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Abstract: Multivariate copulas are commonly used in economics, finance and risk management.
They allow for very flexible dependency structures, even though they are applied to transformed
financial data after marginal time dependencies are removed. This is necessary to facilitate statistical
parameter estimation. In this paper we consider a very flexible class of mixed C-vines, which allows
the variables to be ordered according to their influence. Vines are built from bivariate copulas only and
the term ‘mixed’ refers to allowing the pair-copula family to be chosen individually for each term. In
addition there are many C-vine structure specifications possible and therefore we propose a novel data
driven sequential selection procedure, which selects both the C-vine structure and its attached pair-
copula families with parameters. After the model selection maximum likelihood (ML) estimation of the
parameters is facilitated using the sequential estimates as starting values. An extensive simulation study
shows a satisfactory performance of ML estimates in small samples. Finally an application involving
US-exchange rates demonstrates the need for mixed C-vine models.
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1 Introduction

Pairwise construction principles have been very useful for building multivariate dis-
tributions. The first such pairwise construction was given by Joe (1996) based on the
famous Sklar theorem (Sklar, 1959) using cumulative distribution functions (cdf).
Bedford and Cooke (2001, 2002), realized that there were many such constructions
possible; thus, they organized them in graphical way by sequentially designing trees
which identify the bivariate copula densities needed to make up a d-dimensional
density. It involves only products of bivariate copulas, which we call pair-copulas.
Since the trees are intrinsically related they called these distributions regular vines.

Address for correspondence: Ulf Schepsmeier, Zentrum Mathematik, Technische Universität München,
Boltzmannstr. 3, 85747 Garching bei München, Germany. E-mail: schepsmeier@ma.tum.de

c© 2012 SAGE Publications 10.1177/1471082X1101200302

 at Technical University of Munich University Library on November 10, 2016smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


May 4, 2012 16:48 02-SMJ-12-3

230 Claudia Czado et al.

Their primary interest was to use vines in the modelling of large networks, so they
restricted themselves to the case of Gaussian pair-copulas.

Aas et al. (2009) were the first to recognize that this construction principle can
be extended by using arbitrary pair-copulas, since the construction principle has
no restriction on the choice of pair-copulas. They developed standard maximum
likelihood (ML) estimation for special vine copulas, where the challenge was to
provide a good starting point for the required high dimensional optimization. Vine
copulas are vine distributions with uniform margins. Regular vines include two simple
tree structures, such as line trees and star trees; the first one corresponds to D-vines,
while the second one corresponds to C-vines. Czado (2010) showed that C- and
D-vines can be constructed by simple recursive conditioning, frequently used in time
series. Similar recursive conditioning arguments are used in time series.

Aas et al. (2009) used a sequential estimation procedure to provide starting values
for the ML estimation in C- and D-vines. They utilized D-vines as a building block
for a two-step risk model for financial assets. The margins were estimated by stan-
dard ARMA-GARCH models and standardized residuals were formed. In a second
step copula data is formed using a parametric or a non-parametric innovation spec-
ification. This allows to have an approximately i.i.d. sample for copula estimation.
The parametric transformation was suggested by Joe (2005), while a rank based
transformation was used by Genest et al. (1995). Both approaches follow a two-step
parameter estimation approach, first estimating marginal parameters and then copula
parameters. To improve efficiency in the semi-parametric approach of Genest et al.
(1995), Chen and Fan (2006) and Chan et al. (2009) based their inference for the
copula parameters on the Kullback-Leibler information criteria.

Later Min and Czado (2010c) extended their approach to D-vines and simple
R-vine specifications using only t-copulas as pair-copulas. While such an approach
allows for different symmetric tail behaviour for pairs of variables, it does not allow
for non-symmetric tail behaviour such as provided by a Clayton or Gumbel copula.
This is the starting point for this paper. We want to allow for different pair-copula
families and concentrate on C-vines, which have not been investigated in applications
so far.

Such mixed C-vines have several selection problems attached to them. First, we
need to select the appropriate C-vine structure, since there exist as for example Aas
et al. (2009) showed d!/2 different C-vines and an additional catalogue of pair-copula
families for each required pair-copula to choose from. At the moment only selection
procedures within specified D-vine structures exist. Min and Czado (2010b) use
reversible jump MCMC to simplify a D-vine with specific single pair-copula family
by discovering conditional independences, while Smith et al. (2010) use indicator
variables for identifying conditional independence in a Bayesian set-up.

The goal of this paper is to provide a comprehensive solution to the selection of
C-vines by identifying an appropriate C-vine structure and selecting a fitting pair-
copula family. To accomplish this a sequential approach is developed based on the
cardinality of the conditioning variables in conjunction with individual choices for
each pair-copula as a best fitting pair-copula family from a large catalogue of families.
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The catalogue of pair-copula families includes elliptical copulas such as Gaussian and
t-copulas, single parameter Archimedean copulas such as Gumbel and Clayton, as
well as two parameter families such as BB1 and BB7 of Joe (1997). Finally the Joe and
Frank copula are included as well. For the copula family selection a goodness-of-fit
procedure studied in Genest et al. (2006), Genest et al. (2009) and Berg (2009) is
used, as well as model comparison tests based on Vuong (1989) and Clarke (2007)
suitable for non-nested model comparison. In addition, scatter and contour plots as
well as plots of the λ-function introduced by Genest and Rivest (1993) are evaluated.

The selection of a C-vine structure and its pair-copulas is determined by develop-
ing an appropriate sequential estimation procedure which is used as starting value for
the ML estimation. A large simulation study shows very good small sample perfor-
mance of the ML estimation in mixed C-vines. Finally the usefulness of these models
is demonstrated in an application involving US-exchange rates by using model com-
parison criteria as AIC, BIC, Vuong and Clarke tests suitable to compare joint copula
models.

In summary the main contributions of this paper are:

1. Development and implementation of sequential and ML estimation procedures
for copula parameters in a previously specified mixed C-vine.

2. Development of a data driven sequential selection procedure for jointly choos-
ing the C-vine structure and pair-copula families.

The paper is organized as follows: In Section 2 we discuss bivariate copula families,
while Section 3 introduces the mixed C-vine copula model. Here also sequential and
ML estimation of copula parameters are studied. In Section 4 the data driven sequen-
tial procedure for jointly selecting the C-vine structure with pair-copula families is
developed. In Section 5 a simulation study investigates the small sample performance
of the ML procedure for mixed C-vines. A second study in Section 6 demonstrates
the satisfactory performance of the C-vine selection method. A mixed C-vine is cho-
sen and investigated in Section 7 to model the dependencies among the standardized
residuals in US-exchange rates. The paper closes with a summary and discussion
section.

2 Bivariate copula families

A d-dimensional copula is a multivariate distribution function C(u1, . . . , ud) defined
on the unit cube [0, 1]d, with uniformly distributed marginals. It can be used to
characterize the dependency between d random variables, while allowing for arbitrary
marginal distributions. In the next section we develop multivariate copulas using
only bivariate copulas as building blocks; therefore we concentrate here on d = 2.
In particular the famous theorem of Sklar (1959) gives the connection between
marginals and copula to the joint distribution. For this let F (·, ·) denote a bivariate
cdf with marginal cdf’s F1 and F2, respectively, then there exists a two-dimensional
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copula cdf C(·, ·), such that for all (x1, x2) ∈ R
2

F (x1, x2) = C(F1(x1), F2(x2)) (2.1)

holds. For continuous F1 and F2, C(·, ·) is unique and is defined through

C(x1, x2) = F (F−1
1 (x1), F−1

2 (x2)).

