods shows that most

existing methods are extremely conservative [34]. This is the case, although no parameter

uncertainties were present in this study. Many of the methods in the following are only

applicable to systems with commensurate delays. If a method is also applicable to systems

with incommensurate delays it is mentioned explicitly. Even less stability analysis methods

are applicable to systems with uncertainties and time delays, i.e., the robust stability anal-

ysis of time-delay systems. Of these methods, many have mainly been applied to systems

without uncertainties but are also applicable to systems with uncertainties (in theory, often

very conservative). These are introduced in this section and referred to in Section 3.1.3.

2 High order refers to an order of around 10 to 20 while the allowed number of uncertain parameters is

on the order of 10. Note that there are no exact limits to these numbers and they strongly depend on

the exact problem and the hardware setup used for calculating the problem.
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Additional methods, especially developed for robust stability analysis of time-delay systems

are introduced in Section 3.1.3. This section mainly discusses frequency-domain methods

but ends with a short introduction of some time-domain methods.

Frequency Domain

There are several stability tests in the frequency domain which are applicable to time-delay

systems. These methods are based on the fact that stability of a time-delay system, as in

the delay-free case is determined by the roots of the characteristic equation: if the real parts

of all roots are negative then the system is stable. A detailed analysis can be found in the

1963 book by Bellman and Cooke [22] which is considered the basis of frequency-domain

stability analysis of time-delay systems.

The main difficulty, in comparison with delay-free systems, is caused by the fact that the

characteristic equation of a time-delay system is a quasi-polynomial with an infinite number

of roots. Nevertheless, several methods have been developed which allow to examine

whether all roots are in the open left half-plane.

For systems with commensurate delays several classical stability checks exist. Differ-

ent 2d stability tests exist which map the right half-plane to a unit disk or half-disk [6].

Another classical stability test for time-delay systems is the pseudo-delay method, also

known as Rekasius substitution [35–38]. This, effectively, reduces the stability analysis

of a time-delay system to the stability analysis of a delay-free system with a parameter-

dependent polynomial thereby allowing the use of standard stability analysis tools, e.g.,

the Routh-Hurwitz criterion. In addition a direct method can be used to determine the

zero-crossing frequencies and thereby stability which is based on the conjugate symmetry

property of the quasi-polynomial [6]. These classical stability checks can be used to ex-

amine delay-independent as well as delay-dependent stability. The applicability of these

checks is unfortunately limited to a low system order due to the need for complex symbolic

calculations. Moreover, an extension to robust stability analysis is not straightforward.

An exact method for the stability analysis of systems with commensurate delays but

without parametric uncertainties was introduced in [39] and is based on the Rekasius

substitution. An extension to systems with parametric uncertainties is not straightforward,

but further investigation may be of interest.

For systems with incommensurate delay, there are only few practically applicable stabil-

ity checks in the frequency domain. These include some frequency sweeping tests based on

the structured singular value µ as, e.g., developed by Gu [6]. These tests are conservative in

general as it is not possible to calculate the structured singular value µ exactly, but nearly

exact results are obtainable for some special cases, e.g., norm-bounded uncertainties [6].

Recently, two interesting methods which are applicable also to systems with incommen-

surate delays have been developed by the Allgöwer group [40]: a stability condition based

on the Rekasius substitution is efficiently evaluated by sum of squares techniques [41] or,

alternatively, linear programming [42]. These methods result in less conservative stability

bounds than common time-domain approaches [34, 40] and are theoretically applicable to

uncertain systems. To our best knowledge an application of these methods to uncertain

systems has however not been published, and conservatism of this method when applied

to uncertain systems has not been evaluated.
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Another method, developed in [43] and compared to some other methods in [34], is

known which results in non-conservative stability results for systems with incommensu-

rate delays. This method computes stability-boundaries in the delay-space by solving a

quadratic eigenvalue problem which is fast and non-conservative. However, as presented

in [43] and used in [34] the problem is solved for a finite number of values from an inter-

val which would actually have to be checked completely. Thus, an unstable system may

falsely be characterized as stable. Moreover, it is not clear how and if this method can

be extended to systems with parametric uncertainties. An analytic approach is pursued

by Gu et al. who examine the stability crossing curves in the delay-space for general

systems with two [44] and three [45] incommensurate time delays. The results are espe-

cially interesting as they are exact (i.e., only limited by machine precision) and offer some

interesting insights into the stability boundaries of time-delay systems. An extension to

systems with parametric uncertainties is, however, not easily possible. Finally, a stabil-

ity analysis method which can examine systems with commensurate and incommensurate

interval time delays excluding zero is introduced in [46]. For the case with one delay the

authors claim their method is non-conservative, while for the case of incommensurate time

delays a nearly exact stable box in the delay-space can be determined. However, the center

point and aspect ratio of the box must be given. Moreover, an extension of the method to

the stability analysis of systems with parametric uncertainties does not seem possible.

Time Domain

Stability of time-delay systems may also be examined in the time domain instead of the

frequency domain. Thereby, generally, one of two stability criteria are utilized: Lyapunov-

Krasovskii functionals or the Razumikhin Theorem. These criteria were first developed

in the 1950s and 1960s. Especially in the field of Lyapunov-Krasovskii functionals much

research has been performed in the past decades. This is due to the fact that although

theoretically rather straightforward, practical application is difficult due to the functional.

One of the most interesting methods which has been developed in this context is the dis-

cretized Lyapunov functional method which is applicable to systems with incommensurate

delays and uncertainties [47]. Results have however only been presented for norm-bounded

uncertainties and subpolytopic uncertainties. Several other methods employing Lyapunov-

Krasovskii functionals or the Razumikhin Theorem have been developed. These are mostly

based on linear matrix inequalities (LMIs) which result in a computationally efficient so-

lution. The results are however quite conservative in practice, especially for systems with

incommensurate delays [34] or uncertainties [6]. This is due to the fact that an exact solu-

tion of the Lyapunov-Krasovskii functional or the Razumikhin Theorem is not possible and

therefore conservative sufficient conditions are checked which in turn guarantee that the

exact conditions hold. The interested reader is referred to, e.g., [6] or [32] for an overview

of several prominent methods.

3.1.3 Robust Stability Analysis of Time-Delay Systems

This section gives an overview of methods applicable to robust stability analysis of time-

delay systems. Several of the presented methods have already been mentioned in the
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previous sections as they are also used either for (non-robust) stability analysis of time

delay systems or for robust stability analysis of delay-free systems. In addition, some

other methods are presented which were developed especially for robust stability analysis

of time-delay systems. The section mainly concentrates on frequency-domain methods.

Several frequency-domain based methods for robust stability analysis of time-delay sys-

tems exist. As for the non-robust case, these are all based on the location of roots of the

characteristic equation: if the real part of all roots is negative, the system is stable. This

also holds for systems with time delay, see [22].

Based on this property several stability analysis methods which have been developed for

robust stability analysis of delay-free systems have been extended to the case with delays.

In Gu et al. [6], e.g., the Edge Theorem, and the Multivariate Polynomial approach are de-

scribed for delay-dependent stability analysis. The Edge Theorem, first introduced in [24]

and extended to the case with time delay in [48], evaluates the value set and zero exclu-

sion principle, as does the method presented in this thesis, but is limited to systems with

polytopic uncertainties and fixed time delay [48]. The Multivariate Polynomial approach

transforms the stability analysis of time-delay systems where the characteristic function is

a quasi-polynomial into the stability analysis of a multivariate polynomial. This remains

challenging, and only for some special cases, e.g. an interval multivariate polynomial or,

more general, a diamond family of multivariate polynomials a concrete solution is pre-

sented. A more in-depth presentation of this method can be found in [49–51]. In principle,

the multivariate polynomial approach is applicable also to systems with incommensurate

delays. Recently, the Parameter-Space Approach [1] has been extended to cases with time

delay for some special cases, e.g., PID-controller design with one time delay in [52] and

cascade control with time-delay in every cascade in [53]. In both cases, the limitations

of the Parameter-Space Approach remain valid, i.e., at the most two to three uncertain

parameters can be examined and a frequency-sweep is used which would theoretically have

to be performed with infinitely small step size.

Two interesting methods based on an efficient evaluation of conditions derived using the

Rekasius substitution [40–42] have already been discussed in Section 3.1.2. These methods

are efficient for systems with one or two delays and no uncertainty [34]. However, although

theoretically applicable to uncertain systems no evaluation has been performed, and it is

expected that the results could be quite conservative in this case, depending on how the

uncertainty is taken into account.

Finally, several of the time-domain methods based on Laypunov-Krasovskii functionals

or the Razumikhin Theorem may be extended to the case of robust stability analysis, see,

e.g., [6]. However, these conditions are already very conservative for the case without

uncertainty [34] and generally become even more conservative when additional uncertainty

is introduced [6]. Probably the most interesting time-domain method which has been

developed in this context is the discretized Lyapunov functional method which is applicable

to systems with incommensurate delays and norm-bounded uncertainties or subpolytopic

uncertainties [47].
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3.2 Problem Formulation and General Idea

We consider a Linear Time-Invariant (LTI) Retarded Functional Differential Equation

(RFDE) with concentrated delays given by

ẋ = A(s, q, td)x (3.1)

with n states x and the system matrix A defined as

A(s, q, td) = A0(q) +
m∑
i=1

Ai(q)e−td,is (3.2)

where Ai(q) : Rl → Rn×n. The system dynamics depend on l uncertain parameters

q ∈ Q ∈ [R]l and m uncertain time delays td ∈ T d ∈ [R]m (for interval notation, see

Section 2.2) with

td = [td,1 td,2 . . . td,m]T (3.3)

td,i > 0 ∀ 1 ≤ i ≤ m. (3.4)

An equivalent representation of the system dynamics is

ẋ(t) = A0(q)x(t) +
m∑
i=1

Ai(q)x(t− td,i). (3.5)

The overall goal is to determine stable and unstable regions inQ×T d. More specifically,

the goal is to determine regions in Q×T d for which there are no eigenvalues of A(s, q, td)

in a specifiable region Γ in the complex plane. In the following this will be referred to as

mapping a region from the complex plane to the parameter space. On the one hand, this

allows to determine stable and unstable regions in the parameter space or simply check

stability for a complete set of interval parameters. On the other hand, different constraints

on the system dynamics, e.g., constraints on system damping can be introduced.

The characteristic function f(s, q, td) of the system given by (3.1) is

f(s, q, td) = det(sI −A(s, q, td)) =
m∑
i=0

n∑
j=0

aji(q)sje−td,is (3.6)

where td,0 = 0 and thereby e−td,0s = 1. Alternatively, the characteristic function may be

written as

f(s, q, td) = p0(s, q) +
m∑
i=1

pi(s, q)e−td,is =
n∑
j=0

aj(s, q, td)s
j (3.7)

with

pi(s, q) =
n∑
j=0

aji(q)sj (3.8)

aj(s, q, td) =
m∑
i=0

aji(q)e−td,is. (3.9)
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The roots of the characteristic function (3.6) correspond to the eigenvalues of the system

matrix A(s, q, td) in (3.1). Thus, the roots of the characteristic function can be used to

examine system stability and other system characteristics, e.g., system damping.

The system is asymptotically stable if and only if all roots of the characteristic function

have a negative real part3. This is a well known fact for systems without time delay where

the characteristic function is a polynomial and basis of many classical stability proofs.

This property also holds for systems with time delay where the characteristic function is

a quasi-polynomial as in (3.6), see [22] for the proof.

Finding the roots s0 of the characteristic function, i.e. solving the characteristic equation

f(s0, q, td) : = 0 (3.10)

for s0 is not easy in general due to the uncertain parameters q ∈ Q. Moreover, the

characteristic equation (3.10) has an infinite number of solutions due to the time delays

td ∈ T d. However, instead of directly computing the roots we can compute the value set

f(Γ,Q,T d) of the characteristic function. Then, the following holds:

Lemma 3.1. There is at least one root of f in the region Γ for some parameter Q and

some time delay T d if and only if f(Γ,Q,T d) includes the point zero.

Proof. If there is a root of f in the region Γ, then f(s, q, td) = 0 for some q ∈ Q, td ∈ T d,

s ∈ Γ, i.e., zero must be included in the value set f(Γ,Q,T d) as the value set includes all

values f(s, q, td) takes for any values q ∈ Q, td ∈ T d, s ∈ Γ. Likewise, if there is no root

of f in the region Γ, then f(s, q, td) 6= 0 for all q ∈ Q, td ∈ T d, s ∈ Γ, i.e., zero cannot

be included in the value set f(Γ,Q,T d) as the value set does not include any values the

function f(s, q, td) does not take for any values q ∈ Q, td ∈ T d, s ∈ Γ.

Lemma 3.2. From Lemma 3.1 it directly follows that there is no root of f in the region Γ

for any combination of parameter Q and time delay T d if and only if f(Γ,Q,T d) excludes

the point zero.

Lemma 3.1 and 3.2 are also the basis of the zero exclusion principle which is introduced

in detail in Section 3.4.1 and allows to first examine the boundary of the Γ-region and

subsequently check stability of disjoint regions.

Up to now, applicability of the value set and zero exclusion principle has been limited

as existing methods for calculating the value set are either conservative or cannot handle

time delay or are limited to a few special forms of uncertainty. The novel contribution in

this chapter is an algorithm which allows a calculation of the value set up to an arbitrary

precision for a general LTI system with time delays and polynomial dependence of the

coefficients of the characteristic function on parametric uncertainties. This allows to map

a region Γ from the complex plane to the parameter space so as to examine stability or

other important system characteristics.

3For a summary of different stability notions, see Appendix A.1
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no
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Figure 3.1: Flow-chart of overall algorithm used for robust stability analysis

3.3 Overall Algorithm

The overall algorithm distinguishes regions inQ×T d for which no eigenvalue of the system

matrix is in a given Γ-region from regions in Q× T d for which at least one Eigenvalue is

in the Γ-region. On the one hand, this allows an analysis of asymptotic stability. In this

case Γ is the closed right half-plane, i.e., Γ = {s | Re(s) ≥ 0}. On the other hand, desired

system characteristics, e.g., minimum damping may be taken into account.

A flow chart of the overall algorithm is depicted in Fig. 3.1. As inputs a system matrix

A(s, q, td) as well as bounded sets of system parametersQ and time delays T d are required

(see Section 3.2). Moreover, an appropriate region Γ in the complex plane (see Section 3.4)

must be given. This Γ region will generally be unbounded, e.g., the closed right half-plane.

The method developed in Section 3.5 is used to transform the unbounded Γ region to

bounded Γ regions and associated boundaries ∂Γ. Finally, the resolution of the boundary

mapping must be set to a desired value for each parameter in Q× T d.

Using these inputs the actual stability analysis is performed. First, the boundaries

∂Γ are mapped to the parameter space using the branch and bound algorithm given

in Section 3.6 and zero exclusion/inclusion is evaluated for the characteristic function

f(∂Γ,Q,T d). Thereby, boundaries B are determined in the Q × T d space for which one

eigenvalue of the characteristic function passes ∂Γ.

Due to the zero-exclusion principle which is introduced in detail in the following section,

a change of the number of eigenvalues in the Γ-region can only occur on the boundary B.

Therefore, all disjoint regions in Q × T d not on the boundary B must either have no

eigenvalue in the Γ-region or at least one Eigenvalue in the Γ-region, and it is sufficient to

34



3.4 Regions in the Complex Plane

check whether there is an Eigenvalue in the Γ-region for one fixed parametrization q ∈ Q
and time delay td ∈ T d in each disjoint region in Q × T d. The same branch and bound

algorithm used for boundary mapping and given in Section 3.6 is used to evaluate whether

an eigenvalue lies in the region Γ. This is done by evaluating zero exclusion/inclusion for

the value set f(Γ, q, td) for one value of q and td in each disjoint region.

This concludes the overall algorithm for robust stability analysis of time-delay systems.

Depending on the resolution which is chosen for the different parameters in Q × T d the

algorithm either simply checks whether the system is stable for the complete set of interval

parameters Q×T d or maps stable and unstable regions to a low-dimensional sub-space of

Q× T d
4.

In the following section, the zero-exclusion principle is introduced, different Γ-regions

are presented, and implications of mapping these regions to the parameter space are dis-

cussed. Then, the different steps of the overall algorithm are introduced in detail.

3.4 Regions in the Complex Plane

Roots of a polynomial (and also a quasi-polynomial with time delays) vary continuously

with changes of the variables [22]. Therefore, instead of mapping a two-dimensional Γ-

region from the complex plane to the parameter space we may consider mapping the one-

dimensional boundary ∂Γ of the region to the parameter space. The underlying concept is

generally referred to as zero-exclusion principle and is introduced in the following. Then,

different Γ-regions are introduced and the implications of mapping these regions from the

complex plane to the parameter space are discussed.

3.4.1 Zero-Exclusion Principle

The zero-exclusion principle has been known in the field of robust control for more than half

a century. The method is described in a textbook by Zadeh and Desoer [54, Chapter 9.17]

published in 1963 and a result by Frazer and Duncan [55] which is very close to the zero-

exclusion principle was published in 1929. Recent textbooks on robust control mentioning

the zero-exclusion principle include [1,6,56] where it is used, e.g., to prove such well known

results as Kharitonov’s Theorem [23] and the Edge Theorem [24,57]. For a more in-depth

historical review of the zero exclusion principle, see [58].

The zero exclusion principle in its original form is defined for delay-free systems and

therefore considers an uncertain polynomial

p(s, q) =
n∑
i=0

ai(q)si (3.11)

with uncertain parameters q ∈ Q and coefficients ai(q) which smoothly depend on q.

Then, the coefficients ai vary continuously with changes in the parameters q, and the

4 The resolution of the calculated stability boundaries is directly specified in the parameter space. In

practice, these stability boundaries must be treated as unstable by the system designer. Thus, when

mapping stable and unstable regions to a low-dimensional parameter space, the resolution with which

the boundaries are determined coincides with the conservatism of the stability analysis.
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following zero-exclusion principle holds:

Theorem 3.1. A characteristic polynomial p(s, q) is robustly stable for all parameters

q ∈ Q if and only if

• the characteristic polynomial p(s, q) is stable for one set of parameters q ∈ Q,

• 0 6∈ p(jω,Q) for all ω ∈ R, i.e., zero is excluded from the value set of the character-

istic equation for all s on the imaginary axis.

Proof. This follows directly from Lemma 3.1 and 3.2 and the fact that zeros of the poly-

nomial p vary continuously with changes of s or changes of q.

The extension of the zero-exclusion principle to time-delay systems requires some ad-

ditional assumptions which are taken from [6, Section 4.4] and are based on the results

on root chains in [22]. For the class of systems considered in this thesis, LTI RFDEs with

polynomial dependence of the coefficients of the characteristic function, these assumptions

always hold:

Assumption 3.1. Every member of the uncertain quasi-polynomial f has a non-zero

principal term, i.e.

deg(p0) = n ≥ deg(pi), 1 ≤ i ≤ m. (3.12)

This is necessary as a quasi-polynomial without a principal term cannot have all roots in

the open left half-plane, see [6, Section 4.3]. For the case of LTI RFDEs which is considered

in this thesis this assumption always holds as

deg(p0) = n > deg(pi), 1 ≤ i ≤ m. (3.13)

Assumption 3.2. All time delays td,i are positive for i > 0., i.e., we only consider causal

systems. For the class of systems considered in this thesis this assumption is always true.

Assumption 3.3. An R > 0 and ε > 0 must exist so that for all q ∈ Q and td ∈ T d the

quasi-polynomial an(s, q, td) has either no zeros at all or no zeros of magnitude greater

than R with real part greater than −ε.
According to [6, Section 4.4], a sufficient condition for this assumption to hold is

deg(p0) = n > deg(pi), 0 < i ≤ m (3.14)

which corresponds to a system where all root chains are of retarded type which implies

that for ω →∞ the roots (of which there are an infinite number) all have a negative real

part5. For LTI RFDEs which are considered in this thesis, this assumption always holds.

Assumption 3.4. The set a× td with the so-called coefficient vector

a = (a00, a01, . . . , a0m, . . . , an0, an1, . . . , anm), (3.15)

consisting of all coefficients aji in f , is compact and pathwise connected.

5 For a brief summary on root-chains of time-delay systems and their properties, see Appendix A.2. For

an in-depth analysis of this subject, see [22].
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In our case this is always true: The set Q is an interval box which is compact and

pathwise connected. The coefficients aji depend on the parameters q ∈ Q polynomially.

Therefore, as polynomials preserve compactness and pathwise connectedness, the coeffi-

cients aji are compact and pathwise connected. As td ∈ T d is an interval box and thereby

compact and pathwise connected as well, the assumption holds.

Then, the zero-exclusion principle extended to time-delay systems with quasi-

polynomials as characteristic function may be written as:

Theorem 3.2. A characteristic function f(s, q, td) satisfying the four assumptions is

asymptotically stable for all parameters q ∈ Q and time delays td ∈ T d if and only if

• f(s, q, td) is asymptotically stable for one set of parameters q ∈ Q and time de-

lays td ∈ T d, i.e., there are no roots in the closed right half-plane for one specific

parametrization.

• 0 6∈ f(jω,Q,T d) for all ω ∈ R, i.e., zero is excluded from the value set of the

characteristic function for all s on the imaginary axis.

Proof. Due to Assumptions 3.1 to 3.4 the roots of the quasi-polynomial f vary continuously

with changes of q, and td (a detailed proof of this is given in [6, Section 4.4.2]). This

implies that the number of roots in the right-half plane can only change if a root crosses

the imaginary axis, i.e., there is a root on the imaginary axis for some parameter q ∈ Q
and time delay td ∈ T d. Due to the first condition there is no root in the right half-plane

for one parameter q ∈ Q and time delay td ∈ T d and due to the second condition there

is no root on the imaginary axis for any parameter q ∈ Q and time delay td ∈ T d, see

Lemma 3.2. Therefore, there is no root in the right half-plane for any parameter q ∈ Q and

time delay td ∈ T d. This a sufficient and necessary condition for asymptotic stability.

The extension of the zero-exclusion principle to different Γ-regions is straightforward. In

this case, we must assure that there are no roots within the Γ-region for one parametriza-

tion and no roots on the boundary ∂Γ for any parametrization.

Corollary 3.1. A characteristic function satisfying the four assumptions given above has

no roots in the two-dimensional region Γ for any parameter q ∈ Q and time delay td ∈ T d

if and only if

• the characteristic function has no roots in Γ for one specific parametrization q ∈ Q
and one specific time delay td ∈ T d and

• the characteristic function has no roots on the boundary ∂Γ for any parameter Q

and time delay T d.

Similarly to the zero-exclusion principle a zero-inclusion principle can be formulated6.

6 The author is not aware of any prior work in which this has been published although it is equally

straightforward. This may be due to the fact that practical applicability requires an inner approxima-

tion of the value set which is not usually available.
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Figure 3.2: Γ-regions used for system analysis. The Γ-regions are shown in gray while the

boundary is depicted as bold black line. To assure a certain system characteristic, no eigenvalues

are allowed to lie within the respective Γ-region.

Corollary 3.2. A characteristic function satisfying the four assumptions given above has

a root in the two-dimensional region Γ for any parameter q ∈ Q and time delay td ∈ T d

if7

• the characteristic function has a root in Γ for one specific parametrization q ∈ Q
and one specific time delay td ∈ T d and

• the characteristic function has no roots on the boundary ∂Γ for any parameter Q

and time delay T d.

From Corollary 3.1 and Corollary 3.2 it follows that mapping the boundary ∂Γ to the

parameter space splits the parameter space into different regions which either have at least

one eigenvalue in Γ or have no Eigenvalue in Γ. These two cases (at least one eigenvalue

/ no Eigenvalue) must be discerned by a subsequent check for each disjoint region in the

parameter space. In the following sections, different Γ-regions are introduced. By mapping

these regions to the parameter space, system parameters which result in different system

properties (asymptotic stability, a minimum damping, or a minimum decay rate) can be

determined.

3.4.2 Asymptotic Stability

A system is asymptotically stable if there is no eigenvalue of the system matrix in the

closed right half-plane given by

Γ+ = [0,+∞) + j(−∞,+∞). (3.16)

7 This is a sufficient but not necessary condition, as one root may lie in Γ and another root may pass

the boundary ∂Γ. In other words: a boundary in the parameter space not only separates regions with

no roots in Γ from regions with roots in Γ but also separates two regions with a different number of

roots in Γ, even if both regions have roots in Γ.
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If there is at least one eigenvalue of the system matrix in Γ+, then the system is either

unstable or marginally stable. See Fig. 3.2a for an illustration of the Γ+-region. The

corresponding boundary ∂Γ+ is the imaginary axis

∂Γ+ = 0 + j(−∞,+∞). (3.17)

3.4.3 Minimum Damping

Instead of only checking for asymptotic stability other Γ-regions may be mapped from the

complex plane to the parameter space. A minimum system damping, e.g., may be enforced

by mapping

ΩD = (−∞,+∞) (3.18)

ΓD = [−δ|ΩD|,+∞) + jΩD (3.19)

from the complex plane to the parameter space (see Fig. 3.2b). The corresponding bound-

ary ∂ΓD is

∂ΓD = −δ|ΩD|+ jΩD. (3.20)

3.4.4 Minimum Decay Rate

The boundary for asymptotic stability ∂Γ+ or minimum damping ∂ΓD may be shifted in

direction of the negative real axis. Thereby, the real part of the eigenvalues is constrained

to some negative value for all frequencies. This results in a system with given minimum

decay rate.

Such a constraint can easily be taken into account by performing a coordinate transfor-

mation on the characteristic function. If f(Γ,Q,T d) is the original characteristic function,

then evaluating f(Γ− ε,Q,T d) shifts the region gamma by −ε along the real axis.

3.5 Transformation of Unbounded Regions

The regions Γ as well as the boundaries ∂Γ are unbounded intervals as at least one bound-

ary is infinity. An evaluation of the value set for unbounded intervals results in an un-

bounded value set which consists of Bernstein coefficients with infinite magnitude as well as

an interval remainder of infinite size. Unfortunately, the zero-exclusion and zero-inclusion

checks introduced in Section 3.6.1 cannot be applied to unbounded value sets8.

The problem of unbounded regions is not specific to the value set approach but arises

in many stability analysis methods which rely on a frequency sweep. A frequently used

workaround to this problem is to replace ±∞ with ±c, with c a large finite constant, e.g.,

in the Parameter Space Approach in [1, Chapter 2-4]. This is problematic as not all of Γ

or ∂Γ is checked.
8 The zero-inclusion check and zero-exclusion check in Section 3.6.1 are based on checking whether the

negative interval remainder is included in or excluded from a convex hull of Bernstein coefficients.

Neither the inclusion-check nor the exclusion-check can succeed for an unbounded value set as we

cannot determine whether an interval remainder of infinite size is included in or excluded from a

convex hull with Bernstein coefficients of infinite magnitude.
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An alternative approach which has been developed in the context of the zero exclusion

principle and value set evaluation is to determine upper and lower bounds for the fre-

quency ω for which a crossing of the imaginary axis is possible [21]. Then, the subsequent

value set evaluation can be carried out on this reduced frequency range. This approach is

however not applicable to systems with time delay. Moreover, no method is known to us

to determine these limits when searching for roots in a two-dimensional region, e.g., the

right half-plane.

We propose a method to circumvent the problems associated with ±∞ or large finite

boundaries ±c. Instead of simply evaluating the value set f(s,Q,T d) and checking for

zero inclusion and zero exclusion we also evaluate the value set of f̄(s,Q,T d) which is

defined as9

f̄(s,Q,T d) : = f(s−1,Q,T d)s
n (3.21)

=
n∑
i=0

ai(s
−1,Q,T d)s

−isn =
n∑
i=0

ai(s
−1,Q,T d)s

(n−i) (3.22)

where n is the system order as the following theorem holds.

Theorem 3.3. When examining systems without time delay or asymptotic stability of

time-delay systems the value set of f(s−1,Q,T d) includes zero if and only if the value set

of f̄(s,Q,T d) includes zero, i.e.,

f(s−1,Q,T d) = 0⇔ f̄(s,Q,T d) = 0 (3.23)

Proof. For any choice of s 6= 0, it is clear that

f(s−1,Q,T d) = 0⇔ f̄(s,Q,T d) = f(s−1,Q,T d)s
n = 0

as

s 6= 0⇔ sn 6= 0.

For s→ 0 the evaluation of f̄(s,Q,T d) = 0 results in

lim
s→0

f̄(s,Q,T d) = lim
s→0

f(s−1,Q,T d)s
n = lim

s→0

n∑
i=0

ai(s
−1,Q,T d)s

(n−i) (3.24)

= lim
s→0

an(s−1,Q,T d) = 0, (3.25)

which corresponds to the so-called infinite root-boundary as, e.g., defined in [1]. Note

that for the case with time delay this theorem only holds when examining asymptotic

stability as all terms ai which depend on the time-delay term would become unbounded

for s → 0 if s is not constrained to the right half-plane. This is explained in more detail

in Section 3.5.3.

