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Zusammenfassung

Beim Durchführen von Qualitätssicherungsaktivitäten sind Software-ingenieure mit

häufigen und wiederkehrenden Fehlern konfrontiert. Zur Detektion dieser Fehler

verwenden diese typischerweise entweder individuelles Wissen und Erfahrung oder

Testselektionsstrategien mit inhärentem Wissen und Erfahrung, um Testfälle zu er-

stellen. Das Problem bei einer derartigen Testfallerstellung ist die Abhängigkeit der

Testfälle vom implizit verwendeten individuellen oder inhärenten Wissen. Allerdings

gibt es zu dieser Art der Fehlerdetektion anekdotenhafte Evidenz bezüglich ihrer Effek-

tivität. Der Kernbeitrag dieser Arbeit ist ein systematischer Ansatz der fehlerbasierten

Qualitätssicherung mit Fehlermodellen, der implizit verwendetes Fehlerwissen und

-erfahrung in formalen Fehlermodellen erfasst. Durch Operationalisierung können

(semi)-automatische Testfall- / Checklistengeneratoren abgeleitet werden, die exakt

die erfassten Fehler effektiv und effizient detektieren.

Das Fehlermodelllebenszyklusframework strukturiert Aktivitäten für die Integration

von fehlerbasierter Qualitätssicherung mit Fehlermodellen in bereits existierende Qua-

litätssicherungsprozesse. Das Lebensyklusmodellframework enthält Aktivitäten, um

implizites Fehlerwissen zu erheben und klassifizieren. Als Teil der Methodikanwendung

werden die Fehler dann in Fehlermodellen beschrieben und diese Fehlermodelle ope-

rationalisiert. Schlussendlich werden die Operationalisierungen bewertet und durch

einen unterstützenden Prozess gewartet.

Um die definierte fehlerbasierte Qualitätssicherungsmethodik und die Strukturie-

rung durch das Fehlermodelllebenszyklusframework umfassend zu bewerten werden

Instanziierungen der Aktivitäten Erhebung und Klassifizierung sowie der Beschreibung

und Operationalisierung vorgestellt und evaluiert. Die Instanziierung der Erhebung

und Klassifizierung ist die kontextunabhängige Methode DELICLA. Basierend auf den

Resultaten von DELICLA werden Beschreibungen und Operationalisierungen von Feh-

lermodellen auf allen Testebenen (8Cage, OUTFIT und Controller Tester) vorgestellt

und bezüglich Effektivität und Effizienz evaluiert. Diese Beschreibungen und Ope-

rationalisierungen stellen den zweiten Kernbeitrag dar. Zusätzlich können anhand

dieser Evaluierungen generische Bewertungskriterien für Operationalisierungen von

Fehlermodellen und zudem ein Framework für deren Wartung erstellt werden.
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Abstract

When performing quality assurance, software engineers are confronted with common

and recurring defects. To detect these defects, they typically exercise their knowl-

edge and experience to create test cases or use test selection strategies encapsulating

knowledge in experience. For such test selection, there is at least anecdotal evidence

of its effectiveness. The problem is its usage of tacit knowledge leading to engineer-

dependent test cases or test cases lacking a rationale as to why exactly they are effective.

This thesis proposes a systematic and (semi-)automatic approach using defect models

for defect-based quality assurance as its major contribution. By capturing defect knowl-

edge and experience of software engineers or inherent to test selection strategies in

defect models, they are made explicit and described formally. Operationalizing defect

models yields (semi-)automatic test case / check list generators directly targeting the

described defects for their effective and efficient detection.

The defect models are accompanied by a defect model lifecycle framework to struc-

ture the integration of defect-based quality assurance into existing quality assurance

processes. The lifecycle framework first contains activities to capture the tacit defect

knowledge and experience by eliciting and classifying to arrive at an explicit library

of common and recurring defects. The activities of formal description of defects in

defect models and the operationalization of the defect models represent the method

application activities actually leading to the (semi-)automatic detection of the described

defects. Finally, the activities of assessment and maintenance enable the evaluation of

effectiveness and efficiency in a continuous support process.

To comprehensively assess defect-based quality assurance based on defect models,

we provide instantiations of the elicitation and classification as well as description

and operationalization activities in the lifecycle framework. For the elicitation and

classification activities, we present and evaluate the context-independent instantiation

called DELICLA. Based on the results of DELICLA, we describe and operationalize

defect models on all levels of testing (i.e. 8Cage, OUTFIT and Controller Tester)

and demonstrate their effectiveness and efficiency in detecting the described defects.

These descriptions and operationalizations yield the second major contribution. In

addition to the activity instantiations, we give rise to generic assessment criteria for

operationalizations and provide a framework for the maintenance of defect models.
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1
Introduction

When developing software, software engineers are prone to make the same mistakes

repeatedly leading to common and recurring defects in the system they develop.

Performing as field study to gather evidence for these common and recurring defects

multiple industries (see Chapter 4), we even found them to be present across project,

organizational and even domain contexts. We treated defects as common, if their

appearance frequency in the study was higher than other defects and, therefore, they

had a higher likelihood to be present in the systems. Analogously, recurring refers

to them not only appearing in one version of the system or one system, but occur in

different version of the same system and among different systems.

In the field study, we also examined how these common and recurring defects are

detected and found some test cases to be created based on personal knowledge and

experience (1) and re-using encapsulated knowledge and experience in existing test

selection techniques (2).

To directly target the common and recurring defects, software engineers typically

use error guessing or explorative testing (see Section 2.1.2) for the selection of test

cases. For error guessing and exploratory testing, there exists some guidance (see

tours in Section 2.1.2), but no clear test selection strategy. These techniques rely

on the knowledge and experience as well as understanding by the system of the

software engineer (1). Thus, they lead to engineer-dependent test cases with varying

defect-finding ability and, therefore, effectiveness. Furthermore, these techniques may

sometimes be naturally applied by software testers without being required and/or

documented.

In industry, limit testing (also referred to as boundary value analysis [122]) is

one technique often used for test selection as there is at least anecdotal evidence

of its cost-effectiveness. “Experience shows that test cases that explore boundary

conditions have a higher payoff than test cases that do not” according to Myers

and Sandler [117]. Lewis explains the higher payoff by stating defects “tend to

congregate at the boundaries. Focusing testing in these areas increases the probability
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16 1. Introduction

of detecting” [98] them. Limit testing explicitly uses knowledge and experience of

past defects related to relational operators and selects tests at the boundaries of the

specified input domain of the system (2). Since defects related to relational operators

appear to be common and recurring, employing limit testing yields test cases targeting

these common and recurring defects. For this reason, it is typically included in test

plans and catered to by test management. Apart from limit testing, there are several

other input domain-based techniques (see Section 2.1.2) explicitly using knowledge

and experience of past defects (e.g. combinatorial testing) with at least anecdotal

evidence of their effectiveness.

Combining these two approaches to test case selection, we see a high potential in

defining a systematic and comprehensive approach for test case selection based on

knowledge and experience of software engineers and encapsulated in existing test

techniques. This approach selects test cases to directly target defects based on captured

knowledge and experience or by examining and operationalizing existing defect-based

techniques. When designing such an approach the questions of capturing the involved

knowledge and experience of software engineers as well as existing defect-based

techniques and its operationalization are to be answered.

To capture the knowledge and experience employed in the creation of test cases

based by software testers, knowledge management in software engineering is a good

starting point. Knowledge management is a cross-cutting discipline in software en-

gineering in order to mitigate such knowledge and experience gaps and to support

organizational learning [134]. When performing error guessing or exploratory test-

ing, software engineers use tacit knowledge and “are not fully aware of what they

know” [134]. They assume that the knowledge and experience used are common

and other software engineers to find the same/similar defects. However, this is not

the case and knowledge management enables the dissemination of knowledge in four

activities [134]:

1. Acquiring (new) knowledge

2. Transforming knowledge from tacit or implicit into explicit knowledge

3. Systematically storing, disseminating and evaluating knowledge

4. Applying knowledge in new situations

To capture the knowledge and experience contained in existing techniques, their test

case selection strategy must be analyzed. For this detailed analysis, the aforementioned

umbrella term defect has to be refined into fault and failure, which are defined

according to Laprie et al. [93] (see further Section 2.1.1). While a failure is a deviation

of expected and actual behavior, a fault is the actual reason / mistake causing the

deviation. An existing technique for the creation of test cases in software testing based

on the underlying faults has been described by Morell [116] in 1990 and is called
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fault-based testing. Fault-based testing aims to “demonstrate that prescribed faults

are not in the program” [116]. Morell argues “that every correct program execution

contains information that proves the program could not have contained particular

faults” [116]. In more general terms, fault-based testing increases the confidence of

certain faults not to be in the program or gives evidence of them to be present.

The definition of Morell inherently challenges the definition of a good test case

provided by the pertinent literature [17, 117]. Since the early beginnings of software

testing, a test case was defined useless, if “it does not find a fault” [117]. Conversely,

this means that a good test case detects a fault. Extending this argumentation, there

would be no good test cases for a correct system. However, one would like to have

confidence in the correct functionality of system according to Morell. Thus, a better

definition of a good test case is provided by Pretschner et al. [128, 129]. They define

a good test case as one that “finds a potential fault with good cost-effectiveness”

(see Chapter 3 for a detailed discussion). This definition is highly abstract and not

directly operationalizable. Fault-based test case selection techniques inherently seem

to select good test cases. Unfortunately, fault-based testing is hard to operationalize

as the faults to target must be known prior to testing. However, basing the selection

on the knowledge and experience of software engineers or existing techniques (e.g.

limit testing and combinatorial testing) targeting common and recurring faults has the

potential to select good test cases.

While fault-based testing directly targets certain underlying faults, it can be argued

that limit testing does not directly target faults, but aims to exploit a certain set of

faults to provoke failures. Given a failure provoked by a test cases using limit testing,

only fault localization reveals the exact relational operator-related fault targeted. Thus,

there must be a distinction between test case selection techniques directly targeting

(types of) faults and methods to provoke failures. To make a clear distinction, we

define a method to provoke failures based on the exploitation of a certain set of faults

as failure-based testing. This is complementary to fault-based testing, where the fault

is directly known after a failure occurs. The proposed approach must encompass both

fault-based and failure-based testing and we re-use the umbrella term of defect and

define defect-based testing to be the umbrella term for both. Since not only software

testing has techniques to directly target faults, we define defect-based quality assurance

as defect-based testing, static analysis and review/inspection. Note that, this term only

includes analytical quality assurance as constructive quality assurance does not aim at

defect detection, but defect prevention.

The major advantage of software testing over reviews/inspections is its ability to be

automated. Automated testing systems used in test automation include “technologies

that support automatic generation and/or execution of tests for unit, integration,

functional, performance, and load testing” [74]. Test automation in software testing

in the form of test case execution can completely be automated as testing can be

performed whenever the system is changed and is seen as cost-effective [83]. In
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practice, test automation is currently used for test execution and automatic adaption

of harnesses, interfaces and test environments. Unfortunately, it is rarely used for the

generation of test cases. The reason is the low defect detection rate of completely

automatic tools, while they require great computational resources [136]. However,

combining defect-based testing with automatic test case generation and re-use existing

test automation has a high potential to automatically create good test cases. However,

these test cases must be derived in a cost-effective and scalable way, which may not be

possible fully automatically. Thus, semi-automatic test case generation also suffices. On

the review/inspection side, check lists could potentially also be (semi-)automatically

generated.

In this thesis, we present a systematic and comprehensive approach to defect-

based quality assurance. It consists of a generic formal containment vessel for defect

knowledge called defect model with the capability of (semi-)automatic instantiation

in software testing. To describe and operationalize defect models, we instantiate the

four activities of knowledge management. To this end, the knowledge and experience

of software testers and existing test selection techniques concerning past faults must

be made (1) explicit by systematic description, (2) evaluated for its quality, (3) stored

for application and (4) operationalized (semi-)automatically in the next project(s).

Ultimately, this approach must be able to describe faults and failures for defect-based

quality assurance and allow their (semi-)automatic operationalization for the creation

of good test cases / review check lists.

1.1 Problem

A good test case finds a potential fault with good cost-effectiveness [128, 129]. This

definition is abstract and not directly operationalizable. However, there exist test case

selection techniques catering to this definition by selecting test cases directly targeting

certain faults. Such techniques use the knowledge and experience either ad-hoc

employed by the software engineers or systematically employed in existing test selection

strategies (e.g. limit and combinatorial testing). Both ways of using knowledge and

experience have at least anecdotal evidence of their effectiveness and are commonly

used when testing software. For the usage of knowledge and experience of individual

engineers, a field study of common and recurring defects across multiple industries

(see Chapter 4) revealed defect-based testing to be present with subjects estimating

20% of test cases to be defect-based. However, test selection techniques based on the

knowledge and experience of individual engineers lead to engineer-dependent test

cases. The fault-finding ability and, therefore, effectiveness of these tests may vary.

When using systematic test selection strategies targeting defects, the applicability of the

strategy depends on the defects it detects and their likelihood of being in the system.

For limit testing (also called boundary value analysis), Myers and Sandler [117] note a

higher payoff than other tests and Lewis [98] explains the higher payoff by a higher
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probability to detect a fault. This indicates a general cost-effectiveness of limit testing,

which may not generalize in all cases and also for other test techniques encapsulating

knowledge and experience. Thus, the encapsulated knowledge and experience must

be examined to predict the likelihood of the targeted faults to be in the system and

its cost-effectiveness. In sum, a systematic and comprehensive approach for test case

selection based on knowledge and experience is currently missing. Such an approach

would select test cases to directly target faults and failures and thereby have the ability

to produce good test cases.

To investigate the employed knowledge and experience of software engineers, a

field study gave the insight of defect-based quality assurance to be applied ad-hoc and

unpredictably. Software engineers often performed manual tests and reviews of “what

typically goes wrong” naturally and even if it was not part of the test plan. Although

reportedly effective, this approach is problematic since it

(i) depends on the knowledge and experience of the respective software engineer,

(ii) may be costly due to manual test case creation or late defect detection and

(iii) may find the repeated mistakes of developers without a defined quality assurance

process.

To investigate the encapsulated knowledge and experience in existing defect-based

quality assurance techniques, the encapsulated knowledge and experience must be

made explicit. Defect-based testing techniques (e.g. limit testing) are used in prac-

tice [40] and have at least anecdotal evidence of effectiveness including the ability to

derive good test cases. However, their employment is problematic since it

(i) depends on the encapsulated knowledge and experience of the respective soft-

ware engineer,

(ii) the cost-effectiveness to create the test cases and

(iii) the likelihood of the target defects to be contained in the system.

This thesis investigates how to capture the tacit knowledge and experience em-

ployed by the software engineers and encapsulated in existing defect-based quality

assurance techniques (i), how to operationalize it to (semi-automatically) detect the

detected defects (if not already operationalized) (ii) and how to integrate it into

existing quality assurance (iii).

To capture the knowledge and experience employed by the software engineers

and encapsulated in existing defect-based quality assurance techniques (i), knowledge

management recommends the use of repositories for the storage of explicit knowledge

(e.g. mind maps, use cases, glossaries or models) in the third activity of knowledge

management [134]. Such repositories can then be accessed by software engineers

in order to retrieve the required knowledge and enable its dissemination. Using the
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disseminated knowledge leads to its manual operationalization and achieves the goal

of being independent of personal knowledge and experience.

To perform (semi-)automatic operationalization of the captured knowledge and

experience (ii), the requirements for the knowledge repository need to be extended.

Automation of any kind requires the understandability of (part of) the repositories’

contents by machines. As natural language understanding by machines is currently

limited and an active field of research, the knowledge to be operationalized must

be formalized to enable automation. Since scalability and cost-effectiveness may be

involved when operationalizing the knowledge, (semi-)automatic operationalizations

are also sufficient. A term used throughout literature related to fault knowledge is the

term ’fault model’. It typically describes the creation of test cases targeting a specific

(set of) fault(s). Although researchers have been describing fault models, the term has

never been explicitly defined. Publications typically state “Our fault model is: fault X is

present” or “We test our system in the following way to reveal the fault”. While the first

statement relates to the definition of fault-based testing [116], the second statement

relates to methods to provoke failures or failure-based testing. Thus, the explicit and

formal definition of defect models containing both fault and failure models yields a

starting point to fill the repository (i) with knowledge capable of (semi-)automatic

operationalization and its respective operationalization (ii).

The creation of the repository as defined above (i and ii) only yields a containment

vessel with (semi-)automatic operationalizability. The problem of its integration into

quality assurance (iii) persists and concerns the addition of knowledge (iiia), the trans-

formation of knowledge to (semi-)automatically operationalizable knowledge and its

respective operationalization (iiib) and the assessment of the operationalization as well

as the maintenance of the knowledge repository (iiic). The addition of knowledge (iiia)

regards the first and second activity of knowledge management concerned with the

acquisition and transformation of knowledge from implicit to explicit. In the context

of defect knowledge, the employed and encapsulated tacit knowledge of the software

engineer and test selection strategy must be extracted and characterized. The transfor-

mation of this knowledge (iiib) to (semi-)automatically operationalizable knowledge

represents a systematical storage in the third activity of knowledge management. This

problem requires the careful evaluation of knowledge to be transformed, as formal

descriptions are typically time-consuming, but yield the advantage of precision. The

operationalizations represent the dissemination and application of the knowledge in

new situations in the third and fourth activity respectively. The major problem with

the operationalization of the knowledge is the context of operationalization as systems

are different. Thus, the operationalizations must be assessed (iiic) representing the

evaluation in the third activity in knowledge management. This assessment must

ensure the (semi-)automatically created results are the same/similar to the manual

results of the respective software engineer and created in a cost-effective manner.

Maintenance of knowledge is not addressed by knowledge management directly, but is
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required as changes in technology, organizational or domain affect the effectiveness of

the approach.

In sum, there are the problems of how to capture the tacit knowledge and experience

employed by the software engineers and encapsulated in existing defect-based quality

assurance techniques (i), how to operationalize it to (semi-automatically) detect the

common and recurring defects (if not already operationalized) (ii) and how to integrate

it into existing quality assurance (iii). Addressing these problems allows going from

an ad-hoc and unpredictable approach when employing knowledge and experience

of software engineers or encapsulated in test selection strategies to a systematic and

(semi-)automatic approach in defect-based quality assurance.

1.2 Solution

In order to address the problems above, this thesis presents a comprehensive and

systematic approach to defect-based quality assurance based on defect models. We

capture the knowledge and experience of software engineers or encapsulated in test

selection strategies (addresses i). Describing it in formal defect models and operational-

izing them yields effective, efficient and (semi-)automatic detection of the captured

and described defects (addresses ii). To manage the repository of defect knowledge,

defect models and operationalizations in an organization, the defect model lifecycle

framework (addresses iii) provides activities for the extraction and characterization of

defect knowledge, its description, operationalization and assessment as well as defect

model maintenance. Thus, the defect model lifecycle framework gives a structure for

the integration of defect-based quality assurance based on defect models in practice.

Capturing common and recurring defects in a defect repository (see Chapter 4)

enables the strategic decision making to (semi-)automatically detect them or use

other measures of quality assurance for their detection/prevention. For their (semi-

)automatic detection, we introduce a formal generic defect model (see Chapter 3). The

generic defect model is an abstraction of existing approaches involving fault models

in literature and practice. It is able to describe faults as syntactic differences between

desired and actual artifacts in fault models and failures as differences between desired

and actual behavior in failure models. The operationalizations of defect models use this

description and yield (semi-)automatic test case generators, which target the detection

of the described defects. These test case generators have the ability to produce good

test cases in case the defects they detect are likely to be present in the system.

To demonstrate the effectiveness and efficiency of the operationalization derived

from the generic defect models, three operationalizations are created. While the

description of defect models is generic, the (semi-)automatic operationalizations of

defect models have a context characterized by variation points. These are the domain,

test level and application of the operationalization. Variation points are inherent to

the operationalization and are typically determined prior to implementation. The
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variation point of domain is roughly defined to allow a context-specific instantiation

fitting the project or organizational context. Examples of the domain are cyber-physical,

embedded or IT systems. If the context requires further focus, the domain can be

automotive, aerospace or medical for organizations focused on cyber-physical systems

or finance, travel or government in the context of organizations focused on IT systems.

For the refinement of test levels, defect models re-use the well-known distinction

according to the target of the test. This distinction defines three test stages: unit,

integration and system testing. Note that, although they are called test levels, static

analysis may also be performed on each of these levels. At the lowest level, the

variation point of application tailors the application area of an operationalization to a

specific application. Thus, application-specific operationalizations are very limited in

terms of the number of applicable systems and typically required only if the respective

context is solely concerned with the development of one application. The number of

operationalizations covering all possible instances of the variation points is unfeasibly

large. Thus, we create a representative set of operationalizations in the domain

of Matlab Simulink systems. Matlab Simulink is commonly used in the design and

implementation of cyber-physical systems in the automotive, aerospace and medical

domain. Each of the three operationalizations is application-independent, but on a

distinctive test level. Thus, we are able to demonstrate effectiveness and efficiency in

software testing and this domain.

The first operationalization on the unit testing level is 8Cage (see Chapter 5).

8Cage operationalizes an extensive library of fault models and a failure model for

Matlab Simulink/Stateflow systems, which do not depend on the specification of the

system [72]. The captured faults are: division by zero, over-/underflow, comparison

and rounding, Stateflow faults and loss of precision. Particularly, faults in the first two

categories lead to run time failures, which in turn can lead to violations of functional

and non-functional requirements (e.g. safety). In addition, 8Cage allows to specify

developer assumptions as fault models. The failures captured by 8Cage are signal

range violations. Signal range violations are common in Matlab Simulink/Stateflow

systems and lead to a variety of subsequent failures potentially violating functional and

non-functional requirements. To create defect-based test cases, 8Cage performs a static

check of the system to detect smells (potential faults similar to Lint) and subsequently

aims to find evidence for the smell to be an actual fault. This evidence is provided by

generating a test case using symbolic execution and executing it using the inherent

robustness oracle to form verdicts. In sum, 8Cage enables the early detection of

common and recurring faults in Matlab Simulink. This leads to expert relief concerning

the static analysis, where these faults are typically detected. In general, the abstract

concepts of 8Cage are portable to other programming languages/paradigms/methods,

but current technology (e.g. symbolic execution) has not yet reached the required level

of maturity yet to perform this porting.
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The second operationalization on the integration test level is OUTFIT (see Chap-

ter 6). OUTFIT operationalizes two failure models on the integration testing level for

the detection of superfluous/missing functionality and the explicit test of central/up-

stream fault handling. OUTFIT integrates two directly connected components (i.e.

outputs of the first are input of the second) and uses high coverage unit test cases

to cover the integrated system. The test cases can either be re-used from previous

unit tests or automatically created using symbolic execution. A manual inspection

of structural coverage in each of the components produced by the tests then reveals

the targeted faults. The selection of the components can be arbitrary for the super-

fluous/missing functionality failure model. For the explicit test of central/upstream

fault handling, an upstream fault handler is chosen as second component to exercise

all possible fault modes.

The third operationalization on the system level is Controller Tester (see Chapter 7).

Controller Tester directly re-uses one failure model and its operationalization from

literature. It abstracts the existing failure model and adds four additional ones to test

control systems. From existing literature it is known that control systems typically

have the requirements to be stable, respond within a certain time, have a minimal

overshoot and stay within their specified bounds. When performing quality assurance

activities, control system engineers aim to find worst-case scenarios which violate these

requirements. Their test cases typically include special stimulations of the systems

and external disturbances. However, the control system engineers typically choose

only few test cases in these scenarios. Controller Tester uses the operational space of

the control system as a search space and slices this space into scenarios to find the

worst-case behavior of the control system in each of the scenarios. These search spaces

are randomly explored and each exploration is ranked by using a formalized form of

the requirements. Using the rank, a heat map is created to give an overall impression

of requirement compliance and retrieve the worst case.

To give a structure to the planning of employment, employment and controlling

of employment of defect-based quality assurance based on defect models, a defect

model lifecycle framework is introduced. The lifecycle framework structures the

systematic integration into existing quality assurance processes by providing activities

tailorable to organizational/project contexts. The lifecycle framework consists of

planning, application and controlling steps. Planning encompasses the elicitation and

classification of common and recurring defects to enable strategic decision making

about the application of defect models. Application includes the description and

operationalization of defect models and represents the methodology presented in

this thesis. In controlling, the suitability of the operationalizations is assessed and

maintained (see Chapter 8). This enables to establish requirements for the proactive

anticipation of changes in technology, organization or domain, including their impact

on the employed defect models.
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1.3 Contributions

The contribution of this thesis is the operationalization of the definition of a good test

case / check list by defect-based quality assurance with defect models.

The formal definition of defects and defect models enabling systematic re-use

of defect knowledge and (semi-automatic) defect-based quality assurance yields the

first major contribution of this thesis. By investigating the encapsulated knowledge

and experience in existing defect-based quality assurance techniques in a systematic

literature survey, we are able to grasp the notion of defect-based quality assurance and

generalize it in a generic defect model for quality assurance. As evaluation, we show

that existing fault and failure models are instantiations of the generic defect model. We

are the first to give the characterization of a fault and combine it with that of a failure to

describe them in programming language/paradigm/methodology independent defect

models. By operationalization, we are able to use them (semi-)automatically in quality

assurance to generate defect-based test cases. Thus, we are able to not only capture

defect knowledge, but to use it in tools for the detection of the captured defects.

Categorizing these operationalizations, we are able to generalize them to generic

operationalization scenarios. Thus, any defect model mappable to the generic defect

model and any operationalization mappable to the generic operationalization scenarios

then inherently creates defect-based (and potentially good) test cases. Even if the defect

knowledge is not described in defect models and operationalized, quality assurance

benefits from these defects as they may be detected in static analysis or prevented by

the usage of standards and process improvement in constructive quality assurance.

The operationalization of defect models must not only yield good test cases, but

must be able to produce them with good cost-effectiveness. As cost-effectiveness

can only be determined by the usage of defect models in industrial projects after

the introduction of defect-based quality assurance and the creation of industry-ready

operationalizations, we evaluate effectiveness, efficiency and reproducibility of the

operationalization to assess the quality of their created test cases. Thus, the demon-

stration of effectiveness, efficiency and reproducibility of the operationalizations in

defect-based testing with defect models is the second major contribution of this work.

To the best of our knowledge, we are the first to create three explicit operationaliza-

tions based on the generic defect model on the unit (8Cage), integration (OUTFIT)

and system (Controller Tester) testing level. All operationalizations aim to (semi-

)automatically detect defects as early as possible in the development process. They

are able to perform this detection without a system-specific oracle by re-using existing

oracles of generic requirements (e.g. robustness oracle of “no crash or exception”).

All operationalizations are evaluated and demonstrated effectiveness, efficiency and

reproducibility. In our context, effectiveness denotes the fault detection ability of the

operationalization in real-world systems. Efficiency measures the resources (e.g. time)

used to detect the aforementioned faults. Since all operationalizations use some form
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of randomness to detect the defects, reproducibility measures the probability of an

operationalization to detect a fault within several executions.

8Cage is the first explicit unit level operationalization of defect models. There

exist other tools to detect the run time failures detected by 8Cage using abstract

interpretations (e.g. Polyspace and Astrée). However, these tools typically have a

run time spanning multiple days and require a manual fault investigation effort by

an expert of multiple days. 8Cage is lightweight and performs a best-effort detection

of run time failures within hours directly delivering evidence in the form of a test

case to software engineers. To detect parts of the code potentially causing run time

failures, there exist smell finding tools such as lint. However, these tools do not provide

evidence for an actual fault to be present as 8Cage does, but rather return potential

faults. There is typically a plethora of potential faults returned, which have to be

manually investigated by the software engineers. The Design Verifier of Matlab uses

the fault models of some run time failures implicitly and is limited to their automatic

detection, but does not use their explicit description in fault models making it not

extendable to other faults as 8Cage. Tools such as TPT and Reactis do not allow the

automatic creation of defect-based test cases, but require their manual specification.

OUTFIT is the first explicit integration level operationalization of defect models.

There exist approaches focusing on the creation of integration test cases targeting

functional defects in the interaction of components partially in a program/domain/-

paradigm specific manner. There also exist coverage and coupling-based approaches to

integration testing that allow the automatic creation of test cases. However, both do

not allow the (semi-)automatic creation of defect-based integration test cases targeting

particular defects in the system without requiring any specification as OUTFIT does.

TPT, Reactis or slUnit exist to perform functional software integration testing of em-

bedded systems and could be used in OUTFIT for the generation of the coverage test

suites.

Controller Tester is the first explicit system level operationalization of defect models.

It borrows its methodology and one defect model directly from an automated testing of

continuous controller approach in the literature. It aims to generalize and extend the

approach by using failure models derived from the violation of quality criteria. Thereby,

it automatically tests control systems in a variety of scenarios deemed relevant by

several control system engineers as well as the predominant control system literature.

Again, Design Verifier, TPT and Reactis are able to perform software system testing, but

do not allow the automatic creation of test cases targeting defects in control systems

by using defect models. However, they provide the ability to perform random or

coverage-based testing, which can be manually combined with the respective quality

criteria to represent part of the automated testing of continuous controllers approach.

The defect model lifecycle framework including its instantiation represent the third

major contribution of this work. By enclosing the methodology within supporting

processes, the lifecycle framework yields an instantiation of knowledge management
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Figure 1.1: Overview of this thesis

and contributes the structure for a seamless integration into existing quality assurance

processes. It structures the systematic defect-based quality assurance based on defect

models by providing a framework for planning, method application and controlling

activities including a description of their instantiation and tailoring. Particularly, it

proposes a way to capture common and recurring defects in practice, their description

in defect models and the operationalization to arrive at a repository of defects, defect

models and defect model operationalizations. The planning in the lifecycle frame-

work is mapped to the first two activities of knowledge and experience management

as it acquires and transforms defect knowledge into explicit knowledge. The defect

model methodology application then describes the defects in defect models and opera-

tionalizes the defect knowledge covering parts of the third and the fourth activity of

knowledge and experience management. The controlling covers the evaluation part

of the third activity of knowledge and experience management by assessment and

performs maintenance in addition.

To elicit and classify common and recurring defects in practice for the creation of

defect models, we provide a context-insensitive qualitative interview method (DELICLA)

including a field study demonstrating its suitability and operationalizability of the

results. In contrast to existing defect classification approaches, DELICLA deliberately

chooses to employ a minimalistic/basic defect taxonomy to stay flexible for seamless

adaptation to specific contexts and domains. This lightweight taxonomy enables the

approach to be in tune with the expectations/prerequisites of our project partners.

Thus, we are not generalizing our taxonomy to be “independent of the specifics of a

product or organization” [32], but rather require adaptability to context. However, our

taxonomy can be mapped to ODC.
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1.4 Organization

This thesis is structured according to the defect model lifecycle framework [69] for

systematic and (semi-)automatic defect-based quality assurance based on defect models

shown in Figure 1.1. To give an overview of existing work and define the basics,

Chapter 2 provides an introduction to testing, symbolic execution and the development

of embedded systems using Matlab by Mathworks. The basis of the defect model

lifecycle framework is the generic defect model for quality assurance (top section of

the figure) in Chapter 3. This generic defect model represents an abstraction of defect-

based quality assurance in literature and practice. Including its operationalizations,

these represent a storage format in a defect knowledge repository that allows systematic

and (semi-)automatic re-use of defect knowledge. Existing work is gathered using a

systematic literature survey and shown to be an instance of the generic defect model.

The process to guide the integration of defect-based quality assurance based on

defect models into existing quality assurance processes (middle section of the figure)

has three major steps. In the first step (planning), defects are elicited and classified

using qualitative interviews in Chapter 4 (activity 1 and 2 of knowledge management).

In the second step (methodology application), three descriptions and operationaliza-

tions of defect models on the unit/integration (8Cage), integration (OUTFIT) and

integration/system (Controller Tester) testing level are described in Chapters 5, 6 and

7 respectively (step 3 and 4 in knowledge management). In the third step (controlling),

Chapter 8 proposes requirements for defect model assessment and maintenance of

defect models. Both assessment and maintenance are the starting points of respective

feedback loops. In case the operationalization is unable to detect the described defects

or if the wrong defects are detected, the feedback loop allows going back to the clas-

sification, description and operationalization. In maintenance, issues such as defect

models losing their effectiveness due to team/technology changes or organizational

learning are discussed. This includes the re-evaluation of defect models and/or the

creation of defect models for new technologies as it can be triggered by maintenance.

Chapter 9 draws a conclusion, lists contributions and future work.

The method application step is accompanied by the variation points (lower section

of the figure). These variation points are able to fundamentally categorize defect

models by the domain they are applicable to, their test level and make the fine

distinction between defect models for specific applications. As an example, 8Cage

in Chapter 5 is applicable to the broad domain of embedded systems developed in

Matlab Simulink on the unit test level, while ControllerTester in Chapter 7 is applicable

to control system applications for embedded systems developed in Matlab Simulink on

the system testing level.
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Background

This chapter contains the background of this thesis. It gives a detailed introduction

to quality assurance, symbolic execution and the development of embedded systems

in Matlab Simulink (based on [72]). The introduction to quality assurance serves for

the definition of terms used throughout this thesis. It also positions defect models

and defect-based quality assurance in the field of quality assurance and specifically

in fault-based test selection techniques. Related work specific to and generalized by

the generic defect model including the defect-based quality assurance techniques it

abstracts is located in Chapter 3 and specifically in Section 3.2. Quality assurance is

divided into analytical and constructive quality assurance, where analytical quality

assurance is separated into software testing and static analysis. As for the software

testing part, this includes the definition of the basic terms of software testing, test

levels and the relation to test case selection strategies. As for static analysis, basic

definition of terms and methods are introduced. Symbolic execution is a key technology

in the operationalization 8Cage (in Chapter 5) and OUTFIT (in Chapter 6) to create

test cases going into a specific branch of a program and to generate high structural

coverage use cases. As to introduce symbolic execution and the tool KLEE used in both

8Cage and OUTFIT, we describe both in the background chapter and reference it in

the respective chapters of the operationalizations. A commonality of all defect model

operationalizations of defect-based quality assurance in this thesis is their usage of

Matlab Simulink. Matlab Simulink is a commonly and frequently used implementation

language in the embedded systems domain since it is easy to understand for mechanical

and electrical engineers. This section serves to form a common understanding of the

development of embedded systems in Matlab Simulink throughout this thesis and is

referenced in the respective chapters.

2.1 Quality Assurance

Quality assurance encompasses all software engineering activities to guide the creation

and assessment of artifacts during the development and maintenance of a software

29
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systemverification
and

validation

. It spans from the creation of the first artifacts in requirements engineering

to the last artifacts in acceptance testing and aims to assure (1) the satisfaction of

customer requirements and (2) the correctness of all artifacts derived from the customer

requirements. The former is commonly referred to as validation, while the latter is

named verification. Quality assurance is divided into constructive and analytical quality

assuranceconstructive
and analytic

QA

. Constructive quality assurance aims to assure quality by using processes,

coding guidelines and process measures for the early detection or even prevention of

defects. Analytical quality assurance aims to assure quality by performing an artifact-

oriented assessment for the detection of defects in these artifacts. This thesis focuses on

analytical quality assurance in the form of verification (although constructive quality

assurance is discussed in Section 8.2). This encompasses the static and dynamic

analysis/verification of artifactsstatic and
dynamic
analysis

. Static analysis includes any form of automatic or

manual form of analysis of non-executable artifacts. The techniques of static analysis

are the compliance checking to coding standards, the computation of metrics, the

formal verification of properties of (parts of) programs and reviews/inspections. The

predominant technique in dynamic analysis is software testing, which includes any

form of execution of an executable artifact. Both forms of analytical quality assurance

are introduced in the following.

2.1.1 Faults, Errors, Failures and Defects

While constructive quality assurance aims to avoid/mitigate some defects, analytical

quality assurance aims to detect discrepancies between the specified and implemented

system. Thus, the goal is to verify the requirements/specification and detect defects.

The term defectdefect is used throughout this thesis as an umbrella term for any fault, error

or failure made in the process of designing or implementing a system. We refrain from

using the terms bug, mistake or problem as their usage has been most ambiguous in

literature and practice. However, the term failure, error and fault are clearly defined.

failure
According to Laprie et al. [93], a failure is a deviation of expected and actual

behavior.error An error is defined as the deviation of expected and actual state possibly

leading to a failure. A fault is the actual reason / mistake causing the deviationfault in

any artifact created during the development of hardware or software. In the light of

these definitions, test case execution is only able to detect failures as internal states

are hidden. Thus, additional effort is required before the defect can be removed after

a test case has failed. This includes the reproduction of the failure (possibly in other

scenarios), fault localization and debuggingdebugging to remove the fault [119]. In static analytic

quality assurance techniques, the fault is directly detected. In reviews/inspections it is

often referred to as anomaly before being confirmed by a second reviewer/reader.
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2.1.2 Software Testing

(Dynamic) software testing is “dynamic verification that a program provides expected
behaviors on a finite set of test cases, suitably selected from the usually infinite execution

domain.” [1]. Dynamic means that artifacts executable by a machine are required,

which then require inputs or traces of inputs to be stimulated. Finite refers to one

of the fundamental issues of testing test selection
problem

. Even when looking at simple programs that

add two 32-bit integer values, it instantly becomes clear that a complete/exhaustive

test of all possible inputs (over 8 billion) is infeasible. Thus, a subset of all possible

inputs must be found as a trade-off between residual risk and available resources.

It is noteworthy that confidence in a program must be established using this subset.

However, as Dijkstra described it, tests “can be used to show the presence of bugs, but

never to show their absence” [1]. Test selection is the field of software testing aiming

at the “suitable” selection of test cases and making it the core difference between

different testing techniques [1]. The second fundamental issue of software testing

is the determination of expected behavior also called oracle oracle
problem

. After executing a test

the verdict passed, failed or unknown must be clearly assignable to a test reflecting

whether the system under test (SUT) behaved as expected by the specification or the

user.

Levels of Testing

In general, software testing is divided into three levels of testing. On the first level,

there is unit testing. “Unit testing refers to testing program units in isolation” [119] unit test.

A unit is not clearly defined and can be a function or method, but also a class in

object-oriented programming or in the context of embedded system it can be a single

Simulink subsystem. Thus, unit testing aims to test a single piece of functionality such

as an addition of two integers or the popping of a value from a stack. On the second

level, integration testing integration
test

connects units or their aggregates of units called components

and tests their interaction [119]. As different components are typically developed

by different development teams in a divide and conquer style, integration testing

particularly aims at detecting defects in the interfaces of the components. On the third

level, system testing system testtests the fully integrated system on the deployment hardware.

The test on the actual hardware is the key difference to the test of the fully integrated

system now enabling end-to-end functional tests [38]. When executing system tests,

particularly the fulfillment of non-functional requirements such as performance or

crash recovery can be assessed [119]. When testing embedded software, the level of

unit and integrations tests is usually referred to as Software-in-the-Loop (SIL) SILtesting,

whereas the deployment on the hardware is referred to as Hardware-in-the-Loop (HIL) HIL.

In addition, there are software and hardware variants on the integration and system

levels as one hardware system may run multiple software systems (e.g. an automotive

ECU running multiple drive assistance systems).
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Test Case Selection

Finding the subset of all possible inputs such that a trade-off between residual risk and

available resources is achieved is non-trivial. Test case selection has been tackled by

researchers and practitioners alike in the past. Since the defect model methodology

introduced in this thesis also presents a test selection strategy, this section gives an

overview of existing test selection strategies. These strategies will be referenced by the

next chapter when describing instantiations of defect models (see section 3.2).