If F is in addition absolutely continuous then the copula density is well defined and
given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
.

For details see Joe (1997) and Nelsen (2006).
The most important and most commonly used copulas in finance are the Gaussian

and the t-copula. Both belong to the class of elliptical copulas and for a precise
definition see, for example, Frahm et al. (2003), who discuss their applicability and
limitations. Another class often discussed and utilized are Archimedean copulas; see,
for example, Embrechts et al. (2003) or Nelsen (2006). Non-linear dependence is
often measured using Kendall’s τ (see, e.g., Kruskal, 1958), while dependence in the
tail is measured by upper and lower tail dependence coefficients (see, e.g., Joe, 1997)
as

λU = lim
u↗1

1 − 2u + C(u, u)
1 − u

= lim
u↗1

P(U1 > u|U2 > u)

and

λL = lim
u↘0

C(u, u)
u

= lim
u↘0

P(U1 ≤ u|U2 ≤ u).

While the Gaussian copula has λU = λL = 0, the tail dependence coefficients for the
t-copula are symmetric, i.e.,

λ = λU = λL.

The Archimedean Clayton and Gumbel copula are reflection-asymmetric. They allow
either for lower by no upper tail dependence and vice versa. In particular for the
Clayton copula we have λL > 0, but λU = 0 and for the Gumbel copula λL = 0
but λU > 0. Therefore Joe (1997, Section 5.2) introduced two bivariate copula
families called BB1 and BB7, respectively, which allow for different λL > 0 and
λU > 0 simultaneously. We will utilize these bivariate copula families as possible
building blocks in our mixed C-vine. Since they are not so commonly discussed, we
summarize their definition and properties in Table 1. In addition top panel of Figure 1
visualizes a scatter plot of a bivariate random sample of size n = 1000 from a BB1
(left top panel) and a BB7 (right top panel) copula distribution. In the lower panels
the corresponding contour plots of the transformed vector Z = (�−1(U1), �−1(U2))
are given, where (U1, U2) follows a BB1 and a BB7 copula distribution, respectively.
Here �−1(·) denotes the quantile function of a standard normal random variable.
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Table 1 Cdf, density, Kendall’s τ , upper and lower tail dependence coefficients of the
BB1 and BB7 copula, respectively

BB1

Cdf C(u, v; θ, δ) =
{

1 + [(u−θ − 1)δ + (v−θ − 1)δ]
1
δ

}− 1
θ

θ > 0, δ ≥ 1

Density c (u, v; θ, δ) =
{

1 + [(u−θ − 1)δ + (v−θ − 1)δ]
1
δ

}− 1
θ −2

× [
(u−θ − 1)δ + (v−θ − 1)δ

] 2
δ
−2

×
{

θδ + 1 + θ (δ − 1)[(u−θ − 1)δ + (v−θ − 1)δ]−
1
δ

}
× (u−θ − 1)δ−1u−θ−1(v−θ − 1)δ−1v−θ−1

Kendall’s τ τ = 1 − 2
δ(θ+2)

upper/lower λU = 2 − 21/δ

tail λL = 2−1/(δθ)

dependence

BB7

Cdf C(u, v; θ, δ) = 1 −
(

1 − [(1 − (1 − u)θ )−δ + (1 − (1 − v)θ )−δ − 1]−
1
δ

) 1
θ

θ ≥ 1, δ > 0

Density c (u, v; θ, δ) = (− 1
θ

)( 1
δ

− 1) · h
1
θ −2dvh · duh − 1

θ
· h

1
θ −1duvh

h = 1 − ((1 − (1 − u)θ )−δ + (1 − (1 − v)θ )−δ − 1)
1
δ

duh = −θ ((1 − (1 − u)θ )−δ − (1 − (1 − v)θ )−δ − 1)
1
δ
−1

×(1 − (1 − u)θ )−δ−1(1 − u)θ−1

dvh = −θ ((1 − (1 − u)θ )−δ − (1 − (1 − v)θ )−δ − 1)
1
δ −1

×(1 − (1 − v)θ )−δ−1(1 − v)θ−1

duvh = 1
δ
(− 1

δ
− 1)((1 − (1 − u)θ )−δ

−(1 − (1 − v)θ )−δ − 1)
1
δ
−2 · duS · dvS

duS = −θδ(1 − (1 − u)θ )−δ−1(1 − u)θ−1

dvS = −θδ(1 − (1 − v)θ )−δ−1(1 − v)θ−1

Kendall’s τ τ = 1 − 2
δ(2−θ) + 4

θ2δ
B

(
2−2θ

θ
+ 1, δ + 2

)
with Beta-function B(x, y) =

∫ 1
0 tx+1(1 − t)y−1dt

upper/lower λU = 2 − 21/θ

tail λL = 2−1/δ

dependence
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Figure 1 Top row: scatter plot BB1 (left) with θ = 0.3 and δ = 2.1(τ = 0.59, λL = 0.33, λU = 0.61) and BB7 (right)
with θ = 2.1 and δ = 0.3(τ = 0.43, λL = 0.72, λU = 0.61). Bottom row: Contour plots of Z transformed from BB1
with θ = 0.3 and δ = 2.1 (left) and BB7 with θ = 2.1 and δ = 0.3 (right)

Note that Z has standard normal margins and the copula dependence structure is
not changed under these monotone transformations.

3 Pair-copula construction (PCC) of mixed C-vines

Using two-dimensional copulas it is possible to construct general multivariate distri-
butions by specifying the dependence and conditional dependence of selected pairs
of random variables and all marginal distribution functions. We will define such a
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construction in this section. Our presentation follows Aas et al. (2009) and Czado
(2010), but the idea was first developed by Joe (1996) for cdf’s and organized graph-
ically using densities and a sequence of nested trees by Bedford and Cooke (2002).
The class of multivariate copulas constructed in such a way are called regular vines.
The so called C- and D-vines are subclasses of regular vines.

Our general assumption is that all joint, marginal and conditional distributions
are absolutely continuous with corresponding densities. Under this regularity con-
dition, Czado (2010) showed that a multivariate density can be constructed as a
product of pair-copulas, acting on several different conditional probability distribu-
tions. Given the recursive decomposition of the conditional distribution of (Xt−1, Xt)
given X1, . . . , Xt−2 as

f (xt|x1, . . . , xt−1) = ct−1,t|1,...,t−2 · f (xt|x1, . . . , xt−2), (3.1)

for t = 2, . . . , d, Czado (2010) showed that the joint distribution is

f (x1, . . . , xd) =
d∏

k=1

f (xk) ×
d−1∏
j=1

d− j∏
i=1

c j, j+i |1,..., j−1, (3.2)

where she used the following abbreviation for a bivariate conditional copula density
of Xi and Xj given xi1, . . . , xik

ci, j |i1,...,ik := ci, j |i1,...,ik(F (xi |xi1, . . . , xik), F (xj |xi1, . . . , xik))

for arbitrary distinct indices i, j, i1, . . . , ik with i < j and i1 < . . . < ik. Here
f (·|·) and F (·|·) denote conditional densities and distribution functions, respectively.
According to Bedford and Cooke (2002) this PCC (3.2) is called a canonical vine
distribution or short C-vine.