9 In the delay-free case this corresponds to the non-conjugate reciprocal polynomial.
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Figure 3.3: Representation of unbounded regions Γ+ and ΓD by bounded value sets Γ1 and Γ2

and the complex conjugate of their inverse, where Γ1 = Σ1 + jΩ1 and Γ2 = Σ2− δΩ1 + jΩ1 with

Ω1 = [0, 1], Σ1 = [0,1], Σ2 = [0, δ], and δ = 0.3. The different lines represent different gridded

values of Σ1 and Σ2.

Using Theorem 3.3 the value set evaluation can be transformed from a check on one

unbounded region to checks on several bounded regions as will be shown in the following.

If the value set for all of the regions excludes zero, then there is no root in the complete

region. Alternatively, if the value set for at least one of the regions includes zero, then

there is a root somewhere in the complete region.

This method is illustrated here first for the imaginary axis ∂Γ+ and right half-plane

Γ+. Subsequently, modifications necessary for the boundary ∂ΓD and region ΓD are given

and the implications on time-delay terms are discussed. In all cases, it is sufficient to

only consider regions with non-negative imaginary part as roots are either real or complex

conjugate pairs [22].

3.5.1 Asymptotic Stability

For the case of asymptotic stability we consider the imaginary axis ∂Γ+. Two value sets

are examined: f(∂Γ1,Q,T d) and f̄(∂Γ1,Q,T d) with

∂Γ1 = jΩ1 (3.26)

where

Ω1 = [0, 1]. (3.27)

The first value set covers the region ∂Γ1 = j[0, 1] while the second value set covers the

region ∂Γ−11 = j(−∞,−1] without actually evaluating the characteristic function for the

unbounded interval but instead evaluating the transformed characteristic function for the

bounded region ∂Γ1. Thus, as roots are either real or complex conjugate pairs, the complex

imaginary axis ∂Γ+ = (−∞,∞) is covered by evaluating these two bounded value sets.
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Therefore, if one of the value sets includes zero then there is a root on ∂Γ+. Likewise, if

both value sets exclude zero there is no root on ∂Γ+.

Next, consider the right half-plane given by Γ+. Again, two value sets are examined:

f(Γ1,Q,T d) and f̄(Γ1,Q,T d) with

Γ1 = Σ1 + jΩ1 (3.28)

where

Σ1 = [0, 1] (3.29)

and Ω1 is given in (3.27). The first value set covers the region Γ1 = [0, 1] + j[0, 1]. The

second value set covers the region Γ−11 = 1/([0, 1] + j[0, 1]). The regions covered by Γ1

and (Γ−11 )∗ are depicted in Fig. 3.3a. Due to symmetry reasons the two regions cover the

complete right half-plane10. Therefore, if one of the value sets includes zero then there is

a root on Γ+. Likewise, if both value sets exclude zero there is no root on Γ+.

3.5.2 Minimum Damping

The problem becomes more complex for the boundary ∂ΓD and region ΓD which are

considered next. The boundary ∂ΓD+ (the part of ∂ΓD with non-negative imaginary part)

is given by

∂ΓD+ = −δΩD+ + jΩD+ (3.30)

with

ΩD+ = [0,+∞) (3.31)

and damping δ. Two value sets are examined: f(∂Γ2,Q,T d) and f̄(∂Γ2,Q,T d) with

∂Γ2 = −δΩ1 + jΩ1 (3.32)

where Ω1 is given in (3.27). The first value set covers the boundary ∂ΓD for the imaginary

value in the range [0, 1] and thereby, as roots are either real or complex conjugate pairs,

the range [−1, 1]. The rest of the boundary is covered by the second value set (with some

overlap).

The region ΓD+ (the part of ΓD with non-negative imaginary part) is

ΓD+ = [−δΩD+,+∞) + jΩD+. (3.33)

This can be handled similarly as the right half-plane was handled in the previous section.

In this case, four value sets are examined: f(Γ1,Q,T d), f̄(Γ1,Q,T d), f(Γ2,Q,T d), and

f̄(Γ2,Q,T d) with Γ1 given in (3.28) and

Γ2 = Σ2 − δΩ1 + jΩ1 (3.34)

10As can be seen in Fig. 3.3a some parts of the complex plane are covered by both value sets. This is not

problematic for the algorithms used in the following sections.
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where

Σ2 = [0, δ] (3.35)

and Ω1 is given in (3.27). The regions covered by the two additional value sets f(Γ2,Q,T d)

and f̄(Γ2,Q,T d) are depicted in Fig. 3.3b. Together, the four value sets cover the complete

region ΓD.

3.5.3 Time Delay

The transformation introduced in this section must also be applied to the time-delay

terms, i.e., if f contained delay-terms with delays different from zero, then f̄ contains

terms e−td,is
−1

. The term s−1 is unbounded when s includes zero. In the following, a

solution to this problem is presented for asymptotic stability checks.

The exponential function of a complex value x may be written as

ex = eRe(x)eIm(x) = eRe(x) (cos(Im(x)) + j sin(Im(x))) (3.36)

where the first factor specifies the magnitude and the second factor is a rotation around

the origin. For the case of asymptotic stability, the real part of the exponent is non-

positive, i.e., the maximum magnitude eRe(x) is one. The imaginary part of the exponent

is unbounded and includes infinity for s including zero, and therefore the Taylor Model

of the complete exponential term also becomes unbounded. However, we know that the

imaginary part of the exponential function can be represented as sin and cos which are

both limited to the interval [−1, 1]. Therefore, the exponential term can be evaluated using

interval arithmetic instead of Taylor Models in the case when s includes zero by replacing

the second term with an interval box [−1, 1] + j[−1, 1] and multiplying this interval box

with the interval of the magnitude11. Thus, the largest possible interval of a time delay

term for the case of asymptotic stability is [−1, 1] + j[−1, 1].

This is unfortunately not the case for ΓD regions with a minimum damping. In this case,

the real part of ΓD and ∂ΓD is partly negative. E.g., for ∂ΓD the real part goes towards

−∞ for ΩD → +∞, i.e., the magnitude of the exponential function becomes unbounded.

Therefore, the transformation of unbounded regions to bounded regions is only possible

when either considering minimum system damping or time delays. For the combination,

i.e., determining parameters which result in a desired minimum damping for time-delay

systems, it is not possible to transform the unbounded region to bounded ones. In this

case we must, as with other frequency sweeping tests, replace ∞ by a large constant.

11 In the actual implementation this replacement is only carried out when mapping complete Γ regions.

In this case, the overapproximation of the Taylor Model is severe and this is the only strategy which

has been identified to cope with this problem. However, replacing the Taylor Model with an interval

box impairs the applicability of gradient estimation methods as the size of the interval box may be

insensitive to parameter changes. This, in turn, reduces the convergence rate of the branch and bound

algorithm. Therefore, this replacement is not carried out for boundary mapping.
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3.6 Branch and Bound Algorithm

The general idea of the stability analysis method is to distinguish regions in the parameter

space which have a root in Γ from regions which do not. This can either be used to

determine stable regions in a low-dimensional parameter space or to simply check if a

system is stable for a complete set of interval parameters. This section introduces the

branch and bound algorithm used to map boundaries ∂Γ or regions Γ from the complex

plane to the parameter space. A branch and bound algorithm is necessary for this due to

two reasons.

On the one hand, the zero exclusion and zero inclusion check used for stability analysis

and introduced in Section 3.6.1 are both sufficient but not necessary conditions, i.e., if

both of these conditions are false for a given region in the parameter space we do not

know whether this region includes or excludes zero. Then, we subdivide the region into

two parts and separately reevaluate zero inclusion and exclusion for these two parts. This

is done recursively until one of the checks succeeds which will be the case eventually,

as the inner and outer approximation of the value set becomes more accurate with each

subdivision, see Section 3.6.3. On the other hand, the stability analysis method can be used

to graphically examine stability in the parameter space. Therefore, we want to determine

regions with a desired resolution for plotting. In that case, we do not want to determine

stability separately for each region with the desired resolution as this is computationally

very expensive12. Instead, we start out by checking the complete region and only subdivide

the region into smaller regions if necessary.

We assume that all regions Γ and boundaries ∂Γ that are used as input to this algorithm

are bounded. Such bounded regions (and associated characteristic functions) are deter-

mined using the appropriate transformations given in Section 3.5. To simplify notation the

extended parameter set Q̃ = Q×T d×Γ or Q̃ = Q×T d×∂Γ is introduced which includes

uncertain system parameters Q, time delays T d, and the region/boundary in the complex

plane Γ/∂Γ. The value set of the characteristic function can then simply be written as

f(Q̃).

Using these definitions, the goal of the branch and bound algorithm is to distinguish

regions in Q̃ for which the values set f(Q̃) excludes the point zero from regions for which

the value set includes the point zero. Therefore, a desired resolution is specified by q̃min

for each dimension of Q̃, see Section 3.6.2. Then, the algorithm depicted in Fig. 3.4 and

described in the rest of this section is executed. For details on computing the value set,

Bernstein coefficients, and interval remainder, see Chapter 2.

The algorithm is initialized by setting the set of regions which should be checked to

Q =
{
Q̃0

}
where Q̃0 corresponds to the initial parameter set. Then, the steps of the

branch and bound algorithm are as follows. First, a region Q̃ is popped from the set of

regions Q, i.e., Q̃ is set to one region in the set Q and this region is removed from the

set Q. Then, the value set f(Q̃) is computed for this region. This results in Bernstein

coefficients of the polynomial part of the value set and a complex interval remainder.

Zero exclusion is then evaluated according to the algorithm presented in Section 3.6.1. If

12 Consider the case where we want to determine stability in a 2D-plane with a resolution of 1/100th of

the parameter-range in both dimensions, this would result in 10000 regions.
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Figure 3.4: Flow-chart of the branch & bound algorithm used for boundary mapping and region

mapping. On the left, the complete algorithm is shown, while the details of the step Zero-inclusion

& subdivision are shown on the right.

zero is excluded the algorithm checks whether there are any regions left in Q. If there are,

the algorithm restarts for the next region, i.e., a region is popped from Q, the value set is

evaluated, etc. If zero is not excluded, inclusion is evaluated using the algorithm presented

in Section 3.6.1. This algorithm does not simply result in inclusion or no inclusion but

provides more fine-grained results.

In a first step complete inclusion of the negative interval remainder in the convex hull of

all Bernstein coefficients is checked as this is a necessary condition for the following tests

to succeed. If this check is not successful the region Q̃ is subdivided so as to minimize the

size of the interval remainder (see Section 3.6.3) and the resulting regions are pushed onto

Q (i.e., appended to the set Q). Then, the algorithm restarts for the next region, i.e., a

region is popped from Q, the value set is evaluated, etc.

Otherwise, inclusion of the negative interval remainder in one of the sets of Bernstein
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3 Robust Stability Analysis of Time-Delay Systems

coefficients corresponding to a face of the parameter set is checked, see Section 3.6.1. If it

is completely excluded from all of these faces, the region is subdivided so as to minimize

the bounds of the polynomial by using the Bernstein derivative, see Section 3.6.3. The

resulting regions are pushed onto Q and the algorithm restarts for the next region, i.e., a

region is popped from Q, the value set is evaluated, etc. If it is not completely included

in any face but partially included in some face, the region is subdivided according to the

size of the interval remainder (see Section 3.6.3) and the resulting regions are pushed onto

Q. Then, the algorithm restarts for the next region, i.e., a region is popped from Q, the

value set is evaluated, etc.

If it is completely included in one of the faces a final check is performed. The size of

the region is compared to the desired resolution q̃min, see Section 3.6.3. If it is larger, then

the region is subdivided according to the relative size of the region (see Section 3.6.3) and

the resulting regions are pushed onto Q. Then, the algorithm restarts for the next region,

i.e., a region is popped from Q, the value set is evaluated, etc. If it is smaller, then the

inclusion check was successful. The region is marked as including zero. More precisely, the

region is enlarged to the size q̃min and the complete cell is marked as including zero. In case

the algorithm is used to map the boundary ∂Γ this means the stability boundary passes

through this region. In case we are performing the stability check for disjoint regions this

means that there is a zero in the region Γ for some point q, td, and the disjoint region is

marked as unstable.

In the following section the algorithms used to determine zero exclusion and inclusion

are introduced. Then, the desired resolution q̃min is explained and some exemplary uses

are shown. Finally, the different subdivision algorithms used within this branch and bound

algorithm are described.

3.6.1 Evaluation of Zero Exclusion and Inclusion

In this section efficient methods to check for zero inclusion (Lemma 3.1) and zero exclusion

(Lemma 3.2) are introduced. The methods are based on the value set which is evaluated

as introduced in Section 2.4.5, i.e., the characteristic function is evaluated using Taylor

Models with interval remainder, the polynomial part is transformed into Bernstein form,

and the convex hull of all Bernstein coefficients as well as the convex hull of different edges

of the parameter-set are used to determine an inner and outer approximation of the value

set. Then, an efficient method to check for inclusion/exclusion of zero in the Taylor Model

T (Q̃) is to check inclusion/exclusion of the negative interval remainder −R(Q̃) in the value

set of the polynomial part p̃(U , Q̃) as we will show in the following subsections.

The conditions for zero exclusion as well as zero inclusion introduced in the following

are sufficient but not necessary conditions. This is due to the fact that we use an outer

approximation of the value set to check for zero exclusion and an inner approximation of the

value set to check for zero inclusion. Thus, if zero is excluded from the outer approximation

it must be excluded from the exact value set. However, if zero is not excluded from the outer

approximation it must not necessarily be not excluded from the exact value set. Likewise,

if zero is included in the inner approximation it must be included in the exact value set.

However, if zero is not included in the inner approximation it must not necessarily be not

included in the exact value set. Hence, both conditions are sufficient but not necessary.
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3.6 Branch and Bound Algorithm

Sufficient Condition for Zero Exclusion

Exclusion of zero from the value set, i.e.,

0 6= f(q̃) ∀ q̃ ∈ Q̃ (3.37)

is implied by exclusion of zero from the outer approximation of the value set, i.e.,

⇐ 0 6∈ p̃(u, Q̃) +R(Q̃) ∀ u ∈ U (3.38)

which may be reformulated as

0 ∩ p̃(u, Q̃) +R(Q̃) = {} ∀ u ∈ U (3.39)

⇔ −R(Q̃) ∩ p̃(u, Q̃) = {} ∀ u ∈ U (3.40)

⇔ −R(Q̃) ∩ p̃(U , Q̃) = {}. (3.41)

Thus, a sufficient (but not necessary) condition for zero exclusion from f(q̃) is the exclusion

of the negative interval remainder −R(Q̃) from p̃(U , Q̃). Likewise, a sufficient (but not

necessary) condition for the exclusion of the negative interval remainder −R(Q̃) from

p̃(U , Q̃) is the exclusion of −R(Q̃) from the outer approximation of p̃(U , Q̃) which is

given by the the convex hull H(Q̃) of the Bernstein coefficients (see Section 2.4.5). Thus,

we may write

−R(Q̃) ∩H(Q̃) = {} (3.42)

⇒ −R(Q̃) ∩ p̃(U , Q̃) = {} (3.43)

⇒ 0 6= f(q̃) ∀ q̃ ∈ Q̃ (3.44)

i.e., as the complete negative interval remainder −R(Q̃) is excluded from the outer ap-

proximation of the value set of the polynomial, zero is excluded from the value set and

(3.37) holds.

Sufficient Condition for Zero Inclusion

Analogously, inclusion of zero in the value set, i.e.,

∃ q̃ ∈ Q̃ : f(q̃) = 0 (3.45)

is implied by inclusion of zero in the inner approximation of the value set.

As explained in Section 2.4.5, the value sets of the faces of the parameter set are used

as inner approximations of the value set. More specifically, outer approximations of the

value sets of the edges of one face of the parameter set are determined. If none of these

include zero but zero is surrounded by these outer approximations, then zero is included

in the value set.

An efficient solution of this problem is as follows. First, a necessary condition for this

sufficient condition to be true is checked. For zero to be included in any inner approxima-

tion of the value set, it must be included in the convex hull of all Bernstein coefficients,

see [7]. This convex hull is given by

H(Q̃) = hullI≤N(bI(Q̃)). (3.46)
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Inclusion of zero in H(Q̃) +R(Q̃), i.e.,

0 ∈H(Q̃) + r ∀r ∈ R(Q̃) (3.47)

may be checked by

−r ∈H(Q̃) ∀r ∈ R(Q̃) (3.48)

⇔ −R(Q̃) ∩H(Q̃) = −R(Q̃) (3.49)

If zero is not included in the convex hull, the following, computationally more expensive

tests may be skipped.

Once this necessary condition13 is evaluated as true the sufficient condition for zero

inclusion is evaluated. Instead of enlarging the approximations of the convex hulls by the

interval remainder as explained in Section 2.4.5 an alternative approach similar to the case

of zero exclusion in the previous section may be used.

For each face of the parameter set the following check is carried out. First, evaluate

whether zero is included in the quad which connects the value set of the four vertices of

the face which is currently being evaluated. This may be tested, by checking whether

the negative interval remainder is completely included in this quad. Note that for each

of the vertices of the face, the value of the Bernstein coefficient is exact, i.e., the value of

Bernstein coefficient is exactly the same as the value of the polynomial part of the Taylor

Model evaluated for this parameter value (see Section 2.3.5).

Then, for each edge, exclusion of zero from the enlarged convex hull H i(Q̃) +R(Q̃) of

the Bernstein coefficients, i.e.,

0 6∈H i(Q̃) +R(Q̃) (3.50)

may be checked by evaluating

0 ∩H i(Q̃) +R(Q̃) = {} (3.51)

⇔ −R(Q̃) ∩H i(Q̃) = {}. (3.52)

If this exclusion check succeeds for all edges of one face, then zero is not included in

any of the edges. As zero is included in the quad connecting the corners of this face of the

parameter set and not included in any of the edges of this face of the parameter set, zero

must be included in the value set of the face of the parameter set and thereby zero must

be included in the exact value set and (3.45) holds.

Otherwise, zero inclusion/exclusion is not known. Then, we want to subdivide the

parameter set in such a way that a concrete result is obtained. Two different strategies

are chosen depending on the situation: If the interval remainder is completely included in

the outer approximation and not included at all in any inner approximation we subdivide

the parameter set so as to minimize the bounds of the polynomial part. This can be

done very efficiently using the Bernstein derivative, see next section. The reason for using

this approach is that it is extremely fast (computationally) and by making the bounds

on the polynomial part more and more accurate we will eventually arrive at one of three

situations:
13 Necessary for the sufficient condition to be true, not necessary for stability.
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• The remainder is not included in the outer approximation (the outer approximation

gets smaller)

• The remainder is included in the inner approximation (the inner approximation gets

larger)

• The remainder is partly included in the outer approximation or partly included in

the inner approximation (see following case)

Otherwise, the interval remainder is not completely included in the convex hull of all Bern-

stein coefficients or the interval remainder is partly included in the inner approximation,

i.e., overlaps with the convex hull of one of the edges of the face of the parameter set.

Then, the parameter set is subdivided so as to minimize the interval remainder. This

is computationally more expensive than using the Bernstein derivative, however, in this

case it is not sufficient to make the approximation of the polynomial part more accurate

as this will generally not lead to one of the two concrete results (inclusion or exclusion).

Moreover, when subdividing the parameter set so as to minimize the interval remainder

the Bernstein coefficients are recomputed as well (see Section 3.6.3), i.e., in general, the

polynomial part is approximated more accurately as well.

3.6.2 Desired Resolution

A desired resolution must be set for each parameter within the extended parameter set Q̃.

In essence, this specifies the resolution with which stability is examined with respect to

this parameter.

The resolution is set as fraction of the width of the original interval for each parameter in

the vector q̃min ∈ R(l+m+2). Within the branch and bound algorithm the desired resolution

is used to determine whether a search is terminated if zero is included in the value set.

Only if all parameters have a size smaller than their desired resolution the termination

condition is reached. Furthermore, if the branch and bound algorithm terminates with the

condition that zero is included, instead of marking the current region as including zero the

region is enlarged to the cell (of which the size is given by q̃min) in which it lies.

Hence, the desired resolution q̃min determines the resolution of the stability check in

each direction and is used to specify dimensions in which the stability regions should be

gridded, e.g., for plotting. All dimensions of q̃min over which a plot is to be performed

are set to a value larger than zero and smaller than one, where the value determines the

resolution in this dimension. All dimensions of q̃min over which no plot is performed are

set to one14.

The following two examples show that the values of the desired resolution strongly

influence the type of result of the overall algorithm. It is, e.g., possible to use the method

for robust controller synthesis as well as robust stability analysis.

14 In our examples, the values of q̃min corresponding to the Γ-regions are generally set to one as we do

not want to examine for which value of Γ there is a zero in the value set but instead want to detect if

there is a zero in the value set for any value in Γ.
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Example 1 Consider the case of a system with 5 parameters Q, no time delay T d, and

the region Γ+. The desired resolution for the Γ-region is set to one. If the desired

resolution is set to 0.1 for two parameters q1 and q2 in Q and is set to one for the

other parameters in Q, then the stability check determines regions in the q1/q2-plane

which are stable for all values of the other parameters in Q and all frequencies Ω.

The stable regions are determined with a resolution of one tenth of the range of the

parameters q1/q2, i.e., the stability boundary (which we must consider as unstable)

is overapproximated at most by one tenth of the range of the parameters q1/q2. If

q1 and q2 are controller parameters and the other parameters are plant parameters,

this case represents an example for robust controller synthesis.

Example 2 Consider the case where all values in q̃min are set to one. Then, the stability

check determines if there is any parameter within Q̃ for which the system is unstable.

This can be used for a robust stability check once a controller parametrization has

been chosen. This is similar to, e.g., a stability check according to Kharitonov, the

Edge Theorem, etc. In contrast to these methods our stability check is however

applicable to a much larger class of systems and, as stable regions are not mapped

to the parameter space in this case, the results are non-conservative.

3.6.3 Subdivision

The branch and bound algorithm is used to subdivide the parameter set into two regions of

equal size along a direction which coincides with one parameter in the extended parameter

set15. Three different algorithms, which are used to select the direction in which the pa-

rameter set is subdivided, are introduced here. These algorithms are used to subdivide the

parameter set based on different criteria. In the case where we can neither determine zero

inclusion nor zero exclusion we minimize the polynomial bound or minimize the interval

remainder depending on the result of the zero inclusion test. In the case where zero is

included in the value set but the desired resolution is not yet reached we subdivide the

parameter set in such a way that the desired resolution is reached as fast as possible.

Minimize Polynomial Bound

When the interval remainder is completely included in the convex hull of the Bernstein

coefficients and completely excluded from all Bernstein patches when performing the edge-

check, the bound of the polynomial, i.e., the size of the value set of the polynomial part, is

minimized. In this case, a subdivision according to the maximum first partial derivative is

performed which can be estimated efficiently using the Bernstein algorithm for derivative

estimation in Section 2.3.6.

As this partial derivative is complex the norm is used. The subdivision direction is

selected so as to subdivide the parameter set in the direction r1 of the maximum norm of

15 Regions which include/exclude zero might be found faster by choosing a different subdivision-point

than the center. This possibility is not further explored here but could be an interesting topic for

future research.
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the maximum partial derivative estimation for each direction which is given by

r1 = arg max
j=1,...,l

Ĩ
(1)
j (3.53)

where Ĩ
(1)
j is given in (2.33). When this algorithm is used to subdivide the parameter space

no reevaluation of the Taylor Model is performed. Instead, the new Bernstein coefficients

are determined using a Bernstein subdivision algorithm (see Section 2.3.6). Highly efficient

implementations of the Bernstein subdivision algorithm are possible leading to very fast

execution times compared to reevaluating the Taylor Model.

By using the Bernstein subdivision algorithm no reevaluation of the interval remainder

is performed. Thus, the interval remainder of the two new regions is set to the interval

remainder of the old region. This results in an overapproximation of the remainder com-

pared to reevaluating the Taylor Model. This overapproximation may lead to a partial

inclusion/exclusion of the interval remainder. As this triggers a reevaluation of the Taylor

Model no conservatism is introduced by using the old interval remainder where possible.

Minimize Interval Remainder

If the interval remainder is not completely included in the convex hull of the Bernstein

coefficients or the interval remainder is partly included in the inner approximation, i.e.,

overlaps with the convex hull of one of the edges of the face of the parameter set the

following steps are taken.

If the Taylor Model has not been evaluated for this region, i.e., the interval remainder

was actually determined for a larger region, then the Taylor Model is evaluated, the value

set is computed from this Taylor Model and the zero exclusion/inclusion check is restarted

for this new value set.

Otherwise, a subdivision according to the size of the interval remainder is performed,

i.e., the goal of the subdivision is to reduce the size of the interval remainder so that either

zero exclusion or zero inclusion is achieved.

Therefore, the region is subdivided once in each direction j = 1, . . . , l and the Taylor

Models are evaluated which results in two polynomials Pj,1, Pj,2 and corresponding complex

interval remainders Rj,1, Rj,2 for each direction j. The direction is then used, for which

the average norm of the two complex interval remainders (of the two regions) is minimal,

i.e.

r2 = arg min
j=1,...,l

√
Re(Rj,1)2 + Im(Rj,1)2 +

√
Re(Rj,2)2 + Im(Rj,2)2 (3.54)

As the Taylor Models must be evaluated here anyway, Bernstein coefficients are calculated

from the polynomial parts of the Taylor Models and the new interval remainders are used.

Minimize Parameter Resolution

If the value set includes zero but the desired resolution is not yet reached, the goal is to

subdivide in the direction which will result in reaching the desired resolution as fast as

possible. Whether the desired resolution is reached may be determined by

wmax = max
j=1,...,l

qw,j
qw0,j q̃min,j

(3.55)
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where the width of the parameter set and original parameter set is given by

qw = Q̃− Q̃ (3.56)

qw0 = Q̃0 − Q̃0. (3.57)

If wmax ≤ 1 the required resolution is reached. Otherwise, the direction r3 is chosen as

subdivision direction for which the interval width normalized by the width of the original

parameter set Q̃0 and corresponding desired resolution is largest. This direction may be

determined as

r3 = arg max
j=1,...,l

qw,j
qw0,j q̃min,j

. (3.58)

3.7 Example for Robust Stability Analysis

In this section an example taken from [1] is used to illustrate the boundary mapping

algorithm introduced in this chapter. The example consists of a crane with uncertain load

and rope length. In [1] the linearized system model is presented and a feedback controller

is developed. Controller parameters to robustly stabilize the system are then determined

using the parameter-space approach. In the following, first, the system model is shortly

summarized. Then, our Γ-region mapping algorithm is used to determine parameters for

robustly stabilizing the system. In a next step, parameters are determined which assure

a given system damping. This illustrates mapping of different Γ-regions. Finally, a time

delay is introduced in the control loop to illustrate the applicability of the proposed method

to time-delay systems.

3.7.1 System Model

The examined system is illustrated in Fig. 3.5. The linearized system dynamics of this

system are presented in [1] as

ẋ = Ax+ bu (3.59)

A =


0 1 0 0

0 0 mLg/mC 0

0 0 0 1

0 0 −(mL +mC)g/(mC l) 0

 (3.60)

bT =
[
0 1/mC 0 −1/mC l

]
(3.61)

where g is the gravitational constant, l is the length of the rope, mL is the mass of the

load, and mC is the mass of the crab. A state feedback controller

u = k1(v − x1)− k2x2 − k3x3 − k4x4 (3.62)

with gains ki and new input v is considered in [1]. Together with the reasonable assump-

tions l > 0 and mC > 0 this results in the following characteristic function:

f(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 (3.63)
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mC

l

mL

x1
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Figure 3.5: Crane

with

a0 = k1g

a1 = k2g

a2 = (mL +mC)g + k1l − k3
a3 = k2l − k4
a4 = lmC

The characteristic function (3.63) is used as the basis for the analysis in the following

sections. Thereby, different parameters are set to fixed values while others are assumed to

be uncertain and summarized in q ∈ Q.

3.7.2 Hurwitz Stability

As a first example of applying the boundary mapping approach introduced in this chapter,

Hurwitz stability of the crane with state feedback is examined. As in [1], let mC = 5,

g = 10, k1 = 1, k4 = 2 and set the uncertain parameter vector as qT = [k2, k3]. Then,

the Γ+-region is mapped to the k2 × k3-plane using the region mapping algorithm from

Section 3.3. Thereby, stable regions in the k2 × k3-plane are determined for different

values of mL and l as depicted in Fig. 3.6. The considered parameter range in Fig. 3.6 is

k2 = [−10, 100] and k3 = [−100, 100] and the resolution of these two dimensions is set to

1/128 of the complete parameter range by choosing q̃min,1 = q̃min,2 = 1/128. For the case

mL = 5, l = 2 (see Fig. 3.6d) the results are identical to those in [1, Fig. 2.1], for the other

parameter values no results are given in [1]. The computation time for each of the cases

depicted in Fig. 3.6 is below one second16.

16 Computations were carried out on an Intel Core2 Quad Q9550 running at 2.83 GHz with 8 GB of

RAM. As operating system Ubuntu 14.04 with Linux kernel 3.13.0 was used. To compile the software

a GCC 4.8.4 was used. Our C++ implementation (available for download at http://www.github.

com/schauss/glob_stab) is multi-threaded and the four processor cores are fully utilized.
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(d) mL = 5, l = 2

Figure 3.6: Analysis of Hurwitz stability for crane example. Four different combinations of

load mass mL and rope length l are depicted. Gray regions contain an eigenvalue in the open

right half-plane for all parameters in this region while black regions contain an Eigenvalue on the

imaginary axis for at least one parametrization within this region. For the rest of the parameter

space (white) there is no eigenvalue in the closed right half-plane and the system is therefore

asymptotically stable. The resolution q̃min is 1/128 in both k2 and k3.

