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Abstract—The objective of this paper is to develop a data-
driven model of laser intensities and investigate its usage for
Simultaneous Localization and Mapping (SLAM) in the field of
robotics. In contrast to the standard usage of laser scanners in
SLAM to generate geometric models of the environment, the
research work on the applications of laser intensities is rather
limited. A typical laser scanner measures the distance to an object
as well as quantifies the received optical power after reflection
which is termed as intensity. The most interesting and relevant
aspect of intensities in context of this paper is that they are
dependent on an intrinsic surface property i.e. reflectivity as
well as extrinsic parameters such as the distance to the surface
and angle of incidence with respect to the surface normal. This
paper focuses on modeling the influence of extrinsic parameters
on intensities to acquire a pose-invariant measure of surface
reflectivity. This measure is used in an extension of Hector SLAM
in which a robot simultaneously acquires a geometric model
augmented with surface reflectivity characteristics. An extensive
experimental evaluation is carried out in an indoor environment
to highlight the advantages and characteristics of the data-driven
model and the proposed Hector SLAM extension.

Index Terms—SLAM, Mapping, Laser intensities, Surface
reflectivity, Hector SLAM.

I. INTRODUCTION

THE research work in the field of SLAM [1]–[3] has pro-
vided autonomous robots the capability of simultaneously

estimating their own pose as well as acquiring an accurate
topologic/metric map of the environment. The majority of the
research work in the domain of laser based SLAM focuses
on generating an accurate geometric model of the environ-
ment. In addition to measuring the distance to an object, a
typical laser scanner also quantifies the remission values, i.e.
received optical power, after reflection from the surface. This
remission value is termed as intensity and depends (among
other parameters) on an intrinsic surface property (surface
reflectivity) as well as extrinsic parameters such as distance
to the surface and angle of incidence. The basic idea is to
model the influence of the extrinsic parameters to acquire a
pose-invariant measure of surface reflectivity which can serve
as additional information in a variety of robotic applications.
Hence, the objective of this paper is to develop a simple data-
driven model of laser intensities to acquire a pose-invariant
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measure of surface reflectivity. In addition, an extension of
Hector SLAM [1] is presented which is capable of generating
a reflectivity map (occupancy grid augmented with surface re-
flectivity characteristics). It is important to highlight the scope
of the proposed approach within the SLAM framework. In
graph SLAM a distinction is made between the SLAM front-
end and the back-end. The front-end deals with the raw sensor
data to generate nodes and edge constraints whereas the back-
end estimates the posterior distribution of the robot poses given
all edge constraints. The proposed approach (see Section IV)
serves as a component of the SLAM front-end which estimate
the transformation (using surface reflectivities) between robot
poses (edge constraints) and furthermore acquires a reflectivity
map. In principle, any graph SLAM back-end [3]–[5] can be
coupled with the proposed approach as SLAM back-ends are
considered to be sensor agnostic using the notion of virtual
measurements [4]. The capability of generating a geomet-
ric model augmented with surface reflectivity characteristics
provides the possibility of using this information to enhance
the performance of SLAM, global localization [6] or loop
closure [7], [8] algorithms in specific scenarios. To explain
this briefly in the context of pose estimation for SLAM,
consider a corridor scene in which a robot observes two
parallel flat walls composed of different surfaces, each having
different reflectivity characteristics. In such a scenario, the
robot pose estimate along the principal direction of the corridor
is degenerate if only metric information is used (assuming
bad odometry estimates). In contrast, the usage of surface
reflectivities could lead to accurate pose estimates due to the
presence of additional features. The emphasis of this paper
is on the development of a data-driven model of intensities
and its usage in the SLAM front-end in indoor environments.
The evaluation of the proposed data-driven model in outdoor
environments as well as the application of laser intensities in
the context of loop closure and global localization is beyond
the scope of this paper and thereby left as future work.

