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LEGUMES

Development of Near Infrared Reflectance Spectroscopy Calibrations to Estimate
Legume Content of Multispecies Legume–Grass Mixtures

F. Locher, H. Heuwinkel,* R. Gutser, and U. Schmidhalter

ABSTRACT At a low level of N supply, the proportion of N derived
from atmosphere is expected to be close to 100% if theLegume content in legume–grass mixtures is a key parameter for
legumes are grown in mixtures with nonlegumes. Then,the quantification of N2 fixation, forage, and diet quality. This study
N2 fixation is mainly determined by the N yield of thewas conducted (i) to develop a near infrared reflectance spectroscopy
legumes (Boller, 1988; Peoples et al., 1995; Weißbach,(NIRS) based method to estimate the legume content in multispecies

legume–grass mixtures as in widespread use in Western Europe, (ii) 1995). To calculate the N yield of the legumes grown in
to compare end-points and artificial mixture calibration strategies and mixture, their share of the total yield of the mixture is
(iii) to evaluate the effect grinding may have on the NIRS predictions needed. The legume content of mixtures varies season-
of legume content. Calibration samples were taken in 1999 and 2000 in ally and spatially with regard to botanical composition,
legume–grass fields that comprised a broad variation of site conditions. which affects BNF. We are not aware of any literature
The samples were hand-sorted, dried, and ground. End-points calibra- that has shown these effects on BNF at field scale overtions derived from sets of legume samples (�100% legume content)

time. One reason for this is the lack of a suitable methodand sets of grass samples (�0% legume content) were compared with
to easily determine legume content of mixtures. Tradi-calibrations where 63 spectra of artificially mixed samples (increments
tional methods to determine legume content of legume–of 5% legume content) were added to represent a continuum of
grass mixtures (botanical analysis, visual estimates, pointpossible values of legume content. The influence of the preparation

protocol of defined dry mixtures was compared by preparing duplicate quadrat, dry weight rank, N content, constituent differ-
mixtures where one replicate was prepared from fresh material, dried, ential method) are not suitable for this purpose. Even
and ground as a mixture and the other mixed from dry, ground mate- for a limited area, some of them are too labor intensive,
rial. Log (1/R ) (R � reflectance) spectra were taken of all samples. most need well-trained operators or do not apply under
Partial least squares regression was applied to develop calibration all circumstances, and the information gathered is usu-
algorithms in the spectral range of 7500 to 3950 cm�1 (1333–2532 nm). ally proportional to the resources invested (Whalley andFirst derivative combined with vector normalization proved to be

Hardy, 2000). Additionally, these methods do not offerthe best data pretreatment. For each strategy, three models were
the possibility for automation in harvesting machines fordeveloped: One model was based on all samples validated with a one-
future use in site-specific farming. Thus, an easy-to-useleave-out cross-validation, and two models were based on half of the
method is needed that may serve these goals and ensuresamples validated by the other half. Prediction errors were between

2.2 and 4.0%, and coefficients of determination of all validations were a high repeatability.
greater than 99% so that no remarkable differences between the Near infrared reflectance spectroscopy has already
models existed. At least 70% of the selected spectral regions were proven its capability to determine legume content in le-
in common for all models. These regions do not describe legumes gume–grass mixtures. It is an easy-to-use technique that
themselves but rather the information that discriminates them from can even be mounted onto harvesting machines (Dar-
grasses. It is emphasized that the calibrations introduced have the denne and Féménias, 1999). Moore et al. (1990) foundpotential for a broad use that needs to be proved by further validations.

