
A Flexible Robotic Framework for Autonomous Manufacturing Processes:
Report from the European Robotics Challenge Stage 1

Arne-Christoph Hildebrandt, Christoph Schuetz, Daniel Wahrmann, Robert Wittmann and Daniel Rixen

Abstract— Common industrial automation approaches con-
sist on heavy and fixed robotic manipulators working in sepa-
rated and closed production lines. Recent advances in sensing
and control are leading to flexible and versatile robotic manip-
ulator platforms, which could work in barrier-free production
areas and might be the next advance in industrial production.
In our contribution, we present a sophisticated and completely
autonomous software framework for handling complex pick-
and-place tasks using state-of-the-art tools and algorithms. It
covers applicable solutions for 3D image processing, motion
planning, grasping as well as error handling and task schedul-
ing strategies. Its competitiveness in terms of robustness and
performance has been proven by earning the first place among
39 teams from all over Europe in the simulation stage of the
EuRoC. At the challenge 2 of this EU-funded project, a mobile
robotic platform shall be applied for intelligent, flexible and
highly automated production systems. We discuss our results
as well as the applicability of our framework to real industrial
applications.

I. INTRODUCTION

Paradigms of the industrial production are shifting: to this
date, automation found his way into large-volume manu-
facturing lines while many tasks are still done by human
workers for medium-sized companies with a smaller number
of units [1]. Industrial robots work mostly separated from
humans in secured areas performing repetetive tasks in well-
known and clearly defined environments. Handling opera-
tions (e.g. for plastic moulding, packaging, pick-and-place)
and welding represent more than 75% of the use-cases in
Europe of 2011 while half of all robots are concentrated in
the automotive industry [2]. Regarding recent developments
and future perspectives, industrial production has to become
more and more flexible: in order to achieve shorter series
with customized products, there is a need for reduction of
change over times, reusable processes, algorithms and set-
ups as well as safe human-robot collaboration.
The use of additional sensor feedback offers many options
for the automation of more complex tasks, including de-
tection of various objects, obstacles, safe navigation in hu-
man workspaces or precise positioning with uncertainties. A
promising and innovative approach is the use of autonomous
mobile robot units, equipped with a manipulator arm and
additional sensors (e.g. cameras and force/torque sensors).
Its key advantage is expected to be the ability to share a
common working area with human workers, facilitating a
flexible application for varying and complex tasks. Several

Institute of Applied Mechanics, Technische Universität München,
85748 Garching, Germany. Email: {arne.hildebrandt, christoph.schuetz,
daniel.wahrmann, robert.wittmann, rixen}@tum.de

Fig. 1. Challenge platform for challenge 2 of the EuRoC challenge [3].

commercial mobile platforms of this kind have been pre-
sented for research and academical use (e.g. PR2 by Willow
Garage [4], youbot by KUKA [5]). In robotics research,
algorithms and software frameworks are being developed
since years aiming at achieving high levels of autonomy.
However, they are not common in industrial production since
they have not yet shown the necessary level of robustness.
An overview of related research projects and conceivable ap-
plications is given in [6]. Recently, the Autonomous Robotic
Manipulation (ARM) competition was launched by DARPA
[7]. The competition’s software track focused on solving
specific manipulation problems using tools such as drilling
or unlocking and opening of a door. Each task was tested
separately in static environments with only minor focus
on obstacle avoidance but on grasping, sensor calibration
and force feedback. Several teams have published their
approaches [8], [9], [10]. In 2014, the EU-funded project
EuRoC 1 [3] has been started. In course 2 of the EuRoC,
competitor teams are developing autonomous robot systems
for logistics and robotic co-workers. The challenge platform
consists of a KUKA omniRob mobile platform equipped
with a torque-controlled light-weight KUKA iiwa 7 DOF
manipulator and several vision sensors (see Fig. 1). In
contrast to the DARPA ARM [8] the EuRoC focuses on au-
tomatic high level sequencing of actions including advanced
error handling and task planning for pick-and-place tasks
in complex environments. Our team AM-Robotics ranked

1European Robotics Challenge, 2014–2017, Grant Agreement No.608849.



first at stage 12 of the challenge amongst 39 teams. Various
pick-and-place tasks had to be performed without any user
interaction while dealing with uncertain object localization,
calibration errors, obstructed environments and multi-level
decision processes. We have developed a powerful and robust
software framework with the main design objectives:

- Ready for reuse: easy adaptability for different tasks in
changing environments.