For d = 4 the C-vine density (3.2) can, for example, be written as

f (x1, x2, x3, x4) =
d∏

k=1

f (xk) · c12 · c13 · c14 · c23|1 · c24|1 · c34|12. (3.3)

Both in (3.2) and (3.3) the choice for the bivariate pair-copulas ci j |i1,...,ik is completely
arbitrary and in this paper we allow for an individual choice for each of these pair-
copulas from a catalogue of copula families. We call such a C-vine a mixed C-vine.
It is also clear that the construction is iterative by nature, and that given a specific
factorization in (3.2), there are many different orderings of the variables yielding
different C-vines.

In (3.1) we implicitly assume that the bivariate conditional copula does not depend
on the specific values of the conditioning variables, other than through its arguments
given by conditional distribution functions. This restriction is, however, not so severe
(see Haff et al., 2010).

It should be mentioned that even with this restriction the class of possible
C-vines covers a huge range of dependencies among variables, since we are allowed
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to use arbitrary pair-copula families in (3.2), thus extending the range of available
multivariate distributions enormously. In this paper we therefore want to find the
best approximating C-vine model out of this class, while maintaining tractability of
estimation and model selection. This is currently no longer the case if one wants to
allow for additional dependencies on the value of the conditioning variables.

We note that under the assumption of no further dependency on x1:( j−1) =
(x1, . . . , xj−1) of the pair-copula term c j, j+i |1,..., j−1(F (xj |x1:( j−1)), F (xj+i |x1:( j−1)))
except through the two arguments, the corresponding multivariate density in (3.2)
does not need any further restrictions on the pair-copula specifications. If a Gaussian
bivariate copula with correlation parameter ρ j, j+i |1,..., j−1 for each c j, j+i |1,..., j−1 is
chosen, the parameter ρ j, j+i |1,..., j−1 can be interpreted as a partial correlation of
the variables Xj and Xj+i given the variables X1, . . . , Xj−1. Partial correlations of
Gaussian variables are unrestricted in [−1, 1] and always induce a positive definite
correlation matrix (Kurowicka and Cooke, 2001, Prop 3.19; Kurowicka and Cooke,
2006, p. 101). This means that a C-vine with all Gaussian pair-copulas is just a mul-
tivariate Gaussian distribution. The above property shows the advantage of using
a C-vine representation of multivariate Gaussian variables. Similarly, a multivari-
ate t-distribution with a common degree of freedom can be represented as a C-vine
with all t-pair-copulas with some restrictions on the degrees of freedom for each
t-pair-copula (Min and Czado, 2010c).

Here we concentrate on C-vines, however, a similar argument can be used to derive
the class of D-vines (see Czado, 2010). C-vines are especially useful, when there exists
a variable order with sequentially decreasing driving force. More precisely the order
starts with a variable Xi1 which has the highest dependency with all other variables.
Now conditioning all remaining variables on Xi1 , the next variable Xi2 has highest
dependency with all other variables. Similarly, variable Xi3 has highest dependency
with all variables conditional on variables Xi1 and Xi2 , etc. In (3.2) one observes that
the variable Xi1 is mostly involved in all pair-copulas, then the variable Xi2 is second
mostly involved in all pair-copulas and so on. Thus the above described behaviour is
captured by (3.2) with the order Xi1, Xi2, . . . , Xid−2 .

For the pair-copula construction marginal conditional distributions of the form
F (x|v) are needed. For every v j in the vector v F (x|v) can be written as

F (x|v) =
∂Cx,v j |v− j{F (x|v− j ), F (v j |v− j )}

∂F (v j |v− j )
(3.4)

with Cx,v j |v− j an arbitrary bivariate copula cdf (see Aas et al., 2009).
Since we will apply representation (3.2) to copula data u = (u1, . . . , ud)t on [0, 1]d

we denote (3.2) in this case as C-vine copula density. Note that in this case f (ui ) = 1
and F (ui ) = ui ∀i = 1, . . . , d. In the following we assume a parametric specification
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Table 2 h-functions of the Gaussian, the t-, the BB1 and BB7 copula

Copula h-function

Gaussian h(u|v; ρ) = �

(
�−1(u) − ρ�−1(v)√

1 − ρ2

)

t h(u|v; ρ, ν) = tν+1

⎧⎪⎨
⎪⎩

t−1
ν (u) − ρt−1

ν (v)√
(ν+(t−1

ν (v))2)(1−ρ2)
ν+1

⎫⎪⎬
⎪⎭

BB1 h =
(

1 + ((u−θ − 1)δ + (v−θ − 1)δ)
1
δ

)− 1
θ
−1

·((u−θ − 1)δ + (v−θ − 1)δ)
1
δ
−1(v−θ − 1)δ−1v−θ−1

BB7 h =
(

1 − [
(1 − (1 − u)θ )−δ + (1 − (1 − v)θ )−δ − 1

]− 1
δ

) 1
θ
−1

· [(1 − (1 − u)θ )−δ + (1 − (1 − v)θ )−δ − 1
]− 1

δ
−1

·(1 − (1 − v)θ )−δ−1(1 − v)θ−1

for Ci, j |i1,...,ik given by an appropriate parameter (vector) θ . For parametric pair-
copula densities and univariate conditioning set (3.4) simplifies to

h(u|v; θ) := F (u|v; θ ) =
∂Cu,v(u, v; θ)

∂v
, (3.5)

where θ is the parameter vector for Cu,v.
Table 2 gives the h-functions of the Gaussian, the t-, the BB1 and the BB7 copula,

respectively. Here ρ is the parameter of the Gaussian copula and �−1(·) is the inverse
of the standard normal distribution function. Further t−1

ν (·) in the t-copula case is the
quantile-function of the univariate standard t-distribution with ν degrees of freedom,
expected value 0 and variance ν

ν−2 for ν > 2.
To illustrate the usefulness of (3.4) and (3.5) we derive the conditional cdf

F (u3|u1, u2; θ23|1, θ12, θ13) needed as argument for c34|12 in a four-dimensional C-
vine copula density (compare to (3.3)). First (3.4) implies that

F (u3|u1, u2; θ23|1, θ12, θ13) =
∂Cu3,u2|u1(F (u3|u1; θ13), F (u2|u1; θ12); θ23|1)

∂F (u2|u1; θ12)

holds. Now using (3.5)

F (u3|u1; θ13) = h(u3|u1; θ13) and F (u2|u1; θ12) = h(u2|u1; θ12),

it follows that

F (u3|u1, u2; θ23|1, θ12, θ13) = h(h(u3|u1; θ13)|h(u2|u1; θ12); θ23|1).
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Here θ13, θ12 and θ23|1 denote the parameters of c13, c12 and c23|1, respectively.
Therefore higher order conditioning requires recursive application of appropriate
h-functions.

We now turn to parameter estimation in C-vines. Let θ i be the vector of all pair-
copulas in (3.2), which involve a conditioning set of cardinality i for i = 0, . . . , d−2.
For the C-vine in (3.3), θ0 contains the parameters of the pair-copulas c12, c13 and c14,
θ1 the parameters of c23|1 and c24|1 and θ2 the parameters of c34|12. More generally
θ i = (θ t

1i , . . . , θ t
d−(i+1),i )

t, where θ j,i is the parameter vector of ci+1, j+i+1|1,...,i . Finally
we denote by θ = (θ t

0, . . . , θ t
d−2)t the set of all parameters to be estimated.

We present two estimation methods, one is a sequential estimator (SE) and the
other one is the maximum likelihood estimator (MLE). Suppose i.i.d. data ut :=
(u1,t, . . . , ud,t)t for t = 1, . . . , T is available. For SE the parameters of unconditional
copulas are first estimated, then they are used to estimate parameters of pair-copulas
with single conditioning variable. These estimates will then be used for estimation
of pair-copula parameters with two conditioning variables. We proceed sequentially
until all parameters are estimated.