II. RELATED WORK & CONTRIBUTION

In the last few decades a large amount of research work has
been carried out in the field of SLAM [1]–[3], [5] in which
a robot generates a geometric model of its environment based
on observations from a laser scanner. In contrast, the research
work on the applications of laser intensities in the domain
of SLAM and to a certain extent in the field of robotics is
rather insignificant. In [11], the authors use retro-reflective
markers as artificial beacons due to significant difference in
their surface reflectivity to identify landmarks for SLAM. The
most relevant research work with respect to this paper is
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(a) Intensity increment Irec as a function of the distance
r (radial coordinate/distance) for the Hokuyo scanner
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(b) Intensity increment Irec as a function of distance r
(radial coordinate/distance) for the SICK scanner
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(c) Normalized intensity as a function of angle of inci-
dence α for different fixed distances r in case of the
Hokuyo scanner
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(d) Normalized intensity as a function of angle of inci-
dence α for different fixed distances r in case of the SICK
scanner

Fig. 1. Intensity characteristics of the Hokuyo UTM-30LX and the SICK LMS 291-S05 scanner as a function of distance r in meters (radial coordinate/distance)
and angle of incidence α in degrees for standard white printing paper. a-b) The intensity characteristics of the Hokuyo and the SICK scanner as a function of
distance r with a fixed angle of incidence with respect to the surface normal (α ≈ 0◦). Both scanners exhibit a decrease in intensity increment Irec at close
distances which is termed the near distance effect [9]. The intensity characteristics are shown up to a distance of 19 meters as all experimental evaluations
were carried out in indoor environments in this paper (18-20 m being the distance between the furthest surfaces). c-d) The variation in intensity as a function of
α given that the surface is observed at a fixed distance r in case of the Hokuyo and SICK scanner. The influence of the distance r is removed by normalizing
the intensity, i.e. dividing the intensity increment with the value corresponding to α = 0◦, for a fixed distance r. Hence, the normalized intensity lies in
the [0 1] interval. It is important to highlight that the angle of incidence is calculated by taking the dot product between the laser beam direction and the
surface normal. The surface normal is the eigenvector corresponding to the smallest eigenvalue of the covariance matrix which is estimated by considering
the neighborhood around a certain point [10]. As the estimation of the surface normal degrades with point cloud density, the intensity characteristics could
only be acquired up to α ≤ 80◦ for small distances and α ≤ 60◦ at large distances.

presented in [12] in which an iterative closest point (ICP) [13]
variant is presented that uses intensities to determine point
correspondences between consecutive scans for transformation
estimation. The above mentioned approach assumes that the
robot pose does not change significantly thereby ignoring
the influence of extrinsic parameters. In contrast, this paper
focuses on developing a data-driven approach to model the
influence of extrinsic parameters on laser intensities to ac-
quire a pose-invariant measure of surface reflectivity. These
reflectivity characteristics are stored in a reflectivity map for
which the pose-invariance property is important as the same
surface might be observed by the robot from different poses.
In addition, the reflectivity characteristics are also used for
pose estimation by matching the current scan (equipped with
intensities) with an already acquired reflectivity map during
which the robot pose can change significantly (depending on
the map update rate). In contrast to the field of SLAM, laser
intensities have been used for human detection [14], localiza-
tion [15], visual odometry [16], terrain classification [17] and
object tracking [18], [19]. The main contributions of this paper
are highlighted below:

• A simple data-driven approach to model laser intensities
for different scanners (Section III-B)

• An extension of Hector SLAM capable of acquiring
geometric models augmented with surface reflectivity

characteristics (Section IV)
• An evaluation of the proposed data-driven approach and

Hector SLAM extension (Section V)

III. MODELING LASER INTENSITIES

This section is divided into two main subsections. The first
subsection focuses on the motivation for developing a data-
driven approach to model laser intensities whereas the second
subsection discusses the details of this data-driven approach.

