Effect of Aqueous Ozone on the NF-κB System

INTRODUCTION

Currently, ozone is being discussed in dentistry as a possible alternative oral antiseptic agent. Its high antimicrobial power, including against oral pathogens, without resistance development has been reported not only for gaseous ozone (Paraskeva and Graham, 2002; Baysan and Lynch, 2004), but also for ozone in aqueous solution (Restaino et al., 1995; Nagayoshi et al., 2004a,b; Arita et al., 2005). In the concentrations currently used in dentistry, ozone gas has been found to decrease the viability of oral cells significantly (Huth et al., 2006). In comparison, aqueous ozone revealed a high level of biocompatibility to fibroblasts, cementoblasts, and epithelial cells (Filippi, 2001; Ebensberger et al., 2002; Nagayoshi et al., 2004b; Huth et al., 2006), which suggests its use against oral infectious diseases, where it comes into contact with resident oral cells, *e.g.*, periodontal disease and apical periodontitis.

For the manifestation of these disease entities, bacterial colonization of the dento-gingival complex or the endodontic region, respectively, has been considered as the primary causative factor (Graves et al., 2000; Nair, 2004). However, it is generally accepted that periodontal disease and apical periodontitis do not result from direct tissue destruction by pathogenic bacteria. Rather, the destructive potential of the host immune response leads mainly to signs and symptoms of these diseases (Honda et al., 2006; Nair, 2004). Therefore, immune modulation effects of treatment strategies for these diseases may also be considered. Both disease entities are characterized by an inflammatory reaction involving different oral hard and soft tissues, *e.g.*, the gingiva, periodontal attachment fibers, or alveolar bone (Nair, 2004; Bartold and Narayanan, 2006). The inflammatory process is primarily induced by pathogen-associated molecular patterns (PAMPs), particularly by bacterial lipopolysaccharides (Madianos et al., 2005). The subsequent activation of the inflammatory molecular cascade leads to the expression of several pro-inflammatory cytokines—*e.g.*, interleukin-1, interleukin-8, and tumor necrosis factor (TNF)—that ultimately mediate the destruction of the alveolar bone and periodontal connective tissue (Gamonal et al., 2000; Graves et al., 2000; Márton and Kiss, 2000).

The transcription factor NF-κB plays a pivotal role in inflammatory/immune processes and apoptosis (Bonizzi and Karin, 2004). NF-κB is also thought to be of paramount importance in the regulation of periodontal/periapical inflammatory reactions and the pathogenesis of periodontal disease and apical periodontitis (Nichols TC et al., 2001; Sabeti et al., 2005; Bartold and Narayanan, 2006). This transcription factor exists as a dimer which is trapped in the cytosol by inhibitory proteins, *e.g.*, IκBα (Bonizzi and Karin, 2004). The NF-κB system is activated by numerous agents, including cytokines (*e.g.*, TNF, interleukin-1) and microbial pathogens/products. The activation of NF-κB is mediated by the IκB kinase complex that phosphorylates IκB, which is subsequently degraded by the proteasome. The thus-freed NF-κB translocates to the nucleus, where it...
bonds to κB sequences in promoters/enhancers, thereby regulating the expression of various genes such as interleukin-1/-8 or TNF.

Ozone gas is known to activate NF-κB under certain conditions (Haddad et al., 1996; Laskin et al., 2002). However, it is not known if aqueous ozone also interferes with the NF-κB system. This is important, since an activation of NF-κB might adversely affect the therapeutic benefit of aqueous ozone when used against periodontal disease and apical periodontitis. Hence, the aim of the present study was to investigate the effect of aqueous ozone on NF-κB-associated signaling/transcription in oral cells.

