
Analysing and supporting
software reuse in practice
Veronika Maria Bauer

Institut für Informatik

der Technischen Universität München

Analysing and supporting software reuse in

practice

Veronika Maria Bauer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Florian Matthes

Prüfer der Dissertation:

1. Prof. Dr. Dr. h.c. Manfred Broy

2. Prof. Dr. Harald C. Gall,
Universität Zürich, Schweiz

Die Dissertation wurde am 15.06.2016 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Informatik am 07.11.2016 angenommen.

Abstract

Software reuse, “the use of existing engineering knowledge and artefacts to build new software
systems” [1], is considered a key element to reach the goal of delivering high quality software
in time and on budget and impacts the entire life cycle of software development, maintenance,
and evolution [2, 3]. Research has proposed many conceptual approaches (e.g., [4, 5, 6, 7, 8, 9]).
However, due to technological limitations, many of these proposals could at the time not be
transferred into practice in a feasible way.

Technological evolution has since enabled to build advanced infrastructures, providing an
unprecedented accessibility to knowledge and potentially reusable artefacts ranging from code
snippets over libraries, components, to services [10]. This has lead to a drastic change in the
way software development and software reuse can be approached [11, 12]. To which extent have
these developments improved reuse application in practice?

Contributions: This thesis analyses the state of the practice of software reuse by means of
two in-depth empirical investigations on software reuse in two large software houses and confirms
reports from the literature [13]: finding and adopting an adequate reuse strategy remains a
challenge for software producing companies and frequently fails due to underestimation of the
effort required for the transition.

Based on a literature study and the empirical results obtained in the investigations, this
thesis proposes a Reuse Adoption Support Model (RASM). RASM supports practitioners in
selecting an adequate reuse approach with respect to their organizational context. The model
incorporates reuse facets derived from a multitude of research papers proposing reuse approaches
or reporting their adoption. To show the applicability of RASM, this thesis reports a proof of
concept application in a large software organization.

Capturing an organization’s reuse context usually amounts to significant manual effort and
might also require extracting information from the source code base of the organization. To
increase the feasibility of the latter, this thesis proposes method and tool support to identify
potential for reuse, e.g., in the form of semantic redundancies, and an assessment for third-party
library reuse. The support provided by the tooling transcends the initial model application
phase: by means of iterative application during the adoption, it provides feedback on the effects
of the implemented measures and, thus, valuable information for driving the reuse process.

i

Acknowledgements

Many people knowingly or unknowingly contributed to this work: by exchanging ideas and
forming them, giving and requesting feedback, serving as examples and role models, facilitating
the logistics, as well as providing moral support during the obligatory failures and sharing the
enthusiasm in case of success. All of this helped me to carry this work to completion and I am
deeply grateful for it.

In particular, I would like to express my gratitude to my supervisors, Prof. Dr. Dr. h.c. Man-
fred Broy and Prof. Dr. Harald C. Gall: your continued interest in the topic as well as the support
for experimenting with and realising my own ideas was valuable for shaping the work into its
current form. Manfred, thank you for providing the opportunity for pursuing my doctorate at
your chair. Harald, thank you for the hospitality of your research group over the last two years.
I have always felt welcome.

A substantial amount of my research relied on input from practitioners. I would like to express
my gratitude to all study participants that offered their valuable time to share their insights into
software reuse, giving sincere accounts of their challenges and successes, and providing a reality
check for my ideas.

Warm thanks go to my colleagues for the support and energy contributed to our joint work,
be it research projects, writing, teaching, reviewing, or debating. It was a pleasure to work with
you! In particular, I’d like to thank my Munich and Zurich office companions Fiona and Katja
for their encouragement, support, and enthusiasm.

Productive work would have hardly been possible without the support of the secretaries and
technical support staff and I would like to thank Silke and Dieter representative for all.

Working on this dissertation has, at some points, been challenging. All the more, I’m grateful
for the patience and moral support I received from colleagues and friends. I’m afraid, I was not
always easy during that time. Thank you for bearing with me :)

Last but not least, my thanks go out to my family: my parents and siblings for their encour-
agement and unconditional support, as well as to my aunt Margaret for being my first academic
role model. Thank you, Diego, for keeping me sane during the last stretch of completing this
work, thank you Miriam, Hannah, and Eva for the laughter and joy you bring to my life!

iii

"It always seems impossible until it’s done."
— Nelson Mandela, 1918-2013

Contents

I Introduction 1

1 Analysing and supporting reuse strategies in practice 3
1.1 Software reuse - a current topic for today’s software practice? 4
1.2 Problem statement . 6
1.3 Goal and research method . 7
1.4 Contributions . 7
1.5 Outline . 10
1.6 Previously published material . 11

2 Software Reuse: Terms and fundamentals 13
2.1 Visions and motivation . 14
2.2 Reuse philosophies . 16
2.3 Reusable entities . 18
2.4 Reuse in practice . 22
2.5 Position of this thesis . 32

II Evaluating the state of practice of reuse 33

3 Case studies on reuse in industrial practice 35
3.1 Empirical studies on software reuse in practice 36
3.2 Methodology . 36
3.3 Case description G . 37
3.4 Case description U . 38
3.5 Original case study designs . 39
3.6 Data collection & analysis procedures . 40
3.7 Company reuse placement . 40

4 An exploratory case study of software reuse at Google 43
4.1 Study goal and context . 44

vii

viii CONTENTS

4.2 Methodology . 46
4.3 Study results . 47
4.4 Discussion . 57
4.5 Threats to validity . 58
4.6 Considerations for practitioners . 59
4.7 Summary and conclusions . 60

5 A case study of software reuse adoption 61
5.1 Challenges of structured reuse adoption . 62
5.2 Study design . 64
5.3 Adoption of a strategic reuse program . 65
5.4 Lessons learned — Adoption attempts . 70
5.5 Current research collaboration . 72
5.6 Summary and conclusions . 74

6 Synthesizing the case studies 75
6.1 Comparing reuse practices . 76
6.2 Study goal and research questions . 76
6.3 Study design . 77
6.4 Analysis Methodology . 79
6.5 Study Results . 80
6.6 Discussion and relation to state of the art . 87
6.7 Threats to validity . 95
6.8 Summary and conclusions . 96

III Guiding strategic reuse decisions in practice 99

7 A pragmatic model for guiding reuse adoption in practice 101
7.1 Guiding reuse adoption in practice . 102
7.2 Reuse adoption support model . 103
7.3 Model overview . 103
7.4 Structure of intent . 104
7.5 Structure of the reuse facets . 105
7.6 Application of RASM . 114
7.7 Justification . 115
7.8 Company Reuse Placement . 118
7.9 Summary . 121

8 Applying the decision model in practice 123
8.1 A proof-of-concept application of RASM in practice 124
8.2 Background of model application at U . 124
8.3 Model application . 125

CONTENTS ix

8.4 Results for case U . 127
8.5 Limitations of evaluation . 136
8.6 Next steps . 136

IV Methods and tools to detect reuse potential 139

9 Detecting reuse potential in the context of a RASM application 141
9.1 Detecting reuse potential in source code . 142
9.2 Discovering unintentional re-implementations . 142
9.3 A hybrid approach to discover unintentional re-implementations 147
9.4 Combining clone detection and LSI to detect re-implementations 153
9.5 Cross-project clone detection as guidance for reuse improvement 166
9.6 Conclusion . 170

10 A structured assessment model for third-party library usage 171
10.1 Opportunities and risks of third-party library reuse 172
10.2 Assessment model . 173
10.3 Assessment process . 178
10.4 Tool support . 179
10.5 Case study . 181
10.6 Related work . 186
10.7 Summary and future work . 188

V Conclusion 191

11 Summary and conclusions 193
11.1 Summary of the contributions . 193
11.2 Outlook . 195
11.3 Conclusions . 196

VI Appendix 197

Part I

Introduction

1

1 | Analysing and supporting reuse
strategies in practice

Software reuse, “the use of existing engineering knowledge and artefacts to build new software
systems” [1], is considered a key element to reach the goal of delivering high quality software in
time and on budget and impacts the entire life cycle of software development, maintenance, and
evolution [2, 3]. Starting from the late 1960’s [14], decades of research efforts have been spent
on analyses, methods, tools, and empirical investigations targeting to support practitioners in
executing reuse tasks [15, 16, 11].

Many conceptual approaches have been proposed, addressing aspects ranging from the cre-
ation and organization of reusable artefacts, e.g. object-oriented techniques and programming
languages, components-off-the-shelf (COTS) approaches [4], reuse repositories [5, 6], or soft-
ware product lines (SPLs) [7, 8], to organizational support and templates e.g. the “experience
factory” [17], the “reuse curator model” [18], or the REBOOT approach [5, 19].

Visions were that reuse would soon be effected on an abstract level by means of techniques
such as automated code generation or Very High Level Languages (VHLLs) [2]. In addition,
planned and strategic reuse programs were advocated as most beneficial, once the high initial
efforts were completed. However, due to technological limitations, many of these proposals could
at the time not be transferred into practice in a feasible way. For instance, the reuse repositories at
the core of several approaches proved as tedious in set-up and maintenance, involving significant
manual intervention [12]:

“Component-based software reuse faces an inherent dilemma: in order for the ap-
proach to be useful, the repository must contain enough components to support devel-
opers, but when many examples are available, finding and choosing appropriate ones
becomes troublesome.” [6] — S. Henninger, 1997

This lead to a significant research effort in classification and retrieval techniques, that, how-
ever, could not overcome the challenge of providing practitioners with an effective way to build,
populate, and maintain a dedicated reuse repository that could be adapted to meet changing
organizational needs [6]. In addition, organizational challenges soon became apparent: Early-on,
researchers vocalize one of the most challenging aspect of planned reuse in practice, the sepa-

3

4 Chapter 1. Analysing and supporting reuse strategies in practice

ration of those who are investing into reuse and those who profit from this investment, which
requires a global focus of management transcending the scope of single projects:

“The traditional unit of analysis and control for software managers is the software
project, and subsequently the resulting application system. [..] Yet there is a range
of insights that can only be attained through the monitoring and management of the
software inventory at the level of the entire firm. [..] Reuse, by its nature, is an activ-
ity that spans multiple projects and application systems enterprisewide. To manage
such reuse requires monitoring the firm’s software at the level of the organization or
enterprise.” [20] — R. D. Banker et al., 1993

Technological evolution, especially the creation of the internet technologies, have since en-
abled to build advanced infrastructures, providing an unprecedented accessibility to knowledge
and potentially reusable artefacts ranging from code snippets over libraries, components, to
services [10]. Furthermore, Software Engineering best practices, such as, e.g., requirements en-
gineering, software architecture design, automated quality analyses by means of static analyses,
code reviews, and continuous integration focus (to different extents) on creating reuse and avoid-
ing redundancies. Also development paradigms based on the new infrastructure possibilities,
such as agile methodologies, test driven development, etc. have significantly changed the way of
developing software. This has also lead to a drastic change in the way reuse can be approached
in terms of publishing, retrieving, and maintaining reusable entities [11, 12]. Figure 1.1 briefly
illustrates this development. At the same time, empirical research has started to quantify the
benefits of reuse [21]. In addition, the Open Source community has embraced the potential of
reuse, e.g., in terms of software libraries [22], and has demonstrated the benefits thereof that
have not remained unnoticed in industrial practice [23]. In this context, the following questions
impose themselves:

How do software producing companies nowadays approach reuse? Which reuse ap-
proaches do they choose for their development, maintenance, and evolution? Do they
proceed in a planned and strategic manner on an abstract level? Is reuse a topic
mastered in practice?

1.1 Software reuse - a current topic for today’s software

practice?

Industry encounters provide a variety of insights on the state of reuse in practice [25, 26, 27]:
Reuse in general is playing a key role in everyday software development, maintenance, and
evolution. Furthermore, in some highly specialized domains, Software Product Lines (SPLs) [8]
have been successfully adopted, commercially successful, and support a high level of reuse [28].

However, evidence suggests that for a large number of software producing companies, finding
and adopting an adequate reuse strategy remains a challenge for several reasons:

1.1. Software reuse - a current topic for today’s software practice? 5

2010
2005

2000
1995

1990
1985

1980
1975

1970
1965

>1,100,000 projects on GitHub,
> 430,000 projects on Sourceforge

Stackoverflow, GitHub

Distributed Version Control Systems,
> 50.000 projects on Sourceforge, broadband access,
> 8 billion pages indexed by Google

Open Source Summit , Google,
Sourceforge

www released to public, ~130 sites,
Yahoo, Java

Free Software Foundation

DECUS tapes, CDs, DNS
with 1000 hosts

first online catalogs, ARPANET 100 hosts,
USENET

home computers, FTP, UNIX, 8" Floppy discs,
Ethernet, TCP

"Software Engineering", "Reuse",
ARPANET

Figure 1.1: A brief overview of the technological development since reuse became a topic of
software engineering research. The time-line displays the media and infrastructure available to
share reusable entities before the WWW-era and highlights the birth of open source platforms
and available tools that now serve as important sources for reusable code and/or knowledge.
Based on [24].

6 Chapter 1. Analysing and supporting reuse strategies in practice

First, the idea of software reuse is very intuitive on an abstract level and, thus, tends to
mislead practitioners (and particularly management) to underestimate the effort required to
adopt a reuse approach, as well as the time-frame in which benefits can be expected [13].

Second, adoption of a reuse approach often-times requires changes not only in the development
processes of an organization: most of the times, significant changes in non-technical processes and
the organizational structure are necessary to enable reuse success [17]. Identifying and addressing
the required changes is likely to cause disruption and scepticism within the organization [29].

Lastly, the characteristics of already existing systems can cause significant challenges for
reuse adoption: Usually, the systems at hand tend to incorporate a varied mix of technologies,
architectural styles, and programming conventions. Large number of libraries and frameworks
(produced within the companies or drawn from company-external sources) contribute to the
systems [22, 30, 31]. The systems have grown to considerable size over generations of developers
pressured to ship a product to the market. As a result, many implementation decisions have
been taken to optimize for a local goal [20]. These developments tend to incite redundancies and
inhibit company-wide reuse efforts.

Reuse has usually occurred in a pragmatic and unstructured way with the means at hand,
often-times resulting in a significant technical debt [32] manifested in the form of, e.g., undocu-
mented redundant implementations [33], code clones, unmanaged dependencies, and unreflected
use of libraries [34, 35, 36]. This way of effecting reuse during a systems’ development can entail
significant costs during maintenance and evolution. Attempts to adopt more disciplined and
structured reuse approaches have often been underestimated in terms of the required effort [13]
and have failed to produce benefits in relation to the invested resources.

In order to determine and adopt a reuse strategy, the context factors mentioned above, as
well as their effects, need to be understood and considered to reach an informed decision about
software reuse at the respective organization. The key questions of this dissertation are therefore:

How can we enable practitioners to select a feasible reuse strategy? Can we capture
and improve (deteriorated) reuse situations?

1.2 Problem statement

Practitioners lack support to determine adequate reuse strategies. This results in a mismatch
between business goals, context, and employed reuse approaches, causing significant inefficiencies
in development and increased efforts in maintenance.

To mitigate this challenge, this work supports practitioners in making an informed decision
with respect to software reuse, based on a concrete and structured assessment of their organi-
zation’s reuse capability. It does so by providing systematic reuse adoption guidance based on
own investigations and the available literature.

1.3. Goal and research method 7

1.3 Goal and research method

Selecting an adequate reuse strategy that respects company goals and capabilities is crucial for
beneficial reuse. This thesis aims to support practitioners in selecting an adequate reuse strategy
for their context. To reach this goal, we propose the following steps for this work:

In a first step (Contribution 1), we turn towards analysing current reuse practices. This is a
necessity to ensure this work is grounded on the needs of practitioners as well as ensuring the
relevance of the subsequent contribution. From a methodological perspective, we select empirical
survey research as means of study and conduct two detailed case studies on reuse in practice. The
studies are conducted at two large software companies and focus on a detailed understanding of
current reuse practices, supporting and inhibiting context factors, benefits and drawbacks. The
case studies are complemented by a detailed synthesis study that integrates their results.

In a second step (Contribution 2), this work integrates the results from the first contribution
with a literature review to propose a constructive reuse adoption support model for practitioners
aiming to design a reuse strategy. The model draws the basis from a classification scheme derived
from a literature study and connects the characteristics of the reuse approaches with the context
knowledge gained from the empirical studies. When applying the model, potential sources of
effort or incompatibilities become apparent at an early stage of the decision making process.
In this way, the application prevents an underestimation of efforts and allows for an informed
discussion of options. These claims are supported by a proof-of-concept case study in industry.

Lastly, we propose supporting methods and tools (Contribution 3) to support data collection
for the reuse adoption support model. In particular, we focus on the identification of missed
reuse opportunities, quantifying the potential for reuse in source code, and the chances and risks
presented by the third-party libraries that are incorporated in a given system. The proposed
methods and tools are validated by means of industry case studies.

1.4 Contributions

The contributions of this dissertation are threefold: First, it investigates the current state of
software reuse in two large software producing corporations by means of two in-depth field
studies with the purpose of identifying challenges in current software reuse practice. The results
highlight different forms of reuse practice, a focus on code reuse, and challenges in selecting and
adopting a new reuse approach. In addition, they indicate the need to account for economic
goals and company context during the selection process.

By combining literature with own empirical results, this work reaches the conclusion that
underestimating the impact of introducing reuse programs is a crucial point of failure in practice.
To mitigate this issue, this dissertation provides, as second contribution, a decision support model
capturing the essential questions decision-makers have to answer in order to reach an informed
decision on the feasibility of introducing a specific reuse approach.

Lastly, this work presents methods and tool support for specific aspects of the reuse decision
support. The following sections provide details on each contribution (visualized in Figure 1.2).

8 Chapter 1. Analysing and supporting reuse strategies in practice

Contribution II - Support model for reuse adoption

Contribution III - Methods and tools for reuse adoption support

Contribution I - Reporting and integrating the state of practice

Case Study G Case Study U

Integration of Case Studies

Synthesis

Mapping of findings from practice to
classification of approaches

Reuse Adoption Support Model

Literature study

Classification scheme

Characterization of reuse approaches

Proof-of-concept model application

Ch
ap

te
r 8

Identification of reuse potential in
source code Assessing third-party library reuse

Ch
ap

te
rs

 9
-1

0
Ch

ap
te

rs
3-

6
Ch

ap
te

r 7

Figure 1.2: Map of the contributions presented in this thesis and their relations. The arrows
represent the flow of results: the synthesis of Contribution I is integrated in Contribution II. The
methods and tools presented in Contribution III can be used to support the application of the
Reuse Adoption Support Model of Contribution II. The rounded boxes provide a mapping of the
contributions to the Chapters of this thesis.

1.4. Contributions 9

Contribution 1. Two detailed case studies and a structured comparison
on software reuse in practice in two large software houses

Most research accounts of software reuse in practice focus on narrow aspects and often fall short
of providing a contextual details, such as goals and domain constraints, of the organization from
which they report. This decreases the value of the reported experiences, as reasoning about
success and failure, as well as applicability of a given approach, lacks vital information.

To obtain first hand insights into current reuse practices, we conduct two in-depth case stud-
ies on software reuse in two software houses that are highly diverse in domain, age, and culture.
We report on the implementation of reuse, influence (context) factors, effects, and challenges.
The studies each comprise extensive interviews and a comprehensive on-line questionnaire, cap-
turing the knowledge of 138 experienced software engineers, architects, designers, and managers.
Furthermore, we provide a structured approach for integrating evidence from diverse studies and
report a comparison of the findings of both studies.

The studies highlight that reuse in practice occurs in many different flavours, however, mostly
limited to source code. Partially, the technological potential has been embraced, rendering once
infeasible approaches, such as repositories as source for reusable entities, operational. Successful
reuse is tightly coupled to the company goals and compatible with in the development culture.
Establishing systematic reuse in heterogeneous contexts poses significant challenges and requires
structured decision support.

Contribution 2. A support model for guiding software reuse adoption

Over decades, research has proposed numerous approaches and techniques for software reuse.
Those proposals range from the "visionary" and abstract to the very concrete and technology-
bound. Reports on (un)successful adoption of these research proposals, on the contrary, are
limited and suggest difficulties in selecting suitable reuse approaches. This contribution proposes
a scheme to systematize the reported evidence and capture the respective characteristics with
the goal to enable informed decisions on reuse approaches.

The results of a literature review highlight that a large number of reuse approaches and
reusable entities have been proposed by research that could be adopted in practice in a wide
range of contexts. However, the set of reported goals and benefits is quite focussed and allows
for a stringent selection of reuse approaches in a given business context.

Based on the literature analysis, mentioned above, and the empirical findings obtained in
Contribution 1, this contribution develops a first version of a qualitative decision model for
stakeholders that need to find a suitable reuse strategy for their software development. This
contribution addresses the concern raised in literature and practice that the consequences of
introducing structured reuse are notoriously underestimated in practice, causing significant loss
in terms of failing reuse programs.

The model includes key factors of the different reuse approaches, such as expected benefits,
time horizon to benefit realization, preconditions, drawbacks, etc. and relates them to strategic

10 Chapter 1. Analysing and supporting reuse strategies in practice

aspects of reuse, highlighting potential synergies and/or incompatibilities. In this way, decision
makers are guided to address relevant aspects in their considerations.

Our proof-of-concept model evaluation at an organization supported practitioners with iden-
tifying critical aspects of their envisioned reuse adoption. In the specific application, the model
re-focused the analysis and discussion on aspects that would, otherwise, have been neglected in
the often politicized debate around the potential organizational changes. This allowed practi-
tioners to detect incompatibilities between the envisioned reuse strategies and the time frame for
benefit realization on the one hand, and the current state of the company on the other hand, at
an early stage. As a result, they could target the implementation of beneficial changes in reach
of the current company capabilities and, at the same time, in line with the change trajectory
towards the envisioned approach. Practitioner feedback supports that applying the model was
helpful for performing a thorough up-front assessment of their envisioned reuse strategy.

Contribution 3. Methods and tools for reuse assessment

For several aspects of the adoption support model, we present methods and tools that support
the assessment of reuse potential, as well as chances and risks of current reuse. These methods
can, on the one hand, be applied to identify potential for reuse during a model application. On
the other hand, the can support the implementation of reuse strategy changes by monitoring
their effect on the underlying source code and, thus, allowing to identify the effectiveness of the
applied measures.

On the technical level, we present two types of methods: on the one hand, we focus on
detecting potential for reuse. The respective methods support identifying candidate reusables
by detecting missed reuse opportunities in the form of semantic re-implementations, as well as
considering the application of clone detection across project boundaries to detect candidates
for reusable entities. On the other hand, the contribution provides support for assessing the
opportunities and risks present on a project due to the reuse of third-party libraries.

1.5 Outline

Part 1 introduces the concept of software reuse, provides the background for this work, and
presents an overview on the state of the art as well as the state of the practice of software
reuse reported in literature.Part 2 presents our insights into reuse in industrial software practice.
It presents the two case studies as well as the synthesis study that are part of Contribution
1. Part 3 presents the Reuse Adoption Support Model and its proof-of-concept evaluation in
industry, Contribution 2. Part 4 presents methods and tools for measuring and monitoring
aspects of a company’s code reuse practices, Contribution 3. Part 5 summarises and concludes
the dissertation.

1.6. Previously published material 11

1.6 Previously published material

Parts of this work have been published in [25, 26, 27, 34, 37, 38, 39, 40, 41].

2 | Software Reuse: Terms and fun-
damentals

“Reuse is easy to understand but challenging to institute.” [42] — S. Wartik and
T. Davis, 1999

This chapter introduces the topic of software reuse. It presents the various definitions and
gives an introduction on the visions and motivation that have driven research in the area.
Subsequently, the chapter briefly describes the most prominent reuse philosophies and highlights
important characteristics of reusable entities. To provide the background to this work, the
chapter proceeds with a summary of the state of the art on software reuse in practice, detailing
on impact factors enabling or hindering reuse success. Finally, the chapter establishes the
position taken by this work.

Contents
2.1 Visions and motivation . 14

2.2 Reuse philosophies . 16

2.3 Reusable entities . 18

2.4 Reuse in practice . 22

2.5 Position of this thesis . 32

13

14 Chapter 2. Software Reuse: Terms and fundamentals

2.1 Visions and motivation

Software reuse is one of the oldest topics in Software Engineering. Proposed by McIllroy [14] as a
concept for addressing the “Software Crisis” in the late 1960’s, it has been defined and addressed
from a variety of aspects. Krueger, in his survey on software reuse, captures the overall intuition:

“Software reuse is the process of creating software systems from existing software
rather than building software systems from scratch." [2] — C. Krueger, 1992

Subsequent definitions extended the scope to encompass the aspects of knowledge and soft-
ware artefacts:

“Software reuse, the use of existing software artefacts or knowledge to create new
software.” [43] — W. Frakes et al., 1996

2.1.1 Reuse visions

The original vision of software reuse was first published in McIlroy’s 1968 paper on “Mass pro-
duced software components” [14]. In the text, he lines out the vision of a structured approach
to reuse that enables system development by assembling proven and adequate software entities:

“Software components (routines), to be widely applicable to different machines and
users, should be available in families arranged according to precision, robustness,
generality and time-space performance.” [14] — M.D. McIlroy, 1968

He, furthermore, identified potential inhibitors to and potential benefits of such enterprise, de-
rived from the experience of reuse in more seasoned and mature engineering domains:

“Existing sources of components [..] lack the breadth of interest or coherence of
purpose to assemble more than one or two members of such families, yet software
production in the large would be enormously helped by the availability of spectra of
high quality routines, quite as mechanical design is abetted by the existence of families
of structural shapes, screws or resistors.” [14] — M.D. McIlroy, 1968

Early-on, the ideas of reusing finalized components, as well as ‘software bases" [46] for domain
specific and refinable solutions, were picked up and solutions were evaluated on a theoretical level.
However, implementation of the propositions remained challenging due to restricted technological
options [6].
Apart from its role in realizing high quality software systems on time and within budgets, re-
searchers shared McIlroy’s vision of software reuse serving as means to increased maturity of the
software engineering discipline.

“The major contribution of software reuse to software engineering [..] will be to
push it into maturity.” [47] — R. Prieto-Díaz, 1994

In this vision, structured and systematic reuse is central to the advance in maturity:

2.1. Visions and motivation 15

“Current trends to institutionalize reuse and to integrate reuse in the software de-
velopment process further demonstrate that the end and the success of software reuse
are close, and that both converge into systematic reuse.” [47] — R. Prieto-Díaz,
1994

During this process, software reuse itself would disappear as an conscious aspect of research
and development and become an integral and ingrained part of software production and, thus, a
solved problem before the year 2000 [47, 48].

2.1.2 Reuse motivation

The original concerns software reuse should address were a rising demand for software that could
hardly be met by industry, the high cost of producing software systems, and the desire to form
software engineering such that it resembled other more mature engineering disciplines [14, 46, 48].

“Production of software is costly and error prone, and its main production factor,
good programmers, is scarce. Therefore, one strives to solve these problems by ulti-
mately circumventing this costly manual production process.” [46] — R. Mittermeir
and W. Rossak, 1987

In this context, reuse received its appeal from observations on the nature of ‘typical” software
products containing large amounts of domain-independent functionality1:

“Most applications devote less than 10% of their code to the overt function of the
system; the other 90% goes into system or administrative code: input and output; user
interfaces, text editing, basic graphics, and standard dialogs; communication; data
validation and audit trails; basic definitions for the domain such as mathematical or
statistical libraries; and so on. It would be very desirable to compose the 90% from
standard parts.” [49] — M. Shaw, 1995

Goals Software reuse, thus, seemed like the key concept that could resolve, or at least signifi-
cantly mitigate, the issues mentioned above: Reuse of existing elements would improve produc-
tivity and time-to-market by reducing implementation time, increase the quality of the software
products as the likelihood of errors prevailing in artefacts was assumed to be reduced by its
prior testing and use, and maintenance would be eased by modular composition of the systems
resulting from reuse of parts (see, e.g., [11]), seemingly at no (or negligible) cost [50].

This favourable view of software reuse prevails up to this date with researchers and practi-
tioners alike, as the following quotes illustrate:

“To improve software productivity, when constructing new software systems, pro-
grammers often reuse existing libraries or frameworks by invoking methods provided
in their APIs.” [51] — Zhong et al., 2009

1This qualitative assessment has been validated quantitatively by more recent research, e.g. by Heinemann et
al. in the context of Open Source Development [22].

16 Chapter 2. Software Reuse: Terms and fundamentals

“[W]e present strong evidence that code reuse is of major importance in OSS de-
velopment and has contributed to its success. We further show that OSS developers
perceive efficiency and effectiveness as the main benefits of code reuse.” [52] — M.
Sojer and J. Henkel, 2010

“The reuse of knowledge is considered a major factor for increasing productivity and
quality. In the software industry knowledge is embodied in software assets such as
code components, functional designs and test cases. This kind of knowledge reuse is
also referred to as software reuse.” [53] — Spoelstra et al, 2011

“It has been argued that only software reuse can bring the gain of productivity in
software construction demanded by the market.” [22] — Heinemann et al., 2011

“The usage of third-party libraries can decrease development time and cost through
reuse of existing pieces of functionality.” [54] — Raemakers et al., 2012

Quantitative studies (summarized in [21]), confirm parts of the claimed benefits in a lab-
oratory setting. However, the body of qualitative studies on the subject of reuse adoption in
practice provides a more heterogeneous assessment: studies indicate that in practice substantial
up-front investments are required to enable the adoption of advanced software reuse approaches
(see Sections 2.2.2 and 2.4.3).

2.2 Reuse philosophies

Literature distinguishes between ad-hoc and structured reuse philosophies. As this differentiation
has a significant impact on goals, methods, applicability, and effort, we detail on both in the
subsequent paragraphs.

2.2.1 Ad-hoc reuse

Ad-hoc reuse generally refers to an unplanned approach to reuse that follows no specific,
company-wide strategy and, thus, is effected at the discretion of the individual programmers [55].
Reusables ranging from code snippets to libraries are combined in an opportunistic way to reach
an increase in terms of development speed. In this style of reuse, de-facto reusables can co-exist
with reusables by design without restrictions.

Most of the time, this term is used synonymously for clone-and-own reuse which denotes a
reuse approach that relies on ad-hoc copying and modifying (proven) solutions for the purpose
of increased development pace. It is also known as: code scavenging [2], pragmatic reuse [56],
opportunistic reuse [57], and copy-and-paste (or cut-and-paste or copy-and-modify) reuse [58],
pragmatic reuse [59].

Code snippets are among the reusable entities that can be obtained with the greatest ease.
However, also high-level reusables, e.g., components, third-party libraries, and frameworks can

2.2. Reuse philosophies 17

be reused in a pragmatic way. In either case, clone-and-own reuse implies taking ownership of
reusables by copying them to a new location and adopting them to the specific needs.

Clone-and-own has the undeniable advantages of visible and fast progress, as well as flexibility
and independence of consumers [56, 60]. As it has virtually no preconditions on the organizational
context, it is applied widely in industry [60]. Depending on the given industrial context, this
practice can serve as a disciplined tool [61] used to circumvent technical hindrances of more
structured reuse approaches [59, 62]. Nevertheless, it induces a known array of risks, e.g., in the
form of error propagations, unmanageable code base volumes, decreased understandability. This
leads to high maintenance efforts that decimate the benefits gained by the faster development
pace [63].

2.2.2 Structured reuse

Structured reuse, has a long history of being considered a “silver bullet” [64] in research and
practice alike, as it is considered superior to pragmatic reuse in terms of the benefits it pro-
vides [65, 3, 29]. At its core stands the vision of a well defined and structured base of high-
quality artefacts for a specific domain [66] that have been explicitly developed for reuse and
can be used to construct new products with minor customization effort. High-level artefacts,
e.g. requirements, are considered as first-class reusables [66]. Clear and repeatable processes
capture the responsibilities of producers and consumers, lining out assumptions and guarantees,
as well as capturing feedback [17]. Maintenance of the reusable entities is usually centralized and
the responsibility of the producers. Tool support allows for locating, accessing, and connecting
reusable entities.

The most prominent representative of this kind of reuse approaches is the one of Software
Product Lines [8]. SPLs reportedly have been adopted successfully in practice [28] and have
provided significant benefits [8, 67]. These benefits, however, only follow significant up-front
investments and perseverance in adopting the reuse strategy across several organizational units:

“Reuse is a mid-term investment impacting the entire software development process.
It must be based on a product strategy which spans several releases or a family of
products.” [50] — M. Wasmund, 1994

Successfully introducing structured reuse, therefore, is a non-trivial task that transcends
typical organizational boundaries (e.g. of departments) and units of work planning (such as
single projects) and, thus, requires a holistic view of the organization.

Research offers some guidance for structured reuse introduction by proposing, e.g., organiza-
tional blueprints supporting reuse or incremental adoptions of revised development paradigms [17,
68]; however, these measures often require significant and long-term changes in industry. These
deep changes are challenging to effect [69], especially whilst continuing everyday business activi-
ties. In addition, management is not necessarily aware of the impact of required transformations
and the related efforts [50, 29, 13]. This reportedly leads to unwillingness to continuously support
the reuse adoption and to a failure of that venture [13]. Furthermore, incentive conflicts, such
as local team priorities or unofficial policies, can significantly hinder the adoption of structured

18 Chapter 2. Software Reuse: Terms and fundamentals

reuse [18, 70]. These unofficial policies are often backed by short-time evaluation of applied reuse
strategies: Dubinsky et al. [60] investigate the reasons that cause companies to reluctantly move
away from ad-hoc reuse in the form of code cloning for product line implementation to structured
product line engineering approaches. They identify efficiency, low overhead, short-term thinking,
and lack of governance as main drivers.

Independently of organizational aspects, creating or obtaining suitable reusable entities is a
key challenge of structured reuse: reverse engineering of existing solutions or creation of new
entities require for a deep understanding of domain and business context. In addition, they need
to find an adequate compromise between specificity and generalization to ensure ease of reuse and
avoid significant adaptation efforts [71]. During the life-cycle of the reusables, dependencies and
impact of changes in maintenance and evolution need to be considered and carefully managed [72].

The above mentioned challenges highlight that success of structured reuse adoption depends
to a significant degree on organizational factors. Long-term management commitment, awareness
of human factors, and modification of non-reuse processes according to the specific context of
the company are, therefore, critical enabling factors [29, 13].

2.3 Reusable entities

Over the typical software product life-cycle (as, e.g., in [73]), many diverse entities and artefacts
are created that could and should be reused in another setting [46, 71]. The potential artefacts
range from knowledge [43] and product requirements [74, 75] over code snippets [59] to software
frameworks and libraries [76], reference architectures [77] and Software Product Lines [8], en-
capsulating tested knowledge and proven solutions. Depending on the selected styles of reuse,
the set of reused entities varies. Figure 2.1 illustrates this heterogeneity: in the central axis, it
shows reusables ordered by degree of abstraction (the increase of abstraction is expressed by the
arrow). For the categories models and source code, examples for possible forms of reuse are given
(e.g. by use of generators, in different granularities of source code packaging).

Black- and white-box reuse Literature differentiates between black-box and white-box reuse.
This notion refers to the insights a consumer has on the internals of the reusable, as well as to
their possibility to modify them. Subsystems, components, or libraries are typically reused in a
black-box fashion2 with behaviour modification obtained by parametrization. Textual artefacts,
e.g., source code, are usually reused in a white-box fashion, allowing the consumer to inspect
and modify its details.

Reusability One crucial aspect of reusable entities is their degree of reusability, a measure
capturing

“the ease with which the resource can be reused in a new situation.” [15] — Y. Kim
and E. Stohr, 1992

2This, clearly, is not the case if the source code of e.g. a component is copied and integrated in another code
base. In this case, the component is reused in a white-box fashion and is represented in textual source code.

2.3. Reusable entities 19

Textual Source Code

Frameworks

Libraries

Services

Subsystems

Knowledge

Code GeneratorsModels

Designs

Requirements

Application Generators

Source Code

Reference Architecture

Use Cases

A
bs
tr
ac
tio
n

Figure 2.1: Examples for potentially reusable entities created during software development. On
the left side of the figure, the different types of artefacts are ordered in terms of their level of
abstraction. The arrows connected to the artefact types refer to typical examples of the respective
type. Knowledge is listed as it is mentioned in several definitions. However, it is highlighted as
it is not a documented type of artefact.

The goal of this measure is to create the basis for a comparison of the applicability of multiple
components in a specific system context. Several “-ilities” are considered factors constituting
reusability (e.g. adaptability, composability, maintainability, modularity, portability, reliability,
understandability) [56].

A significant amount of research has been invested into metrics for and models of reusability,
albeit, these research efforts have often been fragmented [11]. This fact has in the past negatively
impacted the evaluation and application of these measures in research and practice and is now
gradually tackled by recent structuring efforts (e.g. [56]). Furthermore, the proposed reusability
metrics map the constituting factors exclusively on technical properties and contexts of the
component (e.g. code metrics such as cyclomatic complexity, interface stability), thus ignoring
further vital characteristics for practical use (such as e.g. characteristics of the provider).

20 Chapter 2. Software Reuse: Terms and fundamentals

Other researchers, e.g. Basili [78], have proposed more high level notions of reusability. We
briefly summarize them here. According to Basili, one should take note of three aspects in
order to understand the reusability of an entity: the characteristics of the reusable, its context,
and the process of transforming the reusable to enable its reuse. In terms of characteristics or
dimensions of the reusable, the following should be considered: its type, its self-containedness, and
its quality. With respect to the context dimension, one needs to consider the original requirements
as well as the current solution domains, which might rely on different assumptions and pursue
different goals. For the transformation of the reusable, one needs to consider the mechanism
by which knowledge-transfer is going to occur, the type of transformations, their integration in
the development process, and the resulting quality of the transformation. Whilst this framework
stays at a rather abstract level, it illustrates the steps that are performed (implicitly or explicitly)
when selecting and adapting a reusable.

Intent From a reuse application position, an additional aspect of reusables becomes apparent,
and is illustrated by Figure 2.2: there is a difference between artefacts buildt for reuse and
those reused out of convenience, here denoted as de-facto reusables and reusables by design.
This difference regards the responsibilities of the producer, i.e., the unit or person producing a
given reusable entity, and the consumer, i.e., the unit or person reusing the reusable, of available
reusables.

In the case of de-facto reusables, the reused entity has not necessarily been built to support
reuse at all, in a consumer-agnostic way. It is, therefore, reused to speed up the development
process, without knowledge about the rationale or inherent assumptions about the intended
application context. Furthermore, the producer of the reusable has no liability to assure any
specific level of quality or guarantees for the entity. Since consumers usually have no possibility
to influence the form of the original reusable, they have to effect all necessary changes and
maintain the reused parts in the future.

In the case of reusables by design, effort has been invested to support specific consumer
requirements. Therefore, this kind of reusable is consumer-aware. Consumers can obtain infor-
mation about the assumptions for the use cases or intended applications of the reusables that
can be used as is or altered and extended. Furthermore, producers provide a certain set of guar-
antees for the intended scope of use of the reusable. Maintenance usually is the responsibility of
the producer, except for custom extensions added by the consumer.

The intent underlying a reusable is, to some extent, congruent to its scope of use: Textual
source code, reused in an ad-hoc way is usually a de-facto reusable, reused in the local scope of a
package or a project. Libraries, or some components are reusables by design and, in this role, are
built to be used on any scope that requires their specific functionality. Product line platforms,
in turn, are de-facto reusables built for a company-wide strategic scope.

2.3. Reusable entities 21

By design -
utilityReusables De-facto By design -

domain specific

yesBuilt for reuse not necessarily yes

Focus on
consumers

Consumer-aware
reusable

Consumer-aware
reusable

Consumer-agnostic
reusable

general purposeFunctionality any kind domain specific

domain specific
component

general purpose
librariescode snippetsExample

selection,
no maintenance for
use-as-is,
maintenance for
extended versions

selection,
no maintenance for
use-as-is,
maintenance for
altered versions

selection,
adaptation,
maintenance

Effort invested
during reuse

none for de-facto
instance of reuse

for use case/
functionality

for basic set of
application

Effort invested in
reusability

for basic set of
applicationGuarantees for use case/

functionalityunknown

known for basic set of
applicationAssumptions known for use case/

functionalityunknown

development efficiencyMotivation for
reuse

development efficiency,
maintenance gains,
quality guarantees

development efficiency,
maintenance gains,
quality guarantees

Figure 2.2: Types of reusables in practice.

22 Chapter 2. Software Reuse: Terms and fundamentals

2.4 Reuse in practice

The alleged benefits of software reuse have not failed to attract the attention of industry, where
the need for cost reduction and quality improvements is perceived. In addition, the potential
of reuse to foster innovation and market penetration due to shorter production cycles promised
strategic business advantages.

Benefits have been reported from successful reuse adoptions: lower cost and faster develop-
ment [79, 80, 81, 27], higher quality [79], standardized architecture [82, 79], and risk reduction [81]
by resorting to known artefacts. Whilst these reports are encouraging and provide valuable in-
sights into reuse-conducive factors (see Section 2.4.2), they are outnumbered by accounts of
unsolved challenges (see Section 2.4.3).

Reports from literature and practice suggest that adoption of a suitable reuse strategy is
challenging: Software reuse takes place in a multi-faceted environment and, thus, incorporates
aspects ranging from technical to organizational at different levels of abstraction [1, 80].

Congruence of business goals, context factors, and processes need to be established for reuse
to provide the desired economical effects [83]. Options for reuse approaches range from loose to
tight reuse [13] that involve different levels of organizational commitment.

In addition, the selection of adopted reuse approaches differs among the various domains of
software development: reuse practices in embedded and non-embedded software development
differ with component-based approaches and product lines prevailing in embedded systems de-
velopment, whilst in non-embedded contexts ad-hoc reuse is most frequent [81].

Implementing reuse approaches requires developing and communicating a reuse vision — in-
cluding what should be reused (e.g. source code), for which purpose (e.g. decreasing development
effort), in which technical realization (e.g. linking and maintaining globally) — supported by
clear governance rules for development and maintenance. These governance rules should include
the responsibilities of consumers and producers.

The remainder of this section details on the two main perspectives of software reuse in practice
and reports impact factors affecting the adoption and execution of reuse strategies.

2.4.1 Performing software reuse in practice

When performing software reuse in practice, two main perspectives need to be considered: de-
veloping with reuse and developing for reuse.

Developing with reuse The process of developing with reuse can been defined in terms of
the constituting actions, as detailed in the taxonomy in Figure 2.3. Starting top-down, the
taxonomy reads as follows: When attempting to reuse, a developer needs to retrieve and modify
a reusable item. To retrieve candidate reusables, they must first identify them, then evaluate
their suitability for the purpose, and select the best fit. Before identifying candidate reusables,
a developer needs to characterize formally or informally the requirements the potential reusable
needs to meet and to match existing reusables against this specification.

2.4. Reuse in practice 23

Reuse

Retrieve Modify

Identify Evaluate Select

Characterize Match

Figure 2.3: Taxonomic definition of Software Reuse from the perspective of the reuse consumer
based on [44, 45].

Individual cost-benefit estimation Effecting the actions related to reuse incurs a cognitive
effort on the part of the person attempting to reuse. The intuitive evaluation of the potential gain
of reuse versus the estimated effort required to effect reuse impacts the decision for or against
reuse in a given situation. In this evaluation, however, short time benefits, e.g., faster creation
of suitable artefacts, tend to be valued higher than long term costs, e.g., for maintenance, of
newly created (and potentially redundant) artefacts. If an organization strives to increase reuse,
it should, therefore, invest into enabling factors that decrease the effort required to reuse, such
as, e.g., a supporting infrastructure, an adequate communication and development culture, and
a shared vision of reuse3.

Developing for reuse When developing for reuse, i.e., producing artefacts for the purpose of
reuse, an analogous evaluation takes place: the cost of creating an artefact that is of sufficient
quality and generality to be reusable for many usually incurs an up-front investment that is higher
than creating single solutions for every use. However, this cost amortizes with the number of
reuse instances as well as with the saved effort in terms of maintenance. The number of potential
consumers as well as the life expectancy of a reusable artefact and its embedding systems are,
therefore, key factors to be considered.

Global cost-benefit estimation Predicting which artefacts provide enough benefit to an
organization to compensate for the additional effort required for reuse is challenging in the face
of emerging requirements and diverging needs of organizational units. The estimate of the effort
for producing the respective artefact, as well as creating an environment that enables reuse,
needs to be related to a qualified estimate of the cost incurred by neglecting reuse opportunities.
Depending on the current organizational context, choosing an ad-hoc position on software reuse
that incurs costs at a later point in time (e.g., choosing clone-and-own over a structured approach)
might be acceptable for business reasons. In another context, deferring costs for inadequate reuse

3For details, see Chapters 3, 6, and 7.

24 Chapter 2. Software Reuse: Terms and fundamentals

to a later stage of the product life cycle might be detrimental (e.g., if extensive maintenance
is costly). In this case, the comparatively higher initial cost of introducing a more advanced
reuse approach might be considered acceptable. Adequately weighing the alternatives available
with respect to reuse can be challenging and requires a variety of skills and knowledge from an
organization, ranging from development to management practices.

2.4.2 Success factors and enablers

Several works have proposed processes for, or reported on, adoption attempts of structured reuse
in practice and deduced respective success and failure factors. The following paragraphs give a
brief overview on a selection of studies, starting from the 1990’s up to 2014.

2.4.2.1 Overview of studies

Basili [78] connects the topics of maintenance and reuse and, in a synthesis of previous research
efforts on reuse, derives a theoretical reuse framework. He proposes three reuse-oriented main-
tenance models and lists three enabling factors: first, an improvement paradigm that models
organizational learning for process and product improvement, composed of planning, analysis,
learning and feedback tasks. Second, introducing or improving reuse requires a reuse-oriented en-
vironment that supports the necessary alterations to anchor the reuse models in the development
processes. Last, automated support for artefact management and reuse measurement.

Joos [84] reports on the experience of introducing a systematic reuse process at Motorola in
the 1990s that succeeded due to management support, education of engineers, suitable incentives,
and tool support. The paper provides a rich account on the difficulties encountered as well as the
successful solutions for each of them.

Frakes and Fox [1] identify four dimensions (managerial, economic, legal, technical) that need
to be addressed when implementing systematic reuse. They find that a holistic understanding,
as well as an adequate strategy to address the respective dimensions, contribute to reuse success.

Rine [82] statistically analysed the results of a qualitative survey on software reuse to deter-
mine predictors for reuse success as well as to establish the relationships between reuse capability,
productivity, quality and these predictors. The data is drawn from a questionnaire and interview
survey with companies from different domains more than half of the studied companies work in
real-time or embedded software production. Subsequently, he uses the results for a theoretical
validation. His main result is that

"[S]ome of the success factors [..] have a predictive relationship to software reuse
capability. Software reuse capability also had a predictive relationship to productivity
and quality."[82] — D. Rine, 1997

Rine proposes the following as the lead indicators of software reuse capability:

"[A] product-line approach, architecture which standardizes interfaces and data for-
mats, common software architecture across the product-line, design for manufacturing
approach, domain engineering, management which understands reuse issues, software

2.4. Reuse in practice 25

reuse advocate(s) in senior management, state-of-the-art tools and methods, prece-
dence of reusing high level software artifacts such as requirements and design versus
just code reuse, and trace end-user requirements to the components (systems, subsys-
tems, and/or software modules) which support them. [..] The three most significant
non-predictors of software reuse capability are: taking the library, salvage, or junk
yard approach to software reuse, the effectiveness and efficiency of the software li-
brary or repository, and certification of components to some quality level(s)."[82] —
D. Rine, 1997

Whilst many of the predictors are widely recognized as factors enabling different styles of
successful reuse, this, as well as subsequent work leading to a reuse reference model [85], do not
take into account the highly differentiated goals and contexts of companies. It therefore claims
that by complying with the reuse reference model practitioners can obtain high reuse rates
and potentially find orientation for improvement. Nevertheless, the initial adoption hindrances
remain untouched and so do the assumptions about feasibility and risks of introducing a heavy-
weight reuse approach. In addition, library based reuse is discarded too easily: first, it is assumed
to happen without any domain analysis and therefore as likely missing the point of providing
useful functionality. This, however, is a factor of similar effect for SPL development so it can not
be used to discard the approach. Furthermore, the survey data stems from a time in which neither
search nor retrieval infrastructure was very developed, causing repositories to be infeasible due
to technical limitations. Therefore, these conclusions should be re-assessed with newer studies.

Fichman and Kemerer [18] assess 15 projects within a software company for the reasons that
caused reuse adoption processes to shrivel. They identify incompatible incentive structures that
valued the success of single projects over contributions to company-wide reuse. Consequentially,
the authors propose to establish incentive-compatible programs for systematic reuse including
effective cost management for the case of reuse failure. In addition, they propose the role of a
reuse curator.

Morisio et al. [13] report on success factors for adopting or running company-wide reuse
programs. They collected quantitative evidence from 24 reuse projects in European companies
varying in size, business domain and culture. The authors conclude that success of reuse projects
depend on management commitment, awareness of human factors and modification of non-reuse
processes according to the specific context of the company.

Slyngstad et al. [79] conduct a qualitative empirical survey with 16 developers of the IT
department of a Norwegian oil company. The authors conclude that the main reuse facilitator was
the existence of component information repositories. On the contrary, education and experience
did not have an impact on the study subject’s inclination to reuse.

Lucredio et al. [80] study reuse in the Brazilian software industry by means of a survey with
57 participants from 56 companies that aims to relate characteristics of software development
organizations with successful reuse adoption. In their attempt to determine which development
and context factors have influence on software reuse success, they align with Rine [82]. The
authors assess the impact of twenty-one, divided into four perspectives: organizational factors,
business factors, technological factors and processes factors. Assessment is done by relating the

26 Chapter 2. Software Reuse: Terms and fundamentals

presence or absence of factors to benefits or drawbacks experienced by practitioners introducing
or effecting reuse. Of the respondents, 53% described their reuse as successful, i.e. leading
to success in their software projects. The authors report their results for three categories of
companies: for small organizations, experience of developers, application domain, tool support,
quality assurance, and a systematic reuse process impacted reuse success. In medium size and
large organizations, the application domain was less significant. Reuse was most likely to be
successful if it was institutionalized by means of a dedicated team, developing product families by
means of a systematic reuse process, reusing all kinds of available artefacts. This was supported
by tools for development and configuration management. In addition, reuse in large organizations
benefited from adopting a quality model for artefacts. All organization types experienced better
success with reuse when being able to draw on existing artefacts (as opposed to building them
explicitly for reuse).

In a quantitative survey study on software reuse in Open Source development, Sojer and
Henkel [52] conclude that personal networks as well as exposure to a variety of projects lead to
developers reusing more code as these factors helped them to discover and access the respec-
tive reusables. In addition, the personal conviction of the benefits provided by reuse (e.g. the
possibility to quickly build a working prototype) incited developers to rely on reuse.

Varnell et al. [81] present a study comparing reuse practices in embedded and non-embedded
software development in the aerospace domain. They report that in embedded systems develop-
ment, component-based approaches prevail, followed by product lines, whilst in non-embedded
contexts ad-hoc reuse is most frequent, with component-based approaches and product lines be-
ing equally important. For either type of development, participants reported significant savings
in labour hours due to reuse and the benefit of risk reduction. However, a decrease in the number
of defects could not be confirmed.

2.4.2.2 Technical success factors and enablers

Technical infrastructure: The presence of an adequate technical infrastructure is reported
as a key reuse enabler [79, 80] or even prerequisite [9] to conduct software reuse. Infrastructure
ranges from repositories for code and the respective documentation, to support for development,
quality assurance, configuration management, and deployment. Particularly, the ease of access
to reusable entities provided by tool support facilitates reuse [52, 60].

2.4.2.3 Organizational and social success factors and enablers

Incentives: In an Open Source context, the personal conviction of the benefits provided by
reuse incited developers to rely on reuse [52].

Congruence: Empirical evidence suggests that the congruence of reuse goals and the selected
reuse approach with organizational context factors can significantly improve the success of reuse
adoption and practice [83].

Knowledge: personal networks as well as exposure to a variety of projects reportedly enable
Open Source developers to reuse more code as these factors helped them to discover and access the

2.4. Reuse in practice 27

respective reusables [52]. In a closed source environment, experience of developers is reported
as success factor in some studies (e.g. [80]), whilst it did not impact reuse success in others
(e.g. [79]).

Management: Various sources suggest that sustained management commitment is a key
enabler for any advanced reuse program [13, 80, 23]. In particular, this management commitment
is needed to drive the modification of non-reuse processes as well as to create the awareness of
human factors, e.g. changes in responsibility [23] and adaptation to new processes [13], that
impact organizational change (and address them accordingly).

Process: In several studies, the relevance of a systematic reuse process is reported as success
factor [80, 82]. Tailoring of non-reuse processes is reported as enabler [13].

Organizations structure: For medium size and large companies, institutionalized reuse by
means of a dedicated workforce is reported as success factor [80, 8].

Artefacts: Reuse of artefacts other than code, as well as reuse of already existing artefacts are
reported as enabling successful reuse [80, 82].

Quality assurance: High quality of reusable artefacts is a key reuse success factor as it
establishes trust with the users [23]. To achieve this, adequate methods should be adopted (e.g.
quality models [80] or code reviews [9]).

2.4.3 Challenges and inhibitors

“Although the benefits can be substantial, software reuse has never reached its full
potential. Organizations are not aware of the different levels of reuse or do not know
how to address reuse issues.”[53] — W. Spoelstra, 2011

After decades of theoretical and applied research on reuse, researchers concede that reuse
has not always met the given expectations [52, 53]. Besides technical challenges that need to
be addressed, a substantial number of organizational and human factors have been identified as
potential inhibitor to a successful application of advanced reuse practices [13]. Technical factors
include creation, retrieval, modification, and maintenance of reusables. However, these topics
are strongly linked to human factors, such as cognitive effort [2], program understanding, and
motivation, as well as organizational factors, such as business strategy, management commitment,
and company culture [86].

Frakes and Fox [1] summarize many of the above mentioned topics in a reuse failure mode
model, derived from a questionnaire on (code) reuse answered by 113 people from 29 organizations
working in different domains. The authors mention four dimensions (managerial, economic, legal,
technical) that need to be addressed when implementing systematic reuse.

The authors derive seven failure modes (no attempt to reuse, part does not exist, part not
available, part not found, part not understood, part not valid, part not integrable). According to
the authors, the most frequent failure modes are “no attempt”, “not integrable”, “not understood”,
while “not found” or “not available” are the least important. In Figure 2.4, we map the failure
modes onto the taxonomical definition on reuse proposed by Basili and Rombach [44].

28 Chapter 2. Software Reuse: Terms and fundamentals

Reuse

Retrieve Modify

Identify Evaluate Select

Characterize Match

Artifact does not exist

Artifact not found

Artifact not understood Artifact not valid

Artifact not available

Artifact can not be integrated

No attempt to reuse

Frakes and Fox, R
euse failure m

odes, 1996

Figure 2.4: Mapping of Frakes and Fox reuse failure modes on the impacted activities of the
reuse process.

The figure highlights that, in fact, the failure modes cover all activities in the reuse process,
i.e., every activity of this process can be hampered by the occurrence of different failure modes.
The modes relate to human (e.g. no attempt to reuse) and technical factors (e.g. artifact can not
be integrated), which often can be due to organizational factors, such as contradictory incentives.

In the following, we detail on the challenges most frequently reported in literature:

2.4.3.1 Technical challenges and inhibitors

Creation and design of reusables: The creation of reusables can be challenging due to
several factors. First, determining what reusables should be built by design is non-trivial. It
requires a detailed understanding of the envisioned application context to reduce friction when
integrating reusables [87]4. Second, providers must strike a critical balance: on the one hand, a
reusable should encapsulate a specific functionality in order to be coherent, understandable, and
clearly fit a defined task. On the other hand, it should be as generic as possible to allow being
reused in numerous different contexts with little adaptation effort [46].

Technical incompatibility is a strong inhibitor to reuse, denoting problems of interoperability
due to incompatible platforms, paradigms, and technologies [49, 88, 59]. Technical incompatibil-
ities can decrease or annihilate the possibilities of extracting or combining existing parts [89].

4According to Greenfield et al. [87], this lack of knowledge about the final context is an enormous challenge
when providing reusables that are consumed in an ad-hoc way.

2.4. Reuse in practice 29

Storage and retrieval of reusables: Companies aiming for internal reuse repositories are still
facing the challenge of populating and classifying them, which requires a considerable upfront
investment and often proves infeasible [12, 25].

Also in the context of Open Source software, challenges in retrieval of reusable entities as
one core inhibitor to successful and widespread adoption of reuse in practice [46, 88, 68, 59].
Whilst originally the challenge of retrieval lay in locating and accessing catalogues of reusable
entities [46], it is nowadays the number of potential reusable entities that challenges developers
aiming to reuse [90, 91].

Technical Infrastructure: On a technical level, the development infrastructure used by a
company can significantly impact the way reuse can be approached [9, 25]: the absence of a
supporting infrastructure de-facto renders structured reuse impossible, as it hinders developers
to access and retrieve reusables in a coordinated and controlled way [60]. Furthermore, advanced
infrastructures can mitigate the risk of errors introduced into reusables [27].

2.4.3.2 Organizational challenges and inhibitors

Many of the technical challenges mentioned above are challenging on the conceptual level. How-
ever, they tend to be exacerbated due to the organizational context that embeds them. The
following organizational hindrances are particularly prominent in literature:

Organizations structure: the quality of inter-unit relationships has a significant impact on
a successful outcome of reuse adoption. Competition, overlapping or unclear responsibilities,
priority conflicts, and lack of coordination of reuse activities diminish the likelihood of success
of a reuse program [29].

Inertia: product-centric organizations tend to promote a focused view on development. Man-
agers and developers are usually assessed based on the success of their isolated projects, incen-
tivising local optimization that counteract reuse on a company-wide scale [87, 18, 29].

Knowledge: Adoption of advanced reuse is a global topic that requires a clear positioning of
the organization [70] and research into current methods and techniques for reuse (which tends
to be neglected [29]).

Measurement: Introducing central reuse requires significant resources and collaboration across
different organizational units. Without measurement and adequate compensation, this might
lead to unwillingness to cooperate [29].

Management: Introducing the required governance strategies for creation, maintenance, and
decommission of reusable items can be challenging in the face of heterogeneous preferences and
process weaknesses [87]. Adjusting the context, thus, causes additional overhead that tends to
be underestimated in the initial planning [29, 13], endangering reuse success.

Economic: Investing into the reusability of software or supporting infrastructure imposes
non-negligible costs onto projects and requires firm and long-term support from management to
resolve restrictive resource constraints [29, 84, 82].