More precisely for θ j,0 of c1, j+1 estimate θ j,0 based on data (u1,t, uj+1,t),
t = 1, . . . , T for j = 1, . . . , d − 1. For one-parameter families with a known
relationship to Kendall’s τ , one can invert the empirical Kendall’s τ based on
(u1,t, uj+1,t), t = 1, . . . , T. Alternatively one can maximize the corresponding bivari-

ate likelihood to get θ̂
S
j,0 for j = 1, . . . , d − 1.

In the next step we want to estimate θ j,1 corresponding to c2, j+2|1 for j = 1, . . . ,

d − 2. Define
v̂2|1,t := F

(
u2,t|u1,t; θ̂

S
1,0

)
= h

(
u2,t|u1,t; θ̂

S
1,0

)
and

v̂ j+2|1,t := F
(

uj+2,t|u1,t; θ̂
S
j+1,0

)
= h

(
uj+2,t|u1,t; θ̂

S
j+1,0

)
for j = 1, . . . , d − 2. Use data (v̂2|1,t, v̂ j+2|1,t), t = 1, . . . , T to estimate θ j,1 for

j = 1, . . . , d − 2 and denote these estimates by θ̂
S
j,1. For θ j,2 corresponding to

c3, j+3|1,2 for j = 1, . . . , d − 3, define

v̂3|1,2,t := h
(
v̂3|1,t|v̂2|1,t; θ̂

S
1,1

)
and

v̂ j+3|1,2,t := h
(
v̂ j+3|1,t|v̂2|1,t; θ̂

S
j+1,1

)
and estimate θ j,2 based on (v̂3|1,2,t, v̂ j+3|1,2,t), t = 1, . . . , T for j = 1, . . . , d − 3.

For general θ j,i , i = 1, . . . , d − 2 base estimation on

v̂i+1|1,...,i,t := h
(
v̂i+1|1,...,i−1,t|v̂i |1,...,i−1,t; θ̂

S
1,i−1

)
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and
v̂ j+i+1|1,...,i,t := h

(
v̂ j+i+1|1,...,i−1,t|v̂i+1|1,...,i−1,t; θ̂

S
j+1,i−1

)
for t = 1, . . . , T and j = 1, . . . , d − (i + 1). These sequential estimates θ S

j,i ,

i = 0, . . . , d − 2, j = 1, . . . , d − 2 can be used on their own. They are asymptotically
normal under regularity conditions as recently shown by Haff (2010). However, their
asymptotic covariance expression is intractable. To improve efficiency one can use
MLEs, which require high dimensional optimization of the log-likelihood. Here the
sequential estimates can be used as starting values for the optimization.

We now turn to the determination of MLEs of the parameters of a C-vine copula
distribution. For this the corresponding representation (3.2) can be used to con-
struct the log-likelihood for an i.i.d. d-variate copula sample ut = (u1,t, . . . , ud,t)t for
t = 1, . . . , T. Let u = (ut

1, . . . , ut
T)t and θ the parameter vector to be estimated, then

the log-likelihood can be written as

l(θ , u) =
T∑

t=1

[ d−1∑
j=1

log{c(u1,t, uj+1,t; θ j,0)}

+
d−2∑
i=1

d−(i+1)∑
j=1

log c(vi+1|1,...,i−1,t|v j+i+1|1,...,i ; θ j,i )

]
,

(3.6)

where
v j+2|1,t := h(uj+2,t|u1,t; θ j+1,0) j = 0, . . . , d − 2, (3.7)

v j+i+1|1,...,i,t := h(vi+ j+1|1,...,i−1,t|vi+1|1,...,i−1; θ j+1,i−1) (3.8)

and
i = 1, . . . , d − 2, j = 1, . . . , d − (i + 1).

The log-likelihood (3.6) together with definition (3.7) and (3.8) can now be numer-

ically optimized using the sequential estimates θ̂
S
j,i as starting values. We denote the

MLEs by θ̂
MLE
j,i to distinguish them from θ̂

S
j,i .

4 Selection of vine copula models

As already noted there are many different orderings of the variables in C-vine models
possible. Aas et al. (2009) have shown that there are exactly d!/2 different C-vines
and thus C-vine copulas available. In a mixed C-vine copula model we need in
addition to choose a bivariate copula family for each of the d(d − 1)/2 pair-copulas.
We will now consider these selection problems.
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As noted in Aas et al. (2009) it is preferable to choose models with high dependence
in the bivariate conditional distribution characterized by ci, j |i1,...,ik, where the number
of conditioning variables k is small. This suggests a data driven sequential approach
starting with determining the d − 1 unconditional pair-copulas needed in a C-vine
copula. For this estimate all pairwise Kendall’s τi, j values by τ̂i, j and find the variable
i∗ which maximizes

Ŝi :=
d∑

j=1

|τ̂i, j | (4.1)

over i = 1, . . . , d. Here we set τ̂i,i = 1 for i = 1, . . . , d. To ease notation we reorder
the variables in such a way that the first variable is now i∗. For this reordering
c1, j+1, j = 1, . . . , d − 1 are selected as unconditional pair-copulas. We call variable 1
also the root of all unconditional pair-copulas. Before determining the pair-copulas
with the single conditioning variable 1, a choice of the pair-copula family and its
parameter value for c1, j+1 for j = 1, . . . , d − 1 has to be made. We will discuss this
choice later and assume at this point that we are able to choose a pair-copula family

with parameter estimate θ̂
S
j,0 for c1, j+1 for j = 1, . . . , d − 1. As in the sequential

estimation procedure d − 1 transformed variables

v̂ j+2|1,t := h(uj+2,t|u1,t; θ̂
S
j+1,0) j = 0, . . . , d − 2, t = 1, . . . , T (4.2)

are defined. Again (d − 1) data samples of size T are used and all pairwise Kendall’s
τ values are estimated and we can find the corresponding maximum as in (4.1) based
now on d − 1 variables. Assume that this maximum is obtained at i∗∗ and again
reorder the variables i = 2, . . . , d in such a way that i∗∗ is now variable 2. We select
now c2, j+2|1 for j = 1, . . . , d − 2 as pair-copulas with single conditioning variable 1.
Here 2 = i∗∗ can be considered as root of c2, j+2|1 for j = 1, . . . , d − 2. We continue
now with this procedure with transformed variables as defined in (4.2) until we

have all pair-copulas and their sequential estimates θ̂
S
j,s determined. Note that this

sequential procedure both determines the C-vine copula structure and corresponding
parameter estimates.

We now consider the problem of choosing the copula family. This has been a
well studied problem and many procedures have been suggested. Note that for the
sequential selection procedure we only require a copula selection in two dimensions.
Copula goodness-of-fit tests have been studied by Genest et al. (2009), Genest et al.
(2006) and Berg (2009). One recommended test is based on the Cramér-von-Mises
statistics, which we will utilize later. It is implemented in the R-package ‘copula’.
Genest et al. (2009) introduced and studied a λ-function based on the Kendall’s
process. This λ-function is especially easy for Archimedean copulas.
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Joe (1997, Section 10.3) proposed a model selection based on the Akaike infor-
mation criterion (AIC) of Akaike (1974).

