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Abstract

Harmonic or moving forces on the surface of a soil or inside an underground tunnel can

lead to vibrations of the medium which can be perceived at the surface of the soil. This

often leads to discomfort or problems if the oscillations are beyond the acceptance limit of

machines or individuals. If either changes are planned, that influence the excitation force,

or new buildings are designed in the vicinity of existing emission systems, it is important to

model the complete system appropriately. This does not only include the emission system,

which can be for example a tunnel or a building site, and the immission system of the building

of interest, but also the soil as transmission medium for the vibrations.

The emission and immission systems can be successfully modeled with the Finite Element

Method as they usually consist of different materials arranged in complex geometries and the

Finite Element Method is best suited for systems with such characteristics. The transmission

medium can be modeled, in contrast to the emission and immission systems, with a rather

simple geometry and material behavior, if homogeneous, linear elastic material is assumed

for low-frequent vibrations. The complexity of the transmission system lies in its infinite

extension, which the model has to be able to reproduce. The Integral Transform Method

leads to an analytical solution for the soil for several simple geometries. With this approach,

it is possible to model infinite media with horizontal, cylindrical or spherical surfaces.

In this thesis the Integral Transform Method is used to model the infinite extension of the soil

with analytically correct solutions of the Lamé differential equation. The complex geometry

and material distribution of the emission system of an exemplary tunnel are described by the

Finite Element Method. At the interaction surface both subsystems are coupled using the

substructure technique. Thus, the advantages of both methods can be combined to model

the total system as accurate as possible.
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Kurzfassung

Harmonische oder bewegte Lasten, die in einem Tunnel oder an der Oberfläche des Bodens

aufgebracht werden, können Vibrationen verursachen, die von Menschen oder empfindlichen

Geräten wahrgenommen werden können. Dies kann bei Personen zu Unwohlsein oder ernst-

haften gesundheitlichen Problemen führen. Sensitive Maschinen können durch Schwingun-

gen des Untergrundes in ihrer Funktionsweise beeinträchtigt werden oder schlimmstenfalls

vollständig funktionsunfähig werden. Daher ist es erforderlich, das ganze System, das an

der Schwingungsausbreitung beteiligt ist, wirklichkeitsgetreu zu modellieren. Dies gilt vor

allem dann, wenn an bestehenden Systemen Veränderungen vorgenommen werden oder neue

Gebäude in der Nähe bekannter bestehender Emissionsorte geplant werden. Dazu müssen

sowohl das Emissionssystem, z. B. ein Tunnel oder eine Baustelle, und das Immissionsystem

des zu untersuchenden Gebäudes als auch der Boden als Transmissionssystem im Modell

erfasst werden.

Emissions- und Immissionssysteme sind geometrisch häufig sehr komplex und setzen sich in

der Regel aus Komponenten unterschiedlicher Materialien zusammen. Die Finite Element

Methode ist gut geeignet, solche Systeme detailgetreu zu modellieren. Wenn der Boden

betrachtet werden soll, so kann dieser in guter Näherung durch einfache geometrische Formen

beschrieben werden und für tieffrequente Anregungen über eine homogene, linear elastische

Materialverteilung. Die Schwierigkeit bei der Modellierung des Bodens liegt daher nicht in

komplexen Geometrien oder Materialverteilungen, sondern in einer realitätsnahen Abbildung

seiner unendlichen Ausdehnung. Diese kann mit Hilfe der Integraltransformationsmethode

auf der Grundlage analytischer Lösungen für geometrisch einfache Systeme (horizontale,

zylindrische oder sphärische Oberflächen) abgebildet werden.

In dieser Arbeit sollen die Vorteile der beiden Methoden kombiniert werden. Die unendliche

Ausdehnung des Bodens wird mit der Integraltransformationsmethode erfasst, während die

komplexen Geometrien und Materialverteilungen eines Tunnels als beispielhafes Emissions-

system mit der Finiten Element Methode beschrieben werden. Diese beiden Subsysteme

werden an einer gemeinsamen Kopplungsfläche mit Hilfe der Substrukturtechnik gekoppelt,

so dass das gesamte System realitätsnah modelliert werden kann.
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seine Motivation und sein Engagement bedanken. Dr.-Ing. Martin Buchschmid war als stell-

vertretender Lehrstuhlleiter ebenfalls jederzeit bereit, offene Fragen mit mir zu diskutieren

oder meinen Gedankengängen zuzuhören. Auch dafür herzlichen Dank.
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1 Introduction

1.1 Motivation

Forces which are applied inside the soil or at its surface lead to displacements of the medium.

If dynamic or moving forces are considered, the energy that is introduced into the soil leads

to oscillations of the system. These oscillations can be perceived at the surface of the soil

and lead to problems or discomfort depending on the amplitude and phase of the vibrations

and on the sensitivity of the immission system.

On the one hand the excitation forces can be due to uninfluenceable natural phenomena, on

the other hand human-induced actions can also lead to an excitation of the soil. During the

last decades the proportion of human-induced forces on the soil has continuously increased.

Heavy manufacturing or construction machines are more commonly developed and used.

Concerning railway traffic, the velocity as well as the weight of the trains was considerably

raised. Also, due to the denser building development, railways are more probable to be

situated in cultivated areas. All these developments lead to increased vibrations of the

soil.

Examining the development of the immission systems, vibrations of the soil usually affect the

buildings itself as well as machines or individuals inside the building. As modern buildings

are often built from light-weight material, the root-point excitation of the building by the

vibration of the soil can lead to higher vibrations of building components compared to

massive constructions. Moreover, the range of application of modern machines and thus

their sensitivity concerning vibrations is also increasing. Finally, also humans are more and

more aware of noise and oscillations in buildings and suffer discomfort or health problems if

their personal limit of acceptance is exceeded.

Resulting out of the increased excitation of the soil and increased sensitivity of the immission

system, the necessity to reliably predict the oscillations that will be generated by specific

forces is also raised. With accurate models the effect of new railway lines or other excitations
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on existing buildings can be assessed and possible mitigation measures can be modeled if

the vibrations are found to be unacceptable. The modeling of structures is usually done

with the Finite Element Method as it is appropriate to model the detailed and complex

geometry of structures by discretizing them by finite elements. The modeling of the soil,

however, requires more specific methods due to the infinite extension of the medium which

has to be adequately represented in the model. Analytical solutions exist in the scope of the

Integral Transform Method that describe the behavior of the medium exact, but they are

only applicable for rather simple geometries and material descriptions. Independent of the

difficulty of modeling an infinite medium, for some applications it is also necessary that the

model does not only describe the soil but also structures that are positioned inside the soil.

This is not possible in the scope of a pure Integral Transform Method approach.

In this work, a coupled approach of the Integral Transform Method and the Finite Element

Method shall be derived in order to model a system of a half-infinite soil with a horizontal

surface and various types of structural elements that are positioned inside the soil.

1.2 Literature review

The problem of computing an infinite system is not a new one. There are different method-

ologies existing that deal with wave propagation in a semi-infinite or infinite medium.

Finite Element Method

An appropriate description of detailed and complex geometries can be achieved by using the

Finite Element Method (FEM). The limitations of this approach lie in the lacking boundaries

of semi-infinite or infinite systems. As the Finite Element mesh is limited, artificial reflections

from the boundaries of the mesh arise which create errors compared to the real, infinite

system.

There are several modifications of the FEM possible in order to reduce the disturbing effects

of these artificial boundary conditions. Based on a Finite Element discretization the Thin

Layer Method (TLM) as a special form of the FEM has been developed to describe the

system of a layered soil with horizontally infinite layers of material. As one of the first

[Lysmer 1970] used the TLM for his analysis of Rayleigh waves in an isotropic, layered

halfspace derived from a limiting process to the Finite Element mesh. [Waas 1972] split

up the complete medium into an irregular part that is modeled with finite elements flanked

by two layered regions at both sides of the Finite Element mesh. These irregular regions
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are in horizontal direction infinitely extended. [Waas 1972] discretized the material layers

in vertical direction with degrees of freedom only at the upper and lower boundary of each

layer assuming linear shape functions in vertical direction and solved the problem in the

frequency domain with analytical approaches in the horizontal direction. In contrast to

[Lysmer 1970] he derived the characteristic equations directly from the principle of virtual

work. The boundary conditions beneath the Finite Element mesh as well as the thin layers

are described as a fixed support. Therefore, physically non-existing reflections from this

boundary are possible but they are assumed to be negligible if the distance between the

surface and the boundary is big enough. [Rücker and Said 1994] modeled a system consisting

of a tunnel-soil-building-interaction problem by describing the tunnel, the building and the

soil between with two-dimensional finite elements of a certain width. The regions left and

right of the Finite Element mesh are modeled using the TLM. The part underneath the

Finite Element mesh is described with frequency-dependent, viscous dampers in contrast

to the fixed support of [Waas 1972]. [Kausel 1994] derived the TLM in the time domain

thus avoiding complex valued eigenvalues. Later, [Kausel 1999] developed Green’s functions

to describe dynamic point sources on laminated media with the help of the TLM. [Park

2002] expanded the TLM for semi-infinite and finite media using the substructure method

for a time domain formulation and paraxial approximation for calculations in the frequency

domain. He also developed a formulation of the TLM for cylindrical and spherical coordinate

systems and analyzed the phenomenon of numerical dispersion, which occurs in the TLM due

to the fact that the medium is discretized in vertical direction. This discretization leads to

frequency-dependent differences concerning the results for the calculated wave speed between

the TLM method and a continuous, analytical calculation. [Park and Kausel 2003] derived

”tuning factors”which can be used to adapt the dynamic stiffness matrix in order to minimize

this effect of numerical dispersion. [De Oliveira Barbosa et al 2012] combined the TLM with

the Perfectly Matched Layer Method (PML). By this method they are able to model an

infinite system consisting of different layers of material. The different layers are described

with the TLM, the infinite extension is modeled with the PML.

In the PML the finite system, which can be solved numerically, is surrounded by a layer of

absorbing material in which the waves are attenuated by scaling functions and thus decreasing

exponentially. Therefore, reflections from the boundaries are prevented in the model. This

approach was developed in the 90’s. [Berenger 1994] described the methodology for the

first time thus being able to model a situation where an incident wave is not reflected at

a given boundary at all but completely absorbed independent of its frequency or the angle

of incidence at the boundary. Since then the PML has been adapted to different fields of

dynamic behavior. [Basu and Chopra 2003] modified it for time-harmonic elastodynamics
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in Cartesian coordinates. [Bécache et al 2003] mentioned unstable behavior of the PML

and devised two conditions which have to be fulfilled in order to get numerically stable

results. [Wu et al 1997] presented an uniaxial PML using anisotropic material as a model

of the boundary of the Finite Element mesh. [Johnson 2007] stated that both the method

of Berenger as well as the approach presented by Wu can be derived in a general way as

the result of a complex coordinate stretching, which is based on an analytical continuation

of Maxwells equations into spatially complex coordinates referred to which the fields are

decaying exponentially. This complex coordinate stretching is also used in the work of

[Rammerstorfer 2008]. [Hastings et al 1996] compared the results of a PML analysis with

those they could achieve with Absorbing Boundary Conditions (ABC). For compressional

and shear waves they achieved more accurate results with the PML than with absorbing

boundaries. The difference between these methods consists in the way the boundary is

treated. In the PML the considered finite system is surrounded by an additional, artificial

layer of material which avoids reflections at the boundary between the system itself and the

artificial layer but models an absorption of the energy of wave propagation inside the artificial

layer. By working with ABCs there is no additional layer but the waves that are arriving at

the limits of the system are not reflected, but absorbed directly at the boundary.

Also the ABC method has a long tradition. The basic idea is to use boundary conditions at

the limits of the Finite Element mesh that only allow wave propagation out of the modeled

region and absorb waves which are propagating into the Finite Element mesh as described

in [Grote 2000]. For a two-dimensional medium the separation of the waves propagating

from or into the Finite Element mesh is complex. [Clayton and Engquist 1977] developed

an approach in order to separate the two wave types based on paraxial approximations

of the dispersion relation. [Givoli 1991] summarized the information of different fields of

mechanics (Hydrodynamics, Electrical Engineering, Civil Engineering, Plasma Physics etc.)

concerning the problem of absorbing boundaries. He stated that though there are several

publications about local absorbing boundary conditions which perform quite accurately for

different situations they usually show reflections if the situation, e. g. the angle of incidence

or the frequency range, is modified. Using high-order ABCs is a possibility to cope with the

problem of a lacking trackability of local ABCs. But most of the ABCs, which have been

developed during the first years of ABCs are only theoretically enabling an arbitrary high-

order, because also high-order derivatives of the ABC would be necessary. [Collino 1993]

derived ABCs which could be used without the necessity for high derivatives in space and

time. Since then more high-order ABCs have been developed, mainly covering the field of

the acoustic wave equation. Those treating ABCs for elastodynamics as in [Rabinovich et al

2011] showed unstable behavior for long times. A first stable formulation of high-order local
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ABCs is presented in [Baffet et al 2012].

Another adaptation of the FEM for the calculation of infinite or semi-infinite systems is the

use of infinite elements. In general, there are two possible approaches to model the infinite

extension of the elements. The first approach is based on the use of decay functions which

describe the necessary characteristics of the displacement for an infinite extension using

suitable form functions. [Bettess 1977] presented a method where the infinite system is

modeled in an inner region with finite elements, but the outer layer of elements is described

with infinite, exponentially decaying Lagrange polynomials as shape functions. Based on

this work, the method of infinite elements was derived for static ([Bettess and Bettess 1984])

and dynamic problems ([Bettess and Bettess 1991]). [Yang 1996] presented a frequency-

dependent infinite element. A frequency-independent infinite element is used in [Maharan

2004]. The second approach for the method of infinite elements is based on a mapping

of the geometry of the infinite element, which extends the geometry from a finite to an

infinite range while the form functions are still regular polynomial functions. [Zienkiewicz

et al 1983] described the infinite element by mapping semi-infinite stripes of material on finite

elements using appropriate transformation functions. [Abdel-Fattah et al 2000] transformed

the infinite, global coordinates to local, finite coordinates using different functions to describe

the decay of the field variables (reciprocal, exponential, logarithmic).

Scaled Boundary Finite Element Method

Alternatively to a Finite Element formulation, the Scaled Boundary Finite Element Method

(SBFEM) is an additional possibility to model infinite media. [Wolf and Song 2000] pre-

sented the possibility to describe finite or infinite media by dividing the medium into several

subdomains starting from a scaling center. After transforming the respective partial differ-

ential equation into the new coordinates, the surface of the medium is discretized with finite

elements thus leading to an ordinary differential equation which can be solved approximately

in dependency on the coordinate of the radial direction. In [Wolf 2003] wave propagation in

an infinite medium is modeled using the SBFEM.

Boundary Element Method

Instead of discretizing the domain with finite elements, in the Boundary Element Method

(BEM) only the boundaries of the domain are discretized. According to a short overview

over the historical development by [Gaul et al 2003], [Jaswon 1963] and [Symm 1963] have

been the first scientists to develop Boundary Element Methods to solve potential problems

using Green’s third identity. Subsequently, applications for elastostatic (for example [Rizzo
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1967]) and elastodynamic problems (for example [Cruse and Rizzo 1968] or [Cruse 1968])

were presented.

For an infinite medium, the respective differential equation is transformed into a boundary

formulation using Green’s functions and the reciprocity theorem, as described e. g. in [Gaul

et al 2003]. If the domain to be modeled is infinite in one direction, it is possible to discretize

only the two-dimensional surface and to take into account the infinite extension in the third

direction by fulfilling the Sommerfeld condition of radiation within the fundamental solutions.

Nevertheless, if also the surface possesses an infinite extension, the numerically necessary

truncation of the infinite surface leads to an error in the calculations. As [Manolis and

Beskos 1988] or [Beer and Watson 1989] stated infinite boundary elements can be coupled to

the regular domain to model the infinite extension of a continuum. Using a decay function,

the behavior of the displacements in an infinite extension is modeled in dependency on the

distance between an arbitrary, considered point and the center of the decay function. Also

[Zhang and Song 1991] presented an approach for the modeling of a three-dimensional, semi-

infinite halfspace. The amplitudes of all wave types are reduced by the same decay function

in this method. As the real behavior is different, [Arias and Achenbach 2004] presented a

method where only the Rayleigh waves are considered. The amplitudes of the compressional

and shear waves are neglected as they are stronger diminished by geometrical damping than

the surface Rayleigh waves. Correction coefficients are calculated that are added to the

system matrices at the positions of the end nodes between the finite and infinite regions.

The response of a halfspace due to a moving load was calculated by [Andersen and Nielsen

2003] with a three-dimensional model. A time domain BEM for two-dimensional scalar

wave propagation problems was presented by [Mansur and Brebbia 1982b] and [Mansur

and Brebbia 1982a]. As [Israil and Banerjee 1990] stated, the derivations were pioneering,

but led to a formulation with a rather complicated and implicit kernel. Therefore, [Israil

and Banerjee 1990] presented alternative kernels for the two-dimensional transient scalar

wave propagation and [Israil et al 1992] extended it for axisymmetric and three-dimensional

scalar wave propagation while [Carrer and Mansur 1996] included initial conditions for the

two-dimensional case. The computational effort of the BEM calculations was reduced by

[Bonnet et al 1998] who transformed the unsymmetric, full matrices without band structure

into symmetric matrices using the Galerkin-method. [Messner and Schanz 2010] presented a

Fast Boundary Element Method where the Convolution Quadrature Method is used in the

time domain in order to reduce the computational effort. In another step, the Fast Multipole

Boundary Element Method, [Fischer 2004] split the boundary integral operators into near-

field and far field contributions and calculated the response of the total system using the
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multipole-approach.

Besides developments for the improvement of the pure BEM concerning computational costs

or the range of application, another advancement was the coupling of BEM and FEM ap-

proaches. One of the first publications concerning the coupling of boundary solution tech-

niques to Finite Element solutions was published by [Zienkiewicz et al 1977]. The motivation

was to combine the advantages of both approaches. [Brebbia and Georgiou 1979] examined

two approaches to solve two-dimensional elastostatic problems with a coupled FEM-BEM

approach presenting the result that treating the boundary element region as finite element

seems to be an interesting possibility to be implemented in Finite Element codes. [von Estorff

and Prabucki 1990] used the coupled approach for a general two-dimensional elastodynamic

problem to calculate the response of an elastic halfspace to transient loads. An overview

over the application of a coupled FEM-BEM approach for three-dimensional soil-structure-

interactions can be found in [Savidis and Bode 2002]. This approach was also compared to

field investigations as published by [Savidis and Bergmann 2005]. [Schepers and Savidis 2009]

analyzed the behavior of earth-fill dams with the coupled approach and compared it to the

efficiency of trenches as measures for the reduction of vibrations. Also for the calculation of

a system where elements like diaphragm or quay walls are surrounded by soil, [Clouteau et al

2000] used a periodical approach for the coupling of finite elements and boundary elements.

Assuming periodicity of the structures in one direction, a Floquet decomposition is applied

to reduce the extension of the discretized domain. A limited reference cell is discretized

and the infinite extension is introduced into the system using the periodicity conditions.

Subsequently, a number of publications present applications and extensions of this method

of a periodic FEM-BEM coupling. In 2005 [Clouteau et al 2005] extended the method to a

horizontally layered soil using Green-Floquet functions which are defined as the infinite sum

of Green’s functions at a certain point for sources that are periodically repeated in space.

[Clouteau et al 2006] applied the method for the calculation of the response of an under-

ground tunnel in a layered soil to dynamic loads inside the tunnel. Two examples of real

existing tunnels in Paris and London are calculated. The numerical validation of the method

is presented in [Lombaert et al 2006] where experiments were carried out at a new high-speed

train line between Brussels and Cologne. The dynamic soil and track characteristics are de-

termined experimentally and the transfer functions of soil and the coupled track-soil-system

are measured and used for the validation of the numerical results. The effects of a floating

slab track are predicted with a periodic FEM-BEM approach in [Gupta and Degrande 2010].

The vibration isolation of continuous and discontinuous floating slab tracks are analyzed and

found to be similar for excitation frequencies above the isolation frequencies of the track. At

low frequencies, however, continuous floating slab tracks show a better efficiency. The effects



8 1 Introduction

of different mitigation measures on the transmission path between the point of load appli-

cation and a receiving structure were analyzed with a 2.5-dimensional FEM-BEM approach

as part of the RIVAS project (Railway Induced Vibration Abatement Solutions) by [Coulier

et al 2011]. [Lombaert and Degrande 2009] concentrated on the different excitation mecha-

nisms of railway-induced vibrations and analyzed the response of the system to quasi-static

and dynamic excitation due to random track unevenness, which is represented by its power

spectral density. [Clouteau et al 2013] wrote a review presenting a general framework that

describes the different solution procedures for a soil-environment-system in a general way

such that it is valid for different chosen methods (e. g. FEM, BEM).

[Gupta et al 2009] published the results of a parametric study which was performed to analyze

the influence of different system parameters on the response of the coupled system. Shear

modulus and material damping are identified as main influence parameters for the propaga-

tion of waves inside the soil. The geometry of the tunnel is found to influence mainly the

response near the tunnel and a larger tunnel leads to less vibrations on the surface of the soil

due to energy radiation. The parametric study is performed using the periodic FEM-BEM

coupling and compared to the results of a Pipe-in-Pipe model.

Pipe-in-Pipe Method

The Pipe-in-Pipe Method (PiP) also uses the invariance of the system in lengthwise direc-

tion and solves the 2.5-dimensional system. [Forrest and Hunt 2006] developed this semi-

analytical solution of the differential equation of a system where a circular tunnel cross

section is loaded whereas the longitudinal direction is transformed into the wavenumber

domain. Based on the cylindrical shell equations, the displacements of the circular tunnel

shell are calculated with respect to the circular loads on the shell in the Fourier transformed

domain. The halfspace is described, starting with the Lamé differential equation, also in the

Fourier transformed domain. Both systems can be coupled and the response of an arbitrary

point in the halfspace due to a load on the cylindrical shell can be determined. As presented

in [Gupta et al 2007] the results show a good accordance to those of a coupled FEM-BEM

approach. A horizontal surface representing the halfspace surface can be introduced ac-

cording to [Hussein et al 2006]. In a first step, the displacements at the transition between

tunnel surface and infinite medium are calculated with the PiP assuming that the near field

displacement of the tunnel is not influenced by the halfspace surface. In a next step, loads

are calculated in a fullspace model that are necessary to generate the same displacements

at a virtual cylinder surface in the fullspace. With these loads, the displacements on the

halfspace surface can be computed. In [Hussein et al 2008] this procedure is extended for a

layered halfspace, using the assumption that only the layer in which the tunnel is positioned
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influences the near field of the displacements and stresses. The effect of inclined layers in

the halfspace was considered in [Jones and Hunt 2009]. [Jones et al 2010] determined the

effect of a free surface on the oscillations inside the medium. The existence of two cylindrical

tunnels inside the medium is implemented in [Kuo et al 2011].

Integral Transform Method

Another possibility to solve the differential equation describing the elastodynamic behavior

in semi-infinite or infinite media, is used in the Integral Transform Method (ITM). [Wolf

1985] described the methodology to transform a given load from an original domain to a

Fourier transformed domain. After the transformation, the response of the system to this

load can be evaluated and the response in the original domain is obtained after an inverse

Fourier transformation. Several applications of the ITM which can be used for the calculation

of soil-structure problems are presented.

[Konrad 1985] used Fourier Transformation Methods to devise the solution of a fullspace

with cylindrical excavation in cylindrical coordinates. Later, [Grundmann and Müller 1988]

presented the solution of the system of a layered halfspace solved with the ITM. An evaluation

of the method was calculated for the system of a layer of soil mounted on a solid rock, which

was excited by a plane air wave. [Müller 1989] expanded the method for the calculation

of soil-structure-interaction by using mixed boundary conditions for the description of the

free surface of the soil as well as for the spatially limited structure. As the inverse Fourier

transformation has a high numerical effort, [Lieb 1997] developed an implementation of a

Wavelet Transformation Algorithm in order to reduce the computational costs of the ITM.

[Lenz 2003] extended the method of Lieb for a three-dimensional system.

With the mentioned modifications, ITM approaches are apt for the calculation of two-

or three-dimensional systems with regular geometry. The analytical solution is also used

by [van Dalen and Metrikine 2008] and [van Dalen et al 2015] for example to assess the

transition radiation that arises if two elastic half-planes or two elastic layers with different

parameters are coupled at a boundary and a load is moving on a straight line across this

boundary. If there are singular elements existing, ITM calculations cannot be applied with-

out further modifications. The description of complex geometries is advantageous with other

approaches as FEM or BEM. A coupling of ITM with FEM or BEM enables the user to com-

bine the positive elements of different methods. [Müller 1993] developed a boundary element

formulation based on fundamental solutions of the halfspace which can be calculated with

the ITM. A coupling between ITM and FEM was presented by [Zirwas 1996]. He modeled
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a two-dimensional, finite structure with finite elements and coupled it with a halfspace de-

scribed by ITM with the substructure technique. [Rastandi 2003] extended Zirwas’ solution

for a three-dimensional system.

In order to be able to describe complex geometric inclusions which are lying at an arbitrary

position in the soil, [Müller et al 2008] developed a fundamental solution for the system of a

halfspace with infinite, cylindrical excavation, based on the work of [Buchschmid 2002], who

derived fundamental solutions for a two-dimensional halfslice with a hole. [Frühe 2010] de-

vised a fundamental solution for the system of an infinite halfspace with spherical excavation.

Thus, not only infinite elements can be modeled but also spatially limited inclusions.

1.3 Outline of the thesis

In this thesis, a coupled ITM-FEM approach is derived to model wave propagation processes

in the soil. Using the substructure technique the stiffness matrices of substructures can be

coupled. Therefore, as a first step the stiffness matrices of the ITM substructure and the

FEM substructure are derived separately.

In chapter 2 the Integral Transform Method is presented. The Lamé differential equation is

decoupled using the Helmholtz approach and transformed from partial into ordinary differ-

ential equations by a threefold Fourier transformation. The ordinary differential equations

can be solved with the boundary conditions of the system. In dependency on the coordinate

system the solutions of different fundamental systems can be derived. In this thesis the

solutions of a halfspace with a horizontal surface, a fullspace with a cylindrical cavity and a

fullspace with spherical cavity are presented.

These fundamental solutions are superposed in chapter 3 in order to be able to model a

system with two free surfaces. This solution of a system with two surfaces is obtained by

superposing two fundamental systems with one surface each. The surface of each system

is loaded with unit loads and the stresses at the surface itself are calculated as well as

the stresses at those positions where the second surface shall be introduced. Using the

information that the superposition of the stresses has to fulfill the boundary conditions at

both surfaces, the flexibility matrix or the stiffness matrix of the superposed system can be

calculated. Thus, the solutions of a halfspace with cylindrical cavity and of a halfspace with

spherical cavity are derived. These systems can serve as the ITM substructure that shall

be coupled to the FEM substructure. The method can analogously be extended to model

systems with more than two free surfaces.
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Chapter 4 contains the derivation of the stiffness matrix of the Finite Element domain as

the second substructure. In case of the spherical Finite Element mesh that can be coupled

to the halfspace with spherical cavity, three-dimensional elements are used. However, the

Finite Element domain that shall be coupled to the halfspace with cylindrical cavity is

formulated with 2.5-dimensional elements. Thus, a formulation of these elements is presented

in this chapter. The use of 2.5-dimensional elements is possible because the solution of

the ITM substructure halfspace with cylindrical cavity is performed in the wavenumber-

frequency domain in dependency on each combination of the wavenumber kx in longitudinal

direction x of the tunnel and the frequency ω. Thus, the spatial direction x can be replaced

by the wavenumber kx also in the Finite Element substructure. The three-dimensional

Finite Element mesh of the cylinder is replaced by a superposition of the solutions of a two-

dimensional circular mesh in dependency on the y- and z-coordinates for all wavenumbers

kx and ω. Thus, a reduction of the computational cost is obtained while the solution is still

able to model the three-dimensional behavior of the structure. The derivation of the stiffness

matrix of the 2.5-dimensional elements is presented in this chapter.

After deriving the stiffness matrices of the ITM substructure and the FEM substructure, they

are coupled in chapter 5. The equilibrium of forces on the cylindrical or spherical coupling

surface as well as the compatibility of the displacements lead to the coupled systems of a

halfspace with cylindrical Finite Element mesh or a halfspace with spherical Finite Element

mesh.

Some results of the verification of the presented coupled approach are contained in chapter 6.

For the first presented coupled structure halfspace with cylindrical Finite Element mesh,

dimensionless parameters are introduced to perform a full verification.

In chapter 7 the applicability of the coupled approach for moving loads is mentioned. As

examples for possible applications, the effects of mitigation measures are predicted. The

insertion loss of a mass-spring system in an underground tunnel is computed for different

configurations. Finally, the effect of an open trench as mitigation measure for the reduction of

the transmission of vibrations between the point of load application and a point of observation

is presented.
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2 Fundamental Solutions in Continuum

Dynamics

2.1 Preliminary remark

In order to derive the solutions for the ITM substructure of a halfspace with a cylindrical

cavity or a halfspace with a spherical cavity, the respective fundamental systems are re-

quired. The fundamental systems halfspace, fullspace with cylindrical cavity and fullspace

with spherical cavity are presented in this chapter in the sections 2.3, 2.4 and 2.5. The

solutions of these systems are based on the fundamental equations in continuum dynamics

which are introduced in section 2.2. The superposition of the fundamental systems itself is

contained in the following chapter 3.

2.2 Fundamental equations in continuum dynamics

The equilibrium of an infinitesimal small volume element in a three-dimensional continuum

is described by the following equation

σij|j +Qi − ρüi = 0 (2.1)

with the Cauchy stress tensor σij, the vector of the internal forces inside the volume Qi and

the vector of the inertia forces ρüi. In equation (2.1) linear elastic behavior of a homogeneous,

isotropic material of the continuum is assumed.

If internal forces inside the volume are disregarded and only forces applied at the bound-

aries of the volume element are taken into account, the relationship between stresses and

accelerations can be obtained.

σij|j − ρüi = 0 (2.2)
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The stress tensor σij can be derived from the Green-Lagrange-strain tensor εij for a linear

elastic, homogeneous, isotropic material according to Hooke’s law as

σij = 2µεij + λεmmg
ij (2.3)

The Lamé constants λ and µ can be further derived from the more common parameters

Young’s modulus E and Poisson ratio ν by

µ = G =
E

2 (1 + ν)
(2.4)

λ =
Eν

(1 + ν) (1− 2ν)
(2.5)

It should be noted that the Lamé constant µ can also be replaced by the shear modulus

G = µ.

If it is required to model material damping inside the volume element, hysteretic damping

is an adequate approximation for describing the material behavior. According to the cor-

respondence principle mentioned for example in [Wolf 1985] or in [Krämer 1987], hysteretic

damping can be modeled by a complex Young’s modulus

E = E (1 + i sign (ω) ζ) (2.6)

where ζ represents the hysteretic damping ratio of the material. In equation (2.6), a

frequency-independent hysteretic damping is used according to [Wolf 1985] or [Gaul 1976].

Measurements presented by [Hardin and Drnevich 1972] also confirmed the applicability of

a model assuming frequency independence of material damping for soil material.

The Green-Lagrange-strain tensor εij in equation (2.3) can be expressed by the displacement

field ui for small deformations by

εij =
1

2

(
ui|j + uj|i

)
(2.7)

Introducing equation (2.7) in equation (2.3) and subsequently equation (2.3) in equation (2.2)

the Lamé differential equation can be formulated as

µui|jj + (λ+ µ)uj|ij − ρüi = 0 (2.8)

Every displacement field inside a linear elastic, homogeneous, isotropic continuum has to

fulfill the Lamé differential equation. It represents a system of three coupled, partial differ-



14 2 Fundamental Solutions in Continuum Dynamics

ential equations. In order to solve this system of equations for the unknown displacements,

a decoupling of the equations is advantageous as a direct integration is difficult. The decou-

pling is done using Helmholtz’ principle. This principle states according to e. g. [Eringen

and Suhubi 1975] or [Arfken and Weber 1995] that every possible vector field can be replaced

by the sum of an irrotational field and a solenoidal field. As the gradient of a scalar field Φ

is irrotational and the rotation of a vector field Ψ is solenoidal as stated e. g. in [Meinhold

and Miltzlaff 1978], the components of the displacement field ui can be replaced by

ui = Φ|i + Ψl|k ∈ikl (2.9)

Therefore, for a three-dimensional Cartesian coordinate system the displacements ui can be

calculated as

u1 = Φ|1 + Ψ3|2 −Ψ2|3 (2.10a)

u2 = Φ|2 + Ψ1|3 −Ψ3|1 (2.10b)

u3 = Φ|3 + Ψ2|1 −Ψ1|2 (2.10c)

The introduction of equation (2.9) into the Lamé differential equation (2.8) leads to decoupled

partial differential equations for the scalar field Φ and the components of the vector field Ψi.

Φ|jj −
1

cp2
Φ̈ = 0 (2.11a)

Ψi|jj −
1

cs2
Ψ̈i = 0 (2.11b)

In the equations (2.11) cp and cs denote the velocities of the compressional waves (P-waves)

and the shear waves (S-waves) in the medium in dependency on the material parameters.

cp =

√
λ+ 2µ

ρ
(2.12)

cs =

√
µ

ρ
(2.13)

Thus, applying Helmholtz’ principle, the three coupled partial differential equations of the

Lamé differential equation are replaced by four decoupled partial differential equations. The

completeness of Helmholtz’ principle was first correctly proven by [Somigliana 1892]. This
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proof was based on the gauge condition that the vector potential Ψ is solenoidal itself.

Ψi|i = 0 (2.14)

Using this additional requirement, the vector field Ψ contains two independent components

and the equations (2.11) describe only three decoupled partial differential equations.

Later, [Long 1967] proved that one component of the vector potential Ψ can be chosen

arbitrarily and therefore also three decoupled partial differential equations can be obtained.

Both approaches will be used in order to derive the solutions for the system of a halfspace

with cylindrical or spherical cavity.

2.3 Fundamental solution for a semi-infinite halfspace

x

y

z

pz(x,y,t)

Figure 2.1: Schematic sketch of the halfspace model with an exemplary load

In order to determine the solution for the system of a halfspace as depicted in figure 2.1, the

partial differential equations (2.11) can be formulated for the Cartesian coordinate system.