The power of the method introduced here in contrast with the Parameter-Space Ap-

proach from [1] becomes evident when more than two uncertain parameters are considered.

This is only possible with the Parameter-Space Approach by gridding some of the param-

eters17. With the stability analysis method introduced in this chapter the solution is

17 This means stability boundaries are plotted for a large number of different parameter values for q3 . . . ql
in the q1/q2 plane. Theoretically, an infinite number of boundaries would have to be examined, i.e.,

we would have to grid each of the parameters q3 . . . ql infinitely fine. In practice, a relatively small grid
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Figure 3.7: Analysis of Hurwitz stability for crane example. The load mass mL and rope length

l are uncertain (mL = [0.1, 5], l = [0.1, 2]). Gray regions contain an eigenvalue in the open

right half-plane for all parameters in this region while black regions contain an Eigenvalue on the

imaginary axis for at least one parametrization within this region. For the rest of the parameter

space (white) there is no eigenvalue in the closed right half-plane and the system is therefore

asymptotically stable. The resolution q̃min is 1/128 in both k2 and k3. For this simple example

the stable region coincides with the solution at the corner mL = 0.1, l = 0.1 of the interval box

(see Fig. 3.6a).

straightforward. In Fig. 3.7 the mass of the load mL and length of the rope l are consid-

ered as uncertain, within the intervals mL = [0.1, 5] and l = [0.1, 2]. Again, stable regions

are determined within the k2 × k3-plane. The considered parameter range in Fig. 3.7 is

k2 = [−10, 100] and k3 = [−100, 100] and the resolution of these dimensions is set to

1/128 of the complete parameter range. The parameters mL and l are not gridded, i.e.,

regions marked as stable are stable for all parameters within the given intervals. The

computation time for the region depicted in Fig. 3.7 is roughly 18 seconds.

In this case, simply determining the stable regions for the four corners of the interval

box and choosing the smallest would have been sufficient as the stable region coincides

with the case mL = 0.1, l = 0.1 (see Fig. 3.6a). However, checking stability for the corners

of the interval-box is not sufficient in general.

3.7.3 Minimum Damping

Next, regions in the parameter space which result in a minimum damping of δ = 0.1 are

determined. Therefore, the same computations as in the previous section are carried out,

but a damped region ΓD is mapped to the parameter space instead of the right half-plane.

Apart from the damping δ the same parameter values are chosen as in Section 3.7.2.

Regions which achieve this minimum damping and regions which do not are depicted in

Fig. 3.8 for the same values of mL and l as in Fig. 3.6. The regions for which the resulting

must be chosen as, e.g., in [1, Figure 3.21]. This quickly leads to a huge number of boundaries as the

total number of boundaries grows exponentially for each additional parameter l.
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Figure 3.8: Regions with minimum damping δ = 0.1 for crane example. Four different combina-

tions of load mass mL and rope length l are depicted. Gray regions contain an eigenvalue in ΓD
for all parameters in this region while black regions contain an Eigenvalue on the boundary ∂ΓD
for at least one parametrization within this region. For the rest of the parameter space (white)

there is no eigenvalue in ΓD and the system therefore achieves the required minimum damping.

The resolution q̃min is 1/128 in both k2 and k3.

system is damped, with δ > 0.1, are considerably smaller than the Hurwitz stable regions in

Fig. 3.6. Computation times are not affected strongly by considering a minimum damping

for these simple two-dimensional cases, and remain below one second for each case.

In Fig. 3.9 the mass of the load mL and length of the rope l are again chosen to be

uncertain, within the intervals mL = [0.1, 5] and l = [0.1, 2]. Again, the region for which

the resulting system is damped, with δ > 0.1, is considerably smaller than the Hurwitz

stable region in Fig. 3.7. The computation time is approximately 22 seconds, which is
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Figure 3.9: Regions with minimum damping δ = 0.1 for crane example. The load mass mL and

rope length l are uncertain (mL = [0.1, 5], l = [0.1, 2]). Gray regions contain an eigenvalue in

ΓD for all parameters in this region while black regions contain an Eigenvalue on the boundary

∂ΓD for at least one parametrization within this region. For the rest of the parameter space

(white) there is no eigenvalue in ΓD and the system therefore achieves the required minimum

damping. The resolution q̃min is 1/128 in both k2 and k3.

slightly larger than when computing Hurwitz stable regions.

3.7.4 Time Delay

In this section we illustrate the handling of time delay with the proposed method. We

consider a scenario, where the rope angle x3 and therefore also the rope speed x4 can only

be measured with a delay td. This could, e.g., be caused by using a camera system and

image processing algorithm to measure this angle.

The modified feedback controller becomes

utd = k1(v − x1)− k2x2 − (k3x3 + k4x4)e
−tds (3.64)

which results in the following characteristic function:

ftd(s) = a0,td + a1,tds+ a2,tds
2 + a3,tds

3 + a4,tds
4 (3.65)

with

a0,td = a0 = k1g

a1,td = a1 = k2g

a2,td = (mL +mC)g + k1l − k3e−tds
a3,td = k2l − k4e−tds
a4,td = a4 = lmC
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Figure 3.10: Analysis of Hurwitz stability for crane example with time delay. The load mass

mL and rope length l are uncertain (mL = [0.1, 5], l = [0.1, 2]). Stable regions for four different

time delays td are depicted. Gray regions contain an eigenvalue in the open right half-plane for

all parameters in this region while black regions contain an Eigenvalue on the imaginary axis for

at least one parametrization within this region. For the rest of the parameter space (white) there

is no eigenvalue in the closed right half-plane and the system is therefore asymptotically stable.

The resolution q̃min is 1/128 in both k2 and k3.

For the following analysis, the same parameter values are chosen as in Section 3.7.2 for the

delay-free case. Stable and unstable regions in the k2 × k3-plane are depicted for different

values of td in Fig. 3.10. The effect of time delay on stable regions in the parameter space

is evident.

Due to the higher complexity of this problem the computation time for the results in

Fig. 3.10 rises. For the different cases, computation times of 46, 55, 53, and 75 seconds are
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Figure 3.11: Analysis of Hurwitz stability for crane example. The load mass mL and rope

length l are set to fixed values (mL = 5, l = 0.1). Stable regions for four different time delays td
are depicted. Gray regions contain an eigenvalue in the open right half-plane for all parameters

in this region while black regions contain an Eigenvalue on the imaginary axis for at least one

parametrization within this region. For the rest of the parameter space (white) there is no

eigenvalue in the closed right half-plane and the system is therefore asymptotically stable. The

resolution q̃min is 1/128 in both k2 and k3.

required compared to 18 seconds for the case without time delay in Fig. 3.7.

Such an analysis could not have been carried out with the parameter-space approach

from [1]. On the one hand four uncertain parameters are considered of which only two are

plotted which is only possible by gridding two parameters when using the parameter space

approach. On the other hand, more importantly, the parameter space approach cannot be

used to examine systems with time delay.
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Figure 3.12: Simulation results using Simulink for crane example with a time delay td = 0.04 s,

load mass mL = 5, and rope length l = 0.1. This corresponds to the parametrization in Fig. 3.11d.

The reference signal u (blue) changes from 0 to 1 after 1 second while large differences are

observable in the system output (red) for the different parametrizations of k2/k3. For parameters

which were shown to be stable in Fig. 3.11d the simulation results are stable while an oscillation

with growing amplitude can be observed in the other cases.

The next example examines the effect of time delay for a fixed mass mL = 5 and

rope length l = 0.1. Fig. 3.11 shows stable and unstable regions in the k2× k3-plane. This

example illustrates that time delay in the control loop can lead to an enlarged stable region

in the parameter space in comparison with the delay-free case, e.g., when considering the

parameters k2 = 10, k3 = 60. Again, computation time rises compared to the case without

time delay. Here, computation times of 17, 18, 29, and 32 seconds are required (compared

to less than one second without time delay).
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For the case with time delay no comparison results exist as no time delay is considered

in [1]. Therefore, a simulation was carried out using Simulink18. The results of a step

response for four different combinations of k2 and k3 are given in Fig. 3.12. In all cases,

the load mass is fixed to mL = 5, the rope length is fixed to l = 0.1 and a time delay

of td = 0.04 s is considered, which corresponds to the parametrization in Fig. 3.11d.

The results of the simulation in Fig. 3.12 are as expected. For parameters where the

stability analysis indicates a stable system the simulation results are stable. Likewise, for

parameters where the stability analysis indicates an unstable system the simulation results

are unstable.

3.8 Examples for Stability Analysis with

Incommensurate Delays

The previous section demonstrated how our method can be applied to robust stability anal-

ysis of a system without time delay or with one time delay. In this section, the examples

from [34] are taken. In that publication, different methods which can cope with incommen-

surate time delays are compared for nine examples by determining computation time and

maximum time delay which the respective method classifies as stable. Several LMI-based

methods as well as some methods based on linear-programming and sum-of-squares tech-

niques are compared. In addition, one method [43] is considered, which non-conservatively

maps stability boundaries to the delay-space by solving a quadratic eigenvalue problem.

However, the problem is solved for a finite number of values from an interval which would

actually have to be checked completely, i.e., the results are not rigorous19. Moreover, it is

not clear how the method could be extended for systems with parametric uncertainties.

The system matrices of the examples from [34] are given in Table 3.1. No parametric

uncertainties are present in any of the examples. In our algorithm, we will however treat

the time delay(s) as uncertain so as to determine the time delay at which the system be-

comes unstable. For all examples with one or two time delays the results determined with

our method are identical to the exact results obtained with the method from [43] within

the chosen resolution of our algorithm while for the example with three time delays the

accuracy of the results is discussed explicitly. Note that we do not compare computa-

tion times of our results to the ones published in [34] due to the difficulties discussed in

Section 3.9.8 where we also point out the necessity of establishing a collection of suitable

benchmark examples to evaluate robust stability analysis methods for time-delay systems.

3.8.1 One time delay

Three different examples are given in [34] for systems with one time delay. The first

example is a second-order system with one delay. This example represents a special case

where an eigenvalue touches the imaginary axis for a delay of td,1 = π s but doesn’t cross

18 We used Simulink 2015b, part of Matlab 2015b by Mathworks, www.mathworks.com. The simula-

tion results were calculated using the variable-step-size continuous-time solver ode23t with standard

parametrization. This solver is well suited for systems with time delay.
19 This means that unstable system may falsely be characterized as stable.
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Table 3.1: System matrices for the time-delay examples taken from [34].

Example A0 A1 A2 A3

1

[
0 1

−1 −1

] [
0 0

0 −1

]
2

[
−2 0

0 −0.9

] [
−1 0

−1 −1

]
3

−1 13.5 −1

−3 −1 −2

−2 −1 −4

 −5.9 7.1 −70.3

2 −1 5

2 0 6


4 0.5 −0.9 −1.5

5 0 −1 −2

6

[
0 1

−1 49
256
−7

8

] [
0 0
1
5

0

] [
0 0

−4
5

0

]
7

−1 13.5 −1

−3 −1 −2

−2 −1 −4

 −5.9 0 0

2 0 0

2 0 0

 0 7.1 −70.3

0 −1 5

0 0 6


8


0 1 0 0

0 0 1 0

0 0 0 1

−2 −3 −5 −2



− 9

200
1.5
200

1
4

0
1

200
1

200
1
20

0

0 0 0 1
2000

−2 −1
2
−1 0




3
80

0 3
40

1
8

0 1
20

1
20

0
1
20

1
20

0 0

0 −2.5 0 −1


9 −2 −4 −3 −1

the imaginary axis to the right half-plane. In this case, our stability analysis method

does not converge, see Section 3.9.3 for a discussion. It is however possible to shift the

stability boundary to the left half-plane by a small value ε using the transformation from

Section 3.4.4. Then, the results depicted in Fig. 3.13a are achieved for different values of

ε. The stability boundary converges to td,1 = π s for ε → 0. The overall calculation time

is 21 s.

The second example again considers a second-order system. This example does not suffer

from the same difficulty as example one, i.e., an eigenvalue passes the imaginary axis when

the system becomes unstable, and shifting the stability boundary into the left half-plane

is not necessary. Nevertheless, results are computed depending on the two parameters td,1
and ε to demonstrate the effect of shifting the stability boundary into the left half-plane.

The results shown in Fig. 3.13b are in line with the results achieved in [34] for ε = 0. The

overall calculation time is 615 s.

In contrast to the first two examples the third example considers a third-order system.

This example is used to demonstrate the ability of our approach to calculate results of near

arbitrary precision. A calculation with a range of td,1 = [0, 5] s with a resolution of 1/128

(i.e., 0.039 s) yields a stability boundary in the range 0.1562 s to 0.1953 s and stability

for smaller time delays, see Fig. 3.13c. This calculated range includes the exact solution

0.1624 s given in [34]. In this case, calculation took 496 s
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Figure 3.13: Analysis of stability for different examples with one time delay. Gray regions

contain an eigenvalue in the open right half-plane for all parameters in this region while black

regions contain an Eigenvalue on the imaginary axis for at least one parametrization within this

region. For the rest of the parameter space (white) there is no eigenvalue in the closed right

half-plane and the system is therefore asymptotically stable. The resolution q̃min is 1/128 in td,1
and ε.

If more exact results are desired, this can be achieved using two different methods. On

the one hand, we can simply restart the algorithm using a smaller desired resolution. This

does however lead to longer computation times and more memory consumption. On the

other hand, we can restart the calculation using a smaller range of interest. E.g., if we

choose td,1 = [0.15, 0.25] s with a desired resolution of 1/128 (i.e., 0.00078 s) this yields

the range 0.1617 s to 0.1625 s for the lower stability boundary, see Fig. 3.13d. When using

this smaller range of interest it also becomes clear that there is an additional stable region

with td,1 around 0.2 s. If we repeat the stability analysis again using a starting range of

td,1 = [0.1617, 0.1625] s the result shows that the bottom stability boundary is in the

range 0.16234 s to 0.16235 s. The computation times for the smaller time ranges reduce

significantly (11 s for td,1 = [0.15, 0.25] and 6 s for td,1 = [0.1617, 0.1625] s), although the

relative resolution with respect to the considered interval td,1 does not change.
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Figure 3.14: Analysis of stability for different examples with two time delays. Gray regions

contain an eigenvalue in the open right half-plane for all parameters in this region while black

regions contain an Eigenvalue on the imaginary axis for at least one parametrization within this

region. For the rest of the parameter space (white) there is no eigenvalue in the closed right

half-plane and the system is therefore asymptotically stable. The resolution q̃min is 1/128 in td,1
and td,2.

3.8.2 Two incommensurate time delays

Five different examples are considered for systems with two time delays. In contrast to

the results in [34] we do not calculate one upper limit for both delays but instead examine

stability in the td,1/td,2-plane20. This gives deeper insights into the stability properties of

the systems than computing one upper limit which is valid for both time delays.

Example four considers a first-order system with two time delays. Although a system

of order one seems trivial, stability analysis of such a system with two delays is a complex

problem as is shown in [34]. Using our algorithm, the results shown in Fig. 3.14a are

achieved. For a small td,1 a slightly larger td,2 is allowed than for a bigger td,1, while for a

small td,2 a time delay td,1 within a large range is admissible. The results are calculated in

217 s.

20 The results from [34] can be determined from these plots by finding the largest square region around

td,1 = td,2 = 0 which does not intersect any stability boundary. By doing this we can see that the

results shown here correspond to the exact results given in [34] (within the chosen resolution).
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The results for example five, another first-order system with two delays, are quite similar.

However, the stable regions in the delay space td,1/td,2 become a little more complex as is

shown in Fig. 3.14b. Again, for a small td,2 a rather large range for td,1 is admissible, while

in this case, for a td,1 around 2.5 s a slightly larger td,2 is allowed than for other values of

td,1 (except for very small delays). Calculation takes rather long in this case and completes

after 1087 s.

In example six a second-order system with two delays is examined. In [34] an upper

bound for the delays of roughly 2.1 s is given. Actually, as is shown in Fig. 3.14c, much

larger delays can also lead to a stable system as long as the delays are present in both

delay-channels. These results are calculated in 35 s.

Example seven considers a third-order system with two delays. No usable results are

shown for this system in [34] except for the results generated by the algorithm from [43]

which is not rigorous. In our case, a smaller upper limit of 1 s is chosen for td,1 and td,2 as

the stability analysis otherwise takes extremely long. The results are depicted in Fig. 3.14d

which is calculated in 2637 s. The reason why the calculation takes so long is evident from

that figure: there is a very large number of boundaries where one eigenvalue crosses the

imaginary axis. It can be assumed that the number of boundaries becomes even larger

when considering a larger range of time delays. Consequently, stability for an even smaller

range of time delays (see Fig. 3.14e) is evaluated much faster within 191 s.

The final example with two time delays, example eight, considers a system of order four.

Again, only [43] generates usable results in [34] which are however not rigorous. With our

algorithm, we consider an upper bound of td,1 = td,2 = 2 s. and determine the results

depicted in Fig. 3.14f within a calculation time of 34 s

3.8.3 Three incommensurate time delays

Finally, one example with three time delays is considered. The stability analysis is ex-

tremely complex in that case as is indicated by the results given in [34] and by the com-

putation times for our algorithm. Here, we choose to determine the upper bound allowed

for all three delays as is done in [34]21. To achieve this result each delay td,i is defined as

an uncertain parameter αi = [0, 1] multiplied by the same time delay τ , i.e.,

td,i = αiτ (3.66)

for i = 1, 2, 3. When considering the starting range τ = [0, 5] with a resolution of

1/128 the lowest stability boundary is found in the range τ = [0.2344, 0.2734] within a

calculation time of 10852 s. By constraining the search to the interval τ = [0.2, 0.3], again

with a resolution of 1/128 we achieve the result of τ = [0.2351, 0.2360] for the lowest

stability boundary22. Stability evaluation on this small parameter range is very fast and

is performed within 22 s.

21 Determining the allowed delay in the three-dimensional delay-space was not feasible, i.e., the algorithm

had not terminated after several hours.
22 In [34] an admissible time delay of 0.238 s is determined using the exact method from [43]. This is larger

than the value determined with our method and shows the danger of evaluating a stability condition

which must be checked for an infinite range, at a number of discrete points: the stable region may be

overapproximated if the actual stability boundary is between the discretization points.
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3.9 Discussion

This chapter presented a newly developed stability analysis algorithm for LTI systems

with time delay and parametric uncertainties. The algorithm is based on work by Zettler,

Garloff et al. in [7, 21] and extends their algorithm as follows:

• time delay systems (also with incommensurate delays) are examined by incorporating

Taylor Models,

• stable regions may be determined in a low-dimensional parameter space (e.g., two

parameters for plotting) while considering additional23 interval parameters (i.e., pa-

rameters not known exactly but constrained to an interval), which is of interest

especially for robust controller synthesis,

• desired minimum damping may be specified,

• and frequency sweeps up to infinite frequency are enabled by a system transformation.

This results in an efficient, versatile stability analysis algorithm. The classes of systems

which can be examined using this approach are LTI systems of retarded type

• with incommensurate time delays and parametric uncertainties,

• with commensurate time delays and parametric uncertainties,

• without time delay but with parametric uncertainties,

• with incommensurate time delays and without parametric uncertainties,

• with commensurate time delays and without parametric uncertainties,

• without time delay and without parametric uncertainties,

where the first is the most general case. In the following, several aspects of the proposed

stability analysis algorithm are discussed.

3.9.1 Computational Complexity

The algorithm may be applied to systems of relatively high order (around 10 to 20) with

several uncertain parameters (around 5 to 10). Most of the examples in Chapter 4, e.g.,

have five uncertain parameters of which two are gridded while three are constrained to

intervals and the system with highest order which is considered is of order 12.

The overall computational complexity is dominated by the branch and bound algorithm

which has exponential complexity with respect to the number of dimensions in Q̃. Deter-

mining the effect of the number of states and delays on computation time is unfortunately

not easy as the complexity of evaluating the Taylor Model depends on the exact char-

acteristic function, although a rising number of states and delays usually leads to longer

computation times.

23 The number of parameters which can be considered is not limited in theory. In the examples in

Chapter 4 we generally consider five parameters of which two are gridded for plotting and the other

three are constrained to an interval.
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In practice, computation times strongly depend on the exact problem, parameter ranges,

etc. as the number of necessary subdivisions has by far the greatest effect on computation

time. On the one hand, a large region can be ignored if zero exclusion is determined, and if

zero inclusion is determined it is sufficient to subdivide in the direction of the parameters

for which q̃min < 1, i.e., the dimension of the problem is reduced. On the other hand, it

can take very long to determine all boundaries in the parameter space for problems with

many stability crossings. Computation times are also strongly affected by the number of

delays, i.e., incommensurate time delays generally lead to a very long computation time as

can be seen for the examples considered in Section 3.8. More specifically, this has a large

effect on the time it takes to check whether disjoint regions are stable whereas the effect

on boundary mapping is minimal.

3.9.2 Conservatism

The stability analysis algorithm can either be used to determine whether a system is

stable for a set of interval parameters or determine regions in the parameter space which

are stable, regions which are not stable, and regions on the stability boundary. For the

former case the results of the algorithm are non-conservative, while for the latter minimum

conservatism is introduced due to the limited resolution with which the boundary mapping

is performed.

If a region is on the boundary this means that at least one eigenvalue passes the stability

boundary for some parameter value within this region. Therefore, we must assume that

the boundary belongs to the unstable region when interpreting the results. This intro-

duces some minimal conservatism to the boundary mapping, i.e. the size of the unstable

region is overapproximated. However, in contrast to other stability analysis methods the

conservatism, i.e., the maximum amount of overapproximation is tunable by specifying

the desired resolution q̃min in the parameter space. Reducing the resolution and thus con-

servatism generally leads to longer computation times. Alternatively, a less conservative

result can be determined by choosing a smaller starting range for the parameter of interest,

see example three in Section 3.8.1 and example nine in Section 3.8.3.

3.9.3 Marginal Stability

For a marginally stable system at least one eigenvalue lies exactly on the imaginary axis

while no Eigenvalue is right of the imaginary axis (see Section A.1). For the case of systems

with uncertain time delay, marginal stability may also arise for some time delay while the

system is stable for larger or smaller time delays, see example one in Section 3.8.1 for

an example. In such a case, with increasing time delay the real part of an eigenvalue

with negative real part increases until it is zero and with further increasing time delay it

decreases again. Thereby, the eigenvalue touches the imaginary axis but never passes over

the imaginary axis.

Whether there is an eigenvalue on the imaginary axis or an Eigenvalue touches the imag-

inary axis for some value of an uncertain time delay: both of these cases are problematic

for the proposed algorithm. As the value set is overapproximated when checking for zero
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exclusion and underapproximated when checking for zero inclusion, the algorithm never

terminates. See example one in Section 3.8.1 for a case where this occurs.

Unfortunately, it is not actually possible to distinguish cases when the system may be

marginally stable. Instead, this can currently only be assumed, if the algorithm does not

converge for a very long time. In such a case it is possible to examine stability using the

proposed algorithm by shifting the stability boundary into the left half-plane by some small

value. This results in some conservatism which may be interpreted as a stability reserve.

3.9.4 Marginal Stability for Time-Delay Systems

For time-delay systems, one special case of marginal stability is considered where an eigen-

value touches the point s = 0 due to the time-delay term, i.e., a0 = 0 for s = 0 and a0 6= 0

for s = jω with ω ∈ R\{0}24. This case can occur, e.g., in systems which can be simplified

in the case without time delay. The teleoperation system with position-based admittance

controller and force-force exchange (see Section 4.5.5) is one example where this occurs.

In this case, the stability analysis is carried out as follows in our implementation:

• The special case is detected by evaluating a0 for s = 0.

• If this is zero then the subsequent boundary mapping is carried out for ∂Γ = [ε,∞]

with ε > 0 a small positive constant.

• The same is then done for the final stability test for the whole region Γ, i.e., a small

region around s = 0 is excluded from this final test.

• The stability analysis can then be carried out as usual but the overall system is

marked as marginally stable.

It must be noted that using this approach it cannot be guaranteed that there is no eigen-

value in the small region around s = 0 which is excluded from the boundary mapping and

final stability check25.

3.9.5 Convergence

There are some edge cases where the proposed algorithm does unfortunately not converge,

in addition to the case of marginal stability, which is discussed in Section 3.9.3 and Sec-

tion 3.9.4. Similarly to the case of marginal stability, if an eigenvalue exactly lies on the

boundary ∂Γ for the minimum or maximum value of the considered parameter range, then

the algorithm can never determine zero-inclusion or exclusion for this point. In this case

convergence can be achieved by minimally changing the upper or lower bound of the pa-

rameter range. This could also be done automatically which is however a topic of future

research.

24In literature on delay-independent stability such a system has recently been referred to as weakly stable

but not strongly stable, see [59].
25 In our practical implementation the value ε = 1e−10 is chosen which is a very small value. Even

so, theoretically there could be an additional eigenvalue in this small region and the system may be

unstable.
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This problem can also occur in other cases, e.g., if an eigenvalue lies on the boundary ∂Γ

for the mid-point of the considered parameter range. Then, after subdividing the starting

interval once in this direction, the same problem occurs. In this case the problem could be

circumvented by subdividing the same interval at different random points near the mid-

point. As the computational cost increases when taking this measure, this would however

require a good heuristic to decide when this is necessary which is a possible topic of future

research.

3.9.6 BIBO-Stability

Instead of examining the characteristic equation the poles of the transfer function may be

examined. The Γ-mapping method introduced in this chapter is applicable to this case.

Then, the method determines regions in the parameter space for which there is no pole of

the transfer function in a specifiable region Γ in the complex plane. If the right half-plane,

i.e. Γ = Γ+ is chosen, this results in determining Bounded Input Bounded Output (BIBO)

stable regions in the parameter space.

Special care has to be taken to pole-zero cancellations. If these arise independent of

s one may proceed as for the case without uncertainties, i.e. if the pole is in the left

half-plane it may be canceled, otherwise not. In some cases pole-zero cancellation may

arise depending on s due to the time delay. The pole-zero cancellation for a time-delay

system in the case of s = 0 is discussed in [60]. This special case is comparable to the case

of marginal stability with an eigenvalue at s = 0 discussed in the previous section. It is

not further considered here but may be an interesting topic for future research.

3.9.7 Mapping of unbounded regions

In this chapter, a method to map unbounded regions to the parameter space by transform-

ing such regions to several bounded regions is introduced. This is used, e.g., to mapping

the imaginary axis to the parameter space when considering Hurwitz stability. The trans-

formation introduced here may be seen as a general solution which is applicable to many

different stability analysis methods which rely on a frequency sweep. An open research

question which remains in this context is whether there is a better way of dealing with

time delay terms than proposed here.

3.9.8 Comparability of Results

When evaluating the examples in Section 3.7 and Section 3.8 it became evident that it

is quite difficult to compare different robust stability analysis algorithms for time-delay

systems. Different algorithms offer a different accuracy which is often also influenced

by user-controller parameters, and calculation times strongly depend on hardware and

implementation. Moreover, comparing calculation times between algorithms with different

accuracy is problematic. Finally, there is a lack of standardized benchmark examples which

makes the selection of good examples difficult.

Investigating solutions to these problems is an interesting topic for future research and

could greatly facilitate further development in this field. It would, e.g., be interesting to
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use a metric for the calculation time which does not directly depend on the used hardware

and makes algorithms comparable, e.g., the number of floating-point operations. Moreover,

a large collection of standard benchmark examples could be established which could then

be used to compare existing methods and evaluate new methods. Such a collection should

cover a large class of time-delay systems with different types of uncertainties and should

include practically relevant examples as well as some special cases.

3.10 Summary and Future Work

In this chapter a novel approach to the stability analysis of LTI systems of retarded type

with incommensurate time delays and parametric uncertainties was introduced. The overall

algorithm maps Γ-regions from the complex plane to the parameter space Q×T d by using

a branch and bound algorithm which, in turn, uses efficient checks for zero-inclusion and

zero-exclusion in the non-linear holomorphic function that are based on evaluating inclusion

and exclusion of the negative interval remainder of the Taylor Model in the polynomial

part of the Taylor Model. The algorithm was demonstrated using a simple example for

robust stability analysis in Section 3.7 and a number of time-delay problems from literature

in Section 3.8.

The method allows for an intuitive stability analysis and controller design in the pa-

rameter space, similar to the well-known Parameter-Space Approach by Ackermann [1].