A. Motivation for a data-driven approach
This paper discusses the intensity characteristics of the

most commonly used scanners in the field of robotics namely
Hokuyo UTM-30LX and SICK LMS 291-S051. To identify
the extrinsic parameters which influence the intensity charac-
teristics it is essential to consider the LIDAR equation which
is commonly used in the field of remote sensing [20], [21].
The LIDAR equation given the lambertian reflector assumption
defines the relation between the received optical power Prec
and extrinsic parameters

Irec ∝ Prec ∝
% cos(α)

r2
, (1)

1Intensities for the SICK LMS 291-S05 scanner were acquired by con-
figuring the scanner to the undocumented measuring mode 13 (0Dh). The
subcommand 2Bh can be used to request distance and reflectivities to which
the scanner responds with the response F5h [22].
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where % represents the surface reflectivity, r represents the
distance (radial coordinate/distance) to the surface and α
corresponds to the angle of incidence. The proportionality
between Prec and extrinsic parameters exists due to presence
of additional contant parameters such as the emitted power
Pemit, system transmission factors, aperture diameter etc. [9],
[23]. Irec represents the intensity increment, which is obtained
after post-processing of the received optical power Prec by
the laser scanner. The intensity increment is assumed to be
proportional to the received optical power. Eq. (1) defines the
parameters which influence intensities, hence the distance r
and the angle of incidence α are the extrinsic factors that need
to be considered during the modeling phase. In contrast, % is
an intrinsic surface property; which is useful for differentiating
surfaces with different reflectivity properties. Although (1)
contains all the extrinsic parameters that influence intensities,
it is a crude approximation and does not consistently (over the
complete domain of distance and angle of incidence) explain
the empirical data for high-end terrestrial scanners [9], [24]
as well as the laser scanners investigated in this paper. To
explain this briefly, consider the inverse square relationship in
(1). Figure 1(a) and 1(b) shows the variation of the intensity
increment Irec for the Hokuyo and SICK scanner as a function
of distance r (with a fixed angle of incidence α ≈ 0◦) given
the same surface (fixed %) i.e. standard white printing paper.
It can be seen that the inverse square distance relationship
breaks down at close distances because Irec starts decreasing
instead of increasing. This effect has also been observed
for high powered terrestrial laser scanners [9], [24] and has
been termed the near distance effect. In photogrammetry and
remote sensing literature this effect has been attributed to the
defocusing of the receiver optics [9] (causing Prec to decrease
and consequently Irec to decrease) for certain terrestrial laser
scanners such as the Z+F2 scanner. In principle, this effect is
largely dependent on the intrinsic design and internal process-
ing performed by the laser scanner (Riegl3 scanners exhibit
different intensity characteristics at near distances [24]), the
details of which are not readily provided by companies making
it difficult to ascribe a specific reason in case of the Hokuyo
and SICK scanner. Similarly, in our evaluation the variation
of normalized intensity as a function of α (after removal of
the influence of r - see caption of Figure 1) also does not
follow the cos(α) model as shown in Figure 1(c) and 1(d). This
inconsistency is generally attributed to the assumption that the
surface should exhibit lambertian reflectance which is rarely
the case. The highlighted inconsistency as well as the scarcity
of system-based-models due to lack of information from laser
companies about the internal processing and intrinsic design
is the main motivation for developing a data-driven approach
to model intensities. The objective of this model is to quantify
the variation of intensity as a function of r and α to acquire a
pose-invariant measure of surface reflectivity. Two different
strategies can be adopted to develop a simple data-driven
model, firstly assuming that the variation in intensity due to r

2http://www.zf-laser.com/
3http://www.riegl.com/

and α can be modeled independently

Irec ∝ Prec ∝ %f(r)f(α), (2)

where f(r) and f(α) are the estimated data-driven functions
defining the effect on intensities. In contrast, the second
strategy is to develop a model as

Irec ∝ Prec ∝ %f(r, α), (3)

where f(r, α) jointly models the variation in intensities due to
r and α. Figure 1(c) and 1(d) helps in assessing the plausibility
of the assumptions in (2) and (3). If the assumption in (2)
is true, the variation in the normalized intensity (effectively
the removal of the influence due to r) should be the same
at different r, however Figure 1(c) and 1(d) shows that this
assumption does not hold for the Hokuyo and the SICK
scanner at α ≥ 20◦ for different r. Given the trend in
Figure 1(c) and 1(d), this paper focuses on a data-driven
approach to model intensities using (3).