All strategies for case selection are traditionally classified by the information avail-

able to the tester. “If the tests are based on information about how the software has

been designed or coded” [1], they are referred to as white-boxwhite-box test . “If the test cases

rely only on the input/output behavior of the software” [1], they are referred to as

black-boxblack-box test . However, this categorization of test methods is too coarse since there are

more black-box than white-box strategies.

A more finely grained categorization is used in the Guide to the Software Engineer-

ing Body of Knowledge [1]. They distinguish seven categories of test case selection

strategies (referred to as test techniques in [1]) based on “how test[s] are gener-

ated” [1]. These comprehensive categories and their respective strategies encompass

all strategies described by Naik and Tripathy [119], Myers and Sandler [117] and

Beizer [17]. Therefore, they are presented in the following with the additions made in

the aforementioned literature to give a comprehensive overview.

Based on the Software Engineer’s Intuition and Experience. In this category,

the test cases are selected either (1) ad-hoc or with (2) exploratory testing. In ad-hocad-hoc test
test case selection, “tests are derived relying on the software engineer’s skill, intuition,

and experience with similar programs” [1]. These test cases must not necessarily target

defects. In case they do, they are ad-hoc fault-based test cases (see below). Exploratory

testing [151]exploratory
testing

uses manual dynamically designed and subsequently executed test cases

that are created by navigating and learning the tested application. The navigation

of the application typically follows a goal (also called tour) to detect certain defects.

These defects may be deviations in the user interfaces (Supermodel Tour) or security

issues (Saboteur tour).

Input Domain-Based Techniques. These techniques rely on the specification to

select test cases and include equivalence partitioning, pairwise testing, limit testing

and random testing. Equivalence partitioningequivalence
partitioning

“involves partitioning the input domain

into a collection of subsets (or equivalent classes) based on a specified criterion or

relation” [1]. Any equivalence relation1 can be used to partition the input space.

A number of test cases are then selected from certain or all blocks of the partition.pairwise
testing Pairwise testing belongs to the area of combinatorial testing and uses the pairs of input

instead of all combinations of inputs [89]. Limit testing (also called boundary-value

analysis [122]) chooses test cases “on or near the boundaries of the input domain of

1An equivalence relation is a binary relation ∼ on a set with reflexive (a ∼ a), symmetric (a ∼ b→
b ∼ a) and transitive (a ∼ b ∧ b ∼ c→ a ∼ c) properties
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variables” [1] limit testing. It has the rationale (later introduced as defect model) “that many faults

tend to concentrate near the extreme values of inputs” [1]. Random testing selects

purely random test cases from the complete input space. The test selection effort for

random testing is negligible and test automation is easily possible random
testing

. A special form of

random testing is fuzzing, which may use some directed approach to guide random

testing [1]. This guidance may aim at the exploration/coverage of the system under

test or its outputs [2, 17] among others. In case the guidance used in fuzzing targets

specific faults in the systems, it falls into the category of fault-based techniques below.

Code-Based Techniques. This category of techniques uses the code for test case

selection and includes control/data flow-based criteria. control-flow
testing

Control-flow based testing

aims at covering elements in the control flow graph of a program [1]. These elements

can be statements, branches in the control flow graph or paths through it [17]. In

addition, there are criteria regarding the conditions/decisions taken in the graphs

such as condition, multiple condition and modified condition/decision criteria [117]. data-flow
testingData flow criteria annotate the control flow graph “with information about how the

program variables are defined, used, and killed (undefined)” [1]. The criteria define

elements to be covered to include all-definitions, all-uses, all-computational-uses and

all-predicate-uses of variables in the program.

Fault-Based Techniques. “Test cases specifically aimed at revealing categories of

likely or predefined faults” [1] are selected with fault-based testing techniques. Error

guessing and mutation testing are two commonly cited techniques in this category [1,

119]. error guessingError guessing creates test cases “to anticipate the most plausible faults in a given

program” [1] based on earlier faults and the tester’s knowledge and experience. As

implied by the word guessing, this test selection technique is typically applied ad-hoc

and unsystematically. mutation
testing

Mutation testing performs test suite assessment by using fault

injection on the original program [44]. Every fault-injected original program is called

a mutant and killed, if the test suite is able to detect the injected fault. Mutation

testing has one major underlying assumption called the coupling hypothesis. It states

that injecting simple syntactic faults will lead to the detection of more complex/real

faults [44]. defect model
position

The creation of a systematic and (semi-)automatic approach to select test

cases targeting certain defects in systems is the central topic of this thesis positioned

in this category of test selection techniques. Chapter 3 describes the generic defect

models for defect-based quality assurance and gives a detailed representative selection

of existing/related works in fault-based testing techniques including those above. It

also shows how fault-based and failure-based techniques are instantiations of the

generic defect model.

Usage-Based Techniques. Test cases based on the usage of a program are selected

with usage-based techniques. These include operational profiles and user observation

heuristics. operational
profiles

Operational profiles allow the selection of use cases based on the expected

usage of a functionality to infer future reliability. Markov chains can be used as

underlying models for the usage probabilities and test cases are typically selected on
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the system testing level [1, 152].user
observation

heuristics

User observation heuristics can be used to discover

“problems in the design of the user interface” [1] and “are applied for the systematic

observation of system usage under controlled conditions in order to determine how

well people can use the system and its interfaces” [1].

Model-Based Testing Techniques. Model-based testing uses “an abstract (formal)

representation of the software under test” [1] or its environment for the selection of

test cases. The technique is inherently automatable as test cases can be generated

from the model and executed on the system under test without manual effort. There

are several techniques to create the model and perform the test generation/execution

described by Utting et al. [147] in a taxonomy.

Techniques Based on the Nature of the Application. Tests based on the nature

of the application include tests that are specific to one domain of software engineering.

These include object-oriented, web-based, concurrent and embedded testing. In each of

these domains different faults are to be detected, which are particular to that domain.

For example, inheritance faults are only to be present in object-oriented software

whereas HTML layout faults are only possible in web-based software.

2.1.3 Static Analysis

Methods of static analysis perform verification on a respective artifact without exe-

cuting it (even if it is executable). They include checking of suspicious usage/coding

standards (e.g. lint [41] or MISRA-C [114]), calculation of metrics (e.g. cyclomatic

complexity [110]), formal proofs (e.g. Hoare logic [68], model checking [33], ab-

stract interpretation [36]) and reviews/inspections (e.g. walkthroughs [75] and Fagan

inspections [52]). This section gives an introduction to each static analysis method.

Suspicious Usage/Coding Standards

Programslint such as lint [41] analyze the source code of a program and report suspicious

usage of the programming language. The findings of lint are usually called smells,

as they show potential defects, which may have been taken care of in another part

of the program or may never occur in the environment the program is deployed in.

misra-c MISRA-C [114] is a coding guideline in the automotive domain. It aims to avoid

run time failures by disallowing language constructs of C and provides best practices.

Checking for compliance is performed on the code and deviations are reported.

Software Metrics

Other than code coverage metrics, that are provided by software testing, there are a

plethora of metrics, which can be calculated statically. These metrics aim to optimize

non-functional requirements such as performance or maintainability. For instance,

a large valued ofcyclomatic
complexity

McCabe’s cyclomatic complexity [110] indicates a very complex

function/program, which may benefit from modularization. Other measures like
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inheritance depth and method size for object-oriented programs [31] indicate the

maintainability of the program.

Formal Proofs

To show that a program outputs the correct data for all its inputs, a formal proof is

required. hoare logicHoare logic [68] uses a system of deductive rules for the proof, while theorem

provers are based on higher-order logic [90]. After transforming the program into a

model (e.g. a finite state machine (FSM) or Kripke structure), model
checking

model checking [33] can

provide a proof or counterexample for a given (typically temporal logic) property of the

model. abstract
interpretation

Abstract interpretation semantically abstracts from the source code using the

notion of abstract objects to mitigate the undecidability problem. By using a generalized

form of the program, it aims to give answers to “questions, which do not need full

knowledge of program executions or which tolerate an imprecise answer” [36]. If a

property can be proven or a counterexample can be found in the abstraction of the

program, it can be proven/disproven in the actual program by concertizing.

Reviews/Inspections

Reviews and inspections represent manual reading techniques performed on human-

readable artifacts. The IEEE Standard 1028 for software reviews and audits defines

a review as “a process or meeting during which a software product is examined by a

project personnel, managers, users, customers, user representatives, or other interested

parties for comment or approval” [75]. There are several types of reviews including a

formal review type referred to as (Fagan) inspection.

Ad-hoc Code Reviews. The most basic form of a review is an ad-hoc code review.

This code review is typically performed by the developer to localize a fault after

the program has failed, to check whether cloned code was correctly adapted to the

new situation or to sign off code before checking it into a repository. It is triggered

dynamically and target as well as purpose are left to the developer. A form of continuous

ad-hoc review is the agile technique of pair programming [153] pair
programming

, where two developers

work as a pair. In pair programming, one developer is the driver writing code and the

other is the navigator constantly reviewing the driver’s code.

Walkthroughs. A walkthrough is “a static analysis technique in which a [developer]

leads members of the development team [...] through a software product, and the

participants ask questions and make comments about possible anomalies, violation of

development standards, and other problems” [75]. As an example, a walkthrough of

a piece of code has the developer of the code present the control/data flow and the

other team members comprehend/comment the decisions made.

Technical Reviews. Technical reviews can be performed on any human-readable

artifact (including code) in a formal target-oriented way described in the IEEE Standard

1028 for software reviews. The generic process for formal reviews includes seven steps
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and requires the documentation of the review process. A review may be done without

preparation and completely within one meeting.

Inspections. Inspections were first described by Fagan [52] to perform the most

formal review out of any aforementioned technique. The inspection process has

six steps and requires the offline preparation of all participants before the meeting.

Additionally, it also considers the removal of the defect part of its process. Thus, an

assigned moderator must also inspect the rework. For the preparation of the meeting,

the instructions for the inspectors can either not be provided (ad-hoc reading)inspection
reading

techniques

, provided

as a checklist (checklist-based reading) or require the inspector to perform certain

tasks in certain roles (perspective-based reading) [15].

2.2 Symbolic Execution

Symbolic execution was introduced by King [87] as a method of program verification.

By substituting the concrete input values in a program’s execution by mathematical

symbolic
value

symbolic values, conditions for each path through the program can be created. By

exploring each path through the program concerning its input/output relation, the

correctness can be established. King shows such verifications to be possible “in a

simple PL/I style programming language” [87]. However, loops cause the number of

potential paths to increase to infinity and decidability hinders the exploration of all

possible paths. When exploring a program with symbolic execution, each possible path

is described by so-calledpath
condition

path conditions (PCs). The path conditions are initialized as

TRUE (i.e. satisfied) at the entry point of a program (e.g. the main function). Symbolic

execution then executes instruction after instruction of the program while keeping

track of the modifications to the symbolic input values. Once a branching instruction

occurs, the logical expression of the branching is added to one PC and its negation is

added to another PC. These two PCs then describe the if and else branch and both paths

are executed symbolically thereafter. Execution is terminated when reaching an error

or the termination of the program. Upon termination, a solution to the path conditions

yields a test case for the respective path. One major issue in symbolic execution are

loops. Loops are broken down to if and else branches where the if branch loops back

to a previous block of instructions. How often the if branch is to be taken is inherently

undecidable.

Listing 2.1 shows an exemplary program to demonstrate symbolic execution. In

the first step of symbolic execution, the variables argc and argv are made symbolic.

Thereafter, the instructions generated by the printf statement are executed with no

change to the symbolic variables or PCs. The subsequent branching add a PC where argc

is larger than 2 and one where it is smaller. Following the first PC, printf does the same

as before and the program terminates. The PC argc > 2 is easily solved by choosing

any value in the set 2 > argc >= 32767. The program also terminates with only printf

for the negated PC argc <= 2 and any number of the set −32768 > argc >= 2 will
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Listing 2.1: Source code for the symbolic execution example

1 #include <stdio.h>

2

3 main ( int argc, char **argv ) {

4 {

5 printf("Symbolic execution test!\n");

6 if (argc > 2) {

7 printf("Success!\n");

8 } else {

9 printf("Try again!\n");

10 }

11 return 0;

12 }

suffice. Note that, the value of argc (i.e. the argument count) passed by the operating

system will always be positive.

The original recommendation by King [87] was to use a table of symbolic values

and path conditions for larger programs in a manual symbolic execution. Due to recent

improvements in constraint solving [42], automatic symbolic execution for programs in

well-established programming languages was made feasible. Today, symbolic execution

frameworks for C/C++, C# and Java exist [26]. The most prominent examples of

currently maintained symbolic execution frameworks are KLEE [25] kleeand CREST [24]

for C/C++, PEX for C# [144] and Java Path Finder with its symbolic execution

extension [3, 148] for Java. The major cost-effectiveness measure for all approaches is

the coverage achieved by their generated test cases. Although all symbolic execution

frameworks use tricks to accelerate the solving of the path conditions, the results

obtained still show scalability to be the major problem for symbolic execution. As

an example, KLEE’s symbolic execution abilities are even unsuitable for some of the

non-complex GNU coreutils [25].

Listing 2.2: Command for running KLEE

1 klee --simplify-sym-indices \

2 --max-sym-array-size=4096 \

3 --max-instruction-time=30 \

4 --watchdog \

5 --max-time=5000 \

6 --max-memory=1000 \

7 --optimize \

8 --only-output-states-covering-new \

9 --max-memory-inhibit=false \

10 --search=random-path \

11 --search=nurs:covnew \

12 --use-batching-search \

13 a.out

KLEE performs symbolic execution on the LLVM bitcode level of abstraction llvm bitcode. LLVM

is “a compiler framework designed to support transparent, life-long program analysis

and transformation for arbitrary programs by providing high-level information to
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compiler transformations at compile-time, link-time, run-time, and in idle time between

run” [94]. To compile C/C++ source code to LLVM bitcode, the clang2 compiler is

provided by the LLVM developer group. As a default, clang compiles to binary formats,

but given the argument -emit-llvm produces the desired bitcode. KLEE can then

perform symbolic execution on clang’s output. Throughout this thesis, we execute

KLEE on the output of clang using the command line in Listing 2.2. One of the features

of LLVM bitcode is the independence from the processor architecture and operating

system as long as LLVM and clang binaries are available. This eliminates the need

for cross-compilation and allows the compilation and execution of LLVM bitcode on

completely different machines.

2.3 Development of Embedded Systems in Matlab Simulink

Matlab Simulink [109] is a development and runtime environment for embedded

systems software. It aids in model-based architecting, designing, implementing and

testing. Simulink models use a data flow driven block-based notation similar to wiring

plans. Blocks execute functions such as arithmetic, accumulative, limiting and other

operations to the data they are given. Each block has a specific number of inputs and

outputs which are connected to other outputs and inputs. Each connection represents a

data flow. Special I/O blocks let data flow into and out of the model. The notation helps

mechanical/electrical engineers by giving well-understood model notations. Originally

designed as a pure simulation environment for differential equations, code generation

form the model was added for direct deployment of the implemented system. Thereby,

programming efforts for continuous and hybrid systems can be performed by the

engineers and seamless engineer comprehensibility is ensured.

Such a model-based approach is widely employed for automotive drive trains,

aerospace engine control and brushless motor controllers, among others. For building

complete software systems, Matlab allows abstraction by encapsulating so-called sub-

systems. These subsystems can be used in a different model, allowing their composition

in levels. The lowest level is the unit level, constituting a modelmatlab model without any subsystems,

using only built-in blocks of the Simulink library. Each layer above the unit level repre-

sents an integration level where two or more unit or integration levels are composed

into componentsmatlab
component

. The uppermost level is the system level consisting of all unit and

integration levels. Most embedded systems are based on the input-processing-output

model [60] as (1) input calculations are required to go from raw sensor values to the

values needed for processing, (2) processing performs the calculations and is monitored

by a supervisor and (3) output calculations are required to drive actuators towards the

calculated values. Thus, typical high-level components of embedded systems are input

calculation, processing/monitoring and output calculations. A particularity of these

high-level components is their connectivity, as outputs of one component are inputs

2http://clang.llvm.org/

http://clang.llvm.org/
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to the next. This is similar to a pipe-and-filter architecture [137] where filters do not

need what they are connected to and can be executed in parallel.

When developing embedded software, the development cycle usually starts with

the implementation of units. Once a unit is finished, it can enter unit testing by a

tester. To perform first tests, Matlab provides a simulation environment to directly

perform tests on the Model-in-the-Loop (MIL) MILtest level. The tester will typically

perform a black-box MIL and SIL (see Section 2.1.2) functional test according to the

unit’s specification. Units are then composed into components and integration testing

is performed on certain (logical) combinations of components until the system level

is reached. System testing is performed on the SIL as well as on the black-box HIL

(see Section 2.1.2) level, where the environment of the system is simulated. These

environment models are typically a problem in practice requiring further research as

they may not be available/correct/complete etc. In a last step, static analysis using

abstract interpretation (see Section 2.1.3) is performed on the production ready system

to detect run time detectable failures. If such failures are detected, a trained expert

needs to perform fault localization and present the result to the respective developer(s).

When the faults are removed, the development cycle restarts with unit and integration

tests.

2.3.1 Control System Design

The systems developed in Matlab can be transformative systems or even have simple

state as is the case with raw value conversions in the input calculations part. However,

the major advantages of Matlab Simulink lie in the design of control systems by

modeling differential equations. Control systems are an integral part of our everyday

life. They range from steady temperature control in ovens to highly reactive electronic

stabilization programs (ESP) in commercial vehicles and precisely rotating brushless

motors. Originally implemented in continuous mechanical or electro-mechanical

forms, today’s controllers are mostly implemented using discrete microprocessors. The

advantages are improved versatility and configurability towards a plethora of usage

scenarios. In particular, one does not need to build an ESP controller for each vehicle

model, but rather for one or multiple vehicle product lines.

The two essential parts of any control system are a controller controlleron the one side, and

a plant plantor process with a sensor on the other side (see Fig. 2.1). All controllers in

this thesis are given a single desired value over time (r(t)) as reference-variable input

signal and are supposed to drive (u(t)) the process to this value. In case the process’s

single control variable output signal or actual value over time (y(t)) is fed back to

the controller (ỹ(t)), the control system is referred to as closed-loop closed loop, and open-loop

otherwise. A closed-loop control system enables the controller to correct open loopor adapt

to the changes detected in the process. In this thesis, only closed-loop systems are

considered. However, defect models can also be applied to open-loop control.
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Figure 2.1: Closed-loop control system

For closed-loop control systems, there are two fundamental responsesreference-
value

response

to test:

reference-value and disturbance response. Reference-value response is observed if

a desired value is given to the controller and it can drive the process without any

environmental influences. Disturbance responsedisturbance
response

is observed if environmental influences

(d(t)) such as opposing forces, cooling or heating effects are present [59]. Testing each

response separately allows control system engineers to make adjustments particularly

pertaining to the considered response. However, this test is not always possible. In

reality and particularly when non-linear, the controller is exposed to both desired value

changes over time and environmental influences at the same time, thus leading to a

hybrid of both behaviors.

As an example, let the process be an oven and the actuator its heating element.

Turning a knob to a desired temperature would set the desired value for the controller.

A controller would then switch the heating element on until the desired temperature

value is reached. Unfortunately, the temperature in the oven does not stay constant

at the desired value due to cooling effects. Thus, the controller has to turn on the

heating element once the actual temperature value differs from the desired temperature

value. When the knob is turned to a different temperature, reference-value response is

exhibited. When the door of the oven is opened causing a substantial temperature drop,

disturbance response is exhibited. An interesting aspect of the disturbance response is

when to react to a change in temperature. Switching on the heating element when only

a slight change in temperature is detected may not be energy-efficient. Thus, there

may exist a dead band requirement demanding not to switch on the heating unless the

temperature has changed by a certain percentage.

Controllers and plants can be designed and tested as differential equations directly

within Matlab Simulink. Such MIL tests are used to verify the functionality w.r.t. to the

functional response of the controller within the Matlab Simulink runtime environment,

which allows precise simulations. Note that, this thesis considers discretized continuous

responses, possibly with modes of the control system (i.e. hybrid responses). Such

modes of the control system are typically created in a special Stateflow block in a

Simulink model, that allows the implementation of logic in graphical state machines.

The process of designing a control systemcontrol system
design process

in Matlab Simulink consists of several steps.
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Firstly, the process characteristics have to be determined and have to be designed on

the model level. Subsequently, a suitable type of controller must be chosen. Thirdly,

the selected controller must be adapted to the application by adjusting its parameters.

At this stage, the controller is implemented as a continuous system in both the time

and value dimensions. Matlab Simulink allows the simulation of continuous controllers

and production-ready code derivation for targeted hardware platforms, which may

also be performed using other tools. To be able to implement it as software, it must

be discretized w.r.t. time and subsequently w.r.t. values in a fourth step. In a last

step, discrete values may need to be converted to fixed point as some microprocessors

lack hardware floating-point units (FPUs) and do not support hardware floating point

calculations.

2.3.2 Control System Verification

A classic way of quality assurance for control systems is to examine the transfer

function [59]. The transfer function transfer
function

describes the response of a control system to an

input signal as a mathematical function in a black-box way. Given today’s complex

controllers, including feed forward and cascading controllers, the derivation of the

transfer function is infeasible in the time given to test the controller. Thus, control

system engineers commonly perform manual knowledge-based testing. Typically, they

partition the input space of the desired and disturbance values into equal blocks [50].

In addition, a block is allocated to all boundary values, thus yielding a form of limit

testing. One representative from each is picked as test input. To judge requirement

conformance, the engineer will inspect the trajectories of the desired, actual and

disturbance values and form a knowledge-based verdict of requirements fulfillment.
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The central question of test case selection is “what is a good test case?”. Since the

1970s, the answer to this question was “one that finds fault” [17, 117]. However,

considering the hypothetical existence of perfect programs, there would be no good

test cases for such programs. Albeit, one would like to execute test cases on a perfect

program to ensure it fulfills its requirements. Such good test cases for a perfect program

(or any other program for that matter) would then find potential faults [127]. This

definition appears to be capturing the aim of testing, but does not yet capture any

required resources. When performing test case selection in practice, factors such as

creation, execution, fault localization and debugging effort are taken into account

to decide whether or not to choose a test / use a method of test case selection. The

optimal scenario is a test case which detects a potential fault while yielding no costs.

Since this scenario is unrealistic in practice and typically different types of faults have

different cost implications, the test cases must be cost-effective w.r.t the cost factors

above. Thus, a complete definition of a good test case is good test case“one that finds a potential

fault with good cost-effectiveness” [127]. The same definition can be applied to static

analysis (e.g. via a tool or check list in review/inspection).

The definition of good test cases and static analysis above is far too abstract to

be directly operationalizable. However, test selection strategies (see Section 2.1.2)

yielding good test cases in the above sense exist. This leads to the question of which test

selection strategies are able to select good test cases. An abstract model of test selection

was created by Weyuker and Jeng [150] to compare random testing to partition-based

testing. Partition-based testing according to Weyuker and Jeng is an abstraction of

equivalence partitioning in Section 2.1.2, where an arbitrary criterion can be used for

partitioning. Thus, partition-based testing is not only part of the input domain-based

test selection techniques, but other test selection techniques also inherently partition

the input domain. Based on the test selection categories introduced in Section 2.1.2,

43
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these include code-based and usage-based among others. When selecting test cases

according to code-based techniques, the input domain of the program is partitioned

according to the paths taken through the programs concerning the control or data flow.

In usage-based techniques, the input is partitioned into blocks with respective usage

frequencies and the number of test cases picked from each block depends on its usage

frequency. Thus, Weyuker and Jeng deliberately choose partition-based testing for its

generality. As random testing can be seen as the gold standard of testing with (almost)

no test derivation effort, it is the obvious choice as a baseline test selection technique.

Thus, any test selection technique with test derivation effort should be better than

random testing to be worth the test derivation effort.

For comparison, they define a program P to have an input domain D of size d, m

failure-causing inputs of D with d >> m and a failure rate of θ = m/d. For random

testing, they perform the test selection based on a uniform distribution as related work

does so as well and “using a uniform distribution seems most appropriate” [150]. For

partition-based testing, they partition D into non-empty pairwise disjoint subsets called

blocks D0...Dk, where 0...k is the identifier of the block and i ∈ 0...k. Let di be the

size, mi be the number of failure causing inputs and θi = mi/di be the failure rate

of each block Di. As quality criterion, they choose the probability to select / detect

at least one failure-causing input with n test cases while at least one test case (i.e.

input) must be selected per block. For random testing, this probability is expressed by

Pr = 1− (1− θ)n. For partition-based testing, it is Pp = 1−
∏

1≤i≤k(1− θi)ni , where

the number of test cases selected per block ni must be larger than 1 and the sum of

all ni must be n
(∑

1≤i≤k ni = n
)

. Using their model and quality criterion, Weyuker

and Jeng’s result is that “partition-based testing can be better, worse, or the same as

random testing” [150]. As an example, let d be 100, m be 8 and n be 2 to demonstrate

the three cases. Firstly, partition-based testing is the same as random testing when

θ1 = θ2 = 4/50 and n1 = n2 = 1. This is obvious as all failure-causing inputs are

uniformly distributed in both blocks. Secondly, partition-based testing is worse than

random testing when θ1 = 8/99 and θ2 = 0/1 and n1 = n2 = 1. In this case, one test

case is wasted on a block with no failure-causing inputs. Thirdly, partition-based testing

is better than random testing when θ1 = 0/92 and θ2 = 8/8 and again n1 = n2 = 1.

This input space partition successfully captures all failure-causing inputs in one block

and at least one failure causing input is always detected.

These results are interesting as they suggest a test selection technique to be effective

only if it takes the distribution of failure-causing inputs into account. Thus, there

must be a frequency of usage giving faults an inherent severity (e.g. usage-based or

requirements-based test selection) of a fault hypothesis. As a result of selecting test

cases by frequency of usage, the number of faults does not necessarily decrease, but

the severe faults in the most used features are detected decreasing the system’s failure

rate in the field. A fault hypothesis is an assumption as to which inputs are (likely)

failure-causing possibly derived from knowledge and experience. This assumption may
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originate from knowledge and experience or may just be pure speculation/guessing.

Albeit, it appears to be the central ingredient in several test selection techniques

known to select good test cases. As an example, error guessing (see Section 2.1.2)

inherently selects test cases based on the hypothesis of certain inputs to be (likely)

failure-causing. Also, limit testing has the fault hypothesis or encapsulated knowledge

of faults occurring at the boundaries of blocks and there is at least anecdotal evidence

of its effectiveness. The same argument also applies to the static analysis techniques

of reviews/inspections. These techniques can check lists or even defect taxonomies

to partition human-readable artifacts based on a fault hypothesis. Thus, some test

selection techniques appear to have encapsulated knowledge and experience yielding

a fault hypothesis at their core.

An interesting aspect of input space partitions created by code-based techniques

(i.e. control-flow/data-flow coverage) is the conclusion that they can be better, worse

or the same as random testing according to the model of Weyuker and Jeng [150].

Thus, according to Weyuker and Jeng, the effectiveness of code coverage-based test

selection criteria is questionable. However, the model of Weyuker and Jeng makes

several inherent assumptions (e.g. uniformly selected test cases in random testing)

and uses a debatable quality criterion affecting its generalizability.

Inozemtseva and Holmes [77] summarize previous studies concerning the effec-

tiveness of tests selected based on code coverage criteria and perform their own study.

The results have been mixed and including their own study, there are 5 studies finding

a correlation between code coverage and test suite effectiveness, 2 that do not and 5

inconclusive ones. Thus, the effectiveness of test cases selected by code-based tech-

niques remains disputed and it is questionable whether code-based techniques are able

to derive good test cases. If the distribution of failure-causing inputs must be taken

into account for a test selection technique to be effective and code-based techniques

do not take this into account, this may explain the inconclusiveness.

Based on the considerations of the distribution of failure-causing inputs and the

requirement of a fault hypothesis to create effective test cases, the following section

provides a key to understanding the knowledge and experience encapsulated in some

test selection strategies to select good test cases called defect models. They yield the

foundations for the defect-based quality assurance approach presented in this thesis.

We formally capture the notions of fault (1) and failure-provoking (2) test selection

(i.e. test cases created with an underlying fault hypothesis) defining fault (1) and

failure models (2) as the two kinds of defect models for fault-based and failure-based

testing respectively. To arrive at generic defect models and gather related work, we

perform a literature survey in the area of defect-based quality assurance explicitly

using the term “fault model” . To evaluate the generality of our defect model, we show

all findings in literature to be instances and give a notion to their operationalization.

Finally, generic guidelines to the operationalization of defect models for the derivation

of (semi-)automatic test case generators are given.
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Figure 3.1: Position of the generic defect model chapter in this thesis

This chapter represents the formal foundations to capture defect knowledge for its

(semi-)automatic operationalization shown in Figure 3.1 in the defect model lifecycle

framework. It is based on previous work [128, 129] emerging from a cooperation

between the supervisor and the author of this thesis.

3.1 Definition

Acknowledging the need for fault hypotheses in quality assurance, we aim to define a

construct to capture these fault hypotheses and to operationalize them automatically

in quality assurance. As this construct seems to be a model of the fault, we perform

a literature survey in the area of quality assurance for the term “fault model”. This

survey yields that the term fault model is already commonly used by authors to express

the notion of a fault hypothesis. Two common patterns are typically exhibited:common
patterns to

describe fault
models

the

authors either state the faults in the SUT to be of a certain nature (e.g. “fault x, y and z

are detected by our approach”) or state how failures are provoked (e.g. “our approach

uses data a to make the system fail”). However, the authors never state “a fault model

is” and give it a definition. Thus, there is no comprehensive definition of the term fault

model available. Considering the fault hypotheses above and the literature survey, a

generic definition must encompass the fault hypotheses, must have all existing fault

models as instantiations and provide a guide to their operationalization.

The existing definition of Martin and Xie states that a fault model isexisting fault
model

definitions

“an engineering

model of something that could go wrong in the construction or operation of a piece of

equipment, structure, or software [103].” Harris states that a fault model associates a

potential fault with an artifact [64]. Both definitions are rather abstract and describe

faults of any activity during the software engineering process or even during deploy-

ment. However, the aforementioned descriptions are too general as they encompass

also process-related aspects. In contrast, the definition by Bochmann et al. [22] says



3.1. Definition 47

that a fault model “describes a set of faults responsible for a failure possibly at a higher

level of abstraction and is the basis for mutation testing”. This definition is related to

quality assurance and the first common pattern above. However, it is still too abstract

and circular to encompass the fault hypotheses and have the existing fault models as

instantiations. Thus, we will give a definition of fault model encompassing the first

common pattern and failure model encompassing the second in the following. Both

comprehensive definitions of fault and failure model form the generic defect model.

3.1.1 Prerequisites

One of the goals of a generic defect model for quality assurance is comprehensiveness

w.r.t. all artifacts created in the description of the system. On one hand, this requires

considerations of all executable artifacts related to testing activities. These are not only

executable programs, but also models for model-based testing. On the other, it also

requires non-executable human-readable artifacts related to review / inspection to be

considered. The commonality of all artifacts is their description behavior
description

of behavior, which

semantically creates an input/output relation. Thus, we refer to them as behavior

descriptions (BDs) containing a semantic function mapping inputs to outputs. For every

BD, we assume it is developed w.r.t. another behavior description (BD), a so-called

specification specification. Syntactic representations of BDs form the set B; syntactic representations

of specifications form the set S. Of course, B and S are not necessarily disjoint.

Given universal input and output domains I and O, both BDs and specifications

give rise to associated semantics

[[·]] : B → (I → 2O).

semanticsNote that this semantic function is in concurrence with the suggestion of Mills [113]

and Morell [116] with the extension that it supports non-determinism. For our pur-

poses, it is sufficient to define it as partial function with ∀b ∈ B.∀i ∈ dom([[b]]).[[b]](i) 6= ∅
where dom([[b]]) is defined as the domain of the behavior description. In case the be-

havior description does not produce an output for a given input i (i.e. the output is

defined, but empty), the output is an explicit {ε}.
correctnessA BD b ∈ B is correct w.r.t. or satisfies a specification s ∈ S iff dom([[b]]) ⊇ dom([[s]])

and ∀i ∈ dom([[s]]) : [[b]](i) ⊆ [[s]](i). This is denoted as b |= s. To grasp a global notion

of correctness, we assume the specification of a BD to be verified at a higher level and,

therefore, to be correct.

3.1.2 Faults

The definition of fault models in the following relies “on the inner structure of a behav-

ior description, and therefore can be associated with white-box testing strategies” [128].

Thus, we give a precise definition of fault before defining a fault model.

Faults faultare textual (or graphical) differences between an incorrect and a correct BD

and affect the inner structure of the BD. An incorrect BD can be turned into a correct BD
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by doing replacements that obliterate the respective differences. Vice versa, by adding

the differences to a correct BD, it can be turned into an incorrect one. The differences

themselves relate to elements in the BD. For a textual program, a character, line, block

or function may be replaced, while for a Matlab Simulink system lines and blocks may

need a replacement. For requirements artifacts, single sentences, paragraphs or section

may be replaced (e.g. in a clarification replacement).

Each fault belongs to a respective fault class. “A fault class K, drawn from a set of

failure and fault classes K , is a description of what has gone wrong or is considered

likely to go wrong in a (hypothetical) set of behavior descriptions.fault class K Examples include

a characterization of incorrect parts of a behavior description that lead to “division-

by-zero”, “stuck-at-one”, “null-pointer-dereferencing”, “array index overflow”, and so

on” [128]. Thus, we can categorize the replacements above by the classes of faults

they insert into BDs and characterize them by the transformationtransforma-
tion
AK

AK : B × B → 2B.

This transformation takes an arbitrary correct BD j and its specification s and returns a

set of incorrect BDs. The set of incorrect BDs is created by trying to inject every fault

in class K one or multiple times into j. Thus, AK is a fault injection operator, which

creates all combinations of incorrect BDs w.r.t. K, j and s. This injection may not

be possible if the syntactic element required to apply the transformation is missing.

However, the set contains versions of j that have elements added or omitted and

may not be compilable. The requirement that j be correct and s is its specification is

expressed by

(j, s) ∈ dom(AK)⇒ ∀i ∈ dom(s) : [[j]](i) ⊆ [[s]](i).

In order to be able to apply a single transformation of all transformations performed

by AK , we defined αK astransforma-
tion
αK

αK : B × B → B with αK(j, s) ∈ AK(j, s).

Note that, the sole injection of a fault does not mean that this causes a failure. There

could be fault handling routines or fault masking, which prevents the actual behavior

of the BD to be different to the intended one and creates an equivalent behavior

description. However, let αK only produce truly faulty BDs.

3.1.3 Failure-Causing Inputs

For failure models the definition relies exclusively “on the externally visible interface

of a system, and can therefore be associated with black-box testing strategies” [128].

Thus, we give a precise definition of failures/failure-causing inputs before defining

failure models.

Recalling the definition in Section 2.1.1, a failurefailure is the deviation between expected

and intended behavior. Failures are caused by giving a failure-causing input to a BD
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and detected when the resultant behavior is compared to the behavior defined in the

specification s. In general, the cause of a failure is a non-empty set of faults, which

may not be characterized before performing debugging/fault localization activities. All

failures can also be categorized into failure classes. “A failure class K, drawn from

the above set of failure and fault classes K , is a description of what can go wrong

while executing a (hypothetical) set of behavior descriptions, as opposed to what

can go wrong in one specific behavior description. Examples include the semantics

of behavior descriptions that lead to “division-by-zero”, “stuck-at-one”, “null-pointer-

dereferencing”, “array index overflow”, and so on” [128].

For (hypothetically) characterizing the non-computable set of all failure-causing

inputs, let failure-
causing input
set ϕϕ(j, s) = {i : i ∈ dom(s) ∧ [[j]](i) 6⊆ [[s]](i)}

be the set of inputs leading to incorrect behavior with BD j developed according to

specification s. The result of ϕ(j, s) then is one block of an input space partition with

two blocks, where the other block is the set {i ∈ I : i /∈ ϕ(j, s)}. This input space

partition then has one block of inputs leading to correct and one block of inputs leading

to incorrect output(s).

3.1.4 Fault models

We define a fault model fault modelas (1) a descriptions of the difference between a correct BD and

a BD that contains one instance of fault class K and (2) a resulting set of failure-causing

inputs caused by instances of fault class K. More precisely, the application of αK to

(b, s) with b |= s yields a b′ with b′ 6|= s and b′ contains one instance of fault class K.

This definition concurs with the definition of a fault in Section 2.1.1 of a fault being

the underlying reason for a failure. αK (or only a fault pattern in its image) creates a

respective induced failure domain, which is characterized by

ϕK(j, s) = ϕ(αK(j), s)

with (j, s) ∈ dom(αK). ϕ(αK(j), s) then contains all inputs, for which αK has modified

the path through the BD j. For a program or system, it is the execution path. For the

requirements and architecture, the workflows through a use case or the interactions

between the components are the path respectively. As the modification and the

underlying fault is known, fault models capture faults and allow the creation of test

cases by characterizing the failure domain.

3.1.5 Failure models

We define a failure model failure modelas set of failure-causing inputs caused by a failure class

K. More precisely, it is exactly the set ϕK(j, s) with BD j developed according to

specification s. As the specific underlying fault is unknown, failure models capture
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methods to provoke failures. Thus, failure models inherently characterize the failure

domain and allow the selection of failure-causing inputs for test cases. However,

ϕK is generally not computable, which requires using its approximation for test case

derivation.

3.1.6 Approximations

αK or its induced failure domain ϕ(αK(j), s) are typically not computable. This is

due to the undecidability of program equivalence/non-equivalence and a possible

infinite number of paths. Thus, approximations are required.approximated
fault / failure

model

For a given BD b

and a specification s, let α̃K describe an approximation of αK , and let ϕ̃ and ϕ̃K

describe approximations of the failure domain. They are approximations in that

dom(αK) ∩ dom(α̃K) 6= ∅ and ∃b ∈ B : αK(b) ∩ α̃K(b) 6= ∅. This formal definition

is rather weak. The intuition is that α̃K should be applicable to many elements

from dom(αK) and that, for a large class of BDs B′, the result of applying α̃K to

b′ ∈ B′ coincides largely with αK(b′). Because α̃K is an approximation, these induced

partitions may or may not be failure domains w.r.t. the considered specification. For ϕ

and ϕ̃, there are no restrictions and they may be completely different sets. An example

is presented in the following section.

Example

Approximation α̃K can be over-approximations that may contain fault-injected BDs

(mutants) that do not necessarily contain faults or even are equivalent to the original

BD; under-approximations that yield fewer mutants due to the omission of some

transformations; or a combination of both. As an example, consider the class of off-

by-one faults K, where a boundary condition is shifted by one value due to a logical

programming mistake. For off-by-one faults an exemplary αk transforms a relational

operator into a different one or transforms the afterthought of a loop such that the

loop is executed once too often.

To demonstrate over-approximation, α̃k transforms the BD b with the fragment “if

(x<=50) { if (x==50) {” into a set of BDs. This set includes the BD b′, in which only

the aforementioned fragment was transformed into “if (x<=50) { if (x>=50) {”.
b′ is semantically equivalent to b and not faulty. Thus, the set of BDs created by α̃k is

larger than the set of BDs created by αk (which by definition, contain faults of class k).

To demonstrate under-approximation, one possibility is to limit α̃K to consider only

relational operators and not other operators (e.g. ++) for off by one faults. Then, the

set of BDs created by α̃k is smaller than the set of BDs created by αk and there would

indeed be further faulty BDs than created by α̃k.