Disincentives: One of the strongest disincentives is lack of quality of the entities provided for
reuse [29]. This inhibitor needs to be overcome by means of transparent quality assurance and

30 Chapter 2. Software Reuse: Terms and fundamentals

clear governance lining out assumptions and guarantees that hold for entities designed for reuse.
In addition, the criteria that are applied to assess developers and managers have an impact on
their motivation to engage into reuse [18, 9].

In addition, the cognitive distance [2], i.e., the challenge to understand in detail the artefacts
others produced, that needs to be overcome increases with the type of artefact that is reused.
The cognitive load of artefact understanding is further impacted by the quality of the reusable.

Legal constraints and risks: Incompatibilities of licenses as well as libaility issues have
reportedly inhibited incorporating potential reusables of third parties [92, 27, 25]. In addition,
the potential risks presented by unstable providers can exceed the perceived usefulness of the
artefacts offered [34].

2.4.3.3 Social challenges and inhibitors

The, arguably, most famous challenge to reuse on a social level is the “not invented here” syn-
drome [87]. It encompasses a number of aspects that lead to resistance against reusing entities
that have been provided by other parties. These aspects can be related to trust and transparency,
e.g. doubts about the precise functionality of a reusable, the process under which it was pro-
duced and its quality (and the quality of the respective documentation) [79], the reluctance to
take on dependencies on other parties, as well as to the (sometimes significant) cognitive effort of
understanding reusables provided by others5 or the need for compromise in terms of functionality.

In addition, personal preferences for specific solutions paired with “engineering pride”, the
desire to find beautiful or better solutions to challenging technical problems, can motivate indi-
viduals to avoid reuse. This tendency, is present in industrial software development, as well as
in Open Source communities [52], and can be strongly exacerbated in contexts in which the lack
of supporting infrastructure increases the cost of finding and accessing reusables.

Some reuse approaches (component based) promote a certain presence of guided redundancy
to allow for exchangeability of components depending on specific system requirements, so the
creation of new solutions could be beneficial in this case. However, the resulting reusables need
to clearly communicate to which requirements they correspond; a factor that often-times is
neglected and, thus, causes assumptions about the given application context to remain implicit.

Summary Challenges and Inhibitors As the studies presented above show, conducting reuse
is by no means trivial. Challenges are present on technical as well as organizational levels. To
address the issues relevant for a particular reuse application, it is advisable to thoroughly analyse
and understand the given goals and their context.

2.4.4 Reuse approaches in practice

The following paragraphs briefly introduce reuse approaches that have reportedly been adopted
in practice.

5Understanding a reusable in this case encompasses: understanding the exact functionality, the assumptions
about the application context, the conformance to non-functional requirements, etc.

2.4. Reuse in practice 31

Clone-and-Own is the most frequent realization of pragmatic reuse and denotes a reuse ap-
proach that relies on copying and, potentially, modifying of (proven) solutions for the purpose
of effective development. It is also known as: code scavenging [2], ad hoc reuse [55], opportunis-
tic reuse [57], and copy-and-paste (or cut-and-paste or copy-and-modify) reuse [58], pragmatic
reuse [59]. As it has virtually no preconditions on the organizational context, it is applied widely
in industry [60]. Depending on the given industrial context, this practice can serve as a disci-
plined tool [93, 61, 60]. On other occasions, clone-and-own is the only feasible reuse mechanism
at disposal due to, e.g., organizational restrictions or absence of supporting technology. However,
they incur the risk of inducing errors as well as significantly increasing maintenance efforts [63].
On the conceptual level, the task of finding working code examples among the vast amount of
available source code can be a time-consuming challenge [94].

Inner Source As empirical studies have shown, Open Source projects heavily build on code
reuse on the basis of libraries, reaching reuse rates between 30 and 90% [52, 22]. Open Source
development relies on transparency, self-selection of tasks, asynchronous communication, and
quality assurance. Inner Source6 attempts to transfer this reuse-inducing7 development style
from the Open Source community to industry [23]8. The key benefits of Inner Source lie in
the full access of developers to the seed project’s source code and the shared responsibility for
reusable assets. This transparency and availability serve as a key enabler for reuse. Literature
reports instances of successful Inner Source e.g. at Hewlett-Packard, Alcatel-Lucent, Philips
Healthcare, IBM, and SAP. Pointers to the respective material and a summary of the studies are
provided in [9].

Component-based reuse aims to build software systems out of interchangeable compo-
nents [98], potentially provided by third-party vendors [99], enabled by separation of imple-
mentation and interfaces, with a possibility of extension via well-defined extension points [99].

Adoptions of component-based reuse have been reported [100], particularly in the domains of
embedded software development [101]; however, most of the proposed methods and techniques
designed to support the approach are currently lacking validation of benefits and accounts of
application in practice [56, 102, 103].

Service Oriented Architectures (SOA) can be seen as a related to component-based reuse in
the sense that services and components aim to encapsulate clearly defined functionality, usable
in a black-box fashion via explicit interfaces, enabling composition of systems and the exchange
of components or services [104]. However, services are distinct from components in their focus
on business-relevant functionality delivered at a higher granularity, whilst components tend to
provide more technically relevant functionality [105, 106].

6Research on the topic dates back only to 2002 and has not yet been very extensive. However, in recent years,
the topic has attracted more attention from the research community. [9]

7One of the key goals of Inner Source is reuse. However, it comprises more than just mechanisms for reuse. In
addition, its principles and development practices, as well as the advanced tool support, clearly enable code-based
reuse.

8Literature knows the phenomenon also as Progressive Open Source and Controlled Source [95], Corporate
Source [96], Corporate Open Source [97], and Internal Open Source [96].

32 Chapter 2. Software Reuse: Terms and fundamentals

Software Product Lines (SPLs) aim to "reduce the overall engineering effort required to
produce a collection of similar systems by capitalizing on the commonality among the systems
and by formally managing the variation among the systems" [107]. Implemented successfully,
SPLs reportedly lead to very high reuse rates and enable rapid creation and delivery of new
product variants [8]. However, adopting a product line approach demands significant maturity
of an organization’s process and development capabilities. Commercially successful product line
implementations are showcased in the Product Line Hall of Fame9.

2.5 Position of this thesis

As lined out above, literature offers a wide variety of definitions of and around software reuse.
In this thesis, we position ourselves as follows:

For the definition of software reuse, we follow Frakes and Fox and define it as

“the use of existing engineering knowledge and artefacts to build new software sys-
tems." [1] — W. Frakes and C. Fox, 1996

However, with respect to reusable entities, we only consider work products that originate in
the software development cycle. This, particularly, means that non-persisted (e.g., documented
or formalized) knowledge and experience are in general not considered reusables.

We refer to the roles involved in the creation and integration of reusables as follows: individ-
uals or entities providing reusables are called producers, whilst individuals or entities relying
on reusables for construction of their systems are called consumers.

This work does not promote any particular reuse approach; on the contrary, it is committed
to study the circumstances in which a specific approach can be applied with benefit in practice.
As a consequence, this work, in a first step, attempts to provide a deeper understanding on
software reuse through its empirical studies of software reuse in practice. In a second step, it
aims to support practitioners in understanding the options different reuse approaches provide for
their context, and in choosing accordingly.

9http://www.splc.net/fame.html

http://www.splc.net/fame.html

Part II

Evaluating the state of practice of
reuse

33

3 | Case studies on reuse
in industrial practice

Anecdotal evidence as well as empirical studies indicate that, despite years of research on many
aspects of the phenomenon, adopting and practising reuse remains challenging (see Chapter 2).
Unfortunately, little is known about which proposed practices and approaches have been success-
fully transferred to practice, adopted and proven useful, how reuse is in fact effected in current
practice, and what are currently the main challenges.
This chapter presents the overall design of two empirical studies that have been conducted to
capture the experience of practitioners in industrial software development and maintenance with
respect to reuse. Parts of this chapter were published in [25, 27, 41].

Contents
3.1 Empirical studies on software reuse in practice 36

3.2 Methodology . 36

3.3 Case description G . 37

3.4 Case description U . 38

3.5 Original case study designs . 39

3.6 Data collection & analysis procedures 40

3.7 Company reuse placement . 40

35

36 Chapter 3. Case studies on reuse in industrial practice

3.1 Empirical studies on software reuse in practice

Reuse is essential for industrial software development and therefore widely applied. However,
anecdotal evidence as well as empirical studies, e.g. [60, 13], indicate that, despite years of re-
search on many aspects of the phenomenon (see Chapter 2), reuse is not yet a solved problem.
Unfortunately, little is known about which proposed practices and approaches have been trans-
ferred to practice, adopted (and possibly proven useful), how reuse is in fact effected in practice,
and what are currently the main challenges. This, however, is a necessary precondition for evalu-
ating the practical success and the impact of research in the field of reuse, as well as for choosing
and adapting the focus of future research to practitioners’ needs.

To mitigate the mentioned issue, we conducted two empirical case studies (C1 and C2, pre-
sented in Chapters 4 and 5) on reuse in practice that were designed to complement each other
in terms of the characteristics of the participating companies. Furthermore, we integrate the
results of the two cases in a study (CI) presented in Chapter 6.

Common to the three Chapters is the goal of developing a more comprehensive picture of
the circumstances under and forms in which reuse is conducted and how it is managed. We
attempt, on the one hand, to establish the goals and motivations that drive the decisions for
or against specific reuse strategies, processes, and policies. On the other hand, we compare
the reuse decisions to their technical realization in terms of reusables and reuse approaches and
observe the effects. Additionally, we capture the organizational factors that could influence the
way reuse is effected in an organization. We capture the aspects of our goal in two conceptual
blocks: understanding the way reuse is effected, and identifying challenges and opportunities of
reuse that occur in practice.

Outline This chapter first presents the studies and their context, and then characterizes the
participating companies. Parts of this chapter were published in [27, 25, 41].

3.2 Methodology

This section introduces the two cases that we subject to comparison in the present study. The two
companies under study are named U and G. We detail their context and outline the respective
case study designs previously conducted and their main results. Table 3.1 summarises the context
details of both companies1.

Both studies featured an extensive on-line questionnaire containing mainly closed-questions
and a number of semi-structured 1-2 hours interviews always conducted by two researchers (one
conducting the interview, one scribe). The complete original questionnaires for both cases are
available in [41]. The interview guide is included for reference in the Appendix, Table 12.1.

We conducted each study within a period of 3-4 months. Figure 3.1 shows the relationship
between the studies: The study at G (conducted in 2013) preceded the study at U (conducted

1Please note that factors in the categories development context and reuse characteristics reflect tendencies and
the state of the companies at the moment of the studies. Both companies continuously strive to improve their
craft, so this table does not necessarily reflect their situation at the time of reading.

3.3. Case description G 37

in 2015) and influenced its research design.2 The integration of the two studies was performed
on completion of case U.

Preparation

Interview
s

Q
uestionnaire

Analysis

Preparation

Interview
s

Q
uestionnaire

Analysis

Analysis

Integration

Case G Case U

Figure 3.1: Study setup: case G, case U, and case integration.

3.3 Case description G

Company G is a multinational corporation, specialised on Internet-related services and products.
The company structure supports flat hierarchies and multi-project assignments for engineers.
Development follows a homogeneous process with advanced tool support centred around collective
code ownership and agile practices [108]. Developers at G work on multiple projects at the
same time, they are organised in small teams, and develop software with several programming
languages (mainly C++, Java, Python, and JavaScript). Reuse is mandated for a small set
of utility functionalities; however, reusing existing code in an adequate way is considered best
practice and fostered by the development style and organizational incentives. The reuse goals for
the company are faster development of new features, lower maintenance costs and consistency.

2Experience from the first study at G lead us to first conduct the interviews in case U in order to focus the
questionnaire to the most relevant parts for U.

38 Chapter 3. Case studies on reuse in industrial practice

Study demographics We interviewed 10 engineers and collected 39 responses to a 45-minute
on-line questionnaire. The participants originated from more than 25 different teams distributed
worldwide and held varying organisational roles (developers, maintainers, managers, as well as
any combination of the three roles). Their experience ranged from <1 to 20+ years in their
current role (time at the company: <1 to 10+ years). By means of qualitative data analy-
sis, we extracted the context of reuse, involving roles, responsibilities, and reuse practices, i.e.
reused artefacts and reuse realizations. We collected current issues, success factors, and ideas for
improvement.

3.4 Case description U

U is a national software producing company providing technical information services and business
information products to their clients. The company was founded in the 1960s, emerged as a
service provider and gradually moved to providing stand-alone software products and services.
Currently, U counts around 6000 employees. The company structure is hierarchical, structured
along market segments. The products have historically grown over decades and contain a broad
mix of technologies. Software development is very heterogeneous across departments and teams,
ranging from waterfall processes to tailored Scrum approaches. Also the level of development
tool support, testing practices, and code ownership is highly diverse. As a result, products are
integrated on a binary level. Developers usually work on specialized topics of a single product
and tend to be responsible for the respective subsystems (Subsystem code ownership, see [108]).
Reuse is mandated for an internal utility platform providing domain-independent functionality to
products. The company’s reuse goals are: consistent extension of the .NET framework, consistent
integration of existing products, lower maintenance costs.

Study demographics

We study the current practice of reuse at U by means of an exploratory study consisting of
an interview phase with 20 participants, followed by questionnaire phase with 69 respondents.
We report on the state of practice of reuse, comprising success factors, challenges and ideas for
improvement.

We drew interview participants from each of Us product and support development depart-
ments and all levels of the hierarchy. The participants worked at U between 15 and more than
30 years. Even though the company is mainly based in one area, the teams are distributed. For
the data collection and analysis, we proceeded as for case G.

Questionnaire participants were invited by a newsletter and a post on a company news portal.
Respondents came from 10 of the 13 departments. 44% worked at U for at most 10 years, 20%
for 11-20 years, and 36% for more than 20 years. 15% reported their role as manager. The
respondents job focus was mainly on development (78%), and architecture (13%). Respondents
at U usually work within one product area and are organised in product departments over several
hierarchical units. They are developing software most frequently in C# and SQL. In addition,
they use Java and C++.

3.5. Original case study designs 39

3.5 Original case study designs

In preparation of the first case study, we conducted a literature review to derive the original
concepts for interview guides and questionnaire. To meet our research objective, we opted for a
combination of interviews and questionnaire as they compensate each other’s weaknesses: inter-
views provided us with a highly detailed account on reuse practices, highlighting particularities
of the company context, as well as raising new ideas and concerns. However, they were expensive
and time-intensive to conduct for both parties. Therefore, we chose to complement the inter-
views with an on-line questionnaire that was designed to capture responses from a wide range of
participants.

Before rolling out the study in either of the cases, we piloted and revised the interview
guide and questionnaires to remove ambiguities, increase understandability, and, in case of the
questionnaires, to ensure technical performance.

Semi-structured interviews We conducted semi-structured interviews with developers, main-
tainers, and managers at G and U. In case G, our interview guideline was based on a pre-study
with a scope similar to the questionnaire. In U, we added company specific aspects (e.g., related
to the development and release practices) to the interview guideline and iteratively refined it
during the course of the study to accommodate new aspects impacting U’s reuse practices (e.g.,
the cultural heterogeneity of the different development units).

In both cases the aim of the interviews was to obtain detailed insights into reuse application
in different development teams and projects, as well as its implications regarding non-technical
aspects such as company culture and interpersonal skills. We, therefore, selected participants
from different departments of both companies. Each interview lasted between one and 2 hours
and was conducted by two researchers, one leading the conversation with the participant while
the other created the transcript and asked clarification questions.

Online questionnaire To gain a comprehensive overview of reuse at the companies, we devel-
oped an on-line questionnaire for each case3.

For each reuse aspect, several multiple choice questions were asked. Furthermore, we invited
the participants to contribute additional information in the form of free text. We asked the
participants to provide their main job focus, their level of experience in their current role, the
time spent working at the company and the type of project they were working on. Taking part
in the questionnaire took approximately 30–40 minutes. Participation was optional.

3When conducting the first study, we noticed technical limitations of the platform and room for improvement
in the resolution of our scales. After conducting the first study, we improved the questionnaire for the next by
migrating to a professional platform and adjusting the resolution of the scales. In addition, we had to take into
account the different company contexts and philosophies. Lastly, we incorporated results, such as success factors
or challenges, from the first study.

40 Chapter 3. Case studies on reuse in industrial practice

3.6 Data collection & analysis procedures

After performing the interviews, we processed the transcripts by applying techniques from
grounded theory, which support inductive content analysis. To extract the important infor-
mation, we coded the transcripts4 twice: first, we went through a phase of initial coding [109] to
separate the transcripts into statements, assign them with codes, and triage them to focus on the
ones relevant to reuse in practice. Based on the relevant codes, we build up emergent categories.
In another, focused, round of coding [109], we pruned the categories to the most significant ones
and created relationships between them. The coding process resulted in clusters of categories
connected with each other, containing the relevant statements. In the case of U, we set out with
a collection of potential codes obtained from the study at G. However, we adapted and pruned
the collection to accommodate new information related to the new organizational context5.

3.7 Company reuse placement

Given their reuse context, the companies clearly differ in their reuse capabilities. Based on the
Company Placement provided by the Reuse Adoption Support Model (RASM) in Chapter 7,
company G scores in the category advanced reuse capabilities, while company U scores in the
category basic reuse capabilities6. The lessons that can be drawn from the presented cases are,
thus, of different nature.

4Coding means “categorising segments of data with a short name that simultaneously summarises and accounts
for each piece of data”. [109]

5For instance, the roles present at the companies differed noticeably. Also the notions of teams, products and
projects required a mapping between the cases.

6The available categories are basic, intermediate, advanced.

3.7. Company reuse placement 41

Table 3.1: Characterization of the participating companies

Company U Company G [27]
Company settings
Established 1960s 1990s
Overall staff* ˜6000 ˜40000
Software staff* ˜1000 >2000
Software production* client product portfolio online product portfolio
Application domain* business information systems online services
Type of software* business business
Organisation of development units hierarchical, strong separation in de-

partments
flat hierarchies, peer-driven, inter-
connected

Scope national international
Development context
External requirements for release cy-
cles

yes no

Development style heterogeneous homogeneous
Code ownership strong collective
Code reviews rarely mandated
Development infrastructure local central
Source code repositories several local ones one central
Product assembly binary integration continuous source integration
Developer focus dedicated aspects of single products multiple aspects of multiple projects
Staff experience of sample* high medium
Reuse characteristics
Reuse approach* ad-hoc (loose*) in transition to

structured (tight*)
tool-supported ad-hoc (loose*)

Current reuse scope department company
Global requirements engineering for
reuse

limited, grass-root limited, tool-based

Global incentives for reuse no yes
Co-ordination of reuse within department on-demand
Co-ordination overhead for reuse significant low
Reuse consumer** within department all
Reuse producer** within department all
Pool of available artefacts for reuse limited significant
Dedicated personnel for reuse yes for basic, domain independent

functionality
yes for basic, domain independent
functionality

Reuse tool support low advanced
Accessibility of reusable artefacts mixed good
Formal reuse assessment no no
Motivation for reuse high high
Satisfaction with current reuse ben-
efits

mixed positive

Study data
Total number participants 89 49
Participant average time in com-
pany

11-20 years 1-3 years

* adapted from [13], ** adapted from [3].

Table 3.2: The empirical studies in numbers

Study code # companies I participants I duration Q invited Q answers Q duration
C1 1 10 1 600 39 40 minutes
C2 1 20 1-2 275 69 30 minutes

4 | An exploratory case study of
software reuse at Google

This chapter presents an exploratory case study conducted at Google. It was motivated by the
question of how one relatively young, yet large and renowned, software company tackles the topic
of software reuse. The case study relies on interviews and an online questionnaire to capture
the way reuse is effected on a daily basis at Google. Our results indicate that in the presence of
a homogeneous and quality-conscious development culture, supported by advanced tool support,
software reuse in an Inner Source style can be practiced in a large scale. Furthermore, this reuse
approach aligns well with the company context and the strategic needs. Therefore, is considered
as beneficial by the participants. Parts of this chapter are published in [27].

Contents
4.1 Study goal and context . 44

4.2 Methodology . 46

4.3 Study results . 47

4.4 Discussion . 57

4.5 Threats to validity . 58

4.6 Considerations for practitioners . 59

4.7 Summary and conclusions . 60

43

44 Chapter 4. An exploratory case study of software reuse at Google

This section presents an exploratory study of software reuse at Google. It was conducted
in the time from September 2012 to September 2013. The goal of the study was to shed light
on the current practice of reuse at Google. We study the current practice of reuse at Google
by means of an online questionnaire with 39 participants and interviews with 10 participants.
We report on the state of practice of reuse, comprising success factors, challenges and ideas for
improvement. Based on our results, we provide a list of considerations for implementing reuse,
prerequisites and open issues.

We found that reuse was code-centered and effected mostly on demand. Depending on the
provenance of the reusable entities, reuse was addressed as follows: Reuse of third-party code was
subject to strict regulations and processes, whilst for reuse of internal code opportunity-driven
behaviour was predominant1. Key enabler for success with this implementation of reuse were
the high quality of the source code and the supporting infrastructure.

While this case study shows that state-of-the-art development infrastructure can significantly
mitigate the disadvantages of opportunistic code reuse, it also highlights remaining challenges:
in the face of a daunting amount of source code, finding and identifying suitable candidates
for reuse remains difficult and can incite rewriting of functionality from scratch. Furthermore,
the web of dependencies created by opportunistic reuse was perceived as a noticeable downside.
Overall, the disadvantages experienced due to opportunistic reuse were deemed acceptable by
participants, given the concrete benefits of faster development pace and decreased maintenance
effort they experienced.

For the following aspects of reuse, participants desired improvements: detecting and prevent-
ing redundant implementations of functionality, advanced chance propagation during mainte-
nance of reusable entities, as well as a framework to assess the adequacy of reuse instances.

Outline The study is structured as followed: Section 4.1 describes our study and Section 4.3
summarizes our results. In Sections 4.4 we discuss our findings and detail on threats to validity
in Section 4.5. Section 4.6 lists our considerations for practitioners before Section 4.7 concludes
the chapter.

4.1 Study goal and context

This section first describes the context and the goal of our study. Then it details on the method-
ology and data collection procedures.

4.1.1 Study goal and research questions

Following the GQM goal template [110], we formalize the goal of this study as follows:

The goal of this study is to analyze reuse practices for the purpose of characterization
and understanding with respect to their effectiveness from the viewpoint of software
development professionals in the context of Google.

1An exception to this are so-called core libraries that cover essential functionality for most products and are
globally mandated for reuse.

4.1. Study goal and context 45

From this overall goal, we derive the following subgoals: understanding current reuse practices
and identifying challenges and opportunities occurring in practice. We address our subgoals by
the following research questions.

4.1.1.1 Understanding current reuse practices

This category gives insights in the current state of reuse practices at Google.
RQ3.1: Which roles are involved in reuse practices? We investigate which roles are

involved in reuse, as well as their relationships, responsibilities, and motivation for performing
reuse.

RQ3.2: What reuse practices are applied and how often are they used? We assess
which (and to what extent) reuse practices and reuse activities are effected and how they are
supported by tools and infrastructure. This includes as well the entities that are reused, namely
knowledge and artefacts.

RQ3.3: Which measures are taken to assess the adequacy of reuse? We analyze
which measures exist to assess adequacy of reuse as well as the strategies for reuse improvement
and how they are applied.

4.1.1.2 Identifying challenges and opportunities occurring in practice

This category identifies problems, challenges, and opportunities that are relevant in practice.
The results of these research questions indicate practical solutions and open issues.

RQ3.4: What are problems, challenges, success factors? We investigate which prob-
lems and challenges occur in practice and elaborate the benefits of and the success factors for
reuse.

RQ3.5: What do software professionals consider as potential improvement? We
collect ideas for improvements of reuse practices from the viewpoint of the software professionals.
These might not (yet) be realizable or feasible but provide a ranking of the research directions
in terms of relevance.

4.1.2 Study context and subjects

Our participants at Google are usually working on multiple projects, are organized in small teams,
and are developing software with several programming languages, most frequently C++, Java,
Python, and JavaScript. They were drawn from more than 25 different teams, had an experience
between less than one year and more than 20 years in their current role. The participants worked
at Google between less than one year and more than 10 years, with the large majority between
one and 3 years.

39 participants answered the questionnaire. Their self-assesed experience level ranged from
3 to 8, with a median of 4, on a scale from 1 to 10, with most experience denoted with 10.
Ten participants took part in the interviews. Their experience level ranged from 4 to 6, with a
median of 5, on the same scale.

For the organizational roles of the participants see Tables 4.1 and 4.2.

46 Chapter 4. An exploratory case study of software reuse at Google

Table 4.1: Roles of participants - questionnaire

Technical Lead Developer Maintenance Manager

2 21 2 1
6

1
6

Table 4.2: Roles of participants - interview

Technical Lead Developer Maintenance Manager

2 1
7

4.2 Methodology

Our sources of research evidence are the two complementary parts of survey research: interviews
and questionnaires. In an informal pre-study, we collected a range of aspects, such as reuse
management, legal aspects, sources of reusable artefacts, reuse strategies, reuse adequacy or extent
of reuse, from the literature. These aspects serve as the basis for the questionnaire and the
interview guideline.

Online questionnaire To gain a comprehensive overview of reuse at Google, we developed an
online questionnaire (see Appendix 12.1). For each reuse aspect, several multiple choice questions
were asked. Furthermore, we invited the participants to contribute further information, which
was not covered by the questions. In the end of the questionnaire, we asked the participants to
provide information on their level of experience in their current role, the time spent working at
Google or the type of project they were working on. In total, the questionnaire contained 43
questions. Taking part in the questionnaire took approximately 20–30 minutes. Participation
was optional.

We randomly selected 600 candidates for participation, based on an internal directory of all
software developers at Google and sent the invitations via email. Our sample included developers
from Google offices around the world, covering all types of projects and technologies. In the end,
39 developers took part in the questionnaire.

The responses of the online survey were analyzed with descriptive statistics and visualizations.
As a result, we could establish a weight for the results obtained in the interviews.

Semi-structured interviews Complementary to the questionnaire, we conducted semi-
structured interviews with software developers. We developed an interview guideline based on
our pre-study to support the interviewer in structuring the conversation. The scope of the in-
terviews was similar to the questionnaire. However, the aim of the interviews was to obtain
detailed insights into reuse application in different development teams and projects, as well as its
implications regarding non-technical aspects such as company culture and interpersonal skills.
We, therefore, selected 10 participants with different responsibilities with respect to reuse from
9 different development teams. Each interview lasted one hour and was conducted by two re-

4.3. Study results 47

searchers, one leading the conversation with the participant while the other created the transcript
and asked clarification questions.

Data collection & analysis procedures For data collection and analysis, we proceeded as
described in Section 3.6.

4.3 Study results

To answer the research questions, we extract our information from the questionnaire and the
interview data. We refer to outcomes of software development activities as artefacts. Artefacts
provided or available for reuse are called reusables.

Reuse activities: During coding, we identified a set of activities related to reuse and use them
to structure the results of RQs 2 and 4. The activities are: publish - reasons to create and publish
reusables, find - where and how to find reusables, understand - means to properly understand
reusables, select - selecting the right reusable, adapt - adapting the reusable, integrate - tech-
nically integrating the reusable. These activities encompass and extend the ones proposed by
Karlsson [5].

RQ1: Which roles are involved in reuse practices?

From the interviews, we identified the following organizational and processual roles involved with
reuse at Google.

Organizational roles

Engineer: Engineers are responsible for software development and maintenance at Google.
Their motivation for reuse depends on the direct benefit they can obtain from it. Benefit means,
for example, faster completion of features, visibility and impact of work, expressed for instance
by a high amount of users for a reusable. Senior Engineers are asked to share their experience
and advise (e.g. in library design discussions). Engineers are directly involved into reuse: they
can introduce libraries, invest time in reusability, propose features to libraries, and share their
own artefacts.

Manager, Technical Lead: As far as reuse is concerned, the managing roles have several
responsibilities: firstly, they can decide to push or suppress reuse as they see fit. Secondly, they
serve as coordinating role within and between teams to ensure that reuse options are identified
on a larger level, e.g. on a feature granularity. In this way, reuse serves as a means to achieve
consistency over the range of products. Thirdly, managing roles are responsible to mandate
certain reuse decisions on different scales from teams to product areas. Lastly, the managing
roles are also responsible to ensure legal compliance of reuse.

Team: A development team at Google usually consists of about 5 to 6 engineers, working on
focussed tasks. They are coordinated by technical and product managers. The motivation to
reuse is strongly dependent on the individuals in the team.

48 Chapter 4. An exploratory case study of software reuse at Google

Processual roles

Producer: Every engineer takes the role of a producer internally as (nearly) all code is available
to other internal projects, (about 41% of the participants share artefacts also externally, i.e. Open
Source). Typically, the producers or current implementers of a piece of code have ownership over
it and are contacted by engineers desiring a change. Ownership is lived as responsibility for the
artefact, allowing for others to effect changes.

Apart from the default producer, there are designated producers, which provide central li-
braries and components, oftentimes taking the role of reuse champions, motivating and pushing
reuse strategies at different scales. Their responsibilities and motivation differ as follows: pro-
ducers serve as the gatekeeper to the library or component, ensuring that only new and valuable
functionality is adopted. Furthermore, they are responsible to upgrade all consumers if they
effect changes in the artefact. In order to ensure adoption of a reusable by the consumers, pro-
ducers attempt to perceive common needs as early as possible, e.g. from usage patterns or legacy
code. Furthermore, producers are lobbying the use of core libraries and components to improve
the quality in the code base (since “introducing new stuff causes problems”).

Consumer: As a consumer, the engineer is responsible to integrate the reusable. If integration
requires changes to someone else’s code, the consumer is responsible for contacting the code
owner to find a solution. If the integration breaks other people’s code, the engineer is responsible
to either fix the problem or to roll back the change within a fixed tolerance window.

Reviewer: Tightly integrated with the software development cycle at Google is the role of the
reviewer, which is again taken by each engineer. Every piece of code submitted to the central
code repository is subject to a review cycle. It is the reviewer’s responsibility to assess the quality
of a proposed solution and to suggest better options, if available. In the context of reuse, this
implies proposing reusables and assessing the adequacy of a reuse action.

Legal: The legal department is the main point of reference with respect to licensing issues,
induced by third-party artefact reuse. Also, sharing artefacts with the Open Source community
needs to be confirmed.

Third-party: Third-party describes all entities external to Google, whose artefacts are reused
by Google in its software development. Most of the time, these are Open Source projects pro-
viding libraries for specific problems.

RQ2: What reuse practices are applied and how often are they used?

We follow a top-down structure to report the results of this research question: We first report
processual results, then results concerning the individual reuse activities (Publish, Find, Under-
stand, Select, Adapt, Integrate), and finally results that concern the reusable itself.

Reuse practices & processes

In our study, we found that, apart from a set of regulations regarding third party reuse, at Google
their is no centrally controlled mandate for organizing reuse. Reuse processes and strategies can

4.3. Study results 49

be initiated by engineers as well as managers. According to the questionnaire, reuse is generally
more ad-hoc 2 (47%) than strategical 3 (37%). Comparing different types of development goals,
reuse is more strategical for product development (24%) than for prototype development (13%) or
tool development (13%). The interviews revealed that it is up to the engineers and managers to
decide how much effort to invest into reuse. The scope of effort ranges from individuals investing
their 20%-time 4 for reuse, to entire teams dedicating 30–40% of their time to it. Mostly, reuse
takes place on demand: teams focus on completing features, and refactor for reusability when
the need for reuse occurs. Furthermore, except for important artefacts, reuse knowledge is often
in peoples’ heads. The exception to this general philosophy are the teams providing the utility
libraries for the entire company. These core libraries and components are reused by the entire
company. Therefore, they are carefully designed by experienced engineers, and the scope of their
functionality is guarded by the respective team. New functionality can be proposed by everyone
but is only adopted if it provides significant value to the company and is not yet contained in
similar form in the library. In particular, one core team uses the concept of an incubator, a
dedicated place where engineers can place potential reusables. Over the time, their usage is
monitored and if the reusable obtains a sufficient usage, the team will invest in improving its
reusability and, over different maturity stages, incorporate it into the library.

As far as third party libraries and frameworks are concerned, there is no central coordination
for their selection. However, if multiple options for large libraries exist, the core teams decide
on one option to ensure homogenous use. The policies for introducing a third party library are
as follows: the engineer introducing a library is responsible to ensure that no library for the
same functionality is imported yet and to ensure with the legal department that the license is
compatible. If these prerequisites are met, the engineer is responsible for integrating the library in
a dedicated part of the code base, ensuring it is ready to use and keeping it updated. Third party
library usage is governed by several rules, e.g. the libraries are only allowed to be integrated by
linking; copy and paste from third party code is forbidden. Third-party reusables are frequently
used in projects: more than half of the participants in the questionnaire have introduced at least
one or two, with 10% having introduced more than five5.

Reuse activities

Publish: The interviews indicate that the decision to create and provide a reusable is mainly
value-driven. We found two main reasons why a reusable should be created: either there is a
common need for a specific functionality or the functionality itself provides substantial value
(even if it is not commonly needed). However, there is no explicit process for creating and

2From the questionnaire: “Ad-hoc reuse means that developers are allowed to reuse any available artefact
which seems suitable for the task at hand.”

3From the questionnaire: “Strategical reuse implies that reuse is driven by specific organizational goals. Usually
guidelines or policies describe which reuse is adequate for a given situation.”

4 At the time of the study, Google encouraged their employees to spend about 20 percent of their time
experimenting with their own ideas.

5Introducing here could mean “importing to third party base at Google” as well as “starting to use a library
that was imported by another engineer”.

50 Chapter 4. An exploratory case study of software reuse at Google

publishing reusables; the decision whether to create a reusable is up to the developer/team.
Usage patterns in legacy code can provide indicators for common needs and serve as basis for
creating reusables.

Within Google, most of the code is available for everyone via one central repository: 68% of
the participants of the questionnaire stated that all artefacts are available for other projects and
41% stated that only some artefacts are available for other projects. To promote reusables, we
found several ways: there are dedicated mailing lists, internal web pages, Google+, newsletters
and user guides. Table 4.3 shows the top three ways of sharing artefacts: via a common repository
(97%), via packaged libraries (34%), and via tutorials (31%). These numbers support the above
findings.

Table 4.3: Which are your top-three ways of sharing artefacts?6

Answer #Answers Percentage

Common repository 31 97%
Packaged libraries 11 34%
Tutorials 10 31%
Blogs 6 19%
Email 3 9%
I do not share artefacts 1 3%
Other 1 3%
None of the above 0 0%

Find: The questionnaire indicates that the most common source for finding reusables are
internal repositories (87%), closely followed by colleagues (38%). Furthermore, resources on the
web are used to find third party libraries and ideas. External build automation tools were not
used.

Furthermore, the questionnaire suggests that the most frequently used way to retrieve
reusables is the internal code search engine, which provides (read) access to the complete code
within the Google main repository (see Table 4.4). Code search is followed closely by “commu-
nicating with colleagues”. The interviews detailed on the communication between the engineers:
the communication culture is very direct, so asking for advice on what to reuse is happening
regularly. Furthermore, the reviewers will suggest reuse if they recognize reimplementations or
suboptimal solutions in the submitted code. Lastly, user mailing lists are available for all bigger
libraries and are used for questions on reusables. Focussed support for finding reusables, such as
code recommenders or code completion are not widely used for finding reusables.

Understand: The interviews indicate that code search provides code snippets, which are used
to understand reusables. As most participants of the questionnaire find reusables by code search,
this provides a means to properly understand reusables by usage examples. The questionnaire
indicates that all sorts of code documentation and tutorials are among the most often used
to properly understand a reusable (see Table 4.5): reviewing interface documentation (72%),

4.3. Study results 51

Table 4.4: Which are your preferred ways to find reusables? Please indicate the top three.

Answer #Answers Percentage

Code Search 30 77%
Communicating with colleagues 25 64%
Web search 19 49%
Browsing repositories 16 41%
Browsing documentation 9 23%
Other 3 8%
Code completion 2 5%
Code recommenders 1 3%
Tutorials 1 3%

searching example usages in blogs and tutorials (64%), reviewing implementations (64%), and
reading guidelines (51%).

Table 4.5: What do you do to properly understand and adequately select reusable artefacts?

Answer #Answers Percentage

I review interface documentation 28 72%
I look for example usages
on blogs and tutorials

25 64%

I review implementations 25 64%
I read guidelines 20 51%
I explore third-party products 11 28%
Other 4 10%
I participate in trainings
for third-party technologies/artefacts

2 5%

Nothing 0 0%

Select: The interviews as well as the questionnaire only give some hints for this activity. The
interviews indicate that there is a difference between reusables originating from an internal or
an external source; Internal reusables are usually preferred, since it is more difficult to reuse
external code due to processual and legal issues. Usually, external libraries or code are only
used if there is confidence in the library/code and only for specialized tasks. Depending on the
project type, the selection criteria for external reuse may vary: there are some projects where the
footprint needs to be as low as possible, and there are some projects where run-time performance
is most important. In general, one important selection criterion is that the documentation of the
reusable needs to be good. This is also supported by the questionnaire (see Table 4.5), as the 4
top-most answers concern documentation.

52 Chapter 4. An exploratory case study of software reuse at Google

Adapt: When deciding whether to integrate a reusable, engineers assess the effort and the
possibilities of integration. If major changes need to be effected on the reusable, the engineer is
required to discuss them with the respective owner before copying or modifying it.

Integrate: Usage of software libraries are the most frequent reuse mechanisms employed
at Google, followed by frameworks, design patterns, and code scavenging. Component-based
development does occur, but significantly less (see Table 4.6). Usage of software libraries occurs
by linking/calling and includes-linking to the Google-internal code base.

Table 4.6: Which of the following possibilities of reuse do you employ most? Please indicate the
top three.

Answer #Answers Percentage

Software libraries 32 89%
Software frameworks 19 53%
Design patterns 13 36%
Code scavenging (copy, paste, modify) 12 33%
Component-based development 8 22%
Architecture reuse 5 14%
Product lines 1 3%
Application generators 1 3%
None 0 0%
Other 0 0%

Reusables

The data from the questionnaire implies that in the software development at Google, a variety of
development artefacts is being reused (see Table 4.7) on different levels of granularity, however
with a strong preference of libraries (see Table 4.9) and a focus on general utility. There is
also a significant amount of reuse of domain-specific functionality (see Table 4.8) and on a small
granularity, such as classes.

The interviews provided detailed insight on the nature of reusables: the majority of the
reused artefacts are provided internally. A lot of them are provided by the different projects
and available, yet normally not curated, for reuse. Furthermore, there is a core of utility and
infrastructure libraries that are reused by entire Google. These libraries are well documented,
maintained by dedicated teams and provide among others basic infrastructure for the program-
ming languages used at Google. Open Source libraries also belong to the set of reusables. Their
contributions are also curated for maintainability.

Apart from code and other development artefacts, we found that reuse of knowledge/ideas is
prevalent. It occurs if problems need to be solved again, but the existing solution is not reusable
due to fundamentally differing programming paradigms, for example. In these cases, engineers
rely on “tested knowledge” gained from experience or their co-workers.

Furthermore, tools, training documents and examples are reused across the company.

4.3. Study results 53

Table 4.7: Which are the top-three types of artefacts you reuse?

Answer #Answers Percentage

Source code 37 97%
Code in binary form 12 32%
Style guides 11 29%
UI Designs 10 26%
Requirement docs. / Use cases 5 13%
Architecture documentation 5 13%
Prototypes 2 5%
Informal design models 2 5%
Own, domain specific design models 2 5%
Semiformal design models (UML) 0 0%
Formal design models 0 0%
Other 0 0%

Table 4.8: What is the scope of the reused artefacts?

Answer #Answers Percentage

Domain-independent general function-
ality

27 77%

Domain-specific functionality 18 51%
Product-specific functionality 9 26%
Other 0 0%

Table 4.9: What granularity do the reused entities typically have?

Answer #Answers Percentage

complete libraries 31 84%
one or more classes 18 49%
coarse-grained, e.g. entire frameworks 13 35%
fine-grained, e.g. single
methods/functions

11 30%

small code sections 8 22%
Other 0 0%

54 Chapter 4. An exploratory case study of software reuse at Google

RQ3: Which measures are taken to assess the adequacy of reuse?

According to our questionnaire, the majority of engineers attempt to implement sustainable
design decisions (76%) to ensure reusability of their artefacts. This applies especially to the
“core" and infrastructure libraries. To improve the code quality and avoid duplicate solutions
built by engineers, the library teams inspect legacy code for unusual usage patterns. These serve
as sources for requirements of new reusables.

83% of our participants effect unit tests and 71% effect system tests to ensure a certain level of
quality of their artefacts. We also found individual solutions to mitigate negative effects of reuse
“hacks”, such as cloning: one engineer ensures traceability by adding the original location in the
internal directory to copied code to enable traceability in cases of bugs and need for clarification,
despite the presence of a system wide clone detection.

Overall, reuse adequacy is not monitored following a structured process. However, to deter-
mine the impact of a reusable, the library teams measure the adoption of reusables by counting
the number of users. Effected reuse manifests itself by calls to the reusable, which is treated
as the current metric for successful reuse. Currently, some engineers are working on a more
elaborated reuse metric. Moreover, to handle the problem of dependency explosion and limit
unwanted reuse, build visibility rules and access rules were introduced.

RQ4: What are problems, challenges, success factors?

In the questionnaire and the interviews, we asked the engineers about challenges and benefits
they experienced with reuse, as well as factors making reuse beneficial to them.

Issues and challenges: The factor considered most disruptive to the reuse process was diffi-
culties in finding artefacts (56%). This ranged before the difficulty of adapting the artefact to
project needs (53%) and licensing issues (44%). The “not invented here” phenomenon is listed
(34%) on the fourth place. Accessing the artefacts was hardly considered an issue (6%). 13% of
the engineers did not experience difficulties disrupting the reuse process within their teams.

Dependency explosion was considered the most severe issue attributed to reuse (52%). 39%
considered the ripple effects caused by changes in reused artefacts as problematic, while 35%
linked reuse to a decrease of code understandability. Loss of control was mentioned by 29%,
while 26% did not experienced issues caused by reuse.

73% of the engineers agreed that the absence of reuse in their projects led to duplicate im-
plementations. 64% attributed increased development effort to insufficient reuse. Inconsistencies
(48%) and high maintenance effort (45%) were also considered as negative consequences.

The interviews revealed more details on issues with respect to the reuse activities, manage-
ment and philosophy.

Publish One significant challenge for library providers is to create the “right” reusables. To
this end, they need to identify common needs before engineers start to create own solutions.
The availability of all code for reuse poses a challenge, as also unmaintainable solutions might
be reused. Structuring reusables is a difficult challenge when publishing them. The engineers
need to find a suitable level of abstraction for the reusable and classify it accordingly so that

4.3. Study results 55

others can identify it as reuse candidate. Some teams provide infrastructure to address this issue;
however, the solution is not widely known yet.

Find The cost of searching for reusables, composed of the time needed to look up and assess
candidates as well as the probability to find nothing or to not be able to integrate, is still high.
As a result, engineers create their own solutions.

Understand If understanding whether a reuseable fulfills the current need is too difficult, de-
velopers will create their own solutions. This happens especially when reusables are too abstract
and thus the engineers cannot understand them anymore.

Adapt Challenges occurring during adaption concern the usability of library interfaces, as
well as the overhead required to adapt a reusable. Low usability might cause users to employ
libraries in unintended ways. The overhead for adaption is currently underestimated, especially
for copy-paste reuse.

Integrate Incompatibilities in programming paradigms currently truncate reuse possibilities
at the level of ideas. Another issue is bad modularization of libraries, which increases the size of
the product binaries.

Management Reuse is challenging for management at different levels: despite management
support being important, reuse cannot be simply induced by a manager. Especially under time
pressure, reuse will not be as beneficial as intended. Operationally, the management of depen-
dencies remains a challenge, as changes run the risk of breaking multiple projects. This is a
challenge, as the implementation of reuse must not block anyone in accomplishing their work.

Philosophy A challenge with respect to company philosophy is to strike the right balance
with respect to reuse: on the one hand, a lot of people need to be motivated and educated for
reuse. On the other hand, excessive reuse should be prevented.

Success factors and benefits: According to our questionnaire, the main benefits of reuse
experienced by the engineers were: higher development pace (91%), less maintenance effort
(69%), and higher code quality (47%). Furthermore, they attributed the availability of new
functionality (41%), higher consistency(38%) and regular bug fixes (34%) as beneficial to reuse.

The questionnaire indicates that high quality of reusable artefacts is the most important
success factor of reuse at Google (68%). It is followed closely by supporting infrastructure and
tools (65%) and adequate abstractions (58%). Homogeneous development culture, as well as
dependency management are also considered important (each 32%). Surprisingly, the direct
communication culture (19%) or the presence of suitable incentives (6%) were considered as
significantly less important. In the interviews, in contrast, both aspects were pointed out by
several engineers.

In the interviews, we found an overall sensitivity to code quality with the engineers. This ex-
presses itself through a variety of applied constructive and analytical quality assessment methods,
such as “serious review cycles”, patterns and guidelines, maturity levels for some components,
as well as a solid testing infrastructure. These are are partially mandated and employed inde-
pendently of reuse. However, their presence seems to facilitate beneficial reuse as they provide
confidence in the quality of the reusables as well as a safety net for effecting changes.

56 Chapter 4. An exploratory case study of software reuse at Google

Engineers stressed that the supporting infrastructure, especially the code search platform, as
well as the continuous integration approach and the communication culture were success factors.
They particularly enable finding, understanding and integration of reusables. Furthermore, the
selection of adequate reuse mechanism as well as a suitable abstraction level are important.
Engineers agreed that success factors for reusables, besides overall good quality, were an intuitive
usability as well as high stability.

In terms of management, the low organizational overhead for engineers to initiate reuse
encourages its adoption. In contrast, the library providers named thorough planning, involving
senior engineers, and a strict error handling to ensure high quality of the reusables as one of their
main success factors.

With respect to the company culture, the engineers saw the networking and communication
attitude as a success factor. In particular, they mentioned the 20%-time, read access to the code-
base, open criticism culture, “dog fooding”7, and extensive profiling of products to continuously
improve performance.

RQ5: What do engineers consider as potential improvement?

In the interviews and the questionnaire, we found wishes for improvement in three categories:
culture, technical support, and methods.

Culture: Despite reuse being an established tool in development, engineers wish for more
reuse spirit with managers and fellow engineers. Furthermore, they wish for a dual development
strategy, interleaving feature production phases with phases focussing on code quality.

Technical support: Most of the wishes for potential improvement of technical infrastructure/-
support address the three reuse activities Publish, Find, and Adapt:

Publish Participants in the interview wished for a tool that automatically makes code reusable.
Furthermore, they wished for a shared place where common utility functions can be published.
The questionnaire indicates that the architecture of reusables or libraries should be improved
to meet reuse needs: 41% of the participants of the questionnaire answered to the question “In
your opinion, what would be the three most important actions to make reuse beneficial in your
company” that reusables need to be bundled more coherently in terms of functionality and 38%
that libraries should be split to provide more specific functionality.

Find Most wishes expressed in the interviews concern finding the right reusable: They wish
for natural language queries for code search, a better keywording mechanism, a better discovery
tool, and a pattern and components catalogue that contains reusables. Furthermore, an oracle,
that looks at a piece of code and tells whether it already exists is wished for. The questionnaire
indicates that discovery is still an issue, since 45% answered to the question “In your opinion,
what would be the three most important actions to make reuse beneficial in your company”
that available artefacts shall be listed in a marketplace to ease the discoverability of useful
functions, and 21% answered that libraries should be merged to ease the discoverability of already
implemented functionality.

7“Dog fooding” refers to using own products in one’s daily work, thus finding problems immediately.

4.4. Discussion 57

Adapt In the interviews, the participants said that it should be easier to change code (more
than just refactoring) and that protocols should be provided for the usage of functions.

Furthermore, some wishes expressed in the interviews concern the assessment of reuse: En-
gineers wished for a method to determine how many times specific methods are used in different
projects. The questionnaire further indicates that structured rules for dependency management
(21%), clear strategic decisions for interface support (28%), and maturity levels for reused arte-
facts (17%) would make reuse more beneficial.

Method: The interviews further indicate that different levels of abstraction is still an issue
as the participants wished for homogeneous abstractions and a programming language with an
ideal abstraction mechanism.

Remarks

Overall, we noticed a decisively reuse-friendly atmosphere during our interviews. The participat-
ing engineers considered it a significant and beneficial part of their development practice. This
impression was backed up by a closing question from the questionnaire: 62% of the participants
stated that the current state of reuse was “just right”. 21% opinionated that there “should be
more of it to leverage the full potential”. None of the participants wished the effort spent into
reuse to be decreased. 18% opted for “other”.

4.4 Discussion

Our study found that a considerable share of reuse in the considered environment is ad-hoc and
opportunistic, guided by few strict principles. The major motivational factor for reuse is the
short-term reduction in development effort for new features. Due to the development infrastruc-
ture and collective code ownership paradigm, all code is, in principle, reusable by everyone. In
essence, much of the reuse occurs “along the way”, during the feature-driven evolution of the
code base. If code parts evolve that can be used in multiple places, commonly used abstractions
are extracted. An exception to this general tendency can be observed for the company’s core
libraries, which provide generic, product-independent functionality for which a common need
among the developer community is known to exist or anticipated for the future. The library
providers are responsible to manage the evolution of libraries according to consumers’ needs,
keeping the libraries’ structure coherent and providing a certain quality level. This is to a large
extent supported by both the shared code base and the open communication culture.

A noteworthy finding of the study is that there is no explicit common notion for what consti-
tutes adequate reuse. Besides legal constraints on the reuse of external artefacts, few commonly
mandated rules or guidelines for developers exist. The existing rules are either imposed from the
reuse champions, or originate from developers addressing a reuse issue. Apart from these rules,
the judgement about the adequacy of reuse, involving factors like the maturity of the reused
artefacts and the degree of entangledness between the own code and the reused artefacts, lies in
the responsibility of individual teams or developers.

58 Chapter 4. An exploratory case study of software reuse at Google

The study shows that despite of decades of research in software reuse, fundamental challenges
to integrate reuse seamlessly into the developer workflow remain. The company uses a shared
code base and provides a powerful code search environment that allows searching in the entire
code base. Nevertheless, the major obstacles to reusing artefacts mentioned by the developers
were the identification of suitable reusables and the adaptation of reusables to specific needs.
The most challenging issues involved in the creation of reusable artefacts were the a priori
identification of commonly needed functionality and the structuring and publishing of reusable
artefacts.

Despite the identified challenges, a considerable amount of reuse does occur at Google. The
main factors for successful reuse are the high quality of the reusable artefacts, induced by com-
prehensive code reviews, as well as the development infrastructure (in particular the shared code
base and code search) and the open communication culture among the developers. Reviews
of code changes identify missed reuse opportunities, allowing the developer to rework the code
accordingly, thus increasing the extent of reuse.

On the other hand, the study found that while the open development culture and shared
code base at Google undoubtedly fosters reuse of code, it also poses a significant risk: Immature
code may be reused inadvertently, resulting in quality and maintenance problems. This risk is
mitigated by the obligatory code reviews and build visibility rules.

As most prevalent open issues for effective reuse the study identified the improvement of
tool support for creating and finding reusable artefacts. The participants suggested tooling for
an automated publishing of code as a reusable artefact. Ideas for the improvement of search
capabilities included natural language queries for code, a component catalogue and a tool that
can identify functionally similar code given a code snippet.

4.5 Threats to validity

Internal validity

Self-selection bias: Most participants displayed a favorable attitude towards reuse. Since
participation in our study was optional, it is possible that only engineers considering reuse as
beneficial volunteered to take part. The tendency of the answers seems to confirm this bias.

Selection of participants: The participants of the interviews were sampled by convenience
through personal contact in just one company. This might have introduced a bias. To mitigate,
we sampled the participants from different teams and different roles. The participants of the
questionnaire were sampled in an automated way. Therefore, we could not avoid including absent
engineers in our sample. No overlap occurred between interview and questionnaire participants.
In this way, we obtained the viewpoint of 49 different people within the organization.

External validity

Sample of participants: We sampled all our study participants from Google. We are aware
that this greatly impacts the generalizability of our results. However, since we aim to report on
applied and scalable reuse practices, we still consider our results as valid. Although the response

4.6. Considerations for practitioners 59

rate to our questionnaire was low, we consider the answers as valuable since the set of participants
reflected the distribution of teams and products within Google.

Construct validity
Limitations of research methods: To compensate the limitations of our research methods, we

employed multiple methods to collect the data, namely interviews and questionnaires.
Interpretation of the interviews: To ensure the correct selection and categorization of the

statements, the interviews were always conducted by two researchers to ensure the correct un-
derstanding of the information. The coding and triaging of the data was always performed in
discussion by three researchers.

4.6 Considerations for practitioners

Our results indicate that certain reuse practices can be applied beneficially at a large scale. This
section distills these practices and includes some remarks on the prerequisites to implement them.
Furthermore, it highlights open issues.

Quality matters. Our results provide the following insights to practitioners: Most importantly,
the quality of reusables is crucial for motivating developers to reuse them. Alongside this concern
follows the quality of the documentation available for the reusables. This enables developers to
quickly establish whether the reusable meets their needs. A prerequisite for achieving the desired
high quality is a quality-conscious mindset with engineers and managers, which translates into
investments in constructive and analytical quality measures, e.g. reviews, continuous quality
assessment and thorough testing.

Invest in infrastructure and automation. Effective reuse requires a suitable supporting
infrastructure. This impacts especially finding, integrating, and publishing reusables. Automated
indexing of the code base, a powerful search engine, as well as the possibility to link to reusables
provide the basis for efficient reuse.

Control organizational overhead. Low organizational hurdles together with suitable in-
centives make it easier for developers to initiate reuse, as it decreases the additional effort for
reuse. Nevertheless, a systematic strategy and process for the central reusables is important to
strike the balance between including new functionality and keeping the reusable maintainable
and usable.

Culture matters, too. Reuse requires trust between the different parties involved. We found
that an open communication and criticism culture, supported by reviews and design discussions,
help to establish the necessary confidence.

Open issues

In our study, the engineers pointed out issues that would further improve reuse: Producers need
support to uncover required functionality as early as possible, (ideally before developers create
their own solutions) to avoid multiple implementation of the same functionality. Despite the
presence of a powerful search engine, it is still hard to select the best candidate from a huge

60 Chapter 4. An exploratory case study of software reuse at Google

list of options. Support for natural language queries was seen as one option to alleviate this
issue. For frequently used reusables, even minor changes might impact all consumers and entail
major rework effort. To reduce the burden of modifying reusables, there should be a feasible
and scalable way to automatically effect and propagate changes. The effort spent on reuse might
not pay off immediately but will amortize after some time. Therefore, there should be adequate
incentives for developers and managers to do tasks from which they do not benefit directly but
are necessary to leverage reuse properly. Reuse entails a trade-off between functionality that is
easily accessible and loss of control. If employed in an inadequate way, reuse can become a risk
to projects. Therefore, it is important to devise structured approaches, meaningful metrics and
tools to assess the adequacy of reuse.

4.7 Summary and conclusions

We performed an exploratory study on reuse in practice with the goal to provide practitioners
with examples of scalable reuse practices.

To this end, we interviewed 10 engineers at Google and collected the opinion of 39 engineers
via a comprehensive online questionnaire. By means of qualitative data analysis, we extracted the
context of reuse at Google, involving roles and responsibilities, as well as reuse practices, reused
artefacts and reuse mechanisms. We furthermore collected the current issues as well as success
factors and ideas for improvement. Reuse at Google is performed in an ad-hoc manner on an inter-
project scale with the goal of decreasing development time for features. There is no structured
approach to assess the adequacy of reuse. The main unit of reuse is code, which is integrated in
a library style. This is enabled by a capable support infrastructure that turns the largest part
of the code base into a searchable reuse repository. Furthermore, pervasive automated testing
increases the confidence of modifying reusables and ensures that code incorporating reusables
behaves as expected. The quality of the reusables, the supporting infrastructure, as well as the
communication culture are seen as clear success factors. The biggest challenges to reuse are
finding the right reusables from the vast amount of functionality, adapting the reusables to meet
current needs, and licensing issues. For the future, the participants wished for more reuse spirit
within the company, as well as better support to address the problems in finding and adapting
suitable reusables. Furthermore, they wished for support to find the best candidates for new
reusables as well as to assess the reuse effort.

Based on our results we invite practicioners to invest in the quality of reusable artefacts and
in reuse supporting infrastructure. Furthermore, organizational overhead should be kept low.
Lastly, a culture of openness and trust seems to support reuse.

Research addresses current open issues of the industry. However, the low adoption poses
questions of usability and scalability. As future work, we propose to collect detailed accounts
of research results potentially applicable to the challenges pointed out in our study. Our results
reflect the reuse practices at Google. While they provide a detailed account of success factors
and challenges, data from further companies is needed to assure generalizability.

5 | A case study of software reuse
adoption

Adoption of reuse approaches in practice can pose multiple challenges. Research-industry
collaborations are considered a suitable vehicle to mitigate adoption difficulties and to validate
the applicability of scientific results. However, they do not always live up to the expectations of
either of the partners. Unfortunately for researchers and practitioners alike, insights from failed
adoption initiatives and co-operations are often difficult to obtain. This hinders discussions on
lessons learned during the adoption process and delays improvements. This chapter aims to
mitigate this by presenting lessons learned from interviews we conducted with practitioners in
the context of a study on software reuse in industry. The participating company had already
undertaken two failed attempts to adopt an advanced reuse approach. In our study, we
identified tacit assumptions that were related to the encountered difficulties and present the
lessons learned from the adoption approach. Furthermore, we report strategies that helped us to
overcome the scepticism caused by a previous unsuccessful guided collaboration. Parts of this
work are published in [25].

Contents
5.1 Challenges of structured reuse adoption 62

5.2 Study design . 64

5.3 Adoption of a strategic reuse program 65

5.4 Lessons learned — Adoption attempts 70

5.5 Current research collaboration . 72

5.6 Summary and conclusions . 74

61

62 Chapter 5. A case study of software reuse adoption

5.1 Challenges of structured reuse adoption

Understanding and improving the adoption of research results in practice is an ongoing concern
in the software engineering community [111]. To this end, one key challenge needs to be over-
come: research does not operate under the same operational constraints as industry. As a result,
it is usually difficult for researchers to “eat their own dog-food” and test their approaches under
realistic circumstances. Furthermore, assumptions on significant context factors that need to be
present for a successful adoption of the proposed approaches might remain implicit, with poten-
tial detrimental effects to adoption efforts. This is especially critical when proposing measures
requiring significant and long-term changes in industry, such as large organizational restructur-
ing [17]. Adoption of a structured reuse approach is a prime example for this case: approaches
usually require substantial changes on the technical as well as the organizational level. These
deep changes are very difficult to achieve [69]. Whilst abstracting a problem from its context
is a necessity of scientific thought [112], as researchers we run the risk of overestimating the
applicability and the potential benefits of our results if we fail to explicate a clear relation to the
assumed and envisioned application context.