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

cp2

∂2

∂t2

]
Φ (x, y, z, t) = 0 (2.15a)

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

cs2

∂2

∂t2

]
Ψx (x, y, z, t) = 0 (2.15b)

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

cs2

∂2

∂t2

]
Ψy (x, y, z, t) = 0 (2.15c)

The component Ψz of the vector potential Ψ is set to zero for the given system as mentioned

in section 2.2 without any loss of information for the system of a halfspace.
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2.3.1 Solution of the system of partial differential equations

A transformation into ordinary differential equations is possible for the given system using

a threefold Fourier transformation (see appendix A.1). One of the four partial derivatives

remains untransformed, usually the z-coordinate. Regarding the x-, y- and t-coordinates,

Fourier transformations are applied from the spatial into the wavenumber domain x kx,

y ky and from the time domain into the frequency domain t ω. Due to

the Fourier transformation, the second derivatives with respect to x, y and t in equa-

tions (2.15) are replaced by multiplications with the negative wavenumbers respectively

frequency squared as also expressed in appendix A.1[
−kx2 − ky2 + kp

2 +
∂2

∂z2

]
Φ̂ (kx, ky, z, ω) = 0 (2.16a)

[
−kx2 − ky2 + ks

2 +
∂2

∂z2

]
Ψ̂x (kx, ky, z, ω) = 0 (2.16b)

[
−kx2 − ky2 + ks

2 +
∂2

∂z2

]
Ψ̂y (kx, ky, z, ω) = 0 (2.16c)

with the wavenumbers of the P- and S-waves for a given frequency ω.

kp =
ω

cp
(2.17)

ks =
ω

cs
(2.18)

The ˆ symbol denotes parameters in the threefold transformed domain.

A solution of the ordinary differential equations (2.16) is possible using an exponential ap-

proach for the scalar field Φ̂ and the components of the vector field Ψ̂i with i = x, y

Φ̂ = A1 e
λ1z + A2 e

−λ1z (2.19a)

Ψ̂i = Bi1 e
λ2z +Bi2 e

−λ2z (2.19b)

with

λ1 =
√
kx

2 + ky
2 − kp2 (2.20)

λ2 =
√
kx

2 + ky
2 − ks2 (2.21)



2.3 Fundamental solution for a semi-infinite halfspace 17

The unknown coefficients A1, A2, Bi1 and Bi2 are evaluated using the boundary conditions

of the system.

2.3.2 Local and non-local boundary conditions

The solution characteristics strongly depend on the relationship between kx, ky and kp re-

spectively ks. If λ1 takes imaginary values (kx
2 + ky

2 < kp
2), the equations (2.19) describe

spatially propagating compressional waves that lead to a far field in the medium. In depen-

dency on the sign of λ1 the waves are propagating in negative or positive z-direction. If λ1 has

real values (kx
2 + ky

2 > kp
2), the solution consists of surface waves. A near field is described

that is exponentially increasing or decaying with the depth z in dependency on the sign of

λ1. Analogously, λ2 can be related to spatially propagating shear waves (kx
2 + ky

2 < ks
2) or

to exponentially increasing or decaying surface waves (kx
2 + ky

2 > ks
2).

As loads shall only be applied on the surface of the halfspace, some of the solution contri-

butions can be excluded. According to the Sommerfeld condition of radiation mentioned in

[Sommerfeld 1949], ”the energy which is radiated from the sources must scatter to infinity;

no energy may be radiated from infinity into the prescribed singularities of the field.” Thus,

in negative z-direction spatially propagating waves are not possible as well as surface waves

with amplitudes that are increasing with the z-coordinate. Using these non-local boundary

conditions, the coefficients A1, A2, Bi1 or Bi2 can be set to zero in dependency on the signs

of the wavenumbers and frequencies of the response. [Müller 1989] showed that for negative

frequencies the parameters A1 and Bi1 describe waves that are physically not possible for

both spatially propagating and surface waves and therefore can be set to zero in case of a

semi-infinite halfspace.

If the calculations were carried out for positive frequencies, also three of the parameters

A1, A2, Bi1 and Bi2 could be set to zero. However, an additional differentiation would be

necessary. For spatially propagating waves A2 and Bi2 could be set to zero, for surface waves

A1 and Bi1. In order to avoid this case-by-case analysis, all calculations and derivations are

carried out for negative frequencies. The results for positive frequencies are complemented

using the condition that, as the parameters in the original domain are real, the parameters

in the Fourier transformed domain have to be conjugate complex. Therefore, a general,

complex parameter ẑ in the Fourier transformed domain that has been calculated for a

given combination of wavenumbers and frequency (kx = ±Kx, ky = ±Ky, ω = −Ω) can be
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supplemented for positive frequencies with

ẑ(Kx, Ky,Ω) = ẑ∗(−Kx,−Ky,−Ω) (2.22a)

ẑ(Kx,−Ky,Ω) = ẑ∗(−Kx, Ky,−Ω) (2.22b)

ẑ(−Kx, Ky,Ω) = ẑ∗(Kx,−Ky,−Ω) (2.22c)

ẑ(−Kx,−Ky,Ω) = ẑ∗(Kx, Ky,−Ω) (2.22d)

with the symbol ∗ indicating the conjugate complex parameter.

After excluding three of the six unknowns using the information about the non-local bound-

ary conditions, the remaining three constants A2, Bx2 and By2 can be determined with the

help of the local boundary conditions on the surface of the halfspace.

σ̂zz (kx, ky, z = 0, ω) = −p̂z (kx, ky, ω) (2.23a)

σ̂yz (kx, ky, z = 0, ω) = −p̂y (kx, ky, ω) (2.23b)

σ̂xz (kx, ky, z = 0, ω) = −p̂x (kx, ky, ω) (2.23c)

To obtain the unknowns, the dependency of the stresses on the unknowns A2, Bx2 and By2

is required and shall be derived in the following section.

2.3.3 Stresses in the Cartesian coordinate system

The relationship between the unknowns and the stresses on the halfspace surface is derived

using the material law and the kinematic relations. This is carried out for the general

situation with the initial six unknowns A1, A2, Bx1, Bx2, By1 and By2. Thus, a general

solution is presented that can also be adapted to the system of a layered halfspace or a single

layer of material on a fixed boundary where the Sommerfeld condition of radiation cannot

be applied in the spatially limited layer as will be presented in section 2.3.4.

The components of the stress tensor σ̂ij can be expressed according to equation (2.3) in

dependency on the Green-Lagrange-strain tensor ε̂ij for the Cartesian coordinate system as

σ̂ij = 2µε̂ij + λε̂mmδij (2.24)
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In matrix notation equation (2.24) can be expressed as

σ̂xx

σ̂yy

σ̂zz

σ̂xy

σ̂yz

σ̂xz


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





ε̂xx

ε̂yy

ε̂zz

ε̂xy

ε̂yz

ε̂xz


σ̂ = [D] ε̂

(2.25)

The linearized strain tensor ε̂ij is derived from the displacements in Cartesian coordinates

as

ε̂ij =
1

2
(ûi,j + ûj,i) (2.26)

In the Fourier transformed domain (kx, ky, z, ω), equation (2.26) can be written as

ε̂xx

ε̂yy

ε̂zz

ε̂xy

ε̂yz

ε̂xz


=



ikx 0 0

0 iky 0

0 0 ∂
∂z

1
2
iky

1
2
ikx 0

0 1
2
∂
∂z

1
2
iky

1
2
∂
∂z

0 1
2
ikx



ûxûy
ûz



ε̂ =
[
Ĝ
]

û

(2.27)

Introducing equation (2.27) in equation (2.25), a relationship between stresses and displace-

ments is obtained.

σ̂xx

σ̂yy

σ̂zz

σ̂xy

σ̂yz

σ̂xz


=



ikx (λ+ 2µ) ikyλ λ ∂
∂z

ikxλ iky (λ+ 2µ) λ ∂
∂z

ikxλ ikyλ (λ+ 2µ) ∂
∂z

ikyµ ikxµ 0

0 µ ∂
∂z

ikyµ

µ ∂
∂z

0 ikxµ



ûxûy
ûz

 (2.28)

The components of the displacement field ui are expressed by the scalar and vector potential
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in the Cartesian coordinate system by

ui = Φ,i + Ψl,k ∈ikl (2.29)

In the transformed domain, equation (2.29) is formulated for the displacements ûi asûxûy
ûz

 =

ikx 0 − ∂
∂z

iky
∂
∂z

0
∂
∂z
−iky ikx


 Φ̂

Ψ̂x

Ψ̂y

 (2.30)

Therefore, the relationship between stresses and the scalar potential Φ̂ and the components

of the vector potential Ψ̂x and Ψ̂y can be described by

σ̂xx

σ̂yy

σ̂zz

σ̂xy

σ̂yz

σ̂xz


=



−kx2 (λ+ 2µ)− ky2λ+ λ ∂2

∂z2
0 −2ikxµ

∂
∂z

−kx2λ− ky2 (λ+ 2µ) + λ ∂2

∂z2
2ikyµ

∂
∂z

0

−kx2λ− ky2λ+ (λ+ 2µ) ∂2

∂z2
−2ikyµ

∂
∂z

2ikxµ
∂
∂z

−2kxkyµ ikxµ
∂
∂z

−ikyµ ∂
∂z

2ikyµ
∂
∂z

µ ∂2

∂z2
+ ky

2µ −kxkyµ
2ikxµ

∂
∂z

kxkyµ −µ ∂2

∂z2
− kx2µ



 Φ̂

Ψ̂x

Ψ̂y

 (2.31)

Introducing the ansatz functions (2.19)

 Φ̂

Ψ̂x

Ψ̂y

 =

e
λ1z e−λ1z 0 0 0 0

0 0 eλ2z e−λ2z 0 0

0 0 0 0 eλ2z e−λ2z





A1

A2

Bx1

Bx2

By1

By2


(2.32)

a relationship between the stresses σ̂ij and the unknowns A1, A2, Bx1, Bx2, By1 and By2 can

be deduced.

σ̂xx

σ̂yy

σ̂zz

σ̂xy

σ̂yz

σ̂xz


= µ



−2kx
2−λ

µ
kp

2 −2kx
2−λ

µ
kp

2 0 0 −2ikxλ2 2ikxλ2

−2ky
2−λ

µ
kp

2 −2ky
2−λ

µ
kp

2 2ikyλ2 −2ikyλ2 0 0

2λ1
2−λ

µ
kp

2 2λ1
2−λ

µ
kp

2 −2ikyλ2 2ikyλ2 2ikxλ2 −2ikxλ2

−2kxky −2kxky ikxλ2 −ikxλ2 −ikyλ2 ikyλ2

2ikyλ1 −2ikyλ1 λ2
2+ky

2 λ2
2+ky

2 −kxky −kxky

2ikxλ1 −2ikxλ1 kxky kxky −λ22−kx2 −λ22−kx2





A1e
λ1z

A2e
−λ1z

Bx1e
λ2z

Bx2e
−λ2z

By1e
λ2z

By2e
−λ2z


(2.33)
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With the help of the above equation (2.33), the boundary conditions (2.23) on the surface

of the halfspace (z = 0) can be formulated in dependency on the unknowns A2, Bx2 and By2

and the unknowns can be determined.σ̂zzσ̂yz

σ̂xz

 = µ

2λ1
2 − λ

µ
kp

2 2ikyλ2 −2ikxλ2

−2ikyλ1 λ2
2 + ky

2 −kxky
−2ikxλ1 kxky −λ2

2 − kx2


︸ ︷︷ ︸

[K̂hs]

A2

Bx2

By2

 =

−p̂z−p̂y
−p̂x

 (2.34)

In a general formulation, the unknowns can be computed using Cramer’s rule. With the

determinant of matrix
[
K̂hs

]

det
(
µ
[
K̂hs

])
= µ3 det

[
K̂hs

]
= µ3λ2

2

[
−
(

2λ1
2 − λ

µ
kp

2

)2

+ 4
(
kx

2 + ky
2
)
λ1λ2

]
(2.35)

the unknowns can be calculated by

A2 =

p̂z
µ
λ2

2
(

2λ1
2 − λ

µ
kp

2
)
− 2i p̂y

µ
kyλ2

3 − 2i p̂x
µ
kxλ2

3

det
[
K̂hs

] (2.36a)

Bx2 =
2i p̂z

µ
kyλ1λ2

2 + p̂y
µ

((
λ2

2 + kx
2
) (

2λ1
2 − λ

µ
kp

2
)
− 4kx

2λ1λ2

)
det
[
K̂hs

] +

+

p̂x
µ
kxky

(
4λ1λ2 − 2λ1

2 + λ
µ
kp

2
)

det
[
K̂hs

] (2.36b)

By2 =
−2i p̂z

µ
kxλ1λ2

2 − p̂y
µ
kxky

(
4λ1λ2 − 2λ1

2 + λ
µ
kp

2
)

det
[
K̂hs

] −

−
p̂x
µ

((
λ2

2 + ky
2
) (

2λ1
2 − λ

µ
kp

2
)
− 4ky

2λ1λ2

)
det
[
K̂hs

] (2.36c)

After calculating the unknowns, the stresses and displacements inside the halfspace can be

computed in a post-processing step in the transformed domain in dependency on (kx, ky, z, ω).

The stresses are calculated using equation (2.33). The relationship between the unknowns
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and the displacements can be derived using the equations (2.30) and (2.32).

ûxûy
ûz

 =

ikx ikx 0 0 −λ2 λ2

iky iky λ2 −λ2 0 0

λ1 −λ1 −iky −iky ikx ikx





A1e
λ1z

A2e
−λ1z

Bx1e
λ2z

Bx2e
−λ2z

By1e
λ2z

By2e
−λ2z


(2.37)

The parameters in the original domain are obtained in dependency on (x, y, z, t) after a

threefold inverse Fourier transformation.

2.3.4 Fundamental solution for a layered halfspace

If the solution of a horizontally layered halfspace as exemplarily depicted in figure 2.2 has to

be determined, the boundary conditions have to be adapted. The Sommerfeld condition of

radiation is only valid for an infinitely extended medium, which is, in the case of a layered

halfspace the infinite layer at the bottom of the system. Thus, for the given system, the

unknowns of layer l2 with the z-coordinate z2 are A2,l2 , Bx2,l2 , By2,l2 . The depicted layer l1

with the z-coordinate z1 is described with six unknowns A1,l1 , A2,l1 , Bx1,l1 , Bx2,l1 , By1,l1 , By2,l1

as in the spatially limited layer the Sommerfeld condition of radiation cannot be applied.

Due to the geometry of the system, it has to be possible to model waves that are reflected at

the boundary and thus spatially propagating waves in negative z-direction or surface waves

that are exponentially increasing with the z-coordinate. Therefore, in a layered halfspace six

unknowns per spatially limited layer and three unknowns for the infinite system have to be

determined. This is done by applying the boundary and transition conditions.

pz(x,y,t)

x

y

z1

x

y

z2

h1

layer l1

layer l2

Figure 2.2: Schematic sketch of the layered halfspace model with an exemplary load
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The equilibrium between the stresses in z-direction on the surface z1 = 0 and the external

loads is valid as presented in the equations (2.23). Additionally six transition conditions can

be formulated concerning the equality of the displacements and stresses on the transition

between z1 = h1 and z2 = 0.

ûx (kx, ky, z2 = 0, ω) = ûx (kx, ky, z1 = h1, ω) (2.38a)

ûy (kx, ky, z2 = 0, ω) = ûy (kx, ky, z1 = h1, ω) (2.38b)

ûz (kx, ky, z2 = 0, ω) = ûz (kx, ky, z1 = h1, ω) (2.38c)

σ̂zz (kx, ky, z2 = 0, ω) = σ̂zz (kx, ky, z1 = h1, ω) (2.38d)

σ̂yz (kx, ky, z2 = 0, ω) = σ̂yz (kx, ky, z1 = h1, ω) (2.38e)

σ̂xz (kx, ky, z2 = 0, ω) = σ̂xz (kx, ky, z1 = h1, ω) (2.38f)

The equations (2.38) hold for a situation where there is no additional external load applied

at the layer boundary. If there is an external load, it has to be taken into account in

the equilibrium. Thus, in order to determine the unknowns of a layered halfspace system

in general, three stress boundary conditions on the surface at z1 = 0 and six transition

conditions at each transition relating the displacements and stresses can be used.

However, to avoid numerical artifacts occurring for exponential functions with great ar-

guments, [Grundmann and Müller 1988] replaced the unknowns A1,l1 , Bx1,l1 , By1,l1 which

represent the surface waves in the spatially limited, upper layer whose amplitudes are expo-

nentially increasing with increasing z-coordinate respectively the spatially propagating waves

which are moving in negative z-direction by

A1,l1e
λ1z = A1,l1

eλ1(z−h1) (2.39a)

Bi1,l1e
λ2z = Bi1,l1

eλ2(z−h1) (2.39b)

The relationship between the modified unknowns and the stresses σ̂zz, σ̂yz and σ̂xz can be
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stated analogously to equation (2.33) as

σ̂zzσ̂yz

σ̂xz

 = µ

2λ1
2−λ

µ
kp

2 2λ1
2−λ

µ
kp

2 −2ikyλ2 2ikyλ2 2ikxλ2 −2ikxλ2

2ikyλ1 −2ikyλ1 λ2
2+ky

2 λ2
2+ky

2 −kxky −kxky

2ikxλ1 −2ikxλ1 kxky kxky −λ22−kx2 −λ22−kx2





A1,l1
eλ1(z−h1)

A2e
−λ1z

Bx1,l1
eλ2(z−h1)

Bx2e
−λ2z

By1,l1
eλ2(z−h1)

By2e
−λ2z


(2.40)

and evaluated at the surface for z1 = 0 and at the layer boundary for z1 = h1. For the

displacement transition conditions (2.38a), (2.38b) and (2.38c) the relationship between the

modified unknowns and the displacements can be formulated analogously to equation (2.37)

as

ûxûy
ûz

 =

ikx ikx 0 0 −λ2 λ2

iky iky λ2 −λ2 0 0

λ1 −λ1 −iky −iky ikx ikx





A1,l1
eλ1(z−h1)

A2e
−λ1z

Bx1,l1
eλ2(z−h1)

Bx2e
−λ2z

By1,l1
eλ2(z−h1)

By2e
−λ2z


(2.41)

for the spatially limited layer. Equation (2.41) is evaluated for z1 = h1 and introduced into

the transition conditions (2.38a), (2.38b) and (2.38c).

Thus, using the non-local and local boundary and transition conditions, the unknowns can

be determined. The solution for layered halfspace systems with more horizontal layers can

be derived analogously by adding six transition conditions at each additional layer boundary

and six unknowns for each additional spatially limited layer.

2.3.5 Static load on the halfspace

For a static load on the system (ω = 0⇒ kp = 0 and ks = 0) the approaches in equation (2.19)

are not complete as then λ1 = λ2 =
√
k2
x + k2

y. Consequently, the determinant of matrix[
K̂hs

]
in equation (2.35) becomes zero and a solution for the unknowns is not possible.

Therefore, extended approaches are necessary.
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[Konrad 1985] presented a solution using the displacement approach of Papkovitch-Neuber.

He introduced the Helmholtz decomposition of equation (2.9) in the Navier equation

µui|jj + (λ+ µ)uj|ij = 0 (2.42)

and determined a solution for the Papkovitch-Neuber potentials χ0 and χα. The relationship

between the Helmholtz potentials Φ and Ψi and the Papkovitch-Neuber potentials is derived

in [Konrad 1985].

[Lenz 2003] used a different approach. He applied the threefold Fourier transformation

x kx, y ky and t ω on the Lamé differential equation (2.8) and solved

the resulting system of coupled ordinary differential equations with an exponential approach.

In order to compare the results to those obtained using the Helmholtz potentials, he expressed

the solution also in dependency on the six unknown coefficients A01, A02, B0x1, B0x2, B0y1

and B0y2 of the Helmholtz potentials. The index 0 denotes the static case. The relationship

between the stresses and the vector of the unknowns for the static case is formulated in

equation (2.43)

σ̂xx

σ̂yy

σ̂zz

σ̂xy

σ̂yz

σ̂xz


= µ



−2k2xz−2 λkr
λ+µ

−2k2xz+2 λkr
λ+µ

0 0 −2ikxkr 2ikxkr

−2k2y−2 λkr
λ+µ

−2k2y+2 λkr
λ+µ

2ikykr −2ikykr 0 0

2k2rz−2
(λ+2µ)kr
λ+µ

2k2rz+2
(λ+2µ)kr
λ+µ

−2ikykr 2ikykr 2ikxkr −2ikxkr

−2kxkyz −2kxkyz ikxkr −ikxkr −ikykr ikykr

2iky(krz− µ
λ+µ) −2iky(krz+ µ

λ+µ) k2r+k2y k2r+k2y −kxky −kxky

2ikx(krz− µ
λ+µ) −2ikx(krz+ µ

λ+µ) kxky kxky −k2r−k2x −k2r−k2x





A01e
λ1z

A02e
−λ1z

B0x1e
λ2z

B0x2e
−λ2z

B0y1e
λ2z

B0y2e
−λ2z


(2.43)

with

kr = |
√
kx

2 + ky
2| (2.44)

A more detailed derivation of the matrix in equation (2.43) is also contained in [Ullmann

2013].
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2.4 Fundamental solution for a fullspace with cylindrical

cavity

Figure 2.3: Schematic sketch of the fullspace
with cylindrical cavity

x
ϕ

r

z

y

Figure 2.4: Cartesian and cylindrical coordinates

In order to determine the solution for the system of a fullspace with cylindrical cavity that

is exemplarily depicted in figure 2.3 analogously to the system of a halfspace, the partial

differential equations (2.11) are formulated for a cylindrical coordinate system. The coordi-

nates (x, r, ϕ) are used according to the definition in figure 2.4. Introducing the Helmholtz

approach (2.9) in the Lamé differential equation (2.8) does not directly yield in a decou-

pled system of equations as the components of the vector potential Ψi are not decoupled in

the non-stationary cylindrical coordinate system. Therefore, an additional transformation

is necessary. According to [Frühe 2010], the vector potential Ψ is replaced by two scalar

functions ψ and χ so that condition (2.14) is fulfilled. As presented in [Eringen and Suhubi

1975] Ψ is expressed by

Ψ = ψg1 + χ|j ∈ij1 gi (2.45)

with ∈ijk as the permutation symbol of the cylindrical coordinate system.

Thus, the system of decoupled partial differential equations is formulated in cylindrical co-
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ordinates as[
∂2

∂x2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
− 1

cp2

∂2

∂t2

]
Φ (x, r, ϕ, t) = 0 (2.46a)

[
∂2

∂x2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
− 1

cs2

∂2

∂t2

]
ψ (x, r, ϕ, t) = 0 (2.46b)

[
∂2

∂x2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
− 1

cs2

∂2

∂t2

]
χ (x, r, ϕ, t) = 0 (2.46c)

2.4.1 Solution of the system of partial differential equations

To transform the partial differential equations (2.46) into ordinary differential equations, a

Fourier transformation is again applied. A twofold Fourier transformation from space into

wavenumber domain x kx and from time into frequency domain t ω is carried

out. Additionally a Fourier series expansion regarding the circumference of the cylindrical

cavity is performed.

Φ̃ (kx, r, ϕ, ω) =
∞∑

n=−∞

Φ̂ (kx, r, n, ω) einϕ (2.47a)

ψ̃ (kx, r, ϕ, ω) =
∞∑

n=−∞

ψ̂ (kx, r, n, ω) einϕ (2.47b)

χ̃ (kx, r, ϕ, ω) =
∞∑

n=−∞

χ̂ (kx, r, n, ω) einϕ (2.47c)

The ˜ symbol denotes parameters in the twofold Fourier transformed domain that are de-

pendent on kx and ω. After the Fourier series expansion, the parameters are again signified

with the ˆ symbol to indicate the three transformations respectively the series expansion.

In the cylindrical coordinate system the coordinate r is not transformed, analogously to the

z-coordinate in the Cartesian coordinate system. Different layers parallel to the respective

surfaces can thus be implemented. After the transformation from the original into the

transformed domain, the equations (2.46) form the following ordinary differential equations
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[
−kx2 +

∂2

∂r2
+

1

r

∂

∂r
− n2

r2
+ kp

2

]
Φ̂ (kx, r, n, ω) = 0 (2.48a)

[
−kx2 +

∂2

∂r2
+

1

r

∂

∂r
− n2

r2
+ ks

2

]
ψ̂ (kx, r, n, ω) = 0 (2.48b)

[
−kx2 +

∂2

∂r2
+

1

r

∂

∂r
− n2

r2
+ ks

2

]
χ̂ (kx, r, n, ω) = 0 (2.48c)

These differential equations are Bessel’s differential equations of the type[
∂2

∂r2
+

1

r

∂

∂r
+ ki

2 − n2

r2

]
f̂ (r) = 0 (2.49)

This type of differential equations can be solved for the unknown function f̂ using Hankel

functions of the first kind H
(1)
n (kir) and of the second kind H

(2)
n (kir). Definitions regarding

Bessel’s differential equation and Hankel functions are summarized in appendix A.2. Thus,

the solution for the unknown function f̂ can be expressed by

f̂ (kir) = C1H
(1)
n (kir) + C2H

(2)
n (kir) (2.50)

Using this information, the solution of the system of ordinary differential equations (2.48)

can be expressed by Hankel functions in dependency on the coordinate r and the definition

of k1
2 = kp

2 − kx2 respectively k2
2 = ks

2 − kx2.

Φ̂ (kx, r, n, ω) = C1n H
(1)
n (k1r) + C4n H

(2)
n (k1r) (2.51a)

ψ̂ (kx, r, n, ω) = C2n H
(1)
n (k2r) + C5n H

(2)
n (k2r) (2.51b)

χ̂ (kx, r, n, ω) = C3n H
(1)
n (k2r) + C6n H

(2)
n (k2r) (2.51c)

In case k1 respectively k2 are equal to zero, the differential equations (2.48) are solved with a

different approach as mentioned in [Frühe 2010]. As this case is only possible in an undamped

material, it will not be further treated here.

2.4.2 Local and non-local boundary conditions

Analogously to the system of a halfspace, the different solution contributions correspond to

different wave types. Using the information about physical limitations, coefficients can be
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excluded. [Müller 2007] showed that performing the calculations for negative frequencies, the

coefficients C4n, C5n and C6n can be set to zero if infinite extension of the medium without

radial boundaries is assumed. The remaining unknowns C1n, C2n and C3n are calculated

for negative frequencies using the boundary conditions on the cylindrical boundary of the

system with a radius r = R.

σ̂rr (kx, r = R, n, ω) = −p̂r (kx, n, ω) (2.52a)

σ̂xr (kx, r = R, n, ω) = −p̂x (kx, n, ω) (2.52b)

σ̂ϕr (kx, r = R, n, ω) = −p̂ϕ (kx, n, ω) (2.52c)

The results for positive frequencies are supplemented as the conjugate complex values of the

results for negative frequencies comparably to the equations (2.22). If, analogously to the

derivations for the layered halfspace in section 2.3.4, layers in the medium exist in dependency

on the spatially untransformed coordinate r, no unknowns can be set to zero inside the

limited layer and the unknowns are determined using the stress boundary conditions on the

cylindrical surface, the transition conditions at the radial boundaries and the Sommerfeld

condition of radiation.

2.4.3 Stresses in the cylindrical coordinate system

In order to apply the boundary conditions, the relationship between the stresses σ̂rr, σ̂xr

and σ̂ϕr and the unknowns C1n, C2n, ..., C6n is derived. The relationship between the dis-

placements ûx, ûr and ûϕ and the scalar functions Φ̂, ψ̂ and χ̂ can be formulated in matrix

notation based on the equations (2.9) and (2.45) in the threefold transformed cylindrical

coordinate system (kx, r, n, ω) asûxûr
ûϕ

 =

ikx 0 k2
2

∂
∂r

in
r

ikx
∂
∂r

in
r
− ∂
∂r
−n
r
kx


Φ̂

ψ̂

χ̂

 (2.53)

Substituting the scalar functions by the unknowns C1n, C2n and C3n of an unlayered infinite

medium leads toûxûr
ûϕ

 =

ikxH
(1)
n (k1r) 0 k2

2H
(1)
n (k2r)

∂
∂r
H

(1)
n (k1r) in

r
H

(1)
n (k2r) ikx

∂
∂r
H

(1)
n (k2r)

in
r
H

(1)
n (k1r) − ∂

∂r
H

(1)
n (k2r) −n

r
kxH

(1)
n (k2r)


C1n

C2n

C3n

 (2.54)
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The relationship between the stresses and the unknowns can be derived in a general form

analogously to the derivations in section 2.3.3. The result can be abbreviated in matrix

notation as

σ̂xx

σ̂rr

σ̂ϕϕ

σ̂xr

σ̂ϕr

σ̂xϕ


=



K̂c,11 K̂c,12 K̂c,13 K̂c,14 K̂c,15 K̂c,16

K̂c,21 K̂c,22 K̂c,23 K̂c,24 K̂c,25 K̂c,26

K̂c,31 K̂c,32 K̂c,33 K̂c,34 K̂c,35 K̂c,36

K̂c,41 K̂c,42 K̂c,43 K̂c,44 K̂c,45 K̂c,46

K̂c,51 K̂c,52 K̂c,53 K̂c,54 K̂c,55 K̂c,56

K̂c,61 K̂c,62 K̂c,63 K̂c,64 K̂c,65 K̂c,66





C1n

C2n

C3n

C4n

C5n

C6n


σ̂c =

[
K̂c

]
Cc

(2.55)

The elements of matrix
[
K̂c

]
are contained in appendix A.3. A complete derivation is

presented in [Frühe 2010].

If the unknowns C1n, C2n and C3n of an unlayered, infinite medium shall be determined

based on the stress boundary conditions (2.52) on the cylindrical surface, the following set

of equations is obtained.

− p̂r (kx, n, ω) =

[(
n2 − n
R2

+ k 2
x −

1

2
k 2
s

)
2µH(1)

n (k1R) +
1

R
k1 2µH

(1)
n+1(k1R)

]
C1n

+

[
i
n2 − n
R2

2µH(1)
n (k2R)− i n

R
k2 2µH

(1)
n+1(k2R)

]
C2n

+

[
i

(
n2 − n
R2

− k 2
2

)
kx 2µH(1)

n (k2R) + i
1

R
kx k2 2µH

(1)
n+1(k2R)

]
C3n

(2.56a)

− p̂x (kx, n, ω) =
[
i
n

R
kx 2µH(1)

n (k1R)− i kx k1 2µH
(1)
n+1(k1R)

]
C1n

+
[
− n

2R
kx 2µH(1)

n (k2R)
]
C2n

+

[
n

2R

(
k 2

2 − k 2
x

)
2µH(1)

n (k2R) +
1

2

(
k 2
x k2 − k 3

2

)
2µH

(1)
n+1(k2R)

]
C3n

(2.56b)
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− p̂ϕ (kx, n, ω) =

[
i
n2 − n
R2

2µH(1)
n (k1R)− i n

R
k1 2µH

(1)
n+1(k1R)

]
C1n

+

[(
−n

2 − n
R2

+
1

2
k 2

2

)
2µH(1)

n (k2R)− 1

R
k2 2µH

(1)
n+1(k2R)

]
C2n

+

[
−n

2 − n
R2

kx 2µH(1)
n (k2R) +

n

R
kx k2 2µH

(1)
n+1(k2R)

]
C3n

(2.56c)

2.5 Fundamental solution for a fullspace with spherical

cavity

The solution of a fullspace with spherical cavity as exemplarily depicted in figure 2.5 is derived

for a spherical coordinate system as defined in figure 2.6 with the radial coordinate r, the

azimuth angle ϕ and the elevation angle ϑ.

Figure 2.5: Schematic sketch of the fullspace
with spherical cavity

y

ϑ

x

z
r

raz ϕ

Figure 2.6: Cartesian and spherical coordinates

Using the spherical coordinate system, analogously to the derivations in section 2.4 the vector

potential Ψ is replaced by two scalar functions ψ and χ by

Ψ = rψg1 + (rχ) |j ∈ij1 gi (2.57)
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with the permutation symbol of the spherical coordinate system ∈ijk.

With the definition (2.57), condition (2.14) Ψi|i = 0 is fulfilled and the Helmholtz decom-

position is applied. Following the derivations presented in [Eringen and Suhubi 1975] and

[Frühe 2010] three decoupled partial differential equations for the scalar potentials Φ, ψ and

χ are obtained.[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
− 1

cp2

∂2

∂t2

]
Φ (r, ϑ, ϕ, t) = 0

(2.58a)[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
− 1

cs2

∂2

∂t2

]
ψ (r, ϑ, ϕ, t) = 0

(2.58b)[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
− 1

cs2

∂2

∂t2

]
χ (r, ϑ, ϕ, t) = 0

(2.58c)

2.5.1 Solution of the system of partial differential equations

As a first step to transform the partial differential equations (2.58) into ordinary differential

equations again a Fourier transformation from time into frequency domain t ω is

applied leading to[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
+ kp

2

]
Φ̄ (r, ϑ, ϕ, ω) = 0 (2.59a)

[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
+ ks

2

]
ψ̄ (r, ϑ, ϕ, ω) = 0 (2.59b)

[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
+ ks

2

]
χ̄ (r, ϑ, ϕ, ω) = 0 (2.59c)

The ¯ symbol denotes parameters in the singly Fourier transformed domain.

As clearly visible, the differential equations (2.59) consist of radius-dependent and angle-

dependent terms. According to [Bronstein et al 2006] or [Arfken and Weber 1995], the angle-

dependent part that is contained in the terms in parentheses can be solved with spherical

harmonics Y l
m(ϑ, ϕ) of degree m and order l. The spherical harmonics can be derived by
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further separating the angle-dependent term into its azimuthal-dependent parts containing

the ϕ-dependency and into its polar angle-dependent contributions which are dependent only

on ϑ.

Y l
m(ϑ, ϕ) = Φl(ϕ) Θl

m(ϑ) (2.60)

This separation is presented in appendix A.4. The solution of the azimuthal-dependent

equation is described with an exponential function.

Φl(ϕ) = eilϕ (2.61)

The polar angle-dependent equation can be solved with normalized associated Legendre

polynomials.

Θl
m(ϑ) =

√
2m+ 1

2

(m− l)!
(m+ l)!

P l
m (cos (ϑ)) = P̌ l

m (cos (ϑ)) (2.62)

Further information concerning the Legendre polynomials is contained in appendix A.4.

Thus, the spherical harmonics Y l
m(ϑ, ϕ) can be formulated as

Y l
m(ϑ, ϕ) =

√
2m+ 1

2

(m− l)!
(m+ l)!