MATERIALS & METHODS

Culture Conditions

Human oral epithelial cells (BHY, ACC404, DSMZ, Braunschweig, Germany), gingival fibroblasts (HGF-1, ATCC-CRL-2144, LGC-Promochem, Teddington, UK), and HeLa cells (DSMZ) were cultured under standard conditions: BHY and HGF-1 in DMEM (PromoCell, Heidelberg, Germany) and HeLa in RPMI-1640 medium (Biochrom, Berlin, Germany) (7% or 10% fetal calf serum, respectively), both containing 100 U/mL penicillin and 100 μg/mL streptomycin (Biochrom). The proteasome inhibitor PSI was from Calbiochem (Darmstadt, Germany). A potential toxicity of culture conditions was monitored by cell morphology/count, trypan-blue-exclusion, and the Luminescent-Cell-Viability-Assay (Promega, Mannheim, Germany). Furthermore, we acquired periodontal ligament tissue adherent to the middle third of the root surfaces of permanent teeth (Hou and Yaeger, 1993) following extraction due to periodontitis-associated destruction, with patients’ informed written consent. Hematoxylin-eosin staining revealed the predominance of fibroblasts in this tissue (data not shown), as found earlier and reviewed recently (Nanci and Bosshardt, 2006). Samples were incubated in RPMI-1640 and, following the experimental procedure, were shock-frozen in liquid nitrogen and homogenized in a pre-chilled mortar before nuclear extracts were prepared (Appendix A).

Ozonation of Reagents

Aqueous ozone was applied to the cells in the form of ozonized medium without fetal calf serum (O3 medium), or ozonized phosphate-buffered saline (O3-phosphate-buffered saline) without/with 1 g/L amino acids or 2 g/L glucose. These solutions were treated with gaseous ozone (75 μg/mL, 15 min) in an ozone generator (Ozonosan-photonic, Dr. Hänsler, Ifezeheim, Germany). This condition—which, when applied to water, would result in a final ozone concentration of 20 μg/mL (saturaion point)—was defined as the 100% ozonation state. For dose-response experiments, the solutions were diluted accordingly. The ozone gas concentration was monitored by a photometer integrated into the ozone generator and confirmed by another ozone gas detector (GM-6000-NZL, Anseros, Tübingen, Germany). The ozone concentrations of the respective aqueous solutions were monitored photometrically (Palintest, Gateshead, England).

Electrophoretic Mobility Shift Assay

Nuclear extracts of cell lines or periodontal ligament tissue were prepared, and an electrophoretic mobility shift assay was performed (Page et al., 1999; Appendix A). The prototypic immunoglobulin κ-chain oligonucleotide was used as a probe and labeled with the Klenow fragment of DNA polymerase I (Roche, Penzberg, Germany), together with [α-32P]dCTP (PerkinElmer-LifeSciences, Brussels, Belgium). The Sp-1 consensus oligonucleotide (Promega) was labeled with [γ-32P]ATP (PerkinElmer-LifeSciences) and T4-poly nucleotide-kinase (Roche). Samples were run on non-denaturing 4% polyacrylamide gels and analyzed by autoradiography.

Western Blot Analysis

Cytosolic extracts were isolated, and electrophoresis was performed (Page et al., 1999; Appendix A). After transfer, the membranes were incubated with tcrXa (Santa Cruz Biotechnology, Santa Cruz, CA, USA) or actin antibodies (Sigma-Aldrich, Deisenhofen, Germany), followed by secondary peroxidase-conjugated antibodies (Dianova, Hamburg, Germany). Antibody binding was visualized on x-ray film with Chemiluminescent-Reagent-Plus (PerkinElmer-LifeSciences).

Determination of Cytokines

Interleukin-8 and -1β concentrations in supernatants were measured by immunoassays (R&D-Systems, Wiesbaden, Germany; Bender-MedSystems, Vienna, Austria).

Luciferase Assay

For luciferase assays, HeLa cells were transiently transfected with a firefly-luciferase reporter plasmid (pGL2-3κB-Luc, 3-κB binding motifs), together with a constitutively active Renilla-luciferase plasmid, pRLtk (Promega) (Page et al., 1999; Appendix A), according to a Superfect-based protocol (Qiagen, Hilden, Germany). Subsequent to stimulation, cells underwent lysis, and luciferase activity was determined with the Dual-Luciferase-Reporter-Assay (Promega). Results were expressed as relative luciferase activity (firefly-relative light-units divided by Renilla-relative light-units).