Like the Parameter-Space Approach, our method can handle non-affine dependencies of the

characteristic equation on the uncertain parameters, i.e., the coefficients of the character-

istic equation may depend polynomially on the uncertain parameters. The key difference

is that our method is also applicable to time-delay systems and even systems with incom-

mensurate delays can be examined which is a very challenging problem. Moreover, a larger

number of uncertain parameters can be considered in comparison with [1] as we can map

stable regions to a low-dimensional parameter space while additional parameters are not

known exactly but instead constrained to intervals. This property is especially useful for

controller design where we can determine controller parameters which result in a stable sys-

tem for a whole range of plant parameters. Or we could determine suitable gain scheduling

of one controller parameter, depending on one plant parameter, while other parameters

are not known exactly. In comparison with other robust stability analysis methods for

time-delay systems, the actual stability check used in our method is not conservative,

i.e., the results are non-conservative if stability is evaluated for a fixed parametrization

or set of interval parameters, and the only conservatism when mapping stable regions to

the parameter space, is due to the chosen resolution. This unique property makes an

application of our newly developed method to various time-delay systems especially inter-

esting. A C++ implementation of the presented algorithm is available for download at

http://www.github.com/schauss/glob_stab.

An application of the method to different teleoperation architectures together with a

newly developed transparency analysis method is the topic of Chapter 4. An application

to other time-delay systems, be it with or without parametric uncertainties, could be a

topic of future research. In addition, convergence for the edge cases mentioned in the

discussion could be further evaluated and strategies to assure convergence in all cases
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could be developed. Moreover, the mapping of unbounded regions to several bounded

regions could be further improved for the case of time delay. Specifically, simply replacing

the time-delay term by an interval may lead to a slow convergence rate and there may

be better solutions, e.g., symbolically determining the partial derivatives of the function

and evaluating these partial derivatives. Finally, the method could be extended towards

an automatic parameter tuning by incorporating it in a global optimization method. This

possible future extension of our method is described in more detail in Chapter 5.
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Teleoperation Systems

Summary. In this chapter we analyze the stability and transparency of teleopera-

tion systems which are modeled as linear time-invariant systems with parametric

uncertainties and time delay in the communication channel. Our robust stability

analysis method is combined with a novel transparency analysis method which re-

sults in an intuitive analysis and design of teleoperation systems in the parameter

space. The main contributions of this chapter are

• a parameter-space stability analysis of several well-known teleoperation ar-

chitectures with time delay in the communication channel,

• a novel method for parameter-space transparency analysis of teleoperation

systems,

• a parameter-space transparency analysis of these architectures which espe-

cially focuses on evaluating the effects of time delay on transparency.

The method developed in the previous chapter can be used for the robust stability analysis

and controller design of time-delay systems. In this chapter, the method is applied to

teleoperation systems which represent a typical application area for such a method. A

teleoperation system allows a human operator to perceive and interact with a remote

environment by using a robotic system. Thereby, cognitive skills of a human operator can

be transferred to the robotic system which is generally called teleoperator or telerobot in

this context. Teleoperation has been a field of research for several decades. In this thesis,

we focus on haptic teleoperation which is often also referred to as telemanipulation or

bilateral force-reflecting teleoperation. For a literature review of this field, see [5].

A haptic teleoperation system enables an operator to physically interact with a remote

environment. In essence, a robotic system, which is referred to as teleoperator in the

following, is controlled by the operator using a haptic interface. Idealized, the functionality

of a haptic teleoperation system can be described as follows: the operator moves the haptic

interface, this movement is measured and imposed on the teleoperator, the teleoperator

measures the interaction force with the remote environment, and this force is applied to

the haptic interface and thereby felt by the operator. In practice, many different control

architectures, which exchange different types of information between haptic interface and

teleoperator, can be used that all result in a similar overall system behavior. The different

architectures do however result in different stability and transparency properties which

must both be taken into account when designing teleoperation systems. On the one hand,
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the system should display the remote environment to the operator as if he were directly

interacting with it, i.e., the system should be transparent. On the other hand, the overall

system must be robustly stable when interacting with arbitrary environments. A perfectly

transparent teleoperation system is only marginally stable (see [4]) and can therefore not

be realized in practice. Therefore, an optimal compromise is sought which consists of a

system which is robustly stable for all remote environments of interest and, at the same

time, is as transparent as possible. This goal is pursued in this chapter by combining

the stability analysis method developed in Chapter 3 with a novel transparency analysis

method which we first presented in [61]. In the following, we shortly describe why these

tools are suitable for the stability and transparency analysis of teleoperation systems.

The stability analysis of teleoperation systems is a challenging topic which has been a

field of active research for many decades. Difficulties in this context mainly arise from

two aspects which are inherent to most practical teleoperation systems. First, the remote

environment is often located at a large distance from the operator. This implies time

delays in the communication channel which must be taken into account in the stability

analysis. Second, a teleoperation system is generally used to interact with different objects

in the remote environment which exhibit different dynamics. Moreover, the dynamics of the

operator interacting with the system are not known exactly. This results in uncertainties in

the overall system model which must be considered in the stability analysis. One approach

to cope with these uncertainties is to assume a model of the environment and a model

of the operator which are both subject to parametric uncertainties. Then, the stability

analysis method developed in Chapter 3 is ideally suited to examine stability of the overall

system subject to parametric uncertainties and time delay.

In comparison with stability analysis methods, much less research effort has gone into

the transparency analysis of teleoperation systems for several reasons. On the one hand,

transparency of teleoperation systems is a secondary goal compared to stability which is

absolutely necessary. On the other hand, stability analysis methods developed in the field

of teleoperation are, in general, also applicable to other domains which makes research

in this field very interesting. Therefore, in general, relatively simple measures are used

to quantify the transparency of teleoperation systems which, e.g., often only consider one

or two fixed environments, usually the extreme cases of free space and stiff contact. In

contrast, our approach determines the distortion of the environment impedance caused

by the teleoperation system for a whole range of remote environments. The impedance

displayed to the operator is approximated by a simple, physically interpretable mechani-

cal impedance, e.g., a mass-spring-damper system, and parameters of this approximated

displayed impedance are determined for a whole range of parameters of the environment

impedance. This results in an intuitive graphical representation of transparency which of-

fers insights into the range of environments for which a system is sufficiently transparent.

The rest of this chapter is structured as follows: First, a short state of the art of stabil-

ity and transparency analysis of teleoperation systems is presented which mainly focuses

on closely related work. Then, a general controller architecture which is widely used in

literature, the four-channel architecture, is introduced together with models of the hap-

tic interface, teleoperator, operator, and environment in Section 4.2. This is followed

by a short description of how stability analysis using the method from Chapter 3 is ap-
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plied to teleoperation systems in Section 4.3. Next, a novel method for parameter-space

transparency analysis is introduced in Section 4.4. Stability and transparency of several

common teleoperation setups is examined in the main part of the chapter in Section 4.5.

The chapter ends with a summary of the most important results.

4.1 State of the Art

A good overview of early research in the field of teleoperation can be found in the well-

known book [2] by Sheridan published in 1992. Around this time there was a large interest

in bilateral force-reflecting teleoperation and several fundamental papers concerning stabil-

ity and transparency were published. These papers lay much of the theoretical groundwork

on which most newer publications build. Hannaford introduces the hybrid two-port model

in [62], which is used for stability and transparency analysis of teleoperation systems

since. In [63], Anderson and Spong introduce the scattering transformation to teleopera-

tion which passivates the communication channel and enables stable teleoperation in the

presence of time delays. A very similar result using a different formulation is achieved

by Niemeyer and Slotine, who introduce wave variables to teleoperation in [64]. In 1992,

Lawrence first formulates the four-channel architecture in which forces and velocities are

transmitted from master to slave and vice versa, determines the hybrid two-port model of

this general architecture, and formulates stability and transparency objectives in [4, 65].

Lawrence comes to the conclusion that force as well as velocity information is necessary

to cancel the device dynamics of master and slave and enable transparent force-reflecting

teleoperation. The same conclusion is reached by Yokokohji and Yoshikawa in [66] where a

very similar framework is introduced. Building on these fundamental results, many prac-

tical teleoperation systems have been developed in the following years while theoretical

research continues in many different directions. For more information on the broad field

of bilateral force-reflecting teleoperation, the literature review in [5] is recommended. The

rest of this section concentrates on work closely related to this chapter, i.e., prior work on

stability and transparency analysis of classic two-channel and four-channel teleoperation

architectures.

4.1.1 Stability Analysis

A common stability analysis method for teleoperation systems consists of decomposing

the overall system into several subsystems (one-ports and two-ports) connected in cascade

structure. Passivity of each subsystem then results in passivity of the complete teleop-

eration system which, in turn, implies stability, see, e.g., [64]. This approach is widely

spread in literature, especially for systems with time delay [5]. However, passivity of each

subsystem can only be shown if some simplifying assumptions are made, e.g. actuator

dynamics are neglected and humans are modeled as passive systems. Moreover, passivity

of each subsystem is also not actually necessary and generally leads to conservative re-

sults [67, 68] as the overall system can be passive if some subsystems inject energy while

other subsystems extract energy. In [4], this conservatism is reduced by modeling the tele-

operation system consisting of master, slave, communication channel, and all controllers

75



4 Stability and Transparency Analysis of Teleoperation Systems

as one two-port and examining stability using Llewellyns absolute stability criterion [69]

which states: a two-port is absolutely stable if and only if, the one-ports resulting from

terminating the two-port with an arbitrary, passive impedance on either side are passive.

The absolute stability criterion seems ideal for teleoperation systems where the operator

and environment are generally considered as unknown but passive impedances1. However,

in reality the impedance of the environment and, even more so, the impedance of the human

arm are limited to a small subset of all possible passive impedances. Therefore, [70, 71]

Haddadi & Hashtrudi-Zaad developed a graphical method for stability analysis in the

scattering domain which is applicable to systems with time delay and allows imposing

bounds on either the environment impedance or the human arm impedance. However,

only one of the two impedances can be limited and it is not clear how limits on the inertia,

stiffness, and damping of a mass-spring-damper environment can be taken into account.

Moreover, a systematic approach to controller design using this method has not been

published.

Even less conservative results can be achieved if models for the human impedance and

environment impedance are considered, and the model parameters are constrained to a

reasonable range. Then, a stability analysis and controller design for the complete closed-

loop system can be performed. For the case without time delay this has, e.g., been done

in [72] and [73] using the Parameter-Space Approach from [1]. In this chapter, we use the

stability analysis method from Chapter 3 to perform the same sort of non-conservative

stability analysis and controller design in the parameter space. The main novelties in

contrast to [72] and [73] is that we can consider the time delay in the communication

channel which is inherent in many teleoperation systems and a larger number of uncertain

parameters can be taken into account2.

4.1.2 Transparency Analysis

Systematic transparency analysis of teleoperation systems has been investigated for more

than 20 years, since it is an important design objective. In [66], Yokokohji and Yoshikawa

defined transparency based on the frequency-dependent position and force error. An eval-

uation of this transparency measure therefore requires a model of the environment as well

as the human operator. Then, transparency for one environment impedance and operator

impedance can be determined3.

The impedance transmitted to the operator, which was introduced in the context of

1 The operator is not actually passive as he can inject energy into the system. For stability analysis

the operator is however generally assumed to consist of a passive impedance and an additional ex-

ogenous force which constitutes the voluntary force applied by the operator. This exogenous force

is bounded and limited to a low bandwidth. Furthermore, it is assumed that the exogenous force is

state-independent and the operator does not destabilize the system on purpose. This is a reasonable

assumption if we neglect cases with very large time delay where an operator might destabilize the

system by mistake due to the fact that he cannot predict the dynamics of the system
2 More than two parameters can only be considered with the Parameter-Space Approach by gridding

the additional parameters. Therefore, it is difficult to consider more than three or four uncertain

parameters.
3 In [66] the two cases of free space and rigid contact are evaluated for one fixed human operator

impedance.
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the transparency-optimized four-channel architecture by Lawrence in [4], is more useful in

practice as it does not depend on the operator impedance. It is used in [68] to examine

the minimum impedance and maximum impedance which can be displayed by different

teleoperation systems4.

The impedance transmitted to the operator represents an interesting starting point for

transparency analysis. However, it is difficult to interpret the transparency of a system

by analyzing Bode plots of the minimum impedance (which represents the impedance

displayed in free space) and the maximum impedance (which represents the impedance in

rigid contact) displayed to the operator as, e.g., done in [68].

Therefore, an alternative presentation of the impedance transmitted to the operator is

proposed in this chapter, which we first presented in [61]. The main idea is to approximate

the impedance transmitted to the operator by a low-order impedance model, e.g., a mass-

spring-damper system. On the one hand, the parameters of such an impedance model can

easily be interpreted as they represent well-known physical properties. On the other hand,

this allows examining the transparency for a whole range of environment parameters, by

graphically analyzing the relationship between environment parameters and parameters of

the approximated transmitted impedance. Differences between environment parameters

and parameters of the approximated transmitted impedance then represent the distortion

caused by the teleoperation system.

A similar approach to transparency analysis is published in [75] by Hirche et al. where

an idealized teleoperation system with wave variables in the communication channel is

considered, and the effect of time delay and wave damping on transparency is analyzed.

More specifically, analytic expressions are derived which approximate the effect of time

delay and wave damping on transparency. This offers some very interesting insights but

limits the applicability of this approach to a small class of systems while our method is

applicable to a wide range of teleoperation architectures.

4.2 System Model

In this section we first summarize the modeling assumptions that are made throughout

this chapter. Then, a general teleoperation architecture, the so-called four-channel archi-

tecture, is briefly explained and models for the human, environment, haptic interface, and

teleoperator are introduced.

4.2.1 Modeling Assumptions

In general, teleoperation systems are highly complex non-linear systems. Consider, e.g., the

multi-user teleoperation system presented in [3] as an example. The overall system consists

of two teleoperators mounted on mobile bases. Each teleoperator has two redundant arms

with seven Degrees of Freedom (DoF) and is mounted on a mobile base which allows

moving through the remote environment. The haptic interfaces on master side consist

of two stationary 10-DoF hyper-redundant haptic interfaces and two 7-DoF redundant

4 Actually, the minimum impedance and the so-called Z-width, i.e., the difference between minimum and

maximum impedance as defined by [74] is examined
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haptic interfaces mounted on a mobile base. The end-effectors of all haptic interfaces and

teleoperator arms are equipped with 6-DoF force-torque sensors. Digital controllers with

limited sampling rate are used to generate the control signals which are applied by motors

with intrinsic actuator dynamics acting on gears with non-linear elasticities and friction.

As the geometry of teleoperator arms and haptic interfaces is not identical, high-level

Cartesian controllers are combined with elaborate redundancy resolution schemes which

optimize, e.g., manipulability of the end-effectors. Environment dynamics are unknown,

non-linear, and may change instantaneously on impact. In addition, as different arms

of the two teleoperators might interact over a common object, passivity of the remote

environment is not guaranteed. Operator dynamics are unknown and non-linear, and the

operators are not necessarily passive but can inject an arbitrary amount of energy into the

system. A large distance between the operator site and remote environment results in time

delay in the communication channel, generally a packet switched network which implies

time-varying delay, packet loss, and possibly limited bandwidth.

As a stability and transparency analysis of such a complex teleoperation system is not

possible in practice, it is common practice to make some simplifying assumptions. The

assumptions used in this chapter are:

• We assume local computed-torque controllers which effectively decouple the multiple

DoF of the overall system. Therefore, the different DoF can be considered to be

independent and stability can be evaluated for each DoF separately. Moreover, the

haptic interface and teleoperator are modeled as damped masses as it is assumed

that the computed-torque controller compensates for non-linear effects. These as-

sumptions are very common and can be achieved in practice, e.g., by applying an

adaptive trajectory controller [76] or a more advanced adaptive approach which im-

poses virtual dynamics on a complex robotic system as presented in [77] and applied

to teleoperation for the first time in [78].

• The remote environment is modeled as a passive mass-spring-damper system, as,

e.g., done in [66,73,79]

• The human is also modeled as mass-spring-damper system and an additional ex-

ogenous force with limited bandwidth which can be seen as the voluntary force the

human applies to the system. This exogenous force is neglected in the stability anal-

ysis as it is assumed that it is state-independent and bounded and therefore has no

effect on stability. This is the same model as, e.g., chosen in [66,72,73,79,80].

• Actuator dynamics and sensor dynamics are taken into account and modeled as

first-order low-pass filters as is done, e.g., in [72, 73].

• We assume a stiff coupling between operator and haptic interface, as well as between

remote environment and teleoperator. This is common practice, see, e.g., [72,73,79].

• A communication channel with time delay is considered and non-linear effects like

packet loss are neglected as, e.g., in [4, 64,68].
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• Finally, the overall system is considered to be time-invariant for the sake of stability

analysis as, e.g., in [72,73,79]. This is a reasonable assumption as the time delay gen-

erally does not vary much when considering modern network or internet connections

and the dynamic properties of the human operator certainly vary but generally at a

slow rate. Likewise, the dynamic properties of the remote environment vary slowly if

the special case of impact is ignored5. Therefore, instead of considering time-varying

parameters for operator and environment we consider the parameters to be unknown

but constrained to an interval. A thorough analysis of several different teleoperation

architectures for the delay-free case which considers unknown parameters constrained

to intervals can be found in [72] and [73].

Using these assumptions the teleoperation system can be modeled as linear time-invariant

one-DoF system with time delay and parametric uncertainties, and the stability analysis

method from Chapter 3 can be applied to the system. It must be noted that the results

obtained in this chapter only hold if these assumptions are true. However, the modeling

assumptions used here are very common in literature on teleoperation, and stability anal-

ysis results using these assumptions have been shown to closely represent experimental

results, e.g., for the delay-free case in [72,73]6.

4.2.2 Teleoperation Architecture

To generally describe a teleoperation system, we briefly introduce the four-channel archi-

tecture with local force-control loops from [68] here, which is depicted in Fig. 4.1. It is

based on the well-known work by Lawrence [4]. We choose this architecture as it can

represent many different interconnections between the system components.

The blocks in the four-channel architecture describe the following system components.

The impedance characterizing the master and slave system is denoted as Zm(s) and Zs(s)

respectively, while Zh(s) and Ze(s) represent the impedance of human operator and envi-

ronment, and C1..6(s), Cm(s), and Cs(s) are different filters/controllers. In all communi-

cation channels between master and slave side there is a time delay Td. The teleoperation

system has two ports on master side, the velocity Vh(s) and the force Fh(s). It also has

two ports on slave side, the velocity Ve(s) and the force Fe(s). In addition to the human

impedance Zh(s), which represents the dynamics of the human arm, the human applies an

exogenous force F ∗h (s) on master side. In contrast, the exogenous force F ∗e (s) on slave side

is considered to be zero, i.e., the force flowing into the system on slave side is completely

determined by the environment impedance Ze(s).

5 Impact analysis for teleoperation systems is a complex problem which can only be analyzed in practice

by modeling the overall system as hybrid system with different contact states and explicitly examining

switches between free-space movement and contact. This goes beyond the scope of this thesis and is

not further considered here.
6 The assumption of a linear mass-spring-damper model for human operator and remote environment

is one of two common assumptions made in literature: either they are modeled as linear mass-spring-

damper systems, as is done here, or they are modeled as passive but otherwise unknown impedance.

Both of these approaches have advantages and disadvantages: using a linear mass-spring-damper model

generally leads to less conservative results, while considering a completely unknown passive impedance

generally leads to quite conservative results which might be more safe in some circumstances, e.g., if

the mass-spring-damper models for human and environment do not hold.
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Figure 4.1: General Four-Channel Architecture of a Teleoperation System.

Following the presentation in [68], a two-port network H describing the complete tele-

operation system can be determined as

[
Fh(s)

−Ve(s)

]
= H(s)

[
Vh(s)

Fe(s)

]
=

[
H11(s) H12(s)

H21(s) H22(s)

] [
Vh(s)

Fe(s)

]
(4.1)
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with

H11(s) =
(Zm(s) + Cm(s)) (Zs(s) + Cs(s)) + C1(s)C4(s) e−2sTd

Hden(s)
(4.2)

H12(s) =
C2(s) (Zs(s) + Cs(s)) e−sTd − (1 + C5(s))C4(s) e−sTd

Hden(s)
(4.3)

H21(s) = −(Zm(s) + Cm(s)) C3(s) e−sTd + C1(s) (1 + C6(s)) e−sTd

Hden(s)
(4.4)

H22(s) =
(1 + C5(s)) (1 + C6(s))− C2(s) C3(s) e−2sTd

Hden(s)
(4.5)

where

Hden(s) = (1 + C6(s)) (Zs(s) + Cs(s))− C3(s)C4(s) e−2sTd . (4.6)

In the following we will also use the determinant of H given by

∆H(s) = H11(s) H22(s)−H12(s) H21(s). (4.7)

The four channel architecture as presented here is widely used in literature on teleoper-

ation. It can be used to represent a large variety of interconnections between master and

slave by choosing C1..6, Cm, and Cs appropriately. This is due to the fact that an arbitrary

combination of master velocity, master force, slave velocity, and slave force can be used

to determine the actuator force on master side as well as slave side. The actuator force

applied to the master device is given by

F̃m(s) = −Cm(s)Vh(s) + C6(s)Fh(s)− e−sTd(C4(s)Ve(s) + C2(s)Fe(s)) (4.8)

while the actuator force applied to the slave device is

F̃s(s) = e−sTd(C1(s)Vh(s) + C3(s)Fh(s))− Cs(s)Ve(s)− C5(s)Fe(s). (4.9)

Thus, we can use this architecture to, e.g., represent classical two-channel architectures,

two-channel architectures with local position-based admittance controllers, transparency-

optimized three-channel or four-channel architectures, and many more7.

The four-channel architecture is used as basis to formulate the transparency analysis

method presented in Section 4.4. Therefore, the controllers C1..6, Cm, and Cs which allow

a representation using this four-channel architecture are given for all examples in Sec-

tion 4.5. In addition to these controller models for human, environment, master (haptic

interface), and slave (teleoperator) are required to completely determine the dynamics of

a teleoperation system. These models are introduced in the following subsections.

7 It must be noted that some architectures which can be represented very easily if we don’t constrain

ourselves to the four-channel architecture become quite complex when formulated using the four-

channel architecture, e.g., the position-based admittance controller with force-exchange in Section 4.5.5.
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4.2.3 Human

The human is modeled as passive impedance (mass-spring-damper system) and an addi-

tional exogenous force f ?h/ F ?
h (s) which is assumed to be zero for the sake of stability

analysis, i.e.

fh = f ?h − (mh +mem)ẍm − bhẋm − chxm, (4.10)

in the time domain or, equivalently, in the frequency domain

Zh(s) =
−Fh(s)

Vh(s)

∣∣∣∣
F ∗
h (s)=0

=
(mh +mem)s2 + bhs+ ch

s
, (4.11)

where xm is the position, ẋm/Vh(s) is the velocity, and and ẍm is the acceleration of

the end-effector, fh/Fh(s) is the interaction force at the end-effector, and mh, bh, and ch
are the inertia, damping, and stiffness used to model the human arm, while mem is the

inertia of the end-effector of the haptic interface8. The measured human force f̃h/F̃h(s) is

determined by low-pass filtering the actual force fh/Fh(s) to account for sensor dynamics,

i.e.

˙̃fh =
fh − f̃h
τh

(4.12)

which can be written in the frequency domain as

Gh(s) =
F̃h(s)

Fh(s)
=

1

1 + τhs
. (4.13)

4.2.4 Environment

The environment is modeled as passive mass-spring-damper system, i.e.

fe = (me +mes)ẍm + beẋs + cexs, (4.14)

in the time domain or, equivalently, in the frequency domain

Ze(s) =
Fe(s)

Ve(s)
=

(me +mes)s
2 + bes+ ce
s

, (4.15)

where xs is the position, ẋs/Ve(s) is the velocity, and and ẍs is the acceleration of the

end-effector, fe/Fe(s) is the interaction force at the end-effector, and me, be, and ce are

the inertia, viscous damping, and stiffness of the environment, while mes is the inertia of

the end-effector of the teleoperator9. Note the opposite sign in comparison with the model

of the human operator.

8 We assume a stiff coupling between end-effector and human arm and can therefore add the end-effector

inertia to the inertia of the human arm.
9 As we assume a stiff coupling between end-effector and environment the end-effector inertia can be

added to the inertia of the environment.
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This linear, passive environment model is used throughout this chapter. Using a linear

model is necessary when performing a stability and transparency analysis in the frequency

domain and is common within literature on haptic teleoperation10.

The measured environment force f̃e/F̃e(s) is determined by low-pass filtering the actual

force fe/Fe(s) to account for sensor dynamics, i.e.

˙̃fe =
fe − f̃e
τe

(4.16)

which can be written in the frequency domain as

Ge(s) =
F̃e(s)

Fe(s)
=

1

1 + τes
. (4.17)

4.2.5 Haptic Interface (Master)

The haptic interface is modeled as damped mass on which the force of the human fh/Fh(s)

as well as the actuator force f̃m/F̃m(s) acts. This can be written as

f̃m + fh = mmẍm + bmẋm, (4.18)

in the time domain or, equivalently, in the frequency domain

Zm(s) =
F̃m(s) + Fh

Vh(s)
= mms+ bm, (4.19)

where xm is the position, ẋm/Vh(s) is the velocity, and and ẍm is the acceleration of

the end-effector, and mm and bm are the inertia and damping used to model the haptic

interface. The actuator force f̃m/F̃m(s) acting at the master device is determined by

low-pass filtering a desired actuator force fm/Fm(s) to account for actuator dynamics, i.e.

˙̃fm =
fm − f̃m
τm

(4.20)

which can be written in the frequency domain as

Gm(s) =
F̃m(s)

Fm(s)
=

1

1 + τms
. (4.21)

4.2.6 Teleoperator (Slave)

The teleoperator is modeled as damped mass on which the force of the environment

fe/Fe(s) as well as the actuator force f̃s/F̃s(s) acts. This can be written as

f̃s − fe = msẍs + bsẋs, (4.22)

10 Mainly when examining transient responses on impact it is common to use non-linear environment

models instead of linear ones. This is not a topic of this thesis.
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in the time domain or, equivalently, in the frequency domain

Zs(s) =
F̃s(s)− Fe(s)

Ve(s)
= mss+ bs, (4.23)

where xs is the position, ẋs/Ve(s) is the velocity, and and ẍs is the acceleration of the

end-effector, and ms and bs are the inertia and damping used to model the teleoperator.

Note the opposite sign of the environment force fe in comparison with the model of the

master.

The actuator force f̃s/F̃s(s) acting at the slave is determined by low-pass filtering a

desired actuator force fs/Fs(s) to account for actuator dynamics, i.e.

˙̃fs =
fs − f̃s
τs

(4.24)

which can be written in the frequency domain as

Gs(s) =
F̃s(s)

Fs(s)
=

1

1 + τss
. (4.25)

4.3 Parameter-Space Stability Analysis

The robust stability analysis method for time-delay systems developed in Chapter 3 is

used in this chapter to analyze stability of the different teleoperation architectures in Sec-

tion 4.5. Therefore, a state-space representation of the complete system is determined from

the dynamic equations of human (4.10), environment (4.14), haptic interface (4.18), and

teleoperator (4.22), the filters (4.12) and (4.16) representing the force sensor dynamics and

low-pass filtering of the measured force, the actuator filters (4.20) and (4.24) represent-

ing the actuator dynamics, as well as the controllers which represent the interconnection

between master and slave11.

In all cases, this results in a state-space equation of the form

ẋ = A(q, Td)x = A0(q)x+A1(q)e−Tdsx (4.26)

which represents a simpler version of (3.1) limited to the case of one time delay. In all

examples, the system state x ∈ Rn includes the position and velocity of master and slave

as well as the filtered values of the sensor and actuator filters12. In some examples, there

are additional states, e.g., integrated transmitted velocity for the wave-variable example

in Section 4.5.3 or the positions and velocities of the virtual admittances on master and

slave side for the position-based admittance control architecture with force exchange in

11 The equations for the controllers are given in Section 4.5. They include the communication channel

between master and slave which consists of the time delay between master and slave and, for the

example with wave variables, the wave variable transformations.
12In case of the simplified force-position architecture without sensor and actuator filters considered in

Section 4.5.2 the system state only contains the master and slave velocities and positions.
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Section 4.5.5. The parameter vector q ∈ Rl contains the parameter vectors

qh = [mh, bh, ch]
T (4.27)

qe = [me, be, ce]
T (4.28)

qm = [mm, mem, bm, τm, τh]
T (4.29)

qs = [ms, mes, bs, τs, τe]
T (4.30)

related to the models of human (qh), environment (qe), haptic interface (qm), and teleoper-

ator (qs) as well as the specific controller parameters which are different for each considered

example in Section 4.5. Note that some of these parameters are set to fixed values while

an interval with given upper and lower bound is considered for other parameters13.

4.4 Parameter-Space Transparency Analysis

In this section our novel transparency analysis method which we first presented in [61] is

introduced. The general idea is as follows: a physical model consisting of a mass, spring,

and damper and represented by the impedance Ẑto is fitted to the impedance transmitted

to the operator Zto by a numerical optimization. This system identification is performed

for a range of environment parameters which allows for a graphical transparency analysis in

the parameter space, by relating parameters of the approximated impedance transmitted

to the operator to parameters of the model of the environment.