B. Proposed approach

This section defines a simple data-driven approach to model
laser intensities and acquire a measure of surface reflectivity.
Given a material with a known reflectivity coefficient %, it
is possible to calibrate and determine the function f(r, α)
in (3). In case of unavailability of a surface with known
reflectivity it is possible to acquire a relative measure of
surface reflectivity. In this paper the second option is con-
sidered due to its simplicity and applicability even in case of
absence of standard materials with known reflectivity. Hence,
the calibration process requires a reference surface (standard
white printing paper) for which the intensities are measured
as

Iref ∝ Pref ∝ %reff(r, α). (4)

Eq. (3) defines the intensity increment Irec for a specific
surface with reflectivity % being currently observed at a specific
r and α whereas (4) defines the intensity increment Iref for the
reference surface at the same r and α. Hence, (3) and (4) can
be used to acquire a relative measure of surface reflectivity as

Irec

Iref
∝ Prec

Pref
∝ %f(r, α)

%reff(r, α)
=

%

%ref
= %̄. (5)

The relative measure %̄ defines the reflectivity of the measured
surface with respect to the reference surface (white paper).
It is important to specify that this model assumes that the
function f(r, α) varies in the same manner for all surfaces,
hence ignoring any coupling of the function f with %. In the
experimental evaluation carried out in indoor environments
(see Section V) this assumption yielded good results. The
proposed mechanism, of using the function f(r, α), is a
data-driven formulation in contrast to the standard cos(α)
and inverse squared distance model. An important aspect of
the proposed model is the approximation of Iref which is
proportional to %reff(r, α). This approximation is performed
by collecting observations of the reference surface at different
r and α. Since it is not possible to acquire values at every
r and α, a scattered interpolant (with linear interpolation) is
used to approximate the values between given observations.
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(a) Approximated intensity increment Iref ∝ %reff(r, α) for
Hokuyo UTM30-LX

(b) Approximated intensity increment Iref ∝ %reff(r, α) for SICK
LMS 291-S05

Fig. 2. The approximated intensity increment Iref ∝ %reff(r, α) surface of the Hokuyo and the SICK scanner. The intensity characteristics are acquired up
to a distance of 18-20 m as all experimental evaluations were carried out in indoor environments (for indoor environments this calibration is sufficient). If
required the proposed approach could be extended to acquire intensity characteristics over a wider r and α domain.

This approximated surface obtained for the Hokuyo and SICK
scanner is shown in Figure 2. This surface is furthermore
sampled using a fine grid over r and α to generate a lookup
table (LUT) based model. The main advantage of this LUT
based model is that it can be computed offline and during
online operation it requires simple array indexing thereby
reducing computational cost.

IV. EXTENSION OF HECTOR SLAM
This section focuses on using the relative reflectivity mea-

sure in an extension of Hector SLAM [1] in which a robot
acquires a reflectivity map. The first subsection explains the
grid structure whereas the second subsection focuses on the
transformation estimation process based on the surface reflec-
tivity measure by matching the current scan at time index t
with an already acquired reflectivity map until time t− 1.

A. Occupancy and Reflectivity grid structure

Let G = {g1, . . . , gp} represent the regular grid struc-
ture which stores two different attributes, firstly the occu-
pancy probability P (gi) and the surface reflectivity mea-
sure R(gi) observed for the ith grid cell gi. Let zt ={
{st1, %̄t1}, . . . {stn, %̄tn}

}
be the observation of the scanner

at time index t consisting of n cartesian coordinates and
surface reflectivity measures (obtained from the LUT based
model). The notation sti = [sti,x, s

t
i,y] corresponds to the world

coordinate beam end points. The occupancy probability of a
grid cell is calculated using the standard recursive occupancy
update equation [25]–[27]

