TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fiir Rechnertechnik und Rechnerorganisation

Improving Hybrid Codes Through MPI-Aware
OpenMP

David Biittner

Vollstéandiger Abdruck der von der Fakultét fiir Informatik der Technischen
Universitat Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Martin Bichler

Priifer der Dissertation:
1. Univ.-Prof. Dr. Arndt Bode
2. Univ.-Prof. Dr. Michael Bader

Die Dissertation wurde am 18.05.2016 bei der Technischen Universitét
Miinchen eingereicht und durch die Fakultéat fiir Informatik am 01.08.2016
angenommen.

Acknowledgements

I would like to thank Prof. Dr. Arndt Bode for giving me the opportunity to
do my doctorate at his chair, the Lehrstuhl fiir Rechnertechnik und Rechneror-
ganisation (LRR), for his continuous support and the freedom he granted me
for my research. I would also like to thank Dr. Carsten Trinitis and Dr. Josef
Weidendorfer for their supervision of my work and their continuous support.

A lot of thanks also goes to my colleagues for creating an enjoyable work envi-
ronment and all the great conversations.

Furthermore I would like to thank Prof. Dr. William Jalby for giving me the
opportunity to work at the Exascale Computing Research Laboratory in Ver-
sailles, France. I would also like to thank Dr. Jean-Thomas Acquaviva for many
fruitful discussions and all his help during my time in Versailles.

Finally, I would like to thank my wife Lena Biittner for her continuous support

over the years and my good friend Bert Heinrich for all the time he invested in
me. Without either of them, this work would not have come to a successful end.

il

Abstract

With the number of cores growing faster than memory per node, hybrid pro-
gramming models have become a popular approach for efficient use of high per-
formance computing (HPC) systems. Using threads instead of MPI ranks in-
side compute nodes replaces intra-node messaging with faster communication
through shared memory access. Additionally, the number of parallel inter-node
messages can be optimized. In large scale parallel applications, communica-
tion often influences the runtime of applications. Achieving good efficiency by
overcoming this bottleneck is challenging, even when using asynchronous com-
munication. While hardware support for asynchronous data transfer exists, most
MPI implementations can only advance pending asynchronous operations inside
library calls.

In this thesis a classification of programming approaches and existing imple-
mentations of the MPI and OpenMP standards are used as the basis to discuss
this problem. An analysis of asynchronous capabilities of different MPI imple-
mentations on different hardware environments shows that in nearly all cases no
real asynchronous operations are provided. A strategy using the hybrid MPI-
OpenMP programming approach to overcome this problem is developed. It
improves asynchronous behavior by introducing MPI-awareness to the OpenMP
runtime through a new type of task. Being scheduled together with the regular
OpenMP work-pool, it can be used to advance pending asynchronous MPI oper-
ations with minimal overhead. At the same time it keeps the advantages of the
hybrid programming approach, including easier work balancing as compared to
an MPI-Only approach.

For different state of the art HPC systems, the performance of this approach is
measured and analyzed. Without complicating the programming interface, the
results show perfect overlap of the asynchronous operations with the performed
computational work. Additionally it is shown that this approach reduces the
influence of communication on performance. This approach has a lot of per-
formance potential for parallel HPC applications which can be parallelized in a
hierarchical manner, i.e. hybrid MPI-0penMP. Especially for future exascale sys-
tems it reduces communication costs and relaxes synchronization requirements.
It can be expected that this also positively influences scalability.

Zusammenfassung

Ausgehend von einer Klassifizierung paralleler Programmieransitze und ins-
besondere einer Analyse des MPI-Standards wird das Problem der asynchro-
nen Kommunikation eingehend untersucht. Verschiedene Implementierungen des
Standards werden untersucht und auf verschiedenen Hardwareplattformen ge-
zeigt, dass asynchrone Kommunikation in der Regel nicht erfolgt. Ein neuarti-
ger hybrider MPI-OpenMP Programmieransatz wird entwickelt, um dieses Pro-
blem zu beheben. Mittels geeigneter MPI-Erweiterungen im OpenMP Stan-
dard wird ein neuartiger OpenMP-Task vorgestellt. Dieser kann dynamisch von
der OpenMP-Laufzeitumgebung verwendet werden, um ausstehende asynchrone
MPI-Operationen bei minimalem Mehraufwand anzustofien.

vii

Contents

(1._Introductionl 1
[LI.__Motivationl. 1
[L2. Contribution| 4
[1.3. Structure of Thesigl 5

[2. Parallel Programming Models| 7
................................ 9

[2.1.1. Parallelization and Work Distribution| 11
[2.1.2. Work Scheduling and Balancing|. 12
2.1.3. OpenMP in NUMA Environments| 13
R2MPT - o 14
[2.2.1. Theory of Asynchronous Communication|. 19
2.3. Hybrid MPI-OpeaMP| 22
[2.3.1. Potential of Hybrid MPI-OpenMP Parallelization| 23

3. NUMA Aware Work-Scheduling and Work-Balancing for OpenMP| 25
[3.1. OpenMP 5Schedule static-ws: Introduction| 26
13.2. OpenMP Schedule static-ws: Definition| 27
3.3, Discussion| 29

[4. Hybrid MPI-OpenMP: |

| Real Asynchronous MPI-Functionality through |

| MPl-aware OpenMP Runtimes| 31
|4.1. Challenges ot Asynchronous MPI-Functionality] 33
|4.2. Analyzing Asynchronous Communication Capabilities of MPI Im- |

| plementations| o 38

421 Benchmark Goald. 39
[4.2.2. Design Goals| 39

ix

4.2.3. Description ot Benchmark| 41

|4.2.4. Benchmark Results: Expectations] 45

4.2.5. Benchmark Results: Measurements and Analysis| 49

[4.2.6. Using MPI Datatypes 58

|4.3. Advancing Asynchronous MPI Communication at OpenMP Schedul- |

| ing Points| 63
|4.4. Introducing A New OpenMP Construct commtask|. 69
4.4.1. OpenMP Construct commtask|. 71

[4.4.2. Internal Control Variables 74

4.4.3. Environment Variabled 74

[4.4.4. Environment Routine: omp_set_commtask_priority| . .. 74

[4.4.5. Environment Routine: omp_get_commtask_priorityl . . . 75

M5, Discussion]o 76

[5. Real Asynchronous MPI-Communication: Proof of Concept] 79
[5.1. Introduction to a Representative Examplel 81
[p.1.1. Main Algorithm Steps| 82

b.1.2. Different Kinds of Stencils Used|. 83

[5.1.3. Computational Domain| 85

[5.1.4. Implementations| 88

[5.2. One-dimensional Decomposition|. 95
[5.2.1. Computational Domain Decomposition|. 95

[£.2.2. Discussion of Resultsl 97

[5.3. Three-dimensional Decomposition|. 118
[5.3.1. Computational Domain Decomposition|. 118

[5.3.2. Discussion of Resultsl 119

b4, Discussion| 126
6. Conclusions| 131
[6.1. Summary| 131
6.2, Future Workl oo 133
pend 137

|A. System Descriptions| 137
|A.1. SuperMUC Fat Nodes| 138
[A.2. SuperMUC Thin Nodes|, 139
A3, CoolMUC-2l oo 140
A4 TaMa Cluster oo o0 o 141
A5, ICE Cluster] oo 142
IA.6. Woodcrest Clusterl 143
A7, Dell Notebook Clusterl 144

IB. Benchmark: Asynchronous Communication Capabilities of MPI Im-

| plementations| 145
B.I1. Additional results 145
151

pal

CHAPTER 1

Introduction

1.1. Motivation

While earlier trends in modern processor design were able to achieve higher per-
formance through increased processor clock frequencies, this trend came to a
halt due to increasing power consumption and heat development. Instead of
trying to increase clock frequencies further, multi- /many-core architectures have
emerged, providing increased performance potential through multiplication of
processor components. Increased performance is provided through multiple, but
slower clocked, computational cores, which can be used in parallel. Access from
all cores to the same physical main memory provides very fast communication
between threads or processes. In order to minimize the memory access bottle-
neck, a series of fast memory (caches) is integrated. In order to increase the
available core counts, multiple sockets - each hosting multiple cores - make up
large compute nodes. While single socket systems provide an environment where
access to any memory region from any core takes the same amount of time (i.e.
uniform memory access (UMA)), multi-socket systems provide a non uniform
memory access (NUMA) environment. Different parts of the physical memory
are attached to different sockets. While the operating system provides a global
address space, the actual access latencies differ depending on the distance be-
tween used core and the desired memory region.

One area where performance of programs is very important is high performance
computing (HPC). Many applications, both scientific and industrial, cannot be
executed efficiently on single processors, either due to the amount of necessary
memory, or due to the number of computational steps necessary. These appli-
cations can often be split into a set of subproblems which can be executed in

parallel. They can be assigned to processes or threads running on different com-
pute resources, i.e. the application can be parallelized. Seeing as in most cases
the subproblems are not independent, some kind of communication between the
processing units is necessary. In order to provide hardware environments for
these kinds of applications, different high performance computing systems exist.
Using multi- /many-core architectures as described above is one of them. An
additional level of hardware parallelism is added by connecting compute nodes
through communication networks. Multi-/many-core environments are limited
by the number of cores and amount of memory which can be placed into a single
compute node, but provide very efficient communication between the computa-
tional cores. Connecting compute nodes through networks is scalable to very
large node counts, but the communication is limited through the used network.
While modern networks are very efficient, they cannot stand up to shared mem-
ory communication.

Recent developments in high performance computers, as can be seen in the
TOP50(E| list, combine both hardware setups, providing large hierarchical hy-
brid systems. Networks connect large numbers of compute nodes, resulting in
a distributed memory environment. Each compute node internally provides a
multi-/many-core environment.

In order to use the parallel hardware, different programming paradigms have
been created. Based on the used communication method, two major paralleliza-
tion paradigms are defined: shared memory and distributed memory paralleliza-
tion. Shared memory parallelization is mostly based on the many-/multi-core ar-
chitectures described above, using multiple threads to work on a single problem.
The most widely used standard for shared memory parallelization is OpenMP [62].
It defines a set of compiler directives, library routines and environment variables
which can be used to parallelize programs at a thread parallel level. It takes care
of thread creation and management, work item definition and distribution, and
provides tools for thread synchronization, etc. The OpenMP standard especially
targets the programming languages C and Fortran and is usually used in an
incremental parallelization approach. Starting with a sequential program, prag-
mas, library calls, etc., are added step by step, adding parallelism to different
parts. Introducing basic parallelism to a program is relatively easy to achieve,
but advanced parallelization optimizations are possible.

In regard to distributed memory parallelization, the most widely used approach
is the Message Passing Interface (MPI) |55]. MPI is not a programming language,
but a definition of an interface to library routines which offer all necessary func-
tionalities in regard to distributed memory parallelization. The main focus of
the standard is point to point communication, but it also covers areas such as
remote memory access, process creation and high performance parallel 1/0.

With modern HPC systems, as described above, the hardware is not necessarily

Lwww.top500.org

matching one or the other programming paradigm, but incorporates aspects of
both approaches. A common way to program parallel systems made of many
multi-core compute nodes is to regard every core as a separate compute unit and
use MPI only (MPI-Only). On every core of the system, one MPI process, or rank
as they are called, is executed and communication is done via message passing,
regardless of whether or not the communicating ranks are located on the same
node or have to use the communication network. Smart implementations for the
used MPI library can recognize the fact and optimize the data movement, but
direct access to the memory regions of other ranks on the same node is not pos-
sible. Nevertheless, this approach can yield good parallelization performance, as
will be discussed later. An alternate approach is to combine both programming
paradigms in a way which matches the used hardware environment. At a higher
level, one (or a few) MPI ranks are placed per node, communicating via message
passing using the communication network. At a lower level, the ranks internally
parallelize their workshare using a shared memory programming paradigm in
order to make use of fast intra-node communication.

Especially with distributed memory parallelization, communication can be-
come a real bottleneck, and strategies to remove, reduce or hide communication
behind useful workloads are very important. Many parallel applications have
two kinds of workloads which are being assigned to the used processes: com-
munication independent work, i.e. computation which can be executed without
the need to exchange data with another process, and communication dependent
work. The latter is a result of the parallelization and the fact that work items
can depend on the values of other work items. Due to the fact that these might
be assigned to a different process, some data exchange needs to happen either
before or after this work can be done, as those values can change over time.
One way to reduce communication overhead is to look for opportunities to hide
communication behind communication independent work. The goal is to make
use of the provided resources in such a way that a scheduled communication
can be handled without keeping the processor occupied to do so. Therefore, the
processor can work on communication independent work at this time.
Communication overlap, as this is called, has been discussed in literature (see
Chapter [4| for references), and has been integrated into the MPI standard. The
standard offers so called nonblocking communication functions, which post a
communication request to the MPI runtime without blocking the calling pro-
cess. Nevertheless, no current MPI implementation which can be found on HPC
systems available to this work was actually able to achieve real communication
overlap when using these functions, as will be discussed later. Communication
overlap has been discussed in different publications and the general agreement
is that overlap can only be achieved either through the use of progress threads
or by manually advancing communication while working on communication in-
dependent work. Progress threads are threads spawned by each MPI rank. They
take care of communication related steps, such as programming network hard-

ware. Progress threads are not always possible or feasible. Manual progression,
i.e. taking care of calling progression functions in the user program, is difficult
to implement. Especially the question of when and how often available advance-
ment functions need to be called is hard to answer efficiently and no automated
way to do so exists.

1.2. Contribution

This work addresses the questions discussed in the motivation. Especially auto-
mated message progression in the context of the hybrid MPI-OpenMP program-
ming approach. The proposed commtasks add awareness of the MPI paralleliza-
tion used on the higher level to the OpenMP implementation used for paral-
lelization inside each MPI rank. Together with a new OpenMP schedule, these
commtasks can achieve perfect communication overlap by calling message pro-
gression functions at optimal times. Additionally, the new approach introduces
NUMA awareness to the OpenMP parallelization while providing work balanc-
ing at the same time. Additionally, the approach removes timing constraints
in regard to the exact communication times during the execution of a parallel
program. Communication dependent steps, both progression and communica-
tion dependent work, can automatically be assigned a higher priority in order to
make sure that idle times in this regard are minimized.

In order to build a foundation for the proposed commtask, the communication
overlap capabilities of the available MPI libraries are being investigated through
a benchmark. The results show that the MPI libraries are indeed able to not only
achieve synchronization overlap, but also data transfer overlap, which together
result in the desired communication overlap. The benchmark also reveals the MPI
libraries’ limitations in regard to communication overlap. A formal definition of
the commtask is being presented, showing how the automated progression can
be included into the OpenMP standard with minimal changes. The performance
of the proposed approach is being investigated by applying it to a relevant par-
allel code, namely the Jacobi Relaxation method. This method represents three
dimensional stencil codes, which can be found in a large variety of applications.
Using different stencils and different approaches to split the used computational
domain to the available compute resources, the commtask approach is being
compared to a large number of traditional implementations, including MPI-Only
and MPI-OpenMP both implemented twice: using blocking and using nonblocking
communication functions.

The results show that for real life parallel applications, automated message
progression and perfect communication overlap is possible using the commtask
approach. It is easy to add to hybrid parallel applications (MPI-OpenMP) and
does not require fundamental changes in the existing parallelization standards.
For programs with contiguous memory buffers used in the communication, the

results show perfect overlap and the proposed commtask implementations out-
perform all other implementations. These include MPI-Only and MPI-OpenMP
implementations, both implemented using blocking as well as nonblocking com-
munication functions. As shown with the benchmark mentioned above, limita-
tions in regard to overlap exist in cases where the used memory buffers are non-
contiguous. While the proposed approach cannot outperform other approaches
like MPI-0Only in this case, the hybrid implementations can be improved drasti-
cally, even to the point where their performance matches the performance of the
MPI-Only counterparts.

The presented work shows that hybrid parallelization on hybrid hardware has a
lot of potential to improve the performance of parallel applications and optimize
the usage of HPC resources. For a large set of parallel applications, this can
be done using the proposed approaches. For other applications, performance
improvements can be seen in comparison to the classic hybrid implementations
and possible future extensions promise better results in these cases as well.
The proposed commtask, while implemented to achieve overlap using progres-
sion function, is designed to also work with progress threads, which might exist
in future MPI implementations. Its positive impact on performance might even
be increased through the removal of the overhead necessary to call progression
functions yet keeping its other advantages at the same time: NUMA aware work
balancing, prioritizing communication related work steps and minimizing the
impact of delayed communication partners.

1.3. Structure of Thesis

Following the introductory chapter, an introduction to High Performance Com-
puting parallel programming models is presented in Chapter 2] Besides an
overview of parallelization and the possible programming paradigms, two of the
most prominent, and for this work most relevant, programming paradigms are
presented in detail: the shared memory parallelization approach OpenMP (Sec-
tion and the distributed memory parallelization standard MPI (Section .
The chapter is concluded by a closer look at their combination in a hybrid
MPI-OpenMP fashion (Section [2.3)).

Chapter B|proposes a new OpenMP loop parallelization schedule, namely static-ws,
which addresses the need of OpenMP to be aware of non uniform memory access
(NUMA) environments while providing efficient work balancing.

The need for asynchronous MPI functionality, such as communication computa-
tion overlap, is presented afterwards. The capabilities of modern HPC systems
and software environments are benchmarked in detail in Chapter Based on
the results a solution is presented. Adding MPI awareness to the OpenMP runtime
in hybrid parallelization approaches through the proposed commtask is used to
achieve real asynchronous MPI functionality. The chapter finishes with a formal
definition of the commtask consistent with the OpenMP standard in Section [4.4]

The impact of the commtask on real live applications is then extensively analyzed
in Chapter 5] A large variety of parallelization options for three dimensional
stencil codes is being compared on a large set of HPC systems. These include
MPI-Only and MPI-OpenMP, both implemented using blocking and nonblocking
communication functions, as well as implementations of the proposed commtask.
For two computational domain decomposition strategies, namely one- and three-
dimensional domain decomposition, the implementations are executed on large
node counts of modern hybrid HPC hardware and the results are discussed in
detail.

Finally, the last chapter concludes the work and presents an overview of related
future research topics.

CHAPTER 2

Parallel Programming Models

As discussed in Section the use of high performance computing (HPC) sys-
tems is widely spread and multi-core environments are becoming a part of desk-
top computers, notebooks and even mobile phones. Processor frequencies are
decreasing in exchange for lower power consumption and multiple instances,
creating multi-core compute nodes. Together with high performance networks,
these nodes make up large parallel systems. In order to use these efficiently,
i.e. dedicate all (or parts of) the systems to work on a single computational
problem, the common programming interfaces have to be extended in regard to
parallelization.

Using a pool of resources to work on a single problem results in some kind of
distribution of work items. These can for example be data blocks which need to
be used for some kind of computation or different computational phases which
need to be applied to data passed through them. In most cases these work items
are not independent from each other and some kind of communication needs
to happen between the used computational cores. For these parallel program-
ming approaches, two major forms of parallelization are typically distinguished:
shared memory parallelization and distributed memory parallelization.

For environments providing a common (virtual) main memory to all partici-
pating computational cores, as is the case in multi- and many-core compute
nodes, parallelization can be done by using multi-threading. The threads have
a shared memory region and communication can happen through direct access
to the shared data buffers. This form of communication is fast, but limited in
scalability. Access to the shared data has to be coordinated by the programmer.
It can be extended to be used on multiple hardware nodes by providing virtual
shared memory, but this removes the advantage of fast access times and is not
commonly applied in HPC applications. Common parallelization paradigms for

shared memory parallelization are OpenMP and Pthreads.

