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The Legume Content in Multispecies Mixtures as Estimated with Near Infrared
Reflectance Spectroscopy: Method Validation

F. Locher, H. Heuwinkel,* R. Gutser, and U. Schmidhalter

ABSTRACT calibration procedure (Shenk and Westerhaus, 1991).
From the calibration set, a prediction model is derivedThe legume content in multispecies mixtures can accurately be
by means of chemometric tools like partial least squaresestimated by means of near infrared reflectance spectroscopy (NIRS)

provided that there is a valid calibration. This study was conducted regression (PLSR), which allows the prediction of le-
(i) to test the applicability of two narrow-based calibrations, A and gume content from near infrared reflectance spectra of
B (origin of the calibration sets: one farm, five harvests), for plant unknown samples. Prediction accuracy therefore relies
material not present in the calibration set and (ii) to compare the heavily on the extent to which the calibration set repre-
predictive ability of both models to a third, broad-based calibration, sents the samples to be predicted (Martens and Naes,
C (different farms and harvests). The prediction accuracy of the NIRS 1987; Park et al., 1998). This representativeness can be
models, A (end-points calibration) and B (calibration with incremental

difficult to achieve with natural products, which arestandards), was tested with defined legume–grass mixtures of nine
affected by many sources of variability. Internal valida-test sets, which differed in origin and harvesting dates. Most of the
tions, such as cross-validation (Naes et al., 2002) ortest-set spectra were later used as additional calibration samples for
internal test-set validations, may yield lower predictionModel C. Calibrations A and B, which differed in calibration design,

showed varying root mean square errors of prediction for each of the errors than external validations (Dardenne et al., 2000)
nine test sets (A: 3.3–12.5%; B: 3.9–10.3%). The slope of the line because the predicted samples may belong to the same
from regression of NIRS predicted on true values ranged between natural population as the calibration set (�“closed”
0.93 and 1.09 (r 2 always � 0.92). All predictions were precise but population, e.g., same harvest and field). Based on their
biased. Prediction accuracy was worst for samples mixed of plant calibration design, Coleman et al. (1990) concluded that
material that was grown in monoculture. After a bias correction and botanical composition can be best estimated by NIRS
the exclusion of the mixtures of monocultural samples from the test

when the population is closed. It is, however, desirablesets, both models showed the same error (standard error of prediction
to have models with broader applicability. This can onlyafter bias correction � 6%). Calibrations A, B, and C were compared
be proved if an existing model is tested with “open”by predicting two external test sets. The broad-based Calibration C
populations. This important step of external validationoffered the same prediction accuracy as Calibrations A and B but

did not reduce the bias. With Model C, there was no consistent reduc- is rarely reported. For a realistic judgment of predictive
tion in the proportion of outliers in the test sets with a Mahalanobis ability, a test set completely independent of those sam-
distance � 3 compared with the Models A and B. It is concluded that ples used for calibration should be taken (Dardenne et
predictions are biased even if more natural variability is included in al., 2000; Broad et al., 2002). Test sets should still fall
the calibration set. Therefore, based on these data, a bias correction within the general definition for the NIRS model (e.g.,
is always necessary. After a bias correction, all calibrations offered calibrations for legume–grass mixtures may not be ap-
a highly accurate tool to estimate the legume content of mixtures

propriate for mixtures of legumes with other dicots).independent of origin and harvesting dates. Contrary to our expecta-
The accuracy of a NIRS calibration is described by ations, the most simple model, A, which was derived from the least
small root mean square error of prediction (RMSEP),number of calibration spectra and which represented the least natural
and the regression line between the NIRS predicted andvariability, proved to be as accurate and robust in the prediction of

independent test sets as the broader models, B and C. the true values should result in the target line, i.e., a
slope and a coefficient of determination (r2) close to 1.