AIC := −2
n∑

i=1

log f (xi ; θ̂) + 2k,

where θ̂ denotes the estimate of θ and k is the number of parameter θ = (θ1, . . . , θk)T

in the model. Specifying the AIC to a specific copula with density c we get

AIC := −2
n∑

i=1

log c(ui1, ui2; θ̂ ) + 2k,

which can be used as a copula selection criterion. The advantage of this selection
method is that it can be automatized in a copula selection program. Additionally
we also look at likelihood ratio based tests suggested by Vuong (1989) and Clarke
(2007) suitable for non-nested model comparison. Finally bivariate scatter plots of
the copula data and empirical contour plots of the transformed copula data with
normal margins are examined.

For our implementation for the copula family choice we consider the Gaussian,
t-, Clayton, Gumbel, Frank, BB1 and BB7 copula family, which cover a wide range
of dependence behaviour.

Since the Vuong and Clarke tests require two specified copula models to be com-
pared to, we first specify a copula model, denoted by A; we conduct then tests
comparing A to any other copula family considered. A score for A is determined as
follows; each time model A is preferred to another model, the score is increased by 1.
If model A cannot be distinguished from the other model, the score is left unchanged.
If the other model is preferred to A, then 1 is subtracted from the score. This scoring
is done for considered copulas and the model with highest score is chosen. We note
that the copula goodness-of-fit tests have a more general alternative, while the Vuong
and Clarke tests consider a single parametric copula in the alternative.

5 Small sample performance of the ML estimates in a fully specified
C-vine with different pair-copula types

We investigated the accuracy, stability and robustness of the maximum likelihood
estimation described in the previous section by performing a small simulation study in
R for different sample sizes, different C-vine dimensions and different copula family
combinations. For this we used the R-routines written by Schepsmeier (2010), which
contains the MLE algorithm as well as a routine for the simulation of C-vines (see
Aas et al., 2009).

The advantage of this R-package is that mixed C-vine copula models can be used.
Unlike Aas et al. (2009), Min and Czado (2010a) or Nikoloulopoulos et al. (2011)
one is not limited to simple models with only one copula family for all pair-copulas
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Table 3 Choice of conditional Kendall’s τ for four-scenarios in a
four-dimensional C-vine copula model (H =̂{τ = 0.8}, L=̂{τ = 0.2})
Scenario τ12 τ13 τ14 τ23|1 τ24|1 τ34|12

1 H H H H H H

2 L L L L L L

3 H H H L L L

4 L L L H H H

in a C-vine PCC. In this paper we give a summary of our simulation study of the
ML estimates in a fully specified C-vine. Note that in this simulation study the C-
vine and copula selection methods are not used, i.e., the C-vine structure as well as
the pair-copula families are fixed. Detailed results of this small sample performance
study can be found in Appendix C of Schepsmeier (2010). First we restrict to a four-
dimensional C-vine copula set. In this case six pair-copulas have to be chosen. As
a common measure of dependence across pair-copula families we used Kendall’s τ .
Two choices, τ = 0.2(L) and τ = 0.8(H), are investigated. To be more precise, the
four scenarios of Table 3 are determined.

Possible pair-copula families were Gaussian (N), t-copula with ν degrees of free-
dom (tν), Clayton (C), Gumbel (G), Frank (F), Joe (J), BB1 and BB7. As sample size
n = 500, 1000 and 2000 were investigated. In a first set-up we used the same pair-
copula family for each of the six pair-copulas, while in a second set-up we allowed
for mixed C-vine copulas and investigated a total of eight combinations given in
Table 4.

For the one parameter pair-copulas the choice of Kendall’s τ determines the
corresponding parameter. For the two parameter families BB1 and BB7 an additional
constraint is needed to fix the two parameter values. Here we used the following
constraints: λL = λU (symmetric) or 2λL = λU (asymmetric).

As performance measure we considered average and 5% trimmed average of the
estimated parameter values or corresponding Kendall’s τ value for each pair-copula.
Further, bias, variance and mean squared error of these quantities are estimated. All

Table 4 Mixed copula models investigated

Model c12 c13 c14 c23|1 c24|1 c34|12

1 N C G F J t3
2 t3 G J G N J
3 C t5 F G N J
4 G t5 J C t10 F
5 N C BB1 BB7 t10 F
6 BB1 t5 J BB7 t10 F
7 BB7 t5 F N t10 BB1
8 BB1 N BB7 BB1 t5 BB7
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performance measures are based on 100 data sets simulated from each Kendall’s τ
scenario and C-vine copula model. The detailed results for n = 500 are contained in
Schepsmeier (2010) in Appendix C.

We now summarize the results of Schepsmeier (2010) for C-vine MLE’s:

Strength of dependence: MLEs of Kendall’s τ are about equally well estimated for
high and low dependence. Parameter values are better estimated for smaller
values of Kendall’s τ . For the t-copula the degree of freedom parameter ν is
slightly overestimated. Overestimation increases as ν increases as to be expected
since tν is close to the normal distribution for values ν ≥ 25. For the BB1/BB7
the asymmetric case performs worse for high dependencies.

Mixed versus non-mixed: There no significant difference in the performance.
Conditional versus non-conditional: The performance slightly decreases as the num-

ber of conditioning variables increases. Therefore additionally five-dimensional
mixed C-vine copula models are simulated and analyzed.

Sequential versus MLE estimates: Except for the degrees of freedom parameter ν
in the t-copula, which are estimated by a bivariate maximum likelihood, the
sequential estimates θ̂ S are close to the d-variate optimized maximum likelihood
estimates θ̂ MLE.

Similar to the simulation tests described earlier and run by Schepsmeier (2010)
we run four new simulation tests to investigate the performance of the implemented
MLE algorithm with respect to the number of observations. For more stable results
we used 500 simulated data sets instead of 100, for a non-mixed four-dimensional
C-vine with BB1 pair-copulas and a mixed C-vine with copulas as in Model 7 in
Table 4. Table 5 summarizes the performance by reporting the average estimated
relative MSE of the parameters M̂SErel(α̂) and the corresponding relative MSE of
the Kendall’s τ s M̂SErel(τ̂ ). In the left panel simulated data sets of n = 500 are used
while the right panels are for n = 2000. From this we see that the relative MSE is
generally small and decreases as n increases.

In summary the simulation shows that satisfactory performance of ML estimation
procedure for mixed/non-mixed C-vine copula models with a large catalogue of pair-
copula families under small/high pairwise (conditional) dependence is possible for
moderate sample sizes.

6 Small sample performance of the C-vine selection method

In the previous section we fixed the C-vine structure as well as the pair-copula
families. In a second simulation study, performed in R, we investigated the C-
vine and copula selection methods described in Section 4 with respect to their fit-
ting accuracy using the absolute difference of pairwise Kendall’s τ -matrices as an
evaluation criterion. If one does not fix the C-vine structure but selects it by our
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Table 5 Top: Average estimated relative MSE of parameters and Kendall’s τ for
non-mixed C-vine with BB1 pair-copulas, assuming λL = λU based on 500 simulated data
sets, (n = 500 (left) and n = 2000 (right)). Bottom: Average estimated relative MSE of
parameters and Kendall’s τ for mixed C-vine (BB7,t5,F,N,t10,BB1), assuming λL = 0.2 for
the bivariate copula families based on 500 simulated data sets, (n = 500 (left) and
n = 2000 (right))

Non-mixed C-vine (BB1)

True values n = 500 n = 2000

α = (θ, δ) τ (α) ̂MSErel (α̂) ̂MSErel (τ̂ ) ̂MSErel (α̂) ̂MSErel (τ̂ )