For environments providing computational units distributed to different nodes
connected through a network, the distributed memory parallelization approach
has to be used. The provided memory spaces on the nodes can not directly be
accessed by all used computational cores and communication has to be done by
sending data through the available network. One common way to exchange data
is through message passing. The de facto standard for message passing paral-
lelization is the Message Passing Interface (MPI).

Other parallelization exist, such as the use of graphical processing units (GPUs)
for computation, implemented for example using Cuda or OpenCL.

Independent of the chosen parallelization paradigm, the parallelized applica-

tions have useful work, which is directly related to the problem to be solved.
When splitting the work or the work steps and assigning these work items to
different workers (threads or processes), additional steps need to be taken care
of. This overhead, while necessary, is not part of the original algorithm and
needs to be minimized where possible. This work includes synchronization be-
tween workers, copying and sending data in distributed memory environments,
ete.
For this work, the important parallelization paradigms are the Message Pass-
ing Interface (MPI) for distributed memory parallelization and the use of multi-
threading (Pthreads and OpenMP) for shared memory parallelization as well as
the combined use for hybrid parallelization. Both parallelization paradigms, MPI
and OpenMP, are widely accepted in the HPC community and it can be expected
that they will be relevant in the future. Nevertheless, as can be seen by look-
ing at research done in regard to new and different programming models, new
challenges will have to be addressed on the way to even larger systems. In order
to face these challenges, the current MPI and OpenMP standards will have to be
adjusted and extended. One possible way to ensure their relevance might be
their interaction, as proposed later in this work.

The rest of this Chapter will give an introduction of these programming
paradigms, discuss related work and highlight important aspects in regard to
the work presented later. The goal of the introduction is to present the concept
behind the presented programming paradigms, explaining the different steps
which are necessary in order to get a basic parallel program. Additionally, the
most relevant extensions for advanced parallelization are presented and more
detail is discussed in regard to the aspects used later in this work. The intro-
duction is not discussing detailed semantics of the programming paradigms, as
those are explained in detail in the referenced standards, which are available to
anyone from the corresponding web pages.

2.1. OpenMP

With the introduction of multi-core architectures, real parallelism was enabled
inside a compute node. A program can not only be programmed to have mul-
tiple execution paths by the use of threads, but these can truly run in parallel
on the available hardware. Through the provided shared memory environment,
the threads can access the processes global address space directly and there-
fore communicate in a highly efficient way. In order to exploit this parallelism,
programming models and paradigms have been created to address the different
aspects arising through the shared memory parallelization, which include:

e Thread management: This includes the creation of threads, their termina-
tion, identification, etc.

e Synchronization: Coordination of possibly concurrent accesses to the same
memory region, e.g. to make sure that an expected update of the corre-
sponding value has already been written by another thread.

Many programs which are targets for parallelization have different phases.

Often a very compute intensive central part takes up the major part of the exe-
cution time. In cases where parallelism can be exploited here, the use of multiple
threads has the most impact. The other parts are often program setup and ini-
tialization phases in the beginning and the saving of results and termination
phases at the end. These latter parts are often neither long in comparison to the
central part nor do they exhibit enough useful parallelism to exploit.
For these kinds of programs shared memory parallelization paradigms are needed
which are easy to use, provide all the necessary tools and are able to make ef-
ficient use of the available resources. While all of this can be done on a lower
programming level using for example Pthreads, the amount of work necessary
on the programming side reserves this approach for programming specialists and
usually makes it hard to use for application specialistsﬂ A simpler parallel pro-
gramming interface for shared memory parallelization which has evolved as a
widely used standard is OpenMP. In order to “standardize directive-based multi-
language high-level parallelism that is performant, productive and portable” [58],
the OpenMP Architecture Review Board (ARB) has been created. While at the
beginning of this work, the OpenMP-3.0 [59] standard was the newest version, ver-
sions OpenMP-3. 1 |60], OpenMP-4.0 [61] and OpenMP-4.5 [62| have been published
since then, adding new features and support for new hardware environments.

The standard describes the three basic parts of OpenMP:
e Compiler directive (extending the programming languages C, C++ and Fortran)

e Library routines

1Specialists in areas such as physics, chemistry, etc. whose programs benefit from paralleliza-
tion but whose expertise is not computer science/engineering.

e Environment variables

The standard approach for programming OpenMP is incremental. Starting with
a sequential program, pragmas and library calls are added afterwards. This al-
lows for easy and quick parallelization of core parts of a program, as the original
algorithm can be implemented without taking parallelization into consideration
from the beginning. Nevertheless, as is the case with any program, adding more
specialization (e.g. knowledge about the memory layout of used data structures,
access patterns, etc.) to the implementation results in more potential for per-
formance gain.
Different OpenMP compilers exist, such as the GOMFE| OpenMP implementation for
the GNU Compiler Collectiorﬁ As most of the systems available for this work
provide specially tuned software, another implementation used mostly through-
out the results presented later is the Intel C/C-++ Compiler (ICC).

Research in regard to OpenMP is ongoing and covering a wide range of areas.
The authors of [18] propose sub-teams of threads and the option to assign work
to them via worksharing constructs, which is now available in OpenMP. Other
work proposes extensions in regard to the tasking construct [85]. The concept of
places has been added to OpenMP as well, which has been the topic of |27], whose
authors also proposed affinity policies. Affinity in regard to memory placement
in NUMA domains or OpenMP places is still missing but has been addressed by
the authors of |76]. They propose an OpenMP extension which offers memory
initialization in regard to used places and the option of migrating memory, ei-
ther automatically or through proposed runtime library functions. The use of
OpenMP in non uniform memory access (NUMA) environments is also the topic
of [8]. Extending OpenMP for NUMA architectures, the authors of this pa-
per implement methods taken from the parallel programming paradigm High
Performance Fortran in an OpenMP compiler. They propose a user directed
approach for page migration, i.e. memory movement, and user directed data
layout mechanisms. The authors of [84] examine the behavior of task-parallel
codes on NUMA systems, comparing different approaches in regard to the task
creation. Due to the fact that the behavior of task scheduling for OpenMP is
less defined, offering a more dynamic work distribution, the efficient use of tasks
in NUMA environments is not guaranteed.

Another area, which is important in high performance computing is efficient par-
allel I/O, which has not been addressed in the OpenMP standard. The authors
of |52] introduce a parallel I/O interface for OpenMP in order to close this gap.

The authors of 1| address the increasingly important question of power man-
agement in the proposed energy extension OpenMPE. Other work examines the
energy consumption of Haswell processors running OpenMP programs, by apply-
ing and evaluating different energy saving strategies [92|. Classic performance

Zhttps://gcc.gnu.org/projects/gomp/
Shttps://gcc.gnu.org/

10

https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/

evaluation is also part of ongoing work. The authors of [73] presents results of
the SPEC OMP2001 Benchmarks on a Hitachi SR8000 node, showing that it can
achieve a high performance for applications with high demands on the memory
bandwidth. The Jacobi method, used in the results presented in Chapter [5] is
part of research as well, including the work presented in [6] where it has been
implemented using different paradigms, including MPI and OpenMP, executed on
Cray XEG.

2.1.1. Parallelization and Work Distribution
Compiler Directives

The most basic compiler directive is the parallel construct. It defines a par-
allel region and creates a team of threads which executes the code inside the
constructs range. Thread creation does not have to be implemented manually.
The pragma can be supplied with parameters defining the behavior in regard
to used variables, i.e. which variables are being used by each thread privately,
which variables are being accessed by all threads and how to define the values
of the variables at the beginning and after the parallel region. In order to dis-
tribute the work to the created threads, different directives exist in regard to
worksharing. These include, but are not limited to, the for directive for loop
parallelization, the sections and the single constructs. Another way to define
structured code blocks which can be distributed to available threads, being exe-
cuted in parallel, is the tasking construct. While the former construct has been
part of OpenMP from the beginning, the OpenMP tasks have been added in later
versions.

In order to control the execution flow of the threads and synchronize them,
OpenMP offers additional directives. Code inside the parallel region can be de-
fined to be executed by a single thread using the single directive (any thread) or
the master directive (execution only by the thread who encountered the current
parallel region). Access to shared variables can be coordinated with constructs
such as the critical or atomic directives.

As threads have a local view on shared variables, the programmer has to take
care of making changes public to other threads by the use of the f1lush directive.

Runtime Library

The runtime environment of OpenMP parallelized programs can be controlled
through a series of runtime library functions. These include functions to control
the number of threads used in parallel regions, query the state of the run-
time, change settings such as scheduling decisions made at runtime and routines
controlling locking mechanisms, timing functionality and device memory man-
agement.

11

Later in this work, these runtime library functions are being used to do man-
ual worksharing in respect to the thread identifier assigned to the used OpenMP
threads.

Environment Variables

The defined environmental variables can be used to influence the behavior of
the programs globally by either setting them before the program execution or
using the corresponding runtime library functions in the code. An important
variable is OMP_NUM_THREADS, which defines the number of threads used for a
defined parallel region.

2.1.2. Work Scheduling and Balancing

As described above, OpenMP offers different ways to distribute work to the avail-
able threads inside a given parallel region. In regard to this work, the two
important approaches are the loop parallelization directive for and the task
directive.

The #pragma omp for construct can be used to split the iteration space of
a given loop. Depending on the parameters and the defined scheduling the
mapping of the indices to the available threads is done. The used loops must be
conforming to the canonical loop form, defined in the OpenMP standard |62,
2.6 Canonical Loop Form|. The behavior when applying this to loops with
dependencies between the different iterations is undefined.
The possible scheduling clauses which can be supplied to the for construct are:

e static (Syntax: schedule(static, chunk_size))
e dynamic (Syntax: schedule(dynamic, chunk_size))
e guided (Syntax: schedule(guided, chunk_size))
e auto (Syntax: schedule(auto))

e runtime (Syntax: schedule(runtime))

Using the static schedule, the iteration space is distributed to all available
threads in equal sized blocks (no chunk size is specified) or by distributing
blocks of size chunk size in a round-robin fashion. For the schedule clauses
dynamic and guided threads request chunks whenever they executed the last
received chunk. For dynamic, the amount of iterations per chunk are fixed and
defined through chunk _size. For guided, “the size of each chunk is proportional
to the number of unassigned iterations divided by the number of threads in the
team” [62| decreasing to one (default) or to the minimum size defined through
chunk_size. Schedule auto delegates the question of which schedule to choose
to the runtime and compiler. With runtime the schedule is chosen at runtime

12

depending on the internal control variable (ICV) run-sched-var, which can be
set either using environment variables or the runtime library. Depending on the
parallelized loop, different advantages are offered through the different schedules.
For loops which are entered by all threads at the same time and which exhibit
a uniform execution time for each iteration, the use of schedule static is most
efficient. In cases where the threads might reach the at varying points in time
or where the duration of each iteration is variable, the schedules dynamic and
guided offer work balancing at the cost of overhead for the chunk assignment.
Important for this work is the question of iteration assignment across different
loops, different encounters of the same loop and ac-cross different parallel re-
gions, as the question of which thread on which core accesses which memory
region is influencing the efficiency of code when using OpenMP in NUMA envi-
ronments.

2.1.3. OpenMP in NUMA Environments

Modern compute nodes providing multiple computational cores are split into
different sockets. Each socket hosts a number of cores. The main memory is
partitioned and the individual partitions are connected to one of the available
sockets. While a thread on a given core can access any memory partition avail-
able in the node through a global address space, not every access is the same.
The latency and bandwidth between the used core and the desired data in mem-
ory is dependent on the question where the hosting memory partition is located.
This kind of environment is called a non-uniform memory access (NUMA) envi-
ronment [8,84].

For efficient parallelization with shared-memory paradigms like OpenMP different
aspects have to be taken care of in regard to memory access. These include:

e Thread pinning: As in HPC applications the best practice is to use one
thread per available core, the threads are usually pinned to one core each.

e Data pinning: Across multiple recurring regions accessing the same data,
the data to thread distribution is fixed in order to allow the efficient use of
caches and, in case of NUMA environments, the minimized access latency
and bandwidth.

Thread pinning can be done using different methods, which are often supplied
through the scheduling system on the HPC systems or through the use of avail-
able libraries. Making sure that the data a thread is being assigned is located on
a memory partition close to the core the thread is pinned to, is more difficult.
On modern operating systems in combination with the hardware, a widely used
approach in regard of memory allocation is the first-touch policy. At mem-
ory allocation points, these systems make a reservation of the virtual memory
only and defer the allocation of physical memory to the time it is being accessed
for the first time [8},32,68.|71-73,/94].

13

For OpenMP parallelized applications, this can be a problem. First of all, as
mentioned above, the typical incremental way of adding OpenMP directives to
the sequential program for compute intensive parts of the code does not usu-
ally include memory initialization and initialization. This has to be considered
by the programmer and parallelization of the initialization phase in regard to
the first-touch policy must be done. Even when using the same loop logic
for initialization and the computational phase, the problem using OpenMP is the
question whether or not the same iterations are assigned to the same threads
for both parts. Only for the schedule static does the OpenMP standard define a
behavior in this regard. The assignment of logical loop iterations to the avail-
able threads must be the same for two loop regions, when the following criteria
is met [62]:

1. Both loop regions have the same number of loop iterations

2. Both loop regions have the same value of chunk_size or no specified
chunk_size

3. Both loop regions bind to the same parallel region
4. Neither loop region is associated with a SIMD construct

For all other schedules, the iterations assignment is unspecified.

Especially criteria number [3| can be a problem. The corresponding parts of the
code and therefore also the used parallel regions are usually not close together
and not easily consolidated. Nevertheless, for the compilers used for this work
(GNU gcc and Intel ICC), tests showed that the same iteration assignment is
being done in cases where the respective loops do not define a chunk_size, are
enclosed in parallel regions using the same threads and have the same number
of loop iterations. (No SIMD construct has been used)

For cases where work balancing is desired, i.e. dynamic or guided should be used,
no support for NUMA environments exist. To address this, a new scheduling
clause, namely static-ws is proposed in Chapter [3| and applied in the imple-
mentations done for Chapter o

2.2. MPI

While multi processor compute nodes and parallel programming paradigms
like OpenMP provide programmers with the tools and environments to parallelize
their code, this approach is mostly limited by hardware constraints. This can be
the limited main memory available to the cores on a compute node or the amount
of computational cores itself. To overcome these limitations, distributed mem-
ory parallelization offers the possibility to make use of hardware (computational
cores and memory) which are distributed across multiple compute nodes which
are connected via a communication network. Numerical simulation codes, which

14

often communicate in a “bulk-synchronous” fashion, have strong communication
requirements and are the reason for the need of fast networks in HPC systems
and highly efficient ways to use them [33]. Processes running on the cores of
these compute nodes do not have direct access to all available memory. This
can be simulated through virtual shared memory implemented in software [90],
which is also the idea behind the Partitioned Global Address Space (PGAS)
programming paradigm. Nevertheless, the most commonly used approach to
program for distributed memory parallelization is message passing.

Processes sharing the work for one parallel program communicate through ex-
plicit messages, exchanging data between the corresponding virtual and physical
memory spaces. With the Message Passing Interface (MPI) standard the Message
Passing Interface Forum created and develops a “message-passing library inter-
face specification” [55]. MPI is not a programming language but a definition of
an interface to library routines which offer functionality in regard to everything
concerning distributed memory parallelization. In addition to point to point
communication functions, functions in many different groups are defined such
as collective operations, remote-memory access operations, functions in regard
to process creation and areas such as high performance parallel I/O operations.
The standard defines all operations in a generic manner, providing language
bindings for the programming languages C (used for the implementations in this
work) and Fortran.

The goals of the standard are standardization, portability of the code and the
definition of a library which can be optimized for each available system without
having to change the user programs.

Environmental Management

Programs using an MPI implementation and the provided library will be executed
in a parallel environment. These environments can be set up in different ways
and run different operating systems. MPI does not define how an MPI program is
to be started, how the environment is to be setup or what needs to be done on
the system side in order to execute an MPI parallelized program. Nevertheless,
code must be runnable on all systems without a change and the environment
needs to be provided with a possible setup phase. Therefore the initialization
function MPI_Init is required to be called before any other calls to the MPI li-
brary is done.

In later versions of the MPI standard, the need for dynamic process manage-
ment was addressed and an interface between MPI and the environment, such
as the process management systems, has been added. Nevertheless, the stan-
dard emphasizes that this must not interfere with a consistent definition of
communicators, which are described below.

Analog to the MPI_Init function, the MPI_Finalize function must be called
in order to finalize the MPI program and no call to the library can be done
afterwards.

15

Communication Contexts and Topologies

The created processes of an MPI program are called ranks. Each rank can ex-
ist in a series of contexts. With the start of the program, after the use of
MPI_Init, all ranks are part of the global context, defined through the global
communicator MPI_COMM_WORLD. Communicators, which among other things en-
capsulate the ideas of communication contexts, groups and virtual topologies,
have been added to the standard in order to make MPI compatible with the cre-
ation of support libraries. They allow a subset of processes (possibly all) to be
associated with a given task and the corresponding communication. Within the
scope of this work, implementations either use MPI_COMM_WORLD only or create
a new communicator including all ranks in order to virtually place them into a
used topology (s. Section [5.1]). Inside a communicator, each rank is assigned a
rank identification, which will be referred to simply as rank.

Process topologies can be used to virtually map the available ranks in order
to facilitate the naming of ranks and selection of corresponding communica-
tion partners. It also provides information about the expected communication
partners to the MPI environment. This allows the remapping of processes to
the available hardware in order to match the communication pattern to the
available communication network pattern. Functions are provided which help
programmers to select communication partners in the topology without having
to manually match the (one-dimensional) rank numbers from the communicator
MPI_COMM_WORLD to the (possibly multi-dimensional) communication topology.

In theory every MPI process can be provided with its own source code, which
has to match the same context, communication, topology, etc. patterns as for all
other ranks. In most cases all processes are provided with the same source code,
which executes the same code, making distinctions in execution paths in regard
to the corresponding rank and communicator information. In order to parallelize
programs using this approach, different functionality must be provided, as is the
case for shared-memory parallelization paradigms like OpenMP as discussed above.
Communication between the ranks and synchronization functionality are part
of these. Different types of communication defined in MPI are “Point-to-Point
Communication”, “Collective Communication” and “One-Sided Communication”,
which will be discussed below.

MPI and Threads

For hybrid parallelization, such as the combination of MPI with a shared mem-
ory parallelization paradigm like OpenMP, MPI defines different thread safety
levels. These address the question whether or not and when multiple threads
can access the same MPI function. Creating thread safe implementations for
a library such as MPI is not only more difficult, but also requires mechanisms
which take care of thread synchronization inside the library. This might influ-

16

ence performance as well, which is not desired in the case where no threads are
used. In order to satisfy all needs, four different thread levels exist, which can
be supported by an MPI implementation, probably through the use of multiple
implemented versions of the same:

1. MPI_THREAD_SINGLE

2. MPI_THREAD_FUNNELED
3. MPI_THREAD_SERIALIZED
4. MPI_THREAD_MULTIPLE

Depending on the requirements of the program, the thread level must be con-
firmed using MPI_Init_thread instead of MPI_Init especially if another level
than MPI_THREAD_SINGLE is desired. This gives the MPI implementation the op-
tion to setup anything necessary to support threads from its implementation
aspects.