P l
m (cos (ϑ)) eilϕ = P̌ l

m (cos (ϑ)) eilϕ (2.63)

and the angle-dependent derivatives of the equations (2.59) can be replaced by(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
Y l
m(ϑ, ϕ) = −m (m+ 1)Y l

m(ϑ, ϕ) (2.64)

The first spherical harmonics are sketched in the following figure 2.7. They can be separated

according to their behavior into zonal spherical harmonics (m = 0), which have constant

values on each latitude independent of the longitude, sectoral spherical harmonics (m = |l|),
which are independent of the latitude, and tesseral spherical harmonics, where the value

changes in dependency on both angles ϑ and ϕ. As the spherical harmonics form an orthog-

onal system on the unit sphere, they generate a complete basis and each continuous function

on the sphere can be developed into a series of spherical harmonics according to [Arens

2013].
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Figure 2.7: Spherical harmonics: First row: Y 0
0 (ϑ, ϕ), Second row: Y −1

1 (ϑ, ϕ), Y 0
1 (ϑ, ϕ) and Y 1

1 (ϑ, ϕ),
Third row: Y −2

2 (ϑ, ϕ), Y −1
2 (ϑ, ϕ), Y 0

2 (ϑ, ϕ), Y 1
2 (ϑ, ϕ) and Y 2

2 (ϑ, ϕ)

In order to apply relation (2.64) on the equations (2.59), the scalar potentials Φ̄, ψ̄ and χ̄

are each developed into a series of spherical harmonics.

Φ̄ (r, ϑ, ϕ, ω) =
∞∑
m=0

m∑
l=−m

Φ̂ (r,m, l, ω)Y l
m(ϑ, ϕ) (2.65a)

ψ̄ (r, ϑ, ϕ, ω) =
∞∑
m=0

m∑
l=−m

ψ̂ (r,m, l, ω)Y l
m(ϑ, ϕ) (2.65b)

χ̄ (r, ϑ, ϕ, ω) =
∞∑
m=0

m∑
l=−m

χ̂ (r,m, l, ω)Y l
m(ϑ, ϕ) (2.65c)

It has to be stated that, in contrast to a Fourier transformation, where N parameters in

the original domain are expressed by an identical number of parameters in the transformed

domain, the number of parameters changes due to the development in spherical harmonics.

As m and l are dependent from each other, with l = −m, ...,m, each degree m can be

combined with (2m+ 1) different orders l. Thus, for m = 0, ....,M the number of possible

combinations can be calculated as
M∑
m=0

(2m+ 1). This is an arithmetic sequence of first order

and is equal to (M + 1)2. Illustratively it could be explained that a sphere that is described

by Nϕ points on Nϑ latitudes and thus NϑNϕ points in the original domain, is modeled in
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the transformed domain by (M + 1)2 spherical harmonics with (M + 1) as the parameter

that corresponds to the number of latitudes Nϑ. Thus, the number of unknowns is different

for the original and the transformed domain.

The equations (2.65) are introduced into the differential equations (2.59) and lead, in combi-

nation with the relationship (2.64), to ordinary differential equations for each series member.

[
∂2

∂r2
+

2

r

∂

∂r
+

(
kp

2 − m (m+ 1)

r2

)]
Φ̂ (r,m, l, ω) = 0 (2.66a)

[
∂2

∂r2
+

2

r

∂

∂r
+

(
ks

2 − m (m+ 1)

r2

)]
ψ̂ (r,m, l, ω) = 0 (2.66b)

[
∂2

∂r2
+

2

r

∂

∂r
+

(
ks

2 − m (m+ 1)

r2

)]
χ̂ (r,m, l, ω) = 0 (2.66c)

These differential equations can also be described as Bessel’s differential equations after a

substitution that is presented in appendix A.5 and can be solved using spherical Hankel

functions of the first kind h
(1)
m and of the second kind h

(2)
m .

Φ̂ (r,m, l, ω) = C1lm h(1)
m (|kp|r) + C4lm h(2)

m (|kp|r) (2.67a)

ψ̂ (r,m, l, ω) = C2lm h(1)
m (|ks|r) + C5lm h(2)

m (|ks|r) (2.67b)

χ̂ (r,m, l, ω) = C3lm h(1)
m (|ks|r) + C6lm h(2)

m (|ks|r) (2.67c)

2.5.2 Local and non-local boundary conditions

The unknowns C1lm - C6lm are calculated using the local and non-local boundary conditions.

As non-local boundary conditions, analogously to the previously presented systems of half-

space and fullspace with a cylindrical cavity, the Sommerfeld condition of radiation has to

be fulfilled. Thus, surface waves on the spherical surface may not increase with increasing

radius and spatially propagating waves can only radiate from the sphere towards infinity.

Analogously to the derivations for the fullspace with cylindrical cavity the solution contribu-

tions are analyzed concerning their physical meaning. According to [Frühe 2010] the spherical

Hankel functions of the second kind describe for negative frequencies spatially propagating

waves that are propagating against the radial coordinate respectively surface waves which
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are exponentially increasing with increasing distance to the sphere. These physically not

existing waves can be excluded and C4lm - C6lm can be set to zero. The solution is described

with the spherical Hankel functions of the first kind in dependency on C1lm - C3lm. They

can be calculated using the local boundary conditions on the spherical surface. The stresses

on the surface in radial direction have to be equal to the external loads.

σ̂rr (r = R,m, l, ω) = −p̂r (m, l, ω) (2.68a)

σ̂rϑ (r = R,m, l, ω) = −p̂ϑ (m, l, ω) (2.68b)

σ̂rϕ (r = R,m, l, ω) = −p̂ϕ (m, l, ω) (2.68c)

2.5.3 Stresses in the spherical coordinate system

For the equations (2.68), the relationships between the stresses σ̂rr, σ̂rϑ and σ̂rϕ and the

unknowns C1lm - C3lm have to be derived. This is done analogously to the derivations in

section 2.3.3 in [Frühe 2010] for the general case with all unknowns C1lm - C6lm. The result

of his derivations is contained in appendix A.6 in a matrix
[
K̂s

]
which relates the vector of

the stress components σ̂s to the vector of the unknowns Cs.

σ̂rr

σ̂ϑϑ

σ̂ϕϕ

σ̂rϑ

σ̂rϕ

σ̂ϑϕ


=



K̂s,11 K̂s,12 K̂s,13 K̂s,14 K̂s,15 K̂s,16

K̂s,21 K̂s,22 K̂s,23 K̂s,24 K̂s,25 K̂s,26

K̂s,31 K̂s,32 K̂s,33 K̂s,34 K̂s,35 K̂s,36

K̂s,41 K̂s,42 K̂s,43 K̂s,44 K̂s,45 K̂s,46

K̂s,51 K̂s,52 K̂s,53 K̂s,54 K̂s,55 K̂s,56

K̂s,61 K̂s,62 K̂s,63 K̂s,64 K̂s,65 K̂s,66





C1lm

C2lm

C3lm

C4lm

C5lm

C6lm


σ̂s =

[
K̂s

]
Cs

(2.69)

With the elements of matrix
[
K̂s

]
, the equations (2.68) can be used to determine the un-

knowns C1lm - C3lm of the solutions of the scalar potentials (2.67). The relationships between
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the stresses σ̂rr, σ̂rϑ and σ̂rϕ and the unknowns C1lm -C3lm are according to appendix A.6

σ̂rr (r = R,m, l, ω) = A1P̌
l
m (2.70a)

σ̂rϑ (r = R,m, l, ω) = m cot (ϑ)A2P̌
l
m −

m+ l

sin (ϑ)
A2P̌

l
m−1 + i

l

sin (ϑ)
A3P

l
m (2.70b)

σ̂rϕ (r = R,m, l, ω) = i
l

sin (ϑ)
A2P̌

l
m −m cot (ϑ)A3P̌

l
m +

m+ l

sin (ϑ)
A3P̌

l
m−1 (2.70c)

where P̌ l
m serves as abbreviation for the normalized associated Legendre polynomial depend-

ing on (cos (ϑ)) and A1, A2 and A3 are chosen as

A1 =C1lm

((
m2 −m
R2

− 1

2
|ks| 2

)
2µ h(1)

m (|kp|R) +
2

R
|kp| 2µ h

(1)
m+1(|kp|R)

)
eilϕ

C3lm

(
m3 −m
R2

2µ h(1)
m (|ks|R)− m2 +m

R
|ks| 2µ h

(1)
m+1(|ks|R)

)
eilϕ

(2.71a)

A2 =C1lm

(
m− 1

R2
2µ h(1)

m (|kp|R)− 1

R
|kp| 2µ h

(1)
m+1(|kp|R)

)
eilϕ +

C3lm

((
m2 − 1

R2
− 1

2
|ks| 2

)
2µ h(1)

m (|ks|R) +
1

R
|ks| 2µ h

(1)
m+1(|ks|R)

)
eilϕ

(2.71b)

A3 =C2lm

(
m− 1

2R
2µ h(1)

m (|ks|R)− 1

2
|ks| 2µ h

(1)
m+1(|ks|R)

)
eilϕ (2.71c)

Interpreting the equations (2.70), it is visible that the shear stress components σ̂rϑ and

σ̂rϕ contain for one combination of m and l, normalized associated Legendre polynomials

with different degrees m or (m − 1). To generate parameters that are only dependent on a

Legendre polynomial with one degree, [Frühe 2010] introduced in accordance with [Eringen

and Suhubi 1975] two auxiliary quantities F̂ and Ĝ. They combine the stress contributions

σ̂rϑ and σ̂rϕ with

F̂ (r = R,m, l, ω) = −
(
∂ (σ̂rϑ sin (ϑ))

∂ϑ
+
∂σ̂rϕ
∂ϕ

)
1

sin (ϕ)
(2.72a)

Ĝ (r = R,m, l, ω) = −
(
∂σ̂rϑ
∂ϕ
− ∂ (σ̂rϕ sin (ϑ))

∂ϑ

)
1

sin (ϑ)
(2.72b)
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Thus, if σ̂rϑ and σ̂rϕ are introduced into the equations (2.72), the auxiliary quantities F̂ and

Ĝ depend for one combination of m and l only on Legendre polynomials with degree m and

order l.

F̂ (r = R,m, l, ω) = A2 m (m+ 1) P̌ l
m (2.73a)

Ĝ (r = R,m, l, ω) = A3 m (m+ 1) P̌ l
m (2.73b)

Using the substitution of σ̂rϑ and σ̂rϕ by F̂ and Ĝ, the boundary conditions (2.68) can be

used for the calculation of the unknowns C1lm - C3lm for each combination of m and l. For

this, the shear loads p̂rϑ and p̂rϕ also have to be expressed by analogous auxiliary components

F̂p and Ĝp according to the equations (2.72). This substitution leads to a system of equations

K̂
′
s,11 0 K̂ ′s,11

F̂1 0 F̂3

0 Ĝ2 0


C1lm

C2lm

C3lm

 =

−p̂rr−F̂p
−Ĝp

 (2.74)

with

K̂ ′s,11 =

(
m2 −m
R2

− 1

2
|ks| 2

)
2µh(1)

m (|kp|R) +
2

R
|kp|2µh(1)

m+1(|kp|R) (2.75a)

K̂ ′s,33 =
m3 −m
R2

2µh(1)
m (|ks|R)− m2 +m

R
|ks|2µh(1)

m+1(|ks|R) (2.75b)

F̂1 = m(m+ 1)

(
m− 1

R2
2µh(1)

m (|kp|R)− 1

R
|kp|2µh(1)

m+1(|kp|R)

)
(2.75c)

F̂3 = m(m+ 1)

((
m2 − 1

R2
− 1

2
|ks| 2

)
2µh(1)

m (|ks|R) +
1

R
|ks|2µh(1)

m+1(|ks|R)

)
(2.75d)

Ĝ2 = m(m+ 1)

(
m− 1

2R
2µh(1)

m (|ks|R)− 1

2
|ks|2µh(1)

m+1(|ks|R)

)
(2.75e)

With this system of equations (2.74) the unknowns can be determined and thus the displace-

ments and the stresses can be calculated at an arbitrary position due to given loads on the

spherical surface.
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3 Superposition of the Fundamental

Solutions

3.1 Preliminary remark

In this chapter, the solutions of the two systems halfspace with a cylindrical cavity and

halfspace with a spherical cavity are presented. The solution for the first substructure of a

halfspace with a cylindrical cavity is derived in the section 3.2. The solution of the halfspace

with a spherical cavity is presented in section 3.3. The derivation of the stiffness matrices

for both systems is contained in section 3.4.

3.2 Halfspace with cylindrical cavity - General derivations

In this section, the solution for the substructure of a halfspace with cylindrical cavity shall

be derived. This system contains two boundaries as depicted in figure 3.1. The first bound-

ary is the halfspace surface Λ which is described in the Cartesian coordinate system. The

second boundary of the cylindrical surface Γ inside the halfspace is described in cylindrical

coordinates.
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x

y

z

Λ

Γx

ϕ
r = R

Figure 3.1: Schematic sketch of the halfspace with cylindrical cavity

The solution of the coupled system is determined superposing the two fundamental systems

presented in the sections 2.3 and 2.4. The stresses and displacements on the boundaries Λ

and Γ of the system have to fulfill the real boundary conditions.

σ̂zz,Λ (kx, ky, z = 0, ω) = −p̂z,Λ (kx, ky, ω) (3.1a)

σ̂yz,Λ (kx, ky, z = 0, ω) = −p̂y,Λ (kx, ky, ω) (3.1b)

σ̂xz,Λ (kx, ky, z = 0, ω) = −p̂x,Λ (kx, ky, ω) (3.1c)

σ̂rr,Γ (kx, r = R, n, ω) = −p̂r,Γ (kx, n, ω) (3.1d)

σ̂xr,Γ (kx, r = R, n, ω) = −p̂x,Γ (kx, n, ω) (3.1e)

σ̂ϕr,Γ (kx, r = R, n, ω) = −p̂ϕ,Γ (kx, n, ω) (3.1f)

Therefore, the superposition of the stresses and displacements of the two fundamental sys-

tems on the positions of the boundaries Λ and Γ also has to fulfill the given boundary

conditions. As the calculations for both subsystems are carried out in the transformed do-

main in dependency on kx and ω, the superposition can be performed in the respective

domain. Thus, a two-dimensional, quasi-static computation is carried out for each combina-

tion of kx and ω and the results in the original domain are obtained after an inverse Fourier

transformation.

For each calculation for a given combination of kx and ω, the results on the halfspace surface Λ

are specified in dependency on the wavenumber ky. As the calculations are carried out
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numerically, the continuous wavenumber ky is expressed at discrete values ky = s ∆ky with

s = −Ny
2
, ...,

(
Ny
2
− 1
)

. The parameters on the cylindrical boundary Γ are indicated in

dependency on the Fourier series development regarding the circumferential angle ϕ = n ∆ϕ

with n = 1, 2, ..., Nϕ. As mentioned in A.1.2 the numbers of samples Ny and Nϕ have to be

chosen such that the computation time is acceptable but numerical artifacts are avoided. As

the calculations are performed using a Fast Fourier transformation algorithm, the number

of samples are powers of two. While the Fourier series members n range from 1 to Nϕ, the

wavenumber ky is arranged with ky = 0 in the middle of the vector. The discretization of a

function in one domain leads to a repetition of the transformed signal as mentioned in A.1.2

so ky could also be defined as ky = s ∆ky with s = 0, ..., (Ny − 1).The first definition is

chosen for convenience when interpreting the results in the transformed domain as they are

symmetric with respect to ky = 0.

Summarizing, the boundary conditions of equation (3.1) have to be fulfilled for each com-

bination of kx and ω. Moreover, the boundary conditions on the halfspace surface Λ in

the equations (3.1a), (3.1b) and (3.1c) have to be fulfilled for each discrete wavenumber

contribution s.

σ̂zz,Λ (s, z = 0) = −p̂z,Λ (s) (3.2a)

σ̂yz,Λ (s, z = 0) = −p̂y,Λ (s) (3.2b)

σ̂xz,Λ (s, z = 0) = −p̂x,Λ (s) (3.2c)

For each discrete wavenumber s, three boundary conditions exist. Thus, in total 3Ny bound-

ary conditions on the halfspace surface are given.

The boundary conditions on the cylindrical surface Γ in the equations (3.1d), (3.1e) and (3.1f)

have to be fulfilled for each discrete Fourier series member n.

σ̂rr,Γ (r = R, n) = −p̂r,Γ (n) (3.3a)

σ̂xr,Γ (r = R, n) = −p̂x,Γ (n) (3.3b)

σ̂ϕr,Γ (r = R, n) = −p̂ϕ,Γ (n) (3.3c)

Thus, on the cylindrical surface 3Nϕ boundary conditions are given.

In order to fulfill these (3Ny + 3Nϕ) boundary conditions, the fundamental systems have

to be evaluated at the respective positions. Therefore, virtual surfaces are introduced as

depicted in figure 3.2 and figure 3.3.
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y

z
x

Λ

δΓ

x
ϕ

r

Figure 3.2: Halfspace with real surface Λ and vir-
tual surface δΓ

x

y

z
x

δΛ

Γ

ϕ

r

Figure 3.3: Fullspace with real surface Γ and vir-
tual surface δΛ

In a first step, unit loads σ̂iz (s) with i = z, y, x are applied on the halfspace surface Λ where

s denotes the wavenumber ky = s ∆ky for which the calculations are carried out. The re-

sulting stresses on the virtual cylindrical surface δΓ are calculated according to section 2.3.3

as illustrated in figure 3.4. The computations according to section 2.3.3 lead to a Cartesian

description of the stresses in dependency on the wavenumber ky. As the boundary condi-

tions (3.3) on the cylindrical surface are given in dependency on the Fourier series member

n along the circumference of the cylinder, a coordinate transformation is necessary. The

calculated stresses have to be transformed to a cylindrical coordinate system and developed

into a Fourier series regarding the circumference. After this coordinate transformation, the

stresses on the virtual cylindrical surface σ̂
(iz,s)
jr (n) are obtained with j = r, x, ϕ. Thus, each

unit load σ̂iz with a defined wavenumber s leads to Nϕ resulting stresses σ̂
(iz,s)
jr (n) for each

j = r, x, ϕ on the virtual surface δΓ.

σ̂iz (s)

σ̂
(iz,s)
jr (n)

Figure 3.4: Unit load σ̂iz (s) on the surface Λ and resulting stresses σ̂(iz,s)
jr (n) on the virtual surface δΓ

Analogously, unit loads σ̂jr (n), each with a defined Fourier series member n, are applied on

the cylindrical surface Γ in the system of a fullspace with cylindrical cavity as depicted in

figure 3.5. The resulting stresses are computed on the virtual halfspace surface δΛ according

to section 2.4.3. As they are calculated in dependency on the Fourier series member n, a

coordinate transformation is required, analogously to the stresses in the halfspace system.
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The calculated stresses on the halfspace surface δΛ are transformed from a cylindrical coor-

dinate system into the Cartesian coordinate system and Fourier transformed with respect to

the y-coordinate. Thus, they can be expressed in dependency on the number of the discrete

wavenumber s and each load σ̂jr with a fixed Fourier series member n leads to Ny stresses

σ̂
(jr,n)
iz (s) for each i = z, y, x on the virtual surface δΛ.

σ̂
(jr,n)
iz (s)

σ̂jr (n)

Figure 3.5: Unit load σ̂jr (n) on the surface Γ and resulting stresses σ̂(jr,n)
iz (s) on the virtual surface δΛ

Superposing the two fundamental systems, the superposition of the stresses has to fulfill

all boundary conditions (3.1). Thus, the unknown amplitudes of the stresses Ciz(s) on the

halfspace surface Λ respectively Cjr(n) on the cylindrical surface Γ can be determined.

σ̂zz,Λ (s) = Czz(s) σ̂zz (s) +

Nϕ∑
n=1

∑
j=r,x,ϕ

Cjr (n) σ̂(jr,n)
zz (s) = −p̂z,Λ (s) (3.4a)

σ̂yz,Λ (s) = Cyz(s) σ̂yz (s) +

Nϕ∑
n=1

∑
j=r,x,ϕ

Cjr (n) σ̂(jr,n)
yz (s) = −p̂y,Λ (s) (3.4b)

σ̂xz,Λ (s) = Cxz(s) σ̂xz (s) +

Nϕ∑
n=1

∑
j=r,x,ϕ

Cjr (n) σ̂(jr,n)
xz (s) = −p̂x,Λ (s) (3.4c)

σ̂rr,Γ (n) =

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(s) σ̂
(iz,s)
rr (n) + Crr(n) σ̂rr (n) = −p̂r,Γ (n) (3.4d)

σ̂xr,Γ (n) =

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(s) σ̂
(iz,s)
xr (n) + Cxr(n) σ̂xr (n) = −p̂x,Γ (n) (3.4e)

σ̂ϕr,Γ (n) =

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(s) σ̂
(iz,s)
ϕr (n) + Cϕr(n) σ̂ϕr (n) = −p̂ϕ,Γ (n) (3.4f)

The constants Ciz (s) and Cjr (n) contained in the vector of the unknowns C mark the
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unknown amplitudes of the associated unit loads. The (3Ny + 3Nϕ) unknowns are calculated

using the given (3Ny + 3Nϕ) boundary conditions. The boundary conditions (3.4) can also

be formulated in matrix notation as
[
ŜΛΛITM

] [
ŜΛΓITM

]
[
ŜΓΛITM

] [
ŜΓΓITM

]


︸ ︷︷ ︸
[ŜITM ]

CΛ

CΓ


︸ ︷︷ ︸

C

=

P̂ΛITM

P̂ΓITM


︸ ︷︷ ︸

P̂ITM

(3.5)

The matrices
[
ŜαβITM

]
with α = Λ,Γ and β = Λ,Γ contain the results for the stresses on the

surface α for a unit load P̂βITM
on surface β in dependency on the unknown amplitudes Cα

on surface α. The elements of the matrix
[
ŜITM

]
and the vectors C and P̂ITM are repeated

in detail in appendix A.7. Thus, the vector of the unknowns can be determined as

C =
[
ŜITM

]−1

P̂ITM (3.6)

3.3 Halfspace with spherical cavity - General derivations

The system halfspace with spherical cavity as exemplarily depicted in figure 3.6 is derived

by a superposition of the two fundamental systems halfspace and fullspace with spherical

cavity as presented in the sections 2.3 and 2.5. The superposition itself can be performed

analogously to the one that was used to determine the solution of a halfspace with cylindrical

cavity in section 3.2.
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Γs

y

z
x

ϑ
r

ϕ

Λ

Figure 3.6: Schematic sketch of the halfspace with spherical cavity

The superposition of the two systems halfspace and fullspace with spherical cavity has to

fulfill the given boundary conditions. Again, both fundamental systems are solved in different

coordinate systems. While the solution of the halfspace is derived in (kx, ky, z, ω), the

fullspace with spherical cavity is described in dependency on (r, m, l, ω). In contrast to

section 3.2 the three-dimensional system cannot be reduced to a 2.5-dimensional one as there

is no common spatial wavenumber coordinate. This leads to an increased computational

effort but as the system is spatially finite, the effort is reasonably small. The reduction to

quasi-static calculations by solving the system for each frequency ω can persist.

Summarizing, the parameters on the halfspace surface Λ with z = 0 are described in depen-

dency on kx = o ∆kx with o = −Nx
2
, ...,

(
Nx
2
− 1
)

and ky = s ∆ky with s = −Ny
2
, ...,

(
Ny
2
− 1
)

.

The parameters ∆kx and ∆ky determine the resolution of the discrete Fourier transformation

in the wavenumber domain and Nx and Ny are the number of samples with respect to the x-

and y-coordinates. They are chosen according to the characteristics of the discrete Fourier

transformation as they are presented shortly in appendix A.1.2. As the calculations are car-

ried out using a Fast Fourier transformation algorithm, the number of samples are powers

of two. For convenience the wavenumbers kx and ky are arranged with kx = 0 respectively

ky = 0 in the middle of the vector. Analogously they could also be arranged with Nx or Ny

values starting from zero with kx = 0, ..., (Nx− 1) ∆kx respectively ky = 0, ..., (Ny − 1) ∆ky.

As the discretization of the signals in one domain leads to a repetition in the transformed do-

main, both arrangements lead to identical results. The parameters on the spherical coupling

surface Γs with r = R depend on order and degree of the Legendre polynomials m and l

(m = 0, ...,M and l = −m, ...,m). The maximum numbers of the samples of the discrete
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Fourier transformation Nx and Ny as well as the maximum degree M have to be chosen such

that the computational effort is acceptable but the results are sufficiently exact.

The procedure of the superposition itself is analogous to the one described in section 3.2:

• Unit loads σ̂iz (o, s) with i = z, y, x are applied on the halfspace surface Λ for each

combination of kx and ky.

• The resulting stresses due to these loads are calculated on a virtual surface δΓs which

is equivalent to the position of the intended real spherical surface. They are originally

described in the threefold Fourier transformed coordinate system (kx, ky, z, ω). To

enable the superposition with the fullspace with spherical cavity, they are transformed

into the coordinate system of the fullspace with spherical cavity (r, m, l, ω). Each

unit load with a defined combination of kx and ky thus leads to stresses σ̂
(iz,os)
rj (m, l)

with j = r, ϑ,ϕ.

• In a second step, unit loads σ̂rj (m, l) with j = r, ϑ, ϕ are applied on the spherical

surface Γs for the different spherical harmonics with degree m and order l.

• The resulting stresses on the virtual halfspace surface δΛ that is equivalent to the

position of the intended real halfspace surface are calculated and transformed into the

coordinate system of the halfspace (kx, ky, z, ω). Thus, for each spherical harmonic

unit load σ̂rj (m, l), stresses σ̂
(rj,ml)
iz (o, s) with i = z, y, x are obtained.

• The superposition of all the stresses on both surfaces has to fulfill the given boundary

conditions.
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σ̂zz,Λ (o, s) = Czz(o, s) σ̂zz (o, s) +
M∑
m=0

m∑
l=−m

∑
j=r,ϑ,ϕ

Crj (m, l) σ̂(rj,ml)
zz (o, s)

= −p̂z,Λ (o, s) (3.7a)

σ̂yz,Λ (o, s) = Cyz(o, s) σ̂yz (o, s) +
M∑
m=0

m∑
l=−m

∑
j=r,ϑ,ϕ

Crj (m, l) σ̂(rj,ml)
yz (o, s)

= −p̂y,Λ (o, s) (3.7b)

σ̂xz,Λ (o, s) = Cxz(o, s) σ̂xz (o, s) +
M∑
m=0

m∑
l=−m

∑
j=r,ϑ,ϕ

Crj (m, l) σ̂(rj,ml)
xz (o, s)

= −p̂x,Λ (o, s) (3.7c)

σ̂rr,Γs (m, l) =

Nx/2−1∑
o=−Nx/2

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(o, s) σ̂
(iz,os)
rr (m, l) + Crr(m, l) σ̂rr (m, l)

= −p̂r,Γs (m, l) (3.7d)

σ̂rϑ,Γs (m, l) =

Nx/2−1∑
o=−Nx/2

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(o, s) σ̂
(iz,os)
rϑ (m, l) + Crϑ(m, l) σ̂rϑ (m, l)

= −p̂ϑ,Γs (m, l) (3.7e)

σ̂rϕ,Γs (m, l) =

Nx/2−1∑
o=−Nx/2

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(o, s) σ̂
(iz,os)
rϕ (m, l) + Crϕ(m, l) σ̂rϕ (m, l)

= −p̂ϕ,Γs (m, l) (3.7f)

The system of equations (3.7) can be written in matrix notation as
[
ŜΛΛITM

] [
ŜΛΓs ITM

]
[
ŜΓsΛITM

] [
ŜΓsΓs ITM

]


︸ ︷︷ ︸
[Ŝs ITM ]

CΛ

CΓs


︸ ︷︷ ︸

Cs

=

 P̂ΛITM

P̂Γs ITM


︸ ︷︷ ︸

P̂s ITM

(3.8)

Using equation (3.8), the unknowns can be determined and the solution of the superposed

system is obtained.
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3.4 Halfspace with cylindrical or spherical cavity - Stiffness

matrix

The superposed systems of a halfspace with a cylindrical or a spherical cavity shall be coupled

with the substructure technique to a cylindrical or spherical structure that is modeled with

the Finite Element Method. As will be presented in chapter 5, the stiffness matrices of the

two substructures are necessary to perform the coupling. Hence, the stiffness matrices of

the two systems have to be derived in a post-processing step. This is done exemplarily for

the first system halfspace with cylindrical cavity in this section. The stiffness matrix of the

halfspace with spherical cavity can be determined analogously.

For any general system, the stiffness matrix
[
K̂ITM

]
characterizes the relationship between

the vector of the loads and the displacement vector by[
K̂ITM

]
ûITM = P̂ITM (3.9)

The displacement field ûITM of the system halfspace with cylindrical cavity is calculated su-

perposing the displacements of the fundamental systems halfspace and fullspace with cylin-

drical cavity for given loads on the system.

Due to the unit stresses σ̂iz (s) on the halfspace surface Λ with i = z, y, x multiplied with

the amplitudes Ciz (s) that have been calculated out of the stress boundary conditions as

described in section 3.2, the resulting displacements û
(iz,s)
k (s) on the halfspace surface Λ

with k = z, y, x and the displacements û
(iz,s)
l (n) with l = r, x, ϕ on the virtual cylindrical

surface δΓ can be calculated. Analogously the unit stresses σ̂jr (n) with j = r, x, ϕ multiplied

with the amplitudes Cjr (n) lead to the displacements û
(jr,n)
k (s) on δΛ and the displacements

û
(jr,n)
l (n) on Γ. The displacements of the superposed system halfspace with cylindrical cavity

at the halfspace surface ûk,Λ (s) and at the cylindrical coupling surface ûl,Γ (n) are obtained
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by superposing the respective displacement components of the fundamental systems.

ûz,Λ (s) =
∑
i=z,y,x

Ciz(s) û
(iz,s)
z (s) +

Nϕ∑
n=1

∑
j=r,x,ϕ

Cjr (n) û(jr,n)
z (s) (3.10a)

ûy,Λ (s) =
∑
i=z,y,x

Ciz(s) û
(iz,s)
y (s) +

Nϕ∑
n=1

∑
j=r,x,ϕ

Cjr (n) û(jr,n)
y (s) (3.10b)

ûx,Λ (s) =
∑
i=z,y,x

Ciz(s) û
(iz,s)
x (s) +

Nϕ∑
n=1

∑
j=r,x,ϕ

Cjr (n) û(jr,n)
x (s) (3.10c)

ûr,Γ (n) =

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(s) u
(iz,s)
r (n) +

∑
j=r,x,ϕ

Cjr(n) u(jr,n)
r (n) (3.10d)

ûx,Γ (n) =

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(s) u
(iz,s)
x (n) +

∑
j=r,x,ϕ

Cjr(n) u(jr,n)
x (n) (3.10e)

ûϕ,Γ (n) =

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ciz(s) u
(iz,s)
ϕ (n) +

∑
j=r,x,ϕ

Cjr(n) u(jr,n)
ϕ (n) (3.10f)

In matrix notation, the equations (3.10) can be written asûΛITM

ûΓITM


︸ ︷︷ ︸

ûITM

=


[
ÛΛΛITM

] [
ÛΛΓITM

]
[
ÛΓΛITM

] [
ÛΓΓITM

]


︸ ︷︷ ︸
[ÛITM ]

CΛ

CΓ


︸ ︷︷ ︸

C

(3.11)

with the elements of the matrix
[
ÛITM

]
also repeated in detail in appendix A.7.

Introducing the equations (3.5) and (3.11) into equation (3.9) leads to[
K̂ITM

] [
ÛITM

]
C =

[
ŜITM

]
C (3.12)

and the stiffness matrix of the superposed system halfspace with cylindrical cavity is[
K̂ITM

]
=
[
ŜITM

] [
ÛITM

]−1

(3.13)
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or with a differentiation for the two surfaces

[
K̂ITM

]
=


[
K̂ΛΛITM

] [
K̂ΛΓITM

]
[
K̂ΓΛITM

] [
K̂ΓΓITM

]
 =


[
ŜΛΛITM

] [
ŜΛΓITM

]
[
ŜΓΛITM

] [
ŜΓΓITM

]

[
ÛΛΛITM

] [
ÛΛΓITM

]
[
ÛΓΛITM

] [
ÛΓΓITM

]
−1

(3.14)

and equation (3.9) can be formulated as
[
K̂ΛΛITM

] [
K̂ΛΓITM

]
[
K̂ΓΛITM

] [
K̂ΓΓITM

]
ûΛITM

ûΓITM

 =

P̂ΛITM

P̂ΓITM

 (3.15)

Thus, the stiffness matrix of the halfspace with cylindrical cavity is determined.

The stiffness matrix of the halfspace with spherical cavity
[
K̂s ITM

]
can be analogously

determined for the degrees of freedom on the halfspace surface ûΛITM
and the degrees of

freedom on the spherical surface ûΓs ITM
.

[
K̂ΛΛITM

] [
K̂ΛΓsITM

]
[
K̂ΓsΛITM

] [
K̂ΓsΓsITM

]
 ûΛITM

ûΓs ITM

 =

 P̂ΛITM

P̂Γs ITM

 (3.16)
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4 Finite Element Substructure

4.1 Preliminary remark

As second substructure, the solution for the structure inside the cylindrical or spherical cavity

shall be derived. This second substructure is modeled with the Finite Element Method. The

stiffness matrix of the system will be determined and can be used in order to couple it to

the stiffness matrix of the substructure of an halfspace with cylindrical or spherical cavity

derived in section 3.4.

If the halfspace with cylindrical cavity shall be covered, for this system the derivations of

the previous chapter 3 are carried out in the transformed domain for each combination of

kx and ω. Thus, also the Finite Element calculation can be performed as a quasi-static,

two-dimensional calculation in the transformed domain in dependency on the combinations

of kx and ω. Therefore, a two-dimensional Finite Element mesh is defined in the transformed

domain. After solving the two-dimensional system for each combination of kx and ω, infor-

mation about the behavior with respect to the third dimension x and the time dependency

is contained in the solution. It is made visible by the inverse transformations kx x

and ω t. This approach is often called 2.5-dimensional as the calculations in the

transformed domain are carried out for a two-dimensional system but contain information

about the third dimension as for example in [Tadeu and Kausel 2000] or [Sheng et al 2006].

The derivation of the 2.5-dimensional elements is contained in the following sections 4.2, 4.3

and 4.4.