θ12 = 0.80 τ12 = 0.80 3.36% 0.01% 0.97% < 0.00%
δ12 = 3.56 0.44% 0.11%
θ13 = 0.80 τ13 = 0.80 5.67% 0.01% 1.51% < 0.00%
δ13 = 3.56 0.60% 0.14%
θ14 = 0.80 τ14 = 0.80 7.67% 0.01% 2.46% < 0.00%
δ14 = 3.56 0.80% 0.18%
θ23|1 = 0.29 τ23|1 = 0.20 9.85% 2.12% 2.38% 0.46%
δ23|1 = 1.09 0.18% 0.04%
θ24|1 = 0.29 τ24|1 = 0.20 9.78% 2.17% 2.52% 0.50%
δ24|1 = 1.09 0.18% 0.05%
θ34|12 = 0.29 τ34|12 = 0.20 10.83% 1.89% 2.68% 0.56%
δ34|12 = 1.09 0.18% 0.05%

Mixed C-vine (BB7,t5,F,N,t10,BB1)

True values n = 500 n = 2000

α τ ̂MSErel (α̂) ̂MSErel (τ̂ ) ̂MSErel (α̂) ̂MSErel (τ̂ )

θ12 = 1.18 τ12 = 0.80 0.32% < 0.00% 0.05% < 0.00%
δ12 = 8.40 0.52% 0.11%
ρ13 = 0.95 τ13 = 0.80 < 0.00% < 0.00% < 0.00% < 0.00%
ν13 = 5.00 0.68% 0.14%
θ14 = 18.10 τ14 = 0.80 0.31% < 0.00% 0.08% < 0.00%
ρ23|1 = 0.95 τ23|1 = 0.80 0.01% 0.03% < 0.00% 0.01%
ρ24|1 = 0.95 τ24|1 = 0.80 0.01% 0.03% < 0.00% 0.01%
ν24|1 = 10.00 21.84% 4.24%
θ34|12 = 6.48 τ34|12 = 0.80 11.83% 0.02% 3.14% 0.01%
δ34|12 = 1.17 1.23% 0.29%

method a different C-vine structure to the true one can emerge. Thus, different pair-
copulas occur which have to be selected too. Again we restrict to a four-dimensional
C-vine copula set. As already mentioned in Section 5 six pair-copula families have
to be chosen in this case, which is done sequentially by the AIC selection method of
Section 4.
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As evaluation criterion for our model selection method we utilized absolute dif-
ferences of pairwise Kendall’s τ s between the estimated Kendall’s τ -matrix of sim-
ulated data U0 = (u0,1, . . . , u0,d), u0, j = (u0,1, j , . . . , u0,n0, j )T for j = 1, . . . , d, of a
true model, denoted by τ̂0, and the estimated Kendall’s τ -matrix of simulated data
U1 = (u1,1, . . . , u1,d), u1, j = (u1,1, j , . . . , u1,n1, j )T for j = 1, . . . , d, of the selected
model, denoted by τ̂1. The procedure is as follows:

1. Select the structure, pair-copula families and pair-copula parameters of the true
C-vine model.

2. Simulate data U0 of the true model with length n0.
3. Perform the model selection algorithm to choose the order of roots in a C-vine,

the pair-copula families and estimate the copula parameters.
4. Simulate data U1 of the selected model with length n1.
5. Sum up the absolute differences of the estimated Kendall’s τ -matrices τ̂0

and τ̂1.
6. Repeat steps 1–4 R times.

Note that n2 should be much larger that n1 (n2 � n1) to ensure that the influence of
the simulation error is negligible. Next we calculated the replication average of the
mean absolute pairwise Kendall’s τ differences by

τ̄ =
1
R

R∑
r=1

∑
{s,t}∈({1,...,d}

2 )

|τ̂ (ur
0,s, ur

0,t) − τ̂ (ur
1,s, ur

1,t)|,

where
({1,...,d}

2

)
:= {{s, t} : s =/ t, s, t ∈ {1, . . . , d}} is the set of unordered pairs in

{1, . . . , d}.
Our simulation study deals with the eight models 1–8 of Table 4 with four

scenarios each described in Table 3 and Section 5, all in all 32 different mod-
els. The described procedure was run for R = 100, n1 = 1000 and n2 = 10 000.
In Table 6 we give the calculated values of τ̄ based on sequential pair-copula
estimates of the selected model (left panel) and joint ML estimates (right panel),
respectively.

Beside two larger values in Scenario 1 of Models 2 and 5, all mean absolute
pairwise Kendall’s τ differences are quite small, i.e., our model selection method
performs quite well. The additional joint ML step for the copula parameters after
fitting the C-vine model with sequential estimates does not improve the fitting of the
Kendall’s τ matrix. For the two outliers we have no obvious explanation. One reason
may be the numerical restrictions in the implementation of the MLE and selection
algorithm for high Kendall’s τ s.
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Table 6 Estimated mean of absolute pairwise Kendall’s τ differences for Models
1–8 of Table 4 with four scenarios (3) each. Left panel: based on sequential
estimates, right panel: based on joint MLE after selection step

Sequential estimation ML estimation

Model 1 2 3 4 1 2 3 4

1 0.04 0.07 0.03 0.10 0.05 0.07 0.03 0.09
2 0.25 0.06 0.03 0.05 0.28 0.08 0.03 0.08
3 0.02 0.06 0.03 0.05 0.03 0.06 0.03 0.05
4 0.11 0.06 0.03 0.06 0.11 0.06 0.03 0.07
5 0.17 0.06 0.03 0.05 0.18 0.07 0.04 0.05
6 0.05 0.06 0.03 0.06 0.05 0.07 0.04 0.07
7 0.02 0.06 0.03 0.03 0.04 0.06 0.03 0.06
8 0.09 0.05 0.04 0.06 0.09 0.06 0.04 0.06

7 Application: US-exchange rates

We apply now our mixed C-vine model to eight time series of US-exchange rates from
different countries from 22 July 2005 until 17 July 2009. Therefore we have 1007
daily values available for each country considered. The US-exchange rates are quoted
in the home currency, e.g., 1 US dollar = 0.8466 Euro. For simplification we use the
following abbreviations: EUR (Euro-area), UK (United Kingdom), CAN (Canada),
AUS (Australia), BRA (Brazil), JPN (Japan), SZ (Switzerland) and IN (India).

First of all for each marginal exchange rate series an appropriate ARMA(P,Q)-
GARCH (p,q) model, developed by Bollerslev (1986), is determined. Ljung–Box tests
(Ljung and Box, 1978) for serial independence applied to the estimated standardized
residuals show that ARMA(1,1)-GARCH(1,1) models are sufficient to remove the
time dependence in each of the individual US-exchange rates. The corresponding
p-value of the Ljung–Box tests as well as additional QQ-Plots can be found in
Chapter 5 of Schepsmeier (2010). The QQ-Plots provide evidence that the residuals
are fat tailed and t- or skewed t-innovations in the GARCH(1,1) part is needed. The
resulting standardized residuals of these models are transformed using the empirical
probability integral transformation and a scaling factor n

n−1 to copula data on (0, 1)8.
Figure 2 shows scatter plots and the estimated Kendall’s τ for the copula data. We can
detect some stronger dependencies between the standardized residual US-exchange
rates, especially between the EURO and UK, EURO and AUS, EURO and SZ. Further,
we can see that some standardized residual US-exchange rates are almost independent
as, for example, AUS and JPN and IN and SZ. A next interesting fact is that almost
all dependencies are positive beside the pair BRA–JPN and CAN–JPN.