It must be noted that the transparency analysis method developed here is based on a lin-

ear environment model while real environments are often non-linear in practice. However,

non-linear environment models can often be represented as linear models where the model

parameters vary, e.g., in the case of a Hunt-Crossley Model [81] depending on penetration

depth and speed. Therefore, our results are also applicable to non-linear environment mod-

els by making sure the range of environment parameters we consider covers the variation

of the parameters caused by the non-linearity of the environment model.

4.4.1 Transparency Transfer Function

The impedance of the environment transmitted to the operator Zto over the teleoperation

system can be determined from the general four channel architecture (see Section 4.2.2) as

Zto(s) =
Fh(s)

Vh(s)

∣∣∣∣
F ∗
e (s)=0

=
H11(s) + ∆H(s)Ze(s)

1 +H22(s)Ze(s)
with Ze(s) =

Fe(s)

Ve(s)

∣∣∣∣
F ∗
e (s)=0

. (4.31)

This function, introduced in [4] and extended to the case with local force-controllers in [68],

is often also referred to as transparency transfer function. It represents the impedance that

is displayed to the operator when interacting with the haptic interface and consists of a

combination of the environment impedance Ze(s) and distortion effects caused by the

teleoperation system. For a perfectly transparent teleoperation system the relation

Zto(s) = Ze(s) (4.32)

13 All device-specific parameters in qm and qs are set to fixed values while intervals are considered for

the parameters qh characterizing the human impedance. For all other parameters we partly consider

intervals and partly consider fixed values in the examples in Section 4.5.
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must hold. This is only possible in theory and only for a system without time delay and

actuator dynamics which incorporates noise-free acceleration measurement on master side

and slave side [4, 68].

As perfect transparency is not possible the difference between environment impedance

Ze(s) and impedance transmitted to the operator Zto(s) is examined in the following.

This is a common approach to transparency analysis. However, generally only the extreme

cases of free space and rigid contact are evaluated and Bode plots of the transmitted

impedance are used to present the results, e.g., in [68]. This is neither very intuitive

nor does it give insights into the transparency of the system for environment parameters

between the two extreme cases. Therefore, we develop a graphical transparency analysis

method in the following sections which produces intuitively interpretable results and allows

a transparency analysis over a whole range of environment impedances.

4.4.2 System Identification

The method is based on identifying parameters of a low-order model which is used to

approximate the transmitted impedance. The approximated transmitted impedance Ẑto(s)

is defined here as

Ẑto(s,mto, bto, cto) =
mtos

2 + btos+ cto
s

(4.33)

where mto, bto, and cto are the mass, viscous damping, and stiffness displayed to the oper-

ator14. The approximated transmitted impedance Ẑto(s) is then identified from the exact

transmitted impedance Zto(s) which can numerically be evaluated for a given environment

impedance Ze(s). Therefore, the identification error Zerror defined as

Zerror(mto, bto, cto) =

1

N

N∑
i=1

∣∣∣log10(Zto(jω[i])− log10(Ẑto(jω[i],mto, bto, cto)
∣∣∣2

is evaluated over a range of frequencies ω[i] with i = 1 . . . N and the optimization problem

min
mto,bto,cto

Zerror(mto, bto, cto) (4.34)

is solved. The logarithmic least-squares minimization used here is, e.g., proposed in [82]

to solve the numerical problems other estimators have in low gain areas of functions with

large dynamic range. In [83] a comparison with other cost functions yields superior results

compared to other deterministic approaches.

Various other, generally more complex methods exist to identify system models from

frequency-response data. These methods often offer superior noise robustness in compar-

ison with least-squares minimization which is however not of interest in our case: as the

14 We choose this very simple model here as it is most easy to interpret. However, a slightly more complex

model could also be used to more accurately approximate the actually transmitted impedance (e.g.

two masses coupled by a spring-damper).
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frequency-response is computed from a high-order model and does not originate from mea-

sured data, no noise robustness is necessary. Also, persistent excitation, which is an issue

when identifying models from measured data, is easily assured here, as the identification is

performed in the frequency domain over a large number of frequencies. The transparency

analysis results in Section 4.5, e.g., are determined using N = 500 frequencies. This corre-

sponds to identifying a system from measurement data, which is excited by 500 sine-waves

of different frequency.

The system identification presented here, fits a second-order system to the frequency

response of a system of higher order. Clearly, no perfect fit can be achieved over a large

frequency range, which is however also not necessary in practice due to the limited range

of haptic kinesthetic interaction as, e.g., determined in [84]. In addition to the frequency

range, the weighting of different frequencies is of importance as a good fit at low frequencies

(representative for damping and stiffness) is desired in our case. This is achieved here by

a logarithmic spacing of the frequencies ω[i] as proposed e.g. in [82]. Therefore, ω[i] is

defined as

ω[i] = 10log10(ω−)+ i−1
n−1

(log10(ω+)−log10(ω−)), (4.35)

where ω− and ω+ are the lower and upper bound of the frequency range which are chosen

as

ω− = 0.001
1

s
, ω+ = 20.0

1

s
(4.36)

here. Different frequency ranges result in slightly different identification results, especially

for the identified inertia, as is shown in [61]. In that paper we experimentally evaluate

the results determined for different frequency ranges. We conclude that an upper bound

of ω+ = 20.0 results in superior identification results, for the hardware setup used in Sec-

tion 4.5, in comparison with a larger upper bound of ω+ = 200.0, which would completely

cover the range of haptic interaction given in [84].

It must be noted, that the numerical optimization used to solve the minimization prob-

lem is not necessarily convex and the algorithm could converge to a local minimum. A

common strategy to prevent this is to start the minimization from various random values

and choose the best result15.

4.4.3 Graphical Analysis

After identifying the transmitted impedance over a range of environments the transparency

of the teleoperation system can be examined graphically. Therefore, mass, damping, and

stiffness of the approximated transmitted impedance Ẑto(s) are plotted with respect to

the parameters of the actual environment Ze(s). In general, a two-dimensional (spring-

damper) or three-dimensional (mass-spring-damper) parameter space would have to be

mapped to a three-dimensional parameter space which is difficult to analyze graphically.

15 For the transparency analysis in Section 4.5 the parameter values of the environment impedance are

chosen as initial values. The identification error is always within the expected range which makes

local minima very unlikely. For the examples in [61] we evaluated other initial values over a large range

which all lead to the same results. This suggests that the optimization problem is convex in a relatively

large range around the global minimum.
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Figure 4.2: One-DoF linear axis teleoperation system.

Therefore, the influence of one parameter of the environment on all parameters of the

transmitted impedance, is examined, and the fixed environment parameter is set to zero.

4.5 Examples

In this section robust stability and transparency of different teleoperation architectures is

examined. Therefore, we first summarize the model parameters used for human, environ-

ment, haptic interface, and teleoperator. Then, the different teleoperation architectures

are introduced, a robust stability analysis is performed, and transparency is examined

for different time delays. As architectures some widely used classic teleoperation ar-

chitectures are selected: the two channel force-position architecture (Section 4.5.2), the

two-channel force-position architecture with wave-variables in the communication channel

(Section 4.5.3), and the transparency optimized four-channel architecture (Section 4.5.4).

In addition, a position-based admittance control with force-force exchange is considered

which is widely used at our institute (Section 4.5.5).

For the first example, the two channel force-position architecture, the stability analysis

and controller design is shown in great detail so as to thoroughly introduce the different

possibilities our stability analysis method offers. Moreover, this example is used to illus-

trate the effect of sensor and actuator filters on stability. For the remaining examples the

stability analysis is reduced to a few relevant plots and we only consider the complete

system with sensor and actuator filters.

4.5.1 Model Parameters

The same model parameters are chosen for the different examples in this chapter. These

correspond to an actual hardware setup which is depicted in Fig. 4.2 and used for basic

research at the Chair of Automatic Control Engineering, TU München.

The setup consists of two identical one-DoF linear axis (Copley Controls, Thrusttube

2504 equipped with force sensor Burster, model 8524 ). One of these linear axis is used as

haptic interface while the other is used as teleoperator. The parameters of this teleopera-

tion system are given in Table 4.1. The actuator time constants τm and τs are taken from

the datasheet of the Thrusttube, while the force sensor time constants τh and τe are set to
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Table 4.1: Parameters of haptic interface and teleoperator.

Parameter Value Unit Description

mm, ms 2.386 kg inertia

mem, mes 0.112 kg end-effector inertia

bm, bs 20.0 Ns/m damping

τm, τs 0.00065 s actuator time constant

τh, τe 0.0032 s force sensor time constant

Table 4.2: Parameters of human and environment.

Parameter Lower bound Upper bound Unit Description

mh 0.1 5.0 kg human impedance inertia

bh 0.1 6.0 Ns/m human impedance damping

ch 0.1 40.0 N/m human impedance stiffness

me 0.0 0.0 kg environment inertia

be 0.0 100.0 Ns/m environment damping

ce 0.0 10.0 kN/m environment stiffness

the value of a digital low-pass filter with a cut-off frequency of 50 Hz which is necessary

to suppress the measurement noise of the force sensor. The inertia of the haptic interface

and teleoperator as well as the end-effectors are measured, and the damping is chosen so

as to represent the friction as closely as possible.

This admittance-type teleoperation system is suitable for interaction with very stiff

environments. Therefore, a large range is considered for the environment stiffness and

damping. To simplify the presentation of the results in the following sections we examine

an interaction with a pure spring-damper environment and therefore set the environment

inertia me to zero16. As the haptic interface can be firmly gripped by the human a large

range is also considered for the stiffness, damping, and mass of the human17. These

parameter-sets are summarized in Table 4.2.

16 As we consider a stiff coupling between end-effector and environment the end-effector inertia can be

considered as part of the environment inertia, so the combined inertia in the remote environment is

mes.
17 Different values for the range of the impedance of the human arm can be found in different publications

in literature, see, e.g., [80, 85]. We use the impedance range from [73] which is similar to [80] but

considers a larger upper bound for the inertia. In contrast to both [73] and [80] a three-dimensional

interval-box is considered for the different parameters of the human arm impedance, i.e., the value of

the three parameters is independent, whereas in [73] and [80] the three parameters are set to a common

factor α multiplied by different upper bounds, which restricts the impedance to one line within the

three-dimensional interval-box.
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Figure 4.3: Force-position architecture

4.5.2 Force-Position Architecture (FP)

In this section a stability and transparency analysis is performed for a two-channel force-

position architecture. First, the system model of the overall teleoperation system including

human and environment is presented. Then, a stability analysis and controller design as

well as a transparency analysis is carried out and results are discussed.

System Model

Within the force-position architecture forces are transmitted from the slave side to the

master side while positions are transmitted from the master side to the slave side. A

proportional force controller together with an external force compensation generates the

desired actuator force on master side, i.e.

fm = Kf (f̃h − f̃ee−Tds)− f̃h, (4.37)

where Kf is the gain of the force controller and Td is the one-way time delay between

slave and master. A proportional-derivative (PD) position controller generates the desired

actuator force on slave side, i.e.

fs = Kp(xme
−Tds − xs) +Kd(ẋme

−Tds − ẋs), (4.38)

where Kp and Kd are the proportional and derivative gain of the PD-controller and Td
is the one-way time delay between master and slave. The overall system is depicted in

Fig. 4.3.

For stability analysis, a state-space representation of the system is determined as de-

scribed in Section 4.3 by taking the models of human, environment, haptic interface, and
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teleoperator as well as the controller equations (4.37, 4.38) into account. This results in a

system with system state x ∈ R8 and parameter vector q ∈ R19 given by

x = [ẋm, xm, ẋs, xs, f̃m, f̃s, f̃h, f̃e]
T (4.39)

q = [qTh , q
T
e , q

T
m, q

T
s , Kp, Kd, Kf ]

T (4.40)

(4.41)

where qh, qe, qm, and qs are given in Section 4.318.

For transparency analysis using the method introduced in Section 4.4 the controllers

C1..6, Cm, and Cs of the four-channel architecture in Section 4.2.2 are determined from

(4.37) and (4.38) as

Cs(s) = Gs (Kp/s+Kd) (4.42)

C1(s) = Gs (Kp/s+Kd) (4.43)

C2(s) = GmKfGe (4.44)

C6(s) = Gm(Kf − 1)Gh (4.45)

and Cm(s) = C3(s) = C4(s) = C5(s) = 0. To simplify the transparency analysis the

force sensor filters Gh(s) and Ge(s) and the filters Gm(s) and Gs(s) representing the

actuator dynamics are all set to one, i.e., these filters are not considered in the transparency

analysis. As the bandwidth used for system identification (see (4.36)) is well below the

cut-off frequency of these filters, the effect of this simplification on the identification results

is negligible.

Stability Analysis Without Sensor and Actuator Filters

In this section a stability analysis and controller design is carried out for the simplified

system without sensor and actuator filters. We carry out this analysis in great detail so

as to demonstrate the methodology and possibilities which arise from our novel stability

analysis method. For all results shown in this section, the impedance of the operator is set

to the three-dimensional interval box given in Table 4.2, i.e., we consider a whole range of

values for inertia, damping, and stiffness of the human arm.

We start out with a nominal parametrization which has been selected heuristically. The

parameters selected are Kp = 70 kN/m, Kd = 500 Ns/m, Kf = 5. The resulting stability

regions in the environment plane be/ce for different time delays between 0 ms and 10 ms

are depicted in Fig. 4.4. Actually we would like to design a controller which is stable for

be = [0, 100] Ns/m and ce = [0, 10] kN/m. Clearly, this is not the case for the chosen

parametrization for any time delay. Moreover, the size of the stable parameter set shrinks

drastically for larger time delay.

Therefore, we determine two sets of controller parameters which stabilize the system

for different time delays. One set for a one-way time delay of 1 ms and one set for a

one-way time delay of 10 ms. For comparison we also show stability analysis results for

18 In case of the simplified system which does not take actuator and sensor dynamics into account the

filter time-constants are set to τm = τs = τh = τe = 0 which allows reducing the system order from

eight to four and the number of system parameters from 19 to 15
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Figure 4.4: Stability analysis of simplified force-position architecture for different time delays.

Controller parameters are chosen heuristically. Gray regions contain an eigenvalue in the open

right half-plane for all parameters in this region while black regions contain an Eigenvalue on the

imaginary axis for at least one parametrization within this region. For the rest of the parameter

space (white) there is no eigenvalue in the closed right half-plane and the system is therefore

asymptotically stable. The resolution q̃min is 1/128 in both be and ce.

the delay-free case. The corresponding plots are all given in Fig. 4.5 and are described in

detail in the following. We start by examining the effect of different controller parameters

on the stable region. Therefore, we set the environment damping be to zero and examine

how changes to different controller parameters affect the stable region. This analysis (for

Td = 1 ms) is depicted in Fig. 4.5a to Fig. 4.5b for the position controller gains.

Clearly, changes of Kp and Kd over a large range only have a slight influence on the

stable region (for be = 0 Ns/m). Therefore, these values are not further considered, and

we instead examine stability in the Kf/ce-plane for different time delays in Fig. 4.5c to

Fig. 4.5e. The results can be summarized as follows: the smaller the force controller gain

Kf , the larger the environment stiffness ce can be, while still resulting in an asymptotically

stable system. This relation holds for all time delays. However, with growing time delay

the environment stiffness ce which can be displayed for a given force controller gain Kf is

reduced which is also shown in the following two plots. In Fig. 4.5f stability is analyzed in

the Td/ce-plane for a fixed controller gain Kf = 1, while in Fig. 4.5g stability is analyzed

in the Td/Kf -plane for a fixed environment with damping be = 0 Ns/m and stiffness

ce = 10 kN/m.

The controller design based on Fig. 4.5 results in two different Kf -values for the two time

delays 1 ms and 10 ms. For both of these values, a stability analysis in the environment

plane is given in Fig. 4.6 for different time delays. For a one-way time delay of Td = 1 ms

the value Kf = 1 is chosen. The stability analysis in the environment plane (be/ce) is

depicted in Fig. 4.6a to Fig. 4.6c. For Td = 0 ms and Td = 1 ms the system is stable for

the considered range of environment stiffness (0 kN/m ≤ ce ≤ 10 kN/m) and damping

(0 Ns/m ≤ be ≤ 100 Ns/m). However, for larger time delays only part of this environment

range remains stable. For a one-way time delay of Td = 10 ms the value Kf = 0.1 is

chosen. The corresponding stability analysis is shown in Fig. 4.6d to Fig. 4.6f. Here, the

complete plotted parameter range (including negative damping) is stable for Td = 0 ms

92



4.5 Examples

0 500 1000
Kp [kN/m]

0

2

4

6

8

10

c e
[k
N
/
m
]

(a) Kf = 5, Td = 1 ms

0 5 10
Kd [kNs/m]

0

2

4

6

8

10

c e
[k
N
/m

]

(b) Kf = 5, Td = 1 ms

0 5 10
Kf

0

2

4

6

8

10

c e
[k
N
/m

]

(c) Td = 0 ms

0 5 10
Kf

0

2

4

6

8

10

c e
[k
N
/m

]

(d) Td = 1 ms

0 5 10
Kf

0

2

4

6

8

10

c e
[k
N
/m

]

(e) Td = 10 ms

0 10 20
Td [ms]

0

2

4

6

8

10

c e
[k
N
/m

]

(f) Kf = 1

0 10 20
Td [ms]

0.5

1

1.5

2

K
f

(g) ce = 10 kN/m

Figure 4.5: Controller design for simplified force-position architecture. In the top row, stability

with respect to environment stiffness ce is examined for changes to the position controller for

one time delay (1 ms). In the second row, stability is examined in the Kf/ce-plane for different

time delays. Finally, in the third row, the relation between time delay, force controller gain, and

environment stiffness is examined. The parameters that are not varied or given in the caption of

the subfigure are set to be = 0 Ns/m, Kp = 70 kN/m, and Kd = 500 Ns/m. Gray regions contain

an eigenvalue in the open right half-plane for all parameters in this region while black regions

contain an Eigenvalue on the imaginary axis for at least one parametrization within this region.

For the rest of the parameter space (white) there is no eigenvalue in the closed right half-plane

and the system is therefore asymptotically stable. The resolution q̃min is 1/128 in each axis.
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Figure 4.6: Stability analysis of simplified force-position architecture for Kf = 1 and Kf = 0.1

for different time delays. The remaining position controller parameters are Kp = 70 kN/m

and Kd = 500 Ns/m. Gray regions contain an eigenvalue in the open right half-plane for all

parameters in this region while black regions contain an Eigenvalue on the imaginary axis for at

least one parametrization within this region. For the rest of the parameter space (white) there

is no eigenvalue in the closed right half-plane and the system is therefore asymptotically stable.

The resolution q̃min is 1/128 in both be and ce.

and Td = 1 ms. For Td = 10 ms the system is stable for the desired environment range.

Stability Analysis With Sensor and Actuator Filters

The stability analysis in the previous section considered the simplified system without

sensor and actuator filters. Here, the more complex system with sensor and actuator

filters is considered. The same thorough analysis is carried out as for the simplified system

so as to examine the effect of sensor and actuator filters on stability. For all results shown

in this section, the impedance of the operator is set to the three-dimensional interval box

given in Table 4.2, i.e., we consider a whole range of values for inertia, damping, and

stiffness of the human arm.

We start out by examining stability using the final parametrization of the case without

filters, i.e., using Kp = 70 kN/m, Kd = 500 Ns/m and two different values Kf = 1 and

Kf = 0.1 for the force controller. The resulting stability analysis in the environment plane
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Figure 4.7: Stability analysis of force-position architecture with sensor and actuator filters for

different time delays. Controller parameters are taken from the final results for the case without

filters, see Fig. 4.6. Gray regions contain an eigenvalue in the open right half-plane for all

parameters in this region while black regions contain an Eigenvalue on the imaginary axis for at

least one parametrization within this region. For the rest of the parameter space (white) there

is no eigenvalue in the closed right half-plane and the system is therefore asymptotically stable.

The resolution q̃min is 1/128 in both be and ce.

is depicted in Fig. 4.7 for different time delays. The size of the stable regions is considerably

smaller in this case compared to the case without sensor and actuator filters in Fig. 4.6.

In the following, we again design controllers for different time delays which stabilizes the

system for be = [0, 100] Ns/m and ce = [0, 10] kN/m and show stability analysis results

for the delay-free case for comparison. The corresponding plots are all given in Fig. 4.8

and are described in detail in the following. We start by examining the effect of different

controller parameters on the stable region. Therefore, we set the environment damping

be to zero and examine how changes to the position controller parameters affect stability.

This analysis (for Td = 1 ms) is depicted in Fig. 4.8a to Fig. 4.8b19.

Although there is now an upper limit on Kp, in contrast to the case without filters,

changes of Kp and Kd over a large range only have a slight influence on stability. Therefore,

19 Note that we choose Kf = 5 here so as to allow a comparison with the results for the case without

filters depicted in Fig. 4.5a to Fig. 4.5b.
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Figure 4.8: Controller design for force-position architecture with sensor and actuator filters. In

the top row, stability with respect to environment stiffness ce is examined for changes to the

position controller parameters for one time delay (1 ms) while the second row considers changes

of Kf for different time delays. The parameters that are not varied or given in the caption of the

subfigure are set to be = 0 Ns/m, Kp = 70 kN/m, and Kd = 500 Ns/m. Gray regions contain

an eigenvalue in the open right half-plane for all parameters in this region while black regions

contain an Eigenvalue on the imaginary axis for at least one parametrization within this region.

For the rest of the parameter space (white) there is no eigenvalue in the closed right half-plane

and the system is therefore asymptotically stable. The resolution q̃min is 1/128 in each axis.

these values are not further considered, and we instead examine stability in the Kf/ce-plane

for different time delays in Fig. 4.8c to Fig. 4.8e. The results are very similar to the case

without filters and can be summarized as follows: the smaller the force controller gain Kf ,

the larger the environment stiffness ce can be, while still resulting in an asymptotically

stable system. This relation holds for all time delays and with growing time delay the

environment stiffness ce which can be displayed for a given force controller gain Kf is

reduced. In contrast to the case without filters, the admissible controller gain Kf for a

given time delay and environment stiffness is significantly smaller.

Based on these results we again choose two values for Kf which stabilize the system

for the two time delays 1 ms and 10 ms and analyze stability in the environment plane

in Fig. 4.9. For a one-way time delay of Td = 1 ms the value Kf = 0.23 is chosen which

is a much smaller value than is possible without filters (Kf = 1). The stability analysis
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(f) Kf = 0.078, Td = 10 ms

Figure 4.9: Stability analysis of force-position architecture with sensor and actuator filters for

Kf = 0.23 and Kf = 0.078 for different time delays. The remaining position controller parameters

are Kp = 70 kN/m and Kd = 500 Ns/m. Gray regions contain an eigenvalue in the open right

half-plane for all parameters in this region while black regions contain an Eigenvalue on the

imaginary axis for at least one parametrization within this region. For the rest of the parameter

space (white) there is no eigenvalue in the closed right half-plane and the system is therefore

asymptotically stable. The resolution q̃min is 1/128 in both be and ce.

in the environment plane (be/ce) is depicted in Fig. 4.9a to Fig. 4.9c. The system is

stable for Td = 0 ms and Td = 1 ms in the considered range of environment stiffness

(0 kN/m ≤ ce ≤ 10 kN/m) and damping (0 Ns/m ≤ be ≤ 100 Ns/m). For larger time

delays, only part of the considered environment range is stable. For a one-way time delay

of Td = 10 ms the value Kf = 0.078 is chosen which is slightly smaller than is possible

without filters (Kf = 0.1). The corresponding stability analysis is shown in Fig. 4.9d to

Fig. 4.9f. Here, the complete plotted parameter range (including negative damping) is

stable for Td = 0 ms and Td = 1 ms while the system is stable for the desired environment

range for Td = 10 ms.

Transparency Analysis

In this section, the transparency of the force-position architecture is analyzed. Trans-

parency is evaluated for a smaller range of environment stiffness than we considered for
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Figure 4.10: Transparency analysis of force-position architecture for Kf = 1 for different time

delays (red, solid: no delay; blue, bold: Td = 1 ms; green, dashed: Td = 5 ms; gray, bold:

Td = 10 ms). System identification is performed for 51 values of the variable environment

parameter.

the stability analysis, the rational being that an undistorted presentation of the envi-

ronment impedance is of interest especially when interacting with soft environments or

moving in free space. This is due to the fact that the absolute just noticeable difference

of impedances increases with decreasing compliance according to Weber’s law as has been

experimentally shown for teleoperation systems, e.g., in [86]. As parameter sets we choose

the same values as determined in the previous section. We select two different values for

the force scaling Kf to demonstrate the effect.

First, we choose a value of Kf = 1. According to the previous section this is only

stable for the complete environment range for our system in the case with no filters and

a time delay of up to Td = 1 ms. Even for the smaller environment range considered for

transparency analysis the system with filters is only stable up to Td = 1 ms, see Fig. 4.7.

Nevertheless, the results in Fig. 4.10 show the transparency of the system for a whole range

of different time delays ranging from 0 ms to 10 ms. For the case with no time delay the

remote environment together with the device dynamics of the haptic interface are displayed

to the operator20. For increasing time delay these results are only slightly impaired: for

rising environment damping less of the inertia of the haptic interface is displayed while for

rising environment stiffness less damping is displayed to the operator. It must be pointed

out again that some of these results are only theoretically interesting as the closed-loop

system including the operator is actually not stable for all considered time delays21.

20 Actually, the damping and stiffness are slightly reduced as they are limited due to the stiffness of the

position control loop on slave side.
21 As described in Section 4.4 the transparency analysis considers the system without the operator dy-
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Figure 4.11: Transparency analysis of force-position architecture for Kf = 0.1 for different

time delays (red, solid: no delay; blue, bold: Td = 1 ms; green, dashed: Td = 5 ms; gray,

bold: Td = 10 ms). System identification is performed for 51 values of the variable environment

parameter.

Next, we consider a value of Kf = 0.1 which would allow for a stable interaction with

environments up to a stiffness of ce = 10 kN/m for a time delay of Td = 1 ms and up to a

stiffness of ce ≈ 7 kN/m for a time delay of Td = 10 ms, see Fig. 4.7. The results are shown

in Fig. 4.11. Using this parametrization the inertia and damping of the haptic interface

are amplified by a factor of 10. Apart from this effect, the transparency properties are

identical to the case with Kf = 1. A rising environment damping results in nearly the

same rise of displayed environment damping and the environment stiffness and the stiffness

displayed to the operator are nearly identical.

Discussion

In this section we carried out a stability analysis for a force-position architecture in great

detail, which demonstrates the possibilities our method offers and shows how it can be

used for controller design. The stability analysis was done once for a system without sensor

and actuator filters and once for a system with sensor and actuator filters. The position

controller gains Kp and Kd only have little effect on stability22, although there is an upper

bound on the value of Kp for the case with sensor and actuator filters. The limiting

factor for stability is the force controller gain Kf which must be chosen appropriately. The

maximum admissible range of Kf is limited by the time delay Td: larger time delay results

namics.
22In practice, there is always an upper limit on controller gains due to the implementation on a digital

controller with limited sampling rate!
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in a smaller upper limit for the force controller gain. In addition, for the case with filters

a smaller gain Kf must be chosen.

For the delay-free case, the stable regions in the environment plane are similar to pre-

vious results in [72], where stability of a different admittance-type teleoperation system

was analyzed. The general shape of the stable regions in the environment plane is very

similar, although the numeric values differ due to the different teleoperation system and

the fact that the ratio between the three parameters of the human arm impedance was

fixed in [72]. Moreover, the effect of the sensor filters on stability is comparable.

The transparency analysis yields the following results: Depending on the gain Kf of

the force controller the impedance of the haptic interface is more or less perceivable. A

larger gain Kf results in a more transparent system, while a smaller gain Kf results in a

less transparent system. The perceived device dynamics are even amplified for Kf < 123,

e.g., by a factor of 10 for Kf = 0.1. Another effect which is not shown here but becomes

clear when analyzing transparency for a larger environment range is that the displayable

impedance is limited by the position-controller on slave side: actually a series connection

of the spring-damper of the PD-controller with the damped inertia of the teleoperator,

coupled to the environment, is displayed to the operator.

When considering a fixed controller parametrization, the effect of time delay on trans-

parency is actually rather small for this architecture. For large time delay, environment

damping leads to a reduction of the displayed inertia while environment stiffness leads to

a reduction of the displayed damping. These effects are however not very pronounced.

Especially in the case of rising environment damping this damping probably masks the

perception of the change in inertia.

Summarizing these results, the main impact of time delay for this architecture is a re-

duced upper limit of the force controller gain Kf which, in turn, leads to an amplification

of the perceived dynamics of the haptic interface. Therefore, this architecture is suitable

only for very small time delays. The instability due to time delay, which requires a reduc-

tion of the force controller gain, is caused by the non-passive nature of the communication

channel. A common solution to this problem is to passivate the communication channel

by using wave variables which is examined in the following section.

4.5.3 Force-Position Architecture with Wave Variables (FP-W)

In this section a stability and transparency analysis is performed for a two-channel force-

position architecture with wave variables in the communication channel. First, the system

model of the overall teleoperation system including human and environment is presented.

Then, the different analysis steps are carried out and results are discussed.

System Model

In this architecture, in contrast to the simple force-position architecture (see 4.5.2), wave

variables are used to transmit information from master side to slave side and vice versa.

Thereby, passivity of the communication channel is assured at the cost of a softer system.