For ϕ̃ an over approximation creates a larger set of inputs than actually cause

failures. This can be the case when the fragment in b is unable to produce a failure

(e.g. due to a guard), but inputs to reach the fragment are added to the set. In an
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under approximation scenario of ϕ̃, actually failure-causing inputs are not added to the

set. This is the case, if the path constraints to reach the fragment in b with symbolic

execution (see Section 2.2) is not solvable with current constraint solvers.

Note that in the case of α above, the transformation is required as failure-causing

inputs depend on the original relational operator and its replacement (e.g. replacing

== with >= yields a different failure domain than replacing it by !=). In some cases of

K only the image of α̃K is required as the fault is independent of the transformation

(i.e. its inverse image does not matter as the image will always cause a failure). This

is the case for K being the class of faults leading to run time failures. As an example

the fragments “a = b / c” and “a = b + c” may already fail, if (1) a, b and c have

an integer data types and (2) a value of 0 for c in the first fragment and MAX INT for

a and b. Thus, operationalizations of defect-based quality assurance based on fault

models do not always require α̃K , but are able to use the image of α̃K as a form of

fault patterns always leading to undesired behavior (see 8Cage in Chapter 5 for further

examples only using the image of α̃K).

3.1.7 Effectiveness of Defect Models

Using defect models (i.e. fault or failure models) for test case derivation directly targets

the fault or failure classes captured by these models. Defect models hypothesize what

could go wrong. Thus, the captured classes of faults or failures are close to “what goes

wrong”. In this case, the derived test cases are likely to detect a fault and fulfill the first

part of the definition of a good test case above. Intuitively, the better a defect models

captures problems (“what goes wrong”) in practice, the more effective it is.

Formally, we can re-use the model of Weyuker and Yeng [150] at the beginning of

this chapter for the considerations on effectiveness by comparing defect-based testing

with random testing. Again, random testing is the gold standard of software testing as

it requires (almost) no test derivation effort. For the comparison, we need to adjust

the formulas of Pr to Prnd and Pp to Pdefect in Chapter 3 to defect models. Pr concerns

randomly (uniformly) sampling n elements from the input space of a BD b written to

specification s. Let an arbitrary fault class L give rise to the failure domain ϕL(j, s).

Then, the probability of causing at least one failure with n tests (with redrawal)

resulting from possibly multiple faults of fault class L and under the assumption of

uniformly distributed failure-causing input is [150]

Prnd(b, s, n, L) = 1−
(

1− |ϕL(b, s)|
|dom([[b]])|

)n
.

Note that, in the comparison, we use ϕL(b, s) and not its approximation ϕ̃L(b, s)

to get a clear hypothetical picture of the comparison. In reality, it is not computable

and would make testing expendable. For defect-based testing in the model of Weyuker

and Yeng [150], the sampling is performed using ϕL(b, s) leading to the probability to
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provoke at least one failure of

Pdefect(b, s, n, L) = 1−
(

1− |ϕ̃L(b, s) ∩ ϕL(b, s)|
|ϕ̃L(b, s)|

)n
.

By analogy to Weyuker and Yeng [150], the effectiveness of a defect model for defect

class L (i.e. fault class L or failure class L respectively) applicable to a behavior

description b and a given specification s “iff random testing is significantly worse than

defect-based testing”’ [128]. Formally, this condition can be expressed as

Prnd(b, s, n, L)� Pdefect(b, s, n, L)

, or in an extended form as

|ϕL(b, s)|
|dom([[b]])|

� |ϕ̃L(b, s) ∩ ϕL(b, s)|
|ϕ̃L(b, s)|

.

As given by intuition, “a defect model is effective if the average failure rate of the

behavior description is far smaller than the average failure rate in the set ϕ̃L” [128].

The same holds for the approximation ϕ̃L and modeling the above in the model of

Gutjahr [62]. Note that, the number of test cases being drawn is obviously negligible,

if the same number of test cases is drawn. Thus, we can assume n to be fixed in the

following.

One consideration implicitly addressed above is the applicability of a defect model.

Run time failures, such as arithmetic overflows are safely handled by floating point

data types and access violations are not expected when programming purely in Java.

Thus, “Effective fault models for a domain-, company- or technology-specific set of

specifications S ⊆ B are defined using a (hypothetical) set of behavior descriptions

BS ⊆ B realistically written w.r.t. these specifications S” [128]. This grounds the

reasons for the variation points of defect models to be exactly domain, test level and

application in the defect model lifecycle framework (see Section 1.4).

To reason the number of specifications from S (including all accordingly developed

behavior descriptions) for which the effectiveness of defect-based testing is significantly

higher than or at least equal to random testing, the following equation is defined

in [129]

nS =
∣∣∣{s ∈ S :

∣∣{b ∈ BS : Pprt(b, s, L)� Prnd (b, s, L)
}∣∣

�
∣∣{b ∈ BS : Pprt(b, s, L) 6� Prnd (b, s, L)

}∣∣}∣∣∣
Thus, “a specific defect model is effective if this number is “high” for a given class of

specifications S that define a domain of interest” [128].

Considering the number of specifications from S above, nS must be far larger than

the number of specifications from S for which the defect model is not effective to be

an effective defect model.

nS �
∣∣∣{s ∈ S :

∣∣{b ∈ BS : Pdefect(b, s, L)� Prnd (b, s, L)
}∣∣

6�
∣∣{b ∈ BS : Pdefect(b, s, L) 6� Prnd (b, s, L)

}∣∣}∣∣∣.
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This definition of defect models is based on [128, 129], who state that “intuition

that a defect model is “better” if it is more generally applicable, that is, if many

realistic behavior descriptions from a given domain potentially contain instances of the

respective defect class.” This result points to the relevance of certain faults in certain

domains could be demonstrated using defect models ex post to quality assurance. This

gives rise to the idea to use defect models for the classification of test cases as defect

models naturally are able to give the target/purpose of a test case. However, this

classification is not fully automatable.

Note that, using the definition of the generic defect model and all considerations,

empirical demonstrations of effectiveness could already lead comprehensive effective-

ness results for one specification by selecting only one accordingly developed behavior

description. However, the approximation α̃ and ϕ̃ are likely dependent on the be-

havior description used to obtain the results. Thus, a representative set of behavior

descriptions must still be chosen for an empirical evaluation.

The considerations above yield effectiveness for defect models iff they detect any

faults. This is not very realistic as faults endangering the safety may be more critical

than simple typos giving a warning in a log file. To take the severity into account

Pretschner [128] defines a fault classification with a respective cost function. This

allows risk-based quality assurance using defect models and, if a classification of test

cases using defect models is used, to assess consequences of any test case failing.

3.2 Instantiation

In the previous section, a generic defect model was defined to capture the fault

hypothesis based on knowledge and experience and the result of the literature survey.

To demonstrate the usefulness of the generic defect model, we show existing fault

and failure models (i.e. the related work) to be an instance of it in this section.

Particularly, we formalize existing defect models and, therefore, are able to reveal their

encapsulated knowledge and experience concerning their described defects. If we can

show existing fault and failure models to be instances, (a) the generic definition is

capable of capturing fault hypotheses and (b) its operationalizations are able to perform

defect-based quality assurance. To this end, our literature survey considers existing

fault and failure models explicitly stated as such in the area of quality assurance. Of

course, there are many more defect models in literature and practice. However, our aim

is to survey a representative set and give an idea how defect model instantiations are

mapped back to the generic defect model in different areas of quality assurance. Since

some of the stated fault models are failure models according to our definition, these are

introduced as failure models. Although literature concerning reviews and inspections

does not contain the key words of fault or failure model, we include reviews and

inspections in the instantiations to also describe instantiations in this area of analytic

quality assurance. This list is not intended to be exhaustive of all possible defect
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models, but aims to guide the casting of other defect models in literature and practice

into our generalization.

The instantiations are described using the respective α, ϕ, and their approximations.

α̃ describes a fault as a (possibly higher order) mutant. ϕ̃ defines a set of failure-

causing inputs. We assume that the BDs are correct w.r.t. their specification before the

transformation α̃ and incorrect afterwards as mentioned in the definition.

3.2.1 Stuck-at

The stuck-at fault model [111] is known for automated test pattern generation in

the hardware industry. It assumes that a manufacturing defect is present in one or

multiple logic gates or subcircuits such that regardless of their input, their output

is always the same. The transformation α for stuck-at is the transformation of one

circuit into another circuit where one subcircuit is replaced by 1 or 0. For our purposes,

this replacement can equivalently be performed at the level of logical formulas f that

represent equivalent circuits. For each application of α, that is, each element that is

picked by α, ϕ then add the inputs {i : [[f ]](i) 6= [[α(f)]](i)}. Operationally, depending

on the formalism used, a SAT solver is adequate to compute ϕ̃ for a specific circuit.

As an example, assume a function (a circuit) f = (a∧ b)∨ (b∧ c). As one exemplary

stuck-at-0 fault, α introduces a permanent output of 0 for the subformula (the gate)

b ∧ c, that is, α(f) = (a ∧ b) ∨ 0. It is easy to verify ϕ̃ yields (a = 0, b = 1, c = 1).

3.2.2 Division By Zero

Division by zero is a classic fault in many BDs. It typically happens if developers do

not perform input sanitization (i.e. check for a value of 0 for the divisor) prior to a

division, or when the value 0 for the divisor was not assumed possible in the BD’s

context. Let us concentrate on the former case (and this in itself is an example of how

to under-approximate α by some α̃). The transformation α̃ removes the sanitization

mechanisms (if they exist) from BD p. The resulting ϕ̃ is {i : [[p]](i) 6= [[α̃(p)]](i)}
representing all inputs causing the divisor to be 0 at the point of the division.

For a BD pd with input parameter i and pd = fx(i)/fy(i) developed according to

specification s to divide two integers, let α̃(pd) = fx(i)/fz(i) be the replacement of the

function fy including some sanitization mechanism by an fz without sanitization. Then

the result of ϕ̃(pd, s) is {i : [[f−1
z ]](i) == 0}. Operationally, depending on the formalism

used, a symbolic execution tool is an adequate tool to compute some ϕ̃ for a specific

BD and a specific set of mutation operators.

3.2.3 Mutation Testing

While mutation testing aims at assessing test suites and targets small syntactic faults,

mutation operators do describe fault models that we can use for our purposes (for
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instance, Ma et al. provide several direct relationships between some mutation opera-

tors and faults [102] where the coupling hypothesis appears immediately justified).

Mutation operators are intuitively captured by our transformation α—in fact, we see α

as a reasonable higher order mutation operator. Since α is applied to a program, the

general considerations of Section 3.2.2 with the resulting ϕ̃ of {i : [[p]](i) 6= [[α(p)]](i)}
also apply here. Consequently, symbolic execution tools are promising for computing

ϕ̃.

As an example, take a program pm with specification s and input parameter x and

pm = 1 if x < 10 and pm = 0 otherwise. Using a mutation that transforms < to ≤, let

α(pm) = 1 if x ≤ 10 and α(pm) = 0 otherwise. Then ϕ̃(pm, s) = {10} for the input

domain I as only the path for input 10 changed for pm.

3.2.4 Finite State Machine Testing

In finite state machine (FSM)-based testing, typical fault models are based on output

and transfer faults. As one typical example that easily generalizes, let us consider BDs

in the form of deterministic Mealy machinesM such that each M ∈M is a sextuple

(Σ,Γ, S, s0, δ, γ) where Σ and Γ are input and output alphabets, S is the set of states,

si ∈ S is an initial state, δ : S × Σ → S is the transfer and γ : S × Σ → Γ the output

function.

Output faults occur when a transition yields a different output than specified in

the output function. This deviation is the result of the transformation αo : (S × Σ→
Γ)→ 2S×Σ→Γ′ which models faults in the same way as in the stuck-at fault model (see

Section 3.2.1: for a given transition, the correct output is mapped to another, incorrect

output from a set Γ′ ⊇ Γ). Analogously, transfer faults lead the FSM into a different

state than specified in the transfer function, αt : (S × Σ→ S)→ 2S×Σ→S′ with S′ ⊇ S
since the destination state of a transfer fault may be a new state not in the design of the

original FSM [22]. In the following, we assume that the definitions of αo and αt are

lifted to entire machines in the obvious way, that is, αo and αt are of typeM→ 2M.

In the remainder of this paragraph, α refers to both αo and αt.

Finite traces [[M ]] ∈ Σ∗ → Γ∗ for a M ∈M are pairs of (input, output) sequences

that we assume to respect the transfer and output functions in an intuitive way (that

is, they induce state changes that are captured by δ, and they model γ). ϕ then yields

{i ∈ Σ∗ : [[M ]](i) 6= [[α(M)]](i)}, which defines all those traces that are different in M

and α(M) – these are the traces that exhibit faults.

Generally speaking, model checkers and dedicated algorithms on graphs are ade-

quate tools for computing approximations ϕ̃.

Several related fault models have been described in the area of object-oriented

testing [20] that model objects as finite state machines. One of them is sneak path,

which describes that a message (i.e. a composite input) is accepted although it should

not be. In the notion of an FSM, a sneak path is a an additional transition in the
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transfer function and can be modeled by αt : (S × Σ → S) → 2S×Σ→S′ as described

above.

Similarly, a trap door is the acceptance of an undefined message (i.e. a new letter

in the alphabet), which causes the system to go to an arbitrary state. Intuitively,

αt : (S × Σ→ S)→ 2S×Σ′→S′ reflects a trap door by introducing a new character to

the alphabet Σ′ ⊇ Σ and a new transition leading to a possibly new state in S′ ⊇ S.

This category of fault models can also be transferred to the area of feature transition

systems of product lines, where they are also able to modify events [46].

3.2.5 Object-oriented Testing

For object-oriented testing, there are fault models catering to subtyping and polymor-

phism [121] in object-oriented programming. These are, for example, state definition

anomalies (pre or post conditions are possibly violated by subtypes) or anomalous

construction behaviors (i.e. the subtype shadows variables used by the constructor of

the supertype). The general considerations for both fault models can be described by

using transformations similar to α from Section 3.2.2, but at the level of pre- and post

conditions rather than at the level of code.

For a state definition anomaly, let a class C contain a method pCsda(x ) = f (x );

v := x{v 6= NULL}; with post condition v 6= NULL for some instance variable v, and

a method qCsda(x , z ) = pCsda(x ); if z then {v 6= NULL} g(v); where the precondition of

function g is assumed to require the argument to be different from NULL. Class C ′

is a subclass of C where pC
′

sda(x ) = pCsda(x ); h(x ){true}; overrides method pCsda in C ′.

If the post condition of h in the definition of pC
′

sda(x ) does not imply v 6= NULL, then

the inherited qC
′

sda(x, z) = pC
′

sda(x); if z then {v 6= NULL} g(v); causes problems if the

precondition of g is not met.

There are many different ways of violating pre- or post conditions, and it seems

unlikely that these can be comprehensively captured by patterns of textual modifi-

cations of code. However, the modification of explicitly provided or inferred pre- or
postconditions can be specified using α, the domain of which is inherited functions only;

in our example, qC
′

sda(x) is the only one. One possibility then is that α(qC
′

sda(x)) computes

to pCsda(x); if z then {v == NULL} g(v); by modifying the precondition of function

g. Intuitively, this models the possibility that an inherited function leads to a state

where the specified precondition of g cannot be satisfied. If they exist, ϕ̃ yields {(x 7→
i, z 7→ true) : i ∈ N and v == NULL before g is executed from within qC

′
sda(x))} and

all entries of the set would then provoke a failure when applied to method pC
′

sda of an

object of class C ′. Possible technology for computing ϕ̃ includes symbolic execution.

3.2.6 Aspect-oriented Testing

The use of AOP has been shown to induce specific faults [29]. One such fault model

concerns the failure to establish expected post-conditions and preserve state invariants.
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The post-conditions and state invariants introduced in the basic functionality are

contracts that should be preserved in the weaved code. This fault is analogous to

object-oriented testing where it can be caused by inheritance (see Section 3.2.5).

A second fault model consists of incorrect changes in the exceptional control flow.

Whenever features having their own exception handling are introduced, an exception

may trigger the execution of a different catch block than the one intended by the basic

functionality. For this fault model, let pa = try{fx(x); } catch (Exception e){fe(e); }
try{fy(x); } catch (Runtime− Exception ex){fex(ex); } with input parameter x be a

program with exception handling fe for the original functionality fx and exception

handling fex of an introduced feature fy. Also let α̃(pa) = {try{fx(x); fy(x); } catch

(RuntimeException ex{fex(ex); } catch (Exception e){fe(e); }} be the transformation

of pa, which merges both try/catch blocks and extends the exception handling. Then,

the result of ϕ̃ contains inputs triggering a runtime exception (or one of its subtypes)

in fx to let fx use exception handling fex instead of the intended fe. Again, symbolic

execution tools can be used on the program to compute ϕ̃.

3.2.7 Performance Testing

One fault model—there are multiple others—for performance testing [118] describes

one or multiple hardware component failures or malfunctions causing the BD to have

a degraded performance. Such failures or malfunctions could be related to hard drive,

network or memory problems. If we model the hardware and software as an FSM, then

the transformation α can simulate a malfunction by removing states and transitions to

these states. Thus, α requires the system to take more transitions thereby taking more

steps for the same computation or blocks the system from ever reaching its desired

state causing a failure. Precisely this modification of the transfer function is shown in

the FSM fault model in Section 3.2.4.

3.2.8 Concurrency Testing

Fault models concerning in testing concurrent systems regard atomicity and order viola-

tions [99], in addition to deadlock and livelock problems. For an atomicity violation the

developer did not implement a monitor (or implemented it in the wrong way). Let m be

a monitor and patom = monitor lock(m); fx(x); monitor unlock(m); ||monitor lock(m);

fy(x); monitor unlock(m); with input parameter x be a program using this monitor and

f ||g be defined as the execution of f and g in parallel. Also let α(patom) = fx(x); ||fy(x);

be a transformation of patom removing its usage of monitors. With the usage of concur-

rency, the semantics of the program are also influenced by the schedule of execution.

An atomicity violation typically changes the output of the program when using different

schedules while the input remains the same. Thus, the input space must be extended

by adding the schedule to the input vector. Then, the resulting ϕ̃ yields a set of those

inputs for which the output is different when only using a different schedule.
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For order violations the developer made a wrong assumption about the order of

execution of statements. No α is required as the developer assumed an execution order

s0, but did not enforce it. Thus, the set produced by ϕ aims to break the assumption

by executing all schedules different from s0 and checking whether the semantics have

changed.

3.2.9 Security Testing

In security testing, one approach to find faults w.r.t. given security properties (e.g.

confidentiality and integrity) using a formal system model is presented by Büchler et

al. [23]. The transformation α is reflected in semantic mutation operators (see Sec-

tion 3.2.3) for a model of the system. These operators modify the model such that

an assumed vulnerability in the respective implementation is present. α is therefore

described by these mutation operators. The idea to induce the failure domain ϕ is to

have a sequence of actions (i.e. a trace) that violate the security property. Practically,

this is performed by using a model checker to find this trace τ and executing τ on the

implementation of the system. Since the model checker may not return all traces in

useful time, ϕ must be approximated by ϕ̃ and ϕ̃ also contains these unknown traces.

Thus, ϕ̃ can be constructed in the same way as in Section 3.2.4.

3.2.10 Limit Testing

The well-known failure model of boundary value analysis (based on the category

partition method [122]) is underlying limit testing. As per definition of a failure

model, the transformation α is unknown (or, analogously, models all those possibilities

to get a BD’s treatment of limit values wrong). For the failure model, the set of

failure-causing inputs also called failure domain produced by ϕ̃ is described. In

this failure model, ϕ̃ requires an input space partition created from any criterion

(e.g. code-based test selection criteria). The resulting set of ϕ̃ is then produced

by an algorithm. Let γ be an input space partition for the domain D and partition

it into non-empty pairwise disjoint subsets called blocks D0...Dk, where 0...k is the

identifier of the block and i ∈ 0...k. In addition, let the elements of D as well as

each Di have a total order and the functions min and max determine the largest and

smallest elements of a given partition Di. Then the algorithm for ϕ̃ returns the set⋃
1≤i≤k{{i : i ∈ Di ∧ i = min(Di)} ∪ {i : i ∈ Di ∧ i = max(Di)}}.

As an example, let a partition with three integer blocks contain the numbers -

2,147,483,648 to 0, 1 to 100 and 101 to 2,147,483,647 in the respective blocks. ϕ̃

then produces the set containing the inputs -2,147,483,648 and 0 from the first, 1 and

100 from the second and 101 and 2,147,483,647 from the third block.
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3.2.11 Combinatorial Testing

The failure model of combinatorial, or n-wise, testing [89] states that only a combi-

nation of 2, 3 or n parameters causes a failure, but not all possible combinations of

parameters. It thus provides a test selection criteria requiring fewer test cases than

exhaustive testing (i.e. all combinations). Since this is a failure model, the ϕ̃ can be

computed using an algorithm. The algorithm for multi-way combinatorial testing is

called IPOG with its variants IPOG-D and IPOG-C formalized in Lei et al. [96] and Yu

et al. [154]. The result of ϕ̃ contains a minimal set of test cases covering all 2-way,

3-way or n-way interactions. Note that, there are multiple possible partitions and an

arbitrary minimal partition can be selected (e.g. in the case of 3 parameters with 3

values and all 2-way interactions to be tested, there exist 12 possibilities to select the

minimal number of test cases being 9) [96, 154].

As an example, reconsider function f from Section 3.2.1. One exemplary set of

inputs testing all pairwise combinations for f is (0,0,0), (0,1,1), (1,0,1), (1,0,0). This

set of inputs would find, but is not limited to, the faults described by the stuck-at fault

model.

3.2.12 Exploratory Testing

In exploratory testing (see Section 2.1.2), testers manually perform the task of test

case selection and execution at the same time on a system testing level. They use their

knowledge and experience leading to ad-hoc defect models. Most of the times failure

models are used since a fault hypothesis is hard to infer at the system testing level. For

other levels of testing, there is the concept of error guessing (see Section 2.1.2), where

fault and failure models are created ad-hoc.

For performing exploratory testing, Whittaker [151] gives explicit instruction in the

form of tours. Tours tell the testers to exercise certain functionality in a certain way

and some tours constitute failure models. For the Antisocial tour, the tester aims to

enter “either the least likely inputs and/or known bad inputs. If a real user would do

a, then a tester on the Antisocial tour should never do a and instead find a much less

meaningful input” [151]. Thus, the estimated failure domain ϕ̃ for the Antisocial tour

includes all unlikely/least likely inputs.

3.2.13 Reviews and Inspections

In contrast to the ability of software testing to reveal failures, reviews and inspections

reveal faults and have different reading techniques to do so. One of these reading

techniques is checklist-based reading/review and has inherent fault models. As is the

case with exploratory testing, checklists may contain simple questions such as checking

for a “shall” in each requirement as required by e.g. DO-178 [48]. However, they

typically also/only contain fault-based questions, which have been created due to defect

in the past. Many examples for fault-based checklists can be found in McConnell [112].
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These checklists target a plethora of systems as they are independent of specification,

domain, implementation language etc. of the system. Example questions are “Are all

inputs to the system specified, including their source, accuracy, range of values, and

frequency?” [112] or “Does the design have low complexity?” [112]. These questions

give rise to an α, which omits details about the inputs or increases the complexity

of the design of the system. The respective result of ϕ then are all inputs, for which

the omission of details or the increase of complexity makes a difference in output

or any non-functional requirement (e.g. performance). If certain parts of the BD

are known to typically contain defects, this can be used as a failure model. ϕ then

yields all inputs leading to these parts to focus the review particularly on these parts.

Thus, using α andϕ in such a way enables to focus on certain aspects of the BD under

review and inspection to particularly look for the defects described in the fault models.

In addition, only using ϕ enables to focus on particular parts of the BD described

in a failure model. Thus, operationalizations for reviews and inspections can never

completely automatically reveal the defect, but always point the software engineer

towards the defect. However, check lists can be constructed from the defect knowledge

by assembling all knowledge concerning the context of the system under test. If manual

effort of categorization is involved, this assembly can be (semi-)automatic.

3.3 Operationalization

The previous section showed the generality of the generic defect model by showing

a representative set of defect models from the literature to be instances of it. This

list does not claim completeness w.r.t all existing defect models, but we believe other

defect models to be castable into the instantiations above. To explicitly use defect

models in practice based on the generic defect model, the operationalization of the

described knowledge in automatic test case generators must be enabled. Particularly,

the test cases should be good test cases. Thus, they must directly target a fault and be

cost-effective. Paving the way for the operationalizations in the following chapters of

this thesis, this section characterizes the operationalization of the generic defect model

by defining generic operationalization scenarios. These generic operationalization

scenarios are then instantiated in the following chapters and their underlying defect

models are mapped back to the generic defect model. If such a mapping is possible, it

shows them to be operationalizations based on the generic defect models.

In general, operationalizations of defect models perform test input selection and

are different for fault and failure models. Both always require the availability of a

behavior description.

As fault models capture the underlying faults and faults are typically only known

on the lower levels of testing, they are mostly used on the unit testing level. The

operationalizations of fault models may require the availability artifacts such as a speci-

fication / model and may yield an oracle [128]. In contrast, failure models are typically
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used on the integration and system testing level as only the set of the underlying faults

(unless clearly visible) is known. In the following, four operationalization scenarios

are discussed and linked to the respective chapters.

In the first operationalization scenario, the behavior description is a model devel-

oped according to a specification, which is used for the manual derivation of source

code. The model is transformed by α to derive defect-based test cases for the source

code from the model. The transformed model contains typical faults resulting from

the manual derivation of source code. Obviously, it does not satisfy the specification of

the original model. Using the transformed model to generate test cases targets exactly

the introduced faults and executing them on the manually derived source code is able

to reveal them. An exemplary operationalization of this type is the security testing

performed by Büchler et al. [23].

In a second operationalization scenario, the behavior description is a model with

only an implicit specification of “no run time failures”, which is used for the automatic

derivation of source code. The operationalization assumes the transformation αK with

K being fault leading to run time failures has been applied to the model and looks for

its image (i.e. a smell/bug pattern). Upon finding the image, the operationalization

derives the source code and creates a test case targeting the exploitation of the pattern.

The test cases represent evidence for the existence of an actual fault by its execution.

An exemplary operationalization of this type is 8Cage for Matlab Simulink/Stateflow

models in Chapter 5.

In a third operationalization scenario, the behavior description is source code with

only an implicit specification of “no run time failures”. Again, the operationalization

assumes the transformation αK with K being fault leading to run time failures has

been applied and the implementation to contain faults. Using tool-based static analysis

with lint-like [81] tools as operationalization, potential faults can be located, but no

test cases are created. Using fuzzers [21] or symbolic execution tools (e.g. [25]) as

operationalization, the source/binary code can be executed, test cases created and

faults detected.

Finally, the operationalization scenario of failure models purely utilizes the in-

put/output relation of the behavior description as failure models capture test strategies.

These test strategies are typically given as an algorithm and can be directly imple-

mented by the operationalizations. Example operationalizations include (1) a plethora

of tools performing limit testing (e.g. [131, 146]), (2) tools to perform combinatorial

testing [63], (3) the integration system testing operationalization to detect superflu-

ous/missing functionality in components OUTFIT in Chapter 6, (4) the control system

testing operationalization called Controller Tester in Chapter 7. (1), (2), (3) and (4)

then create failure-based test cases.

For reviews/inspections, the fault and failure models can be used and are opera-

tionalized in defect-based check lists. One way to gain these check lists is using defect

taxonomies for requirements [54, 55]. These can be used for the early detection of
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requirements defects during an inspection of requirements using perspective-based

reading [138]. A second way is directly re-using the check lists by McConnell [112].

3.4 Conclusion

In this chapter, we started by defining a test case to be good, if it detects a potential, or

likely, fault with good cost-effectiveness. We also initially found some test selection

techniques to operationalize this definition speculating their encapsulated knowledge

and experience to lead to a fault hypothesis.

By understanding the encapsulated knowledge and experience and generalizing

the fault hypothesis to generic defect models, we are able to formally capture the fault

hypothesis. Defect model is the umbrella term for fault and failure model. Our fault

models consist of syntactic transformations (higher-order, or semantic, mutants) and an

input space partition. Our failure models consist only of an input space partition. While

fault models target specific (classes of) faults in the system, failure models capture

test selection strategies. The generality of this definition was evaluated by showing a

representative selection of existing fault and failure models (i.e. related work) attained

from a literature survey in quality assurance to be an instance of the generic defect

model. This selection is not intended to be exhaustive of all possible defect models

but aims to guide the casting of other defect models in literature and practice into our

generalization.

By operationalizing defect models, we arrived at defect-based quality assurance as

one way to derive good test cases / check lists. Particularly, the operationalizations

of defect models are automatic test case / check list generators directly targeting the

described faults/failures. For the operationalization of defect models, we describe

generic operationalization scenarios casting existing operationalizations into the sce-

narios and guiding the operationalization of defect models in the future. Particularly,

these scenarios pave the way for operationalization in the following chapters, where

operationalizations are created as a direct instance of the generic defect model. These

operationalization are evaluated for their effectiveness and efficiency and their defect

models are mapped back to the generic defect model casting them into defect-based

quality assurance.

The definition of fault and failure models has close relations to the field of mutation

testing (see Section 3.2.3) and its adjacent field of automated program repair [115].

By defining fault models with a transformation that is essentially a cleverly chosen

higher order mutant, we connected the notion of using fault injection for test case

assessment to using mutants for test case derivation. Whereas test cases in mutation

testing are generated to arrive at a test suite to kill all mutants [125], we create test

cases based on the assumption of mutation (i.e. fault injection) having indeliberately

been performed by the software engineer.
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In addition to its ability to derive good test cases, defect-based quality assurance

based on defect models yields several other advantages. These advantages concern

risk assessment (1), fault tolerance (2) and fault localization (3). For risk assessment

(1), the use of defect models can increase the probability of a particular targeted

class of faults to not be present in the system after testing. Fault tolerance (2) can

be evaluated by using defect models that target faults / failures handled by the fault

tolerance systems. It is also noteworthy that classes of faults / failures in fault /

failure models can be associated with the impairment of quality attributes in the

system (see Section 7.2 for examples). Thereby, testing using these defect models can

reduce the risk of impairment in the final product. When using fault models, the fault

localization effort (3) can be estimated and reduced since the transformations describe

what to look for and where.





4
Elicitation and Classification

The previous chapter on the generic defect model forms the foundations for a system-

atic and (semi-)automatic approach to defect-based quality assurance based on defect

models. By defining the generic defect model and creating generic operationaliza-

tion scenarios, it can be used to describe and operationalize defect knowledge. The

operationalization of defect models possibly requires the resource-intensive task of

implementing (and possibly maintaining) a piece of software for the generation of

test cases. Starting such a task requires the careful consideration of the involved cost

benefits. In the end, the operationalization of defect models is only cost-effective if the

described faults/failures are likely to be present in the system. To arrive at common

and recurring faults likely to be in the system, the defect model lifecycle framework

presents the deliberate activities of classification and elicitation (see Figure 4.1) in the

planning step to aid with this strategic decision.

Eliciting and classifying the “relevant” defects for specific contexts is crucial for

taking the decision whether to invest in the description and operationalization of defect

Figure 4.1: Position of elicitation and classification in this thesis

65
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knowledge using defect models. Therefore, the elicitation and classification activities

focus on common and recurring defects in the context of a project, organizational unit

or organization. To anticipate the effectiveness of defect models and rationalize the

strategic investment, defect elicitation and classification methods hence need to be

comprehensive and to allow for frequency, and possibly severity, assessments. Common

defects are a starting point to yield effective defect models as behavior descriptions

are more likely contain them. If these defects are then also recurring defects, the

investment into their (semi-)automatic detection yields recurring benefits.

Recalling the definition of defect from Section 2.1.1, a defect is an umbrella term

including all faults, errors, failures, bugs, and mistakes made when designing or im-

plementing a system. Similar to the notion of quality in general, which constitutes a

multifaceted topic with different views and interpretations [57, 88], defects and espe-

cially their relevance, too, are something relative to their context. That is, a defect that

might be critical to one project might be without relevance to the next. The systematic

integration of (domain-specific) defect detection and prevention mechanisms into the

quality assurance (QA) of particular socio-economic contexts, e.g. a company or a

business unit is therefore crucial.

The approach presented in this chapter is Defect ELIcitation and CLAssification

(DELICLA) and is based on [70] by the author of this thesis. It is an in-process elicitation

(i.e. eliciting defect models while products are being developed) and classification

approach for common and recurring defects. Particularly, DELICLA is a qualitative

method with particular focus on interviews for the data collection and Grounded

Theory for the analysis. One reason for relying on Grounded Theory coding principles

is the categorization as well as the possible elaboration of cause-effect relations for

defects. Once the defects are identified, they are integrated in a taxonomy: technical

or process-related. The qualitative nature makes the approach agnostic to specific

contexts/domains while, at the same time, always yielding context-specific results. By

relying on an adaptable defect taxonomy, we follow the baseline of Card [28] and

Kalinowski et al. [85], who note that it is beneficial to “tailor it to our [...] specific

needs”.

To evaluate of DELICLA, we perform a field study. We want to gain insights into its

appropriateness to (1) elicit and classify defects in specific contexts of different appli-

cation domains; (2) the extent to which it leads to results useful enough for describing

and operationalizing defect models; and (3) if there are immediate additional benefits

as perceived by practitioners. In the field study, we apply our DELICLA approach to

four cases provided by different companies. In each case, we conduct a case study to

elicit and classify context-specific defect classes. The goal of our study is to get insights

into advantages and limitations of our approach; this knowledge supports us in its

further development.
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4.1 Related Work

In the classification step of our approach, we provide a basic defect taxonomy /

classification. Efforts to create a standardized defect classification for the collection of

empirical knowledge have been made in the past [149]. However, there has not yet

been a general agreement as defects may be very specific to a context, domain or artifact.

This leads to a plethora of taxonomies and classifications techniques in literature and

practice. In the area of taxonomies, Beizer [17] provides a well-known example for

a taxonomy of defects. Avizienis et al. [8, 9] provide a three-dimensional taxonomy

based on the type of defect, the affected attribute and the means by which their aim of

dependability and security was attained. IEEE standard 1044 provides a basic taxonomy

of defects and attributes that should be recorded along with the defects. Orthogonal

Defect Classification (ODC) [32] is a defect classification technique using multiple

a-priori fixed classification dimensions. These dimensions span over cause and effect

of a defect enabling the analysis of its root cause. Thus, defect trends and their root

causes can be measured in-process. Apart from these general classification approaches,

there are approaches specifically targeting non-functional software attributes such as

security [7, 91, 92] or, based upon ODC, maintenance [100, 101]. Leszac et al. [97]

even derive their classification aiming to improve multiple attributes (i.e reliability

and maintainability). Our approach, presented next, deliberately chooses to employ a

minimalistic/basic defect taxonomy to stay flexible for seamless adaptation to specific

contexts and domains. Our lightweight taxonomy enables the approach to be in tune

with the expectations/prerequisites of our project partners (see RQ3 in Section 4.3).

In contrast to ODC, we are not generalizing our taxonomy to be “independent of the

specifics of a product or organization” [32], but rather require adaptability to context.

In addition, we do not aim to capture the effects of defects (other than the severity

where possible) as it is not required for the elicitation and classification of defects for

defect models. However, our taxonomy can be mapped to ODC’s cause measures by

(1) refining the categories of technical and process-related defects into defect types

and (2) using the associated tasks of the role of the interview partner as defect trigger.

The severity in our taxonomy can directly be taken in ODC’s effect measures, but other

required measures such as impact areas, “reliability growth, defect density, etc.” [32]

must be elicited in addition.

4.2 DELICLA: Eliciting and Classifying Defects

A first decision in the design of DELICLA was to use a qualitative approach for defect

elicitation and classification. The central aspect of our approach is further its inductive

nature where the focus is on generating theories rather than testing given ones. That

is, the approach makes no a-priori assumptions about which defects might be relevant

in a specific context, yet our hypothesis is that common and recurring defects exist in
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the context. In addition, we rely on circularity yielding further defects, if the approach

is repeatedly used in the same or similar contexts.

There exists a multitude of techniques employable in qualitative explorative ap-

proaches with the ability to take a defect-based viewpoint. These established techniques

have been explored with respect to three goals: (1) cost-effectiveness in their applica-

tion, (2) comprehensiveness in the obtained results, and (3) ability to establish a trust

relationship during the data collection.

Trust is important because humans generally are reluctant to disclose potential

problems in individual project environments [61, 85]. The assessed techniques include

techniques for document analyses, interview research, participant observation, and

creativity techniques such as brainstorming.

Since bug reports in a bug tracker directly represent defects, they provide a starting

point for the data collection. However, bug reports typically differ greatly in quality.

In addition, bypassing bug trackers, many defects are directly communicated to the

respective developers. This raises questions concerning the comprehensiveness of

this method. Nonetheless, as only the bug tracker database has to be examined, the

cost to perform this method is low, and trust does not need to be established with

project participants. However, customizing the in-process measurements of ODC using

additional fields in a bug tracker, may yield defect models after a (possibly automatic)

analysis.

The quality of results in brainstorming or focus groups is also questionable since it

is hard for humans to have an open discussion about their own software defects [61,

85]. This causes strong variations in comprehensiveness and lowers its cost-efficiency.

The required trust relationship can be established as these techniques are performed in

a closed environment with a moderator present.

The strong variations in comprehensiveness and cost-effectiveness also makes

participant observation questionable for the elicitation of defects for defect models.

The cost is low since work on projects can continue, but the results are limited to

the time given for the observation. Thus, this technique is unable to reflect about

past defects or speculate about future defects. However, a trust relationship to the

participants can be established as the observer is present.

The comprehensiveness of a questionnaire, and therefore its cost-effectiveness, are

also questionable. While the time to answer questions is limited, it does not allow to

get any follow-up explanation of the defect. Thus, the specific context of the defect can

possibly not be established. In addition, a trust relationship can’t be established due to

the lack of physical presence and eye contact [61].

Due to their ability to be comprehensive and the possibility to establish a trust

relationship [61, 73], personal interviews were chosen as technique in the DELICLA

approach. This allows to fully explore the participants’ perspectives in their context

while adopting their vocabulary. Using this technique in a semi-structured form yields
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the ability to guide the interview [61] along predefined questions without interrupting

their flow of words.

For the analysis of the collected data, we employed Grounded Theory [58] and

code the answers as described by Charmaz [30]. In a manual coding step, we code all

mentioned defects including their cause and effect. These codes are then organized in

a hierarchy representing a defect taxonomy. Following this form of open coding, we

apply axial coding to the results to explicitly capture relationships between defects as

well as possible causes and effects. In some cases, we apply selective coding to capture

possible causalities between defects. Our DELICLA approach consists of the three steps

explained next: (1) Preparation, (2) Execution, and (3) Analysis.

4.2.1 Preparation

The first activity in the preparation step is to create a pool of potential interview

candidates (i.e. the participants). Candidates are identified with the project partner

by focusing on their projects or domains of expertise. The selection of interview

candidates is performed by the interviewer or project partner yielding a variation

point. In case the interviewer is able to select the candidates, the context of the

study (e.g. the projects and teams focused on) and the expenditure of time for the

project partner must be exactly defined. Key aspects to consider before selecting any

interview partners are the organizational chart and the assessment of their potential

contributions by their managers. The order of interviews was from best to least

contributing according to the executives’ opinions; and lowest to highest branch in the

organizational charts [61]. When interviewing the best performing, the interviewer is

able to assess the maximum capabilities of team or project members thereby gaining

a perspective of what can be achieved. Subsequent to interviewing executives on

higher branches of the organizational chart, defects collected in lower branches can be

discussed and used to devise first indications towards future measures. Thus, even if

the project partner selects the interview partners, the interviewer should be able to get

an overview using an organizational chart and set the order of the interview partners.