Quality and future applicability of a calibration can
be judged by the ratio of the standard deviation ofAccurate knowledge of legume content in multi-
the reference values to the standard error of predictionspecies mixtures is necessary to estimate the amount
(RPD) value (Williams, 1987). Diller (2002) suggestedof N2 fixed by the legume–Rhizobium spp. symbiosis
RPD values lower than 2 indicate unsuitable calibra-(Boller and Nösberger, 1987). Near infrared reflectance
tions while values between 2 and 3, 3 and 5, and 5spectroscopy is a promising tool for measurement of the
and 10 indicate calibrations with limited, satisfactory,legume content of mixtures (Coleman et al., 1985, 1990;
or good quality, respectively. Values greater than 10 arePetersen et al., 1987; Pitman et al., 1991; Shaffer et al.,
excellent, as stated by Diller (2002). Caution is required1990; Wachendorf et al., 1999). The crucial point in
in interpreting the RPD values because they dependestimating the legume content with NIRS is instrument
strongly on the distribution and number of referencecalibration. A comprehensive set of samples (calibration
values. Therefore, they cannot be regarded as the ulti-set) representing the entire population is needed for the

Abbreviations: MD, standardized Mahalanobis distance; NIRS, nearDep. of Plant Sci., Technische Universität München, D-85350 Freising,
infrared reflectance spectroscopy; PLSR, partial least squares regres-Germany. Received 25 Feb. 2003. *Corresponding author (hauke@
sion; RMSEC, root mean square error of calibration; RMSECV, rootwzw.tum.de).
mean square error of cross-validation; RMSEP, root mean square
error of prediction; RPD, ratio of the standard deviation of the refer-Published in Agron. J. 97:18–25 (2005).

© American Society of Agronomy ence values to the standard error of prediction; SEP, standard error of
prediction; SEPbiascor, standard error of prediction after bias correction.677 S. Segoe Rd., Madison, WI 53711 USA
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mate criterion for prediction quality. However, in com- tures (e.g., Pitman et al., 1991) or from real samples
taken adjacent to NIRS sampling points (e.g., Colemanbination with RMSEP, they are helpful for judging the

predicted values and may prevent erroneous assump- et al., 1990; Wachendorf et al., 1999); (ii) the pure sam-
ples used to create artificial mixtures may have beentions concerning the real quality of a calibration model.

Finally, the number of outliers in sets of independent grown in mixtures or pure stands. The use of samples
from pure stands to create artificial herbage mixturesspectra as judged from the standardized Mahalanobis

distance (MD) can give hints as to the robustness of the for calibration was successful for the determination of
composite grass or legume concentration but not forcalibration. The MD is defined as the difference between

an independent spectrum and the average of all calibra- the determination of single species therein (Pitman et
al., 1991). Coleman et al. (1990) restricted the use of thistion spectra in the factor space. Dardenne (1996) ob-

served that with increasing number of calibration spectra, strategy to closed populations. Introducing intermediate
samples, to cover more regularly the whole range ofthere was a decreasing number of outliers. He interpre-

ted this as the greater ability of the calibration set to possible legume content, is recommended to be more
robust to weak nonlinearities (Naes et al., 2002). Sodescribe the variation in the validation set.

Near infrared reflectance spectroscopy calibrations far, our studies on samples from a “closed” population
confirmed the potential to use an end-points calibration,should ideally not decrease in accuracy when new spec-

tra from other harvests or origins are predicted. How- i.e., only pure samples for calibration (Locher et al., 2005).
This study was conducted (i) to compare the pre-ever, there is a trade-off between robustness and accu-

racy of a NIRS calibration that cannot be solved (Diller, dictive ability of two narrow-based calibration models,
end-points calibration (Model A) vs. a calibration with2002). Natural products are not as homogenous as well-

defined chemical or pharmaceutical substances. Plants intermediate samples (Model B), by predicting the le-
gume content of samples of different geographical ori-consist of substances (structural and soluble carbohy-

drates, protein, fat, organic acids, etc.) that all contain gins, cutting dates, species composition, and growing
conditions and (ii) to check both calibrations against athe most NIRS-relevant -C-H, -N-H, or -O-H groups.

Growing conditions, developmental stage, species, vari- broad-based calibration (Model C) with intermediate
samples comprising most of the variation tested.ety, and many other natural influences alter the relative

proportions of organic substances in plant material
(Buxton et al., 1987; Buxton and Mertens, 1991; Daccord MATERIALS AND METHODS
et al., 2001; Jeangros et al., 2001). This leads to a more

Plant Materialpractical aspect concerning the calibration procedure:
For the acquisition of a sufficient number of calibration To obtain material for NIRS calibrations and validations,

aboveground biomass of diverse legume–grass mixtures wasstandards, laborious hand sorting of mixtures is usually
harvested in the years 1999–2002 on seven farms in differentnecessary for determination of legume concentration in
regions of Germany (Table 1). These regions differed in soilmixtures. To avoid hand sorting and thereby save time,
conditions (FAO classification): luvisols from periglacial sedi-it could be more efficient to use legumes and grasses
ments (Buchloe), eutric cambisols partly with loess covergrown in monoculture as calibration standards. This
(Dürnast, Scheyern, Viehhausen), gleysols from fluviatile sedi-would ease development of calibration sets but is only ments (Giessen) and luvisols from loess or loessic loam (Rem-

possible if the plants grown in monoculture have the lingen, Kuernach). The differences in the seeded legume-
same spectral characteristics as plants grown in mixture. grass mixture and the varying nature of soil and climate condi-