23 Here, we only show results for Kf = 1 and Kf = 0.1 but it can be shown that this holds for all Kf < 1.
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Figure 4.12: Force-position architecture with wave variables in the communication channel

This approach was first introduced in [64]. In contrast to [64] we consider a system with

force sensors on master and slave side. This is necessary due to the fact that we consider

an admittance-type haptic interface and an admittance-type teleoperator. If this setup

were used without force sensors this would lead to a very poor performance due to the

large device dynamics and friction effects. Unfortunately, wave variables do not necessarily

ensure passivity when used in combination with a feedback of the measured environment

force, see, e.g., [87].

The overall system is depicted in Fig. 4.12. The communication channel in the wave

domain is described by the four equations

ul =
fl + bẋl√

2b
(4.46)

vr = e−Tdsul =
fr + bẋr√

2b
(4.47)

ur =
fr − bẋr√

2b
(4.48)

vl = e−Tdsur =
fl − bẋl√

2b
(4.49)
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where fl and fr are the forces on master side and slave side, ẋl and ẋr are the velocities

on master side and slave side, ul,vr,ur,vl are the four wave variables, and b is the wave

damping. Communication using wave variables generally leads to wave reflections which

result in vibrations on master and slave side. These wave reflections can be of a large

magnitude and render the teleoperation system unusable. Therefore, different approaches

to reduce this effect have been investigated, e.g., in [64, 88]. Here, we add termination

elements to either side of the communication channel to match the impedance of the

channel and cancel all wave reflections. This is achieved by setting

fr = f̃e + bẋr (4.50)

ẋl = ẋm −
1

b
fl (4.51)

as is first discussed in [64]. In this case, the communication channel with termination

described by equations (4.46) to (4.51) can be simplified to

fl =
1

2
f̃ee
−Tds +

b

2
ẋm (4.52)

ẋr =
1

2
ẋme

−Tds − 1

2b
f̃e (4.53)

as shown in [64]24. The actual controllers are then modified to use the transmitted velocity

and force, i.e.

fm = Kf (f̃h − fl)− f̃h, (4.54)

where Kf is the gain of the force controller. A proportional-derivative (PD) position

controller generates the desired actuator force on slave side, i.e.

fs = Kp(xr − xs) +Kd(ẋr − ẋs), (4.55)

where Kp and Kd are the proportional and derivative gain of the PD-controller and xr is

the integral of the transmitted master velocity ẋr.

For stability analysis, a state-space representation of the system is determined as de-

scribed in Section 4.3 by taking the models of human, environment, haptic interface, and

teleoperator as well as the controller equations (4.52 - 4.55) into account. This results in

a system with system state x ∈ R9 and parameter vector q ∈ R20 given by

x = [ẋm, xm, ẋs, xs, f̃m, f̃s, f̃h, f̃e, xr]
T (4.56)

q = [qTh , q
T
e , q

T
m, q

T
s , Kp, Kd, Kf , b]

T (4.57)

(4.58)

where qh, qe, qm, and qs are given in Section 4.3. Note, that due to the wave variables an

additional integrator must be added on slave side resulting in an additional system state

in comparison with the case without wave variables. In addition, the stability analysis is

more involved due to the more complex interconnection.

24 It must be noted that adding the termination elements to the communication channel introduces scaling

and results in a significant position drift [64]. Different approaches to compensate for a position drift

exist, see, e.g., [5] for an overview. Moreover, it is also possible to prevent wave reflections completely,

at least for the case of free-space motion, without adding scaling or significant drift by using impedance

controllers as shown in [88].
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For transparency analysis using the method introduced in Section 4.4 the controllers

C1..6, Cm, and Cs of the four-channel architecture in Section 4.2.2 must be determined

from equations (4.52 - 4.55) which results in

Cm(s) =
b

2
(4.59)

Cs(s) = Gs (Kp/s+Kd) (4.60)

C1(s) =
1

2
Gs (Kp/s+Kd) (4.61)

C2(s) =
1

2
GmKfGe (4.62)

C5(s) =
1

2b
(4.63)

C6(s) = Gm(Kf − 1)Gh (4.64)

and C3(s) = C4(s) = 0. To simplify the transparency analysis the force sensor filters

Gh(s) and Ge(s) and the filters Gm(s) and Gs(s) representing the actuator dynamics are

all set to one, i.e., these filters are not considered in the transparency analysis. As the

bandwidth used for system identification (see (4.36)) is well below the cut-off frequency of

these filters, the effect of this simplification on the identification results is negligible.

Stability Analysis

In this section we consider the force-position architecture with wave variables in the com-

munication channel. Our goal is to determine the effect of wave variables on stability, as

it is well known that the overall system must not necessarily be stable for the case with

environment force feedback. Therefore, the same parameters are considered here as for the

case with sensor and actuator filters in the previous section. For all results, the impedance

of the operator is set to the three-dimensional interval box given in Table 4.2, i.e., we

consider a whole range of values for inertia, damping, and stiffness of the human arm.

We start out with the parametrization Kp = 70 kN/m, Kd = 500 Ns/m, and two

different values Kf = 1 and Kf = 0.1 for the force controller gain. As value for the wave

damping we choose b = 10 Ns/m. The resulting stability analysis in the environment plane

is depicted in Fig. 4.13 for different time delays. As we expect from a system with wave

variables in the communication channel, the time delay does not have any significant effect

on stability. In this case, the force controller gain does not have any significant effect on

stability either which we did not expect.

In all six cases, the system is stable for the most part of the environment range of

interest (0 kN/m ≤ ce ≤ 10 kN/m and 0 Ns/m ≤ be ≤ 100 Ns/m) with the exception of

a small region with small environment damping and large stiffness. Therefore, we pursue

a controller parametrization in Fig. 4.14 which stabilizes the complete region of interest.

The admissible range of environment stiffness for be = 0 Ns/m is examined for different

controller parametrizations in Fig. 4.14a to Fig. 4.14c. It turns out that we can stabilize the

complete environment range of interest by slightly increasing one of the position controller

gains Kp or Kd. In contrast, the force controller gain Kf only has little effect.
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Figure 4.13: Stability analysis of force-position architecture with wave variables for different

time delays. Controller parameters are taken from the case without wave variables, see Fig. 4.7.

Gray regions contain an eigenvalue in the open right half-plane for all parameters in this region

while black regions contain an Eigenvalue on the imaginary axis for at least one parametrization

within this region. For the rest of the parameter space (white) there is no eigenvalue in the closed

right half-plane and the system is therefore asymptotically stable. The resolution q̃min is 1/128

in both be and ce.

Alternatively, we can also slightly increase the wave damping b so as to stabilize the

complete environment range of interest as is shown in Fig. 4.14d and Fig. 4.14e. This is due

to the impedance matching elements which introduce an additional damping proportional

to b25. These results indicate that by, e.g., choosing b = 15 Ns/m the system is stable for

0 kN/m ≤ ce ≤ 10 kN/m and be = 0 Ns/m for a time delay of Td = 10 ms and that for all

time delays up to Td = 20 ms the system is stable for ce = 10 kN/m and be = 0 Ns/m.

Finally, we verify that for b = 15 Ns/m the complete environment range of interest is

stable for all considered time delays in Fig. 4.15.

25 If wave variables are used without impedance matching, i.e., the wave damping b is only present in

the wave transformations of the communication channel, wave reflections are influenced by the wave

damping b but not the stability of the system [64].
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Figure 4.14: Controller design for force-position architecture with wave variables. In the top row,

stability with respect to environment stiffness ce is examined for changes to different controller

parameters for one time delay (1 ms). In the second row, stability with respect to the wave

damping b is examined. The parameters that are not varied or given in the caption of the

subfigure are set to b = 10 Ns/m, be = 0 Ns/m, Kp = 70 kN/m, and Kd = 500 Ns/m. Gray

regions contain an eigenvalue in the open right half-plane for all parameters in this region while

black regions contain an Eigenvalue on the imaginary axis for at least one parametrization within

this region. For the rest of the parameter space (white) there is no eigenvalue in the closed right

half-plane and the system is therefore asymptotically stable. The resolution q̃min is 1/128 in each

axis.

Transparency Analysis

The parameters b = 15 Ns/m, Kf = 1, Kp = 70 kN/m, and Kd = 500 Ns/m for which

the stability analysis is shown in Fig. 4.15 are also used for transparency analysis. The

results of the transparency analysis in the parameter space are depicted in Fig. 4.16. Two

main effects with respect to the distortion of the remote environment are observable in this

case. On the one hand, there is a linear relationship between environment damping and

damping displayed to the operator, as well as environment stiffness and stiffness displayed

to the operator. A little crosstalk is observable, i.e., environment stiffness has an effect on

displayed damping and environment damping has an effect on displayed inertia. However,

these effects are much less pronounced than for the force-position architecture in Fig. 4.10
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Figure 4.15: Stability analysis of force-position architecture with wave variables for b = 15 Ns/m,

Kf = 1, Kp = 70 kN/m, and Kd = 500 Ns/m for different time delays. Gray regions contain

an eigenvalue in the open right half-plane for all parameters in this region while black regions

contain an Eigenvalue on the imaginary axis for at least one parametrization within this region.

For the rest of the parameter space (white) there is no eigenvalue in the closed right half-plane

and the system is therefore asymptotically stable. The resolution q̃min is 1/128 in both be and ce.

or Fig. 4.11. On the other hand, there is a scaling of the environment dynamics by a factor

of 1/4, e.g., for an environment stiffness of 1 kN/m a stiffness of 250 N/m is displayed.

Apart from these two effects there is a nominal impedance which is displayed in free

space which consists of the inertia of the haptic interface and a significant damping which

is larger than the inherent damping of the haptic interface. This nominal impedance is

independent of the time delay.

Discussion

In this section we performed a stability and transparency analysis of a two-channel force-

position architecture with wave variables in the communication channel which takes sensor

and actuator dynamics into account. Wave reflections were prevented by adding termina-

tion elements on either side of the communication channel as described by Niemeyer and

Slotin in [64]. This so-called impedance matching suppresses all wave reflections but also

introduces significant scaling and position drift into the system as shown in [64].

The main results of our stability and transparency analysis are as follows. By introduc-

ing wave variables, stability of the system is not anymore affected by the amount of time

delay, at least for the considered range of time delays, and the system can easily be sta-

bilized for all considered time delays by appropriately choosing the controller parameters.

Moreover, the termination elements which are added on either side of the communication

channel introduce additional damping into the system. Therefore, the value of the wave

impedance b has an effect on stability. This is not generally mentioned in the context

of wave variables as it is assumed that the human, master, slave, and environment are

passive and it is therefore only necessary to passivate the communication channel. In our

case this assumption is not true due to the sensor and actuator filter which are necessary

to accurately model admittance-type devices.
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Figure 4.16: Transparency analysis of force-position architecture with wave variables and

matched impedance on master and slave side for different time delays (red, solid: no delay;

blue, bold: Td = 1 ms; green, dashed: Td = 5 ms; gray, bold: Td = 10 ms). System identification

is performed for 51 values of the variable environment parameter.

The transparency analysis considered controller parameters that stabilize the system

for the environment range of interest. Several results were observable: On the one hand,

the inertia of the haptic interface and significant damping is displayed to the operator.

The damping is larger than the damping inherent to the haptic interface but a lot smaller

than the damping which is displayed if Kf = 0.1 is used in the force-position architecture

without wave variables, as is necessary for all but the smallest time delays, see Section 4.5.2.

On the other hand, the scaling of forces transmitted from slave to master (by a factor of

1/2) and velocities transmitted from master to slave (also by a factor of 1/2) results

in a scaling of the displayed impedance in comparison with the environment impedance

by a factor of 1/4. These scaling effects are the main problem when considering this

simple form of impedance matching, especially the scaling of the transmitted velocity

as it leads to a significant position drift between master and slave device. Therefore,

several alternative wave-variable-based architectures have been explored in literature, e.g.,

in [64, 88–92]. Examining stability and transparency of these different approaches goes

beyond the scope of this thesis.

Summarizing these results, although wave variables mitigate the destabilizing effect of

time delay they are not applicable in practice in this simple form due to the scaling effects.

Instead, one of the more complex approaches based on wave variables could be selected.

Alternatively, we examine in the following sections whether the transparency-optimized

four-channel architecture can be tuned so as to provide stable results for small time delays

or whether a position-based admittance controller with force exchange is suitable in this

case.
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4.5.4 Four-Channel Architecture (4C)

In this section the transparency-optimized four-channel architecture is examined which was

first introduced in [4]. In this architecture, forces as well as velocities are transmitted from

master to slave and vice versa. In theory this architecture results in an ideally transparent

teleoperation system which is however only marginally absolutely stable, even for the case

with no delays in the communication channel [68]. Therefore, even small delays or filters

(e.g., force sensor filters) can impair stability, see [70].

In the rest of this section, stability and transparency of the transparency-optimized

four-channel architecture is analyzed with respect to different values of time delay. First,

the system model is presented in the following section. Then, the robust stability analysis

is performed, transparency is evaluated for stable parameter sets, and the results are

discussed.

System Model

The model of the general four-channel architecture as well as the resulting equations are

introduced in Section 4.2.2. To arrive at a transparency-optimized four-channel architec-

ture the controllers C1..6, Cm, and Cs must be chosen. The local controllers C5, C6, Cm,

and Cs can be chosen quite freely. The controllers C1..4 in the communication channel must

then be selected based on these local controllers so as to assure optimal transparency.

First, local force controllers are chosen. As the system is symmetric we choose the same

parametrization for both sides. We select a simple P-controller with compensation of local

force which is also used on master side for the FP-architecture in Section 4.5.2, i.e.,

C5(s) = Gs(Kf − 1)Ge (4.65)

C6(s) = Gm(Kf − 1)Gh (4.66)

where Kf is the gain of the force controller, the force sensor filter Gh(s) on master side is

given in (4.13), the force sensor filter Ge(s) on slave side is given in (4.17), the actuator

force filter Gm(s) on master side is given in (4.21), and the actuator force filter Gs on slave

side is given in (4.25).

Then, local position controllers for haptic interface and teleoperator are chosen. We

select the PD-controller from Section 4.5.2 with the same parametrization for both sides,

i.e.,

Cm(s) = Gm (Kp/s+Kd) (4.67)

Cs(s) = Gs (Kp/s+Kd) (4.68)

where Kp and Kd are the proportional and derivative gain of the PD-controller.

The rest of the controllers in Fig. 4.1 should then be selected according to

C1(s) = Cs(s) + Zs(s) (4.69)

C2(s) = 1 + C6(s) (4.70)

C3(s) = 1 + C5(s) (4.71)

C4(s) = −Cm(s)− Zm(s) (4.72)

(4.73)

108



4.5 Examples

which would result in a complete compensation of the dynamics of the haptic interface

and teleoperator. This selection is however not possible in practice. On the one hand, this

would require an acceleration measurement which is quite noisy in practice. Therefore,

instead of compensating the complete device dynamics Zm(s) and Zs(s), we only com-

pensate the device damping bm/bs and leave the device inertia mm/ms uncompensated.

On the other hand, we use the local force controllers C5(s) and C6(s) to model sensor

and actuator dynamics in addition to the actual controller. Therefore, exactly achiev-

ing the transparency objective for C2(s)/C3(s) is not possible in practice. The resulting,

practically possible transparency-optimal controller parameters are

C1(s) = Cs(s) + bs (4.74)

C2(s) = Gm(s)KfGe(s) (4.75)

C3(s) = Gs(s)KfGh(s) (4.76)

C4(s) = −Cm(s)− bm (4.77)

(4.78)

where in our case, due to the system symmetry Gm(s) = Gs(s) and Gh(s) = Ge(s) and

therefore

C2(s) = Gm(s)Ge(s) + C6(s) (4.79)

C3(s) = Gs(s)Gh(s) + C5(s) (4.80)

(4.81)

which is very close to the optimal case for the frequency range of interest.

The four-channel controllers given here can directly be used for a transparency analysis

using the method from Section 4.4. To simplify the transparency analysis the force sensor

filters Gh(s) and Ge(s) and the filters Gm(s) and Gs(s) representing the actuator dynamics

are all set to one, i.e., these filters are not considered in the transparency analysis. As the

bandwidth used for system identification (see (4.36)) is well below the cut-off frequency of

these filters, the effect of this simplification on the identification results is negligible.

For stability analysis, a state-space representation of the system is determined as de-

scribed in Section 4.3 by taking the models of human, environment, haptic interface, and

teleoperator as well as the controller equations (4.65 - 4.68, 4.74 - 4.77) into account. This

results in a system with system state x ∈ R8 and parameter vector q ∈ R19 given by

x = [ẋm, xm, ẋs, xs, f̃m, f̃s, f̃h, f̃e]
T (4.82)

q = [qTh , q
T
e , q

T
m, q

T
s , Kp, Kd, Kf ]

T (4.83)

(4.84)

where qh, qe, qm, and qs are given in Section 4.326.
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Figure 4.17: Stability analysis of transparency optimized four-channel architecture for different

time delays. Controller parameters are chosen heuristically. Gray regions contain an eigenvalue

in the open right half-plane for all parameters in this region while black regions contain an

Eigenvalue on the imaginary axis for at least one parametrization within this region. For the

rest of the parameter space (white) there is no eigenvalue in the closed right half-plane and the

system is therefore asymptotically stable. The resolution q̃min is 1/128 in both be and ce.

Stability Analysis

In this section, stability of the complete system with sensor and actuator filters is examined.

For all results shown in this section, the impedance of the operator is set to the three-

dimensional interval box given in Table 4.2, i.e., we consider a whole range of values for

inertia, damping, and stiffness of the human arm.

We start out by examining stability for a heuristically chosen parametrization of Kp =

70 kN/m, Kd = 500 Ns/m, and Kf = 1 which we take from the force-position architecture

in Section 4.5.2. Resulting stable and unstable regions in the environment plane be/ce
are shown in Fig. 4.17. The system is not stable for the complete environment range

be = [0, 100] Ns/m and ce = [0, 10] kN/m for any time delay. Interestingly, for free space

(be = 0 Ns/m, ce = 0 kN/m) the system is on the stability boundary for the delay-free

case while a small negative damping is allowed for the case with Td = 1 ms.

Therefore, we examine the effect of different controller parameters on stability in

Fig. 4.18. As for the two-channel force-position architecture, the force controller gain

Kf has a large impact on stability for a time delay of Td = 1 ms as shown in Fig. 4.18a.

However, even reducing the force controller gain to relatively small values does not stabi-

lize the system for all time delays of interest as shown in Fig. 4.18b for a time delay of

Td = 10 ms. The effect becomes even more clear in Fig. 4.18c where stability is examined

in the Td/Kf -plane: there is an upper limit on the admissible time delay for all considered

values of Kf and there is a small upper bound for the value of Kf for the delay-free case.

Consequently, we examine the effect of the other controller parameters on stability. We

choose Kf = 1 (which stabilizes the system for Td = 1 ms) and examine stability in the

26 Note that the state vector as well as the system parameters are identical to the force-position architecture

in Section 4.5.2. The stability analysis is however more complex due to the more complex system

interconnection.
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Figure 4.18: Controller design for transparency optimized four-channel architecture. In the

top row, stability with respect to environment stiffness ce is examined for changes to Kf for

a fixed environment damping be = 0 Ns/m and position controller gains Kp = 70 kN/m, and

Kd = 500 Ns/m. In the second row, stable regions in the Kp/Kd-plane which are stable for

the complete environment range of interest, i.e., be = [0, 100] Ns/m and ce = [0, 10] kN/m

for different time delays. Gray regions contain an eigenvalue in the open right half-plane for all

parameters in this region while black regions contain an Eigenvalue on the imaginary axis for at

least one parametrization within this region. For the rest of the parameter space (white) there

is no eigenvalue in the closed right half-plane and the system is therefore asymptotically stable.

The resolution q̃min is 1/128 in each axis.

Kp/Kd-plane for the complete environment range of interest in Fig. 4.18d to Fig. 4.18f27.

For the delay-free case no stable parameters can be found in the considered range of Kp and

Kd for the chosen force controller gain, see Fig. 4.18d. By intersecting the white regions of

the two plots in Fig. 4.18e and Fig. 4.18f a parametrization which yields stable results for

the environment range be = [0, 100] Ns/m, ce = [0, 10] kN/m for time delays of 1 ms and

27 We choose smaller upper limits for Kp and Kd in this case in comparison with the other system

architectures as small values of Kp and Kd are beneficial for transparency when time delay is present

in the communication channel. This is shown in the subsequent transparency analysis. According to

the transparency analysis it would also be beneficial to increase the force controller gain Kf . However,

e.g., for Kf = 2, no parametrization that is stable for the environment range could be found for a

reasonable range of Kp and Kd.
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Kd = 200 Ns/m, Td = 10 ms

Figure 4.19: Stability analysis of transparency optimized four-channel architecture for Kf = 1

and different values forKp andKd. Gray regions contain an eigenvalue in the open right half-plane

for all parameters in this region while black regions contain an Eigenvalue on the imaginary axis

for at least one parametrization within this region. For the rest of the parameter space (white)

there is no eigenvalue in the closed right half-plane and the system is therefore asymptotically

stable. The resolution q̃min is 1/128 in both be and ce.

10 ms is found, e.g., for Kp = 25 kN/m, Kd = 500 Ns/m, Kf = 1. If we limit ourselves

to the case with Td = 10 ms we could, e.g., also choose Kp = 10 kN/m, Kd = 200 Ns/m,

Kf = 1.

Finally, we verify the controller design for the different parameter choices by performing

a stability analysis in the environment plane be/ce in Fig. 4.1928. The system is stable for

the whole environment range of interest for the parametrization Kp = 25 kN/m, Kd =

500 Ns/m, Kf = 1 for time delays of 1 ms and 10 ms while it is stable for time delays of

Td = 10 ms using the parametrization Kp = 10 kN/m, Kd = 200 Ns/m, Kf = 1. Notably,

for the three values of time delay considered here, the amount of permissible negative

environment damping grows for both parametrizations for rising time delay.

28 This is not really necessary in this case as the design process assures a stable system for the compete

environment range of interest.
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Figure 4.20: Transparency analysis of four-channel architecture with Kp = 25 kN/m,

Kd = 500 Ns/m, Kf = 1 for different time delays (red, solid: no delay; blue, bold: Td = 1 ms;

green, dashed: Td = 5 ms; gray, bold: Td = 10 ms). System identification is performed for 51

values of the variable environment parameter.

For the parametrization Kp = 25 kN/m, Kd = 500 Ns/m, Kf = 1 we perform one final

stability analysis considering the environment range be = [0, 100] Ns/m, ce = [0, 10] kN/m,

as well as the continuous range of time delays Td = [1, 10] ms which confirms that the

system is stable in the complete six-dimensional interval box29.

In the following section, transparency of the system is analyzed for both sets of param-

eters considered in Fig. 4.19.

Transparency Analysis

In Fig. 4.20 the parameter-space transparency analysis of the transparency-optimized four-

channel architecture is shown for a parametrization of Kp = 25 kN/m, Kd = 500 Ns/m,

Kf = 1 which is stable for environments in the range be = [0, 100] Ns/m and ce =

[0, 10] kN/m for time delays in the range Td = [1, 10] ms . For the case with no time

delay (which is actually not stable) the results are as expected: the inertia of the haptic

interface is displayed together with the environment damping and stiffness. For rising

time delay the results become less and less transparent. More specifically, there is a linear

relationship between time delay in the communication channel and displayed inertia and

damping, e.g., for a time delay of 10 ms an additional damping of 250 Ns/s is displayed to

the operator.

29 The interval box consists of three dimensions for the human impedance, two dimensions for the envi-

ronment, as well as one dimension for the time delay. The result is not depicted as we choose to simply

check stability for the complete interval-box.
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Figure 4.21: Transparency analysis of four-channel architecture with Kp = 10 kN/m,

Kd = 200 Ns/m, Kf = 1 for different time delays (red, solid: no delay; blue, bold: Td = 1 ms;

green, dashed: Td = 5 ms; gray, bold: Td = 10 ms). System identification is performed for 51

values of the variable environment parameter.

In Fig. 4.21 we examine if reducing the position-controller gains to Kp = 10 kN/m

and Kd = 200 Ns/m improves transparency. Indeed, it does, as the time-delay dependent

damping is reduced by a factor of 2.5 (just as Kd is reduced by a factor of 2.5).

Finally, the effect of increasing the force controller gain is analyzed in Fig. 4.22 where

we use the parameters Kp = 10 kN/m, Kd = 200 Ns/m, and Kf = 2. By doing this, the

inertia displayed to the operator is reduced by a factor of 2, as well as the inertia and

damping due to time delay. It must however be noted that this parametrization is not

stable for the complete environment range be = [0, 100] Ns/m and ce = [0, 10] kN/m.

Discussion

In this section stability and transparency of the transparency-optimized four-channel ar-

chitecture was evaluated.

To our best knowledge, this is the first time that stability has been investigated non-

conservatively in the parameter space for different time delays while also taking sensor and

actuator dynamics into account by considering appropriate filters. The results show that

it is possible to parametrize the system in such a way that it is stable for a wide range of

environment and operator impedances for one-way time delays between 1 ms and 10 ms.

Moreover, for any time delay, increasing the position-controller gains enlarges the range

of environments which result in a stable system. Finally, our analysis shows that for the

same set of controller parameters the system is actually not stable for the delay-free case

for a range of environments with low damping values where it is stable in the case with
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Figure 4.22: Transparency analysis of four-channel architecture with Kp = 10 kN/m,

Kd = 200 Ns/m, Kf = 2 for different time delays (red, solid: no delay; blue, bold: Td = 1 ms;

green, dashed: Td = 5 ms; gray, bold: Td = 10 ms). System identification is performed for 51

values of the variable environment parameter.

time delays between 1 ms and 10 ms30.

These results are very interesting in comparison with the results obtained using the

absolute stability criterion, which is usually used to analyze stability of this teleoperation

architecture. The absolute stability criterion checks whether the system is stable when any

passive operator interacts with any passive environment using the teleoperation system.

It does not take actuator or sensor dynamics into account and yields that the system is

marginally stable for the delay-free case and minimal time delay might destabilize the

system. Our approach considers specific models with limited parameter ranges for human

and environment and takes actuator and sensor dynamics into account. For the delay-free

case, our method shows that the system might become unstable even for passive operator

and environment impedances due to the sensor and actuator dynamics. For the case

with time delays, our approach offers less conservative results than the absolute stability

criterion but relies on the assumption that the models and parameter ranges we consider

for human and environment are a sufficient representation of the actual situation.

Once stable parameters were determined we performed a transparency analysis which

yielded three interesting results. First, increasing time delay leads to an increase of the

damping and inertia displayed to the operator. Second, the damping and inertia displayed

to the operator due to time delay can be reduced by increasing the force controller gain

Kf or reducing the position-controller gains Kp (to reduce the displayed damping) and

30 This is due to the sensor and actuator filters. For the case without these filters, which is not shown

here, the system is stable for all positive values of environment damping and stiffness and is not stable

for minimal negative damping.
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Kd (to reduce the displayed inertia). Finally, apart from the time-delay dependent offset,

the transparency properties of the four-channel architecture are retained, i.e., an increase

of environment damping or stiffness leads to the same increase of displayed damping or

stiffness.

Summarizing these results we can conclude that the transparency-optimized four-

channel architecture is suitable for many real-world teleoperation systems with small but

non-negligible time delay as long as the modeling assumptions made in Section 4.2.1 hold.

4.5.5 Position-Based Admittance Control with Force Exchange

(FaFa)

The position-based admittance control with force exchange (FaFa) is an architecture which

has been used for many different teleoperation setups at the Chair of Automatic Control

Engineering (LSR). This is mainly due to two reasons: On the one hand, it is easily

applicable to very complex systems due to a limited number of parameters. On the other

hand, it is transparent with respect to environment stiffness if no time delay is present and

more robust than a four-channel architecture.

The general idea of this system architecture is to feed the sum of the interaction forces

measured on master side and slave side into a virtual admittance (more specifically a

mass-damper system) on master and slave side. The position and velocity of the virtual

admittance on master side is then imposed on the haptic interface using a high-gain position

control loop. Likewise, the position and velocity of the virtual admittance on slave side is

imposed on the teleoperator.

Setups for which this architecture has been used include, e.g., one-DoF linear devices

used for basic research [73], four-DoF telemanipulators and haptic interfaces [93], anthro-

pomorphic manipulators coupled to hyper-redundant haptic interfaces [3, 73], etc.

In the following section, the system model is presented in detail. Then, the robust

stability analysis as well as a parameter-space transparency analysis are performed. Finally,

the results are discussed.

System Model

The position-based admittance controller with force exchange is a symmetric control ar-

chitecture which is depicted in Fig. 4.23. Measured forces are exchanged in both directions

and applied to an identical31 virtual admittance

Yd(s) =
1

mds+ bd
(4.85)

with virtual inertia md and virtual damping bd on either side, i.e.

f̃h − f̃ee−Tds = mdẍdm + bdẋdm (4.86)

f̃he
−Tds − f̃e = mdẍds + bdẋds, (4.87)

31 If a virtual admittance with different parameters were chosen on master and slave side this would result

in a position drift and velocity drift.
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where Td is the one-way time delay between slave and master. A proportional-derivative

(PD) position controller then drives the haptic interface and teleoperator to the position

of the respective virtual admittance, i.e.

fm = Kp(xdm − xm) +Kd(ẋdm − ẋm) (4.88)

fs = Kp(xds − xs) +Kd(ẋds − ẋs), (4.89)

where Kp and Kd are the proportional and derivative gain of the PD-controller32.