After the interview partners have been selected, they are informed about the upcom-

ing interview and their required preparation. An interview preparation sheet is given to

them detailing the purpose of the interviews and the questions to be prepared. In our

studies, we used the open questions seen in Table 4.1 for preparation similar to those

presented by Charmaz [30]. An extension point are additional questions. Depend-

ing of the context, questions such as “How meticulously is the SCRUM methodology

followed?” may be added. When informing the interview partners, the responsibles

on the project partner’s side must also be named for potential inquiries of interview

partners about internal procedures. Interviews are not part of the everyday working

life of the interview partners and may cause feelings of nervousness to anxiousness. To

mitigate these feelings, the description of the purpose of the interviews is very detailed
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and emphasizes the defect-based view on tools, processes and people in defect models

for quality assurance.

Table 4.1: Instrument used for the interview preparation sheet.

ID Question
Q1 What are the classical faults in the software you review/test?
Q2 What does frequently/always go wrong? With which stakeholder?
Q3 What was the “worst” fault you have ever seen? Which one had the “worst” consequences?
Q4 Which faults are the most difficult ones to spot/remove?
Q5 What faults were you unaware of before working in your context?
Q6 What faults do you find most trivial/annoying?
Q7 What faults do engineers new to your area make?

Each interview requires 30 minutes for the preparation by the interview partner

and 30 minutes for the actual interview; usually a negligible amount of time. This

lets interview partners prepare so that they “can be prepared to speak directly to the

issues of interest” [61]. When planning the concrete times for the interviews, every

two interviews include a 30 minute break at the end. In case any interview takes more

time than expected, this break is used to prevent the accumulation of delay for the

following interviews.

The interviewer must also prepare w.r.t. the processes and tools employed by

the interview partners and their roles at the project partner. To establish the trust

relationship, an address of reassurance is prepared to be given before the interview.

In addition, the room is small and any distractions are removed. All technology used

during the interviews is tested beforehand and interviews are recorded as suggested by

Warren [61].

4.2.2 Execution

With trust and comprehensiveness of results our main objectives, we follow the basic

principles of interview research: At the beginning of the interview, the interview partner

and interviewer agree on a first name basis. This basis takes down psychological

walls and is a key enabler of an open discussion later in the interview. When sitting

down, the interviewer never faces the interview partner as it creates the sense of

an interrogation [61]. The interview starts with a short introduction consisting of

a description of the survey, its goals and the reasons for personal interviews. This

introduction aims to mitigate any fears and allows the interview partners to get used

to the interview situation. The interviewer can display knowledge and emotional

intelligence at this point by stating that elicited defects will be used rather than judged

for example. At the end of the introduction the way of documenting the interview

results is agreed upon. There, a trade-off might be necessary between recording the

interview results and manually documenting them; we experienced recordings to

threaten the validity by potentially influencing the behavior of the participants while

manual documentation might be prone to bias. In any case, the anonymity of the

analysis is guaranteed before the interview.
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Following the introduction is the description of the context by the interview partners.

This includes the tasks, activities and processes they are involved in. This part of the

interview is individual and helps the interviewer later in the classification of the

discussed defects. Questions such as “What are your inputs and outputs?” help the

interview partners to express their role, constraints, tasks and results toward the

interviewer. The semi-structured approach of the interview helps the interviewer in

this part as it allows for inquiries by the interviewers in case of unfamiliar terms and

concepts. This part is not described on the questionnaire as interview partners are

typically able to elaborate their work context. This also helps them to get into a flow of

words as “at a basic level, people like to talk about themselves” [61].

The core part of the interview is the discussion of defects including their description,

frequency and severity. Also the resulting failures and possible detection and/or

prevention techniques are discussed. Again, this part is individual, but is guided by the

questions on the interview preparation sheet. This guidance exploits the order in the

heads of the interview partners as they likely prepared the questions in the order they

were on the preparation sheet. At the end of the interview, an agreement of future

contact has to be reached.

In general, it is the interviewer’s job to keep up an objective atmosphere and tone. It

is hard for humans to admit defects and discuss them, but it is in fact the decisive point

of the presented approach. Thus, the interviewer must cater to the interview partner

using emotional intelligence. Additionally, “whatever the training and intentions of the

interviewer, the social interaction of the qualitative interview may unfold in unexpected

ways.” [61].

4.2.3 Analysis

The analysis of the interviews is used for the classifications of the collected defects.

Defects interesting for the description and operationalization of defect models are

common and recurring defects and defects with a high severity. To perform the classifi-

cation and go from defects to defect classes, the first step of Grounded Theory [58]

is employed. In that step, the recordings are coded in chronological order whereas

the codes are iteratively abstracted to categories eventually leading to a basic defect

taxonomy. Codes may also include contexts, roles and distinctions of the employed

quality assurance process. This helps the interviewer to capture “what is happening in

the data” [61]. After coding, all excerpts of the recordings are grouped by code and

reheard to focus on one particular defect and its context, origination and consequences.

In the classification, the basic taxonomy of defects contains two basic families

of defects: technical and process-related defects. Process-related defects concern all

methodological, organizational and process aspects (as defined by the defect causal

analysis [84]) and contain defects causing technical defects. Technical defects are

directly attributable to the product and are detectable by measures of quality assurance.

These two families of defects yield extension points. An exemplary extension could
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be tool-related defects or defects rooted in the behavior of humans. These can be

added dynamically and defects may belong to multiple classes depending on the

context. Recall that, we deliberately chose to “tailor [the taxonomy] to our [...] specific

needs”[28, 85] to stay flexible for seamless adaptation to specific contexts and domains

w.r.t. the creation of defect models.

After the analysis, we created a report summarizing the results to the project

partners and used it as basis for discussion in a concluding workshop. In this workshop,

we presented the results and the discussion yielded a last validation of the results w.r.t.

the expectations of the project partners. Afterwards, eligible defects for the creation

and operationalization of defect models were discussed and selected constituting a last

contact with the project partners to potentially initiate the development of tools based

on the defect models.

4.3 Field Study Design

We conducted our field study by relying in total on four cases. In each case, we follow

the same study design. In the following, we report on the design which we organize

according to Runeson et al. [133]

4.3.1 Research Questions

The goal is to investigate the advantages and limitations in the elicitation and classifica-

tion of defects for defect models using our DELICLA approach described in Section 4.2.

To this end, we formulate three research questions.

RQ 1 (Suitability):

What (kind of) defects can be elicited with the approach; what is the degree of

sensitivity to their context; and how comprehensive is the approach?

The core idea behind the approach is to elicit and classify common and recurring /

severe defects independent of the context it is used in while preserving the context-

dependent usefulness to adapt QA techniques to those defects. Hence, our first research

question targets the adaptability of the approach to different employment contexts and

its ability to always elicit and classify defects relevant to quality assurance independent

of context. In particular, it should not be affected by changes of domains (information

and cyber-physical), test / quality assurance levels (review, inspection, unit, integration

and system test) and project partner. Finally, we rate a defect as context-independent

if we find a relation to existing evidence in a given baseline. This means, if we find a

study that indicates to the same defect in a different context, we may assume that the

defect is context independent.
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RQ 2 (Operationalizability):

Can the results of the approach be used for the description and operationalization of

defect models?

The classification and elicitation of defects for defect models aims at their later

description and operationalization. Thus, the results of the approach must yield a basis

for decision-making to make the effort to describe and operationalize the respective

defect models and yield starting points for their description and operationalization.

This research question therefore aims at analyzing whether the basis of decision-

making and starting points are retrievable by the approach, thereby manifesting a

direct usefulness to project partners. We do not have a clear oracle to answer this

question.To answer the research question, we will therefore point to indicators for

successful description and operationalization of defect models based on our approach.

RQ 3 (Indirect short-term benefit):

Besides potential defect models and their operationalization, how valuable are our

results to the project partners?

When our approach has been applied, project partners are given a final report to

inform them about the results. This report contains all elicited and classified defects

as well as possible proposals for action. In addition to the value for defect models.

This research question targets the usefulness of the report in the eyes of those project

partners considering the time invested on the project partner’s side, thereby manifesting

the indirect benefit of the approach. Again, we do not have an oracle. However, the

quality of the results w.r.t. sufficiency and the cost-effectiveness can be rated by the

project partners based on subjective expert judgement and feedback gathered during a

concluding workshop.

4.3.2 Case and Subject Selection

We apply our process for the elicitation and classification of defect models to four

software development projects of different industry project partners (more details

in Section 4.4.1). We do not change our process throughout the field study to gain

comparable results, although this affects internal validity. The four projects were

chosen on an opportunistic basis. As we required real-world development projects

and project managers / members to agree, the process was performed when possible.

However, the chosen cases are suitable to answer our research questions if the selected

projects are distributed across different companies working in different application

domains.

4.3.3 Data Collection and Analysis Procedures

To collect and analyze the data, we use our DELICLA approach for the elicitation and

classification of defects as described in Section 4.2.
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To answer RQ 1, we list the top 14 defects (i.e. all defects mentioned in at least

two interviews within the same context) we elicited and classified and evaluate their

commonality in contrast with their context sensitivity. That is, for each defect, we

analyze whether it is context-dependent or context-independent if we find a relation to

existing evidence. As a baseline, we use the defects reported by Kalinowski et al. [85]

and Leszak et al. [97].

We also quantify the number of defects elicited and give an assessment as to

if the interviews allow for a comprehensive defect-based perspective on projects or

organizations. There is no clear agreement on a sufficient number of interviews in

general, but indicators toward sufficient numbers may be given [10]. For our cases, we

agree on the sufficiency of the number of interviews (43) when we observe a saturation

in the answers given, i.e. when no new defects arise. Saturation is taken as a sign of

comprehensiveness.

To answer RQ 2, we list indicators of tools and methods created from defects

classified and elicited with our approach. These tools and methods may not have a

fully formulated formal defect model description, but are able to demonstrate whether

(and how) results may be operationalized.

To answer RQ 3, we describe indicators of the quality of the results and the involved

costs by gathering expert feedback from project partners after performing our approach.

This feedback is a direct external grading of our approach by industry experts and

yields an assessment of its cost-effectiveness.

4.4 Case Study Results

We performed the case study in four different industry projects (settings) with different

industry partners. For reasons of non-disclosure agreements, we cannot give detailed

information on project-specifics and the particularities of context-specific defects.

However, we can state their domain, the number of interviews conducted and the

classes of defects.

The top 14 defects independent of their setting are shown in Table 4.2. The settings

and their respectively elicited and classified defects are shown in Figure 4.2. They are

grouped by our basic taxonomy defined in Section 4.2 into technical ( Figure 4.2a)

and process-related defects ( Figure 4.2b) and ordered each according to their context-

sensitivity. Interestingly, we have found existing evidence for defects identified as

context dependent as the existing evidence provided an extensive, and thereby, fitting

defect description. Note that, defects without an ID in Section 4.2 and Figure 4.2a

were not common and recurring and are not discussed further.

4.4.1 Case Description

Setting A is a medium size cyber-physical software supplier. 24 subjects were inter-

viewed with the aim to draw a organization-wide picture of common and recurring
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Table 4.2: Top 14 defects by frequency (at least mentioned twice in the same context (n>2) from 43 interviews)

# Name Ex. Ev. Description Mentioned Consequences

To
p

15
Te

ch
ni

ca
lD

ef
ec

ts

1 Signal Range [97] Ranges of signals were not as de-
scribed in the specification

Undefined / unspecified behavior of
connected systems

2 Scaling [97] Fixed-point values were scaled incor-
rectly for their specified range

Possible under-/overflows and/or
system outputs differ from specifica-
tion

3 Wrong initial
value

[97] The initial values of the system were
not set or set incorrectly

Initial system outputs differ from
specification

4 Data dependen-
cies

[85] [97] Data dependencies were unclear When changing data formats, not all
locations of the data formats were
updated

5 Exception Han-
dling

[97] Exception handling was either
untested or not implemented as
specified

Execution of exception handling rou-
tines lead to system failure

6 Dead code due
to safeguards

[97] Dead superfluous safeguards were
implemented

Degraded system performance
and/or real-time requirements not
met

7 Linkage of Com-
ponents

[97] Interfaces of components were not
connected as specified

System outputs differ from specifica-
tion

8 Variable re-use [97] Mandatory re-use of variables and
developers assumed incorrect cur-
rent values

System outputs differ from specifica-
tion

9 Different base [97] Calculations switched base (10 to 2
and vice versa)

System outputs differ from specifica-
tion

10 State chart de-
fects

[97] Defects related state charts System outputs differ from specifica-
tion

11 Transposed
characters

[97] Characters in user interfaces and
framework configurations were
transposed

Mapping of code to user interface
does not work

12 Web browser in-
compatibilities

Web browsers had different interpre-
tations of JavaScript and HTML

Browser-dependent rendering of
web pages

13 Validation of in-
put

Inputs were either not or not vali-
dated according to specification

Ability to input arbitrary or malicious
data

14 Concurrency Concurrency measures were not
used as specified

Deadlocks and atomicity violations

To
p

14
Pr

oc
es

s-
re

la
te

d
D

ef
ec

ts

1 Specification
incomplete/in-
consistent

[85] [97] The specification was either inconsis-
tent, lacking information or inexis-
tent

Thorough verification of implemen-
tation impossible and testing de-
ferred

2 Interface incom-
patibilities

[97] Agreed interfaces of components
were not designed as discussed /
specified

Rework for interfaces required after
deadline for implementation

3 Missing domain
knowledge

[85] Engineers lacked the concrete do-
main knowledge to implement a re-
quirement

Delivery delayed and project time ex-
ceeded

4 Cloning Engineers used cloning as a way to
add functionality to systems

Cloned parts provide functionality
not required by the system in devel-
opment

5 Static Analysis
runtime

[97] Static analysis of the implementation
was started too late in the process

Delivery delayed and project time ex-
ceeded

6 Quality assur-
ance deemed
unnecessary

Engineers did not see the necessity
for quality assurance

Review / Testing not performed ac-
cording to specified process

7 Late involve-
ment of users

[97] Users were involved late or not at all
in a SCRUM-based process

Requirements not according to user
problem statement

8 Misestimating
of costs

[97] Inability to estimate cost for require-
ments in a SCRUM-based process

Delivery delayed and project time ex-
ceeded

9 Call order de-
pendencies

[97] Call orders were switched without in-
forming engineers

Extra testing effort required with dif-
ficult fault localization

10 Misunderstood
instructions

New engineers did not understand
given documentation

Delivery delayed and project time ex-
ceeded

11 Distributed
development

[97] Development and test team were at
different locations

Communication deficiencies yielded
untested components with runtime
failures

12 Insufficient test
environment

[97] The test environment did not contain
all components to be tested

Some defects could only be detected
in production environment

13 Development by
single person

A single person was developing a
large part of the system

Incomprehensible implementation of
components

14 Overloaded em-
ployees

Engineers were overwhelmed with
the amount of work requested from
them

Careless misateks due to stress
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Figure 4.2: Defects with applicable ID (#, if number in top 14) and frequency (n) in the classification

(a) Technical defects (b) Process-related defects

(mentioned in at least 2 interviews) defects. These systems primarily targeted the

automotive domain, but also were in the domain of aerospace, railway and medical.

The predominant development process was the V-model.

Setting B is a department of a large German car manufacturer. 3 subjects were

interviewed as to try out the approach and enable a first glance at a defect-based

perspective in this department using the V-model as development process. Note that,

this low number of interviews is discussed in threats to validity.

Setting C is a project of medium size in an information system developing company.

6 subjects were interviewed to give the company an introduction to the approach. The

interviews were performed in a large scale website front end project developed using

the SCRUM methodology.

Setting D was an information system project of a railway company. 10 subjects

were interviewed to show process deficiencies and give a defect-based perspective on

currently employed development and quality assurance measures. The project was a

graphical rail monitoring application project developed using the SCRUM methodology.

4.4.2 Subject Description

As described in the subject selection, we chose our project partners and projects in

an opportunistic manner. All interview participants had an engineering or computer

science background and at least one year of experience. The author applied the

approach in the case studies.

In setting A, the majority of participants had a background in mechanical or electri-

cal engineering and developed system using Matlab Simulink with either automatic

code generation or using Matlab Simulink models as specification for their manually

implemented systems.

In setting B, the interview partners were developing and/or testing the functional

software for an electronic control unit developed in C++ and integrated into AU-

TOSAR.
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In setting C, the interview partners included a broad selection of roles including

architects, developers, testers, test managers, and scrum masters.

In setting D, the interview partners were from several different teams defined in

SCRUM to also gain a comprehensive view on synergy effects and defects missed by

their managers.

RQ 1: Suitability.

In all studies performed, the results always yielded technical and process-related

defects. The top 14 defects of each category are shown in Table 4.2. For each defect,

we additionally show whether we could find a relation to existing evidence (see column

4 in. Table 4.2). Figure 4.2 further illustrates each defect (via its identifier provided

in Table 4.2) in relation to its degree of sensitivity to the context. Remember from

the introduction that “context” here refers to a specific company or business unit of a

company.

In setting A, the interviews revealed 15 technical and 7 process-related defects. The

technical defects were mainly run-time failures such as overflow due to the abstraction

from the underlying computational model in Matlab Simulink. These failures were

caused by wrong signal ranges of units, wrong scaling of fixed-point types and wrong

initial values. The process-related defects were interface incompatibilities and incom-

plete / incorrect specifications. We performed 24 interviews in total. However, the top

most common and recurring faults were named in 12, 11 and 8 interviews respectively.

Since this was a cross-project company wide survey, the diversity of developers and

testers interviewed introduced differences in the defects common and recurring in their

respective fields. Baker and Edwards [10] hint at 12 interviews to be sufficient. In

our setting, saturation was indeed achieved with even fewer interviews; the revealed

common and recurring defects can be assumed to be comprehensive.

In setting B, the interviews revealed 3 technical and 1 process-related defect. The

technical defects were related to initial values in C++ (2) and overflows (1). The

process-related defect were due to interfaces (2) and incomplete specifications (2).

Contrary to all other settings, this setting was only to give a first glance as described

in the case description. Thus, comprehensiveness was intentionally neglected, but to

provide a first glance 3 interviews were sufficient.

In setting C, the interviews revealed 5 technical defects and 6 process-related

defects. The technical defects were related to web browser incompatibilities (4),

validation of input data (3) and exception handling (2). The most prominent process-

related defects were incomplete specification (5) and interface incompatibilities (3).

With only 6 interviews, we did not perform a sufficient number of interviews per se.

However, the project’s size was only 10 persons and effects of saturation were quickly

observable. This saturation yields an indication towards comprehensiveness, albeit

inconclusive.
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In setting D, the interviews revealed 3 technical defects and 7 process-related

defects. The top technical defects were related to data dependencies (8), exception

handling (4), concurrency (3). The prominent process-related defects were incomplete

specifications (7), interface incompatibilities (4) and late involvement of the customers

(4). Again, 10 interviews are below the sufficiency baseline, but the project’s size was

only 18 persons. Once again, saturation yields an indication towards comprehensive-

ness, albeit inconclusive.

Although the aim of the DELICLA approach was only to elicit and classify techni-

cal defects, process-related defects were mentioned by interview partners and were

classified as well. Many interview partners stated process-related defects as causes for

technical defects, yielding a causal relation between some defects. For instance, in

the cyber-physical settings, the inconsistent / incomplete specification was described

to lead to incorrect signal ranges and wrong initial values. In the information system

domain, the format of user stories as use cases without exceptions was described

to lead to untested / incorrect exception handling. We did not believe in advance

these causalities or process-related defects to be important at first. However, we later

realized their potential for deciding whether to (1) employ defect models for quality

assurance to detect or (2) make organizational, methodological or process adjustments

to prevent these defects. Many project partners were intrigued about the causalities

and estimated the effort to change their processes lower than to employ defect models

for some technical defect. In particular, since process improvement by using elicited

defects has been described in literature [84, 85].

An interesting observation was the presence of domain independent defects of

technical as well as process-related nature (see Figure 4.2). Domain independent

technical defects were run time failure causing defects in embedded systems in setting

A and B as well as untested exception handling defects in information systems in

settings C and D. Moreover, interface incompatibilities and incomplete / inconsistent

specifications/requirements were process-related defects present in all settings.

We therefore conclude so far that our approach is suitable to elicit a broad spectrum

of defects which cover the particularities of the envisioned context as well as context-

independent defects.

RQ 2: Operationalizability.

In all settings, we were able to derive possible solution proposals for handling each

elicited and classified defect. These solution proposals do not necessarily include

formal descriptions of defect models, but rather are indicators for operationalization

possibilities. However, we or our project partners were able to design tools or methods

that have an underlying defect model, and in some cases described next, we were able

to operationalize the defects via tools.

Setting A resulted in a testing tool called 8CAGE in Chapter 5. 8Cage is a lightweight

testing tool for Matlab Simulink systems based on defect models. The employed defect
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models target overflow/underflow, division by zero run time failures as well as signal

range and scaling problems.

Setting B yielded an internal testing tool for the testing of the interfaces of the

software to the AUTOSAR Runtime Environment (RTE) developed by the project

partner. Due to frequent changes in the communication between each electronic

control unit, the RTE had to be recreated for each change. Sometimes changes were

not implemented leading to unusual failure message and large efforts spent in fault

localizations. The internal testing tool can now be run to show these unimplemented

changes automatically.

Settings C and D did not result in any tools as of now. However, they yielded

requirements to specifically test exception handling functionality in Java systems. The

task of the tool is to explicitly throw exceptions at applicable points in the code as to

deliberately test the developed exception handling. We currently have collected these

requirements and tool development is imminent. In addition, quality standards for

SCRUM user story standards as a method of early defect detection have been proposed

and partially implemented in setting C and B. These methods include perspective-

based reading [138] of user stories before accepting them and explicit definitions of

acceptance criteria including a specification for exception handling.

Overall, the tools and methods developed enable front-loading of quality assurance

activities. This allows developers and testers to focus on common and recurring defects

in specification and implementation and either makes them aware of the defects or

allows the (semi-)automatic detection. Thus, the defect-based perspective may be able

to increase the potential to avoid these defects in the future.

We therefore conclude so far that we could elicit defects suitable for operationaliza-

tion in the chosen context.

RQ 3: Indirect short-term benefit.

After presenting the results in the workshop meeting of DELICLA, we asked the re-

sponsibles to assess the usefulness of our approach in terms of (1) being aware of

the elicited and classified defects, (2) future actions based on the report, and (3)

cost-effectiveness.

In setting A, the responsibles deemed the results satisfying. The defects were mostly

known to them, but they were content to have written results in hand for justification

towards their management. Using the results, they could convince their management

and customers to invest into consulting regarding specific defects. The efficiency of

only one hour per interview while leading to sufficiently comprehensive results was

perceived positively. They agreed to perform further interviews in the future. However,

they remarked that our approach did not reveal many defects previously unknown to

them, but were now able to gain an essential understanding of their frequency. They

also commented on the difficulty to select distinct projects for the proposed measures

in this inter-project setting.
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In setting B, the project responsibles only gave us a limited feedback. They stated all

defects to be known and saw the advantage in now having a thorough documentation.

We did not create defect models or develop operationalizations for them after applying

the approach. However, they developed a tool without our involvement based on one

reported defect.

In setting C, the project responsibles were surprised how non-intruding and concil-

iatory our approach is and how professionally it can be handled. They were aware of

most of the defects, but not that 20% of their test cases were already defect-based. The

project was already in a late stage when we applied the approach and future actions

could not be taken due to the time left. They also perceived the efficiency of one hour

per interview partner as positive and described the comprehensiveness of results as

given. When discussing further interviews, they questioned the application towards a

whole organization as measure to find organization-wide defects with a small number

of interviews.

In setting D, the project responsibles were aware of most defects elicited and

classified and satisfied with the application of the approach in general. They said the

approach “yields good results with little effort” and it provides “a view” on the defects

in the project from “a different side”. In addition, they stated that “nothing is missing

[from the results] and [results are] diagnostically conclusive”. Concerning the possible

solution approaches presented, they “may not be the way to go”, but “give a first idea

for discussion in project meetings”. Again, further interviews were discussed, but the

time required to interview the complete project with more than 50 employees was

deemed to much. The project partner rather wanted to use other techniques such

as observation or focus groups to minimize time required on their side. However,

qualitative interviews were deemed “a good starting point”.

4.4.3 Threats to Validity

There is a plethora of threats to the validity, let alone those inherent to case study

research. To start with, the qualitative nature of the approach as well as the qualitative

nature of the evaluation technique rely to a large extent on subjective expert judgment.

First and foremost, the approach was applied by the same person evaluating it. The

internal validity is particularly threatened by the subjectivity in the interviews and

especially in their interpretation. Coding used to classify the defects, for example, is

an inherently creative task. However, our aim was to explore the potential of such

qualitative methods, to reveal subjective opinions by the study participants, and to

elaborate – despite the inherent threats – the suitability of the chosen approach.

The construct validity is threatened in two ways. First, the research questions were

answered via qualitative methods only and we cannot guarantee that we could fully

answer the questions based on our data. We compensated the threat, especially for

research question 1, by taking an external baseline as an orientation. Second, we

cannot guarantee that we have a sufficient number of interviews to reliably decide on
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the completeness of the data to elaborate comprehensive defects. We compensated this

threat by applying the principles of Grounded Theory where we explicitly considered

a saturation of the answers if no new codes arose. Also, we believe the number of

interviews to be less important than the coverage of roles within (different) teams and

superordinate roles. This is hinted at by setting B, C and D in particular.

Finally, the external validity is threatened by the nature of the approach and its

evaluation. We do not claim our findings to generalize outside the field study. Using

a different person as interviewer or performing the interviews in different contexts

(organization, domain, location, etc.) may yield very different results. Our intention

was, however, not to generalize from our findings but to evaluate the extent to which

our approach is suitable to cover the particularities of contexts whereby the results hold

specifically for those contexts. Yet, by comparing the results with an external baseline,

we could determine context-independent defects which potential for generalization.

4.5 Lessons Learned

With each application of our approach, we could gather inputs which we summarize

next. We structure the lessons into lessons we made with the qualitative methods in

application, and lessons regarding the outcome.

4.5.1 Applying DELICLA

Interestingly, our experience with the few unprepared interview partners has shown

that reflections about defects during the stress situation of the interview are mostly

impossible. A key factor to the professional attitude was the calming of interview

partners and the establishment of a trust relationship at the beginning of the interview.

Many interview partners entered the interview room anxious and seemed relieved after

the initial address was given. In particular, the phrase that “defects will be utilized

instead of judged” helped overcome fears. In addition, a first name basis and the

display of integrity of the interviewer as well as a non-facing position of the interviewer

also helped calm interview partners.

Concerning the way the interviews are performed, we learned to listen more

closely. In setting A, we asked many interposed questions and might have introduced

confirmation bias.

Concerning the recording, we applied our approach in settings C and D with record-

ings and written documentation in parallel. We discovered written documentation of

interviews to be biased at the beginning and the end of a setting. At the beginning,

the writer did not know what to write down and documented irrelevant information.

After some interviews, the writer fell into confirmation bias and always documented

defects previously stated as common and recurring, but not necessarily common and

recurring in the current interview. Thus, we advise to record interviews to perform the

classification of defects separately to their elicitation. In addition, we learned that the
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recording device should not be in the line of sight of the interview partner as it might

prevent them from talking freely.

A key aspect of the interviewer is the adherence to integrity and the honesty towards

the anonymization of data. In addition, the interviewer should handle any defects

objectively by staying serious and focused even though defects may induce humor in

the conversation.

4.5.2 DELICLA Outcome

Although we were not looking for specific process-related or inter-setting defects

in advance (see Figure 4.2), we found two process-related defects to be present in

all settings. Not too surprisingly, these defects relate to (1) requirements and (2)

architecture. Thus, these defects did not emerge during the development, but rather

during planning phases.

4.6 Conclusion

This chapter has introduced and evaluated the DELICLA approach to elicit and classify

defects to enable the strategic decision making for their future description and opera-

tionalization as defect models. DELICLA is entirely based on existing elicitation and

analysis approaches [61]. Our approach uses a qualitative explorative method with

personal interviews as elicitation and grounded theory as classification technique.

We have evaluated the approach in a field study with four different companies.

The chosen settings varied in their domains. Using our approach, we were able to

elicit and classify defects having both a context-dependent and -independent relevance

while providing indicators to the extent to which they relate to existing evidence. We

deem these defects common and recurring w.r.t. their context and test cases for their

(semi-)automatic detection within these respective contexts fulfill the definition of

good test cases. The approach was applicable in different contexts/domains due to the

employment of qualitative approaches. We could use the elaborated defects to derive

requirements for their (semi-) automatic detection by tools and create possible solution

proposals in all settings. The feedback given to us by project partner executives was

positive yielding “informative results with little effort”. Thus, the results strengthen

our confidence that the studies are representative and the approach is suitable to elicit

context-specific defects without being too specific for a context. However, we are

lacking a study with negative results.

Using DELICLA, we have gained an insight of existing defects in different contexts

and domains. For some technical defects, we present their description and operational-

ization in respective defect models in chapters 5, 6 and 7. These operationalizations

are a direct result of the field study. DELICLA elicits and classifies more defects than

are sensible to be described and operationalized. However, these defects yield a

valuable addition to the defect repository. This includes the process-related defects,
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which can be addressed by possibly employing constructive quality assurance (see Sec-

tion 2.1 and Section 8.2). Moreover, for some defects we were able to find cause

effect relationships to other defects. This yields the question about the ability of the

method to extensively find cause effect relationships for all defects. To answer this

question, further work and maybe a higher level portrayal of defects as provided by

the methodology of Kalinowski et al. [85] is required.





5
Description and
Operationalization:
8Cage for unit testing
In the last chapters, the foundations for a systematic and (semi-)automatic approach

to defect-based quality assurance using defect models were defined and common and

recurring defects have been elicited and classified. Based on the results of DELICLA

in the embedded system’s domain, we developed the operationalization 8Cage to

(semi-)automatically detect elicited and classified defects #1, #2, #6 and #10 in the

top 14 technical defects of Table 4.2. 8Cage is the first of three explicit descriptions

and operationalizations of defect models in the domain of Matlab Simulink systems,

which constitutes the method application step in the defect model lifecycle framework

(see Figure 5.1). The descriptions and operationalizations of 8Cage reside on the unit

testing level and are applicable to all Matlab Simulink systems. Thus, the variation

points are a domain of Matlab Simulink, the unit testing level and application (as well

as specification) independence.

Figure 5.1: Position of the operationalization 8Cage in this thesis

85



86
5. Description and Operationalization:

8Cage for unit testing

Recalling the considerations of Matlab Simulink systems in Section 2.3, its data flow-

driven, block-based notation yields great understandability for engineers. However, it

hides—and is supposed to do so—the underlying computational model of processor and

memory architecture. This regularly leads to problems with generated code. Certain

faults are invisible or hard to detect by review at the model level. Such faults include

run time detectable under-/overflows, divisions by zero, comparisons and rounding,

state chart faults and possibly infinite loops. In addition, it may be hard for engineers

developing a system to assess if their assertions hold.

Further typical faults include exceeded ranges of I/O signals. These ranges are

specified by a developer or imposed by physics. For instance, the revolutions per

minute (rpm) of a gasoline combustion engine may range from 0 to 9,500. Thus, a

16-bit unsigned integer of range 0 to 65,535 is sufficient to hold the rpm signal’s range.

However, the rpm signal will never be larger than 9,500 when used/given as I/O. There

may be assumptions in certain units that rely on this range. Thus, the rpm signal’s

range must be rigorously checked to never exceed 9,500. Typically, the ranges are also

checked by static analysis late in the development process. Detecting failures caused by

invalid/unspecified ranges on a unit level would yield early detection benefits as well.

Unfortunately, many of these “careless” / “simple” faults involving only a single

or a simple composition of blocks are detected only by static analysis at the end

of a development cycle (see focus in Figure 5.2). Static analysis of a real-world

Matlab Simulink system using abstract interpretation (see Section 2.1.3) requires

approximately two days of execution time and three days of manual analysis to reveal

the faults. In case these faults are careless faults, they taint the analysis. When the

careless fault is triggered, the resulting behavior may be undefined leading to a rippling

effect of failures. This creates an overhead of at least one development cycle as a

further analysis has to be performed after the faults are given to the developers and

corrected (see backward arrow in Figure 5.2). Thus, earlier detection would yield cost

benefits by reducing the required analysis effort. In addition, developer assumptions

about certain blocks or block combinations may be verified only as late as Hardware-

In-the-Loop (HIL) tests. HIL tests require the software to be deployed on the target

platform and are performed even later than static analysis.

To address this overhead and enable early detection of careless faults, we developed

the operationalization 8Cage. 8Cage is an automated test case generator on the unit

testing level for Matlab Simulink models based on defect models (see Chapter 3). The

fault models currently operationalized in 8Cage relate to over-/underflows, divisions by

zero, comparisons/rounding, Matlab Stateflow (state chart implementation in Matlab

Simulink) faults and loss of precision. The failure models relate to exceeding of I/O

ranges. Although the defect models operationalized by 8Cage involve only a single or

a simple composition of blocks, the defects they describe were identified as common

and recurring in the field study in Section 4.3. In addition, developer assumptions

concerning a single block can be operationalized as developers/testers can specify
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Figure 5.2: Common testing process of Matlab Simulink Systems

their own fault hypotheses and have them automatically tested. The description is

enabled by a graphical user interface in Matlab Simulink. 8Cage uses a five step

process to detect the faults/failures and report them to the developers consisting of

configuration (1), smell detection (2), test case generation (3), test case execution

(4) and report generation (5). Since the fault models directly relate to single or a

simple composition of blocks, the fault localization is also automatic. For the failure

models, fault localization requires manual effort. Because 8Cage only uses the implicit

specification (possibly including the I/O ranges) of what should not happen, it can

detect failures in a model even without a specification. If a possibly failure-causing block

or combination of blocks is present, 8Cage aims to produce a test case constituting

a counter example. Thereby, it eliminates the need for expert analysis with static

verification tools for the described faults/failures and bridges the model/source-code

level. We evaluate 8Cage concerning the reproducibility, effectiveness and efficiency

of the test case generation step using 29 representative extracted units from three

real-world Matlab Simulink systems.

5.1 Fault and Failure Models

The defects for the defects models operationalized in 8Cage were elicited in the field

study of common and recurring defects for the creation of defect models (see Sec-

tion 4.3). The field study elicited and classified relevant common and recurring faults

describable in fault models (left in Figure 5.3) and common and recurring failures

describable in failure models (right in Figure 5.3). In the following, all defect models

are described and mapped to the generic defect model (see Chapter 3). Based on these

descriptions, the operationalizations well be created (see Section 5.2).

5.1.1 Fault Models

The fault models operationalized in 8Cage relate to over-/underflows, divisions by

zero, comparisons/rounding, Matlab Stateflow (state chart implementation in Matlab

Simulink) faults and loss of precision. In addition, custom defect models for developer
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Figure 5.3: Defect Models of 8Cage

assumptions are possible. Recall that, a fault model consists of a transformation α and

a characterization of the failure domain ϕ including their approximations α̃ and ϕ̃ as

described in Chapter 3. α transforms a correct behavior description (e.g. program) into

an incorrect behavior description by injecting faults. Since α injects faults, the idea of

a fault model is to use the faults injected by α to create the failure domain ϕ consisting

of all inputs leading to paths through the program impacted by α. For the fault models

in 8Cage, all captured faults present a pattern in the BD. This pattern is independent of

the co-domain of α and requires only the image of the transformation α to be described.

More precisely, measures to prevent certain faults are removed by α and the exact

nature of these measures is negligible. Upon finding such a pattern, 8Cage assumes

α has been applied and aims to provide evidence for an actual fault to be present by

creating a test case leading to a failure. As many of the described faults lead to run

time failures, the default oracle of all fault models in 8Cage is a robustness oracle

w.r.t. any error messages produced by Matlab Simulink when executing the Model

in the Loop (MIL) (see Section 2.3) simulation. In case Matlab produces an error or

crashes, the test case verdict is fail. Otherwise it is pass. In the following descriptions

of fault models in 8Cage, the image of α always expresses a fault pattern (syntactic or

static prerequisites). The characterization of the failure domain ϕ for the respective

fault pattern requires certain inputs/outputs (semantic or dynamic prerequisites) to

be the inputs/outputs of the fault pattern. Thus, the pattern yields a potential fault

and evidence for an actual fault to be present is provided in form of a test case. The

operationalization is according to the second operationalization scenario in Section 3.3.
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Division by zero

A division by zero is a classic run time failure (see Section 3.2.2) leading to undefined

behavior or program crashes depending on the employed computational architecture.

The run time failure occurs whenever an integer division operation is performed using

the value 0 as divisor. In Matlab Simulink, the divide block can cause such a run

time failure, iff given 0 as divisor. In all Matlab versions up to 2012a, the guard for

division by zero has to be created by the developer. Since version 2012a, the guard

for division by zero is activated by default, but can be deactivated by the developer

using optimization commands. Nevertheless, 8Cage provides help searching for a way

to cause a division by zero, showing the requirement of the guard. In case the guard is

activated, 8Cage can deactivate it and then search for a division by zero. Thus, 8Cage

is be able to show the necessity to enable the guard.

The α for the division by zero fault model is any transformation deactivating the

guard or removing one or more protection mechanisms for the 0 value to reach the

divisor input port of the divide block. Although this is a plethora of transformations,

we focus on the produced image / pattern as it is always a divide block with a disabled

guard and an integer data type as input as the divisor. This pattern requires a test case

causing the input of the divisor port of the divide block to be 0 to go from a potential

fault to an actual fault with evidence. The test case is selected from the failure domain

ϕ, which contains all values leading to 0 value as divisor input to the block. Formally,

let

divno−guard : integer × integer → integer with divno−guard(p1, p2) = p1/p2

be the formalization of the integer division block in Matlab Simulink. Further, let

f(i, b, p) be the function applied to the input signal i of the Matlab Simulink model

up to the point of a port p of block b. Then the failure domain ϕ is characterized by

the set {i : f(i, divno−guard, p2) == 0} describing all inputs leading to 0 as input to the

divisor port p2 of the integer division block divno−guard. Upon finding a divno−guard
in a Matlab Simulink model, 8Cage assumes the transformation ϕ̃ is created by using

symbolic execution trying to find f .

Like the division by zero, some blocks in Matlab Simulink have a limited space of

inputs (#1 in the top 14 technical defects of Table 4.2). As an example, one such block

is the square root with integer inputs. Given a negative value, the approximation of

the square root enters an infinite loop. Thus, a further fault model in this category is

the negative square root fault model, which can be defined analogously to the division

by zero above.

Over-/underflow

Over-/underflows are typical run time failures of Matlab Simulink models (#1, #2

and #6 in the top 14 technical defects of Table 4.2). All Simulink blocks that can
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cause over-/underflows have a binary property called “saturate on integer overflow”

(SIO), which can be set by the developer. Enabling this property generates an over-

/underflow-preventing safety check for the respective block. Enabling this property for

every possible block would avert the problem of over-/underflows completely. However,

each check requires processing time and may lead to dead code. Standards such as

MISRA-C [114] require avoidance of dead code and processing time on embedded

hardware may be costly. Thus, developers must carefully decide whether to enable the

SIO property. 8Cage provides helps by searching for a way to cause an over-/underflow,

showing the need to activate the SIO property. Since any of the blocks causing an

over-/underflow can be described in a fault model and the schema is repetitive, we only

describe two fault models concerning over-/underflows in Matlab Simulink models in

this section. Further fault models can be defined analogously.