NIRS less susceptible to maturity stage effects than the
constituent differential method and highlighted the strong
reduction in sample preparation and measurement. Other

Biological N fixation (BNF) by legumes is an im- authors proved the capability of NIRS to predict the le-portant source of N in agriculture. Estimates of BNF gume content in binary forage mixtures (Petersen et al.,vary strongly between and within species (LaRue and 1987; Pitman et al., 1991; Shaffer et al., 1990; Wachen-Patterson, 1981). Site-specific variation of N2 fixation is dorf et al., 1999). More complex mixtures with severalrarely reported (Androsoff et al., 1995; Hansen and legumes and grasses were successfully tested by Cole-Vinther, 2001; Stevenson et al., 1995) although it is im- man et al. (1990) and Pitman et al. (1991). However,portant information for sustainable low-input farming there is not yet any study that shows the capability ofsystems. Fixation of N2 can simply be measured by the N NIRS in predicting legume content of multispecies legume
yield of the legume multiplied by the proportion derived mixtures in widespread use in Western Europe, i.e., with
from symbiotic N2 fixation (N derived from atmosphere). white clover (Trifolium repens L.), red clover (Trifolium

pratense L.), and alfalfa (Medicago sativa L.) as domi-
nating legumes in varying proportions. Wachendorf etDep. of Plant Sci., Technische Universität München, D-85350 Freising,

Germany. Received 10 Sept. 2002. *Corresponding author (hauke@
wzw.tum.de).

Abbreviations: BNF, biological nitrogen fixation; NIRS, near infrared
reflectance spectroscopy; RMSEC, root mean square error of calibra-Published in Agron. J. 97:11–17 (2005).

© American Society of Agronomy tion; RMSECV, root mean square error of cross-validation; RMSEP,
root mean square error of prediction (test-set validation).677 S. Segoe Rd., Madison, WI 53711 USA
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al. (1999) developed separate methods for white clover tions in Europe and (ii) to compare end-points and
artificial mixture calibration strategies. Since our stan-and red clover in binary mixtures with ryegrass, but these

may not be suitable for multispecies mixtures. Addition- dard procedure was based on the preparation of samples
from ground legume or grass batches, we (iii) evaluatedally, method development as published so far was mostly

based on samples from well-defined plot experiments. the effect grinding may have on the NIRS predictions of
legume content by preparing duplicate mixtures, whereFinally, the methods were rarely tested for their perfor-

mance in natural stands as they were by, e.g., Pitman et one replicate was prepared from fresh material, dried,
and ground as a mixture and the other mixed from dry,al. (1991), whose focus was the determination of accom-
ground material according to the standard procedure.panying nonlegumes in tropical pastures.
The aim was to achieve a method with general applica-In all cited studies, the error for NIRS prediction of
bility by addressing all variation that may come fromlegume content ranged between 2 and 14%, but the data
site conditions, plant age, and species composition andcan hardly be compared because plant material, measure-
a prediction error less than 5% legume content.ment, and calibration conditions and even calibration

strategy differed, which all affect the prediction error.
The performance of a NIRS model strongly depends MATERIALS AND METHODS
on the quality of the reference data (Naes et al., 2002).

Plant Material and Site ConditionFurther, sample preparation and calibration strategy af-
fect the prediction error. In the case of legume content, The experimental sites were part of the FAM Research
the reference samples can be gained by different proto- Station Scheyern, which is located in Southern Germany 40

km north of Munich (450–490 m above sea level, 803 mmcols: (i) Reference values may come from artificially
mean annual precipitation, 7.4�C mean annual temperature).mixed, weighted mixtures (e.g., Pitman et al., 1991) or
Samples were taken from two fields (2.3 and 2.4 ha in size)from real samples taken adjacent to NIRS sampling points
in 1999 and from a third field (3.5 ha) in 2000 (Table 1), all(e.g., Coleman et al., 1990; Wachendorf et al., 1999);
sown to a multispecies legume–grass mixture [alfalfa, whiteand (ii) the pure samples used to create artificial mix-
clover, red clover, orchardgrass (Dactylis glomerata L.), timo-tures may have been grown in mixtures or pure stands. thy (Phleum pratense L.), perennial ryegrass (Lolium perenne