If the halfspace with spherical cavity is to be coupled to a Finite Element substructure,

the computations are carried out in the frequency domain for each frequency ω. Regarding

the spatial distribution, there is no Fourier transformation performed as the system is not

invariant in any direction in contrast to the cylindrical Finite Element mesh. Therefore, the

stiffness matrix of the spherical Finite Element substructure is derived with three-dimensional

elements in Cartesian coordinates in section 4.5.
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4.2 2.5-dimensional finite elements

The Finite Element Method (FEM) is based on the principle of virtual work. A variety of

textbooks contains information regarding the FEM, e. g. [Schwarz 1991], [Bathe and Zim-

mermann 2002] or [Hughes 2000]. The principle of virtual work is based on the application

of a virtual displacement field δu on a three-dimensional, isoparametric volume element with

the natural, local coordinates (x, η, ζ) as depicted in figure 4.1.

ux

uy

uz
x

η

ζ

x
η

ζ

x
η

ζux

uy

uz

ux

uy

uz
ux

uy

uz

x
η

ζ

x

y

z

Figure 4.1: Three-dimensional finite element

It states that the sum of the resulting virtual work of the internal forces δWi, of the external

forces δWe and of the inertia forces δWI has to be equal to zero.

δW = δWi + δWe + δWI = 0 (4.1)

The weak formulation of the virtual work of the internal forces can be computed as the

product of the virtual strains δε due to the virtual displacements and the real stresses σ due

to a given load on the system.

δWi = −
∫

(V )

δε(x,η,ζ) σ(x,η,ζ) dV (4.2)

As the cylindrical structure is infinite in x-direction, δWi can be calculated as

δWi = −
∞∫

−∞

∫
(A)

δε(x,η,ζ) σ(x,η,ζ) dA dx (4.3)

The derivations of chapter 3 are carried out in the transformed domain for each combination

of kx and ω. In order to allow a coupling of the two substructures, the Finite Element

formulation has to refer to the same basis. Therefore, the virtual work of the finite elements
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is transformed to the wavenumber-frequency domain. The dependency on the frequency is

implemented as the computation of the Finite Element substructure is performed for each

frequency ω. The dependency of the virtual work on the wavenumber kx is derived from

equation (4.3) where the x-coordinate is replaced by a relationship regarding the wavenumber

kx. According to Parseval’s identity, as presented e. g. in [Priestley 1981] or [Kammler 2008],

the virtual work can also be formulated in the transformed domain using the relations of

section A.1 as

δWi = −
∞∫

−∞

∫
(A)

δε̄(x,η,ζ) σ̄(x,η,ζ) dA dx

= −
∞∫

−∞

∫
(A)

δε̄(x,η,ζ)
1

2π

∞∫
−∞

σ̃(kx,η,ζ) eikxxdkx dA dx

= − 1

2π

∞∫
−∞

∫
(A)

∞∫
−∞

δε̄(x,η,ζ) eikxx σ̃(kx,η,ζ) dkx dA dx

= − 1

2π

∞∫
−∞

∫
(A)

∞∫
−∞

δε̄(x,η,ζ) eikxx dx σ̃(kx,η,ζ) dA dkx

= − 1

2π

∞∫
−∞

∫
(A)

δε̃∗(kx,η,ζ) σ̃(kx,η,ζ) dA dkx

(4.4)

The ¯ symbol denotes again parameters in the frequency domain, while the ˜ symbol signifies

again parameters in the twofold Fourier transformed domain depending on the wavenumber

kx and the frequency ω.

For numerical implementation, the integration over x respectively kx from −∞ to +∞ is

replaced by a sum each ranging over the number of samples Nx. For this purpose, Parse-

val’s identity has to be adopted and is formulated using the equations (A.7) and (A.8) of

appendix A.1 as

δWi = −
∫

(A)

Nx∑
n=1

δε̄T (xn,η,ζ) σ̄(xn,η,ζ) dA = −
∫

(A)

1

Nx

Nx∑
n=1

δε̃T∗(kxn ,η,ζ) σ̃(kxn ,η,ζ) dA (4.5)

In general, the conjugate complex transpose of a matrix [A] can also be written as the

adjugate matrix [A]H as stated for example in [Bronstein et al 2006]. Therefore, δε̃T∗ will

be abbreviated by δε̃H . With equation (4.5) the volume integral of equation (4.3) is replaced

by an integral over the cross sectional area A and a summation over the wavenumbers kxn
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with n = 1, 2, ..., Nx. Analogous derivations are possible for the virtual work of the external

forces and for the virtual work of the inertia forces. Consequently, equation (4.1) can be

written as

δW =
1

Nx

∫
(A)

Nx∑
n=1

[
−δε̃H(kxn ,η,ζ) σ̃(kxn ,η,ζ)

+ δũH(kxn ,η,ζ) p̃(kxn ,η,ζ)

−δũH(kxn ,η,ζ) ρ ¨̃u(kxn ,η,ζ)
]
dA = 0

(4.6)

Equation (4.6) is especially fulfilled if∫
(A)

− δε̃H(kx,η,ζ) σ̃(kx,η,ζ)

+ δũH(kx,η,ζ) p̃(kx,η,ζ)

+ δũH(kx,η,ζ) ρ ω2 ũ(kx,η,ζ) dA = 0

(4.7)

is fulfilled for each wavenumber kx and for each frequency ω.

Thus, the integration over the three-dimensional volume in the original domain can be

replaced by an integration over the cross section of the element for each combination of

wavenumber kx and frequency ω in the transformed domain. Therefore, the three-dimensional

element of figure 4.1 is replaced by a two-dimensional element which also contains informa-

tion about the third dimension in the form of the wavenumber kx. Due to this reason, the

element can also be named a 2.5-dimensional finite element. As two-dimensional geometry,

a four-node element with the natural coordinates η and ζ and the global coordinates x, y,

and z is chosen as depicted in figure 4.2.

η

ζ

ux

uy

uz
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z

1

4
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Figure 4.2: 2.5-dimensional finite element

Three degrees of freedom ux, uy and uz are defined at each node and lead to the vector of
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the nodal displacements ũn with

ũn
T =

(
ũx1 ũy1 ũz1 ũx2 ũy2 ũz2 ũx3 ũy3 ũz3 ũx4 ũy4 ũz4

)
(4.8)

The chosen elements are isoparametric where both geometry and displacements are repre-

sented by bilinear form functions.

N1 (η, ζ) =
1

4
(1− η) (1− ζ) (4.9a)

N2 (η, ζ) =
1

4
(1− η) (1 + ζ) (4.9b)

N3 (η, ζ) =
1

4
(1 + η) (1 + ζ) (4.9c)

N4 (η, ζ) =
1

4
(1 + η) (1− ζ) (4.9d)

Therefore, the relationship between the displacement field ũ and the vector of the nodal

displacements ũn is defined as

ũ = [N ] ũn (4.10)

with the matrix of the form functions [N ]

[N ] =

N1 (η, ζ) 0 0 N2 (η, ζ) 0 0 · · ·
0 N1 (η, ζ) 0 0 N2 (η, ζ) 0 · · ·
0 0 N1 (η, ζ) 0 0 N2 (η, ζ) · · ·

 (4.11)
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4.3 Derivation of the element stiffness matrix

The relationship between the stress vector σ̃ and the strain vector ε̃ in equation (4.7) is

formulated analogously to equation (2.25) as

σ̃xx

σ̃yy

σ̃zz

σ̃xy

σ̃yz

σ̃xz


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





ε̃xx

ε̃yy

ε̃zz

γ̃xy

γ̃yz

γ̃xz


σ̃ = [D′] ε̃

(4.12)

where the strain vector ε̃ contains the shear distortions γ̃ij with i,j = x, y, z instead of

the shear strains ε̂ij compared to equation (2.25). This difference between section 2.3 and

chapter 4 is chosen to provide a stringent sequence of derivations.

The strain vector ε̃ is dependent on the displacements ũT =
(
ũx(η, ζ) ũy(η, ζ) ũz(η, ζ)

)
by

ε̃ =
[
G̃
]

ũ (4.13)

with the matrix
[
G̃
]

in the Fourier transformed domain (kx, y, z, ω).

[
G̃
]

=



ikx 0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

ikx 0

0 ∂
∂z

∂
∂y

∂
∂z

0 ikx


(4.14)

The displacement field ũ is modeled in dependency on the nodal displacement vector ũn

with the chosen form functions of the equations (4.9). Thus, the relationship between the

strain vector ε̃ and the vector of the nodal displacements ũn can be stated as

ε̃ =
[
G̃
]

[N ] ũn =
[
B̃
]

ũn (4.15)
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where matrix
[
B̃
]

contains the derivatives of the form functions.

[
B̃
]

=



ikxN1 (η, ζ) 0 0 ikxN2 (η, ζ) 0 · · ·
0 ∂N1(η,ζ)

∂y
0 0 ∂N2(η,ζ)

∂y
· · ·

0 0 ∂N1(η,ζ)
∂z

0 0 · · ·
∂N1(η,ζ)

∂y
ikxN1 (η, ζ) 0 ∂N2(η,ζ)

∂y
ikxN2 (η, ζ) · · ·

0 ∂N1(η,ζ)
∂z

∂N1(η,ζ)
∂y

0 ∂N2(η,ζ)
∂z

· · ·
∂N1(η,ζ)

∂z
0 ikxN1 (η, ζ) ∂N2(η,ζ)

∂z
0 · · ·


(4.16)

For the virtual displacement field δũ the same behavior is assumed. Introducing the equa-

tions (4.10), (4.12) and (4.15) into the formulation of the virtual work, equation (4.7) is∫
(A)

− δũn
H
[
B̃
]H

[D′]
[
B̃
]

ũn

+ δũn
H [N ]H p̃

+ δũn
H [N ]H ρ ω2 [N ] ũn dA = 0

(4.17)

and has to be fulfilled for each wavenumber kx and each frequency ω. The virtual dis-

placement field δũn is chosen arbitrarily. Therefore, equation (4.17) can be formulated as

[
K̃
]

ũn − ω2 [M ] ũn = p̃n (4.18)

with the stiffness matrix
[
K̃
]
,

[
K̃
]

=

∫
(A)

[
B̃
]H

[D′]
[
B̃
]
dA (4.19)

the mass matrix [M ]

[M ] =

∫
(A)

ρ [N ]H [N ] dA (4.20)

and the nodal load vector p̃n.

p̃n =

∫
(A)

[N ]H p̃ dA (4.21)
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4.4 Numerical implementation

The integrations to obtain stiffness and mass matrices in the equations (4.19) and (4.20) are

carried out numerically with nGP = 4 Gauß points (GP) as defined in figure 4.3.

η

ζ

GP3
GP1

GP4

GP2

Figure 4.3: Gauß points

According to [Bronstein et al 2006] for example, the coordinates of the Gauß points are

the zeros of the Legendre polynomials already presented in appendix A.4. The locations

and weighting parameters for two Gauß points in each coordinate direction are given in the

following table 4.1.

ηk ζk wk

GP1 - 1√
3

- 1√
3

1

GP2 - 1√
3

1√
3

1

GP3
1√
3

- 1√
3

1

GP4
1√
3

1√
3

1

Table 4.1: Coordinates and values of the associated weights of the Gauß points

Thus, the stiffness matrix
[
K̃
]

and the mass matrix [M ] can be calculated as

[
K̃
]

=

nGP∑
k=1

[
B̃(kx, ηk, ζk)

]H
[D′]

[
B̃(kx, ηk, ζk)

]
det(J) wk (4.22)

[M ] =

nGP∑
k=1

ρ [N(ηk, ζk)]
H [N(ηk, ζk)] det(J) wk (4.23)
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After determining the dynamic stiffness matrix
[
K̃dyn

]
=
[
K̃
]
− ω2 [M ] of each element,

the global stiffness matrix of the Finite Element mesh
[
K̃FE

]
as exemplarily depicted in

figure 4.4 is assembled.

Ω

Γ

Figure 4.4: Schematic sketch of a global Finite Element mesh using the presented elements

With the global stiffness matrix, a relationship between the nodal load vector and the degrees

of freedom is obtained. The system of equations is arranged such that the degrees of freedom

on the coupling surface Γ are positioned in the upper part of the matrix and the degrees of

freedom inside the Finite Element domain Ω in the lower part of the matrix. This is done

to easily identify the coupling parameters.
[
K̃ΓΓFE

] [
K̃ΓΩFE

]
[
K̃ΩΓFE

] [
K̃ΩΩFE

]
ũΓFE

ũΩFE

 =

P̃ΓFE

P̃ΩFE

 (4.24)

4.5 Three-dimensional finite elements

In contrast to the cylindrical Finite Element substructure, the stiffness matrix of the spherical

substructure is described in the frequency domain in Cartesian coordinates without spatial

transformations and the degrees of freedom depend on (x, y, z, ω). Parameters in the

frequency domain are labeled with the ¯ symbol to signify the single transformation.

For the modeling of the Finite Element mesh that shall be coupled to the halfspace with

spherical cavity, a three-dimensional eight-node element with three translational degrees of

freedom at each node is used like the one sketched in figure 4.1. Linear form functions are

chosen. The numerical calculation is performed with two Gauß points in each coordinate
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direction with the locations and weighting parameters presented analogously to the ones

presented table 4.1.

The elements are arranged with NϑNϕ nodes on a spherical surface determined by the Nϑ

latitudes and Nϕ longitudes as depicted in figure 4.5. For the longitudes the azimuthal

angle is divided equally into Nϕ elements from ϕ = 0, 2π
Nϕ
, ...,

(
2π − 2π

Nϕ

)
. Concerning the

latitudes, the elevation angle ϑ is discretized with Nϑ values between ϑ = 0 and ϑ = π. The

z-coordinates of the latitudes are chosen on Nϑ Gauß points that are distributed along the

z-axis between r = −R and r = R.

Ω

Γs

Figure 4.5: Schematic sketch of the three-dimensional Finite Element mesh

For a small number of latitudes, the modeling of the polar regions of the sphere is rather

imprecise if the first Gauß points are positioned too far away from the poles. For example,

for four Gauß points on the z-axis, the first Gauß point lies at z = 0.8611R. This would

lead to an error in the discretization at the poles of the sphere and, thus, exactly at the

point which is closest to the surface of the halfspace. To reduce this error, it is possible

to introduce an additional latitude close to each pole and calculate the stiffness, mass and

damping matrices taking into account these additional elements. To enable the coupling

of the complex, dynamic stiffness matrix to the Integral Transform Method, the number of

parameters on the surface has to be identical. Therefore, the additional degrees of freedom

on the two additional latitudes are defined as slave degrees of freedom and after a conden-

sation step, only the contributions of the master degrees of freedom remain in the system of

equations.

As the elements do not require specific modifications before calculating the stiffness matrix,

commercial elements are used with the Finite Element software ANSYS R© using eight-node

solid185 elements with an enhanced strain formulation (see [ANSYS 2012]). The stiffness,

mass and damping matrices of the sphere are calculated with ANSYS R© and imported into

the MATLAB R© program that contains the modeling of the soil as well as the coupling of the
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substructures. The degrees of freedom on the spherical surface ūΓs FE
are again positioned

in the upper part of the displacement vector and the parameters inside the domain in the

lower part.[K̄ΓsΓsFE

] [
K̄ΓsΩFE

]
[
K̄ΩΓsFE

] [
K̄ΩΩFE

]
ūΓs FE

ūΩFE

 =

P̄Γs FE

P̄ΩFE

 (4.25)
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5 Coupling of the Substructures

5.1 Preliminary remark

After the stiffness matrices of the ITM substructure and the FEM substructure have been

derived, the coupling of the substructures is performed in this chapter. In section 5.2 the

halfspace with cylindrical cavity is coupled to a Finite Element structure with cylindrical

coupling surface. Analogously the halfspace with spherical cavity and a spherical Finite

Element structure are coupled in section 5.3. The same procedure of the coupling is also

shown to be applicable to derive the solution of a layered halfspace with cylindrical or

spherical cavity in section 5.4. The final section 5.5 of this chapter shows how parameters

at an arbitrary point inside the soil can be evaluated in a post-processing procedure.

5.2 Coupling of the halfspace with cylindrical cavity with a

Finite Element mesh with cylindrical surface

In the equations (3.15) and (4.24) the substructures “halfspace with cylindrical cavity” and

“cylindrical Finite Element mesh” are solved separately. In both equations, the degrees of

freedom on the cylindrical surface Γ are distinguished from the degrees of freedom on the

halfspace surface Λ respectively inside the Finite Element domain Ω. The two substructures

are coupled using the transition conditions on the interaction surface Γ.

The first transition condition states that the displacements on the coupling surface have to

be the same for both substructures.

uΓITM
= uΓFE

(5.1)

As the equations (3.15) and (4.24) are formulated in different bases, a coordinate transfor-

mation is necessary before applying equation (5.1). During the derivations in chapter 3 the
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displacements ûΓITM
are calculated in the threefold Fourier transformed domain in depen-

dency on (kx, r, n, ω). The derivations of chapter 4 are based on a twofold Fourier transformed

global coordinate system (kx, y, z, ω) to obtain ũΓFE
. The threefold Fourier transformed ba-

sis (kx, r, n, ω) is chosen as coordinate system for the coupling and the degrees of freedom

as well as the load vector in equation (4.24) are transformed into the new coordinate sys-

tem. In the following, a transformation matrix [T ] is derived that contains the necessary

conversions.

In a first step, the displacements on the coupling surface Γ are transformed from the Cartesian

coordinate system (y, z) to a polar coordinate system (r, ϕ) as defined in figure 5.1.

ϕ
r

y

z

Figure 5.1: Definitions of the Cartesian (y, z) and polar (r, ϕ) coordinate systems

Thus, the displacements ũΓFE
can be replaced by the displacements ũΓFE,polar

of the polar

coordinate system using the transformation matrix [T1] according to

ux(y1,z1)

uy(y1,z1)

uz(y1,z1)

ux(y2,z2)

uy(y2,z2)

uz(y2,z2)
...


=



1 0 0 0 0 0 · · ·
0 − sin(ϕ1) − cos(ϕ1) 0 0 0 · · ·
0 cos(ϕ1) − sin(ϕ1) 0 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 − sin(ϕ2) − cos(ϕ2) · · ·
0 0 0 0 cos(ϕ2) − sin(ϕ2) · · ·
...

...
...

...
...

...





ux(r1,ϕ1)

ur(r1,ϕ1)

uϕ(r1,ϕ1)

ux(r2,ϕ2)

ur(r2,ϕ2)

uϕ(r2,ϕ2)
...


ũΓFE

= [T1] ũΓFE,polar

(5.2)

It shall be enhanced that only the parameters on the coupling surface are transformed.

The parameters inside the Finite Element domain Ω are described in Cartesian coordinates

through all the further derivations. Therefore, in the polar basis, the elements of ũΓFE,polar

depend on the constant radius of the cylinder r1 = r2 = . . . = R.
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In a second step, a Fourier series expansion of the displacements ũΓFE,polar
is carried out re-

garding the circumference of the cylindrical coupling surface Γ. The Fourier series expansion

can be noted in matrix notation by

ux(R,ϕ1)

ur(R,ϕ1)

uϕ(R,ϕ1)

ux(R,ϕ2)

ur(R,ϕ2)

uϕ(R,ϕ2)
...


=



ein1ϕ1 0 0 ein2ϕ1 0 0 ein3ϕ1 · · ·
0 ein1ϕ1 0 0 ein2ϕ1 0 0 · · ·
0 0 ein1ϕ1 0 0 ein2ϕ1 0 · · ·

ein1ϕ2 0 0 ein2ϕ2 0 0 ein3ϕ2 · · ·
0 ein1ϕ2 0 0 ein2ϕ2 0 0 · · ·
...

...
...

...
...

...
...





ux(R,n1)

ur(R,n1)

uϕ(R,n1)

ux(R,n2)

ur(R,n2)

uϕ(R,n2)
...


ũΓFE,polar

= [T2] ûΓFE

(5.3)

Combining the equations (5.2) and (5.3), the displacements on the cylindrical coupling sur-

face are transformed from the twofold Fourier transformed global coordinate system (kx, y, z, ω)

denoted with the˜symbol into the threefold transformed domain in dependency on (kx, r, n, ω)

that is signified by the ˆ symbol.

ũΓFE
= [T1] [T2] ûΓFE

= [T ] ûΓFE
(5.4)

The transition condition (5.1) is formulated as

ûΓITM
= ûΓFE

= ûΓ (5.5)

Analogously to the displacements, the load vector is also transformed into the coordinate

system (kx, r, n, ω).

P̃ΓFE
= [T ] P̂ΓFE

(5.6)

The system of equations (4.24) is transformed on the cylindrical coupling surface Γ into the
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new basis by


[
K̃ΓΓFE

] [
K̃ΓΩFE

]
[
K̃ΩΓFE

] [
K̃ΩΩFE

]
 ũΓFE

ũΩFE

 =

P̃ΓFE

P̃ΩFE



[
K̃ΓΓFE

] [
K̃ΓΩFE

]
[
K̃ΩΓFE

] [
K̃ΩΩFE

]
 [T ] ûΓFE

ũΩFE

 =

[T ] P̂ΓFE

P̃ΩFE



[
K̃ΓΓFE

] [
K̃ΓΩFE

]
[
K̃ΩΓFE

] [
K̃ΩΩFE

]
 [T ] 0

0 [I]

 ûΓFE

ũΩFE

 =

[T ] 0

0 [I]

 P̂ΓFE

P̃ΩFE


[T ] 0

0 [I]

−1 
[
K̃ΓΓFE

] [
K̃ΓΩFE

]
[
K̃ΩΓFE

] [
K̃ΩΩFE

]
 [T ] 0

0 [I]

 ûΓFE

ũΩFE

 =

P̂ΓFE

P̃ΩFE


[T ]−1

[
K̃ΓΓFE

]
[T ] [T ]−1

[
K̃ΓΩFE

]
[
K̃ΩΓFE

]
[T ]

[
K̃ΩΩFE

]
 ûΓFE

ũΩFE

 =

P̂ΓFE

P̃ΩFE


(5.7)

With equation (5.7) the equilibrium of the Finite Element system is formulated on the

coupling surface Γ with respect to a threefold transformed coordinate system (kx, r, n, ω)

and inside the domain Ω with respect to a twofold Fourier transformed Cartesian coordinate

system (kx, y, z, ω). Thus, a coupling to the ITM solution is possible. However, due to the

multiplication of the stiffness matrix with the transformation matrix, the characteristics of

the stiffness matrix are changed. Whereas the matrix
[
K̃ΓΓFE

]
is a sparse diagonal block

matrix, because usually two neighboring nodes on the coupling surface are connected via one

2.5-dimensional element, the matrix product [T ]−1
[
K̃ΓΓFE

]
[T ] is denser. Concerning the

Fourier series members along the circumference, there are more than two members coupled

which leads to a matrix that is still sparse but denser than the original matrix
[
K̃ΓΓFE

]
.

Also, [T ]−1
[
K̃ΓΩFE

]
and

[
K̃ΩΓFE

]
[T ] have more entries than the original

[
K̃ΓΩFE

]
and[

K̃ΩΓFE

]
. Thus, the computational effort of the calculations increases, but still, without the

transformation a coupling would not be possible.

For the coupling, a second transition condition is necessary. It relates the external loads of

the two substructures on the coupling surface PΓITM
and PΓFE

. Their sum has to be equal

to a given external load PΓ which can be applied at the coupling surface. For practical
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applications, PΓ is usually set to zero. Generally, the equilibrium states, that

PΓITM
+ PΓFE

= PΓ (5.8)

Again, the different bases have to be taken into account. Using equation (5.6), the loads on

the coupling surface of the Finite Element mesh are transformed into the new coordinate

system. Additionally, the nodal loads of the Finite Element computation have to be trans-

formed into the continuous loads of the ITM calculations. Thus, for an element with the

element dimension ds, the nodal load P̂ΓFE
is divided by the element length ds.

P̂ΓITM
+

1

ds
P̂ΓFE

= P̂Γ (5.9)

Due to the discretization, of course, an error is introduced into the calculations. As the cir-

cular cross section is discretized by elements with bilinear form functions, an exact modeling

of the structure is not possible and an error is unavoidable. However, as will be shown in

section 6.2, this error is acceptable even for a comparably small number of nodes on the cou-

pling surface. H- or p-refinements could be applied in order to further increase the accuracy

of the method.

Combining the two transition conditions (5.5) and (5.9), the substructures that are described

with the equations (3.15) and (5.7) are coupled and the system of equations can be derived

to model the complete system.
[
K̂ΛΛITM

] [
K̂ΛΓITM

]
0[

K̂ΓΛITM

] [
K̂ΓΓITM

]
+ 1

ds
[T ]−1

[
K̃ΓΓFE

]
[T ] 1

ds
[T ]−1

[
K̃ΓΩFE

]
0

[
K̃ΩΓFE

]
[T ]

[
K̃ΩΩFE

]



ûΛITM

ûΓ

ũΩFE

 =


P̂ΛITM

P̂Γ

P̃ΩFE


(5.10)

With this complete system of equations (5.10) the displacements on the halfspace surface Λ,

the cylindrical coupling surface Γ and at the nodes inside the Finite Element domain Ω due

to loads on the respective locations can be calculated. They are obtained with respect to

their respective basis ûΛITM
(kx, s ∆ky, z = 0, ω), ûΓ(kx, r = R, n, ω) and ũΩFE

(kx, y, z, ω).

The values of the displacements in the original domain can be calculated with inverse Fourier

transformations as shortly presented in appendix A.1.
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5.3 Coupling of the halfspace with spherical cavity with a

Finite Element mesh with spherical surface

In general, the procedure for the coupling of the ITM substructure and the FEM substructure

on a spherical coupling surface is identical to the one described in section 5.2 for the cylindri-

cal coupling surface. The two coupling conditions of the compatibility of the displacements

and the equilibrium of forces on the coupling surface have to be fulfilled. The difference lies

in the different coordinate systems. Again, the ITM and FEM substructures are described

by the respective systems of equations with the degrees of freedom on the halfspace surface

Λ, on the spherical coupling surface Γs and inside the Finite Element domain Ω.
[
K̂ΛΛITM

] [
K̂ΛΓsITM

]
[
K̂ΓsΛITM

] [
K̂ΓsΓsITM

]
 ûΛITM

ûΓs ITM

 =

 P̂ΛITM

P̂Γs ITM

 (5.11)

[K̄ΓsΓsFE

] [
K̄ΓsΩFE

]
[
K̄ΩΓsFE

] [
K̄ΩΩFE

]
ūΓs FE

ūΩFE

 =

P̄Γs FE

P̄ΩFE

 (5.12)

In the system of equations (5.11), the parameters on the halfspace surface Λ are described

with respect to the threefold Fourier transformed Cartesian coordinate system (kx, ky, z, ω),

while the parameters on the spherical coupling surface Γs are determined in the threefold

transformed spherical coordinate system (r, m, l, ω).

In the second system of equations (5.12), all the degrees of freedom are described in Cartesian

coordinates in the frequency domain (x, y, z, ω).

To enable the coupling, again the basis of the ITM solution is chosen as common coordi-

nate system and the parameters of the FEM calculation on the interaction surface Γs are

transformed into this coordinate system. This is again performed in two steps: At first, the

degrees of freedom are transformed from the Cartesian into a spherical coordinate system as
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it is defined in figure 2.6.

ux(x1,y1,z1)

uy(x1,y1,z1)

uz(x1,y1,z1)

ux(x2,y2,z2)

uy(x2,y2,z2)

uz(x2,y2,z2)
...


=



sin(ϑ1) cos(ϕ1) cos(ϑ1) cos(ϕ1) − sin(ϕ1) 0 · · ·
sin(ϑ1) sin(ϕ1) cos(ϑ1) sin(ϕ1) cos(ϕ1) 0 · · ·

cos(ϑ1) − sin(ϑ1) 0 0 · · ·
0 0 0 sin(ϑ2) cos(ϕ2) · · ·
0 0 0 sin(ϑ2) sin(ϕ2) · · ·
0 0 0 cos(ϑ2) · · ·
...

...
...

...





ur(r1,ϑ1,ϕ1)

uϑ(r1,ϑ1,ϕ1)

uϕ(r1,ϑ1,ϕ1)

ur(r2,ϑ2,ϕ2)

uϑ(r2,ϑ2,ϕ2)

uϕ(r2,ϑ2,ϕ2)
...


ūΓs FE

= [Ts 1] ūΓs FE,sph

(5.13)

The points on the surface of the sphere are arranged such that each latitude, starting from the

lowest one, is labeled from ϕ = 0, 2π
Nϕ
, ...,

(
2π − 2π

Nϕ

)
and then the next latitude is appointed.

Thus, the first Nϕ points lie on the same latitude and thus possess the same angle ϑ = ϑ1 =

ϑ2 = ... = ϑNϕ .

The second transformation matrix [Ts 2] contains the development of the degrees of freedom

on Γs which possess the same radial coordinate r1 = r2 = ... = R into spherical harmonics

[Ts 2] =



Y l1
m1

(ϑ1, ϕ1) 0 0 Y l2
m2

(ϑ1, ϕ1) · · ·
0 Y l1

m1
(ϑ1, ϕ1) 0 0 · · ·

0 0 Y l1
m1

(ϑ1, ϕ1) 0 · · ·
Y l1
m1

(ϑ2, ϕ2) 0 0 Y l2
m2

(ϑ2, ϕ2) · · ·
0 Y l1

m1
(ϑ2, ϕ2) 0 0 · · ·

...
...

...
...

...


(5.14)

and leads to the following transformation equation

ur(R, ϑ1, ϕ1)

uϑ(R, ϑ1, ϕ1)

uϕ(R, ϑ1, ϕ1)

ur(R, ϑ2, ϕ2)

uϑ(R, ϑ2, ϕ2)

uϕ(R, ϑ2, ϕ2)
...


= [Ts 2]



ur(R,m1, l1)

uϑ(R,m1, l1)

uϕ(R,m1, l1)

ur(R,m2, l2)

uϑ(R,m2, l2)

uϕ(R,m2, l2)
...


ūΓs FE,sph

= [Ts 2] ûΓs FE

(5.15)
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with the degrees mi and orders li arranged as summarized in table 5.1.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 . . .

mi 0 1 1 1 2 2 2 2 2 . . .

li 0 -1 0 1 -2 -1 0 1 2 . . .

Table 5.1: Degree and order of the spherical polynomials

After the transformations ūΓs FE
= [Ts 1] [Ts 2] ûΓs FE

= [Ts] ûΓs FE
and p̄Γs FE

= [Ts] p̂Γs FE
,

the coupling conditions can be applied. Again, the displacements on the coupling surface

have to be equal

ûΓs ITM
= ûΓs FE

= ûΓs (5.16)

and the load that is acting on the coupling surface is equally distributed onto the two

substructures.

P̂Γs ITM
+

1

dsϑdsϕ
P̂Γs FE

= P̂Γs (5.17)

The nodal loads of the Finite Element system of equations have to be replaced by distributed

loads on the surface of the sphere. This is done by dividing them by the element lengths in

the two directions dsϑ and dsϕ.

Using the two coupling conditions (5.16) and (5.17), the system of equations can be trans-

formed to the new coordinates analogously to the derivation (5.7). Still, it has to be regarded

that the second transformation matrix [Ts 2] is not quadratic. As already mentioned in sec-

tion 2.5.1, the development into spherical harmonics changes the number of parameters, so

[Ts 2] has 3NϑNϕ rows but 3(M + 1)2 columns. Therefore, an inversion of the transformation

matrix as necessary in (5.7) is not possible. Still, the solution can be performed using the

Moore-Penrose-pseudoinverse. The Moore-Penrose-pseudoinverse of a matrix [A] which is

often denoted by [A]+ satisfies the following equations which are called Penrose equations



70 5 Coupling of the Substructures

by [Ben-Israel and Greville 2003]

[A] [A]+ [A] = [A] (5.18a)

[A]+ [A] [A]+ = [A]+ (5.18b)(
[A] [A]+

)H
= [A] [A]+ (5.18c)(

[A]+ [A]
)H

= [A]+ [A] (5.18d)

An additional proposition holds for m × n matrices with n ≤ m and rank [A] = n that

[A]+ [A] = [I] according to [Koecher 1997]. The transformation matrix [Ts 2] consists of a

different number of rows and columns with more rows than columns and linearly independent

columns, so a left multiplication of [Ts 2] with the Moore-Penrose-pseudoinverse [Ts 2]+ leads

to the identity matrix [I].

[Ts 2]+ [Ts 2] = [I] (5.19)

With the above equation (5.19), equation (5.12) can be written in the transformed domain.

[Ts 2]+ [Ts 1]−1 [K̄ΓsΓsFE

]
[Ts 1] [Ts 2] [Ts 2]+ [Ts 1]−1 [K̄ΓsΩFE

]
[
K̄ΩΓsFE

]
[Ts 1] [Ts 2]

[
K̄ΩΩFE

]
 ûΓs FE

ūΩFE

 =

P̂Γs FE

P̄ΩFE


(5.20)

As the Moore-Penrose-pseudoinverse of a quadratic, invertible matrix is identical to the

inverse of the matrix, [Ts 2]+ [Ts 1]−1 is abbreviated by [Ts]
+. This leads to the complete

coupled system of equations with
[
K̂ΛΛITM

] [
K̂ΛΓsITM

]
0[

K̂ΓsΛITM

] [
K̂ΓsΓsITM

]
+ 1

dsϑdsϕ
[Ts]

+ [K̄ΓsΓsFE

]
[Ts]

1
dsϑdsϕ

[Ts]
+ [K̄ΓsΩFE

]
0

[
K̄ΩΓsFE

]
[Ts]

[
K̄ΩΩFE

]



ûΛITM

ûΓs

ūΩFE

 =


P̂ΛITM

P̂Γs

P̄ΩFE


(5.21)
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5.4 Layered halfspace with cylindrical or spherical cavity

The substructure technique described in the previous sections can also be applied to de-

rive the solution for a layered halfspace with cylindrical or spherical cavity as presented

in [Rathjens 2016] and [Freisinger 2016].