Providing approaches that are applicable in practice is a challenge for researchers; success-
fully adopting these approaches might be even harder from an industrial perspective. Research-
industry collaborations seem a suitable and popular vehicle to address and mitigate these chal-
lenges for both sides [113, 69, 114, 115]. However, they are not free from challenges: one of the
most obvious differences between academia and industry becomes apparent in the goals they typ-
ically bring to a collaboration: researchers wish for high quality data to validate their approaches,
practitioners wish for a suitable, affordable, and fast solution for a specific issue [115, 116]. Con-
sequently, also successful technology adoption might have a different meaning for each party [27].

Structured reuse, by means of reusable components [14], Software Product Lines (SPL) [8],
or the more pragmatic Inner Source [23] philosophy, have a long history of being considered a
“silver bullet”[64] in research and practice alike. Virtually every paper on software reuse starts
with a mantra-like declaration of abstract benefits (improved quality, decreased cost, decreased
time to market) [65, 3, 29] and proceeds by adding several new aspects on how to achieve them.
Often, the feasibility is demonstrated by the application of the approach in a small number of
case studies. Whilst, from a researcher’s perspective, this is a reasonable practice, it poses several
problems for industry adoption: For instance, often-times the exact conditions under which the
proposed solution is supposed to work are not mentioned in detail. Neither does the reader learn
about all the preconditions and assumptions that make a solution applicable in the first place.
Lastly, there is a tendency to advocate structured approaches as superior independently of a
company’s strategic context, business goals, or domain.

Several works have reported on adoption attempts of structured reuse in practice and pro-
posed respective success and failure factors: Joos [84] reports on the experience of introducing a
systematic reuse process at Motorola in the 1990s that succeeded due to management support,
education of engineers, suitable incentives, tool support). Frakes and Fox [1] present a reuse
failure mode model, derived from a questionnaire on (code) reuse answered by 113 people from

5.1. Challenges of structured reuse adoption 63

29 organizations. The authors mention four dimensions (managerial, economic, legal, techni-
cal) that need to be addressed when implementing systematic reuse. Lynex and Layzell [29]
assess the management and organizational issues raised by the introduction of reuse programs
in industry. They collect inhibitors to adoption gained from experiences from reuse projects
reported in the literature, provide reasoning for causes and present possible solutions. Fichman
and Kemerer [18] examine the extent to which the introduction of a formal and systematic reuse
program was advanced in one large organization. They found that reuse was prevalent on an
informal, local, scope but neglected on an inter-project, systematic, level due to an incentive
conflict with respect to team priorities such as completing a project on time and on budget.
Sherif and Vinze [70] report on barriers to reuse adoption, concluding that individual declination
towards reuse was caused mainly by the organizational stance on reuse adoption. Morisio et
al. [13] report on success factors for adopting or running company-wide reuse programs, collect-
ing evidence from 24 reuse projects in European companies varying in size, business domain and
culture. The authors identify underestimation of the required effort as main driver for failure
and conclude that success of reuse projects depend on management commitment, awareness of
human factors and modification of non-reuse processes according to the specific context of the
company. Dubinsky et al. [60] investigate the reasons that cause companies to reluctantly move
away from ad-hoc reuse in the form of code cloning to structured product line approaches. They
identify efficiency, low overhead, short-term thinking, and lack of governance as main drivers.

Challenges that can occur when attempting to adopt structured reuse became apparent to
us during a study on reuse in practice. To establish how reuse is currently effected in practice,
we started a number of research-industry studies, of which 2 are currently completed. In their
context, we so far interviewed approximately 30 practitioners from well established software
companies (head count ≥ 5000, more than a decade of experience in the market). Especially in
one company, issues during the adoption of research approaches were a consistent theme across
departments and hierarchy. We therefore decided it worthwhile to extract and report lessons
learned.

Goal and contribution: Our goal is to create awareness of challenges of adopting structured
reuse in practice. In this chapter, we report practitioner accounts on several stages of a reuse
adoption attempt, collect harmful patterns in the form of tacit and implicit assumptions and
interpret them to identify lessons learned. Practitioners and researchers thus can consider this
information and use it to counteract some of the challenges when driving a similar adoption
attempt.

Outline: Section 5.2 introduces the context of the adoption situation of the given company.
Section 5.3 details on the two previous adoption attempts. The findings are interpreted in
Section 5.4. Section 5.5 reflects on the options of researchers and practitioners to improve
collaboration in the context of research adoption. Section 5.6 concludes the chapter.

64 Chapter 5. A case study of software reuse adoption

5.2 Study design

In the context of evaluating the state of the practice of reuse in industry, we so far completed two
exploratory studies with two companies. At the current state of our research, we conducted 35
hours of interviews and collected 138 questionnaire responses. This chapter collects impressions
from one specific company at which we conducted around 20 one-hour interviews and obtained 69
questionnaire responses. We report the impressions of our interview participants on the adoption
of a structured reuse approach to their development practice.

In the following, we detail on the company context, summarized in Table 3.1, and line out
the case study design and the main results. In addition, we provide pointers to supplementary
material.

Company characteristics: We can not disclose the names of the company and the involved
partners in the previous research collaboration. However, we line out the characteristics of the
company in order to give the reader an understanding of the circumstances: U is a national
software house providing technical information services and business information products to
their clients. The company was founded in the 1960s, emerged as a service provider and gradually
moved to providing stand-alone software products and support services. Currently, U counts
around 6000 employees. The company structure is hierarchical, structured along market segments
within one specialized domain. The products have historically grown independently over decades
and contain a broad mix of technologies and various conventions in terms of architectural styles.
In addition, many product varieties have been created to address niche markets, resulting in
several hundred different products. This heterogeneity, furthermore, leads to a range of different
required release dates.

Software development and maintenance is very heterogeneous across departments and teams,
ranging from waterfall processes to tailored Scrum approaches. Also the level of development
tool support, testing practices, and code ownership is highly diverse. As a result, product parts
are integrated in a "big bang" style to prepare the respective releases. Developers usually work
on specialized topics of a single product and tend to be responsible for the respective subsystems
(Subsystem code ownership, see [108]).

Participants: We study the current practice of reuse at U by means of an exploratory study
consisting of an interview phase with 20 participants, followed by questionnaire phase with 69
respondents.

To gain insight into contextual and strategic factors of reuse adoption, we drew interview
participants from each of Us product and support development departments and all levels of the
hierarchy between senior developers (including architects and user experience designers), higher,
and top management (including the CTO and board members of the development department).
The participants worked at U between 15 and more than 30 years. By means of qualitative data
analysis, we extracted the context of reuse, involving roles, responsibilities, and reuse practices,
i.e. reused artefacts and reuse realizations. We collected current issues, success factors, and ideas
for improvement.

5.3. Adoption of a strategic reuse program 65

Questionnaire participants were invited by a newsletter and a post on a company news portal.
Respondents came from 10 of the 13 departments. 44% worked at U for at most 10 years, 20%
for 11-20 years, and 36% for more than 20 years. 15% reported their role as manager. The
respondents job focus was mainly on development (78%), and architecture (13%). Respondents
at U usually work within one product area and are organised in product departments over several
hierarchical units. They are developing software most frequently in C# and SQL. In addition,
they use Java and C++. The participants are software development professionals and managers
with an experience ranging from 5 to 30 years. We selected them from a range of positions,
hierarchy levels, and departments. Their participation was optional.

Methodology: As means of data collection, we used semi-structured interviews and online
questionnaires.

The study contained semi-structured 1-2 hours interviews always conducted by two re-
searchers and an extensive online questionnaire containing mainly closed-questions. We analyzed
the interviews by means of inductive content analysis. To extract relevant concepts, we coded
the transcripts [109] and triaged the emerging concepts for relevance w.r.t. reuse. We conducted
the study during 3 months in the time frame from September 2012 to February 2015.

Supplementary material in the Appendix (Section 12.1) shows the topics and sample questions
of the interviews. For this chapter, we focus on the interviews as the theme of technology adoption
and a failed research collaboration mostly emerged during these sessions. We, therefore, extracted
the related statements from the transcripts and present them in the following.

Goal of our collaboration: From the academic perspective, the goal for our research collabo-
ration was to assess the state of reuse in practice. From the industrial perspective, the goal was
to collect a neutral and honest account on the current perception of the reuse strategy, including
improvement points.

5.3 Adoption of a strategic reuse program

At the beginning of our study, we found the following situation with respect to reuse adoption:
several years ago, management had decided to move from a range of independent products in the
same or similar market segments to a more integrated version. This was a business decision based
on feedback from clients and market requirements. In the process of pursuing this goal, a need
for unification between products became apparent. To address this, the need for a structured
reuse approach came into focus with the goal to improve software production, reducing errors,
and providing customers and users with a homogeneous product. Two adoption attempts had
taken place: one without guidance by researchers and one in collaboration with academia.

Reuse goals and targeted approach: The company’s reuse goals are: consistent extension of
the .NET framework used by their products, consistent integration of existing products, lower
maintenance costs. These goals should be reached by a structured company-wide reuse approach
based on a shared platform, providing building blocks for products. The target vision of the reuse
approach contained elements of SPL engineering and characteristics of Inner Source development.

66 Chapter 5. A case study of software reuse adoption

Current state of reuse: At the point of writing, reuse is mandated for an internal utility
platform providing domain-independent functionality to products. In U, code is reused in a very
heterogeneous way and mostly retrieved from colleagues on the basis of personal contact or,
occasionally, by searching the web. In addition to code, style guides are reused.

5.3.1 Tacit assumptions and their consequences on adoption

At the company, many of the success factors mentioned in the literature for a transition to more
strategic reuse were present: there was top management commitment, reuse was institutionalized
by means of a visible workforce unit, the reason for reuse was founded on business needs, reuse
was established as an explicit goal for developers, and a reuse champion was appointed [13].
However, in practice, we identified a number of assumptions tacitly held by key stakeholders of
the adoption process which, from the beginning, significantly decreased the chances of a successful
outcome.

In the following sections, we report the assumptions and their effects. We denote the roles
which held the assumption in the following way: HM for higher management, TM for top
management, SD for senior developers, followed by the number of the assumption.

In boxes, we contrast the respective assumptions with the participants’ retrospective com-
ments on their effect1. We denote the roles which provided the statements in the following way:
HM for higher management, TM for top management, SD for senior developers, followed by the
number of the statement. Furthermore, we distinguish between product (P) and base platform
(B) participants.

5.3.2 Unguided adoption attempt — company-internal

Several measures were taken with the goal to establish a structured internal reuse approach:
on the one hand, top management decided to build a generic base platform for all products
the company was currently producing. For this task, a new department was founded and the
use of that platform was mandated for all products. Furthermore, reuse became part of the
developer goals with the intent of creating a reuse culture. Lastly, a designated reuse manager
was appointed with the goal to identify potentially reusable entities and to build up a network
of contributors.

Assumption 1, HM

“Successful transition to the new approach will not require deep organizational change.”

Based on this assumption, the department for base development was treated like any other
product department. It was provided with a small to medium volume of resources (the weight
between product development and base development is roughly 10:1) and assigned with a con-
sulting status. Consequentially, recommendations for strategies or change, e.g. with respect to

1The quotes were translated into English. They are no longer verbatim, however we attempted to stay as
closely as possible to the original meaning.

5.3. Adoption of a strategic reuse program 67

product architecture, were not binding for the products. As a consequence, significant energies
were lost in the attempt to convince products to actively participate in the change. One senior
developer summarized this by

SD1-B: “We have a rather political company culture, involving a lot of lobbying.”
Furthermore, the company’s heterogeneous development culture was not considered in terms

of its impact on the reuse strategy. This meant that a platform approach should be adopted
despite lacking central access points for source code and binding governance rules. Furthermore
the infrastructure for code repositories, building, and testing was different in every department.
Coordination was furthermore complicated by differing release time requirements of products.
Lastly, the company relied on hierarchical communication paths and hindered exchange across the
departments. Mending this was considered a key requirement for improvement by participants
of product and base departments:

SD2-BP: “Increasing networking between the departments is a necessity."

Assumption 2, TM/SD

“Products will see the benefit of the platform and, therefore, will contribute.”

From the beginning, top-management was relying on active participation from products to
contribute to the platform. This should, on the one hand, ensure the usefulness of the platform
content, and on the other hand, educate every product department in the use of the platform.
The contributing product developers, therefore, should serve as multiplicators. One of the tacit
assumptions, however, was that middle management would provide resources when planning
their efforts without further incentive. Senior product developers summarized the situation as
follows:
SD3-P: “Top-management had a rather abstract interest in reuse. Middle management rather
saw the cost than the potential. Workforce had varied views. We enjoyed [building for reuse]
and could refer to the management goals. However, the architects were not enabled to create
new structures.”
The obvious discrepancies reportedly discouraged other developers from participating in the

reuse initiative:
SD4-B: “Middle management occasionally even went out to punish developers that invested
time in reuse contributions. [. . .] This quickly made many others loose interest [to partici-
pate].”

Assumption 3, TM/HM

“It is apparent to everyone how to do reuse.”

Reuse was never precisely defined, despite the platform use being mandated and despite reuse
being explicated as a developer goal. The vagueness of the reuse initiative even lead to negative
effects:

68 Chapter 5. A case study of software reuse adoption

SD5-P: “During that time there was a massive focus on code reuse (also in the sense of copy
and paste). Frequently, this lead to inadequate solutions for a given problem."
Consequentially, neither the scope of the platform and its intended use, nor the mechanisms

for reuse on an individual level were explicitly discussed. Instead, product needs and product
commonalities were assumed to be understood. This lead to a skewed implementation of the
basis platform,

SD6-P: “Bigger departments and early collaborators dictated and shaped the platform to
their needs.”
as well as to a insufficiently focussed functionality.

SD7-P: “The basis unit is trying to do too much.”

As a consequence, products reported a significant overhead in their deliverables, loss in per-
formance of the product, and issues with dependencies.

SD8-B: “Products sit on a large bunch of code they don’t really need.”

Relying on the multiplicator model, the base development department assumed that extensive
training in platform use was not necessary and that providing assistance, whenever asked for it,
would be sufficient.

Assumption 4, HM

“One reuse manager can fully organize and coordinate reuse.”

The purpose of the reuse manager was to collect candidates for reusable entities from all
development departments. In addition, the role served as contact for anyone with inquiries
or willingness to contribute to reuse. However, coordination was only intended as a part-time
activity.

SD9-B: “Reuse coordination was always difficult. It stopped completely after I moved to a
new role.”
In the absence of a centralized code infrastructure, this identification and extraction of can-

didate reuse entities was a largely manual and infeasible process. The heterogeneity of the
infrastructure as well as closed code repositories made the task more difficult.

SD10-P: “Source code analyses won’t work here.”

As a workaround, the reuse manager set up a wiki structure where reusable components could
be registered with a description and a contributor contact. However, contributions remained
scarce.

Effects of unguided adoption attempt

After bringing the reuse initiative under way, top-management returned to everyday business.
Since reuse was institutionalized to some extent, the platform was built and introduced. However,
acceptance varied greatly among the products.

5.3. Adoption of a strategic reuse program 69

HM1-B: “If users don’t like a platform, they will evade it and build their own things next to
it. [. . .] This becomes apparent when changes in the platform have no effect in some of the
products.”
Furthermore, the voluntary co-operation between departments did not work as expected.

SD11-P: “Middle management enforced decisions that directly opposed the strategy of top
management."
Summing up, the expectations towards the reuse efforts were only partially met.

5.3.3 Guided adoption attempt — research collaboration

To mend the weaknesses of the previous reuse adoption attempt, management initiated a research
collaboration on the topic.

With interviews within the development organization, the researchers assessed the state of
the current situation and proposed a new approach, based on principles of Open Source practices.

Assumption 5, HM

“A research collaboration will provide us with a tailored solution.”

As improvement, they proposed a model for reuse that required a significant restructuring
of the entire organization. This idea was encountered with scepticism across all organizational
ranks.
TM1-BP: “The project and the idea were good in theory. However, [the researchers] did not
take into account the company culture. [. . .] We were unable to adopt these ideas and maybe
we were scared by the required effort and organizational risk. [. . .] They did not consider
how to connect research to the company needs.”

Assumption 6, HM/SD

“Collaborating researchers will align their goals with the organization.”

Furthermore, the attitude of the researchers caused significant irritation. Practitioners per-
ceived them as disinterested towards the organizational risk as well as the long term applicability
of the proposed approach.
SD12-P: “The solution they proposed simply was unadoptable for us at that point in time:
too risky, too expensive, unclear how we should even get there!”
This eroded trust and goodwill on the company side:

SD13-P: “[The researchers] were pushing their approach, no matter if it was suitable for us or
not. They went around the house interviewing people, but nothing really came from that.”

SD14-B: “They cared for their results and not so much for our needs.”
Consequently, the case confirmed the assumption in practitioners that research results were

no match for them. As a result, the collaboration was not continued.

SD15-B: “We expected more from this collaboration.”

70 Chapter 5. A case study of software reuse adoption

Effects of guided adoption attempt

Years later, the memory of this experience is still lingering in parts of the organization, resulting
into tangible scepticism towards research(ers). On the one hand, this resulted in warnings from
our industry contacts, such as:

SD16-B: “Someone has done research on this context before, there is burned soil.”
On the other hand, scepticism was outspoken:

SD17-P: “Don’t give us yet another tool.”

SD18-P: “Maybe this worked for someone else, but it won’t work for us.”

5.4 Lessons learned — Adoption attempts

In this section, we first sum up the core points of the encountered difficulties during research
adoption. Then, we propose our lessons learned on how to avoid/mitigate these.

5.4.1 Company-internal adoption difficulties

In the first reuse adoption attempt, several points caused the initiative to miss its goals: the
understanding of the organizational, conceptual, and technical preconditions and requirements
of the chosen approach was not deep enough. In this case, this lead to an underestimation of
the necessary change, as well as to overly optimistic expectations regarding the benefits of the
enterprise. In the end, the heterogeneity of the organizational context with respect to infrastruc-
ture, development processes, applicable mechanisms, communication culture, release dates etc.
significantly reduced the benefits obtained from the platform approach.

Assumption 1 reveals that the company management fell for a well-known reuse myth: “reuse
is for free” [50]. This misunderstanding highlights a typical danger of research adoption, as re-
search papers as well as industry targeted publications often-times focus on the assumed benefits
and general applicability of the approaches they propose. In this way, risks and necessary pre-
conditions might be overlooked in the plan for adoption. In addition, the assumption expresses
the desire to obtain a quick solution without investing significant resources. This desire partially
prevented a thorough study of the organizational impact that a consistent application of the
adoption was bound to have if it was meant to be successful. This aspect highlights the difficulty
of motivating investments in research adoptions whose benefit can not be easily quantified.

Lesson 1

A detailed assessment of the organizational factors is crucial to make a realistic estimate in terms
of effort required to adopt a structured reuse approach.

Assumption 2 shows that top management did not recognize the incompatibility of the current
company and development structure and the planned adoption approach, which lead to an overly
optimistic assessment on the effort required for a successful outcome. As a consequence, the

5.4. Lessons learned — Adoption attempts 71

adoption process stagnated when the company returned to everyday business. This highlights
the need for top management to actively monitor the change process and compensate for the
frictions induced by the change until the goal is reached.

Lesson 2

Management commitment needs to exceed the initiation phase of a structural reuse adoption and
provide long term support to reach the expected benefits.

Assumption 3 highlights that the concrete implications of the approach were not understood
in detail. One possible reason is that the concept to be adopted, strategical reuse, seemed so
intuitive on an abstract level that the lack of methodology prescription on how to effect the
adoption did not become apparent until it was too late. This highlights the need for a concrete
adoption plan, including a selection of desired methods.

Assumption 4 provides a further example of how an abstract intuition for research adoption
forms a mismatch with the details of a business environment. As a result, management did not
assess the feasibility and practicality of the measure.

Lesson 3

A rough and intuitive plan is not sufficient for structured reuse adoption. Instead the aimed for
approach needs to be understood in detail to plan a successful adoption.

5.4.2 Research-industry adoption difficulties

Assumption 5 highlights the (mis)understanding of a research collaboration as a consultancy
service. Whilst research collaborations can take that form, this often-times does not match the
goals of the participating researchers, who (as in the present case) might look for feedback on
or validation of a new approach. As a result, the approaches proposed by researchers might not
always be the best match for the current situation of the industrial partner. Furthermore, the
assumption shows the expectation that research approaches fit to a company without adjustment
to the specific situation. Since research strives for general applicability, these two aspects are
bound to collide if no explicit measures are taken. In this case, a part of the previous collaboration
could, e.g., have consisted in a joint tailoring effort with industry delivering their concrete context
and researchers providing support for an adoption strategy. Lastly, the assumption suggests that
the goal for the cooperation might have been too ambitious in terms of scope.

Lesson 4

It is important that researchers and practitioners alike be clear about their agendas, openly dis-
cussing goals and restrictions of their share of the adoption project to detect incompatibilities
early on.

72 Chapter 5. A case study of software reuse adoption

Assumption 6 points to an expectation that is valid to a certain degree: if a collaboration is to
be mutually beneficial, both parties might need to be flexible in terms of their goals. However,
from the practitioners’ perspective, their research partners did not show that kind of courtesy.
The lack of interest in preconditions and context required for the adoption of the proposed
approach caused frustration, since the suggested benefits seemed out of reach to practitioners.
The attempt of pushing an approach onto a company for which it was not beneficial caused a lot
of damage for the given and also future research-industry collaborations. It confirmed to several
involved individuals the view of academia as theory-obsessed and practically irrelevant, a factor
that increased scepticism towards software engineering research in general.

Lesson 5

Sensitivity to the operational circumstances and restrictions of practitioners’ work context is
relevant to establish a trustful and beneficial relationship that is required to reach the collaboration
goals.

5.4.3 Threats to validity

Reuse adoption was one of several aspects of our study. A dedicated study would have likely
produced a more detailed picture. Nevertheless, the theme re-occurred reliably throughout the
interviews so we consider the aspects as a useful starting point for further investigations.

This chapter reports impressions from a single case study in a single company. Therefore, the
results can not be considered general. However, several aspects coincide with experiences from
other industry projects.

The participants were selected by a company insider. We invited to participate in the study
by giving several talks within the company. This introduces a self-selection bias, which we tried
to mitigate by selecting the volunteers according to their department and their position to obtain
a varied picture.

The section on guided adoption is limited to the practitioners’ perspective. Our scope was
to highlight the difficulties encountered from their perspective and we did not want to adopt the
position of an arbiter. Therefore, we did not contact the researchers of the previous collaboration.

5.5 Current research collaboration

Since the research adoption is still an active topic, the company agreed to participate in our study.
The motivation on their part was to reflect on the adoption attempts of their reuse strategy, to
evaluate the current state of how reuse is conducted across the different departments, and to
use this information as the basis for improvement strategies. Our goals were data collection for
a broader view on software reuse in current practice. In this case, the goals of industry and
research aligned rather well and the scope of the collaboration was clear and of little risk. Being

5.5. Current research collaboration 73

aware of the past research collaboration experience of this company, we invested strongly into
communication, transparency, and expectation management. We could establish a close link
between the company and research contacts, which keeps alive the cooperation and supports a
regular exchange of findings.

5.5.1 Research perspective

Establishing a trustful collaboration after a bad research adoption experience can be challenging.
The following points helped us to overcome most of the encountered obstacles:

Transparency of goals and scope: From a research perspective, we were transparent about
our goals and requirements with respect to results, publishing, and our position towards the
company. We clearly communicated our minimum deliverables for success. At the same time, we
carefully sourced the interests and agenda of the company stakeholders and clarified the expected
deliverables as well as the legal restrictions on our research. Together with company contacts,
we discussed the realizability of these goals and clarified potential legislative, moral, or scientific
objections.

Knowledge about the previous failure: In the context of initiating the collaboration, we inves-
tigated the history of previous research adoptions and research-industry collaborations to find
out when they took place, who was involved, which goals and results were achieved and which
issues were encountered. This prepared us for potential apprehensions and helped us to address
them whenever they surfaced.

Critical distance to research approaches: Lastly, we could gain trust by displaying a flexible
stance on our own research approaches. We reflected on the (implicit) preconditions that our
solutions presupposed e.g. on the tool level, infrastructure, culture, goals and mapped this to
the context of the specific company. In this way, we could reach a common understanding of
potential next steps for the collaboration.

5.5.2 Industry perspective

After two adoption attempts without satisfactory outcome, the company reflected thoroughly on
the weaknesses of their previous strategies. In the current adoption attempt, the company has
taken several measures to improve the process. The following aspects helped them to proceed:

Create organizational prerequisites: During reflection it became clear that the company did
not yet fulfil several of the prerequisites that were necessary for a successful research adoption. For
instance, the hierarchical communication structure was found to impair adoption: first, it caused
a local prioritization of efforts, which counter-acted the strategy. Second, the lack of exchange
between departments prevented the necessary distribution of knowledge and the homogenization
of processes. To mitigate these issues, the company instantiated cross-department exchange
forums for their technical experts. Via these forums, the company is guided through the changes
needed to prepare a successful adoption. Management also realized that the adoption process
needed a champion with decision power if the adoption process should be kept alive along every-

74 Chapter 5. A case study of software reuse adoption

day business. As a consequence, it provided the platform department with decision rights to
push measures necessary for adoption.

Building and instantiating a long term adoption strategy: To ensure a more successful adop-
tion, the company hired an expert that had significant experience in leading similar adoption
processes in larger software companies. The expert is now building up a concrete long term
strategy to ensure beneficial adoption. At the same time, the company entered another research
collaboration with the goal to obtain a complimentary and neutral viewpoint on the current
situation of the adoption process.

5.6 Summary and conclusions

In the chapter, we reported the experience of a company attempting to adopt a structured
reuse approach. We identified six assumptions that negatively impacted the adoption process
and discussed their implications. We interpreted the findings and derived lessons learned. In
particular, we found that selecting a suitable approach for the current context and given goals
was difficult since many factors need to be accounted for. In addition, the preconditions for
research approaches often remained unclear. We conclude that to execute a successful adoption,
companies need support on how to guide change to experience benefits in the long run.

Research collaborations can potentially help with the adoption process. However, in our
study we found that conflicts in short and long term goals as well as missing transparency of
expectations erode the trust needed for a successful collaboration.

Lastly, we detailed on aspects that helped our current research-industry cooperation to over-
come some of the challenges from researcher and practitioner perspective.

6 | Synthesizing the case studies

Decades of research have proposed reuse methods and techniques and partially studied their adop-
tion. Have these visions been successfully adopted in practice?

In this chapter, we take a first step towards an answer by comparing and integrating the
outcomes of the two in-depth empirical studies on software reuse presented in Chapters 4 and 5.
We conclude that in current practice: source code remains the only significant reusable, Inner
Source approaches can be adequate and successfully adopted on a large scale, and organizational
and technological heterogeneity significantly impairs adoption of any type of reuse transcending
clone-and-own. Parts of this work are published in [41].

Contents
6.1 Comparing reuse practices . 76

6.2 Study goal and research questions 76

6.3 Study design . 77

6.4 Analysis Methodology . 79

6.5 Study Results . 80

6.6 Discussion and relation to state of the art 87

6.7 Threats to validity . 95

6.8 Summary and conclusions . 96

75

76 Chapter 6. Synthesizing the case studies

6.1 Comparing reuse practices in two large

software-producing companies

To be able to support practitioners in experiencing successful reuse, we need to deepen our
understanding of the current state of reuse in practice. In addition, we need to integrate existing
evidence and investigate if reported issues of previous studies [5, 19, 117, 13, 21, 100, 22, 60, 81]
are still current in today’s professional software development.

The goal of this chapter is to take a first step towards this investigation. To this end,
we systematically integrate insights from two recent in-depth industrial case studies on reuse
practices. We compare their results and relate them to previous work with the aim to identify
open issues potentially relevant for a broader scope of companies.

Specifically, we compare observed reuse practices, effects and influence factors in two large
and diverse software producing companies (denoted as G and U in the following1). We collected
information from a total of 138 professional software developers by means of an extensive online
questionnaire (108 respondents) and interviews (30 participants, 35 hours of interviews). The
study at G precedes the study at U and was designed as an exploratory study on the state of
software reuse in practice. Based on the results at G, the study at U was designed to contrast the
outcomes for a different, yet more common, type of company and development context. These
differences in context also required an adaptation of the study design. Therefore, at U, we first
conducted the interviews to determine which topics of the first study were applicable. In a second
step, we rolled out the questionnaire.

In this study we present the result of our integration, detailing thoroughly on study design,
methodology, company contexts, and the respective findings.

Outline Section 6.2 lines out the study goal and derives our research questions. Sections 6.3
and 6.4 present the research design and methodology used for the integration of the studies pre-
sented in Chapters 3 to 5. Section 9.4.6 reports our results which are subsequently discussed and
related to previous research in Section 6.6. Section 6.7 details the limitations of the integration
before Section 6.8 proposes future work and concludes the Chapter.

6.2 Study goal and research questions

We compare software reuse implementations in two large companies: we look for commonalities
and differences in the way the companies perform reuse, on the problems and benefits experienced
and the factors which tend to inhibit or enable it. Formally, we define the study goal according
to [110]:

The goal of the study is to characterise reuse practices
for the purpose of comparing them

1Whilst the identity of Google is disclosed in [27], company U preferred to remain anonymous.

6.3. Study design 77

with respect to their realisation and effects
from the viewpoint of software professionals

in the context of two large software producing companies.

Effects refer to positive (benefits) and negative (difficulties) consequences of the presence or
absence of the effected reuse approach. From our goal, we derive two main research questions:

RQ1.Which reuse practices are applied in the two cases?: We assess which (and
to what extent) reuse practices and reuse activities are conducted and how they are supported
by tools and infrastructures. From our point of view, reuse practices refer to how reuse is
organised and implemented in a given company context. Consequently, the term encompasses
several aspects: the entities that are reused (namely knowledge and artefacts), the process that
is followed to create, obtain, and reuse them, as well as the way in which they are reused on the
technical level.

RQ2.What are the effects of the respective approaches reported by in the two
cases?: We investigate which problems and challenges occur in practice and capture the per-
ceived benefits of and the success factors for reuse. We are especially interested to see whether our
findings confirm the consensus of the literature, and whether the two companies report different
aspects.

6.3 Study design

6.3.1 Methodological differences

Although the two investigations presented above shared goals, research methods and research
questions, their implementation was not identical and, thus, necessitated methodological fine-
tuning to perform the comparison. The following paragraphs highlight the differences of the
cases and their consequences.

Timing. The investigation at G preceded the one at U and the comparison of the two studies
was not planned at that time. When designing case U, we built partially on results of case G,
including, e.g., items that were relevant as additional answer options in some questions (see, e.g.,
SFB3 in Table 6.2).

Study design. In case G, interviews and questionnaire phases were run simultaneously:
The questionnaire sourced information on a large scale, whilst the interviews delivered a high
level of detail to interpret the questionnaire. In case U, the interviews were conducted first.
They delivered a very detailed view of the reuse practices and served as a filter to tailor the
questionnaire to U’s context. As a result, some questions do not have a direct counterpart in
both studies (see, e.g., FAR3 in Table 6.2).

Scales. The scales used in the questionnaires differ: in case G questions could be answered
only by multiple choice and free text. In case U, a different approach was used: The responses
were given either on a four- or five-point Likert scale or as free text. For each question in U, we

78 Chapter 6. Synthesizing the case studies

report the question code, followed by a tuple (L<scale level 4 or 5>, <semantics of lowest bound
of scale>, <semantics of highest bound of scale>). Example: FAR1 (L4, never, always). Last,
the wording of the questions is not always identical2 (see e.g. question CHR1 in Table 6.2).

Diffusion. In G, 600 participants were randomly selected from a database of employees
and invited via personalized email. In U, due to legal restrictions, we were unable to invite
participants directly. Instead, we published a link in a company internal newsletter of the
development departments and an entry in a company internal developer news portal. In addition,
we invited our company contact and interview partners to spread the word.

6.3.2 Selected material for comparison

Tables 6.1 and 6.2 contain the questions we used for the comparison between the two cases.
They were selected since they had matching counter-parts in both studies. The response options
are reported in Section 9.4.6 (see Tables 12.3 and 12.4). To interpret and discuss the findings
(Section 10.5.2), we draw on parts of the interview data. Due to the differences reported above
(and verifiable also on the supplementary material and on Tables 6.1 and 6.2), we rely both
on reported guidelines to qualitatively compare case studies [118] and quantitative methods to
analyse and compare the surveys’ questions [119]: we report our analysis methodology in the
following section.

Table 6.1: Questions selected for comparison for RQ1

Question
ID

Question text U Question text G

Extent of code reuse (ECR)
ECR2 What type of functionality do you reuse and

which organisational unit provides it? — L5,
no use, always use

What type of functionality do you reuse?

ECR3 What is the scope of functionality that you
reuse? — L5, no use, always use

What is the scope of the reused artefacts?

Finding artefacts (FAR)
FAR1 How often do you use the following ways to find

reusable artefacts? — L4, never, always
What are your top-three ways to search for
reusable artefacts?

Reused artefacts (RAF)
RAF1 How often do you reuse the following artefacts?

— L4, never, always
Which are the top-three types of artefacts you
reuse?

RAF2 What are your sources for obtaining reusable
artefacts? — L4, never, always

What are your standard sources for reusable
artefacts?

Technical realization of reuse (TRR)
TRR1 How often do you use the following techniques

to realize reuse? — L4, does not apply, strongly
applies

Which of the following possibilities of reuse do
you employ most? Please indicate the top three.

TRR2 Which granularity do the reused entities have?
— L4, does not apply, strongly applies

What granularities do the reused entities typi-
cally have?

2Note that the questions in case U were originally expressed in German and translated for this work.

6.4. Analysis Methodology 79

Table 6.2: Questions selected for comparison for RQ2

Question
ID

Question text U Question text G

Challenges, effects, and context factors of reuse (CHR)
CHR1 How often do the following aspects negatively

impact reuse in your team? —L4, never, always
In your opinion, are there difficulties disrupting
the reuse process in your team?

CHR2 How often do potential disadvantages of reuse
occur in your project? —L4, never, always

In your opinion, are there problems caused by
reuse in your project?

CHR3 How often do the following problems occur due
to lack of reuse in your project? —L4, never,
always

In your opinion, are there problems caused by
the absence of reuse in your project?

Success factors and benefits (SFB)
SFB1 How often are the potential benefits of reuse re-

alized in your project? —L4, never, always
Which benefits of reuse do you experience in
your project?

SFB3 How important are the following factors to in-
crease the benefits from reuse? — L4, unimpor-
tant, very important

In your opinion, what would be the three most
important actions to make reuse beneficial in
your company?

SFB4 In your opinion, which factors contribute to suc-
cessful reuse projects in your company? — free
text

In your opinion, what are the three most impor-
tant key factors to make reuse beneficial in your
company?

Reuse in everyday development practice (RED)
RED1 How much do you agree with the following state-

ment* on reuse on your daily work? — L4, does
not apply, strongly applies

not present in G, taken from Reuse failure
modes, Frakes and Fox [1].

RED4 How much do the following statements* regard-
ing the implementation of reuse apply to your
organizational unit? — L4, does not apply,
strongly applies

not present in G, taken from the organizational
part of reuse maturity models, e.g. [120].

Finding artefacts (FAR)
FAR3 How much do the following statements* apply

regarding the accessibility and modifiability of
company internal source code? — L4, does not
apply, strongly applies

Success factor derived from G [27].

*

The statements are reported in the Appendix Table 12.4 next to the respective question code.

6.4 Analysis Methodology

From the analysis methodology perspective, the different scales are the most relevant issue for
the comparison. We address it by applying an aggregation on the Likert scales of U and a scale
conversion procedure to answers from survey G to make them fully comparable with those of
survey U. Subsequently, we apply regular hypothesis testing. To explain why data conversion
was needed we will refer as example to the question on RAF1 from Table 6.1.

On survey U, the question RAF1 was formulated on the following way: How often do you
reuse the following artefacts? Participants could select on a 4 points Likert scale the frequency
of usage of that item (values: never, occasionally, regularly, always). We aggregate answers
on points 3 and 4 and label them Category H: regular or high usage. Similarly, we aggregate
answers on points 1 and 2 and label them as Category L: irrelevant or low usage. Table 12.2 in
the Appendix provides the aggregations used for the other scales types.

On survey G, question RAF1 was formulated differently: Which are the top-three types of
artefacts you reuse? For such type of questions participants could select up to three items,
for others they did not have any limit. However, this was not enforced by the software: as a

80 Chapter 6. Synthesizing the case studies

consequence, some participants could exceeded the number of available choices and selected up
to four items, however most participants selected only one or two options3. Thus we believe
it is reasonable to apply the following conversion procedure to make the answers of survey G
comparable to those of survey U:

• We compute for each item the frequency of selection assuming that such a selection is
equivalent to Category H regular or high usage: in fact participants are asked to select the
top three used artefacts.

• Accordingly, we assume that when the item is not selected, this is equivalent to Category L
irrelevant or low usage : we are confident that this is a quite straightforward assumption,
because enforcement on the three options was not applied and some participants in fact
exceed that number of selected options.

With such conversion the data structure is identical to that of survey U, where for each
item a contingency table is assigned. Therefore, we apply the χ2 test [119] on each of the
resulting contingency tables to check whether the proportions in H and L differ significantly
(with α = 0.05). If the test is rejected (i.e. pvalue ≤ 0.05) then we assign usage of item i to the
category H or L, depending on which has the highest number of answers. When interpreting the
findings of our analysis, we relate the statistical analysis to the findings of the interviews.

6.5 Study Results

Figures 6.4 to 6.5 summarize the study results for RQ1, Figures 6.6 to 6.7 for RQ2. Figure 6.2
explains how to read the graphical representation. For each item, the statistical significance of
the answer tendency according to the χ2 test (low or high relevance or likelihood) is represented.
Rectangles denote statistical significance for the respective item, full circles denote an inconclusive
answer (due to an even distribution or a non-significant skew), empty circles denote missing data.
The underlying statistical data is available in the Appendix, Tables 12.3 and 12.4.

Figure 6.1 represents synthetically the main findings:
We found that reuse in both companies focused mainly on one artefact type, i.e. source code,

thus not leveraging further reuse possibilities proposed by state of the art techniques. In the
presence of an elaborate development tool-support and a quality-gated central repository, this
infrastructure is more relevant for access and retrieval than personal contact (and can be seen as
an instance of a successful reuse repository implementation); without this infrastructure, personal
recommendations and contacts are important for pointers and access to potential solutions.

We found clear benefits (in terms of development speed and less maintenance efforts) when
software reuse was effected in a homogeneous, ad-hoc, tool-supported way, and at a comparatively
high level of granularity. In contrast, benefits did not materialise when reuse was effected in a

3This applies to all questions affected by this issue, i.e.: FAR1, RAF1, TRR1 from Table 6.1, and SFB3 and
SFB4 from Table 6.2. For the latter two, categories H and L are not about high or low frequency, but concern
high or low relevance.

6.5. Study Results 81

Autonomous

Development process
 and culture

Homogeneous,
inner sourceHeterogeneous

Development
 infrastracture

Centralised and
accessible

Local with
fragmented

access

Beneficial effects

Company U Company G
D

ev
el

op
m

en
t c

on
te

xt
R

eu
se

Higher
development

pace

Less
maintenance

effort

Realization
On demand
automatic
retrieval

Departments

Scope Company-wideDepartment-
wide

Unclear

Drawbacks Dependencies

Personal
contact

Figure 6.1: Summary of results, according to authors’ data analysis and interpretation.

heterogeneous way, and tool support was mostly absent. In both cases, these characteristics
reflected the development process and culture of the company.

Finally, we can report some improvements in terms of reuse implementation due to technical
advances, as well as one instance of inner source practices that enabled reuse. However, many
of the organizational challenges remain and need to be addressed in order to establish reuse
approaches that are beneficial to companies.

82 Chapter 6. Synthesizing the case studies

RAF1

Requirement
documentation / Use
cases.

Personas.

UI Designs.

Style guides.

Architecture
documentation.

Informal design
models (Box and
lines, natural
language).

Semiformal design
models (UML).

Formal design
models.

Own, domain specific
design models.

Code in binary form.

Source code.

Prototypes.

System tests.

Unit-Tests.

Other.

O
ther

RE
Design and Architecture

Im
plem

entation
Test

Case U,
not significant

Item 1

Item 2

Item 3

Low High
Case U,

significant,
low

Case G,
no data

Figure 6.2: Example of the graphical representation of the results.

FAR1

Communicating with
colleagues.

Web search.

Browsing repositories.

Browsing
documentation.

Tutorials.

Code search tools.

Code completion.

Code recommenders.

Other.

None
O

ther
Developm

ent support
Reuse support

RAF2

Developer Portals.

Open Source
Repositories.

Commercial
repositories.

Internal repositories.

Colleagues own
department.

Colleagues.

External Sources
Internal Sources

Low High Low High

Figure 6.3: RQ1 - Sources of reusable entities and way of access, questions FAR1 and RAF2.

6.5. Study Results 83

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

RAF1

Requirement
documentation / Use
cases.

Personas.

UI Designs.

Style guides.

Architecture
documentation.

Informal design
models (Box and
lines, natural
language).

Semiformal design
models (UML).

Formal design
models.

Own, domain specific
design models.

Code in binary form.

Source code.

Prototypes.

System tests.

Unit-Tests.

Other.

O
ther

RE
Design and Architecture

Im
plem

entation
Test

RAF1

Requirement
documentation / Use
cases.

Personas.

UI Designs.

Style guides.

Architecture
documentation.

Informal design
models (Box and
lines, natural
language).

Semiformal design
models (UML).

Formal design
models.

Own, domain specific
design models.

Code in binary form.

Source code.

Prototypes.

System tests.

Unit-Tests.

Other.

O
ther

RE
Design and Architecture

Im
plem

entation
Test

Low High Low High

Figure 6.4: RQ1 - Reused entities, question RAF1.

84 Chapter 6. Synthesizing the case studies

TRR1

Code scavenging
(copy, paste, modify).

Software libraries.

Software frameworks.

Component-based
development.

Design patterns.

Architecture reuse.

Product lines.

Application
generators.

Code generators

None.

TRR2

Small code sections.

Fine-grained, such as
single
methods/functions.

One or more classes.

Complete libraries.

Coarse-grained, such
as entire frameworks.

Low High Low High

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

Figure 6.5: RQ1 - Technical realization of reuse, questions TRR1 and TRR2.

6.5. Study Results 85

CHR1

"Not invented here"
phenomenon.

Licensing/legal
issues.

Difficulty of adapting
artefact to project
needs.

Inconvenient
granularity of
reusable artefacts.

Process for clearance
of external artefacts
is too slow.

Coordination effort
with other divisions.

Finding the right
artefacts is difficult.

Accessing the
artefact is difficult.

Other.

CHR2

Loss of control.

Dependency
explosion.

Performance decay.

Decrease of code
understandability.

Ripple effects caused
by changes in reused
artefacts.

Code becomes
unchangeable.

Excessive restriction
of the solution space.

 No.

Other.

Low High Low High

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

Figure 6.6: RQ2 - Inhibitors to reuse and issues due to reuse, questions CHR1 and CHR2.

86 Chapter 6. Synthesizing the case studies

CHR3

Inconsistencies.

High maintenance
effort.

Increased
development effort.

High testing load.

Lower code quality.

Duplicate
implementations.

SFB1

Less maintenance
effort.

Higher consistency.

New functionality is
made available.

Higher code quality.

Higher development
pace.

Regular bug fixes.

None.

Other.

Low High Low High

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

Figure 6.7: RQ2 - Issues of absence of reuse and benefits of reuse, questions CHR3 and SFB1.

6.6. Discussion and relation to state of the art 87

6.6 Discussion and relation to state of the art

In this section, we discuss and interpret the findings of the data comparison for each research
question, providing explanations thanks to the material of the interviews. In addition, we relate
the results to the positions found in the literature4.

We structure the paragraphs as follows: Comparison agreement (i.e. aspects in common
between the two companies, according to the methodology applied to analyse the results), com-
parison differences (i.e. diverging aspects in the two companies, according to the methodology
applied to analyse the results), interview data (if appropriate), interpretation of the findings, re-
lated literature in support or that contrast the findings. The id’s reported with the questionnaire
items refer to their label in the respective data table given in the context of each RQ.

6.6.1 RQ1 — Comparing reuse practices

The survey questions related to this research question are reported in Table 6.1. See Table 12.3
for the responses, as well as the comparison and statistical values.

Reused artefacts (RAF1, Figure 6.4)
Comparison agreement: According to question RAF1 (L4, never, always), we observe that in

both cases the majority of potentially reusable artefacts are not reused. In particular, no artefacts
from the Requirement Engineering, Design and Architecture, and Test and Deployment phases
are reused.

Comparison differences: In case G, source code (id=25) is the only response of statistical
high relevance. In contrast, in case U no artefact is reused frequently with statistical significance
(however the responses indicate that about half of respondents reuse source code (id=25) and
style guides (id=34)).

Interview data: The interview data reflects the findings of the questionnaire: Source code is
the clear reusable entity in G and also mentioned frequently as reusable in U.

Interpretation: These findings indicate that much of the potential for reuse is unleveraged in
the two companies. Literature proposes reuse on a much wider scale from models to requirements
(see, e.g., [2, 121, 122]). Reasons for this might be that artefacts of earlier development stages
are not available, accessible, or considered useful.

Related literature: When comparing these findings to the ones reported by [13], we see that
this focus tends to be typical for companies with a loose reuse approach. In companies aiming
for a more advanced reuse approach, despite lacking the prerequisites in terms of process and
tool support, ad-hoc code reuse is used as best effort to create, e.g., SPLs [60]. Our findings

4For the selection of studies, we started out from well-known sources, such as textbooks (e.g. [5]) and journal
summary papers on reuse adoption and results in practice (e.g. [21]) as well as reports on research projects (e.g. the
REBOOT [19] and ESPRIT [117] projects) on industrial accounts on reuse and manually followed the references,
as well as searching the citing papers. In addition, we searched the last 10 years of proceedings of the main venue
ICSR for current publications related to reuse in practice (e.g. [100, 22]). Additionally, we included known papers
from different venues that contribute to the question (e.g. [60]). Lastly, we performed an unstructured search on
Google scholar to find articles related to software reuse and adoption and practice (e.g. [81]).

88 Chapter 6. Synthesizing the case studies

on U supports this observation. Also a more recent on-line survey [81] confirms the presence of
ad-hoc code reuse. Furthermore, it reports moderate reuse of requirements, which, however, we
can not confirm in our two cases.

Extent of code reuse (ECR2 and ECR3)
Comparison agreement: The results for questions ECR2 and ECR3 (L5, no use, always use)

show that domain-independent general purpose functionality (id=9) are highly relevant with
statistical significance in both companies.

Comparison differences: In case G, product-specific functionality (id=11) are excluded as
extent of code reuse. In contrast, in case U, although not in a significant way, domain-specific
(id=10) and product specific functionality are mentioned by more then half of respondents, with
all types of functionality highly reused (from id=1 to id=8).

Interview data: For case G, interviews confirm a core of basic functionality, on which systems
are built. For case U, interviews report of a reuse approach that is arranged along multiple layers
of general purpose functionality, but also domain specific reusable entities. Considerable leeway
is given to single departments with respect to their local design decisions.

Interpretation: In U, reuse of more specialised functionality might indicate an opportunity
for a more structured tight reuse approach, e.g., in the form of a product line.

Related literature: In literature, reuse of utility functionality is well covered, especially in the
form of Open Source libraries and frameworks [12, 22]. In commercial scenarios, product line and
component-based approaches suggest a similar behavior [8]. Work on Inner Source, furthermore,
suggests that well defined domain specific functionality can be a suitable and valuable entity for
reuse [23].

Finding and accessing reusables (FAR1, Figure 6.3)
Comparison agreement: In both cases, the results for questions FAR1 (L4, never, always) show

that a number of retrieval options are currently considered irrelevant with statistical significance:
code recommenders (id=16), browsing documentation (id=17), and tutorials (id=18). Web search
(id=12) is reported in both cases by about half respondents, yet not significant.

Comparison differences: For case U, communicating with colleagues is the most important
(and the only significant) way to find reusable artefacts. In contrast, within G code search tools
are in this position, while considered irrelevant in company U.

Interview data: The interviews in G confirm the high usage of the code search tools, but also
stress the communication (synchronously and asynchronously) and trust among engineers. In U,
interviews as well as one of the answers to FAR3 (L4, does not apply, strongly applies), indicate
that code available in U can not readily be searched and accessed across departments. Therefore,
retrieval and accessibility are limited by lack of technical infrastructure.

Furthermore, in both interview rounds, the concepts of reuse producers and reuse consumers
emerged: in case G, due to the development process and infrastructure, all developers assume
both roles, drawing on, as well as feeding into, a global pool of reusables; in U, on the contrary,
the producer role is limited locally, because a dedicated group of developers takes care of the
common platform, whereas the remaining developers provide reusable code either within their
departments or not at all.

6.6. Discussion and relation to state of the art 89

Interpretation: These findings highlight the importance of three enabling factors of reuse:
trust between colleagues, automated support for artefact retrieval, and technical accessibility of
artefacts. In the absence of infrastructure, personal communication is crucial with the disadvan-
tages of being slow and costly. Communication is still important in the presence of infrastructure;
however, it is more concerned with the goal of clarification. The key access point shifts to the
tool support asynchronously available to each developer.

Despite the reliance on tools, reactive support systems are not yet widely used to improve
reuse.

Related literature: The mentioned enabling factors are, amongst others, considered precon-
ditions for the so-called Inner Source approach [23], as well as the development of SPLs [8].
Technical support, such as code recommenders (id=16) are one example of research that should
contribute to these three aspects [90] and might, in principle, target the right goals; however, these
tools are not yet used widely (only one respondent per case declared to use them). This could
be an indication that from a research perspective, more work needs to be done to adapt research
work to the reality of practitioners, especially in terms of usability and scalability [123, 124].

Sources of artefacts (RAF2, Figure 6.3)

On the item level, we observe no agreement for question RAF2 (L4, never, always). However,
there is a tendency in both cases towards company-internal artefact sources.

Comparison differences: The only statistically significant source in case G is that of internal
repositories (id=37). In U, all but one source (colleagues from own department, id=39), are of
low usage.

Interview data: In G, interviews further stress the importance of the central repository for
reuse success.

In U, interview data indicates that, in the absence of technical access, one of the main sources
of reusable artefacts might be the code that developers have previously written themselves. Also,
the fact that developers stay in their department for many years and acquire specialist knowledge
might impact their willingness to rely on and trust the work of others.

Participants from both companies mentioned the business and legal risks of reuse across
company borders. Licensing was mentioned as significant inhibitor to reusing Open Source code,
and the reliability and robustness of an external commercial software provider as high risk to
reusing proprietary reusables.

Interpretation: In the case of G, the internal infrastructure and repository seem to provide
adequate support for reuse across the company. In U, this kind of reuse is hampered by a
combination of specialist knowledge and organizational and technical separation.

In both cases, internal sources preferred over external ones due to the potential risks entailed
to the latter.

Related literature: Whilst the web is considered a huge repository in literature [12], this
is scarcely reflected in the context of both companies: legal restrictions, security policies, and
domain specificity prevent a significant exchange of reusable artefacts across company boundaries.
Access to reusable entities is, thus, mediated by personal networks of developers. In addition,

90 Chapter 6. Synthesizing the case studies

we can confirm that the potential risks imposed by dependencies on third parties [34] impact the
decision of companies with respect to third-party reuse.

Technical reuse realization (TRR1 and TRR2, Figure 6.5)

Comparison agreement: For question TRR1 (L4, does not apply, strongly applies), in both
cases code scavenging (id=42), component-based development (id=45), architecture reuse (id=47),
product lines (id=48), and application generators (id=49) are not considered relevant.

Comparison differences: In case U, all offered ways to technically realize reuse are marked
as not relevant with statistical significance. In case G, realising reuse by means of software
libraries (id=43) is of statistically significant high relevance.

Interview data: In case G, the interview data is largely consistent with the survey, although
some instances of code scavenging were mentioned. For U, in contrast to the survey, the interview
data suggests application of code scavenging (id=42), as well as some libraries (id=43) and
framework-based reuse (id=44) (see also question TRR2).

IP and RL: see TRR2

Comparison agreement: Question TRR2 (L4, never, always) addresses the granularity of the
reused artefacts. There is no common findings between the cases.

Comparison differences: Complete libraries (id = 55) are of high relevance in case G. In con-
trast, reuse in case U takes place on all levels of granularity, however, none of the corresponding
answer is statistically more relevant than the other.

Interview data: -

Interpretation: Generally, G realizes reuse homogeneously on a higher abstraction level than
U, where reuse is effected in a very heterogeneous way. Furthermore, the selection for U indicates
a conflict to the results of the interviews and the responses of TRR1: reusing small code entities
(snippets and single classes) suggests the presence of code scavenging. However, it is possible
that the respondents do not have a strong preference for any of the reuse methods or do generally
not reuse code as much (see RAF1).

Related literature: The realisation of reuse reported in case U aligns with the findings of
Fichman and Kemerer [18]: in a study with 15 software developing teams, they found that reuse
was prevalent on an informal, local, scope but neglected on an inter-project, systematic, level.
The authors identified as root cause to the failure an incentive conflict with respect to team
priorities such as completing a project on time and on budget. The case of U, furthermore, also
confirms findings by Dubinski et al. [60]: in the absence of supporting technical infrastructure and
processes, developers resort to primitive reuse mechanisms to model complex reuse approaches.

Work on Inner Source highlights the pivotal role of technical infrastructure for reuse, especially
when effected in a loose and ad-hoc way [23]. Case G confirms these findings: reuse is conducted
in an informal and ad-hoc way. However, supported by an advanced infrastructure (that required
significant resources and management commitment, confirming findings of, e.g., [13, 80]), a viable
company-wide development process, and suitable organizational incentives, reuse takes place in
a large scale and across project boundaries.

Summary of RQ1

6.6. Discussion and relation to state of the art 91

Case G exhibits a homogeneous approach to reuse, progressing in an inner source style that
allows for ad-hoc and opportunity driven development. Case U exhibits a very heterogeneous
approach in which many different styles co-exist. From this perspective, both companies reflect
their development processes in the way they effect reuse.

Both cases focus on code reuse (G in the form of libraries, U with no predominant granular-
ity). This entails that the large potential present in additional development artefacts remains
unleveraged. The frequent reuse of general purpose functionality is confirmed.

Automated and tool-supported access to and retrieval of reusables is considered as key factor
for effective reuse. In G, the impact of the infrastructure clearly shows in the finding and
retrieving actions of reuse. In U, their absence restricts reuse to a local scope.

In both cases, the sources of reusables are mainly within the companies. The reported reasons
for this were business risks in terms of security or robustness of the provider, as well as licensing
aspects.

6.6.2 RQ2 — Comparing effects and context factors

The questions relevant for this RQ are reported in Table 6.2. The responses, the comparison,
and the statistical values are reported in Table 12.4.

Inhibitors (CHR1, Figure 6.6)
Comparison agreement: Question CHR1 (L4, never, always) reports disrupting factors to the

reuse process. There is no statistically significant inhibitor of high relevance. Respondents in
both cases agree that Inconvenient granularity of reusable artefact (id=60) does impact them.

Comparison differences: The "not invented here" phenomenon (id=57) is reported little and
is rated as irrelevant in case U. Questions FAR3 and RED15 (both: L4, does not apply, strongly
applies) indicate that difficulties in retrieving and accessing artefacts significantly disrupt the
reuse process in U.

Interview data: At G, participants report the perceived ease of creating needed functionality
from scratch over understanding existing solutions as inhibitor. Also, they mention the consid-
erable (cognitive) effort involved in selecting suitable candidates from a plethora of potential
results.

In U, the interviews disclose a further inhibitors to reuse: organizational and technical sep-
aration of departments, as well as the absence of a thorough global reuse strategy that takes
into account different life cycle characteristics of system parts. This leads to the creation of
unsuitable artefacts6.

Interpretation and related literature: At G, the reported negative connotation with the re-
quired cognitive effort for selection and adaptation could be seen as a more subtle instance of
the "not invented here" (NIH) syndrome [87]. At U, the difficulties in access across project

5Due to differences in the questionnaires, some of the items present in CHR1 for case G are contained in FAR3
and RED1 in case U. Therefore, we include them in this paragraph.

6Unsuitable, e.g., on the conceptual level by incompatible abstractions and decompositions that increase the
effort of reusing artefacts, but also on the business level, causing significant investments in low-return artefacts
and eroding management trust.

92 Chapter 6. Synthesizing the case studies

boundaries are one of the main inhibitors to reuse, aligning with the observations of [60]. The
lack of availability of reusables provided by other parties could, potentially, explain the perceived
absence of NIH.

Difficulties due to reuse (CHR2, Figure 6.6)
Comparison agreement: Question CHR2 (L4, never, always) reports on difficulties encoun-

tered due to reuse. None of the presented options was of high frequency with statistical signifi-
cance, nor did the respondents highlight significant other issues. The only difficulty in common
in both cases, but not in a statistically significant way, is that of dependency explosion (id=67).

Comparison differences: In case G around one third of the respondents reported ripple effects
caused by changes in reused artefacts (id=70) and a decrease in code understandability (id=69)
as negative consequences of reuse (no statistical significance).

Interview data: In G, the complexity of the technical dependency structure was considered
a challenge, however mitigated by the infrastructure and offset by the experienced gains. In U,
participants mentioned a variety of harmful dependencies that they linked to negative aspects of
reuse: technical ones (e.g. unstable interfaces, versioning dependencies), as well as organizational
ones (e.g. diverging release cycles, delays due to coordination efforts).

Interpretation: Difficulties around reuse arise on several levels ranging from technical to
organizational. In the context of organizational heterogeneity, non-technical dependencies impose
a variety of challenges that inhibit beneficial reuse.

Related literature: Previous work suggests that additional rework due to reuse might not
be a significant overhead [79]. Also, organizational heterogeneity is known as a challenge in
the context of establishing development practices exceeding the scope of separate organizational
entities [23]. Our findings support both of these suggestions.

Difficulties due to lack of reuse (CHR3, Figure 6.7)
Comparison agreement: Question CHR3 (L4, never, always) reports the negative conse-

quences due to the lack of reuse. Both cases report regular occurrences7 of inconsisten-
cies (id=75), high maintenance effort (id=76), and increased development effort (id=77).