To achieve a model that is robust to natural variations tions were presumed to result in different characteristics of the
such as changes in species composition or the nutritional legume-grass mixtures, which would function as independent

samples for calibration and validation purposes. Clipped sam-status of the plants, most of the occurring variation
ples were separated into legume and grass fractions. Weedsshould be included in the calibration set (Shenk and
were generally removed, because they were negligible for totalWesterhaus, 1991). Therefore, it is not surprising that
yield. Although grass and legume fractions consisted in mostthe calibration procedure may need several growing
cases of different legume or grass species, species compositionseasons and a minimum number of spectra until the
was not analyzed because only the total legume content wasprediction model can be called robust (Dardenne, 1996). of interest. The dried samples (60�C � 72 h) were ground in

Even then, the model is restricted in its applicability a shear mill (Brabender, Duisburg, Germany) to pass a 1.5-mm
because new variation may occur regularly. But once screen. From the hand-sorted, dry and ground ‘pure’ legume
a broad-based calibration set is established, only little and grass samples artificial mixtures of known legume content
adjustments of the calibration model should be neces- were recombined by weighing. Usually the legume and grass

batch of one sample was used to mix one intermediate sample.sary by including selected new spectra in the calibration
Only the intermediate samples from August 1999 at Scheyernset (Dardenne, 1996). The more variable the calibration
were mixed from two composite legume and grass batchesset is, the less often such an adjustment will be necessary.
(Locher et al., 2005). In all cases the intermediate standardsIn any case, one must be aware of the limitations of
covered incrementally the possible range of legume contentcalibration models, especially if they are applied to situa-
(0-100%) in roughly 5% increments, i.e., for each selectedtions that are broader than those represented in the farm and cutting date a set of 18-21 samples (Table 2). The

initial calibration set (Brereton, 2000). intermediate standards were used for calibration of Models
Reference samples with known legume content for B and C as shown in Table 2. Further on, they were used for

calibration can be gained by different protocols: (i) Ref- validation the different models (Tables 3–5) as long as they
were not used to calibrate them. At the research station oferences may come from artificially mixed, weighted mix-



R
ep

ro
du

ce
d 

fr
om

 A
gr

on
om

y 
Jo

ur
na

l. 
 P

ub
lis

he
d 

by
 A

m
er

ic
an

 S
oc

ie
ty

 o
f A

gr
on

om
y.

  A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

20 AGRONOMY JOURNAL, VOL. 97, JANUARY–FEBRUARY 2005

Table 1. Origin in Germany of calibration and validation samples for analysis of legume content in mixed legume–grass samples.
Locations are characterized by their coordinates, the mean annual temperature, and the amount of annual precipitation as described
by the closest weather station. The botanical composition of the mixture is defined by the species originally sown.

Origin Longitude Latitude Altitude above sea level Temperature Precipitation Species sown§

m �C mm
Buchloe 10�42� 48�00� 640 7.0 970 3, 6
Dürnast† 11�43� 48�24� 470 7.5 770 1–8
Giessen 08�49� 50�19� 128 9.3 682 3, 5, 6, 8
Kuernach 10�01� 49�51� 185 8.5 600 1, 6
Remlingen 09�41� 49�48� 185 8.5 600 1–5, 8, 9
Scheyern‡ 11�27� 48�23� 458 7.5 800 1–3, 5, 7, 9
Viehhausen 11�37� 48�24� 480 7.5 800 1–5, 8

† Species were sampled from monoculture plots; samples were only used for validation.
‡ Origin of the Calibration sets A and B.
§ 1 � alfalfa (Medicago sativa L.), 2 � white clover (Trifolium repens L.), 3 � red clover (Trifolium pratense L. ), 4 � orchardgrass (Dactylis glomerata L.),

5 � timothy (Phleum pratense L.), 6 � perennial ryegrass (Lolium perenne L.), 7 � annual ryegrass (Lolium multiflorum L.), 8 � tall fescue (Festuca
arundinacea Schreb.), 9 � oatgrass (Arrhenatherum elatius L.).