P (gi|z1:t) =[
1 +

1− P (gi|zt)
P (gi|zt)

1− P (gi|z1:t−1)

P (gi|z1:t−1)

P (gi)

1− P (gi)

]−1

,

which is a commonly used inverse sensor model in robotic
mapping. P (gi|z1:t) represents the occupancy probability of
the ith grid cell given all observations. P (gi) represents the
occupancy probability of a grid cell prior to any observations.
P (gi|zt) and P (gi|z1:t−1) represent the probability given the
most current sensor observation zt and observations since the
beginning of time until time t − 1 respectively. The above

mentioned equation can be converted to the log odds form to
simplify the computation.

In addition to the occupancy probability, the grid structure
also stores the relative reflectivity measure of the surface for
the ith cell gi. In the ideal case the reflectivity measure would
be invariant to the robot pose thereby yielding a constant value
for a specific surface, however a violation of the assumption
in Section III-B or inaccurate surface normal estimation can
cause reflectivity characteristics to vary. In this paper the
reflectivity measure of each grid cell is calculated using a
simple incremental averaging mechanism

Rm(gi|zt) = Rm(gi|zt−1) +
i%̄tj −Rm(gi|zt−1)

ngi
,

where Rm(gi|zt) represents the incremental mean of all the
surface reflectivity observations till time index t. i%̄tj represents
the jth reflectivity measure in the sensor observation zt for the
ith grid cell gi and ngi represents the total number of sensor
observations for gi. The left superscript of the reflectivity
measure %̄ is not mentioned explicitly unless necessary for
clarification.

Due to the discrete nature of the grid a bilinear interpolation
scheme is adopted to allow subgrid accuracy as done in
the original Hector SLAM paper [1]. However, the proposed
approach interpolates the relative surface reflectivity measure
rather than the occupancy probabilities and additionally frames
the transformation estimation problem using this measure as
discussed in the next subsection. Given a continuous coordi-
nate P , the reflectivity value R(P ) is approximated by using
the four closest grid cells coordinates (assuming the indices
to be (i, j, k, l) with xi = xk, xj = xl, yi = yj and yk = yl.
x∗, y∗ are the metric coordinates of cell g∗ in the geometric
map) as

R(P ) ≈ y − yi
yk − yi

(
x− xi
xj − xi

Rm(gl) +
xj − x
xj − xi

Rm(gk)

)

+
yk − y
yk − yi

(
x− xi
xj − xi

Rm(gj) +
xj − x
xj − xi

Rm(gi)

)
.
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Similarly the gradient∇R(P ) =
(
∂
∂xR(P ), ∂∂yR(P )

)
is ap-

proximated as in [1] by replacing the occupancy probabilities
with the reflectivity measure

∂R(P )

∂x
≈

y − yi
yk − yi

(
Rm(gl)−Rm(gk)

)
+
yk − y
yk − yi

(
Rm(gj)−Rm(gi)

)
,

∂R(P )

∂y
≈

x− xi
xj − xi

(
Rm(gl)−Rm(gj)

)
+
xj − x
xj − xi

(
Rm(gk)−Rm(gi)

)
.

B. Scan Matching

This section explains the robot pose estimation process to
align the new sensor observation with an existing reflectivity
map. The proposed Hector SLAM extension formulates the
estimation of the robot pose ζ =

[
tx, ty, θ

]
as the minimization

of the cost function

ζ∗ = arg min
ζ

n∑
i=1

[
%̄ti −R(Si(ζ))

]2
, (6)

where %̄ti represents the reflectivity measure of the ith beam
end point in the sensor observation zt and R(Si(ζ)) corre-
sponds to the reflectivity measure in the map based on the
transformed beam end point coordinates Si(ζ) as

Si(ζ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
sti,x
sti,y

)
+

(
tx
ty

)
. (7)

Given an initial pose estimate of the robot, the objective is
to find ∆ζ which minimizes the error

n∑
i=1

[
%̄ti −R(Si(ζ + ∆ζ))

]2
→ 0. (8)

The minimization of (6) can be performed by solving for ∆ζ
which yields the Gauss-Newton equation

∆ζ =

n∑
i=1

H−1

[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T [
%̄ti −R(Si(ζ))

]
,

where H corresponds to the hessian matrix which is calculated
as

H =

[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]T[
∇R(Si(ζ))

∂Si(ζ)

∂ζ

]
.