While MPI_THREAD_SINGLE is used for MPI-Only implementations, hybrid ap-
proaches can request increasing thread support with the other three levels.
MPI_THREAD_FUNNELED assumes that threads exist and will be used, but only
the main thread makes calls to MPI functions. The main thread is the thread
who calls MPI_Init/MPI_Init_thread and MPI_Finalize. This might be the
case when MPI is used in combination with OpenMP and calls to MPI are made
outside OpenMP parallel regions only. In cases where multiple threads need to
make calls into the MPI library functions, but do not need to make these at the
same time, the necessary thread safety level is MPI_THREAD_SERIALIZED. Any
thread can call MPI functions, but the programmer has to take care that no two
threads do so at the same time. Finally, in cases where all threads must be
able to call MPI functions, even at the same time, the necessary thread safety
level is MPI_THREAD_MULTIPLE. Nevertheless, some restrictions still apply, such
as the fact that no two threads can complete the same request (see the following
Section for more information on requests). The authors of [32] give an extended
overview in regard to the thread safety levels.

MPI Datatypes

In order to exchange data between processes all communication functions need
to be provided with a description of the data which is to be exchanged. MPI of-
fers some basic datatypes, describing elements like integers (MPI_INT) or doubles
(MPI_DOUBLE). When calling a communication function, the data is defined by
a type and a repetition count together with a buffer, which is expected to con-
tain the corresponding number of elements of the requested type (or has enough
space to store them) sequentially. While the standard requires the matching of
MPI types, it guarantees representation conversion in cases where messages are
exchanged in a possibly non homogeneous environment.

17

Many scenarios are covered by the basic datatypes, as the data to be sent is a
series of elements located sequentially in a memory buffer. Nevertheless, these
kind of message buffers are too restrictive as different algorithms require the op-
tion to communicate different kinds of elements or noncontiguous data in a single
message. The latter is the case in the implementations presented in Section [5.3
While it would be possible to send two messages with two kinds of data for
the first case or to locally pack the required data into a sequential buffer in the
second case, this includes overhead which MPI library implementations can try
to minimize. One option for example would be avoiding unnecessary memory to
memory copies. Implementations optimized for a special HPC environment can
also make use of specialized hardware, such as processors located on the network
interface cards (NIC), if information about the data layout of message buffers
is provided. To solve this, MPI defines derived datatypes, through which ad-
vanced data layouts can be described and made public to the MPI environment.
A derived datatype uses either basic datatypes or previously created derived
datatypes together with a layout description in order to define a memory pat-
tern. One example used later in this work is MPI_Type_create_subarray. For
a memory buffer describing a three dimensional array of elements, it allows the
definition of the surface planes of the array. Through the information provided
to the function call, the MPI implementation can then decide whether it is more
efficient to pack the data into a sequential buffer locally and send/receive one
message, send /receive multiple small messages or to apply other optimizations.
In order to use a derived datatype in any kind of communication function, it
needs to be committed using MPI_Type_commit.

Point-to-Point Communication

The basic form of communication described in the MPI standard is point-to-
point communication. Two ranks communicate with each other with one rank
being the source of the data (the sender) and one rank being the destination of
the data (the receiver). For both the send and the receive operation used, the
communication partners are identified through the used communicator and the
corresponding rank numbers in regard to this communicator. The data to be
communicated is defined through a (send or receive) buffer, the MPI datatype
used in the buffer and the repetition count of the datatype. In order to be able to
match messages in cases where two multiple messages are sent from one sender
to the same receiver, it is possible to label the message using a message tag.
There are two basic types of point-to-point communication functions: Block-
ing and nonblocking versions. The details on how these types work and what
their definitions imply will be discussed in the following Section [2.2.1] as these
functions are at the center of the work presented later in Chapters [4] and

18

Collective Operations

Collective operations are communication functions involving a group of ranks.
They include synchronization functions such as MPI_Barrier, data distribu-
tion functions such as MPI_Bcast and data collection function functions such
as MPI_Reduce. The corresponding group of ranks which is part of the collective
operation, and therefore has to take part in it, is defined through the chosen
communicator.

Those collective functions which are used to transfer data have to be provided
with additional information. This includes information about the source of the
data or the target destination. Also, consistent with the syntax of the point-
to-point communication, message buffers have to be provided, which are further
defined using the datatypes described above. Function such as MPI_Reduce apply
an operation to the data which has to be either a function provided through MPI
or a user defined operation. Predefined operations include MPI_MAX and MPI_SUM
in order to select the largest value of all values supplied by the ranks or receive
the sum of all elements respectively.

One-Sided Communication

While the communication approaches described above facilitate the use of com-
munication by combining all necessary aspects into the respective communication
functions, this is not always desired. Especially the fact that communication and
synchronization are both combined can be a restriction in some cases. In order
to overcome this, MPI defines one-sided communication. Through the definition
of so called windows, a region in one ranks memory can be made visible and
accessible to another rank. Using the one-sided communication functions, this
region can then be accessed (read, write) by the other rank without having to
post a matching communication function call on the memory hosting ranks side.
The necessary synchronization between the ranks, e.g. making sure that the
desired (updated) data resides in the memory before reading it locally, needs to
be implemented by the programmer.

While this works well in theory, MPI libraries do not provide perfect implementa-
tions for this, as they internally rely on synchronization mechanisms [75|. This
results in similar problems as encountered when trying to use nonblocking com-
munication functions to overlap communication and computation, as described
later in this work.

2.2.1. Theory of Asynchronous Communication

As described above, point-to-point communication defines the transfer of data
from a source rank to a target rank. While the information provided to the cho-
sen communication functions describe the communicating ranks and the data
together with corresponding message buffers, the time of transmission is defined

19

through the chosen communication function. The two basic groups of point-
to-point communication functions are divided into blocking and nonblocking
communication functions. Blocking communication functions, such as MPI_Send
and MPI_Recv, return when the used message buffer is save to be accessed again.
For the sending operation this means that changing the content of the buffer
after the blocking send returns does not change the data which is received on
the other end. For the receiving operation, this implies that the message buffer
contains the communicated data. The details of when the functions return is
dependent on the MPI implementation and the internally used communication
approach.

For the send operation, different communication modes exist and it is up to
the MPI environment to choose which one is used, unless it is specified further
through the use of specialized send operations. The system may or may not
choose to copy the message envelope (information and message buffer) into a
temporary buffer in order to free the send buffer. The additional memory copy
operation might slow down performance and the available buffer space can be
limited. In order to provide portable programs, implementations of the stan-
dard MPI_Send operation must not rely on buffer space. If message buffering is
desired, message buffers can be defined manually and their use be enforced with
MPI_Bsend.

Depending on the implementation and the communicated data, the behavior of
MPI_Send can vary in another aspect also: For messages which are buffered, the
send operation can return before a matching receive operation has been posted.
For cases where the message is copied directly into the receiving buffer in the
target ranks memory, the send operation blocks until all data has been trans-
ferred. In order to provide information about the status of the receiving rank,
MPI offers two additional send operations. MPI_Ssend, or synchronous send, will
only return when a matching receive operation has been posted and has started
to receive data. MPI_Rsend, or ready send, may only start when a matching
receive operation has been posted, or the behavior of the program is erroneous.
This function may be used when this precondition can be guaranteed in order
to remove possible rendezvous points, possibly improving performance.

In addition to these blocking communication functions, the MPI standard of-
fers nonblocking communication functions. Overlapping communication with
computation is possible in theory when the computation can be split into two
parts, namely communication dependent and communication independent work.
The communication independent work can be done at the same time as commu-
nication in order to hide synchronization and data transfer. Using specialized
hardware, this overlap is possible in theory through splitting the definition of
the communication envelope and the completion confirmation. Nonblocking,
or immediate, send and receive initialization functions (e.g. MPI_Isend and
MPI_Irecv) are used to provide information about the message buffers and the
communication partners early. They return immediately without guarantees

20

about the status of the desired communication. The corresponding message
buffers may not be used before a matching communication termination function
has successfully confirmed that the message buffers are no longer needed in or-
der to finish the communication. These termination functions include MPI_Wait,
which returns only when the message buffers are free to be used, or MPI_Test,
which returns immediately together with information about the communication
status. The same modes as for the blocking send operation (i.e. standard,
buffered, synchronous and ready) can be applied to the nonblocking send initial-
ization functions.

In order to match nonblocking send initialization calls to the used termination
functions, each communication is identified through an MPI_Request. The re-
quest object is needed internally to match the corresponding library calls to the
used communication mode and the respective message buffers. In cases where
multiple communications need to be initialized, the MPI standard offers varia-
tions of the MPI_Test and MPI_Wait calls which can be supplied with an array of
requests. These extensions include versions waiting or testing for the completion
of all supplied requests (MPI_Testall or MPI_Waitall) and versions checking or
waiting for the completion of (at least) one of the supplied requests (MPI_Testany
or MPI_Waitany).

Instead of using MPI_Wait or MPI_Waitall, it is also possible to wait for comple-
tion by regularly calling the respective test function, i.e. MPI_Test or MPI_Testall.
This is important in regard to the work presented in later chapters. The standard
allows for the implementations to not guarantee the synchronization and data
transfer overlap. It might be the case that any steps related to the communica-
tion is done during the used communication termination functions. This implies
that calling MPI_Test repeatedly will eventually take care of all necessary steps.
While this is the case, no implementation on the high performance computing
(HPC) systems used for this thesis provided real data transfer overlap but take
care of the message progression during the calls to MPI_Wait. Benchmarks and
measurement results will be presented in Chapter [

Two communication partners do not necessarily have to use the same kind of
point-to-point communication. I.e. nonblocking send operations can be matched
by blocking receive calls and blocking send operations by nonblocking receive
functions. Nevertheless, the order of functions is important. The first send
operation executed by the sending rank will be matched with the first receive
operation by the receiving rank. This is important in regard to matching message
buffer sizes and used datatypes. Nevertheless, the order of the corresponding
communication termination functions is independent of this order.

21

2.3. Hybrid MPI-OpenMP

The hierarchical design of current HPC systems combines the environments de-
scribed in the previous Sections [32|. Large HPC systems are built using large
numbers of compute nodes, which are being connected through high performance
networks, providing a distributed memory environment. The compute nodes con-
sist of multi- or many-core systems, internally providing a shared memory to the
available cores. While it is possible to simulate a shared memory environment
throughout the entire system or to place MPI ranks on every core, a combination
of both approaches matches the hardware setup. As mentioned in the previous
Section, it is possible to combine the use of MPT with multi-threading approaches
such as OpenMP. This can be used to assign multiple cores, e.g. an entire node or
a single socket in a NUMA environment, to an MPI rank and parallelize the ranks
work using a shared memory parallelization paradigm. Applying the necessary
thread safety level through the corresponding call to MPI_Init_thread sets up
the MPI environment accordingly.

This kind of hybrid approach is part of ongoing research and different trends
emerge when looking at the results. A common opinion is that MPI-Only is
the best approach, but different examples exist |32]. MPI-Only is compared to
MPI-OpenMP using the NAS parallel benchmarks on an IBM SP system by the
authors of [15]. They conclude that in most cases MPI only is performing better
than the hybrid approach. The tendencies necessary for the hybrid approach
to be attractive are said to be very fast processor cores reducing the amount
of work in relation to the communication and sufficient potential for multi-level
parallelization. This is also discussed by the authors of [79]. They demonstrate
that a hybrid approach is not always better than an MPI-0Only approach on clus-
ters of SMP nodes, but neither is it always worse. They conclude that the hybrid
approach can be beneficial in cases where pure MPI has problems with scaling.
Reasons for this include load balance problems or memory limitations when too
much data has to be replicated inside each rank. Also, limitations on the number
of possible MPI ranks can exist.

Nevertheless, the question which approach is better can even come down to the
chosen input sizes, input data, etc. for a fixed given code, as demonstrated by
the authors of [49].

One aspect important to the work presented in later chapters is the interac-
tion of the MPTI libraries with the OpenMP runtime. Both standards are developed
independently and while aspects from each are taken into consideration in the
other, the interaction is not seamless. One runtime/compiler framework, namely
MPC, addresses this problem by providing a low overhead environment for hy-
brid programming [16|. While this would be ideal for this work, it is not available
on any HPC system used later and not widely used in general.

Nevertheless it is an important step in the direction of understanding, facilitating

22

and optimizing hybrid parallelization approaches. Similar issues are discussed
by the authors of [32], stressing the fact that a mismatch between the hybrid
hardware and the parallel programming models exists. They conclude that ma-
chine topology awareness is important for efficient (hybrid) parallelization on
such hardware. This is also supported by the results presented by the authors
of |72, where MPI-Only and MPI-OpenMP are compared in regard to latency and
bandwidth aspects. One piece of hardware information useful here is the fact
that a single core on modern HPC compute nodes might not be able to saturate
the available inter-node bandwidth, which is important when using a single MPT
rank per node.

Finally, hybrid implementations are also part of research working with stencil
codes as done later in this work. The authors of |26] implement a multilevel
parallelization framework using a sixth order stencil code. Their intra-node
performance and optimization results show that for a 6th point stencil, the use
of 8 threads on an 8 core system is better than using the hyper threading cores
and using 16 threads. This is due to the memory requirements of the application.
Further related work on stencil codes and different implementation options can
be found in Chapter

2.3.1. Potential of Hybrid MPI-OpenMP Parallelization

When looking at the question of efficient and scalable MPI implementations and
the mismatch between the distributed memory parallelization approach and the
hierarchical hardware, a set of limitations is being discussed [32}/71,/79]. The
first problem of MPI-Only approaches can be poor scalability. Reasons for this
include large load imbalances between the ranks or restrictions in regard to fine
grained parallelization. Both can be removed or at least minimized when using
multiple threads inside the rank, working on a large grain subproblem. The fine
grained distribution is done in regards to threads and work balancing can be
implemented at this level as well.

Another problem is data replication on the rank level, e.g. for ghost cells as
defined later in Chapter [5] and therefore in the context of a cores main memory.
With newer HPC systems, where memory per core is increasing at smaller rates
as the core per node counts, this will be a definite problem in the future [66].
Using MPI on a node level or a socket level reduces the replication to the context
of the nodes or sockets memory, respectively.

Also, restrictions on the number of ranks which can be chosen due to the na-
ture of the chosen algorithm might exist. This can include limitation to use
powers of 2 for the rank count due to efficiency reasons with the MPI collective
communication. The number of usable cores can be increased through hybrid im-
plementations, loosening up the restrictions while keeping the same rank count.
Finally, the ease of programming is an aspect of interest. Programming OpenMP
is relatively easy and the overhead of adding OpenMP to MPI codes is relatively

23

small.

These problems are not only theoretical, but have been discussed for applica-
tions such as weather modeling [49]. The three main advantages expected here
are the reduction of message latencies through message consolidation, network
contention prevention and load balancing. A single rank using multiple threads
sends the same amount of data as in an MPI-Only implementation, but does so
in a single large message instead of multiple small ones. Also, by reducing the
amount of concurrent messages, congestion of the network interface is reported
to be avoided. This is an interesting point, as the authors of [32] reported that
on modern HPC systems a single core is able to saturate the network, but stress
the fact that this might not always stay true. In the future, the use of a subset of
cores, i.e. reducing the number of messages to a few instead of only one, might be
the optimal solution. Finally, the weather simulation code was expected to ben-
efit from the fact that dynamic work balancing can be done on the thread level.
Nevertheless, as discussed above, the results of the work done in [49] showed that
the question which approach (MPI-Only or MPI-OpenMP) is better comes down
to the chosen problem sizes and input parameters. Positive results through the
use of threading inside the MPI ranks is reported by the authors of [26], while
the authors of |34] conclude that the hybrid approach with the existing runtimes
and libraries can not outperform MPI-Only to publication date.

24

CHAPTER 3

NUMA Aware Work-Scheduling and Work-Balancing for OpenMP

As described in Section 2.1 using OpenMP in non-uniform memory access

(NUMA) environments adds additional optimization requirements on OpenMP
parallelized applications. Especially when looking at the OpenMP for pragma, for
parallelizing the execution of loops, these include the placement of memory in
relation to the core on which the corresponding thread is running. While paral-
lel environments usually offer thread pinning to prevent the operating system to
move threads to different cores, memory placement has to be considered by the
programmer. There is no direct support in OpenMP in regard to memory place-
ment, which is partially due to the fact that memory placement is part of the
underlying operating system and hardware environment. As discussed above,
the usual approach is the so called first-touch policy. On allocation, only
the virtual address space is reserved and actual memory placement on physical
memory is done when the corresponding memory regions are accessed the first
time.
As OpenMP parallelization is usually done in an incremental approach, adding
OpenMP pragmas to compute intensive parts of a sequential program only, the
memory initialization phase is not parallelized. The main thread, which is exe-
cuting all the non parallelized parts of the program, takes care of the memory
initialization and, as a result, all memory regions are placed physically close to
the core this thread is pinned to. In order to overcome this limitation, paral-
lelizing the initialization phase can be done by applying the same parallelization
to it in regard to memory accesses as to the computation phase. Nevertheless,
further limitations exist. Only for the criteria discussed in Section [2.1] does the
OpenMP standard guarantee the same logical loop iteration assignment between
two loops. As the initialization phase and the computation phase are usually
not inside the same part of the program, these are not easily met.

25

It has been observed that different compilers do relax these criteria. The same
schedule is applied in cases where the same number of threads execute different
parallelized loops associated with different parallel regions in case they have
the same number of logical iterations, but only when the schedule static is
used. For codes which are suited for such a schedule, the memory to core map-
ping can be solved. For codes which require one of the other available schedules,
i.e. dynamic or guided, this is not the case and no guarantees in regard to core
to memory distance can be done. The first-touch and then reuse approach is not
achieved in this case.

The authors of [8] propose using extensions found in High Performance For-

tran for OpenMP Fortran, adding optimization strategies to the OpenMP compiler.
The authors of [76] address memory affinity and an extension for memory mi-
gration in the context of the new OpenMP places. Another area where memory
accesses in NUMA environment can have a large impact is OpenMP tasks. The
distribution of tasks to available OpenMP threads is even less predictable than
logical iterations is for loops. In order to better understand memory placement
for the tasking model, the authors of [84] investigate different tasking strategies
on NUMA systems.
While all these approaches show benefits in regard to the current OpenMP stan-
dard for NUMA environments, they all include additional steps from the pro-
grammer or complicated extensions to the runtime and compilers. For the work
presented later, a simpler approach will be proposed in the remainder of this
chapter.

3.1. OpenMP Schedule static-ws: Introduction

In order to extend the OpenMP schedules dynamic and guided to work well in
NUMA environments, the logical iteration distribution to the available threads
has to be addressed. Assuming that the threads are being pinned to the available
NUMA cores, as is also necessary when using the schedule static in a NUMA
environment, these two schedules have to be investigated in regard to possible
memory reuse options. As the OpenMP standard does not specify the order in
which the chunks are distributed to available threads, it may not influence the
outcome of a program. This can be used to combine the advantages of schedule
static with those of the schedules dynamic and guided.

Let static-ws (“static work stealing”) be a schedule which can be used in the
same manner as the other three mentioned schedules. This proposed schedule
will be described here and more formally defined later in this chapter. Distribut-
ing the logical iteration space the same way as the existing schedule static, it
can be used in the context of a first-touch policy aware memory initializa-
tion. Each thread is assigned a block of logical iterations, for which the accessed
data regions are therefore located physically close to the core it is running on.

26

In a hierarchical manner, each iteration block is split into chunks in the style
of either the dynamic or guided schedule. Threads, either when entering the
loop or after finishing an assigned chunk, will request new chunks as is the case
when using these schedules originally and the runtime will assign the next thread
following these rules:

e The next available chunk from the thread’s higher level static block, if one
is available.

e The next available chunk from another thread, if one is available.