the Chair of Plant Nutrition, Technical University of Munich, sured. Three replicated measurements of each validation sam-
located at Dürnast, samples were clipped in May, July, and ple were performed for the test sets, and the predicted values
October 2001 (Table 3) from an experiment where all the were averaged and then compared with the true values to
species normally grown in mixture were growing in monocul- calculate the error figures.
ture without fertilization. Harvesting pure stands and mixing
defined standards from these samples saved the time for labo- Calibration Procedurerious hand sorting but introduced some new sources of vari-
ability (e.g., the N limitation that the pure grass stands suffered Multivariate calibration was performed with PLSR (Mar-
from). Models A, B, and C were compared by two test sets tens and Naes, 1987; Brereton, 2000). Because of noise above
consisting of samples from Remlingen and Kuernach (Ta- 7500 cm�1 (1333 nm) and below 3950 cm�1 (2532 nm), the
ble 5), which were not present in any of the three calibra- spectral region used for calibration by a chemometrics soft-
tions (Table 2). ware (OPUS 4.0, Bruker, Ettlingen, Germany) was generally

restricted to the range from 7500 to 3950 cm�1. An optimiza-
Near Infrared Reflectance Spectroscopy tion routine offered by OPUS checking various wave number

regions and data pretreatments was run to determine the bestLog 1/R (R � reflectance) spectra were taken with a Fourier
calibration algorithm. Three models (A, B, and C) were setTransform Near Infrared Reflectance Spectrometer (FT-NIRS,
up with three different calibration sets (Table 2). Model AVector 22/N, Bruker, Ettlingen, Germany) coupled to an ex-
was an end-points calibration with “pure” legume and “pure”ternal integration module. A rotating sample cup (9 cm diam.)
grass samples representing 100 and 0% legume content whilewas used to present the samples (�10 g) to the measurement
Model B was set up with pure and intermediate samples toarea (2.0 cm diam.). A metal stamp (822 g) was used to com-
cover more regularly the whole range of possible legume con-press the sample to a uniform sample density and to avoid
tent (Locher et al., 2005). With Model C, more variabilityany influence of external light. Spectra from diffuse reflection
was introduced to the calibration set by adding intermediatewere recorded by a PbS detector between 10 000 and 3500
samples of different origins, harvesting dates, and species com-cm�1 (1000–2857 nm).
position. This was done to enhance robustness and thereforeMeasurement conditions were tested to ensure a high signal/
to broaden the applicability.noise ratio (Broad et al., 2002) and a high resolution at accept-

able measurement duration, which is reflected by the number
of scans. For the legume/grass samples, a spectral resolution Calculation of Error Figures
of 10 cm�1 and an averaged spectrum made of 30 scans were

For the evaluation of the performance of the three models,found ideal. By using these sample presentation and measure-
ment conditions, about 44 cm2 of sample surface was mea- independent test sets were predicted. The prediction results

Table 2. Description of three calibration sets that were used to set up prediction models for the legume content in multispecies mixtures
by means of partial least square regression. All models covered the possible range of legume content (0–100%). Calibration standards
were developed from legume–grass mixtures.

Number of samples measured as

Model Calibration set description and strategy Origin of calibration set Harvest Legume Grass Mixture n†

A end-points calibration: pure grass Scheyern May 1999 36 36 320
(consisting of several grass species) and Scheyern July 1999 36 36
pure legume samples (consisting of Scheyern Aug. 1999 36 36
several legume species) Scheyern Oct. 1999 35 18

Scheyern May 2000 36 29
B mixed calibration: calibration set of Scheyern Aug. 1999 63 388

Model A plus 3*21 artificially mixed
standards (5% increments)

C mixed calibration: calibration set of Scheyern July 2000 21 497
Model B plus artificially mixed Scheyern Sept. 2000 21
standards of different origins and Giessen July 2001 18
harvesting dates (roughly at Buchloe May 2002 20
5% increments). Remlingen May 2002 20

Viehhausen May 2002 20

† Number of calibration spectra used to set up the models. The number of calibration spectra does not match the theoretical number because different
numbers of outliers were removed during the model development.
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Table 3. Comparison of the two partial least squares regression (PLSR) Models A and B. Part I shows the model calibration and cross-
validation errors. Part II shows the results of external validations before (first number) and after (second number) bias correction.
Samples of different origin or harvesting date were predicted with both models. The predicted samples were not used for calibration.
Part III shows the results for samples grown only in mixtures. Compared to part II, the validation test-sets with monoculture samples
from Dürnast were excluded.