In a first step, two layered halfspaces as presented in section 2.3.4 are superposed. They are,

as sketched in the figures 5.2 and 5.3 rotated against each other by an angle of 180◦ with

respect to the x-axes.

x1

y1

z1

h1

x4

y4

z4

h2

h3

Λ1

δΛ2

Figure 5.2: Halfspace with real surface Λ1, vir-
tual surface δΛ2 and the local coor-
dinate systems (xi, yi, zi)

x1′

h3′

h2′

h1′

z1′

y1′

x4′

z4′

y4′ δΛ1

Λ2

Figure 5.3: Rotated halfspace with real sur-
face Λ2, virtual surface δΛ1 and the
local coordinate systems (xi′ , yi′ , zi′ )

As boundary conditions the stress states at the two surfaces Λ1 and Λ2 are given. Thus,

as result of the superposition an artificial system is obtained that consists of the spatially

limited layers of the layered halfspace as illustrated in figure 5.4. Alternatively, the solution

of this system of layers can also be deduced by solving the layered halfspace of figure 5.2

with stress boundary conditions on the free surfaces Λ1 and Λ2.

x1

y1

z1h1

h2

h3

Λ1

Λ2

x2

y2

z2

x3

y3

z3

Figure 5.4: Result of the superposition of the two halfspaces
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The relationship between the external loads on the surfaces Λ1 and Λ2 and the displacements

on these surfaces can be written in matrix notation.
[
K̂Λ1Λ1L

] [
K̂Λ1Λ2L

]
[
K̂Λ2Λ1L

] [
K̂Λ2Λ2L

]
ûΛ1L

ûΛ2L

 =

P̂Λ1L

P̂Λ2L

 (5.22)

The index L in equation (5.22) signifies that the parameters refer to the system of layers.

In a second step the system of layers is coupled to a halfspace with cylindrical or spherical

cavity as depicted in the figures 5.5 and 5.6 exemplarily for a cylindrical cavity.

x1

y1

z1

x4

y4

z4

Λ1

Λ2

Figure 5.5: System of layers with the surfaces Λ1

and Λ2

x

y4

z4
Γx4

Λ2

ϕ
r = R

Figure 5.6: Halfspace with cylindrical cavity

The halfspace with cylindrical cavity is described by the system of equations derived in

section 3.4.
[
K̂Λ2Λ2HC

] [
K̂Λ2ΓHC

]
[
K̂ΓΛ2HC

] [
K̂ΓΓHC

]
ûΛ2HC

ûΓHC

 =

P̂Λ2HC

P̂ΓHC

 (5.23)

The index HC denotes that the parameters are derived for the system of a halfspace with

cylindrical cavity. As the parameters on the coupling surface Λ2 are described in both

systems in the threefold Fourier transformed coordinate system (kx, ky, z, ω), no further

transformations are necessary and the systems can be coupled directly.

The equality of the displacements of the two systems on the coupling surface

ûΛ2L
= ûΛ2HC

= ûΛ2 (5.24)
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and the equilibrium of forces on the coupling surface

P̂Λ2L
+ P̂Λ2HC

= P̂Λ2 (5.25)

lead to the system of equations that describes the layered halfspace with cylindrical cavity

as depicted in figure 5.7.

x1

y1

z1

Λ1

Λ2

x

Γx4

y4

z4

ϕ
r = R

Figure 5.7: Layered halfspace with cylindrical cavity


[
K̂Λ1Λ1L

] [
K̂Λ1Λ2L

]
0[

K̂Λ2Λ1L

] [
K̂Λ2Λ2L

]
+ [KΛ2Λ2HC

] [KΛ2ΓHC ]

0 [KΓΛ2HC
] [KΓΓHC ]




ûΛ1L

ûΛ2

ûΓHC

 =


P̂Λ1L

P̂Λ2

P̂ΓHC

 (5.26)

The derivations can be analogously applied to model a halfspace with spherical cavity.

5.5 Halfspace with cylindrical or spherical cavity -

Post-processing

If stresses or displacements at an arbitrary point P inside the soil shall be determined

which is not already modeled as part of the Finite Element domain as exemplarily depicted

in figure 5.8, they can be computed in a post-processing step based on the displacements

ûΛITM
(kx, s ∆ky, z = 0, ω), ûΓ(kx, r = R, n, ω) and ũΩFE

(kx, y, z, ω). These are derived using

equation (5.10), in which loads can be applied at the surfaces Λ or Γ or inside the Finite

Element domain Ω.
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Λ

Γ

Ω

P

Figure 5.8: Sketch of a coupled ITM-FEM system with an arbitrary point of evaluation P

As the point on which the stresses or displacements are to be calculated lies not within the

Finite Element domain Ω, the stresses or displacements at P can be derived using the solution

of the system halfspace with cylindrical cavity, which was presented in chapter 3. The

displacements ûΛITM
(kx, s ∆ky, z = 0, ω) and ûΓ(kx, r = R, n, ω) are applied as boundary

conditions on the superposed system.

According to equation (3.11), the displacements of the superposed system halfspace with

cylindrical cavity are obtained superposing the displacements of the fundamental systems

halfspace and fullspace with cylindrical cavity. If the displacements of the superposed system

are given, the vector ûITM of equation (3.11) is known

ûITM =

(
ûΛITM

(kx, s ∆ky, z = 0, ω)

ûΓ(kx, r = R, n, ω)

)
(5.27)

with s = −Ny
2
, ...,

(
Ny
2
− 1
)

and n ∆ϕ with n = 1, 2, ..., Nϕ. The unknown amplitudes CΛ

and CΓ can be calculated for each combination of the discrete values of the wavenumber kx

and the frequency ω withCΛ

CΓ

 =


[
ÛΛΛITM

] [
ÛΛΓITM

]
[
ÛΓΛITM

] [
ÛΓΓITM

]
−1ûΛITM

(s ∆ky, z = 0)

ûΓ(r = R, n)

 (5.28)

The elements
[
ÛαβITM

]
with α = Λ,Γ and β = Λ,Γ contain the displacements on the surface

α due to an applied unit stress on surface β as described in detail in section 3.4.

The vector of the amplitudes of the applied stresses on the surfaces C contains in its upper

part CΛ the amplitudes of the stresses on the halfspace surface Ciz (s) with i = z, y, x for

each discrete wavenumber ky = s ∆ky. In CΓ, the lower part of vector C, the amplitudes
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of the stresses on the cylindrical coupling surface Cjr (n) with j = r, x, ϕ are organized for

each Fourier series member n.

After solving equation (5.28), it is possible to specify for each discrete combination of

wavenumber kx and frequency ω the stresses on the surface Λ of the fundamental system

of a halfspace as Ciz (s) σ̂iz (s) and the stresses on the surface Γ of the fundamental system

fullspace with cylindrical cavity Cjr (n) σ̂jr (n) that lead to the displacement state of the

superposed system halfspace with cylindrical cavity described by ûΛITM
(kx, s ∆ky, z = 0, ω)

and ûΓ(kx, r = R, n, ω). In figure 5.9 the superposition is graphically displayed in a simplified

manner.

The stresses Ciz (s) σ̂iz (s) are applied at the halfspace surface (figure 5.9 (a)) and for each

discrete wavenumber ky = s ∆ky they lead to displacement components Ciz (s) û
(iz,s)
k (s)

with k = z, y, x on Λ (figure 5.9 (b)). Additionally on the virtual cylindrical coupling surface

displacement components are generated. Each stress component on the surface leads to

Nϕ displacement components in each coordinate direction Ciz (s) û
(iz,s)
l (n) with l = x, r, ϕ

on Γ (figure 5.9 (b) - 5.9 (c)). Analogously the stresses Cjr (n) σ̂jr (n) on the cylindrical

surface Γ (figure 5.9 (d)) generate for each Fourier series member n displacement components

Cjr (n) û
(jr,n)
l (n) in the three cylindrical coordinate directions on Γ (figure 5.9 (e)). Regarding

the virtual halfspace surface each series member leads to Ny displacement components in each

Cartesian coordinate direction Cjr (n) û
(jr,n)
k (s) (figure 5.9 (e) - 5.9 (f)). The superposition

of all displacement components on the two surfaces has to be equal to the given boundary

conditions ûΛITM
(kx, s ∆ky, z = 0, ω) and ûΓ(kx, r = R, n, ω) that are depicted in figure 5.9

(g).

If the calculated stresses on the surfaces Λ and Γ are regarded as external loads

p̂i (kx, s, ω) = −Ciz (kx, s, ω) σ̂iz (kx, s, ω) (5.29a)

p̂j (kx, n, ω) = −Cjr (kx, n, ω) σ̂jr (kx, n, ω) (5.29b)

the displacements and stresses at point P (xP , yP , zP ) can be calculated separately for the

two fundamental systems.

At the halfspace system the loads p̂i (kx, s, ω) are applied as illustrated in figure 5.10 and

the displacements ûi (kx, s, z = zP , ω) can be calculated in the threefold Fourier transformed

domain in dependency on zP as the z-coordinate of point P with i = z, y, x.
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Ciz (s) σ̂iz (s) Ciz (s) û
(iz,s)
k (s)

Ciz (s) û
(iz,s)
l (n1)

Cjr (n) û
(jr,n)
k (Ny)

ûΛITM (s)

ûΓITM (n)

Ciz (s) û
(iz,s)
l (Nϕ)

Cjr (n) σ̂jr (n)

Cjr (n) û
(jr,n)
k (s1)

Cjr (n) ûl (n)

(a) (b)

(c)

(d)(e)

(g)

(f)

Figure 5.9: Graphical representation of the superposition of displacements



5.5 Halfspace with cylindrical or spherical cavity - Post-processing 77

p̂i (kx, s, ω)

P

ûi (kx, s, z = zP , ω)

zP

Figure 5.10: Displacements ûi (kx, s, z = zP , ω) at point P in the halfspace due to p̂i (kx, s, ω)

With equation (2.36) the unknowns of the exponential approach of the halfspace A2, Bx2

and By2 are calculated in dependency on p̂i (kx, s, ω). Evaluating equation (2.37) for z = zP ,

the displacements are obtained.ûx (kx, s, zP , ω)

ûy (kx, s, zP , ω)

ûz (kx, s, zP , ω)

 =

 ikxe
−λ1zP 0 λ2e

−λ2zP

ikye
−λ1zP −λ2e

−λ2zP 0

−λ1e
−λ1zP −ikye−λ2zP ikxe

−λ2zP


A2

Bx2

By2

 (5.30)

The stresses at point P can be calculated using equation (2.33) also based on the unknowns

A2, Bx2 and By2.



σ̂xx (kx, s, zP , ω)

σ̂yy (kx, s, zP , ω)

σ̂zz (kx, s, zP , ω)

σ̂xy (kx, s, zP , ω)

σ̂yz (kx, s, zP , ω)

σ̂xz (kx, s, zP , ω)


=µ



−2kx
2 − λ

µ
kp

2 0 ikxλ2

−2ky
2 − λ

µ
kp

2 −2ikyλ2 0

2λ1
2 − λ

µ
kp

2 2ikyλ2 −2ikxλ2

−2kxky −ikxλ2 ikyλ2

−2ikyλ1 λ2
2 + ky

2 −kxky
−2ikxλ1 kxky −λ2

2 − kx2



A2e
−λ1zP

Bx2e
−λ2zP

By2e
−λ2zP



(5.31)

Analogously, the fullspace with cylindrical cavity is loaded at Γ with p̂j (kx, n, ω) and the

displacements ûj (kx, r = RP , n, ω) are calculated on a circle with the radius RP of point P

as depicted in figure 5.11 with j = r, x, ϕ.
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ûj (kx, r = RP , n, ω)

RP
p̂j (kx, n, ω)

P

Figure 5.11: Displacements ûj (kx, r = RP , n, ω) at point P in the halfspace due to p̂j (kx, n, ω)

With the equations (2.56) the unknown amplitudes of the Hankel functions C1n, C2n and C3n

can be calculated for the solution of the fullspace with cylindrical cavity. These values can

be introduced into equation (2.54) and the displacements can be calculated at each point

of the fullspace with cylindrical cavity. Thus, the displacements ûj (kx, RP , n, ω) at point

P are obtained in the threefold transformed cylindrical coordinate system (kx, n, ω). The

computation of the stresses at point P in the fullspace with cylindrical cavity can be done

with equation (2.55) with r = RP .

The displacements and stresses of the superposed system are obtained by superposing the

values of the fundamental systems. As they are described with respect to different coordi-

nate systems, a transformation is necessary. Hence, the displacements ûj (kx, RP , n, ω) and

stresses σ̂jk (kx, RP , n, ω) with j, k = r, x, ϕ at point P of the system fullspace with cylindri-

cal cavity can be transformed into the threefold Fourier transformed Cartesian basis of the

halfspace. In order to distinguish the arising displacements and stresses that are depending

on (kx, s, ω) formally from the displacements and stresses that are calculated in the system

halfspace, the fundamental systems are abbreviated by HS for the halfspace and FC for the

fullspace with cylindrical cavity. Thus, the superposition of the fundamental systems can be

formulated for the displacements and stresses as

ûi (kx, s, zP , ω) = ûi,HS (kx, s, zP , ω) + ûi,FC (kx, s, zP , ω) (5.32a)

σ̂ij (kx, s, zP , ω) = σ̂ij,HS (kx, s, zP , ω) + σ̂ij,FC (kx, s, zP , ω) (5.32b)

with i, j = z, y, x. With this post-processing step, the displacements or stresses at an ar-

bitrary point inside the halfspace with cylindrical Finite Element structure can be deter-

mined.
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6 Verification

6.1 Preliminary remark

The method presented in the previous chapters shall be verified. In section 6.2 this is done

for a halfspace with cylindrical Finite Element structure. The system and general parameters

of the verification example are presented in section 6.2.1 for one specific parameter combi-

nation. By a quantitative similarity assessment, the accordance of the coupled approach

and the analytical solution is evaluated in section 6.2.2. For a more general estimation of

the accordance independent of certain chosen parameters and also for a reduction of the

number of influence quantities, a dimensionless representation of the results is contained

in section 6.2.3. Finally, after verifying the program for an excitation with a vertical load

and evaluating it for a vertical displacement, different load-displacement combinations are

checked in section 6.3. The coupling of ITM and FEM on a spherical coupling surface is

presented in section 6.4.

6.2 Verification example for the system halfspace with

cylindrical Finite Element structure

In this section the results of a coupled ITM-FEM approach are compared to an analytical

solution. The verification is performed for a halfspace with cylindrical cavity that is coupled

to a Finite Element mesh with cylindrical surface. The finite elements have the same material

parameters as the surrounding soil so the solution can be compared to the analytical solution

of a layered halfspace consisting of two layers with identical material.
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6.2.1 Overview

A sketch of the verification system is depicted in figure 6.1a. As benchmark the analytical

solution for a layered halfspace is used as shown in figure 6.1b. The layer boundary inside

the halfspace is introduced in order to be able to apply loads inside the halfspace and also

to directly evaluate the displacements at a certain depth.

P0z , F

R

d

by

bx

y
zx

(a)

h z1

z2

P0z , F

by

bx

y
z1

x

(b)

Figure 6.1: Schematic sketch of the coupled ITM-FEM system (6.1a) and the layered halfspace (6.1b)

The following material parameters of table 6.1 are used for the calculations of the displace-

ments.

Young’s modulus E
[

N
m2

]
Poisson ratio ν [−] Density ρ

[
kg
m3

]
Damping ratio ζ [−]

260 · 106(1 + i sign (ω) ζ) 0.3 2000 0.1

Table 6.1: Material parameters of the verification of the halfspace with cylindrical Finite Element structure

With the given material parameters, the velocities of the compressional, shear and Rayleigh

waves can be calculated as rounded cp = 419 m
s
, cs = 224 m

s
and cr = 208 m

s
.

The chosen geometry of the verification example consists of a tunnel with a radius R of 2 m

and a depth of the covering d of 0.1 m. This corresponds to a depth of the top layer of the

reference system h of 2.1 m. For the verification of the coupled ITM-FEM approach, the

vertical displacements uzhs on the surface of the halfspace due to a centric, vertical, harmonic

block load Pz on the halfspace with the parameters given in table 6.2 are calculated.
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Amplitude
P0z

[
N

m2

] Width in x-direction
bx [m]

Width in y-direction
by [m]

Frequency of excitation
f [Hz]

1 8 8 20

Table 6.2: Load parameters of the verification example

The three-dimensional displacement on the surface of the halfspace of the coupled approach

is exemplarily depicted in figure 6.2a in dependency on the x- and y-coordinate. The result of

the analytical calculation is analogously presented in figure 6.2b. Both figures are presented

in the time domain for the moment of the maximum displacement t = tmax.
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Figure 6.2: Vertical displacement on the surface of the halfspace calculated with the coupled approach
(6.2a) and the analytical solution of a layered halfspace (6.2b)

For a quantitative estimation of the error between analytical solution and the coupled ap-

proach, a two-dimensional profile is depicted in the following figure 6.3 with respect to the

y-coordinate at the position x = 0. The accordance between the analytical solution and

the result of the coupled ITM-FEM approach is clearly visible. Both methods obtain nearly

identical vertical displacements on the surface of the halfspace. A quantitative assessment

of the similarity of the results is presented in the following section 6.2.2.
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y-coordinate
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Figure 6.3: Vertical displacement on the surface of the halfspace in dependency on the y-coordinate
uzhs

(y)

6.2.2 Quantitative similarity assessment

The maximum error between the analytical solution of the halfspace and the solution of

the coupled ITM-FEM approach is identified at x = 0, y = 2 m for t = tmax as ∆uz =

1.11 · 10−10 m which is 0.7 % of the analytical value at the respective position.

In order to assess the quality of the calculated result with respect to the total domain quanti-

tatively, there are several proximity measures available that enable quantitative comparisons

of vectors. Their definitions and possible applications are summarized in a variety of text-

books, for example in [Backhaus et al 2011], [Bortz and Schuster 2010], [Fahrmeir et al 1996]

or [Bock 1974]. The City-Block metric (also named Manhattan metric) can be calculated

comparing the vectors that are depicted in figure 6.3 by adding the absolute values of their

differences. In general, the City-Block metric d1 is defined for the comparison of two vectors

a and b with n elements as

d1 =
n∑
i=1

|ai − bi| (6.1)
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It is a specification of the Minkowski-metrics that are defined as

dr = r

√√√√ n∑
i=1

|ai − bi|r (6.2)

The City-Block metric is chosen because all the differences are weighted equally during the

calculation. For Minkowski-metrics with r > 1, bigger differences are contributing more to

the result of the calculated distance than smaller differences due to calculating the power of

the differences.

Applying equation (6.1) on the vectors that are depicted in figure 6.3 leads to a distance

of d1 = 1.82 · 10−9 m. Distributed over the measurement points, an average error of

d1,av = 1.42 · 10−11 m is calculated.

For an assessment of the similarity of vectors instead of their differences there are several

coefficients existing. In appendix A.8 information about the Pearson correlation coefficient,

the cosine coefficient and the modal assurance criterion are summarized. They possess

values in a defined range and can be used to quantify the similarity of vectors. But all

three coefficients are not able to mirror the difference of two vectors with identical phase

information but different amplitudes (b = λa). Thus, they are not used in the scope of the

verification example.

Another similarity measure is the Tanimoto coefficient. Published by [Jaccard 1901] and

[Rogers and Tanimoto 1960] for a quantification of the similarity of different classes of plants,

it is a measure often used to classify the similarity of dichotomous variables. A possible

extension on the use for continuous variables is published for example in [Willet 1998]. Here

the Tanimoto coefficient for the comparison of two vectors a and b with n elements ranging

on an interval scale is defined as

T =

n∑
i=1

aibi

n∑
i=1

ai2 +
n∑
i=1

bi
2 −

n∑
i=1

aibi

(6.3)

and ranges between 1 for identical vectors and −1
3

for vectors pointing in opposite direc-

tion. In [Kreutz 2013] the Tanimoto coefficient is used to compare the stress states of a

Finite Element approach with augmented elements to the stress state of a reference solution.

Its applicability for the verification example is checked in [Schneider 2014]. In his thesis,

[Schneider 2014] compares two exponentially decaying cosine functions that show similar
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characteristics as the result of the verification example. Starting from two identical func-

tions, three different modifications are applied on one of the cosine functions one by one. A

change of the phase shift is applied as well as a change of the amplitude of the function. In

a third step, individual values of the function are modified. For each combination, differ-

ent similarity measures are evaluated. The Tanimoto coefficient is shown to be sensitive to

each of the applied changes and is, thus, chosen as the measure for comparing the results of

the analytical solution and of the solution of the coupled ITM-FEM approach. Moreover,

[Schneider 2014] shows that the Tanimoto coefficient does not react on the absolute value of

the difference between two functions but on the relative difference.

Monotonous with the Tanimoto coefficient, the Dice coefficient is also a possible similarity

measure which ranges between 1 in case of comparing identical measures and −1 for vectors

pointing in opposite direction as presented for example in [Willet 1998] or [Holliday et al

1995]. In appendix A.8, the Dice coefficient is defined and it is shown that it reacts less

sensitively than the Tanimoto coefficient to the different changes described above.

Thus, the Tanimoto coefficient is used for a quantitative assessment of the similarity between

the analytical solution and the coupled ITM-FEM approach. Calculating the Tanimoto

coefficient for the two functions depicted in figure 6.3, a result of 0.99996 is obtained thus also

confirming a good accordance of the coupled ITM-FEM result with the analytical solution.

If the two-dimensional profile is not only analyzed at x = 0 and t = tmax but in dependency

on the x- and t-coordinate, a minimum Tanimoto coefficient is obtained of 0.9992.

Of course, as the calculations are performed numerically, the results depend on the accuracy

of the numerical computation. The results presented so far have been achieved for a repetition

length of the spatial domain of Bx = By = 128 m and a period of the calculated time

of exactly one period of the excitation frequency according to table 6.2. In the following

table 6.3, the results are presented for different discretizations where the first line contains

the results presented so far. In the first four columns the number of the samples on the

halfspace surface in x- and y-direction (Nx and Ny), the number of samples with respect to

time (Nt) and the number of Fourier series members on the cylindrical coupling surface (Nϕ)

are listed. The parameters that are modified compared to the standard parameters of the

first line are marked in bold numbers. The error measures as well as the computation time

are listed in table 6.3. The computation time was determined in calculations performed with

a computer with 16 GB RAM and a 3.40 GHz quad core processor.
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Nx Ny Nt Nϕ Maximum
value uz

Maximum
error

City-Block
average [m]

Minimum
Tanimoto

Comp.
time

[m] [m] [m] [−] [s]

27 27 25 25 1.92 · 10−8 1.11 · 10−10 1.42 · 10−11 0.9992 97

26 26 25 25 1.88 · 10−8 1.15 · 10−10 1.63 · 10−11 0.9981 30

27 27 24 25 1.90 · 10−8 1.02 · 10−10 1.35 · 10−11 0.9993 78

27 27 25 24 1.92 · 10−8 4.33 · 10−10 5.55 · 10−11 0.9890 69

26 27 25 25 1.90 · 10−8 1.06 · 10−10 1.47 · 10−11 0.9993 54

27 26 25 25 1.90 · 10−8 1.09 · 10−10 1.49 · 10−11 0.9977 66

Table 6.3: Comparison of the quality of the results in dependency on the numerical accuracy

Interpreting table 6.3 it can be stated that even with less samples the error between ana-

lytical solution and coupled ITM-FEM approach is acceptably small. Considering the com-

putational costs, a calculation with Nx = Ny = 26, Nt = 25 and Nϕ = 25 is advantageous.

As presented in row 2 of table 6.3, the error rates are small and the computation time is

acceptable.

The displacements are also calculated inside the soil. The result uzs is displayed for x = 0

and at the moment of the maximum displacement t = tmax in figure 6.4.
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Figure 6.4: Vertical displacement inside the halfspace in dependency on the y-coordinate uzs(y)
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For the computation of the coupled ITM-FEM system, the displacements on the horizontal

middle line of the Finite Element mesh are calculated. They are compared to the displace-

ments of the analytical solution in the layer boundary.

The maximum error between the depicted graphs is 1.84 · 10−11 m and the average City-

Block metric is 5.75 ·10−13 m. The similarity in total is described by the minimum Tanimoto

coefficient if the analytical and the coupled ITM-FEM solution are compared with respect to

the y-axis for each possible combination of x-coordinate. It takes a value of 0.9604. Though

the accordance between analytical solution and coupled ITM-FEM solution is still high,

the evaluation inside the soil is worse than the one on the surface of the halfspace. This

can be explained with the discretization error of the Finite Element mesh which is more

significant inside the mesh as the circular circumference of the Finite Element mesh can

only be approximated by a linear polygon. But, as the result of figure 6.4 shows, a good

approximation can be achieved.

6.2.3 Dimensionless representation of the results

The presentation of the results in section 6.2.1 and 6.2.2 was carried out for the material

defined in table 6.1 and the load parameters specified in table 6.2. A description of the

results that is more independent of the chosen material can be achieved using dimensionless

parameters. By presenting the results in a dimensionless form, the number of variables can

be reduced and the results can be compared independent of some of the parameters.

6.2.4 Derivation of the dimensionless parameters

The description and calculations presented so far, have been based on dimensional or concrete

quantities. These are quantities who have values depending on the chosen system of units

[Sedov 1993]. They show the characteristics that the value Q of a quantity Q depends on

the scale on which it is described i. e. on the unit of the quantity [Q].

Q = Q [Q] (6.4)

In mechanical systems, a variety of different scales exists, all belonging to the three basic

quantities of length, mass and time. There are different basic quantities possible, but gener-

ally these three quantities are used for the description of physical and mechanical relations

as also stated for example in [Sedov 1993]. The basic unit system of engineering systems is
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usually described by the units meter [m], kilogram [kg] and second [s] also named as MKS

unit system. If the representation of physical or mechanical relations shall be independent

of a chosen unit system, dimensionless or abstract quantities can be used. Some quantities

are by default dimensionless as for example the Poisson ratio or the damping ratio because

they are calculated as the ratio of dimensional quantities with the same dimensions. This

example shows that calculating ratios changes the dimension of a quantity and can thus be

used to transform dimensional into dimensionless quantities. This transformation is possible

because each derived quantity Q can be shown to be describable as a constant C multiplied

with the power product of the basic quantities length L, mass M and time T .

Q = C LαMβT γ (6.5)

A proof of equation (6.5) is presented for example in [Bridgman and Holl 1932] and is also

summarized in appendix A.9. If the quantity Q can be expressed as power product of the

basic quantities length, mass and time, also the unit of Q depends on the power product of

the basic units meter [m], kilogram [kg] and second [s].

[Q] = [L]α [M ]β [T ]γ = mαkgβsγ (6.6)

To obtain dimensionless parameters, the dimensions of all quantities that influence the system

under consideration have to be analyzed. According to [Stichlmair 1990], dimensionless

parameters can be derived if the relationship between quantities is known, even if it is not

possible to specify an analytical description of the relationships. In a list of relevance, all n

quantities which are relevant for a given system are listed.

f (Q1, Q2, . . . , Qn) = 0 (6.7)

All relevant parameters Qn have to be listed according to [Stichlmair 1990], only those that

are dimensionless by default, as the Poisson ratio for example, can be neglected. According

to equation (6.6) the units of each quantity Qi in equation (6.7) are power products of the

basic units [m], kilogram [kg] and second [s] with powers αi, βi and γi.

[Q1] = mα1kgβ1sγ1 (6.8a)

[Q2] = mα2kgβ2sγ2 (6.8b)

...

[Qn] = mαnkgβnsγn (6.8c)
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According to [Zierep 1982], the task consists in finding dimensionless representations of the

system with

π = Q1
k1Q2

k2 . . . Qn
kn (6.9)

Considering the units of equation (6.9) the statement can be formulated that

[π] = [Q1]k1 [Q2]k2 . . . [Qn]kn

=
(
mα1kgβ1sγ1

)k1 (
mα2kgβ2sγ2

)k2
. . .
(
mαnkgβnsγn

)kn !
= m0kg0s0 (6.10)

Comparing the exponents of the units in equation (6.10) leads to a system of equations for

the determination of the unknown coefficients k1, k2, . . ., kn. As there are three basic units

[m], kilogram [kg] and second [s], the system of equations consists of three equations and n

unknowns

α1k1 + α2k2 + . . .+ αnkn
!

= 0 (6.11a)

β1k1 + β2k2 + . . .+ βnkn
!

= 0 (6.11b)

γ1k1 + γ2k2 + . . .+ γnkn
!

= 0 (6.11c)

or formulated in matrix notation

α1 α2 . . . αn

β1 β2 . . . βn

γ1 γ2 . . . γn



k1

k2

...

kn

 =


0

0
...

0

 (6.12)

The matrix containing the exponents αi, βi and γi of the power products of the quantities

Qi is also labeled as dimension matrix according to [Zierep 1982].

Q1 Q2 . . . Qn

[m]

[kg]

[s]

α1 α2 . . . αn

β1 β2 . . . βn

γ1 γ2 . . . γn

 (6.13)

The solvability of the system of equations (6.12) depends on the rank of the dimension ma-

trix (6.13). If the rank r of the dimension matrix, which is in mechanical systems maximal

three, is smaller than the number of quantities n, then (n− r) linearly independent solu-
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tions exist. This means that r values of ki can be chosen arbitrarily and the corresponding

(n− r) values of ki can only be determined in dependency on the free values. Thus, (n− r)
different dimensionless quantities π can be determined and the general description (6.7) can

be formulated as

f (π1, π2, . . . , πn−r) = 0 (6.14)

Summarizing, it can be stated that, if n quantities Q1, Q2, . . . Qn are given which are re-

lated to each other, there are exact (n− r) dimensionless quantities π1, π2, . . . , πn−r with

f (π1, π2, . . . , πn−r) = 0 describing the complete system where r ≤ n is the rank of the di-

mension matrix. This theorem is often also named the Buckingham-π-theorem after the

publication of [Buckingham 1914] even if, as [Görtler 1975] points out, [Buckingham 1914]

was not the first author that published this theorem and also did not formally correct refer

the solvability to the rank of the dimension matrix but to the number of basic units.

6.2.5 Dimensionless representation of the verification example

In order to describe the results of the verification example using dimensionless parameters,

a list of relevance has to be formulated. Therefore, the quantities that are determining the

system have to be identified.

The first quantity is the one to be assessed. For the systems depicted in figure 6.5 that are

loaded with a vertical load on the surface of the halfspace, the vertical displacement uzhs at

the halfspace surface is evaluated at a point in the middle of the block load (x = 0, y = 0).
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P0z , F

by
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h ρ, ζ
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by

bx
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Figure 6.5: Relevant parameters of the coupled ITM-FEM system (6.5a) and the layered halfspace (6.5b)
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The value of the evaluation quantity depends first on the material of the soil which is the

only material that is used for the verification example. This is modeled by the parameters

of Young’s modulus E, Poisson ratio ν, damping ratio ζ and density ρ. As mentioned in

section 6.2.4, quantities that are dimensionless by default, can be neglected. Therefore, the

Poisson ratio ν and the damping ratio ζ will not be taken into account in the list of relevance

and are chosen as the constant values presented in table 6.1.

Furthermore, the evaluation quantity is influenced by the load parameters. The load is

modeled with the quantities of the amplitude of the load P0z , the frequency of excitation f

and the width of the block load in x- and y-direction bx and by.

The response of the coupled ITM-FEM approach is also dependent on the geometry of the

system, represented by the radius R of the tunnel and the depth of the covering above the

tunnel d. The geometry of the reference system of the layered halfspace is determined by

the depth of the layer boundary h.

Thus, the lists of relevance can be formulated for the depicted systems as

f (uzhs , E, ρ, P0z , f, bx, by, R, d) = 0 (6.15a)

f (uzhs , E, ρ, P0z , f, bx, by, h) = 0 (6.15b)

For the coupled ITM-FEM approach n = 9 quantities are identified that are necessary to

model the system, for the layered halfspace n = 8 quantities. In the following table 6.4

the quantities of the verification example are summarized and described by the powers α,

β and γ of the respective basic units meter [m], kilogram [kg] and second [s] as defined in

equation (6.6).
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Quantity Abbreviation Unit α β γ

Maximum vertical displacement
at x = 0, y = 0, z = 0

uzhs m 1 0 0

Young’s modulus E N
m2 -1 1 -2

Density ρ kg
m3 -3 1 0

Amplitude of the load P0z
N

m2 -1 1 -2

Frequency of the load f 1
s

0 0 -1

Width of the load in x-direction bx m 1 0 0

Width of the load in y-direction by m 1 0 0

Radius of the cylindrical
coupling surface

R m 1 0 0

Depth of the covering d m 1 0 0

Depth of the top layer h m 1 0 0

Table 6.4: List of relevance of the quantities of the verification example

In a next step, the dimension matrix has to be defined. As derived in section 6.2.4, (n− r)
dimensionless parameters can be derived out of a dimension matrix with the rank r.

These dimensionless quantities will be defined in dependency on the r quantities that are

chosen as independent quantities. Before formulating the dimension matrix, the independent

quantities have to be determined. These are the parameters which are used for the calculation

of the (n− r) dimensionless parameters and may appear in one or more of the π-quantities

(in contrast to the dependent quantities which only appear in one of the dimensionless π-

quantities as mentioned for example in [Stichlmair 1990]). Thus, a functional relationship

between the independent quantities and the evaluation quantity will not be visible in the

dimensionless description of the system. This has to be taken into account as the independent

quantities are chosen. Moreover, as the goal of a dimensional analysis is also to reduce the

number of quantities from n to (n− r), it is advantageous if r takes the maximum value

which is, for mechanical systems, three. Therefore, it has to be considered that the chosen

independent variables are able to represent the basic unit system.

For the verification example the Young’s modulus E, the density ρ and the width of the load

in x-direction bx as geometrical quantity are chosen as independent variables and written in

the first three columns of the dimension matrix. Thus, the dimension matrix can be formu-

lated for the coupled ITM-FEM system (matrix on the left) and for the layered halfspace
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(matrix on the right) as

E ρ bx P0z f by R d uzhs E ρ bx P0z f by h uzhs

[m]

[kg]

[s]

−1 −3 1 −1 0 1 1 1 1

1 1 0 1 0 0 0 0 0

−2 0 0 −2 −1 0 0 0 0


−1 −3 1 −1 0 1 1 1

1 1 0 1 0 0 0 0

−2 0 0 −2 −1 0 0 0


(6.16)

The rank of both matrices in (6.16) is the maximum possible value of r = 3. To determine

the relationships between the independent and dependent variables, the dimension matri-

ces (6.16) have to be transformed such that a 3×3 identity matrix is obtained in the columns

that are representing the independent quantities. For this equivalent transformations can be

applied. As a result the following matrices are obtained.