Using this approach makes sure that each thread works on memory physically
close to the core it is pinned to as long as possible while preserving work bal-
ancing. On systems with optimized OpenMP runtimes, the rules above can be
extended with knowledge about the hardware environment:

e The next available chunk from the thread’s higher level static block, if one
is available.

e The next available chunk from another thread pinned to a core on the same
socket, if one is available.

e The next available chunk from any other thread, if one is available.

In order to optimize cache behavior and prefetching, the chunks chosen from
different threads can be taken from the logical end of the other threads’ higher
level iteration block. A thread from which a chunk is assigned to another thread
is therefore working on a logically sequential set of iterations as long as possible.

In regard to the lower-level sub blocks, i.e. the chunks assigned to a thread,
different strategies can be applied. The two obvious strategies follow the existing
schedules guided and dynamic. Other approaches are possible and are subject
to future research.

3.2. OpenMP Schedule static-ws: Definition

In order to formalize the proposed schedule static-ws, different parts of the
OpenMP standard have to be extended. As the schedule is not a new worksharing
construct, but part of the loop parallelization construct, all definitions necessary
follow the parts defined in regard to the other schedules, especially static. The
first part is the description of the schedule, which needs to be added to Table 2.5
of the OpenMP standard (see |62, 2.7.1 Loop Construct|). Small modifications are
necessary in regard to the omp_set_schedule and omp_get_schedule functions
which can be used to set and read the value of the internal control variable (ICV)
run-sched-var (see |62, 2.3.1 ICV Descriptions - run-sched-var]).

27

As this is a proposed excerpt of the OpenMP standard, it is kept short and
precise. The proposed schedule stands by itself, but will be used and evaluated
in the context of the proposed commtask in the following chapters.

static-ws Description - OpenMP Standard Table 2.5

When schedule(static-ws, sub_schedule, chunk_size) is specified, iterations
are divided into two levels. At a higher level, the iteration space is divided into
chunks that are approximately equal in size, and at most one chunk is distributed
to each thread. The size of these higher level chunks is unspecified.

A compliant implementation of the static-ws schedule must ensure that the
same higher level assignment of logical iteration numbers to threads will be used
in two loop regions if the following conditions are satisfied: 1) both loop regions
have the same number of loop iterations, 2) both loop regions bind to the same
parallel region, and 3) neither loop is associated with a SIMD construct. The
same conditions apply in regard to two loop regions, one being assigned the
schedule static and the other the schedule static-ws.

Depending on the specified sub_schedule, the higher level chunks are sub-
divided into chunks according to the corresponding chunk_size specifications
for the possible options. These are dynamic or guided.

Each thread executes a chunk of iterations from its own lower level chunks
of iterations. It then requests another chunk, until no chunks remain from the
thread’s own lower level chunks. When this is the case, it requests a lower
level chunk from another thread’s higher level iterations. The order of chunk
assignment is unspecified and possible optimizations are subject to specific im-
plementations of the standard.

static-ws Description - OpenMP Standard run-sched-var ICV

In order to keep the changes to the existing functions to a minimum, the type def-
initions need to be extended by two values. While static-ws technically is a sin-
gle schedule, it has an additional parameter (for the lower level chunk splitting).
Adding omp_sched_static-ws_dynamic = 5 and omp_sched_static-ws_guided
= 6 to the type definition allows for omp_set_schedule and omp_get_schedule
to be unchanged.

Setting the internal control variable (ICV) run-sched-var can also be done

using the environment variable OMP_SCHEDULE, whose definition needs to be ad-
justed as well.

28

The value of this environment variable takes the form:

type/[,subtype/,chunk/

where

e type is one of static, dynamic, guided, static-ws, or auto.

e subtype is an optional parameter defining the low level chunk definition
when type is static-ws.

e chunk is an optional positive integer that specifies the chunk size.

3.3. Discussion

OpenMP is one of the most prominent parallel programming paradigms in regard
to shared-memory parallelization. As discussed in Section the question
whether or not the used shared-memory environment provides a uniform mem-
ory access environment (UMA) or a non uniform memory enfironment (NUMA)
is important when trying to optimize OpenMP parallelized programs. The need
for NUMA aware strategies has been discussed above. One simple approach,
namely adding the new schedule static-ws to the OpenMP for worksharing con-
struct, has been proposed and formalized here. With minimal changes to the
existing standard, it provides a basic tool to optimize memory access and intro-
duces efficient work balancing at the same time.

Should the proposed changes be included into the OpenMP standard, program-
mers would be able to add NUMA aware parallelization of OpenMP for loops
with minimal changes to their code. The hierarchical iteration space distribu-
tion allows for easy mapping of higher level chunks of iterations, and therefore
memory regions accessed, to used threads and the cores they are pinned to. So
far, this has only been possible with the schedule static. At the same time, the
schedule takes into account the need for work balancing, similar to the existing
schedules dynamic and guided.

The proposed schedule will be implemented and applied to parallel applications
later in this work.

29

CHAPTER 4

Hybrid MPI-OpenMP:
Real Asynchronous MPI-Functionality through
MPIl-aware OpenMP Runtimes

Nonblocking communication, as described in Section[2.2.1] has been defined in

the first MPI standard MPI-1.0 |54, Chapter 3.7: Nonblocking Communication].
MPI functions have been defined for all necessary steps of nonblocking communi-
cation. Instead of one communication function taking care of all communication
steps, functions for the different steps have to be used. From the MPI interface
user side, this includes communication initialization and communication termi-
nation. Depending on the MPI implementation and the available hardware, the
standard allows for different ways of data movement. In environments with suit-
able hardware, the data movement (or message progression) can be done any
time between the communication initialization and termination, in parallel to
the computation, resulting in the desired overlap. In other environments, where
this is not possible, the standard leaves the decision of when and how to take
care of the data movement to the MPI implementation.
While the first standard states that “the send start call will return before the mes-
sage was copied out of the send buffer” [54], this has been updated to “The send
start call can return before the message was copied out of the send buffer” [55].
Similarly, “a nonblocking receive start call [...] will return before a message is
stored into the receive buffer” [54], changed to “a nonblocking receive start call
[...] can return before a message is stored into the receive buffer” [55|. This in-
dicates what has been discussed in literature and will be shown in the following
sections: The use of the nonblocking communication functions does not neces-
sarily guarantee that real overlap of communication and computation is being
achieved.

31

Like any other type of communication, asynchronous communication consists
of two parts: Synchronization of the communication partners and the actual data
transfer. Both can in theory be overlapped with, i.e. hidden behind, useful com-
munication independent work. The synchronization step is necessary to set up
different aspects regarding the communication. These are MPI implementation
specific and include aspects such as message buffers and the mode of data trans-
fer, which depends on factors like message sizes, available buffer space, etc. One
important question is whether or not the communication requires a rendezvous-
protocol, i.e. all communication partners to be calling into the MPI library at
the same time. The second part, data transfer, consists of the actual sending of
the data from the send buffers to the receive buffers. Challenges in regard to
overlap exist for both parts. In regard to synchronization overlap, they include
the question of how it can be achieved without blocking the respective MPI ranks
inside the communication initialization functions. In regard to data transfer, it
is not clear whether or not one communication partner can make communication
progress while the other one is not calling into the MPI library. These question
will be discussed in detail in Section E.1]

While communication overlap is possible in theory, it is not always guaranteed
or available on current HPC systems with modern MPI implementations. While
synchronization overlap is available in most MPI implementations, data transfer
overlap cannot be observed in any of the HPC systems available for this work
when using the standard implementation approach. In order to understand how
the different MPI implementations behave in regard to communication overlap,
a benchmark will be presented in Section [£.2] In addition to analyzing the be-
havior of programs using standard MPI nonblocking communication functions, it
is designed to evaluate if and how well manual message progression is supported
by the tested MPI implementation. Message progression, i.e. taking care of asyn-
chronous communication related work steps outside the calls to communication
initialization or termination functions, can be done either using progress threads
or by manually calling message progression functions. As the first is not im-
plemented in current MPI versions available on modern HPC systems, it is not
targeted by the benchmark.

Possible results of benchmark executions are being evaluated in detail and are
discussed in regard to the conclusions which can be drawn in regard to internal
MPI library behavior. The benchmark has been tested on a set of modern HPC
systems using different MPI implementations. The results show that no overlap
is provided through the tested implementations and all communication related
steps are moved to the communication termination functions. The use of manual
progression functions, MPI_Test in case of the benchmark, does provide overlap,
but with some restrictions. One of the most important aspects is the timing of
the call to the message progression function and the size of the message buffer
which is to be transferred. Nevertheless, for cases where the timing is correct
and the used amount of calls to the message progression function match the sys-

32

tem requirements, perfect overlap of communication with the used computation
phase of the benchmark can be observed. Details and additional aspects are
discussed in Section (.2l

With the knowledge that communication overlap can be achieved using man-

ual progression, the question arises how this can be achieved automatically. Im-
plementing it manually is very complicated and too much overhead is easily
introduced in the corresponding code. Additionally, the aspects which need to
be considered can be different between used HPC systems and optimizing them
for one platform can result in bad performance on another. Normally no calls to
the MPI library are done in between the communication initialization and termi-
nation functions.
As discussed in previous chapters, the hybrid parallelization of MPT and OpenMP
offers many advantages. It matches the hybrid design of modern HPC sys-
tem hardware and offers potential for other optimizations such as work bal-
ancing inside the used compute nodes and therefore MPI ranks. Parallel hy-
brid MPI-0penMP programs using nonblocking communication are usually imple-
mented to parallelize the communication independent work between the com-
munication initialization and termination functions using OpenMP worksharing
constructs. Therefore the OpenMP runtime is active during the time where mes-
sage progression functions need to be called in order to achieve communication
overlap. Section discusses how a hybrid MPI-OpenMP environment can be
used to achieve automatic message progression by making the OpenMP runtime
aware of the outstanding MPT communication. The presented approach, namely
commtasks, will be presented and additional advantages discussed. These in-
clude include automatic, parallel and prioritized scheduling of work related with
communication. Both work directly related to communication (e.g. calls to the
MPI library and message progression functions) as well as communication depen-
dent work.

4.1. Challenges of Asynchronous MPI-Functionality

While theoretical overlap using nonblocking MPI functions for asynchronous
communication and I/O is possible, this is not always available in actual runtime
environments. The reason for this is that the MPI runtimes do not provide
efficient support for asynchronous progress [11,96]. The MPI standard discusses
the support for making progress on pending nonblocking operations. This can
be interpreted in two ways [11]: Using a strict interpretation, the outstanding
operations make progress independent of subsequent calls to the MPI library.
With a more relaxed interpretation, the implementation can require periodic
calls to the MPI library in order to advance progress.

Being addressed in different publications [11,|33}|35,/77], the need to be able

33

to advance pending messages between the start of the communication and the
corresponding MPI_Wait call really exists. There are different ways to achieve
this |35]. The two major ideas are using a progress thread or advancing the
messages manually. Not many MPI implementations provide a progress thread
and none of those that do could be found on the HPC systems accessable for
this work. One MPI implementation which experimented with progress threads
is OpenMPI. Nevertheless, they have never been stable and have been removed
with OpenMPI 1.6 |28]. Also, using a progress thread is not always efficient [35].
Most current MPI implementations advance pending messages during calls to
the MPI library. But, with no need to call any MPI related function during the
communication-independent computation, there is no message progression and
the actual communication is moved to the MPI_Wait call, which will be shown
in the results of the benchmark presented in the following Section

The reasons why no message progression is done, which are being discussed
in literature, are the need for a handshake algorithm before the actual message
transfer and regular hardware programming |77].

Going into more detail, different capabilities of the MPI implementation have
to be looked at in order to understand how data is transferred from a send buffer
in the memory of the sending MPI rank to a receive buffer in the memory of
the receiving rank. Independent of whether or not nonblocking communication
functions are used, this question arises, if the implementation supports indepen-
dent progress: Can one rank complete a |[blocking] send or receive operation,
while the communication partner is not calling into the MPI library. As will
be described later, most MPI versions use different approaches depending on
the size of the message to be transferred. Small messages can be sent by the
sending process without the need for involvement of the receiving side by trans-
ferring the entire message directly. On the receiving side, these small messages,
on reception, will be stored in temporary buffers and moved to the actual MPI
message receive buffer as soon as a matching receive call is encountered. For
large messages it is not guaranteed that there is enough temporary buffer avail-
able on the receiving side and the actual data can only be transferred whenever
the corresponding receive buffer has been made available inside the matching
receive function. Nevertheless, depending on the implementation of the actual
message transfer, independent progress might still be possible in theory. An im-
plementation supporting independent progress in this case might send the send
buffer information in a small message and have the receiving rank get the data
through a remote direct memory access (RDMA) read without the need of the
sending process to be calling an MPI function at the same time. Nevertheless,
this approach needs additional support from the computing environment.

When looking at nonblocking communication, the additional question is, whether
or not the MPI implementation supports the desired communication overlap,
which has been described in Section [2.2.1] If it does, an MPI rank can do useful

computations at the same time as the available hardware and software take care

34

of message related operations. An MPI implementations can support two kinds
of overlap [96]:

e Synchronization overlap, and
e data transfer overlap

The communication related work includes message matching and protocol pro-
cessing [11]. For an MPI rank it is possible to send or receive multiple messages
to and from multiple communication partners at the same time. Incoming mes-
sages might arrive before, during, or after a matching MPI_Recv call and have
to be matched to the corresponding blocking or nonblocking receive call, which
provides the information on where receive buffers are allocated and at what
point in time they are available. Depending on the implementation of the actual
data transfer, this information has to be processed, e.g. communicated to the
message source, used in possible RDMA-read operations or for copying messages
from temporary buffers to their final destinations, etc. Depending on the tem-
poral order in which two matching MPI_Isend and MPI_Irecv calls are done on
two communicating MPI ranks, not all necessary information might be available
from the communication partner. This can be a problem for the second kind
of overlap, data transfer overlap, for the message transmission implementations
described below.

data transfer overlap, in cases where synchronization has successfully been done,
consists in the actual transfer of the message data. This includes the computa-
tion of all necessary steps in the communication software stack, programming
the used hardware, etc.

As mentioned above, most MPI implementations implement the message trans-
mission, for both blocking and nonblocking communications, depending on the
message size |35]. The two versions used are the eager- and rendezvous-protocol.
With the eager transmission, small messages are sent asynchronously and are
buffered on the receiver side until a matching receive operation copies it into
the corresponding receive buffer. For large messages, the transmission is being
delayed until the matching receive is encountered and the final receive buffer
is available, which is confirmed at a rendezvous point. At that point, the data
can then be transferred in different ways, which include RDMA read from the
receiving rank, RDMA write from the sending rank and pipelined messages [98].
In order to synchronize, the rendezvous protocol requires at least two messages
in addition to the actual message transfer [35]. When implementing the transfer
using a pipelined message strategy, the sender uses another series of messages
for the actual transfer of the data. In order to send these, two approaches are
common. When implementing a polling approach, a user level thread needs to
query the hardware continuously. The interrupt based approach needs support
from the operating system (OS) in order to notify the user thread whenever a
message, or part of a message, has to be processed. In order to achieve shorter

35

point to point latencies, current MPI implementations use the polling method,
avoiding the operating system. For MPI libraries using InfiniBand, this is imple-
mented for example in OpenMPI and MVAPICH [35]. Nevertheless, using the
polling based approach is not the most time efficient, because the polling thread
is runnable, even if it yields its CPU time slice when it has nothing to do. It
will be rescheduled according to the OS thread scheduling algorithm.

For both the rendezvous and eager protocol, the question remains whether or
not the work necessary on either side of the point to point communication can
be overlapped, and in cases it can, what kind of overlap is supported.

Research in regard to communication and communication-computation over-

lap has been done analyzing the different aspects described above. Different
benchmarks have been proposed in this area. The authors of [43] introduce a
benchmark suite to assess the overall ability of MPI implementations to achieve
communication-computation overlap. Another benchmark separates the tests
for synchronization overlap and data transfer overlap [96]. The results of the
latter benchmark show that all tested implementations support synchronization
overlap while no implementation supports data transfer overlap.
The authors of [77] also take a closer look at possible overlap, examining Open-
MPI on InfiniBand. In this paper, the distinction is not done regarding the kind
of overlap, but regarding sender and receiver. Examining the use of MPI_Isend
together with a blocking MPI_Recv, posted after the immediate send operation
returned, it is shown that the necessary acknowledgment message will be re-
ceived only in the matching MPI_Wait call on the sending side. Therefore, due
to the used pipelined approach, only the first junk of the sent message can be
overlapped. Vice versa, analyzing the behavior of MPI_Irecv by pairing it with
a blocking MPI_Send (again posted after the MPI_Irecv has returned) shows
that only in a polling based approach can a first message part be overlapped.
No overlap is possible for direct RDMA approaches. Finally, paring MPI_Isend
with MPI_Irecv, |77]| shows that overlap is only possible for MPI_Isend using a
direct RDMA approach and not for MPI_Irecv.

Extending previous work in [12] and |11], the authors of [13]| aim to qualify
the source of performance improvements when achieving independent progress
and communication-computation overlap and offloading the relevant work steps
to intelligent network interface cards. They conclude that independent progress
is a significant contributor for performance improvements. More importantly,
they show that for the tested benchmarks, the combination of adding indepen-
dent progress, offload and overlap at the same time results in better performance
improvements than the sum of improvements of implementing each part inde-
pendently.

In the context of planning a large-scale computing system, the definition of
network requirements for the target applications is important. For large-scale
production scientific codes, the authors of [74] aim to quantify the potential

36

benefit of overlapping, showing that making use of communication independent
work in order to hide communication allows for potentially significant relaxation
of these requirements without decreasing application performance.

Being able to overlap communication with computation can also mitigate other
shortcomings of compute systems. On some systems one CPU might not be
able to saturate the inter-node bandwidth [69}/70]. For these cases it has been
shown that overlap can result in best performance for applications which use the
hybrid master-only programming model. In this model, only one master thread
can take care of communication.

Also addressing hybrid programming approaches, namely MPI-0penMP, the abil-
ity of MPI implementations to perform asynchronous point to point commu-
nication has been studied in [33]. OpenMP threads or tasks are being used
for achieving overlap where it is not available automatically by dedicating one
OpenMP thread manually to do the communication related work.

For MPI only approaches, the imbalances between ranks inside one compute
node result in idle cycles in individual ranks. The authors of |25] make use of
these cycles by implementing a collective polling approach in the thread based
MPT implementation MPC [67]. The idea behind this approach is to use idle
cycles in any MPI rank on one node to advance pending messages of any other
rank on the same node.

Independent of which approach is being used (MPI-Only or hybrid), one ap-

proach to advance pending messages outside calls to the MPI library functions
is using progress threads. Overlap can be achieved through multi-threading an
MPI implementation using a dedicated communication thread, which can yield
many cycles for computation [38]. Nevertheless, as mentioned above, other work
has shown that this is not always the best approach. When using a progress
thread, many MPI internal data structures have to be protected from concur-
rent access which is often done by using locking mechanisms. In order to remove
this probably time consuming access control, the authors of [42] present a lock
free asynchronous rendezvous protocol for progress thread based MPI implemen-
tations. At the same time, the authors of |35] present results indicating that it
is difficult to achieve good performance improvements in cases where the pro-
gression thread has to share a core with computation.
In all cases where either a progress thread is being used or the application is
itself multithreaded and wants to make concurrent calls to the MPI library
functions, the used MPI implementation has to support the thread safety level
MPI_THREAD_MULTIPLE, as defined in the MPI standard [55]. Since the perfor-
mance of these implementations might differ from implementations written for
MPI_THREAD_SINGLE, MPI_THREAD_SERIALIZED or MPI_THREAD_FUNNELED, the au-
thors of |87 introduce a test suite to test these implementations. The presented
results for different implementations on different systems from 2007 indicate that
there was still quite a difference in performance between the different setups.