The use of samples from pure stands to create artificial L.), tall fescue (Festuca arundinacea Schreb.), and oatgrass
herbage mixtures for calibration was successful for the (Arrhenatherum elatius L.)]. Measurement plots (0.25 m2 each)
determination of composite grass or legume concentra- were established at selected sites that covered the range of

soil heterogeneity found in the fields. Therefore, site-inducedtion but not for the determination of single species
effects on the plant material were included. At the plots,therein (Pitman et al., 1991). Coleman et al. (1990) gen-
aboveground biomass was harvested to gain material for theerally restricted the use of this strategy to closed popula-
NIRS calibration procedure (Table 1) 1 or 2 d before cuttingtions, i.e., calibration and validation samples are two
the whole field. Shoots were separated into the legume andrandom subsets of the same population. The use of the
grass fractions but not analyzed for their species compositionmost simple calibration strategy, i.e., end-points calibra- because the aim was a robust calibration for the determination

tion, again showed promise with composite grass and of the legume content as a whole. Yet, multispecies mixtures
legume groups (Coleman et al., 1990; Pitman et al., will always change their composition depending on manage-
1991). But, Petersen et al. (1987) and Coleman et al. ment and site conditions, i.e., sometimes single species may

dominate within the legume or grass fraction. We observed,(1990) discuss that differences in particle size distri-
e.g., in spring, a predominance of red clover in the legumebution may differ for the same species whether it was
fraction, whereas at other harvesting dates, alfalfa becameground solely or in mixtures even if the same grinding
more dominant. But mostly all legume species sown wereconditions are used. These differences will affect light
present, with white clover regularly being the minor compo-scatter and thus the near infrared spectra. Coleman et al.
nent in the legume fraction. This natural adaptation process(1990) have shown that math treatment on the spectra cannot be precisely predicted in terms of species composition,

largely eliminates these effects. and it will happen randomly in future samples, which is why
We developed NIRS models (i) to determine the le- we did not attempt to analyze any changes in species composi-

gume content in multispecies legume–grass mixtures tion of the legume or grass batch separately. Weeds were
removed because the calibration was aimed at predicting sam-that are widely grown under temperate climate condi-

Table 1. Harvesting dates of the calibration samples. The field names at the FAM Research Station Scheyern, Germany, are given.
Within each plot (�25 m2), six to nine replicates (0.25 m2) were established. Samples taken were all sorted by hand into the legume
and grass fractions.

Field Cutting date nplots† nrepl‡ nspectra§

A04 26 May 1999 18 July 1999 28 Aug. 1999 28 Oct. 1999 2 6 96
A09 26 May 1999 18 July 1999 28 Aug. 1999 7 Oct. 1999 2 9 144

26 May 1999 18 July 1999 28 Aug. 1999 7 Oct. 1999 1 6 48
A13 8 May 2000 7 4 56

8 May 2000 9 1 18
�362

† Number of plots in the field.
‡ Number of replicates per plot.
§ Theoretical number of legume plus grass samples (� 2 � number of cutting dates � nplots � nrepl).
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LOCHER ET AL.: NIRS CALIBRATIONS TO ESTIMATE LEGUME CONTENT 13

ples predominantly free of weeds, and they usually occur infre-
quently in legume–grass crops. The dried samples (60�C �
72 h) were ground in a shear mill (BRABENDER, Duisburg,
Germany) to pass a 1.5-mm screen. On a few plots, not enough
material was harvested so that the actual number of spectra
does not coincide with the theoretical number of samples
(Table 1). The artificially mixed samples were prepared from
the pooled pure legume and grass fractions of August 1999.
Twenty-one defined standards were mixed at 5% increments to
continuously represent the range of 0 to 100% legume content.