Model n† RMSE‡ Slope§ r 2¶ Bias# RPD††

% %
RMSEC/RMSECV‡‡

Part I A 334 2.2/2.3
B 387 2.3/2.5

RMSEP/SEPbiascor§§
Part II A 178 7.9/6.5 1.0/1.0 0.94/0.94 �4.5/0 4

B 178 7.1/6.5 1.0/1.0 0.94/0.94 �2.9/0 4
RMSEP/SEPbiascor

Part III A 120 5.9/5.2 0.99/0.99 0.96/0.96 �2.6/0 5
B 120 7.3/5.7 0.99/0.99 0.96/0.96 �4.4/0 5

† Number of calibration or validation samples.
‡ RMSE, root mean square error.
§ Slope of the line from regression of NIRS predicted on true values.
¶ Coefficient of determination of the line from regression of NIRS-predicted on true values.
# Bias is the mean difference between the true and NIRS predicted legume content values as derived from validation and is naturally zero after bias correction.
†† RPD, ratio of the standard deviation of the reference values to the standard error of prediction using only the SEPbiascor (see Eq. [5]).
‡‡ RMSEC, root mean square error as derived from calibration; RMSECV, root mean square error as derived from cross-validation.
§§ RMSEP, root mean square error as derived from external test-set validation; SEPbiascor, standard error of prediction after bias correction.

were exported to a spreadsheet (EXCEL 7.0, Microsoft Corp., standard deviation of the predicted residuals (Naes et al.,
2002). The SEP is therefore lower than the RMSEP becauseRedmond, WA, USA) and then regressed against the true values.

The RMSEP (a measure for accuracy) and the bias (indicat- the bias is subtracted and may lead to wrong assumptions on
the predictive quality of a model. If the SEP is presented,ing systematic errors) were calculated according to Eq. [1] and

[2] (Naes et al., 2002). Naes et al. (2002) recommend that bias also be reported. To
prevent confusion due to the different error values used in
literature, we added the index “biascor” according to Diller
(2002). The standard error of prediction after bias correctionRMSEP � ��

n

i�1
(ŷPi

� yi)2

n
[1]

(SEPbiascor) was calculated according to Eq. [3].

SEPbiascor � ��
n

i�1
(ŷPi

� yi � bias)2

(n � 1)
[3]

bias �
�
n

i�1
(ŷPi

� yi)

n [2]

Equation [4] describes the relation between SEPbiascor and
where ŷpi

� NIRS predicted values, yi � true values, and n RMSEP.
gives the number of samples. The standard error of prediction
(SEP) indicates the precision of a model and is defined as the RMSEP ≈ √SEP2

biascor � bias2 [4]

Table 4. Comparison of external validation of two partial least squares regression (PLSR) Models A and B: In total, 179 samples of
different origins or harvesting dates were predicted with Models A and B. The predicted samples were not used for calibration. The
prediction accuracy was calculated separately for each sample origin or harvesting date. The validation test sets contained artificially
mixed samples covering the possible range of legume content (0–100%) in roughly 5% increments. Each artificially mixed sample
was prepared from the legume and grass batch of one sample harvested in field.

RMSEP/SEPbiascor§ Slope¶ r 2# Bias†† RPD‡‡

Model used for prediction
Origin and harvesting
date of the test set† n‡ A B A B A B A B A B

% %
Scheyern July 2000 21 7.6/7.4 7.8/7.3 1.01 1.01 0.94 0.95 �1.5 �2.8 4 4
Scheyern Sept. 2000 21 4.6/4.2 4.8/4.2 1.00 0.98 0.98 0.98 �1.7 �2.3 7 7
Dürnast May 2001 20 8.8/6.9 8.0/7.8 1.03 1.04 0.93 0.92 �5.5 1.9 4 4
Dürnast July 2001 20 12.5/7.2 7.8/7.8 1.01 1.00 0.93 0.92 �10.2 �0.4 4 4
Dürnast Oct. 2001 18 11.4/6.3 3.9/3.7 1.09 1.04 0.96 0.98 �9.6 �1.2 5 8
Giessen July 2001 18 4.6/3.6 4.4/3.5 0.97 0.97 0.98 0.98 3.0 2.7 9 9
Buchloe May 2002 20 7.9/2.1 6.9/2.3 1.03 1.04 0.99 0.99 �7.6 �6.5 14 13
Viehhausen May 2002 20 3.3/1.8 7.5/1.8 1.01 1.02 0.99 0.99 �2.7 �7.3 15 12
Remlingen May 2002 20 5.6/3.1 10.3/3.1 0.93 0.93 0.99 0.99 �4.6 �9.8 10 10