We apply now the sequential procedure to select an appropriate C-vine copula
for the US-exchange rate copula data. Table 7 gives the empirical Kendall’s τ matrix
and the sum of their absolute values, denoted by S (compare to (4.1)). From this we
see that EUR is the first root variable. Given this first root variable and the sequential
C-vine identification procedure from previous chapter the next root variable AUS
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Figure 2 Pairs-plot of the copula data (top, right) formed from transformed standardized residual US-exchange
rates and the corresponding estimated Kendall’s τ (bottom, left)

followed by SZ, BRA, CAN and finally IN can be identified. Table 8 displays now
the empirical Kendall’s τ matrix of the variables given EUR as first root and copula
families and parameters as in Table 9 (i = 0), and sum over the absolute entries of
each row. As possible copula families we allowed the eight copula families utilized
in the simulation study. Since the sequential selection procedure identifies the pair-
copula types and provides sequential estimates θ̂ S, we use those as starting values to
determine the corresponding MLE θ̂ MLE. The resulting mixed C-vine copula model
we denote by M1. The sequential and ML estimates for M1 are provided in Table
9. Note that the variable i indicates the number of variables in the conditioning

Statistical Modelling 2012; 12(3): 229–255

 at Technical University of Munich University Library on November 10, 2016smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


May 4, 2012 16:48 02-SMJ-12-3

248 Claudia Czado et al.

Table 7 Empirical Kendall’s τ matrix and the sum over the absolute entries of
each row for the exchange rate data set

EUR UK CAN AUS BRA JPN SZ IN S

1 EUR 1.00 0.51 0.29 0.44 0.19 0.24 0.69 0.16 3.54

2 UK 0.51 1.00 0.28 0.41 0.17 0.13 0.43 0.15 3.12

3 CAN 0.29 0.28 1.00 0.35 0.24 –0.02 0.20 0.14 2.56

4 AUS 0.44 0.41 0.35 1.00 0.31 0.06 0.32 0.19 3.12

5 BRA 0.19 0.17 0.24 0.31 1.00 –0.11 0.07 0.14 2.27

6 JPN 0.24 0.13 –0.02 0.06 –0.11 1.00 0.37 0.01 1.97

7 SZ 0.69 0.43 0.20 0.32 0.07 0.37 1.00 0.09 3.21

8 IN 0.16 0.15 0.14 0.19 0.14 0.01 0.09 1.00 1.92

Table 8 Empirical Kendall’s τ matrix and the sum over the absolute entries of each row for the exchange
rate data set given EUR as first root

EUR,AUS EUR,SZ EUR,BRA EUR,CAN EUR,IN EUR,JPN EUR,UK S

1 EUR,AUS 1.00 –0.14 0.25 0.23 0.13 –0.11 0.17 2.03

2 EUR,SZ –0.14 1.00 –0.21 –0.12 –0.09 0.34 0.00 1.90

3 EUR,BRA 0.25 –0.21 1.00 0.18 0.11 –0.20 0.04 1.99

4 EUR,CAN 0.23 –0.12 0.18 1.00 0.07 –0.15 0.10 1.85

5 EUR,IN 0.13 –0.09 0.11 0.07 1.00 –0.04 0.60 1.50

6 EUR,JPN –0.11 0.34 –0.20 –0.15 –0.04 1.00 –0.03 1.87

7 EUR,UK 0.17 0.00 0.04 0.10 0.60 –0.03 1.00 1.40

set and the pair-copula family type chosen. Here we use N (Gaussian), t (t-), C
(Clayton), G (Gumbel) and F (Frank) as abbreviations. Surprisingly, the flexibility of
two parameter bivariate copula families such as the BB1 and BB7 was not required
for this data set.

In particular only a few strong non-symmetric dependencies among the standard-
ized residuals are detected, i.e., BRA and AUS given EU and CAN and BRA given
EU, AUS and SZ. For the first conditional dependency we provide exemplarily the
exploratory copula selection analysis in Table 10. This includes also the goodness-of-
fit statistic and p-value of the Cramer-von Mises test. Similar results for all pair-copula
terms up to conditioning on three variables can be found in Schepsmeier (2010).

From Table 9 we see that often very low dependence is estimated. Therefore for
each pair-copula a test for independence is performed to decide whether the corre-
sponding pair-copula has to be replaced with the independence copula or not. As
independence test we used a test based on Kendall’s τ discussed in Genest and Favre
(2007) utilizing the asymptotic distribution of empirical Kendall’s τ under indepen-
dence (Kendall, 1938). If the test fails to reject the null hypothesis of independence
an independence copula (c(u1, u2) ≡ 1) is chosen. Otherwise the sequential selection
procedure is left unchanged. We call the resulting model M2. Comparing M1 to M2
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Table 9 Sequential and ML estimates for C-vine copula models M1 and M4
(∗ = independence copula in M2)

M1 M4

i Parameter Copula θ̂
S

θ̂
ML E

θ̂
S

θ̂
ML E

0 ρEU R,AUS t 0.64 0.63 0.64 0.64
νEU R,AUS 10.16 13.29
ρEU R,SZ t 0.89 0.89 0.89 0.87
νEU R,SZ 4.00 4.68
ρEU R,BRA t 0.30 0.31 0.30 0.31
νEU R,BRA 6.39 7.42
ρEU R,C AN t 0.46 0.46 0.45 0.46
νEU R,C AN 8.44 8.75
ρEU R,I N N 0.25 0.26 0.25 0.26
ρEU R,JP N t 0.36 0.37 0.37 0.34
νEU R,JP N 4.38 5.88
ρEU R,UK t 0.72 0.72 0.73 0.72
νEU R,UK 8.49 9.21

1 ρSZ,AUS|EU R t –0.24 –0.23 –0.22 –0.25
νSZ,AUS|EU R 11.36 16.49
θBRA,AUS|EU R G 1.33 1.30 0.37 0.39
ρC AN,AUS|EU R N 0.35 0.35 0.35 0.36
θI N,AUS|EU R F 1.19 1.19 0.20 0.19
ρJP N,AUS|EU R t –0.18 –0.18 –0.17 –0.22
νJP N,AUS|EU R 6.86 7.89
ρUK ,AUS|EU R t 0.26 0.26 0.27 0.27
νUK ,AUS|EU R 11.77 12.29

2 θBRA,SZ|EU R,AUS F –1.48 –1.52 –0.27 –0.24
θC AN,SZ|EU R,AUS F –0.75 –0.79 –0.13 –0.11
ρI N,SZ|EU R,AUS t –0.11 –0.11 –0.11 –0.11
νI N,SZ|EU R,AUS 50.00 135.05
ρJP N,SZ|EU R,AUS t 0.48 0.49 0.51 0.50
νJP N,SZ|EU R,AUS 11.91 12.28
θUK ,SZ|EU R,AUS F* 0.26 0.26 0.04 –0.02

3 θC AN,BRA|EU R,AUS,SZ G 1.10 1.10 0.16 0.15
ρI N,BRA|EU R,AUS,SZ N 0.08 0.09 0.08 0.09
θJP N,BRA|EU R,AUS,SZ F –0.87 –0.88 –0.17 –0.15
ρUK ,BRA|EU R,AUS,SZ N* –0.05 –0.05 –0.04 –0.04

4 ρI N,C AN|EU R,AUS,BRA,SZ N* 0.02 0.05 0.02 0.05
ρJP N,C AN|EU R,AUS,BRA,SZ N –0.13 –0.12 –0.13 –0.13
ρUK ,C AN|EU R,AUS,BRA,SZ N 0.08 0.09 0.08 0.10