Comparison differences: The only factor of significant relevance in case G is the occurrence
of duplicate implementations (id=80). In U, no factor is of statistical significance.

Interview data: The item duplicate implementations is missing in case U; however, the inter-
views indicate multiple instances of this issue. In both cases, unwanted redundancies were not
yet tracked systematically (or tracked at all).

Interpretation: Both companies to some degree incur the typical drawbacks associated with
lack of reuse. However, the only aspect of significance is the one of duplicate implementations
(which, arguably, entails some of the other drawbacks).

Related literature: Research has been addressing discovering and tracking redundancies in
the form of code clones [125, 126, 63] and re-implementations [127, 39, 40]. At this point, several
industrial tools exist that support structural (as opposed to semantic) detection approaches on
an industrially viable scale [128]. Therefore, this issue might be mitigated within a reasonable
timeframe.

7Around 50% of the participants report these occurrences; however, they are not statistically significant.

6.6. Discussion and relation to state of the art 93

Benefits (SBF1, Figure 6.7)
Comparison agreement: For question SBF1 (L4, never, always), there is no statistically

significant agreement.
Comparison differences: Only case G reports statistically significant high occurrences of the

benefits higher development pace (id=104) and less maintenance effort (id=100).
Interview data: Participants in case G consider their reuse realisation as beneficial, i.e. ful-

filling the goals behind their reuse approach. In case U, participants indicate that the aimed-for
benefits of the given reuse strategy have not yet materialized as expected.

Related literature & Interpretation: Generally, improved code quality is one of the benefits
associated with reuse [3]. We could not directly confirm this in our studies: In case G, participants
already considered the produced artefacts as high quality and, thus, would not attribute this
characteristic to reuse in particular. Instead, they considered their code quality as one of the
main enablers of reuse. On the other hand, for G, we can confirm the gain in development
speed [79, 80] and the decrease in maintenance effort [8].

In case U, the heterogeneity of development did not allow a clear assessment of the quality of
the reused code. With respect to development speed and maintenance effort, our data provided
no clear results.

Success factors (SBF4)
Comparison agreement: Question SBF4 was multiple choice in case G and free text in case

U. Therefore, we can not provide a comparison based on our statistic test, but instead report
the findings for each case separately.

Comparison differences: Respondents in case G report two statistically significant rel-
evant success factors: the high quality of artefacts (id=132) and supporting infrastructure
and tools (id=134)8. More than 50% of the respondents also mentioned adequate abstrac-
tions (id=129) as success factor. The remaining options (direct communication culture (id=130),
suitable incentives (id=131), well-defined process for reuse (id=133), stricter rules for depen-
dency management (id=135), homogeneous development culture (id=136)) for success factors
were reported as significant and low relevance9.

In the case U, the free text responses reflected a negative tendency. However, we added
the success factors from case G as potential improvements for case U (question SFB3 — L4,
unimportant, important). All but two of these factors were reported as significant and high
relevance by the respondents of case U.

Interview data: The interviews in G indicate that the accessibility of artefacts as well as
the "safety net" and immediate feedback provided by an extensive tool support increase the
inclination to build on existing solutions. In addition, automation is seen as the only feasible
way to draw reusable artefacts from a large code base. Last, the benefits were tangible to

8Since the difference between these two answers is only one response, we consider the second item also as
highly relevant.

9Note that the respective question in case G asks for the top 3 success factors, but this was not enforced by the
software. As a result, most participants selected only one or two options, whilst others exceeded the number and
selected up to four items. Since for this question none of the other options approaches even moderate frequency,
the ranking seems comparable to the frequencies in U.

94 Chapter 6. Synthesizing the case studies

developers. This further motivated them to reuse during development. In U, the interview
participants stress the negative effects of the heterogeneous development culture. As a result,
they saw the need for one or more reuse champions that lobby a homogeneous development and
reuse strategy across departments.

Interpretation: We consider this a noteworthy finding, as it indicates that developers are
more willing to trust existing artefacts if they can thoroughly inspect and validate them, and
they have faith in the process (and quality assurance) by which those artefacts were created.
In addition, the potential improvements at U indicate the need for changes in the reuse and
development processes.

Related literature: Parts of these findings coincide with literature: Kruger [2] considers ab-
straction the "essential feature of any reuse technique" and stresses the importance of an "in-
tegration framework" for reuse. Joss [84] reports management support, education of engineers,
suitable incentives, tool support10 as relevant success factors for introducing structured reuse.
Several studies (e.g. [13, 70]) suggest that, besides conceptual difficulties, the adoption of a reuse
approach is significantly driven or inhibited by the organisational commitment towards the adop-
tion process. Whilst in case G the most significant reported success factors were of technical
nature (indirectly enabled by the organization), the results also align with [52], reporting the
belief in benefits as motivator and success factor for reuse. In case U, the most important im-
provements included the mentioned organisational aspects. In terms of the definitions of reuse
maturity and "good" reuse stated in the literature (see [120] for an exemplary reuse maturity
model), case G challenges conventional academic assumptions: Whilst reuse is ingrained in the
organisation, thorough planning and formal reuse assessment are not. However, due to their
trust in their code and engineering quality, as well as their elaborate development support in-
frastructure, developers at G implemented a beneficial version of opportunistic ad-hoc reuse that
matches exactly the company goals.

Summary of RQ2

For this research question, we found no statistically significant inhibitors or negative effects.
However, technical incompatibilities and organizational heterogeneity as well as dependencies
were identified as factors challenging beneficial reuse. Furthermore, participants in G report the
challenge of identifying the right reusables from a large number of candidates and adapting them
to meet current needs.

In terms of difficulties encountered due to lack of reuse, both cases agree on occurrences of
duplicate implementations.

In the homogeneous and tool-supported context of G, a significant increase in development
speed and a significant decrease of maintenance efforts are reported as benefits of reuse. In U,
these effects have not been observed.

10It might be noteworthy to consider the differences in "tool support" w.r.t. the drastic advances of the
technologies and paradigms used for programming and reuse. In a component repository, as e.g. proposed by
the REBOOT approach in the 1990s (see [5, 19]), this relates to a basic protocol for repository and configuration
management, whilst in today’s setting, this refers to advanced code search and recommendation systems, central
build and testing infrastructure etc. (see e.g. [27])

6.7. Threats to validity 95

In G, the quality of the reusables and the supporting infrastructure are seen as clear success
factors. Participants in U considered a tight network of personal connections across departments
and reuse champions as crucial preconditions to successful reuse adoption.

6.7 Threats to validity

When studying development practices in specific companies, it is very challenging to generalise
results even to contextually similar companies. Our study is not immune to this threat to the
external validity, however we provided a detailed contextualisation of the two companies, which
should serve as a framework for further studies to compare findings with ours. In the long run,
such a contextualisation framework should help to provide a sensible generalisability of results.
Regarding the internal threats, we identify three main issues:

Self-selection bias: The participation in our studies was optional and might have led to a
biased selection of participants: in case G, most participants of interviews and questionnaire
displayed a favorable attitude towards reuse, so it is possible that only engineers considering
reuse as beneficial volunteered to take part. In case U, on the contrary, a significant number
of participants vented their disappointment with the current state of reuse. In addition, the
departments that, during the interviews, appeared least concerned with improvements did not
participate at all in the questionnaire. To mitigate this threat, we attempted to select our
interview participants in both cases from as many departments and as many different positions
on reuse as possible.

Selection of participants: For each study, the participants of the interviews were sampled by
convenience through personal contact in the respective company. This might have introduced a
bias in the results. To mitigate this threat, we sampled the interview participants from different
organizational units and different roles. We could not control the selection of the questionnaire
participants. In case G, the respondents matched the expected distribution of departments. In
case U, several departments did not contribute.

Heterogeneity of sample: The sample of the participants of the two studies differs in terms of
the time spent at the respective company. This could potentially influence the knowledge of reuse
practices and, thus, bias the responses. This sampling difference follows from two characteristics
in which the studied companies differ: age of the company (G < 20 years, U > 50 years) and
turnover of staff on projects (at G, developers moved between projects frequently, whilst at
U staying with the same products for more than 10 years was not uncommon). However, we
believe that this does not affect our findings: first, at G, reuse practices are homogeneous and
streamlined with the development process. Newcomers are trained extensively to adhere to the
given development practices (including the reuse practices). Therefore, we are confident that our
participants at G were fully familiar with and aware of the reuse practices at their company.

Limitations of research methods: Our interpretation of the answers from the questionnaire
at G rely on the assumption that non-selected items in multiple choice questions are considered
equivalent to rate those options as irrelevant or of low usage. This assumption might not be
completely true for questions in which participants were asked to select up to three items. How-

96 Chapter 6. Synthesizing the case studies

ever, the exact number of selected items was not software-enforced. As a result, respondents
typically selected between one and three items and sometimes exceeded the number and selected
four items or more. At U, the questionnaire design prevented this complication.

Subjectivity in responses: When designing the questionnaires, we aimed to capture the re-
sponses by means of precise measures. However, as we frequently asked participants about their
experiences (e.g. on the perceived maintenance effort without reuse) and their agreement, we
could not assume that they were equipped with the necessary tooling to provide objective mea-
surements as responses. As a result, we resorted to more abstract, yet subjective, answer options
(e.g. high, medium, low). Whilst these can only provide a tendency, this is a typical procedure
for this kind of study (see, e.g., [80]) and, nevertheless, captures the perceived benefits/draw-
backs of reuse in the respective cases. We, therefore, consider this aspect a minor threat to the
validity of our conclusions.

Study design: As mentioned in Section 3.2, the study setup differs between the two cases:
in case G, interviews were conducted during the same phase as the questionnaire. In case
U, the interviews preceded the questionnaire. In this way, we could focus the content of the
questionnaire and reduce it in size. We consider the change in design a minor threat to validity
of our conclusions, as we retained the questions needed for the comparison.

Timeliness of second study: Despite our best efforts, the studies could not be conducted in a
more narrow timeframe. However, we consider the impact of this delay as minor for the following
reasons: The company studied in the first case is still developing in the same way (Inner Source),
focussing on code reuse and trying to compensate drawbacks of the approach by more elaborate
tool support. Since the company is stable and continuous in their approach, the data is still
accurate. Therefore, we assume that the comparison is valid from this perspective.

6.8 Summary and conclusions

In this study, we reported on the comparison of two in-depth case studies on software reuse in
industrial practice, integrating data from 138 professional developers of two companies, G and U.

The comparison highlights that reuse in practice occurs pragmatically in different flavours,
however, mostly limited to source code. The technological potential has been partially embraced,
rendering operational once infeasible approaches, such as repositories as source for reusable
entities.

Successful reuse is tightly coupled to the company goals and ingrained in the development
culture, also in terms of management and tool support. Perceived business success of reuse seems
more determined by coherence between culture and approach than by the structuredness of the
adopted approach.

In the homogeneous and coherent reuse setting, clear benefits for development and mainte-
nance are reported. These benefits did not materialize in the heterogeneous setting.

Establishing any kind of systematic reuse in heterogeneous company and development con-
texts poses significant challenges and requires structured decision support. Further work is needed

6.8. Summary and conclusions 97

to support companies in heterogeneous contexts to identify and install the required preconditions
of suitable reuse approaches.

Part III

Guiding strategic reuse decisions in
practice

99

7 | A pragmatic model for guiding
reuse adoption in practice

Fragmented research and lacking guidance pose a significant challenge for practitioners aiming
to select a suitable reuse approach or to improve their current practices. The resulting lack of
understanding, resources, and planning often leads to a failure of reuse adoption. The work of
this chapter aims to counteract this phenomenon by presenting a pragmatic model for guiding
strategic reuse decisions.

Contents
7.1 Guiding reuse adoption in practice 102

7.2 Reuse adoption support model . 103

7.3 Model overview . 103

7.4 Structure of intent . 104

7.5 Structure of the reuse facets . 105

7.6 Application of RASM . 114

7.7 Justification . 115

7.8 Company Reuse Placement . 118

7.9 Summary . 121

101

102 Chapter 7. A pragmatic model for guiding reuse adoption in practice

7.1 Guiding reuse adoption in practice

As literature [13, 83] as well as the results presented in Chapter 5 suggest, underestimation of
required adoption efforts, as well as inadequate combinations of reuse approach and company
context, are two of the influence factors most detrimental to the success of any reuse adoption.
Many other negative consequences, e.g., lacking support of management, unwillingness to provide
the required human and technical resources, and overestimation of benefits, follow from these
factors.

Whilst research has provided a multitude of reuse maturity [129, 130, 131] and reference
models (e.g., [53]), they tend to focus on abstract organizational criteria and, frequently, only
implicitly suggest which kind of reuse adoption compliance with their models will facilitate.
Consequentially, concrete preconditions for different reuse approaches also remain obscure to
practitioners. In addition, most of the proposed models lack empirical validation [132].

As far as reuse adoption is concerned, proponents of specific reuse approaches, such as SPLs or
component-based reuse, have proposed mechanisms to probe an organization’s adoption readiness
for the respective approach (e.g., [98, 9]). However, in their isolation, these probing mechanisms
do not support practitioners to tailor their reuse process from multiple approaches, potentially
combining beneficial techniques that fit the organization’s current need for improvement. In addi-
tion, potential downsides of the respective approaches are not reported with the same prominence
as potential benefits, potentially raising unrealistic expectations in terms of return on investment.

To enable practitioners to make informed strategic reuse decisions, this chapter proposes a
pragmatic model for guiding strategic reuse decisions across different reuse approaches. The
model aims to incorporate existing probing mechanisms as well as to enable extension with
further approaches.1

The model elements have been derived from literature and validated by a model application
with an industrial partner (see Chapter 8).

Use Cases: We currently envision the following two use cases for the application of our reuse
adoption support model (RASM): On the one hand, it provides an early validation of a selected
reuse strategy to reduce the risk of failure of a reuse adoption and the subsequent damages
to the organization. It addresses this goal by enabling a rough congruence check between the
motivation, goals, and time frame set by the adopting organization and the intent, characteristics,
and adoption experiences reported of the selected reuse approach.

On the other hand, the model aims to support organizations that wish to improve their reuse
practices. It addresses this goal by enabling a capability check of the organization with an array
of reuse approaches by mapping the given context of the organization onto the prerequisites
reported for the given reuse approaches. In this way, organizations can find the approach that
is most in reach, in that sense "optimal", given their current capabilities. In addition, this
assessment can provide the basis for reuse process improvement.

1In the scope of this thesis, we limit the model instantiation to Inner Source.

7.2. Reuse adoption support model 103

7.2 Reuse adoption support model

Goal: The presented reuse adoption support model (RASM) aims to address the challenge
mentioned above by supporting practitioners during the decision for and the adoption process of
specific reuse approaches. In particular, it provides structured input for a feasibility assessment
and, thus, highlights aspects that tend to be neglected in the usual decision process. Even in
cases in which no given reuse approach is immediately feasible for a company, RASM allows
to identify improvement points that can be used for an iterative long term planning of a reuse
improvement effort.

RASM is a taxonomical model as it aims to structure the complexity of software reuse but
does not currently support automatic predictions about the cost or return on investment of
any given reuse approach. Rather it produces an immediate overview on the topics that need
to be addressed by the organization attempting the adoption. Some of the topics can be sup-
ported by additional analyses (e.g. clone detection, library usage measurement, discovery of
re-implementations) given an enabling infrastructure on the organization’s part.

Intended audience: With this model, we target practitioners that plan to introduce a reuse
approach to their organization or improve their current reuse practices.

Intended use: At the current state of the model, we suggest that a reuse expert, potentially
external to the organization guides the application of the support model for two reasons: on the
one hand, discussion on software reuse is often highly political (see Chapter 5) and benefits from
neutral input. On the other hand, the model needs to be tailored to accommodate company-
specific details.

7.3 Model overview

RASM contains two main components (see Table 7.1): the element Reuse approach captures the
characteristics of a given approach as reported in the respective literature. This encompasses
the intent inherent to the approach (motivation, goals, and scope, see Table 7.3), as well as its
realization and prerequisites in terms of associated reusables, practices, tools, and organizational
aspects. The realization of the approach, i.e., the way the approach is expected to manifest
itself by its proponents, is mainly drawn from research literature describing the given approach.
Contrarily, the prerequisites for adopting an approach frequently stem from papers reporting and
analysing instances of adopting companies and their experience with the process. Consequen-
tially, the model element reuse approach encompasses adoption experiences, such as profiles of
the reported adopters, experienced benefits and challenges, as well as key adoption factors and
risks reported in literature.

The component company profile, on the other hand, captures a context snapshot of current
software reuse and software development at the organization that is applying the model. In
addition, the element characterizes the intent of the adoption initiative, as well as a potentially
pre-selected candidate reuse approach.

104 Chapter 7. A pragmatic model for guiding reuse adoption in practice

Reuse Adoption Support Model
Reuse Approach Company profile

Characteristics Context snapshot
Intent
Reuse facets Reuse facets

Adoption reports Adoption initiative
Intent Intent
Reuse facets

Table 7.1: Structure of RASM - Overview

As the model aims to support judging the congruence between reuse approaches and orga-
nizations, the information captured by the two main components needs to be relatable to each
other. We enable this by introducing two structures in the model that facilitate the description
of reuse approaches and company profiles: Intent and Reuse facets.

Each reuse approach is created with a specific intent, i.e., a motivation to address a particular
issue, aiming for specific benefits, and targeting a particular scope (see Table 7.3). The same can
be said about reuse adoption initiatives (notwithstanding variations in details) and the model
captures this, as displayed in Table 7.1.

The realization of a reuse approach tends to reflect in several aspects of software development.
We term these aspects reuse facets. Literature suggests variations of the following categories:
artefacts, practices, tools, and organization (see Table 7.4). Again, the same categories also suit
the purpose of capturing a relatable instance of an organization’s context, as well as describing
known adopters and key adoption factors. Therefore, the context snapshot and the key adoption
factors are structured accordingly. Table 7.1 displays the model elements that are instances of
reuse facets. Section 7.5 further details on the structure of reuse facets.

7.4 Structure of intent

Intent, i.e., the purpose of an approach or adoption initiative, is represented in RASM on the one
hand in the goals of the reuse approach, on the other hand in the motivation of the company’s
adoption initiative. The purpose of the intent element of RASM is to make explicit what benefits
a particular approach can deliver. This gives organizations the opportunity to select the approach
that is best to alleviate their current issues.

In particular, intent separates benefits into the following categories: economic and organiza-
tional. Both categories contain more fine-granular goals, such as, increasing competitiveness by
means of shorter time to market, or improve resource alignment and knowledge transfer within
an organization. In addition, intent also incorporates the organizational scope and the envisioned
time to benefits. Table 7.3 gives an overview on the detailed structure of the intent element.

During instantiation, each aspect of intent is populated with the purpose and benefits that
the given approaches target. In this way, an organization can understand which approach can
deliver which benefits. This information then can be related to the outcome of the reuse facet
assessment to come to an informed decision for a particular reuse approach.

7.5. Structure of the reuse facets 105

7.5 Structure of the reuse facets

The concept of reuse facets form the core element of the model. They capture the different facets
related to software reuse as described in the breadth of the reuse literature2, as well as facets
emerging from the empirical studies presented in the previous part of this dissertation. The main
studies considered for building up the structure of the reuse facets are listed in Table 7.9. Reuse
facets are hierarchical structures, composed of a number of elements. The goal of each element
is to explicitly model the context of its parent elements. This fine grained structure provides the
foundation without which no reasonable selection of a reuse approach can be effected [133].

Based on the literature, we identify four types of facets that are highly related to software
reuse in practice: the type of artefacts that are at disposal for reuse or that are envisioned to
be created for that purpose, the practices by means of which an organization currently develops
its software and implements software reuse, the tools that support the development and reuse
actions, and the characteristics of the encompassing organization. As noted by Rothenberger et
al. [83], congruence between these facets and the selected reuse approach is a crucial factor for
successful reuse.

Evidence on reuse influence factors tends to be scattered. However, we are aware of one
study [80] that validates a postulated set [82] of success factors and relates them to the results of
two additional studies [13, 1]. Therefore, we encode the state of evidence on the influence factors
and highlight the factors within our reuse facets as displayed in Table 7.2.

Influence Rationale Symbol
confirmed all studies confirm, more than one ⇑
potential one study indicates or majority of studies ↑
controversial conflicting evidence or no clear majority �

none all studies decline, more than one �

Table 7.2: RASM - Encoding of the current evidence of Reuse Influence Factors according to [80].
The encoding is used to highlight the stage of validation of the respective elements in Tables 7.5
to 7.8.

7.5.1 Artefacts

Artefacts are a central facet of software reuse: they denote the assets available for reuse and are
a key characteristic of each reuse approach. In the literature, the following aspects of artefacts
are reported as relevant impact factors for software reuse [80]: the origin of a reusable asset,
i.e., whether it originates from within an organization or not, the kind of reused asset, e.g.,
requirements documents, design documents, or source code of different types. In addition, the
technical compatibility of reusable assets is reported as factor to be considered during selection
of a reuse approach and the planning of the adoption [89]. This factor captures key aspects, such

2These facets have been collected from technical research papers, such as [80, 82, 1] as well as industry research
papers, such as [13, 9, 89, 23].

106 Chapter 7. A pragmatic model for guiding reuse adoption in practice

as the architectural compatibility (to prevent or identify Architectural Mismatch that gravely
affects the reusability of artefacts [88, 49]) or intent, scope of use and the related non functional
aspects of the given reusables.

Table 7.5 illustrates the dimensions of the reuse facet artefact. The symbols express the
degree to which the influence of a specific factor has been validated and confirmed by quantitative
measurements from several sources.3

As the highlights, the kind of reused artefacts has hardened as factor for reuse success in the
way that reuse of high abstraction artefacts, such as requirements and design documents, tend
to indicate higher potential for benefits due to reuse [80, 82]. Due to a wide range of sources,
also the reuse of source code is reported as beneficial (see, e.g., [9, 60, 59] as well as Chapter 4).
For source code reuse, the reuse of packaged code, e.g., libraries, frameworks, and services, is
regarded as more beneficial to long term reuse success than reuse of source text by means of
clone-and-own reuse. Nevertheless, depending on the intent of an approach and an adoption
initiative, also source text can be an appropriate reusable.

According to literature, origin of reuse assets likely influences the outcome of a reuse initia-
tive [80]. Work presented in this thesis confirms this (see Chapters 4, 5 and 10): the reputation
of the provider of a reusable asset has a significant impact on the trust and reuse willingness of
the consumer. Furthermore, company external sources bring a series of legal issues that need to
be considered on the consumer’s side.

Technical compatibility of assets has been highlighted to facilitate reuse across units within
an organization [89]. Absence or insufficient compatibility, on the other hand, quickly reduce the
benefits that could, in theory, be obtained by reusing a functionally suitable and available asset,
as the cognitive and organizational effort required to adapt the asset quickly outstrip the benefit.
Since this detail is likely overlooked in the decision process for a reuse approach, we include it
in the model.

7.5.2 Practices

Reuse approaches usually prescribe a certain set of practices, e.g., domain analysis, scoping and
variability management in the context of SPLs, or peer review, automated unit testing, and
continuous integration in the context of Inner Source.

These practices are effected in different phases of the software product life-cycle. For this
reason, the reuse facet practices contains the life-cycle phases as part of its subcategories to-
gether with documentation and quality assurance as typical cross-cutting themes. In addition,
the selected reuse mechanism as well as the reuse process with associated practices are explic-
itly listed. Lastly, the subcategory development process compatibility completes the facet. Its
presence is motivated by the observation that certain reuse approaches, e.g., SPLs or Inner
Source, require software development and reuse practices to be compatible in order to reach the
envisioned benefits [8, 23].

3The values are resolved in Table 7.2.

7.5. Structure of the reuse facets 107

The practices an organization employs to develop and maintain software, as well as to effect
reuse, can have a significant impact on software reuse. The reuse facet practices captures these
aspects and makes them comparable to the practices recommended or required by the given reuse
approaches.

Table 7.6 depicts the factors of the reuse facet and provides a mapping to their source in
literature and the empirical evidence of their impact.

The practices in the life-cycle phases are the standard activities of Software Engineering.
In addition, the facet contains the items reuse mechanism, systematic reuse process [80], and
development process compatibility [89] which are relevant for reuse adoption:

The element reuse mechanism captures the means by which software reuse is implemented in
a given approach or a given organization. Of the various given options, e.g., copy-paste-modify,
compile-time linking, product family development is the only one for which quantitative empirical
evidence exists to support its benefits [80]. Nevertheless, the other options are widely found in
practice and considered appropriate in the given context [60, 59, 9, 27].

Another element, systematic reuse process, has also been shown to positively impact soft-
ware reuse success across several studies [80]. Depending on the situational context of further
studies [13, 82], software reuse measurement has shown diverging results, whilst configuration
management of reusable assets and process maturity/quality models usage have a mostly positive
effect.

Corresponding to the element technical compatibility of artefacts in the facet artefacts, the
element development process compatibility captures an important facet that has proven dangerous
to ignore when attempting a reuse adoption on a company-wide scale [25]: Even in the presence of
most technical and organizational prerequisites, heterogeneity in the development practices and
release scheduling has annihilated the potential benefits of the selected approach. In another case,
the consideration of the element has lead the stakeholders to reconsider a potentially hazardous
adoption [89].

7.5.3 Tools

Depending on the reuse approach, the supporting infrastructure and development tools have a
pivotal influence on a successful adoption and practice [9, 27]. Especially in the context of Inner
Source reuse, numerous types of tools, such as version control, build servers, bug trackers, and
testing frameworks are reported to enable and facilitate developing according to the approach [23].
In a wider context, the use of CASE tools has a mostly positive effect on reuse, whilst a generic
use of repository systems produces mixed outcomes [80].

The technical compatibility of toolsets is an aspect derived from the technical compatibil-
ity [89]. As highlighted by [9], homogeneity of toolsets greatly facilitate the collaboration of
developers on shared reusable items.

Table 7.7 depicts the elements of the facet.

108 Chapter 7. A pragmatic model for guiding reuse adoption in practice

7.5.4 Organization

The reuse facet organization captures essential aspects of the context of an organization. Based
on impact factors in the literature, the categories business context, development context, and
skills were derived.

Table 7.8 summarizes the structure of the facet.
The element business context captures aspects such as the culture of the organization (e.g.,

expressed in hierarchical structures, autonomy of managers and developers, etc.) and the support
in terms of budget and human resources an organization provides for software reuse. Both aspects
have found to impact greatly the success of reuse adoption [13, 9]. Furthermore, the element
captures more strategic aspects, namely the application domain, the type of developed software,
and legal constraints. Application domain has been established as a key impact factor to software
reuse , whilst the type of developed software is a debatable factor [80]. Legal constraints were
found to be impacting decisions regarding reuse as a mismatch with business goals prevented,
e.g., relying on certain types of reusable assets [34, 27, 25].

With respect to an organization’s development context, some approaches have specific prereq-
uisites in terms of compatible software development approaches [9], whilst others suggest specific
forms of structuring the workforce of a software organization [17, 8]. Overall, the quantitative
empirical evidence of the general impact of these two factors is contradictory and requires fur-
ther investigation [80]. In addition, process compatibility between the units of an organization
targeted for reuse adoption has been established as an important impact factor [89, 25].

Lastly, the organizational and individual skills have been reported to impact the success
of reuse adoption [70]. On the organizational side, software reuse education is an empirically
controversial factor. Project team experience, on the other side, has been identified as a potential
impact factor, depending on the respective organization context [80].

The individual skills of managers and developers are partly mentioned in the literature de-
scribing software reuse approaches (e.g. [9]). The required skill sets include technical skills, as
well as change management and social skills.

7.5. Structure of the reuse facets 109

Intent Constituents
Motivation

current issues
economic
organization

Goals
economic benefits
competitiveness
quality
organizational benefits
knowledge transfer
resource alignment

Scope
organizational units
single division
multiple divisions
all divisions
time to benefits
short term
medium term
long term

Table 7.3: Factors and constituents of the Intent element of the RASM.

Reuse facets Constituents
artefacts
practices
tools
organization

Table 7.4: Reuse facets of the RASM.

110 Chapter 7. A pragmatic model for guiding reuse adoption in practice

Artefacts Constituents
Kind of reused assets [80] ⇑

requirements ⇑
use cases
workflows
design ⇑
architecture templates
feature models
UI templates
source text ↑
snippets
classes
(sub)systems
packaged source code ⇑
components
libraries
frameworks
services

Characteristics of candidate reusables [9]
pre-existing
initial runnable implementation
initial architecture
fully specified
fully implemented
created for reuse
business value
domain independent functionality
domain specific functionality
product group specific functionality
scope of use
stakeholders
potential users

Technical compatibility of assets [89]
architecture compliance
scope of use
NFRs
aligning purpose
modularity

Life expectancy
reusable
reusing products

Origin of artefacts [80] ↑
company internal
within department
internal third party
company external
Open Source
commercial provider
private third parties

Table 7.5: Factors and constituents of the Artefacts facet of the RASM. The symbols encode the
stage of validation of the factors (see Table 7.2).

7.5. Structure of the reuse facets 111

Practices Constituents
reuse practices [80, 9, 41, 8, 59]

mechanism
copy-paste-modify
hard copy duplication
compile-time linking
branching
service composition
product derivation by means of variation points ⇑

process
ad-hoc selection and integration of reusables
opportunity-driven selection and integration of reusables
strategic selection and integration of reusables
systematic company-wide reuse process ⇑
reuse measurement
configuration management of reusables ↑
quality model usage ↑

requirements engineering practices [8, 9]
identification of commonalities and variations between products
integration of different stakeholder needs
strategic prioritization
tracing

design practices [8]
feature modeling
creation of reference architecture

development practices
iterative
incremental
serial
contribution management

quality assurance practices [8, 9, 27]
reviews
architecture reviews
peer review of source code
architecture compliance
test
automated unit tests
automated integration tests
system tests

maintenance practices
task assignment
regression testing
prioritization of tasks
cost estimation

release and deployment practices [9, 89]
continuous integration
frequent releases
configuration management

documentation practices
code comments
concise and consistent naming in code
tracing to requirements and tests
descriptive documentation of functional purpose
descriptive documentation of extra functional guarantees and limitations

homogeneity of practices [89, 9]
reuse practices
development practices
maintenance practices
quality assurance practices
documentation practices
coordinated product release schedules
coordinated integration schedules

Table 7.6: Factors and constituents of the Practices facet of the RASM. The symbols encode the
stage of validation of the factors (see Table 7.2).

112 Chapter 7. A pragmatic model for guiding reuse adoption in practice

Tools Constituents
development tools [9, 27, 41]

version control
CASE tools ↑
IDEs
code recommender
code search engine
issue tracker
build server supporting continuous integration

infrastructure tools [9, 27, 41]
documentation
wiki
Q&A forums
list archives
communication
developer mailing lists
user mailing lists
IRC channels

homogeneity of toolset [9, 89]
homogeneity

Table 7.7: Factors and constituents of the Tools facet of the RASM. The symbols encode the
stage of validation of the factors (see Table 7.2).

7.5. Structure of the reuse facets 113

Organization Constituents
business context [80, 9, 39]

culture
management
communication
support
top management
middle management
resources
human resources
budget
application domain ⇑
type of developed software �
legal constraints
life cycle duration
strategy
reuse vision

development context [89, 80]
software development approach �
traditional
lean
workforce software organization �
product development
reusables development
total
homogeneity
practices
tools
reuse vision
culture

skills [80, 9, 8]
organizational
project team experience ↑
maturity
software reuse education �
individual
managers
developers

reuse-related roles [27, 9, 134, 135]
consumer roles
producer roles
coordinator roles

project management [134]
process management
process alignment between reusables development
team and using/contributing units
process for developing shared projects
project planning
long-term vision of shared asset
coordination of contributions
monitoring and steering
quality assurance of contributions
tracking of feature evolution
human issues
manage transparency

Table 7.8: Factors and constituents of the Organization facet of the RASM. The symbols encode
the stage of validation of the factors (see Table 7.2).

114 Chapter 7. A pragmatic model for guiding reuse adoption in practice

7.6 Application of RASM

To apply RASM in practice, we envision the following steps: first, we ensure the model is
instantiated with the reuse approaches of interest. Second, together with the organization, we
determine the potential benefits they hope to realise by means of the reuse adoption. Third,
together with the organization, we determine the potential adoption effort required by the given
reuse approaches. Last, we compare the options available to the organization: for each approach,
we compare the potential benefits it covers with the estimated effort required for adoption. In
this way, an organization can base the decision for a specific approach on a structured comparison
that accounts for the given context.

7.6.1 Instantiation for reuse approaches

In its current form, RASM contains elements derived from a variety of reuse approaches and
studies on reuse impact factors. When preparing a model application, for each element of type
intent and reuse facet, an instantiation is required.

To give an example with respect to the reuse facets, this means that within the four categories
all subcategories applicable for the given approach are filled with more detail whilst all irrelevant
(or non-reported) subcategories are marked as not applicable (or no data). In this way, the
comparability of the different reuse facet instances is ensured.

With respect to the given reuse approaches, it would be sufficient to instantiate the respec-
tive intents and reuse facets once and, in that process, to create a knowledge base that is at
disposal for future application of the RASM. As more research evidence on reuse impact factors,
reuse approach adoption, or new reuse approaches, becomes available, it can be inserted in the
knowledge base and also used to refine the model.

For approaches that have not yet been part of an instantiation of the model, we use the
intent and reuse facet structures to build up instantiations, capturing required, recommended,
neutral and discouraged realization aspects as reported in the experience reports in the litera-
ture. Required implies that, according to literature, constituents need to be present in a specific
form, otherwise the adoption can not succeed. Recommended implies that, according to litera-
ture, complying with the suggested expression of the given constituent facilitates adoption and
increases the benefits that the approach can provide. Neutral marks aspects that are compatible
with the given approach but, according to literature, have no enabling effect on adoption and
reuse success. Discouraged highlights practices that, according to literature, should be avoided
because they counteract the intent of the approach and can hinder its success.

7.6.2 Determining the potential adoption benefits

The goals of most reuse adoptions tend to be abstract, such as, decrease of time-to-market or
decrease of development and maintenance effort. Virtually every reuse approach claims to fulfil
these benefits; however, from a detailed perspective, the degree and the means by which this is
achieved differ greatly, impacting the applicability with respect to a given organizational context.

7.7. Justification 115

To capture which concrete benefits each approach can provide, RASM, in the intent structure,
decomposes the abstract goals into more concrete aspects. During an instantiation, the intent
of an approach is populated with the evidence of the obtained benefits reported in the literature
(strong, medium, low realization).

During the assessment, an organization is then offered the possibility to highlight which of the
addressed aspects is currently causing issues and with which severity (low, medium, high). Based
on this assessment, an organization can compare what it could potentially gain from adopting a
given approach and prioritize accordingly.

7.6.3 Determining the potential adoption effort

Depending on their current situation, the effort required for an adoption of a given reuse approach
varies significantly between different organizations. To account for this fact, RASM collects the
correspondence between the prerequisites of reuse approaches and a company profile as follows:

Given the RASM instantiation for the desired approaches, organizations should fill in their
current position for each constituent of each facet and compare their values with the ones required
by each approach. This comparison is projected on a three-point scale, capturing agreement,
discrepancies, or conflicts between company profile and approach realization. In this way, RASM
provides a direct overview on open issues. These issues then can be prioritized in different ways:
to obtain an estimate of the total effort required for adoption, all elements marked as conflict or
discrepancy as well as required can be counted. This assessment can, subsequently, be compared
to the list of issues mitigated by the given approach to allow for a balanced decision on adoption.

Once the decision for adoption has been taken, priorities might change: to avoid long delays
to success of new measures, an organization might be interested into quick wins, i.e., steps that
can be performed with moderate effort and still drive the adoption process towards its goal.
In this case, the elements classified as discrepancy and required can provide a suitable starting
point.

Likewise, adopting organizations can assess the potential value of elements marked as dis-
crepancy and recommended : if any of these could be resolved with little effort, they might be
candidates for easing adoption or improving the benefits obtained by means of the reuse approach.

7.7 Justification

Proposing a new Reuse Adoption Support Model requires justification with respect to three
questions: Is there a need for a new model? What is the difference to already existing models?
What justifies the content of the model?

As the motivation of this Chapter has already answered the first question, the remainder of
this Section proposes justifications for the remaining two.

116 Chapter 7. A pragmatic model for guiding reuse adoption in practice

7.7.1 Creation of a Reuse Assessment Support Model

Previous work on software reuse has proposed a variety of models to measure organizations
readiness for adoption, as well as their reuse maturity. Instances of these propositions are the
Reuse Assessment Models, e.g., by Wartik and Davis [42], Reuse Reference Models, e.g., by Nada
and Rine [85], as well as Reuse Maturity Models, e.g., by Koltun and Hudson [130], Davis [131],
Garcia et al. [120].

The following points of criticism are found towards these models: in general, only a small
amount of the proposed models were industrially validated [132]. Usually, there are no reports of
application (e.g. [130]), it remains unclear which reuse approaches they are supposed to support
(e.g. [42, 130]) or they are targeted only to one approach (e.g. SPLs [85]). In addition, the models
remain highly abstract in terms of their categories, which makes it hard to deduce actions for
adoption.

Consequently, we find the following justification for creating a new model: With RASM, we
provide an integrated view of reuse across numerous different approaches and models, and enable
practitioners to find the best fit for their current situation instead of aiming for unrealistic ideals.
We strive for comparability of different approaches, clear overview of the reuse facets and the
intent covered by the given approaches. RASM supports to determine a detailed delta between
a given company profile and the given reuse approaches. It, thus, allows to assess the potential
benefits and efforts for an informed decision, and to deduce a concrete trajectory for adoption.
RASM can be integrated with more specific assessment models (e.g. Rehesaar’s Capability
Assessment Model for Component Reuse [98]) that can be applied once an organization has
selected an adequate approach.

7.7.2 Reuse facet dimensions

The deduction of the reuse facets followed a detailed literature review to understand the different
reported dimensions of reuse. As can be seen in Table 7.9, the structuring dimensions overlap on
key points (mainly technical aspects of reusables and the importance of organizational aspects)
but vary noticeably in details between the different sources4. To ensure that our model is able
to capture highly divergent reuse approaches, we included in the reuse facets structure all the
dimensions mentioned in the literature. In addition, we included the detailed factors, summarized
by the dimensions in the original sources, in the reuse facets.

4For the sake of illustration, we selected literature that covers the broadest variation in terms of dimensions.

7.7. Justification 117

Selected literature

F
ra
ke
s
an

d
F
ox

[1
]

P
ri
et
o-
D
ia
z
[1
36

]

L
uc

re
di
o
et

al
.
[8
0]

Sh
er
if
an

d
V
in
ze

[7
0]

St
ol

et
al
.
[9
]

M
or
is
io

et
al
.
[1
3]

K
oz
io
le
k
et

al
.
[8
9]

P
oh

l
et

al
.
[8
]

B
as
il
i
et

al
.
[1
33

]

D
av
is

[1
31

]

K
ol
tu
n
an

d
H
ud

so
n
[1
30

]

R
in
e
an

d
N
ad

a
[8
5]

B
au

er
et

al
.
[2
7,

25
,
41

]

Artefacts 3 3 3

Performance 3

Technical Compatibility 3 3

Technical 3 3 3 3

Technological 3 3 3 3

Quality 3 3

Asset Development Factors 3

Application Development Factors 3

Scope 3

Practices 3 3 3 3

Process 3 3 3 3 3 3

Process Compatibility 3 3

Measurement 3 3

Tools 3 3 3

Organizational 3 3 3 3 3 3 3

Managerial 3 3 3 3 3 3 3

Legal 3 3 3

Economic 3 3 3 3 3

Business 3 3 3 3 3

Cultural 3 3 3 3 3

Technology transfer 3 3

Individual 3

Commitment 3 3

Human factors 3

Reuse understanding 3

Structure 3 3

R
ep

or
te
d
re
u
se

d
im

en
si
on

s

Dedicated workforce 3 3

Domain 3

Strategy 3 3 3

Table 7.9: This table presents an overview of the different reuse facets reported in literature.
Facets in bold face are reported as structuring reuse dimensions in the respective papers.
Facets in bold face and italics denote the final reuse facets selected for the model. The addi-
tional facets are reported as influence factors and included for a more comprehensive justification
of the heterogeneity of the reuse facets in the model.

118 Chapter 7. A pragmatic model for guiding reuse adoption in practice

7.8 Company Reuse Placement

Motivated by our experience with reuse in practice, we aimed to compare the reuse proficiency
of our cases on a high level: practitioners were interested, on the one hand, to get a compact and
brief estimate of areas of their current reuse performance that might be problematic. On the
other hand, they were curious to compare their placement with the one of other organizations
and to see how close those were to the state of the art. From the research perspective, we
were interested to see whether the differences we observed could be captured in a light-weight
placement approach. Based on the detailed structure of RASM, we, thus, derived a company
reuse placement that acknowledges the realization of reuse within an organization according to
the four reuse facets presented above.

7.8.1 Placement structure

Within each facet, an organization can be placed in one of the three categories basic, intermediate,
or advanced reuse capability. The placement follows according to two categories per facet: the
support for reuse currently provided by the realization of the factors within the organization and
the homogeneity of this realization across the organization. The placement reflects the general
tendency of the given organization at a high level of abstraction. Local deviations are possible.

For the reuse facets practices, tools, and organization, the general support for reuse is ex-
pressed on an ordinal scale (neutral, supporting, integrated). They capture the degree to which
the factors’ realization at a given organization integrate with reuse support. For the reuse facet
artefacts, the type of artefact was selected as discriminatory factor, as it is the most characteris-
tic reuse support factor according to literature. The three values for artefact type are low level
source code (e.g., snippets), high level source code (e.g., libraries), and all types of artefacts (e.g.,
including requirements, architecture templates).

The homogeneity of the facet realization is expressed by the attribute distribution of facet.
The following values determine the company placement: local expression of the realization is
characteristic for basic reuse capability, a distributed realization for intermediate reuse capability,
and a global realization for advanced reuse capability.

7.8.2 Placement example

Figure 7.1 presents the structure and, for illustration, places the cases G and U (see Part II), as
well as another case in progress, I, in the structure.

Company context The context factors, as well as the reuse implementation of G and U are
known from Chapter 6. We briefly describe the context of T here: I is an international company,
with a headcount of approximately 4000 employees. The organization has grown over a decade
and incorporated other organizations. Software of T is developed in a distributed manner.
Consequentially, an elaborate development infrastructure is established that enforces a rather
homogeneous development process, including governance for quality assurance (in the form of
code reviews and tests).

7.8. Company Reuse Placement 119

Reuse at T is approached in a strategic way; however, due to the heterogeneity in development
practices that had to be overcome due to the previous integration of other companies, reuse
practices have been devised on a basic level of process and tool support. The products of T
indicate potential for the development of a product line; however, the effort to acquire the
necessary skills to build them according to the state of the art currently is judged too high.
Instead, mechanisms such as duplication of source code into variation folders or clone-and-own
reuse are employed. They bring benefits to the organization in terms of development speed.
Their effect on maintenance, so far, has not been assessed.

Placement description Within the facet artefacts, all three cases display reuse of source code
on different levels of abstraction. Therefore, the companies are placed in the categories basic and
intermediate for the type of artefact. In the distribution of artefact use, the three cases differ:
in U, the distribution of artefact use is mostly local. In I, the distribution is distributed over
several products. In G, the distribution of artefact use is homogeneous on a global scale.

With respect to the facet practices, U largely displays practices that are neutral to reuse. In
addition, practices at U are heterogeneous as most divisions follow their own local development
styles. This gives U the placement basic for both attributes. At T and G, practices are in place
that support reuse, e.g. a clear governance of development and quality assurance practices and a
shared vision of reuse. This places T ad G in the category intermediate for support. In the case
of I, these practices are spread to several organizational units; however, some departments are
still in the progress of adopting them (intermediate placement). At G, the practices are followed
globally (advanced placement).

As far as tools are concerned, U has no significant infrastructure that supports reuse. Also,
most departments so far have their particular local tool-chains and configurations. This positions
U in the category basic. At I, the available infrastructure supports reuse and is used by most
teams. This positions T with intermediate. At G, infrastructure dedicated to facilitate reuse
exists and is in use globally, positioning G in the category advanced.

On the organizational level, support for reuse at U is neutral (basic) to supporting on a dis-
tributed level (intermediate). At I, there is support for reuse from an organizational perspective;
however, it remains unclear from which positions in the organization it is driven. This places
T in the intermediate category. At G, reuse is supported globally (advanced), but not a top
priority (intermediate).

Summing up, U generally falls within the category basic reuse capability, T tends towards
intermediate reuse capability, and G is mostly placed within advanced reuse capability. This place-
ment largely coincides with the benefits reported from the companies (see Figure 7.1, bottom):
At U, only a limited improvement for development and maintenance is reported. T self-reports
moderate improvements for development and limited improvements for maintenance. G reports
significant increase of development speed as well as less maintenance burden. With respect to
code quality, U reports limited improvements. T and G report a moderate effect; with G claiming
high quality code rather as enabling factor to code reuse instead of a result thereof.

As we study further companies, we are interested to observe their placement and reported
benefits as a first step towards a reuse capability benchmark.

120 Chapter 7. A pragmatic model for guiding reuse adoption in practice

Re
us
e%
di
m
en

sio
ns

at
tr
ib
ut
es

Ba
sic

%re
us
e%
ca
pa

bi
lit
y

In
te
rm

ed
ia
te
%re

us
e%
ca
pa

bi
lit
y

Ad
va
nc
ed

%re
us
e%
ca
pa

bi
lit
y

ar
te
fa
ct
s

ty
pe

%o
f%a

rt
ef
ac
t

lo
w
$le
ve
l$s
ou

rc
e$
co
de

hi
gh
$le
ve
l$s
ou

rc
e$
co
de

al
l$t
yp
es
$o
f$a
rt
ef
ac
ts

Co
m
pa

ny
(p
la
ce
m
en
t

U,
(T

G,
(U
,(T

di
st
rib

ut
io
n%
of
%a
rt
ef
ac
t%u

se
lo
ca
l

di
st
rib

ut
ed

gl
ob

al
Co

m
pa

ny
(p
la
ce
m
en
t

U
T

G

pr
ac
tic
es

su
pp

or
t%f
or
%re

us
e

ne
ut
ra
l

su
pp

or
tin

g
in
te
gr
at
ed

Co
m
pa

ny
(p
la
ce
m
en
t

U
T,
(G

di
st
rib

ut
io
n%
of
%p
ra
ct
ice

s
lo
ca
l

di
st
rib

ut
ed

gl
ob

al
Co

m
pa

ny
(p
la
ce
m
en
t

U
T

G

to
ol
s

su
pp

or
t%f
or
%re

us
e

ne
ut
ra
l

su
pp

or
tin

g
in
te
gr
at
ed

Co
m
pa

ny
(p
la
ce
m
en
t

U
T

G
di
st
rib

ut
io
n%
of
%to

ol
s

lo
ca
l

di
st
rib

ut
ed

gl
ob

al
Co

m
pa

ny
(p
la
ce
m
en
t

U
T

G

or
ga
ni
za
tio

n
su
pp

or
t%f
or
%re

us
e

ne
ut
ra
l$

su
pp

or
tin

g
in
te
gr
at
ed

Co
m
pa

ny
(p
la
ce
m
en
t

U
T,
(G

sc
op

e%
of
%su

pp
or
t

lo
ca
l

di
st
rib

ut
ed

$
gl
ob

al
Co

m
pa

ny
(p
la
ce
m
en
t

U,
(T

G
Co

m
pa

ny
(p
la
ce
m
en

t
7U

,(1
T

2U
,(8
T,
(3
G

5G

Re
po

rt
ed

%b
en

ef
its

lim
ite

d%
ef
fe
ct

m
od

er
at
e%
ef
fe
ct

sig
ni
fic
an

t%e
ffe

ct
in
cr
ea
se
d%
de

ve
lo
pm

en
t%s
pe

ed
U

T
G

de
cr
ea
se
d%
m
ai
nt
en

an
ce
%e
ffo

rt
U,
(T

G
hi
gh
er
%q
ua

lit
y%
co
de

U
T,
(G

Figure 7.1: Company Reuse Placement according to the four reuse facets.

7.9. Summary 121

7.9 Summary

In this Chapter, we presented RASM, a pragmatic model for reuse adoption support in practice.
It constructively addresses the challenge of selecting an adequate reuse approach for adoption
in practice by providing structures that relate the intent and realization of reuse approaches
to a given company profile and adoption initiative. The model is based on a literature study
and, on the one hand, allows a detailed assessment of congruence between reuse approaches
and a company context by means of its intent and reuse facet structures. On the other hand, it
provides a fast estimate of an organization’s reuse capabilities by means of its company placement.
Both methods allow practitioners to identify areas that are critical for improving their reuse
capabilities.

8 | Applying the decision model in
practice

This Chapter presents a proof of concept of model application in practice with company U. The
goal of U was to prepare an introduction of Inner Source to support shared company-wide
development of reusables. In this case, their goal of the research collaboration was to identify
discrepancies between the approach and their current company profile. The outcome of the
assessment should form the base for a detailed roadmap for Inner Source adoption. For this
case study, we instantiated RASM for Inner Source and conducted a full day workshop at U. In
the course of the workshop, participants worked with the model instantiation and derived next
steps for each reuse facet. Direct participant feedback and the results of an anonymous on-line
survey suggest that RASM supported tackling the complex issue of Inner Source adoption by
structuring the topic in meaningful facets and ensuring that important aspects were explicitly
considered.

Contents
8.1 A proof-of-concept application of RASM in practice 124

8.2 Background of model application at U 124

8.3 Model application . 125

8.4 Results for case U . 127

8.5 Limitations of evaluation . 136

8.6 Next steps . 136

123

124 Chapter 8. Applying the decision model in practice

8.1 A proof-of-concept application of RASM in practice

Goal The goal of this chapter is to study the application of the reuse adoption support model
(RASM), presented in Chapter 7, in practice. In particular, we aim to understand whether
an application of RASM can support practitioners in adopting new reuse practices or assessing
potential improvements of their current reuse practices.

We expect this support to occur in the following form: the model application should help
practitioners to structure the assessment and discussion of reuse options, to identify critical
points for adoption that potentially would have been overlooked by a less structured adoption
process, and to provide the basis for an informed and actionable adoption decision. Furthermore,
we assume that the results of the application provide value for the operationalization, once the
decision for an adoption has been taken.

As the model is designed to be tailored and applied to various contexts and by various roles,
we address our goal by a partial model application in specific real-world industry scenarios that
are described in the remainder of this chapter.

8.2 Background of model application at U

This section describes in brief the main characteristics of the organization at which the model
is applied, the overall goals that drive the given organization’s reuse practices, and the specific
context and goals of our case. It, furthermore, details on how we instantiated the model, how
we performed the intervention, and how we partially evaluated the model’s usefulness.

Organizational context As described in detail in Chapter 3, Section 3.4, U is a national
company of 6000 employees that work in a hierarchical environment and build on products
historically grown since the 1960s. As a result, on the organizational side, numerous develop-
ment styles have emerged in the different product groups. On the product side, a broad mix
of technologies and styles need to be integrated and pose a challenge for future development.
In addition, U’s systems tend to reach a life time of 20+ years in the market, thus requiring
significant effort for maintenance.

Reuse goals As a result of their products’ longevity, U is interested in saving maintenance
costs. Furthermore, U wants to increase collaboration between business units to create shared
reusable assets and prevent redundant implementations of domain-specific utility functionality.
To reach these goals, upper management has decided to introduce Inner Source.

Case description The present study followed up onto a previous one, described in Chapter 5,
and, driven by a fresh management initiative, had the goal to support the former platform team
to learn from the results and prepare the adoption of Inner Source.

In a first iteration, the data collected during the previous study was re-analysed for relevant
learnings for the platform team. In a workshop with 10 members (1 architect, 2 managers,
7 senior developers) of the platform team, we triaged the learnings and identified topics that
required a future intervention.

8.3. Model application 125

In particular, the need for a structured and detailed discussion of the Inner Source strategy
became apparent. This motivated the instantiation of RASM for Inner Source and U.

Case study goals With this intervention, U aimed to identify aspects of Inner Source adoption
relevant for their company. This coincides with one of the two use cases of RASM, namely an
early validation of the selected strategy to guide the adoption of a reuse approach.

From the research perspective, we aimed to validate whether the model is capable to highlight
conflicts between the current state of the company and the envisioned approach. In addition,
we were interested to see whether it could support practitioners in identifying missing items,
structuring the discussion on the topic, prioritizing the identified open issues, and developing
concrete next steps.

Study description In this case study, we instantiated the model for Inner Source and U. A
tabular representation is included for reference in the Appendix, Section 12.2.

In a one-day workshop, we invited our ten participants1 to work with the model to improve
their understanding of Inner Source.

Evaluation process To validate the usefulness of RASM, we asked the participants for the
following: first, we invited them to write down all strengths, weaknesses, opportunities, and
threats of Inner Source adoption within their company that occurred to them during the input
talk. We then clustered these points for a ground truth of relevant points.

Second, during the hands-on session, we asked them to highlight new and relevant factors in
the tables, which we collected afterwards.

Last, we provided the participants with a short on-line questionnaire, containing two Likert
batteries with a total of nine items, assessing the perceived helpfulness and accessibility of the
model, and one free text form for additional comments. Figures 8.3 and 8.4 report the Likert
items and the selected answers.

8.3 Model application

In this section, we describe at first how we instantiated RASM for Inner Source and then provide
the details of the study execution at U.

8.3.1 Instantiation for Inner Source

For our case at U, we instantiated the model for the Inner Source approach. The instantiation
strongly relies on the available literature on the topic (chiefly on [9, 23, 97, 135, 134], as well as
the work presented in Chapters 3 to 6)2. The mentioned literature was coded according to the
themes of the model and the respective categories were filled.

To make the information accessible to the workshop participants, we created a tabular struc-
ture for the elements intent, artefacts, practices, tools, and organization. Figure 8.1 shows an

1Three of the participants of the first workshop were not present. However, three additional participants
joined.

2The resulting tables of the instantiation are included in the Appendix, Section 12.2, for reference.

126 Chapter 8. Applying the decision model in practice

excerpt of the tools facet table. The table consists of an approach-specific part and a company-
specific part.

The approach-specific part is listed on top of the Figure and contains the following infor-
mation: on the left hand side, the aspects of the facet are listed together with the respective
constituents. The next column details on the requirements of the approach with respect to the
given constituent and provides a brief explanation. If needed, these details can be enriched by
highlighting additional implications of the constituent onto other factors in the model. The
column values approach provides an assessment of the relevance of the respective factor to the
success of adopting the approach.

The company-specific part or the table (at the bottom of the Figure) structures the infor-
mation of the comparison as follows: the column values company captures the current state of
the constituent at the organization. When comparing the content of the column with the value
given by the approach, three values can emerge: conflict, i.e., the given factor is not present or
currently contradicting the required form at the adopting company, discrepancy, i.e., the factor
is present but does not yet align with the form required by the approach, or agreement, i.e.,
the form in which the factor exists at the company coincides the with the form required by the
approach. This categorization explicates the potentially challenging aspects of the adoptions.

The two last columns capture whether the respective element is new to the participants or
has already been considered in the adoption planning and whether it is considered relevant. This
column is added as additional prioritization mechanism as it draws attention to factors that have
so far been overlooked and might require additional attention.

To create the instantiation, the approach-specific part of the model was filled in by researchers,
based on the literature available. In particular, the assessments of values approach incorporate
the adoption experiences that are reported in the literature. Contrarily, the company-specific
part was left blank to be filled in by the participants.

8.3.2 Study execution at U

At U, we used the RASM instance for Inner Source in a workshop that was structured as follows
(see Figure 8.3.2):

Initially, we collected the participants’ associations and thoughts on the Inner Source initia-
tive and summarized their main points. We then gave an introductory talk on Inner Source,
presented an overview on RASM, and introduced them to the tabular representation of the model
instance.

Subsequently, we invited the participants form groups of two or three people, select one of the
four reuse facets, and manually evaluate the respective factors. In addition, they should highlight
for each factor whether they had so far considered it in their company internal discussion of Inner
Source and whether they considered the factor as relevant. Figure 8.1 shows an excerpt of the
setup of the tool facet. During this hands-on session, the researcher was present to guide the
participants on demand.

8.4. Results for case U 127

Facet&Tools Constituents Details&approach Implications&on
Values&
Approach
Inner%Source

development&
tools

version(control

The(source(code(of(an(Inner(
Source(project(is(accessible(
openly(in(the(respective(version(
control(system(to(allow(potential(
users(and(contributors(full(access.(mandatory

Values'Company Conflict Discrepancy Agreement
New'
element?

Relevant'
element?

Risk%for%
adoption

Potential%
risk

Potential%
enabler

Which'development'tools'are'currently'
in'use'in'our'company?

Figure 8.1: Excerpt of the tabular representation of the RASM tool facet for Inner Source used
during the workshop. The graphic shows the columns and the first row of the table.

After the hands-on session, each group summarized their findings and proposed actions and
presented them to all participants for discussion. At the end of the workshop, the group and
their managers selected the next steps from the proposed actions.

As follow-up to the workshop, we prepared a short on-line questionnaire to collect anonymous
feedback from the participants (see Figures 8.3 and 8.4).

8.4 Results for case U

In this section, we report the results of the workshop with respect to our research goals. We
structure this section into results that we obtained via observation or direct feedback during the
workshop, results gained from evaluating the participants’ assessment of the reuse facets of the
instantiation, and results obtained from the anonymous post-workshop feedback questionnaire.

8.4.1 Observations from the workshop

Introductory session: During the introduction of the workshop, preceding the input talk, it
became clear that the Inner Source adoption was considered an extremely controversial topic by
the participants: on the one hand, strong advocates of the initiative were present:

“We really should do this. It already happens successfully on a really small scale with contrib-
utors from other departments.”

128 Chapter 8. Applying the decision model in practice

Morning session

Afternoon session

Input Inner Source
45 min.

Task: Understand details of
Inner Source

Guided SWOT - Analysis
15 min.

Task: Collect strengths,
weaknesses, opportunities,
and threats of adopting
Inner Source at U

Participants moderated by researcher

SWOT of
IS at U
SWOT of
IS at U
SWOT of
IS at U
SWOT of
IS at U

Hands-on session on reuse facets
90 + 120 min.

Task Session 1: fill in one of the facets
in small teams, discuss aspects and
implications on U. Identify new and
relevant aspects.

Task Session 2: assess conflicts and
discrepancies and derive potential next
steps to address them.

Participants in teams of 2-3 people,
guided as needed by researcher

RASM -
Practices

RASM -
Organization

RASM -
Tools

RASM -
Artefacts

Discussion and summary
30 min.

Task: Summarize and discuss results
of each team with the group,
commit to 5 items that will be
addressed in the next weeks.