- Full autonomy: robust error-handling without any user
interaction.

- State-of-the-art technology: use of latest image process-
ing and motion planning frameworks.

II. SOFTWARE FRAMEWORK

Solving complex tasks and considering a variety of un-
known events in the overall procedure requires a sophisti-
cated software framework. This section gives an overview of
our framework, starting with the architecture and continuing
with a closer look on the main modules.

A. Architecture

The overall platform, provided by the host of challenge
2 is shown in Fig. 2. The simulator and its communication
interface for interacting with the challenger application are
predetermined and can not be changed. In the following
an overview of our challenger application control system
architecture is described.

Simulator

Viewer Logs

ROS
Challenger
Application

Fig. 2. Platform provided by challenge 2 host including the (Gazebo-based)
simulator, the ROS simulator-interface and the challenger application.

A common way to solve complex tasks is to divide them
into smaller subtasks. Brooks et al. [11] present a flexible
control system for a mobile robot and decomposes it in
modules based on task achieving behaviors. Each module
is running asynchronously as part of a finite state machine.
The authors of [12] present a scheduler based framework
which is used in flexible assembly cells. This method allows
to adapt the overall sequence for each individual part.
Another important aspect that has to be considered in the
design of a control architecture is reliability and safety. [13]
gives an overview of existing work concerning those topics.
Our framework consists of independent modules, each of
which is responsible for a certain subtask of the overall
pick-and-place process. They are running as independent
ROS-nodes and use ROS-provided tools (messages, services,
actions) for communication3. The following modules are re-
alized: state machine, state observer, vision system, grasping

2The challenge is divided into 3 stages: Stage 1, simulation contest,
07/2014 - 11/2014; Stage 2, realistic labs; Stage 3, field tests.

3ROS: Robot Operating System, http://www.ros.org [14]

and motion planning. This structure is intrinsically flexible.
As long as communication interfaces are maintained, each
module can be changed or adapted according to the applica-
tion needed. An overview of the overall system architecture is
shown in Fig. 3. The interface to the simulator is as follows:

1) the vision system obtains current camera data,
2) the state observer and transformation broadcaster re-

ceive measurements for joint angles and torques and
3) the motion planning commands desired configurations.

Statemachine &
Stateobserver

Simulator Interface

Vision-
System

Motion
Planning

Grasping

Obje
ct

ge
om

etr
y

Obje
ct

po
se

O
bj

ec
t

po
se

G
ra

sp
in

g
po

se
s

Grasping/Target pose

Status

Transformation
Broadcaster

1 2 3

Fig. 3. Control system (challenger application) overview including the
main modules and communication data.

The state machine node acts as central communication and
coordination module, including the overall task sequence.
The sequence to solve a basic task is depicted in Alg. 1.
Together with the state observer, it is responsible for the
error handling whereat an error causes a modification of
the task sequence. An exemplary sequence and adaption due
to an error is shown for the gripping sub-task in Alg. 2.
Similar to [12], we are using a scheduling system to adapt
the state sequence which is processed in the state machine.
Due to the usage of threaded service calls and ROS actionlib,
there are no blocking function-calls in the state machine
which enables the reaction at any time to errors. There is
an additional node, using ROS tf-package, that publishes all
available transformations of the robot’s current configuration
and the transformation from the camera frame into inertial
frame of reference (FoR). This is used by several modules
e.g. to transform the vision data from the camera FoR into
world coordinates.

B. Modules

1) Vision System: The vision module handles and pro-
cesses the environment data from the simulated RGBD
sensors to obtain the location of objects and obstacles. Each
sensor consists of an RGB image and a 2.5D depth stream,
which are overlayed by varying levels of gaussian noise
according to the task (refer to Fig. 5). Based on this data,

http://www.ros.org


Algorithm 1 Pick & Place control sequence
1: Request task & start simulation
2: Get task-description
3: Scan environment
4: Set n = 1
5: repeat
6: Locate Object n
7: Calculate possible grasping poses
8: Move to object
9: Grip object

10: Move to target zone
11: Place object n
12: if Object in zone then
13: Set object finished
14: n → n+1
15: end if
16: until All objects finished
17: save log & stop simulator