One restriction to our calibration procedure may be due
to the sample preparation. As outlined above, preparing the
calibration samples with pure batches of legumes and grasses
may create different particle size distributions compared with
the field samples, which are ground as mixtures. The influence
the grinding protocol may have on the prediction accuracy
was tested with samples from two harvesting dates in 2002.
Samples were collected at legume–grass experiments that were
run at four different locations throughout Bavaria. Twenty-
one fresh samples from multispecies mixtures were hand-sepa-
rated and a subsample of them recombined to a defined le-
gume content simulating real fresh mixtures. They were dried
and ground as a mixture, which is principally in contrast to
the standard sample-handling protocol used in this study. The
legume content of these samples ranged between 18 to 82%
on dry matter basis. The remaining pure samples were used
to create a replicate set of samples in the same manner as the
artificial calibration standards, i.e., weighted mixtures from

Fig. 1. Near infrared spectra of a legume sample (solid line) and aground material. The influence of the grinding protocol was grass sample (dotted line) harvested in May 1999: (A) original
evaluated by comparing the predicted legume content of these absorbance spectra and (B) vector normalized first derivative spec-
principally duplicate but differently prepared samples. tra. The first derivative describes the slope of the original spectrum

at a certain wave number. Therefore, the unit of the y axis in
Fig. 1B is absorbance units per wave number.Near Infrared Reflectance Spectroscopy

Log (1/R) spectra were taken with a Fourier Transform the best model. The first kind was to take the whole data set
NIR spectrometer (Vector 22/N, Bruker, Ettlingen, Germany) from each strategy for calibration (A: 334 samples; B: 397
coupled to an external integration module. A rotating sample samples), resulting in Models A1 and B1. Each model devel-
cup (9 cm diam.) was used to present the samples (�10 g) to oped during calibration was automatically tested by a one-
the measurement area (2.0 cm diam.). A metal stamp (822 g) leave-out cross-validation, i.e., each sample of the calibration
was put on top of the sample to ensure a comparable sample set is estimated by a model based on all the other spectra ofdensity and to avoid any influence of external light. Spectra the data set. As the alternative, both data sets were split intofrom diffuse reflection were recorded by a PbS detector be- roughly two halves, both designed to be as independent fromtween 10000 and 3500 cm�1, i.e., 1000 to 2857 nm (Fig. 1A).

each other as possible, i.e., samples of one sampling site wereAll samples (calibration and validation) were each measured
put either to calibration or validation. Both halves were onceonce apart from the 21 artificial mixtures, which were mea-
used for calibration and a second time as test set for validationsured three times with repacking before the second and third
resulting in two additional models for each strategy (A2, A3measurement.
and B2, B3). All models were developed during calibrationMeasurement conditions were tested to ensure a high signal/
by using an optimization routine offered by OPUS comparingnoise ratio and a high resolution at an acceptable measurement
various wave number regions and data pretreatments to deter-duration, which is reflected by the number of scans. A resolu-
mine the best calibration algorithm. Principally, the modeltion of 10 cm�1 and 30 scans was found ideal to determine a
with the lowest root mean square error of cross-validationspectrum. The instrument settings combined with a rotating
(RMSECV) (Models A1 and B1) or root mean square errorsample cup resulted in a scanned area of 44 cm2 for each sample.
of prediction (RMSEP) (Models A2, A3, B2, and B3) was
chosen, which in all cases was achieved by a combination

Calibration Procedure of first derivative (Savitzky Golay algorithm, 17 smoothing
points) and vector normalization. Then we removed spectralMultivariate calibration was performed with partial least
outliers, and the validation was repeated. Because the removalsquares regression. The spectral region used for calibration
of outliers is a critical issue during model development—oneby a chemometrical software (OPUS 3.1, Bruker, Ettlingen,
could remove distant but valuable spectra (Shenk and Wes-Germany) was generally restricted to the range from 7500 to
terhaus, 1991)—this was only done once during each model3950 cm�1 (1333–2532 nm) because of noise above and below
development. Additionally, a one-leave-out cross-validationthis range. This resulted in 833 data points per spectrum used
was run with the calibration samples of the Models A2, A3,for calibration. Two calibration strategies were used as shown
B2 and B3 only to get comparative error figures to the Modelsin Fig. 2: Strategy A � end-points calibration only with pure
A1 and B1 (but this is not necessary for model development).legume and pure grass samples; Strategy B was extended by
These data are reported along with the prediction errors (rootartificial, incremental mixtures. Both strategies were analyzed