Participants moderated by researcher

Feedback via online questionnaire
5-10 min.

Task: rate the model instance w.r.t. support for
discussion, relevance, new elements, accessibility.

Figure 8.2: Details of the RASM application for Inner Source at U. The elements in the dashed
boxes present the schedule of the one-day workshop. The single elements detail on the time given
to participants for the particular tasks, the concrete tasks that were effected, and the roles of the
participants and the researcher during the given tasks. The feedback questionnaire was provided
on-line and could be filled in until a week after the workshop.

8.4. Results for case U 129

On the other hand, outspoken sceptics voiced their concerns:

“In this company, this will never work. In Open Source, people contribute because they are
enthusiastic about a technology, they want to be part of it. With our technologies, we will never
achieve this identification.”

Both sides were emotional about the topic and motivated to see their viewpoint confirmed by
the workshop. However, so far, either of them was focussed on a particular and narrow aspect
of the approach (e.g., the perceived unattractiveness of the technologies or the presumed incom-
patibility of Inner Source with the present corporate culture, vs. a small number of successful
instances of cross-department development efforts).

Discussing their positions within the team lead both groups to consider each other’s points
of argument.

Guided Strenghts-Weaknesses-Opportunities-Threats analysis: Following the input
talk, we collected the participants’ statements on the strengths, weaknesses, opportunities, and
threats they associated with the adoption process. Even though they identified positive aspects
for all reuse facets, the risks and threats were more dominant. In particular, the present orga-
nizational stance towards the shared development entailed by Inner Source was seen as most
significant risk for success of Inner Source adoption:

“We can get the infrastructure and processes in place, but if we cannot obtain strong commit-
ment from top and middle management, this will never be a success.”

In addition, the unwillingness to distribute clear responsibilities and announce concrete goals
for the transition surfaced as significant threat to the adoption.

“We have been talking about this for months now, but still no one is really responsible and
assigned to drive the topic.”

As a result, the investigations into Inner Source had not been structured and detailed so far.

Reuse facets hands-on session: During the hands-on session, we observed the following:
Generally, the participants agreed with the different reuse facets. However, they were surprised
at the number of factors that, according to literature, should be considered when adopting Inner
Source.

During the course of the workshop, the participants used the structure of the respective reuse
facet to guide their discussion. They proceeded in a top-down way and discussed the meaning of
each factor with respect to their organization. Whenever needed, they addressed the researcher
with clarification questions or to explain their reasoning on particular points.

The rigid structure forced participants to move away from their “favourite” topics with respect
to Inner Source and look at other, usually neglected, aspects. In several cases, especially for the
management roles, this meant facing the complexity of the topic:

“I realized that, so far, the discussion was on the buzzword level, blind to the complexity of
the topic. We completely avoided looking into the organizational aspects.”

Reaching a shared assessment for the respective factors occasionally proved a challenge for the
groups. In this application, especially the facets artefacts and practices diverged significantly in
their expression within different parts of the organization. Thus, participants found assigning a

130 Chapter 8. Applying the decision model in practice

single assessment value for several of their factors seemed too coarse to reflect the organization’s
context.

8.4.2 Evaluation of facets and categories

During the workshop, participants were asked to discuss the factors of each reuse facet of Inner
Source, as presented to them by the model. Based on their comparison of the factor expression
required by the approach with their assessment of the factor at U, they rated the factors as
conflict, discrepancy, or agreement with the current state of the practice at U. Furthermore, they
marked the factors as new and/or relevant, if appropriate.

Table 8.1 summarizes the results of their assessment: in total, the participants discussed 140
aspects of Inner Source adoption. Of these aspects, 35 were rated as conflicts, 35 as discrepancy,
and 46 as agreement, accounting for 116 assessed factors3. Of these 116 factors, 70 require action
within the adoption process (60%). 105 out of the 116 factors were rated as relevant (90%) and
15 were rated as new. With respect to the different facets, the results varied. We detail on them
in the following paragraphs.

Facet Factors Conflict Discrepancy Agreement New Relevant
Artefacts 39 0 9 24 0 26
Practices 45 13 10 11 5 34
Tools 13 7 2 4 4 13
Organization 43 15 14 7 6 32
Total 140 35 35 46 15 105

Table 8.1: Summary of the compliance assessment between U and Inner Source based on the
tabular instantiation of RASM. The table displays the number of factors (constituents) of each
facet, as well as the number of conflicts, discrepancies, and agreements between the company
values and Inner Source. In addition, the number of new and relevant factors is reported.

Artefacts The facet artefacts showed the most agreements of the four reuse facets. Out of
39 factors, 24 were considered as agreements and 9 as discrepancy. The factors seen as poten-
tial risks included the availability of design artefacts, such as architecture and UI templates,
that should ensure technical compatibility and consistency of the developed artefacts. Further-
more, the existence of seed projects was marked as discrepancy: a number of small of candidate
projects could be identified, but their overall business value, scope of use across departments,
and their potential user/contributor base were not entirely clear. Since these are key factors for
the adoption of Inner Source [9], these discrepancies should be addressed.

As the risks identified on the artefact level were minor and, thus, few urgent actions could be
derived, participants considered the facet as useful check-list for reference when considering an
artefact for Inner Source development.

3Participants could leave factors blank if they did not consider them relevant.

8.4. Results for case U 131

Practices The assessment of the facet practices revealed a high number of challenges to Inner
Source adoption, expressed in 13 conflicts, 10 discrepancies, and 11 agreements. Particularly, the
heavy use of clone-and-own reuse from snippets to larger system parts, as well as incompatible
development styles and (partial lack of) quality assurance practices led to conflicts. In addition,
the integration of the different stakeholder needs and the lack of a contribution management were
seen as significant challenge for adoption. The strong heterogeneity of development, maintenance,
and quality assurance practices accounted for the discrepancies.

According to the participants, mending the identified risks on an organization-wide scale was
out of their direct reach. However, they identified the development of a set of practices for their
Inner Source implementation as one next step.

Tools On the tool level, participants identified 7 conflicts, 2 discrepancies, and 4 agreements.
However, they remarked that several of the conflicts, e.g., the lack of a central and accessible
version control system, had already be identified independently and were being worked on. In
summary, the participants of this group identified supporting infrastructure elements that they
expect can be adopted without significant effort.

Organization For the facet organization, the participants assessed 36 out of 43 factors and
identified 15 conflict, 14 discrepancies, and 7 agreements. The conflicts were assessed for the
factors management culture, resources, homogeneity of practices, toolsets, reuse vision, and
department culture. Furthermore, the alignment between the conventional software development
and Inner Source development, the creation of appropriate roles and processes, and the quality
assurance for contributions were considered important, yet not yet compatible with the current
state of the organization.

Discrepancies occurred for the factors related to community building, e.g., the recruiting and
management of core contributors, the project management roles, the confidence of developers and
managers with the transparency induced by Inner Source development, as well as the required
support by middle management.

Estimating the adoption effort Table 8.1 displays the total number of conflicts, discrep-
ancies, and agreements between U and the RASM instantiation for Inner Source. However, to
reach a qualitative estimate of the adoption effort, these should be weighted according to their
relevance. Table 8.2 provides this overview by separating conflicts and discrepancies of the single
reuse facets according to their criticality (required or recommended for adoption).

The result of this split provides the following information: in terms of required constituents,
U’s company profile currently is in conflict with 11 (mostly in the facets practices and organi-
zation) and has discrepancies with five constituents (with a majority in organization). In terms
of recommended constituents, U is in conflict with 23 (with all but artefacts concerned) and has
discrepancies with 21 (distributed across all reuse facets).

Two insights can be drawn from this information: first, U is currently missing a number of
key requirements that are necessary for adopting Inner Source. Most of them are lacking in
the organizational facets, followed by practices. This indicates that incompatibilities with the
organizational culture might be the most significant threat to the adoption. Second, U’s context
is currently clearly at odds with a large number of aspects that would support the adoption and

132 Chapter 8. Applying the decision model in practice

ensure better benefit realization of the approach. However, half of the missing recommended
factors have been marked as discrepancies and, thus, could be addressed with moderate effort.

Prioritizing the adoption steps A third of the required constituents for Inner Source adop-
tion currently missing at U fall in the category discrepancy (see Table 8.2). This indicates that
these constituents could be reached by means of moderate efforts and might provide tangible
progress to stakeholders. Mending the discrepancies of required constituents, thus, might be
strategically beneficial to advance the adoption.

Facet Factors Conflict Discrepancy
required recommended required recommended

Artefacts 39 0 0 1 5
Practices 45 2+3* 7 1 8
Tools 13 1 6 0 2
Organization 43 5 10 3 6
Total 140 11* 23 5 21

Table 8.2: Summary of the compliance assessment between U and Inner Source based on the
tabular instantiation of RASM. The table displays the number of factors (constituents) of each
facet, as well as the number of conflicts, discrepancies, and agreements between the company
values and Inner Source. In addition, the number of new and relevant factors is reported. (*Three
elements were discouraged and in conflict. They are summarized with conflict and required.)

Summary of the facet evaluation The results of the model application provides the following
insights: first, the majority of the contained factors were relevant to the participants. In addition,
the application supported them to identify some new aspects in all but one facets. Second, by
means of the model application, participants identified a significant number (50% of the presented
factors fall in one of the two categories) of aspects conflicting with or diverging from the context
requirements of Inner Source.

In summary, these findings suggest that RASM can contribute in identifying relevant aspects
that need to be resolved for a successful adoption of a reuse approach.

8.4.3 Participant feedback workshop

Following up on the workshop, we invited the participants to fill in an anonymous questionnaire,
reflecting their experience with the model application. The questionnaire covered two aspects:
the perceived usefulness of the model instance for the participants as well as the ease of use of
the tabular representation.

Each aspect was covered by one Likert battery, providing four to five answer options and
featuring a four-point Likert scale with an additional no-answer option (disagree, moderately
disagree, moderately agree, agree, no answer). In addition, the participants were invited to
provide additional comments on the model in a free-text form.

8.4. Results for case U 133

We report the questions and their answer options in Figures 8.3 and 8.4. Eight of the
ten workshop participants participated in the questionnaire. All responses were complete. The
no-answer option was not used.

Perceived usefulness As reflected by Figure 8.3, the participants’ attitude with respect to
the perceived usefulness of the model was positive: In particular, the participants strongly ap-
preciated the structuring of the topic, the identification of new aspects, and the identification of
aspects critical to the adoption in the given context. In addition, the majority of participants
reported that relevant discussions were initiated during the process of applying the model and
that it helped them identify concrete next steps to advance the adoption.

During the further course of Inner Source adoption, the majority of the participants are
planning to use the model instance as reference.

The positive impressions are backed by the free text feedback that considered the model as
providing a “good overview on topic”, “structured view on topic”, and appreciated the support
for discussion “model structured complexity of topic and tamed it for discussion”, “topics initi-
ated important debate and highlighted relevant aspects”. Summing up, participants considered
themselves more informed after the workshop: “This definitely helped filling in the blanks.”

Perceived accessibility Figure 8.4 relates the answers with respect to the accessibility of
the model. In general, participants felt the need for qualified support when completing the
assessment of the reuse facets. The free text answers reinforce this impression:

“Without help, completing the model would be too difficult.”

In particular, two participants indicated that additional care is required to prevent misunder-
standings when translating information from the academic realm to a particular case in practice:
“A glossary would have helped as, for several terms, we have a specific notion within our organ-
isation that did not coincide with the model terminology.”, “The model was too academic and
should have been more specific to U.”

Summary of the participant feedback Overall, participants appreciated the structure and
the degree of detail of the model instantiation as it grounded the fierce debate, supported them
to manage the complexity of the topic, and covered neglected aspects. To improve the model in
the future, two participants wished for an up-front tailoring of the model.

8.4.4 Summary of the model application

Benefits Based on the participant feedback and observations from the workshop, we consider
the goals of the model application to be met: participants gained new and relevant insights for
their adoption process, and derived facilitating steps to improve the current state of practice in
their organization. The structure of the model supported them in the face of the complexity of
the topic and might be a useful reference for future decisions.

Challenges From the observations, we realized that a lack homogeneity with respect to a facet
poses a challenge for filling in the model in its current form. In the case of U, most frequently,
these items were marked as discrepancy, as they were not matching the requirements of Inner

134 Chapter 8. Applying the decision model in practice

1

5

3

5

5

6

3

3

2

2

1

2

1

1

Stimme nicht zu. (Disagree.) Stimme eher nicht zu. (Moderately disagree.)
Stimme eher zu. (Moderately agree.) Stimme klar zu. (Agree.)
Keine Angabe. (No answer.)

hat mir geholfen, das Thema
Inner Source strukturiert zu

betrachten. (helped me to
consider the topic of Inner

Source in a structured way.)

hat die relevanten Punkte für
eine Inner Source-Einführung

aufgezeigt. (highlighted the
relevant aspects for Inner Source

adoption.)

hat mir neue Aspekte zur
Einführung von Inner Source

aufgezeigt. (highlighted aspects
of Inner Source adoption that

were new to me.)

hat mir geholfen, kritische
Punkte für eine Einführung von

Inner Source in unserer Firma zu
identifizieren. (supported me to

identify critical aspects for
adoption of Inner Source in my

company.)

werde ich im weiteren Verlauf
der Einführung als

Unterstützung benutzen. (I am
going to rely on the model

during the adoption process.)

0 1 2 3 4 5 6 7

Figure 8.3: Responses for the question model assessment. Question text: “The model for Inner
Source...”

8.4. Results for case U 135

2

5

6

5

2

3

1

1

2

2

3

Stimme nicht zu. (Disagree.) Stimme eher nicht zu. (Moderately disagree.)
Stimme eher zu. (Moderately agree.) Stimme klar zu. (Agree.)
Keine Angabe. (No answer.)

bin ich mit dem Modell ohne
Hilfe gut zurecht gekommen. (I
could work well with the model

without external help.)

war es wichtig für mich,
Unterstützung für das Ausfüllen

des Modells zu haben. (I needed
support for filling in the model.)

sind relevante Diskussionen
ausgelöst worden. (relevant
discussions were initiated.)

konnte ich konkrete
Arbeitsschritte zum Thema

mitnehmen. (I could identify
concrete next steps for

proceeding with the adoption.)

0 1 2 3 4 5 6 7

Figure 8.4: Responses for the question model accessibility. Question text: “When applying the
model during the workshop...”

136 Chapter 8. Applying the decision model in practice

Source with respect to all software development departments. For future application, this aspect
needs further investigation.

The answers to the questionnaire reinforced the need for support when working with the
model. In particular, finding a common language with each organization should be facilitated,
e.g., by providing a detailed set of definitions with the model.

8.5 Limitations of evaluation

The presented evaluation serves as a proof of concept to inspect how a RASM can support
practitioners to systematize their discussion, evaluation, and planning of an adoption of a software
reuse approach. As the approach was already decided on by higher management, this evaluation
did not effect a full effort-benefit comparison but focused on the identification of potential issues
and critical points for adoption.

A case-based evaluation cannot give conclusive evidence in terms of quantitative results in
terms of saved effort or expenses.

Nevertheless, it provides indication that the purpose of the model, grounding a complex
discussion by means of structure, as well as making research results available to practitioners,
addresses a challenge faced in practice. The practitioner accounts, furthermore, suggest that an
interactive application of the model has the potential to rationalize discussions on reuse adoption,
as well as highlighting aspects that have so far been neglected.

8.6 Next steps

As we have seen in this proof of concept, a single instance application of the model can provide
a first realistic/objective global assessment of the effort required to adopt a particular reuse
approach. However, for a successful adoption, this is only the first step: organizations need to
derive concrete actions, plan for the required changes, assign responsibilities, and follow up on
the adoption process.

Operationalization Whilst many of the indicated changes fall within the organizational domain
(and, therefore, within a different range of instruments for management), also the technical
and code-centric aspects of reuse adoption require attention: for instance, a change of reuse
strategy might entail discouraging clone-and-own reuse practices and, instead, promoting the
use of specific libraries. To manually assess the compliance with this new strategy, as well as
its effect on, e.g., code quality, is infeasible. Therefore, tool support is required that supports
practitioners with measurement of reuse aspects in the source code. This topic is addressed in
more detail in Part IV.

Further instantiations To support the approach selection use case of RASM, a knowledge
base of instantiations for further reuse approaches needs to be created and maintained. Ideally,
also the interactions and dependencies between different expressions of (groups) reuse factor
constituents would be integrated in the model to provide more detailed guidance for adoption.

8.6. Next steps 137

Further applications This proof-of-concept evaluation has focused on the identification of
discrepancies and conflicts that need do be addressed during Inner Source adoption at U. In
future applications of RASM, we aim to apply the full model and, thus, effect the complete
comparison of potential adoption benefits with estimated adoption efforts.

Part IV

Methods and tools to detect reuse
potential

139

9 | Detecting reuse potential in the
context of a RASM application

The reuse adoption support model presented in Chapter 7 requires a significant number of
details to be captured on the development context and capabilities of a company. One of these is
the identification of suitable entities for reuse that should either be created or prepared for
reuse. Whilst many of these aspects are difficult to capture in a quantitative way, several
questions relevant to software reuse and potential improvements can be answered by analysing
the software products of the respective company.1 For instance, a prevalence of cloning might
indicate a lack of suitability of given artefacts or a lack of support in the current infrastructure
to find or access entities for reuse. If a counter strategy, e.g., introducing a new infrastructure,
targets these issues to support more advanced reuse practices, these aspects could be tracked by
automated measurements and, thus, related to the degree of success achieved by a new reuse
strategy. The following chapter presents methods, approaches, and tools developed to quantify
different aspects of reuse and deliver a more reliable base for the assessment of reuse potential
or risks. Parts of this Chapter were published in [37, 39, 40].

Contents
9.1 Detecting reuse potential in source code 142

9.2 Discovering unintentional re-implementations 142

9.3 A hybrid approach to discover unintentional re-implementations . 147

9.4 Combining clone detection and LSI to detect re-implementations 153

9.5 Cross-project clone detection as guidance for reuse improvement 166

9.6 Conclusion . 170

1The applicability, however, depends on the technical infrastructure at disposal.

141

142 Chapter 9. Detecting reuse potential in the context of a RASM application

9.1 Detecting reuse potential in source code

Potential for software reuse can be assessed on many different abstraction levels, ranging from
system requirements to source code. In the context of companies that seek to improve their
current reuse practices from a pragmatic level, starting to unearth candidates for reusables
or instances of missed reuse opportunities can serve as an important starting point for a new
strategy. Arguably, both indicators manifest themselves in the form of code redundancies.

On this note, the techniques proposed by the software clone research community offer sig-
nificant potential. However, they are usually limited to the scope of single projects and find
application mostly within the assessment of code quality. In addition, conventional clone detec-
tion tends to fall short when attempting to capture missed reuse opportunities in the form of
semantic re-implementations. Arguably, these are frequent in practice and, therefore, a method
to discover them could significantly improve the insights about the potential for reuse in a code
base. During the assessment of adequate reuse approaches with RASM, these insights are of
significant value: they provide an objective base for identifying useful candidate reusables, as
well as supporting monitoring the changes induced by a change in reuse strategy.

Clearly, automated detection mechanisms for reuse potential have their limitations: they can
rely on structural or semantic similarity, but either of these measures can result in incomplete
results, due to potentially significant variations in structure or vocabulary of the analysed system.
Nevertheless, applying automated detection mechanisms to detect reuse potential can provide
interesting findings that manual analysis could not yield feasibly.

Sections 9.2, 9.4, and 9.5 address the limitations of current work in the following way: Sec-
tion 9.2 presents a novel, heuristic, approach to detect semantic re-implementations and Sec-
tion 9.4 in a case study on an industrial system provides indicators for the applicability of the
approach in practice. Section 9.5 lines out how conventional clone detection, ported to a cross-
project scope, could improve the detection of candidate system parts for reuse.

9.2 Discovering unintentional re-implementations

Unintentional re-implementation of existing functionality is an issue frequently reported in prac-
tice. It causes increased efforts for development and maintenance and indicates the lack of a
suitable reuse strategy. However, instances are hard to find with existing approaches. For prac-
titioners, this increases maintenance risks, such as inconsistent bug fixing, and hinders quality
improvement efforts. For researchers, this hinders a reliable quantification of the issue. Insights
could inform decisions on candidate reusables and tool support for reuse.

We propose a pragmatic approach combining identifier-based concept location with static
analysis to detect candidate re-implementations between two sets of source code. We present
initial results from applying the approach to detect re-implementations of utility functionality
present in libraries within a sample of Java projects. Parts of this work have been published
in [39, 40].

9.2. Discovering unintentional re-implementations 143

9.2.1 Background

An abundance of valuable software assets is present in companies’ code repositories, via Open
Source libraries, and commercial component markets. Nevertheless, developers tend to re-
implement existing functionality [137, 27], missing out on the benefits of reuse opportunities.
Furthermore, this can result in the creation of “Simions” [138], independent re-implementations
of existing functionality that do not share a common origin in terms of code. Simions have long
term negative effects in the form of increased development and maintenance efforts.

Re-implementations can happen easily for various reasons: (1) the scale of development
in large projects makes staying up to date with reusable entities challenging. This entails a
certain amount of parallel implementation efforts. Despite the higher probability of a required
functionality being available, the increasing effort for searching, understanding and adapting a
reusable incites implementing functionality from scratch [27, 137]. (2) The use of established
protocols might impose specific implementation steps that are duplicated [139]. (3) To achieve
business goals, duplicate implementations might be necessary at times. (4) Evolution of libraries
might make parts of the code obsolete [137]. (5) Low API usability prevents users from finding
the implementations realizing a specific concept [140].

Discovering re-implementations is difficult in theory and practice: first, semantic equivalence
checking is well studied (e.g. [141]) and a generally undecidable problem. Approaches to detect
re-implementations therefore are constrained to resort to approximations. Second, previous
work [33, 138] concludes that existing approaches, such as clone detection or random testing
approaches [142], do not provide satisfactory results to detect re-implementations in practice.

Consequently, research so far is unable to realistically quantify the size of the problem. Prac-
titioners, on the other hand, miss an approach providing support to avoid new and discover
existing re-implementations [27]. Therefore, we need a new approach to discover missed reuse
opportunities in the form of (unintentional) re-implementations.

Summing up, we can state the follwing: Re-implementations of existing functionality happen
in practice and entail negative effects, such as increased costs for development and maintenance.
However, we are lacking a comprehensive approach to discover them. As a result, the extent of
the phenomenon remains unclear. Furthermore, practitioners lack support to address the issue.

In the following, we present a novel approach to discover re-implementations between software
libraries and a system’s source code. To this end, we establish a broader definition of similarity,
based on the concepts embodied in the identifiers. We implement our approach for Java systems
and provide a calibrated set of parameters for it. We report on a proof of concept evaluation,
detecting re-implementation of library functionality in three Java systems.

9.2.2 Related work

Prior work has addressed cases of semantic code duplication. Our notion of re-implementations
is related as follows:

Semantic clones [143] are code fragments with isomorphic program dependence graphs,
and therefore structurally similar. Their behaviour can, but does not need to, be functionally

144 Chapter 9. Detecting reuse potential in the context of a RASM application

similar. Accidential clones [139] are code fragments of different origin that are syntactically
similar due to the adherence to a specific protocol. This does, however, not imply behavioural
similarity. Type-4 clones [125], “wide miss” clones [127], and Simions [138] refer to the
same phenomenon: behaviourally similar code fragments that have no common origin. Unlike
cloned code, these fragments are likely to differ greatly in their structure [138].

In the following, we present approaches that aim to detect or avoid untintentional re-
implementations.

9.2.2.1 Detecting similar implementations

Closest to our approach is the work by Marcus and Maletic [127]: they aim to interactively
detect high-level concept clones by computing the similarity of source code documents (that
can be of the granularity of files or methods) and clustering of the results. The similarity is
computed with Latent Semantic Indexing, LSI [144]. The clustering can be enhanced by using
structural information. Determining relevant high-level concepts is done by the user. In a case
study, the authors uncover simions of a list within one system. Our approach differs in scope
and techniques: We aim to find simions between a corpus of libraries and one or more systems.
Since the libraries determine the relevant concepts for the analysis, we need a pragmatic way to
extract their key concepts from their source code. For this, we choose TF-IDF which is robust
accross systems and does not require extensive tuning. Furthermore, we take use the program
structure to restrict the vocabulary used by the analysis.

Al-Ekram et al. [139] report empirical findings on accidential cloning across software systems.
Their approach detects structurally similar code fragments caused by usage patterns required
by specific technologies. However, the authors state that their approach is likely to miss re-
implementations that are fundamentally different in structure.

Jiang and Su [142] propose random testing to automatically mine functionally equivalent code
fragments. The source code is randomly cut in chunks. Two chunks are considered equivalent
if they produce the same output for the same random input data. The study reports promising
results for the test systems, namely a Linux Kernel and a sorting benchmark. These systems
are written in C and, due to their functionality, do not require functionality, such as string
processing, which is prevalent in average systems. Deissenboeck et al. [33] found that reproducing
Jiang and Su’s experiment on Java code yielded insatisfactory results. Apart from challenges
induced by the different requirements of the technical platform, they consider their definition of
equivalence problematic: first, it does not account for side effects. This causes code fragments
to be pronounced equivalent that a programmer would deem fundamentally different. Second,
independently of the given input, most code chunks did not produce any output or yielded
exceptions. By their definition, these chunks are equivalent. In practice, this information is of
little value.

Kawrykow and Robillard [137] propose an approach to mine Java systems for methods “im-
itating” library methods available to these systems. Their goal is to replace functionality im-
plemented in the client code by calls provided by the library. They abstract method bodies to
program elements and perform a matching between the available library methods and the client

9.2. Discovering unintentional re-implementations 145

methods. Whilst they cater to the important use case of replacing obsolete client methods by
library methods, the notion of equivalence on the method level is still too restrictive for our
task: the re-implementations we are looking for might be present in different code structures and
would therefore be missed by the approach.

9.2.2.2 Detecting similar applications

Using API calls to find relevant code has been proposed and applied before, e.g. in the context
of code search [145, 146, 147] and rapid prototyping [148]. However, we do not know of this
technique being used to track and quantify simions in existing software systems. Despite the
differing context of the work, the successful use of API calls as indicators for relevant code
encourages us to exploit this idea for our goal.

Teyton et al. [149] support the process of library migration by mining function mappings from
projects that have already completed the transition between two given libraries. This approach
pragmatically overcomes the challenges of establishing a notion of “similarity” in terms of the
program constructs themselves and is, therefore, immune against differences in structure and
vocabulary. However, in our context, historical data is not applicable.

9.2.2.3 Preventing re-implementations

Thung et al. [150] address the proplem of duplicate implementation in a constructive way: by
analyzing repositories to determine which APIs are used together, they provide recommendations
of potentially useful APIs for a given project. Their goal is to inform developers of existing APIs
before they re-implement the respective functionality. Our work complements this approach by
discovering already existing re-implementations that could be replaced by libraries.

Code recommenders, proposed by [151, 91, 152, 153, 154], address re-implementations by
recommending code snippets or applicable library methods depending on the current develop-
ment context. Similar to code recommenders, enhanced code completion [155, 156] aims to
ease discovery of existing functionality to the developer. These approaches do not support de-
tection of already existing re-implementations. However, the techniques employed to generate
recommendations include code structure and identifier analyses.

9.2.2.4 Concept location

The use of identifiers is a common strategy for concept location [157]. Methods from text
retrieval, TR, (such as Term Frequency-Inverse Document Frequency, TF-IDF [158], or Latent
Semantic Indexing, LSI [144]) are used to extract concepts given by e.g. use cases from source
code. Recently, these approaches have been enhanced by adding static and/or dynamic program
information. A study by Basset and Kraft [159] further suggests that structural term weighting
can improve TR based concept location. To the best of our knowledge, the mentioned techniques
have not been applied to our case.

146 Chapter 9. Detecting reuse potential in the context of a RASM application

9.2.2.5 Clone detection

Code clones are a popular reuse mechanism in Open Source and industrial software development
practice [52, 160, 60]. The mechanism provides short term benefits for development but is linked
to negative consequences for maintenance (e.g., higher testing efforts, bug propagation, faults due
to inconsistent changes, security violations [63, 161]). Consequentially, significant research effort
has been invested into approaches and tools for clone detection [162, 63, 163, 164, 165, 166]. State
of the art clone detectors produce good results in discovering identical code fragments (Type-
1), syntactically identical fragments (Type-2), as well as syntactically similar fragments that
have been moderately altered by adding, removing, or changing the order of statements (Type-
3) [167, 162, 163]. However, discovering semantic re-implementations, also known as Type-4
clones, remains a challenge [168, 167]. Research has identified the need to improve the results of
clone detection for better applicability [169, 170, 171]. In [170], the authors propose the concept
of structural clones, that incorporate several simple clones for better insights. Our ACD is
following this proposition; our study, however, has a different scope. In [171] the authors apply
clustering with LSI to clone detection results to support maintenance with relations between
clusters. Again, the scope of our study differs.

9.3. A hybrid approach to discover unintentional re-implementations 147

9.3 A hybrid approach to discover unintentional

re-implementations

The following section presents our approach. At this stage of our work, we focus on discovering
re-implementations of well established concepts available in open source libraries.

Our simion detection proceeds as follows (see Figure 9.1): it takes as input the so-called
“concept library”, a curated collection of libraries from which the concepts are mined, as well as
the “study object”, consisting of one ore more software systems in which we look for simions.
The identifiers of concept library and study object are extracted and analyzed in a preprocessing
phase to learn the specific concepts present in their source code. The preprocessed identifier
information is then used in the matching phase to compute the likelihood of two code entities
implementing equivalent functionality.

By resorting to identifiers, we overcome the problem of restricting similarity to a syntactic
level. As studies have shown, identifiers are valuable sources for capturing programmers’ in-
tent [172, 173]. Therefore, we assume that two code fragments that contain identifiers belonging
to the same concept might provide the same functionality and could, therefore, be potential
re-implementations. This assumption is strengthened by Haiduc and Marcus [174].

Whilst the intuition behind this approach is quite simple, relying solely on identifiers risks
to clutter the results with false positives: the same identifiers occur when defining a specific
functionality as well as when using it. To mitigate this, we only consider identifiers present in
declarations of methods, fields, and classes.

Our approach abstracts functionality provided by identifiers on a per-file basis. We opt for this
granularity to capture concepts spread over several methods. During the preprocessing phase,
we assign a set of “significant” identifiers to each source code file. We deem those identifiers
as significant that best2 capture the concepts of the respective file. Based on this information,
we compute a similarity score for all files within the study object and the files of the concept

library3. The similarity score is computed as follows:
∑

i∈Ib∩s
v(i)∑

i∈Ib
v(i)

, with Ib denoting the relevant

identifiers of a concept file and Ib∩s denoting the overlapping relevant identifiers of a concept and
a study object file. v(i) denotes the weight assigned to the given identifier i. We implemented
our prototype on top of ConQAT4, an Open Source software quality analysis tool.

9.3.1 Calibration of the approach

The quality of the obtained results depends significantly on the processing (and the quality) of
the identifiers. In this section, we describe the variation points and the steps of calibrating the
parameters of our approach.

2“Best” is determined by the characteristic identifiers contained in the corpus of libraries.
3Depending on the context, not all concepts need to be searched for. Instead, the analysis can be run for

specific concepts present in the library, such as “Collections”, “I/O” etc.
4www.conqat.org

148 Chapter 9. Detecting reuse potential in the context of a RASM application

Preprocessing

Concept library Study object

C1 C2 C3 C4

C5 C6 C7

A B C D

E F G(...) (...)

C2 E....................

Extract identifiers

Compute identifier weighting

Matching

Extract identifiers

Compute identifier weighting

Output

Figure 9.1: This figure illustrates our approach: we extract relevant identifiers for each concept
and compute the best matches within the study object. In the preprocessing step, different
approaches can be taken to select and prepare the identifiers that are subsequently used.

There are two steps in the process that allow for variation: (1) identifier extraction and (2)
identifier ranking. For both steps, we present the potential options. Then, we describe the
setup of the calibration process, the tested parameter configurations, and the resulting set of
parameters used for our proof-of-concept evaluation.

Identifier extraction The first step of the preprocessing phase is the extraction of the identi-
fiers. We assume that preselection of identifiers guided by the program structure would improve
the precision of our findings. To quantify the effect of this step we included this decision in our
calibration process. Second, we tested the impact of splitting5 and partitioning the identifiers
on our results.

5We used CamelCase as well as non alpha-numeric characters as indicators for splitting. Furthermore, we
applied an English word stemmer and removed trailing digits.

9.3. A hybrid approach to discover unintentional re-implementations 149

Identifier ranking The second step of the preprocessing phase assigns a weight to the identi-
fiers extracted for each file. Pragmatically, one could count the absolute frequencies to identify
the most relevant concepts in a file. However, this approach risks to overshadow important con-
cepts. For this reason, we compare the effect of ranking concepts according to their absolute
identifier frequency to using the TF-IDF metric. Furthermore, we test the impact of several
threshold values for TF-IDF.

9.3.1.1 Calibration setup

To calibrate our approach, we considered the specific use case of discovering potential re-
implementations of well known “Collections” concepts in the Qualitas Corpus. We buildt up
our concept library by curating these concepts from well known Open Source libraries, such
as Apache Commons, Trove6 and Guava7. By manually assessing the library implementations,
we found that indeed the vocabulary used to represent the concepts in the identifiers was very
similar.

Study Object To test the suitability of a configuration, we need a way to measure the quality
of the result we obtain. Since we can not manually establish the number of re-implementations of
a given concept within the 112 systems present in the Qualitas Corpus8, we injected deliberate re-
implementations into the corpus by inserting the files of the Guava Collections into the Qualitas
Corpus9. In this way, we obtain a known set of expected hits for our approach. Nevertheless,
determining the quality of the result remains challenging. Manually validating the presence of all
expected Guava files in the results is infeasible. Furthermore, results yielding the same number
but different files can not be differentiated in quality. To address these challenges, we set up
the experiment as shown in Figure 9.2: for each configuration, we run our analysis once. Then,
we randomly sample 10 files from the Guava Collections and probe the result set to find out 1)
whether they are included and 2) in which position of the result set they occur. This probing
step is repeated 100 times, each time with a different random sample.

Configurations We account for the mentioned variation points in the following way: The
selection of the identifiers is done either by extracting all identifiers present in the current file or
extracting only identifiers present in declarations of classes, methods, and variables.

Partitioning of the identifiers refers to employing splitting techniques and providing, in addi-
tion, substring representations of the identifiers. Take as example the identifier arrayStackItem.
The ordered substring representations would yield: {array, stack, item, arrayStack, stackItem,
arrayStackItem}. This variation is either on or off. The configuration for TF-IDF varies from
counting the identifier frequency to using TF-IDF with the threshold values of 5, 10, and 15.

To compare the results for each configuration, we computed the following metrics per probing
step: the average hit count, establishing how many of the files in our probing set are present in

6http://trove.starlight-systems.com/
7https://code.google.com/p/guava-libraries/
8We used the Qualitas Corpus version 20130901r and the JRE 1.6.0.
9For this setup, we removed the Guava Collections from the concept library.

150 Chapter 9. Detecting reuse potential in the context of a RASM application

the results, and the position, denoting the rank of the files in the result set. The final performance
of a configuration is rated by averaging the average hit count and the position values for all the
probing steps.

9.3.1.2 Calibrated configuration

The calibration procedure yielded the following configuration as the most suitable: preselecting
the identifiers according to the program structure, partitioning the identifiers, and using TF-IDF
with a threshold value of 5. Consequently, we run our proof of concept evaluation with these
settings.10

1 x per configuration 100 x per configuration

Concept library Study object

C1 C2 C3 C4

C5 C6 C7

A B C D

E F G
(...) (...)

Configuration Configuration

Guava
Collections

Result Evaluation

Select 10 random
Collection files

Figure 9.2: This figure visualizes our evaluation process for detecting re-implementations of
Collection functionality. To establish a base-line of known duplicates, we injected the Collection
implementation of Guava into the Qualitas Corpus and measured the detection rates for these
known “re-implementations”.

9.3.1.3 Taxonomy of the results

From the calibration results, we built up a taxonomy of findings by manually assessing the first
250 results. The code fragments matched the following categories:

A code fragment is a potential re-implementation if it implements or extends functionality
contained by or equal to the concept we searched for. Clearly, our approach can not prove the
fragment’s functional equivalence. However, it can point developers to candidate points in order
to establish whether they really present missed reuse opportunities. Potential re-implementations
can have a varying degree of similarity to the concept implementation in the library. We therefore
differentiate between perfect match, where study object and concept library implement the same

10Comparing our calibrated approach to [127] would be interesting. However, it is unclear if their system is
available.

9.3. A hybrid approach to discover unintentional re-implementations 151

functionality, similar match, where study object and concept library implement similar aspects
of the same concept, and concept match, where study object and concept library implement
different aspects of the same concept.

If a code fragment merely wraps library calls for a specific concept, our approach will still
include it in the result. However, we consider this case as a concept application and do not
classify it as missed reuse opportunity.

False positives unrelated to the considered concept are seen as bad matches. For situations
where we can not fit a result in any of these categories, we label them as undefined.

Result classification The distribution of the calibration findings is as follows: 195/250 po-
tential re-implementations (out of which 11/195 perfect matches, 86/195 similar matches and
98/195 concept matches), 30/250 concept applications, 18/250 bad matches, and 7/250 unde-
fined. The ranking of the results intuitively presented the potential re-implementations with
higher values than the other categories.

We, furthermore, assessed the 18 bad matches found within the 250 results. The majority
(16/18) of bad matches occurred due to similarities in the vocabulary employed by different
concepts, in our case string manipulation and iterations over collections. The remaining bad
matches were applications of the concept contained e.g. in implementations wrapping the usage
of a library.

9.3.2 Proof of concept evaluation

Our proof of concept evaluation provides a first answer to the following question: Which re-
implementations do we find within our study objects?

To answer this question, we select three Open Source Java projects, analyze them and man-
ually examine the source code indicated as re-implementation by our approach. We restrict
the search for re-implementations again to the “Collections” concept. Furthermore, we limit the
assessment to the first 30 results for each system.

Setup The concept library used for this evaluation contains the Apache, Trove and Guava
collections. Our study objects are the Apache projects “MyFaces” and “Tomcat”, present in
the Qualitas Corpus, and the “Spring IO” framework[175]. The systems provide functionality
related to web applications with Java. Due to this specialization, we expect them to use given
collection implementations. Therefore, re-implementations of this concept would be missed reuse
opportunities.

Results The inspection of the analysis results yielded the following re-implementations: a
perfect match of IteratorEnumeration and a concept match for MapEntries in MyFaces, a Null-
Comparator perfect match and a similar match for a UnmodifiableMap in the Spring framework,
and a perfect match for the ArrayStack implementation, a perfect match for the Entry imple-
mentation and a similar match for a HashMap implementation in Tomcat. For all three systems,
the perfect matches ranked within the first five positions of the findings.

152 Chapter 9. Detecting reuse potential in the context of a RASM application

9.3.3 Threats to validity

The preliminary character of our investigation entails a number of threats to validity. Firstly, the
concept library and the study objects are currently very specific. It remains to be seen how well
the approach performs on a larger and less carefully curated collection of libraries and systems.
Secondly, we calibrated our approach for a well known concept, encompassing a clear vocabulary.
This characteristic might not be necessarily given for other concepts. It remains to be seen if
our approach can provide helpful results nevertheless. Possibly, it could be enhanced by sourcing
domain knowledge from the implementors or including ontologies.
Determining the equivalence of implementations by automatic ranking as well as manual inspec-
tion remains challenging. Therefore, neither the weighting function nor the manual assessment
for determining the quality of the results can be perfectly reliable.

9.3.4 Summary

We presented a pragmatic approach to detect re-implementations. Due to a wider notion of
similarity, which is based on the concepts contained in the source code, it is able to find potential
duplicates that likely would be missed by established approaches such as clone detection. Our
preliminary results look promising and encourage us to follow up with extended evaluations. In
this way, we aim to quantify the extent of re-implementations in software systems as well as to
support practitioners to avoid or remove missed reuse opportunities.

9.4. Combining clone detection and LSI to detect re-implementations 153

9.4 Combining clone detection and Latent Semantic Index-

ing to detect re-implementations

The previous section has presented a novel approach and a proof of concept to detect re-
implementations in practice. The results were promising but indicated a typical applicability
issue of static analyses: the sheer number of results is overwhelming and can not be addressed
in a feasible way. Furthermore, results tend to be cluttered at first and require extensive triag-
ing before being perceived as actionable by practitioners. These findings motivate the following
work: we analyse whether intersecting the results of a conventional clone detection with the
results obtained by our IR-based approach can mitigate these issues and produce a focussed and
high-quality result set that is considered actionable by practitioners.

This section presents a refined version of the approach presented in Section 9.2 and the
results of a case study conducted with an industry partner. We show that the combination of
the approaches indeed lead to valuable results for practitioners.

The intuition guiding our approach is the following: first, code clones and re-implementations
are instances of redundancies. Second, Type-4 clones could potentially have evolved from lower
clone types, diverging from the original to an extent that only minimal syntactical similarities
remain, yet retaining semantic similarities. Third, approaches for detection provide an unman-
ageable number of results. Cross validation of the findings of clone detection with LSI and vice
versa could yield a more focussed result set for each approach, as the findings of the syntactical
level are confirmed or rejected by the semantic level. As a result, we expect a significant increase
in the precision of the findings. Last, each technique is known to miss certain types of relevant
redundancies, e.g., renamed copies [127], structurally diverging fragments [138]. A combination
of both could compensate for this shortcoming [127].

Our findings suggest that (1) latent semantic indexing and clone detection complement each
other, (2) aggregated clone detection can be a better indicator for re-implementations than LSI,
and (3) the combination of the techniques provides high quality result sets which were considered
relevant and actionable by practitioners. Parts of this work were published in [40].

9.4.1 Study goal and research questions

The goal of our study is to provide an answer to the following question: Can LSI and clone
detection complement each other to better detect re-implementations?
For our study, we derive the following research questions:

RQ1.Do LSI and CD produce different results?: We assess whether the two analyses
produce different result sets for the same system, compare the overlaps and additional hits each
of them provides, and study the characteristics of the findings. Additionally, we want to deter-
mine whether there are re-implementations that can be found only by either of the approaches
and would, thus, warrant a combined application to reach a more detailed understanding when
assessing a system.

154 Chapter 9. Detecting reuse potential in the context of a RASM application

RQ2.Does intersecting the result sets of both analyses improve the quality of the
results?: LSI as well as clone detection (static analysis in general) in practice suffer from the
fact that they produce an enormous number of findings. Assessing all of them is infeasible for
practitioners. For this research question, we explore whether intersecting the result sets of our
analyses produces a more focused and high-quality result set.

RQ3.Are the results of the combined analyses relevant for practitioners?: Since
re-implementations are difficult to track, evidence is scarce on their relevance. With this research
question, we would like to explore whether our findings are of practical use, i.e., actionable for
application, for practitioners.

9.4.2 Study object and subjects

Study Object Our industrial study object is a Java enterprise application managing the data
exchange between several back office systems, management tools and offline capable end user
applications on different devices and platforms. It is written in Java and has been under devel-
opment for the last decade, growing to >150.000 LOC distributed over >2900 classes and 1194
files. The average file size is 130 LOC, the median file size 60 LOC, the minimum file size 5 LOC,
the maximum 2030 LOC.

Based on expert opinions, we suspected the presence of re-implementations. However, we did
not have any kind of reference links or baseline at our disposal. For the analysis, we excluded
generated (thus unmaintained) system parts.

Study Subjects For RQ3, we asked two system experts to rate the re-implementations ac-
cording to their relevance for action. One of the experts is the system architect responsible for
the entire study object. He has 18 years of work experience, 14 of which were spent at the
current company. The other expert is a Dev-Ops engineer working on parts of the system. His
work experience at the company amounts to 3 years, his overall work experience to 16. Their
participation was motivated by the interest of gaining new insights about the study object.

9.4.3 Implementation of an LSI-based approach

To conduct our study, we implemented an LSI-based approach to detect potential semantic re-
implementations by means of combining IR techniques and structural code information.11 The
implementation is inspired by previous work [39], as well as by the proposal by [127].

Intuition Our implementation proceeds as follows (see Figure 9.3): it takes as input a body of
source code in which we look for re-implementations. We extract and preprocess the identifiers
to learn the specific concepts present in the source code. The identifier information is extracted
and then used to compute a similarity score in the pairwise comparison of files. This is based
on the assumption that the higher the score, the higher the likelihood of the files implementing

11 In [176], we conduct a comparison of two IR techniques, LSI and TF-IDF, for our case. Results suggest
that for typical software systems LSI is the better choice, therefore, for our present study, we use LSI, instead of
TF-IDF, as IR technique. Contrarily, in the study presented in Section 9.2, the size of the data set indicated the
use of TF-IDF.

9.4. Combining clone detection and LSI to detect re-implementations 155

equivalent functionality. As a result, we obtain pairs of files with an associated similarity score.
For further details, see [39, 176].

Identifiers By resorting to identifiers, we overcome the problem of restricting similarity to
a syntactic level. As studies have shown, identifiers are valuable sources for capturing pro-
grammers’ intent [172, 173, 174]. Therefore, we assume that two code fragments that contain
identifiers belonging to the same concept might provide the same functionality and could, there-
fore, be potential re-implementations. During preprocessing, identifiers are split, stemmed, and
partitioned.12

Matching

Preprocessing

......Extract identifiers per file

Similarity score

Output

A B C D

E F G (...)

Body of source code

A B D

E F G (...)

C

C

Pairwise comparison of files
with LSI

E
Similarity

Score
0.98

Figure 9.3: Overview of the LSI-based approach. During the analysis, we extract relevant con-
cepts by means of identifiers present in each file and compute the best matches between them.

Our implementation abstracts functionality provided by identifiers on a file basis. We opt for
this granularity to capture concepts spread over several methods13.

Similarity Based on previous work [176], we use LSI to compute the similarity score of the
given pairs of files.

Code structure Whilst the intuition behind this approach is quite simple, relying solely on
identifiers risks to clutter the results with false positives: the same identifiers occur when defining
a specific functionality and during its use. To mitigate this, we only consider identifiers present in
declarations of methods, fields, and classes, as well as contained parameters. Previous work [39]
suggests that this improves precision in locating the implementations of a concept.

Further exclusions Due to the nature of object oriented programming languages, classes
implementing an interface or classes inheriting from a parent share a significant part of their
vocabulary. Since these are not re-implementations, we filter these instances from the results.

12For details, see [39].
13In an Object Oriented context, the assumption of concepts being captured by classes, often represented in

files, seems reasonable.

156 Chapter 9. Detecting reuse potential in the context of a RASM application

LSI parameters CD parameters
Global weight: ENTROPY Minimum length
Local weight: LOGTERMFREQUENCY in statements: 10
Similarity measure: COSINE Length of gaps: unbounded
Factors: 0.2*N (N=number of classes) Number of gaps: unbounded

Table 9.1: Parameter setting for both techniques

9.4.4 Study setup

Initially, we run our LSI-based approach and the ConQAT clone detector [177], developed by
our group and proven in numerous industry projects, on our study object. The clone detection
identifies clones from identical (Type-1) to near-miss (Type-3), with a minimum length of 10
statements for each continuous cloned region. For LSI, we select our configuration according to
the benchmark provided by [178]. Table 9.1 summarizes the parameter settings of our study.

We combine the results of both analyses in result tuples of the following form (see Fig-
ure 9.4(a)): <File A, File B, Similarity score LSI, Number of cloned statements>. Files A and
B denote the files that have been identified as containing potential re-implementations by either
or both of the techniques. The similarity score of LSI represents the similarity value as identified
by the technique and ranges from 0.0 to 1.0. The clone detection values capture the number
of cloned statements shared between the classes for clones that were within the threshold as
mentioned above. In the cases in which one of the two techniques did not produce a result for a
given pair, its value is set to -1.

Since the total number of re-implementations in the system is unknown, we had no baseline
values at our disposal. Consequentially, we had to analyze the results manually. However, each
of our setups produces a significant number of results (>15000 hits). For feasibility reasons, we
thus had to limit the number of result pairs. We proceeded as illustrated in Figure 9.4(a): for
our approach as well as for clone detection, we sorted the set of result pairs in descending order
and extracted the top 200 result pairs for manual inspection.

The two result sets obtained in this way are referenced according to their primary technique,
i.e. the technique used for the ranking. The second technique is considered as confirmatory, as its
value for any given result pair is also known. In this way, we set up two branches of comparison:
our LSI-based approach vs. the ConQAT clone detection (result set LSI-CD), and the ConQAT
clone detection vs. our LSI-based approach (result set CD-LSI). In this way, we can assess the
best results for each approach and compare whether the other approach confirms or rejects the
findings.

9.4.5 Study execution

In the following paragraphs, we describe the steps of the study execution for each research
question. A visual representation of the study execution is given in Figure 9.1.

9.4. Combining clone detection and LSI to detect re-implementations 157

Study execution

Dataset preparation

......C E
Similarity
Score LSI

0.98

Clone
Detection

650

>
 1

5.
00

0
pa

ir
s

......K E
Similarity
Score LSI

1.0

Clone
Detection

42

......U B
Similarity
Score LSI

1.0

Clone
Detection

-1

......S A
Similarity
Score LSI

0.999

Clone
Detection

121

......O V
Similarity
Score LSI

0.998

Clone
Detection

24

......R E
Similarity
Score LSI

0.988

Clone
Detection

14

......

......I N
Similarity
Score LSI

0.90

Clone
Detection

-1

......S A
Similarity
Score LSI

0.999

Clone
Detection

121

......

......A N
Similarity
Score LSI

-1

Clone
Detection

12

......O V
Similarity
Score LSI

0.998

Clone
Detection

24

......R E
Similarity
Score LSI

0.988

Clone
Detection

14

......K E
Similarity
Score LSI

1.0

Clone
Detection

42

......M I
Similarity
Score LSI

0.998

Clone
Detection

650

Top 200
results
by CD
values

Result set
reduction:

selection of 200
best candidates

for each technique

RQ1 - Results LSI primary RQ1 - Results CD primary

RQ2 - Result intersection
LSI primary,

CD confirmatory

RQ2 - Result intersection
CD primary,

LSI confirmatory

RQ3 - Practitioner
relevance

RQ3 - Practitioner
relevance

Top 200
results
by LSI
score

Synthesis - Comparison of
the results

(a) Dataset construction and study design.

Study by RQs - Top 200 results by LSI score

......K E
Similarity
Score LSI

1.0

Clone
Detection

42

......U B
Similarity
Score LSI

1.0

Clone
Detection

-1

......S A
Similarity
Score LSI

0.999

Clone
Detection

121

......O V
Similarity
Score LSI

0.998

Clone
Detection

24

......R E
Similarity
Score LSI

0.988

Clone
Detection

14

......

......I N
Similarity
Score LSI

0.90

Clone
Detection

-1

Re-imple-
mentation

Verdict
LSI

Verdict
CD

TP

TN

TP

TP

FP

TP

TP

FP

FP

TP

no

yes

yes

no

yes

TNFPno

Assessment
by manual
inspection

RQ1 - Results per technique

......K E
Similarity
Score LSI

1.0

Clone
Detection

42

......U B
Similarity
Score LSI

1.0

Clone
Detection

-1

......S A
Similarity
Score LSI

0.999

Clone
Detection

121

......O V
Similarity
Score LSI

0.998

Clone
Detection

24

......R E
Similarity
Score LSI

0.988

Clone
Detection

14

......

......I N
Similarity
Score LSI

0.90

Clone
Detection

-1

TP

TP

FP

TP

Precision
inter-

section

Re-imple-
mentation

Verdict
LSI

Verdict
CD

TP

TN

TP

TP

FP

TP

TP

FP

FP

TP

no

yes

yes

no

yes

TNFPno

RQ2 - Result intersection

......K E
Similarity
Score LSI

1.0

Clone
Detection

42

......U B
Similarity
Score LSI

1.0

Clone
Detection

-1

......S A
Similarity
Score LSI

0.999

Clone
Detection

121

......O V
Similarity
Score LSI

0.998

Clone
Detection

24

......R E
Similarity
Score LSI

0.988

Clone
Detection

14

......

......I N
Similarity
Score LSI

0.90

Clone
Detection

-1

won’t fix

priority fix

occasional
fix

Relevant ?Re-imple-
mentation

Verdict
LSI

Verdict
CD

TP

TN

TP

TP

FP

TP

TP

FP

FP

TP

no

yes

yes

no

yes

TNFPno

Expert
feedback

RQ3 - Practitioner relevance

(b) Detailed study execution on an exemplary LSI-CD
dataset.

Figure 9.4: This figure provides a high level (left hand side) as well as a detailed view (right
hand side) of the study design.

158 Chapter 9. Detecting reuse potential in the context of a RASM application

Setup for RQ 1 To perform the study, we manually compare the best 200 reported clone pairs
with the best 200 re-implementation pairs found by our approach using LSI. We, thus, com-
pute for each primary technique the precision at rank 200 and validate whether the confirming
technique also reports a similarity value for the same result pairs.

Producing rankable, file-based, similarity values from the clone detection results is not
straightforward: it requires a mapping between a purely syntactical view, transcending class
and file scopes, to a semantic one, restricted to the file level. We, therefore, had to determine
what could be the best indicator for re-implementations in terms of clone detection results. Faced
with the choice between ranking by maximal clone length and the sum of cloned statements, we
opted for the latter for the following reasons: Starting from a pair of files, we assume that the
more cloned portions of code exist between these files, the higher the odds that they might be (or
contain) re-implementations of one another. For large clones, this might be obvious. However, in
the case of re-implementations, it is likely that structural similarity has decayed significantly (if
it ever existed) and, thus, only small cloned fragments exist. In an ordering based on clone size,
these fragments would rank very low and would likely be missed as interesting indicators. An
aggregation, therefore, would push files with many small shared clones to a higher position. We,
thus, decided to aggregate the number of cloned statements on a file-basis and rank the pairs in
a descending order. We refer to this measure as Aggregated Clone Detection, ACD.

For each pair resulting in one of the two result sets, we first compared the two constituents to
validate whether they were indeed re-implementations and marked them accordingly.14 If they
were, we were interested whether the pair was found by both approaches. We define found for our
approach as an LSI similarity score of >0.5 and as present in the clone detection results. If the
pair was found only by either of the approaches, we analyzed the reasons. In case of resulting pairs
that were not re-implementations, we also marked them accordingly, and provided a rationale
for exclusion. On this basis, we assess the performance of both techniques with respect to their
number of true positives, true negatives, false positives and false negatives. In addition, we count
the number of mutual agreements of both techniques on each result set.

Setup for RQ 2: Based on the mutual agreement of the two analyses, we assess the quality
of the overlapping results for each branch of comparison.

Setup for RQ 3: To gain an understanding of the practical applicability of our results, we
provided system experts with a list of all true positives provided by both analyses. We invited
the experts to assess our findings by indicating the relevance of the positive hits by expressing
whether the finding would entail action on their part. Specifically, they ranked the findings
according to priority fix, occasional fix, won’t fix. At the time of writing, we revisited these
assessments and found that priority fixes had partially been resolved already, resulting in the
category fixed.

14We considered pairs as re-implementations if they shared at least enough semantic and contextual overlap to
warrant a unified implementation.

9.4. Combining clone detection and LSI to detect re-implementations 159

9.4.6 Results

We report on the results of our study according to our RQs.

RQ1.Do LSI and ACD produce different results?: The following paragraphs detail
first on the comparison branch LSI-based approach vs. ACD and then on ACD vs. LSI-based
approach (recall Figure 9.4 for the study design). For each primary technique, we report the
precision at rank 200. For the confirmatory technique, we report the number of confirmed and
missed true positives, as well as shared false positives.

Results of LSI-based approach vs. ACD

Out of the top 200 results of applying our approach with LSI, we obtained the following results
(summarized in column LSI-CD of Table 9.2): 65/200 pairs were re-implementations. This leaves
a large number of incorrect hits in the result set, which we inspected further: we found that the
largest share (99/200 pairs) of unrelated pairs were included due to interface implementations
that led to common identifiers but no re-implementations. A smaller share (18/200 pairs) was
due to a system convention in handling exceptions, whilst an even smaller share (18/200) was
due to accidental clones15 that happened to share identifiers.

Primary findings: LSI in this setting produced 65/200 correct hits (marked as true positives
TP in the upper half of Table 9.3) and 135/200 incorrect hits (marked as false positives FP).
Within the first 100 top hits, LSI has a density of positive results of 50%. However, when
excluding the bad matches due to interface implementations and exception handling, the number
of false positives decreases to 18. A filtering of these types of false positives suggests itself even
more strongly when considering the range of the LSI similarity scores for the top 200 result pairs:
currently, they start at 1.0 and only decrease to 0.96. This suggests that a considerable share of
true positives might fall below the threshold set for manual inspection. Overall, the precision at
rank 200 of the unfiltered result of LSI is 33%.

Recall of ACD: In comparison, the clone detection produces the following results on the
same pairs: it correctly identifies 49/65 of the present re-implementations and correctly discards
125/135 unrelated pairs. However, it misses 16/65 correct pairs, with no or below the threshold
overlap of cloned statements. Furthermore, it incorrectly identifies 10/135 unrelated results as
hits. This mostly happens in the presence of accidental cloning.

Summary: In this setting, LSI provides 16 pairs of re-implementations that were not retrieved
by the clone detection. 8 of these pairs fell below the threshold of the clone detection, the other
8 were structurally differing re-implementations that partially stemmed from strongly modified
type-3 clones.

15Accidential clones [139] are code fragments of different origin that are syntactically similar due to the adherence
to a specific protocol.

160 Chapter 9. Detecting reuse potential in the context of a RASM application

Table 9.2: Profile of the top 200 result pairs for LSI and ACD.

Re-implementation LSI ACD
pairs assessed 200 200
yes 52 89
yes - deprecated 13 15
yes - total 65 104
no 5 3
no - accidental clones 13 93
no - exception 18 0
no - interface 99 0
no - total 135 96

ACD vs. LSI-based approach

Out of the top 200 results of applying Clone Detection and aggregating the results, we ob-
tained the following results (summarized in column CD-LSI of Table 9.2): 104/200 pairs were
re-implementations. This leaves nearly 50% of incorrect hits (96/200) in the result set, which we
inspected further: we found that accidental clones induced by specific system conventions were
almost exclusively responsible for this phenomenon (93/96 pairs).

Primary findings: ACD in this setting produced 104/200 correct hits (marked as true positives
TP in the lower half of Table 9.3) and 95/200 incorrect hits (marked as false positives FP), mostly
due to accidental clones. Interface implementations did not impact the results and the exception
handling usually was small enough in terms of statements as to fall under the threshold of 10
statements set for the analysis. The sum of aggregated cloned statements of the top 200 result
pairs ranges from 615 to 21 within a result pair. Overall, the precision at rank 200 for ACD is
52%.