RESULTS

NF-κB Activation is Inhibited by O3 Medium

First, we incubated oral epithelial cells (BHY), gingival fibroblasts (HGF-1), and HeLa epithelial cells in O3 medium to investigate whether this was a condition that directly activated NF-κB. Dose-response and time-course experiments demonstrated that O3 medium alone did not modulate the NF-κB system (data not shown). Next, we tested whether pre-incubation with O3 medium affected the activation of NF-κB by other stimuli. Cells were pre-incubated with O3 medium followed by exposure to TNF, and optimal cellular conditions were again evaluated by dose-response/time-course experiments (data not shown). In the absence of ozone, a marked activation of NF-κB by TNF was observed (Figs. 1A, 1B). Incubation with O3 medium, however, inhibited this activation, whereas constitutive Sp-1 binding was unchanged. We excluded a potential toxicity of O3 medium by monitoring cell morphology, trypan-blue exclusion, and ATP levels (Cell Viability Assay) (Appendix B). As a positive control, pre-incubation with the proteasome inhibitor PSI (10 μM, 1 hr) markedly prevented TNF-induced NF-κB activity (BHY, inhibition by 68 ± 7%; HeLa, inhibition by 75 ± 6%; n = 3). Furthermore, we investigated whether O3 medium also modulated NF-κB activity in periodontal ligament tissue from the root surfaces of periodontally diseased teeth. These experiments revealed strong NF-κB binding activity when this
tissue was incubated in medium alone, which was markedly inhibited following treatment with ozonized medium (Fig. 1C).

IkBα Proteolysis is Inhibited in the Presence of O₃ Medium

Next, we investigated if the level of the NF-κB inhibitor IkBα was affected by O₃ medium. Stimulation of cells with TNF led to proteolysis of IkBα (Fig. 2A). However, in O₃-medium-preincubated cells, this TNF-induced IkBα degradation was inhibited, whereas constitutive actin levels were unchanged.

Target Gene Expression and κB-dependent Transcription Were Prevented

We studied functional consequences by measuring cytokine levels in culture supernatants. Consistent with the results above, pre-incubation with O₃ medium led to a dose-dependent...
inhibition of TNF-induced production of interleukin-8 (Fig. 2B) and interleukin-1β (Fig. 2C). In addition, we transfected cells with a κB-dependent luciferase construct and treated them as described previously, to monitor a direct impact on κB-dependent transcription. TNF induced a marked increase in transcriptional activity, which again was strongly inhibited by O₃ medium (Fig. 2D).

O₃ Amino Acids Selectively Inhibited NF-κB

The inhibitory effect of O₃ medium could be due to ozone itself or to ozonized medium constituents. Therefore, cells were pre-incubated with O₃-phosphate-buffered saline without further ingredients. In contrast to the results obtained above, the NF-κB activation by TNF was not inhibited in all 3 cell lines by O₃-phosphate-buffered saline (Fig. 3A, data not shown). This indicated that the inhibitory effect of O₃ medium was not directly caused by ozone, but rather was mediated by the formation of medium-ozonation products. To identify these inhibitory ozonation products, we added various amino acids (medium concentration) of the different groups (Cataldo, 2003), as major medium components, to phosphate-buffered saline prior to ozonation. After pre-incubation of cells with ozonized and non-ozonized amino acids, TNF was added. Dependent on the different ozonized amino acids, NF-κB activity was variously affected: The sulfhydryl group containing cysteine and the aromatic tryptophan blocked the NF-κB signal almost completely (Figs. 3B, 3C); the sulfur-containing methionine resulted in clear inhibition, the basic arginine in a modest, and the non-polar alanine in a slight reduction of NF-κB activity, whereas the small, non-polar glycine or non-ozonized amino acids had no effect. Similarly, dose-dependent effects were observed in all 3 cell lines (data not shown). To determine whether the inhibition of TNF signaling by O₃ medium was also mediated by glucose, we added glucose (medium concentration) to phosphate-buffered saline, followed by ozonation, and treated the cells as described above. These experiments showed that the NF-κB activity was not inhibited by O₃-glucose (Fig. 3D). Taken together, these results signify that ozonized amino acids, to various extents, are an important component responsible for the inhibitory effect of O₃ medium.