As an example, one over-/underflow fault model concerns the built-in Abs block of

Simulink calculates the mathematical absolute value function of the input x (i.e. |x|).

The code generated from this block is: if (x < 0) return -x; else return x;.

This implementation of the absolute value function is efficient and works for all integer

inputs except the most minimal one. Let x be a signed 8-bit integer. x then has a range

from -128 to 127 making -128 the only integer without a positive counter-part. Due to

-128 being stored in two’s complement (1000 0000b) and negation of it (flipping all

bits and adding 1) will yield -128 again. A developer assumption for using the absolute

value could be the non-negativity of the output, which cannot be guaranteed for all

integers.

The fault pattern for the absolute value overflow fault model is again independent

of the transformation α. α deactivates the SIO property or removes any other protection

mechanism for the lowest integer to reach the single input port of the absolute value

block. The fault pattern (in the image of α) is an absolute value block with a disabled

SIO property absno−SIO and an integer data type as input the single port p1. Thus,

absno−SIO is defined as

absno−SIO : integer → integer with absno−SIO(p1) =

{
p1 if 0 ≤ p1

−(p1) otherwise

. ϕ then is the set {i : f(i, absno−SIO, p1) == MIN}, where MIN is the lowest

possible integer value of the input to p1 of absno−SIO. ϕ̃ can be created by using

symbolic execution as described in division by zero.

A second over-/underflows fault model considers a division overflow by a small

fixed-point number. Many electronic control units (ECUs) do not contain a floating

point unit due to cost reasons. Thus, fixed-point numbers are chosen to represent

decimals. In Matlab, fixed-point numbers use integer data types and fix the precision

(i.e. the number of digits after the decimal point). An 8 bit unsigned integer x with 1

bit of precision yields a range from 0 to 127.5 where the bit of precision can express .0

and .5 after the decimal point [109]. Computing 64/x, where x can assume any value
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in its range, can lead to an overflow if x = 0.5. This constitutes a multiplication by 2

with a desired result of 128 and an actual result of 0.

The fault pattern is the same as in the division by zero fault model in the last

section with the slight modification of a fixed-point integer input to p2. ϕ then is the

set {i : 0 < f(i, divno−SIO, p2) << 1} leading to a multiplication causing an overflow.

ϕ̃ can be created by using symbolic execution and aims to pass the smallest possible

number of the fixed-point data type MIN to p2 of divno−SIO. Further over-/underflows

fault models can be described analogously.

Comparisons and rounding

A fault initially treated in foundation level programming courses is the direct compari-

son of floating point numbers (#1 and #2 in the top 14 technical defects of Table 4.2).

Due to the scaled precision of floating point values, the comparison 1.1 - 0.1 ==

1.0 will not always be true and an ε must be used. Matlab Simulink does not show the

signal data types by default, which typically causes engineers to create the fault of a

direct comparison.

The fault pattern for the comparison fault model is a direct comparison of floating

point values in a comparison block and again independent of the transformation α. Let

comp : float× float→ boolean with comp(p1, p2) = p1 == p2

be a comparison block with equality according to the semantic of the C programming

language and two floating point data types connected to the input ports p1 and p2. ϕ

then produces the set {i : ¬(f(i, comp, p1) == f(i, comp, p2)) ∧ (abs(f(i, comp, p1) −
f(i, comp, p2)) < ε)} containing all inputs falsely leading to negative comparison

without taking ε into account. ϕ̃ then can be created by using symbolic execution.

The rounding fault model considers the integral block. This block sums up its

inputs in an internal state and has a property called rounding mode. Rounding mode

determines how the single input to the integral block is rounded. If the rounding mode

is floor and the input given to the integral block is very small, the rounding can cause

the addition of a 0 value leading to no state change of the integral. The fault pattern

(in the image of α) is a integral block with a fixed point integer input and ϕ contains

all inputs rounded to 0 when reaching the integral block. ϕ̃ then can be created by

using symbolic execution. Rounding is performed in many Matlab Simulink blocks and

we will use the example above as representative fault models. All further fault models

concerning rounding in Matlab Simulink models can be defined analogously.

Stateflow faults

A Matlab Stateflow diagram is a special Matlab Simulink block, which allows the

implementation of control logic by using state charts / machines in a graphical mod-

eling notation. Engineers typically make a number of mistakes when using Stateflow



92
5. Description and Operationalization:

8Cage for unit testing

Figure 5.4: Matlab Stateflow diagram with unreachable state

diagrams (#10 in the top 14 technical defects of Table 4.2). One fault is the usage of

< or > for enumerable variables in transition conditions. In Figure 5.4 error is an

enumerable variable. The specification was to go back to off in case error is not 0, but

either 1, 2 or 3. The specification was then changed to include a value of error of 4. If

this value is received, the system is supposed to perform a safe shutdown. However,

the engineers implemented a dead state SAFE SHUTDOWN in Figure 5.4 with a lower

transition priority than the already implemented transition to OFF. In the deterministic

semantics of Matlab Stateflow, the transition condition with the lower transition priority

will always be evaluated first leading to a positive transition condition evaluation for

the transition to OFF before the transition to SAFE SHUTDOWN is considered. Note that,

the transition condition on the transition to OFF subsumes the transition condition on

the transition to SAFE SHUTDOWN.

In general, this fault can be translated to an unreachable state fault. The fault

pattern (in the image of α) is a Stateflow diagram, which contains one or multiple

potentially unreachable states. These state were either injected or made unreachable

by α. ϕ then contains all traces supposed to lead to the unreachable state(s) in the

Stateflow diagram. ϕ̃ can be created by using symbolic execution with the aim to cover

all state in the Stateflow diagram. A manual inspection of the coverage then reveals

the unreachable state(s).

A fault engineers commonly make in Stateflow diagrams is re-using the notation of

the specification. It may be specified, that to transition to a certain state the condition

0 < x < 10 of input x must be satisfied. Directly using this expression as transition

condition yields the operator precedence of (0 < x) < 10, where (0 < x) will produce

either 1 or 0 value. This value will then be compared to < 10. Thus, 0 < x < 10 is true

for any value larger than 0. The correct implementation is 0 < x&&x < 10.
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The α for the range in Stateflow fault model is any transformation, which has

a Stateflow diagram containing two direct comparisons in a transition condition as

image. ϕ then contains all traces using the transition. This set is approximated by ϕ̃ by

using symbolic execution.

Note that, over-/underflows of counters are also a problem in Stateflow diagrams

and can be described as elaborated above.

Loss of precision

A loss of precision generally occurs when using fixed-point data types with too little

precision for the operations or the wrong order of operations (#1 and #2 in the top

14 technical defects of Table 4.2). One fault model concerning the loss of precision

is the division prior to multiplication fault model. A division prior to a multiplication

causes a loss of precision, if the same result could also be achieved by performing

the division after the multiplication. Of course, over-underflows may hinder such a

switch of operation. As a simplified example, let’s assume that both the division and

multiplication are by multiples of 2. Then the division constitutes a right shift, while the

multiplication is a left shift. When dividing before multiplication, the least significant

bits are shifted out and by the subsequent multiplication zeros bits are shifted in. Thus,

the least significant bits are zeroed and some precision of the fixed-point value is lost.

The fault pattern for the division prior to multiplication fault models is a division

block before a multiplication block and independent of α. α switches the multiplication

and division blocks such that they constitute the fault pattern. ϕ then contains all

inputs passing through the division block before passing through the multiplication

block. ϕ̃ then can be created by using symbolic execution and aims to find very precise

inputs (i.e. least significant bit(s) is / are 1) to demonstrate the loss of precision.

Custom fault models

8Cage allows to specify single block fault models by using the Simulink syntax and a

small run time extension. In the syntax of Matlab Simulink, each Simulink block has

properties such as its name, type and inputs/output with a specified data type. The

properties and data types on the input/output ports are static (i.e. they are a property

directly visible from the model) and defined as the static properties (i.e. the fault

pattern in the image of α) required by 8Cage. In addition, 8Cage requires knowledge

about failure-causing input and/or output values at run time for each described block

(i.e. elements of the resulting set of ϕ). These values do not necessarily need to be

specified as absolute values (i.e. -128), but can also be specified as relative values (e.g.

MinV alue). The absolute value fault model above can be specified by telling 8Cage to

locate blocks of type “Abs.” Its properties should be “Saturate on integer overflow” set

to value “off.” The input value should have an integer type and the value should be

MinV alue.
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Developers/Testers can specify these fault models using a graphical user interface

in Matlab as users are familiarized. Thus, the specification of developer assumptions

on single blocks is possible.

5.1.2 Failure Models

The failure models operationalized in 8Cage relate to signal range violations. All of the

failure models require only a ϕ as only the failure(s), but not the underlying fault(s)

are known.

Signal range violation

The signal ranges for each input and output of a Matlab Simulink model are typically

described in the specification (#1 and #2 in the top 14 technical defects of Table 4.2).

The input signal ranges constrain the set of inputs produced by ϕ̃. The output signal

of a Matlab Simulink model must be checked to be within the specified output ranges

for any given element of the constrained input set as input. Thus, the signal range

violation failure model ϕ produces a set containing all inputs violating the output

signal ranges. Formally, this set is {i : ([[m]](i) < OL ∨ [[m]](i) > OH) ∧ IL ≤ i ≤ IH}
with m being the Matlab Simulink model and IL and IH as well as OL and OH being

the lower and upper constraints signals for inputs and outputs respectively. ϕ̃ is created

by using symbolic execution and contains one input signal to break the output signal

range for each output signal (if possible to create).

5.1.3 Summary

All of the faults and failures described in defect models above, are typically detected

late using static analysis. Automatically detecting them as early as nightly builds

yields time and cost benefits. The same holds true for other elementary faults such as

dividing by zero or other single block related faults. This constitutes expert relief by

operationalizing the defect models above. Note that, 8Cage is not limited to only these

fault models, but has been and can further be extended to any failure/assumption

caused/violated by a single Simulink block. We also only present defect models based

on defects elicited and classified in a field study (see Section 4.3) and cannot ascertain

comprehensiveness.

5.2 Operationalization

8Cage operationalizes the defect models above at the unit level of Matlab Simulink.

8Cage uses five steps for the operationalization of each defect model: configuration

(Section 5.2.1), smell detection (Section 5.2.2), test case generation (Section 5.2.3),

test case execution (Section 5.2.4) and report generation (Section 5.2.5). The purpose
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Figure 5.5: An exemplary typical Matlab Simulink unit

of these steps is to find model smells and to generate evidence that these smells are

actual faults.

The exemplary Matlab Simulink unit shown in Figure 5.5 is used as running example

in each of the steps. The exemplary unit was created / synthesized by the author of

this thesis based on the inspection of 60 Matlab Simulink units in an industrial electric

engine control system. It has never been used in practical scenarios and serves the pure

purpose of demonstration. However, it was deemed realistic by audiences of several

presentations and conferences including ASE 2014 [72].

The unit represents the input processing of a temperature sensor. The sensor

contains two physical sensors due to fault tolerance considerations. The input signal

TmpMtr1Raw is the raw output of the first sensor, while TmpMtr2Raw is the raw output of

the second. TmpMtrLastValid is a diagnostic input signal from the sensor acting as a

dead man’s switch. In case the sensor encounters any problem, the TmpMtrLastValid

will yield a zero value. As soon as TmpMtrLastValid is 0, the TmpMtrLastFail input

signal contains the fault information of the encountered problem.

The values of TmpMtr1Raw and TmpMtr2Raw have to be normalized before processing

occurs. The normalization constant is TmpConvert TmpMtrNorm C and multiplied with

the respective values. At the same time, a plausibility check for the temperature

values is performed to see whether they are within the specified range of TmpConvert -

TmpMtrMin C and TmpConvert TmpMtrMax C. In case one of the temperature values is

out of range, the in range temperature value overrides the out of range value. In

case all values are in range and TmpMtrLastValid is not 0, the value is passed on

to the calculation of the average of both temperature values, which is the output

TmpOut. If the temperature values are no in range or TmpMtrLastValid is 0, the stored

last valid values (Unit Delay is a storage block) of the temperature are used. The

output signal TmpDiffOut is the temperature difference from the last calculation of
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temperatures to the current temperature. The input signal TmpMtrLastFail is a bit

mask, which is converted to the boolean output signal TmpMtrFail, which signals a

faulty temperature sensor. The conversion is performed by performing a bit shift, a

division and a comparison to the predefined constant TmpConvert TmpMtrFail C.

5.2.1 Configuration

The first step in the operationalization of any defect model using 8Cage is the configu-

ration. The configuration parameters of 8Cage include the model file, its respective

configuration files and the unit to test. In addition, the number of steps to simulate the

model and the defect models to be used need to be provided. The configuration can be

performed using an XML file or a graphical wizard. For each unit, the configuration has

to be performed once, but can be stored and continuously executed in a continuous

integration environment. This step is performed on the Microsoft Windows machines

of the engineers.

For the exemplary unit, we give the model file containing only the exemplary unit

along with a file setting the model parameters (TmpConvert * C) to 8Cage. In addition,

we tell 8Cage to use 10 simulation steps. In Section 5.3, we see that 10 steps are

typically sufficient. As fault models to use, we select the absolute value overflow fault

model, division overflow by a small fixed-point number fault model and the signal

ranges failure model. For the ranges, we give 8Cage the range -50 to 199 for TmpOut.

Upon submitting the configuration, the automatic part of the detection process in

8Cage begins and the smell detection and test data generation step are executed for

each selected defect model.

5.2.2 Smell detection

During the second step of smell detection, the model is loaded into Matlab and static

block properties are checked according to the image of transformation α. These include

block types/names and I/O data types.

For the absolute value overflow fault model, smell detection searches for blocks of

type “Abs.” All found “Abs” blocks are checked for their SIO properties to be off and

integer input data types. If a block matches, it is marked in the model and code is

generated to perform the next step. For the division overflow by a small fixed-point

number fault model, smell detection searches for blocks of type “Divide.” with an

fixed-point data type input as divisor. All found blocks constitute model smells. This

step is performed in Matlab Simulink running on Microsoft Windows.

This step includes launching Matlab Simulink, loading the model and its parameters

and searching for the blocks. Even for large models, searching for blocks takes stays

within one minute. However, launching Matlab Simulink and loading the model with

its parameters may take several minutes.
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For the exemplary system, the blocks “Abs” and “Abs1” (mid right) are detected as

smells for the absolute value overflow fault model and the block “Divide 1” (bottom

right) is detected for the division overflow by a small fixed-point number fault model.

The failure models do not contain any smells and, therefore, are not considered in the

smell detection.

5.2.3 Test data generation

The third step checks dynamic properties of fault models to describe ϕ and the ϕ

described by the failure models. It first transforms the Matlab Simulink model into C

source code by using the code generator Embedded Coder of Matlab. Smell markers

in the models are used to create assertions in the derived code. The C source code is

compiled to LLVM bitcode to be symbolically executed using KLEE [25]. As the steps of

transformation, marker injection and compilation are always performed subsequently,

we refer to them as transpilation. KLEE is directed toward the assertions representing

the dynamic properties and generates test input data. In this step, only test input data

is generated and the oracle can either be the robustness oracle or must be generated

separately according to the respective defect model.

We assume the Software in the Loop (SIL) level to have the same semantics as

the MIL level as model to source code compilers have been used for over a decade

and their produced code is deployed in the real world. This assumption enables us to

re-use existing software for symbolic execution of C source code. In addition to MIL

faults, checking the source code at the SIL level also enables further run time failure

detection by KLEE. Such failures include memory out of bounds and particularly the

transparent division by zero protection invisible to the MIL level. In case the model

contains floating point operations, KLEE cannot be used. However, there is a version of

KLEE called KLEE-FP [34], which has the capabilities to perform symbolic execution

on floating point operations.

The transpilation part of this step takes less than 30 seconds, if Matlab Simulink is

still open from the previous step and the model with its parameters is still loaded.

The actual test data generation is the core step in the automatic detection performed

by 8Cage. It has the potentially longest execution time of all the steps performed in

the analysis. However, it can be parallelized for every found block of a fault model

and every failure model. As KLEE is single threaded, the test data generation can be

parallelized by running several instances of KLEE at the same time. The transpilation

part of this step is performed in Matlab Simulink running on Microsoft Windows, where

clang compiled operating system and processor architecture independent LLVM bitcode.

KLEE cannot be ported to Windows causing the rest of the step to be performed in

Linux.

For the exemplary system, a test case meeting the constraints for each defect model

is created. “Abs” and “Abs1” overflow, iff given −32768 as input value of TmpMtr1Raw

and TmpMtr2Raw in the first step. The “Divide 1” block overflows, iff given −255 as
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input value of TmpMtrLastFail in the first step. The signal ranges are violated, iff 249

is given as input value of TmpMtr1Raw and TmpMtr2Raw in the first step.

5.2.4 Test case execution

In the fourth step, a test case based on the results of KLEE is created to gather evidence

for the presence of an actual fault. The test case is created in a test execution engine

for Simulink models created by a project partner. The created test case is run as a

Model-in-the-Loop (MIL) test as the single block faults will already fail within Matlab

itself. The results are determined and stored for reporting. This step is performed in

Matlab Simulink running on Microsoft Windows.

A harness for the Matlab Simulink unit is created in this step, which takes several

minutes. After its creation, the test cases can be created and executed. The execution

time per test case depends on the complexity of the unit, but should be within 30

seconds.

For the exemplary system, the test cases described in the last step fail. For the

absolute value overflow fault model and division overflow by a small fixed-point

number fault model, Matlab gives a warning that an overflow occurred including the

respective originating block. For the signal ranges failure model, the created oracle

gives failure once the value increases above 300.

5.2.5 Report generation

In the fifth and final step, 8Cage generates a report concerning found smells and

possible evidence for the presence of an actual fault. This report details results

of the test cases and contains them for developer/tester reproducibility. This step

is particularly useful in continuous integration [49] environments, where tests are

automatically started and reports detail failures. As sometimes faults are intended for

performance reasons, this report can be given to the static analysis engineers. Using

the report, they can directly spot intended faults and disregard them. This step is

performed on Microsoft Windows after the test case execution is complete.

5.2.6 Summary

The steps above constitute an operationalization as found in Section 3.3. It requires a

bug pattern (syntactic or static prerequisites) and inputs/outputs of the bug pattern

(semantic or dynamic prerequisites) to collect evidence of an actual fault to be present.

The bug pattern is detected by using the search functions of Matlab Simulink and the

input values are determined by using symbolic execution. The choice to run all Matlab

Simulink related steps in Microsoft Windows was made as this simplified the number of

interfaces required to access Matlab Simulink and also reduced the number of licenses

required to deploy 8Cage. A demo video portraying the steps above can be found at

https://www22.in.tum.de/8cage/.

https://www22.in.tum.de/8cage/
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5.3 Evaluation

In the evaluation of 8Cage, we particularly concentrated on the automated steps.

These are smell detection, test data generation and test case execution. The test data

generation step particularly interesting as it is the only step involving non-determinism.

The steps of smell detection and test case execution are deterministic in execution and

run time.

We evaluate the test data generation step using a hybrid electrical engine control

system (ca. 31 000 blocks) and two drive train control systems (ca. 76 000 blocks

each). The smell detection on the hybrid electrical engine control system using all

defect models above resulted in 29 units with potential over-/underflows. Out of these

29 units, 22 units (between 8 and 655 blocks each) were extractable according to the

instructions given by our project partner. For two drive train control systems, 3 units

(between 50 and 155 blocks each) were extracted from first and 7 units (between 7 and

26 blocks each) were extracted from the second. The extraction of the units from the

first system revealed a weakness of 8Cage. It came to light that the prototype actually

used floating point arithmetic in most of its units. Since we developed 8Cage using

KLEE, only 3 units with potential defects and no usage of floating point were extracted.

The second system also revealed a weakness as it used specific global variables linked

within a plethora of units. The extraction of any unit using these global variables

was impossible since (1) the extraction method given by the project partner did not

work and/or (2) the global variables were accessed in multiple units making a unit

separation impossible.

Our evaluation hardware systems are a quad-core Intel Core i7 2640M with 8 GB of

RAM running Microsoft Windows and an octa-core Intel Xeon E5540 at 2.5 GHz with

40 GB of RAM running Ubuntu Linux. Matlab Simulink, Clang and the unit/integration

testing framework of our project partner are running on the Windows machine while

only KLEE [25] is running on the Linux machine. However, KLEE is single threaded

making only use of one core and has a 2GB memory limit. The linux machine was

merely used to run multiple instances of KLEE at the same time without performance

implications. All units were configured to execute for 10 time steps1 with a timeout

of 1 minute and use the embedded coder of Matlab for C source code generation. All

steps were performed 10 times to counter effects of single runs and obtain an average

run time of each step. We focus particularly on the test data generation step executing

KLEE using the command line in Listing 2.2 as it includes non-determinism.

The evaluation’s goal is to show (1) reproducibility, (2) effectiveness, and (3)

efficiency of 8Cage and, therefore, of the defect models introduced in Section 5.1.

Firstly, symbolic execution as implemented in KLEE [25] is non-deterministic as

choosing a path may occur at random. Thus, reproducibility must be assessed to

1We hypothesize the time to find failure-causing inputs to increase when executing more time steps
and impact scalability of the approach
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evaluate if multiple executions lead to the same result. In practice, every execution of

8Cage should either lead to a test case giving evidence to the presence of a fault or nor

give a test case at all. Low reproducibility in the generation of test data would render

8Cage unbeneficial in practice.

Secondly, the effectiveness of 8Cage must be evaluated w.r.t. the faults detected by

8Cage to assess the benefit of using 8Cage. We execute 8Cage on all extracted units

and look into the detected defects and their severity.

Thirdly, the efficiency of 8Cage needs to be evaluated w.r.t. the time consumed in

the test data generation step. The time consumed must be reasonable to run 8Cage

overnight for deployment in a continuous integration context. Thus, the execution

time for all extracted units of one system on our standard hardware evaluation systems

is not to exceed 8 hours as defined reasonable by our industry partner.

5.3.1 Reproducibility

Concerning the reproducibility of the results, smell detection and test case execution

are deterministic and always produce the same result. To assure reproducibility of the

test data generation, we examined the extracted failure-causing inputs at the end of

each run of the test data generation. For all evaluate systems, it turned out that the

inputs were always failure causing and only had minor variations in signals with no

impact in the provoking of the failure.

Thus, we conclude the failure-causing inputs completely reproducible for the

systems and units used in the case study.

5.3.2 Effectiveness

For the electrical engine control system, we have found inputs for the FaultFilerting unit

such that an underflow can cause the system to go into fault mode and potentially stop

working within the first step. In a re-used component called Tlbx TransientFilterValid-

BitSet we found an underflow during a subtract in a unit calculating a derivative. This

underflow leads to out-of-range outputs of several units. The results of the evaluation

can be found in the remark column of Table 5.2, where the first column (#) represents

the index of the unit under test. A unit to number mapping can be found in Table 5.1.

In the two power train control systems, we have found inputs for the Calculate

output, ErrCanMon and Subsystem unit such that an underflow in an addition can

occur. Calculate output and ErrCanMon are only used once in each respective system.

However, Subsystem is re-used a number of times, but has a special TestPoint at the

output of the absolute value. Thus, we think the engineers took care of testing this

overflow and other units likely take care by setting inputs such that an overflow cannot

occur. The same is true for Calculate output and ErrCanMon, where inputs seem to

represent modes, that typically do not reach the maximum of the data type, these

overflows could be unit specific. The results of the evaluation of the two power train
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control systems can be found in Table 5.4. A unit to number mapping can be found

in 5.3.

One interesting aspect of the evaluation was the deliberate test of the overflow

protection by 8Cage. The units APTorque1 and ManipulationKorrekturWert both

contained overflow protections. 8Cage did not come up with a test case to cause an

overflow giving an increased confidence, that the overflow protection measures are

working. However, when the measures were deactivated, 8Cage could produce an

overflow test case and give rise to the sensibility of the overflow protection. Thus,

8Cage gives a first indication of the sensibility of overflow protections, but other tools

such as Polyspace must be used in addition to get a proof via abstract interpretation

(see Section 2.1.3).

We forwarded the detected faults to the developers of the systems and they con-

firmed them to be actual faults. When inquiring about other software faults detected

during the test of the examined systems, developers responded with functional faults

arising from either a wrong specification or implementation. Since these faults are not

the target of 8Cage, 8Cage did not detect them.

Thus, we conclude 8Cage to be effective at detecting over-/underflows for the

systems and units used in the case study.

5.3.3 Efficiency

Concerning the efficiency (i.e. time for the steps smell detection, test data generation

and test case execution), the reference system large example took an average of 45.6

seconds for the smell detection, 25.8 seconds for the transpilation part of the test data

generation, 18 seconds for symbolic execution part of the test data generation and

214.4 seconds for the test case execution.

For the electrical engine control system, the smell detection took 147.3 s, the

transpilation part of the test data generation took 68.6 s and the test case execution

took 236.7 s on average. The symbolic execution part of the test data generation for all

other extracted units took even less time to find a fault than the baseline. The longest

time was 9 seconds for the PI Controller unit. All other units took less than 3 seconds.

The result of each execution of symbolic execution and its average can be in columns 2

- 12 of Table 5.2.

For the two power train control systems, the smell detection took 78.8 s, the

transpilation part of the test data generation took 28.9 s and the test case execution

took 222.3 s on average. Similar to electrical engine, all units took less than 3 seconds

to symbolically execute. The result of each execution of symbolic execution and its

average can be in columns 2 - 12 of Table 5.4.

For all executions of the smell detection, transpilation part of the test data gen-

eration and test case execution in all evaluated systems had less than 2 seconds of

standard deviation deeming these execution times stable. When at the individual

execution times of these steps, the smell detection step seems to be correlated with
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the number of blocks. However, the correlation is likely non-linear as the electrical

engine control system had a two orders of magnitude higher block count. For the test

case execution, only one unit-size piece of the system is involved, which yields similar

execution times.

In case no fault was detected in a unit, we injected a fault near the outputs to

see whether (1) KLEE was unable to symbolically execute the unit or (2) there was

actually no detectable fault. In all cases, the injection yielded a test case in less than 3

seconds. Thus, the detection time for the symbolic execution with KLEE stayed below

a 20 seconds threshold.

All evaluated units did not contain any Stateflow diagrams. To evaluate 8Cage also

w.r.t. Stateflow diagrams, we measured the time to find failure-causing inputs in units

containing Stateflow diagrams. As none of the units had Stateflow faults, we injected a

fault into a transition in a nested Stateflow diagram of the VirtualClutch unit. The time

for the symbolic execution to find failure-causing inputs was less than 3 seconds and

1.5 seconds on average.

One hypothesis in the evaluation of efficiency was an increase in execution time

with a growing number of states. States can be introduced by delay blocks (i.e. latches)

in Matlab Simulink and the PI Controller as well as the large example use unit delay

blocks. The maximum number of steps required in these to detect the fault units was

3 steps. To test this hypothesis, we built a system with an absolute value overflow

only possible after 15 time steps. Again, failure-causing inputs were found within

3 seconds on average. If not dependent on states, we hypothesized there to be a

correlation between the test input generation run time and the number of blocks

and/or the number of inputs. To test this hypothesis, we generated inputs on a

completely integrated System Control component consisting of multiple dozen units.

These inputs were found within 0.2 seconds on average and falsified the hypothesis.

Finally, we arrived at the hypothesis of more simulation steps to yield an increase in

execution time of test case generation. To evaluate this hypothesis, we changed the

PI Controller (longest time to find failure-causing inputs in a real-world system) to use

20 simulation steps instead of 10. The average time to find failure-causing inputs was

the same as with 10 steps as the failure-causing input only required 5 steps.

Thus, we speculate all failure-causing inputs in units as found in our three eval-

uation systems to be performable within 20 seconds. In addition, injected faults are

detected in Matlab Simulink and Stateflow units within the same time frame. Generally,

the number of blocks, inputs and states does not affect the test case generation or our

experiments only included units below its efficiency threshold. In sum, all automatic

steps can always be executed in an eight hour overnight build. More precisely, our

results indicate a typical execution times of minutes rather than hours.
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5.3.4 Summary

In summary, 8Cage demonstrated reproducibility, effectiveness and efficient procure-

ment of the results for the systems and units used in the case study. Albeit, there were

several threats to validity concerning our case study. Our aim in the selection of the

systems in the evaluation was to be representative. However, our subject selection

(1) had to be performed on an opportunistic basis as the system needed to be in

development / test by our project partner and had to allow the derivation of C source

code from the model of the system. In addition, we did not detect any fault other than

overflows (2) in the Matlab Simulink systems, which may be due to them not being

contained in the system or 8Cage not being able to detect them. Based on these results,

we injected faults into the Matlab Simulink and Stateflow units and detected them

efficiently. However, the injection may be unrealistic (3). Thus, our results may not

generalize to all Matlab Simulink / Stateflow systems.

One of the units in the evaluation contained a PI controller. Closed-loop controllers

are typically hard to symbolically execute as they contain a feedback loop back to

the controller (see Figure 2.1). In our evaluation, the average time for the symbolic

execution was less than 10 seconds for the 10 steps. We speculate the execution time to

be low as the PI controller only controls a small part of the system and may have been

simplified for this part. We also only performed 10 and 20 steps with no difference

in execution time. However, this may not be enough to provoke a failure. For any

complex controller, we speculate the execution time to increase and the number of

steps required to provoke a failure to be higher.

During the extraction of the units, one drawback of 8Cage became clealry visible:

the units may have dependencies to other units / components and the environment.

One instance was the usage of global variables. These global variables could be set in

other parts of the system when executing it completely. Thus, the unit under test would

be dependent on the global variables during execution and change behavior according

to the values contained in them. This made the testing of these units problematic since

the complete behavior could not be assessed on the unit level.

There were several aspects noteworthy when performing the evaluation of 8Cage.

The inputs of the units used for the evaluation was the usage of seemingly much

larger precision than required (1). All fixed-point calculations were performed with

32-bit integers on 28-bit of precisions. However, neither parameters nor signal ranges

required such high precision. Furthermore, some parts of the code were not reachable

due to configuration parameters within the units (2). For instance, the VirtualClutch

unit had a parameter whether to use the virtual clutch, which was configured to

false. Thus, a whole contained Stateflow diagram turned out to be dead code in this

configuration.
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5.4 Related Work

8Cage is related to static analysis tools. Tools using abstract interpretation are

Astrée [37] and Polyspace Code Prover [130]. Both can detect run time failures

such as over-/underflows and out of bounds pointers as well as potentially infinite

loops and potentially dead code. However, it requires an expert to prepare a software

system for analysis in these tools as they work on a C/C++ code level. Thus, analyzing

each unit often is deemed excessive work and only the completely developed system

is analyzed. Results are returned by coloring source code—code verified to cause a

run-time failure; code that may cause a failure; code that will not cause a problem;

and code deemed dead. Unfortunately, because of approximations, often large parts

of the source code is marked as potentially failure causing. Then, an expert has to

walk through the C code. Finally, faults must be localized to go from the reported

failures to the actual faults. This result and suggestions to fix are then given back to

the developers (or testers in some cases). 8Cage allows the developer/tester to start

the automatic detection and yields results directly traceable to blocks in the model.

Thus, no expert is involved in the analysis. However, 8Cage only detects faults related

to single blocks on a unit/integration level. This makes the use of static analysis tools

still advisable to detect other faults at a later stage.

Static analysis is also performed by smell finding tools such as Lint [81], Simulink

Model Advisor [107] and Polyspace Bug Finder [130]. They return a plethora of

possible problems for C code without dynamic execution. 8Cage also performs a

lint-like smell detection of the fault pattern, which could be performed by any other

smell detection tool. However, after the detection of the smell, 8Cage always aims to

gather evidence for an actual fault to be present by creating a test case leading to a

failure. This second step is not performed by other smell finding tools leading to many

false positives. In fact, the number of false positives tends to discourage developers

and testers from checking for an actual fault to be present.

Tools related to 8Cage in the field of model-based testing of Simulink models are,

among others, Simulink Design Verifier [108], Reactis [131] and TPT [146]. Design

Verifier allows the detection of dead logic, integer and fixed-point overflows, array

access violations, division by zero in an automatic fashion. The other two tools allow

the manual specification and automated execution of test cases. Design Verifier and

Reactis can generate test cases for coverage. In addition, Reactis can generate random

test inputs. TPT uses a graphical test case notation abstracting from actual I/O in a

keyword-driven way. In contrast, 8Cage generates test cases that target specific faults

within the Simulink model by operationalizing defect models. It is thereby able to

detect all faults described in Section 5.1 and further faults specified by developers and

testers in custom fault models.
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5.5 Discussion and Conclusion

We have described an operationalization of defect models using 8Cage. 8Cage detects

faults related to single blocks / block combinations in Matlab Simulink models. These

faults are described as defect models (see Chapter 3) using parts of the Simulink /

Stateflow model syntax with a minor extension. The fault models currently operational-

ized in 8Cage relate to over-/underflows, divisions by zero, comparisons/rounding,

Matlab Stateflow (state chart implementation in Matlab Simulink) faults and loss of

precision. The failure models relate to exceeded I/O ranges. The defect models are

operationalized by 8Cage in automatic detection consisting of smell detection, test data

generation and test case execution. During smell detection, the static aspects of a block

(i.e. the image of the transformation) such as its type, name and properties are utilized

to find potentially failure-causing blocks (i.e. model smells) as a syntactic or static

prerequisite. Test data generation performs a symbolic execution using the semantic or

dynamic prerequisite to search for failure-causing inputs to the model (i.e. an input

space partition). Test case execution creates a test case using the failure-causing inputs

and provides evidence for a fault. Note that, smell detection is only required for fault

models, but not for failure models.

Scalability of symbolic execution is a concern (see Section 2.2). Test data generation

may take significant proportion of the analysis time. However, experience suggests

that almost all single block faults can be found within the first 10 time steps, a pattern

also exploited by unfolding heuristics in static analyzers. Test data generation has to

be performed for every potentially failure-causing block. Because test data generation

is independent for each model smell, parallelization may yield performance increases.

We have evaluated 8Cage on 29 units extracted from three Matlab Simulink systems.

In the evaluation, 8Cage demonstrated reproducibility, effectiveness and efficiency

when creating the results in the case study. Even the results of efficiency w.r.t. the

execution time of the symbolic execution part of the test data generation turned out

to be scalable for the evaluated units. Major concerns were the representativeness

of the selected systems and no detected faults other than overflows limiting the

generalizability of the case study. Further major concerns were control systems, global

variables and floating point numbers. Control systems have an inherent loop back to

the controller and their analysis was demonstrated for the selected systems. However,

the results may not be generalizable either. Global variables were used by multiple

units and these variables can be written outside of the unit. This access could lead

to faults not detectable on a unit level with 8Cage. As electronic control units in the

automotive area often lack floating point units because of cost, this is not a drawback

for 8Cage yet. However, it is projected that floating point units will be built in within a

few years. Thus, we are currently looking into a floating point version of KLEE [35].

8Cage can solely detect prespecified faults. New or different faults need to be

specified to be detectable. Thus, the library of fault models needs to be maintained
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(for maintenance of defect models see Section 8.2). Concerning the specification, one

major issue seen when performing the evaluation was the dependency on the unit

specification. If this specification is wrong or missing, the results of 8Cage may contain

false positives since 8Cage uses the full range of values for all signals by default. This

value range may not be achievable because of range limits in a part providing the

inputs to the unit examined by 8Cage. In addition, true positives may not be found

because of the parametrization (configuration) of the system disallowing taking paths

to the smell.

We are unaware of tools to provide evidence of actual faults related to single blocks

/ block combinations to be present in Matlab Simulink models at an early stage. Of

course, Simulink Model Advisor [107]is able to produce potential faults, but also

creates many false positives. When presented with 8Cage, model developers/testers

had a very positive response. 8Cage enables developers to detect these faults before

even checking their model into version control. Moreover, these faults could be detected

in continuous integration [49] leading to their continuous nightly detection. In some

cases, developers use under-/overflows deliberately to make computations faster. In

these cases, the results of 8Cage can be given to the static analysis responsibles to

make them aware of these deliberate (desired) under-/overflows.

In the future, we want to compare 8Cage to other techniques, such as reading

techniques using checklists. Reading techniques could be more efficient than the

detection performed by 8Cage. Particularly for more complex faults including multiple

blocks or multiple units, we speculate checklists to be the better choice. In addition,

8Cage is a first operationalization on the unit testing level according to second generic

operationalization scenario in Section 3.3. Using the experiences gained in this op-

erationalization, other operationalizations in different implementation languages on

the unit are analogously creatable. For instance, these could target #13 in the top 14

technical defects of Table 4.2 in web-based information systems by explicitly creating

test cases to test the input sanitation. Such test cases could then not only check user

input, but also try to provoke security faults leading to an SQL injection failure.
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Description and
Operationalization:
OUTFIT for integration testing

In the previous chapters the foundations for a systematic and (semi-)automatic ap-

proach to defect-based quality assurance based on defect models were defined, relevant

defects have been elicited and classified and a first description and operationalization

on the unit level called 8Cage has been created. To demonstrate the effectiveness and

efficiency of the operationalization of defect models in integration testing, this chapter

describes and operationalizes defect models in a tool called OUTFIT (short for prOfiting

from Unit Test For Integration Testing), which re-uses unit tests to perform integration

testing. Concerning the variation points OUTFIT resides on the integration testing level

in the Matlab Simulink domain. The failure models described and operationalized

in OUTFIT are application and specification independent. However, for one of the

defect models, the integration must involve fault handling. This chapter is the second

of three descriptions and operationalizations of defect models residing in the method

application step of the lifecycle framework as seen in Figure 6.1.

Recalling the definition of integration testing in Section 2.1.2, integration testing

tests the interaction between two or more software modules / components. It aims

at detecting faults concerning interfaces, design decisions and non-functional require-

ments. In theory, an explicit integration testing strategy prescribes how combinations

of components are integrated and what is to be tested. Each integration test requires

test cases, a number of components to be tested and a test environment consisting of

stubs and drivers emulating components not part of the integrated system. Because

this is too expensive, in practice, integration testing is done more opportunistically.

Typically, integration is done for a sensible, usually ad-hoc, selection of components, at

a permissible cost for the creation of test cases and test environments. However, using

such an integration testing strategy (1) may increase the effort for fault localization

as many components are integrated at once and (2) may not detect particular defects

detectable only when integrating a small number of components.
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Figure 6.1: Position of the operationalization OUTFIT in this thesis

In Chapter 4, we have elicited and classified common and recurring defects. Partic-

ularly, we identified several domain-independent defects particularly detectable and

common in integration testing. These include superfluous or missing functionality and

untested exception/fault handling. By targeting these defects in the integration testing

of two components or subsystems, we aim for their (semi-)automatic detection. As in

the previous chapter, we describe the defects above in defect models to automatically

derive test cases and test environment in their operationalization. Since the defects

above can be caused by a previously unknown set of transformations, we use failure

models for their description and operationalization.

By describing and operationalizing, we front-load their detection by performing

integration testing re-using unit tests as components become available. Particularly,

the unit tests can be created automatically or manually, with high coverage being the

only condition for their re-use. Although the failure detection ability of test cases

for coverage is disputed (see Chapter 3 and [77, 129, 150]), they are able to detect

common and recurring defects found in integration testing of components connected

in the pipe and filters pattern. By almost full automation, we are able to add additional

defect-based integration tests for execution on any (or specific) aggregates. Since

this approach directly profits from unit tests for integration testing, the name OUTFIT

was chosen for the operationalization. Recall that Matlab Simulink commonly uses

the pipe and filters pattern in the design and implementation of embedded systems

(see Section 2.3) and is particularly used at our industry partner. However, using

knowledge of typical failures in integration testing is also possible in other contexts.