The term ∂
∂ζSi(ζ) can be easily calculated from (7). In

addition, the proposed extension of Hector SLAM takes ad-
vantage of the multi-resolution map as in [1] to escape local
minima. An advantage of framing the pose estimation problem
on gradient based methods is that the pose uncertainty can be
directly computed from the inverse of the hessian matrix H.
This uncertainty can furthermore be used by SLAM back-
ends [3], [5] to estimate the posterior distribution over the
complete pose graph.

V. EXPERIMENTAL EVALUATION

This section presents an qualitative and quantitative evalu-
ation of the proposed approach. The first subsection focuses
on highlighting the importance of the proposed LUT based
model by showing the effect of ignoring the influence of
extrinsic parameters whereas the second subsection presents
an evaluation of the Hector SLAM extension.

A. Evaluation of the LUT based model

To highlight the advantage of the proposed approach it
is important to consider alternative models that ignore the
influence of extrinsic parameters (r and α). The following
subsection gives a brief description of the alternative models
considered in this paper for comparison with the proposed
approach.

1) Alternative models: Given the extrinsic parameters (r
and α) two different possibilities can be considered, firstly a
model which ignores the effect of both r and α and directly
uses the intensity increment Irec. From here on in, this model
is titled the raw model.

The second possibility is to model the influence of r,
however systematically ignore the influence of α. In this paper
the second model corrects the intensity increment Irec based
on f(r) which is generated by fitting a polynomial

f(r) =

n+1∑
i=1

pir
n+1−i,

to the intensity increment curve shown in Figure 1(a) and 1(b).
Normalizing the intensity increment Irec by the reference
(white paper) polynomial curve f(r) corrects the intensity
based on r, however ignores the influence of α. This model
is titled the range model for further reference.

2) Quantitative Evaluation: In this subsection a quantita-
tive evaluation of the proposed approach is performed in com-
parison to the alternative models to highlight the importance
of extrinsic parameter correction (r and α). In addition, it
highlights the ability of the proposed approach to differentiate
between surfaces of different reflectivities. To acquire data
for this quantitative evaluation, the laser scanner is mounted
in a push-broom configuration (scanning vertically while the
robot moves horizontally) thereby acquiring 3D models of the
environment as shown in Figure 4.

From the point cloud data, different samples (36000 point
observations in total) were collected from 3 different surfaces
marked in Figure 4(a). The points sampled from surface 1
correspond to different extrinsic parameters (r and α) whereas
the sampled points of surface 2 and 3 exhibit significant
variation in α only. Figure 3 shows the histograms after
applying different models (raw, range and LUT based model)
for the Hokuyo and SICK scanner. Considering the Hokuyo
scanner first (see Figure 3(a), 3(b) and 3(c)), it can be seen
in Figure 3(a) that the raw intensity histograms of surface
2 and 3 exhibit overlap whereas the histogram of surface 1
is multimodal. Applying the range model, it can be seen in
Figure 3(b) that the histogram of surface 1 exhibits bimodality
due to α variation whereas the histograms of surface 2 and
3 still overlap. Figure 3(c) shows the proposed approach
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(c) LUT based model correction for Hokuyo
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(e) Range model based correction for SICK
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(f) LUT based model correction for SICK
Fig. 3. The histogram of intensities (with and without any correction) for different samples acquired from three different surfaces (see Figure 4(a)). The
samples acquired from Surface 1 differ in r and α whereas the samples of surface 2 and 3 only vary in α. a,b) The histogram for the raw and the range
model (see Section V-A1). The histograms corresponding to the raw and range correction model exhibit multimodality for surface 1 (due to r and α variation
respectively) whereas surface 2 and 3 overlap. c) In contrast the proposed LUT based model is capable of identifying that these surfaces have different
reflectivity characteristics. d,e) The histogram of intensities for the raw and range correction model for the SICK scanner. It can be seen that the histogram of
surface 2 and 3 overlap. f) The LUT based model is capable removing the overlap between the histograms of surface 2 and 3 and makes all the histograms
identifiable as surfaces of different reflectivity characteristics.