Algorithm 2 Grip sequence with error handling
1: object gripped = False
2: while object gripped == False do
3: Perform close range object pose estimation
4: Move to object
5: Close gripper
6: Lift gripper and remain in static configuration
7: if object is gripped == True then
8: object gripped = True
9: end if

10: end while

the vision module needs to determine the pose of several
objects -which differ in shape and color- and generate an
environment map for safe navigation.
An overview of traditional and modern approaches for object
recognition can be found at [15]. In recent years, small and
inexpensive 3D sensors became available and motivated new
research and developments in 3D data processing (see [16]).
In this context the open-source Point Cloud Library (PCL)
[17] has been developed and integrated into ROS. For further
information about its basic principles and algorithms, see
[18]. Our vision module is based on the PCL since it provides
tools to efficiently handle and process 3D point clouds (PCs).
Most 2D (and some 3D) pose estimation algorithms rely on
previous feature learning from a training set of images of the
object. We consider these methods as not applicable for our
task since object characteristics (shape, color) are not known
in advance. Instead, we use a 3D PC-data descriptor for pose
estimation (Fast Point Feature Histogram) as described in
[19].
Our general strategy for image processing is shown in Fig. 4
and consists of the following steps:

a) Scan Environment: As the environment is not dynamic,
multiple images are taken from different points of view
(using both the scene and the tool center point (TCP)
camera and filtering known parts of the environment). In
the challenge tasks, objects can have only one out of six

Pose Estimator Octomap

Statemachine Motion Planning

Colored PCs Total PC

Process 3D-data
& filter by color

color + geometry pose

mapping & voxelizing

RGBD-data
Scan

Environment

Fig. 4. Image processing strategy and integration in the overall framework.

Fig. 5. RGB image (left) and 2.5D depth stream (middle) sent by the
sensor, and the resulting 3D PC (right).

different colors. Thus, the PC is separated into six colored
sub-PCs via HSV-filtering. An example of this procedure
is shown in Figs. 5, 6 and 7.

b) Environment Mapping and Voxelizing: Once the PCs
are created and combined, they are voxelized both for
computational efficiency and to have a homogeneous
distribution of points. The total (not color-filtered) PC
is passed to the motion planning module via Octomaps
[20] (see Fig. 6).

c) Pose Estimation: For object pose estimation, an ideal
PC is created based on the geometric description of the
object. The corresponding colored PC is clustered and
obstacles or other objects are filtered out based on size.
Finally, using the Fast Point Feature Histogram both
PCs are compared iteratively in order to find the correct
transformation (see Fig. 7).

2) Motion Planning: The motion planning module is
responsible for generating feasible joint paths in order to
reach a given target pose of the end-effector. Furthermore,
we use the motion planning node for feasibility checking
of the grasping poses (refer to II-B.3). Collisions have to be
avoided and kinematic constraints have to be met. Depending
on the task, the joint space C is defined up to 9–dimensional

Fig. 6. Filtered total PC (left) and Octomap sent to the motion planning
module for colision avoidance (right).



Fig. 7. Color “blue” PC (left) and the feature comparison (right) of the
ideal PC (purple) and the clustered color PC (blue) for pose estimation.

with a planar joint at the base and 7 rotational joints of the
manipulator While joint limits are known, information about
obstacles is passed by the vision module via Octomaps.
Driven by the task and the geometry of the end-effector, the
workspace W is defined by the position and orientation of
the gripper TCP. Thus, the boundary constraints are given
by the initial configuration of the robot in C-space and
the target pose of the end-effector in W-space. For high-
dimensional planning in obstructed environments, sampling
based methods such as Rapidly Exploring Random Trees
(RRT) or its derivatives [21] exploit the space of feasible
paths very efficient and complete due to their probabilis-
tic character. Besides, several optimization based planning
frameworks have been presented [22], [23].
Recently, the comprehensive planning framework Moveit!
[24] has been presented for ROS. It includes the Open
Motion Planning Library [25] which offers implementations
of various sampling based algorithms as well as collision
detection algorithms as part of the Flexible Collision Library
[26]. Our group takes advantage of this framework since it
is well suitable for the given tasks. The planning algorithm
LBKPIECE gave the best results in our experience.