The effect of position-based admittance control with force exchange is as follows. Using

a virtual admittance and high-gain PD control the actual dynamics of haptic interface as

well as teleoperator are canceled and the behavior of the virtual admittance is imposed

on both devices. Then, the sum of the interaction forces between teleoperator and remote

environment and between haptic interface and human is fed into each virtual admittance.

As the admittance has a filtering effect on the force measurements this implies that it is

not necessary to use such a low cut-off frequency for the force sensor filter as for the other

architectures in this chapter33. Instead, the force sensor filter time constants are set to

τh = τe = 0.1π ms which corresponds to a cut-off frequency of 500 Hz.

In the case without time delay the inputs to the two virtual admittance controllers

are identical. This means that the outputs of the two virtual admittance controllers are

identical as well and the only remaining error between haptic interface and teleoperator is

due to the non-perfect position control loop. We could remove one of the virtual admittance

blocks and simply use the same desired position and velocity for haptic interface and

teleoperator as, e.g., done in some of our previous work [3, 93–96]. When considering

the case with time delay, this simplification is not possible, as the inputs to the two

virtual admittance blocks are different, and stability of the overall system would be greatly

impaired by removing one of the admittance controllers.

For stability analysis, a state-space representation of the system is determined as de-

scribed in Section 4.3 by taking the models of human, environment, haptic interface, and

teleoperator as well as the controller equations (4.86 - 4.89) into account. This results in

a system with system state x ∈ R12 and parameter vector q ∈ R20 given by

x = [ẋm, xm, ẋs, xs, ẋdm, xdm, ẋds, xds, f̃m, f̃s, f̃h, f̃e]
T (4.90)

q = [qTh , q
T
e , q

T
m, q

T
s , Kp, Kd, md, bd]

T (4.91)

where qh, qe, qm, and qs are given in Section 4.3.

For transparency analysis using the method introduced in Section 4.4 the controllers

C1..6, Cm, and Cs of the four-channel architecture in Section 4.2.2 are determined from

32 Generally, different gains for the position controller can be used on master and slave sides. Moreover,

the PD-controller can also be replaced by more elaborate local controllers, e.g., a computed torque

controller.
33For all other architectures considered in this chapter, the measured force is multiplied by a proportional

gain and then directly applied to an actuator.
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Figure 4.23: FaFa architecture

(4.85), (4.88), and (4.89) as

Cm(s) = Gm (Kp/s+Kd) (4.92)

Cs(s) = Gs (Kp/s+Kd) (4.93)

C2(s) = Gm (Kp/s+Kd)Yd(s)Ge (4.94)

C3(s) = Gs (Kp/s+Kd)Yd(s)Gh (4.95)

C5(s) = Gs (Kp/s+Kd)Yd(s)Ge (4.96)

C6(s) = Gm (Kp/s+Kd)Yd(s)Gh (4.97)

and C1(s) = C4(s) = 0. To simplify the transparency analysis the force sensor filters

Gh(s) and Ge(s) and the filters Gm(s) and Gs(s) representing the actuator dynamics are

all set to one, i.e., these filters are not considered in the transparency analysis. As the

bandwidth used for system identification (see (4.36)) is well below the cut-off frequency of

these filters, the effect of this simplification on the identification results is negligible.

Stability Analysis

In this section the complete system including sensor and actuator filters is considered.

For all results shown in this section, the impedance of the operator is set to the three-

dimensional interval box given in Table 4.2, i.e., we consider a whole range of values for

inertia, damping, and stiffness of the human arm.

Before starting the actual stability analysis, it is pointed out that the system is not

asymptotically stable for any considered parametrization. Instead, the system is at most

marginally stable. This is due to the fact that the coefficient a0(s, q, Td) = 0 for s = 0.

As the condition s = 0 does not depend on any parameters q this implies that the system

is at most marginally stable34. Marginal stability with an eigenvalue at s = 0 is indicated

34 In the case of marginal stability for s = 0, a very small region s = ±10−10 ± 10−10j around s = 0 is
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Figure 4.24: Stability analysis of position-based admittance control architecture with force

exchange and sensor and actuator filters for different time delays. Controller parameters are

chosen heuristically. Dark gray regions contain an eigenvalue in the open right half-plane for all

parameters in this region while black regions contain an Eigenvalue on the imaginary axis for

at least one parametrization within this region. For the rest of the parameter space (light gray)

there is one eigenvalue at s = 0 and the system is therefore marginally stable. The resolution

q̃min is 1/128 in both be and ce.

by light gray regions in the stability analysis plots. When describing the results this

is considered equivalent to stability for sake of a simpler formulation, especially when

comparing the results to other architectures.

As for the other considered architectures, we start out with a nominal parametrization

of Kp = 70 kN/m, Kd = 500 Ns/m, md = 2 kg, and bd = 5 Ns/m and show the stability

analysis results in the environment plane be/ce for different time delays in Fig. 4.24. The

system is stable for be = [0, 100] Ns/m and ce = [0, 10] kN/m, i.e., for the complete

environment range of interest.

Next, we examine the range in which we can tune the controller parameters while

retaining stability for the region of interest. In this case, we do not further consider the

parameters of the inner-loop PD-controller and, instead, only evaluate the effect of virtual

inertia md and virtual damping bd. The results are shown in Fig. 4.25. In Fig. 4.25a to

Fig. 4.25f we examine the stable range of environment stiffness ce for a fixed environment

damping of be = 0 Ns/m. The results indicate, that there is a lower bound on the admissible

damping bd and inertia md for small time delays while there is a lower bound on the inertia

md for larger time delays. A stability analysis in the md/bd-plane for a fixed environment

impedance ce = 10 kN/m, be = 0 Ns/m shown in Fig. 4.25g to Fig. 4.25i yields that

the heuristically chosen values md = 2 kg and bd = 5 Ns/m are close to the minimal

excluded from the subsequent stability analysis, see Section 3.9.4. Therefore, it is theoretically possible

that an additional root crosses the imaginary axis near s = 0 (for boundary mapping) or that there

is a root with positive real part near s = 0 (when checking stability of disjoint regions). The first

case would result in a stability boundary not being identified while the second case could result in an

unstable region falsely being considered stable. As the region around s = 0 is very small both of these

cases are unlikely in practice.
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Figure 4.25: Controller design for position-based admittance control architecture with force

exchange and sensor and actuator filters for different time delays. The parameters that are not

varied for one subfigure are set to be = 0 Ns/m, ce = 10 kN/m, Kp = 70 kN/m, Kd = 500 Ns/m,

md = 2 kg, and bd = 5 Ns/m. Dark gray regions contain an eigenvalue in the open right half-plane

for all parameters in this region while black regions contain an Eigenvalue on the imaginary axis

for at least one parametrization within this region. For the rest of the parameter space (light gray)

there is one eigenvalue at s = 0 and the system is therefore marginally stable. The resolution

q̃min is 1/128 in each axis.
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Figure 4.26: Transparency analysis of position-based admittance control architecture with force

exchange (FaFa) for different time delays (red, solid: no delay; blue, bold: Td = 1 ms; green,

dashed: Td = 5 ms; gray, bold: Td = 10 ms). System identification is performed for 51 values of

the variable environment parameter.

combination of admissible values for the considered time delays35. Therefore, transparency

of the system is examined for this parametrization in the following.

Transparency Analysis

Fig. 4.26 depicts the parameter-space transparency analysis for the position-based admit-

tance control architecture with force exchanged and a parametrization of Kp = 70 kN/m,

Kd = 500 Ns/m, md = 2 kg, and bd = 5 Ns/m. For the delay-free case the results indicate

that the system displays the environment damping and stiffness to the operator in addition

to the damping bd and inertia md of the virtual admittance. Large damping or stiffness-

values are however slightly attenuated. This is caused by the high but limited stiffness of

the inner position-control loops. Moreover, the inertia displayed to the operator is slightly

reduced for rising environment damping and stiffness.

For rising time delay there is a significant effect when considering interaction with a

spring-environment: the maximum stiffness that can be displayed to the operator is greatly

reduced with rising time delay. At the same time, the displayed damping rises36. When

35 We choose fixed parameters for the environment impedance here as examining stability in seven di-

mensions (two for md and bd and five for the parameters of human arm and environment impedance)

was not computationally feasible. Stability for the complete environment range of interest is assured

by the stability analysis in the environment plane which was shown in Fig. 4.24.
36 Moreover, the inertia displayed to the operator is reduced. However, the reduction of inertia is likely not

perceivable due to the masking effect caused by the rising damping. See, e.g., [97], for more information

on masking effects between different impedance parameters.
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Figure 4.27: Transparency analysis of position-based admittance control architecture with force

exchange (FaFa) and large virtual damping for different time delays (red, solid: no delay; blue,

bold: Td = 1 ms; green, dashed: Td = 5 ms; gray, bold: Td = 10 ms). System identification is

performed for 51 values of the variable environment parameter.

considering interaction with a pure damped environment, a much smaller distortion due to

time delay is observable, although the displayed damping as well as the displayed inertia

are slightly reduced.

The transparency analysis results for an increased virtual damping of bd = 20 Ns/m are

shown in Fig. 4.27. All other controller parameters are left as for the previous analysis. As

the larger virtual damping is displayed to the operator the results are inferior to the results

with smaller virtual damping for the delay-free case and/or free space. Especially when

interacting with stiff environments the increase of virtual damping is however beneficial

as a larger maximum stiffness is displayed to the operator while there is less influence on

displayed inertia and damping.

Discussion

In this section stability and transparency of the position-based admittance control archi-

tecture with force exchange was examined.

For the stability analysis we considered filters representing force sensor dynamics and

actuator dynamics. Then, stability was analyzed in the environment plane and admissible

controller parameters were determined for a range of different time delays. It turns out

that there are lower bounds on the admissible values for virtual damping and inertia, as for

the case without time delay examined in [73]. In contrast to [73] we examined how these

bounds change for different time delays and determined a set of parameters which is stable

for all considered time delays. Moreover, the ratio between the three parameters of the

122



4.6 Summary and Future Work

human arm impedance was fixed in [73] while we considered a complete three-dimensional

interval box here. To the best of our knowledge, no non-conservative stability analysis

results have been reported in literature so far for this complex system when considering

time delay in the communication channel.

Using controller parameters which stabilize the system for the complete environment

range of interest, transparency of the system was analyzed using our novel parameter-space

transparency analysis method. Good transparency results are achieved for cases with neg-

ligible time delay, i.e., the environment dynamics in combination with the dynamics of the

virtual admittance are displayed to the operator. For rising time delay the maximum stiff-

ness that can be displayed to the operator is reduced while a stiffness dependent damping

is observable. This effect might explain the robustness of this architecture to time delay

in the communication channel. In essence, when interacting with a stiff environment the

system becomes softer while increasing its damping for rising time delay. At the same time,

rising time delay has no effect on the impedance displayed to the operator when moving

in free space.

A nice property which has been pointed out for the delay-free case in [73] and is shown

to hold for the case with time delay here is that it is possible to increase the virtual

damping without affecting stability, if a minimum value is chosen for the virtual inertia.

We make use of this property here and increase the virtual damping by a factor of four for

our final transparency analysis. This results in a less transparent system in free space as

the larger virtual damping is displayed to the operator. At the same time, transparency

when interacting with stiff environments is increased, as the maximum displayable stiffness

is increased.

Summarizing these results, it can be shown that the position-based admittance con-

troller with force exchange offers nice transparency properties for negligible time delay

while retaining stability for rising time delay (within the limits examined here). For rising

time delay, the maximum stiffness that is displayed to the operator is reduced. The size

of this effect depends on the chosen virtual damping.

4.6 Summary and Future Work

In this chapter, we analyzed the stability and transparency of a teleoperation system for

different well-known teleoperation architectures. The system was modeled as a linear

time-invariant system with parametric uncertainties and time delay in the communication

channel, and the environment as well as the operator were modeled as linear mass-spring-

damper systems, see Section 4.2.1 for details. These modeling assumptions are common

in literature on teleoperation, and stability analysis results using these assumptions have

been shown to closely represent experimental results for the delay-free case, e.g., in [72,73].

However, it must be noted that the results obtained in this chapter and summarized in the

following paragraphs only hold if these assumptions are true.

For stability analysis, the method developed in Chapter 3 was used, which is ideally

suited for the stability analysis of such a system. For transparency analysis, a new method

was introduced which can be used to graphically assess the transparency of teleoperation

systems. Unlike other approaches, not only free-space motion and hard contact are con-
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sidered, but a whole range of environments. This allows a designer not only to determine

if a system is sufficiently transparent, but in which range of environments a system is

sufficiently transparent.

The results for the different teleoperation architectures are as follows. We first examined

two examples for the force-position architecture: a simplified system where sensor and

actuator dynamics are neglected and a more complex system which models sensor and

actuator dynamics using first-order low-pass filters. In both cases, the force controller gain

has by far the largest effect on stability and reducing the force controller gain stabilizes

the system. When considering the same range of parameters for the human operator and

remote environment, the upper bound on the force controller gain is smaller in the case

with sensor and actuator dynamics than in the case without sensor and actuator dynamics.

As for stability, transparency of the force-position architecture is largely determined by

the size of the force controller gain. Unfortunately, a smaller force controller gain, which is

beneficial for stability, leads to a less transparent system: for a force-controller gain of one

the environment dynamics as well as the dynamics of the haptic interface are displayed to

the operator. A larger force-controller gain attenuates the displayed dynamics of the haptic

interface while a smaller force-controller gain amplifies the displayed dynamics of the haptic

interface. Time delay does not directly influence transparency. However, for increasing

time delay the range of admissible values for the force controller gain is reduced. Therefore,

if the system is parametrized so as to be stable for a larger time delay, transparency is

impaired for all time delays. As this effect is rather pronounced the system is not suitable

for any non-negligible time delay.

The second teleoperation architecture we examined was the force-position architecture

with wave variables in the communication channel. Termination elements were used to

match the master and slave to the impedance of the communication channel. This results

in a significant scaling and position drift, as shown in [64]. Our analysis showed that

stability is nearly independent of delay for this architecture (at least for the delay values

considered in our analysis). Moreover, the value of the wave damping has an influence on

system stability, due to the fact that we incorporate sensor and actuator dynamics into our

system model and the measured (and filtered) environment force is used as force feedback

instead of the force generated by the controller on the slave side. The scaling effect caused

by impedance matching obviously has a big impact on system transparency. In this case,

a quarter of the environment dynamics is displayed to the operator together with the

inertia and damping of the haptic interface and additional damping due to the damped

wave. Time delay does not have a significant effect on transparency for the considered time

delays. Nevertheless, a practical application of this architecture is not feasible, especially

due to the large position drift caused by impedance matching by means of terminating the

communication channel.

The third teleoperation architecture we considered is the transparency-optimized four-

channel architecture. When appropriately parametrized the system is stable for a one-way

time delay between 1 ms and 10 ms considered here. At the same time system transparency

is near ideal for the case with negligible time delay. Then, the environment dynamics are

only distorted by the additional inertia of the haptic interface. It must, however, be noted

that the system is not stable for the complete environment range for the delay-free case
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when considering sensor and actuator dynamics. Transparency deteriorates with increasing

time delay due to substantial time-delay dependent additional damping and inertia. In

consequence, the transparency-optimized four-channel architecture should mainly be used

for setups with very small time delays. If parametrized correctly, system stability is however

robust against larger delays although transparency deteriorates.

Finally, we considered the position-based admittance control architecture with force

exchange. For this architecture, parameters which stabilize the system for all time delays

considered can be found very easily. Moreover, the system transparency is good for the case

with no time delay, as only the inertia and damping of the virtual admittance are displayed

to the operator, in addition to the otherwise nearly undistorted environment impedance.

For increasing time delay, free-space transparency is unaffected, while interaction with a

stiff environment becomes softer. The upper limit for the stiffness displayed to the operator

directly depends on the size of the damping in the virtual admittance: a larger damping

leads to an increased stiffness displayed to the operator. In consequence, this architecture is

suitable for setups with small time delay if it is acceptable that the maximum displayable

stiffness is reduced. Moreover, the architecture could easily be extended to incorporate

a time-delay dependent damping term in the virtual admittance, which would lead to

improved stiffness in the case with time delay.

Summarizing these results, it can be concluded that for all systems considered some

novel insights could be gained using the stability analysis method developed in this thesis.

These stability analysis results are complemented by intuitively interpretable transparency

analysis results. Especially the transparency-optimized four-channel architecture and the

position-based admittance control architecture with force exchange are interesting for tele-

operation setups with small time delay as they offer good transparency for very small time

delays (1 ms) and are robustly stable for larger time delays (up to 10 ms) at the cost of

transparency.

Future work could focus on evaluating more complex teleoperation architectures using

these tools. As one example, a combination of the transparency-optimized four-channel

architecture with local position-based admittance controllers could be examined. Or, the

wave-variable approach could be combined with local admittance or impedance controllers

similar to [88]. As another example, stability of multi-user teleoperation systems (see,

e.g., [3]) could be examined. Such systems could also incorporate control architectures

especially developed to improve the interaction of multiple teleoperators, e.g., the virtual

damping method introduced in [93,95].

Another possible topic of future research could be the automatic parametrization of tele-

operation systems with given control architecture so as to maximize transparency. This

calls for a quantitative transparency measure that can be used as a cost function in a

numerical optimization, as the method developed here still requires interpretation by the

system designer. To bypass this human interpretation, the method could be combined

with models of human haptic perception. Determining models of human haptic percep-

tion in dynamic environments is a current work in progress, see e.g. [98]. By embedding

the resulting transparency measure in an optimization framework which minimizes this

measure while assuring robust stability of the system over the whole environment range of

interest, a fully automatic parametrization of teleoperation systems could be envisioned.
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A possible future extension of our stability analysis method towards optimal parametriza-

tion of linear time-invariant systems with parametric uncertainties is therefore proposed

in the following chapter. The proposed method is not limited to teleoperation systems

or transparency analysis and considers a number of frequency-dependent cost functions in

the optimization.
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Systems

Summary. In this chapter a novel solution for the optimal parametrization of

linear time-invariant systems with time delays and parametric uncertainties is

outlined. Therefore, a constrained optimization problem is formulated in which the

cost function is related to the system performance while constraints assure robust

stability and impose performance constraints. The optimization problem is solved

in two steps by first determining the set of admissible parameters which assure

robust stability and satisfy all performance constraints, and then minimizing the

cost function within this set of admissible parameters. The main contributions of

this chapter are

• a global optimization scheme for optimal parametrization of linear time-

invariant systems with parametric uncertainties and time delay,

• a detailed description of how this optimization scheme could be implemented

in practice and a thorough discussion of possible difficulties.

In this thesis a stability analysis method for linear time-invariant systems with time delays

and parametric uncertainties was introduced in Chapter 3. On the one hand, this method

can be used for parameter-space stability analysis, e.g., to analyze the robust stability of a

system. On the other hand, the method can be used for controller design by determining

controller parameters which stabilize a given system for a range of plant parameters. This

allows for an intuitive system design in the parameter space.

In this chapter an extension of the stability analysis method introduced in Chapter 3 is

proposed, which allows for an optimal parametrization of LTI systems. First, performance

criteria are defined for a general feedback system. Then, the desired system performance

is specified by constraining the performance criteria. Two different possibilities to specify

desired system performance are considered: we can either constrain the worst-case perfor-

mance for a whole range of possible system parameters or the nominal performance for

a specific parametrization. The performance constraints are mapped into the parameter

space together with the stability boundary. By taking a number of different performance

constraints into account a set of parameters can be determined which fulfills all desired

specifications. The system designer can then manually choose a parametrization from this

set of admissible parameters. Alternatively, a cost function may be defined which repre-

sents a weighted sum of different performance criteria. An optimization algorithm may

then be used to find a parametrization which optimizes this cost function while assuring

robust stability and possibly additional performance constraints. Depending on the given
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system dynamics and cost functions the optimization problem is not necessarily convex.

Therefore, an algorithm which determines the global optimum within a given parameter

range is required. An efficient algorithm for global optimization is the combination of

Taylor Models and Bernstein Polynomials within a branch and bound algorithm. This

approach is proposed here, as it can easily be combined with the stability analysis method

presented in this thesis and offers a rigorous computation of the optimal solution.

The rest of the chapter is structured as follows. First, a brief overview of state of the

art methods for automatic controller parametrization is presented. Then, a mathematical

problem formulation is given and the general idea of the proposed algorithm is outlined.

Next, a general system model is introduced and performance criteria for this system model

are specified in Section 5.3. In Section 5.4 we describe a possible solution to the constrained

optimization problem which first evaluates performance constraints and stability and then

optimizes system performance. The chapter closes with a thorough discussion of problems

which may be encountered when implementing the proposed algorithms.

5.1 State of the Art

The topic of this chapter is the optimal parametrization of a fixed structure controller for

a linear time-invariant system with parametric uncertainties and possibly time delay.

A closely related problem which has attracted a much larger number of researchers in

the past decades is that of finding an optimal controller (linear, but apart from this of

arbitrary form) which results in optimal performance while assuring robust stability. The

two most common methods which have been established to solve such problems are H∞
control and µ synthesis. A thorough introduction to these methods can be found in [29].

H∞ control generally leads to conservative results when considering systems with struc-

tured uncertainties [6]. This is mainly due to the fact that the structure of the uncertainty

is not taken into account. Another approach to optimal design, µ synthesis, is based on

the structured singular value µ. This approach is closely related to H∞ control but, as

the name suggests, takes the structure of the uncertainty into account. Theoretically the

structured singular value offers an exact stability check for systems with uncertainties and

time delays. In practice, an exact calculation of the structured singular value is not possi-

ble (see [6] and [29]) and especially for systems with multiple delays the structured singular

value generally represents a very conservative stability criterion, see [34]. Moreover, when

using the structured singular value µ to design a controller using µ synthesis a second dif-

ficulty arises due to the iterative method which is generally used to solve this problem, the

so-called DK-iteration: as the DK-iteration results in a non-convex optimization problem

it cannot be guaranteed that the globally optimal solution is found [29, Section 11.4].

Closely related to H∞ control is H∞ loop shaping. The goal of H∞ loop shaping is to

design a controller which results in a open-loop transfer function which can be specified

by the designer and at the same time ensures robust stability. Different approaches to

H∞ loop shaping exist, for one example see [29, Chapter 18] where the designer specifies

two compensators which together with the plant result in the desired system response. An

H∞ controller which achieves this response while robustly stabilizing the system is then
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synthesized if possible1. However, this approach to H∞ loop shaping suffers from the same

drawbacks as H∞ controller synthesis, namely conservatism with respect to structured

uncertainties.

The actual goal in this chapter is to find a parametrization for a fixed structure controller

which optimizes a cost function and fulfills given performance constraints while guaran-

teeing robust stability. Recently, a promising new method which solves this problem was

introduced in [99]. Essentially, this is a new µ-synthesis method which makes use of a

dynamic inner approximation to solve the non-smooth optimization problem. In contrast

to classical µ synthesis (with DK-iteration, see [29, Section 11.4]) this new method results

in much less conservative results. However, up to now, no examples considering time delay

are available and an evaluation of the conservatism in comparison with non-µ-techniques

has not been published.

A different approach is pursued in [1, Sections 5.3-5.4], where Ackermann et al. in-

troduce frequency response magnitude specifications and then map these specifications to

the parameter space. This can be used to find a parametrization for a fixed structure

controller which fulfills some given performance constraints. Our approach is very simi-

lar, there are however two main differences. On the one hand, we use Taylor Models and

Bernstein Polynomials to map the constraints into parameter space. This allows us to

consider more than two parameters without gridding the results and, more importantly,

to consider time-delay systems. On the other hand, we combine performance constraints

with a performance optimization.

5.2 Problem Formulation and General Idea

In this section a constrained optimization problem is formulated. The solution to this

problem results in an optimal parametrization of a Linear Time-Invariant (LTI) system

which can include parametric uncertainties and one or several incommensurate time delays.

Robust stability of the system is imposed by a constraint which is evaluated using the

method developed in Chapter 3.

As cost function a weighted sum of performance metrics is used. Moreover, constraints

on performance metrics may be imposed using the same metrics. This allows an exact

specification of the desired system dynamics, e.g. by tracking error, disturbance rejection,

etc. For details on different performance metrics and weighting functions, see Section 5.3.

A general formulation of the constrained optimization problem is

arg min
p∈P

g(ω,p, q̄,Q, t̄d,T d) ∀ 0 ≤ ω ≤ ωmax (5.1)

with

f(s, [qTpT ]T , td) stable ∀ q ∈ Q, td ∈ T d (5.2)

⇔ f(γ, [qTpT ]T , td) 6= 0 ∀ γ ∈ Γ, q ∈ Q, td ∈ T d (5.3)

c(ω,p, q̄,Q, t̄d,T d) < 0 ∀ 0 ≤ ω ≤ ωmax (5.4)

1 This may however not be possible for the chosen compensators. The algorithm then simply states to

choose different compensators without giving any indication how to choose feasible compensators.
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Figure 5.1: Flow-chart of overall algorithm used for performance optimization

where the parameter space consists of l uncertain parameters q ∈ Q ∈ [R]l, o tunable

parameters p ∈ P ∈ [R]o, and m time delays td ∈ T d ∈ [R]m. Moreover, the cost

function g ∈ Rm×l×o×1 → R, the r performance constraints c ∈ Rm×l×o×1 → Rr, and the

characteristic function f ∈ Rm×l×o×2 → C (see (3.6)) depend on nominal parameters q̄

and nominal time delays t̄d, as well as the frequency ω, the Laplace operator s, the desired

Γ-region used for stability analysis (see Section 3.4), and ωmax which represents an upper

bound for the frequency2. This formulation of the optimization problem allows to consider

two different types of frequency-dependent performance metrics: nominal performance and

worst-case performance.

The overall solution of the constrained optimization problem is determined in two steps

as depicted in Fig. 5.1 and described in Section 5.4. First the set of admissible parameters

is determined which satisfies all constraints (stability and performance), see Section 5.4.1.

Then, the optimal parametrization within this set may be determined using a global opti-

mization algorithm, see Section 5.4.2 Alternatively, the optimization step can be omitted

and the system designer can manually select a parametrization from the set of admissible

parameters. This corresponds to B-stability mapping in [1, Section 5.4] with the exceptions

that time delay and additional uncertain parameters can be considered without gridding.

2 This indicates that it is not necessary to evaluate the performance constraints or cost function up to

an infinite frequency. Instead, a reasonable upper bound above the system bandwidth can be chosen.

This is a difference in comparison with stability analysis, where an analysis up to infinite frequencies

is necessary to assure stability.

130



5.3 Performance Specification

F (s,p)
r w

K(s,p)
em u′

G(s, q, td)
u

d1
y′

d2
y

Gd(s, q, td)

−

n

−
eM

Figure 5.2: Single-loop feedback system (Fig. 5.32 from [1])

5.3 Performance Specification

A common approach to performance specification is chosen in this thesis which is used,

e.g., in H∞-control, see [29, Section 5.5]. Therefore, a general feedback system is intro-

duced which can be used to represent a large class of systems. For this feedback system,

different transfer functions are determined which, e.g., specify the tracking error, distur-

bance rejection, etc. In the following sections these transfer functions will then be used

when specifying performance constraints and for performance optimization. Thereby, it is,

e.g., possible to minimize the tracking error for low frequencies while maximizing sensor

noise rejection for high frequencies. The rest of this section closely follows the presentation

in [1, Section 5.3] from which the approach and notation for frequency response magnitude

specification is adopted.

A general system model with parametric uncertainties and possibly time delay is given in

Fig. 5.2 where G is the uncertain plant, K is the controller which should be parametrized,

F is a prefilter (which may be a unit gain if it is not used), and Gd is a desired closed-

loop transfer function. The inputs to the feedback system are the reference input r, plant

input disturbance d1, plant output disturbance d2, and sensor noise n. Other important

signals in this feedback system are the filtered reference input w, measured tracking error

em, controller output u′, actuator signal u, plant output y′, and controlled signal y. In

addition the actual tracking error

e = w − y (5.5)

between filtered reference input w and controlled signal y is of interest3. Finally, if a desired

transfer function Gd is considered, the model matching error is given by eM .

The relation between filtered reference input w and the noise inputs(d1, d2, and n) and

the signals of interest e (tracking error), u (actuator signal), and y (controlled signal) can

be summarized as

eu
y

 =

 S T −SG −S
SK −SK S −SK
T −T SG S



w

n

d1
d2

 (5.6)

3 The actual tracking error e is not shown in Fig. 5.2 and can not be measured in practice as a noise-free

measurement is not possible. Instead, the measured tracking error em which includes measurement

noise is used as controller input. However, when optimizing tracking performance we try to optimize

the actual tracking error e.
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where the so-called sensitivity functions S, T , SG, and SK all depend on the frequency ω,

tunable parameters p ∈ P , uncertain parameters q ∈ Q, and time delays td ∈ T d
4.

