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ABSTRACT

In this work we present a deep convolutional neural network
using 3D convolutions for Gait Recognition in multiple views
capturing spatio-temporal features. A special input format,
consisting of the gray-scale image and optical flow enhance
color invaranice. The approach is evaluated on three differ-
ent datasets, including variances in clothing, walking speeds
and the view angle. In contrast to most state-of-the-art Gait
Recognition systems the used neural network is able to gen-
eralize gait features across multiple large view angle changes.
The results show a comparable to better performance in com-
parison with previous approaches, especially for large view
differences.

Index Terms— Deep Learning, Convolutional Neural
Networks, Gait Recognition

1. INTRODUCTION

Automated person recognition based on visual cues is a large
research area in computer vision. Important applications are
surveillance systems in public spaces to increase safety. The
most popular approaches use face, iris or fingerprint informa-
tion for detection and recognition. These methods work well
in many applications, but are sometimes impractical. They
are sensitive to occlusion, large distances or low resolution
data and often require cooperation of the subject.
Gait Recognition identifies people depending on their natu-
ral walking motion. A humans’ silhouette and gait are coarse
features and therefore robust to noise and low resolution. In
[1] it was shown that humans can distinguish humanoid loco-
motion from other motion patterns. Nonetheless, Gait Recog-
nition is a challenging task. The natural walking style and
the appearance of a person can be influenced by many fac-
tors, such as wearing different clothing or shoes, having an
injury or carrying an object. Additional challenges arise with
different walking speeds, viewing angles or environmental in-
fluences (e.g. walking in stormy or snowy weather).

In this work we present an approach to tackle these chal-
lenges in Gait Recognition adapting recently developed con-
cepts in deep learning. A 3D Convolutional Neural Network
(CNN) is presented using spatio-temporal information, trying

to find a general descriptor for human gait invariant for view
angles, color and different walking conditions.
In the following section, related work in the field of Gait
Recognition and deep learning is reviewed. Section 3 presents
the methods we developed for this approach. In Section 4, the
experiments are explained, followed by the results. Finally, in
Section 5, we draw our conclusion.

2. RELATED WORK

Gait Recognition approaches can generally be separated into
the two categories: 1) model-based and 2) appearance-based
techniques. In the former, parameters for a pre-defined model
are adapted and in the latter handcrafted gait features are ex-
tracted from images or videos. Especially for low resolu-
tion videos finding and optimizing an accurate 3D model for
view invariance is hard and error-prone. Therefore, we focus
on appearance-based models. Liu et al. [2] use frieze pat-
terns combined with dynamic time warping for gait sequence
matching with similar viewpoints. Kale et al. [3] apply Hid-
den Markov Models for classification on a persons silhouette.
In Han et al. [4], the averaged silhouette over a complete gait
cycle was used as a simple but effective feature, referred to as
Gait Energy Image (GEI). Hofmann and Rigoll [5] enhanced
the GEI further using gradient histograms, body part localiza-
tion and α-matte segmentation resulting in the so-called α-pb-
GHEI. The approaches [6], [7] and [8] apply a view transfor-
mation model transforming gait sequences into desired view
points for comparison. In [9], a common subspace for dif-
ferent view angles or types of clothing is learned. Visual-
hull based methods create a 3D gait volume from images se-
quences of multiple temporally synchronized cameras. This
model can then be projected into the desired view plane for
classification. However, the need for multiple synchronized
cameras is often impractical in many real-world scenarios.