† Origin as described in Table 1.
‡ Number of validation samples.
§ RMSEP, root mean square error of prediction; SEPbiascor, standard error of prediction after bias correction.
¶ Slope of the line from regression of NIRS-predicted on true values.
# Coefficient of determination of the line from regression of NIRS-predicted on true values.
†† Bias is the mean difference between the true and NIRS-predicted legume content values as derived from validation.
‡‡ RPD, ratio of the standard deviation of the reference values to the standard error of prediction using the SEPbiascor (see Eq. [5]).
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Table 5. Comparison of three partial least squares regression (PLSR) models. Models A and B were established with a calibration set
from one farm (narrow calibration sets). Model C was established with a calibration set consisting of plant material from different
farms and harvesting dates (broad-based calibration). The predicted samples were not used for the calibration of any model (i.e.,
external validation). Both validation test sets contained artificially mixed samples covering the possible range of legume content
(0–100%) in roughly 5% increments. Each sample was prepared from the legume and grass batch of one sample harvested in field.

Cross- Percentage of test-set
validation External validation spectra with MD¶¶

Model RMSECV† Origin of the test set‡ Harvesting date n§ RMSEP¶ Slope# r 2†† Bias‡‡ RPD§§ �3 �4 �5 �6

% % % %
A 2.3 Remlingen July 2002 19 4.4 0.93 0.98 2.8 7 70 39 30 16
B 2.5 19 5.1 0.95 0.98 3.9 7 56 39 19 14
C 3.7 19 3.2 0.92 0.99 �0.2 9 100 82 70 46
A 2.3 Kuernach July 2002 20 4.7 1.01 0.99 �4.2 10 98 85 37 15
B 2.5 20 2.9 1.02 0.99 �2.4 13 87 47 12 3
C 3.7 20 5.4 0.97 0.99 �5 10 38 3 0 0

† RMSECV, root mean square error as derived from cross validation.
‡ Origin as described in Table 1.
§ Number of validation samples.
¶ RMSEP, root mean square error of prediction.
# Slope of the line from regression of NIRS predicted on true values.
†† Coefficient of determination of the line from regression of NIRS predicted on true values.
‡‡ Bias is the mean difference between the true and NIRS predicted legume content values as derived from validation.
§§ RPD, ratio of the standard deviation of the reference values to the standard error of prediction (see Eq. [5]).
¶¶ Comparison of the predicted test-set spectra to the mean spectrum of the calibration set; if their standardized Mahalanobis distance (MD) was beyond

the cutoff value of 3, 4, 5, or 6, respectively, they were marked as outliers. Data indicate the proportion of test-set samples that are outliers.

Exact equality between SEPbiascor and RMSEP is not obtained line between the predicted and the true values was ex-
because n � 1 is used in the denominator of SEPbiascor instead actly 1.0 with both models. However, systematic devia-
of n, which is used for RMSEP (Naes et al., 2002). tions (bias) from true values were observed, which con-

The slope of the line and the coefficient of determination tributed much to the RMSEP of 7 to 8% legume content.
(r 2) from regression of predicted on actual values were derived Model B showed a smaller bias. This could be interpre-from an ordinary least squares fit as offered by EXCEL 97

ted as an effect of the intermediate samples included in(Microsoft Corp., Redmond, WA, USA).
the calibration set of Model B, which possibly increasedThe RPD value was calculated according to Eq. [5] (Wil-
the robustness of the prediction model to new variabil-liams, 1987).
ity. However, in any case, the RMSEP was not satisfac-
tory. Accuracy of prediction is enhanced by subtractingRPD �

sref

SEPbiascor

[5]
the observed bias from each predicted value (Martens
and Naes, 1987; Diller, 2002). This can be done if linear-where sref is the standard deviation of the reference values.
ity is observed over the whole range as was the case forFor the determination of spectral outliers, the MD was used.