(LUT based model correction) in which the histogram of
surface 1 becomes unimodal whereas the overlap between the
histograms of surface 2 and 3 has been effectively removed.

Figure 3(d), 3(e) and 3(f) show the same scenario in context
of the SICK scanner. The first aspect to notice is that the
variation in the intensity due to r and α is not as significant
as in the case of the Hokuyo (see Figure 1). The histograms of
surface 1 and 2 are separable even without extrinsic parameter
correction whereas an overlap exists between the histograms of
surface 2 and 3 due to variation in α. The range model shown
in Figure 3(e) does not provide any significant advantage, how-
ever the LUT based model correction is capable of removing
the overlap between the histograms of surface 2 and 3. Hence,
the evaluation of this section shows that extrinsic parameter
correction is essential in context of identifying surfaces of
different reflectivity characteristics.

B. Evaluation of Hector SLAM (front-end) extension

This subsection evaluates the proposed Hector SLAM ex-
tension. To present a concise evaluation and avoid repetition
of similar conclusions/figures this section presents the results
using the Hokuyo scanner, however the conclusions are valid
for the SICK scanner as well. Figure 5(a) shows the reflectivity
map of the corridor at the Chair of Automatic Control Engi-
neering (shown with a HSV colormap) whereas Figure 5(b)
shows one specific section of the occupancy grid marked
with arrows to highlight the correspondence with the actual
surface. In addition, Figure 6(a) and Figure 6(b) highlight
the advantage of intensity based Hector SLAM over standard
Hector SLAM. In this specific scenario Hector SLAM failed to
create a consistent metric map as it could not find sufficient
geometric features for pose estimation while turning at two
different corners. In contrast, intensity based Hector SLAM

succeeded as it relied on surface reflectivity characteristics. In
addition to the qualitative results in Figures 5 and 6, a quan-
titative evaluation of the proposed Hector SLAM extension is
carried out using the MOCAP (motion capture) data acquired
from the Qualisys system4 which is capable of measuring the
robot position with millimeter accuracy. Figure 7(a) shows the
visualization of the ground truth trajectory (Qualisys system)
as well as the robot positions obtained from the Hector SLAM
extension. It is important to specify that qualisys motion
capture system requires coverage (via external cameras) over
the complete region where the robot has to be tracked, hence
the evaluation of the motion could not be carried out in
a large area. Figure 5(a) and 7(a) show that the proposed
relative reflectivity measure can be used effectively to estimate
the robot pose. In addition, a quantitative evaluation of the
error for the proposed approach is performed using the metric
defined in [28] as

ε(δ) =
1

N

∑
ij

(δij 	 δ∗ij)2,

where δij corresponds to the difference between consecutive
robot poses at time index i, j and δ∗ij corresponds to the ground
truth variation in the pose. This δij difference is split into the
translation and the orientation error which is shown separately
as a function of time in Figure 7(b) and 7(c) as in [28].
The evaluation of this section highlights that the proposed
approach is capable of estimating the robot pose accurately as
well as acquiring a geometric model augmented with surface
reflectivity characteristics.