by two kinds of calibration–validation procedures to find out mean square error, RMSE) calculated according to Eq. [1],
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Fig. 2. Flow chart for the development of the different calibration algorithms for the determination of the legume content in multispecies
mixtures. Strategy A results in calibrations derived only from grass mixtures (0%) and legume mixtures (100%). For Strategy B, artificially
mixed standards were added. RMSECV, root mean square error of cross-validation; RMSEP, root mean square error of prediction (test-
set validation).

[2], and [3] whether they are from calibration (C), cross-valida- exceed 4% legume content for all models (Table 2).
tion (CV), or test-set validation (P). These error figures are in the same range as in the most

similar studies published by Coleman et al. (1990) and
Pitman et al. (1991). Compared with the variability
found in field (in our study, it ranged from 14 to 98%RMSEC � ��

n

i�1
(ŷCi

� yi)2

n
[1]

legume content), the error is negligible. The minor
change of the prediction errors from calibration to vali-
dation and from cross-validation to test-set validation
(Table 2) underline that most of the variation found was
accounted for in all models. Then, even the narrower

RMSECV � ��
n

i�1
(ŷCVi

� yi)2

n
[2] calibrations (less than 200 samples) were sufficient for

a good prediction of legume content, confirming the
findings of Shaffer et al. (1990). But, a closer look at
the data reveals some differences and effects that may
be of relevance for future samples.

The systematic effects on bias and intercept foundRMSEP � ��
n

i�1
(ŷPi

� yi)2

n
[3]

during the regression of the NIRS predicted on the true
legume content (Table 2) are a hint that the test sets
and calibration sets of the smaller models (A2, A3, B2,
B3) were not thoroughly congruent. This was expectedwhere ŷi � the NIRS predicted values, yi � the true values,
because we selected calibration and test sets to a maxi-and n gives the number of tested samples.
mum of independence, i.e., no site was present in both
sets. But, species composition, plant age, and seasonal
effects were randomly distributed across both sets. Ob-RESULTS AND DISCUSSION
viously, this caused a slight decrease in the predictionPrediction of Legume Content power of the smaller models compared with Models A1

The prediction error for the determination of legume and B1. But, on the other hand, the small differences
confirm the general applicability of the models. Therecontent in multispecies legume–grass mixtures did not
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Table 2. Calibration and validation statistics of six near infrared reflectance spectroscopy (NIRS) models [A1, A2, A3, B1, B2, and B3
(q.v. Fig. 2)] to determine the legume content of multispecies legume–grass mixtures. Data pretreatment for each model: first derivative
and vector normalization.

Number of spectra for Selected
data

Model Calibration Validation Spectral regions† points‡ Factors§ RMSEC¶ RMSECV# RMSEP†† RC
2‡‡ RV

2§§ Bias¶¶ Intercept## Slope##

cm�1 legume content, % % legume content, %
A1 334 320 7147–6433, 6082–5369, 650 9 2.2 2.4 99.8 99.8 0.0 0.1 0.99

5018–3950
A2 164 163 7147–5369, 5018–3950 740 9 2.4 2.7 3.3 99.8 99.5 �1.3 3.2 0.97
A3 170 162 7502–7143, 6792–5369, 652 5 4.0 3.3 3.7 99.4 99.5 1.1 �1.7 1.01