Recall of LSI: In comparison, LSI produced the following results on the same pairs: it cor-
rectly identifies 67/104 of the present re-implementations and correctly discards 74/95 unrelated
pairs. However, it misses 38/104 correct pairs, that often have retained structural similarity, but
have been extensively renamed after duplication. Furthermore, it incorrectly identifies 21/95
unrelated pairs as relevant, a phenomenon occurring in the presence of accidental clones that
share particular identifiers, such as for GUI or database functionality.

Summary: In this setting, the clone detection provides 37 pairs of re-implementations that
were missed by LSI. 21 of these pairs were relatively small cloned portions of code in large classes
that otherwise were not related. 16 pairs were cloned but extensively renamed.

RQ2.Does intersecting the result sets of both analyses improve the quality of the
results? : As shown in Table 9.3, in both comparisons the secondary approach confirms a
large portion of the results considered as true positives by the primary approach. In terms of
error in the intersection, the intersection LSI-based approach & ACD with 83% true positives
provides a better, albeit smaller, set of results than ACD & LSI-based approach with 76% true
positives. We conclude that both intersections produce a manageable set of high-quality results.

9.4. Combining clone detection and LSI to detect re-implementations 161

Table 9.3: Hits of top 200 result pairs for LSI (LSI-ACD) and hits of top 200 result pairs for
aggregated clone detection (ACD-LSI).

Results LSI primary - ACD confirmatory
LSI TP 65 ACD TP 49
LSI TN 0 ACD TN 125
LSI FP 135* ACD FP 10
LSI FN 0 ACD FN 16
LSI FP cleansed 18

Agreement on 59 pairs, 49 TP, 10 FP

Results ACD primary - LSI confirmatory
LSI TP 67 ACD TP 104
LSI TN 75 ACD TN 0
LSI FP 21 ACD FP 96
LSI FN 38 ACD FN 0

Agreement on 88 pairs, 67 TP, 21 FP

Furthermore, they significantly outperform the precision of the result sets obtained with the
isolated techniques.

RQ3.Are the results of the combined analyses relevant for practitioners?: As
can be seen from Table 9.2, some of the re-implementations found by our analysis are marked as
deprecated. We applied this marker to result pairs that were re-implementations with at least one
constituent marked as deprecated in the source code. The respective files were usually versions
of older releases kept in the system for the sake of backward compatibility. In this context, they
were unlikely to be actionable hits, so we excluded them from the result sets provided to the
system experts for assessment.

Practical relevance of results - LSI-based approach vs. ACD

For this setup, we provided system experts with 52 result pairs, and asked them to mark for
each finding if it should induce an action. 7/52 pairs were scheduled for fixes immediately, 34/52
pairs were set to be fixed given an occasion, i.e. someone working on the respective piece of code
should inspect and resolve the finding, and 11/52 pairs were discarded as they were duplicates
due to deliberate reasons, e.g., architecture decisions and system conventions. Summing up,
41/52 pairs were considered actionable.

Practical relevance of results - ACD vs. LSI-based approach

As for the first setup, we provided system experts with the appropriate set of re-implementations,
in this case 89 pairs. 12/89 pairs were scheduled for fixes immediately, 15/89 pairs were scheduled
for a priority fix, 51/89 pairs were set to be fixed given an occasion. 12/89 pairs were discarded
as they were duplicated deliberately. In total, 78/89 pairs were considered actionable by the
system experts.

162 Chapter 9. Detecting reuse potential in the context of a RASM application

Table 9.4: Practitioner rating of non-deprecated re-implementations.

Practitioner verdict LSI-CD CD-LSI
practitioner - fixed 7 12
practitioner - priority fix 0 15
practitioner - occasional fix 34 51
practitioner - no fix 11 12
practitioner - actionable 41/52 78/89

9.4.7 Discussion

In this section we answer our starting question by combining the findings of our research ques-
tions, reported above. We discuss the lessons learned from performing the study and present
potential mitigation to the encountered challenges.

Can LSI and clone detection complement each other to detect re-implementations?
With our study, we intended to investigate whether a combination of LSI and clone detection
could be feasible for detecting re-implementations. Based on our results, we argue that this is
the case: first, each technique found instances of re-implementations that were missed by the
other. Second, each technique could to some degree compensate the weaknesses of the other:
when analyzing the top 200 clone detection results, LSI could exclude a number of accidental
clones that were semantically unrelated. When analyzing the top 200 LSI results, clone detection
correctly excluded findings based on interface implementations.

Lessons learned

When evaluating the results, we identified several strengths and weaknesses of the two techniques.
We relate the essence of our experience in the following paragraphs.

Aggregated clone detection

An experiment by Juergens et al. [168] suggests that the results of clone detection per se do
not promise particular potential for the detection of semantic re-implementations. Therefore,
the clone detection seemed an ideal baseline candidate for our goal of identifying additional
benefit of IR for detection of re-implementations. However, to perform the study, we faced the
challenge to find a common granularity as basis for our results. This resulted in the technical
decision to aggregate the number of cloned statements on a file basis. This decision proved more
consequential than we expected.

True positives A large number of re-implementations present in our study object were portions
of code that were initially copied and changed significantly over time to an extent that even Type-
3 capable detectors would miss the big picture. In a standard setting of clone detection, only small
fragments would have been captured that would have been lost in the vast number of findings.
The aggregation on a class basis captured this historical context more comprehensively by rating
pairs sharing many small cloned fragments significantly higher than by ranking them based on
their largest shared clone. In terms of functionality, the findings included utility functionality,
data structures, and domain specific redundancies.

9.4. Combining clone detection and LSI to detect re-implementations 163

False positives As is to be expected for a clone detector, accidental clones constituted a large
part of the false positives in the primary clone detection result set. However, this was offset by
considering the LSI value for the respective pairs.

False negatives As expected, re-implementations that were lacking structured similarity were
missed by clone detection.

LSI-based approach

Previous [39, 176] and related work (see Section 10.6) have indicated the suitability of IR tech-
niques, particularly LSI, for our goal. However, we identify the challenge that, contrarily to clone
detection, the LSI scores hardly decrease over the inspected range of pairs. We are, thus, likely
to have covered only a fraction of interesting result pairs. This issue could have been mitigated
by removing the large number of false positives due to system conventions. However, we decided
against this measure to avoid biasing the data set. Future studies should consider these learnings.

True negatives LSI proved beneficial to downrate the accidental clones present in the result
set of the clone detection.

False positives Our results show that filtering identifiers based on code structure is insufficient
for LSI to produce good results. System conventions need to be known to remove pairs that, on
an identifier basis, seem re-implementations, but, on inspection, prove functionally unrelated.

False negatives tended to occur for result pairs that shared re-implementations that were
comparatively small with respect to the overall size of the given files. In this case, the large
number of unrelated identifiers caused LSI to miss these instances.

Potential applications

We identify two potential applications of our findings:

Use Case 1 - a focussed view on re-implementations Our results indicate a favorable order-
ing in combining the two techniques when aiming for a focussed result set of re-implementations:
First by aggregated clones, then by LSI values. Interestingly, this order produces relevant find-
ings in the following way: huge cloned segments, are by default ranked in a high position. In
addition, the many small remaining fragments, originally stemming from the same code but di-
verged so much that they fall out of the type-3 detection, are promoted due to the aggregation
on class level and, thus, ranked high enough for top results. LSI mostly confirms them.

Potentially, this combination could be used to improve the prioritization of clone detection
findings by removing a large portion of unwanted results. This hypothesis is backed by the
assessment of practitioners that considered 88% of the positive results of this set as actionable.

Use Case 2 - identifying semantic re-implementations Our results indicate that LSI
can identify additional pairs of re-implementations that are missed even by aggregated clone
detection. However, as seen by the results of our study, system conventions and programming
language details should be considered to remove a large share of unwanted hits from the candidate
result set.

164 Chapter 9. Detecting reuse potential in the context of a RASM application

Both use cases can be useful for determining the shape of re-implementations in the context
of assessing reuse potential during RASM application.

9.4.8 Threats to validity

Human Error Manual assessment is possibly flawed as the judgements made on the resulting
pairs rely on our subjective judgment. To mitigate this, we applied researcher triangulation.
Furthermore, to avoid bias towards our approach, we opted for a conservative assessment, rating
result pairs as negative hits when in doubt.

Study Object We selected the study object since expert opinion suggested the presence of re-
implementations. However, the total number of re-implementations in the system is unknown,
so we cannot report the recall of our results. Also, we can not project the experienced density
to other systems.

Scope of analysis Our study focused on a file granularity. Therefore, the re-implementations
we found are bound in size by this limitation. Whilst this is common for a number of quality
analyses (e.g., clone detection, size measures, etc.), different techniques need to be applied to
find re-implementations on a more abstract level.

External validity Our study bases on one study object and cannot provide results that are
generalizable. Nevertheless, we believe that this study provides clear indications that a combina-
tion of the two techniques improves their performance for the detection of re-implementations.
Further work is needed for additional evidence.

9.4.9 Summary

In this section, we investigated whether a combination of LSI and clone detection could improve
the results each technique by itself produced for re-implementations. We evaluated the com-
bination of both techniques in a case study on an industrial system. The results suggest that
(1) latent semantic indexing and clone detection complement each other, (2) aggregated clone
detection can be a better indicator for re-implementations than LSI, and (3) the combination of
the techniques provides high quality result sets which were considered relevant and actionable
by practitioners.

The study highlighted important limitations of both techniques: for the LSI-based approach,
the quality of the results was severely impacted by the false positives due to identifiers shared,
e.g., by interface implementations and exception handling. This suggests that results could be
improved by extending the pre-processing or filtering unwanted types of matches from the result
set. For the clone detection, accidental clones accounted for most of the false positives, but could
mostly be eliminated by LSI.

Overall, we found that in isolation Aggregated Clone Detection outperformed the LSI-based
approach with a precision of 52% vs. 33%. However, intersecting the results of each technique
with the confirmatory results of the other greatly improved the precision of the respective result
sets: the intersection ACD&LSI yielded a precision of 76% true positives and the precision

9.4. Combining clone detection and LSI to detect re-implementations 165

of the intersection LSI&ACD significantly increased to 83%. In addition, both intersections
significantly reduced the size of the result sets, producing manageable sets of high-quality results
that were considered actionable by practitioners. We, thus, conclude that a combination of the
two techniques can improve the precision of the detection of re-implementations. Nevertheless,
replication on a constructed dataset with a known number of re-implementations is needed to
measure the recall of the proposed technique.

166 Chapter 9. Detecting reuse potential in the context of a RASM application

9.5 Cross-project clone detection as guidance for reuse im-

provement

Code clones are known to introduce significant maintenance costs and decrease the quality of a
code base [63]. On the other hand, code clones indicate the need for equal or similar functionality
in several places [179]. Whilst determining the clone coverage for single projects is already widely
researched, less is known on the extent and characteristics of cross-project clones. In this Section,
we present results on cross-project clones and propose an approach on how clone detection could
be used as guidance for reuse improvement. Parts of this work was published in [37].

9.5.1 Assessing cross-project clones for reuse optimization

Organizational structures (e. g., separate accounting, heterogeneous infrastructure, or different
development processes) often restrict systematic reuse among projects within companies. As a
consequence, code is often copied between projects which increases maintenance costs and can
cause failures due to inconsistent bug fixing. Assessing cross-project clones helps to uncover
organizational obstacles for code reuse and to leverage other ways of systematic reuse. Further-
more, knowing how strongly clones are entangled with the surrounding code helps to decide if
and how to extract them to commonly used libraries. We propose to combine cross-project clone
detection and dependency analyses to detect (1) what is cloned between projects, (2) how far the
cloned code is entangled with the surrounding system and (3) what are candidates for extraction
into common libraries.

9.5.2 Motivation

Companies developing software systems for a specific application domain are often confronted
with recurring implementation tasks. Since a lot of domain knowledge is manifested in the code,
it suggests itself to reuse successful solutions accross project boundaries. However, organiza-
tional factors can restrict structured reuse among projects. For example, separate accounting
of charges, different development models or heterogeneous infrastructure can prevent teams to
create commonly accessible, reusable, software modules.

Consequently, cloning is a popular way to reuse sucessful implementations across project
boundaries [60]. Especially if a developer implemented a solution in a previous project, (s)he
is likely to copy and adapt it. According to [180] as well as to own experience, these cross-
project clones (CPCs) tend to be larger portions of code, ranging from several methods to files
or entire subsystems. This “simple” way of overcoming reuse difficulties is known to have negative
consequences on maintenance costs and software quality in the long term [?].

We propose to combine cross-project clone detection (CPCD) with static dependency analyses
to assess and manage this aspect of code reuse with the goal to provide input for organizational
and maintenance decisions concerning reuse.

9.5. Cross-project clone detection as guidance for reuse improvement 167

LU
A B

!

" "

!

"

"

"

"

! !

(a) Cross-project clone detection and dependency analysis

L

A B
! !

! !

" "

"

(b) Goal: Extraction of candiates in library

Figure 9.5: The figure illustrates the three steps of our idea. A and B denote two software
systems. LU denotes the logical union of the systems during clone detection. Circles represent
entities of the systems, e.g. functions, classes, or files. The systems contain two clone classes:
the double-lined (α) and the dashed (β) group. Arrows denote the dependencies between entities
belonging or connected to clones. L denotes an extracted library, containing (α).

9.5.3 Idea

We would like to answer the following questions: To which amount does cross-project cloning
(CPC) exist among a specific set of projects (within a company, a division, of a certain technology
etc.)? Do cross-project clones (CPCs) implement specific functionality? Are there CPCs that
would qualify as candidates for library creation? If yes, which of the CPCs could be extracted
with reasonable effort? What are the organizational reasons that give rise to CPC?

First, we run a clone detection on all systems of interest, treated as one logical unit (LU in
Figure 9.5(a)). We filter the findings to CPCs. The result already provides relevant information:
the extent of cloning within systems compared to the extent of cloning accross systems and the
total extent of CPC. Therefore, we can quantify CPC at this point.

Next, we aim to detect clone classes potentially implementing coherent functionality. We
attempt this by identifying clones that form weakly connected components in the dependency
graph. We argue that this is reasonable as own experience as well as existing work (c.f. [180])

168 Chapter 9. Detecting reuse potential in the context of a RASM application

L

Z

X Y

(a) Dedicated point of entry

L

Z

X Y

(b) Scattered access

Figure 9.6: Different usage patterns of cloned regions.

have indicated CPCs to be rather large, potentially comprising several functions, classes, or even
entire system components. We expect most of these large chunks of code to be reused in a
library-style manner, i. e., being called from the surrounding system parts, but not calling back
into the system. Based on these assumptions, we propose to run a static dependency analysis to
identify clones that are candidates for extraction.

To achieve a sufficient precision, the analysis works on a method granularity. For each clone
class, we assess all instances, as usage patterns might differ. For each clone, we start from its
location in the code. On the dependency graph, we trace all outgoing calls until we reach the
border of the cloned region. We then assess the number of calls from the cloned region into
uncloned system code. Ideal extraction candidates do not call into the system (see clone α in
Figure 9.5). Clones with a large number of calls into system code are less desirable for extraction
(see clone β in Figure 9.5). In practice, we expect calls into the system to happen and propose
to use a threshold value for the number considered acceptable16.

From the clone-system border in the dependency graph, we trace the calls from the system
into the cloned region. In this way, we can collect usage profiles of the clones. Figure 9.6 shows
two examples of potential usage patterns. Comparing the calling patterns within the same clone
class allows to deduce requirements for an extracted library.

The last step is to assess the functionality implemented by the extraction candidates. The
process of functionality assessment serves as input for library creation. Figure 9.5(b) illustrates
the goal of our idea: the candidate has been extracted into a new library, which both of the
systems call.

9.5.4 Usage scenarios

Reuse assessment: Being able to quantify the extent of cloning between projects enables to
understand dimension and causes of reuse by cloning. For example, the existing technical infras-

16Arguably, very prominent but strongly connected clone groups should also be assessed manually.

9.5. Cross-project clone detection as guidance for reuse improvement 169

tructure might hamper sharing code between teams. Improving the development infrastructure
would enable developers to use structural reuse methods more often.

Identify demand for certain libraries: To make a library appealing for developers, it should
provide a common set of helpful solutions for a certain class of problems (such as I/O, printing
or DB access). Being able to identify cloned code helps to characterize the reused functionality.
Thereby, the demand for solutions for a class of problems can be determined. For example, if
I/O handling code is among the most frequently cloned functionality, a commonly accessible
library providing I/O functionality would offer developers an alternative to cloning code between
projects.

Assess effort for code extraction: Knowing how far cloned code is entangled with the
surrounding system helps to estimate the complexity to separate it by creating a library. If,
e. g., cloned code is strongly interwoven in several projects, extracting the code might require
exorbitant ressources compared to the resulting savings in maintenance effort.

9.5.5 Related work

Cross-project clone detection Mende et al. [126] propose CPCD to support the grow-and-prune
model [181] for Software Product Lines management. Schwarz et al. [182] provide evidence of
a significant amount of CPC for the Smalltalk ecosystem. Furthermore, they propose scalable
clone-detection techniques for CPCD. Krinke et al. [180] assessed the copying and cloning between
projects of the GNOME Desktop Suite, studying the flow of code between the different projects.
Al-Ekram et al. [139] investigate cloning “by accident”, a consequence of projects implementing
identical code portions. Instances could be candidates for inclusion into libraries.

Higher-level clones Basit and Jarzabek introduce structural clones [170], logical groups of
simple clones. We follow this idea to better identify code portions with coherent functionality
that are candidates for extraction into libraries.

Assessment of reuse In earlier work [34, 38] we proposed an assessment model for usage of
third-party libraries as well as code reuse within organizations. CPCD will be integrated as one
measure for the maturity of code reuse.

9.5.6 Summary and next steps

Identifying potential for reusable entities is an important step towards beneficial reuse. In this
section, we proposed a method based on cross-project clone detection to detect clusters of source
code clones that have found application in several projects and, thus, are of value for reuse.
We suggest a pragmatic ranking of the identified clusters based on their degree and type of
dependencies on the embedding source code.

In a next step, we aim to implement the proposed idea, building on the clone detection and
dependency analyses provided by the ConQAT17 toolchain. To assess the benefit for development
and maintenance in practice, we plan to apply our idea on a set of projects of an industrial

17www.conqat.org

170 Chapter 9. Detecting reuse potential in the context of a RASM application

partner. Upon completion, the analysis can be applied during an assessment phase with RASM
and as monitoring instrument during the adoption of the selected approach.

9.6 Conclusion

In this chapter, we have presented methods and tools that support the identification of candi-
date reusables in the form of missed reuse opportunities and cross-project code clones. Such
assessment is informative during an application of RASM, as it provides estimates of the cost of
lacking reuse that are based on the source code.

Missed reuse opportunities With respect to missed reuse opportunities, we addressed the
aspect of identifying potential re-implementations. Their presence indicates that reuse is not
adequately effected in an organization. In particular, they represent a cost factor for development
and maintenance that is not easily discovered without tool support.

As we have seen in Section 9.2, addressing re-implementations can be challenging even in
the presence of tool support due to the daunting number of results. This number of findings
discourages practitioners and can freeze improvement attempts.

As a consequence, in Section 9.4, we proposed a refined approach that combines clone detec-
tion with LSI to provide more reliable and focused findings. We evaluated this refined approach
in an industrial case study. In the context of reuse adoption and improvement, the results of
the case study are encouraging: It provides a compact set of missed reuse opportunities that,
according to practitioners, are relevant to them.

Candidate reusables Re-implementations can indicate the need of a shared reusable. Another,
more concrete, indicator for a candidate reusable is the presence of cross-project clones: their
existence is proof for the need of (near-)identical functionality in multiple places, even across
projects. This suggests a certain domain independence, which is beneficial for a reusable as, in
this case, it can serve a wide range of stakeholders. In this chapter, we proposed an approach
to detect cross-project-clones and rank them according to their suitability for extraction into a
shared reusable.

During future applications of RASM, we aim enhance the assessment by applying the pre-
sented methods and tools.

10 | A structured assessment model
for third-party library usage

Most organizations employ third-party software for specialized parts of their systems. Whilst
the legal aspects of these uses are usually addressed with due diligence, the selection process and
the assessment of potential and risk of the respective pieces of software tend to be unstructured
with unclear governance. Furthermore, the intensity and location of use are rarely monitored.
As a consequence, organizations lack an overview of their de-facto employed third-party
software and are unaware of the compliance with respect to the intended use. Furthermore, they
have no objective basis on how the different characteristics of those entities impact their quality
goals. However, these impacts can affect the success of a reuse strategy and, therefore, should be
considered in the course of a reuse assessment. The effects of unmonitored library reuse often
surface during maintenance. To support practitioners with an earlier risk assessment, this
chapter provides a structured assessment approach for third-party libraries that captures
characteristics of third-party software and their impacts on maintenance activities. Apart from
supporting an initial reuse assessment with RASM, the approach supports monitoring the
changes of a new reuse strategy, e.g., the proliferation or removal of certain libraries within
specific system parts. In addition, it can be extended to measure and monitor the use of
company-internal third-party libraries. This chapter presents the instantiation of the
assessment support for specific and detailed aspects of reuse. Parts of this work have been
published in [26, 34].

Contents
10.1 Opportunities and risks of third-party library reuse 172

10.2 Assessment model . 173

10.3 Assessment process . 178

10.4 Tool support . 179

10.5 Case study . 181

10.6 Related work . 186

10.7 Summary and future work . 188

171

172 Chapter 10. A structured assessment model for third-party library usage

10.1 Opportunities and risks of third-party library reuse

Reuse with software libraries plays a central role in modern software development—instead of
writing a complete software system from scratch, significant parts of its building blocks are reused
from third-party libraries. Especially for widely-used platforms like Java, a considerable amount
of reusable libraries with a large variety of functionality is available in code repositories on the
Internet. In a recent study on reuse in Java open source projects we found that for almost half
of the projects the amount of reused code exceeded the amount of newly developed code [22].

However, library reuse comes at a cost: Included libraries can significantly impact the main-
tainability of a software system. Often, projects use a number of different libraries and the code
is highly entangled with their APIs. This poses multiple risks to the evolution of the software.
First, libraries continuously evolve. New releases provide added functionality and bug fixes. In
many cases, it is desirable to migrate a software system to the latest stable release of a library,
especially in case of critical bugs such as security flaws. However, migration can cause consider-
able maintenance effort, as backward-compatibility may not always be ensured. Second, a library
might be still unstable and introduce bugs into the software, which could be difficult to find and
hard to fix. Third, the provider’s support or maintenance of a library might be discontinued,
such that the library consumer can no longer expect fixes for critical bugs. Finally, the license of
a library or the legal constraints in a project may change, forcing the project to stop employing
the library. Again, a potentially costly replacement with a different library or an own implemen-
tation of the reused functionality is required. Unfortunately, most existing approaches that aim
at assessing the maintainability of a software system primarily focus on the project’s own code.
The included libraries are often disregarded, missing important aspects affecting maintainability.

Problem A plethora of external software libraries form a significant part of modern software
systems. Consequently, these systems contain a considerable fraction of code developed and
maintained by third parties. Therefore, external libraries and their usage have a significant
impact on the maintenance of the including software. Unfortunately, third-party libraries are
often neglected in quality assessments of software, leading to unidentified risks for the future
evolution of the software.

Contribution Based on industry needs, we propose a structured approach for the systematic
assessment of third-party library usage in software projects. It can be applied to support specific
maintenance decisions as well as to monitor the project’s state of reuse over time. The approach
is supported by a comprehensive assessment model relating key characteristics of software library
usage to development activities. The model defines how different aspects of library usage influence
the activities and, thus, allows to assess if and to what extent the usage of third-party libraries
impacts the development activities of a given project. Furthermore, we provide guidance for
executing the assessment in practice, including tool support for a pre-selection of important
libraries and multiple automated static code analyses. We evaluate the approach with a case
study involving an industrial software system of 3.5 MLOC including about 90 external libraries.

10.2. Assessment model 173

Figure 10.1: The meta-model of the assessment model.

Outline The remainder of the chapter is organized as follows: Section 10.5 introduces the
industry partners of this work. Section 10.2 presents the assessment model, whilst Section 10.3
details the assessment process. Section 10.4 describes the tool support provided for the analysis.
Section 10.5 presents design and results of the case study. The following Sections 10.5.2 and 10.5.3
discuss results and threats to validity. Section 10.6 gives an overview on related work before
Section 10.7 summarizes the chapter and identifies future work.

10.2 Assessment model

The proposed assessment model is inspired by activity-based quality models [183] that offer a
soundly structured and precise way of expressing quality factors and their mutual dependen-
cies. In this model, we follow the terminology coined by Kitchenham et al. where entities “are
the objects we observe in the real world” and attributes are “the properties that an entity pos-
sesses” [184]. We extend this by allowing an attribute to be attached to multiple entities and
adapted the meta-model from [183], as shown in Figure 10.1. This is necessary as several relevant
library attributes emerge only from the relation between entities. Figure 10.2, which shows the
concrete instantiation of the meta-model, contains examples: for instance, the attribute ENTAN-

GLEDNESS is attached to the entities System and Library as it models a characteristic that involves
both.

Entities are structured in a hierarchical manner to foster completeness. The combination of
one or more entities and an attribute is called a fact. Facts are expressed as [Entities |ATTRIBUTE]. A
fact has an assessment type, which can be a manual assessment by an expert, an automatic anal-
ysis, or semi-automatic as a combination of the above. To express the impact of a fact, the model
relates the fact to a development activity. This relation can either be positive, i. e., the fact eases

174 Chapter 10. A structured assessment model for third-party library usage

Figure 10.2: Instantiated assessment model with facts, development activities, and impacts be-
tween them.

10.2. Assessment model 175

the affected activity, or negative, i. e., the fact impedes the activity. In Figure 10.2, for exam-
ple, the ENTANGLEDNESS of System and Library has a negative impact on all maintenance activities
whereas the protection against security-relevant attacks as well as the legal aspects of the distri-
bution of the system are not affected by this fact. Impacts are expressed as [Entity |ATTRIBUTE]

+/−−→
[Activity]. Each impact is backed by a justification, which provides the rationale for its inclusion
in the model.

So far, the model constitutes a Definition Model in the sense of [185] as it defines quality
aspects and their relations. To become an assessment model that can be used to assess a specific
situation, it needs to be enriched with metrics and a measurement method. We provide this with
the three-value ordinal scale {low, medium, high} that is used to quantify facts. The assessment
of the facts is mainly a manual activity performed by an expert who bases the judgement on a
set of metrics that may be determined automatically. Table 10.2 shows the metrics used in our
model.

To assess the impact on the activities, we use the three-value scale {bad, satisfactory, good}.
If the relation between a fact is positive, there is a straight-forward mapping from low → bad,
medium → satisfactory, high → good. If the fact [Library | PREVALENCE], for example, is rated high,
the effect on the activitymigrate is good as the impact relation is positive [Library | PREVALENCE] +−→
[Migrate] (see Figure 10.2) as a high prevalence of a library usually gives rise to alternative imple-
mentations of the required functionality. If the impact relation is negative, the mapping is turned
around: low→ good, medium→ satisfactory, high→ bad. A high [Library,System | ENTANGLEDNESS],
for example, results in a bad effect on the activity understand as the relation is negative: [Sys-

tem, Library | ENTANGLEDNESS] −−→ [Understand]. A high entangledness tends to cause difficulties to
clearly understand how a library is to be used. Especially scatteredness of method calls could
hamper understanding.

The assessment of a single library thus results in a mapping between the activities and the
{bad, satisfactory, good} scale. To aggregate the results, we simply count the occurrences of
each value at the leaf activities. Hence, the assessment of a library finally results in mapping
from {bad, satisfactory, good} → N0. We deliberately do not use an aggregation that results in
a single number to avoid comparing apples with oranges.

Activities

With one exception, the activities included in the model are typical for maintenance. The
following paragraphs briefly describe each of them.

Modify: Modifying a system means to change it to e. g., fix a bug or add new functionality.

Understand: Understanding a system is critical for all maintenance tasks. Developers need
to understand the structure and functionality of a system before they can start to extend or
change it.

Migrate: Migration is the process of exchanging a library with a newer version or a different
library. When migrating a software system to another library, it is usually important that the
new library comprise the same functionality as the old one.

176 Chapter 10. A structured assessment model for third-party library usage

Protect: Often, security issues surface during the productive usage of a software system. It is
important to fix these during maintenance, e. g., by migrating the system to an updated library
version.

Distribute: Distributing a software system refers to any kind of proliferation, such as providing
the system open source on the Internet or shipping the product to a commercial customer. This
activity is not directly linked to maintenance. However, third-party libraries impact it.

Metrics

The model quantifies each fact with one or more metrics. The list of metrics, their description
and assignment to facts are shown in Table 10.2. As an example, to quantify the extent of
vulnerabilities of a library, we measure the number of known critical issues in the bug database
of the library. Some of the facts cannot be measured directly, as they depend on many aspects.
For instance, the maturity of a library cannot be captured with a single metric but must be
judged by an expert. We do not employ an automatic, e. g., threshold-based, mapping from
metric values to the {low, medium, high} scale but fully rely on the experts capabilities.

Impacts

Impacts define how facts influence activities. A justification for each impact provides a rationale
for the impact which increases confirmability of the model and the assessments based on the
model. Note that a fact might have a positive impact on one activity whilst negatively impacting
another one. To ensure readability, we give one example of an impact per activity. The complete
list can be found in the Appendix 12.3.

[Extension/Configuration Capability | EXTENT] +−→ [Modify] A high extension capability of an exter-
nal library positively impacts modifications, such as adding new features, because it increases
the chances that they can be accomplished with the same library.

[Extension/Configuration Capability | EXTENT] −−→ [Understand] Whilst high extension capability
positively impacts modifications, it hinders understanding. The reason is the high complexity
caused by the flexibility of extension mechanisms which make it harder to understand how to
use the library.

[Extension/Configuration Capability | EXTENT] −−→ [Migrate] A high capability for extension and
configuration inhibits migration as it is less likely that alternatives provide the same flexibility.

[Vendor | REPUTATION] +−→ [Protect] The reputation of the library vendor positively influences
protection of a system, as a renowned vendor can be expected to provide critical updates in a
timely manner.

[License,System | COMPATIBILITY] +−→ [Distribute] Characteristics of third-party libraries also im-
pact the distribution of a system, e. g., low compatibility of licenses can block the distribution
of a system.

10.2. Assessment model 177

F
ac
t

M
et
ri
c

D
es
cr
ip
ti
on

[S
up

po
rt
|E

X
T

E
N

T
]

E
xp

er
t
as
se
ss
m
en
t

A
va
ila

bi
lit
y
of

su
pp

or
t
an

d
tr
ai
ni
ng

[V
en
do
r|

SI
Z
E
]

H
ea
dc
ou

nt
T
he

nu
m
be

r
of

co
nt
ri
bu

to
rs

is
de

te
rm

in
ed

e.
g.
,f
ro
m

th
e
ve
nd

or
’s

w
eb

si
te

Sa
le
s
V
ol
um

e
T
he

sa
le
s
vo

lu
m
e
is

de
te
rm

in
ed

e.
g.
,f
ro
m

th
e
ve
nd

or
’s

w
eb

si
te

[V
en
do
r|

R
E
P
U

T
A
T

IO
N
]

E
xp

er
t
as
se
ss
m
en
t

R
ep

ut
at
io
n
as

pe
rc
ei
ve
d
by

an
an

al
ys
t/
do

m
ai
n
ex
pe

rt

[L
ic
en
se
|P

R
IC

E
]

P
ri
ce

P
ri
ce

fo
r
a
re
di
st
ri
bu

ti
on

lic
en

se

[L
ib
ra
ry
|P

R
E
V
A
LE

N
C
E
]

#
B
oo

ks
N
um

be
r
of

se
ar
ch

re
su
lt
s
on

A
m
az
on

#
G
oo

gl
e
H
it
s

N
um

be
r
of

se
ar
ch

re
su
lt
s
on

G
oo

gl
e

#
Jo

b
A
dv

er
ti
se
m
en
ts

N
um

be
r
of

se
ar
ch

re
su
lt
s
on

jo
bp

ilo
t.
de

[L
ib
ra
ry
|M

A
T

U
R
IT

Y
]

E
xp

er
t
as
se
ss
m
en
t

D
ev
el
op

m
en
t
st
at
us

(e
.g
.,
de

ve
lo
pm

en
t,

in
ac
ti
ve
,s

ta
bl
e)

[A
P
I|

SI
Z
E
]

#
A
P
I
ty
pe

s
N
um

be
r
of

ty
pe

s
lis
te
d
in

th
e
Ja
va
do

c

[V
ul
ne
ra
bi
lit
ie
s|

E
X
T

E
N

T
]

#
K
no

w
n
cr
it
ic
al

is
su
es

N
um

be
r
of

se
cu
ri
ty

is
su
es

in
th
e
bu

g
da

ta
ba

se

[E
xt
en
s.
/c
on

f.
ca
pa
bi
lit
ie
s|

E
X
T

E
N

T
]

E
xp

er
t
as
se
ss
m
en
t

A
va
ila

bi
lit
y
an

d
ch
ar
ac
te
ri
st
ic
s
of

ex
te
ns
io
n
an

d
co
nfi

gu
ra
ti
on

fe
at
ur
es

[L
ib
ra
ry
,S
ys
te
m
|E

N
T
A
N

G
LE

D
N

E
SS
]

#
A
P
I
ca
lls

N
um

be
r
of

A
P
I
m
et
ho

d
ca
lls

#
D
is
ti
nc
t
A
P
I
m
et
ho

ds
N
um

be
r
of

di
st
in
ct

A
P
I
m
et
ho

ds
ca
lle

d
%
A
ffe

ct
ed

cl
as
se
s

Fr
ac
ti
on

of
cl
as
se
s
in

th
e
sy
st
em

w
it
h
A
P
I
m
et
ho

d
ca
lls

Sc
at
te
re
dn

es
s
of

A
P
I
ca
lls

D
eg
re
e
of

sc
at
te
re
dn

es
s
of

A
P
I
ca
lls

re
ga
rd
in
g
th
e
pa

ck
ag
e
st
ru
ct
ur
e

[L
ib
ra
ry
,S
ys
te
m
|A

D
E
Q

U
A
C
Y
]

E
xp

er
t
as
se
ss
m
en
t

H
ow

w
el
ld

oe
s
th
e
ac
tu
al

us
e
co
rr
es
po

nd
to

th
e
in
te
nd

ed
us
e

%
A
P
I
U
ti
liz

at
io
n

Fr
ac
ti
on

of
A
P
I
m
et
ho

ds
th
at

ar
e
ac
tu
al
ly

us
ed

[L
ib
ra
ry
,D

ev
el
op

er
s|

FA
M

IL
IA

R
IT

Y
]

A
vg

.
#
ye
ar
s
of

ex
pe

ri
en

ce
D
ev
el
op

er
s
ar
e
in
te
rv
ie
w
ed

or
th
ei
r
C
V
s
ar
e
co
ns
ul
te
d

[L
ic
en
se
,S
ys
te
m
|C

O
M

PA
T

IB
IL

IT
Y
]

E
xp

er
t
as
se
ss
m
en
t

A
na

ly
si
s
of

lic
en

se
te
rm

s,
e.
g.
,b

y
le
ga
le

xp
er
t

Figure 10.3: Facts and associated metrics of assessment model

178 Chapter 10. A structured assessment model for third-party library usage

10.3 Assessment process

Our assessment process provides guidance to operationalize the model for assessing library usage
in a specific software project. When assessing a real-world project, the sheer number of libraries
require a possibility to address the most relevant libraries first. Therefore, the first step of the
process structures and ranks the libraries according to their entangledness with the system. This
pre-selection directs the effort of the second step of our process: the expert assessment of the
libraries. The last step describes how to generate an assessment report from the aggregated
results.

Ranking and pre-selection

In the first step of our assessment process, a set of automatic static analyses are run on the project
to be assessed. Their goal is to objectively determine the degree of entangledness between external
libraries and the system. This step ensures the applicability of our approach in practice, as
extracting these values by hand is unrealistic for real world projects. Furthermore, the extracted
metrics help to identify the most significant candidates for the expert assessment and therefore
decrease the effort of the system review.

Ranking

To rank the libraries according to their entangledness with the system, we extend work presented
in [26] and determine the following values for all libraries: The number of total method calls to a
library allows to rank all external libraries according to the strength of their direct relations the
system. The value is computed for the entire system hierarchy to allow a drill down from system
level to class level. This way, the point of impact can be explored precisely. This is relevant
for cases, in which participants of the assessment wish to understand in detail where a library
affects their system. The number of distinct method calls to a library adds information about the
implicit entangledness of libraries and system. It allows to understand how difficult a migration
could be. The granularity of the computed value is the same as for the total number of method
calls. The scatteredness of method calls to a library describes whether the usage of the library is
concentrated to a specific part of the system, or scattered across it. The value is computed based
on the package structure of the system (for further details see Section 10.4). The percentage of
affected classes gives a complementary overview about the impact a migration could have on the
system. This value is independent from the system structure.

The results of these analyses are presented as an HTML document, which provides the pos-
sibility to inspect the raw data, as well as detailed insights via the drill-down. The data for
each metric is presented in a tabular way with the libraries ordered descendingly according their
scores.1 Figure 10.4(a) shows an excerpt of this representation for our study object, picturing
the total and distinct method calls.

1For further details on the visualization, please refer to [26].

10.4. Tool support 179

Pre-selection

Under ideal circumstances, all libraries should be assessed in full detail – however, we are aware
that in practice the sheer number of libraries and the limited resources will make this unrealistic.
Therefore, we propose to use the results of the automated analyses as the basis for a pre-selection
of libraries: the union of the first N libraries in each category are candidates for detailed inspection
and subjected to an expert assessment2.

Expert assessment

Our model guides the expert during the assessment process. The automated analyses have
provided the information which can be extracted from the source code. The expert now needs to
evaluate the remaining metrics. For this, he or she requires detailed knowledge about the project
and its domain. Furthermore, detailed information about the libraries needs to be researched.

In practice, some library characteristics, such as incompatible licenses or security issues might
be an exclusion criterium for libraries. If the expert is aware of such criteria, we advise them to
assess them for all the libraries of the project. Following the metric evaluation, the expert needs
to map the results to the scale {low, medium, high}. According to the impact relationships in
Figure 10.2, these values map to {bad, satisfactory, good}.

The goal of our approach is to assess the impact each library has on the activities in our
model. Therefore, for each library we count the number of {bad, satisfactory, good} scores it has
received for each single activity. In the same way, the overall score of a library is computed.

Report generation

Subsequent to the assessment, a report can be generated from our model. The structure is the
following: a chapter is dedicated to each external library. The expert enters the description of
the library and fills in the sections generated from the model categories. At the end of each
chapter a table summarizes the assessment for the respective library according to the model in
Figure 10.2. At the end of the report, we include an overview which shows the aggregated results
for all the libraries in the project. For each library, one row holds the scores per activity in the
final table. Also the overall score of the library is reported. Table 10.3 shows an example. By
offering the detailed chapters with the assessment of all libraries as well as the aggregated view
on the system, we cater to the needs of experienced as well as inexperienced recipients, who may
be consultants, project managers, or developers. As it highlights potential areas of concern, the
report is supposed to serve as basis for reuse and maintenance decisions.

10.4 Tool support

The assessment model includes five metrics that can be automatically determined by static
analyses of the software system to be assessed. Four of these metrics are used in the pre-selection

2The number N of libraries in the assessment can be determined based on the resources available to conduct
the assessment.

180 Chapter 10. A structured assessment model for third-party library usage

Table II
EXAMPLE FOR ASSESSMENT AGGREGATION

Library Modify Understand Migrate Protect Distribute Overall

Library
G:
S:
B:

2
2
1

G:
S:
B:

2
1
2

G:
S:
B:

1
0
3

G:
S:
B:

0
2
0

G:
S:
B:

0
0
1

G:
S:
B:

5
5
7

Legend: G: # of good impacts, S: # of satisfactory impacts, B: # of bad impacts

open source software quality assessment toolkit ConQAT5,
a modular toolkit for creating quality dashboards which
integrate the results of multiple quality analyses. The current
implementation is targeted at analyzing the library usage of
Java systems but could be adapted to other programming
languages with a library reuse concept and for which a parser
API in Java is available.

The analysis requires the source and byte code of the
project as well as the included libraries as input. The output
is a set of HTML and data files showing the metric values
for each library in a tabular fashion. The analysis traverses
the abstract syntax tree (AST) for each class in the project
and determines all method calls to external libraries. For
each library, it determines the following five metrics (see
also Table I):

• Number of API method calls
• Number of distinct API method calls
• Percentage of affected classes
• Scatteredness of the API
• Percentage of API utilization
The number of total and distinct API method calls as

well as the percentage of affected classes are aggregated
during the AST-traversal. The scatteredness metric requires
more computation: it expresses the degree of distribution of
API calls over the system structure. API calls within one
package are considered as local. We would expect local
calls for specific functionality, e. g., calls to networking or
image rendering libraries. These would be expected to be
concentrated to small parts of the system. Contrarily, li-
braries providing cross cutting functionality such as logging
would be expected to be called from a large portion of the
system, therefore exhibiting a high scatteredness value. We
compute scatteredness as the sum of the distances between
all pairs of package nodes in the package tree with calls to a
specific API. The distance of two nodes in the package tree
is given by the sum of the distance from each node to their
least common ancestor. It is important to note that since
the scatteredness metric depends on the system structure
(i. e., the depth of the package tree) its values cannot be
compared in a meaningful way across different software
systems. The percentage of API utilization is computed as
fraction between the number of distinct API methods called
and the total number of API methods in the library. The
complete tool support is available as a ConQAT extension

5http://www.conqat.org/

and can be downloaded as a self-contained bundle including
ConQAT6.

VI. CASE STUDY

A. Study Goal

To show the applicability of our approach, we performed
a case study on a real-world software system of azh
Abrechnungs- und IT-Dienstleistungszentrum für Heilberufe
GmbH, a customer of CQSE GmbH (see Section II).

B. Analyzed System

The analyzed system is a distributed billing application
with a distinct data entry component running on a J2EE
application server which is accessed from around 350 fat
clients (based on Java Swing). The system’s source code
comprises about 3.5 MLOC. The system’s files include 87
Java Archive Files (JARs).

C. Study Procedure

We executed our assessment approach (see Section IV)
on the study object and recorded our observations during
the process. We presented our results to the stakeholders in
the company and qualitatively captured their feedback. For
this we used the following guiding questions:

• Does the report contain the central libraries?
• Does the assessment conform to the stakeholders’ in-

tuition?
• Are important aspects missing in the assessment?
• Were parts of the assessment result surprising?

D. Results and Observations

The pre-selection step revealed that out of the 87 JAR
files included by the project files, the system’s source code
directly calls methods from 47. The extent of entangledness
between the system and these libraries differs significantly,
as illustrated in Figure 3(a). For some libraries, only one
method is called while for others, there are several thousand
method calls indicating the difference in importance for the
project. Also the degree of scatteredness varies significantly,
as shown in Figure 3(b).7

6http://www4.in.tum.de/⇠ccsm/library-usage-assessment/
7Note that the long tail of libraries with only one method call or

scatteredness of 1 or 0 is represented by the blanks in Figures 3(a) and 3(b),
as they are not visible due to the log-scale.

phase of our approach to rank the libraries with regards to their significance to the project. The
tool support for the assessment is implemented in Java on top of the open source software quality
assessment toolkit ConQAT3, a modular toolkit for creating quality dashboards which integrate
the results of multiple quality analyses. The current implementation is targeted at analyzing
the library usage of Java systems but could be adapted to other programming languages with a
library reuse concept and for which a parser API in Java is available.

The analysis requires the source and byte code of the project as well as the included libraries
as input. The output is a set of HTML and data files showing the metric values for each library
in a tabular fashion. The analysis traverses the abstract syntax tree (AST) for each class in the
project and determines all method calls to external libraries. For each library, it determines the
following five metrics (see also Table 10.2):

• Number of API method calls

• Number of distinct API method calls

• Percentage of affected classes

• Scatteredness of the API

• Percentage of API utilization

The number of total and distinct API method calls as well as the percentage of affected classes
are aggregated during the AST-traversal. The scatteredness metric requires more computation:
it expresses the degree of distribution of API calls over the system structure. API calls within
one package are considered as local. We would expect local calls for specific functionality, e. g.,
calls to networking or image rendering libraries. These would be expected to be concentrated
to small parts of the system. Contrarily, libraries providing cross cutting functionality such as
logging would be expected to be called from a large portion of the system, therefore exhibiting
a high scatteredness value. We compute scatteredness as the sum of the distances between all
pairs of package nodes in the package tree with calls to a specific API. The distance of two nodes
in the package tree is given by the sum of the distance from each node to their least common
ancestor. It is important to note that since the scatteredness metric depends on the system
structure (i. e., the depth of the package tree) its values cannot be compared in a meaningful
way across different software systems. The percentage of API utilization is computed as fraction
between the number of distinct API methods called and the total number of API methods in the

3http://www.conqat.org/

http://www.conqat.org/

10.5. Case study 181

library. The complete tool support is available as a ConQAT extension and can be downloaded
as a self-contained bundle including ConQAT4.

10.5 Case study

The goal of the case study is to show the applicability of our approach on a real-world software
system. To this end, we performed a case study on a system of azh Abrechnungs- und IT-
Dienstleistungszentrum für Heilberufe GmbH, a customer of CQSE GmbH.

Industry partners

The CQSE GmbH was founded in early 2009 as a spin-off of the competence center for Software
Quality and Maintenance at the chair for Software & Systems Engineering of the Technische Uni-
versität München. It provides consulting services for software quality assurance. In particular, it
helps customers in applying novel techniques like clone detection and architecture conformance
analysis to ensure long-term maintainability of their software systems.

The azh Abrechnungs- und IT-Dienstleistungszentrum für Heilberufe GmbH is one of the
largest provider for billing and IT-services for professional health care providers in Germany.
With 550 employees they provide support for 20,000 customers.

Analyzed system

The analyzed system is a distributed billing application with a distinct data entry component
running on a J2EE application server which is accessed from around 350 fat clients (based on
Java Swing). The system’s source code comprises about 3.5 MLOC. The system’s files include
87 Java Archive Files (JARs).

Study procedure

We executed our assessment approach (see Section 10.3) on the study object and recorded our
observations during the process. We presented our results to the stakeholders in the company
and qualitatively captured their feedback. For this we used the following guiding questions:

• Does the report contain the central libraries?

• Does the assessment conform to the stakeholders’ intuition?

• Are important aspects missing in the assessment?

• Were parts of the assessment result surprising?

4http://www4.in.tum.de/~ccsm/library-usage-assessment/

http://www4.in.tum.de/~ccsm/library-usage-assessment/

182 Chapter 10. A structured assessment model for third-party library usage

10.5.1 Results and observations

The pre-selection step revealed that out of the 87 JAR files included by the project files, the
system’s source code directly calls methods from 47. The extent of entangledness between the
system and these libraries differs significantly, as illustrated in Figure 10.4(b). For some libraries,
only one method is called while for others, there are several thousand method calls indicating
the difference in importance for the project. Also the degree of scatteredness varies significantly,
as shown in Figure 10.4(c).5

The pre-selection step to determine the most important libraries returned a set of 20 JARs.
In two cases we conceptually merged several individual JARs into one logical library as they
originated from the same in-house project, which resulted in 10 logical libraries for further anal-
ysis. We then determined for each library all metrics of our assessment model (see Table 10.2)
and evaluated each library. The aggregated result of the library usage assessment for the studied
software system is shown in Table 10.5.1.

After a feedback cycle with the CQSE consultant we learned that Spring would have been
expected as a central library but was missing in our results. The reason for this is that Spring is
a dependency injection framework, in which the framework code mainly calls the user’s code and
thus the source code does not contain many API method calls. This is a threat to the internal
validity of our analysis (see Section 10.5.3). After the consultant’s feedback, we added Spring to
the list of libraries and performed a detailed assessment for it. The result is highlighted in grey
in Table 10.5.1.

The complete assessment process for a single library took around 20-60 minutes. Without
pre-selection, even in the best case, the assessment of all 87 included libraries would have required
29 person hours. In contrast, the assessment of the significant libraries identified by pre-selection
decreased the effort to approximately 5 person hours.

Interpretation

The results in Table 10.5.1 show a mature style of external library usage: most assessed libraries
include significantly more positive than satisfactory or negative scores. This is, amongst others,
due to a good choice of libraries as no immature or insufficiently supported libraries are included.
Another reason for the good results is the high familiarity of the developers with the libraries
that helps to overcome potential problems. Also, the support for most libraries is excellent,
which positively influences most activities.

The libraries with the best scores are JFormDesigner and Jasper-reports, with 22 and 20 good
scores respectively. The libraries introducing most risk are Drools (9×bad), Jai_codec (9×bad)
and azh-library1 (10×bad). Depending on the activities, there is a lot of variation concerning
the scores of the libraries. The libraries score very heterogeneously for Modify, Understand and
Migrate. Contrarily, Protect and Distribute are well supported. The only exception is Jasper-
report as the vendor’s commitment to an open-source distribution model is not entirely clear.

5Note that the long tail of libraries with only one method call or scatteredness of 1 or 0 is represented by the
blanks in Figures 10.4(b) and 10.4(c), as they are not visible due to the log-scale.

10.5. Case study 183

(a) Excerpt of the automated analysis results, showing the distribution of total and distinct method calls over the
system decomposition.

1	

10	

100	

1000	

10000	

100000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	 45	 46	 47	

#TMC	

#DMC	

(b) The distribution of total vs. distinct method calls.

1	

10	

100	

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	 45	 46	 47	

Sca/eredness	

(c) The distribution of scatteredness.

Figure 10.4: Result distribution for total and distinct method calls and scatteredness for each
JAR file used by the system.

184 Chapter 10. A structured assessment model for third-party library usage

1"10
"

10
0"

10
00
"

10
00
0"

10
00
00
"

1"
2"

3"
4"

5"
6"

7"
8"

9"
10
"
11
"
12
"
13
"
14
"
15
"
16
"
17
"
18
"
19
"
20
"
21
"
22
"
23
"
24
"
25
"
26
"
27
"
28
"
29
"
30
"
31
"
32
"
33
"
34
"
35
"
36
"
37
"
38
"
39
"
40
"
41
"
42
"
43
"
44
"
45
"
46
"
47
"

#T
M
C"

#D
M
C"

(a
)

T
he

di
st

ri
bu

tio
n

of
to

ta
l

vs
.d

is
tin

ct
m

et
ho

d
ca

lls
.

1"10
"

10
0"

10
00
"

10
00
0"

10
00
00
"

10
00
00
0"

1"
2"

3"
4"

5"
6"

7"
8"

9"
10
"
11
"
12
"
13
"
14
"
15
"
16
"
17
"
18
"
19
"
20
"
21
"
22
"
23
"
24
"
25
"
26
"
27
"
28
"
29
"
30
"
31
"
32
"
33
"
34
"
35
"
36
"
37
"
38
"
39
"
40
"
41
"
42
"
43
"
44
"
45
"
46
"
47
"

Sc
a/

er
ed

ne
ss
"

(b
)

T
he

di
st

ri
bu

tio
n

of
sc

at
te

re
dn

es
s.

Fi
gu

re
3.

R
es

ul
t

di
st

ri
bu

tio
n

fo
r

to
ta

l
an

d
di

st
in

ct
m

et
ho

d
ca

lls
an

d
sc

at
te

re
dn

es
s

fo
r

ea
ch

JA
R

fil
e

us
ed

by
th

e
sy

st
em

.

Ta
bl

e
II

I
A

G
G

R
E

G
A

T
E

D
V

IE
W

O
F

T
H

E
A

S
S

E
S

S
M

E
N

T
R

E
S

U
LT

S

L
ib

ra
ry

M
od

ify
U

nd
er

st
an

d
M

ig
ra

te
Pr

ot
ec

t
D

is
tr

ib
ut

e
O

ve
ra

ll

C
as

to
r

G
:

S: B
:2 2 1

G
:

S: B
:3 3 1

G
:

S: B
:2 3 1

G
:

S: B
:5 2 1

G
:

S: B
:2 0 0

G
:

S: B
:14 10 4

L
og

4j
G

:
S: B

:2 1 2

G
:

S: B
:4 1 2

G
:

S: B
:3 1 2

G
:

S: B
:6 0 2

G
:

S: B
:2 0 0

G
:

S: B
:17 3 8

Ja
sp

er
-

re
po

rt
s

G
:

S: B
:4 0 1

G
:

S: B
:4 1 2

G
:

S: B
:4 0 2

G
:

S: B
:7 1 0

G
:

S: B
:1 1 0

G
:

S: B
:20 3 5

D
ro

ol
s

G
:

S: B
:2 1 2

G
:

S: B
:3 1 3

G
:

S: B
:2 1 3

G
:

S: B
:4 3 1

G
:

S: B
:2 0 0

G
:

S: B
:13 6 9

az
h-

lib
ra

ry
1

G
:

S: B
:2 1 2

G
:

S: B
:2 2 3

G
:

S: B
:2 1 3

G
:

S: B
:4 2 2

G
:

S: B
:2 0 0

G
:

S: B
:12 6 10

az
h-

lib
ra

ry
2

G
:

S: B
:4 0 1

G
:

S: B
:3 0 4

G
:

S: B
:3 0 3

G
:

S: B
:5 2 1

G
:

S: B
:2 0 0

G
:

S: B
:17 2 9

Q
ua

rt
z

G
:

S: B
:1 2 2

G
:

S: B
:3 3 1

G
:

S: B
:2 3 1

G
:

S: B
:3 4 1

G
:

S: B
:2 0 0

G
:

S: B
:11 12 5

JF
or

m
-

D
es

ig
ne

r
G

:
S: B

:4 0 1

G
:

S: B
:5 0 2

G
:

S: B
:4 0 2

G
:

S: B
:7 0 1

G
:

S: B
:2 0 0

G
:

S: B
:22 0 6

Ja
i

co
de

c
G

:
S: B

:2 0 3

G
:

S: B
:4 1 2

G
:

S: B
:3 1 2

G
:

S: B
:4 2 2

G
:

S: B
:2 0 0

G
:

S: B
:15 4 9

A
nt

G
:

S: B
:2 2 1

G
:

S: B
:4 1 2

G
:

S: B
:3 1 2

G
:

S: B
:6 1 1

G
:

S: B
:2 0 0

G
:

S: B
:17 5 6

Sp
ri

ng
G

:
S: B

:3 1 1

G
:

S: B
:3 1 3

G
:

S: B
:3 1 2

G
:

S: B
:5 3 0

G
:

S: B
:2 0 0

G
:

S: B
:16 6 6

L
eg

en
d:

G
:

#
of

go
od

im
pa

ct
s,

S:
#

of
sa

tis
fa

ct
or

y
im

pa
ct

s,
B

:
#

of
ba

d
im

pa
ct

s

Figure 10.5: Aggregated view of the assessment results

10.5. Case study 185

Stakeholder feedback

The consultant of the CQSE reported that he perceives the automated pre-selection process as
highly beneficial because it allows a selection of central libraries based on quantitative data. As
not all libraries can be assessed in a typical audit this selection is essential; however, up to now, it
was often based on educated guesses and opinions of the architects and developers. The metric-
based pre-selection helps to make the selection more objective. This is particularly important
as quality audits often stir emotions and, hence, all aspects of the audit must withstand fierce
criticism and may not appear to be subjective.

Regarding the questions formulated in Section 10.5, the CQSE consultant replied that the
report contains the central libraries with the exception of the Spring framework, as discussed
above. The results conform to the consultant’s intuition as he did not expect the system to
depend on inadequate libraries. However, one aspect missing in the assessment is a peculiarity of
the Drools library: Drools is not only a library but also defines its own rule description language.
Central parts of the assessed system are implemented in this language. Hence, Drools must be
considered more central than normal libraries. This is not directly reflected in the assessment.
The analysis returned some surprising results w.r.t. to the centrality of the libraries. For example,
the imaging library JAI was not considered by the consultant before it was pointed out by the
analysis.

The software engineer of azh reported that the most important libraries of the project were
selected. In general, the results conformed to the developer’s intuition. However, in some cases
more details of the assessment would be helpful. According to the engineer, all important issues
were evaluated in our model. In addition, explicit statements about the future viability of the
libraries or alternatives to the previously used libraries would be interesting. Parts of the assess-
ment result were surprising, in particular that the libraries JFormDesigner and azh-library2 were
among the most central libraries. Overall, the positive outcome of the assessment corresponded
to the engineer’s perception of the state of library usage on the project.

10.5.2 Discussion

The system analyzed in the case study employs a considerable number of software libraries. While
some of them play a central role and thus have a significant impact on the maintenance and further
evolution, others are of lesser importance. Our ranking step in the assessment process was able to
identify these important libraries, allowing to focus further investigation on their usage adequacy.
Supported by the assessment model, we identified a number of metrics for each of the identified
libraries leading to a comprehensive usage assessment per library. The assessment shows which
development activities are influenced and thus allows to identify problematic library usage at a
glance. However, proposing one-size-fits-all solutions for addressing the issues uncovered by the
analysis does not seem adequate; the possible actions are highly dependent on the project context
and the maintenance strategies. Our findings rather serve the purpose to create awareness and
provide the information for decision making.

186 Chapter 10. A structured assessment model for third-party library usage

An interesting question is what is considered as an external library. For instance a library
produced by a different department within the same company may be either considered internal
or external. Another central issue is what entity is considered a library. The technical structuring
imposed by JAR files may not map to what is considered a logical reusable library. More relevant
are factors like provider and release cycle. For an assessment with the proposed model, this has
to be defined depending on the specific context in a project. During the discussion of the results,
it became apparent that weights for facts would be useful to tailor the model to a specific project
context.

10.5.3 Threats to validity

Internal validity

The assessment model was created based on CQSE’s experience with software quality assessment
and software development. We do not know how complete the model is in terms of aspects influ-
encing library usage. However, due to the experience from CQSE GmbH in assessing technology
usage in diverse and large industrial projects we are confident that we covered the most central
influence factors.

The ranking of the libraries regarding their significance for the including project is based on
static analysis metrics taking into account method calls to external libraries. This means that
libraries that are indirectly used via other libraries are not considered in the assessment. However,
the automated analysis produces a dependency graph of all JAR files including transitively
referenced JARs. This allows an assessor to manually identify additional central libraries for
detailed assessment.

In addition, reuse can also occur by other means such as subclassing which is typically used
in frameworks using a dependency injection mechanism (e. g., Spring). Moreover the analysis
cannot detect method calls via the Java Reflection mechanism. In the future, parts of these
limitations could be addressed with further static and dynamic analyses.