In image classification, deep CNN architectures [10], [11]
set new benchmarks on popular datasets such as the ImageNet
competition. Recent approaches advanced from 2D image
classification to 3D video classification. Karpathy et al. [12]
use a multi-resolution, fovea architecture applying 3D convo-
lutions on different time frames of a video. In the work of Si-
monyan and Zisserman [13], two CNNs, one operating on in-



dividual RGB images and one on optical flow, were designed
and obtained good results by fusing together their softmax
activations using an SVM. Donahue et al. [14] developed a
hybrid architecture, concatenating a CNN with a Long Short-
Term Memory (LSTM) network, where the CNN embeds the
single frames into feature vectors and the LSTM classifies se-
quences of these vectors. Similar to [12], Tran et al. [15]
designed a CNN using 3D convolutions, but with a deeper
structure fully exploiting spatio-temporal features for video
classification. The next section describes how we combine
the ides presented in [11], [13] and [15] to come up with a 3D
Convolutional Neural Network for Gait Recognition.

3. NETWORK ARCHITECTURE

The concept behind image classification with CNNs can be
transferred to video classification by extending the convolu-
tional operation to the temporal domain. An attempt is al-
ready presented in [12], but [15] showed the full potential
of using 3D convolutions throughout a network for activity
recognition. The findings in action recognition for video data
serve as inspiration for the strategies in the approach pre-
sented in this section.

3.1. Convolutional Filter

As proposed in [15], 3x3x3 convolutional filters with zero
padding are used in all convolutional layers in the network
(where HxWxT, stands for spatial height, spatial width, and
temporal extent). This allows detection of movements in all
directions and includes future and past temporal information,
using the smallest possible filter size. As illustrated in Fig. 1
stacking multiple convolutional layers with a size of 3x3xT
covers the same spatial region as one larger filter (e.g. 5x5xT
or 7x7xT, see AlexNet [10]) with a reduced number of param-
eters. Besides reducing the computational load, it also allows
the introduction of more non-linearities in between the addi-
tional convolutional layers.

Fig. 1. Comparison between using one 5x5 filter (left, 25
parameters) and two stacked 3x3 filter (right, 18 parameters).

3.2. Nonlinearity and weight initialization

The non-linearities are implemented as Rectified Linear Units
(ReLUs) according to Nair and Hinton [16]. Using the activa-
tion function f(x) = max(0, x), ReLUs have multiple ben-

efits. 1) Tackling the vanishing gradient problem for positive
inputs, due to a derivative of 1. 2) Being zero for negative in-
puts can be seen as a regularizer, similar to using dropout. 3)
ReLUs need no exponential computation. In order to further
improve the learning time, the weights of the convolutional
layers are initialized as proposed in [17].

3.3. Topology and preprocessing

Following the design principles of [11], the network archi-
tecture is presented in Fig. 2. We set the frame length to 16
as a trade-off between capturing enough temporal informa-
tion and computational complexity. This temporal depth also
showed to work best for activity recognition in [15]. The
pooling layers generally have the dimension 2x2x2, with an
exception of layer 1 and 3, which have a temporal extent
of 1 to avoid collapsing the temporal information too early.
As mentioned before, all convolutional layers use 3x3x3xN
dimensional convolutional filters, where N is the number of
channels (3, 64, 128, 128, 256, 256 and 512 from layer 1
to 7). The features produced by the last convolutional layer
are the input for two consecutive fully connected layers with
4096 neurons each implementing dropout with a value of
0.5. The final layer applies the softmax function producing a
probability distribution over all classes for classification.
Color and clothing invariance are important aspects in any
Gait Recognition algorithm, the goal being to recognize
people depending on their gait and not on their clothes. A
strength of deep neural networks is the ability to utilize large
amounts of data including lots of variance to find a gener-
alized model. Unfortunately, the available datasets include
only one to two clothing conditions limiting the ability to
learn color invariance. An ideal dataset would include mul-
tiple sequences for the same subject with different clothing,
enabling the network to learn gait features independent of
color or clothing. Tackling this problem a special input for-
mat is designed. The first channel of the input image is the
RGB-image converted to grey-scale. For the second and third
channel the optical flow in x and y directions are computed
according to [18]. This idea is inspired by the two-stream
convolutional network proposed by Simonyan and Zisserman
[13], who showed a positive impact of optical flow for video
classification. We use optical flow to enhance the capability
of the network to learn gait features instead of associating
color/clothing a the subject.
In contrast to [15], where the videos are split into non-
overlapping sequences, in our approach we use sequences
overlapping within test or training set. By cutting the original
sequences into non-overlapping training clips of 16 frames
one subject may accidentally occur disproportionately often
with a similar pose in the first frame and the network learns to
associate this starting pose with the subject. In order to avoid
this behavior, a video with 50 frames would be split into the
clips (1-16), (2-17),... up to frames (35-50).
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Fig. 2. Topology of the network. All pooling layers are max-pooling layers with a size of 2x2x2, except for pool1 and pool3
which are of size 2x2x1. After each pooling layer a ReLU-nonlinearity [16] is implemented. The features aquired in conv7 are
used as inputs of two consecutive fully connected layers with 4096 units each applying dropout with a value of 0.5. The final
softmax layer produces a probability distribution over all classes.