Note that, the signal range failure model is able to target the common and recurring

defect of signal range violations leading to failures on the integration test level. We

applied this failure model at the level of unit testing, but it could intuitively be re-

used on the level of integrated components. Only the possibility to perform symbolic

execution on the respective components is required.
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To the best of our knowledge, this is the first operationalization of failure models for

integration testing (as described by [71]). OUTFIT automatically creates integration

tests and environments. Only the test verdict has to be inferred by manual inspection.

Our approach also reduces the effort of fault localization for the presented defects as

the automatic bottom-up integration of the system only requires small parts of the

system to be inspected. We evaluate our tool on three representative components of

a real-world electrical engine control system of a hybrid car. We can demonstrate

reproducibility, effectiveness and efficient procurement for practical applications.

6.1 Failure Models

The failure models for integration testing were elicited and classified in the field study

of common and recurring defects for the creation of defect models (see Section 4.3).

Two defect models for integration testing were elicited and classified in this study

and are described in detail on a program/domain/paradigm/-independent level of

abstraction in the following.

6.1.1 Superfluous or missing functionality

A common and recurring defect concerning integration testing is missing or super-

fluous functionality. Superfluous functionality typically occurs due to cloning or

over-engineering. When re-using large software parts of existing projects, developers

may not have the full knowledge of all functionality a component implements. Some

functionality may have been project specific making it dead code. Missing functionality

typically occurs due to changes made to one component, but neglected in another

component. Finding missing or superfluous functionality is not only important for the

correct functioning of the system, but also for fulfilling the non-functional requirements.

As an example, when an additional mode of the system was introduced, this addition

was forgotten in one component, resulting in the scenario shown in Figure 6.2. When-

ever the system switched to mode 3, the missing functionality for mode 3 in component

A caused a failure. Since mode 3 was rarely used, the fault localization effort of the

system testers was large. In a further example, a component was copied from an

old system. This component compensated for the signal jitter of a sensor. However,

the sensor was replaced and the jitter compensation was no longer required, which

created a computational overhead and made some of its functionality superfluous.

Thus, our first failure model aims to front-load the detection of missing and superfluous

functionality with reduced localization effort.

According to the definition of the generic defect model in Chapter 3, a failure model

characterizes the set of failure-causing inputs ϕ of the input domain of a program. Test

cases selected from the approximation ϕ̃ are then potentially failure-causing, defect-

based and “good” (see Chapter 3). To formally describe ϕ for this failure model let the

input space be all possible calls in the integrated system containing both components
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Figure 6.2: Example of missing functionality

above. We deliberately leave the notion of call abstract as these could be function calls

in imperative programming languages, method calls in object-oriented programming

languages or simply calls passing data for data-flow oriented languages. Formally,

this space is partitioned into four blocks. The first block (1) contains all calls causing

the interaction of the components as one component needs to call the other for the

completion of the call. The second (2) and third (3) block contain calls handled by

a single component (i.e. that do not yield interactions with other components). The

fourth (4) block contains all other calls (i.e. that lead to arbitrary other interactions).

Recall that, the operationalization of ϕ is impossible as it is in general undecidable, if a

call will lead to the interaction of the components or not . However, empirical methods

of path exploration (e.g. symbolic execution) were proposed in Chapter 3 for the

approximation of this component interaction leading to the approximation ϕ̃. The set

produced by ϕ̃ then contains calls belonging to the first, second and third block. This set

of calls is rather large, but we want to capture all possible interactions as to excercise

as much functionality within the components as possible. Calls in the first block are

able to reveal missing functionality of a component when it is interacted with. Calls in

the second and third block reveal potentially superfluous in the called component as

they are handled by a single component. The operationalization of this failure model

is (semi-)automatic as only a robustness oracle can be automatically created, which

is sufficient in this case. In Section 6.2, this failure model is operationalized using

coverage test cases in Matlab Simulink systems, which reveal missing/superfluous

functionality after manual inspection (see Figure 6.5).

6.1.2 Untested integrated exception/fault handling

A further common and recurring defect concerning integration testing is exception/fault

handling in untested compositions. Every system has exception/fault handling on a

unit basis. If an exception/fault cannot be handled by the unit, it will be propagated

to a higher instance. This higher instance may propagate the exception/fault to

even another instance, thereby creating a propagation chain until either handling

is performed or the propagation reaches the application boundary and terminates

it ungracefully. In real-world systems, the ungraceful termination of the application

must strictly be avoided. Thus, there is typically a central component dealing with

exceptions/faults within the system. This component handles system degradations

after partial system malfunctions and graceful shutdowns. Not testing the integrated

exception/fault handling of all propagators to this central unit can lead to undesired
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Figure 6.3: Integrated system Z of A and B

system failures. This may cause anything from data loss in IT systems to death in

safety-critical systems. As a real-world example, a fault in the exception handling of an

IT system led to the termination of the entire application because a single component’s

exception handling forced the application to exit after an exception was not handled.

A further example was a fault in the fault handling of an embedded system leading

to no reaction of the system although an emergency shutdown was required. Both

faults were only detected after deployment and system testing respectively and yielded

a large effort in localization. Thus, our second failure model aims to front-load the

explicit test of integrated exception/fault handling with reduced localization effort.

The set produced by ϕ according to the generic defect model in Chapter 3 for this

failure model again a subset of all possible function calls. More precisely, ϕ contains all

calls leading to unhandled or wrongly handled exceptions/faults. In practice, the formal

description again is not operationalizable as it is in general undecidable whether a call

leads to unhandled or wrongly handled exceptions/faults. Thus, empirical methods

can be used to approximate ϕ as ϕ̃ using path exploration to find all calls leading to

an exception/fault in one component propagated to the next higher instance / central

component. Again, the operationalization of this failure model is (semi-)automatic as

only a robustness oracle can be automatically created. In Section 6.2, this failure model

is operationalized using coverage test cases in Matlab Simulink systems for the unit

exception/fault handling. Potentially exercising all combinations of exceptions/faults

then reveals untested integrated exception/fault handling by sorting test cases by there

outcome for the system.

6.2 Operationalization

To perform integration testing of Matlab Simulink systems, let Z be the composition

of two components A and B as shown simplified in Figure 6.3. To be as generic as

possible, a component in this context is defined as either a unit or a composition of

other compositions or units. Recall that, Matlab Simulink uses a block-based data-

flow driven notation where blocks represent operations and lines represent data flow

(see Section 2.3). Thus, each component has one or multiple data inputs and one or

multiple data outputs. Matlab Simulink components typically implement a sequence of

operations on data where the output signals (i.e. data values over time) of A act as the

input signals of B (see Figure 6.3). An example for A is signal processing where B is a

control system. The integrated system Z then has the inputs of A and the outputs of B.
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6.2.1 Detecting superfluous or missing functionality

To operationalize the first failure models in Section 6.1.1, we re-use or generate high-

coverage unit/component test suites in our OUTFIT approach. These test suites either

exist from previous unit/component testing stages, or are automatically created using

symbolic execution with KLEE [25]. After the execution of the test suites, manual

inspection of covered parts of the system reveals superfluous or missing functionalities.

OUTFIT performs three fully automatic steps to procure the coverage measurements:

Model Transpilation, Test Case Creation, and Test Case Execution.

In the following, these steps are explained for the situation where there are no

tests for either component. If instead test suites for components A and B are available,

functional end-to-end testing of the composition Z is directly possible by matching

actual outputs of TA with the required inputs of TB under the assumption of no other

component being involved. However, issues when combining the test suites include

deviation in time and value dimension of the signal and have extensively been discussed

in signal processing [18].

Figure 6.4: Components involved in test case generation

1. Model Transpilation

To generate high coverage test cases at the component level with KLEE, components

A and B are extracted from the Matlab Simulink system model and transformed into

C code (equivalent to the transpilation part of the test data generation of 8Cage

in Section 5.2.3). This transformation to C code and compilation (i.e. transpilation)

is done by the embedded coder or Matlab Simulink and commonly performed for the

deployment of the system. For each component, the input signals are made symbolic in

the C code. This means that symbolic execution, which we use for test case generation,

Figure 6.5: Exemplary coverage results of A and B in Z after executing TA (a) and TA←B (b)

(a) Superfluous functionality in B or
missing functionality in A

(b) Superfluous functionality in A or
missing functionality in B
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will perform path exploration using these input signals. The C code for each component

is separately compiled to LLVM bitcode using clang.

2. Test Case Generation

The two LLVM bitcode files produces by the Model Transpilation are then given to KLEE.

KLEE automatically creates a best effort high coverage test suite, aiming for full path

coverage. Because the input channels of A and Z coincide, the generated component

test suite of A (TA) can directly be executed in Z. For the test suite of B (TB), inputs of

A have to be derived that let A produce the output required by each test case in TB. By

collecting the inputs for each test case in TB and using them as an output constraint

for A, test cases for A leading to the inputs required by B (TA←B) are derived by KLEE.

All created test suites and parts of the integrated systems are shown in Figure 6.4.

3. Test Case Execution

The generated test suites TA and TA←B are given to a unit/integration testing frame-

work and executed separately as model in the loop tests (MIL) in Z. Z is an excerpt

of the system model and also automatically generated as test environment. The test

case execution step presents an instance of robustness testing as the test suites do not

contain oracles and only system crashes/errors can be detected.

4. Manual Inspection

As a last manual step, an inspection of test suite coverage is performed on Z using the

integrated model coverage features of Matlab Simulink1.

The manual inspection of the coverage produced by TA reveals missing functionality

in A or superfluous functionality in B as shown in Figure 6.5a. After executing the high

coverage test suite TA for A, the functionality of A is (completely) covered (shaded

in Figure 6.5a). In case there is an uncovered part of the functionality of B (white

in Figure 6.5a), this either means (1) it is superfluous as it is not used by A or (2) there

is missing functionality in A, which is supposed to use this part of the functionality in B

. Vice versa, the manual inspection of the coverage produced by TA←B reveals missing

functionality in B or superfluous functionality in A as shown in Figure 6.5b. If B is

completely covered (shaded in Figure 6.5b), any uncovered part of the functionality

of A (white in Figure 6.5a) is either superfluous or there is functionality missing in B.

Interestingly, the inspection does not only form the test verdict, but also reduces the

effort for the fault localization to the two considered components.

Applying this operationalization to the system in Figure 6.2, the results of TA leaves

mode 3 in B uncovered and a manual inspection of the uncovered functionality reveals

the inability of B to switch to mode 3. A following inspection of the causes reveals

and localizes the missing mode in A. Executing TA←B reveals no defect as there is no
1http://www.mathworks.com/help/slvnv/ug/types-of-model-coverage.html

http://www.mathworks.com/help/slvnv/ug/types-of-model-coverage.html
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superfluous functionality in A or missing functionality in B for the integrated system

shown in Figure 6.2.

Dependencies

In a typical system, components A and B are not only connected in the back-to-back

style sketched in the scenarios above, but send and receive data from other source

or loop back to themselves. Other sources can be other components of the system

or external systems. For the integration test scenarios, there are four scenarios of

sending/receiving outside data from a component C as seen in Figure 6.6.

The first scenario is the reception of additional data by component B. In this case,

high coverage of test cases of A will likely not be able to cover all functionality of B as

it is also used by component C in some way. Thus, the usage of B by C leads to areas

uncovered in B, which are not superfluous functionality, but false positives. To mitigate

the false positives, the test cases can be extended with inputs to B thereby simulating C.

In practice, this is done by adding all inputs of B not outputs of A as (symbolic) inputs

to Z.

The second scenario is sending of additional data by component A to another

component C. In this case, the approach does not need to be amended as high coverage

test suites of A will also cover C in addition to B.

The third scenario is the sending of data by component A to another component C

and the reception of data by component B from C. In this case, there are two ways of

mitigation: (1) either the test cases are extended with the inputs to B as presented in

the first scenario or the outputs of A to C are recorded for each test case in TA, given

Figure 6.6: Scenarios of dependencies
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to C as unit tests producing outputs for B. In practice, the latter can be implemented

automatically if C only consists of components without outside system dependencies.

The fourth scenario is a loop back from B sending data back to A through another

component C being the inverse scenario to the third scenario. If simplified by C

applying the identity function for all inputs, this scenario constitutes a simple backward

loop as is the case in control systems (see Figure 2.1). OUTFIT is unable to handle

even such a simplified scenario as the functionality of each component cannot be

considered separately. The only possible mitigation is to skip this particular integration

and proceed to the next higher level of integration testing, thus turning the composition

of A and B into a new component D and hiding the loop.

6.2.2 Detecting untested integrated exception/fault handling

To operationalize the second defect model of Section 6.1.2, we can re-use the above

operationalization with three changes. Firstly, component A must propagate excep-

tions/faults to component B. A particular choice for A is the exception/fault handling

units within each component, while B is the global exception/fault handler/watchdog.

Typically these components can be extracted as the only output of a local fault handler

(A) is an input to the global fault handler (B). Secondly, a high coverage test suite must

only exist or be created for component A as only B is to be integration-tested. Thirdly,

the actual output of the test cases must be groupable by the integer output signal of B

representing the system mode (e.g. system operation/degradation / failure mode).

When executing the high coverage test suite for A in Z, (ideally) all respective

exception/faults are triggered and propagated to B. B then switches the system’s mode

according to the severity of the exception/fault in A and test cases are grouped by this

mode output. By manually inspecting test inputs and the resulting system mode, it can

be assessed whether the system switched into the correct mode. Particularly interesting

are critical test cases leading to modes such as system shutdown, but also no reaction

to an exception/fault may be incorrect and endanger data or life.

6.3 Evaluation

Based on the failure models of superfluous or missing functionality and untested

integrated exception/fault handling above, we implemented the OUTFIT tool following

the above ideas and the methodology. We evaluate our tool using a real-world electrical

engine control system of a hybrid car. Our evaluation systems are a quad-core Intel

Core i7 920 with 4GB of RAM running Microsoft Windows and an octa-core Intel Xeon

E5540 at 2.5 GHz with 40 GB of RAM running Ubuntu Linux. Matlab Simulink, Clang

and the unit/integration testing framework of our project partner are running on the

Windows machine while only KLEE [25] is running on the Linux machine. We use the

computationally stronger machine for Linux as KLEE cannot be ported to Windows

and is known to require a lot of computational power. Thus, the Windows machine
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performs the tasks of transforming (parts of) the Matlab Simulink model to C and then

to LLVM bitcode in the Model Transpilation step. Then the Linux machine runs KLEE

on the created LLVM bitcode to derive test cases in the Test Case Creation Step. These

test cases are sent back to the Windows machine an executed in the unit/integration

testing framework of our project partner in the Test Case Execution step.

The evaluation’s goal is to show (1) reproducibility, (2) effectiveness, and (3)

efficiency of OUTFIT and, therefore, of the superfluous or missing functionality

and untested integrated exception/fault handling failure models introduced in Sec-

tions 6.1.1 and 6.1.2.

Firstly, symbolic execution as implemented in KLEE [25] is non-deterministic as

choosing a path may occur at random. Thus, reproducibility must be assessed to

evaluate if multiple executions lead to the same result. In practice, every execution

of OUTFIT should lead to comparable coverage values as varying coverages lead to a

significant manual inspection overhead and decrease the effectiveness. This manual

inspection overhead arises from parts of the system not covered by the test suite

that are neither superfluous nor missing and only arise due to low overall coverage.

Thus, reproducibility puts the results of effectiveness into perspective as unreliable

reproducibility destroys any effectiveness.

Secondly, the effectiveness of OUTFIT must be evaluated w.r.t. potentially detected

defects to assess the benefit of using OUTFIT. We perform a manual inspection and

assess the uncovered parts of the model to detect any missing or superfluous parts

and untested integrated exception/fault handling. We then examine whether the parts

could be covered manually/trigger the correct fault handling or yield true defects.

Thirdly, the efficiency of OUTFIT needs to be evaluated w.r.t. the time consumed

for one execution. The time consumed must be reasonable to run OUTFIT overnight

for deployment in a continuous integration context. Thus, the execution time per

integrated system on our standard hardware evaluation systems is not to exceed 8

hours for two components as defined reasonable by our industry partner.

The Matlab Simulink model used is an electrical engine control system deployed

in a real hybrid car. The system model has over 31 000 blocks in 11 components

using Matlab Simulink as implementation language only. The high level components

deal with signal and bus inputs, engine control and signal and bus outputs as well

as system monitoring and diagnostics. All high level components contain at least

3 levels of nested components and we selected 3 components to test. The three

components selected for evaluation are in the input processing and engine control

high level component. Their characteristics are shown in Table 6.1. ProcessCurrents

and CalculateCurrents are responsible for calculating the current from analog input

values in input processing and AdjustVoltage is an open loop controller for the voltage

to the electrical engine in the engine control. When selecting the components, we

wanted them to be representative and independent of other components. Since

the components are from different high level components with different scopes, the
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implemented functionality and complexity differs. AdjustVoltage is part of a controller

while the two current calculation components are transformative with only a fault state.

Each of the components is independent of other components and, therefore, is able to

potentially reach high coverage by only using its inputs. In addition, ProcessCurrents

is able to evaluate the superfluous or missing functionality and untested integrated

exception/fault handling failure model as it contains fault handling.

Table 6.1: Components used in the evaluation

Name blocks Inputs LOC Subsystems

ProcessCurrents 486 28 472
A: Calculate present currents

B: Process faults during calculation

CalculateCurrents 244 7 321
A: Normalize input values

B: Replace implausible values

AdjustVoltage 199 39 259
A: Open loop voltage controller

B: Saturate output voltage

For the evaluation, we were given test cases for component A of AdjustVoltage to

reuse. These functional test cases yield less coverage (60% condition and 45% decision

coverage in Matlab Simulink) than the generated test cases by KLEE (see Table 6.4).

Thus, multiple functionalities are actually coverable and re-using the test cases only

produced additional manual inspection effort. Based on these results, we will always

generate test suites with KLEE in the following also due to the evaluation of the worst

case execution time of OUTFIT. However, we recommend to always generate test suites

with KLEE in order to avoid manual inspection overhead due to actually coverable

functionality. Thus, coverage-based testing, which lacks a defect model (see Chapter 3),

is injected with a defect model leading to defect-based testing when used in OUTFIT.

For all goals of the evaluation, we execute OUTFIT 10 times. OUTFIT is configured

with the respective A and B for each of the three components. The only configuration

of OUTFIT concerns the Test Case Creation step with KLEE (see Section 2.2 for the

used command line options). We execute KLEE with this command line yielding a

maximum of 20 minutes execution time and a signal (or trace) length of 6. These

parameters were chosen as the results of the evaluation of 8Cage (see Section 5.3)

using this maximum execution time and signal length were positive when running

KLEE on Matlab Simulink models. In addition, the test cases created by KLEE for TB
may require a certain signal value in the first step. However, this signal value may

not be producible by A in the first time step as calculations in A must be performed

before it can be given as an output. Thus, for the creation of TA←B, we added a lag to

the configuration, which shifts the signal required by the test cases TB by a number

of time steps allowing A time to produce this output. For the evaluation, we set the

(possible) lag to 3 time steps. If KLEE is unable to create TA←B directly using the signal

values required by the test cases of TB, this configures KLEE to neglect the signal values
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produced by A within 1, 2 or 3 time steps. Thus, it only applies the output constraint

for the signal values required by the test cases of TB to A after 1, 2 or 3 time steps.

Table 6.2: Coverage of the integrated system ProcessCurrents

Execution Component No. Coverage (Model in %)
test cases CC DC

1.
TA 6 70 (55/78) 75 (49/65)

TA←B (TB) 0 (4) x x

2.
TA 5 71 (56/78) 75 (49/65)

TA←B (TB) 1 (4) 50 (39/78) 56 (37/65)

3.
TA 5 73 (57/78) 76 (50/65)

TA←B (TB) 0 (4) x x

4.
TA 5 69 (54/78) 73 (48/65)

TA←B (TB) 0 (4) x x

5.
TA 5 70 (55/78) 75 (49/65)

TA←B (TB) 1 (4) 50 (39/78) 56 (37/65)

6.
TA 5 73 (57/78) 73 (48/65)

TA←B (TB) 0 (4) x x

7.
TA 5 73 (57/78) 76 (50/65)

TA←B (TB) 1 (4) 50 (39/78) 56 (37/65)

8.
TA 5 71 (56/78) 75 (49/65)

TA←B (TB) 1 (4) 50 (39/78) 56 (37/65)

9.
TA 4 70 (55/78) 76 (50/65)

TA←B (TB) 1 (4) 50 (39/78) 56 (37/65)

10.
TA 5 73 (57/78) 73 (48/65)

TA←B (TB) 0 (4) x x

6.3.1 Reproducibility

To evaluate the reproducibility of OUTFIT, we question the reproducibility of the results

of KLEE w.r.t. the achieved unit coverage. KLEE uses non-deterministic features such as

random path exploration among others. After 10 execution of OUTFIT, we assess the

resulting coverage. Our baseline for reproducibility is less than 10% standard deviation

in condition and decision coverage. These thresholds were chosen to (1) minimize the

manual inspection effort according to the expectations of our project partner and (2)

to be on the same level as previous results by Cadar et al. [25] using KLEE on the GNU

COREUTILS without libraries. In the following, coverage is measured within Matlab

Simulink after executing the integration test suites separately in Z (i.e. the integrated

system of A and B). We do not execute TA and TA←B in sequence in Z as maximum

coverage of Z is not required by our failure models. If a high coverage test suite is

required, KLEE can be executed on Z directly.

Table 6.2 shows the number of test cases, condition and decision coverage for

TA and TA←B in each execution of OUTFIT for the ProcessCurrents component. It

also includes the number of conditions/decisions covered and the total number of
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conditions/decisions in Z. The average condition coverage achieved by TA is 72% while

the average decision coverage is 74.7% with an average of 5 test cases. The respective

standard deviations are 3% and 1%. The average condition coverage of TA←B is 50%

and decision coverage is 56% with an average of 1 test case. The standard deviations

for decision coverage are 0%. Thus, we deem the results of ProcessCurrents within

our thresholds and reproducible. Admittedly, coverage of 50% is rather low after

performing the symbolic execution and will likely lead to a large manual inspection

effort in some systems. However, this low coverage may also be the effect of code

generation and compiler optimization. In cases with low coverage, a review / inspection

of the component concerning the failure models could yield less effort. Also recall that,

we are creating the test suite TA←B based on TB, which is not directly executable on

the integrated system. Thus, it may occur that KLEE is unable to satisfy the output

constraints created by the inputs of the test cases of TB and generates no test cases.

This is denoted as x in Table 6.2 including the number of generated test cases of TB in

parentheses.

Examining the results of CalculateCurrents in Table 6.3, the average condition

coverage achieved by TA is 93% while the average decision coverage is 95% with 5 test

cases in all executions. The respective standard deviations are 6% and 0%. The average

condition coverage of TA←B is 50% and decision coverage is 68% with 1 test case in

all executions. The standard deviations for decision coverage in CalculateCurrents are

0% and 3%. Thus, we deem the results of CalculateCurrents within our thresholds

and reproducible. Admittedly, again coverage of 50% / 68% is rather low and will

likely lead to a large manual inspection effort in other systems as was the case with

ProcessCurrents. In addition, the low coverage when executing TA←B was a potential

defect as seen in Section 6.3.2.

Creating and executing TA and TA←B for AdjustVoltage as shown in Table 6.4, the

average condition coverage achieved by TA is 76% while the average decision coverage

is 66% with 3 test cases in all executions. The respective standard deviations are 5%.

The average condition coverage of TA←B is 91% and decision coverage is 83% with

3.3 test cases on average. The standard deviations are 7% and 6% respectively. Thus,

we deem the results of CalculateCurrents within our thresholds and reproducible.

We hence conclude the reproducibility of the results of OUTFIT to be high w.r.t. the

standard deviation of the achieved coverage. However, this does not necessarily mean

that the same parts are always covered and different parts may be covered in each run

leading to more or less manual inspection effort. We speculate the large number of

operations (i.e. blocks) and branchings in ProcessCurrents to influence the ability to

derive the test suite TA←B based on TB and/or that the inputs of the test cases of TB
are infeasible to produce for component A. This is supported by the integrated KLEE

statistics stating that it is spending 99% of the execution time in constraint solving.

However, further investigation is required.



124
6. Description and Operationalization:

OUTFIT for integration testing

Table 6.3: Coverage of the integrated system CalculateCurrents

Execution Component No. Coverage (Model in %)
test cases CC DC

1.
TA 5 96 (27/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 65 (13/20)

2.
TA 5 89 (25/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 65 (13/20)

3.
TA 5 100 (28/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 70 (14/20)

4.
TA 5 89 (25/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 65 (13/20)

5.
TA 5 100 (28/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 70 (14/20)

6.
TA 5 92 (26/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 65 (13/20)

7.
TA 5 100 (28/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 70 (14/20)

8.
TA 5 92 (26/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 70 (14/20)

9.
TA 5 89 (25/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 70 (14/20)

10.
TA 5 92 (26/28) 95 (19/20)

TA←B (TB) 1 (1) 50 (14/28) 70 (14/20)

6.3.2 Effectiveness

For the evaluation of effectiveness of OUTFIT, we perform a manual inspection of

uncovered parts to assess whether these parts are missing/superfluous functionality

or untested integrated exception/fault handling. In case we find an uncovered part,

we examine whether this part could be covered by manually creating test cases or is

indeed a potential defect.

While performing the manual inspection, we found a potential defect in the Calcu-

lateCurrents component. CalculateCurrents performs a normalization of input values

and a plausibility check on the normalized values. In case they are not plausible, they

are replaced by default or other input values. After executing OUTFIT 10 times, it

was never possible to cover the plausibility check completely when executing TA. This

means that although the generated TA covers the normalization (A) of CalculateCur-

rents in 3 executions, these test cases are unable to achieve coverage of the plausibility

check (B). Thus, there are three possible causes: (1) A is missing functionality, (2)

B has superfluous functionality or (3) it is possible to completely cover A while not

necessarily exercising all its functionality. All three causes were investigated as they

may lead to failure or extended execution times in the safety-critical electric engine

control system. In the end, it was possible to cover A while not necessarily exercising
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Table 6.4: Coverage of the integrated system AdjustVoltage

Execution Component No. Coverage (Model in %)
test cases CC DC

1.
TA 3 80 (8/10) 70 (14/20)

TA←B (TB) 3 (3) 90 (9/10) 90 (18/20)

2.
TA 3 80 (8/10) 70 (14/20)

TA←B (TB) 4 (4) 90 (9/10) 85 (17,20)

3.
TA 3 70 (7/10) 60 (12/20)

TA←B (TB) 4 (4) 100(10/10) 95 (19/20)

4.
TA 3 70(7/10) 60 (12/20)

TA←B (TB) 3 (3) 90 (9/10) 80 (16/20)

5.
TA 3 80 (8/10) 70 (14/20)

TA←B (TB) 3 (3) 80 (8/10) 75 (15/20)

6.
TA 3 70 (7/10) 60 (12/20)

TA←B (TB) 3 (3) 80 (8/10) 80 (16/20)

7.
TA 3 80 (8/10) 70 (14/20)

TA←B (TB) 4 (4) 100(10/10) 80 (16/20)

8.
TA 3 80 (8/10) 70 (14/20)

TA←B (TB) 3 (3) 90 (9/10) 80 (16/20)

9.
TA 3 70 (7/10) 60 (12/20)

TA←B (TB) 3 (3) 90 (9/10) 75 (15/20)

10.
TA 3 80 (8/10) 70 (14/20)

TA←B (TB) 5 (5) 100(10/10) 95 (19/20)

all functionality as part of the plausibility check in B needed not to be triggered when

covering A.

For the untested integrated exception/fault handling failure model, the test cases

were grouped by the output propagated to the central fault handler. We performed a

manual inspection of the inputs leading to each propagated fault and could not find

any discrepancies w.r.t. the specification. A discrepancy would have been (1) the

propagation of a major system fault although only a minor fault occurred or (2) the

omission of propagation of a major system fault. Examples for these discrepancies

are the short-time loss of an outside temperature sensor value or a significant loss of

voltage from the high voltage battery.

While we investigated the three integrated systems and their respective coverage,

we expected many false positives as coverages vary between 50% and 96%. However,

we found the manual inspection to be almost effortless in our case study as the graphical

nature of Matlab Simulink lead to a quick reasoning about uncovered functionality.

Most of the time, the uncovered functionality was related to configuration parameters

leading to a usage of one part of the component to perform the computation or the

other. The only system difficult to investigate was ProcessCurrents as the coverage

achieved by TA←B for B was incomplete, because KLEE was unable to provide test

cases.
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Although we have only found one potential defect, we conclude OUTFIT to be

effective in our case study. The system we used for evaluation was already completely

unit, integration and system tested as well as deployed hinting at a small number of

defects left. Still, we were able to find and localize a potential defect in every execution

leading to possible untested functionality.

6.3.3 Efficiency

We evaluate the efficiency of OUTFIT by calculating the average execution time and

its standard deviation of 10 executions on all systems of the evaluation as shown

in Table 6.5. Our baseline is the possibility to execute OUTFIT within 8 hours overnight.

ProcessCurrents is the most complex component due to the number of operations

performed and also takes the longest on average with more than 90 minutes. The

standard deviation is less than 10% for the execution time with a worst case execution

time of 107 minutes. This execution time is due to reaching the maximum execution

time of 20 minutes for KLEE in the creation of TA, TB and TA←B including all possible

lags. For CalculateCurrents and AdjustVoltage, the average execution time is just below

20 minutes with a standard deviation of 1 - 2 minutes. These systems never reached

the maximum execution time of KLEE as KLEE was able to create TA, TB and TA←B

within 10 minutes. The execution time of the Test Case Creation step is also the only

varying factor as the execution time for Model Transpilation and Test Case Execution

stay stable within 45 second bound. The execution times of Model Transpilation and

Test Case Execution are due to Matlab Simulink and Clang in Model Transpilation and

the unit/integration testing framework of our industry partner in Test Case Execution.

We hence conclude the execution times of OUTFIT to be stable for all evaluated

systems and execution within 8 hours to be possible by far. There is an increase in

execution time when using components with more operations attributed to KLEE in the

Test Case Creation step. This increase allows only 5 components of the complexity of

ProcessCurrents to be analyzed in an 8 hour overnight period on one system equivalent

to the evaluation system. Note that, ProcessCurrents is part of a high level component

and represents (almost) maximum complexity. Also, this is a worst case execution

time of the most complex system in our evaluation. We have chosen components

consisting of multiple integrated units as A and B in our three evaluated components

Table 6.5: OUTFIT execution time for the evaluated components (step numbers as in Section 6.2

Name 1.* (s) 2.* (s) 3.* (s) Total (s) Total (min) σ (min)

ProcessCurrents 264.8 5011.5 380.8 5657.1 94.3 9.0
CalculateCurrents 219.6 520.3 378.3 1118.2 18.6 1.6

AdjustVoltage 245.0 527.0 356.3 1128.3 18.8 0.9
*Number corresponds to consecutive step as per section in Section 6.2



6.4. Related Work 127

and hypothesize (1) the times to reduce when using units as A and B and (2) the time

to increase when using high level components.

6.3.4 Summary

In summary, we find the results of OUTFIT to be reproducible, effective and efficiently

provided for the missing/superfluous functionality failure model in our case study.

Although the creation of TA←B from TB is hard and sometimes infeasible, the overall

performance of the test case creation is reproducible and effective also leading us

to a potential defect of the evaluated real-world system components. The untested

integrated exception/fault handling failure model needs to be further evaluated w.r.t.

effectiveness as we were unable to find any defects in our evaluation. One issue we

found was the conversion from LLVM bitcode to model coverage. In some cases KLEE

reported a high coverage of the bitcode, which was not reflected in the coverage of

the model. We hypothesize the reason for this discrepancy to be the transformation

from model to C code and the compilation to bitcode, which applies optimization

possibly decreasing the number of conditions and decisions to cover. It is well-known

that symbolic execution suffers from scalability issues [27]. Since our approach uses

symbolic execution, it also suffers from scalability issues. Thus, our results may not

scale to larger, more-complex components. The results of CalculateCurrents already

hint towards scalability issues due to complexity. Therefore, a larger evaluation with

more than three extracted systems is required to examine the issues above further and

add to generalizability of the tentative results of our case study.

Although test case generation and execution is automatic, there is no oracle for

the test cases. Thus, there is an effort involved in manually inspecting the respective

coverage. For the components in the evaluation, this effort was minimal. Firstly, only a

small part of the plausibility check (B) of CalculateCurrents was not covered. Secondly,

coloring of coverage is automatically added in Matlab Simulink making the uncovered

parts clearly visible. Thirdly, scaling to the complete component on our 1080p screen

still yielded readable and reviewable results. However, to gain generalizable results

concerning the manual inspection effort, further (possibly large-scale case study)

research is required. Such research is also able to yield results w.r.t. comparability to a

completely manual approach.

6.4 Related Work

Using unit test cases with MC/DC coverage for integration testing has already been

studied in previous work [127]. However, this present work proposes an explicitly

defect-based way to perform integration testing based on coverage tests cases with

particular defects and described defect models.
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Apart from the well-known bottom-up and top-down integration testing ap-

proaches [17, 123], previous work discusses integration test selection criteria and

integration testing for object-oriented as well as component-based approaches.

In the area of integration test selection criteria, Harrold and Soffa [65] extend

structural test selection approaches to interprocedural testing by analyzing call depen-

dencies. Jin and Offut [80] use coupling as a basis for coupling-based testing and

define coupling-based criteria based on data-flow test selection criteria. Le Traon et

al. [95] present a model-based integration test approach for planning integration and

regression tests. For the assessment of test selection criteria, Delamaro et al. [43]

present an approach based on mutation testing of the interfaces.

For the integration testing of object-oriented software, Bashir and Paul [11] discuss

the processes involved in integration testing of object oriented software. Jorgenson

and Erickson [82] categorize the testing approaches into unit, integration and system

testing and add a graph-oriented notation.

In the area of integration testing of component-based software, Ipate and Hol-

combe [78] propose using X-machines for the formal verification of correct integration

of components. Similarly, Cristiá et al. [39] propose integration testing based on a

specification in Z whereas Kandl and Elshuber [86] describe a formal approach based

on SystemC. Elsafi [51] proposes to infer component behavior for integration testing

in case component information and/or source code is not available to test against the

inferred model.

The previous work above focuses on creating integration test cases targeting

functional defects in the interaction of components partially in a program/domain/-

paradigm specific manner. Particularly, the test selection criteria based on coverage and

coupling allow automatic creation of test cases while object-oriented and component-

based approaches require a model/specification for test case creation/derivation. OUT-

FIT fits into the first criteria of test selection that allow automatic derivation. However,

it focuses on the (semi-)automatic creation of defect-based integration test cases tar-

geting a particular defect in the system. Obviously, the targeted defects are part of

the functionality, but are independent of any explicit specification and rely on manual

inspection of the results. Other approaches may also inadvertently detect the described

defects, but do not create test cases as operationalization of their defect model to

directly target them. In addition, OUTFIT is also able to create test environments

automatically leading to the possibility of testing any integrated systems. Thus, it is

program and domain independent, but limited to the implementation paradigm used

in Matlab Simulink. However, the described failure models are paradigm independent

with the abstraction of function calls and as long as there is a form of exception han-

dling. Particularly, they can be operationalized in the object-oriented paradigm, which

is left as future work.

In practice, there are several tools focusing on the functional software integration

testing of embedded system including TPT [146], Reactis [131] and slUnit [19]. These
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tools allow the creation of manual (model-based) test cases or are able to create

test cases using random or coverage-based criteria and their execution. Using the

framework of OUTFIT, these tools can also be used for the derivation of high coverage

test suites instead of KLEE.

6.5 Conclusion

In this chapter, we describe an approach for integration testing based on defect models

for defect-based quality assurance. This deviates from earlier approaches, where test

cases are created for the verification of requirements whereas our approach specifically

targets common and recurring defects detectable during integration testing. We

describe two failure models based on the common and recurring defects targeting

superfluous or missing functionality and untested exception/fault handling. These

failure models are the basis for our operationalization OUTFIT for Matlab Simulink.

OUTFIT re-uses high coverage unit tests or creates them automatically using symbolic

execution (e.g., KLEE [25]) in a three step process. The only manual step is the

inspection of the coverage results yielding verdict and fault localization. Thus, OUTFIT

is (semi-)automatic.

We evaluate OUTFIT using three components of a real-world electrical engine

control system of a hybrid car. These components are representative of engine control

systems and contain between 199 and 486 operations. OUTFIT was always able to

produce test cases with at least 50% coverage and at most 10% standard deviation,

but found a correlation between the number of operations and the decrease in cover-

age/increase in standard deviation. We even found a potential defect in the real-world

model, which could have been superfluous or missing functionality. It turned out to

be an indication towards the ability of a test suite to have coverage, but not exercise

all functionality. Overall, the results of OUTFIT were reproducible, effective and effi-

ciently procured and fulfilled the prerequisites given by our project partner for practical

application.

Although the evaluated systems are representative for engine control in the auto-

motive domain, further evaluation of OUTFIT on Matlab Simulink systems from other

domains such as medical and avionic systems is required. These systems also have

real-time constraints and are safety-critical similarly to the evaluated engine control

system. Superfluous functionality in components leads to longer execution times possi-

bly not meeting real-time constraints while untested integrated fault handling can lead

to unsafe behavior. Thus, we project our presented failure models to also be able to

detect defects concerning the real-time and safety-critical behavior.

In the future, further operationalizations based on the described defect models

could be created. Particularly focusing on explicitly testing the exception handling

in object-oriented IT systems as a common and recurring defect (#5 in the top 14

technical defects of Table 4.2) could be beneficial. However, preliminary results have
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shown that particularly symbolic execution for object-oriented systems is harder than

for procedural languages such as C. In addition, more studies to elicit and classify

further defect models operationalizable in the area of integration testing are required.

Particularly interesting are defects attributed to the environment of the system as these

are hard to detect by path exploration.

To extend OUTFIT further, other techniques to create high coverage test suites such

as the ones presented by Perandam et al. [126] and Matinnejad et al. [104] could be

used. The test suites may also be generated by using fuzz [21, 56] or random testing [4,

6]. These techniques are also particularly interesting for the operationalization of other

defect models.







7
Description and
Operationalization:
Controller Tester for system
testing
The previous chapter introduced the second explicit description and operationalization

OUTFIT on integration testing level based on the generic defect model in a system-

atic and (semi-)automatic approach to defect-based quality assurance. To completely

demonstrate the effectiveness and efficiency of the operationalization of defect models

on all levels of testing (unit, integration and system testing), this chapter describes

and operationalizes defect models on the system testing level in a tool called Con-

troller Tester. Controller Tester performs (semi-)automatic testing of control systems

developed in the domain of Matlab Simulink systems. Thus, it is application specific

to control system. This chapter is the third of three instances of the method applica-

tion step within the mentioned variation points in the lifecycle framework as seen in

Figure 7.1.

When testing continuous control systems, the selection of good test cases is essential

as exhaustive testing of the operating range is infeasible. Control system engineers

tend to use well-established methods to provoke failures typically based on manual

formal analysis of the continuous control system under test. These methods aim to

provoke failures as a violation of specific quality criteria such as stability, liveness,

smoothness, responsiveness. The quality criteria have been formalized to evaluate

the results of automatic test selection methods based on one typical value-response

scenario [105, 106].