3) Grasping: The aim of the grasping module is to
compute possible grasping poses for a given object geometry
and object pose. Possible geometries are limited to the three
primitives — cube, cylinder, handle and puzzle piece —
with varying dimensions. The robot is equipped with a
Schunk PG70 Gripper, that has one linear axis to modify
the distance between its two parallel fingers (see Fig. 8).
The authors of [27] introduce two performance measures
for grasping poses which are used in their automatic grasp
pose generation algorithm. Some criteria presented in that
work, like the distance from the contact between gripper
and object to the object’s center of mass, are also used in
our approach. Vahrenkamp et al. [28] present a RRT-based
method to determine collision-free grasping motions.
Since the objects geometries are limited to three primitivies
no sampling based algorithm is neccessary. Instead, grasp-
ing poses can be calculated fast with predefined strategies
depending on the object type. First, these strategies search
for two parallel planes where the gripper is able to grab.
Thereupon, the exact gripping position for each combination
of parallel planes/lines is computed as close as possible to
the object’s center of mass while taking into account possible
collisions of the gripper with the object and the environment.
The output is a set of grasping poses shown in Fig. 8 that

are checked for inverse kinematics solutions. Kinematically
feasible poses are then returned to the state machine.

z-axis

Fig. 8. Right: gripper and corresponding z-axis of gripper TCP frame
of reference. Left: Possible gripper poses for red cube object. Each arrow
indicates two poses that are rotated by 180 ◦.

4) State observer: The measured force of the gripper and
the measured joint torques are observed by the state observer.
If the joint torques exceed a predefined limit the stateobserver
causes an immediate stop of the overall motion. After such an
event the limits are relaxed and the state machine commands
the same goal pose with a decreased speed limit. In case the
manipulator is in contact with an obstacle and moving the
manipulator is unsuccessful for several times, an abortion of
current state is caused and the manipulator tries to return to
its homing pose.
The state observer is also responsible for interpreting the
effective external load at the TCP in order to check whether
an object was gripped successfully or not.

III. SIMULATION RESULTS

In the following section, we present different tasks that
have to be solved at stage 1 of the EuRoC. Each task has
been tested by the challenge hosts for different setups to
examine the robustness of our framework4.

A. Pick-and-Place in Obstructed Environments

The basic tasks are pick-and-place scenarios with increas-
ing difficulties. The robot has to locate objects, to pick
them and to place them in the corresponding target zones
while avoiding obstacles and maintaining its dynamic and
kinematic limits. The obstacles as well as the dimensions
and locations of the objects are not known in advance. The
target zones are known from the task description but vary in
each setup. Fig. 9 shows a top-view of the setup.
Alg. 1 describes the overall strategy: First, the environment
is scanned applying the procedure of Alg. 3. The Octomap-
based representation of the environment is generated for
collision checking based on PC-data from the vision module.
Since some parts of the environment are not visible for
the scene camera, the environment representation has to
be created successively using views of the TCP camera
as well. Several pose sets are defined to fully explore the
environment.

4A video showing the different simulation tasks can be found online at
https://youtu.be/OTWEZd6BMk8.

https://youtu.be/OTWEZd6BMk8


1 2 3 4

Fig. 10. Pick-and-Place task in obstructed environment: 1) Scan Environment. 2) Grip object (cyan cylinder) 3) Move to target zone in 2 DOF transport-
configuration. 4) Place Object into target zone.

x

y
camscene

Target Zone

Object3

21

camTCP

Fig. 9. Top-View of the scene Pick-and-place in obstructed environments.
The object (magenta) has to be located and placed into the target zone while
avoiding obstacles (blue, green).

In the following, objects are located sequentially. For a lo-
cated object the grasping module calculates feasible grasping
and placing poses (refer to II-B.3).
Based on these poses the pick-and-place procedure is per-
formed as follows: The robot moves to a predefined trans-
port-configuration and approaches the located object using
only the linear axes of the base in order to reduce the
complexity of the planning problem. Once the distance
between the robot and the object is less than a predefined
threshold the gripping sequence as described in Alg. 2 is
performed using 9DOF. After picking up the object, the robot
moves to the corresponding target zone switching back to
the transport-configuration and performs a placing procedure
similar to the grip sequence (see Fig. 10).
The whole pick-and-place sequence is performed until all
objects are placed in their target zones. Our approach of a
C-space adaption has proven to be robust as well as time-
efficient.