External validity

Our case study was restricted to a single commercial software system written in Java. We do
not know how our findings transfer to software built on other programming ecosystems besides
Java. Especially w.r.t. the availability of third-party libraries, we expect major differences.

We are convinced that both the assessment model and the assessment approach have a good
applicability to other programming platforms for which a rich variety of reusable libraries exists.
More extensive case studies are required to provide evidence this for hypothesis.

10.6 Related work

We relate our approach to the fields of analysis of third-party library usage, architecture analysis
and software quality assessment.

10.6. Related work 187

Analysis of third-party library usage

In [26], we proposed an approach to determine the degree of dependence between a software
project and its third-party libraries in order to support decision making in various use cases
during software maintenance. The focus of this previous work was to quantify library reuse
while in this work we present an assessment model which defines what constitutes adequate
reuse with respect to third-party libraries.

Klatt et al. [36] suggested an approach to identify the impact of evolving third-party com-
ponents on long-living software systems. They use a white-box impact analysis which requires
access to the third-party source code and combined it with data from bug trackers and quality
analyses on the third-party code. In contrast to our approach, the authors do not provide an
explicit model defining the impacts of library usage characteristics to development activities.

Kotonya and Hutchinson [186] suggested an approach that helps developers understanding
the impact of change in commercial off-the-shelf (COTS) software components employed in a
project. Contrarily to our approach, they rely on a COTS component-oriented development
process and focus on the more specific use case of change impact analysis.

Raemaekers et al. [54] proposed an approach to automatically assess the risk imposed by
third-party library usage in software projects. They measure the usage frequency of third-party
libraries in a corpus of open source and commercial software systems. The risk assessment is
based on the assumption that an uncommon, i. e., infrequently used, libraries expose a higher
risk compared to a library that is frequently employed by software projects. In contrast to our
approach, the authors have a very general heuristic for assessing the risk of library usage. We
provide a comprehensive model taking multiple factors of libraries and their usage into account.

Lämmel et al. [31] analysed API usage in 1,476 open source Java projects. They determined
the API usage footprint of the projects, in terms of the number of included libraries and the
number of (distinct) API methods called from the projects’ code. Contrarily to our approach,
the authors focus on the extent of API usage and do not take into account other characteristics
of the library and its usage.

Architecture analysis

Architecture analysis approaches aim at evaluating a software system with regards to its internal
structure.

The software architecture analysis method (SAAM) proposed by Kazman et al. [187] is an
approach for a scenario-based evaluation of software architectures. The method involves describ-
ing activities that have to be supported by the software system, prioritizing them, and assessing
how well the architecture facilitates them.

The architecture tradeoff analysis method (ATAM) [188] is an approach for evaluating a
system’s architecture with respect to competing quality characteristics (e. g., modifiability vs.
performance). The goal is to to mitigate risks of architectural decisions, ideally early in the
development cycle. Potential architectural alternatives are analyzed and a risk mitigation is
used to drive refinements of the architectures.

188 Chapter 10. A structured assessment model for third-party library usage

Thus, architecture analysis approaches offer a general framework for the evaluation of princi-
pal architectural decisions. In contrast, the proposed library usage assessment approach provides
a detailed model of the influence of library usage on maintenance activities.

Software quality assessment

Software quality assessment methods supported by an explicit quality model, such as Quamoco [189]
or Squale [190], use the same principal approach as our method. Attributes of the system and
their impacts on quality characteristics are explicitly modeled according to a well-defined meta-
model. The model is operationalized in the automated assessment which analyzes a concrete
software system with regards to the modeled quality attributes. However, these models do not
take into account aspects originating from third-party library usage. In contrast, our approach
is specifically targeted at these aspects and is thus complimentary to these approaches.

10.7 Summary and future work

Despite their pivotal role in modern software development and their impact on maintenance,
third-party libraries tend to be overlooked in quality assessments of software systems. We pre-
sented a structured approach to assess the adequacy of library usage in software projects. Based
on industrial experience, we provided a lightweight assessment model as well as an assessment
process, including tool support and guidance for pre-selecting candidates for inspection. We re-
ported results of a case study applying our approach to an industrial system. The results indicate
that our approach gives a comprehensive overview on the external library usage of the analyzed
system. It outlines which maintenance activities are supported to which degree by the employed
libraries. Furthermore, the semi-automated pre-selection allowed for a significant reduction of
the time required by the expert assessment.

Based on the results of the case study, we consider this analysis as adequate to cover third-
party library reuse during a reuse assessment with RASM. In addition, an iterative application
provides insights into the effectiveness of the selected reuse strategy with respect to library reuse.

Future work

Currently an impact between an attribute and an activity is either positive or negative. As a
future extension, we plan to extend our meta-model with weights for impacts. This allows for a
more fine-grained modeling of the individual impact relationships. Moreover, we want to include
custom aggregation functions to allow for a custom weighting in order to emphasize the impact
of individual attributes regarding the overall assessment result. A further goal is to increase the
automation of the current assessment.

Library reuse rates over time To further benefit from the approach presented in this chapter,
we envision the following extension: the analyses could be applied to the version history of the
studied systems. In this way, reuse trends could be monitored and linked to further quality

10.7. Summary and future work 189

indicators or external events. This would lead to detailed insights on the interplay of reuse with
the given environment:

First, this extended analysis would enable practitioners to monitor the acceptance and effects
of a change in their reuse strategy on the level of library reuse. Changes, such as the removal
or proliferation of a specific technology, as well as the emergence of new usage patterns could be
assessed on a fine grained scale. The results of this more detailed information could support a
more thorough analysis of reuse issues: anomalies, as well as significant changes in reuse patterns
could be linked to a specific point in time and, thus, serve as input for a root cause analysis.
Identifying potential root causes, however, could be a first step towards understanding systemic
aspects of undesired reuse; an information highly relevant to shape the future reuse strategy.

A second aspect of a more detailed understanding of usage changes over time regards the
budgeting for reusable entities: often, in practice, providing reusables is considered a cost and
quantifying the obtained benefits remains challenging. Capturing the proliferation (e.g., in a
scenario aiming to replace several copies of code with a reusable library) of a technology can
provide a more solid understanding of the long term benefits, e.g., with respect to maintainability.
On this basis, the approach could provide a better estimate of the value of a particular reusable.
Consequentially, an organization could adjust the compensation for creating and maintaining the
given artefact.

Last, a continuous monitoring of library use could support project managers to identify future
problems that one or more projects are accumulating. One example of this is migration debt
that can accumulate to an unmanageable extent [191].

Assessing internal library usage In a commercial software development setting, organizations
frequently create proprietary libraries that, arguably, share many of the risk factors mentioned
in this Chapter. Usually, these libraries are created by dedicated company-internal third parties.
Consequently, applying the approach to internal software libraries could yield the same benefits
as for the Open Source libraries mentioned above. Given a suitable development infrastructure
and deployment mechanisms within a given organization, we expect a smooth transfer of the
approach to internal libraries.

Part V

Conclusion

191

11 | Summary and conclusions

Software reuse is an intriguing idea, promising substantial benefits for adopters. This leads to
high interest of organizations in effecting reuse in one way or another. However, certain low-
entrance types of reuse (e.g., clone and own) tend to lead to increased development velocity at
the cost of causing significant overhead in maintenance. Organizations, therefore, might aim to
introduce more advanced reuse approaches, e.g. Inner Source, or Software Product Lines.

Unfortunately, these approaches demand a significant level of skills and context factors from
an organization. These factors are not always obvious from research work which usually focusses
more on specific aspects of a technology than on a full picture for adopters. Furthermore,
the hurdle of adoption is different for each organization, depending on the given context and
capabilities.

As a result, many organizations struggle to identify and adopt their desired reuse approach.
In particular, understanding the details and gauging the effort required for the adoption, e.g.,
in terms of organizational change, time and resources, is challenging. This leads to unrealistic
expectations in terms of return on investment, as well as the time to benefits. As a consequence,
resources tend to be short, management support wavers, and the adoption initiative fails.

From the research side, little support is offered so far to prevent this: research on reuse
is fragmented, guidelines for adoption focus on single aspects of approaches and technologies,
and context requirements often remain implicit. Consequently, gaining a deeper understanding
of proper reuse approaches suitable for adoption in the particular context poses a significant
challenge for practitioners.

As stated in Section 1.3, our work aimed to counter these issues and support practitioners
to explore adequate options with respect to software reuse and, as a result, to derive realistic
expectations and plans for adoption.

11.1 Summary of the contributions

In this work, we addressed our goal from three different angles, providing empirical evidence of
current software reuse practice, a constructive support model for reuse adoption, as well as tool
support.

In a first step (Contribution 1), we aimed for a deep understanding of the state of reuse in
current software development practice. To obtain this knowledge, we conducted two detailed case

193

194 Chapter 11. Summary and conclusions

studies at two large software houses, analysing current reuse practices, supporting and inhibiting
context factors, benefits and drawbacks. In addition, we integrated the results of the two cases
in a formal synthesis.

The synthesis highlights that reuse in practice occurs in many different flavours, however,
mostly limited to source code. Partially, the technological potential present in elaborate devel-
opment infrastructures and tool support has been embraced: as a consequence, once infeasible
approaches, such as repositories as source for reusable entities, can now be operationalized in
a more beneficial way. Generally, successful reuse was tightly coupled to the company goals
and compatible with in the development culture. Establishing systematic reuse in heterogeneous
contexts posed significant challenges. As a result of these studies, the remainder of this work
is grounded on the needs of practitioners. Thus, we ensured the relevance of the subsequent
contributions.

The second contribution constructively addresses the challenge of selecting an adequate reuse
approach for adoption in practice by proposing the Reuse Adoption Support Model (RASM).
Based on literature and the results of the first contribution, RASM incorporates a classification
scheme that is able to capture a range of diverse reuse approaches and to relate their requirements
to the characteristics of an adopting organization. In this way, RASM supports a structured
discussion of reuse approach alternatives, ensuring at the same time that important details are
considered. As a result, adopting organizations are guided through the complexity of reuse
approaches, discover the aspects that are relevant and critical in their context, and obtain an
objective assessment on the overall feasibility as well as the detailed kind of efforts required
for a successful adoption. A proof-of-concept evaluation at one company confirms the assumed
benefits of applying RASM in practice.

At this point in time, the application of the model requires a substantial manual effort. How-
ever, some of the facets of reuse can be supported by automation, e.g., assessing the prevalence of
copied code, estimating redundant implementations, measuring the use of libraries, and bench-
marking the maintenance quality of software. Therefore, as third contribution, we proposed
supporting methods and tools to support data collection for the RASM. In particular, we focus
on the identification of missed reuse opportunities, quantifying the potential for reuse in source
code, and the chances and risks presented by the third-party libraries that are incorporated in
a given system. The tool support can enhance the application of RASM in two ways: when
applied during the assessment of the company profile, it provides information on the current
state of code reuse as well as on potential candidates for reusable artefacts. After the model
application and during the adoption of a reuse approach, the tooling can provide insights into
the effects of the approach on the source code level: by repeated analysis, changes, e.g., of the
use of clone-and-own reuse or the proliferation of shared reusables, become visible and can be
matched against the expected outcomes.

Academic key findings From an academic perspective, the key contributions on the empirical
side are, on the one hand, current evidence on the state of the practice with respect to software
reuse, and, on the other hand, a systematic method for synthesizing the outcomes of method-
ologically differing case studies. On the methodological side, we provided a model suited for

11.2. Outlook 195

accommodating a range of reuse approaches and systematically relating them to the context of
a particular company, thus providing a vehicle for increased technology transfer from academia
to practice.

Practice key findings From a practice-oriented perspective, the key contributions of this
dissertation are, first, current evidence on otherwise inaccessible insights on reuse from other
organizations. This counteracts the prevalent folklore that tends to surround software reuse in
practice. Second, with RASM, this dissertation presents a solution to the challenging problem
of selecting an adequate reuse approach for a given organization. The model supports the com-
parison of multiple approaches, a detailed matching of approaches and organization based on
the organization’s goals and capabilities, a general placement of organizations in an extensible
benchmark of software reuse capabilities, as well as a light-weight method for comparing alter-
native approaches based on expected adoption effort and obtained benefits. Last, method and
tool support enables for a partial automation of the data collection for applying the model and
monitoring the transition to the new approach.

11.2 Outlook

With RASM, this dissertation has provided a framework for building up a software reuse approach
knowledge base that supports practitioners with structured guidance for assessing their reuse
adoption plans. It has contributed an instantiation of RASM for Inner Source as well as initial
processes for applying the model in practice, with promising results. Nevertheless, further aspects
need to be researched to ensure more instances of reuse success in practice.

Extension of RASM To reach its full potential, a substantial amount of work needs to follow to
extend RASM: first, the characterization and classification of further reuse approaches needs to
continue to build up a data base that can support matching organizations with their optimal reuse
approaches. Furthermore, the model application process needs to be refined. In this context, the
accessibility of the model instantiations could be improved to allow for an automated evaluation
of the application results.

Second, from a conceptual angle, the dependencies and impacts between the reuse facet
constituents should be studied further: a clear understanding of their relation to the envisioned
benefits would facilitate a more fine-granular planning of the adoption. In addition, milestones
with clear benefits could be targeted, which would allow for earlier realizations of benefits.

Third, from an empirical point of view, we aim to study in greater detail the effects of applying
RASM in practice. In particular, we aim to see how well RASM is suited to support practitioners
continually during the adoption and improvement phase of their reuse initiative. To this end, we
aim to apply RASM in different contexts and to synthesise the respective findings.

Future challenges in software reuse Selecting an adequate reuse approach is the first step
of an organization towards success with software reuse. However, a number of challenges re-
main that need to be addressed during adoption and everyday reuse practice, some of them
transcending the boarders of software engineering with other fields:

196 Chapter 11. Summary and conclusions

First, despite of significant improvements, technical challenges persist. As we have seen, e.g.,
in Chapter 4, the presence of a state-of-the-art development infrastructure can not alleviate all
issues related to finding and identifying candidates for software reuse: the options available in
a large code base are overwhelming and identifying the best one can appear infeasible, inciting
rewriting code from scratch. Additional work is needed to address this challenge.

Second, software reuse (and, in particular, its adoption) depends as much on social and
organizational matters as it does on technical ones (and, frequently, reuse initiatives fail due to
these “soft” factors, see, e.g., Chapter 5). However, these aspects tend to be out of the expertise
of trained computer scientists. Consequently, the aspects of organizational change, motivation,
incentives, and hindrances should be studied from an interdisciplinary angle, integrating relevant
research from the respective fields with the knowledge of software engineering.

Last, reuse adoption processes can take several years to be completed. As, over this time,
they can be influenced by a large number of factors, it is challenging to present rigorous results
on the effects of single interventions. All the more, studies on software reuse in practice should
ensure to carefully report the context of their cases to enable future research to integrate the
pieces of evidence into meaningful insights.

11.3 Conclusions

Despite continuous advances, software reuse is not yet a problem solved in practice. Due to its
multifaceted nature, organizations aiming to perform it successfully need to take into account
numerous complex details. During reuse adoption, the available options need to be understood in
detail to ensure an informed decision and allow for realistic estimates in terms of time, resources,
and effort. These aspects are tightly related to the particular context of an organization and,
thus, an approach that provides a detailed assessment of costs and benefits to be expected, as
well as suggestions for a step by step improvement, is of significant value.

Part VI

Appendix

197

12 | Appendix

Contents
12.1 Appendix for Chapters 4, 5, and 6 — Analyzing and comparing

reuse practices . 200

12.2 Appendix for Chapter 8 — Instantiation of RASM for Inner Source206

12.3 Appendix for Chapter 10 — Rationales for impacts of the library
usage assessment model . 217

199

200 Chapter 12. Appendix

12.1 Appendix for Chapters 4, 5, and 6 — Analyzing and

comparing reuse practices

The questionnaire material of the case studies is included in [41]. Here, we include the interview guide
used for both studies and the supplementary tables containing the scale aggregations and response data
for Chapter 6.

12.1.1 Interview guide

Table 12.1 presents an overview of the interview topics as well as sample questions from the interview
guide.

12.1.2 Scale aggregations

Table 12.2 provides the details of how the aggregation of the Likert scales was computed for each question.
The column Question ID refers to the ID of the questions. Scale U encodes the type of the Likert scale
for the respective question in the questionnaire of U. L4 encodes a four point scale; L5 encodes a five
point scale. Together with the scale code, we report the two boundary values of each scale. The column
aggregation shows how the aggregation of the respective scale was computed: P1 to P4 (or P5, where
applicable) encode the possible options that could be selected. Their sum represents the aggregation of
the number of participants that selected the respective options. For instance, for the question FAR1, we
aggregated the number of participants that selected option P1 or P2 in code Low (L) and the number
of participants that selected option P3 or P4 in code High (H). Next to the aggregation, we report the
semantic value of the aggregated value.

12.1.3 Result of comparison RQ 1 and RQ 2

Tables 12.3 and 12.4 report the results of the comparison for RQs 1 and 2. They contain the following
information:
Question ID refers to the code of the question in the questionnaire (for the respective questions see
Tables 6.1 and 6.2).
Response options lists the possible answers.
Answ low/high represent the count of participants that selected the low/high end of the Likert-scale
(case D) or marked a selection (case G) for the respective item, according to the analysis methodology
described in Section 6.4. This data is reported to facilitate replication of the analysis by third parties.
Pval chi.square reports the p-value of the χ2 test.
Verdict expresses if the vote for the item tended to the low or the high category. Blank fields in the
tables represent information that was missing in the respective questionnaire.

12.1. Appendix for Chapters 4, 5, and 6 — Analyzing and comparing reuse
practices 201

Table 12.1: Interview guide: topics and sample questions for cases G and U

Interview topics
Economic, social, conceptual, and technical aspects of reuse

What are current goals of reuse? Where do you see potential?
Are there current issues? If yes, which?
Is there need for support? If yes, which? (Tools, processes, SE practices, ...)

Reuse assessment
When do you consider reuse as successful? Generally (fulfilling company goals)? From your specific perspective?
How do you assess the success of reuse, the fulfilment of reuse goals?
How do you decide on how reuse should be done?
How do you proceed to implement the selected way of reuse? Steps? Support?
In which phases do you expect/target reuse benefits? In which form should benefits occur?
Which business goals do you aim to support with (internal/external) reuse?
What are the current product goals and requirements?
In which way is reuse currently effected?
What kind of reuse do you aim for?
What are preconditions/requirements/challenges on the process/conceptual/technical/organisational/communi-
cation levels?

Experiences with current reuse
What works currently in terms of reuse? Why?
What did not work wrt. reuse so far? Why?
What were the biggest mistakes committed w.r.t. reuse?
How can these mistakes be mitigated/corrected?

Planning and conflicts of interest
Reuse as a source of conflict within company, local vs. global optimization
How is reuse planning done locally (department/team/group) and globally (company-wide)?
Balance of resources between products and basis?
What is harder: providing or maintaining reusable entities?
What do you consider essential for a professional stance wrt. reuse?
How do you address reuse and evolution of entities?
How important is tool support? For which parts of the process?

Product line adoption
Starting points, goals, trigger for decision
Process, issues and challenges: on which level? How addressed?
Successful? How could success be validated?
Which methods/strategies were effective? What would you do differently next time?

Product line evolution
Challenges? Key points? Success criteria and factors?
What (in terms of content) should be in the platform? In initial phase? In further evolution?
How do you proceed to coordinate the different stakeholders? Requirements engineering? Sources of requirements
for platform? Process? How are requirements persisted? How is a decision reached?
Reference architectures: relevant? present? in which shape? Are deviations acceptable?
What needs to happen to achieve the acceptance and use of an internal framework? How is knowledge transferred?
How do you proceed with a common platform? What about governance, guarantees, compensations? Resources?

Development context
How important is homogeneity of process, tool infrastructure, quality assurance, goals?

Reuse from external sources
How important is the provenance of reused code? Security? Certification? Accountability, liability? Type of
usage?
How do you procure/inspect/maintain (clone-and-own/external/central)? Who is responsible, has an overview,
assesses external entities and their usage? Are there rules/limitations for the use of external entities?

Improvements
What is your most important wish for improvement wrt. reuse?

202 Chapter 12. Appendix

Table 12.2: Scale aggregations for questionnaire U. Question ID refers to the respective question,
Scale U relates the type of the scale (L4 for a 4 point Likert scale, L5 for a 5 point Likert scale)
and reports the extreme values of the given scale. Aggregation illustrates how, for the given
scale, the values were aggregated in the categories Low and High. P<n> denotes the number of
responses at the given point of the Likert scale.

Question
ID

Scale U Aggregation

Low High
Extent of code reuse (ECR)
ECR2 L5, no use, always use P1: no use P2+P3+P4+P5: use
ECR3 L5, no use, always use P1: no use P2+P3+P4+P5: use
Finding artefacts (FAR)
FAR1 L4, never, always P1+P2: irrelevant, low usage P3+P4: regular, high usage
Reused artefacts (RAF)
RAF1 L4, never, always P1+P2: irrelevant, low usage P3+P4: regular, high usage
RAF2 L4, never, always P1+P2: low usage P3+P4: high usage
Technical realization of reuse (TRR)
TRR1 L4, does not apply, strongly applies P1+P2: irrelevant, low usage P3+P4: regular, high usage
TRR2 L4, does not apply, strongly applies P1+P2: irrelevant, low fre-

quency
P3+P4: regular, high fre-
quency

Challenges, effects, and context factors of reuse (CHR)
CHR1 L4, never, always P1+P2: never, occasionally P3+P4: regularly, always
CHR2 L4, never, always P1+P2: never, occasionally P3+P4: regularly, always
CHR3 L4, never, always P1+P2: never, occasionally P3+P4: regularly, always
Success factors and benefits (SFB)
SFB1 L4, never, always P1+P2: never, occasionally P3+P4: regularly, always
SFB3 L4, unimportant, important P1+P2: unimportant, slightly

important
P3+P4: important, very im-
portant

SFB4 free text —
Reuse in everyday development practice (RED)
RED1 L4, does not apply, strongly applies P1+P2: does not apply, ap-

plies slightly
P3+P4: applies, strongly ap-
plies

RED4 L4, does not apply, strongly applies P1+P2: does not apply, ap-
plies slightly

P3+P4: applies, strongly ap-
plies

Finding artefacts (FAR)
FAR3 L4, does not apply, strongly applies P1+P2: does not apply, ap-

plies slightly
P3+P4: applies, strongly ap-
plies

12.1. Appendix for Chapters 4, 5, and 6 — Analyzing and comparing reuse
practices 203

Table 12.3: Responses and values relevant for RQ1

Q
ue

st
io
n
ID

R
es
p
on

se
op

ti
on

s

U
an

sw
lo
w

U
an

sw
hi
gh

U
pv

al
ch
i.
sq
ua

re

U
ve
rd
ic
t

G
an

sw
lo
w

G
an

sw
hi
gh

G
pv

al
ch
i.
sq
ua

re

G
ve
rd
ic
t

1 ECR2 Serialization (e.g. XML). 14 38 <0.001 HIGH 17 19 0.74 -
2 ECR2 Networking. 19 35 0.03 HIGH 19 17 0.74 -
3 ECR2 Persistency. 16 37 <0.001 HIGH 19 17 0.74 -
4 ECR2 Visualization/GUI. 11 44 <0.001 HIGH 24 12 0.05 LOW
5 ECR2 Architecture (e.g. rich client, plugin). 16 38 <0.001 HIGH 21 15 0.32 -
6 ECR2 Algorithms 18 38 0.01 HIGH NA NA NA NA
7 ECR2 User Interfaces 17 38 0.01 HIGH NA NA NA NA
8 ECR2 General utility. NA NA NA NA 12 24 0.05 HIGH
9 ECR3 Domain-independent general functionality. 9 46 <0.001 HIGH 8 27 <0.001 HIGH
10 ECR3 Domain-specific functionality. 24 33 0.23 - 17 18 0.87 -
11 ECR3 Product-specific functionality. 23 33 0.18 - 26 9 <0.001 LOW
12 FAR1 Web search. 27 32 0.52 - 20 19 0.87 -
13 FAR1 Browsing repositories. 46 12 <0.001 LOW 23 16 0.26 -
14 FAR1 Communicating with colleagues. 17 43 <0.001 HIGH 14 25 0.08 -
15 FAR1 Code search tools. 52 6 <0.001 LOW 9 30 <0.001 HIGH
16 FAR1 Code recommenders. 58 1 <0.001 LOW 38 1 <0.001 LOW
17 FAR1 Browsing documentation. 50 11 <0.001 LOW 30 9 <0.001 LOW
18 FAR1 Tutorials. 50 8 <0.001 LOW 38 1 <0.001 LOW
19 FAR1 Other 2 0 0.16 - 36 3 <0.001 LOW
20 FAR1 Code completion. NA NA NA NA 37 2 <0.001 LOW
21 RAF1 System tests 44 14 <0.001 LOW NA NA NA NA
22 RAF1 Unit-Tests 41 18 <0.001 LOW NA NA NA NA
23 RAF1 Personas 50 7 <0.001 LOW NA NA NA NA
24 RAF1 Code in binary form 36 18 0.01 LOW 26 12 0.02 LOW
25 RAF1 Source code 30 29 0.90 - 1 37 <0.001 HIGH
26 RAF1 Informal design models (Box and lines, natural language) 42 12 <0.001 LOW 36 2 <0.001 LOW
27 RAF1 Semiformal design models (UML) 52 4 <0.001 LOW 38 0 <0.001 LOW
28 RAF1 Formal design models 45 9 <0.001 LOW 38 0 <0.001 LOW
29 RAF1 Own, domain specific design models 44 13 <0.001 LOW 36 2 <0.001 LOW
30 RAF1 Requirement documentation / Use cases 44 16 <0.001 LOW 33 5 <0.001 LOW
31 RAF1 Architecture documentation 45 11 <0.001 LOW 33 5 <0.001 LOW
32 RAF1 Prototypes 51 8 <0.001 LOW 36 2 <0.001 LOW
33 RAF1 UI Designs 38 21 0.03 LOW 28 10 <0.001 LOW
34 RAF1 Style guides 28 30 0.79 - 27 11 0.01 LOW
35 RAF1 Other 2 0 0.16 - 38 0 <0.001 LOW
36 RAF2 Developer Portals. 39 22 0.03 LOW 25 14 0.08 -
37 RAF2 Internal repositories. 43 17 <0.001 LOW 5 34 <0.001 HIGH
38 RAF2 Commercial repositories 51 7 <0.001 LOW NA NA NA NA
39 RAF2 Colleagues own department. 26 36 0.20 - NA NA NA NA
40 RAF2 Colleagues. 42 19 <0.001 LOW 24 15 0.15 -
41 RAF2 Open Source Repositories. 50 11 <0.001 LOW 25 14 0.08 -
42 TRR1 Code scavenging (copy, paste, modify). 47 10 <0.001 LOW 24 12 0.05 LOW
43 TRR1 Software libraries. 37 21 0.04 LOW 4 32 <0.001 HIGH
44 TRR1 Software frameworks. 36 19 0.02 LOW 17 19 0.74 -
45 TRR1 Component-based development. 38 18 0.01 LOW 28 8 <0.001 LOW
46 TRR1 Design patterns. 48 9 <0.001 LOW 23 13 0.10 -
47 TRR1 Architecture reuse. 47 9 <0.001 LOW 31 5 <0.001 LOW
48 TRR1 Product lines. 51 3 <0.001 LOW 35 1 <0.001 LOW
49 TRR1 Application generators. 51 3 <0.001 LOW 35 1 <0.001 LOW
50 TRR1 Code generators 50 6 <0.001 LOW NA NA NA NA
51 TRR1 None. NA NA NA NA 36 0 <0.001 LOW
52 TRR2 small code sections. 28 27 0.89 - 29 8 <0.001 LOW
53 TRR2 fine-grained, such as single methods/functions. 24 29 0.49 - 26 11 0.01 LOW
54 TRR2 one or more classes. 27 26 0.89 - 19 18 0.87 -
55 TRR2 complete libraries. 27 28 0.89 - 6 31 <0.001 HIGH
56 TRR2 coarse-grained, such as entire frameworks. 34 21 0.08 - 24 13 0.07 -

204 Chapter 12. Appendix

Table 12.4: This table contains the responses relevant for RQ2

Q
ue

st
io
n
ID

R
es
p
on

se
op

ti
on

s

U
an

sw
lo
w

U
an

sw
hi
gh

U
pv

al
ch
i.
sq
ua

re

U
ve
rd
ic
t

G
an

sw
lo
w

G
an

sw
hi
gh

G
pv

al
ch
i.
sq
ua

re

G
ve
rd
ic
t

57 CHR1 "Not invented here" phenomenon. 39 18 0.01 LOW 21 11 0.08 -
58 CHR1 Licensing/legal issues. 49 12 <0.001 LOW 18 14 0.48 -
59 CHR1 Difficulty of adapting artefact to project needs. 33 29 0.61 - 15 17 0.72 -
60 CHR1 Inconvenient granularity of reusable artefacts. 41 21 0.01 LOW 25 7 <0.001 LOW
61 CHR1 Process for clearance of external artefacts is too slow. 33 25 0.29 - Interview data
62 CHR1 Coordination effort with other departments. 30 32 0.80 - Interview data
63 CHR1 Other. 3 6 0.32 - 27 5 <0.001 LOW
64 CHR1 Finding the right artefacts is difficult. See FAR3 and RED1. 14 18 0.48 -
65 CHR1 Accessing the artefact is difficult. See FAR3 and RED1. 30 2 <0.001 LOW
66 CHR2 Loss of control. 46 14 <0.001 LOW 22 9 0.02 LOW
67 CHR2 Dependency explosion. 35 27 0.31 - 15 16 0.86 -
68 CHR2 Performance decay. 43 18 <0.001 LOW 27 4 <0.001 LOW
69 CHR2 Decrease of code understandability. 50 10 <0.001 LOW 20 11 0.11 -
70 CHR2 Ripple effects caused by changes in reused artefacts. 44 17 <0.001 LOW 19 12 0.21 -
71 CHR2 Code becomes unchangeable. 44 17 <0.001 LOW 28 3 <0.001 LOW
72 CHR2 Excessive restriction of the solution space. 47 13 <0.001 LOW Interview data
73 CHR2 No. NA NA NA NA 23 8 0.01 LOW
74 CHR2 Other. 3 2 0.66 - 30 1 <0.001 LOW
75 CHR3 Inconsistencies. 32 29 0.70 - 17 16 0.86 -
76 CHR3 High maintenance effort. 30 31 0.90 - 18 15 0.60 -
77 CHR3 Increased development effort. 34 27 0.37 - 12 21 0.12 -
78 CHR3 High testing load. 29 32 0.70 - 23 10 0.02 LOW
79 CHR3 Lower code quality. 43 16 <0.001 LOW
80 CHR3 Duplicate implementations. Interview data 9 24 0.01 HIGH
81 FAR3 I can readily read the source code available within the com-

pany.
45 14 <0.001 LOW Interview data

82 FAR3 I can effect required changes independently. 44 14 <0.001 LOW Interview data
83 FAR3 The integration of existing code requires little effort from my

side.
42 14 <0.001 LOW Interview data

84 FAR3 The original developer of reused code is responsible for main-
taining it.

14 44 <0.001 HIGH Interview data

85 RED1 The quality of artefacts is acceptable for reuse. 34 28 0.45 - Interview data
86 RED1 Reusable assets are classified in a comprehensive way. 55 6 <0.001 LOW Interview data
87 RED1 In everyday work I attempt to reuse artefacts. 5 58 <0.001 HIGH Interview data
88 RED1 When I want to reuse an artefact, it already exists in the

company.
48 14 <0.001 LOW Interview data

89 RED1 Reusable assets are accessible with acceptable effort. 44 19 <0.001 LOW Interview data
90 RED1 Existing artefacts are found easily. 54 9 <0.001 LOW Interview data
91 RED1 Existing artefacts are understandable. 39 22 0.03 LOW Interview data
92 RED1 Existing artefacts match the required functionality. 42 21 0.01 LOW Interview data
93 RED1 Functionally matching artefacts can be integrated with ease. 42 21 0.01 LOW Interview data
94 RED4 Reuse is the responsibility of individual developers. 11 51 <0.001 HIGH Interview data
95 RED4 Planning for reuse happens in a grassroots fashion. 20 42 0.01 HIGH Interview data
96 RED4 Reuse is initiated and coordinated by a small group of peo-

ple.
34 28 0.45 - Interview data

97 RED4 Providing reusable assets is a shared initiative. 46 18 <0.001 LOW Interview data
98 RED4 Dedicated personal is assigned to provide reusable assets. 41 23 0.02 LOW Interview data
99 RED4 Development and provision of reusable artefacts is coordi-

nated across departments and departments.
51 13 <0.001 LOW Interview data

12.1. Appendix for Chapters 4, 5, and 6 — Analyzing and comparing reuse
practices 205

Table 12.6: This table contains the responses relevant for RQ2 — continued from previous page

Q
ue

st
io
n
ID

R
es
p
on

se
op

ti
on

s

U
an

sw
lo
w

U
an

sw
hi
gh

U
pv

al
ch
i.
sq
ua

re

U
ve
rd
ic
t

G
an

sw
lo
w

G
an

sw
hi
gh

G
pv

al
ch
i.
sq
ua

re

G
ve
rd
ic
t

100 SFB1 Less maintenance effort. 33 26 0.36 - 10 22 0.03 HIGH
101 SFB1 Higher consistency. 31 29 0.80 - 20 12 0.16 -
102 SFB1 New functionality is made available. 38 22 0.04 LOW 19 13 0.29 -
103 SFB1 Higher code quality. 37 23 0.07 - 17 15 0.72 -
104 SFB1 Higher development pace. 36 24 0.12 - 3 29 <0.001 HIGH
105 SFB1 Regular bug fixes. NA NA NA NA 21 11 0.08 -
106 SFB1 None. NA NA NA NA 32 0 <0.001 LOW
107 SFB1 Other. 2 2 1 - 32 0 <0.001 LOW
108 SFB3 Suitable abstractions. 14 46 <0.001 HIGH see SBF4.
109 SFB3 Direct communication culture. 9 51 <0.001 HIGH see SBF4.
110 SFB3 Suitable incentives. 19 41 0.01 HIGH see SBF4.
111 SFB3 Higher quality of artefacts. 5 57 <0.001 HIGH see SBF4.
112 SFB3 Well-defined process for reuse. 14 47 <0.001 HIGH see SBF4.
113 SFB3 Supporting infrastructure and tools. 9 53 <0.001 HIGH see SBF4.
114 SFB3 Stricter rules for dependency management. 16 43 <0.001 HIGH 23 6 <0.001 LOW
115 SFB3 Homogeneous development culture. 17 44 <0.001 HIGH see SBF4.
116 SFB3 None of the above. NA NA NA NA 27 2 <0.001 LOW
117 SFB3 Other. 2 4 0.41 - 25 4 <0.001 LOW
118 SFB3 Clear strategic decisions for interface support. 7 54 0 HIGH 21 8 0.02 LOW
119 SFB3 Introduce maturity levels for reused artefacts. 22 40 0.02 HIGH 24 5 <0.001 LOW
120 SFB3 Bundle code more coherently in terms of functionality, e.g.

into dedicated libraries.
21 40 0.02 HIGH 17 12 0.35 -

121 SFB3 Split libraries to provide more specific functionality. 25 35 0.2 - 18 11 0.19 -
122 SFB3 Merge libraries to ease the discovery of already implemented

functionality.
NA NA NA NA 23 6 <0.001 LOW

123 SFB3 List available artefacts in a "marketplace" to ease the dis-
covery of useful functionality.

9 54 0 HIGH 16 13 0.58 -

124 SFB3 Announce the release of new artefacts. 8 55 0 HIGH 25 4 <0.001 LOW
125 SFB3 Developers could broadcast requests for specific functional-

ity.
10 50 0 HIGH 28 1 <0.001 LOW

126 SFB3 Existing code could be consolidated and prepared for reuse. 16 46 0 HIGH 23 6 <0.001 LOW
127 SFB3 Structured and company-wide requirements engineering. 14 49 0 HIGH Interview data
128 SFB3 Focus on usefulness for the respective customer. 22 39 0.03 HIGH NA NA NA NA
129 SFB4 Adequate abstractions. Free text 13 18 0.37 -
130 SFB4 Direct communication culture. Free text 25 6 <0.001 LOW
131 SFB4 Suitable incentives. Free text 29 2 <0.001 LOW
132 SFB4 High quality of artefacts. Free text 10 21 0.05 HIGH
133 SFB4 Well defined reuse process. Free text 25 6 <0.001 LOW
134 SFB4 Supporting infrastructure and tools. Free text 11 20 0.11 -
135 SFB4 Dependency management. Free text 21 10 0.05 LOW
136 SFB4 Homogeneous development culture. Free text 21 10 0.05 LOW
137 SFB4 Other. Free text 29 2 <0.001 LOW

206 Chapter 12. Appendix

12.2 Appendix for Chapter 8 — Instantiation of RASM for

Inner Source

This Section presents the tabular representation of the instantiation for RASM for Inner Source used
during the workshop at U. For reasons of readability, we include only the approach-related parts. The
highlighted areas encode the assessment of the participants: D stands for discrepancy, C for conflict
between the company values and the requirements of Inner Source. We include the material in the order
intent, artefacts, practices, tools, and organization.

Intent Constituents Details,approach Implications,on Values,Approach

How$does$Inner$Source$addressthegoals?
Aretherespective$goals$
coveredbyInner$Source?

Motivation
current,issues

economic
high$costs$of$maintenance

business$need$for$shared$assets

cost$pressure

market$pressure$for$timely$

releases

organization
unbalanced/lackofresources

unclear$requirements

missing$access$to$skills

communication$challenges

organizational$improvement

Goals

economic,benefits
competitiveness

shortened$time$to$market

Canbeimprovedbydirecting$development$

and$maintenance$effortsasneeded$across$

divisions.$Familiarity$of$developers$with$

systems,$processes,$practices,andtools$reduce$

friction$when$dispatching$them$tonew

projects.$Further$supportedbyfrequent$

release$cycles. yes

flexibilityformass$

customization

Contributorscanextendtheshared$assets$as$

needed.

Coordination,$code$ownershipand

governance.$Challenge:$find$suitable$

mechanismstoallowforcustomization$that$

benefits$users$and$does$not$disrupt$them. yes

feasibilityforniche$markets

Contributorscanextendtheshared$assets$as$

needed. possible

decreaseindevelopment$effort

Reuseofshared$assets$decreasestheeffort$

that$would$be$otherwise$neededforcreating$

several$instances$ofthefunctionality. yes

quality

consistency

Inner$Source$can$help$to$establish$consistent$

useofshared$assets$and$processes,$leadingto

betterendqualityofthe$products.$ yes

decreaseinmaintenance$effort

Reuseofshared$assets$decreasestheeffort$

that$would$be$otherwise$neededfor

maintaining$several$instancesofthe$

functionality. yes

continuous$QA

Inner$Source$comes$with$asetof$practices$that$

aimtoensure$high$qualityofthe$source$code,$

e.g.,$peer$reviews,$transparent$accessto

source$code,$ownership$roles$that$support$

contributionsaswellasquality$gates. yes

frequent$releases

Inner$Source$encourages$frequent$releasesto

bring$patches$andnewfunctionalitytousers$

early.Inthis$way,$a$fast$feedback$cycle$is$

established$between$contributorsandusers. yes

increase$modularity$of$products

Inner$Source$encourages$modular$designof

projectstofacilitate$distributed$contributions,$

maintenance,$understandability,$and$flexibility$

for$reuse. yes

increased$quality$consciousness

The$transparency$inducedbyInner$Source$

development$practices$increasesthe

consciousnessofdevelopersforthe$code$they$

produce.Themeritocratic$aspect$can$motivate$

to$provide$better$solutions$and$avoid$hacks. yes

organizational,
benefits

knowledge,transfer

shared$best$practices

Inner$Source$encouragesthecreationof

homogeneous$development$practices.The

approach$requires$asetof$best$practices$that,$

subsequently,$need$tobeembeddedinthe$

organization's$context.

Challenge:$requires$a$thorough$debate;$

risks$opposition$to$change. yes

shared$expertise

Specialists$from$acrossthecompanycan

contribute$their$expertisetoany$given$Inner$

Source$projects,$thus$letting$the$company$asa

whole$benefit$from$their$knowledge.

Challenge:$requires$managementtoallow$

participationofexpertsinInner$Source.$ yes

supportforinnovation

Initiatorsareenabledtoprovidean

experimental$first$running$solution$ofanew$

ideatopotential$users.$Dependingontheir$

interest,theproject$then$canbeexpanded$

through$contributions. yes

easeofcollaboration

AvailabilityofInner$Source$products,aswellas

frequent$feedback$cycles,$reduces$the$friction$

in$collaboration. yes

awarenessofexisting$solutions

Stakeholders,$contributors,$and$users$from$

multiple$divisions$distributetheknowledgeof

existing$solutions.$ yes

resource,alignment

12.2. Appendix for Chapter 8 — Instantiation of RASM for Inner Source 207

communication$across$divisions

Inner$Source$project$thrives$fromthe

participationofa$wide$rangeofstakeholders.$

Their$collaboration$inevitably$leads$to$focussed$

communication$across$divisionsoncommon$

needsandthuscancreateanetworkof

expertiseandtrust.

Requires$infrastructure$for$(asynchronous)$

communicationtotechnically$enable$access$

to$information,$as$well$as$management$

supporttofacilitate$exchange$and$

engagement$across$organizational$

boundaries. yes

information$sharing

As$source$codeandall$related$documentsare

openly$accessible,$any$interested$personis

enabledtoget$insights$intotheproject.$This$is$

the$first$steptoencourage$potential$usersand

contributorstoconsider$investing$intothe

initiative. yes

organizationMwide$prioritization$

of$efforts$investedinreusables

Integrating$multiple$stakeholders$into$a$project$

givesamore$global$perspectiveonthe$needs$

ofthedevelopment$organization.$In$this$way,$

resourcescanbe$pooled$and$directed$inan

efficient$way.$ yes

stakeMdriven$effort$direction

Creationandmaintenanceofshared$reusable$

is$driven$by$concrete$needsasthey$arise.$

Avoids$binding$resourcestopredictionaswell$

as$upfront$reusable$creation.$Beneficialin

combination$with$information$sharing.

Requires$transparency$and$information$

flowtoreach$full$potential:$potential$users$

and$contributers$mustbeabletofindout

about$existence$of$initiative$and$project. yes

independenceoforganizational$

units

Inner$Source$enables$units$to$integrate$their$

own$needs$intheproject,$keeping$the$

organizational$effort$lower$than$in$siloMstyle$

software$development.$Thiscanresultinfaster$

timetomarket.

Requires$feedback$cycle$with$project$

owner. yes

shared$maintenance$burden

Inner$Source$encourages$communityMbased$

debuggingofa$project.$This$means$thatthe

burdenofmaintenancecanbe$shared$

between$divisions,$thus$increasing$the$

motivationofcontributors.

Requires$active$and$functional$community$

of$stakeholders$and$contributors. yes

Scope
organizational,units

single,division in$principle

multiple,divisions yes

all,divisions yes

time,to,benefits

Timetobenefits$largely$dependsonthe$

organization's$readyness$to$adopt$Inner$

Source.$This$readynessiscapturedinthe$

alignment$between$the$requirements$of$Inner$

Sourceandthe$current$stateofthe$

organizationinthe$dimensions$artefacts,$
practices,$tools,$and$organizational$structure.

short,term

Usually,$Inner$Source$requires$a$paradigm$shift$

intheadopting$organizations.$Therefore,$full$

benefitsinthe$short$termareunlikely.$Some$

soft$benefits,$e.g.,$constructive$debateon

development$practices,$can$occur.$Also,$within$

a$pilot$project,$first$benefits$might$become$

visible. n/a

medium,term yes

long,term yes

Inner$Source$development$can,$in$principle,$be$

adoptedforany$organizational$scope.$

However,thefull$advantages$and$benefits$can$

only$materialize$whentheboundariesofsingle$

organizational$units$are$transcended.$

Dependingonthe$starting$pointofthe$

organization,$Inner$Sourcecanprovide$

substantial$benefits$inthemediumtolong$

term.

208 Chapter 12. Appendix

Facet&Artefacts Constituents Details&approach Implications&on
Values&approach&5
Recoded

Inner%Source

Kind&of&reused&assets Captures)the)type)of)entity)that)is)reused.

granularity)in)which)reuse)can)be)

effected)and)reuse)rates)

achievable.

requirements use)cases n/a

workflows n/a

design
architecture)

templates technical)compatibility recommended

feature)models variability)management n/a

UI)templates consistency n/a

source&code source)text snippets

maintenance,)quality)assurance,)

reuse)approach n/a

classes

maintenance,)quality)assurance,)

reuse)approach recommended

(sub)systems

maintenance,)quality)assurance,)

reuse)approach recommended

packaged)code components

maintenance,)quality)assurance,)

reuse)approach recommended

libraries

maintenance,)quality)assurance,)

reuse)approach recommended

frameworks

maintenance,)quality)assurance,)

reuse)approach recommended

services

maintenance,)quality)assurance,)

reuse)approach recommended

Characteristics&of&
candidate&reusables Seed&product startup)cost)of)approach.

pre5existing

)“seed”)product—a)shared)asset—that)is)of)

significant)value)to)the)organization,)or)at)least)

of)high)perceived)value)should)exist)to)attract)

potential)users)and)contributors.)One)central)

challenge)is)to)identify)an)appropriate)initial)

software)domain)and)matching)product,)

create)a)suitable)architecture)and)utitility)basis)

set. recommended

initial)runnable)

implementation

need)for)an)initial)basic)architecture)and)

implementation recommended

initial)architecture

planning,)analysis)and)design)are)largely)

conducted)by)the)initial)project)founder,)and)

are)not)part)of)the)general)OSS)development)

life)cycle.) recommended

fully)specified

requirements)and)features)of)the)seed)product)

need)not)be)fully)known)at)the)outset)so)that)

the)project)can)benefit)from)organizationIwide)

input)and)continuously)evolve) discouraged

fully)implemented

Raising)a)community)of)contributors)can)be)

hard)for)product)purely)in)maintenance)phase. discouraged

created&for&
reuse

Seed)product)can)be)created)for)reuse)or)for)

solution)for)local)need. n/a

business&value
Seed)product)should)have)significant)value)to)

the)organization

management)support,)resources,)

incentive recommended

domain)independent)

functionality

Should)not)be)commodity)software)that)

already)exists,)as)this)risks)to)waste)resources)

and)might)seem)pointless)to)potential)

contributors)and)users. discouraged

domain)specific)

functionality

Niche)functionality)that)plays)a)key)role)(and,)

as)such,)a)large)number)of)stakeholders))in)the)

organization)domain. recommended

product)group)

specific)functionality

Niche)functionality)that)has)a)key)role)in)the)

organization)product)portfolio)and)offers)a)

competitive)advantage)for)several)

stakeholders. recommended

scope&of&use Across)departments recommended

C
C

C

C

C

12.2. Appendix for Chapter 8 — Instantiation of RASM for Inner Source 209

stakeholders

An)Inner)Source)project)must)be)needed)by)

several)stakeholders)(i.e.,)individuals,)teams,)

or)projects)that)productize)the)shared)asset))

so)that)members)from)across)an)organization)

can)contribute)their)expertise,)code)and)

resources.)Also)broadens)the)expertise)

available)to)project.)However,)it)is)essential)to)

recognize)and)accommodate)the)tension)

between)cultivating)a)general,)common)

resource)on)the)one)hand,)and)the)pressure)to)

get)specific)releases)of)specific)products)out)on)

time. support,)management,)resources recommended

potential&users

Business)value)and)variety)of)stakeholders)

help)to)establish)a)sufficiently)large)pool)of)

users)and)contributors)to)establish)a)vibrant)

Inner)Source)project. process)compatibility recommended

Technical&
compatibility&of&
assets

Captures)essential)reuse)aspects)such)as)

interoperability,)purpose,)etc.

reusability,)understandability,)

adaptation)cost)of)reusable.

architecture&
compliance

Captures)the)degree)to)which)architecture)

compliance)of)artefacts)enable)reuse reusability recommended

scope&of&use
Identify)discriminatory)value)for)many)

stakeholders,)avoid)feature)creep

reusability,)quality)assurance,)

maintenance recommended

NFRs
Captures)the)nonIfunctional)requirements)

guaranteed)by)artefacts

reusability,)maintenance,)

incentive recommended

aligning&purpose

different)product)groups)have)different)needs,)

and)that)groups)can)benefit)from)other)

groups’)(specialist))contributions

maintenance,)incentive,)quality)

assurance,)management recommended

modularity

)“architecture)for)participation,”)facilitates)

understanding)and)contributions)as)well)as)

reuse,))allows)many)developers)to)work)on)

different)parts)of)the)same)product)

simultaneously,)keeping)merging)overheads)

low.)It)is)important)to)find)a)balance)between)

functionality)and)simplicity)as)losing)

‘conceptual)integrity’)may)result)in)a)

component)which)is)no)longer)easy)to)use)or)

whose)architecture)imposes)too)many)

restrictions)on)the)clientIapplication. recommended

Life&expectancy Captures)the)expected)lifetime)

reusable of)reusables

maintenance,)responsibility,)

resources recommended

reusing&products of)reusing)products stakeholders,)maintenance recommended

Origin&of&artefacts
Captures)the)entities)from)which)the)reusable)

entities)are)retrieved.

legal)aspects,)maintenance,)

management,)resources)of)reuse.

company&
internal required

within)department

The)reused)artefacts)come)from)within)the)

reusing)department. maintenance required

internal)third)party

The)reused)artefacts)come)from)within)the)

company)but)from)outside)of)the)reusing)

department.

maintenance,)management,)

resources required

company&
external n/a

Open)Source

The)reused)artefacts)are)provided)by)an)Open)

Source)project)external)to)the)company. legal,)maintenance n/a

commercial)provider

The)reused)artefacts)are)provided)by)an)

commercial)third)party)external)to)the)

company. legal n/a

Private%third%parties
The%reused%artefacts%are%provided%by%private%
third%partys,%e.g.,%on%forums%on%the%internet. legal n/a

C

C

210 Chapter 12. Appendix

Facet&Practices Constituents Details&approach Implications&on
Values&approach&5
Recoded

Inner%Source

reuse&practices
mechanism

copy,paste,modify discouraged

hard3copy3duplication discouraged

compile,time3linking recommended

branching recommended

service3composition recommended

product3derivation3by3means3of3

variation3points n/a

process

ad,hoc3selection3and3integration3of3

reusables neutral

opportunity,driven3selection3and3

integration3of3reusables neutral

strategic3selection3and3integration3of3

reusables recommended

systematic3company,wide3reuse3

process recommended

reuse3measurement n/a

configuration3management3of3

reusables recommended

quality3model3usage n/a

requirements&
engineering&practices

identification3of3

commonalities3and3

variations3between3

products Emerging,3not3necessarily3determined3upfront.

Requires3additional3process3for3

managing3variability. n/a

integration3of3different3

stakeholder3needs

Multiple3stakeholders3are3needed3to3keep3an3

Inner3Source3project3alive.3Their3different3

viewpoints3can3broaden3the3expertise3available3

to3the3project.3However,3their3needs3have3to3

be3reconciled.3For3conflicting3contributions,3

the3product3owner3is3responsible3for3taking3a3

decision. required

strategic3prioritization

Prioritization3in3Inner3Source3happens3on3a3

need,basis.3If3an3issue3or3requirement3is3urgent3

enough,3concerned3developers3can3create3a3

solution3and3propose3it3for3integration.3

Elicitation3strategies3need3to3be3adjusted3

accordingly. recommended

tracing

Proposals3for3additions3and3improvements3can3

be3collected3in3a3backlog3and3linked3to3an3

implementation3via3e.g.3a3tracker. recommended

design&practices

feature3modeling

Not3explicitly3part3of3the3Inner3Source3

practices. n/a

creation3of3reference3

architecture

Initial3architecture3is3created3by3product3

owner.3 recommended

development&
practices

iterative3

reinvention3of3existing3solutions3to3overcome3

their3limitations,3e.g.,3by3reworking3prototypes.3

Risks:3reinvention3might3be3limited3by3

availability3of3required3resources.3 Quality,3Maintenance recommended

incremental

focus3on3running3code3over3perfect3solutions.3

Maintain3a3high3standard3of3quality3

nevertheless. recommended

serial

starting3from3complete3specification,3

developing3the3artefact3top,down. discouraged

contribution3

management

Contributions3from3motivated3developers3are3a3

key3mechanism3to3keep3an3Inner3Source3

project3alive.3Nevertheless,3the3product3owner3

and3core3developers3need3to3manage3

contributions3to3ensure3a3high3quality3standard3

of3the3system.3One3way3this3is3commonly3

addressed3in3Open3Source3is3a3staged3

contribution3process:3Contributors3propose3

their3patches3to3the3core3team3that3either3

accepts3it3and3includes3it3to3the3code3base3or3

asks3for3concrete3improvements.3To3avoid3

frustrated3contributors,3the3core3team3should3

respond3quickly3and3be3constructive. recommended

quality&assurance&
practices

High3quality3of3a3reusable3is3a3key3element3for3

user3and3contributor3motivation3to3get3

involved.

reviews

C
C
D

C

D

C

C

12.2. Appendix for Chapter 8 — Instantiation of RASM for Inner Source 211

architecture3reviews

Review3of3architectural3designs,3e.g.,3by3

product3owner3or3core3developers. recommended

peer3review3of3source3code

Peer3review,3performed3based3on3self,

selection33by3other3interested3developers.3

Goal:3to3ensure3that3any3code3that3is3checked3

in3is3of3good3quality,3does3not3contain3hacks,3

and3will3not3lead3to3an3undesirable3path3of3

evolution3for3the3respective3unit3of3the3project.3

Risks:3transparency3could3be3out3of3

developer/manager3comfort3zone. required

architecture3compliance3

Ensured3by3the3role3of3the3product3

owner/"benevolent3dictator". recommended

test

automated3unit3tests

Since3Inner3Source3is3centered3around3shared3

development3of3a3system3(often3build3with3

continuous3integration),3breaking3the3build3is3a3

serious3issue.3Therefore,3changes3must3be3

tested3before3commiting3them3to3the3shared3

repository.3 required

automated3integration3tests

Support3Continuous3Integration3by3providing3

automatic3feedback3on3the3fitness3of3the3entire3

code3base. recommended

system3tests n/a

maintenance&
practices

task3assignment

regression3testing

prioritization3of3tasks

cost3estimation

release&and&
deployment&practices

continuous3integration

New3contributions3are3integrated3in3the3code3

base3and3tested3frequently3(e.g.3at3least3daily).3

As3a3result,3development3can3respond3quickly3

to3failures3and3user3feedback3and3users3can3

profit3from3improvements. recommended

frequent3releases

Collect3feedback3from3user3basis3by3providing3

frequent3releases.3For3risk3averse3users,3

provide3stable3version,3for3curious3users,3

provide3beta3version. recommended

configuration3

management

documentation&
practices

code3comments recommended

concise3and3consistent3

naming3in3code recommended

tracing3to3requirements3

and3tests n/a

descriptive3

documentation3of3

functional3purpose recommended

descriptive3

documentation3of3extra3

functional33guarantees3

and3limitations recommended

homogeneity&of&
practices

reuse3practices recommended

development3practices recommended

maintenance3practices recommended

quality3assurance3

practices recommended

documentation3practices n/a

coordinated3product3

release3schedules recommended

coordinated3integration3

schedules recommended

Focus3in3Inner3Source3is3on3the3code.3It3should3

be3of3high3quality,3including3descriptive3

comments3of3functionality3and3purpose,3

appropriate3naming,3etc..3

Information3on3functionality3and3limitations3

can3be3found3in3archived3developer3

communications3on3mailing3lists3and3wikis.

homogeneous3reuse,3development,3

maintenance,3documentation,3and3quality3

assurance3practices3ensure3transparency3and3

induce3trust3in3the3resulting3artefacts.3

A3number3of3case3studies3on3Inner3Source3

adoption3reports3on3coordination3practices3for3

integration3and3release.3However,3these3

practices3need3to3be3tailored3to3the3specific3

context3of3the3adopting3organization.