We create a comprehensive library of failure models and quality criteria for the

automated testing of continuous control systems. Our failure models and quality

criteria are based on (1) existing work of Matinnejad et al. [105, 106] and (2) a

practitioner survey and literature review. Based on the feedback of 7 control system

experts having at least 2 years practical industry experience, we gained two quality

133
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Figure 7.1: Position of the operationalization Controller Tester in this thesis

criteria and 4 failure models. We could identify these quality criteria and failure

models also in existing literature. The additional quality criteria measure the extent

of steady-state oscillation for steadily oscillating control systems (steadiness) and the

retention of the control system within its operational range (reliability). The failure

models relate to sinusoidal and disturbance response as well as the comparison of

control systems and dead zone violation (allowed oscillation). These libraries increase

the variety of behaviors automatically testable and the detail of assessment.

We operationalize the failure models in an automated testing tool and are interested

in how useful it is. From a practitioner’s perspective, the test generator should be

effective (it finds the relevant tests that potentially violate the quality requirements). It

should also be efficient in that the time to compute test cases for common scenarios

happens in the order of minutes rather than hours. Moreover, we would like to

understand what the gain in effectiveness is if we add resources to the test case

generator. Given that test case generation relies on random testing, results should be

reproducible: Running the system twice should yield test cases of similar quality.

In sum, continuous control systems have a broad operating range spawning a

large multidimensional input space of their signals. This range makes exhaustive

tests infeasible and calls for cost-effective test case derivation: testing controllers

is expensive due to their test case duration. We want to derive “good” test cases

“efficiently” and be sure that respective test case generators are “reproducible,” and

that the deployment of resources can rationally be justified.

By negating domain-independent quality criteria, and by imposing additional

practically accepted constraints on the input domain (called scenarios), we present

failure models which characterize those parts of a controller’s input domain that are

likely to violate the quality criteria. We modify the ideas behind existing test case

generators to get a generic tool for failure-based testing of continuous controllers.
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We show (1) that existing work [105, 106] is an instance of our schema, and

therefore generalize these results. On the grounds of interviews with domain experts,

we (2) present failure models and quality criteria that have not been described as such

in the literature yet. To the best of our knowledge, the combination of (1) and (2)

is the first creation of an extensive and comprehensive library of failure models and

quality criteria for control systems. Finally, on the grounds of several experiments, we

(3) provide evidence that existing work, and specifically our generalization, scales; is

effective; efficient; reproducible; and predictable: thus yielding a solution that is a

candidate for deployment in industrial practice.

7.1 Search-based control system testing

Recalling the formal manual approach in Section 2.3, an automated search-based

approach for testing continuous controllers, that our work fundamentally builds upon,

was introduced by Matinnejad et al. [105]. It uses a search-based strategy in MiL

testing in Matlab Simulink by performing a search space exploration, followed by a

refining single-state search. The aim is to find the worst case control system response

by driving the system towards a certain goal with the required quality. Their approach

uses a scenario of finding two distinct desired values such that the controlled process’s

response violates the quality requirements. To this end, they introduce an extended

step function using two desired values to test the reference-value response. In a first

phase, the search space is explored by partitioning this two-dimensional input space

into regions and randomly selecting a number of points within each region as test

inputs. This random selection can either be purely random, or adaptively random

which tries to avoid clusters of points by maximizing the distance between the points

in each region [106]. By using four quality criteria for the control system, parts of

the trajectory of actual value in each test case are evaluated. The results are visually

presented as a heat map to a control system engineer, who will have to choose regions

to further investigate for the worst-case. In the second phase, a subsequent single-state

search, an optimization algorithm is used to find the global maximum of an objective

function in each selected region yielding (an approximation of) the worst case control

system response. This again is implemented using various techniques, including forms

of hill climbing and simulated annealing.

7.2 Quality Criteria

The quality criteria described by Matinnejad et al. [105, 106] are stability, liveness,

smoothness and responsiveness. The quality criteria represent abstractions of expected

outputs usable by control system engineers as oracles to form a verdict whether the

tested control system conforms to its quality requirements or when failure is present.

Since the work of Matinnejad et al. presents an instance of our generalization negating

these quality criteria, we directly re-use them. In addition, two further criteria required
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Figure 7.2: The stability quality criterion

for negation by our newly described failure models exist. The two additional criteria are

steadiness [50] and reliability [59]. When presented to seven control system experts

of our project partner, they concluded the six quality criteria to be representative,

adequate and minimal. While this is not representative, it gives us some confidence

that we did not miss out on any relevant criteria.

Stability

Matinnejad et al. [106] introduce the standard deviation σ of the process’s controlled

variable as a measurement for stability (see Figure 7.2). σ is measured after Tstable
and should be σ ≈ 0 for a stable real-world controller. However, there are steadily

oscillating control systems (see steadiness below) due to an unpreventable steady

oscillation of the process. Such systems will always lead to a standard deviation larger

than 0.

Liveness

To compute the steady-state error of a control system, liveness [106] measures the

maximum difference between desired and actual values after Tstable (see Figure 7.3).

Maximum liveness is reached when this measure is approximately 0. For a steadily

oscillating control system (see steadiness below), the best liveness will be the amplitude

of the steady-state oscillation.
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Figure 7.3: The liveness quality criterion

Figure 7.4: The smoothness quality criterion

Smoothness

To measure over- or undershoot, we utilize smoothness [105]. This is because it is

particularly useful in our situation, where we use two (differing) intended values of the

control variable (the step failure model, see Section 7.3.1). Smoothness is measured

as the maximum absolute difference between the desired and actual values once the

actual value gets as close as vs close to the desired value (see Figure 7.4). Smoothness

should be as low as possible and within a range specified by the requirements.
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Figure 7.5: The responsiveness quality criterion

Responsiveness

To measure response time, we use responsiveness [105], which once again is par-

ticularly useful in the step model (Section 7.3.1). It measures the time it takes the

actual value to get as close as vr close to the desired value (see Figure 7.5). In a control

system, responsiveness should be as low as possible and within a range specified by

the requirements.

Steadiness

Steadily oscillating control systems are common when using multiple controllers in

a cascade, relying on imprecise measurements or controlling processes with large

internal disturbances. For a system steadily oscillating around the desired value as

center of oscillation, the steady-state error provided by the liveness quality criterion

provides the amplitude of the steady oscillation. In case the center of oscillation is

different from the desired value, Ellis [50] proposes to measure the amplitude of the

oscillation (see Figure 7.6). Calculating the maximum deviation of the actual value

after some defined Tstable is to result in a value twice the amplitude for a stable system.

In case this measurement exceeds the expected amplitude, system bounds may have

been violated.

Reliability

Each control system has a defined operating range. In case the actual value leaves this

operating range, there may be physical damages to the system or its surroundings. This
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Figure 7.6: The steadiness quality criterion

has far reaching implications concerning safety or other requirements of the control

system. The quality criterion is presented by Goodwin [59]; its Boolean value checks

the actual value signal to only contain values within the operating range. Reliability

should always be given for any control system. If signals such as the control variable

or internal signals of the controller are available for measurement, further Boolean

checks can be defined accordingly to perform additional bounds checks.

In short, the quality criteria represent abstraction of expected outputs usable by

control system engineers as oracles during a manual inspection of the results to form

a verdict whether the tested control system conforms to its quality requirements or

a failure is present. By gathering control system expert feedback and performing a

literature survey, we are able to contribute a rationale as to how these quality criteria

relate to quality requirements of control systems and ascertain their common use in

practice. In addition, all quality criteria are defined such that a greater value is more

likely to represent a failure. Thus, the next step is to find input signals/trajectories to

the system that are likely to yield large values w.r.t. the quality criteria.

7.3 Failure Models

When testing control system, engineers provide desired and/or disturbance values

over time to the control system, in order to contrast the system’s actual response with

some intended response (that is usually left implicit and exists in the minds of the test

engineer). Specific choices of the used desired and disturbance signals can provoke

failures. Failures in our context are violations of the quality requirements judged by a

control system engineer using the quality criteria introduced in Section 7.2. Since for

all criteria higher values mean a possible violation of quality requirements, we aim at
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finding input values that maximize these quality criteria. A failure is the transgression

of a specified upper bound. For technical reasons, the search space for input values

needs to be restricted. This is why we add characterizations of those input values

(i.e. scenarios) that are likely to yield high quality criteria values, and thereby may

break the system requirements. Failure models provide these input characterizations

together with an assertion when quality requirements are violated. In the following,

we present several such failure models and show how to operationalize them for test

case generation.

An input signal is a discretized sequence of values given to the control system over

time. Formally, let τ = {0, . . . , T} be a time series and mindesired and maxdesired be

the minimum and maximum desired values of the control systems, respectively. An

input signal then maps each time step to a value in the operating range of the control

system: Desired : τ →
[
mindesired , . . . ,maxdesired

]
(r(t) in Figure 2.1). Correspondingly,

the discretized output signal or actual value of the control system can be defined as

Actual : τ →
[
minactual , . . . ,maxactual

]
(y(t) in Figure 2.1). Note that the range of

actual values may be larger than the operating range of the control system. This

manifests an out-of-bounds failure as described in Section 7.2. Also note that we

restrict ourselves to one controlled variable, but generalization is possible.

In the following, we present failure models for testing control systems. We con-

centrate on the characterization of the potentially failure causing inputs; the failures

themselves always consist of violations of specified quality requirements.

The step failure model was directly derived from Matinnejad et al. [105, 106]. The

others are the result of a literature [50, 59, 105, 106, 120] survey and discussions

with seven of our project partner’s control system experts. The additional failure

models extend the library of failure models with typical test scenarios for continuous

control systems used in literature and practice including sinusoidal and disturbance

behavior. For each presented failure model, we not only provide the input signals

for testing, but also a rationale as to why and when it is sensible to use. Remember

that a failure model characterizes the failure domain ϕ (see Section 3.1.5). In the

case of control systems, the characterization using input values (intended values for

the controlled variable and disturbance values in this case) is infeasible since control

system behavior is complex and possibly non-linear. However, there are not only input

values, but desired and disturbance trajectories and environment conditions to take into

account. Thus, the approximation ϕ̃ explicitly puts constraints on the input domain of

either trajectory (e.g., “two intended values for the controlled variables are sufficient”)

and fixes the environment conditions. Every failure model constrains the space of

trajectories of the desired value and disturbance signals creating a scenario. The search

space exploration is then performed on this constrained typically two-dimensional

search space. The surveyed control system experts concurred to specifically use

boundary values as they are commonly examined. Thus, the limit testing failure model
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(see Section 2.1.2 and Section 3.2.10) is combined with each presented failure model,

always leading to the creation of additional, non-random, limit test cases.

7.3.1 Step

Goodwin et al. [59] and Ellis [50] describe the step response of continuous control

systems as the fundamental desired value signal to judge reference-value response.

It uses an underlying step function defined as a partial function over discrete time.

Matinnejad et al. [105] introduce a two-dimensional step function using two desired

values. The initial desired value InitialDesired ∈ [mindesired , . . . ,maxdesired
]

is given

as the desired value for the first half of the total simulation time T . The final de-

sired value FinalDesired ∈ [mindesired , . . . ,maxdesired
]

is established for the second

half. Thus, the desired value signal of this failure model is defined as Desired(t) ={
InitialDesired if 0 ≤ x ≤ T

2

FinalDesired if T
2 < x ≤ T

. In a closed-loop control system, it is impossible to

start from any other value than the initial value (e.g. 0) due to the feedback loop.

Any test case using a single desired value tests only a step originating from the initial

value. However, in real-world systems a step from any desired value to any other may

occur and should therefore be tested. For instance, an air conditioning system can

be set from 19 degrees Celsius to 17 degrees Celsius. Note that, if the initial value

is 0, only using one desired value leads to solely performing tests using a positive

step. However, failures are likely occur when performing a negative step according

to the experts’ feedback. Therefore, the rationale of this failure model is to start at

an arbitrary initial value by setting it as InitialDesired . All quality criteria are then

measured for the actual value signal when FinalDesired is set as desired value. To steer

the system into violating its quality criteria requirements, this failure model constrains

the trajectories of the desired value signal to all possible two-dimensional steps. The

disturbance signal is constrained to a constant 0 as only reference-value response is to

be tested.

7.3.2 Sine

In a closed-loop continuous control system, a sine wave of Desired(t) may result in a

sine wave of Actual(t). If the sine wave of Actual(t) happens to amplify the sine wave

of Desired(t), the control system may become unstable. For control system engineers,

it is utterly important to verify frequencies of instability to judge whether they are in

the operating range. Thus, “frequency responses are a very useful tool for all aspects

of analysis, synthesis and design of controllers and filters” [59]. The sine failure

model is explicitly designed to show the frequency response for the reference-value

response. The signal of the desired value is Desired(t) = desired + a ∗ sin(2πft), where

desired ∈ [mindesired , . . . ,maxdesired
]

is the absolute term, f is the frequency and a the

amplitude of the sine wave. The h-dimensionality of this failure model can be reduced

to two dimensions as the amplitude only influences the time until the escalation of
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instability, but not the instability itself. desired is required because signal clipping in

boundary regions may have different effects on stability. Thus, desired and f form a

two-dimensional search space. To specifically violate the quality criterion of stability

and steadiness, this failure model constrains the trajectories of the desired value signal

to all possible two-dimensional sine waves. The disturbance signal is again constraint

to 0 because only reference-variable response is to be tested.

7.3.3 Disturbance

To test the disturbance response introduced in Section 2.3, we define a disturbance

failure model. The rationale behind using closed-loop control systems is to react to

disturbances on the process by having a feedback loop. The goal is to test whether

the controller can recover from the disturbance as specified in its requirements. In

particular, the over- or undershoot produced by engaging/removing the disturbance

as well as the overall stability and liveness are of interest. Using the disturbance

failure model, the disturbance is introduced in the feedback loop as Disturbance : τ →
disturbance (d(t) in Figure 2.1), enabling testing of disturbances in the process and

measurement errors at the same time. As we want to find the worst case reaction of a

control system to a disturbance, we always use the maximum value disturbance and

duration Tdist of the disturbance according to the requirements. Variable factors are

only the signal’s start time tdist and desired value desired . Once again, we can reduce

the three dimensionality to two dimensions by fixing the signal to the same trapezoidal

ramp, pulse or sine wave for all tests. The desired value signal is Desired(t) = desired .

The disturbance signal is Disturbance(t) =


0 if t < tdist

disturbance if tdist ≤ t ≤ tdist + Tdist

0 if tdist + Tdist < t ≤ T
for a pulse signal. The other signal types of Disturbance(t) can be defined analogously.

In this failure model, all quality criteria are measured after tdist and tdist + Tdist to

assess the control system behavior during and after the occurrence of the disturbance.

As Desired(t) is a constant trajectory and Disturbance(t) is different from zero only

after a start time tdist as well as for a fixed duration of Tdist , the search space is

again two-dimensional. Thus, this failure model aims at steering the system into

violating all its quality criteria requirements by constraining the trajectories of the

disturbance signal to having the specified form, value and duration. The trajectories

of the desired value signal are constrained to all constant trajectories. Note that, the

constraining of the desired value tries to separate reference-value and disturbance

behavior. However, since the superposition principle does not hold for non-linear

systems, a clear distinction may not be possible.

7.3.4 Comparison

A failure model derived in interviews with control system experts is the comparison

failure model. When developing control systems, they are commonly designed using
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a continuous time and value space and are later discretized in both dimensions. By

performing a discretization, controller behavior previously assumed conforming to

the requirements may now be violating them. Thus, it is not sufficient to only re-use

continuous control system test cases as “one cannot simply treat digital control as if

it were exactly the same as continuous control” [59]. For the purpose of comparing

the response of two control system, we introduce the comparison failure model. The

failure model is an extension of the step failure model where Desired(t) is given to both

control systems. Both Actual(t) are assessed using the presented quality criteria. We

then compute the difference in quality between the two controllers under comparison,

in order to point out differences in response. Thus, this failure model aims at steering

the two control systems into producing different responses for the same desired value

signal. The constraints are the same as in the step failure model.

7.3.5 Allowed Oscillation

A further failure model derived given by the control system experts is the allowed

oscillation failure model. Controllers used with steadily oscillating processes often

have a deadband requirement. Within this deadband, the controller is supposed to

show no reaction to changes in difference of desired or actual value. Typically, the

deadband is specified by a minimal percentage db[%] of change in difference to which

the controller is to react. Any changes below this threshold should yield no reaction

by the controller. The allowed oscillation failure model tries to provoke a reaction by

using a step to just below db[%] and just above db[%]. Thus, the desired value signal

space is constrained into two blocks. One contains all step input signals just inside

the deadband for a desired value; and another one contains all step input signals

just outside of the deadband. This failure model does not require any quality criteria

to be measured, but includes the binary oracle of whether the controller reacted or

not. In case the controller reacts to a difference just below db[%] or does not react

to a difference just above db[%], the verdict of the test case is fail; otherwise pass.

Disturbance(t) = 0 is the constraint for the disturbance signal.

7.3.6 Summary

In sum, our failure models first present reasonable constraints on the input domain

(input models for desired values and disturbances as a step, sine, ramp etc. function).

Then, they describe what constitutes a failure by either directly relating to quality

criteria and respective allowed maximum values, or, in the case of the comparison

failure model, to the difference in quality between two controllers.

7.4 Evaluation

Based on the above failure models, we developed an automated testing operational-

ization called ControllerTester for Matlab Simulink, following the ideas and method-
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ology in [105]. Because we add the explicit perspective of failure-based testing,

we contribute by generalizing that cited approach (a demo video, open-source ver-

sion and installer of the tool are available at https://www22.in.tum.de/en/tools/

controller-tester/).

We evaluate the tool using a two Intel Xeon E5-2687W v2 processor machine

having 16 logical cores clocked at 3.4 Ghz and 128 GB of memory. Matlab is running

on Windows 8.1 in version 2014a. Because one controller requires 32-bit, we use

a 32-bit version of Matlab in all experiments. The evaluation’s goal is to show (1)

reproducibility, (2) effectiveness/efficiency and (3) sensitivity of the methodology.

Firstly, the search space exploration is non-deterministic as it is based on random

selections. Thus, a reproducibility evaluation helps assess whether multiple executions

lead to similar results—control system engineers need to be sure that independently

of a chosen random seed, the tool is likely to yield similar results. Secondly, we want

to better understand the relative and absolute effectiveness of the methodology. In

terms of relative effectiveness, we compare the worst cases found by different search

strategies. In absolute terms, we want to find out if our tool comes close to, or surpasses,

the results independently obtained by three control system experts familiar with the

systems. In a third step, we want to check for the sensitivity of the methodology by using

different configurations of regions and points per regions. In particular, we want to

know whether increasing points or regions in the search space exploration (Section 7.1)

yields better reproducibility and higher relative effectiveness. Hence, we configure

controller tester to use 8x8 regions, 10x10 regions or 12x12 regions with 8, 10, 12

points in each region configuration and at least 10 repetitions for each control system

in our experiments to assess sensitivity. Our baseline configuration is 10x10 regions

with 10 points each to assess reproducibility and effectiveness. We do not evaluate the

second (optional) step of the search (“single-state search”) because its effectiveness

has already been thoroughly examined and distributions for its reproducibility have

been shown [106]. Thus, we contribute a thorough evaluation of the first step of the

search (“search space exploration”).

We focus the evaluation on the step, sine and disturbance failure models. As the

comparison and allowed oscillation failure models re-use the step failure model, the

results of the step failure model apply to them as well.

Our control systems for evaluation are six control systems used for training (num-

bered 1-6), one real-world complex control system of a brushless motor (numbered 7),

and one real-world control system of a pump (with feed-forward enabled and disabled,

numbered 8 and 9) given to us by an industry partner. Each control system has an

input range either specified in rpm or rad/sec as the desired rotational speed of a

motor, in cm of a pin to drive out, or in m3/h as the flow rate. Each control system also

has different requirements w.r.t. maximum response time (liveness), maximum over-

/undershoot (smoothness) and steady oscillation (steadiness). These are described

in Table 7.1. The training systems are excerpts of real-world systems in a marginally

https://www22.in.tum.de/en/tools/controller-tester/
https://www22.in.tum.de/en/tools/controller-tester/
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Table 7.1: Models of control systems used in our evaluation

No. Input Range T* Max.
resp.
time

Over-
/Under-
shoot
(max)

Steady
oscilla-
tion

Critical
fre-
quency

Max.
Dis-
tur-
bance

1 0 - 6150 rpm 0.85s 0.1s 5% no 1 khz 0.05
2 0 - 6150 rpm 0.16s 0.02s 10% no - 0.05
3 0.02 - 0.1m 2.3s 2s 5% no - 0.05
4 0 - 6150 rpm 0.62s 0.1s 5% no 1.1 khz 0.05
5 0.02 - 0.1m 2.3s 2s 5% yes - 0.05
6 0 - 1 m 1.16s 11s 5% yes - 0.05
7 .5 - 4 k rad/s 10.26s 1s 5% yes - 0.2
8 2 - 7 m 3 /h 20s 10s 35% no - -
9 2 - 7 m 3 /h 20s 10s 35% no - -

*Total simulation time (T ) as described in Section 7.3

simplified form to train new engineers. The controller of the brushless motor and the

pump are real-world applications and deployed in a commercial context. According to

the control systems experts of the industry partner, the training control systems are

of medium complexity (avg. 18 Simulink operation blocks per controller) while the

brushless motor control system is of maximum complexity (302 Simulink operation

blocks for the controller itself) and the pump control system is of medium complexity

(143 Simulink operation blocks for the controller itself). Note that an interesting aspect

of the pump control system is the usage of characteristic curves making this control

system highly non-linear.

7.4.1 Reproducibility

To address reproducibility, we question how reproducible the pure random search

and adaptive random search are. We solely use our baseline configuration for repro-

ducibility using 10x10 regions with 10 points per region performing 30 repetitions of

search space exploration using pure random and adaptive random search (remember

that Section 7.1 introduces the idea of searching in a two-dimensional search space).

Note that, although statistically 30 repetitions may appear to cover the search space

of the controller, the signal values use double precision and the search space is not

linear. Using all worst cases obtained in the 30 repetitions, we compute the standard

deviation, the coefficient of variation (COV) and the quartile coefficient of dispersion

(QCD) for each quality criterion. These measurements are used to assess the dispersion

of the worst cases throughout the experiments. Good reproducibility is witnessed

by low values for all three measures. In addition, we measure the percentage of

how many times (out of the thirty replications of each simulation) the search space

exploration came at least 95% close to the found worst case. This will be referred to as

95% closeness in the sequel. However, 95% closeness is a particularly strong measure



146
7. Description and Operationalization:

Controller Tester for system testing

and we believe 80% closeness to be sufficient in practice. In the following, we will

further examine all cases where the measurements were not 0 and 95%, 90% and 80%

closeness was not achieved since otherwise reproducibility is obviously given.

RQ1: Is pure random search reproducible?

For the step failure model, the standard deviation for the training control systems is 0

for all quality criteria except for smoothness in control systems 1 and 4. However, the

coefficients of variation are 0.01 and 0.02 and the quartile coefficients of dispersion

are 0.01 and 0.01 respectively yielding a marginal decrease in reproducibility (first

row in Table 7.2). Only 95% closeness of the smoothness of control system 4 is slightly

impacted. As it stays within 90% closeness, the decrease is negligible. In the complex

control system, the coefficient of variation and quartile coefficient of dispersion are 0.1

and .07 for liveness as well as 0.08 and 0.07 for steadiness leading to impacted results

in 95% closeness. As 80% closeness is almost completely given, we believe this to be

sufficient in practice. For all other quality criteria, the standard deviation is 0 in the

complex control system and the pump control system.

For the sine failure model, the standard deviation for the training control systems

is 0 for all quality criteria except for smoothness in control systems 1 and 4. The

respective coefficients of variation are 0.04 and 0.04 and the quartile coefficients of

dispersion are 0.03 and 0.02 (second row in Table 7.2). Again, this yields a marginal

decrease in reproducibility. The impact on the smoothness of control system 1 and 4 is

30% of 95% closeness, 10% at 90% closeness and 0% at 80% closeness. This means

that 9 of the worst cases are further than 5% apart form the worst worst case, but

all worst cases are within a 20% radius, which we believe to be sufficient in practice.

In the complex control system, the coefficient of variation and quartile coefficient of

dispersion are 0.08 and 0.06 for stability, 0.07 and 0.08 for liveness, 0.03 and 0.01 for

smoothness and 0.04 and 0.02 for steadiness. This impacts the 95% and 90% closeness,

but yields 80% closeness. For the pump control system, the standard deviation is 0

when feed forward is disabled. When enabled, the coefficient of variation and quartile

coefficient of the smoothness are 0.13 and 0.04. Again, 80% closeness is given.

Table 7.2: COV / QCD / 95% / 90% closeness for smoothness*

Failure Model Control System No.

1 4

COV QCD 95% cl 90% cl COV QCD 95% cl 90% cl

Step 0.01 0.01 100% 100% 0.02 0.01 97% 100%
Sine 0.04 0.03 70% 90% 0.04 0.02 70% 90%

Disturbance 0.04 0.01 70% 90% 0.04 0.02 70% 90%
*All values 0 for other control systems
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For the disturbance failure model, the result for the standard deviation for the

training control systems is identical to the sine failure model (third row in Table 7.2).

In the complex control system, the coefficient of variation and quartile coefficient of

dispersion are 0.07 and 0.06 for stability and 0.16 and 0.12 for liveness. This impacts

the 95% and 90% closeness, but yields 80% closeness.

From the results above, we tentatively conclude test case generation with pure

random search to be highly reproducible for the presented control systems. However,

we see the smoothness impacted when using feed forward control as “Feed-forward

calculates a best guess; it predicts the signal that should be sent” [50]. This impact is

not representative and needs to be further investigated.

RQ2: Is adaptive random search reproducible?

For the step failure model, the standard deviation is negligibly small except for the

smoothness quality criteria in control systems 1 and 4. However, the coefficients of

variation and the quartile coefficients of dispersion are again negligible small. For

the complex control system, the coefficient of variation and quartile coefficient again

decreases the reproducibility marginally, but 80% closeness is almost completely given.

For the sine failure model, the result for the training control systems is identical to

the step failure model. In the complex control system, the coefficient of variation and

quartile coefficient of dispersion again decreases the reproducibility marginally, but

80% closeness is completely given. When feed forward is enabled in the pump control

system, our measures of reproducibility yield the same values as with pure random

search space exploration for the smoothness. Otherwise, the standard deviation is 0.

For the disturbance failure model, the result for the training control systems is

identical to the step failure model. In the complex control system, 95% closeness is

impacted by 77% on average for liveness, but 80% closeness is given for all quality

criteria.

We hence conclude the reproducibility of the worst case in adaptive random search

space exploration to be high. We speculate the reason for the decrease of closeness to

be the use of discrete time and feed forward for some controller components in control

system 4, 7 and 9. However, further investigation is required.

7.4.2 Effectiveness

To address the aspect of effectiveness, we question how “good” the worst cases found

by pure random and adaptive random search space exploration are. Our baseline for

effectiveness is as stated above and we perform 30 repetitions of pure random and

adaptive random search space exploration. Our measure for relative effectiveness is the

median worst case found for each quality criterion by both methods as it constitutes the

average expected worst case. For absolute effectiveness, we use test cases derived by

three control system experts and compare their worst case with the absolute worst case
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found for each quality criterion. Good absolute effectiveness is given if we find a better

worst case than the manual tests. In addition, finding a better worst case violating the

requirements would even demonstrate failure-finding ability of the methodology.

RQ3: What is the relative effectiveness of pure random and adaptive random

search space exploration?

Table 7.3: Control system 1: % improv./deteri. of adaptive vs. pure random search space exploration

Failure model Stability Liveness Smoothness Responsiveness Steadiness

Step 0 0 0.7 0 0
Sine 0 0 3.4 0 0
Disturbance 0 0 3.6 0 0

Table 7.4: Control system 3: % improv./deteri. of adaptive vs. pure random search space exploration

Failure model Stability Liveness Smoothness Responsiveness Steadiness

Step 0 0 1.1 0 0
Sine 0 0 1.3 0 0
Disturbance 0 0 1.6 0 0

Table 7.5: Control system 7: % improv./deteri. of adaptive vs. pure random search space exploration

Failure model Stability Liveness Smoothness Responsiveness Steadiness

Step 3.4 -3.8 -0.4 0 1.2
Sine -1.8 3.7 0.7 0 2.7
Disturbance 7.1 3.7 2.1 0 7.3

As values were 0 except for the values depicted in Tables 7.3, 7.4 and 7.5, there

is no winning strategy in terms of relative effectiveness in our experiments for the

step and sine failure model. The best demonstration is the results of the complex

control system as a maximum improvement and deterioration of 3-4 % occur at the

same time (first row of Table 7.5). For the disturbance failure model, the adaptive

random strategy is better by a maximum of 7% (third row of Table 7.5). We consider

this a marginal increase not relevant in practice. Thus, we tentatively conclude both

strategies to be equally relatively effective.

RQ4: What is the absolute effectiveness of the methodology compared to

human test case derivation?

We analyze the worst case found for each requirement (see Table 7.1) and compare

them to manual test in cases provided by the control system experts. The manual

test cases for control systems 1, 2 and 4 were to try a step of 500/600, 1000/2000
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Table 7.6: Violated controller requirements by expert (ex) / controller tester (ct) test cases

No. Stability Liveness Smoothness Responsiveness Steadiness

1 - - - ex + ct -
2 ex + ct ex + ct ex + ct ex + ct -
3 - - ct ex + ct -
4 - - ct ex + ct -
5 - ex + ct ct ex + ct -
6 ex + ct ex + ct ex + ct ex + ct ex + ct
7 - - - - -
8 - - - - -
9 - - - - -

and 2000/6150 rpm and a step from 0 to all values of the previous steps. For control

systems 3 and 5, the tests cases involved moving the pin out by 2, 3, 5, 7 and 10

cm (see Table 7.1). Control system 5 was to move the pin out by 0, 0.5 and 1 m

and control system 7 was to use a step from 500, 800, 2000 to 4000 rad/sec. The

pump control system was to use a step from 2, 3, 5 to 7 m3 with disabled and enabled

feed forward. The worst case produced by the methodology on average was better

than the worst case of the test cases provided by the control system experts for the

training control systems 92.5% of the time. The median improvement by using the

methodology was 44% compared to the experts’ test cases. The best improvement

was the smoothness of control system 4 being worsened by 8000%. This worst case

also violated the requirements and was one of the violations only detected by our

methodology as seen in Table 7.6. The requirements of the brushless motor controller

were never violated although the control system experts did only propose 2 of 4 test

cases leading to the worst cases. However, since this control system was extensively

tested and is used in practice, we could increase the confidence of the control system

experts w.r.t. the brushless motor controller functioning according to its requirements.

The pump control system’s requirement were also not violated, but the worst case was

improved by 22% as decreasing the flow led to worse values than increasing. Using

the sine failure mode, we could detect instability at 1 and 1.1 kHz for controllers 1

and 4. For all other controllers any instability when using the sine failure model up

to a frequency of 10 kHz (given by the control system experts) was negligible. An

interesting aspect of the sine failure model was the clear visibility of the increase of

instability described as particularly interesting for new control system engineers by

the control system experts. For the disturbance failure model and a trapezoidal ramp

(given by the control system experts), the worst case was marginally different to the

worst cases of the step failure model. This is an indication towards the ability of the

control systems to withstand disturbances. Thus, we consider failure models to be as

effective or better in comparison to manual testing.
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7.4.3 Efficiency

RQ5: Is the search space exploration executable in reasonable time?

Concerning efficiency, one training control system’s search space exploration using 8x8

regions and 5 points per regions took approximately 2 minutes, while the baseline

took approximately 3 minutes. The largest configuration evaluated was 12x12 regions

and 20 points per region taking 8 minutes per control system. For the complex control

system, the computation lasted 10 minutes for 8x8 regions and 5 points per region, 28

minutes for the baseline and 70 minutes for 12x12 regions and 20 points per region.

The pump control system’s search space exploration lasted approximately 3 minutes for

8x8 regions and 5 points per regions and 6 minutes for the baseline. The time required

for each test case was only determined by the time Matlab required for simulation as

generation of test cases and measurements take negligible time. Thus, the employed

failure model did not influence the overall execution time. Note that, the test case

generation and execution is highly parallelizable. When presented with the execution

times, the control system experts found the time adequate for practical purposes. Thus,

we tentatively conclude to have high efficiency and a linear scalability w.r.t. the overall

number of points to be used in our case study.

7.4.4 Sensitivity

To assess the sensitivity of the methodology, we performed experiments using configu-

rations differing from the 10x10 regions with 10 points baseline as described above.

In terms of the reproducibility of the search space exploration, we want to examine

the correlation between the number of points, and number of regions, used during the

search space exploration and their caused increase in reproducibility. In terms of the

relative effectiveness of each configuration, we are interested in a correlation between

the absolute worst case found for a quality criteria in each controller and the number

of points and regions used during the search space exploration. For the evaluation of

sensitivity, we use all configurations above for the evaluation with 10 repetitions.

RQ6: How does the reproducibility change when using different configurations?

The results of our experiments using the step failure model showed a configuration of

8x8 regions and 5 points per region to be sufficient for control systems 2, 3, 5 and 6

reaching 95% closeness 100% of the time. The same was true for control systems 1

and 4 in all quality criteria except for smoothness. The smoothness of control system 4

yielded the worst case, but almost the same values were measured for control system

1. Again, the decrease of reproducibility was marginal and did completely disappear

when using either 12x12 regions or at least 20 points per region. Interestingly, an

increase in reproducibility was observed when increasing the number of points per

regions as seen in Figure 7.7, but not when increasing the number of overall points. For
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the complex control system, the reproducibility increased with the number of points

used in 90% closeness in all quality criteria, but is completely given in 80% closeness.

For the pump control system without feed forward enabled, 8x8 regions and 5 points

per region are sufficient. With feed forward enabled, smoothness is impacted in 95%

and 90% closeness, but is given in 80% closeness. Putting this into perspective, we

examined 5 quality criteria for 9 controllers leading to 45 experiments out of which

only four had a very small dispersion possibly the result of jitter.

For the sine failure model, a configuration of 8x8 regions and 5 points per region

is sufficient for control systems 2, 3, 5 and 6 as argued above. Again, the decrease

of reproducibility of control system 1 and 4 was marginal. Also the reproducibility

increased when increasing the number of points per region. The results for the complex

and pump control system is the same as with the step failure model.

For the disturbance failure model, a configuration of 8x8 regions and 5 points

per region is insufficient only for the smoothness of systems 1 and 4. However, this

insufficiency is resolved when using 10 instead of 5 points per region int the 95%

closeness. 80% closeness is always given. For the complex control system, 90%

closeness is impacted for the liveness. It is always given with 80% closeness, which is

true for all other criteria as well.

Thus, we tentatively conclude all configurations to yield a high reproducibility.

Therefore, a configuration of 8x8 regions and 5 points per region yields the highest

cost-effectiveness due to its short run time. In addition, we speculate it to be better to

increase the number of points per region and not the number of regions themselves

based on our limited results.

Figure 7.7: Reproducibility of smoothness for control system 4 in the step failure model
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To further examine whether the number of regions affects the reproducibility in

the step failure model, we performed experiments using an overall number of 2000

points with 144 (12x12) and 4 (2x2) regions. As depicted in Figure 7.7, there is only a

marginal difference when using this number of points as the maximum value is 0.04

and the minimum is 0. These results also applied to the sine and disturbance failure

models. Putting our findings into the perspective of Weyuker and Jeng [150], we

intuitively compare random to partition-based testing. Our comparison results give an

empirical perspective of the theoretical model yielding (almost) the same results for

both as the underlying landscape formed by the quality criteria is unknown. However,

using more regions may improve usability for a control system engineer inspecting the

heat map produced by the search space exploration.

Examining the complex control system using only 8x8 regions and 5 points per

region in the step failure model, the coefficient of variation was 0.07 and the quartile

coefficient of dispersion was 0.07 for stability. Again, these values show a marginal loss

of reproducibility. When using 12x12 regions and 20 points per region (2880 points in

total), the coefficient of variation and the quartile coefficient of dispersion had their

best values also increasing the 80% closeness for all quality to 100%. Again, theses

results also applied to the sine and disturbance failure models. Thus, we tentatively

conclude the reproducibility to increase when using a larger number of points. This

results in a rule of thumb to rather increase the number of point than the number

of regions. However, this increase appears to be non-linear and correlated with the

number of regions. Thus, a careful characterization of the search space in the future is

required to draw a conclusion.

RQ7: How does the effectiveness change when using different configurations?

As the reproducibility for control systems 2, 3, 5, 6 and 8 was high in the last section

in the step, sine and disturbance failure models, the median worst case was constant

in all configurations for these control systems. Again, the same was true for control

system 1 and 4 except for the smoothness quality criterion. However, as depicted

in Figure 7.8, the median of the worst case of the smoothness of control system 4 in

the step failure model stays in a range of 3.5% average and 5% maximum deviation

yielding negligible differences. Examining the median worst case found using only 8x8

regions and 5 points per region for the complex control system, the ratio of median

divided by the absolute worst case (median ratio) found already reaches a sufficient

87% for smoothness for compared to the baseline of 89%. When using 12x12 regions

and 20 points per region, the ratio increases to 97% for smoothness being also the

best ratio for this configuration. In the pump control system with feed forward, the

median ratio is 75% for 8x8 regions and 5 points per region and 91% for the baseline.

We speculate these results to be correlated with the use of feed forward control, but

further examination is required.
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Figure 7.8: Relative effectiveness of smoothness for control system 4 in the step failure model

For the sine and disturbance failure model, the median ratio of the liveness for the

complex control system is 77% for 8x8 regions and 5 points per region 90% for the

baseline and 91% for the maximum of 12x12 regions and 20 points per region. For

the pump control system with feed forward and the sine failure model, the median

ratio is 82% for 8x8 regions and 5 points per region and 87% for the baseline. For the

maximum of 12x12 regions and 20 points per region, the median ratio is 97%.

Thus, all evaluated configurations yield a high relative effectiveness of 80% or

more when using the baseline configuration. Using fewer regions and points per region

influences the 80% closeness in medium and highly complex control system, but is

sufficient in low complexity control systems.

7.4.5 Summary

In summary, we found pure random and adaptive random search space exploration

to be reproducible and effective using the provided control systems. In particular,

reproducibility and effectiveness of the search space exploration are essentially the

same for both strategies. We see a larger increase when using more points per regions

instead of using more regions and speculate there to be a correlation. This hints

towards the number of regions to not affect the worst case, but only the readability of

the resultant heat map. When examining the test cases given by the control system

experts for the training control systems, the methodology yielded better worst cases

90% of the time with a maximum increase of 8000%. For the complex control system,

the methodology provided better worst cases for 50% of the test cases with a maximum

increase of 25%. We deem the methodology to be effective and efficient when compared

with manual testing. In addition, search space exploration of all control systems was

possible within acceptable time constraints using the baseline setting.