37

Different research approaches target specialized hardware. The authors of [65]
enhance the MPICH2 MPI implementation to make use of Cray’s Core Spe-
cialization (CoreSpec) feature along with hardware features of the XE Gemini
Interface in order to be able to overlap communication with computation for
micro-benchmarks and applications. In |40], the authors implement MPI-NP II,
a network processor based message manager for MPI for Myrinet. Other work in-
troduces an Infini-Band (IB) Management Queue in order to provide the means
to overlap collective communications managed on the Host Channel Adapter
(HCA) with computation on the host CPU [31]. The paper focuses on improve-
ments for implementations of the MPI_Barrier collective operation. Other work
analyzes the overlap potentials using a bitonic sorting algorithm for two kinds of
explicit hardware: the laboratory prototype EM-X multithreaded multiproces-
sor and a commercially available IBM SP2 with wide nodes [80]. More compiler
oriented, the authors of [45] describes compiler transformations for communica-
tion time overlap resulting from non-local memory accesses in shared memory
environments.

Furthermore, the aim to overlap communication and computation is also a
research target for other programming paradigms: The authors of |36] present
a possible approach to exploit available overlap found at runtime in UPC pro-
grams. Overlapping in the hybrid MPI and SMPSs (SMP superscalar) approach
is discussed by the authors of |51]. This paper also reports a reduced code com-
plexity and less sensitivity to network bandwidth and OS system noise. Other
results show advantages of one sided communication using Berkeley UPC to-
gether with GASNet in comparison to two sided MPI/Fortran implementations
of the NAS FT benchmark [5].

4.2. Analyzing Asynchronous Communication
Capabilities of MPI Implementations

As described in Section [4.1] many aspects of the used HPC environment play
a role in providing real asynchronous communication. These include the avail-
ability of specialized hardware (e.g. programmable NICs), utilization of system
resources, the implemented communication approach in the used MPI imple-
mentation, and more. Results from literature show that the availability of asyn-
chronous communication, and especially the availability of data transfer overlap,
is not guaranteed. Nevertheless it can be assumed that achieving overlap is pos-
sible. While the presented work reports results on the asynchronous capabilities
of MPI implementations, no detailed information on how to best use manual
progression in the context of overlap is provided.
In order to use knowledge about the behavior of MPI implementations in OpenMP

38

runtimes with the goal of improving the performance of hybrid MPI-OpenMP
codes, a detailed analysis of this behavior is necessary. This analysis will be
presented in this chapter, providing a benchmark which is highly adjustable in
all aspects concerning parallel computing systems and asynchronous communi-
cation patterns.

4.2.1. Benchmark Goals

The central goal of this benchmark is to test different MPI implementations on
different HPC systems in regard to asynchronous communication. In addition to
acquiring the knowledge about whether or not synchronization and data trans-
fer overlap is possible, this benchmark also aims to analyze the communication
details. It is necessary to get detailed measurements of the different communica-
tion related events (e.g. MPI library calls to functions as MPI_Isend, MPI_Irecv,
MPI_Wait, etc.). Together with timing information about the overall benchmark
execution times, this can be used to 1) quantify possible overlap, 2) show which
steps are necessary to achieve overlap and, in cases where no overlap is provided
automatically, 3) provide information on how to best use progression functions
to do so manually.

For MPI implementations not providing overlap automatically, but providing
overlap through manual progression, the additional steps can introduce addi-
tional overhead, which must be compared to the overall performance improve-
ments gained through reducing the times spent in the communication functions.

Since the results are to be used in a hybrid MPI-OpenMP environment, it
is not the goal to occupy system resources through additional progress threads.
Progress threads are not provided by many MPI implementations and none of
those that do could be found on the HPC systems used for this thesis. One of
the MPI implementations which experimented with progress threads is Open-
MPI. Nevertheless, these progress threads have never been stable and have been
removed with OpenMPI 1.6 [28]. Furthermore, as mentioned before, the use of
progress threads has been reported to not always be efficient, especially in cases
where the progress thread has to share a core with the actual application [35].
How to use progress threads or communication offload, in cases where it will
become available in the future, together with the approaches presented in Sec-

tions [I.3| and [£.4] will be discussed later.

4.2.2. Design Goals

In order to analyze the behavior of MPI implementations in regard to asyn-
chronous communication, the benchmark iteratively tries to overlap a definable
set of communications between different MPI ranks with communication inde-
pendent work. In order to quantify the results, the benchmark measurements
need to be compared to a base version whose behavior is well understood and

39

stable. For this base version, a synchronous version of the benchmark is used,
where communication and computation phases are separated and strictly se-
quential.

In order to obtain useful, reproducible timing results, the benchmark is set up
with well defined and adjustable benchmark parameters. A very homogeneous
CPU usage is used as computation with which the communication is to be over-
lapped. This is done so that no random effects can influence the computation
times, making sure that timing differences are due to the communication part
of the benchmark.

Due to the fact that for most parallel applications (including the reference appli-
cation presented in Chapter |5)) the used MPI ranks communicate in pairs, this
analysis also bases the communication patterns upon bidirectional communica-
tion partners. I.e. if MPI rank X sends a message to rank Y, X also receives a
message from Y.

In regard to manual progression, literature discussed in the previous Section
reports that this is usually done through calls to the MPI library functions.
As usually no MPI functions are called between the initializing MPI_Isend re-
spectively MPI_Irecv and the matching MPI_Wait function, it has to be decided
which function to use for manual progression. One function in particular has
to become involved in the communication advancement eventually: MPI_Test.
This is a consequence of the fact that any immediate send or receive does not
have to be finished using a matching MPI_Wait call, but can also be confirmed
by a successful MPI_Test function. Therefore any MPI_Wait can be replaced by
a loop calling MPI_Test until successful communication completion is confirmed.

Algorithm and Algorithm are equivalent.

Algorithm 4.1 Asynchronous send matched by MPI_Wait
1: MPI Isend(A)

2: Compute(X)

3: MPI Wait(a)

Algorithm 4.2 Asynchronous send matched by MPI_Test
: Finished = FALSE
MPI Isend(A)
Compute(X)
while !Finished do
Finished = MPI_Test(A)
end while

40

4.2.3. Description of Benchmark

The first parameter to be selected when running the benchmark is the number
of MPI ranks used and their placement on the available compute nodes. As the
asynchronous communication functions to be tested are part of the two-sided-
communication functions, the chosen number of ranks has to be even. In order
to test inter-node communication, these ranks must be evenly distributed across
an even amount of compute nodes. The simplest setup would be two ranks,
placed on one node each. Using four ranks, different placement options are pos-
sible: Placing each rank on an individual node, providing each rank with its own
network interface, or placing two ranks on two nodes each. As mentioned earlier,
the communication for this analysis is always bidirectional. If rank 0 sends to
rank 1, rank 1 also sends to rank 0. In order to actually measure the behavior of
asynchronous communication through the available network, the communication
partners are always chosen pairwise between the two sets of ranks, resulting in
no intra-node communication.

Since many HPC applications require more than one communication partner per
rank, but can require each rank to exchange data with a subset of all remaining
ranks, the second parameter available is the number of communication partners
each rank has to communicate with. Again making sure that the communication
partners are in the two different halves of the used ranks, each rank can have
a definable amount of communication partners. For multiple neighbors, each
rank chooses the neighbors starting with its corresponding partner in the other
half of the ranks in a round robin fashion. The benchmark can be configured so
that each rank sends a user-defined number of messages to each communication
partner, which must be greater or equal to one. These messages can be defined
by providing a desired message size. Using the standard setup, the messages will
be created as sequential memory regions containing enough doubles to make up
for the message size. As each message buffer can only be used in one MPI com-
munication at the same time, each rank creates individual buffers for all defined
messages and initializes them with random double values. These values will not
change throughout the benchmark run.

Due to the nature of parallel applications, MPI offers the option to create user
defined derived datatypes. These MPI datatypes define data regions which can
be passed to communication functions as send or receive buffers and must not
be sequential in memory. For details on MPI datatypes refer to Section In
order to see how well asynchronous communication works in combination with
derived datatypes, the benchmark also offers to create the message buffers us-
ing strided datatypes created by using MPI_Type_vector (see MPI standard [55]
for details). The blocklength and stride size for the vectorized datatype can be
passed to the benchmark as parameter.

Independent of the message buffer type, all messages in one benchmark run have
the same size and memory layout.

41

In order to overlap communication with computation, a communication inde-
pendent computation phase is included in the benchmark whose length is user
definable. The computation can easily be replaced by any custom code and con-
sists of a stencil update scheme on a matrix. For a definable matrix size, each
rank initializes this matrix with random double values and, in the computation
phase, updates each element of the matrix as the average of its four neighbors.
The computation is chosen to occupy the CPUs hosting the ranks, which could
also be done through other operations such as matrix-matrix multiplications or
by using integer operations instead of the floating point units.

Algorithm 4.3 Communication pattern for the synchronous benchmark

numP = “Number of communication partners”
numM = “Number of messages per communication partner”
iterations = “Number of iterations to be executed”
timeC = “Defined compute time”
for iter € 1...iterations do
for alli€1...numP do
for all j € 1...numM do
MPI_Trecv(i,j,msg(;q);
MPT_Isend(i,j,msg(; ;));
end for
end for
MPI_Waitall(msgs; ;|Vi € {1...numP},Vj € {1...numM})
13: Compute(timeC)
14: end for

= e
N = O

Algorithm 4.4 Communication pattern for the basic asynchronous bench-

mark
numP = “Number of communication partners”

numM = “Number of messages per communication partner”
iterations = “Number of iterations to be executed”
: timeC = “Defined compute time”
: for iter € 1...iterations do
for allie€1...numP do
for all j€1...numM do
MPI_Trecv(i,j,msg(;q);
MPT _Isend(i,j,msg(; ;));
end for
end for
Compute(timeC)
MPI_ Waitall(msgs; ;|Vi € {1...numP},Vj € {1...numM?})
: end for

© P T s w Y

— = = =
e eo

42

Algorithm 4.5 Communication pattern for the advanced asynchronous
benchmark with manual progression

1: numP = “Number of communication partners”

2: numM = “Number of messages per communication partner”

3: iterations = “Number of iterations to be executed”

4: timeC = “Defined compute time”

5: numT = “Number of calls to MPI_Test”

6: tht = timeC / (numT + 1) > Time between MPI_Test calls
7. for iter € 1...1iterations do

8: for allie1...numP do

9: for all j e 1...numM do

10: MPT_Trecv(i,j,msg;));

11: MPI_TIsend(i,j,msg j);

12: end for

13: end for

14: fortel...numT do

15: Compute(tbt)

16: MPI_ Testall(msgs; j|Vi € {1...numP},Vj € {1...numM})
17: end for

18: Compute(tbt)

19: MPI_Waitall(msgs; j|Vi € {1...numP},Vj € {1...numM?})
20: end for

The benchmark takes care to avoid communication setup effects by exchanging
all defined messages once before the actual execution of the chosen communica-
tion pattern. The same is done for the computation, which is repeated multiple
times in order to calibrate the timing mechanism taking care of the computation
phase duration. The latter can also be provided through the benchmark param-
eters.

For the actual benchmark execution, three different communication patterns can
be chosen, which will be repeated for a user-defined number of iterations. These
patterns are:

e Synchronous version (SYNC)
e Basic asynchronous version (ASYNC)

e Advanced asynchronous version with manual progression (ASYNC(X))

The synchronous version is the base version: Communication happens be-
fore the defined computation phase. This includes everything from initialization
to successful termination of all defined messages. Communication is initialized
using the immediate versions of send and receive and finished by a directly fol-
lowing call to MPI_Waitall. This is done because each rank needs to send and
receive to each neighbor for each message. Using these functions avoids dead-
locks and allows for optimized network usage. An outline of the communication

43

pattern can be seen in Algorithm [4.3] This version will be referred to as “SYNC”
in the following sections and represented as “S” in the time measurement graphs.
The basic asynchronous version tests whether or not the tested MPI imple-
mentation provides overlap automatically. Communication is initialized before
and finished after the defined computation phase. Each rank calls MPI_Irecv
and MPI_Isend for each communication partner and each message per communi-
cation partner. This is followed by the defined computation phase, which again
is followed by a call to MPI_Waitall. In this case the used system can take
care of the actual message transfer (synchronization and data transfer overlap)
during the computation phase. An outline of the communication pattern can
be seen in Algorithm [£.4] This version will be referred to as “ASYNC” in the
following sections and represented as “A” in the time measurement graphs.

The final communication pattern is the advanced asynchronous version
with manual progression. As in the basic asynchronous version, the commu-
nication is initialized for each message in the beginning of an iteration. During
the computation, at even time intervals depending on the amount of calls to
be made, the manual message progression function (MPI_Test, MPI_Testall or
MPI_Testany) is called. The sum of computation time equals the time spent in
computation in the other versions, adding these MPI library calls as overhead.
After the computation/advancement phase, MPI_Waitall is again used to make
sure that all messages have been delivered successfully and all buffers are free to
be used. The outline of this communication pattern can be seen in Algorithm [4.5]
This version will be referred to as “ASYNC(X)” in the following sections, where
“X” is the number of chosen MPI_Test calls. In the time measurement graphs,
this version is represented by the corresponding “X"-axis labeling.

In order to understand and analyze the behavior of the different benchmark
executions, detailed time measurements are carried out for each run. The times
presented in this work are always averages of multiple repetitions of the same
parameter sets. This ensures that the results show the normally expected be-
havior and avoid unusual external influences. The timing measurements done
are:

e Total benchmark execution time: The difference between two time-stamps
taken before the first and after the last iteration, respectively.

e Communication initialization time: The sum of time spent in all MPT_Isend
and MPI_Irecv calls throughout all iterations.

e Communication termination time: The sum of all MPTI_Waitall calls through-
out all iterations.

e Communication advancement time: The sum of all MPI_Testall calls
throughout all iterations.

44

e Computation time: The total time spent in the computation function
throughout all iterations. This measurement can be used to see if sys-
tem resources are used during the computation phase which are not part
of the application processes but delay the process nevertheless.

With these measurements, it is possible to compute the overall communication
time (i.e. time spent in communication related MPI functions) by adding up all
communication related times.

In order to understand the final benchmark timing results, the possible scenarios
and the expected timing patterns will be discussed in the following paragraphs.

4.2.4. Benchmark Results: Expectations

For the different communication patterns, different behavior concerning the re-
sulting times is possible. Depending on the capabilities of the tested MPI im-
plementation to achieve overlap, different results can be expected for the taken
measurements. Using two ranks exchanging one message in each direction for
two iterations, these expectations will be discussed here. The presented sketches
represent the timeline of events happening in each of the two ranks, where time
is increasing along the x-axis. The duration of the individual events shown here
is not to scale and should represent proportions only.

Rank

ro N I I I O
R [I T .
I

I MPI_lrecv & MPI_lsend - MPI_Waitall - Communication independent work

Time
>

Figure 4.1.: Benchmark Expectations: Behavior of the synchronous communica-
tion pattern (2 iterations).

The SYNC communication pattern is the only one in which the behavior is
straight forward and timings can be predicted quite precisely. As the MPI_Irecv
is always posted before the MPI_Isend and these two functions are supposed to
return “immediately,” the two calls will be relatively short. They should only in-
clude the steps necessary to make the communications known in the system and
tell the MPI environment that the corresponding buffers are ready to be used.
These two calls are followed by the MPI_Waitall calls in both ranks, which re-
turn only after both messages have been exchanged successfully. The time from
initialization until the end of MPI_Waitall includes the actual data transfer, as
it is guaranteed that at the time MPI_Waitall returns both the send and the re-
ceive buffers on the calling rank can be reused and contain the expected data (in
the receive buffers). Only in cases where the MPI implementation takes care of
the communication inside the communication initialization functions could the
timing be different. This is unlikely as the compiler and runtime must guarantee
that deadlocks are not introduced by blocking here.

45

Next is the computation phase, which computes the predefined number of stencil
operations on the computation phase matrix. This pattern, depicted here for the
two iterations, can be seen in Figure 4.1

As no other requirements are placed on the nodes used for the benchmark (and
optimally on the network as well), the total communication time represents the
best time possible to transfer the data. The total measured time is expected to
equal the sum of all communication times and the computation times.

Rank

I
r [l N ——
I

I MPI_Irecv & MPI_lsend - MPI_Waitall - Communication independent work

Time
>

Figure 4.2.: Benchmark Expectations: Behavior of the asynchronous communi-
cation pattern in cases where overlap is possible (2 iterations).

Rank

Ro [Y I N I Y —
R [A O] —
I

I MPI_lrecv & MPI_lsend - MPI_Waitall - Communication independent work

Time
>

Figure 4.3.: Benchmark Expectations: Behavior of the asynchronous communi-
cation pattern in cases where overlap is not possible (2 iterations).
Communication is happening in the MPI_Waitall call.

Rank

oI
~ [l
I

I MPI_lrecv & MPI_lsend - MPI_Waitall - Communication independent work

Time

Figure 4.4.: Benchmark Expectations: Behavior of the asynchronous communi-
cation pattern in cases where overlap is not possible, but the time
spent in communication functions is short (2 iterations). Communi-
cation is happening outside the MPI library calls but occupies the
system resources during the computation phase, delaying it.

The possible expectations for the other two communication patterns is more
complex, and the presented expectations have been created based on the the-
oretical possible behavior and the results presented in literature discussed in
Section (4.1}

For the ASYNC communication pattern, different scenarios are possible. As
discussed in the benchmark description above, the MPI_Waitall call is moved

46

Rank

Ro [B T I B T ——

o [T N T
f Time >

I MPI_Irecv & MPI_lsend - MPI_Waitall - Communication independent work I MPI_Test

Figure 4.5.: Benchmark Expectations: Behavior of the asynchronous commu-
nication pattern calling MPI_Test regularly in cases where overlap
is not possible and MPI_Test does not advance pending messages
(2 iterations). The time spent in MPI_Test is pure overhead, not
contributing to the communication at all. In this example three
MPI_Test calls are done per iteration.

Rank

Ro N e
s - ---e-_,_,—,ee
I

Time

I MPI_Irecv & MPI_Isend - MPI_Waitall - Communication independent work I MPI_Test

Figure 4.6.: Benchmark Expectations: Behavior of the asynchronous communi-
cation pattern calling MPI_Test regularly in cases where overlap is
not possible, but MPI_Test does advance pending messages (2 it-
erations). The time spent advancing messages in MPI_Test is not
needed in the MPI_Waitall calls, which therefore return faster. In
this example three MPI_Test calls are done per iteration.

behind the corresponding computation phase, allowing for the system to take
care of communication any time between communication initialization and the
end of MPI_Waitall. This allows for three possible scenarios:

Using MPI nonblocking communication this way results in overlap (Figure .
In this case actual synchronization and data transfer has been overlapped with
computation and MPI_Waitall can return directly, reporting the communication
finished.

The second possibility is that no overlap is achieved and the total communication
time is the same as in the SYNC version (Figure [£.3). Here data transfer is also
done during the MPI_Waitall function, effectively moving the communication
from before (in the SYNC version) to after computation.