The MD is the distance of an independent spectrum to the our data. Subtracting bias had two effects (Table 3, Part
average of all calibration spectra in the factor space. II): The error figures for both models decreased, and

differences between the two models disappeared. After
bias correction, there was no advantage of Model BRESULTS AND DISCUSSION
with intermediate standards compared with Model AComparison of the Models A and B without intermediate standards. The values for RPD

Model A (calibration set without intermediate stan- figures showed that after bias correction, both models,
dards) and Model B (calibration set with intermediate A and B, resulted in satisfactory predictions according
standards) resulted in similar root mean square errors to criteria of Diller (2002).
of calibration (RMSEC) and root mean square errors of
cross-validation (RMSECV; Naes et al., 2002) (Table 3, Influence of Origin and Harvesting Date
Part I). These low error figures of about 2% legume

If the test sets (i.e., origins or harvesting dates) werecontent would be more than sufficient for prediction of
analyzed separately without a bias correction, neitherlegume content in N2 fixation studies. However, the
of the two models performed consistently better thanvariability represented by the Calibration Sets A and
the other (Table 4). The external validations showedB did not lead to models that were able to predict the
for each test set a RMSEP that was two- to fivefoldindependent standards with the same accuracy as proved
higher than the RMSECV (Table 3, Part I). This clearlyfor the internal validation. When the error figures were
reflects differences in the plant material that combinecalculated across all 179 external samples tested (regard-
effects of site-specific growing conditions, different le-less of origin or harvesting date), the models showed a
gume species, grass species, varieties, or plant age. Also,higher validation error (Table 3, Part II). If the error
differences in the sample preparation, e.g., residual mois-figures had been similar for cross-validation and exter-
ture, storage conditions, or sample age are known tonal validation, it would have suggested robustness of
cause systematic prediction errors (Fales and Cummins,the existing models (Dardenne, 1996). But this was not
1982). However, this is unlikely in our case as we keptachieved and could be the result of the rather narrow

calibration sets employed. The slope of the regression the sample preparation and storage conditions as con-
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stant as possible for both calibration and validation sam- tially biased, but the precision was generally high at least
for standards that were derived from mixtures (Table 4).ples. We assume that the remaining variation in residual

moisture was also present in the calibration set, and Apart from the monoculture standards, the only test set
consisting of plant material grown in mixtures that wasmodels derived from samples including that variation

should then be independent of minor changes. So the predicted with insufficient precision was that of Schey-
ern harvested in July 2000. The bias correction did notsystematic errors were presumably caused by the sam-

ples themselves and not by their preparation. The worst lower errors unlike for the other test sets. It is unclear
what lowered the precision. An extraordinarily longpredictions with Model A were for those samples that

were grown in monoculture (origin: Dürnast). For this growing period (9 wk) of this legume–grass compared
with that represented in the calibration set (averageadditional variability, Model B was superior, and the

calibration strategy with intermediate samples resulted growing period 6 wk) or exceptionally dry weather con-
ditions during the growing period may serve as an expla-in more accurate predictions compared with the end-

points strategy of Model A. But in general, both models nation. All remaining test sets consisting of plant mate-
rial grown in mixture could be accurately predicted afterresulted in less accurate predictions for those untypical

test sets, apart from the test set of October 2001, which a bias correction. Therefore, collection and remixing of
a representative set of samples for each new harvest orwas sufficiently well predicted by Model B. Obviously,

samples from Dürnast collected from pure stands were origin as described above are evidently necessary for
calculation of bias. Subtracting the bias from the pre-not represented by samples of both calibration sets,

which were all derived from mixtures. The question dicted values enhanced the accuracy of prediction. The
bias correction appears to be inconvenient but reason-arises as to why both models performed so differently

with these test sets. One reason may be the N limitation able, as for each origin or harvesting date, excellent
precision, linearity over the whole range, slopes of theof the grasses later in the season; this is not found in

grasses grown in mixtures with legumes due to higher regression line close to 1.0, and high r2 values were ob-
N availability (Ta and Faris, 1987). One could conclude served. Furthermore, by doing such reference analyses,
that Model A (end-points calibration) gives higher new standards will be obtained by which an existing
weights to N-sensitive wavelengths because one main model can be broadened in its applicability. After sev-
difference between grasses and legumes will be their N eral years, broadening the calibration set continuously
content. Thus, Model A could be partly based on an auto- with those standards could lead to a model that shows
correlation of N content and legume content. This kind unbiased predictions in the future and that will then be
of autocorrelation will be reduced by calibrating with robust to additional variability. As long as this is not
intermediate mixtures that are created from plant mate- achieved, a bias correction has to be recommended based
rial with similar N contents. The intermediate standards on our data.
of Calibration B were mixtures of grass and legume
fractions from one harvesting date (Aug. 1999) where Comparison of Models A, B, and C
grasses and legumes had a similar N content (3.2 and