In the following the different sensitivity functions are introduced and corresponding

desirable performance criteria are given.

Sensitivity Function / Tracking Error

The tracking error is characterized by the transfer function from the filtered reference

input to the tracking error between filtered reference input and plant output. This transfer

function is the sensitivity function

S(s,p, q, td) =
1

1 +K(s,p)G(s, q, td)
(5.7)

=
1

1 + L(s,p, q, td)
. (5.8)

Generally, a small tracking error is especially important for low frequency input changes,

i.e.,

|S(jω,p, q, td)| � 1 ∀ 0 ≤ ω ≤ ωS. (5.9)

As is evident from (5.6) this implies a rejection of the output disturbance d2.

Complementary Sensitivity Function / Sensor Noise Rejection

Sensor noise rejection which is given by the complementary sensitivity function

T (s,p, q, td) =
K(s,p)G(s, q, td)

1 +K(s,p)G(s, q, td)
(5.10)

= K(s,p)G(s, q, td)S(s,p, q, td) (5.11)

= 1− S(s,p, q, td) (5.12)

is another important goal in system design. As the characteristics of the sensor noise

are often well known they can be taken into account when specifying the corresponding

constraint. Generally, sensor noise rejection is especially of interest for high frequencies,

i.e.,

|T (jω,p, q, td)| � 1 ∀ ωT ≤ ω <∞. (5.13)

Input Sensitivity Function / Actuator Limits

Actuator limits may be considered using the input sensitivity function

SK(s,p, q, td) =
K(s,p)

1 +K(s,p)G(s, q, td)
(5.14)

= K(s,p)S(s,p, q, td) (5.15)

which is the transfer function from the filtered reference input to the actuator output. By

limiting this function we can specify frequency-dependent limits on the actuator output

for a reference input of given bandwidth and magnitude, i.e.,

|SK(jω,p, q, td)| sufficiently small ∀ 0 ≤ ω ≤ ωS. (5.16)
4 These dependencies are omitted in (5.6) for the sake of brevity.
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Output Sensitivity Function / Disturbance Rejection

Disturbance rejection is specified by the output sensitivity function

SG(s,p, q, td) =
G(s, q, td)

1 +K(s,p)G(s, q, td)
(5.17)

= G(s, q, td)S(s,p, q, td) (5.18)

which is the transfer function from the input disturbance d1 to the tracking error. As with

the tracking error, a disturbance rejection is especially of interest for low frequencies, i.e.,

|SG(jω,p, q, td)| � 1 ∀ 0 ≤ ω ≤ ωS. (5.19)

Model Matching

Finally, a further possibility to specify system performance arises in the case where the

input signal can or should not exactly correspond to the output signal. E.g., one might

want to impose a certain system behavior on the closed-loop system (including filter F )

specified by damping and critical frequency.

Therefore, the model matching error eM can be considered which is given by

eM = E(s,p, q, td) r (5.20)

with

E(s,p, q, td) = Gd(s, q, td)−H(s,p, q, td) (5.21)

H(s,p, q, td) =
F (s,p)K(s,p, )G(s, q, td)

1 +K(s,p, )G(s, q, td)
. (5.22)

The model matching error may then be limited to a desired frequency-dependent value,

i.e.,

|E(jω,p, q, td)| sufficiently small ∀ 0 ≤ ω ≤ ωM . (5.23)

5.4 Two-Step Solution of the Constrained

Optimization Problem

In this section a possible solution of the constrained optimization problem is presented

which consists of two steps as depicted in Fig. 5.1. The two steps, first assuring stability

and performance constraints, and then optimizing performance within a set of admissible

parameters, are presented in this section.

In both steps, we can consider two different performance metrics: nominal performance

or worst-case performance. If nominal performance is considered then the performance

criteria are evaluated for one nominal parametrization. If worst-case performance is con-

sidered then the performance criteria are evaluated for the whole range of parameters

and the worst case is constrained/optimized. One interesting scenario is, e.g., to optimize

nominal performance while constraining worst-case performance.
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We can decide whether to constrain/optimize nominal performance or worst-case per-

formance by selecting q and td appropriately, i.e., nominal performance can be considered

by simply replacing some or all uncertain parameters Q or time delays T d by nominal

parameters q̄ and nominal time delays t̄d. By only replacing some uncertain parameters

with nominal parameters or only replacing uncertain parameters with nominal parameters

in some sensitivity functions or some constraints a mixed solution may also be determined

which constrains/optimizes some criteria for the nominal case and other criteria for the

worst case. Note that for the stability analysis we must always consider the whole range

of parameters Q× T d.

5.4.1 Step One: Stability and Performance Constraints

First, the set of admissible parameters is determined for which the system is robustly stable

and performance criteria are constrained to given values (frequency dependent). This may

be interesting in many cases, e.g., when considering actuator limits or when a specified

tracking error must be achieved with minimal actuator action or maximum disturbance

rejection. Moreover, we could optimize some performance criteria for the nominal case

while constraining them to a certain range for the worst case.

Formulation of Performance Constraints

The optimization problem formulated in Section 5.2 considers r performance constraints

c(ω,p, q̄,Q, t̄d,T d) < 0. As an example, to constrain the tracking error to a value smaller

than Ct(ω) we set

c1(ω,p, q̄,Q, t̄d,T d) = |S(jω,p, q, td)| − Ct(ω) (5.24)

where the sensitivity function S depends on tunable parameters p, uncertain parameters

q, and time delays td. We can consider the cases of nominal performance or worst-case

performance by selecting q and td appropriately, i.e., nominal performance can be consid-

ered by simply replacing some or all uncertain parameters Q or time delays T d by nominal

parameters q̄ and nominal time delays t̄d.

Set of Admissible Parameters

In this section the set of admissible parameters P a is determined which fulfills all perfor-

mance constraints and assures robust stability.

For each of the r performance constraints ci in c the parameter set P i ⊆ P is determined

which satisfies the constraint ci < 0:

P i = {p ∈ P | ci(ω,p, q̄,Q, t̄d,T d) < 0 ∀ 0 ≤ ω ≤ ωmax} . (5.25)

Performance constraints can be evaluated using a similar method as for stability analysis in

Chapter 3. First, the boundary on which the performance constraint is zero is mapped to

the parameter space. Then, disjoint regions are checked to discern whether the performance

constraint is violated in this region or not. For both of these steps a simplified version of

the branch and bound algorithm in Section 3.6 can be used as we must only evaluate a
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real function instead of a complex function5. The set of parameters P c which satisfies all

performance constraints is then given by

P c =
r⋂
i=1

P i. (5.26)

Finally, the parameter set P s ⊆ P is determined6 which satisfies the stability constraints,

i.e., no eigenvalues in Γ for all values of Q and T d:

P s =
{
p ∈ P | f(γ, [qTpT ]T , td) 6= 0 ∀ γ ∈ Γ, q ∈ Q, td ∈ T d

}
. (5.27)

This can be done using the robust stability analysis method from Chapter 3, i.e., by first

determining boundaries between the stable and unstable regions and then checking stability

of each disjoint region. The overall set of admissible parameters P a is then given by

P a = P c ∩ P s (5.28)

These parameters may be used by the system designer to manually choose a suitable

parametrization. Alternatively, a cost function can be minimized so as to optimize perfor-

mance by automatically selecting parameters from the admissible parameter set. This is

pursued in the following section.

5.4.2 Step Two: Performance Optimization

The performance criteria given in Section 5.3 can also be used to optimize system per-

formance. Therefore, a weighted sum of different performance criteria may be used as

cost function in the optimization, where weighted sum means that a frequency-dependent

weighting function is defined for each considered performance criterion.

Cost Function

The sum of all performance criteria from Section 5.3 multiplied with their respective

frequency-dependent weighting functions is7

g(ω,p, q̄,Q, t̄d,T d)

= Wt(ω)|S(jω)|+Wd(ω)|SG(jω)|+Wm(ω)|E(jω)|
+Wn(ω)|T (jω)|+Wa(ω)|SK(jω)|

5 In this case, zero inclusion and exclusion is simply determined from the inner and outer approximation

of the real Bernstein Polynomial (see 2.3.5) which is enlarged or shrunk respectively by taking the

interval remainder into account.
6 Stable parameters can also be determined using the set P c of parameters satisfying the performance

constraints as starting set, i.e., P s ⊆ P c. In general, this is computationally more efficient.
7 In Section 5.3 a number of quite general performance criteria are given. For different applications other,

more specific, performance criteria may be of interest. In the case of teleoperation systems, e.g., we

could constrain or optimize transparency, i.e., the difference between the environment impedance and

the impedance transmitted to the operator (see Section 4.4 for more details).
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with tracking weight Wt, disturbance rejection weight Wd, model matching weight Wm,

sensor noise rejection weight Wn, and actuator limit weight Wa. The frequency-dependent

weighting functions (e.g., low-pass, band-pass, high-pass, or more complex transfer func-

tion) are used to specify which frequency range is of interest for the corresponding sensitiv-

ity function. Note that the sensitivity functions all depend on the parameters p, q, and td
which is not shown explicitly in the equation above. We can consider the cases of nominal

performance or worst-case performance by selecting q and td appropriately, i.e., nominal

performance can be considered by simply replacing some or all uncertain parameters Q or

time delays T d by nominal parameters q̄ and nominal time delays t̄d.

Optimization

Once the sensitivity functions and weighted cost function have been determined the final

goal is to optimize the parametrization within the admissible parameter set P a. Therefore,

the global minimum of the cost function

arg min
p∈P a

g(ω,p, q̄,Q, t̄d,T d) ∀ 0 ≤ ω ≤ ωmax (5.29)

is determined. As all parameters in the admissible set P a fulfill all constraints, no addi-

tional constraints have to be taken into account.

Different approaches could be used to solve the optimization problem. We propose to

use the global optimization algorithm from [100] which is based on Taylor Models and the

Bernstein transformation and is referred to as Taylor-Bernstein Form. The main reasons

for choosing this algorithm are:

• Efficient global optimization algorithm for non-convex problems [100].

• Straightforward consideration of parametric uncertainties by minimizing the upper

bound of g.

• Straightforward integration of performance constraints by only considering p ∈ P a.

Moreover, the algorithm uses the same mathematical tools which are necessary to ana-

lyze stability and evaluate the performance constraints in Section 5.4.1. The additional

complexity of implementing this global optimization algorithm is therefore relatively small.

5.5 Discussion

The algorithm to determine an optimal parametrization for LTI systems proposed in this

chapter has not been implemented in practice yet. Therefore, this discussion section mainly

focuses on difficulties which must be considered when implementing this method.

5.5.1 Necessary Extensions to Taylor-Bernstein Form

In existing global optimization algorithms using the Taylor-Bernstein Form the uncertain

parameters are actually unknown parameters of which an optimal value should be found.
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In our case these would correspond to the parameters p ∈ P ∈ [R]o. Therefore, to solve

the optimization problem formulated in this chapter, existing algorithms for global opti-

mization using the Taylor-Bernstein form must be extended so as to consider optimization

variables as well as other uncertain parameters. Then, the upper bound of the cost function

must be minimized. This should only require minimal changes to existing algorithms.

One additional extension to existing algorithms is necessary as the admissible param-

eter set in which we want to find the optimal solution is not necessarily an interval box:

the optimization algorithm must be initialized using a whole set of interval boxes which

together represent the admissible parameter set. As the optimization algorithm anyway

consists of a branch and bound algorithm which performs the same operations on a number

of interval boxes this is a trivial extension.

5.5.2 One-Step Solution of the Constrained Optimization

Problem

For complex problems with a large number of tunable parameters the algorithm presented

in this chapter determines the high-dimensional set of admissible parameters which can

be computationally expensive. Alternatively, the solution can be computed in one step

by directly solving the constrained optimization problem, i.e., instead of mapping stable

regions and performance constraints to the parameter space and then optimizing perfor-

mance, we directly solve the complete constrained optimization problem. On the one hand,

this results in a more complex stability evaluation as it is not possible to use the two-step

stability check, i.e., first determine stability boundaries and then check stability. Instead,

the characteristic function must be evaluated for the complete region Γ. On the other

hand, this circumvents computing admissible regions in the parameter set P of dimension

o, where the number of parameters o which should be optimized may be large. Therefore,

depending on the given optimization problem this may be more or less efficient than the

two-step solution proposed in Section 5.4. For this one-step solution, additional extensions

to existing optimization algorithms are necessary as the Taylor-Bernstein Form has only

been used for unconstrained global optimization up to now. Therefore, besides considering

uncertain parameters in addition to optimization variables, constraints must be taken into

account: inequality constraints due to the performance constraints and binary constraints

due to stability.

Another approach which results in a one-step solution is to start out using the stability

analysis algorithm from Chapter 3. Extending this algorithm by adding additional con-

straints is relatively straightforward. The only question in this context is how to decide

on the subdivision direction. As the partial derivative as well as the interval remainder

of each constraint will indicate a different subdivision direction a good heuristic to se-

lect one of these directions is necessary. Then, the open question is how to combine the

stability analysis with a global optimization which is actually quite straightforward. For

each region, bounds of the cost function are calculated in addition to checking stability

and performance constraints. Then, within the branch and bound algorithm, the following

cases must be discerned for each considered region:

• If the region is stable and all performance constraints are fulfilled we can proceed
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as for the unconstrained global optimization within this region and determine the

parametrization which leads to the minimum value for the upper bound of the cost

function.

• If the region is not stable or does not fulfill all performance constraints it is not

considered further.

• Consider the case, where a region P1 is stable and fulfills all performance constraints

and has a value x for the upper bound of the cost function. Then, if the lower bound

of the cost function in any other region P2 is bigger than x, the region P2 is not

considered further as the global optimum cannot be in P2.

• Otherwise, we proceed as in the case without performance optimization, i.e., we

subdivide the region so as to determine if all constraints are fulfilled or one constraint

is violated.

In practice some issues will probably arise when implementing this algorithm which are not

easily foreseeable at the moment. The biggest difficulty is probably determining a robust

and efficient heuristic to decide on the subdivision direction when checking performance

constraints in addition to stability.

5.6 Summary and Future Work

In this chapter an extension of the stability analysis method presented in Chapter 3 was

proposed which results in an automatic parameter tuning for time-delay systems with para-

metric uncertainties. Therefore, frequency-dependent sensitivity functions are determined

for a general single-loop feedback system. Performance constraints are then imposed by

mapping constraints on these sensitivity functions to the parameter space. Thereby, a set

of parameters is determined which fulfills all performance constraints. Intersecting this

parameter set with the set of robustly stable parameters which is determined using the

method from Chapter 3 results in a set of admissible parameters which satisfy all perfor-

mance constraints as well as robust stability. In a final step, the parametrization within

this set of admissible parameters is determined which results in optimal system perfor-

mance. Optimal system performance is specified using a cost function which consists of a

sum of different sensitivity functions, where each sensitivity function is multiplied with an

appropriate frequency-dependent weight.

The proposed algorithm has not yet been implemented in practice. Therefore, future

work mainly consists of implementing and evaluating this algorithm. It is expected that

the problem will be computationally intractable when considering more than two or three

tunable parameters. This is caused by the fact that the set of admissible parameters has

the same dimension as the number of tunable parameters. In this case the alternative

one-step solution proposed in Section 5.5.2 may be a viable solution which would however

require a significantly larger implementation effort.
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In this thesis we considered the stability and transparency analysis of haptic teleopera-

tion systems. A haptic teleoperation system enables an operator to physically interact

with a remote environment: the operator interacts with a haptic interface, the move-

ments of this haptic interface are performed by a teleoperator that interacts with a remote

environment, and the interaction force between teleoperator and remote environment is

displayed to the operator. In this thesis, the teleoperation system was modeled as Linear

Time-Invariant (LTI) system with time delay, due to the communication channel, and

the operator and remote environment were both modeled as linear mass-spring-damper

systems with unknown parameters. These modeling assumptions are common in litera-

ture on teleoperation and necessary for the application of the methods developed in this

thesis. Using these assumptions, the overall system can be modeled as LTI time-delay

system with parametric uncertainties. Two of the main goals that are generally pursued

when designing teleoperation systems are robust stability when interacting with different

remote environments and good transparency properties, i.e., the distortion introduced by

the teleoperation system should be minimal.

Although the stability analysis of time-delay systems has been an active field of research

for more than half a decade existing stability analysis methods are generally conservative,

especially when considering systems with parametric uncertainties. Therefore, a new sta-

bility analysis method for LTI time-delay systems with parametric uncertainties was de-

veloped in Chapter 3. The method determines stable regions in the parameter space and is

therefore suitable for stability analysis as well as controller design. It is based on a branch

and bound algorithm which evaluates the zero-exclusion principle using the value set of the

characteristic function of the time-delay system. The key to an efficient evaluation of zero

exclusion and zero inclusion within the branch and bound algorithm is the novel method for

evaluating the value set which was introduced in Chapter 2 and makes use of Taylor Models

as well as the Bernstein form. The stability analysis method developed in Chapter 3 is not

limited to teleoperation systems and can therefore be seen as the main contribution of this

thesis. Essentially, the results are similar to the well-known Parameter-Space Approach

by Ackermann [1] which allows for an intuitive stability analysis and controller design in

the parameter space. Both our method and the Parameter-Space Approach can handle

non-affine dependencies of the characteristic equation on the uncertain parameters, i.e.,

the coefficients of the characteristic equation may depend polynomially on the uncertain

parameters. However, our newly developed method is applicable to a much larger class

of systems. On the one hand, time-delay systems and even systems with incommensurate

delays can be examined. On the other hand, a larger number of uncertain parameters can

be considered as we can determine stable regions in a low-dimensional parameter space

while additional parameters are constrained to intervals but otherwise unknown. This

is especially interesting for controller design, where stable regions can be determined for
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one or two controller parameters while other plant parameters are not exactly known. In

comparison with other robust stability analysis methods for time-delay systems, the main

advantage of our method is that the results are not conservative when evaluating stability

for a set of interval parameters. When mapping stability boundaries to the parameter

space, the only conservatism is due to the specifiable resolution of the boundary mapping

algorithm.

The second main contribution is a novel transparency analysis method for teleopera-

tion systems which was introduced in Section 4.4. The method is based on the general

four-channel architecture as a representation of the teleoperation system. Using this archi-

tecture and the transparency transfer function the environment impedance transmitted to

the operator is determined. The transmitted impedance is calculated for a range of envi-

ronments and a mass-spring-damper model is fit to the transmitted impedance. Thereby,

we determine which mass, damping, and stiffness an operator feels when interacting with

remote environments of different damping and stiffness. The result is an intuitive, easily

interpretable parameter-space transparency analysis.

The third main contribution is a detailed analysis of time-delay dependent stability and

transparency for different teleoperation architectures in Section 4.5. For this analysis, one

specific haptic teleoperation system was considered and the following steps were carried out

for the different teleoperation architectures. First, our stability analysis method was used

to determine stable controller parameters for different time delays. In all cases, the operator

impedance as well as environment impedance was assumed to be unknown but constrained

to the same range of values. Once stable controller parameters had been determined we

evaluated transparency for each of the architectures. The analysis showed that especially

the transparency-optimized four-channel architecture and the position-based admittance

control architecture with force exchange are interesting for teleoperation setups with small

time delay as they offer good transparency for very small time delays (1 ms) and are

robustly stable for larger time delays (up to 10 ms) at the cost of transparency. It must

be noted that the analysis was only carried out for one specific teleoperation system and

quantitative results of the stability analysis as well as transparency analysis depend directly

on the system parameters. The qualitative results, however, are general and should hold

for other teleoperation systems as long as the modeling assumptions, especially the linear

mass-spring-damper models for human operator and environment, hold. Several aspects of

this in-depth analysis of the stability and transparency of different teleoperation systems go

beyond the state of the art and represent a contribution towards a deeper understanding of

different teleoperation systems. First, we performed a parameter-space stability analysis

which considered an unknown but bounded environment and operator impedance, time

delay in the communication channel, and sensor and actuator filters. Before this work

this has only been done for the delay-free case. Second, our transparency analysis method

offered unique insights into the performance of different teleoperation architectures for

different time delays.

The final contribution of this thesis is the outline of a method for optimal parametriza-

tion of linear time-invariant systems with time delays and parametric uncertainties in

Chapter 5. Therefore, the stability analysis method from Chapter 3 is combined with

performance constraints which are mapped to the parameter space alongside the stabil-
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ity constraints. Then, the global minimum of a cost function is determined from the set

of feasible parameters for which all performance constraints as well as the stability con-

straint are fulfilled. The proposed formulation of performance constraints is similar to

the frequency response magnitude specifications as presented by Ackermann in [1, Sec-

tion 5.3] where a number of transfer functions which are defined for a general feedback

system are constrained to a frequency-dependent value. Similarly, the cost function for the

global optimization is defined as a weighted sum of these transfer functions (each weighted

by a frequency-dependent function). Using the proposed method the globally optimal

parametrization can be determined. Performance constraints as well as the cost function

can depend on nominal parameters or uncertain interval parameters. Thereby, nominal

performance or worst-case performance can be considered.

6.1 Outlook

The methods for stability and transparency analysis developed in this thesis can be further

extended in a number of different directions. This is especially interesting for the stability

analysis method as it is not only applicable to teleoperation systems but to a large class of

time-delay systems. One possible future research direction could evaluate the convergence

properties of the algorithm and develop strategies to assure convergence for the edge cases

of marginal stability and a stability boundary on the lower or upper bound of a parameter.

Another aspect where further improvement might be possible is the transformation of

unbounded regions for the case with time delay. On the one hand, the transformation

cannot be applied to arbitrary regions in the complex plane in this case, e.g., regions

assuring a minimum damping. On the other hand, the time-delay term is replaced by an

interval for infinite frequencies which may impair the convergence of the algorithm. Finally,

simply applying the method to other time-delay systems would be very interesting.

Future work could also consider extensions to the transparency analysis method de-

veloped in this thesis. By combining the parameter identification of the transmitted

impedance with psychophysical limits of human perception, namely the just noticeable

difference of an impedance, a quantitative transparency measure could be derived which

could, e.g., be used within a parameter optimization scheme. Furthermore, the effect of

choosing a slightly more complex model for the approximated transmitted impedance could

be evaluated for different models. The transparency analysis method could also be used

to evaluate the transparency with which the operator acts on the environment in addition

to the transparency with which the operator perceives the environment which is generally

considered, e.g., also in this thesis. This transparency of action would characterize how

transparently the impedance of the human arm is displayed to the environment. This

would, e.g., indicate how accurately the compliance of the teleoperator can be controlled

by the operator.

Another interesting topic of future research could be the evaluation of more complex tele-

operation architectures, e.g., wave-variable approaches with local impedance controllers,

using the methods developed in this thesis. For many of these architectures, either only

conservative stability analysis results are available or a stability analysis in the presence

of time delays and/or actuator and sensor dynamics was not possible to date. Moreover,

141



6 Conclusions and Outlook

there is often a lack of easily interpretable transparency analysis results. The stability and

transparency analysis methods developed in this thesis could also be applied to multi-user

teleoperation systems or bi-manual teleoperation systems, e.g., two teleoperation systems

controlled by two operators (or by the two hands of one operator) interacting with a com-

mon object. The application of the stability analysis method is straightforward and should

be computationally feasible in most cases. The most problematic scenario would probably

be a multi-user setup with different time delays between different operator/teleoperator

pairs, as incommensurate time delays generally lead to very long calculation times. There-

fore, it might be necessary to work on improving the convergence of the stability analysis

method for incommensurate time delays before examining such a complex case. The ap-

plication of our transparency analysis method to multi-user teleoperation systems would

require determining the transparency with which one operator perceives another operator

in addition to the transparency with which the operator perceives the remote object. In

this context it would also be necessary to evaluate what level of inter-operator transparency

is necessary and what effect this transparency has on task performance.

Finally, the optimal parametrization method outlined in Chapter 5 could be imple-

mented and evaluated. This would result in an automatic parametrization of fixed-

structure LTI time-delay systems with parametric uncertainties. The number of parame-

ters which could be simultaneously tuned using the two-step solution outlined in Chapter 5

would probably be limited to about two to four. A larger number of tunable parameters

could probably be considered by implementing the one-step solution which is discussed in

Section 5.5.2.
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In this appendix stability of LTI systems without time delay is first briefly summarized.

Then, it is shown that these well known properties extend to systems with time delay.

A.1 Stability of LTI-Systems without Time Delay

This section summarizes some important stability notions for LTI systems.

Consider an LTI system with n states x, input u, and output y given by

ẋ = Ax+ bu (A.1)

y = cTx+ du, (A.2)

where A ∈ Rnxn, b ∈ Rn, c ∈ Rn, and d ∈ R.

The characteristic equation p(s) of the system (A.1, (A.2)) is

p(s) = det(sI −A). (A.3)

The eigenvalues λi of the system matrix A correspond to the roots/zeros of p.

The transfer-function G(s) of the system (A.1, (A.2)) is

G(s) = cT (sI −A)−1b+ d (A.4)

=

∑o
j=0 bjs

j∑p
i=0 ais

i
=
Z(s)

N(s)
. (A.5)

A.1.1 Asymptotic Stability

The system (A.1), (A.2) is asymptotically stable if and only if all eigenvalues λi are on the

open left half-plane, i.e.

Re(λi) < 0 ∀1 ≤ i ≤ n. (A.6)

Thus, all roots/zeros of the characteristic equation must have a negative real part, i.e.

Re(s) < 0 ∀p(s) = 0. (A.7)

A.1.2 Marginal Stability

The system (A.1), (A.2) is marginally stable if and only if all eigenvalues λi are on the

closed left half-plane, i.e.

Re(λi) ≤ 0 ∀ 1 ≤ i ≤ n. (A.8)
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and all eigenvalues with real part zero are simple1. Thus, all roots/zeros of the character-

istic equation must have a non-positive real part, i.e.

Re(s) ≤ 0 ∀p(s) = 0 (A.9)

and all roots that are zero must be simple:

Im(si) 6= Im(sj) ∀ Re(si) = 0, Re(sj) = 0, p(si) = 0, p(sj) = 0, i 6= j (A.10)

A.1.3 Instability

The system (A.1), (A.2) is not stable if and only if it is not asymptotically stable and it is

not marginally stable.

A.2 Stability of LTI-Systems with Time Delay

As for the delay-free case, the roots of the characteristic function of a time-delay LTI

system can be used to analyze stability. This was first shown in [22]. The key ideas which

apply to the problem considered in this thesis are briefly summarized here.

A Linear Time-Invariant (LTI) system with n states x, input u, and output y given by

ẋ = A(s, td)x+ bu (A.11)

y = cTx+ du (A.12)

is considered, where

A(s, td) =
m∑
i=0

Aie
−td,is (A.13)

= A0 +
m∑
i=1

Aie
−td,is (A.14)

and Ai ∈ Rn×n, b ∈ Rn, c ∈ Rn, d ∈ R. Furthermore, the system dynamics depend on the

time delays td ∈ Rm+1 with

td = [td,0 td,1 td,2 . . . td,m]T (A.15)

td,0 = 0 (A.16)

td,i > 0 ∀ 1 ≤ i ≤ m. (A.17)

An equivalent representation of the system dynamics is

ẋ(t) =
m∑
i=0

Aix(t− td,i) + bu(t) (A.18)

= A0x(t) +
m∑
i=1

Aix(t− td,i) + bu(t). (A.19)

1The Eigenvectors corresponding to Eigenvalues which are zero must be different.
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The system given in (A.11) is a so-called linear retarded functional differential equation.

For stability analysis the autonomous system without input is considered, i.e., u(t) = 0.

As for the delay-free case a characteristic function can be determined which is given by

p(s, td) = det(sI −A(s, td)) =
m∑
i=0

n∑
j=0

ajis
je−td,is. (A.20)

In this case, the characteristic function is a so-called quasi-polynomial with an infinite

number of roots due to the exponential function. The system (A.11) is asymptotically

stable according to [22, Corollary 6.1] if and only if all roots of the characteristic function

(A.20) have negative real parts. Similarly the system (A.11) is marginally stable according

to [22, Corollary 6.2] if all roots of the characteristic function (A.20) have non-positive real

parts and are simple.

These two corollaries represent the basis of frequency-domain stability analysis of linear

retarded functional differential equations. They are based on the fact that for a system

of the form (A.11), a bound of the value of the functional differential equation can be

determined which is related to the initial condition and roots of the characteristic function

[22, Theorem 6.7]. The proof of this theorem is rather involved. It is based on the

uniqueness of the solution of the functional differential equation [22, Theorem 6.2] and

relies on the fact that a system of the form (A.11) only has root chains of retarded type

according to [22, Theorem 12.12]2. For a more detailed discussion and the associated proofs

the interested reader is referred to [22].

2 For a time-delay system, roots of large magnitude are grouped in chains of either retarded, neutral, or

advanced type. For a root chain of retarded type the roots of large magnitude have a large negative

real part. For a root chain of neutral type, the real parts of roots of large magnitude approach a line

parallel to the imaginary axis. Finally, for a root chain of advanced type, the real parts of roots of large

magnitude have a large positive real part, and consequently, a time-delay system with root chains of

advanced type cannot be stable.
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