E ρ bx P0z f by R d uzhs E ρ bx P0z f by h uzhs

[m]

[kg]

[s]

1 0 0 1 1
2

0 0 0 0

0 1 0 0 −1
2

0 0 0 0

0 0 1 0 −1 1 1 1 1


1 0 0 1 1

2
0 0 0

0 1 0 0 −1
2

0 0 0

0 0 1 0 −1 1 1 1


(6.17)

After this transformation, the exponents ki of equation (6.9) can be determined, for example

for the coupled ITM-FEM system, by

k1 = −k4−
1

2
k5 (6.18a)

k2 =
1

2
k5 (6.18b)

k3 = k5 − k6 − k7 − k8 − k9 (6.18c)

The dimensionless representation of the system can be formulated as

π = E−k4−
1
2
k5 ρ

1
2
k5 bx

k5−k6−k7−k8−k9 P k4
0z f

k5 by
k6 Rk7 dk8 uk9zhs (6.19)

Now each one of the exponents ki can be set to be equal to 1 consecutively and the others

respectively chosen to be 0. Hence, the six dimensionless quantities of the coupled ITM-

FEM system are the dimensionless amplitude of the load πP , the dimensionless frequency

πf , the dimensionless width of the load in y-direction πy, the dimensionless radius πR, the

dimensionless depth of the covering πd and as evaluation quantity the dimensionless vertical
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displacement πu.

πP =
P0z

E
πf =

fbx√
E
ρ

πy =
by
bx

πR =
R

bx
πd =

d

bx
πu =

uzhs
bx

(6.20)

The dimensionless displacement πu can be specified as a function of the five dimensionless

parameters in a general form as

πu = f (πP , πf , πy, πR, πd) (6.21)

For linear material behavior the relationship between the amplitude of the load and the

displacement are known as the displacement uzhs is directly proportional to the amplitude

of the load P0z . Thus, the number of influencing parameters of the unknown function f can

be reduced to four.

πu = πP f (πf , πy, πR, πd) (6.22)

If the widths of the load in the x- and y-directions are additionally limited to an excitation

with a square geometry bx = by, one more dimensionless parameter can be reduced.

πu = πP f (πf , πR, πd) with πy =
by
bx

= 1 (6.23)

If the same procedure is repeated analogously for the system of a layered halfspace, the

dimensionless displacement πu is defined in dependency on the dimensionless frequency πf

and the dimensionless depth of the top layer πh.

πu = πP f (πf , πh) with πy =
by
bx

= 1 (6.24)

To compare the results of both systems, a three-dimensional plot is possible, depicting the

dimensionless displacement πu in dependency on the dimensionless frequency πf and the

dimensionless radius πR respectively the dimensionless depth of the top layer πh. This

is performed for the system of the coupled ITM-FEM approach for a fixed value of the

dimensionless depth of the covering πd. In doing so, it has to be ensured that the chosen

radius R plus the depth of the covering d are equal to the depth of the top layer of the

reference system h.
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6.2.6 Dimensionless results of the verification example

As mentioned in section 6.2.5, the Young’s modulus E, the density ρ and the width of the

load in x-direction are chosen as independent variables. Their values are, as introduced in

the tables 6.1 and 6.2, E = 260 · 106 (1− 0.1i) N
m2 , ρ = 2000 kg

m3 , bx = 8 m. To ensure

that πy = 1, by is chosen to be 8 m. The dimensionless flexibility πu
πP

is presented in the

following figures 6.6 in dependency on the dimensionless frequency πf and the dimensionless

geometrical quantity πR respectively πh. In the dimensionless frequency πf , the frequency

f is varied in the range [−1 Hz,−100 Hz] in steps of 1 Hz, the radius R is varied between

[1 m, 5.9 m] in steps of 0.1 m, the height of the second layer h equivalently from 1.1 m to

6.0 m.
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Figure 6.6: Dimensionless flexibility πu

πP
of the coupled ITM-FEM system (6.6a) and the layered half-

space (6.6b) in dependency on the dimensionless frequency πf and the dimensionless radius
πR respectively the dimensionless depth of the top layer πh

A good accordance of the coupled ITM-FEM solutions with the analytical calculations can

be stated. In both figures, the dependency of the displacement on the geometrical quantity

R respectively h is rather unincisive. While the displacement calculated with the analytical

solution is independent of the quantity h, the displacement calculated with the coupled

ITM-FEM approach is slightly changing in dependency on the radius R. If the Tanimoto

coefficient is calculated comparing the vectors πu(πf ) for different values of πR respectively

πh−d as presented in figure 6.7, it can be stated that the quality of the accordance decreases

with increasing dimensionless radius πR.
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Figure 6.7: Tanimoto coefficient comparing the vector of the dimensionless displacement πu(πf ) for dif-
ferent values of πR respectively πh−d

This decrease of the accordance with increasing radius of the tunnel can be explained as the

number of discrete elements along the circumference of the cylindrical coupling surface Nϕ

is constant for all calculations. Therefore, for increasing values of the radius, the element

size is increasing and the error that occurs when discretizing a circular geometry with linear

elements increases. In figure 6.8 the calculation is repeated for different discretizations. The

results are presented for Nϕ = 16, Nϕ = 32 and Nϕ = 64 elements on the circumference

on the cylindrical coupling surface. The sampling concerning the frequency resolution is

decreased for this comparison. The frequency f is varied in steps of 2 Hz. Also the radius is

varied with a coarser sampling in steps of 0.2 m.
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Figure 6.8: Tanimoto coefficient comparing the vector of the dimensionless displacement πu(πf ) in de-
pendency on πR respectively πh−d for different discretizations Nϕ = 16, Nϕ = 32 and
Nϕ = 64

In figure 6.8 the influence of the discretization on the quality of the result is clearly visible.

The higher the spatial resolution is chosen, the better is the accordance between analytical

solution and coupled ITM-FEM approach.

6.3 Verification for different load-displacement

combinations

Analogously to the procedure described in the previous sections, the accordance between

analytical solution and coupled ITM-FEM solution is evaluated for different loads acting

on the system. Additionally to the application of the block load on the surface of the

halfspace, it is also applied inside the Finite Element mesh respectively at the layer boundary

of the analytical solution. The displacements in x-, y- and z-direction on the surface of the

halfspace as well as inside the soil are evaluated. The results of the computations show good

accordance of the coupled ITM-FEM solution with the solution of the layered halfspace for

all combinations of load and displacement.
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6.4 Verification example for the system halfspace with

spherical Finite Element structure

Analogously to the verification of the coupled approach for a halfspace with cylindrical Finite

Element structure in section 6.2, also the halfspace with spherical inclusion is compared to the

analytical solution of a layered halfspace. For this, the Finite Element domain is completely

filled with elements possessing the same material parameters as the surrounding soil. An

exemplary sketch of the system is shown in figure 6.9.

ϑ
r

ϕ

P0z , F

by

bxz

y

x

Figure 6.9: Schematic sketch of the coupled spherical ITM-FEM system

The Young’s modulus of the material is changed in comparison to the verification example

presented for the halfspace coupled to a cylindrical Finite Element mesh. This is done as

the verification of the coupled approach shall not be presented again in a dimensionless,

extensive form but only selected parameter combinations shall be presented in this section.

Therefore, a material is modeled with wave velocities that generate in the frequency range

between 1 Hz and 100 Hz wavelengths in the [m] dimension. The material parameters are

given in the following table 6.5.

Young’s modulus E
[

N
m2

]
Poisson ratio ν [−] Density ρ

[
kg
m3

]
Damping ratio ζ [−]

260 · 105(1 + i sign (ω) ζ) 0.3 2000 0.1

Table 6.5: Material parameters of the verification of the halfspace with spherical Finite Element structure
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With the material defined in table 6.5 wave velocities cp = 132 m
s
, cs = 71 m

s
and cr = 66 m

s

are obtained. Thus, with excitation frequencies of f = 2 Hz, f = 20 Hz and f = 50 Hz,

wavelengths in the soil are modeled which are given in table 6.6.

λp [m] λs [m] λr [m]

f = 2 Hz 66.31 35.44 32.88

f = 20 Hz 6.62 3.54 3.28

f = 50 Hz 2.65 1.42 1.32

Table 6.6: Wavelengths of the verification example for different frequencies

The radius of the sphere is chosen for the first two calculations with f = 2 Hz and f = 20 Hz

as R = 1 m and it is positioned with a depth of the covering d = 0.5 m. In the scope

of the calculation with f = 50 Hz, the radius is reduced to R = 0.5 m with d = 0.25 m.

This is done to achieve a reduced computation time. As the wavelengths are comparably

small for f = 50 Hz, a high sampling rate is necessary to model them appropriately. For

the initial radius of R = 1 m this would lead to large computation times. Moreover, as the

wavelengths are that small, even with a radius of R = 0.5 m it can be ensured that the waves

are propagating through the spherical structure so the phenomena for the verification can

be examined also with a reduced radius.

A vertical, harmonic block load is applied at the surface of the halfspace with dimensions

in x- and y-direction of each bx = by = 2 m and an amplitude of P0,z = 1 N
m2 . The center

of the block load is located at the center of the halfspace surface (x, y) = (0 m, 0 m).

The frequency of the load f is varied as mentioned above. Exemplary results are plotted

in the figures 6.10. A layered halfspace consisting of two layers with identical material is

again used as analytical reference solution analogously to the verification of the halfspace

with cylindrical Finite Element structure as depicted in figure 6.1b. The layer boundary

is introduced in order to easily evaluate the behavior of the soil in a certain depth. The

absolute values and the phases of the vertical displacements are depicted in dependency on

the y-coordinate for x = 0 each in the frequency domain for ω = −2πf .
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Figure 6.10: Absolute values (left column) and phases (right column) of the vertical displacement on
the surface of a halfspace in dependency on the y-coordinate in the frequency domain for
f = 2 Hz (6.10a, 6.10b), f = 20 Hz (6.10c, 6.10d) and f = 50 Hz (6.10e, 6.10f)
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Interpreting the graphs in figure 6.10 a good accordance between the coupled approach and

the analytical solution can be stated. The result of the calculation for f = 50 Hz shows an

error in the middle of the system around y = 0. This can be explained with the discretization

error that happens when discretizing the spherical surface with linear polynomials. As the

latitudes are not positioned at the poles of the sphere, a small gap is present at the poles.

For lower frequencies this gap is too small compared to the wavelengths to influence the

accuracy of the result, but for higher frequencies the influence is visible.

A quantitative comparison analogously to the one presented in section 6.2.2 is shown in

the following table 6.7. There the maximum values of the vertical displacements on the

surface as well as some error measures are given for the different excitation frequencies. All

the parameters are obtained by comparing the absolute values of the displacements in the

frequency domain for ω = −2πf . The maximum error between the analytical solution and

the result of the coupled approach as well as the average City-Block metric are calculated on

the total surface of the halfspace for all x- and y-coordinates. The given Tanimoto coefficient

determines the similarity of the vectors plotted in figure 6.10 for x = 0.

Frequency
f

Maximum
value |uz,max|

Maximum
error

City-Block
average

Tanimoto
Coefficient

Computation
time

[Hz] [m] [m] [m] [−] [s]

2 5.73 · 10−8 2.01 · 10−9 9.42 · 10−11 0.9998 4880

20 3.08 · 10−8 5.64 · 10−11 8.49 · 10−12 0.9998 1976

50 1.19 · 10−8 3.91 · 10−10 2.34 · 10−11 0.9316 1618

Table 6.7: Comparison of the results for different excitation frequencies

Evaluating the quantitative results of the comparison of the coupled approach and the an-

alytical solution, also a good accordance can be stated in general. The maximum error is

small compared to the general level of the displacements and also the City-Block average

and the Tanimoto coefficient are rather good.

As visible in table 6.7, the results for f = 50 Hz are worse than the results for the lower fre-

quencies. This can be explained by the decrease in the wavelength and the higher discretiza-

tion that would be necessary to achieve a better accordance. As summarized in table 6.6

the wavelength of the Rayleigh wave is λr = 1.3 m at 50 Hz compared to λr = 32.9 m at

2 Hz. The repetition lengths Bx and By of the system are adapted partly to the reduced

dimension of the wavelength but still the sampling distance in the y-coordinate is 0.125 m at
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50 Hz which means there are roughly 10 elements per wavelength while at 2 Hz with 0.5 m

sampling distance in y-direction there are rounded 66 elements per wavelength.

If the modeling of the Finite Element structure is analyzed, the theoretical arc length of one

element on the equator of the spherical coupling surface is taken as evaluation parameter for

a comparison of the discretization. For both frequencies the sphere is discretized with Nϕ

elements on the circumference. As the radius of the sphere is 1.0 m at 2 Hz and 0.5 m at

50 Hz, the theoretical arc length of one element on the equator is 0.39 m respectively 0.20 m.

Thus at 50 Hz the ratio between the wavelength λr and the arc length is 6.5 compared to 84

at f = 2 Hz. Thus, the worse accordance of the calculated results at 50 Hz can be explained

with a coarser discretization on the halfspace surface as well as on the spherical coupling

surface.

Analogously the results inside the soil are compared. The vertical displacements that are

calculated with the coupled ITM-FEM approach are calculated at the nodes inside the Finite

Element mesh that are positioned at the first latitude below the equator and thus at the

widest extension of the sphere. The displacements of the nodes with x = 0 are depicted in

the figures 6.11 and compared to the displacements of the corresponding points of the layered

halfspace. Again the results are plotted as absolute values and phases of the displacements

in the frequency domain for ω = −2πf .
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Figure 6.11: Absolute values (left column) and phases (right column) of the vertical displacement inside
the soil at a line at x = 0 in dependency on the y-coordinate for |y| ≤ R in the frequency do-
main for f = 2 Hz (6.11a, 6.11b), f = 20 Hz (6.11c, 6.11d) and f = 50 Hz (6.11e, 6.11f)

In general it can be stated that for an excitation of the system on the surface of the halfspace

the transmission between ITM substructure and FEM substructure can be modeled appro-

priately. The accordance between analytical solution and the result of the coupled approach

is good, even if it is decreasing with increasing excitation frequency.
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7 Numerical examples

7.1 Preliminary remark

In this chapter numerical examples are presented to illustrate the applicability of the method.

So the possible implementation of moving loads is presented in section 7.2 and some of the

effects that can occur due to moving loads are mentioned. Also the modeling of practically

used mitigation measures is examined. The effect of a mass-spring system in a tunnel that

is introduced to prevent the excitation of the tunnel and thus the soil itself is modeled in

section 7.3. Moreover, the reduction of vibrations due to trenches on the surface to hinder

the transmission of vibrations from the point of load application to the receiving structure

can be predicted with a coupled ITM-FEM approach as presented in section 7.4.

7.2 Modeling of moving loads in a tunnel

In order to obtain a more realistic model of the load inserted by a train, the harmonic load

can be defined as a harmonic block load moving in positive direction of the longitudinal

coordinate x of the tunnel with the velocity v by

pmov(x, y, t) = p0(x− vt, y) f(t) (7.1)

As derived for example in [Müller 2007], the Fourier transformed of the given load function

is

p̂mov(kx, ky, ω) = p̂0(kx, ky) f̂(ω + vkx) (7.2)

Thus, the movement of the load in the original domain leads to a frequency shift in the three-

fold Fourier transformed domain and the transformed function of the moving load is obtained

by calculating the transformed function of the stationary load p̂sta(kx, ky, ω̄) = p̂0(kx, ky) f̂(ω̄)
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for a wavenumber-dependent shifted frequency ω̄ = ω+ vkx as already mentioned in [Müller

1989].

p̂mov(kx, ky, ω) = p̂sta(kx, ky, ω + vkx) (7.3)

If the stiffness of the modeled system in the transformed domain is labeled as K̂(kx, ky, ω),

the displacement due to the moving load can be calculated in the transformed domain as

ûmov(kx, ky, ω) =
p̂mov(kx, ky, ω)

K̂(kx, ky, ω)
=
p̂sta(kx, ky, ω + vkx)

K̂(kx, ky, ω)
(7.4)

The displacement in the original domain is obtained after the threefold inverse Fourier trans-

formation.

Equation (7.4) is applied in order to calculate the dynamic response of the system depicted

in figure 7.1 to a harmonic block load on the track that oscillates harmonically with an

excitation frequency f and is moving along the longitudinal coordinate x of the tunnel with

a constant velocity v.

pmov(x, y, t) = p0(x− vt, y) f(t)

y

z
x

x
ϕ
r = R

Figure 7.1: Tunnel cross section for the calculation of the displacements on the halfspace surface due to
a moving load in the tunnel
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The Fourier transformed load p̂mov (kx, ω) at the point of the load application is depicted

for a stationary load (v = 0) and a load moving with a given velocity (v = VL) in the fig-

ures 7.2a and 7.2b. As in this specific case the load is applied on a point inside the Finite

Element domain, there is no transformation regarding the y-coordinate necessary because

the parameters inside the Finite element domain are described in Cartesian coordinates. The

wavenumber dependent shift of the frequency is clearly visible in the figures 7.2.
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Figure 7.2: Fourier transformed load p̂mov (kx, ω) at the middle of the track for v = 0 (7.2a) and v = VL
(7.2b)

The vertical displacement u(x, y, t) on the surface of the halfspace due to the harmonic,

moving load on the track is calculated in the original domain for different velocities of the

load. As expected, the response of the system changes in dependency on the velocity of the

load v. [Krylov 1995] and [Sheng et al 1999] for example examined a change in the dynamic

behavior of the response if the velocity of the load reaches the propagation velocities of the

Rayleigh wave inside the soil which can be approximated as

cr =
0.87 + 1.12 ν

1 + ν
cs (7.5)

according to [Viktorov 1967] for example. [Dieterman and Metrikine 1996] analyzed the an-

alytical solution for a beam on a halfspace and identified two critical velocities if a uniformly

moving load is applied on the beam. The first critical velocity is equal to the Rayleigh wave

velocity cr. The second critical velocity lies below this value, but for realistic parameters of

the material and geometry of the system, is rather close to cr, so for practical applications

the assumption of one critical velocity at the Rayleigh wave velocity can be used. One year

later, [Dieterman and Metrikine 1997] also examined the critical velocities of an elastic layer

that is loaded with a harmonic, moving load. For this system, they identified the group
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velocity of the waves that arise due to the load, as the critical velocity. In dependency on

the system-dependent critical velocity, the characteristics of the solution changes.

Therefore, the system depicted in figure 7.1 is solved with the coupled ITM-FEM approach

for a harmonic block load with the length bx = 12.5 m applied in the middle of the track.

The radius of the circular coupling surface is chosen as r = 4.5 m and the tunnel is positioned

with a covering of d = 4.5 m as well. The load is harmonically oscillating with a frequency

f = 10 Hz and moves with different velocities along the longitudinal coordinate of the tunnel.

The calculations are performed for two different kind of soils with different Rayleigh wave

velocities to illustrate the behavior of the response. The material parameters as well as the

respective Rayleigh wave velocities are presented in table 7.1. For both types of soil, the

Young’s modulus is chosen smaller than the value used in the verification examples. This is

due to the fact that the Rayleigh wave velocity of the soil presented in table 7.2 is cr = 208 m
s
.

As the maximum train speed lies currently at vmax = 575 km
h

= 160 m
s

for trains running on

wheels according to [Werske 2013], only in softer soil with smaller Rayleigh wave velocities

the train speed exceeds the Rayleigh wave velocity.

Young’s modulus Poisson
ratio

Density Damping
ratio

Rayleigh wave
velocity

E
[

N
m2

]
ν [−] ρ

[
kg
m3

]
ζ [−] cr

[
m
s

]
Soil 1 60 · 106(1 + i sign (ω) ζ) 0.3 2000 0.10 99.8

Soil 2 10 · 106(1 + i sign (ω) ζ) 0.3 2000 0.10 40.7

Concrete 34 · 109(1 + i sign (ω) ζ) 0.2 2600 0.10 -

Elastic Layer 0.9 ·106(1+ i sign (ω) ζ) 0.3 620 0.07 -

Table 7.1: Material parameters of the system depicted in figure 7.1

In figure 7.3, the vertical displacements on the halfspace surface due to a moving load in the

tunnel are depicted for different velocities v of the load.
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Figure 7.3: Vertical displacement on the surface of a halfspace with soil material 1 due to a harmonic,
moving load in the tunnel for v = 32 m

s (7.3a), v = 64 m
s (7.3b), v = 96 m

s (7.3c), and
v = 160 m

s (7.3d)

As clearly visible, the characteristics of the response changes with increasing velocity of the

load. While at low velocities the propagation of the waves on the surface is still roughly

circular, a concentration of the displacements is visible for higher velocities. If the velocity

of the load exceeds the critical velocity of the system, which, as mentioned, can be identified

as the Rayleigh wave velocity, radiation effects can be observed. The load is moving faster

than the waves can propagate in the medium, a similar effect as Mach radiation of shock

waves generated by supersonic jets or the Cherenkov radiation of light induced by electrons

that are moving with higher velocities than the speed of light as mentioned in [Krylov 1995].

The angle of this spatial cone that is developing is depending on the ratio of the velocities

as

θ = arccos
(cr
v

)
(7.6)

as derived in [Krylov 1995].
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The spatial concentration of the displacements on the halfspace surface also leads to a numer-

ical artifact that can be observed in the figures 7.3c and 7.3d. Due to the discrete Fourier

transformation that is applied concerning the spatial and time coordinates x kx,

y ky and t ω, a repetition of the signals occurs as presented in appendix A.1.2.

As the discretization is necessary in the original as well as in the transformed domain, also

repetitions cannot be avoided in both domains. In case of the load that is moving with high

velocity, the concentration of the displacements leads to the phenomenon that the oscilla-

tions do not decay completely between the point of load application and end of the sampled

region with a repetition length of 256 m. Thus, displacements that are induced by a repeated

load in the neighboring repetition are visible in the figures 7.3c and 7.3d for positive values

of the x-coordinate. If these oscillations shall be avoided, a bigger repetition length can be

chosen.

The figures 7.4 display the results of the second soil with a velocity of the Rayleigh wave

cr = 40.7 m
s
. Again the displacements on the halfspace surface are plotted for different

velocities of the load. The cone that is formed for high velocities is also visible for soil 2.

(a) (b)

(c) (d)

Figure 7.4: Vertical displacement on the surface of a halfspace with soil material 2 due to a harmonic,
moving load in the tunnel for v = 32 m

s (7.4a), v = 64 m
s (7.4b), v = 96 m

s (7.4c), and
v = 160 m

s (7.4d)
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As the Rayleigh wave velocity of soil 2 is lower than the one of soil 1, the cone is formed at

a lower velocity of the load. Thus, the phenomena due to moving loads on the surface of a

halfspace can also be observed for a load that is applied in a tunnel. In further studies the

effects of layers in the soil or the depth of the tunnel can be examined.

7.3 Insertion loss of a mass-spring system

A possible application of the coupled ITM-FEM approach to assess the effects of mitigation

measures for vibrations is presented in this section. An exemplary tunnel cross section is

modeled inside the Finite Element mesh analogously to [Müller 2015] as depicted in figure 7.5.

As one possible measure to reduce the vibrations caused by trains in tunnels, elastic layers

can be inserted between track and tunnel thus creating a mass-spring system in the tunnel

where the load is applied. The effectiveness of such a mass-spring system can be predicted

by a numerical model as presented in this section where the displacements on the surface of

the halfspace are compared for the situation with and without elastic layer between track

and tunnel.

concrete

soil

elastic layer

Figure 7.5: Tunnel cross section for the calculation of the insertion loss of a mass-spring system with
complete bedding of the elastic layer

The elements displayed in dark gray are modeled with material parameters of concrete,

whereas the material parameters of the soil are assigned to the elements illustrated in light
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gray. The orange colored elements are modeled in a reference configuration as concrete

elements and in the model configuration as an elastic layer thus creating a mass-spring system

with the elastic layer as spring and the concrete block above representing the mass. Using

these two different constellations, the insertion loss of the mass-spring system is calculated.

The material parameters are summarized in table 7.2.

Young’s modulus Poisson ratio Density Damping ratio

E
[

N
m2

]
ν [−] ρ

[
kg
m3

]
ζ [−]

Soil 260 ·106(1+ i sign (ω) ζ) 0.3 2000 0.10

Concrete 34 · 109(1 + i sign (ω) ζ) 0.2 2600 0.10

Elastic Layer 0.9 · 106(1 + i sign (ω) ζ) 0.3 620 0.07

Table 7.2: Material parameters of the system depicted in figure 7.5

For the calculations, the radius of the circular coupling surface is chosen as r = 4.5 m and

the tunnel is positioned with a covering of d = 4.5 m as well. A harmonically oscillating

load is applied in the middle of the concrete block. The maximum vertical displacements

are determined at the point of load application and in the central point on the surface of the

halfspace. The frequency of the load is varied between 2 Hz and 100 Hz in steps of 2 Hz.

In figure 7.6 the maximum vertical displacements are depicted in dependency on the varied

frequency for a configuration both with and without elastic layer. Figure 7.6a illustrates the

maximum vertical displacements on the point of load application, figure 7.6b contains the

results on the halfspace surface at the center point of the surface.
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Figure 7.6: Maximum vertical displacement at the point of load application (7.6a) and at the center point
of the halfspace surface (7.6b) in dependency on the frequency of the applied harmonic load
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As depicted in figure 7.6a, the installation of the elastic layer leads to increased displacements

at the point of load application. Here, the eigenfrequency of the established mass-spring

system is clearly visible at a frequency of 20 Hz. This also corresponds to an estimation

based on modeling the mass-spring system as Single-Degree-of-Freedom system. Interpreting

the results on the halfspace surface in figure 7.6b, an increase of the displacements in the

low-frequency range due to the insertion of the elastic layer has to be stated. The desired

reduction of the displacements can be observed in the frequency range above a critical value

of 28 Hz. This corresponds approximately to the
√

2-fold value of the eigenfrequency of

the mass-spring system as it is also mentioned in a variety of textbooks, as [Zeller 2012]

for example. For each frequency step the insertion loss R is calculated in [dB] comparing

the vertical displacements directly above the point of load application on the surface of the

halfspace uz,hs of the reference configuration and the model configuration according to

R = 20 lg

(
uz,hs,reference
uz,hs,model

)
(7.7)

The insertion loss calculated according to equation (7.7) is presented in figure 7.7.
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Figure 7.7: Insertion loss

The reduction of the vibrations on the surface of the halfspace above the mentioned critical

value is also visible in this figure. A comparison of the general characteristics of the calcu-

lated insertion loss with measured graphs that are published in the literature yields similar

behavior. In [Müller and Möser 2004] the insertion loss of an elastic mount of a train track is
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measured. Analogously to the result depicted in figure 7.7, the displacements are increased

in the low-frequency range and the eigenfrequency of the mass-spring system is visible at the

peak of the insertion loss with a negative value. Above the critical value, the insertion loss

takes positive values. In [Müller and Möser 2004] a decline of the insertion loss is mentioned

at the π-fold value of the eigenfrequency of the mass-spring system. This decline can also be

seen in figure 7.7 where the π-fold value of the eigenfrequency can be calculated as 62.8 Hz.

As a second alternative the elastic layer can also be mounted in stripes instead of a complete

bedding. According to manufacturer specifications, this will lead to a better reduction of the

structure-borne sound (for example see [Getzner Werkstoffe GmbH 2015]). This effect can

be explained as the installation of the elastic layer not on the complete area between track

and tunnel leads to a reduced stiffness of the spring component due to the air that is enclosed

between the stripes of elastic layers. Thus, a lower eigenfrequency of the mass-spring system

is obtained and the elastic layer is efficient at lower frequencies. Therefore, as a second model

the elastic layer will only be installed in two stripes under the concrete block as depicted in

figure 7.8 and the displacements on the surface of the halfspace are calculated.

concrete

soil

elastic layer

Figure 7.8: Tunnel cross section for the calculation of the insertion loss of a mass-spring system with
striped mount of the elastic layer

The insertion loss of the striped elastic layer is depicted in figure 7.9 together with the result

already presented in figure 7.7.
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Figure 7.9: Insertion loss

As expected, a reduced eigenfrequency of the striped mass-spring system compared to the

complete bedding can be stated as well as an efficiency of the elastic layer at lower frequencies.

Thus, if identical materials are installed as complete bedding or as striped elastic layers, the

second alternative leads to reduced vibration levels on the surface of the halfspace.

Concluding, it can be stated that the effects of installing a mass-spring system in an under-

ground tunnel can also be modeled for different installation situations and material parame-

ters using the coupled ITM-FEM approach. Thus, different alternatives can be analyzed and

compared. The results can afterwards be evaluated as decision supports for the installation

in a real structure.

7.4 Reduction of vibrations by trenches

Another possibility to reduce the vibrations on the halfspace surface besides measures directly

at the source as presented in the preceding section 7.3 are mitigation measures regarding

the transmission of vibrations between source and receiver. These can be inserted if it is

necessary to improve existing railway lines where measures at the track or the receiving

buildings are not feasible. According to VDI 2038-2 [VDI 2013], different measures in the

transmission path like cutting, trenches or soil compaction for example are possible. In this

section, the effect of a trench on the halfspace surface is regarded. As presented in figure 7.10,
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the trench is modeled as an infinite element which is positioned next to a vertical block load

that is applied at the halfspace surface. The displacements on the surface of the halfspace

are compared for a situation with and without trench.

y

z
x

Figure 7.10: Sketch of a system for vibration reduction by a trench on the halfspace surface in the trans-
mission path

To model the trench on the surface, the Finite Element mesh has to be positioned on the

surface of the halfspace. Therefore, the ITM solution of the halfspace with cylindrical cavity

requires the superposition of a halfspace and a fullspace with cylindrical cavity where the

virtual surfaces intersect with the real surfaces. For example in the system of a halfspace

the cylindrical virtual surface δΓ is introduced as presented in section 3.2. In contrast to

the system depicted in figure 3.2, now a part of the virtual surface δΓ is located above the

halfspace surface Λ as it is depicted in figure 7.11. Analogously also the surfaces in the

system fullspace with cylindrical cavity are intersecting as can be seen in figure 7.12.

Λ

δΓ

Figure 7.11: Halfspace with intersecting real sur-
face Λ and virtual surface δΓ

δΛ

Γ

Figure 7.12: Fullspace with intersecting real sur-
face Γ and virtual surface δΛ

The resulting stresses are calculated on the part of the virtual surfaces that are positioned
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inside the fundamental systems. At the positions where the virtual surface is not part of

the fundamental system the vector of the stress components contains zero elements. The

extension of a signal with zero elements is often called zero-padding. According to [Meyer

2009] for example it is used intentionally in order to increase the resolution in the trans-

formed domain according to the rules of the discrete Fourier transformation as presented

in section A.1.2. Still, a verification of the halfspace with half-cylindrical Finite Element

mesh is recommended to check that there are no artifacts arising due to the changed system

and also to check if the square cut of the cylinder directly in the middle leads to numerical

problems. Thus the solution of the halfspace with half-cylindrical cavity at the surface of the

halfspace is derived and coupled to the respective stiffness terms of a Finite Element system

with the appropriate coupling surface as depicted in figure 7.13.

y

z
x

Figure 7.13: Coupling of a halfspace with half-cylindrical trench on the surface and a half-cylindrical Finite
Element mesh

The coupling on the half-cylindrical coupling surface is verified for different load-material

combinations analogously to the procedure described in section 6.2. Thus, the Finite Element

domain is discretized by elements possessing the same material parameters as the surrounding

soil and the result is compared to the analytical solution of the homogeneous halfspace. As



116 7 Numerical examples

the verification will be presented for one material that is excited with different frequencies,

the Young’s modulus of the material is changed compared to the one specified in table 6.1.

The new material parameters are defined in table 7.3.

Young’s modulus E
[

N
m2

]
Poisson ratio ν [−] Density ρ

[
kg
m3

]
Damping ratio ζ [−]

260 · 105(1 + i sign (ω) ζ) 0.3 2000 0.1

Table 7.3: Material parameters of the verification of the halfspace with half-cylindrical Finite Element struc-
ture on the surface of the halfspace

Due to the change of the Young’s modulus, wave velocities cp = 132 m
s
, cs = 71 m

s
and

cr = 66 m
s

are obtained, which, in combination with excitation frequencies in the interesting

frequency range, lead to waves with wavelengths that are significantly influenced by the

half-cylinder. The radius of the half-cylinder is chosen as R = 2 m and it is positioned such

that exactly half the cylinder lies inside the soil (h = R + d = 0 m). The amplitude of the

vertical harmonic block load is P0,z = 1 N
m2 and the widths of the block in x- and y-direction

are bx = by = 2 m, with the center of the block located at (x, y) = (0 m,−4 m). The

frequency of the load f is varied between f = 2 Hz, f = 20 Hz and f = 100 Hz. Exemplary

results are plotted in the figures 7.14 with the results of the homogeneous halfspace as

analytical reference solution. The absolute values of the vertical displacements are depicted

in dependency on the x-coordinate for y = 0 respectively in dependency on the y-coordinate

for x = 0 each in the frequency domain for ω = −2πf .
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Figure 7.14: Absolute values of the vertical displacement on the surface of the halfspace for the verifi-
cation of the halfspace with half-cylindrical Finite Element structure in dependency on the
x-coordinate |uz(x)| at y = 0 (left column) and on the y-coordinate |uz(y)| at x = 0 (right
column) in the frequency domain for f = 2 Hz (7.14a, 7.14b), f = 20 Hz (7.14c, 7.14d) and
f = 100 Hz (7.14e, 7.14f)

For a quantitative comparison, several parameters are summarized in the following table 7.4.

The maximum analytical value of the vertical displacement at x = 0 at the halfspace surface

uz,max(x = 0, y, ω = −2πf) is given as well as the maximum error that is stated at the

halfspace surface for ω = −2πf . The City-Block average contains the average difference
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between the analytical solution and the result of the coupled approach on all points of the

halfspace surface for ω = −2πf . As the minimum Tanimoto coefficient characterizes the

similarity between two vectors and the repetition lengths in x- and y-direction Bx and By

are changed in dependency on the frequency to adapt them to the corresponding wavelengths,

the Tanimoto coefficient is calculated for this verification example for the points which are

positioned at |y| < R. The Tanimoto coefficient is calculated for ω = −2πf and for all values

of x and the minimum value is presented in table 7.4.

Frequency
f

Maximum
value uz,max

Maximum
error

City-Block
average

Minimum
Tanimoto

Computation
time

[Hz] [m] [m] [m] [−] [s]

2 4.98 · 10−8 −
1.25 · 10−8 i

2.21·10−10−
3.25 · 10−11 i

2.42 · 10−12 0.9999 421

20 4.43 · 10−9 +
2.91 · 10−8 i

3.52·10−10−
3.88 · 10−10

2.17 · 10−11 0.9977 2484

100 1.40 · 10−9 +
3.93 · 10−9 i

1.27·10−10+
8.13 · 10−12 i

1.93 · 10−12 0.9838 132415

Table 7.4: Comparison of the quality of the results in dependency on the different excitation frequencies
for the system depicted in figure 7.13

Interpreting the values of table 7.4, a good accordance of the coupled approach with the

analytical solution can be stated. Clearly visible is the considerable increase in the com-

putation time with the frequency. This is due to the fact, that the dimensions of the load

block require a minimum repetition length even if the wavelengths are small (λp = 1.32 m,

λs = 0.71 m and λr = 0.66 m for f = 100 Hz), but the discretization has to be fine enough

to be able to model the wave propagation properly. For high frequencies this leads in this

verification example to long computation times.