B. Puzzle Assembly

In the puzzle assembly scenario puzzle pieces have to
be assembled into a fixture. Fig. 11 shows a schematic
setup of this task. Using our framework we are facing two
main issues: In contrast to the standard task, the placing

Algorithm 3 Scan Environment
1: Primary and secondary explore pose sets A,B
2: Record scene with camscene 1
3: Set nsuccess = 0, increase counter with each taken image.
4: Choose random pose set i of A
5: repeat
6: Move to first feasible configuration of i and take image with

camTCP 2
7: if no feasible pose found then
8: Switch pose set i
9: end if

10: until first feasible pose found or no remaining pose in A
11: Record scene with camscene

12: Move to next feasible configuration of current pose set i
13: repeat
14: Choose random pose set i of B
15: Move to 2 feasible configurations of i and take images with

camTCP 3
16: until nsuccess = nsuccess,max

order is important because not every order would enable the
assembling of the puzzle. Thus, the logic of the state machine
module is extended by a sorting algorithm. Furthermore, a
simple placing strategy is not suited for a robust assembling
of the task due to uncertainties of the calculated object
pose and calibration errors. Our approach extends the former
placing strategy by a swing-in motion. The swing-in motion
is defined as a sinusoidal movement of the TCP which super-
poses the regular placing motion. That way, the puzzle pieces
reach their target pose despite the several uncertainties. This
strategy improved the success-rate considerably by exploiting
the compliance of the torque controlled joints and preventing
jamming.

C. Moving Conveyor Belt

In this task the robot has to pick up red cubes from a
conveyor belt and place them in a target zone (see Fig. 12).
The cubes are dropped on the conveyor belt while the moving
speed (in x′–direction) of the belt increases. Thus, for each
cube i the robot has a decreasing cycle time ∆tc,i to pick
the cube and to place it in the target zone. Since time
is an issue, our focus is to speed up the pick-and-place
procedure. Our strategy avoids the exact calculation of the



Puzzle Fixture

x

y Object

camscene

Motion
Swing-in

Fig. 11. Top-View of the scene Puzzle Assembly. Several puzzle pieces
have to be localized and placed into a puzzle frame. Approaching the puzzle
frame, a swing-in motion is used to account for inaccuracies exploiting the
torque control of the manipulator.

Target Zone

Object

3

2

1

x

y

4

camscene

x’
y’

Fig. 12. Top-View of the scene Moving conveyor belt. The object (red) is
dropped on the conveyor belt at random position and has to be put into the
target zone.

rendezvous point. Instead, the grasping procedure (compare
Alg. 2) is simplified. Due to a sufficient gripper width, we
choose frontally to grip each object (compare Fig. 12). Thus,
the robot first moves in the predefined gripping pose (the
conveyor belt height is estimated at the beginning by the
scene-camera). Then it estimates the object’s center (and not
the complete pose) relative to the middle of the conveyor
belt using the TCP cam (1). Based on this position the robot
adjusts its y′–position relative to the conveyor belt and moves
towards the red cube on a straight line (3). Thereby, the
planning problem can be reduced to an analytically solvable
one dimensional problem taking into account imprecise tim-
ing information. Using this strategy, both vision and motion
planning processing times are negligible and speed depends
mainly on the robot’s capabilities.

IV. APPLICATION AND OUTLOOK

In this section we discuss further challenges and the
applicability of our framework to real industrial applications,
such as those included in further stages of the EuRoC. Chal-
lenge 2 of the EuRoC project proposes mobile manipulators
addressing the scenarios Logistics and Robotic Co-Workers

as described in [29]. In this regard, robots shall be enabled
to work autonomously in unstructured environments while
respecting requirements for safe human-robot collaboration.
Facing the application in real-world scenarios, several ad-
ditional requirements compared to the simulation have to
be met by the software framework. The main challenges
include the precise positioning of parts, the safe operation in
unstructuredand dynamically changing environments sharing
workspace with humans and more complex conditions for
the different sensors (e.g. vision module).
Our presented general strategy and framework is inherently
flexible and adaptable to new tasks, scenarios and real-world
applications. As stated before, changes or even the complete
re-write of individual modules are easily implemented. In
the following we give an overview on how each respective
module could be redefined for such scenarios.

1) State Machine: Aiming for long-term autonomy, a
robust operation has to be ensured. The proposed framework
has proven to be flexible as well as easily adaptable to
task-specific strategies and enables a comprehensive error
handling. These requirements are crucial for an autonomous
operation in a dynamical environment. A good assessment
of possible events -which needs to be done for each specific
application- is crucial for an autonomous operation in a
dynamical environment.