To test a broad and possibly more robust model, a third3.4%). Automatically higher weights may be given to
calibration set was established by including standards fromother distinguishing wavelength regions during the PLSR.
different origins and harvesting dates (see Table 2). ThisThis could be an explanation for the better performance
Model C was expected to have a broader applicability andof Model B with respect to monoculture samples. This
minor bias in the prediction of new samples comparedexplanation is strengthened by the results in Table 3,
with the narrow-based Models A and B. The higher vari-Part III, where monoculture samples were excluded
ability included in the calibration set increased RMSECVfrom the validation set. Then Model A had a lower
as expected (Table 5). The best model was calculated byRMSEP across all remaining test sets than Model B
the same data pretreatment (first derivative and vectorcompared with Table 3, Part II. After bias correction,
normalization), and the multidimensional data were re-both models again resulted in similar SEPbiascor. For the
duced to 10 factors as with Models A and B. Besides,uncorrected prediction values, Model A was more accu-
the three models were slightly different with respectrate and robust than Model B when only plant material
to uninformative spectral regions that were given zerogrown in mixtures was tested. But Model A seemed to
weight for prediction. Two test sets (origin: Remlingenbe more sensitive to potentially new variation intro-
and Kuernach, July 2002) were kept for the externalduced by N limitation. However, it is noteworthy that

the lower N content of the grass is only one possible validation of the three models (Table 5) to allow direct
comparison of the three models. Analysis of varianceexplanation. Of course, other near infrared–relevant

plant parameters are also affected by N deprivation, but (ANOVA) proved that the differences in the predicted
values of both test sets were not significant for the threetheir contribution to the erroneous prediction cannot

be discussed here because no specific information was models (data not shown). Though having higher calibra-
tion errors, the accuracy of Model C was comparablecollected. Whatever may have caused the poor results

for the monoculture standards, these findings indicate to Models A and B, but there was no consistent reduc-
tion in bias observed with Model C. We conclude thatthat a simplified calibration based on such samples will

most likely not result in good predictions for plants Model C was still too narrow to be robust against the
new variation introduced by the test sets. Of course, onlygrown in mixture.

The predictions for all single test sets were substan- two test sets were used to compare the three models, and
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the general predictive ability of models should probably rived from a closed population and then applied to an
not be assessed from test sets that cannot represent all open population. A broad-based data set showed that
possible variability (Martens and Naes, 1987). But the near infrared technology offers highly accurate and easy
two test sets showed that Model C, which theoretically predictions of the legume content in multispecies mix-
should cover more variability than Models A and B, was tures even for open populations. Origin, harvest, and
not automatically superior to Model A or B. Whereas species composition caused biased predictions but did
Model C gave the best predictions for the multispecies not affect linearity. To enhance accuracy, a bias correc-
mixture of Remlingen, it was worst for the binary mix- tion for each new harvesting date seemed necessary
ture of Kuernach with respect to the RMSEP. There- based on our findings. Broadening the variation in the
fore, to obtain accurate values, the procedure of bias calibration set did not result in less biased predictions.
correction is even necessary with Model C. In general, Therefore, it is concluded that a useful calibration for
however, the necessity of the bias correction depends the determination of the legume content in multispecies
on the purpose of the NIRS estimations. The excellent mixtures can be set up even within 1 yr, but reference
linearity between true and predicted values confirms analyses for control of the results are necessary. How-
that all three models are adequate to describe the spatial ever, one has to decide which degree of accuracy is
variability of the legume content in the field, regardless desired for the parameter in question and for the pur-
of systematic errors. Furthermore, compared with the pose of the final application: e.g., for the detection of
possible range of legume content in the field (0–100%), areas with different legume content in the field, precise
the difference among the models in predicting power is but biased predictions are sufficient, even if high accu-
negligible. Theoretically, Model C should then be pre- racy would be desirable. In this regard, all of the three
ferred because it represents the highest variability of tested models proved to be adequate for the description
the three models. But, from a practical point of view, of spatial variability of the legume content in the field
Models A and B are to be preferred because the same regardless of origin, growing conditions, or species com-
results were achieved with much less effort in sampling. position.
Furthermore, in case of the Model A, even mixing of
intermediate standards as a potential source of error
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