Although search space exploration and single-state search are automatic, there is

no oracle for the test cases. Thus, there is an effort involved in manually inspecting

the respective worst cases. However, this effort is minimal as only the worst case or all

test cases voiding the requirements have to be inspected. We speculate these to be a

single digit number of test cases. However, to gain generalizable results concerning the

manual inspection effort, further (possibly large-scale case-study) research is required.
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7.5 Related Work

This work is based on the automated testing of continuous controller methodology

introduced by Matinnejad et al. [105, 106]. It aims to generalize and extend the ap-

proach by using failure models derived from the violation of quality criteria. A detailed

description has already been given in Section 7.1 as it is necessary to understand the

generalization and extension performed. For an overview of testing of continuous

control systems see [106]. We see the main difference in our perspective that is based

on failure models and that we deem to be more general, as witnessed by more quality

criteria ( Section 7.2) and more input constraints / scenarios ( Section 7.3) that we

provide in this paper. The employment of defect models for quality assurance is related

to the idea of using defect taxonomies to improve software testing [55] and failure

mode and effects analysis (FMEA) [124]. Due to the their nature, these methodologies

deliberately focus on making defect knowledge explicit and allow the derivation of test

cases specifically targeting these defects. This is similar to mutation testing, where the

quality of test suites is assessed by their ability to detect explicit defects after injecting

them into the system under test [79].

In the area of MIL control system testing tools, there are Simulink Design Veri-

fier [108], Reactis [131] and TPT [146]. These tools allow the manual specification

and automated execution of test cases. Design Verifier and Reactis can generate test

cases for coverage. TPT uses a graphical test case notation abstracting from actual I/O

in a keyword-driven way. Reactis is the only tool able to generate random test inputs.

However, none of the tools use a search-based strategy or failure-based testing. To our

knowledge, also no results w.r.t. reproducibility, effectiveness or efficiency have been

published.

The effectiveness and reproducibility or predictability of random testing as well as

its advantages and drawbacks have been largely discussed by Arcuri and Briand [4, 6].

In addition, they study various types of random testing and present potential practical

application scenarios including tailorable evaluation methods. The effectiveness of

random testing and particularly adaptive random testing is also discussed [5].

7.6 Conclusion

In this chapter, we have proposed to derive tests for continuous control systems on

the grounds of potential failures in different scenarios. These scenarios are based on

failure models. Failure models describe violations of various quality criteria together

with explicit constraints on the input to form scenarios. We have shown that existing

work [4], [5] can be cast in our methodology, and have provided additional failure

models. Violations of some quality criteria may be safety-critical giving our approach

the ability to detect such violations or increase the confidence in the absence of these

violations.
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As a second step, we have looked into the operationalization of failure models for

test case generation. Again building on existing work, we have studied characteristics

of a (re-implemented) test case generator [105, 106] for continuous controllers. These

characteristics include reproducibility (because test generation in parts is random,

results should not be fundamentally different in each run), effectiveness (because the

tool should not yield worse results than a human expert), and efficiency (because

results should be available quickly). If these characteristics are demonstrated, the

operationalization can increase expert effort relief and front-load the detection of

common and recurring failures.

In our experiments, we found both random and adaptive random search space

exploration to yield essentially the same reproducibility and effectiveness. However,

this depends on the ability of the search space exploration to capture the landscape

produced by the quality criteria. In our experiments, we used several training and

two fully fledged real-world complex control system. Thus, we are unable to form a

conclusion about the mapping of the landscape in general. However, the worst cases

found by the methodology were often better than the manual test case worst cases, yet

mostly did not violate the quality requirements.

In the future, we need to characterize the search space using many different configu-

rations. Approaches to visualize large search spaces including respective changes when

varying configurations have already been introduced [66] and may be transformable

into our context. We were able to provide initial insights concerning the number of

regions (seems to be negligible) and points per region (seem to matter more) in our

evaluation. However, it was impossible for us to come to a conclusion regarding the

effect of increasing either regions or points per region. As an exemplary future use

case, Controller Tester could be adapted to test autonomous systems (e.g. drones) and

gain confidence in their correct behavior (e.g. for certification purposes). In addition,

we want to research ways of detecting faults in control systems such as implicit data

type conversions, wrong integrator modulations, divisions by zero and state variable

overflows possibly re-using existing solutions (e.g. 8Cage in Chapter 5). In addition,

the methodology can be extended to control systems with multiple inputs/outputs

by extending the number of dimensions of the search space. However, this thesis

deliberately focuses on providing an extensive and comprehensive library of failure

models for control systems.

Finally, the presented methodology is not limited to MIL testing, but tests can be

re-used on other levels such as SIL and HIL. However, when testing at the MIL level,

the quality of the test results depends on the accuracy of the plant model.
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Assessment and Maintenance

The previous chapters defined the foundations for a systematic and (semi-)automatic

approach to defect-based quality assurance based on defect models, elicited and classi-

fied relevant defects and demonstrated the effectiveness/efficiency of their description

and operationalization on all test levels in the domain of Matlab Simulink. The effec-

tiveness/efficiency experiments in the respective chapters were an inherent assessment

of the underlying defect models and their operationalizations. Generalizing these

individual assessments, this chapter presents a framework for the assessment of defect

models. Furthermore, a core aspect of the employment of defect models in quality

assurance is their continuous improvement. This includes eliciting and classifying new

typical defects, adjusting existing descriptions and operationalizations according to

evolving contexts and continuously assessing the cost-effectiveness. Thus, a framework

for a support process to perform this defect model maintenance is required, which

is able to trigger respective lifecycle activities if needed. This chapter describes the

frameworks for assessment and maintenance in the final step called controlling in the

defect model lifecycle framework as seen in Figure 8.1.

8.1 Assessment

In chapters 5, 6 and 7, the defect models were not only described and operationalized,

but also assessed as part of the evaluation. The assessment consisted of evaluating

effectiveness, efficiency and reproducibility of the different approaches as to demon-

strate their practical applicability. To demonstrate effectiveness and efficiency of an

operationalization in a context, two questions can be generalized from the previous

assessment of defect model operationalizations: (1) does the operationalization detect

the right defects and (2) is the operationalization capable of detecting the defects right.

defect model
validation

The first question is concerned with the validation of defect models and related to

validation of requirements, which constitutes quality assurance in the requirements

engineering activities [140]. The task of validation is to assure the requirements of

a system reflect the organizational needs. The validation of defect models in the

157
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Figure 8.1: Position of assessment and maintenance in this thesis

assessment activity is to assure the description and operationalization of the respective

defect model(s) is according to the defects elicited and classified earlier. This ensures

the description and operationalization to be aligned with the organizational goals/aims.

This means that from an organizational perspective, it is “useful” to develop these

operationalizations. However, organizational goals/aims justifying the development of

an operationalization may not necessarily reflect the needs of every individual project

and a project-specific assessment (see below) before the employment of any developed

operationalization is recommended. As is the case with any software development,

defect model validation is recommended to be performed as early as possible as to avoid

operationalization effort by using a “wrong” defect or designing the operationalization

“wrong”. Thus, the validation of defect models assures the first part of the definition of

a good test case in Chapter 3 concerning the targeting of potential faults.

defect model
verification

The second question is concerned with the verification of defect models. The

description and operationalization of defects models yields a tool. Such a tool likely

contains faults as it is developed using software engineering methods. These methods

typically already include the verification of each development step eliminating these

faults. Apart from removing faults, the evaluation of their practical applicability

and cost-effectiveness as stated by the second part of the definition of a good test

case in Chapter 3 is an important aspect of the verification of defect models. The

evaluation of cost-effectiveness involves performing an experimental case study [141].

To assure cost-effectiveness, the case study to be performed in real projects using the

operationalizations needs to demonstrate a decrease in expert workload and increase

of the early detection of the described defects. It is recommended to perform such a

case study using the same project as treatment and control project. However, such a

resource-intensive case study may not be possible in industry.

project-
specific

assessment

A third and individual assessment may be performed before employing any opera-

tionalization in a project. This project-specific assessment is performed as part of test
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management [53] and concerned with the suitability of an existing operationalization

in the context of a project. An existing operationalization is suitable to be used in a

project, if the described defects are potential defects in this project (1) and the variation

points of domain, test level and application match the project (2). Both these factors

then are an indicator of cost-effectiveness. This concurs with the definition of defect

model effectiveness in Section 3.1.7 as the broader an operationalization is w.r.t. the

variation points, the more it can be re-used in projects and the more cost-effective its

development.

In sum, the generalizations above yield a framework to assess defect model opera-

tionalizations. Defect model validation has been indirectly performed by assessing the

effectiveness of defect models in the previous chapters. Defect model verification has

been applied while developing the operationalizations, but has only been evaluated

w.r.t. the effectiveness and efficiency of the operationalizations. The assessment as

part of test management has not yet been performed. The parts not performed form

parts of a framework yet to be evaluated. However, such an evaluation is infeasible in

a Ph.D. dissertation.

8.2 Maintenance

Maintenance of defect models requires the continuous assessment of occurring defects

and the employment of defect models in quality assurance within an organization.

Thus, the maintenance of defect models is an organizational support process exe-

cuted in parallel to the software engineering processes. In this section, we present

a framework for such a process for completeness reasons, which however is yet to

be instantiated and evaluated in practice. A prerequisite to the inclusion of defect

models in software quality assurance is the acquisition and retainment of management

and engineer support. Unless engineers are able to openly discuss defects and face

no consequences by management, the description and operationalization of effective

defect models is impossible. Thus, the maintenance process acts as bootstrapping

process for the embedding of defect models in quality assurance and tailoring and

initiating of the activities in the defect model lifecycle framework. The bootstrapping

involves the assessment of existing quality assurance and the collection of possible

employment scenarios for defect-based quality assurance based on defect models. After

bootstrapping, the activity of elicitation is initiated as described in Chapter 4 and

the respective follow up activities are performed. The maintenance process can be

integrated in existing test or quality management, which is typically an already existing

support process in quality assurance activities [53]. Since the selection of test strategies

and their assessment is already considered in test management, defect-based quality

assurance based on defect models is able to be seamlessly embedded. Alternatively,

dedicated quality engineers can be employed for the assessment of quality including

defect-based quality assurance as proposed by Steidl et al. [142]. These engineers
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need to monitor and adjust the instantiated activities of the defect model lifecycle

framework.

Elicitation and classification (in Chapter 4) determine occurring defects and enable

the decision to describe and operationalize defect models. Performing elicitation

and classification (e.g. using DELICLA) gives a snapshot according to the chosen

context of the elicitation. This snapshot is limited to (1) the past and (2) the context

(e.g. systems developed in Java with framework X). To overcome the limitation of

only portraying the past, elicitation and classification can be repeated as required to

monitor / predict defects and their respective occurrence/severity rates. Concerning

the limitation of context w.r.t. the snapshots, the elicitation and classification is context-

independent (see Chapter 4) and can be performed in all relevant contexts. In addition,

future defects may be anticipated by scouting for technology, organizational or domain

changes. These changes can frequently occur and the defect model maintenance

process must monitor/anticipate such changes proactively. As an example, if prototype

projects for the familiarization to new technology exist, elicitation and classification for

new defect models may be started within these projects to gain knowledge of common

and recurring defects.

The defect model maintenance process must maintain existing operationalizations

of defect models by continuously assessing their effectiveness and efficiency. Concern-

ing the effectiveness, we speculate there to be a decrease w.r.t. each operationalized

defect model over time due to personal learning [134]. If a fault is detected by the

operationalization of a defect model multiple times, the responsible engineer is subject

to learning and is expected to learn from the automated detection. We hypothesize

this personal improvement to decrease the effectiveness of the respective defect model

as the described faults are avoided rather than detected. However, individuals and

organizations tend to also forget [67]. In addition, a change in technology such

as programming language may render operationalizations of defect models useless.

Concerning the efficiency, the increasing complexity of systems may decrease or oblit-

erate the efficiency of operationalizations of defect models. However, improvement in

technology may improve tool efficiency and increased processing power may also in-

crease efficiency. Thus, the defect model maintenance process must monitor/anticipate

learning, changes, complexity and tool improvements proactively.

To satisfy the requirements of the defect model maintenance process above, existing

continuous quality improvement methodologies can be re-used to give a framework.

However, they need to be adjusted and possibly combined to fit to the project and or-

ganizational context. In the following, we describe the relevant existing methodologies

to possibly base the maintenance process on.

One of the earliest continuous quality improvement methodologies is PDCAPDCA by

Deming [45] conceived in 1986. PDCA is an iterative four-step process shown in Fig-

ure 8.2 also known as Deming circle and short for PLAN-DO-CHECK-ACT. During PLAN,

quality goals, a plan to reach them and measures for their assessment are created. DO
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Figure 8.2: PLAN-DO-CHECK-ACT cycle

Source:

https://commons.wikimedia.org/wiki/File:Deming_PDCA_cycle.PNG

refers to the implementation of the plan. CHECK assesses the execution of the plan

in DO and compares expected to actual quality. ACT gives a retrospective concerning

the plan, its implementation and assessment. If the quality goals are reached, PDCA is

terminated. In case the quality goals are not reached, a further PDCA cycle is started

using the insights obtained by the previous PDCA cycle.

Figure 8.3: Quality Improvement Paradigm (QIP) [13]

In the field of continuous quality improvement methodologies in software engi-

neering, Basili et al. created two well-known approaches called QIP [14] based on

PDCA and Experience Factory [12]. QIP QIPis the quality improvement paradigm shown

in Figure 8.3 and an iterative process. On the organizational level (also called capi-

talization cycle), there are six sequential steps, out of which one is shared with the

project level. The project level (also called control cycle) has three steps. In the first

step of characterize and understand, the context of the organization is modeled. In the

https://commons.wikimedia.org/wiki/File:Deming_PDCA_cycle.PNG
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second step, the quality goals to achieve are set. “To satisfy the goals relative to the

current environment, it chooses processes, methods, techniques, and tools, tailors them

to fit the problem, and executes them”) [13]. The execution is performed within one

or multiple projects. Within these projects, results are analyzed according to respective

measurements and feedback is provided to the organizational level. Depending on the

outcome, execution may be performed multiple times. On the organizational level, the

results of the execution are analyzed and packaged / stored for future re-use. If quality

goals were not achieved, QIP reiterates using the results from the current iteration.

experience
factory

The experience factory acts as a storage of data and lessons learned from previous

projects. It contains various forms of models and measures to instigate re-use of the

knowledge and experience of previous projects. The experience factory always includes

the contexts of the gathered data. In addition, it also requires a support process within

the organization to keep its contents up to date. This process is required to be separate

from the development activities. This is also a requirement for the maintenance of

defect models and defect models can be seen as one instance of data and lessons

learned stored in the experience factory.

Although the experience factory requires such a support process, it does not define

an explicit maintenance process to adjust to changing contexts. An approach specifically

targeting the maintenance of software is continuous software quality control [142]. In

continuous software quality control, tools are used to determine the state of quality

of a software product. These tools are adaptable and anticipate learning, changes,

complexity and tool improvements in a reactive way. By having a support process using

quality engineers maintaining the employed software metrics, the process and tool are

able to be proactive.

While the defect model lifecycle framework can be seen as an instance of PDCA

and QIP in addition to knowledge management, the maintenance of defect models can

re-use continuous software quality control methods. Maintenance of defect models

has similar requirements and can use test metrics to be recorded and analyzed rather

than source code metrics in continuous software quality control. Exemplary metrics

are the number of defects found by employing defect model including a break down

to each defect model and the time to find these defects. However, as is the case with

continuous software quality control, there is no one size fits all metric and they will

have to be tailored on an organizational and project level. This tailoring directly

fits into the instantiation/tailoring of the defect model lifecycle framework to the

project/organization.

A purely process-based quality improvement approach usable for constructive

quality assurance and re-usable for the assessment of the maintenance process is

CMMI [143]CMMI . CMMI is short for Capability Maturity Model Integration and hypothesizes

quality improvement to be possible by pure development process improvement. CMMI

has five maturity levels called initial, managed, defined, qualitatively managed and

optimizing. Every development process is at least on the initial level and can gain levels
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by employing certain methods. These methods are from process areas reaching from

project planning on the defined level to risk management on the managed level and

causal analysis and resolution on the optimizing level. A development process in an

organization then gets audited certified to have a certain maturity level. Defect models

and the defect model lifecycle framework can be used on all maturity levels. However,

defect models require organizational investments, which are typically only performed

on the defined, qualitatively managed and optimizing levels. Particularly, the support

processes desired for defect model maintenance are typically already performed for

other purposes in the qualitatively managed and optimizing levels. Thus, a defect

model maintenance process can highly profit from re-using and tailoring existing

resources. In the advancement of CMMI called SPICE [76], defect models and the

defect model lifecycle framework can be classified in the software support processes of

software quality assurance and software verification.

A derivative of CMMI is TMMI [145] TMMI, which gives a guideline and reference frame

work to improve test processes. TMMI uses the maturity levels of managed, defined,

measured and optimizing to assess test processes and propose process improvements.

Defect models and the defect model lifecycle framework fall into the category of defect

monitoring and prevention in the optimizing level and are able to integrate into the

activities on this level. Similarly, TPI NEXT [139] TPI nextdefines core areas of test processes

and categorizes them into the levels of initial, controlled, efficient and optimizing. One

of these areas is defect management (K10), which is concerned with the monitoring of

defect lifecycles and particularly how the project/organization deals with defects.

In sum, there exist requirements for a support process for the maintenance of

defect models in the form of proactive anticipation of changes to steer defect model

creation as well as usage. Particularly, this support process continuously assesses the

cost-effectiveness of the employment of defect-based quality assurance based on defect

models throughout the organization. Cost-effectiveness of an existing operationaliza-

tion is measured by the effort involved in employing the operationalization and the

cost of a late or in the field removal of the defects it detected. There exist several

methodologies catering to knowledge management (and re-use) as well as defect

monitoring and prediction. If already employed or planning to be employed in the

organization, these methodologies provide parts re-usable by the support process for

defect model maintenance. Note that, we have only provided the requirements for

the maintenance of defect models as defect-based quality assurance based on defect

models has not yet been employed in practice. Thus, we are only able to provide a

framework yet to be evaluated. However, such an evaluation is infeasible in a Ph.D.

dissertation.
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8.3 Conclusion

The assessment and maintenance activities are part of the controlling step in the defect

model lifecycle framework. The main purpose of this step is to monitor and adjust

the employment of defect models and proactively anticipate changes in technology,

organization or domain. This allows an optimal and cost-effective employment of

defect models and their operationalization is software quality assurance.

For the assessment of effectiveness and efficiency of defect model operationaliza-

tions, their requirements have to be validated to match with elicited and classified

defects in the planning step. Defect model maintenance is a support process tailored to

the project/organization. The maintenance process framework is able to re-use existing

knowledge and experience management in software engineering (e.g. PDCA, QIP

and the experience factory), if already employed in the organization. However, these

approaches do not include continuous assessment. Thus, re-use of process and resource

aspects of continuous software quality control and constructive quality assurance (e.g.

CMMI, SPICE, TMMI and TPI NEXT) complete the framework to tailor the maintenance

of defect models. The assessment and maintenance activities have yet to be evaluated

in a large scale case study, which was infeasible as part of a Ph.D. dissertation.

The activities of assessment and maintenance are the last two activities in the

defect model lifecycle framework. However, they are of most importance w.r.t. the

organizational aspects of defect-based quality assurance with defect models. These

processes concern the tailoring, introduction, operationalization and evolution of defect

models within an organization. In addition, these activities bring together the cost

aspects involved in quality assurance and defect-based quality assurance with defect

models. Thus, they are at the core of the strategic business decision towards the usage

of the presented approach.

Recalling that defect models as such are programming language/paradigm/method-

ology independent, a central question in the integration into existing quality assurance

processes concerns their process-independence, particularly if they can be integrated

independently of the employed software engineering process. Two prominent process

models are the waterfall [132] (classic) and scrum [135] (agile) process models. Al-

though these process models are said to be on opposite sides of the process model

spectrum, the quality assurance activities performed are very similar. The original

idea in the waterfall process model is to have a dedicated phase after implementation

has been completed to deliberately perform the testing. Other analytical quality as-

surance activities (e.g. reviews / inspections, formal proofs, static analysis, etc.) can

be performed after the creation of all artifacts at the end of a phase. Scrum aims to

perform testing on each increment and leaves it up to the development team how and

when to perform quality assurance. Using other agile software development techniques

(e.g. test-driven development [16]), this may be throughout the implementation or

completely at the end of each sprint. As for defect-based quality assurance based
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on defect models, it can be integrated into any of these process models by being

utmost flexible due to the defect model lifecycle framework. The lifecycle framework

structures the integration into existing processes by allowing the tailoring of defect

models and their operationalizations to the process models used in the organization.

Particularly, the elicitation and classification of defect models is flexible w.r.t. the

context (see Chapter 4). The generality of the defect model (see Chapter 3) allows

the tailoring of the description to the context according to the variation points. The

operationalization has the greatest dependence on the process as the point in time

the operationalization is used during the process may be vital to its cost-effectiveness.

In a waterfall process model, careless mistakes (e.g. divisions by zero) may still be

present when the testing phase starts (see Section 5.1) whereas these defects may have

already been detected in a combined implementation/testing effort using test-driven

development. Assessment and maintenance are again process-independent due to their

pure supportive nature. Thus, the description and operationalization in the defect

model lifecycle framework are the only activities depending on the process and must

be carefully tailored, if defect-based quality assurance based on defect models is to be

employed cost-effectively.

When employing defect models in quality assurance on the basis of the defect

model lifecycle framework, there are also synergy effects w.r.t. process improvement.

The DELICLA approach for the elicitation and classification of defects can be used to

elicit process-related defects (see Table 4.2). Potential process improvements to pre-

vent/mitigate defects in the process/organization could then be taken into constructive

quality assurance considerations. Otherwise, they could be detected by other means of

analytic quality assurance yielding a comprehensive quality assurance approach for

such defects.
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Conclusion

At the beginning of this thesis, we found the existence of common and recurring defects

in a field study across project, organizational and even domain contexts. For their

detection, software engineers tend to use either (1) use their own knowledge and

experience or (2) implicitly re-use the encapsulated knowledge and experience in

certain test selection strategies to derive test cases directly targeting these defects.

These test cases have at least anecdotal evidence of their effectiveness, but are either

engineer-dependent or based on test case selection strategies possibly not generally

effective. Using our definition of a good test case being one that finds a potential fault

with good cost-effectiveness (contrary to the pertinent literature), we find these test

cases to potentially operationalize this abstract definition.

To systematically and (semi-)automatically create good test cases based on the

personal or encapsulated knowledge and experience, our approach defines a generic

defect model for the description of the personal and the investigation of the encapsu-

lated knowledge. The described knowledge and experience relates to faults (captured

in fault models) and failures (captured in failure models) comprising defect-based

quality assurance based on defect models. By operationalization, the described defect

models yield (semi-)automatic test case / check list generators targeting directly the

described defects. Thus, they have the possibility to yield good test cases / check lists

as the first part of the definition of a good test case is inherently operationalized and

cost-effectiveness is possible.

To arrive at a defect knowledge repository containing defect models, we use knowl-

edge management. Knowledge management aims to make knowledge and experience

of software engineers available in project/organizational contexts. It consists of four

steps to (1) acquire, (2) transform, (3) systematically store, disseminate and eval-

uate knowledge as well as (4) its application in new contexts (see Chapter 1). We

present these knowledge management steps in a defect model lifecycle framework

and instantiate them. The lifecycle framework gives a structure for the employment

of defect-based quality assurance based on defect models and consists of three steps

167
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containing 2 activities each (see Section 1.4). The first step of planning comprises the

activities of elicitation and classification. These activities aim to give a comprehensive

overview of occurring defects in specific contexts and enable the strategic decision

making to describe some defects in defect models. The second step of method execution

includes the description and operationalization of defect models. In this step, defect

models for respective defects are described and operationalized by (semi-)automatic

test case generators directly targeting the described defects. The third step of con-

trolling includes the assessment and maintenance of defect models. This step aims

to assess the previously created defect models w.r.t. their effectiveness and efficiency.

In addition, the defect models are to be maintained by anticipating future changes

in technology, organizational or domain causing further/different defects and adjust

to personal/organizational learning effects. The defect model lifecycle framework is

flexible w.r.t. how and when these activities are to be performed. However, there are a

number of triggers described with the respective activities.

The planning step consists of the elicitation and classification of defects. Our

approach DELICLA (see Chapter 4) is based on qualitative interviews for data collection

and grounded theory for its analysis. Using a field study revealed DELICLA to be able

to elicit and classify technical and process-related defects. It also identified cause effect

relationships between some defects and demonstrated them to be context-independent.

All defects are stored in a defect knowledge repository for their later use.

The method application step consists of description and operationalization, where

some of the defects in the defect knowledge repository are formally described in defect

models and operationalized. Operationalization is performed in three instances in

software testing to represent the test levels of unit, integration and system testing in

the domain of Matlab Simulink systems. All (semi-)automatic operationalization of the

defect models demonstrates their effectiveness and efficiency in software testing.

The defect models on the unit test levels describe faults related to over-/underflows,

divisions by zero, comparisons/rounding, Matlab Stateflow faults and loss of precision

in single blocks / block combinations. The described failures relate to exceeding of I/O

ranges. These defect models are operationalized in a tool called 8Cage (see Chapter 5).

After configuration, 8Cage performs an automatic detection of the defects above

consisting of smell detection, test data generation and test case execution.

On the integration testing level, the defects relate to the failures of superfluous

or missing functionality and untested exception/fault handling in Matlab Simulink

systems. These failure models are operationalized in a (semi-) automatic tool named

OUTFIT (see Chapter 6). OUTFIT re-uses high coverage unit tests or creates them

automatically using symbolic execution in an automatic three step process. The three

steps (1) convert the units/components into an integrated system, (2) create test cases

for the units/components as well as the integrated system and (3) execute the test

cases to retrieve their achieved coverage. A manual inspection then reveals superfluous

or missing functionality. By choosing exception/fault handling components as units/-
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components, a manual inspection of the test cases reveals untested exception/fault

handling.

The defect models on the system testing level are related to the quality require-

ments of control systems in Matlab Simulink. By negating the requirements and

constraining the input space of the control system, our operationalization Controller

Tester (see Chapter 7) aims to find their worst case behavior in different scenarios.

Controller Tester is based on and generalizes existing work [105, 106] in the area of

(semi-)automatic control system testing. We create a comprehensive library of defect

models and quality criteria for control system testing. The results of all selected test

cases are displayed in a heat map allowing the identification of the worst case as well

as areas/input values close to the worst case/voiding the requirements.

In the assessment and maintenance step, we generalize the assessment of the

operationalizations to be an evaluation of effectiveness, efficiency and reproducibility

in multiple case studies. Effectiveness concerns the ability of an operationalization to

detect the defects described in the respective defect models, while efficiency concerns

the time and resources used for the detection. Since all of the operationalizations in

this thesis use some form of non-determinism, reproducibility characterizes the ability

of an operationalization to give the same results multiple times. 8Cage, OUTFIT and

Controller Tester demonstrated effectiveness, efficiency and reproducibility within the

constraints given by our industrial project partner. The maintenance of defect models

is presented as a framework for a support process encompassing the employment

of defect models in quality assurance. It performs the bootstrapping, introduction,

operationalization and continuous assessment of defect models to adjust to personal/or-

ganizational learning and anticipates changes in technology, organizational or domain.

The maintenance process can re-use existing knowledge and experience management

in software engineering. Particularly, continuous software quality control and construc-

tive quality assurance (e.g. CMMI, SPICE, TMMI and TPI NEXT) can be tailored to

the project/organizational needs for the maintenance of defect models. In addition,

the maintenance process is not only assessable by constructive quality assurance, but

is also able to share defect knowledge with static analysis and constructive quality

assurance responsible for process improvement. The assessment and maintenance

activities have yet to be evaluated in a large scale case study, which was infeasible as

part of a Ph.D. dissertation.

By creating the defect model lifecycle framework, we provide a structure of activities

to include defect-based quality assurance into existing quality assurance processes and

map it to knowledge management. These activities are tailorable to organizational

and project contexts and are able to yield a defect, defect model and defect model

operationalization repository. This repository is maintained by a support process and

included in the planning of quality assurance activities. Thereby, the defect model

approach can re-use defect knowledge systematically and (semi-)automatically within

an organization or project.
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By presenting a comprehensive and systematic approach to defect-based quality as-

surance with defect models and demonstrating its effectiveness and efficiency, we have

contributed a systematic and (semi-)automatic way to employ tacit defect knowledge of

software engineers and knowledge encapsulated in existing test techniques for quality

assurance. In turn, this enables the systematic and (semi-)automatic operationalization

of the definition of good test cases. In detail, the contribution is a generic model to

characterize faults and methods to provoke failures (1), a context-insensitive qualita-

tive interview method (DELICLA) to elicit and classify common and recurring defects

(2), the defect model operationalizations 8Cage, OUTFIT and Controller Tester on unit,

integration and system testing level including their demonstration of effectiveness,

efficiency and reproducibility (3) and the defect model lifecycle framework to struc-

ture the integration of defect-based quality assurance into existing quality assurance

processes (4).

9.1 Limitations

Although we have presented a systematic and (semi-)automatic approach to perform

defect-based quality assurance based on defect models, it does not substitute but

complement other quality assurance activities. As described earlier, defect-based

quality assurance is to be integrated with existing quality assurance as it only detects

defects known a-priori to testing. As a variety of defects (known, common and recurring

as well as unknown) may occur when performing quality assurance, it is additional

to existing field-tested and cost-effective analytical and constructive quality assurance

methods. Concerning the cost-effectiveness of our approach, we have limited ourselves

to the evaluation of effectiveness, efficiency and reproducibility in case studies. Larger

studies involving (parts of) organizations using defect-based quality assurance based

on defect models will have to be performed to demonstrate cost-effectiveness.

The operationalizations of defect models presented in this thesis are (semi-

)automatic test case generators. Although test automation for the generated test cases

is desirable, the automatic derivation of the required inputs may be infeasible (e.g.

undecidable by algorithm). The user is then required to complete test inputs. In

addition, the automated creation of oracles (see Section 2.1.2) is still an active area of

research. Thus, the operationalizations of defect models may use a simple robustness

oracle (i.e. no crash). In case a more complex oracle is required, its automated creation

may be infeasible and manual inspection of test results is required.

In this thesis, we have only provided operationalizations for software testing of

embedded systems in the Matlab Simulink domain. Although further operational-

izations were performed for software testing of information systems, it was mostly

infeasible to create (semi-)automatic tools for the generation of test cases in these

systems. The generation of test cases requires deriving input values of a program, such

that variables are assigned a certain value at a certain point of execution of the program
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(i.e. semantic or dynamic constraints). These constraints are typically inserted into

the system under test as the expression of a conditional statement. Upon reaching the

conditional branch, the execution is halted and a variable assignment is derived. If this

branch of the program is reachable is undecidable in general. However, heuristic-based

techniques such as symbolic execution (see Section 2.2) or fuzzing (see Section 2.1.2)

are able to reach these branches depending on the complexity of the program. The pro-

gramming guidelines of embedded systems targeting their safety (e.g. MISRA-C [114])

yield big advantages to symbolic execution as no pointers or memory allocation must

be taken into account. When symbolically executing information systems, symbolic

execution is typically not as effective [25]. Particularly, unbounded and recursive data

types (e.g. strings) or objects as inputs to methods in object-oriented programs yield

typically unsolvable problems for symbolic execution. Without the creation of a test

case and providing evidence to an actual fault to be present, defect-based testing using

defect models is only able to yield lint-like [41] smell detection results including false

positives. Moreover, we have not operationalized defect models in reading techniques,

but only referred to existing work [54, 55]. Particularly, interesting is a comparison of

effectiveness and efficiency of defect-based reviews/inspections and testing.

Each of the operationalizations also has its own limitations. First and foremost,

each operationalization was evaluated in a case study and, therefore, the results may

not generalize. The three systems and three integrated systems used in the evaluation

of 8Cage and OUTFIT respectively may not be representative of all systems developed

in Matlab Simulink. The control systems used in the ControllerTester evaluation may

also not be representative of control systems in Matlab Simulink or control systems in

general.

For 8Cage, we were only able to find overflows in the examined units, but 8Cage

detected all other injected faults. Albeit, the performed injection could have been

unrealistic (i.e. not representative of real-world faults). Also, the control systems in

the evaluation turned out to be symbolically executable by KLEE, which is likely not

the case for all control system in Matlab Simulink. Additionally, the extraction of units

with global variables was problematic due to the possible involvement of its value in

triggering a failure.

For OUTFIT, there are the limitations of the inability to create the TA←B from TB,

scalability of symbolic execution and manual inspection effort. Recall that, to create a

test suite TA←B for component B in the integrated system based on its test suite TB,

the inputs required for the test cases in TB must be the outputs of component A. In our

experiments, the creation of TA←B was hard and sometimes infeasible. The scalability

of symbolic execution was a well known limitation found in 8Cage and OUTFIT as

both use symbolic execution for test case generation. Also recall that, OUTFIT requires

a manual inspection as the last step. The effort for this inspection was minimal in our

case study, but these results likely will not generalize.
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For Controller Tester, the limitations relate to one controlled variable, the manual

inspection effort and the availability of a plant model. We restrict ourselves to one

controlled variable and so called single-input single-output systems. However, our

methodology can be transferred to multiple controlled variables and so called multiple-

input and multiple-output systems in the future. The manual inspection effort of the

test results produced by Controller Tester has not yet been evaluated. However, we

believe it to be in the single digit numbers as only the worst case system behavior

has to be inspected. One fundamental limitation in a broad-scale evaluation was the

availability and accuracy of a plant model. Some engineers use dummy plants or

no plant model at all when developing controllers making MIL testing impossible.

However, the test cases generated by Controller Tester may also be used on other levels

such as SIL and HIL.

In this thesis, we did not provide a concrete process for the maintenance of defect

models, but only a framework to tailor/adjust it to projects/organizations. Since

the maintenance of defect models requires human resources as well as the active

employment of defect models in practical quality assurance, we were only able to

determine the prerequisites for defect model maintenance. Thus, we can only speculate

about its effectiveness and efficiency and future case studies need to be performed.

9.2 Insights gained and lessons learned

While working on this thesis, the primary lesson learned was the realization of the

capabilities of symbolic execution. Although there are a plethora of publications

with promising progress in the area of symbolic execution, the problem of efficient

SAT/SMT solving remains. When first experimenting with symbolic execution for the

operationalization 8Cage, the results looked promising and generalizable to further

programming languages/paradigms/methodologies. However, reproducing the results

of KLEE on the GNU coreutils in [25] already turned out to be non-trivial. When

experimenting with other symbolic execution tools, such as java path finder [148]

and its symbolic execution extension [3], the insufficient capabilities of the solvers

immediately became clear.

A realization attained after creating 8Cage and before creating Controller Tester and

OUTFIT was the primary usage of fault models on the unit testing level. Unit testing is

the only form of testing, which is typically performed in a white-box fashion. Thus,

there is knowledge about faults as software engineers look into the implementation of

the unit when testing. In integration and system testing, the testing is mostly performed

black-box style and without the knowledge of the underlying faults (except for directly

visible faults such as interface incompatibilities). However, software engineers are

well aware of effective methods to provoke failures leading to failure models on these

levels.
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An interesting note during the discussion of defect-based testing with defect models

was the purpose of testing. The purpose of testing is not only to “identify as many

faults as possible so that those faults are fixed at an early stage of the software

development” [119] as presented in the relevant literature. It is also about an increase

into the confidence of a system to fulfill its requirements. Following this reasoning also

gives rise to the argument that solely using defect-based quality assurance for software

quality assurance is not sufficient as an extensive description of all possible faults is

impossible a-priori to testing and would also void the need for it.

9.3 Future Work

The future work is concerned with the extension of our approach to autonomous

systems in the embedded domain and to other domains, a large-scale evaluation, usage

in other parts of software testing and further defect elicitation techniques.

In the future, the approach of Matinnejad et al. [105, 106] for continuous con-

trol systems including our generalization can be extended to autonomous systems.

Autonomous systems (e.g. a drone) typically have an operational range to execute

a mission. This operational range creates a search space similar to the search space

created by continuous control systems. This search space needs to be explored to (1)

find the worst case behavior of the autonomous system and (2) possibly address the

safety certification of the autonomous system (e.g. FAA certification by DO-178 [48]).

To find the worst case behavior, the search space and quality criteria need to be adjusted

to the context. If the autonomous system is a drone, exemplary scenarios could be all

possible changes in position and all possible changes in altitude using respective initial

and final way points. The quality criteria of stability, liveness, responsiveness and

reliability can easily be adjusted towards using these way points, but further quality

criteria may be required. To address the safety certification, the created heat maps may

be used to ascertain confidence that the system behavior is safe. However, there is a

caveat concerning self-learning autonomous systems. If the system behavior changes

during or after performing testing, the results are not reproducible and other methods

of testing or abstraction are required.

In this thesis, we have limited ourselves to the embedded domain for operational-

ization of defect models. The most prominent rationale behind this decision was the

inability of symbolic execution (or any other related techniques) to yield test cases

targeting a specific (set of) fault(s). To make our defect-based approach usable in

the information system area, further research in the area of symbolic execution and

program exploration is required to deal with unbounded and recursive data types

and object-oriented concepts (e.g. polymorphism). In addition, we did not create an

operationalization in the area of manual static analysis. A possible operationalization

would be a (semi-)automatic defect-based check list generator. Felderer et al. [54,

55] describe using defect taxonomies in reviews of requirements to specifically target
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common and recurring defects in the specification of these requirements. Creating a

database of these defects including their classification would yield the input to such a

(semi-)automatic defect-based check list generator. The check list generator is then

a selector of the relevant defects for an artifact. A large-scale case study could then

assess the effectiveness and efficiency.

The instantiation of all lifecycle framework activities in one project/organization

is also still to be performed. Although we have performed a field study concerning

the elicitation and classification of defects, a field study concerning the description,

operationalization, assessment and maintenance is yet required to be performed to

generalize our findings. Particularly the maintenance of defect models still requires to

be instantiated in an organizational context, where our approach is used in a/multiple

project(s).

Although the generic effectiveness of defect models contains the notion of risk-based

quality assurance (see Section 3.1.7), we have not further investigated or evaluated

any risk-based aspects. In the future, such investigations could be made to evaluate the

contribution of defect-based testing in the risk-based testing part of software testing.

Particularly interesting are the notion of Myers, who proposes to execute test cases that

detect “most errors found” [117] inherently combining defect-based and risk-based

testing. Moreover, it could be interesting to evaluate whether defect models enable

risk assessment as far down as the unit testing level. Such risk attribution would yield

a contribution to risk-based testing as all test cases on all levels can be associated with

risks and enable early considerations of risk management. The cost-effectiveness of

defect-based testing based on defect models could also be evaluated at the same time as

quantitative risk assessment has the inherent notion of cost. Moreover, defect models

can be used to categorize test cases by the defects they target. Typically test case

classification is performed by using coverage metrics to categorize them by the parts

of the system and the functionality these part represent [47]. (Semi-)automatically

adding the targeted defects using defect models for the categorization may yield a vital

contribution to the risk assessment.

We have only presented DELICLA for elicitation and classification of defects for

defect models. As discussed in Section 4.2, there are also other methods for the

elicitation and classification of defects. A method particularly interesting in the future

is orthogonal defect classification (see Section 4.1) as it enables the extraction of

the required information from existing bug trackers. A further approach for defect

elicitation and classification in the future is using machine learning techniques on defect

removals. When software engineers remove defects from systems, they inherently

apply the inverse function to α to the system. Thus, by using machine learning on

the reverse image and image, the respective α could be created. As the inverse of α

represents a form of program healing / repair [115], other application areas in quality

assurance exist.
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Finally, defect models are only able to capture known and (possibly) predictable

defects. Any new and unrelated occurring defects not elicited, classified, described

and operationalized will not be found using defect-based quality assurance. Thus,

research on new methods to characterize these defects must be performed, if they

are to be detected with defect-based quality assurance. Particularly interesting is the

characterization of search spaces discussed in Section 7.6. As systems become more

and more complex, it is important to find potentially problem-causing and less explored

areas of these search spaces.
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