DISCUSSION

The present study investigated the effect of aqueous ozone on the NF-κB system, which is involved in the pathogenesis of
periodontal disease and apical periodontitis (Nichols TC et al., 2001; Sabeti et al., 2005; Bartold and Narayanan, 2006). Analysis of our data revealed that activation of NF-κB induced by the potent cytokine TNF (Bonizzi and Karin, 2004) was dose-dependently inhibited in oral cells cultured in O₃ medium, while no toxic effects were observed. Supporting this finding, incubation with O₂ medium also inhibited NF-κB activity in periodontal ligament tissue of periodontally damaged teeth. This suggests that aqueous ozone under certain conditions displays anti-inflammatory effects.

Furthermore, our study demonstrated that TNF-stimulated proteolysis of the inhibitor IκBα (Bonizzi and Karin, 2004) was prevented in the presence of O₃ medium, which indicates that incubation with O₂ medium affects signaling at the level and/or upstream of IκBα (Fig. 4). In addition, our experiments showed that κB-dependent transcription and the expression of the NF-κB target genes interleukin-8 and -1β (Pahl, 1999) were prevented by O₃ medium. Both cytokines have been correlated with the biological and clinical severity of periodontal disease (Gamonal et al., 2000) and are secreted by various cells, e.g., epithelial cells, fibroblasts, and monocytes/macrophages. Interleukin-8 expression shows a rapid onset in an early inflammatory stage and exerts chemotactic/activation effects on neutrophils (Okada and Murakami, 1998; Bartold and Narayanan, 2006). Interleukin-1β, when inadequately expressed, is known to mediate tissue-destructive effects, e.g., bone resorption and loss of periodontal attachment (Gamonal et al., 2000; Graves et al., 2000).

Surprisingly, TNF-signaling was unaffected when O₂-phosphate-buffered saline was used instead of O₃ medium, which indicates that ozone itself is not able to inhibit NF-κB. Therefore, the question was which ozonation-product in the O₃ medium was responsible for this effect. To this end, we added various amino acids from the different groups to phosphate-buffered saline (medium concentration), and found that TNF-induced NF-κB activation was affected differently. The ozonized sulfhydryl group containing cysteine, as well as the aromatic tryptophan, were found to be most effective in inhibiting NF-κB, which agreed with earlier reports showing that the ozone attack is essentially directed toward the aromatic amino acids, and that there is a high oxidation reactivity of cysteine and methionine (Cataldo, 2003).

Earlier reports of the use of gaseous ozone throughout showed an activation of NF-κB (Haddad et al., 1996; Laskin et al., 2002). This discrepancy with our results may be explained by the fact that direct exposure of cells to gaseous ozone initiates an immediate oxidative stress by the increase of reactive oxygen species (Chen and Qu, 1997; Nichols BG et al., 2001), a condition which directly activates NF-κB (Pahl, 1999). In contrast, the ozonation of amino acids in an aqueous milieu may lead to the production of modified amino acid molecules (Cataldo, 2003), which may interact with cellular signaling systems, thus preventing subsequent stimulation, as has been shown for lipid oxidation products such as 4-hydroxynonenal (Page et al., 1999).

The clinical consequences of the inhibitory effects of aqueous ozone on NF-κB found herein remain to be elucidated. The attenuated activation of the host immune system may reduce periodontitis-associated tissue destruction (Bartold and Narayanan, 2006), which, as already mentioned, has been suggested to be caused by an inadequate and exaggerated inflammatory/immune response against a bacterial stimulus (Honda et al., 2006). However, a prolonged inhibition of NF-κB should be avoided, to prevent a disequilibrium between the immune response and the bacterial challenge (Yamamoto and Gaynor, 2001).

In summary, our study establishes a condition under which the aqueous ozone exerts inhibitory effects on the NF-κB system, suggesting that it has anti-inflammatory and immune-modulatory capacities. Thereby, the data presented build an experimental basis for a comprehensive clinical study on the use of aqueous ozone in the oral cavity.

ACKNOWLEDGMENTS

We thank M. Krautkrämer and A. Ertl for excellent technical support. This work was financed by a grant from the Medical Faculty of the University of Munich (FöFoLe Reg.Nr. 401), the Stiftung für Pathobiocemie und Molekulare Diagnostik (DGKL), the Wilhelm-Sander-Stiftung, and the Department of Restorative Dentistry & Periodontology, University of Munich.

REFERENCES