D

D

D

D

C

C

C

C

212 Chapter 12. Appendix

Facet&Tools Constituents Details&approach Implications&on
Values&approach&5
Recoded

Inner%Source

development&tools

version(control

The(source(code(of(an(Inner(Source(project(is(

accessible(openly(in(the(respective(version(

control(system(to(allow(potential(users(and(

contributors(full(access.(required

CASE(tools

IDEs required

code(recommender neutral

code(search(engine recommended

issue(tracker recommended

build(server(supporting(continuous(

integration recommended

infrastructure&tools
documentation

wiki

Wiki(pages(for(each(Inner(Source(project(give(

information(about(its(purpose,(functionality,(

scope,(etc.(to(potential(users(and(contributors. recommended

Q&A(forums

In(Q&A(forums(or(wikis,(frequent(questions(

regarding(the(project(are(collected(and(

answered(for(future(reference. recommended

list(archives

The(archives(contain(all(mailing(list(

communication(to(document(development(

decisions(and(their(rationale(for(future(

reference.(They(often(contain(detailed(and(

specific(information(that(can(be(highly(relevant(

to(future(contributors(and(users. recommended

communication

Inner(Source(heavily(relies(on(communication(

media(to(persist(discussions(and(decisions(

regarding(the(development(of(a(project.(In(this(

way,(newcomers(can(trace(design(and(

implementation(rationales(even(after(a(project(

has(changed(ownership.

developer(mailing(lists

Developer(mailing(lists(enable(asynchronous(

communication(between(the(contributors(of(

an(Inner(Source(project.(In(addition,(it(persists(

the(discussions(for(future(reference.(

Communication(on(the(lists(are(public(and(

available(in(archives. recommended

user(mailing(lists

User(mailing(lists(serve(to(inform(users(of(new(

features(and(planned(changes(in(the(project. recommended

IRC(channels

IRC(channels(allow(for(direct(realHtime(

communication(between(contributors(as(well(

as(users.(They(can(be(used(for(oneHtoHone(

communication,(as(well(as(broadcast(medium(

for(key(developers(to(have,(e.g.(Q&A(sessions. recommended

homogeneity&of&
toolset

homogeneity

set(of(common(and(compliant(development(

tools(aims(to(make(contributing(easy:(it(

enables(a(smooth(transition(from(using(and(

observing(a(project(to(active(participation.(

Also,(it(avoids(undesirable(behaviours(such(as(

tediously(replicating(the(original(shared(asset’s(

source(code(into(different(repositories,(likely(

causing(significant(merging(problems(later.(

Risk:(within(large(organizations,(often(a(wide(

range(of(different(tools(are(in(use(and(

cherished.(Therefore,(a(transition(to(a(new(

unified(toolset(can(become(a(political(issue.(

Standardized(toolsets(can(be(bundled(and(

provided,(e.g.,(by(means(of(a(software(forge. recommended

C

C

C

C

C

D

12.2. Appendix for Chapter 8 — Instantiation of RASM for Inner Source 213

Facet&Organization Constituents Details&approach Implications&on
Values&approach&5
Recoded

Inner%Source

business&context
culture

management

Management,needs,to,be,comfortable,with,
sharing,resources,and,responsibility,,
allowing/encouraging,developers,to,work,
according,to,the,principles,of,Inner,Source. recommended

communication

Communication,becomes,visible,and,
accessible,in,Inner,Source,,as,it,is,conducted,
electronically,and,archived,in,a,form,that,is,
accessible,company?wide., required

support

top,management

Top,management,support,is,vital,to,ensure,the,
required,resources,are,made,available,for,
company?wide,transition. required

middle,management

Middle,management,support,is,required,to,
ensure,that,community,building,,as,well,as,
contributions,for,development,and,
maintenance,of,shared,assets,are,possible. required

resources

human,resources

Inner,Source,requires,human,resources,to,be,
realized:,developers,need,the,allowance,to,
participate,in,projects,and,full,time,positions,
are,required,for,the,core,and,support,teams. required

budget
Inner,Source,requires,additional,budget,for,,
e.g.,,a,suitable,infrastructure. required

application,
domain

type,of,developed,
software

Inner,Source,is,independent,of,the,type,of,
developed,software.

legal,constraints

If,the,adopting,organization,operates,under,
specific,legal,constraints,,Inner,Source,
practices,can,and,should,be,tailored,to,fit,the,
specific,oranization's,needs.

life,cycle,duration

Inner,Source,is,in,principle,independent,of,the,
typical,life,cycle,duration.,However,,to,provide,
best,value,,functionality,of,high,value,to,the,
organization,should,be,developed,as,shared,
asset.

strategy

reuse,vision

Inner,Source,projects,aim,to,provide,high,
quality,shared,assets,for,reuse,and,extension,
to,the,organization.,It,focuses,on,running,code,
and,high,modularity,to,provide,immediate,
benefits,as,well,as,ease,of,contribution,and,
extension. recommended

development&context

software,
development,
approach

Inner,Source,is,in,principle,independent,of,
given,development,approaches,at,the,
organization.,Given,the,required,infrastructure,
and,resources,,it,can,co?exist,with,other,
approaches.,Nevertheless,,in,settings,with,
significant,differences,,management,needs,to,
explicitly,guide,the,interaction,between,
different,processes.

workforce,
software,
organization

product,development
reusables,development
total

homogeneity

practices recommended

The,size,of,the,workforce,of,the,adopting,
organization,has,a,potential,impact,on,how,
Inner,Source,can,be,performed.,Especially,,it,
determines,how,much,responsibility,can,be,
taken,on,by,a,support,unit,within,the,
organization.,Tailoring,of,roles,,
responsibilities,,and,processes,needs,to,
balance,potential,skews,of,resources.,

Inner,Source,works,best,in,a,context,that,
features,homogeneous,development,and,
maintenance,practices,,a,homogeneous,
toolset,,a,shared,reuse,vision,,and,a,
compatible,organizational,culture.,If,these,are,
not,(yet),given,,adopting,organizations,need,to,
create,the,conditions,for,Inner,Source,to,be,
successful,(e.g.,,by,fulfilling,the,mandatory,
preconditions,w.r.t.,infrastructure,,processes,,
practices,,and,organizational,aspects).

C

C

C

D

D

D
D

D

D

D

214 Chapter 12. Appendix

tools recommended

reuse,vision recommended

culture recommended

confidence

developers

Developers,need,to,feel,at,ease,with,the,
transparency,induced,by,Inner,Source.,While,
for,some,this,transparency,will,bring,the,sense,
of,reward,for,their,contributions,,others,might,
feel,threatened,by,the,potential,skrutiny,
coming,over,their,contributions.,Guidance,
should,be,offered,to,support,sceptics,to,
participate. recommended

managers

Managers,need,to,feel,comfortable,to,share,
responsibility,with,others,that,they,can,not,
directly,influence.,They,need,to,adjust,to,
transparency,and,meritocracy. recommended

skills
organizational

project,team,experience
Can,facilitate,the,creation,of,the,seed,project,
of,an,Inner,Source,initiative. recommended

maturity

Organizational,maturity,with,respect,to,
homogeneous,practices,and,tools,can,facilitat,
the,adoption,of,Inner,Source. recommended

individual
managers

change,
management required
coordination required
reuse,
understanding required
social,
competence required

developers

technical,
competence required
social,
competence required
reuse,
understanding required

reuse5related&roles
consumer

producer,roles

chief,architect

Strategic,responsibility,for,project.,Should,give,
shape,to,architecture,of,the,shared,asset,,but,,
arguably,,should,also,take,part,in,
implementation,to,remain,grounded,in,the,
system,details.,"benevolent,dictator",,works,
closely,with,Liaison. required

core,contributors

Individuals,that,by,merit,of,their,contributions,
have,become,central,contributors,to,the,Inner,
Source,project.,Often,,they,take,on,the,
responsibility,for,a,specific,part,of,the,system.,
Extend,the,project,in,accordance,with,
architect.,"trusted,lieutnants" required

contributor

Contribute,to,the,Inner,Source,project,,but,can,
not,directly,modify,the,codebase.,The,
respective,contributions,are,reviewed,by,the,
chief,architect,or,the,core,contributors,for,
fitness,in,terms,of,functionality,,quality,,
architecture,compliance,,and,generality. required

coordinator,
roles

liaison

Overall,responsibility,for,Inner,Source,Project,,
communicates,with,internal,customers,,
interfaces,with,the,core,team.,Works,closely,
with,Chief,Architect. recommended

Inner,Source,works,best,in,a,context,that,
features,homogeneous,development,and,
maintenance,practices,,a,homogeneous,
toolset,,a,shared,reuse,vision,,and,a,
compatible,organizational,culture.,If,these,are,
not,(yet),given,,adopting,organizations,need,to,
create,the,conditions,for,Inner,Source,to,be,
successful,(e.g.,,by,fulfilling,the,mandatory,
preconditions,w.r.t.,infrastructure,,processes,,
practices,,and,organizational,aspects).

Managers,need,to,feel,comfortable,to,share,
responsibility,with,others,that,they,can,not,
directly,influence.,They,need,to,adjust,to,
transparency,and,meritocracy.,

Developers,need,to,feel,at,ease,with,the,
transparency,induced,by,Inner,Source.,While,
for,some,this,transparency,will,bring,the,sense,
of,reward,for,their,contributions,,others,might,
feel,threatened,by,the,potential,skrutiny,
coming,over,their,contributions.,Guidance,
should,be,offered,to,support,sceptics,to,
participate.

C

C

C

D

D

12.2. Appendix for Chapter 8 — Instantiation of RASM for Inner Source 215

release,advocate

Responsible,for,specific,release,,works,closely,
with,users,to,assess,impact,of,changes,and,
ensure,a,smooth,transition recommended

delivery,advocate

Assigned,to,organizational,units,that,are,new,
customers,of,a,shared,asset.,Ensures,that,the,
unit,adopts,the,required,tools,and,practices,
and,produces,contributions,in,line,with,the,
target,vision,,quality,,and,architecture,of,the,
project. recommended

feature,advocate Responsible,to,see,a,feature,to,completion., recommended

support,team

Helps,business,units,with,operational,tasks,,
such,as,writing,documentation,,release,notes,,
and,release,management,tasks. recommended

project,manager
Responsible,for,release,planning,,process,
compliance,,progress,monitoring. recommended

project&management
process,
management

process,alignment,
between,Inner,Source,
development,team,and,
using/contributing,units

Alignment,between,the,Inner,Source,
development,style,and,contributing/using,
projects,needs,to,be,modeled,to,prevent,
damage,to,products,(e.g.,,troubles,with,
integration,or,missing,a,delivery,deadline)

Challenge:,Attempting,Inner,
Source,without,properly,aligning,
surrounding,processes,can,
significantly,reduce,the,benefits,
that,can,be,obtained. required

process,for,developing,
Inner,Source,projects

Clear,guidelines,on,how,Inner,Source,
development,should,be,implemented,(e.g.,,
how,contributions,are,selected,and,integrated,,
which,roles,are,implemented,,which,
responsibilities,are,assigned,to,whom,,how,
Inner,Source,interfaces,with,the,rest,of,the,
organization...)

Switching,parts,of,the,
development,to,Inner,Source,can,
lead,to,conflicts,with,general,
organizational,processes.,These,
friction,points,need,to,be,
addressed,in,a,timely,manner,to,
prevent,failure,(e.g.,,loss,of,
acceptance,and,support,for,Inner,
Source,initiative). required

project,planning

long?term,vision,of,
shared,asset

Core,team,should,have,a,long,term,vision,of,
shared,assets.,Requires,detailed,
understanding,of,needs,of,contributing,
products.

Information,spreading,to,
contributors,and,users,is,key. recommended

coordination,of,
contributions

Core,team,should,coordinate,and,synchronize,
different,contributors,to,avoid,redundant,work,
occurring,,e.g.,,by,contributions,that,are,too,
specific,for,general,utility.,Depending,on,size,
of,project,and,criticality,of,asset,,this,might,
require,a,full,time,project,manager.

Distinguish,general,development,
from,customer?specific,changes,
to,ensure,the,project,stays,viable,
for,stakeholders. required

monitoring,and,
steering

quality,assurance,of,
contributions

Core,team,needs,to,review,and,triage,
contributions.,

Depending,on,the,staffing,,this,
can,present,a,bottleneck.,A,
functioning,and,large,community,
as,well,as,stakeholders,in,
contributing,units,are,needed,to,
alleviate,this,burden. required

tracking,of,feature,
evolution

Core,team,needs,to,track,contributions,to,
specific,features,to,identify,issues,(delay,,
insufficient,quality,,etc.),early,on. recommended

human,issues

manage,transparency

Developers,might,feel,pressured,due,to,the,
increasing,transparency,(insecurity,,averseness,
to,scrutiny,,worry,about,their,job,security,,
consciousness,of,embarassing,state,of,code,
base,etc.).,Furthermore,,they,might,need,to,
develop,new,styles,of,communication,and,
contribution.

Willingness,to,contribute,might,
be,largely,affected,by,these,
aspects.,To,overcome,them,,the,
Inner,Source,initiative,needs,to,
ensure,an,appropriate,style,of,
communication,and,a,guided,
entry,path,for,newcomers,to,
help,potential,contributors,
adjust,to,the,new,development,
paradigm. recommended

C

C

C

D

D

216 Chapter 12. Appendix

12.3. Appendix for Chapter 10 — Rationales for impacts of the library usage
assessment model 217

12.3 Appendix for Chapter 10 — Rationales for impacts of

the library usage assessment model

This document contains all impacts of our assessment model of external library usage, presented in
Chapter 10. The impacts are grouped by activity and are followed by a brief rationale justifying their
inclusion in the model.

Impacts define how facts influence activities. A justification for each impact provides a rationale for
the impact which increases confirmability of the model and the assessments based on the model. Note
that a fact might have a positive impact on one activity whilst negatively impacting another one.

Modify [Extension/Configuration Capability | EXTENT] +−→ [Modify] A high extension capability of an
external library positively impacts this activity because it increases the chances that a modification can
be accomplished with the same library.

[System, Library | ENTANGLEDNESS] −−→ [Modify] High entangledness of an external library with a
system negatively impacts modifications as it might cause a many parts of the system to be affected.

[System, Library |ADEQUACY] +−→ [Modify] Adequate usage of a library within a system eases the
activity modify because it increases the chances of consistent and correct use.

[Support | EXTENT] +−→ [Modify] Good support for a library eases modifications as developers are able
to obtain help with their task if needed.

[Developers | FAMILIARITY] +−→ [Modify] Familiarity of developers with a specific library eases modifi-
cations because the developers already know the particularities of the library. Therefore, modification
are likely to be completed faster and with fewer errors.

Understand [Extension/Configuration Capability | EXTENT] −−→ [Understand] Whilst high extension ca-
pability positively impacts modifications, it hinders understanding. The reason is the high complexity
brought about by the flexibility of extension mechanisms which make it harder to understand how to
use the library.

[System, Library | ENTANGLEDNESS] −−→ [Understand] Entangledness also tends to cause difficulties to
clearly understand how a library is to be used. Especially scatteredness of method calls could hamper
understanding.

[System, Library |ADEQUACY] +−→ [Understand] A high adequacy of use eases understanding, as the
library is employed as expected, in coherence with given documentation.

[API | SIZE] −−→ [Understand] The larger an API the harder to understand it becomes. The sheer size
of the interface makes it difficult to get an overview of the provided functionality.

[Support | EXTENT] +−→ [Understand] A large extent of support for a library facilitates understanding
of a software system as developers can obtain qualified assistance in using the library.

[Library | PREVALENCE] +−→ [Understand] A high prevalence of a library supports understanding a
software system because it often implies a good availability of additional documentation such as web
blog articles or forum discussions.

[Developer | FAMILIARITY] +−→ [Understand] A high familiarity of developers with a library eases un-
derstanding a software system as less concepts need to be learned from scratch.

218 Chapter 12. Appendix

Migrate [Library | PREVALENCE] +−→ [Migrate]
A high prevalence of a library positively influences migration, as it usually gives rise to alternative

implementations of the required functionality.
[System, Library | ENTANGLEDNESS] −−→ [Migrate] If a system is highly entangled with a library, migra-

tion to a different library will be more difficult as more different code sections have to be changed.
[System, Library |ADEQUACY] +−→ [Migrate] If a system’s usage of library is in line with the library’s

intended usage, migration is less difficult since finding alternatives for or removal of unintended uses can
be problematic.

[Support | EXTENT] +−→ [Migrate] A high extent of support eases migration of a library since developers
are able to obtain direct assistance for this task from the library’s provider.

[Developer | FAMILIARITY] +−→ [Migrate] A developer who is highly familiar with a library can more
easily migrate a system to a different library compared to a developer who doesn’t know the library.

[Extension/Configuration Capability | EXTENT] −−→ [Migrate] A high capability for extension and con-
figuration inhibits migration as it is less likely that alternatives provide the same flexibility.

Protect [Vendor | REPUTATION] +−→ [Protect]
The reputation of the library vendor positively influences protection of a system, as a renowned

vendor can be expected to provide critical updates in a timely manner.
[Vendor | SIZE] +−→ [Protect] A large vendor is expected to be more capable of providing fixes to critical

security flaws and thus protecting an including software system is supported.
[Vendor | REPUTATION] +−→ [Protect] A vendor with a good reputation is expected to be more capable

of providing fixes to critical security flaws and thus protecting an including software system is supported.
[Library, System |ADEQUACY] +−→ [Protect] An adequate usage of a library improves protection, as the

security measures can be used as intended.
[Vulnerabilities | EXTENT] −−→ [Protect] Security flaws in a library inhibit protection of an including

software system as the security issue of the library may affect the security of the overall system.
[Support | EXTENT] +−→ [Protect] Support positively impacts protection, as developers can rely on

experts to ensure the security of their application.
[Library | PREVALENCE] +−→ [Protect] High prevalence of a library might help to protect a system, as

the library is assumed to be mature, and potential fixes are expected to be provided rapidly.
[Library |MATURITY] +−→ [Protect] A high maturity positively affects the ability to protect the overall

software system as more mature libraries are expected to exhibit less security-related problems.
[Developer | FAMILIARITY] +−→ [Protect] The familiarity of developers with a library helps to protect

the system because developers are aware of the security mechanisms and how to use them.

Distribute [License,System | COMPATIBILITY] +−→ [Distribute]
Third party libraries impact the distribution of a system as low compatibility of licenses, as well

as high license fees[License | PRICE] −−→ [Distribute], can block the distribution of a system and therefore
need to be taken into account.

[License | PRICE] −−→ [Distribute] A high license price of a library makes distribution more difficult as
the inclusion of the library affects the cost to produce the software and thus impacts the (commercial)
distribution.

[License | COMPATIBILITY] +−→ [Distribute] The compatibility of the license with the system is an es-
sential precondition to enable distribution of the software.

List of Figures

1.1 A brief overview of the technological development since reuse became a topic of software
engineering research. The time-line displays the media and infrastructure available to
share reusable entities before the WWW-era and highlights the birth of open source plat-
forms and available tools that now serve as important sources for reusable code and/or
knowledge. Based on [24]. 5

1.2 Map of the contributions presented in this thesis and their relations. The arrows represent
the flow of results: the synthesis of Contribution I is integrated in Contribution II. The
methods and tools presented in Contribution III can be used to support the application
of the Reuse Adoption Support Model of Contribution II. The rounded boxes provide a
mapping of the contributions to the Chapters of this thesis. 8

2.1 Examples for potentially reusable entities created during software development. On the
left side of the figure, the different types of artefacts are ordered in terms of their level of
abstraction. The arrows connected to the artefact types refer to typical examples of the
respective type. Knowledge is listed as it is mentioned in several definitions. However, it
is highlighted as it is not a documented type of artefact. 19

2.2 Types of reusables in practice. 21

2.3 Taxonomic definition of Software Reuse from the perspective of the reuse consumer based
on [44, 45]. 23

2.4 Mapping of Frakes and Fox reuse failure modes on the impacted activities of the reuse
process. 28

3.1 Study setup: case G, case U, and case integration. 37

6.1 Summary of results, according to authors’ data analysis and interpretation. 81

6.2 Example of the graphical representation of the results. 82

6.3 RQ1 - Sources of reusable entities and way of access, questions FAR1 and RAF2. 82

6.4 RQ1 - Reused entities, question RAF1. 83

6.5 RQ1 - Technical realization of reuse, questions TRR1 and TRR2. 84

6.6 RQ2 - Inhibitors to reuse and issues due to reuse, questions CHR1 and CHR2. 85

6.7 RQ2 - Issues of absence of reuse and benefits of reuse, questions CHR3 and SFB1. 86

7.1 Company Reuse Placement according to the four reuse facets. 120

219

220 LIST OF FIGURES

8.1 Excerpt of the tabular representation of the RASM tool facet for Inner Source used during
the workshop. The graphic shows the columns and the first row of the table. 127

8.2 Details of the RASM application for Inner Source at U. The elements in the dashed boxes
present the schedule of the one-day workshop. The single elements detail on the time
given to participants for the particular tasks, the concrete tasks that were effected, and
the roles of the participants and the researcher during the given tasks. The feedback
questionnaire was provided on-line and could be filled in until a week after the workshop. 128

8.3 Responses for the questionmodel assessment. Question text: “The model for Inner Source...”134
8.4 Responses for the question model accessibility. Question text: “When applying the model

during the workshop...” . 135

9.1 This figure illustrates our approach: we extract relevant identifiers for each concept and
compute the best matches within the study object. In the preprocessing step, different
approaches can be taken to select and prepare the identifiers that are subsequently used. . 148

9.2 This figure visualizes our evaluation process for detecting re-implementations of Collection
functionality. To establish a base-line of known duplicates, we injected the Collection
implementation of Guava into the Qualitas Corpus and measured the detection rates for
these known “re-implementations”. 150

9.3 Overview of the LSI-based approach. During the analysis, we extract relevant concepts
by means of identifiers present in each file and compute the best matches between them. . 155

9.4 This figure provides a high level (left hand side) as well as a detailed view (right hand
side) of the study design. 157

9.5 The figure illustrates the three steps of our idea. A and B denote two software systems. LU
denotes the logical union of the systems during clone detection. Circles represent entities
of the systems, e.g. functions, classes, or files. The systems contain two clone classes:
the double-lined (α) and the dashed (β) group. Arrows denote the dependencies between
entities belonging or connected to clones. L denotes an extracted library, containing (α). 167

9.6 Different usage patterns of cloned regions. 168

10.1 The meta-model of the assessment model. 173
10.2 Instantiated assessment model with facts, development activities, and impacts between

them. 174
10.3 Facts and associated metrics of assessment model . 177
10.4 Result distribution for total and distinct method calls and scatteredness for each JAR file

used by the system. 183
10.5 Aggregated view of the assessment results . 184

List of Tables

3.1 Characterization of the participating companies . 41

3.2 The empirical studies in numbers . 41

4.1 Roles of participants - questionnaire . 46

4.2 Roles of participants - interview . 46

4.3 Which are your top-three ways of sharing artefacts? . 50

4.4 Which are your preferred ways to find reusables? Please indicate the top three. 51

4.5 What do you do to properly understand and adequately select reusable artefacts? 51

4.6 Which of the following possibilities of reuse do you employ most? Please indicate the top
three. 52

4.7 Which are the top-three types of artefacts you reuse? . 53

4.8 What is the scope of the reused artefacts? . 53

4.9 What granularity do the reused entities typically have? . 53

6.1 Questions selected for comparison for RQ1 . 78

6.2 Questions selected for comparison for RQ2 . 79

7.1 Structure of RASM - Overview . 104

7.2 RASM - Encoding of the current evidence of Reuse Influence Factors according to [80].
The encoding is used to highlight the stage of validation of the respective elements in
Tables 7.5 to 7.8. 105

7.3 Factors and constituents of the Intent element of the RASM. 109

7.4 Reuse facets of the RASM. 109

7.5 Factors and constituents of the Artefacts facet of the RASM. The symbols encode the
stage of validation of the factors (see Table 7.2). 110

7.6 Factors and constituents of the Practices facet of the RASM. The symbols encode the
stage of validation of the factors (see Table 7.2). 111

7.7 Factors and constituents of the Tools facet of the RASM. The symbols encode the stage
of validation of the factors (see Table 7.2). 112

7.8 Factors and constituents of the Organization facet of the RASM. The symbols encode the
stage of validation of the factors (see Table 7.2). 113

221

222 LIST OF TABLES

7.9 This table presents an overview of the different reuse facets reported in literature. Facets
in bold face are reported as structuring reuse dimensions in the respective papers.
Facets in bold face and italics denote the final reuse facets selected for the model. The
additional facets are reported as influence factors and included for a more comprehensive
justification of the heterogeneity of the reuse facets in the model. 117

8.1 Summary of the compliance assessment between U and Inner Source based on the tab-
ular instantiation of RASM. The table displays the number of factors (constituents) of
each facet, as well as the number of conflicts, discrepancies, and agreements between the
company values and Inner Source. In addition, the number of new and relevant factors is
reported. 130

8.2 Summary of the compliance assessment between U and Inner Source based on the tab-
ular instantiation of RASM. The table displays the number of factors (constituents) of
each facet, as well as the number of conflicts, discrepancies, and agreements between the
company values and Inner Source. In addition, the number of new and relevant factors is
reported. (*Three elements were discouraged and in conflict. They are summarized with
conflict and required.) . 132

9.1 Parameter setting for both techniques . 156
9.2 Profile of the top 200 result pairs for LSI and ACD. 160
9.3 Hits of top 200 result pairs for LSI (LSI-ACD) and hits of top 200 result pairs for aggre-

gated clone detection (ACD-LSI). 161
9.4 Practitioner rating of non-deprecated re-implementations. 162

12.1 Interview guide: topics and sample questions for cases G and U 201
12.2 Scale aggregations for questionnaire U. Question ID refers to the respective question, Scale

U relates the type of the scale (L4 for a 4 point Likert scale, L5 for a 5 point Likert scale)
and reports the extreme values of the given scale. Aggregation illustrates how, for the
given scale, the values were aggregated in the categories Low and High. P<n> denotes
the number of responses at the given point of the Likert scale. 202

12.3 Responses and values relevant for RQ1 . 203
12.4 This table contains the responses relevant for RQ2 . 204
12.6 This table contains the responses relevant for RQ2 — continued from previous page . . . 205

Bibliography

[1] W. B. Frakes and C. J. Fox, “Quality improvement using a software reuse failure modes model,”
Software Engineering, IEEE Transactions on, vol. 22, no. 4, pp. 274–279, 1996.

[2] C. Krueger, “Software reuse,” ACM Computing Surveys, vol. 24, no. 2, pp. 131–183, 1992.

[3] W. Lim, “Effects of reuse on quality, productivity, and economics,” IEEE Software, vol. 11, no. 5,
pp. 23–30, 2002.

[4] D. Batory and S. O’Malley, “The design and implementation of hierarchical software systems with
reusable components,” ACM Trans. Softw. Eng. Methodol., vol. 1, no. 4, pp. 355–398, Oct. 1992.
[Online]. Available: http://doi.acm.org/10.1145/136586.136587

[5] E.-A. Karlsson, Software reuse: a holistic approach. John Wiley & Sons, Inc., 1995.

[6] S. Henninger, “An evolutionary approach to constructing effective software reuse repositories,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 6, no. 2, pp. 111–
140, 1997.

[7] L. Bass, P. Clements, S. Cohen, L. Northrop, and J. Withey, “Product line practice workshop
report,” Software Engineering Institute, Tech. Rep., 1997.

[8] K. Pohl, G. Böckle, and F. J. van der Linden, Software product line engineering: foundations,
principles and techniques. Springer Science & Business Media, 2005.

[9] K.-J. Stol, P. Avgeriou, M. A. Babar, Y. Lucas, and B. Fitzgerald, “Key Factors for Adopting
Inner Source,” ACM Transactions on Software Engineering and Methodology (TOSEM), 2014.

[10] A. Mili, R. Mili, and R. T. Mittermeir, “A survey of software reuse libraries,” Annals of Software
Engineering, vol. 5, pp. 349–414, 1998.

[11] W. B. Frakes and K. Kang, “Software reuse research: Status and future,” in IEEE Transactions
on Software Engineering, vol. 31, no. 7, 2005, pp. 529–536.

[12] O. Hummel and C. Atkinson, “Using the web as a reuse repository,” in Reuse of Off-the-Shelf
Components. Springer, 2006, pp. 298–311.

[13] M. Morisio, M. Ezran, and C. Tully, “Success and failure factors in software reuse,” Software
Engineering, IEEE Transactions on, vol. 28, no. 4, pp. 340–357, 2002.

[14] M. McILROY, “Mass produced software components,” in NATO Software Engineering Conference
Report, 1968.

[15] Y. Kim and E. A. Stohr, “Software reuse: Issues and research directions,” in Twenty-Fifth Hawaii
International Conference on System Sciences, 1992.

223

http://doi.acm.org/10.1145/136586.136587

224 BIBLIOGRAPHY

[16] H. Mili, F. Mili, and A. Mili, “Reusing software: Issues and research directions,” in IEEE TRANS-
ACTIONS ON SOFTWARE ENGINEERING, vol. 21, no. 6, 1995.

[17] V. Basili, G. Caldiera, and H. Rombach, “The experience factory,” Encyclopedia of software engi-
neering, 1994.

[18] R. G. Fichman and C. F. Kemerer, “Incentive compatibility and systematic software reuse,” The
Journal of Systems and Software, vol. 57, pp. 45–60, 2001.

[19] G. Sindre, R. Conradi, and E. Karlsson, “The reboot approach to software reuse,” Journal of
Systems and Software, vol. 30, no. 3, pp. 201–212, 1995.

[20] R. D. Banker, R. J. Kauffman, and D. Zweig, “Repository evaluation of software reuse,” Software
Engineering, IEEE Transactions on, vol. 19, no. 4, pp. 379–389, 1993.

[21] P. Mohagheghi and R. Conradi, “Quality, productivity and economic benefits of software reuse: a
review of industrial studies,” Empirical Software Engineering, no. 12, pp. 471–516, 2007.

[22] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irlbeck, “On the Extent and
Nature of Software Reuse in Open Source Java Projects,” in ICSR’11, 2011.

[23] K.-J. Stol and B. Fitzgerald, “Inner Source – Adopting Open Source Development Practices in
Organizations: A Tutorial,” in IEEE Software, 2015.

[24] D. P. Management, “Timeline: Digital technology and preservation.”

[25] V. Bauer, “Challenges of structured reuse adoption — Lessons learned,” in Profes 2015, 2015.

[26] V. Bauer and L. Heinemann, “Understanding API Usage to Support Informed Decision Making in
Software Maintenance,” in CSMR 2012, 2012.

[27] V. Bauer, J. Eckhardt, B. Hauptmann, and M. Klimek, “An Exploratory Study on Reuse at
Google,” in SER&IP’s. ACM, 2014.

[28] D. M. Weiss, P. Clements, K. Kang, and C. Krueger, “Software product line hall of fame,” in
Software Product Line Conference, 2006 10th International, Aug 2006, pp. 237–237.

[29] A. Lynex and P. J. Layzell, “Organisational considerations for software reuse,” Annals of Software
Engineering, vol. 5, pp. 105–124, 1998.

[30] J. Businge, A. Serebrenik, and M. G. J. van den Brand, “Eclipse API Usage: The Good and The
Bad,” in Sixth International Workshop on Software Quality and Maintainability, 2012.

[31] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based API-usage analysis of open-source
Java projects,” in SAC’11, 2011.

[32] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,” Advances in Computers,
vol. 82, pp. 25–46, 2011.

[33] F. Deissenboeck, L. Heinemann, B. Hummel, and S. Wagner, “Challenges of the dynamic
detection of functionally similar code fragments,” in CSMR’12, 2012. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/CSMR.2012.38

[34] V. Bauer, L. Heinemann, and F. Deissenboeck, “A Structured Approach to Assess Third-Party
Library Usage,” in ICSM’12, 2012.

[35] S. Raemaekers, A. van Deursen, and J. Visser, “Exploring Risks in the Usage of Third-Party
Libraries,” in Sixth International Workshop on Software Quality and Maintainability, 2012.

http://doi.ieeecomputersociety.org/10.1109/CSMR.2012.38

BIBLIOGRAPHY 225

[36] B. Klatt, Z. Durdik, H. Koziolek, K. Krogmann, J. Stammel, and R. Weiss, “Identify impacts of
evolving third party components on long-living software systems,” in CSMR’12, 2012.

[37] V. Bauer and B. Hauptmann, “Assessing cross-project clones for reuse optimization,” in IWSC,
2013.

[38] V. Bauer, “Facts and fallacies of reuse in practice,” in CSMR 2013, 2013.

[39] V. Bauer, T. Völke, and E. Jürgens, “A Novel Approach to Detect Unintentional Re-
implementations,” in ICSME’14, 2014.

[40] V. Bauer, T. Völke, and S. Eder, “Combining clone detection and latent semantic indexing to
detect reimplementations,” in IWSC 2016, 2016.

[41] V. Bauer and A. Vetrò, “Comparing reuse practices in two large software-producing companies,”
accepted for publication in the Journal of Systems and Software, 2016.

[42] S. Wartik and T. Davis, “A phased reuse adoption model,” Journal of Systems and Software,
vol. 46, no. 1, pp. 13–23, 1999.

[43] W. Frakes and C. Terry, “Software reuse: metrics and models,” ACM Computing Surveys (CSUR),
vol. 28, no. 2, pp. 415–435, 1996.

[44] V. R. Basili and H. D. Rombach., “Support for comprehensive reuse.” in IEEE Software, 1991.

[45] J. Llorens, Software Reuse Fundamentals, The Reuse Company, 2005.

[46] R. T. Mittermeir and W. Rossak, “Software bases and software archives: alternatives to support
software reuse,” in Proceedings of the 1987 Fall Joint Computer Conference on Exploring technol-
ogy: today and tomorrow. IEEE Computer Society Press, 1987, pp. 21–28.

[47] R. P. Díaz, “The Disappearance of Software Reuse,” in IEEE, 1994.

[48] H. Gall, M. Jazayeri, and R. Kloesch, “Research directions in software reuse: Where to go from
here?” in SSR, 1995.

[49] M. Shaw, “Architectural issues in software reuse: It’s not just the functionality, it’s the packaging,”
in ACM SIGSOFT Software Engineering Notes, vol. 20, no. SI. ACM, 1995, pp. 3–6.

[50] M. Wasmund, “Reuse facts and myths,” in Proceedings of the 16th International Conference on
Software Engineering, ser. ICSE ’94. Los Alamitos, CA, USA: IEEE Computer Society Press,
1994, pp. 273–. [Online]. Available: http://dl.acm.org/citation.cfm?id=257734.257786

[51] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and recommending api usage
patterns,” in ECOOP 2009–Object-Oriented Programming. Springer, 2009, pp. 318–343.

[52] M. Sojer and J. Henkel, “Code Reuse in Open Source Software Development: Quantitative Evi-
dence, Drivers, and Impediments,” Journal of the Association for Information Systems, 2010.

[53] W. Spoelstra, M. Iacob, and M. van Sinderen, “Software reuse in agile development organizations:
a conceptual management tool,” in SAC 2011, 2011.

[54] S. Raemaekers, A. van Deursen, and J. Visser, “An analysis of dependence on third-party libraries
in open source and proprietary systems,” in CSMR’12, 2012.

[55] R. P. Díaz, “Status report: Software reusability,” IEEE Software, vol. 10, no. 3, pp. 61–66, 1993.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/52.210605

[56] D. Hristov, O. Hummel, M. Huq, and W. Janjic, “Structuring software reusability metrics for
component-based software development,” in Proceedings of Int. Conference on Software Engineer-
ing Advances (ICSEA), 2012.

http://dl.acm.org/citation.cfm?id=257734.257786
http://doi.ieeecomputersociety.org/10.1109/52.210605

226 BIBLIOGRAPHY

[57] M. B. Rosson and J. M. Carroll, “The reuse of uses in smalltalk programming,” ACM Transactions
on Computer-Human Interaction, vol. 3, pp. 219–253, 1996.

[58] B. M. Lange and T. G. Moher, “Some strategies of reuse in an object-oriented programming
environment,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’89. New York, NY, USA: ACM, 1989, pp. 69–73. [Online]. Available:
http://doi.acm.org/10.1145/67449.67465

[59] R. Holmes and R. J. Walker, “Systematizing Pragmatic Reuse Tasks,” ACM Trans. Softw. Eng.
Methodol., 2012.

[60] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki, “An Exploratory
Study of Cloning in Industrial Software Product Lines,” in CSMR 2013, 2013.

[61] C. J. Kapser and M. W. Godfrey, ““Cloning considered harmful” considered harmful: patterns of
cloning in software,” Empirical Software Engineering, 2008.

[62] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Enhancing Clone-and-Own with
Systematic Reuse for Developing Software Variants,” in Proceedings of the 30th IEEE International
Conference on Software Maintenance and Evolution, 2014.

[63] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code clones matter?” in Proceedings
of the 31st International Conference on Software Engineering. IEEE Computer Society, 2009, pp.
485–495.

[64] T. Ravichandran and M. A. Rothenberger, “Software reuse strategies and component markets,”
COMMUNICATIONS OF THE ACM, 2003.

[65] G. W. Hislop, “Analyzing exsiting software for software reuse,” Journal of Systems and Software,
1997.

[66] W. B. Frakes and S. Isoda, “Success factors of systematic reuse,” Software, IEEE, vol. 11, no. 5,
pp. 14–19, 1994.

[67] P. Clements and L. Northrop, “Software product lines: practices and patterns,” 2002.

[68] J. Llorens, J. Fuentes, R. Prieto-Diaz, and H. Astudillo, “Incremental Software Reuse,” ICSR,
2006.

[69] P. Diebold and A. Vetrò, “Bridging the gap: Se technology transfer into practice: Study design
and preliminary results,” in Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’14. New York, NY, USA: ACM,
2014, pp. 52:1–52:4. [Online]. Available: http://doi.acm.org/10.1145/2652524.2652552

[70] K. Sherif and A. Vinze, “Barriers to adoption of software reuse. a qualitative study.” Information
and Management, vol. 41, pp. 159–175, 2003.

[71] H. Gall and R. Klösch, “Reuse engineering: software construction from reusable components,”
in Computer Software and Applications Conference, 1992. COMPSAC’92. Proceedings., Sixteenth
Annual International. IEEE, 1992, pp. 79–86.

[72] A. R. Yazdanshenas and L. Moonen, “Fine-grained change impact analysis for component-based
product families,” in Software Maintenance (ICSM), 2012 28th IEEE International Conference on.
IEEE, 2012, pp. 119–128.

[73] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software development process. Addison-
Wesley Reading, 1999.

http://doi.acm.org/10.1145/67449.67465
http://doi.acm.org/10.1145/2652524.2652552

BIBLIOGRAPHY 227

[74] M. Luckey, A. Baumann, D. M. Fernandez, and S. Wagner, “Reusing Security Requirements Using
an Extended Quality Model,” in SESS, 2010.

[75] C. Palomares, X. Franch, and C. Quer, “Requirements Reuse and Patterns: A Survey,” in REFSQ,
2014.

[76] L. Heinemann, “Effective and efficient reuse with software libraries,” Ph.D. dissertation, Technische
Universität München, 2012.

[77] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone, “The concept of reference
architectures,” Systems Engineering, vol. 13, no. 1, pp. 14–27, 2010.

[78] V. R. Basili, “Viewing maintenance as reuse-oriented software development,” Software, IEEE,
vol. 7, no. 1, pp. 19–25, 1990.

[79] O. P. N. Slyngstad, A. Gupta, R. Conradi, P. Mohagheghi, H. Rønneberg, and E. Landre, “An
empirical study of developers views on software reuse in statoil asa,” in ACM/IEEE international
symposium on Empirical software engineering, 2006.

[80] D. Lucrédio, K. dos Santos Brito, A. Alvaro, V. C. Garcia, E. S. de Almeida, R. P.
de Mattos Fortes, and S. L. Meira, “Software reuse: The brazilian industry scenario,” Journal
of Systems and Software, vol. 81, no. 6, pp. 996 – 1013, 2008, agile Product Line Engineering.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0164121207002221

[81] J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik, “Comparing reuse strategies: An empirical
evaluation of developer views,” in COMPSACW 2014. IEEE, 2014, pp. 498–503.

[82] D. C. Rine, “Success factors for software reuse that are applicable across domains and businesses,”
in Proceedings of the 1997 ACM symposium on Applied computing. ACM, 1997, pp. 182–186.

[83] Marcus A. Rothenberger and Kevin J. Dooley and Uday R. Kulkarni and Nader Nada, “Strategies
for Software Reuse: A Principal Component Analysis of Reuse Practices,” in IEEE Transactions
on Software Engineering, 2003.

[84] R. Joos, “Software reuse at motorola,” in IEEE Software, vol. 11, no. 5, 1994.

[85] N. Nada and D. C. Rine, “Three empirical evaluations of a software reuse reference model,” Annals
of Software Engineering, vol. 10, no. 1-4, pp. 225–259, 2000.

[86] T. A. Standish, “An essay on software reuse,” Software Engineering, IEEE Transactions on, no. 5,
pp. 494–497, 1984.

[87] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley, 2004.

[88] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mismatch or why it’s hard to build
systems out of existing parts,” in Proceedings of the 17th International Conference on Software
Engineering, ser. ICSE ’95. New York, NY, USA: ACM, 1995, pp. 179–185. [Online]. Available:
http://doi.acm.org/10.1145/225014.225031

[89] H. Koziolek, T. Goldschmidt, T. de Gooijer, D. Domis, S. Sehestedt, T. Gamer, and M. Aleksy,
“Assessing software product line potential: An exploratory industrial case study,” Empirical Soft-
ware Engineering, 2015.

[90] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems for software engineer-
ing,” Software, IEEE, vol. 27, no. 4, pp. 80–86, 2010.

http://www.sciencedirect.com/science/article/pii/S0164121207002221
http://doi.acm.org/10.1145/225014.225031

228 BIBLIOGRAPHY

[91] L. Heinemann, V. Bauer, M. Herrmannsdoerfer, and B. Hummel, “Identifier-based context-
dependent api method recommendation,” in CSMR’12, 2012.

[92] M. Torchiano and M. Morisio, “Overlooked aspects of cots-based development,” Software, IEEE,
vol. 21, no. 2, pp. 88–93, 2004.

[93] J. R. Cordy, “Comprehending Reality - Practical Barriers to Industrial Adoption of Software
Maintenance Automation,” in Proceedings of the IEEE 11th International Workshop on Program
Comprehension, 2003.

[94] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp. 664–675.

[95] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller, “Progressive Open Source,” in ICSE’ 02, 2002.

[96] R. Goldman and R. P. Gabriel, Innovation happens elsewhere: Open source as business strategy.
Morgan Kaufmann, 2005.

[97] V. K. Gurbani, A. Garvert, and J. D. Herbsleb, “A case study of a corporate open source develop-
ment model,” in Proceedings of the 28th international conference on Software engineering. ACM,
2006, pp. 472–481.

[98] H. Rehesaar, “Capability assessment for introducing component reuse,” in ICSR’11 - Top Produc-
tivity through Software Reuse. Springer, 2011, pp. 87–101.

[99] J. Hopkins, “Component primer,” Communications of the ACM, vol. 43, no. 10, pp. 27–30, 2000.

[100] R. Land, D. Sundmark, F. Lueders, I. Krasteva, and A. Causevic, “Reuse with software components
- a survey of industral state of practice,” in ICSR’09, 2009.

[101] M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E. Kraft, and S. E. Condon, “Cots-based
software development: Processes and open issues,” Journal of Systems and Software, vol. 61, no. 3,
pp. 189–199, 2002.

[102] C. Ayala, Ø. Hauge, R. Conradi, X. Franch, and J. Li, “Selection of third party software in off-
the-shelf-based software development—an interview study with industrial practitioners,” Journal
of Systems and Software, vol. 84, no. 4, pp. 620–637, 2011.

[103] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota Silveira Neto, Y. C. Cavalcanti,
and S. R. de Lemos Meira, “Twenty-eight years of component-based software engineering,”
Journal of Systems and Software, vol. 111, pp. 128 – 148, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121215002095

[104] A. Göb, “Soa und softwarequalität,” Dissertation, Technische Universität München, 2013.

[105] S. Jones, “Toward an acceptable definition of service [service-oriented architecture],” IEEE Soft-
ware, 2005.

[106] O. Vogel, I. Arnold, A. Chughtai, E. Ihler, T. Kehrer, U. Mehlig, and U. Zdun, Software-
Architektur: Grundlagen - Konzepte - Praxis. Spektrum Akademischer Verlag Heidelberg, 2009.

[107] C. W. Krueger, “Software product line reuse in practice,” in Application-Specific Systems and
Software Engineering Technology, 2000. Proceedings. 3rd IEEE Symposium on. IEEE, 2000, pp.
117–118.

[108] I. Nordberg, M.E., “Managing code ownership,” Software, IEEE, vol. 20, no. 2, pp. 26–33, Mar
2003.

http://www.sciencedirect.com/science/article/pii/S0164121215002095

BIBLIOGRAPHY 229

[109] K. Charmaz, Constructing grounded theory: A practical guide through qualitative analysis. Pine
Forge Press, 2006.

[110] V. Basili, G. Caldiera, and H. Rombach, “The Goal Question Metric Approach,” Encyclopedia of
Software Engineering, vol. 1, 1994.

[111] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for technology transfer in practice,”
Software, IEEE, vol. 23, no. 6, pp. 88–95, Nov 2006.

[112] E. W. Dijkstra, “On the role of scientific thought,” in Selected Writings on Computing: A
personal Perspective, ser. Texts and Monographs in Computer Science, 1982. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4612-5695-3_12

[113] M. T. Baldassarre, D. Caivano, and G. Visaggio, “Empirical studies for innovation dissemination:
Ten years of experience,” in Proceedings of the 17th International Conference on Evaluation and
Assessment in Software Engineering, ser. EASE ’13. New York, NY, USA: ACM, 2013, pp.
144–152. [Online]. Available: http://doi.acm.org/10.1145/2460999.2461020

[114] A. Sandberg, L. Pareto, and T. Arts, “Agile collaborative research: Action principles for industry-
academia collaboration,” Software, IEEE, vol. 28, no. 4, pp. 74–83, July 2011.

[115] C. Wohlin, A. Aurum, L. Angelis, L. Phillips, Y. Dittrich, T. Gorschek, H. Grahn, K. Henningsson,
S. Kagstrom, G. Low, P. Rovegard, P. Tomaszewski, C. van Toorn, and J. Winter, “The success
factors powering industry-academia collaboration,” IEEE Softw., vol. 29, no. 2, pp. 67–73, Mar.
2012. [Online]. Available: http://dx.doi.org/10.1109/MS.2011.92

[116] P. Rodríguez, P. Kuvaja, and M. Oivo, “Lessons learned on applying design science for
bridging the collaboration gap between industry and academia in empirical software engineering,”
in Proceedings of the 2Nd International Workshop on Conducting Empirical Studies in
Industry, ser. CESI 2014. New York, NY, USA: ACM, 2014, pp. 9–14. [Online]. Available:
http://doi.acm.org/10.1145/2593690.2593694

[117] S. Hallsteinsen and M. Paci, Experiences in software evolution and reuse: twelve real world projects.
Springer Science & Business Media, 1997, vol. 1.

[118] D. Cruzes, T. Dybå, P. Runeson, and M. Höst, “Case studies synthesis: a thematic, cross-case,
and narrative synthesis worked example,” Empirical Software Engineering, pp. 1–32, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10664-014-9326-8

[119] A. Agresti, An introduction to categorical data analysis. New York: Wiley, 1996. [Online].
Available: http://www.worldcat.org/search?qt=worldcat_org_all&q=0471113387

[120] V. C. Garcia, D. Lucrédio, A. Alvaro, E. S. De Almeida, R. P. de Mattos Fortes, and S. R.
de Lemos Meira, “Towards a maturity model for a reuse incremental adoption.” in SBCARS.
Citeseer, 2007, pp. 61–74.

[121] L. Heinemann, “Facilitating reuse in model-based development with context-dependent model el-
ement recommendations,” in Recommendation Systems for Software Engineering (RSSE), 2012
Third International Workshop on, June 2012, pp. 16–20.

[122] M. Luckey, A. Baumann, D. Méndez, and S. Wagner, “Reusing security requirements using an
extended quality model,” in Proceedings of the 2010 ICSE Workshop on Software Engineering for
Secure Systems. ACM, 2010, pp. 1–7.

[123] E. Murphy-Hill and G. C. Murphy, “Recommendation Delivery,” in Recommendation Systems in
Software Engineering. Springer, 2014, ch. 9, pp. 223–242.

http://dx.doi.org/10.1007/978-1-4612-5695-3_12
http://doi.acm.org/10.1145/2460999.2461020
http://dx.doi.org/10.1109/MS.2011.92
http://doi.acm.org/10.1145/2593690.2593694
http://dx.doi.org/10.1007/s10664-014-9326-8
http://www.worldcat.org/search?qt=worldcat_org_all&q=0471113387

230 BIBLIOGRAPHY

[124] S. Proksch, V. Bauer, and G. C. Murphy, “How to build a recommendation system for software
engineering,” in Software Engineering. Springer, 2015, pp. 1–42.

[125] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” SCHOOL OF COM-
PUTING TR 2007-541, QUEEN’S UNIVERSITY, vol. 115, 2007.

[126] T. Mende, F. Beckwermert, R. Koschke, and G. Meier, “Supporting the grow-and-prune model in
software product lines evolution using clone detection,” in CSMR 2008, 2008.

[127] A. Marcus and J. I. Maletic, “Identification of High-Level Concept Clones in Source Code,” in
ASE, 2001.

[128] L. Heinemann, B. Hummel, and D. Steidl, “Teamscale: Software quality control in real-time,” in
Proceedings of the 36th ACM/IEEE International Conference on Software Engineering (ICSE’14),
2014.

[129] J. K.S and R. Vasantha, “A new capability maturity model for reuse based software development
process,” IACSIT International Journal of Engineering and Technology, vol. 2, no. 1, 2010.

[130] P. Koltun and A. Hudson, “A reuse maturity model,” in 44th Workshop on Institutionalizing
Software Reuse, 1991.

[131] T. Davis, “The reuse capability model: a basis for improving an organization’s reuse capability.”
in Second International Workshop on Software Reusability, 1993.

[132] K. K. Mandava, B. Ravi Kiran et al., “A systematic mapping study on value of reuse,” International
Journal of Computer Applications, vol. 34, no. 4, pp. 37–44, 2011.

[133] Aligning Organizations Through Measurement. Springer, 2014.

[134] M. Höst, K.-J. Stol, and A. Oručević-Alagić, Software Project Management in a Changing World.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, ch. Inner Source Project Management, pp.
343–369. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-55035-5_14

[135] V. K. Gurbani, A. Garvert, and J. D. Herbsleb, “Managing a corporate open source software asset,”
Communications of the ACM, vol. 53, no. 2, pp. 155–159, 2010.

[136] R. Prieto-Diaz, “Making software reuse work: an implementation model,” ACM SIGSOFT Software
Engineering Notes, vol. 16, no. 3, pp. 61–68, 1991.

[137] D. Kawrykow and M. P. Robillard, “Improving api usage through automatic detection of redundant
code,” in ASE’ 09.

[138] E. Jürgens, F. Deissenboeck, and B. Hummel, “Code Similarities Beyond Copy & Paste,” in CSMR,
2010.

[139] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey, “Cloning by Accident: An Empirical Study of
Source Code Cloning Across Software Systems,” in ISESE, 2005.

[140] D. Ratiu and J. Jürjens, “Evaluating the reference and representation of domain concepts in apis,”
in ICPC, 2008, pp. 242–247.

[141] G. Cousineau and P. Enjalbert, “Program Equivalence and Provability,” in MFCS, 1979.

[142] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code fragments via random
testing,” in ISSTA, 2009. [Online]. Available: http://doi.acm.org/10.1145/1572272.1572283

[143] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,” in ICSE’ 08.

http://dx.doi.org/10.1007/978-3-642-55035-5_14
http://doi.acm.org/10.1145/1572272.1572283

BIBLIOGRAPHY 231

[144] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by
latent semantic analysis,” 1990.

[145] S. Chatterjee, S. Juvekar, and K. Sen, “Sniff: A search engine for java using free-form queries,” in
FASE, 2009. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-00593-0_26

[146] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar software applications,” in
ICSE, 2012, pp. 364–374.

[147] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie, “Exemplar: A source code search
engine for finding highly relevant applications,” Software Engineering, IEEE Transactions on,
vol. 38, no. 5, pp. 1069–1087, 2012.

[148] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B. Mobasher, “Recommending
source code for use in rapid software prototypes,” in ICSE, 2012.

[149] C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discovery of function mappings between similar
libraries,” in WCRE, 2013.

[150] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,” in WCRE, 2013, pp. 182–
191.

[151] E. Duala-Ekoko and M. P. Robillard, “Using structure-based recommendations to facilitate discov-
erability in apis,” in ECOOP, 2011.

[152] O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer: Pulling reusable software out of thin
air,” IEEE Software, vol. 25, no. 5, pp. 45–52, 2008.

[153] F. McCarey, M. Ó. Cinnéide, and N. Kushmerick, “Rascal: A recommender agent for agile reuse,”
Artif. Intell. Rev., vol. 24, no. 3-4, pp. 253–276, 2005.

[154] Y. Ye and G. Fischer, “Information delivery in support of learning reusable software components
on demand,” in IUI, 2002, pp. 159–166.

[155] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to improve code completion
systems,” in ESEC/SIGSOFT FSE, 2009.

[156] R. Robbes and M. Lanza, “Improving code completion with program history,” Autom. Softw. Eng.,
vol. 17, no. 2, pp. 181–212, 2010.

[157] A. Marcus and S. Haiduc, “Text retrieval approaches for concept location in source code,” in
ISSSE’11.

[158] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval.”

[159] B. Basset and N. A. Kraft, “Structural Information Based Term Weighting in Text Retrieval for
Feature Location,” in ICPC’13.

[160] B. Hauptmann, V. Bauer, and M. Junker, “Using Edge Bundle Views for Clone Visualization ,”
in IWSC’12, 2012.

[161] F. Gauthier, T. Lavoie, and E. Merlo, “Uncovering access control weaknesses and flaws with
security-discordant software clones,” in Proceedings of the 29th Annual Computer Security Ap-
plications Conference. ACM, 2013, pp. 209–218.

[162] R. Koschke, Survey of research on software clones. Internat. Begegnungs-und Forschungszentrum
für Informatik, 2007.

http://dx.doi.org/10.1007/978-3-642-00593-0_26

232 BIBLIOGRAPHY

[163] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach,” Science of Computer Programming, 2009.

[164] N. Gode and R. Koschke, “Incremental Clone Detection,” in CSMR. IEEE, 2009.

[165] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based Code Clone Detection:
Incremental, Distributed, Scalable,” in ICSM. IEEE, 2010.

[166] V. Bauer, L. Heinemann, B. Hummel, E. Juergens, and M. Conradt, “A Framework for Incremental
Quality Analysis of Large Software Systems,” in ICSM. IEEE, 2012.

[167] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and Evaluation of Clone
Detection Tools,” TSE, 2007.

[168] E. Juergens, F. Deissenboeck, and B. Hummel, “Clone Detection Beyond Copy & Paste,” in IWSC,
2009.

[169] D. Steidl and S. Eder, “Prioritizing Maintainability Defects Based on Refactoring Recommenda-
tions,” in ICPC, 2014. [Online]. Available: http://doi.acm.org/10.1145/2597008.2597805

[170] H. A. Basit and S. Jarzabek, “A Data Mining Approach for Detecting Higher-level Clones in
Software,” IEEE TSE, 2007.

[171] R. Tairas and J. Gray, “An Information Retrieval Process to Aid in the Analysis of Code Clones,”
Empirical Software Engineering, no. 1, 2009.

[172] B. Caprile and P. Tonella, “Restructuring Program Identifier Names,” in ICSM, 2000.

[173] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Software Quality Journal, vol. 14,
no. 3, pp. 261–282, 2006. [Online]. Available: http://dx.doi.org/10.1007/s11219-006-9219-1

[174] S. Haiduc and A. Marcus, “On the Use of Domain Terms in Source Code,” in ICPC, 2008.

[175] Pivotal Software, Inc., “The spring io platform.”

[176] V. Bauer, T. Voelke, and S. Eder, “COMPARING TF-IDF AND LSI AS IR TECHNIQUE IN AN
APPROACH FOR DETECTING SEMANTIC RE-IMPLEMENTATIONS IN SOURCE CODE,”
Technische Universität München, Tech. Rep., 2015.

[177] E. Juergens, F. Deissenboeck, and B. Hummel, “CloneDetective - A workbench for clone detection
research,” in ICSE, May 2009.

[178] S. Eder, H. Femmer, B. Hauptmann, and M. Junker, “Configuring Latent Semantic Indexing for
Requirements Tracing,” RET, 2015.

[179] E. Juergens, “Why and how to control cloning in software artifacts — doctoral dissertation,”
Technische Universität München, 2011.

[180] J. Krinke, N. Gold, Y. Jia, and D. Binkley, “Cloning and copying between gnome projects,” in 7th
IEEE Working Conference on Mining Software Repositories, 2010.

[181] D. Faust and C. Verhoef, “Software product line migration and deployment,” Software Practice
and Experience, 2003.

[182] N. Schwarz, M. Lungu, and R. Robbes, “On how often code is cloned across repositories,” in 34th
International Conference on Software Engineering, 2012.

[183] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J. Girard, “An activity-based quality
model for maintainability,” in ICSM’07, 2007.

http://doi.acm.org/10.1145/2597008.2597805
http://dx.doi.org/10.1007/s11219-006-9219-1

BIBLIOGRAPHY 233

[184] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a framework for software measurement
validation,” Software Engineering, IEEE Transactions on, vol. 21, no. 12, pp. 929–944, 1995.

[185] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software quality models: Purposes,
usage scenarios and requirements,” in WOSQ ’09, 2009.

[186] G. Kotonya and J. Hutchinson, “Analysing the impact of change in COTS-based systems,” COTS-
Based Software Systems, pp. 212–222, 2005.

[187] R. Kazman, L. Bass, M. Webb, and G. Abowd, “SAAM: A method for analyzing the properties of
software architectures,” in ICSE’94, 1994.

[188] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, “The architecture
tradeoff analysis method,” in ICECCS’98, 1998.

[189] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidl, A. Goeb,
and J. Streit, “The quamoco product quality modelling and assessment approach,” in ICSE’12,
2012.

[190] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval, F. Bellingard, and P. Vail-
lergues, “The squale model—A practice-based industrial quality model,” in ICSM’09, 2009.

[191] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software library stability through his-
torical version analysis,” in SQM, 2012.

	I Introduction
	Analysing and supporting reuse strategies in practice
	Software reuse - a current topic for today's software practice?
	Problem statement
	Goal and research method
	Contributions
	Outline
	Previously published material

	Software Reuse: Terms and fundamentals
	Visions and motivation
	Reuse philosophies
	Reusable entities
	Reuse in practice
	Position of this thesis

	II Evaluating the state of practice of reuse
	Case studies on reuse in industrial practice
	Empirical studies on software reuse in practice
	Methodology
	Case description G
	Case description U
	Original case study designs
	Data collection & analysis procedures
	Company reuse placement

	An exploratory case study of software reuse at Google
	Study goal and context
	Methodology
	Study results
	Discussion
	Threats to validity
	Considerations for practitioners
	Summary and conclusions

	A case study of software reuse adoption
	Challenges of structured reuse adoption
	Study design
	Adoption of a strategic reuse program
	Lessons learned — Adoption attempts
	Current research collaboration
	Summary and conclusions

	Synthesizing the case studies
	Comparing reuse practices
	Study goal and research questions
	Study design
	Analysis Methodology
	Study Results
	 Discussion and relation to state of the art
	 Threats to validity
	Summary and conclusions

	III Guiding strategic reuse decisions in practice
	A pragmatic model for guiding reuse adoption in practice
	Guiding reuse adoption in practice
	Reuse adoption support model
	Model overview
	Structure of intent
	Structure of the reuse facets
	Application of RASM
	Justification
	Company Reuse Placement
	Summary

	Applying the decision model in practice
	A proof-of-concept application of RASM in practice
	Background of model application at U
	Model application
	Results for case U
	Limitations of evaluation
	Next steps

	IV Methods and tools to detect reuse potential
	Detecting reuse potential in the context of a RASM application
	Detecting reuse potential in source code
	Discovering unintentional re-implementations
	A hybrid approach to discover unintentional re-implementations
	Combining clone detection and LSI to detect re-implementations
	Cross-project clone detection as guidance for reuse improvement
	Conclusion

	A structured assessment model for third-party library usage
	Opportunities and risks of third-party library reuse
	Assessment model
	Assessment process
	Tool support
	Case study
	Related work
	Summary and future work

	V Conclusion
	Summary and conclusions
	Summary of the contributions
	Outlook
	Conclusions

	VI Appendix
	Appendix
	Appendix for Chapters 4, 5, and 6 — Analyzing and comparing reuse practices
	Appendix for Chapter 8 — Instantiation of RASM for Inner Source
	Appendix for Chapter 10 — Rationales for impacts of the library usage assessment model