Finally, it is possible that the communication times reported are short, as in the
case where overlap is possible, but showing the same total benchmark execution
time as the SYNC version (Figure . In this case the actual data transfer
happens outside the MPI library calls and instead requires CPU resources dur-
ing the computation phase, which in turn takes longer than expected. While the
latter scenario is possible, results from related work suggest that it is the most
unlikely of the three possibilities.

47

Rank

Ro [I A
Bl B 1 1 e r 1 1 1
I

I MPI_Irecv & MPI_Isend - MPI_Waitall - Communication independent work I MPI_Test

Time >

Figure 4.7.: Benchmark Expectations: Behavior of the asynchronous communi-
cation pattern calling MPI_Test regularly in cases where overlap is
possible through the fact that MPI_Test initialized the advancement
of pending messages (2 iterations). The time for MPI_Test calls is
only spent for initializing the communication and the actual data
transfer can be done while computation continues. In this example
three MPI_Test calls are done per iteration.

In the ASYNC(X) communication pattern, the computation phase is inter-
leaved regularly with MPI_Test calls. For the example scenario, three MPI_Test
calls are chosen (= ASYNC(3)). In this case three different scenarios are possi-
ble:

e MPI_Test does nothing. Neither does it advance messages nor does it result
in overlap. (Figure |4.5)

e MPI_Test advances messages but does so before returning, resulting in no
overlap as well. (Figure

e MPI_Test advances messages and results in overlap. (Figure

In case of no overlap and no message progression, the times spent in MPI_Irecv,
MPI_Isend and MPI_Waitall, as well as the computation time, are the same as
in the ASYNC communication pattern. The MPI_Test calls can be considered to
be pure overhead, not contributing to communication at all. Besides this over-
head, the interruption of the computation might also introduce overhead, which
is not considered in Figure This scenario seems unlikely. As discussed in
previous chapters, an MPI communication initialized with an immediate send or
receive function does not require a matching MPI_Wait in cases where successful
communication is confirmed through MPI_Test. Nevertheless is might be the
case that a large number of MPI_Test calls is necessary to achieve this, resulting
in the presented expectation scenario in cases where too few MPI_Test calls are
being used.

Another possibility is that MPI_Test does advance the pending messages partly in
each call without providing overlap. In this case the time saved in MPI_Waitall
is spent inside the MPI_Test function, again moving the communication to a
different step in the process in comparison to the SYNC and ASYNC versions
without reducing the overall execution time of the total number of iterations.
Depending on which portion of the messages can be progressed in MPI_Test,
MPI_Waitall is needed to finish the rest of the pending messages or encounters

48

successful completion of the same (see Figure [4.6]).

Finally it is possible that using MPI_Test calls does result in overlap and that
using MPI_Test calls in between the communication initialization and termina-
tion does trigger synchronization and data transfer overlap (see Figure. Two
different behaviors are possible internally. One option is that only the synchro-
nization steps are needed, which are taken care of after a certain amount of
MPI_Test calls. Automatic data transfer overlap is possible afterwards. Another
option is that a call to MPI_Test can only initialize the data transfer overlap
for a part of the message, resulting in the need for multiple MPI_Test calls to
trigger the transfer of all other parts frequently. In both cases MPI_Test calls are
short since they do not need to take care of the actual data transfer. The total
benchmark execution time is now reduced to the time needed to do computation
and the times spend initializing and triggering message progression.

Figure [4.8| depicts a possible timing graph of an imaginary set of benchmark
runs for the different expectation scenarios. For a given computation time and
a given message size, the benchmark will be executed (multiple times) for all
scenarios: SYNC, ASYNC and ASYNC(X) for x=1..15 (in this example). It is
assumed that the communication time is smaller than the computation time.
The four different possible scenarios depicted are:

1. No Overlap: For no version overlap is possible. The times for SYNC and
ASYNC are the same. Adding MPI_Test calls is at least as long and might
introduce additional overlap.

2. Overlap for all ASYNC and ASYNC(X) versions: Using MPI_Irecvand
MPI_Isend together with MPI_Waitall is sufficient for overlap. The time
for ASYNC is nearly as short as the computation time. Only the initial-
ization of the messages and the check of successful completion is needed
in the MPI library calls. Adding MPI_Test calls is unnecessary and might
cause overhead.

3. Overlap only when using MPI_Test in order to take care of synchronization
with automatic overlap afterwards. In the presented example 2 MPI_Test
calls in each rank would be necessary to achieve synchronization.

4. Overlap only when using MPI_Test in order to advance messages block by
block, being able to overlap each message part with computation. In cases
where not enough MPI_Test calls are used, the rest of communication has
to be done in MPI_Waitall.

4.2.5. Benchmark Results: Measurements and Analysis

With these expectations in mind an extensive set of tests has been executed on
different HPC systems. Details about the system descriptions can be found in
Appendix [A] The following combinations have been used: Intel MPI 4.0, Intel

49

Twinm |
* —o— 1. No Overlap

—m— 2. Overlap
—e—3. Overlap after Synchronization
——4. Overlap through Advancement

Time

[|
SA 2 4 6 8 10

| | | | |
12 14 16 18
Version(Sync/Async/Async(x))

Figure 4.8.: Benchmark Expectations: Example timelines of different possible
outcomes for a specified benchmark setup in which T3y is the time
needed for computation (work) and Ty is the time needed for com-
munication (message). 1.) No overlap. Neither using asynchronous
communication nor adding MPI_Test calls results in any overlap. 2.)
Overlap as soon as asynchronous communication is used “around”
computation. MPI_Test calls are not necessary but might result in
overhead. 3.) Overlap is possible after a successful synchroniza-
tion of the communication partners. In this case after using three
MPI_Test calls (as an example). Any more MPI_Test calls are un-
necessary and can result in overhead. 4.) Overlap is possible, but
data transfer overlap has to be achieved through initializing the
asynchronous sending of message junks regularly through MPI_Test
calls. In cases too few MPI_Test calls are done, only part of the mes-
sages is overlapped. Too many calls after successful communication
completion result in overhead.

MPI 4.1 and MPT MPI on the ICE cluster as well as IBM MPI on the Super-
MUC.

As the basic behavior of the different combinations in regard to asynchronous
communication should be observable using two ranks on two compute nodes, i.e.
doing real inter-node communication, this scenario has been looked at in detail.
Also different numbers of messages per iteration and computation partner have
been chosen.

For the presented combinations, the used parameters for the benchmark cov-
ered the following ranges:

50

14 g
12 s
— —o— 100MB
E’ —=— 50MB
R= —e— 10MB
= 10 1 |- 5MB
—— 2MB
-e- 1MB
]I ——% | |-=-512kB
| -e- 128kB

Version(Sync/Async/Async(x))

Figure 4.9.: Benchmark Results: 1 MPI rank each on two nodes of the ICE Cluster
using Intel MPI 4.0. 1 message sent per iteration and rank using a
sequential memory buffer.

Versions: SYNC, ASYNC, ASYNC(X)

Number of MPI_Test calls (= X in ASYNC(X)): 1 to at least 10.
e Iterations: 100
e Message sizes: 128kB up to 200MB

e Communication time per iteration: 80ms

The number of 100 iterations for each test has been chosen after confirming that
different iteration counts do not have visible impact on the results. The chosen
iteration duration of 80ms covers the communication time for most chosen mes-
sage sizes on the chosen systems.

Comparing these tests with extra large messages, which sequentially take longer
than 80ms, it can be seen that the maximum overlap achievable is, as expected,
maz(sequential computation time, sequential communication time). All tests
have been executed multiple times and the resulting timing results have been
averaged.

The times presented in the result graphs are for all 100 iterations, i.e. including
the time for 100 computation phases, the time for sending the defined number
of messages 100 times, etc.

The results showing the overall benchmark execution times for the different

setups are similar in all cluster-MPI combinations, even when choosing a different
number of messages per communication partner and iteration:

51

Time(s)

20

18

16

14

12

10

—e—100MB
—=— 50MB
—e— 10MB
|1 |—— 5HMB
—— 2MB
-e- 1MB
-=- 512kB
- - 128kB

Version(Sync/Async/Async(x))

Figure 4.10.: Benchmark Results: 1 MPI rank each on two nodes of the ICE

Cluster using Intel MPI 4.0. 2 messages sent per iteration and
rank using sequential memory buffers.

25+ 8
20 - 8
w
T —e—100MB
—e— 10MB
—— 5MB
10 | |- 2MB
-e- 1MB
- - 512kB
10
Version(Sync/Async/Async(x))
Figure 4.11.: Benchmark Results: 1 MPI rank each on two nodes of the ICE

92

Cluster using Intel MPI 4.0. 3 messages sent per iteration and
rank using sequential memory buffers.

—o— 120MB
| |-=—110MB
—e— 100MB
—— 80MB
—— 50MB
-e- 10MB
-=- HMB

-e- 1MB

81 s« 512kB

e) A A s
SA 2 4 6 8 10 12 14 16 18 20
Version(Sync/Async/Async(x))

12

Time(s)

10|

Figure 4.12.: Benchmark Results: 1 MPI rank each on two nodes of the ICE
Cluster using Intel MPI 4.1. 1 message sent per iteration and rank
using a sequential memory buffer. Processes pinned to core number
4 of the respective nodes.

ICE - Intel MPI 4.0:
— 1 message: Figure [1.9]
— 2 messages: Figure [£.10]

— 3 messages: Figure 4.11

ICE - Intel MPI 4.1: Figure [4.12]

e ICE - MPT MPI:
— 1 message: Figure[4.13
— 2 messages: Figure
— 3 messages: Figure
SuperMUC - IBM MPI:
— 1 message: Figure [£.10]
— 2 message: Figure [1.17]

Independent of the presented combination of HPC system with MPI imple-
mentation as listed above, the SYNC and ASYNC versions show nearly identical
overall benchmark execution times. Therefore it can be concluded that in no
setup can real overlap be achieved by the exclusive use of immediate send and
receive calls combined with a matching wait function surrounding the communi-
cation independent work. In all results the use of MPI_Test provides the desired

93

14 - -
12 - -
— —e— 100MB
T -=— 50MB
5 —— 10MB
10 |- 1 |—— 5MB
—— 2MB
-e- 1MB
gl —g | |-=-512kB
| -e- 128kB

Version(Sync/Async/Async(x))

Figure 4.13.: Benchmark Results: 1 MPI rank each on two nodes of the ICE
Cluster using MPT MPI. 1 message sent per iteration and rank
using a sequential memory buffer.

overlap. Nevertheless the necessary amount of MPI_Test calls depends on the
system and the overall amount of data sent in each iteration. For IntelMPI on
the ICE cluster, at least two MPI_Test calls are necessary in order so observe
any kind of overlap. The other combinations show overlap starting with the first
used MPI_Test call.

The amount of communication time overlapped depends on the overall amount of
data transferred in each iteration. For amounts of data below a certain limit, the
difference between no overlap and total overlap is a single additional MPI_Test
call. For amounts of data above this limit, multiple additional MPI_Test calls
increasingly reduce the overall execution time. Looking at the chosen message
sizes, this limit lies between 10MB and 50MB for InteIMPI on the ICE clus-
ter, between 50MB and 100MB for MPT-MPI on the ICE cluster and between
100MB and 200MB for IBM MPI on the SuperMUC. This limit is not dependent
on the system, as can be seen by looking at the results for the different MPI im-
plementations used on the ICE cluster. It is also not dependent on the number of
messages used to transfer this amount of data. Looking at the multiple messages
per iteration used for MPT-MPI on ICE and IBM-MPI on SuperMUC, it can
be seen that the limit is for the sum of message sizes per iteration. E.g. in case
of IBM-MPI on SuperMUC, when using 1 message per iteration (Figure ,
the limit lies between the message sizes 100MB and 200MB. Using 2 messages
in each iteration (Figure , it lies between 50MB and 100MB per message.
For messages above the limit, multiple MPI_Test calls are needed in order to
observe total overlap. In cases where the synchronous communication time is

o4

20 F TTTTTTT =

18 | 8

16 |- 8
— —e— 100MB
T 4 1 |-=— 50MB
é —e— 10MB
12 . 1 |—— 5MB
- - —— 2MB
101 1 |-e- 1MB
-#- H12kB

[:—'7 |
8 PILILI] | 4'\ 7’7128kB

| | |
A24 10 15 20 30 50
Version(Sync/Async/Async(x))

Figure 4.14.: Benchmark Results: 1 MPI rank each on two nodes of the ICE
Cluster using MPT MPI. 2 messages sent per iteration and rank
using sequential memory buffers.

smaller than the computation time, increasing the MPI_Test count reduces the
overall execution time until it is equal to the computation time. In cases where
the synchronous communication time is longer than the computation time, com-
munication time is dominant and the overall execution time can be reduced to
match it.

This behavior can be observed on other HPC systems as well. This can be seen
in the results of Chapter [0 where the knowledge obtained through this bench-
mark has been applied in a hybrid MPI-OpenMP approach, showing that MPI
awareness in the OpenMP runtime can indeed efficiently create synchronization
and data transfer overlap in real applications.

These results indicate that a mixture of the presented scenarios is true: At least
some MPI_Test calls are necessary for synchronization and then each MPI_Test
call is capable of initializing the asynchronous sending/receiving of the next part
of the message. For IntelMPI on the ICE cluster (Figure Figure ,
at least two MPI_Test calls are necessary, which would suggest that some syn-
chronization is necessary. For the other combinations, this synchronization can
be done between the communication initialization and the first MPI_Test call,
which can directly be used to start the overlap. In case the amount of data to be
transferred is below the described limit, data transfer overlap can be achieved
by one additional MPI_Test call. In cases where additional CPU involvement
is necessary for additional data transfer overlap, the increasing overlap through
additional MPI_Test calls suggests that message progression is achieved.

95

TTTTTTT
25 | -
20 | -
— —o— 100MB
T ° -=— 50MB
E 15 4 |—e— 10MB
—— HMB
—— 2MB
10 - | -o- 1MB
_4 -=- 512kB
PILLL]] | | | | | 7’71281(]3
A24 10 15 20 30 50

Version(Sync/Async/Async(x))

Figure 4.15.: Benchmark Results: 1 MPI rank each on two nodes of the ICE
Cluster using MPT MPI. 3 messages sent per iteration and rank
using sequential memory buffers.

In order to understand the behavior of the MPI implementations in more
detail, the timing results for the individual events (e.g. computation, MPI ini-
tialization, MPI_Test and MPI_Waitall) can be used. As the presented results of
this analysis are the same for all shown combinations, it will be done using the
combination IBM-MPI on SuperMUC as an example. The corresponding graphs
for a second combination (IntelMPI 4.0 on ICE using 2 messages per iteration
Figure can be seen in Appendix

For the results of the chosen example presented in Figure two nodes of
the SuperMUC hosted one MPI rank each. The ranks have been pinned to use
core 8 of each node in order to minimize NUMA effects. The reason for choosing
core 8 instead of the system default pinning strategy, which pins the first to be
pinned process on core 0, will be discussed later.

The parameters for the benchmark here were:

e 100 iterations

e 1 communication partner per rank

1 message per iteration and communication partner

80ms of work per iteration

o Message sizes: 1MB, 10MB, 50MB, 100MB, 200MB

o6

141 A

—~ 12\ N
T
=

= 10l | |—*—200MB

—=—100MB

—e— 50MB

—— 10MB

8 i | | | | | \. \. i - 1MB

| |
S A 2 4 10 15
Version(Sync/Async/Async(x))

Figure 4.16.: Benchmark Results: 1 MPI rank each on two nodes of the Super-
MUC using Intel IBM MPI. 1 message sent per iteration and rank
using a sequential memory buffer. Processes pinned to core number
8 of the respective nodes.

Each parameter combination has been executed using the SYNC, ASYNC and
ASYNC(X) version. The amounts of MPI_Test calls (X) chosen are 1, 2, 3, 4,
5, 10 and 15. All combinations have been repeated five times and the maximum
relative standard deviation for any combination is below 0.223%. The times
shown in Figure [4.16| are the average times of these five runs, including all 100
iterations.

As the expected computation time is 8 seconds for 100 iterations, any additional
time needed can be considered overhead. That nearly all the overhead can be
considered communication overhead can be seen by comparing Figure and
Figure [{.18] The latter shows the sum of time spent in MPI related functions
for all 100 iterations. The times presented here are nearly exactly the same as
the overhead observed in the original overall results. Looking at the synchronous
version (SYNC, labeled S in the graphs), the time needed for communication in
cases where all resources are dedicated to doing so can be seen.

Looking at the expectations discussed earlier, the fact that the communication
time decreases in the same way as the measured overall benchmark execution
time shows that real data transfer overlap is being achieved through the use of
MPI_Test calls. While the communication initialization using MPI_Irecv and
MPI_Isend can be neglected (Figure , it can be seen that the actual com-
munication which can not be overlapped happens during the MPI_Waitall call
(Figure [£.21)). In case of the standard asynchronous version (ASYNC, labeled A

in the graphs), this includes the entire data transfer.

o7

20| .

=
) 15| 1
g
H
—o— 200MB
10 - | |-—=—100MB
—e— 50MB
| | | | | | | .\ T - 1OMB
S A 2 4 10 15

Version(Sync/Async/Async(x))

Figure 4.17.: Benchmark Results: 1 MPI rank each on two nodes of the Super-
MUC using IBM MPI. 2 messages sent per iteration and rank using
sequential memory buffer. Processes pinned to core number 8 of
the respective nodes.

Looking back at the expectations presented in Figure the communication
timer measurements suggest that depending on the message size and the MPI
implementation - HPC system combination, overlap is being achieved after a suc-
cessful synchronization for small messages and, through message advancement,
for large messages. Also, MPI_Test is used to initialize message progression.
Actual data transfer is not done during its execution, as can be seen by the
neglectable amount of time spend in all MPI_Test calls for all 100 iterations
(Figure . Also, the used core is available for useful work during the com-
munication independent work phase.

All in all this benchmark shows that, for the used MPI implementations, not
only synchronization overlap can be achieved, but the data transfer can also be
overlapped with computation in cases where the programmer calls MPI_Test at
suitable times. Nevertheless, these calls need to be implemented manually by
the programmer.

4.2.6. Using MPI Datatypes

The layout of the data to be communicated between the different ranks is not
necessarily sequential in memory. In order to be able to send this data in one
single MPI message, MPI offers derived datatypes (see Section . They can
be used to describe non-sequential memory regions in a single identifier which in
turn can be passed to an MPI communication function as send or receive buffer.

o8

6 [-
—~ 4r 8
0
T
e
= 2 B +200MB
—=—100MB
—e— 50MB
—— 10MB
0 . | | | | | | | \- \- | - 1MB
S A 2 4 10 15
Version(Sync/Async/Async(x))

Figure 4.18.: Benchmark Results: Time spent in MPI functions only. 1 MPI rank
each on two nodes of the SuperMUC using IBM MPI. 1 message
sent per iteration and rank using a sequential memory buffer. Pro-
cesses pinned to core number 8 of the respective nodes.

1074
T
6 [-
= 4 il
T
E
= 9| | |—e—200MB
—=—100MB
—e— 50MB
. . —— 10MB
0 . | | | | | | | | | | - 1MB
S A 2 4 10 15
Version(Sync/Async/Async(x))
Figure 4.19.: Benchmark Results: Time spent in MPI communication initializa-

tion functions only (MPI_Irecv, MPI_Isend). 1 MPI rank each on
two nodes of the SuperMUC using IBM MPI. 1 message sent per
iteration and rank using a sequential memory buffer. Processes
pinned to core number 8 of the respective nodes.