Additionally, the vertical harmonic load is applied inside the Finite Element domain and

the vertical displacements on the surface of the halfspace are compared to the result of a

homogeneous halfspace. The system is exemplarily sketched in figure 7.15.
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y

z

x

Figure 7.15: Coupling of a halfspace with half-cylindrical trench on the surface and a half-cylindrical Finite
Element mesh with the load application inside the Finite Element mesh

The material is defined by the parameters mentioned in table 7.3 and also the radius of the

cylinder and the position of the center of the cylinder are not changed (R = 2 m, h = 0 m).

The excitation frequencies are varied again between f = 2 Hz, f = 20 Hz and f = 100 Hz,

but the load is now applied on a line at y = 0 as depicted in figure 7.15 in order to check if

the transmission of vibrations from the Finite Element domain into the Integral Transform

domain is modeled properly.

Analogously to the previous explanations, the absolute values of the vertical displacements

on the halfspace surface are plotted in dependency on the y-coordinate in the figures 7.16.

The results of the analytical calculation and the coupled ITM-FEM approach show a good

accordance for all the chosen excitation frequencies. The transmission of the arising vibra-

tions due to the excitation within the Finite Element domain into the Integral Transform

domain is visible in the results.
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Figure 7.16: Absolute values of the vertical displacement on the surface of a halfspace in dependency on
the y-coordinate |uz(y)| in the frequency domain for f = 2 Hz (7.16a), f = 20 Hz (7.16b)
and f = 100 Hz (7.16c)

The results of the quantitative comparison are contained in table 7.5. Again a good accor-

dance can be stated and the solution of a halfspace with half-cylindrical cavity coupled to a

Finite Element structure is used to assess the effect of an open trench on the surface.

Frequency
f

Maximum
value uz,max

Maximum
error

City-Block
average

Minimum
Tanimoto

Computation
time

[Hz] [m] d [m] [m] [−] [s]

2 1.35 · 10−8 +
6.43 · 10−9 i

3.32·10−10+
3.73 · 10−10 i

1.50 · 10−10 0.9982 103

20 4.08 · 10−9 +
2.52 · 10−9 i

3.71·10−10−
6.62 · 10−10 i

1.44 · 10−11 0.9979 126

100 1.40 · 10−9 +
1.20 · 10−9 i

1.50·10−10+
5.96 · 10−11 i

4.38 · 10−12 0.9954 1154

Table 7.5: Comparison of the quality of the results in dependency on the different excitation frequencies
for the system depicted in figure 7.15
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After the verification, the effect of trenches as mitigation measures shall be exemplarily

illustrated. As depicted in the introductory figure 7.10 a vertical, harmonic block load is

applied on the halfspace surface. In the center of the Finite Element domain an open trench

is modeled and the vibrations on the halfspace surface are compared to the situation without

trench. The ratio of the amplitude of the displacement in the presence of an open trench

At to the amplitude of the displacement without trench A0 is called amplitude reduction

factor (ARF) Ar according to [Dolling 1969]. While [Dolling 1969] calculated the amplitude

reduction factor based on an energy balance on one point behind the trench which should lie

far enough behind the trench, [Woods 1968] examined also the average amplitude reduction

factor on lines perpendicular to the trench. [Haupt 1995] took into account for his analyses

the displacement behind the trench up to a limit distance of approximately ten times the

wavelength of the Rayleigh wave λr. Therefore, in this thesis an average amplitude reduction

factor will be calculated on a line perpendicular to the trench in the area between the trench

up to a limit value of approximately 10 λr. An additional average amplitude reduction factor

describing the behavior on the surface behind the trench more general is calculated taking

into account all values lying inside a half circle with a radius of 10 λr.

The trench is introduced into a model for which the material and load parameters are chosen

equal to the verification system. As, according to [Woods 1968], the width of an open trench

has little influence on its effectiveness, it is chosen as 0.5 m. The main parameter influencing

the effectiveness of open trenches is the ratio between the depth of the trench and the

wavelength of the Rayleigh wave dt
λr

as already stated in [Woods 1968] and [Dolling 1969].

Therefore, in an example, the amplitude reduction factor is calculated for the soil material

specified in table 7.3 and an excitation frequency is chosen of f = 20 Hz which results in

a wavelength of the Rayleigh wave of λr = 3.29 m. Trenches with different depths dt are

inserted and a single load at x = 0, y = −3 m is applied. The amplitudes of the displacements

on the surface are calculated for each coordinate x, y in the frequency domain for ω = −2πf .

Thus, for each trench, the amplitude reduction factor Ar can be calculated for each point

x, y as depicted in figure 7.17 for a trench with depth dt = 4 m.
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Figure 7.17: Amplitude reduction factor Ar for the vertical displacement on the halfspace surface for an
infinite trench at y = 0 with a depth dt = 4 m and a single, harmonic load at x = 0, y = −3 m
with f = 20 Hz

The reduction of the vibrations in the area on the opposite side of the trench where no load

is positioned is clearly visible. In the following figures 7.18, the amplitude reduction factor is

plotted at a line perpendicular to the trench at x = 0 for different trench depths dt. For all

situations, an increase in the amplitudes is visible on the side of the trench where the load is

positioned. This is due to the fact that part of the energy of the oscillations propagating from

the point of excitation is reflected at the trench and leads to an increase of the vibrations on

the side of the load. On the opposite site of the trench, a reduction of the amplitudes can

be observed.
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Figure 7.18: Amplitude reduction factor Ar for the vertical displacement on a line at x = 0 due to an
infinite trench at y = 0 and a single, harmonic load at x = 0, y = −3 m with f = 20 Hz.
The trench depth is varied from dt = 1 m (7.18a), dt = 2 m (7.18b), dt = 3 m (7.18c), and
dt = 4 m (7.18d)

The influence of the depth is clearly visible. The deeper the trench is built, the better is

the mitigation effect concerning the displacements. In table 7.6 the corresponding average

values of the amplitude reduction factors are calculated. In the second column the average

amplitude reduction factor is calculated using the values Ar on the line at x = 0 in the

range between y = 0 m and y = 32.75 m ≈ 10 λr. This range also corresponds roughly

to [Lombaert et al 2013] where a soft trench was formulated to be effective until at least

32 m from the track, even if no further specifications of the material and load parameters

were published. In the third column, the average amplitude reduction factor is calculated

on the halfspace surface behind the trench within a half-circle with the radius 10 λr. Also

analyzing these average values, the influence of the depth of the trench is dominant.
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Trench depth dt Average ARF at x = 0
Ar,av

Average ARF on surface
Ar,av,surf

Computation
time

[m] [−] [−] [s]

1 0.40 0.62 785

2 0.23 0.20 4504

3 0.15 0.14 30826

4 0.06 0.06 167461

Table 7.6: Average values of the amplitude reduction factor Ar for different trench depths

If the behavior of the ARF in dependency on the trench depth is plotted, the relationship is

clearly visible. In figure 7.19 the amplitude reduction factors of table 7.6 supplemented by

calculations for more different trench depths are depicted in relationship to the depth of the

trench normalized with the wavelength of the Rayleigh wave.
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Figure 7.19: Amplitude reduction factor Ar for the vertical displacement on the halfspace surface for an
infinite trench at y = 0 in dependency on the depth of the trench dt normalized with the
wavelength of the Rayleigh wave λr

The graph corresponds to the diagram by [Dolling 1969] who calculated the ARF for materials

with different Poisson ratios in dependency on the dimensionless trench depth. In order to

enable a more detailed comparison, the calculations are repeated for the material that was

also modeled by [Dolling 1969]. The Young’s modulus is chosen as E = 163·106 (1− 0.1i) N
m2
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and the density is ρ = 1830 kg
m3 . The Poisson ratio is ν = 0.33 and the frequency is chosen

as f = 80 Hz. The result is depicted in figure 7.20.
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Figure 7.20: Amplitude reduction factor Ar for the vertical displacement on the halfspace surface for an
infinite trench at y = 0 in dependency on the depth of the trench dt normalized with the
wavelength of the Rayleigh wave λr for the material defined in [Dolling 1969]

Again, the average ARF Ar,av is calculated on a line perpendicular to the trench at x = 0

and Ar,av,surf is the average value on the half-circle behind the trench with a radius of 10 λr.

The results of the coupled ITM-FEM approach show a good accordance with those presented

in [Dolling 1969], so the effect of an open trench can be modeled and mitigation measures

in the transmission path between a point of load application and a receiving element can be

assessed.
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8 Summary and Outlook

The excitation of structures due to dynamic or moving loads causes vibrations that are

transmitted through the soil. The realistic prediction of the resulting displacements is of

increasing importance because on the one hand the excitation forces are increasing and on

the other hand the sensitivity of machines or humans to vibrations is also raised. The

difficulty of the modeling consists of the different subsystems that are affecting the response

of the immission system.

The emission system where the loads are introduced into the total system as well as the im-

mission system where the vibrations are perceived are usually complex structures consisting

of different materials. They can be modeled properly by the Finite Element Method. The

soil as the medium where the oscillations are transmitted from the emission to the immission

system cannot be described by Finite Elements without further adaptations as the infinite

extension cannot be taken into account with finite elements. The Integral Transform Method

leading to analytical solutions of the Lamé differential equation is able to describe the behav-

ior of the infinite medium completely but is derived under certain assumptions. The material

of the soil has to be homogeneous with linear elastic material behavior, the introduction of

surfaces is possible for simple geometries and layers in the material can only be taken into

account if they are parallel to the respective surface. In this thesis the Integral Transform

Method is used to model the transmission medium of the soil. At the surfaces of the soil, a

coupling with the Finite Element Method is performed so the emission or immission system

can be described with their geometry and material distribution numerically. Thus, both

substructures are modeled with their best appropriate method and the total system can be

described.

First, the stiffness matrix of the Integral Transform substructure is determined. In this thesis

two different systems are presented to model the soil: a halfspace with a cylindrical cavity

and a halfspace with a spherical cavity. Thus, different spatial behavior can be implemented.

Both systems have a horizontal surface and a second, additional surface which is cylindrical or

spherical. The fundamental systems for which analytical solutions exist possess one surface
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each. These are the fundamental systems: halfspace, which is a fullspace with a horizontal

surface, fullspace with a cylindrical surface and fullspace with a spherical surface. To obtain

systems with two surfaces as intended for the coupling, two of the fundamental systems are

superposed. To determine the solution of a halfspace with cylindrical cavity for example,

the halfspace and the fullspace with cylindrical surface are superposed. At each of the

fundamental systems unit stresses are applied at its surface and the resulting stresses at this

surface are calculated as well as the resulting stresses at the position where the second surface

shall be introduced. For the superposed system the boundary conditions are known, thus,

the unit loads can be multiplied with unknown amplitudes such that their superposition

fulfills the given boundary conditions. After calculating the amplitudes of the unit stresses,

the displacements of the fundamental systems can also be superposed in a post-processing

step. Thus, the stiffness matrix of the superposed system halfspace with cylindrical cavity

can be calculated. The procedure to obtain the solution of a halfspace with spherical cavity

is analogous.

The calculation of the stiffness matrix of the Finite Element substructure is regularly per-

formed in Finite Element derivations. The elements of the spherical structure are common

three-dimensional eight-node elements with linear form functions. Concerning the elements

of the cylindrical structure the information is used that the structure is infinite in longitu-

dinal direction. The derivations of the Integral Transform Method for the halfspace with

cylindrical cavity are carried out for a quasi-static, two-dimensional system. Fourier trans-

formations from time into frequency domain t ω and from the spatial coordinate in

longitudinal direction into the respective wavenumber domain x kx are carried out.

Thus, the integration over the longitudinal coordinate x that is necessary in the Finite Ele-

ment Method is replaced by a sum over the calculations carried out for each wavenumber kx.

This means that instead of three-dimensional elements the two-dimensional, circular cross

section of the cylinder is discretized with three degrees of freedom at each node. Thus, the

two-dimensional elements contain information about the behavior of the structure in the

third dimension wherefore the elements are also called 2.5-dimensional elements.

After calculating the stiffness matrices of the two substructures separately they are coupled

using the compatibility of the displacements as well as the equilibrium of forces on the cou-

pling surface. In order to perform the coupling, the parameters of both substructures on the

interaction surface must refer to the same basis. As the Finite Element calculations are car-

ried out in a two-dimensional (for the cylindrical structure) respectively three-dimensional

(for the spherical structure) Cartesian coordinate system they are transformed into the asso-

ciated coordinate systems of the Integral Transform substructure. Then the coupling can be
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performed and the solutions of a halfspace with a cylindrical or a spherical Finite Element

structure inside are derived.

To verify the presented approach the Finite Element structures are modeled with a com-

pletely filled Finite Element mesh that possesses the same material parameters as the sur-

rounding soil. The result of these systems is compared to the analytical solution of an

undisturbed soil. The results show a good accordance that depends strongly on the dis-

cretization of the Finite Element mesh as expected. The finer the discretization is chosen,

the better is the accordance of the coupled approach and the analytical solution.

Concluding, numerical examples are presented to show the applicability of the method. The

implementation of moving loads in the system is shown as well as the possibility to model the

effects of mitigation measures that are used to reduce the vibrations of a system. Mass-spring

systems that are often implemented in an underground tunnel to reduce the transmission of

vibrations from the track into the tunnel can be assessed with the coupled Integral Transform

Method - Finite Element Method approach. Also trenches on the surface of the halfspace

that shall hinder the transmission of vibrations via the trench can be modeled with this

approach by shifting the Finite Element structure to the surface of the soil.

Thus, the coupling of the Integral Transform Method and the Finite Element Method enables

to describe construction situations by taking into account the behavior of the soil with

analytical solutions.

Of course, further work can be done in this field. On the one hand side, a further compari-

son of the developed method with measurement results would be advantageous to assess the

applicability for real situations. On the side of the Integral Transform substructure more

substructures could be generated out of the fundamental systems. A solution of a layered

halfspace where the layer boundary crosses a cylindrical or spherical cavity could be deter-

mined or layers could be implemented that are not horizontal but are inclined with respect

to the halfspace surface. Moreover, improvements of the Finite Element substructure are

possible. Instead of using linear form functions, it could be possible to improve the accu-

racy of the Finite Element substructure by describing the behavior between the nodes with

higher or improved elements. As both the circular cross section of the cylinder as well as the

surface of the sphere are strongly curved, the approximation with linear functions is rough.

The use of higher order polynomials or splines instead of polynomials could lead to improved

results.



129

A Appendix

A.1 Fundamentals of Fourier transformation

A.1.1 Continuous Fourier transformation

The Fourier transformed function H(ω) of a given function h(t) is defined as

H(ω) =

∞∫
−∞

h(t) e−iωt dt (A.1)

following the derivations of [Brigham 2010].

In section 2.3.1 a threefold Fourier transformation is carried out from spatial coordinates into

the wavenumber domain x kx and y ky and from time into frequency domain

t ω. This is done by applying equation (A.1) threefold on the scalar potential Φ (see

equation (A.2)) and the components of the vector potential Ψi respectively.

Φ̂ (kx, ky, z, ω) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

(((
Φ (x, y, z, t) e−ikxx dx

)
e−ikyy dy

)
e−iωt dt

)
(A.2)

To obtain parameters in the original domain, an inverse Fourier transformation is carried

out with

h(t) =
1

2π

∞∫
−∞

H(ω) eiωt dω (A.3)

Also the scalar potential Φ or the components of the vector potential Ψi can be computed
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in the original domain via a threefold inverse Fourier transformation.

Φ (x, y, z, t) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

(((
Φ̂ (kx, ky, z, ω) eikxx dkx

)
eikyy dky

)
eiωt dω

)
(A.4)

Calculating the nth derivative of a function h(t) in the original domain corresponds to a

multiplication of the transformed function H(ω) with (iω)n in the transformed domain.

∂nh(t)

∂tn
(iω)nH(ω) (A.5)

Thus, the derivatives in equation (2.15) can be replaced by multiplications with the respective

transformed coordinates, as stated in the equations (A.6).

∂2h(x)

∂x2
(ikx)

2H(kx) = −kx2H(kx) (A.6a)

∂2h(y)

∂y2
(iky)

2H(ky) = −ky2H(ky) (A.6b)

∂2h(t)

∂t2
(iω)2H(ω) = −ω2H(ω) (A.6c)

A.1.2 Discrete Fourier transformation

For numerical applications, the discrete Fourier transformation of a function g(t) which

is defined at N equally distributed positions at intervals of t = T is defined according

to [Brigham 2010] for example as

G
( n

NT

)
=

N−1∑
k=0

g (kT ) e−i
2πnk
N (A.7)

The result of this discrete Fourier transformation is a function G(ω) that is defined at N

equally distributed positions at intervals of ω = 1
NT

.

The inverse discrete Fourier transformation is defined as

g (kT ) =
1

N

N−1∑
n=0

G
( n

NT

)
ei

2πnk
N (A.8)
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As the discrete Fourier transformation is an approximation of the continuous transformation,

the quality of the results is depending on the chosen numerical parameters. Information

regarding the characteristics of a discrete Fourier transformation is contained in a variety

of textbooks as [Brigham 2010] or [Kammler 2008]. The differences between a continuous

transformation as presented in section A.1.1 and a discrete transformation are the necessary

limitation of the signal in the original as well as in the transformed domain and the sampling

of continuous functions at a limited number of sampling points.

In the original domain, the interval TW = NT as the length of the sampling window has to

be chosen adequately as the integration of a function from +∞ to ∞ as it is formulated in

the continuous transformation in equation (A.1) is replaced by a sum over N samples equally

spaced by T . If the signal is transient in the original domain and the window length is chosen

bigger than the signal, the window has no effect on the transformed signal. Otherwise, if

the signal is artificially limited by the applied window, numerical effects can be observed

depending on the characteristics of the window function. The most simple window function

is a multiplication of the continuous function with a rectangular window. This corresponds to

a cut off of all values of the function that are smaller than the lower limit of the window TW1

or bigger than the upper limit of the window TW2. The multiplication of the original function

with the rectangular window corresponds to a convolution of the transformed signal in the

transformed domain with a cardinal sine function. Thus, additional frequency components

are obtained except for the special case that the window length TW of a periodic function is

chosen as exactly one period of the signal or a multiple of the period. But for all other cases,

the windowing of a function leads to artificial frequency components in the transformed

domain which is often called the leakage effect and to discontinuities in the original domain.

Instead of rectangular windows more sophisticated window functions can be used as filters

for the limitation of the signal in the original domain.

A second parameter that has to be chosen in the discrete Fourier transformation besides

the window length is the number of samples N on which the function is evaluated. As

a high sampling rate increases the computation time, on the one hand it is advantageous

to use only as many samples as are necessary to model the function. On the other hand,

the discretization of the function in one domain leads to a repetition of the signal in the

transformed domain. Depending on the interval T = TW
N

in the original domain, the signal

is repeated in the transformed domain with a period of FR = 1
T

. In order to avoid aliasing,

which is the overlapping of the signals of the different repetitions, it is necessary that FR is

big enough. Thus, T shall be small which corresponds to a high sampling rate N . Therefore,

a balance has to be found between the necessity to have enough samples to avoid aliasing on
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the one hand but only as much samples as are necessary to avoid large computation times.

The Nyquist condition states that if Fmax is the highest frequency component of a given

function, the repetition frequency FR should be chosen as

FR ≥ 2Fmax (A.9)

This corresponds to the condition for the sampling interval in the original domain T ≤ 1
2Fmax

.

Thus, for a given window length TW , the number of samples N should be chosen as

N ≥ 2 TW Fmax (A.10)

Concerning the discrete Fourier transformations that are applied in this thesis regarding the

spatial and time coordinates x kx, y ky and t ω the parameters are

chosen to avoid the numerical artifacts of leakage and aliasing as good as possible. The

loads that are transformed into the wavenumber-frequency domain in the different presented

examples are time-harmonic functions with a window length of one period of the function

so leakage concerning the time component can be excluded. The spatial distribution of

the loads are block loads or single loads which are both limited in their spatial extension.

Thus, also spatial leakage effects can be excluded for the Fourier transformation of the load.

Aliasing effects cannot be excluded completely. Concerning the repetition of the signals,

it is examined that the repetition frequency and wavenumbers are big enough so that an

overlapping of the signals of the different repetitions is reduced.

The algorithm that is used for the discrete Fourier transformation is a Fast Fourier transfor-

mation algorithm that is optimized concerning computation time. It can be applied if the

number of samples is a power of two

N = 2m (A.11)

with m chosen big enough to avoid aliasing effects.
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A.2 Bessel’s differential equation and Bessel functions

The differential equations (2.48) in section 2.4.1 are Bessel’s differential equations.[
∂2

∂r2
+

1

r

∂

∂r
+ k2 − n2

r2

]
f̂ (r) = 0 (A.12)

In general, Bessel’s differential equations are of the type

x2 f ′′+x f ′+
(
x2 − n2

)
f = 0 (A.13)

The differential equation (A.13) can be solved using Bessel functions of the first kind Jν(x)

with

Jν(x) =
∞∑
k=0

(−1)k
(
x
2

)ν+2k

k! Γ (ν + k + 1)
(A.14)

For nonintegral ν the solution of Bessel’s differential equation can be determined as

f(x) = C1Jν(x) + C2J−ν(x) (A.15)

When ν is an integral value n, the solutions Jn(x) and J−n(x) are linearly dependent via

Jn(x) = (−1)nJ−n(x) (A.16)

and exhibit but one independent solution. In this case, the solution for J−n(x) can be

expressed by Bessel functions of the second kind, also called Neumann functions, Yn(x) as

the limit

Yn(x) = lim
ν→n

Jν(x) cos (νπ)− J−ν(x)

sin (νπ)
(A.17)

and the solution of Bessel’s differential equation results in

f(x) = C1Jn(x) + C2Yn(x) (A.18)

The Bessel and Neumann functions are exemplarily depicted in the figures A.1 in dependency

on the x-coordinate and in dependency on ν.
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Figure A.1: Bessel functions Jν(x) (A.1a) and Neumann functions Yν(x) (A.1b) in dependency on the
x-coordinate and ν

As an alternative, instead of using Bessel functions of the first and second kind, also Bessel

functions of the third kind, Hankel functions, can be introduced. They can be derived from

Jn(x) and Yn(x) by

H(1)
n (x) = Jn(x) + iYn(x) (A.19a)

H(2)
n (x) = Jn(x)− iYn(x) (A.19b)

with H
(1)
n as Hankel functions of the first kind and H

(2)
n as Hankel functions of the second

kind. Thus, the solution for Bessel’s differential equation can be expressed by

f(x) = C1H
(1)
n (x) + C2H

(2)
n (x) (A.20)
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A.3 Stresses in the cylindrical coordinate system

The relationship between the vector containing the components of the stress tensor σ̂c and

the vector of the unknowns Cc is derived for cylindrical coordinates analogously to the

procedure for Cartesian coordinates. As a result a matrix
[
K̂c

]
is obtained describing the

relationship:

σ̂c =
[
K̂c

]
Cc (A.21)

with the vector of the stresses σ̂c

σ̂c =



σ̂xx

σ̂rr

σ̂ϕϕ

σ̂xr

σ̂ϕr

σ̂xϕ


(A.22)

and the vector of the unknowns

Cc =



C1n

C2n

C3n

C4n

C5n

C6n


(A.23)

The elements of matrix
[
K̂c

]
are derived using the material law and the kinematic relations

for cylindrical coordinates in the (kx, r, n, ω) domain.
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Elements of the matrix
[
K̂c

]
for the computation of the component σ̂xx of the stress tensor:

K̂c,11 =

(
k 2

1 −
1

2
k 2
s

)
2µH(1)

n (k1r)

K̂c,12 = 0

K̂c,13 = i kx k
2

2 2µH(1)
n (k2r)

K̂c,14 =

(
k 2

1 −
1

2
k 2
s

)
2µH(2)

n (k1r)

K̂c,15 = 0

K̂c,16 = i kx k
2

2 2µH(2)
n (k2r)

Elements of the matrix
[
K̂c

]
for the computation of the component σ̂rr of the stress tensor:

K̂c,21 =

(
n2 − n
r2

+ k 2
x −

1

2
k 2
s

)
2µH(1)

n (k1r) +
1

r
k1 2µH

(1)
n+1(k1r)

K̂c,22 = i
n2 − n
r2

2µH(1)
n (k2r)− i

n

r
k2 2µH

(1)
n+1(k2r)

K̂c,23 = i

(
n2 − n
r2

− k 2
2

)
kx 2µH(1)

n (k2r) + i
1

r
kx k2 2µH

(1)
n+1(k2r)

K̂c,24 =

(
n2 − n
r2

+ k 2
x −

1

2
k 2
s

)
2µH(2)

n (k1r) +
1

r
k1 2µH

(2)
n+1(k1r)

K̂c,25 = i
n2 − n
r2

2µH(2)
n (k2r)− i

n

r
k2 2µH

(2)
n+1(k2r)

K̂c,26 = i

(
n2 − n
r2

− k 2
2

)
kx 2µH(2)

n (k2r) + i
1

r
kx k2 2µH

(2)
n+1(k2r)
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Elements of the matrix
[
K̂c

]
for the computation of the component σ̂ϕϕ of the stress tensor:

K̂c,31 = −
(
n2 − n
r2

+
1

2
k 2
s − k 2

1 − k2
x

)
2µH(1)

n (k1r)−
1

r
k1 2µH

(1)
n+1(k1r)

K̂c,32 = −i n
2 − n
r2

2µH(1)
n (k2r) + i

n

r
k2 2µH

(1)
n+1(k2r)

K̂c,33 = −i n
2 − n
r2

kx 2µH(1)
n (k2r)− i

1

r
kx k2 2µH

(1)
n+1(k2r)

K̂c,34 = −
(
n2 − n
r2

+
1

2
k 2
s − k 2

1 − k2
x

)
2µH(2)

n (k1r)−
1

r
k1 2µH

(2)
n+1(k1r)

K̂c,35 = −i n
2 − n
r2

2µH(2)
n (k2r) + i

n

r
k2 2µH

(2)
n+1(k2r)

K̂c,36 = −i n
2 − n
r2

kx 2µH(2)
n (k2r)− i

1

r
kx k2 2µH

(2)
n+1(k2r)

Elements of the matrix
[
K̂c

]
for the computation of the component σ̂xr of the stress tensor:

K̂c,41 = i
n

r
kx 2µH(1)

n (k1r)− i kx k1 2µH
(1)
n+1(k1r)

K̂c,42 = − n

2r
kx 2µH(1)

n (k2r)

K̂c,43 =
n

2r

(
k 2

2 − k 2
x

)
2µH(1)

n (k2r) +
1

2

(
k 2
x k2 − k 3

2

)
2µH

(1)
n+1(k2r)

K̂c,44 = i
n

r
kx 2µH(2)

n (k1r)− i kx k1 2µH
(2)
n+1(k1r)

K̂c,45 = − n

2r
kx 2µH(2)

n (k2r)

K̂c,46 =
n

2r

(
k 2

2 − k 2
x

)
2µH(2)

n (k2r) +
1

2

(
k 2
x k2 − k 3

2

)
2µH

(2)
n+1(k2r)
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Elements of the matrix
[
K̂c

]
for the computation of the component σ̂ϕr of the stress tensor:

K̂c,51 = i
n2 − n
r2

2µH(1)
n (k1r)− i

n

r
k1 2µH

(1)
n+1(k1r)

K̂c,52 =

(
−n

2 − n
r2

+
1

2
k 2

2

)
2µH(1)

n (k2r)−
1

r
k2 2µH

(1)
n+1(k2r)

K̂c,53 = −n
2 − n
r2

kx 2µH(1)
n (k2r) +

n

r
kx k2 2µH

(1)
n+1(k2r)

K̂c,54 = i
n2 − n
r2

2µH(2)
n (k1r)− i

n

r
k1 2µH

(2)
n+1(k1r)

K̂c,55 =

(
−n

2 − n
r2

+
1

2
k 2

2

)
2µH(2)

n (k2r)−
1

r
k2 2µH

(2)
n+1(k2r)

K̂c,56 = −n
2 − n
r2

kx 2µH(2)
n (k2r) +

n

r
kx k2 2µH

(2)
n+1(k2r)

Elements of the matrix
[
K̂c

]
for the computation of the component σ̂xϕ of the stress tensor:

K̂c,61 = −n
r
kx 2µH(1)

n (k1r)

K̂c,62 = −i n
2r
kx 2µH(1)

n (k2r) + i
1

2
kx k2 2µH

(1)
n+1(k2r)

K̂c,63 = i
n

2r

(
k 2

2 − k 2
x

)
2µH(1)

n (k2r))

K̂c,64 = −n
r
kx 2µH(2)

n (k1r)

K̂c,65 = −i n
2r
kx 2µH(2)

n (k2r) + i
1

2
kx k2 2µH

(2)
n+1(k2r)

K̂c,66 = i
n

2r

(
k 2

2 − k 2
x

)
2µH(2)

n (k2r))
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A.4 Legendre polynomials and spherical harmonics

The differential equations (2.59) consist of radius-dependent terms and angle-dependent

terms as repeated in the following equation (A.24) for a general function f (r, ϑ, ϕ, t) as[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂

∂ϑ
+

1

sin2(ϑ)

∂2

∂ϕ2

)
+ ki

2

]
f (r, ϑ, ϕ, ω) = 0 (A.24)

Analogously to [Bronstein et al 2006] or [Arfken and Weber 1995], a solution for the function

f (r, ϑ, ϕ) can be derived for each frequency ω with a separation approach.

f (r, ϑ, ϕ) = R(r) Y l
m(ϑ, ϕ) (A.25)

Introducing the separation approach (A.25) into equation (A.24) leads to

1

R(r)
r2d

2 R(r)

dr2
+

1

R(r)

2

r

dR(r)

dr
+ r2ki

2 =

− 1

Y l
m(ϑ, ϕ)

∂2Y l
m(ϑ, ϕ)

∂ϑ2
− 1

Y l
m(ϑ, ϕ)

cos(ϑ)

sin(ϑ)

∂Y l
m(ϑ, ϕ)

∂ϑ
− 1

Y l
m(ϑ, ϕ)

1

sin2(ϑ)

∂2Y l
m(ϑ, ϕ)

∂ϕ2

(A.26)

Equation (A.26) is only fulfilled if both sides of the equation are independent of each other

and equal to the same, constant separation value. This value is chosen to be [m (m+ 1)].

Thus, the partial differential equation of the right hand side can be written as

∂2Y l
m(ϑ, ϕ)

∂ϑ2
+

cos(ϑ)

sin(ϑ)

∂Y l
m(ϑ, ϕ)

∂ϑ
+

1

sin2(ϑ)

∂2Y l
m(ϑ, ϕ)

∂ϕ2
= −m (m+ 1)Y l

m(ϑ, ϕ) (A.27)

This relation (A.27) is also used in equation (2.64). A solution is possible with an additional

separation approach. The function Y l
m(ϑ, ϕ) is replaced by two functions Φl(ϕ) containing

the azimuthal-dependency and Θl
m(ϑ) with the polar angle-dependency.

Y l
m(ϑ, ϕ) = Φl(ϕ) Θl

m(ϑ) (A.28)

Introducing equation (A.28) into equation (A.27) yields

sin2(ϑ)

[
m (m+ 1) +

1

Θl
m(ϑ)

∂2Θl
m(ϑ)

∂ϑ2
+

1

Θl
m(ϑ)

cos(ϑ)

sin(ϑ)

∂Θl
m(ϑ)

∂ϑ

]
= − 1

Φl(ϕ)

∂2Φl(ϕ)

∂ϕ2
(A.29)

Again, this equation is only fulfilled if both sides are equal to one constant value which is

chosen to be l2. Thus, the right hand side of equation (A.29) leads to the azimuthal equation
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d2Φl(ϕ)

dϕ2
+ l2Φl(ϕ) = 0 (A.30)

which can be solved with the exponential function

Φl(ϕ) = eilϕ (A.31)

If the orthogonal condition

2π∫
0

Φl1(ϕ)Φl2(ϕ) dϕ = δl1l2 (A.32)

is normalized to a value 1 for l1 = l2 then Φl can be formulated in a normalized form as

Φ̌l(ϕ) =
1√
2π

eilϕ (A.33)

The left hand side of equation (A.29) leads to the polar angle equation.

d2Θl
m(ϑ)

dϑ2
+

cos(ϑ)

sin(ϑ)

dΘl
m(ϑ)

dϑ
+m (m+ 1) Θl

m(ϑ)− l2

sin2(ϑ)
Θl
m(ϑ) = 0 (A.34)

Using the substitution cos(ϑ) = x as presented in [Arfken and Weber 1995], equation (A.34)

can be formulated as

(
1− x2

) d2Θl
m(x)

dx2
− 2x

dΘl
m(x)

dx
+

[
m (m+ 1)− l2

1− x2

]
Θl
m(x) = 0 (A.35)

Equation (A.35) can now be identified as associated Legendre differential equation and can be

solved using associated Legendre polynomials. The associated Legendre polynomials P l
m (x)

of degree m and order l are defined for l 6= 0 in dependency on the Legendre polynomials

Pm (x)

P l
m (x) = (−1)l

(
1− x2

)l/2 dl

dxl
Pm (x) (A.36)

with x = cos(ϑ).

For l = 0, the associated Legendre differential equation is transformed into the Legendre dif-

ferential equation and P 0
m (x) = Pm (x). The Legendre polynomials Pm (x) can be formulated



A.4 Legendre polynomials and spherical harmonics 141

in different ways. Using Rodrigues’ formula, they are defined as

Pm (x) =
1

2mm!

dm (x2 − 1)
m

dxm
(A.37)

For a first impression, the analytical functions of the first Legendre polynomials P0 (x)−P5 (x)

are collected in the following table A.1 and are also displayed for x = cos(ϑ) in figure A.2.