4. EXPERIMENTS

4.1. Datasets

The approach is evaluated on three different datasets, namely
the CMU Motion of Body (MoBo) [19], the USF Gait Based
Human ID Challenge [20] and Casia-B [21]. These datasets
contain different walking speeds, clothing conditions and
different view angles to evaluate the invariance for different
conditions of the features found by the network. The CMU
dataset consists of 25 different individuals walking on a tread-
mill including three different conditions (slow walk (S), fast
walk (F) and carrying a ball (B)). In the USF dataset there
are 122 subjects walking outside on an elliptical path. The
subjects wear two types of shoes, walk on two different sur-
faces and can either carry a briefcase or not. Additionally the
clips were filmed on two separate days (May and November)
which caused the people to wear different clothing. However,
not all subjects were filmed under all conditions. The Casia-B
database contains sequences of 124 subjects walking along
a straight line in an indoor environment, recorded from 11
different angles (0◦, 18◦, ... 180◦).

4.2. Test setup

In many experiments training and tests sets have been recorded
under different conditions (e.g. slow walk for training and
fast walk for testing), which does not suit a deep learning
approach. For conventional methods features can be particu-
larly designed to cope with this setup. However, using CNNs,
the features are not designed by hand, but learned from data.

The network cannot learn features that are invariant to walk-
ing speed if the training data only provides samples of one
walking speed. Under this premise, the training/test splits
are altered for this approach. In case where training and test
data have been recorded under different conditions, both are
split separately into a 66% and 33% partition. Then the 66%
of the training data are combined with the 66% of the test
data to form the altered training data. The remaining 33% of
the original training and test data are combined to form the
altered test data. Using this type of split, the network is able
to learn a representation independent of the view, speed and
clothing conditions. Additionally, it enhances the amount of
training data improving the performance of the network.
For the CMU dataset, 9 experiments were conducted, 3 using
the same conditions for training and testing, and six with
different conditions using the altered splits. The USF dataset
consists of 12 experiments, where one training set and 12 test
sets are defined. The exact conditions can be found in [20].
All 12 experiments use the altered training/test splits in our
approach. In the Casia-B dataset each subject performed six
walking sequences for all 11 view angles. The experiments
are designed to test view invariance, using the six sequences
recorded from a 90◦ view angle for training. For each of the
other view angles one experiment is conducted, using the six
sequences as test data. The experiment using 90◦ as test data,
uses only four sequences for training and two for testing.
The network is trained with stochastic gradient descent us-
ing an initial learning rate of 10−4 (Casia-B, USF) to 10−5

(CMU) with a momentum of 0.9 and a weight decay of
5 ∗ 10−4. The learning rate is steadily decreased by a factor
of 10, once the loss stalls for one epoch.