5018–4659, 4308–3950
B1 397 388 7502–6433, 6082–5369, 742 10 2.3 2.5 99.8 99.7 0.0 0.13 0.99

5018–3950
B2 199 192 7147–5369, 5018–4659, 650 8 2.5 2.6 3.2 99.7 99.5 �0.7 2.5 0.97

4308–3950
B3 198 193 7502–5369, 5018–4659, 742 8 2.5 2.6 2.9 99.7 99.6 0.8 �1.3 1.01

4308–3950

† Spectral regions that were found to give the best calibration.
‡ Number of data points in the model selected from 850 data points.
§ Number of factors needed for validation.
¶ RMSEC, root mean square error of calibration.
# RMSECV, root mean square error of cross-validation.
†† RMSEP, root mean square error of prediction.
‡‡ RC

2, coefficient of determination of calibration; it usually refers to test-set validation, otherwise to cross-validation.
§§ RV

2 , coefficient of determination of validation; it usually refers to test-set validation, otherwise to cross-validation.
¶¶ Bias is the mean difference between the true and NIRS predicted legume content values as derived from validation.
## Intercept and slope are from the regression line of NIRS predicted on true legume content values as derived from validation.

is a striking difference in the number of factors used stated by Coleman et al. (1990) and Pitman et al. (1991),
was confirmed. Based on this, the use of end-pointsduring calibration between Model A3 and all the other

models (Table 2). This highlights two contrasting as- calibrations seems to be justified for future model devel-
opment.pects. If several algorithms result in similar levels of

error, it is recommended to choose the one with the
lowest number of factors included in the algorithm Sample Preparation—Data Pretreatment
(Naes et al., 2002). However, the slight increase in the Particle size distribution strongly affects the spectra
prediction error of Model A3 could be a hint that not since NIRS mainly gathers information of solid samples
all variation was included to predict legume content. from their surface. Even with grinding, particle size will
Further independent validation has to be done to judge vary and may lead to different scatter coefficients of
the relevance of these differences. So far we conclude grasses and legumes depending on, e.g., species compo-
that, although there were no relevant differences be- sition and plant age. This could be a problem in the
tween the models found, future samples will be better prediction of the legume content (Coleman et al., 1990)
predicted by Models A1 and B1. because legumes are ground to a finer degree than grasses

even though the same screen size is applied (Petersen
Comparison of Calibration Strategy

Martens and Naes (1987) and Brereton (2000) recom-
mend a calibration design that covers the whole range of
possible values. They argue that end-points calibrations
(like Strategy A) assume linearity in the relationship
between the spectra and the reference values. If this
is not fulfilled, the prediction of intermediate samples
would be erroneous. Our results are in line with others
(Coleman et al., 1990; Pitman et al., 1991): There was
no benefit observed in calibrating with a continuum
of intermediate samples compared with an end-points
calibration, whether judged by calibration or validation
errors (Table 2). We tested this constraint by predicting
the artificially mixed, intermediate samples with Model
A1 (end-points calibration), i.e., the tested samples were
not present in the calibration set. The relationship be-
tween the true values and the NIRS predicted values
(Fig. 3) was almost unbiased, with a slope close to 1
and a negligible intercept. The prediction error as de-

Fig. 3. Near infrared reflectance spectroscopy (NIRS) prediction ofrived from this data set (RMSEP) was 2.3% legume the legume content of artificially mixed samples using Model A1
content, which was no larger than RMSECV. Therefore, (q.v. Fig. 2), which was developed based on an end-points cali-

bration.a linearity between spectra and legume content, as
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et al., 1987). Therefore, our standard procedure to pre- of �5% of their expected dry weight, which was ex-
plained by the difficulty of obtaining a representativepare the calibration standards, i.e., mixing them from

dry and ground legume and grass batches, may systemat- sample from fresh, chopped plant material compared
with dry, ground plant material. Therefore, our findingsically affect particle size distribution compared with real

samples, which will be ground as natural mixtures. To provide evidence that preparing standards from dry,
ground material is superior to preparing them from freshevaluate this effect, we predicted the legume content of

duplicate mixtures where one replicate was prepared samples because it ensures high reference data quality.
from fresh material, dried, and ground as a mixture and