P0 (x) = 1

P1 (x) = x

P2 (x) = 1
2

(3x2 − 1)

P3 (x) = 1
2

(5x3 − 3x)

P4 (x) = 1
8

(35x4 − 30x2 + 3)

P5 (x) = 1
8

(63x5 − 70x3 + 15x)

Table A.1: Analytical functions of the first six Legendre polynomials
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Figure A.2: Graphical representation of the first six Legendre polynomials

As the exponent of x in equation (A.37) is maximum 2m and equation (A.37) is introduced

into equation (A.36), l < m has to be valid. The associated Legendre polynomials for
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negative l can be added with

P−lm (x) = (−1)l
(m− l)!
(m+ l)!

P l
m (x) (A.38)

Analogously to equation (A.32), the orthogonality integral is calculated.

1∫
−1

P l
m1

(x)P l
m2

(x) dx =
2

2m1 + 1

(m1 + l)!

(m1 − l)!
δm1m2 (A.39)

Thus, again applying a normalization such that the result of integration (A.39) is 1 for

m1 = m2 the solution of the polar-angle dependent differential equation is

Θl
m(ϑ) =

√
2m+ 1

2

(m− l)!
(m+ l)!

P l
m (cos (ϑ)) (A.40)
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A.5 Bessel’s differential equation and spherical Bessel

functions

The equations (2.66) share the common structure[
∂2

∂r2
+

2

r

∂

∂r
+

(
ki

2 − m (m+ 1)

r2

)]
f (r,m, l, ω) = 0 (A.41)

After a substitution z =
√
kir f(kir) according to [Arfken and Weber 1995] a differential

equation for the new function z is obtained.[
r2 ∂

2

∂r2
+ r

∂

∂r
+ ki

2r2 −
(
m+

1

2

)2
]

z (kir,m, l) = 0 (A.42)

Clearly, equation (A.42) corresponds to the definition of Bessel’s differential equation (A.12)

and can be solved with Bessel functions of nonintegral order m + 1
2
. For convenience, the

solution of this type of differential equation, spherical Bessel functions are defined. According

to [Abramowitz and Stegun 1965] spherical Bessel functions of the first kind jm(x), of the

second kind ym(x) (spherical Neumann functions) and of the third kind h
(1)
m (x) and h

(2)
m (x)

(spherical Hankel functions) can be defined as

jm(x) =

√
π

2x
Jm+ 1

2
(x) (A.43a)

ym(x) =

√
π

2x
Ym+ 1

2
(x) (A.43b)

h(1)
m (x) =

√
π

2x
H

(1)

m+ 1
2

(x) = jm(x) + i ym(x) (A.43c)

h(2)
m (x) =

√
π

2x
H

(2)

m+ 1
2

(x) = jm(x)− i ym(x) (A.43d)

Analogously to Bessel functions for integral values, the pairs jm(x) and ym(x) or h
(1)
m (x) and

h
(2)
m (x) form linearly independent solutions of the differential equation for each variable m.
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A.6 Stresses in the spherical coordinate system

The relationship between the vector containing the components of the stress tensor σ̂s and the

vector of the unknowns Cs is derived for spherical coordinates analogously to the procedure

for Cartesian or cylindrical coordinates. As a result a matrix
[
K̂s

]
is obtained describing

the relationship:

σ̂s =
[
K̂s

]
Cs (A.44)

with the vector of the stresses σ̂s

σ̂s =



σ̂rr

σ̂ϑϑ

σ̂ϕϕ

σ̂rϑ

σ̂rϕ

σ̂ϑϕ


(A.45)

and the vector of the unknowns

Cs =



C1lm

C2lm

C3lm

C4lm

C5lm

C6lm


(A.46)

The elements of matrix
[
K̂s

]
are derived using the material law and the kinematic relations

for spherical coordinates in the (r,m, l,ω) domain.
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Elements of the matrix
[
K̂s

]
for the computation of the component σ̂rr of the stress tensor:

K̂s,11 =

(
m2 −m
r2

− 1

2
|ks|2

)
P̌ l
m(cosϑ) eilϕ 2µ h(1)

m (|kp|r) +

+
2

r
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(1)
m+1(|kp|r)

K̂s,12 = 0

K̂s,13 =
m3 −m
r2

P̌ l
m(cosϑ) eilϕ 2µ h(1)

m (|ks|r) −

− m2 +m

r
|ks| P̌ l

m(cosϑ) eilϕ 2µ h
(1)
m+1(|ks|r)

K̂s,14 =

(
m2 −m
r2

− 1

2
|ks|2

)
P̌ l
m(cosϑ) eilϕ 2µ h(2)

m (|kp|r) +

+
2

r
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(2)
m+1(|kp|r)

K̂s,15 = 0

K̂s,16 =
m3 −m
r2

P̌ l
m(cosϑ) eilϕ 2µ h(2)

m (|ks|r) −

− m2 +m

r
|ks| P̌ l

m(cosϑ) eilϕ 2µ h
(2)
m+1(|ks|r)
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Elements of the matrix
[
K̂s

]
for the computation of the component σ̂ϑϑ of the stress tensor:

K̂s,21 =

[(
−m

2

r2
− 1

2
|ks|2 + |kp|2 +

l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l
m(cosϑ) eilϕ +

+
(m+ l) cosϑ

r2 sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(1)

m (|kp|r) −

− 1

r
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(1)
m+1(|kp|r)

K̂s,22 =

(
i
l(m− 1) cosϑ

r sin2 ϑ
P̌ l
m(cosϑ) eilϕ − i l(l +m)

r sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

)
2µ h(1)

m (|ks|r)

K̂s,23 =

[(
−m

3 +m2

r2
+
l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l
m(cosϑ) eilϕ +

+
(m+ l) cosϑ

r2 sin2 ϑ
(m+ 1) P̌ l

m−1(cosϑ) eilϕ
]
2µ h(1)

m (|ks|r) +

+

[(
m2 +m

r
|ks| −

l2 −m cos2 ϑ

r sin2 ϑ
|ks|
)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r sin2 ϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
]
2µ h

(1)
m+1(|ks|r)

K̂s,24 =

[(
−m

2

r2
− 1

2
|ks|2 + |kp|2 +

l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l
m(cosϑ) eilϕ +

+
(m+ l) cosϑ

r2 sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(2)

m (|kp|r) −

− 1

r
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(2)
m+1(|kp|r)

K̂s,25 =

(
i
l(m− 1) cosϑ

r sin2 ϑ
P̌ l
m(cosϑ) eilϕ − i l(l +m)

r sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

)
2µ h(2)

m (|ks|r)

K̂s,26 =

[(
−m

3 +m2

r2
+
l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l
m(cosϑ) eilϕ +

+
(m+ l) cosϑ

r2 sin2 ϑ
(m+ 1) P̌ l

m−1(cosϑ) eilϕ
]
2µ h(2)

m (|ks|r) +

+

[(
m2 +m

r
|ks| −

l2 −m cos2 ϑ

r sin2 ϑ
|ks|
)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r sin2 ϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
]
2µ h

(2)
m+1(|ks|r)
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Elements of the matrix
[
K̂s

]
for the computation of the component σ̂ϕϕ of the stress tensor:

K̂s,31 =

[(
m

r2
− 1

2
|ks|2 + |kp|2 −

l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r2 sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(1)

m (|kp|r) −

− 1

r
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(1)
m+1(|kp|r)

K̂s,32 =

(
−i l(m− 1) cosϑ

r sin2 ϑ
P̌ l
m(cosϑ) eilϕ + i

l(l +m)

r sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

)
2µ h(1)

m (|ks|r)

K̂s,33 =

[(
m2 +m

r2
− l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r2 sin2 ϑ
(m+ 1) P̌ l

m−1(cosϑ) eilϕ
]
2µ h(1)

m (|ks|r) +

+

(
l2 −m cos2 ϑ

r sin2 ϑ
|ks| P̌ l

m(cosϑ) eilϕ +

+
(m+ l) cosϑ

r sin2 ϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(1)
m+1(|ks|r)

K̂s,34 =

[(
m

r2
− 1

2
|ks|2 + |kp|2 −

l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r2 sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(2)

m (|kp|r) −

− 1

r
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(2)
m+1(|kp|r)

K̂s,35 =

(
−i l(m− 1) cosϑ

r sin2 ϑ
P̌ l
m(cosϑ) eilϕ + i

l(l +m)

r sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

)
2µ h(2)

m (|ks|r)

K̂s,36 =

[(
m2 +m

r2
− l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r2 sin2 ϑ
(m+ 1) P̌ l

m−1(cosϑ) eilϕ
]
2µ h(2)

m (|ks|r) +

+

(
l2 −m cos2 ϑ

r sin2 ϑ
|ks| P̌ l

m(cosϑ) eilϕ +

+
(m+ l) cosϑ

r sin2 ϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(2)
m+1(|ks|r)
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Elements of the matrix
[
K̂s

]
for the computation of the component σ̂rϑ of the stress tensor:

K̂s,41 =

(
m cotϑ

r2
(m− 1) P̌ l

m(cosϑ) eilϕ −

− m+ l

r2 sinϑ
(m− 1) P̌ l

m−1(cosϑ) eilϕ
)

2µ h(1)
m (|kp|r) +

+

(
−m cotϑ

r
|kp| P̌ l

m(cosϑ) eilϕ +
m+ l

r sinϑ
|kp| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(1)
m+1(|kp|r)

K̂s,42 = i
l

2r sinϑ
(m− 1) P̌ l

m(cosϑ) eilϕ 2µ h(1)
m (|ks|r) −

− i l

2 sinϑ
|ks| P̌ l

m(cosϑ) eilϕ 2µ h
(1)
m+1(|ks|r)

K̂s,43 =

[
m cotϑ

(
m2 − 1

r2
− 1

2
|ks|2

)
P̌ l
m(cosϑ) eilϕ −

− m+ l

sinϑ

(
m2 − 1

r2
− 1

2
|ks|2

)
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(1)

m (|ks|r) +

+

(
m cotϑ

r
|ks| P̌ l

m(cosϑ) eilϕ − m+ l

r sinϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(1)
m+1(|ks|r)

K̂s,44 =

(
m cotϑ

r2
(m− 1) P̌ l

m(cosϑ) eilϕ −

− m+ l

r2 sinϑ
(m− 1) P̌ l

m−1(cosϑ) eilϕ
)

2µ h(2)
m (|kp|r) +

+

(
−m cotϑ

r
|kp| P̌ l

m(cosϑ) eilϕ +
m+ l

r sinϑ
|kp| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(2)
m+1(|kp|r)

K̂s,45 = i
l

2r sinϑ
(m− 1) P̌ l

m(cosϑ) eilϕ 2µ h(2)
m (|ks|r) −

− i l

2 sinϑ
|ks| P̌ l

m(cosϑ) eilϕ 2µ h
(2)
m+1(|ks|r)

K̂s,46 =

[
m cotϑ

(
m2 − 1

r2
− 1

2
|ks|2

)
P̌ l
m(cosϑ) eilϕ −

− m+ l

sinϑ

(
m2 − 1

r2
− 1

2
|ks|2

)
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(2)

m (|ks|r) +

+

(
m cotϑ

r
|ks| P̌ l

m(cosϑ) eilϕ − m+ l

r sinϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(2)
m+1(|ks|r)
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Elements of the matrix
[
K̂s

]
for the computation of the component σ̂rϕ of the stress tensor:

K̂s,51 = i
l

r2 sinϑ
(m− 1) P̌ l

m(cosϑ) eilϕ 2µ h(1)
m (|kp|r) −

− i l

r sinϑ
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(1)
m+1(|kp|r)

K̂s,52 =

(
− m cosϑ

2r sinϑ
(m− 1) P̌ l

m(cosϑ) eilϕ +

+
m+ l

2r sinϑ
(m− 1) P̌ l

m−1(cosϑ) eilϕ
)

2µ h(1)
m (|ks|r) +

+

(
m cosϑ

2 sinϑ
|ks| P̌ l

m(cosϑ) eilϕ − m+ l

2 sinϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(1)
m+1(|ks|r)

K̂s,53 = i
l

sinϑ

(
m2 − 1

r2
− 1

2
|ks|2

)
P̌ l
m(cosϑ) eilϕ 2µ h(1)

m (|ks|r) +

+ i
l

r sinϑ
|ks| P̌ l

m(cosϑ) eilϕ 2µ h
(1)
m+1(|ks|r)

K̂s,54 = i
l

r2 sinϑ
(m− 1) P̌ l

m(cosϑ) eilϕ 2µ h(2)
m (|kp|r) −

− i l

r sinϑ
|kp| P̌ l

m(cosϑ) eilϕ 2µ h
(2)
m+1(|kp|r)

K̂s,55 =

(
− m cosϑ

2r sinϑ
(m− 1) P̌ l

m(cosϑ) eilϕ +

+
m+ l

2r sinϑ
(m− 1) P̌ l

m−1(cosϑ) eilϕ
)

2µ h(2)
m (|ks|r) +

+

(
m cosϑ

2 sinϑ
|ks| P̌ l

m(cosϑ) eilϕ − m+ l

2 sinϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(2)
m+1(|ks|r)

K̂s,56 = i
l

sinϑ

(
m2 − 1

r2
− 1

2
|ks|2

)
P̌ l
m(cosϑ) eilϕ 2µ h(2)

m (|ks|r) +

+ i
l

r sinϑ
|ks| P̌ l

m(cosϑ) eilϕ 2µ h
(2)
m+1(|ks|r)
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Elements of the matrix
[
K̂s

]
for the computation of the component σ̂ϑϕ of the stress tensor:

K̂s,61 =

(
i
l(m− 1) cosϑ

r2 sin2 ϑ
P̌ l
m(cosϑ) eilϕ − i l(m+ l)

r2 sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

)
2µ h(1)

m (|kp|r)

K̂s,62 =

[(
m2 −m

2r
+
m− l2

r sin2 ϑ

)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(1)

m (|ks|r)

K̂s,63 =

(
i
l(m− 1) cosϑ

r2 sin2 ϑ
(m+ 1) P̌ l

m(cosϑ) eilϕ −

− i l(m+ l)

r2 sin2 ϑ
(m+ 1) P̌ l

m−1(cosϑ) eilϕ
)

2µ h(1)
m (|ks|r) +

+

(
− i l(m− 1) cosϑ

r sin2 ϑ
|ks| P̌ l

m(cosϑ) eilϕ +

+ i
l(m+ l)

r sin2 ϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(1)
m+1(|ks|r)

K̂s,64 =

(
i
l(m− 1) cosϑ

r2 sin2 ϑ
P̌ l
m(cosϑ) eilϕ − i l(m+ l)

r2 sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

)
2µ h(2)

m (|kp|r)

K̂s,65 =

[(
m2 −m

2r
+
m− l2

r sin2 ϑ

)
P̌ l
m(cosϑ) eilϕ −

− (m+ l) cosϑ

r sin2 ϑ
P̌ l
m−1(cosϑ) eilϕ

]
2µ h(2)

m (|ks|r)

K̂s,66 =

(
i
l(m− 1) cosϑ

r2 sin2 ϑ
(m+ 1) P̌ l

m(cosϑ) eilϕ −

− i l(m+ l)

r2 sin2 ϑ
(m+ 1) P̌ l

m−1(cosϑ) eilϕ
)

2µ h(2)
m (|ks|r) +

+

(
− i l(m− 1) cosϑ

r sin2 ϑ
|ks| P̌ l

m(cosϑ) eilϕ +

+ i
l(m+ l)

r sin2 ϑ
|ks| P̌ l

m−1(cosϑ) eilϕ
)

2µ h
(2)
m+1(|ks|r)
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A.7 Coefficients of the superposition matrices

Equation (3.5) describes the equilibrium on the halfspace surface Λ and the cylindrical

coupling surface Γ. Matrix
[
ŜITM

]
contains the stresses on the two surfaces Λ and Γ that

arise if unit loads are applied. The matrices
[
ŜαβITM

]
have the form

[
ŜΛΛITM

]
=



σ̂zz(s1) 0 0 0 0 0 · · ·

0 σ̂yz(s1) 0 0 0 0 · · ·

0 0 σ̂xz(s1) 0 0 0 · · ·

0 0 0 σ̂zz(s2) 0 0 · · ·

0 0 0 0 σ̂yz(s2) 0 · · ·

0 0 0 0 0 σ̂xz(s2) · · ·

...
...

...
...

...
...



(A.47)

[
ŜΛΓITM

]
=



σ̂
(rr,n1)
zz (s1) σ̂

(xr,n1)
zz (s1) σ̂

(ϕr,n1)
zz (s1) σ̂

(rr,n2)
zz (s1) σ̂

(xr,n2)
zz (s1) σ̂

(ϕr,n2)
zz (s1) · · ·

σ̂
(rr,n1)
yz (s1) σ̂

(xr,n1)
yz (s1) σ̂

(ϕr,n1)
yz (s1) σ̂

(rr,n2)
yz (s1) σ̂

(xr,n2)
yz (s1) σ̂

(ϕr,n2)
yz (s1) · · ·

σ̂
(rr,n1)
xz (s1) σ̂

(xr,n1)
xz (s1) σ̂

(ϕr,n1)
xz (s1) σ̂

(rr,n2)
xz (s1) σ̂

(xr,n2)
xz (s1) σ̂

(ϕr,n2)
xz (s1) · · ·

σ̂
(rr,n1)
zz (s2) σ̂

(xr,n1)
zz (s2) σ̂

(ϕr,n1)
zz (s2) σ̂

(rr,n2)
zz (s2) σ̂

(xr,n2)
zz (s2) σ̂

(ϕr,n2)
zz (s2) · · ·

σ̂
(rr,n1)
yz (s2) σ̂

(xr,n1)
yz (s2) σ̂

(ϕr,n1)
yz (s2) σ̂

(rr,n2)
yz (s2) σ̂

(xr,n2)
yz (s2) σ̂

(ϕr,n2)
yz (s2) · · ·

σ̂
(rr,n1)
xz (s2) σ̂

(xr,n1)
xz (s2) σ̂

(ϕr,n1)
xz (s2) σ̂

(rr,n2)
xz (s2) σ̂

(xr,n2)
xz (s2) σ̂

(ϕr,n2)
xz (s2) · · ·

...
...

...
...

...
...


(A.48)
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[
ŜΓΛITM

]
=



σ̂
(zz,s1)
rr (n1) σ̂

(yz,s1)
rr (n1) σ̂

(xz,s1)
rr (n1) σ̂

(zz,s2)
rr (n1) σ̂

(yz,s2)
rr (n1) σ̂

(xz,s2)
rr (n1) · · ·

σ̂
(zz,s1)
xr (n1) σ̂

(yz,s1)
xr (n1) σ̂

(xz,s1)
xr (n1) σ̂

(zz,s2)
xr (n1) σ̂

(yz,s2)
xr (n1) σ̂

(xz,s2)
xr (n1) · · ·

σ̂
(zz,s1)
ϕr (n1) σ̂

(yz,s1)
ϕr (n1) σ̂

(xz,s1)
ϕr (n1) σ̂

(zz,s2)
ϕr (n1) σ̂

(yz,s2)
ϕr (n1) σ̂

(xz,s2)
ϕr (n1) · · ·

σ̂
(zz,s1)
rr (n2) σ̂

(yz,s1)
rr (n2) σ̂

(xz,s1)
rr (n2) σ̂

(zz,s2)
rr (n2) σ̂

(yz,s2)
rr (n2) σ̂

(xz,s2)
rr (n2) · · ·

σ̂
(zz,s1)
xr (n2) σ̂

(yz,s1)
xr (n2) σ̂

(xz,s1)
xr (n2) σ̂

(zz,s2)
xr (n2) σ̂

(yz,s2)
xr (n2) σ̂

(xz,s2)
xr (n2) · · ·

σ̂
(zz,s1)
ϕr (n2) σ̂

(yz,s1)
ϕr (n2) σ̂

(xz,s1)
ϕr (n2) σ̂

(zz,s2)
ϕr (n2) σ̂

(yz,s2)
ϕr (n2) σ̂

(xz,s2)
ϕr (n2) · · ·

...
...

...
...

...
...


(A.49)

[
ŜΓΓITM

]
=



σ̂rr(n1) 0 0 0 0 0 · · ·

0 σ̂xr(n1) 0 0 0 0 · · ·

0 0 σ̂ϕr(n1) 0 0 0 · · ·

0 0 0 σ̂rr(n2) 0 0 · · ·

0 0 0 0 σ̂xr(n2) 0 · · ·

0 0 0 0 0 σ̂ϕr(n2) · · ·

...
...

...
...

...
...



(A.50)

The vector of the unknown amplitudes of the loads on the surfaces Λ and Γ is

CT =
(
Czz(s1) Cyz(s1) Cxz(s1) Czz(s2) · · · Crr(n1) Cxr(n1) Cϕr(n1) Crr(n2) · · ·

)
(A.51)

The vector of the external loads on the surfaces Λ and Γ is

P̂ITM
T

= −
(
p̂z,Λ(s1) p̂y,Λ(s1) p̂x,Λ(s1) p̂z,Λ(s2) · · ·

p̂r,Γ(n1) p̂x,Γ(n1) p̂ϕ,Γ(n1) p̂r,Γ(n2) · · ·
)

(A.52)
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Equation (3.11) describes the dependency of the displacements on the halfspace surface Λ

and the cylindrical coupling surface Γ on the vector of the unknowns C. Matrix
[
ÛITM

]
contains the respective relationships. The matrices

[
ÛαβITM

]
have the form

[
ÛΛΛITM

]
=



û
(zz,s1)
z (s1) û

(yz,s1)
z (s1) û

(xz,s1)
z (s1) 0 0 0 · · ·

û
(zz,s1)
y (s1) û

(yz,s1)
y (s1) û

(xz,s1)
y (s1) 0 0 0 · · ·

û
(zz,s1)
x (s1) û

(yz,s1)
x (s1) û

(xz,s1)
x (s1) 0 0 0 · · ·

0 0 0 û
(zz,s2)
z (s2) û

(yz,s2)
z (s2) û

(xz,s2)
z (s2) · · ·

0 0 0 û
(zz,s2)
y (s2) û

(yz,s2)
y (s2) û

(xz,s2)
y (s2) · · ·

0 0 0 û
(zz,s2)
x (s2) û

(yz,s2)
x (s2) û

(xz,s2)
x (s2) · · ·

...
...

...
...

...
...


(A.53)

[
ÛΛΓITM

]
=



û
(rr,n1)
z (s1) û

(xr,n1)
z (s1) û

(ϕr,n1)
z (s1) û

(rr,n2)
z (s1) û

(xr,n2)
z (s1) û

(ϕr,n2)
z (s1) · · ·

û
(rr,n1)
y (s1) û

(xr,n1)
y (s1) û

(ϕr,n1)
y (s1) û

(rr,n2)
y (s1) û

(xr,n2)
y (s1) û

(ϕr,n2)
y (s1) · · ·

û
(rr,n1)
x (s1) û

(xr,n1)
x (s1) û

(ϕr,n1)
x (s1) û

(rr,n2)
x (s1) û

(xr,n2)
x (s1) û

(ϕr,n2)
x (s1) · · ·

û
(rr,n1)
z (s2) û

(xr,n1)
z (s2) û

(ϕr,n1)
z (s2) û

(rr,n2)
z (s2) û

(xr,n2)
z (s2) û

(ϕr,n2)
z (s2) · · ·

û
(rr,n1)
y (s2) û

(xr,n1)
y (s2) û

(ϕr,n1)
y (s2) û

(rr,n2)
y (s2) û

(xr,n2)
y (s2) û

(ϕr,n2)
y (s2) · · ·

û
(rr,n1)
x (s2) û

(xr,n1)
x (s2) û

(ϕr,n1)
x (s2) û

(rr,n2)
x (s2) û

(xr,n2)
x (s2) û

(ϕr,n2)
x (s2) · · ·

...
...

...
...

...
...


(A.54)
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[
ÛΓΛITM

]
=



û
(zz,s1)
r (n1) û

(yz,s1)
r (n1) û

(xz,s1)
r (n1) û

(zz,s2)
r (n1) û

(yz,s2)
r (n1) û

(xz,s2)
r (n1) · · ·

û
(zz,s1)
x (n1) û

(yz,s1)
x (n1) û

(xz,s1)
x (n1) û

(zz,s2)
x (n1) û

(yz,s2)
x (n1) û

(xz,s2)
x (n1) · · ·

û
(zz,s1)
ϕ (n1) û

(yz,s1)
ϕ (n1) û

(xz,s1)
ϕ (n1) û

(zz,s2)
ϕ (n1) û

(yz,s2)
ϕ (n1) û

(xz,s2)
ϕ (n1) · · ·

û
(zz,s1)
r (n2) û

(yz,s1)
r (n2) û

(xz,s1)
r (n2) û

(zz,s2)
r (n2) û

(yz,s2)
r (n2) û

(xz,s2)
r (n2) · · ·

û
(zz,s1)
x (n2) û

(yz,s1)
x (n2) û

(xz,s1)
x (n2) û

(zz,s2)
x (n2) û

(yz,s2)
x (n2) û

(xz,s2)
x (n2) · · ·

û
(zz,s1)
ϕ (n2) û

(yz,s1)
ϕ (n2) û

(xz,s1)
ϕ (n2) û

(zz,s2)
ϕ (n2) û

(yz,s2)
ϕ (n2) û

(xz,s2)
ϕ (n2) · · ·

...
...

...
...

...
...


(A.55)

[
ÛΓΓITM

]
=



û
(rr,n1)
r (n1) û

(xr,n1)
r (n1) û

(ϕr,n1)
r (n1) 0 0 0 · · ·

û
(rr,n1)
x (n1) û

(xr,n1)
x (n1) û

(ϕr,n1)
x (n1) 0 0 0 · · ·

û
(rr,n1)
ϕ (n1) û

(xr,n1)
ϕ (n1) û

(ϕr,n1)
ϕ (n1) 0 0 0 · · ·

0 0 0 û
(rr,n2)
r (n2) û

(xr,n2)
r (n2) û

(ϕr,n2)
r (n2) · · ·

0 0 0 û
(rr,n2)
x (n2) û

(xr,n2)
x (n2) û

(ϕr,n2)
x (n2) · · ·

0 0 0 û
(rr,n2)
ϕ (n2) û

(xr,n2)
ϕ (n2) û

(ϕr,n2)
ϕ (n2) · · ·

...
...

...
...

...
...


(A.56)



A.8 Similarity measures 155

A.8 Similarity measures

For the quantitative assessment of the verification example, an assessment of the similarity

of vectors is necessary. In figure 6.3, the vertical displacement of the halfspace surface at

the coordinate x = 0 and at time t = tmax is depicted. A comparison of the depicted

vectors using different similarity measures is performed in order to assess the sensitivity of

the different measures. One of the possible similarity measures is the Pearson correlation

coefficient (also named Q correlation coefficient). It is defined for comparing two vectors a

and b with n elements as presented for example in [Backhaus et al 2011] by

dPearson =

n∑
i=1

(ai − a)
(
bi − b

)
√

n∑
i=1

(ai − a)2
n∑
i=1

(
bi − b

)2
(A.57)

where the symbol in equation (A.57) denotes the mean values of the vectors a and b. The

Pearson correlation coefficient is appropriate if the similarity between vectors with respect

to their similar behavior is to be evaluated. If the similarity of linearly dependent vectors is

tested, the Pearson correlation coefficient yields a result of 1 which implies that no difference

could be detected that is existing between linearly dependent vectors. Thus, this coefficient

is not used in the further scope of this work.

Similarity between two vectors can also be assessed by calculating the cosine of the angle

between the two vectors. Thus, the cosine coefficient can be calculated according to [Willet

and Winterman 1986] for example as

dcos =

n∑
i=1

aibi√
n∑
i=1

ai2
n∑
i=1

bi
2

(A.58)

A quadratic form of the cosine coefficient, the modal assurance criterion (MAC) is evaluated

according to [Allmang 2003] for example as

dMAC =

∣∣∣∣ n∑
i=1

aibi

∣∣∣∣2
n∑
i=1

ai2
n∑
i=1

bi
2

(A.59)

Both coefficients are able to measure similarity of vectors quantitatively. But for vectors that
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possess the same phase information and different amplitudes (b = λa), complete similarity

is indicated which is not adequate for the verification example of chapter 6.

Another similarity measure is the Dice coefficient. It is defined, according to [Holliday et al

1995] for example as

DDice =

2
n∑
i=1

aibi

n∑
i=1

ai2 +
n∑
i=1

bi
2

(A.60)

For identical vectors a and b its value reaches 1, for vectors with opposite sign the result of

the Dice coefficient is −1. Analogously to [Schneider 2014] the sensitivities of the Dice and

Tanimoto coefficients as introduced in section 6.2.2 are compared applying different modifi-

cations of a given, exponentially decaying function. As reference solution an exponentially

decaying cosine function is defined by

yref = cos

(
2π

5
x

)
e−|0.2x| (A.61)

As comparison the following functions are chosen.

yc1 = cos

(
2π

5
x− 2π

5
0.1 (n1 − 1)

)
e−|0.2(x−0.1(n1−1))| (A.62)

yc2 = (0.01n2 − 0.01) cos

(
2π

5
x

)
e−|0.2x| (A.63)

yc3 =

cos
(

2π
5
x
)
e−|0.2x| if x 6= xmax

(1 + 0.01(n3 − 1)) cos
(

2π
5
x
)
e−|0.2x| if x = xmax

(A.64)

First, a phase shift is applied on the reference function yref thus leading to the comparison

function yc1. The value of the phase shift depends on the parameter n1 that is evaluated for

values between 1 and 51 which implies a phase shift between 0 and 2π applied in 50 steps.

In the second comparison function yc2, the amplitude of the cosine function is changed

depending on the parameter n2. Values between 1 and 201 are assigned to the parameter n2

which implies a change of the amplitude of the comparison function between 0 and 2 that is

a doubling of the amplitude.

As third comparison function yc3, individual values of the reference function are modified.

The extrema of the cosine function are enlarged in a certain ratio defined via the parameter
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n3. n3 ranges from 1 to 101 which means that the modified individual values change the

amplitude of the extrema from a factor 0 to a factor 2.

In the following figures A.3, on the left hand side of each figure, the applied change is

exemplarily depicted for one of the parameters ni each. The right figure represents the

respective Dice respectively Tanimoto coefficients.

-30 -20 -10 0 10 20 30
-1

-0.5

0

0.5

1

x-coordinate

y re
f,y

c1

 

 

y
ref

(x)

y
c1

(x,n
1
=51)

(a)

0 50 100 150 200
-1

-0.5

0

0.5

1

n
1

S
im

ila
rit

y 
m

ea
su

re
s

 

 

Tanimoto
Dice

(b)

-30 -20 -10 0 10 20 30
-1.5

-1

-0.5

0

0.5

1

1.5

x-coordinate

y re
f,y

c2

 

 

y
ref

(x)

y
c2

(x,n
2
=151)

(c)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

n
2

S
im

ila
rit

y 
m

ea
su

re
s

 

 

Tanimoto
Dice

(d)

-20 -10 0 10 20
-1

-0.5

0

0.5

1

1.5

x-coordinate

y re
f,y

c3

 

 

y
ref

(x)

y
c3

(x,n
3
=51)

(e)

0 20 40 60 80 100

-1

-0.5

0

0.5

1

n
3

S
im

ila
rit

y 
m

ea
su

re
s

 

 

Tanimoto
Dice

(f)

Figure A.3: Comparison of the Dice and Tanimoto coefficients comparing a reference cosine function yref
with a (A.3b) phase shifted comparison function yc1 as depicted in A.3a, with a (A.3d) com-
parison function yc2 with modified amplitude as depicted in A.3c and with a (A.3f) comparison
function yc3 where the extrema of the cosine function are modified as depicted in A.3e
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Comparing the results of the parameter study, it is visible that the Tanimoto coefficient reacts

more sensitive if small changes are applied that disturb the similarity of the reference and

comparison function. Therefore, the Tanimoto coefficient is chosen to quantify the similarity

of the analytical solution and the coupled ITM-FEM solution in the verification example.
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A.9 Derivation of the expression of a derived quantity Q as

power product of the basic quantities

In equation (6.5) the statement is formulated that each quantity Q can be expressed by a

power product of its basic quantities. This relationship is proved for example in [Bridgman

and Holl 1932], the derivation shall be presented here for the basic quantities length L, mass

M and time T .

Starting point is the description of the value Qi of quantity Q as a function of the basic

quantities Li, Mi and Ti without further information about the form of this relationship.

Qi = f (Li,Mi, Ti) (A.65)

If the units of the basic quantities are multiplied with a constant factor, the values of the

basic quantities are correspondingly changed. For example, if the unit of the basic quantity

length is multiplied with a constant factor 1
a
, the value of the length is multiplied by a.

Qi = f (aLi,Mi, Ti) (A.66)

Now the ratio between two values of the derived function Q1 and Q2 shall be considered.

This ratio between two values with the same dimension is independent on the dimension and

thus independent on a change of the unit of a basic quantity. Therefore, it must be true that

f (L1,M1, T1)

f (L2,M2, T2)
=

f (aL1,M1, T1)

f (aL2,M2, T2)
(A.67)

Equation (A.67) can also be formulated as

f (aL1,M1, T1) = f (aL2,M2, T2)
f (L1,M1, T1)

f (L2,M2, T2)
(A.68)

If equation (A.68) is derived with respect to a, the following equation is obtained.

L1
∂ f (aL1,M1, T1)

∂ (aL1)
= L2

∂ f (aL2,M2, T2)

∂ (aL2)

f (L1,M1, T1)

f (L2,M2, T2)
(A.69)

As the constant factor a is arbitrary, it is chosen to be equal to 1.

L1
∂ f (L1,M1, T1)

∂L1

= L2
∂ f (L2,M2, T2)

∂L2

f (L1,M1, T1)

f (L2,M2, T2)
(A.70)



160 A Appendix

Thus, a relationship between the functions f and their first derivatives with respect to the

first basic quantity is obtained

L1

∂ f(L1,M1,T1)
∂L1

f (L1,M1, T1)
= L2

∂ f(L2,M2,T2)
∂L2

f (L2,M2, T2)
(A.71)

which shall be valid for all values (Li,Mi, Ti) of the function f. This is only possible if each

side of equation (A.71) is a constant factor α′ for all i.

Li

∂ f(Li,Mi,Ti)
∂Li

f (Li,Mi, Ti)
= α′ (A.72)

Equation (A.72) can also be formulated as

f (Li,Mi, Ti)

∂ f (Li,Mi, Ti)
= α

Li
∂Li

with α =
1

α′
(A.73)

Thus, function f can be expressed as the power of the basic quantity Li multiplied with an

integration constant CL.

f (Li,Mi, Ti) = CLL
α
i (A.74)

If this procedure is repeated for the basic quantities Mi and Ti, equation (6.5) is obtained.

Qi = C Li
αMi

βTi
γ (A.75)
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