4.3. Results and Discussion

The results are presented in Tables 1-3. The experiment, con-
ducted on the CMU Mobo dataset can be seen in Table 1. The
first column shows the data split, where the first letter indi-
cates the training set and the second one the test set. It can
be seen that for all cases the network is able to find a joint
representation independent of walking speed or carrying an
object. Due to the special training/test splits, in the last six
rows, the results for this approach are duplicated from only
three experiments (because S/F = F/S etc.). Despite, the dif-
ferent training conditions, which make a direct comparison
difficult, the network shows a very good performance, espe-
cially for the experiments with varying conditions.

Exp. Ve [22] Liu [2] Sun [23] Our
S/S 100 100 100 99
F/F 100 100 100 99
B/B 92 100 100 100
S/F 80 100 84 99
F/S 84 84 88 99
S/B 48 81 78 100
B/S 68 50 80 100
F/B 48 50 68 100
B/F 48 50 72 100

Table 1. Accuracy for the experiments on the CMU Mobo
Database in percent. The first column shows the training/test
partition.

In Table 2 the results for the USF database can be seen.
While the performance for several experiments is slightly be-
low state-of-the art, in four experiments the network shows a
significantly better performance. Especially for the last two
experiments including different clothing conditions, the re-
sults indicate that the network learned a representation in-
variant for clothing. The otherwise slight decrease in per-
formance compared to previous techniques can be attributed
to noise introduced by the outside recording and probably a
lower resolution compared to the other two datasets. How-
ever, both of these problems can be tackled by increasing the
database size, enabling the network to learn the unimportance
of the background.
Table 3 shows the performance on the Casia-B dataset, where
first column indicates the test view angle. In the altered split
training and test data contain both, 90◦ data and data from the
test view angle. Again the network produces a high accuracy
across all view angles, indicating a general representation for
human gait is found, which can be used for classification.
Overall the performance of the network is very good for all
tested datasets underlining the potential of a deep learning
approach in Gait Recognition.

Exp. Sa [20] Ka [3] Ha [4] Hf [5] Our
A 73 89 90 99 89
B 78 88 91 94 84
C 48 68 93 91 90
D 32 35 90 93 83
E 22 28 64 90 78
F 17 15 25 64 81
G 17 21 36 45 83
H 61 85 64 99 83
I 57 80 70 98 86
J 36 58 70 96 78
K 3 17 6 18 76
L 3 15 15 21 80

Table 2. Test results for the Human ID Gait Challenge. The
table shows the accuracy in percent. The conditions for the
probe settings can be found in [20].

Exp. Sa Liu Zhe Ku Ku Our
[21] [9] [6] [7] [24]

0◦ 0.4 20.5 - - - 96.3
18◦ 2.4 35.5 - - - 98.2
36◦ 4.8 56.5 - - - 98.5
54◦ 17.7 81.5 31 - - 95.4
72◦ 82.3 96.5 60 97 86.3 94.3
90◦ 97.6 - 89 - 95.4 99.9
108◦ 82.3 96.0 89 96 83.3 98.6
126◦ 15.3 89.5 60 - - 97.0
144◦ 5.2 50.0 - - - 97.4
162◦ 3.6 34.5 - - - 99.2
180◦ 1.2 21.5 - - - 96.1

Table 3. Accuracy for the experiments conducted on the
Casia-B Dataset in percent. The dashes indicate no available
information for certain test cases.

5. CONCLUSION

A new approach has been presented to tackle the challenges
in the field of Gait Recognition. View, clothing and walking
speed invariance make Gait Recognition a versatile and dif-
ficult task. A modern state-of-the art technique using Con-
volutional Neural Networks is proposed, extracting spatio-
temporal features for classification. This representation re-
sults in a high accuracy across experiments on different popu-
lar databases pointing out the high potential of CNNs for Gait
Recognition. Nevertheless, due to the small amount variance
and the small database size overall, overfitting is a potential
problem. Besides better hardware and bigger network struc-
tures for increased performance, a possible solution can be
seen in the growing amount of data and the larger databases
to come. Using databases including thousands of subject with
a large variance in walking behavior and appearance can fur-
ther boost performance and reduce overfitting.
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