99

1073

T T
41 N
30 N
o ¢ <:
= 2 i
a —e—200MB
1r | |-=—100MB
—e— H50MB
—— 10MB
0 . | | | | | | | | | | - 1MB
S A 2 4 10 15

Version(Sync/Async/Async(x))

Figure 4.20.: Benchmark Results: Time spent in MPI communication advance-
ment functions only (MPI_Test). 1 MPI rank each on two nodes of
the SuperMUC using IBM MPI. 1 message sent per iteration and
rank using a sequential memory buffer. Processes pinned to core
number 8 of the respective nodes.

6 i
Py 4+ i
w0
T
=
a 21 | |—e—200MB
—=— 100MB
—e— 50MB
—— 10MB
0 . | | | | | | | -\ \- | - 1MB
S A 2 4 10 15

Version(Sync/Async/Async(x))

Figure 4.21.: Benchmark Results: Time spent in MPT communication termination
functions only (MPI_Wait). 1 MPI rank each on two nodes of the
SuperMUC using IBM MPI. 1 message sent per iteration and rank
using a sequential memory buffer. Processes pinned to core number
8 of the respective nodes.

60

Tests executed with the benchmark using an MPI_Datatype,which has been cre-
ated with MPI_Type_vector show different results in comparison to using sequen-
tial buffers. Defining the MPI_Datatype to use the first half of every megabyte
in memory, it is possible to achieve overlap using IBM MPI on the SuperMUC.
The results in Figure show that the amount of overlap is very close to the
overlap observed in the results presented above (see Figure . Nevertheless,
for the same amount of work and the same overall message sizes, the bench-
mark execution times increase dramatically when using MPI_Datatypes. This
is a result of necessary data-movement i.e. sequentializing data in memory for
the actual data transfer and copying the received data to the corresponding re-
gions in the receive buffer. This overhead can also be seen when using a similar
MPI_Datatype on the ICE cluster with the systems default MPT MPI.
Comparing Figure to the results shown before in Figure shows that
while using the same amount of work and the same message sizes per iteration
and the same amount of iterations, the overall runtime of the benchmark in-
creases when the used message buffers are defined through MPI_Type_vector.
Additionally, even a large number of MPI_Test calls (up to 75 in this case) does
not result in any overlap. In this scenario on this system, it is better to man-
ually use a sequential send/receive buffer. This is done by copying the data
corresponding to the MPI_Type_vector from the source data into a temporary
send buffer before the call to MPI_Isend and from a temporary receive buffer
into the desired memory regions corresponding to the MPI_Type_vector after
the successful MPI_Waitall. Figure [£.:24] shows that the synchronous version of
this code (labeled S) is worse than using MPI_Datatypes directly. Nevertheless,
the use of MPI_Test results in sufficient overlap to outweigh the overhead of
manual data movement with only two used MPI_Test calls. Nevertheless, it can
be confirmed that having data corresponding to one message buffer in a sequen-
tial memory region is the best approach.

All in all the benchmark results show that overlap, especially data transfer
overlap, is not guaranteed through the use of nonblocking asynchronous MPI
functions for the tested MPI implementations on the used HPC systems. With
some manual placement of MPI_Test calls as communication advancement func-
tions, the overlap can be achieved in most situations. Nevertheless, while a few
MPI_Test calls are mostly sufficient to overlap the tested messages, their timing
is important. In cases where two MPI_Test calls, executed evenly during the
computation phase, are sufficient, the tests using more calls show that when
the MPI_Test calls are executed more often and earlier, more than two calls are
necessary before MPI_Test returns successful communication.

As MPI codes usually do not call MPI library functions between the asyn-
chronous communication initialization and the corresponding MPI_Wait calls, no
overlap is achieved. In order to provide this overlap automatically, an approach
using an MPI aware OpenMP runtime in hybrid MPI-OpenMP programming
approaches will be discussed throughout the rest of this Chapter.

61

‘Lm n] u u
—e— 100MB

| |-= 50MB

m”” ® ® ® . —e— 10MB
—— 1MB

SA 2 4 10 15 25 30
Version(Sync/Async/Async(x))

Benchmark Results: 1 MPI rank each on two nodes of the Super-
MUC using IBM MPI. 2 messages sent per iteration and rank using
a nonsequential MPI datatype as memory buffer (every first half of
every megabyte in memory). Processes pinned to core number 8 of
the respective nodes.

20 -
=
) [
E 15
=
10
Figure 4.22.:
20 -
=
[«b] -
E D
H
10 -
Figure 4.23.:

62

EEEEEEER B ® @ g —o— 100MB

—=— 50MB

4 |—e— 10MB

¢oc000e ——o¢ & o o —— HMB

Ll ! ! ! ! —— 1MB
SA 2 4 10 25 50 75

Version(Sync/Async/Async(x))

Benchmark Results: 1 MPI rank each on two nodes of the ICE
Cluster using MPT MPI. 2 messages sent per iteration and rank
using a nonsequential MPI datatype as memory buffer (every second
megabyte in memory).

20

©

5] I |
E 15

= —e—100MB

= = = n = 50MB

10| - |—e— 10MB

—— bMB

| | | | | | | - 1MB

| |
2 14 10 25 50 75

Version(Sync/Async/Async(x))

Figure 4.24.: Benchmark Results: 1 MPI rank each on two nodes of the ICE
Cluster using MPT MPI. 2 messages sent per iteration and rank
exchanging nonsequential memory regions (every second megabyte
in memory). Temporary message buffers are used and the data is
being sequentialized before a send operation and distributed after
a receive operation manually.

4.3. Advancing Asynchronous MPI Communication at
OpenMP Scheduling Points

As shown in Section [£.2] asynchronous communication is not always available
and overlap of communication and computation is not guaranteed when using
the asynchronous communication functions of MPI. Nevertheless, with manual
calls to MPI_Test real asynchronous behavior and overlap is possible. In real
life applications, this approach needs manual placement of the advancement
functions into the communication independent work code. Additionally, as the
perfect number of advancement calls and their timing differ for different systems
and different MPI implementations, a lot of knowledge of the code behavior is
necessary. Seeing as no MPI calls are usually made in between the communica-
tion initialization and termination, another automated way of taking care of the
advancement automatically would be desirable.

As described in Section [2.3] the combined use of MPI and OpenMP in a hybrid
fashion does offer many advantages. Matching the hybrid setup in modern HPC
systems, combining shared memory and distributed memory parallelization, this
approach can be used to automate the message progression based on the results
presented in Section [£.2] In optimized, hybrid parallel applications, the com-
munication independent work can be assumed to be large in comparison to the

63

work necessary for communication and the communication related work. With
a hierarchical MPI-OpenMP approach, this MPI rank specific communication
independent work is being parallelized using OpenMP in a shared memory fash-
ion. The OpenMP runtime is therefore active during the time in which calls to
message advancement functions are necessary and can be used to automatically
execute them in moments useful for both the message progression and the overall
program.

Manually placing the MPI_Test calls into the OpenMP worksharing used to
parallelize the communication independent work is not feasible. In cases where
this is a loop parallelized using an OpenMP for construct, placing additional
code inside the loop results in a lot of overhead as it is being executed for ev-
ery scheduled index. Additionally, this approach neither takes into account the
timing of the MPI_Test calls nor the question of which OpenMP thread should
take care of it at which point in time.

A different approach would be to place the communication dependent work and
the communication advancement into OpenMP tasks. This approach has im-
plications on the parallelization of the communication independent work. As of
OpenMP 4.0 [61], it is not possible to mix tasks with worksharing through loop
parallelization. I.e. there is no direct connection between the work of OpenMP
for loops and created tasks and therefore no central workpool [85]. As a direct
result, the communication independent work must be parallelized using tasks,
which would be added to the same task pool as the tasks related to the commu-
nication. Nevertheless, restrictions exist which make this approach unusable for
an efficient scheduling of communication advancement functions. No priority can
be assigned to OpenMP tasks. Tasks cannot be coupled with preconditions for
their scheduling or execution. While OpenMP provides a task yield construct,
which can be used to interrupt a possible thread testing the state of pending
communication, it is not possible to guarantee that it is actually postponed.
Even in case the task is replaced and another task started, it is not possible to
influence the timing of the yielding task.

Finally, using tasks for the parallelization of the main body of work in a NUMA
environment might not be the best approach due to the placement of mem-
ory and execution of corresponding tasks working on it to different parts of the
NUMA domain.

In order to use the OpenMP runtime to efficiently take care of the commu-
nication advancement, and additional optimizations for hybrid codes described
later, a more general view on asynchronous MPI communication in a hybrid
MPI-OpenMP context is necessary. Algorithm outlines the central general-
ized steps of a hybrid MPI-OpenMP program. Overall, as discussed above, two
kinds of work exist: Communication dependent and communication independent
work. Communication dependent work can again be distinguished in two cat-
egories. First, work depending on the send buffer of following communications

64

has to be executed (Line . This work might be parallelized using OpenMP, but
is not necessarily best suited for this. The overhead of OpenMP parallelization
might be bigger than the benefits of parallelization in cases where too little work
is to be done or due to the placement of allocated memory throughout possible
NUMA domains. At the same time, not using all available OpenMP threads for
this work results in idle times and therefore unused resources.

After this pre-communication dependent work is done, the actual communica-
tion can be initialized, e.g. by calling MPI_Irecv and MPI_Isend (Line . The
main body of work, communication independent and well suited for OpenMP
parallelization, can be executed. This is also the time when the MPI implemen-
tation and the execution environment could take care of the actual data transfer
(Lines [f and [6]). Only after successful communication termination is guaranteed
through a call to MPI_Wait (MPI_Waitall) (Line(7)) can the work be done which
is dependent on the received data (Line[J). Again, the same aspects concerning
parallelization apply as to the pre-communication dependent work.

For real applications, e.g. the example application used in Chapter [5] multiple
messages to different communication partners might be necessary. These can
have individual (pre- and post-)communication dependent work.

Algorithm 4.6 Asynchronous communication in a hybrid MPI-OpenMP code

1: OpenMP FOR

2: Work necessary before communication can start

3: > (not necessarily “best” suited for parallelization)
4: MPI Irecv and MPI Isend

5: OpenMP FOR

6: Communication independent work

7. MPI_ Waitall

8: OpenMP FOR

9: Work necessary after communication has finished
10: > (not necessarily “best” suited for parallelization)

Making the OpenMP runtime aware of the MPI communication can solve dif-
ferent problems and provide multiple improvements: At OpenMP scheduling
points (e.g. start of new blocks when using dynamic or guided scheduling or
the static-ws scheduling presented in Chapter , the OpenMP runtime can
decide whether or not threads need to call available communication advance-
ment functions. As shown in the previous section, this can result in real overlap.
Additionally, introducing knowledge about the different (asynchronous) commu-
nications and the corresponding dependent work allows for the compiler and the
runtime to schedule the pre-communication dependent work to available threads
in an optimized way at the same time as allowing the remaining threads to start
executing communication independent work.

Through the use of communication advancement functions and the resulting

65

Thread

NI T T T T T T T T T T T 1T]

T N e v I
T2 (T T T T T T T I TT T T T
T3 crrrrrrrrrrrrrery Time

f >

-Pre-communication dependent work -Post—communication dependent work 3k MPI_Test / Advancement function
IMPI_Irecv & MPI_lsend - MPI_Wait - Communication independent work ~ 3kMPI_Test / Communication finished

Figure 4.25.: Possible timeline for an iteration in one MPI rank using 4 OpenMP
threads for work parallelization. Pre-communication and post-
communication dependent work can be parallelized using OpenMP.
MPI communication and OpenMP parallelization as provided by
the current standards.

Thread

R |

N[T T T T T#FT T T T T T T TTTT]

LT B B B B R

(27 S B ey
I

-Pre-communication dependent work -Post—communication dependent work 3k MPI_Test / Advancement function
IMPI_Irecv & MPI_Isend - MPI_Wait - Communication independent work 3k MPI_Test / Communication finished

Figure 4.26.: Possible timeline for an iteration in one MPI rank using 4 OpenMP
threads for work parallelization. Pre-communication and post-
communication dependent work are sequential and cannot be par-
allelized using OpenMP. The proposed approach of advancing com-
munication at OpenMP scheduling points is used together with the
scheduled static-ws, providing work stealing while trying to take
into account the first-touch memory placement strategy (described
in Chapter .

overlap, communication termination can be observed directly. This allows the
OpenMP runtime to schedule post-communication dependent work with a higher
priority whenever possible. Together with possible work balancing between the
used OpenMP threads (e.g. using the static-ws scheduling), this results in
optimized resource usage.

Figure depicts the behavior of one MPI rank sending and receiving
one message respectively for the usual case where MPI calls are done outside
OpenMP parallelized regions. In this case the pre-communication and post-
communication dependent work is not parallelized through the use of OpenMP,
leaving three of the four available threads idle. As no MPI calls are done during
the communication independent work and no overlap can be achieved, MPI_Wait
returns only after taking care of the data transfer. The same code executed
within an MPI aware OpenMP runtime can improve the runtime through the
described advantages as depicted in Figure While the main thread (TO)

66

takes care of the pre-communication dependent work, the other three threads
(T1-T3) can start working on their part of the communication independent work.
After the OpenMP runtime is being notified about the executed MPI_Irecv and
MPI_Isend calls, it can start scheduling communication advancement calls, e.g.
as in the benchmark described earlier through calls to MPI_Test. These are done
at OpenMP scheduling points which happen due to the use of OpenMP sched-
ules static, guided or, as in this example, the proposed schedule static-ws
(Chapter . Once any thread (e.g. thread T3 in Figure encounters the
successful termination of the communication, the OpenMP runtime is able to
schedule the post-communication dependent work directly.

Threads working on communication dependent work (TO and T3 in the example)
postpone their communication independent work. After finishing their own part
of the communication independent work, the other threads therefore encounter
“stealable” work, which is now scheduled to the otherwise idle threads, resulting
in optimized resource usage and work balancing.

Additional advantages of an MPI aware OpenMP runtime can be seen when
looking at a different example depicted in Figure [£.27] and Figure [£.28 Here
the presented MPI rank communicates with two communication partners, send-
ing and receiving one message to and from each, respectively. Additionally, the
pre-communication dependent work for the send operation to one communication
partner and both sets of post-communication dependent work can be parallelized
using the available OpenMP threads. As shown in Figure [£.27, MPI calls are
done outside the OpenMP parallel regions in the traditional approach. While
idle times exist here, all threads can participate in all kinds of work necessary.
Nevertheless, an implicit barrier for the threads can exist at the end of each
work block (e.g. at the end of used OpenMP for parallelized loops). Also, data
transfer necessary for the first MPI_Wait will have to be finished together with
the corresponding post-communication dependent work even if it is not available
from the communication partner at this point in time. The second communica-
tion can be done only afterwards, even if it would have been available earlier.
Using an MPI aware OpenMP runtime removes the barriers, the idle times and
allows for a re-ordering of the parallelized post-communication dependent work,
as seen in Figure As soon as any thread (T3 in the example) encounters
any successful communication (the second one from the “standard” version in this
example), the corresponding post-communication dependent work can be sched-
uled directly to all available threads at their next scheduling points. Again, the
use of the schedule static-ws provides these while additionally providing work
balancing through work stealing.

After presenting how OpenMP can be made aware of MPI from the pro-

grammers’ point of view in the following Section [£.4] it will be shown that this
approach can be very effective in real HPC application in Chapter [f

67

Thread

NN =W
RE3_____ I I v e] .
HE (T T T T T T T T T TTTT T I .

el I I = .
I

>

-Pre-communication dependent work -Post-communication dependent work 3k MPI_Test / Advancement function

IMPI_Irecv & MPI_lsend - MPI_Wait - Communication independent work 3k MPI_Test / Communication finished

Figure 4.27.: Possible timeline for an iteration in one MPI rank using 4 OpenMP

Thread

threads for work parallelization. Messages are being sent to and re-
ceived from two communication partners. Pre-communication de-
pendent work for the first send operation and post-communication
dependent work for each receive operation separately. Pre-
communication and post-communication dependent work can be
parallelized using OpenMP. MPI communication and OpenMP par-
allelization as provided by the current standards.

ol [[e rrrrrrrr
i1 I N U I T
"I T T T M T T T T T T T T T 1T

2 | SEENUNENEE I N Time
I

>

-Pre-communication dependent work -Post—communication dependent work 3k MPI_Test / Advancement function

IMPI_Irecv & MPI_lsend - MPI_Wait - Communication independent work ~ 3kMPI_Test / Communication finished

Figure 4.28.: Possible timeline for an iteration in one MPI rank using 4 OpenMP

68

threads for work parallelization. Messages are being sent to and re-
ceived from two communication partners. Pre-communication de-
pendent work for the first send operation and post-communication
dependent work for each receive operation separately. Pre-
communication and post-communication dependent work can be
parallelized using OpenMP. The proposed approach of advancing
communication at OpenMP scheduling points is used together with
the scheduled static-ws, providing work stealing while trying to
take into account the first-touch memory placement strategy (de-
scribed in Chapter)

4.4. Introducing A New OpenMP Construct commtask

As discussed in the previous section, adding awareness of communication con-
cerning distributed memory parallelization to the shared memory parallelization
environment OpenMP can add the necessary information to the execution envi-
ronment to enable communication-computation overlap (including data transfer
overlap). Additionally it provides potential for work balancing and optimization
of resource usage inside the OpenMP domains. In order to provide this infor-
mation to the runtime, the programmer needs to be supplied with additional
OpenMP directives.

Looking at the example presented in the previous section in Algorithm one
MPI communication to and one from a communication partner is present, each
with pre-communication or post-communication dependent work, respectively.
In order for the OpenMP runtime, used to parallelize the respective work blocks,
to know that the communication dependent steps can be mixed into the commu-
nication independent work pool, an extension, namely commtasks, are proposed
in this section. They have previously been presented by the author in |14].
Before a formal definition in the style of the OpenMP standard is proposed
in the next Section [£.4] its realization for the aforementioned example can be
seen in Algorithm . As the MPI_Irecv call (Line [3)) is in itself not depend-
ing on any work, it can be included in its own commtask init region (Line
Line . In order to match it to the corresponding commtask finalize region,
it is assigned the ID ’R’. The second commtask init region (Line [5}Line
with ID ’S’ combines the pre-communication dependent work necessary to be
executed before the MPI_Isend call with the same. In cases where this work can
be parallelized using OpenMP for, this work can be scheduled to all partici-
pating threads, otherwise it is scheduled sequentially to one thread, before (in
any case) one thread starts the asynchronous communication through the call
to MPI_TIsend.

After the communication independent, OpenMP parallelized work is defined
(Lines (13| and , the commtask init regions must be matched with commtask
finalize regions. In the presented example, both MPI_Irecv and MPI_Isend
are matched in the single MPI_Waitall call. Matching this, both commtask
init regions are matched with the same commtask finalize region (Line
Line by the assignation of both IDs ’R’> and ’S’. Before the commtask
block starts with the blocking communication completion function, #pragma
omp commtask-advancecheck defines the call to the corresponding nonblock-
ing function used to check whether or not the corresponding messages have
successfully been transferred. This function should also guarantee (as is the
case with MPI_Test and MPI_Testall for MPI) that its usage results in message
progression and real overlap. Finally, the post-communication (on MPI_Irecv)
dependent work follows.

The OpenMP runtime can now schedule all commtask init regions to available
threads directly, adding OpenMP parallelized work in these to the thread teams

69

work pool. In order to get optimal behavior, this is best done with a higher
priority. As described in the previous section, the runtime can now use all avail-
able work in the work pool to fully utilize all available threads at all times. At
scheduling points, either after work on commtasks or blocks of communication
(in-)dependent work, the provided communication status test function is sched-
uled, probably with additional timing considerations. Once it returns successful
completion of the communication, the post-communication dependent work of
the corresponding commtask finalize region can again be added to the com-
mon work pool and completed with the available threads.