4http://www.qualisys.com/
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(a) Visualization of surface reflectivity characteristics in gray scale after the LUT
based model correction for the Hokuyo scanner

(b) Visualization of surface reflectivity char-
acteristics in gray scale after the LUT based
model correction for the SICK scanner

(c) Visualization of surface reflectivity characteristics for a corridor scene
Fig. 4. a-c) Visualization of surface reflectivity characteristics in gray scale image after the LUT based model correction with an additional linear scaling step
to enhance contrast. A substantial region of the intensity point cloud shown in a) is also visible in the color image of Figure 5(b). It is important to highlight
that the white horizontal region visible in a,c) across different surfaces is present due to specular reflection (in contrast to the standard diffuse reflection). This
specular reflection occurs at a small angle of incidence for shiny and smooth surfaces as a significant amount of the emitted power is reflected back from the
surface causing the receiver to register a maximum reading.

(a) Occupancy grid augmented with surface re-
flectivity characteristics

(b) Correspondence between re-
flectivity map and actual surface

Fig. 5. a) Occupancy grid augmented with surface reflectivity characteristics (using a HSV colormap) acquired by the proposed extension of Hector SLAM.
The overall area composed of free and occupied regions is approximately 120 m2 (ignoring unknown regions). b) A zoomed in section of the occupancy grid
of Figure 5(a) highlighting the correspondences with the actual surface. The laser scanner is mounted at a height of approximately 70 cm from the ground.
The corridor section visible in the color image is also observable in Figure 4(a).

(a) Hector SLAM (b) Intensity based Hector SLAM
Fig. 6. A specific scenario highlighting the advantage of intensity based Hector SLAM over standard Hector SLAM. The field of view (FOV) of the scanner
based on the minimum and maximum angle is [−1.047 1.047] radians. The dimensions of the room are approximately 8.5m × 5.5m. a) Hector SLAM failed
to create a consistent map as it could not find sufficient geometric features for pose estimation while turning at two different corners. b) Intensity based Hector
SLAM succeeded in generating a consistent map as it additionally utilizes surface reflectivities for pose estimation.
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(b) Translation error over time
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(c) Orientation error over time
Fig. 7. a) Comparison of the trajectory estimated by the robot using the proposed extension of Hector SLAM with the ground truth (from the Qualisys
MOCAP system). b,c) A plot of the translation and orientation errors [28].
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VI. CONCLUSION AND FUTURE WORK

This paper discusses a data-driven approach to model laser
intensities and identifies their role in the context of SLAM. An
evaluation is carried out in indoor environments to highlight
the effects of ignoring the influence of extrinsic parameters
when acquiring surface reflectivity characteristics. The pro-
posed mechanism for modeling laser intensities is tested and
evaluated using two of the most commonly used scanners in
the field of robotics. In addition, this paper presents a concrete
example on how the proposed measure can be coupled with
an extension of Hector SLAM to acquire a reflectivity map
of the environment. The scan matching mechanism in the
Hector SLAM extension is based on surface reflectivities and
possess the capability of estimating the robot pose accurately.
Furthermore, the experimental evaluation shows that surface
reflectivities can be useful in cases when metric information is
insufficient for pose estimation and consistent map generation.

Future work includes an evaluation of the relative reflec-
tivity measure in outdoor urban environments as well as an
assessment of its application in the domain of loop closure
and global localization. It will also be worth looking into
scenarios where the intensity based Hector SLAM approach
can fail i.e. cases in which the normal vector estimation is
inaccurate for a majority of the sensor observations due to low
point density. In such cases it would be beneficial to integrate
surface attributes (reflectivity/color) with metric information
in the approach along the lines of [29], [30].
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special thanks to Christoph Fröhlich, Markus Mettenleiter for
the discussion about the Z+F scanner and Kai M. Wurm, Biruk
A. Gebre for providing information about the undocumented
mode of the SICK scanner. This work is supported in part
within the ERC Advanced Grant SHRINE Agreement No.
267877 (www.shrine-project.eu). Support of the TUM Institute
for Advanced Study (IAS), Technische Universität München
(TUM), is hereby gratefully acknowledged, see also www.tum-
ias.de.

REFERENCES

[1] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” in Proc.
IEEE International Symposium on Safety, Security and Rescue Robotics
(SSRR), November 2011.

[2] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE Transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[3] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smooth-
ing and mapping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp.
1365–1378, 2008.
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