5 ρJP N,I N|EU R,C AN,AUS,BRA,SZ N* 0.02 0.02 0.03 0.02
ρUK ,I N|EU R,C AN,AUS,BRA,SZ N* 0.05 0.05 0.05 0.05

6 ρUK ,JP N|EU R,C AN,AUS,BRA,SZ,I N N* –0.03 –0.02 –0.03 –0.03
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Table 10 Pairs-plot, normalized contour plot, λ-function and goodness-of-fit test scores for the conditional
copula cBRA,AUS|EU R of the US-exchange rate data

Copula cBRA,AUS|EU R (τ̂ = 0.25)
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Gaussian t Clayton Gumbel Frank

Cramer-von Mises stat. 0.033 0.035 0.262 0.019 0.047
p-value 0.049 0.036 0.000 0.448 0.003

Gaussian t Clayton Gumbel Frank BB1 BB7

Vuong 1 1 –6 1 1 2 0
Clarke –6 6 –3 4 –1 1 –1

Possible copula(s): Selected copula:
G, BB1, BB7 G

we see that copula indices are the same up to a conditioning set of size 5. The remain-
ing root variable for M2 is then JPN, while IN was chosen for M1. In Table 9 those
pairs chosen to be the independence copula in M2 are indicated by an asterisk *. For
brevity the corresponding parameter estimates for M2 are not shown. It should be
noted that M2 has only 33 parameters compared to 39 for M1. To investigate if a
mixed C-vine copula is necessary for this data set we also fit a C-vine copula with
the same structure as M1 but only with t pair-copulas. This model is referred as M3.
Finally we also want to investigate if a C-vine specification is needed at all. Therefore
we set all pair-copulas in M1 to a Gaussian copula and denote this model by M4.
Table 11 summarizes the specification of the four models investigated.

Table 11 Summary of models investigated

Model Model type Model selection

M1 Mixed C-vine Sequential selection without independence test
M2 Mixed C-vine Sequential selection with independence test
M3 C-vine t-copula Same as M1 but all pair-copulas are t-copulas
M4 Gauss copula Same as M1 but all pair-copulas are Gaussian copulas
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Table 12 Log-likelihood, number of parameters, AIC and BIC for models
M1–M4 using ML or sequential estimates

M1 M2 M3 M4

Log-likelihood seq. 2203.4 2198.5 2212.1 2077.0
Log-likelihood MLE 2207.5 2202.4 2217.5 2088.0
# of parameters 39 33 56 28

AIC seq. –4328.8 –4331.0 –4312.2 –4098.0
AIC MLE –4337.0 –4338.8 –4323.0 –4120.0

BIC seq. –4137.1 –4168.8 –4037.2 –3960.4
BIC MLE –4145.3 –4176.6 –4047.8 –3982.4

Model comparison is performed based on the AIC (Akaike, 1974) and BIC
(Schwarz, 1978) criteria. The AIC and BIC values has been computed also using
the sequential estimates θ̂ S as a proxy for θ̂ MLE, to see how close the sequential
estimates are to the MLEs with respect to these criteria. Table 12 gives the results.
Thus, the model M2 is the clearly preferred over all remaining models showing that
a mixed C-vine copula is fitting best. The same conclusions can be drawn if one uses
θ̂ S as proxy for θ̂ MLE, which is not surprising since θ̂ S is consistent for θ .

In Table 12 we ignore the fact that only M3 and M4 are nested models, while
the other pairs are not. Therefore we conducted appropriate Vuong and Clarke tests
with Schwarz correction and the corresponding results are given in Table 13. These
also support decisively the conclusion that M2 is the preferred model. In summary
a mixed C-vine copula is needed to model the dependencies among the standardized
US-exchange rate residuals.

8 Summary and outlook

In this paper we introduced the class of mixed C-vine copulas and provided sequential
and ML estimation procedures for the unknown parameters. Two extensive simu-
lation studies showed very satisfactory behaviour of the ML estimation for many
different mixed and non-mixed C-vine copulas and our model selection method,
respectively.

In contrast to earlier papers on vines we considered the problem of jointly esti-
mating the C-vine structure together with the choice of bivariate copula families. We
developed a data driven sequential approach, which follows the heuristic of wanting
to achieve parsimonious and simple model specifications. Following these considera-
tions C-vine structures are selected so that most of the dependence as measured by the
sum absolute empirical pairwise Kendall’s τ values occurs early in the conditioning
procedure. The computational complexity of the log-likelihood is increased as the
number of conditioning variables is increased, since the required conditional cdf’s
require higher recursions. For the selection of the appropriate pair-copula families we
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Table 13 Pairwise non-nested model comparison using Vuong and Clarke tests with
Schwarz correction

Null Alternative

Hypothesis Method M2 M3 M4

M1 Vuong Statistics −4.7 4.94 3.16
p-value < 0.000 < 0.000 0.002
Decision M2 > M1 M1 > M3 M1 > M4

Clarke Statistics 389 616 556
p-value < 0.000 < 0.000 0.001
Decision M2 > M1 M1 > M3 M1 > M4

M2 Vuong Statistics 6.15 3.76
p-value < 0.000 < 0.000
Decision M2 > M3 M2 > M4

Clarke Statistics 629 578
p-value < 0.000 < 0.000
Decision M2 > M3 M2 > M4

M3 Vuong Statistics 1.28
p-value 0.202
Decision M3 = M4

Clarke Statistics 473
p-value 0.029
Decision M4 > M3

followed standard test approaches involving goodness-of-fit tests for bivariate cop-
ulas, Vuong and Clarke tests suitable for non-nested models and finally explorative
tools based on scatter and contour plots as well as the empirical λ-function of Genest
and Rivest (1993).

Finally we considered an application involving US-exchange rates. Here mixed
C-vines are used to model the dependencies among standardized residuals, which
are formed from univariate time series models. This allows to have pseudo copula
data available which is approximately i.i.d. Therefore a standard two-step estimation
procedure is followed, which however allows via simulation to consider value at risk
of arbitrary portfolios. The advantage of this two part joint model (marginal + copula
model) is that simulation has to be conducted only once for all portfolio’s considered,
while allowing for very flexible non-Gaussian dependencies in contrast, for example,
to a CCC model of Bollerslev (1990).

We like to note that our experience with joint estimation methods of models
with regression marginals (Lanzendörfer, 2009), with AR(1) marginals (Czado et al.,
2010) and GARCH(1,1) (Hofmann and Czado, 2010) coupled with D-vine copula
models have shown that the loss in efficiency when two-step estimation is done is
small. In these papers a Bayesian approach was followed, which allows for credible
intervals for parameters and quantities of interest depending on parameters. These
interval estimates are difficult to obtain in a ML set-up. The mentioned papers in
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this paragraph are extensions of the Bayesian approach followed by Min and Czado
(2010a).

In the future we like to investigate the severeness of the restrictions imposed by
the heuristic C-vine structure search. For this a discrepancy measure between the
fitted C-vine structure and the true model has to be considered. A general statisti-
cal discrepancy measure would be the Kulback-Leibler distance, which however is
difficult to obtain in these complex models. Therefore simpler discrepancy measures
have to be developed. Another future area of research is the development of search
algorithms for D-vines and more generally for regular vines. Using the simplified
pair-copula construction we loose the direct influence of the conditional variables
on the copula density and thus on the copula parameter estimation. One way would
be to allow the parameter of the pair-copula to depend on the value of conditioning
variables in a regression set-up, i.e., the use of these values as covariates. This will be
the topic of future research.
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