2) Vision: The problem of image processing in real world
scenarios is naturally more challenging than in simulated,
fixed ones. Real RGB-D sensors present much more com-
plex difficulties (e.g. non-Gaussian noise, calibration and
alignment errors) and may not be the most adequate ones.
Nevertheless, point cloud processing algorithms can be used
with other, more precise kinds of 3D and RGB sensors. An
initial “scan environment” routine may not be enough in
dynamic enviroments and the environment map would have
to be constantly updated. Some tools, e.g. Octomap, provide
probabilistic updating capabilites which also help dealing
with sensor uncertainties. Additionally, there are numerous
works and algorithms (also available in PCL) which help
deal with sensor fusion and SLAM.
Naturally, the identification of objects is much more complex
in real-world scenarios as in a simulated environment with 6
possible colors. Still, this is an extended subject of research
and there are several strategies (e.g. identifiers) that help
dealing with it. Pose estimation algorithms depend strongly
on each particular case, so they always have to be adapted
-or completely changed- accordingly.

3) Motion Planning: Regarding the motion planning
module, we define robustness as the ability to find a collision-
free trajectory in case there exist one or otherwise to return an
error in a reasonable amount of time. Generated trajectories
have to be as short and smooth as possible or better, optimal
w.r.t. time and effort. Furthermore, it has to deal with
dynamic environment and unforeseeable constraints. Due to
a disadvantageous initial guess, the planner sometimes fails
at finding a feasible solution in case the target pose is given
in W-space instead of C-space. This issue can be solved



by the adaption of sampling based algorithms designed for
redundant systems, e.g. as proposed by [30]. Regarding
dynamic environments, we plan to develop a new module,
that monitors the current environment while moving and
stops the system smoothly in case an unforeseen collision
impends.

4) Grasping: The current implementation of the grasping
module is limited to a fixed amount of object shapes. Object
data is given by a combination of shape primitives. For real-
world applications, it might be desirable to use CAD-data for
the grasping pose calculation. However, this calculation can
be done in advance and the use of pre-generated catalogues
seems applicable. In addition, part-specific end-effectors may
be advantageous in terms of robustness and precision.

5) State Observer: Acting as main interface for sensor
feedback to the state machine, the state observer is crucial
to increase the robustness of the overall control system.
Improving autonomy in (real) dynamic environments the
use of sophisticated algorithms for localization, multi-sensor
fusion and disturbance estimation are necessary. Safety in
terms of industrial standards plays an important role and has
to be added to current design.

V. CONCLUSION

Mobile robot platforms with dexterous manipulators and
integrated vision and force/torque sensors are a promising
approach to cope with future demands on flexible, small-
scale and autonomous production. In this paper, we intro-
duced a well structured and extensible software framework
that consists of various independent modules with state-of-
the-art algorithms and concepts. This framework has proven
its worth at stage 1 of the EuRoC project coming out on top
of 39 challenger teams. Looking into possible applications in
real-factory environments, we set up a basis on which further
extensions or adaptions can be built on.

ACKNOWLEDGMENTS

Special thanks go to our motivated and brilliant students
T. Blume, F. Bräu, M. Moein, P. Seiwald, A. Seppålå,
T. Smith, N. Tekles, I. Uygur, S. Yousefpour whose con-
tribution was essential to the team’s success.

REFERENCES

[1] M. Hägele, K. Nilsson, and J. N. Pires, “Industrial Robotics,” in
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer Berlin Heidelberg, 2008, ch. 42, pp. 963–986.

[2] S. D. International Federation of Robotics (IFR), World Robotics 2012
- Industrial Robots. Frankfurt am Main: VDMA, 2012.

[3] “European Robotics Challenges - webpage,” 2015. [Online]. Available:
http://www.euroc-project.eu/

[4] “Willow Garage PR2 - webpage,” 2015. [Online]. Available:
https://www.willowgarage.com/pages/pr2/overview

[5] “KUKA youbot - webpage,” 2015. [Online]. Available: http:
//www.kuka-labs.com/en/service robotics/research education/youbot/

[6] M. Hägele, W. Schaaf, and E. Helms, “Robot Assistants as Simple
and Effective Tools in Manufacturing Environments,” in Advances
in Human-Robot Interaction, E. Prassler, G. Lawitzky, A. Stopp,
G. Grunwald, M. Hägele, R. Dillmann, and I. Iossifidis, Eds. Springer
Berlin Heidelberg, 2005, ch. 7, pp. 347–358.