Can We Spectrally Define Legumes and Are thethe other mixed from dry, ground material according
Calibrations Robust Enough for Broad Use?to the standard procedure. We did not measure particle

size distribution, but we assumed differences to occur The spectral regions selected during calibration repre-
as stated by Petersen et al. (1987). This was supported by sent relevant information that discriminates between
visible differences observed in the occurrence of coarse grasses and legumes. If the models are similar in their
particles in our samples. However, in the prediction of predictive power, as was stated above, one could assume
legume content of these duplicate samples (Fig. 4), there that the spectral regions common for all models do
was no difference found. But, this does not exclude any describe the relevant information to discriminate legumes
influence of the partner in the mixture on the particle from grasses. Actually, not more than 70% of the spec-
size distribution, which we assume did evolve from grind- tral regions were the same for all models. The coefficient
ing, it only proves that it was of no relevance for the of determination for prediction of legume content from
calibrations developed. There are two explanations why the spectra was almost the same for any of the models
the calibration was robust to particle size effects. First, as referred to their spectral range. If the models were
even the legume and grass batches themselves had wide restricted to the spectral regions common in all models
variation in particle size because they represented a (6792–6433, 6082–5369, 5018–4659, 4308–3950 cm�1 �
broad range of species composition and plant age. Sec- 1472–1555, 1644–1863, 1993–2146, 2321–2532 nm), the
ond, the data pretreatment, a combination of first deriv- prediction error slightly increased but did not exceed
ative and vector normalization (Fig. 1B), largely re- 4.5% legume content. In conclusion, this spectral range
duced the effects of scatter caused by different particle represented most of the variation necessary to discrimi-
size and particle orientation. This data pretreatment is nate between legume and grasses for the samples tested.
supported by other authors who found derivatives (Cole- From this point of view, the introduced calibrations do
man et al., 1985; Deaville and Flinn, 2000; Moore et have a high potential for a broad use. However, it cannot
al., 1990; Petersen et al., 1987; Pitman et al., 1991) or be deduced from these data that the spectral range spe-
normalization (Wachendorf et al., 1999) best. cifically describes a legume. Finally, it described the

During the preparation of the fresh mixtures, we difference between grasses and legumes, which does
found it difficult to ensure a high repeatability, which quite likely refer to the same components (e.g., starch,
in turn will affect the quality of the reference data. Only protein, lignin), which are present in different relations
80% of the fresh prepared mixtures were within a limit and cellular structures.

Compared with the literature, the models already rep-
resent a broad variability (growing site, species composi-
tion, plant age), but the data can still be described as a
closed population because the samples were collected on
one farm. For the overall aim, the prediction of legume
content in any multispecies legume–grass mixture grown
under temperate climate conditions, further validation
has to prove the ability of the models to accurately predict
legume content. Then, it should be again questioned
which calibration strategy is superior. In future samples,
new sources of variability may affect the linearity stated
so far and therefore demand a calibration design with
intermediate samples. This important step of validation
will be reported in a future paper.

CONCLUSIONS
Based on samples of multispecies clover–grass from

real fields, a NIRS application was developed that pre-
dicted legume content at a high accuracy over a broad

Fig. 4. Comparison of the predicted legume content of duplicate le- variation of species composition, plant age, and site condi-
gume–grass mixtures where one replicate was prepared from fresh tions. The different calibration strategies compared did
material, dried, and ground as a mixture and the other mixed from not lead to relevant differences. From these data, it candry, ground material according to the standard procedure. For

be concluded that less than 200 calibration samples forboth sample sets, legume content was predicted using Model A1
(q.v. Fig. 2). end-points calibration will create a reliable model. It
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spectroscopy. Proc. Int. Conf., 9th, Verona, Italy. 14–19 June 1999.was shown that sample preparation was less important
NIR Publ., Chichester, UK.for prediction accuracy than the precision of the refer- Deaville, E.R., and P.C. Flinn. 2000. Near infrared (NIR) spectros-
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