[7] D. Hackett, J. Pippine, A. Watson, C. Sullivan, and G. Pratt, “An
overview of the darpa autonomous robotic manipulation (arm) pro-
gram,” Journal of the Robotics Society of Japan, vol. 31, no. 4, pp.
326–329, 2013.

[8] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. Voorhies,
G. Sukhatme, and S. Schaal, “An autonomous manipulation system
based on force control and optimization,” Autonomous Robots, vol. 36,
no. 1-2, pp. 11–30, 2014.

[9] N. Hudson, T. Howard, J. Ma, A. Jain, M. Bajracharya, S. Myint,
C. Kuo, L. Matthies, P. Backes, P. Hebert, T. Fuchs, and J. Burdick,
“End-to-end dexterous manipulation with deliberate interactive estima-
tion,” in IEEE International Conference on Robotics and Automation,
May 2012, pp. 2371–2378.

[10] J. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert, M. Kazemi,
M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard, M. Pivtoraiko, J.-S.
Valois, and R. Zhu, “An integrated system for autonomous robotics
manipulation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct 2012, pp. 2955–2962.

[11] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23,
1986.

[12] K. Abd, K. Abhary, and R. Marian, “A scheduling framework for
robotic flexible assembly cells,” KMUTNB: International Journal of
Applied Science and Technology, vol. 4, no. 1, pp. 31–38, 2013.

[13] B. Dhillon, A. Fashandi, and K. Liu, “Robot systems reliability and
safety: A review,” Journal of quality in maintenance engineering,
vol. 8, no. 3, pp. 170–212, 2002.

[14] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[15] C. Wöhler, 3D Computer Vision: Efficient Methods and Applications
(Chapter 2). Springer, 2012.

[16] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),”
in IEEE International Conference on Robotics and Automation, 2011,
pp. 1–4.

[17] “Point Cloud Library - webpage,” 2015. [Online]. Available:
http://www.pointclouds.org

[18] R. B. Rusu, “Semantic 3d object maps for everyday manipulation
in human living environments,” Dissertation, Technische Universität
München, München, 2009.

[19] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recog-
nition and pose using the viewpoint feature histogram,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2010, pp.
2155–2162.

[20] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[21] S. M. LaValle, “Planning Algorithms,” Methods, vol. 2006, p. 842,
2006.

[22] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation, May
2009, pp. 489–494.

[23] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding Locally Optimal, Collision-Free Trajectories with Sequen-
tial Convex Optimization,” in Proceedings of Robotics: Science and
Systems, 2013.

[24] I. A. Sucan and S. Chitta, “Moveit!” 2015. [Online]. Available:
http://moveit.ros.org

[25] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012.

[26] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in IEEE International Conference
on Robotics and Automation, 2012, pp. 3859–3866.

[27] J. D. Wolter, R. A. Volz, and A. C. Woo, “Automatic generation
of gripping positions,” IEEE Transactions on Systems, Man and
Cybernetics, no. 2, pp. 204–213, 1985.

[28] N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann, “Integrated grasp
and motion planning,” in IEEE International Conference on Robotics
and Automation, May 2010, pp. 2883–2888.

[29] EuRobotics, “The strategic research agenda for robotics in europe,”
2009. [Online]. Available: http://www.robotics-platform.eu/

http://www.euroc-project.eu/
https://www.willowgarage.com/pages/pr2/overview
http://www.kuka-labs.com/en/service_robotics/research_education/youbot/
http://www.kuka-labs.com/en/service_robotics/research_education/youbot/
http://www.pointclouds.org
http://moveit.ros.org
http://www.robotics-platform.eu/


[30] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with Workspace Goal Regions,” in IEEE
International Conference on Robotics and Automation, 2009.


	Introduction
	Software Framework
	Architecture
	Modules
	Vision System
	Motion Planning
	Grasping
	State observer


	Simulation Results
	Pick-and-Place in Obstructed Environments
	Puzzle Assembly
	Moving Conveyor Belt

	Application and Outlook
	State Machine
	Vision
	Motion Planning
	Grasping
	State Observer


	Conclusion
	References