Algorithm 4.7 Asynchronous communication in a hybrid MPI-OpenMP code
using the proposed commtask to add MPI awareness to the OpenMP runtime

1: #pragma omp commtask init ID(R)

{

MPI_TIrecv

}

. #pragma omp commtask init ID(S)
{
OpenMP FOR
Work necessary before communication can start
> (not necessarily “best” suited for parallelization)

,_.
@

MPI _Isend

—_
—_

H)

: OpenMP FOR schedule(static-ws)

Communication independent work

e T
gus Wy

16: #pragma omp commtask finalize ID(R,S)

17: {

18: #pragma omp commtask-advancecheck MPI Testall
19: MPI Waitall

20: OpenMP FOR

21: Work necessary after communication has finished
22: > (not necessarily “best” suited for parallelization)
23: }

The ID can be used to match independent communications with their corre-
sponding work in order to allow the runtime to reorder and execute in parallel
the associated steps and work (e.g. as described in Figure . This allows
for post-communication dependent work to be scheduled directly without having
to wait for communications to finish which appear beforehand in the code, as
discussed previously.

70

commtask Definitions for the OpenMP Standard

In order to formalize the proposed commtask approach, different parts have to
be defined in a way matching the OpenMP standard. Besides a definition of the
worksharing construct commtask in itself, an Internal Control Variable (ICV)
is needed to define the priority with which the work defined in the commtask
regions is being scheduled. Consistent with the ICVs available in OpenMP; its
manipulation needs to be defined using an environment variable and execution
environment routines to change (set) and read (get) its value during runtime.
The definitions take into account the results gained through the benchmark pre-
sented in Section and their integration into a shared memory programming
environment as discussed in Section 4.3l Care has been taken to ensure that
code run in OpenMP environments ignoring the proposed commtasks can still
run as expected with the current OpenMP standard and also, as is the case with
all other OpenMP directives, when OpenMP is disabled entirely. The definitions
leave room for optimizations in OpenMP implementations.

Additionally, the definitions do not limit possible implementations to scenarios
where message progression has to be done manually. In cases where the commu-
nication library can create and efficiently use a progress thread, the commtask
construct can be used as proposed here. The OpenMP runtime can be supplied
with a nonblocking communication completion function which only checks for
completion, without intending to advance messages. Additionally, it can easily
be extended to work with the communication libraries progress thread by be-
ing notified about successful communication termination by the progress thread.
The calls to the checking function could be omitted.

Nevertheless, as no available MPI implementation on the used HPC systems
for this work provides progress threads, the commtask construct outlined here is
targeted especially to work with manual progression functions, such as MPI_Test.

4.4.1. OpenMP Construct commtask
Summary

The commtask construct is a non-iterative worksharing construct which describes
asynchronous communication and the corresponding pre-communication and
post-communication dependent work. The work and communication advance-
ment described in the structured blocks through a commtask is being distributed
and executed by the threads in the current team. Each commtask consists of
two parts. One contains the pre-communication dependent work and the corre-
sponding communication initialization functions (e.g. in combination with MPI
calls to MPI_Isend [and MPI_Irecv]|). The second part begins with a communi-
cation completion function followed by the post-communication dependent work.
Through communication library awareness, the OpenMP runtime can then sched-
ule this work and available communication advancement function calls together
with the other work available in the current team’s work pool.

71

Syntax

The syntax of the commtask construct is defined as shown in Algorithm

Algorithm 4.8 C Syntax of commtask construct
: #pragma omp commtask init [ID(<label>|,<label>|,...]|)| new-line

A

[structured-block]
<communication-initialization-function> new-line

1

2

3

4

5: }

6:

7: [structured-blocks|

8:

9: #pragma omp commtask finalize [ID(<label>[,<labell,...]|)] new-line

10: {

11: #pragma omp commtask-advancecheck >nonblocking-communication-
advancement-and-statuscheck-function> new-line

12: <blocking-communication-termination-function> new-line

13: [structured-block]

14: }

Where label is an integer or char identifier and priority is 0 (same priority as
other work in the work pool) or 1 (higher priority as the other work in the work
pool).

Binding

The binding thread set for a commtask is the current team. A commtask region
binds to the innermost enclosing parallel region. Only the threads of the team
executing the binding parallel region participate in the execution of the struc-
tured blocks and the calls to the referenced communication functions.

Description

The commtask worksharing construct can be used in hybrid approaches com-
bining OpenMP with shared memory parallelization paradigms (e.g. Message
Passing Interface (MPI)). The work defined in the structured blocks enclosed
by a #pragma omp commtask init region will be merged with the current work-
pool of the current team. It will be scheduled to available OpenMP threads

72

according to the set commtask-priority (see ICV commtask-priority-var, env-
variable and library call).

In cases where a nonblocking alternative to the communication completion func-
tion is provided through #pragma omp commtask-advancecheck, the runtime
schedules calls to this function to available threads at OpenMP scheduling points
and uses the results to be notified about successfully finished communications.
Corresponding post-communication dependent structured blocks are enclosed in
#pragma omp commtask finalize regions. They will be scheduled to the avail-
able team threads with the commtask priority. In cases where no such function
is provided, commtask finalize regions will be scheduled “in order” to threads
after no other work is in the common work pool.

The ID clause can be used to distinguish between different communications and
to match commtask init with commtask finalize regions. In cases where not
all commtask regions are identified with an ID, all init blocks will have to be
finished before finalized blocks are being scheduled and before any nonblocking
communication advancement and checking function is being called. With ID
provided for all commtask regions, this order is imposed only on commtask re-
gions containing the same IDs.

Restrictions
Restrictions to the commtask construct and the enclosed code are as follows:

e Fach communication initialization call in #pragma omp commtask init
needs a matching communication completion call in #pragma omp commtask
finalize.

e The code must work correctly in cases where the #pragma omp commtask
pragmas are being ignored.
e In case no ID is provided,

— the blocks defined through #pragma omp commtask init regions must
be executable in parallel, and their order must be interchangeable.

— the blocks defined through #pragma omp commtask finalize regions
must be executable in parallel, and their order must be interchange-
able.

otherwise

— the blocks defined through #pragma omp commtask regions must be
executable in parallel, and their order must be interchangeable unless
an order is imposed through matching IDs.

Cross References

e commtask-priority-var ICV

73

e OMP_COMMTASK_PRIORITY environment variable
e omp_set_commtask_priority routine

e omp_get_commtask_priority routine

4.4.2. Internal Control Variables

1. commtask-priority-var - controls whether code from commtask regions
is being scheduled with higher priority or not. There is one copy of this
ICV per data environment.

4.4.3. Environment Variables

OMP_COMMTASK_PRIORITY sets the priority for scheduling work defined in commtask
regions by setting the commtask-priority-var ICV. Can be set to 0 (normal
priority) and 1 (default - high priority).

Cross References

e commtask-priority-var ICV
e Controlling OpenMP commtask related work scheduling
e omp_set_commtask_priority routine

e omp_get_commtask_priority routine

4.4.4. Execution Environment Routines:
omp_set_commtask_priority

Summary

The omp_set_commtask_priority routine affects the scheduling of work defined

through the use of #pragma omp commtask by setting the commtask-priority-var
ICV.

Format

Algorithm 4.9 C Syntax of the omp set commtask priority Routine

1: void omp set commtask priority(int priority);

74

Constraints on Arguments

The value of the argument passed to this routine must evaluate to 0 (normal
priority) or 1 (high priority), or else the behavior of this routine is implementa-
tion defined.

Binding

The binding task set for an omp_set_commtask_priority region is the generat-
ing task.

Effect

The effect of this routines is to set the value of the commtask-priority-var ICV.

Cross References

e commtask-priority-var ICV

OMP_COMMTASK_PRIORITY environment variable

Controlling OpenMP commtask related work scheduling
e omp_get_commtask-priority routine
4.4.5. Execution Environment Routines:
omp_get_commtask_priority
Summary
The omp_get_commtask_priority routine returns the value of the commtask-priority-var

ICV.

Format

Algorithm 4.10 C Syntax of the omp get commtask priority Routine

1: void int omp get commtask priority(void);

Binding

The binding task set for an omp_set_commtask_priority region is the generat-
ing task.

75

Effect

The effect of the omp_get_commtask_priority routine is to return the priority
assigned to work defined in commtask regions.

Cross References

e commtask-priority-var ICV
e OMP_COMMTASK_PRIORITY environment variable
e Controlling OpenMP commtask related work scheduling

e omp_set_commtask-priority routine

4.5. Discussion

Asynchronous MPI functions have been part of the MPI standard for a while.
They split the necessary communication steps into different parts with the goal
to improve performance. These parts are 1) communication initialization, 2.)
synchronization and data transfer, and 3) communication termination. Com-
munication initialization sets up the communication parameters, such as sender
and receiver information, describes the message buffers and makes the start of
the communication known to the MPI runtime. Functions available for com-
munication initialization include MPI_Irecv and MPI_Isend. Communication
termination functions, such as MPI_Wait, are used to make sure that the com-
munication has successfully been finished and that the used message buffers can
safely be used again, which is not the case after the initialization. While these
two parts of the communication steps are clearly assigned to the respective MPI
functions, can the second step be implemented differently, depending on the
MPI implementation and other factors such as hardware support. As discussed
above, synchronization overlap is available in most MPI implementations, but
data transfer overlap has been reported to not work well or exist at all.

In this chapter, a benchmark has been presented, discussed and executed. The
results show that for no MPI implementation available on the used HPC sys-
tems does using asynchronous MPI functions result in data transfer ovelap with
useful computation. The actual data movement is happening inside the used
MPI_Wait calls, which results in a communication phase equal to using blocking
communication functions. One way to overcome this problem is using manual
progession function. One function which can be used, as it eventually must fin-
ish communication, is MPI_Test. The presented benchmark uses this function
in order to achieve data transfer overlap. The results show that data transfer
can be achieved, but timing and number of calls to the progression function are
the important factors in regard to performance. Calling the progression function

76

too often or frequently results in overhead or even no overlap at all.

For applications parallelized in a hybrid fashion, i.e. MPI-OpenMP, the message
progression calls can be automatized efficiently as presented above. An OpenMP
extension, namely the commtasks, have been proposed and formalized. Adding
MPI awareness to the OpenMP runtime allows the OpenMP runtime to take care
of choosing when, how often and by which thread a call to message progres-
sion functions is necessary. This allows for optimizations to be included into
the OpenMP and MPI installations and implemented by system professionals, not
application programmers. Additionally, this allows for optimizations tuned for
the used system, removing the need to adjust the applications when moving to
a different HPC environment.

The proposed commtasks will be used in a stencil code representing a wide range
of parallel applications in the following chapter.

77

CHAPTER D

Real Asynchronous MPIl-Communication: Proof of Concept

In high performance computing, many different applications with a large va-

riety of requirements exist. In order to understand and possibly predict the
behavior of these applications on existing or future HPC platforms, the appli-
cations are often grouped together. These groups or, as they are often called,
classes, are based on system requirements, memory access patterns and data
layout, etc. The authors of [3] call their class specifications dwarfs, which are
defined as “a pattern of communication and computation common across a set of
applications.” These dwarfs are used in other work: The authors of [95] record
the communication patterns of MPI parallelized HPC applications and try to
match the given application to the berkeley dwarfs presented in [3] through pat-
tern analysis on the resulting communication graphs.
Classification of HPC applications is also done in regard to more recent discus-
sions in the area: The authors of [21] use the observed communication patterns
together with power consumption information in order to classify applications
running in HPC or Cloud environments. Their goals include optimization of
resource usage through platform providers, which is becoming a more important
concern with faster and larger supercomputers.

An area where classifications of HPC algorithms is important is benchmark-
ing. In order to see how well hardware and software combinations perform in
regard to the expected work load, it is not possible to run or simulate every
possible production code. Therefore, supercomputing centers and HPC system
vendors, as well as researchers, use benchmark suites which test representative
codes executing computations and communications corresponding to the class of
applications of interest, e.g. the expected work load of a planned HPC systems.
One well known benchmark suite is the NAS Parallel Benchmark (NPB) suite [4]
together with the NAS Mutli-Zone (NPB-MZ) extensions described in [89]. The

79

NPB describes representative problems for different classes of algorithms, includ-
ing “MT,” a multigrid kernel, and “EP,” the embarrassingly parallel kernel. The
NPB-MZ extensions focus on kernels with multi-level parallelism with the goal
of providing portable test scenarios for hybrid and multi-level parallelization
approaches and corresponding tools.

While these benchmarks are important and a very good way to analyze the
behavior of the application class on different HPC systems, the classes can also
be used in regard to novel approaches. Approaches like the commtasks presented
in this work can be applied to a representative application in the class and the
results allow for conclusions regarding all applications which are part of it.

The fifth Berkeley Dwarf: Structured Grids is based on stencil codes and
has applications in different areas. In embedded computing, applications can be
found in the automotive area, for example the (FIR) and (IIR) filters used in the
EEMBC benchmark engine knock detection, vehicle stability control, and occu-
pant safety systems. Other embedded computing applications are the encoding
and decoding of MPEG-2 and MPEG-4 [3|. More important for this work, ap-
plications can also be found in general purpose computing. The authors of |3]
list quantum chromodynamics, magneto hydrodynamics, fluid dynamics, finite
element methods, and weather modeling as example application areas. Finally,
stencil codes can be found in the area of graphics algorithms |3,20].

In HPC applications, “the main application of stencil-based computations in-
clude numerical PDE solvers that use a finite difference or multigrid method.” |20,
24]. Research using stencil codes includes the work on an auto-tuning frame-
work which tests a wide range of possible optimizations including NUMA affinity,
blocking, prefetching, and others [24]. The authors state that, with this frame-
work, they reach the fastest multicore stencil performance up to publication
date. The authors of |41] present cache optimization techniques for multigrid
methods in the context of PDE solvers. Stencil based kernels are further used to
study how trends in memory system organization influence the efficacy of tra-
ditional cacheblocking optimizations [23|. The authors of [97] use them as part
of their simulation workload in order to explore novel HPC system approaches
using alternative architectures. Some of the presented work also mentions using
nonblocking MPI functions in order to overlap communication and computation
(e.g. [20]), but it is never discussed if this actually works. The results presented
in the previous chapter suggest that communication is moved to the MPI_Wait
call, providing only latency hiding. In regard to [20], this assumption is further
backed by the fact that they cite [81] concerning MPI and communication over-
lap. While the authors of [81] do mention MPT as “emerging as a widely accepted
standard” (at the time of publication), they do not make use of MPI but present
basic research on hiding communication latency using a redefined UNIX send
operation on local area networks (LAN).

80

Offloading and parallelizing computation to GPUs is also an area where the

work on optimizing stencil codes underlines their relevance.The basic approach
to run stencil codes on GPUs is described by the authors of [17]. The authors
of [91] show their results for heterogeneous multi-CPU and multi-GPU implemen-
tations of the Jacobi’s method using two-dimensional computational domains.
For the bandwidth limited problem, they especially show how performance im-
provements can be achieved by using what they call a “wildly asynchronous”
approach: removing or delaying synchronizations between the iterations. This
can be done by using more iterations in order to get the same results. As shown in
this work, the authors of [91] highlight the fact that optimizations which reduce
or even remove the impact of high synchronization and communication costs
should be very relevant to the design of future implementations and systems.
This is relevant to the presented commtask approach, as these are properties of
the same.
In [2], the authors focus on comparing two different GPGPU (General Purpose
GPU) programming approaches, namely CUDA and OpenGL, using a weighted
Jacobi iteration. The difference to the problem used here is the two dimensional
character in their problem and the special case that, for their problem, only nine
diagonals of the matrix describing the computational domain are non-zeros and
can be saved in nine corresponding vectors. Besides comparing the execution
times of the different approaches for different problem sizes on different hard-
ware, the authors go into detail about the advantages and drawbacks of each
approach including ease of use and portability questions.

5.1. Introduction to a Representative Example

One stencil code as described above is the Jacobi Relaxation method, which
can be found at the heart of numerous linear solvers. It can be used to solve
the Laplace’s equation. Physical systems like temperature in a two- or three-
dimensional object are modeled in a corresponding two- or three-dimensional
array and initialized with starting values. These will then iteratively be recom-
puted as the (possibly weighted) average of a set of neighboring points in the
used array. In this work, the array will be referred to as computational domain.
With every iteration, the solution averages out more and will eventually reach
the desired accuracy. [17],44]

Inside each iteration the algorithm has a large potential for parallelization. As
every stencil uses the values from the previous iterations for computing the
new value, all stencils can be computed independently and therefore in parallel.
While this would allow every stencil to be assigned to one computational core,
this is neither practical nor efficient. Many things have to be taken into account
when parallelizing the algorithm, including, but not limited to, hardware char-
acteristics of the used parallel system, like the size of main memory, memory
per core and number of available cores as well as memory access patterns and

81

communication patterns resulting from the parallelization. Basic approaches
for parallelizing the Jacobi method can be found in [44] and more advanced ap-
proaches in the publications discussed above. For this work, distributed memory
parallelization using MPI and hybrid distributed and shared memory paralleliza-
tion using MPI together with OpenMP or Pthreads are the main target.

In order to see how well the commtask approach described in Chapter [works
in real applications, it is applied to a three-dimensional Jacobi code. The basic
parallelization approach and relevant topics will be discussed here, followed by
two chapters on different approaches to split the used computational domain.
Results for applying the commtask in combination with a one dimensional com-
putational domain splitting have partially been published by the author in [14].
All computing systems used throughout this work are described in Appendix [A]
For all approaches, the base version used for comparison will be an optimized
MPI-Only parallelized code with independent communication and computation
phases. Building up to a hybrid approach combining the distributed memory
parallelization with shared memory parallelization in a hierarchical manner in-
corporating the presented commtask, different other approaches will be presented
and evaluated.

In this sense, the used Jacobi algorithm not only represents the stencil codes
described above, but any code which can be parallelized like this:

1. The computational domain can be split into parts which are to be dis-
tributed to the individual MPI ranks used on the different nodes/sockets.

2. The blocks of the computational domain contain work which can again be
split up into independent sub-parts. These can then be worked upon in
parallel by the different (OpenMP-)threads.

5.1.1. Main Algorithm Steps

The general steps of the different approaches presented below are the same in
all of them.

1. Initialization of the MPI environment (details below).

2. The program parameters are parsed on MPI rank zero and broadcasted
to all other ranks using MPI_Bcast. This is necessary as MPI guarantees
only that the command line parameters are passed to rank 0 and are not
necessarily available on all other ranks.

3. Memory is allocated for all necessary datastructures, including the two
used copies of the computational domain part assigned to each rank. These
copies are alternately used in the iterations to store the computational
domain state of the previously computed and the to be computed iteration.
More details on the memory layout, initialization of the computational
domain as well as the differences when using different kind of stencils will
be discussed below.

82

4. When the necessary environment is set up, all MPI ranks (and their threads)
synchronize before starting the time measurement. The Jacobi steps are
repeated according to the desired iteration count and finished with an-
other synchronization point before getting the end time measurements.
This synchronization is used to include possible imbalances between the
ranks.

5. After reporting the timing results, all memory regions allocated before are
freed, and the program is terminated after calling MPI_Finalize.

Initialization of the MPI Environment

As all implementations presented here use MPI for shared memory paralleliza-
tion, the initialization of the MPI environment is the first step. As described in
Section MPI defines different thread safety levels. For the MPI only ver-
sions, using MPI_Init is sufficient. For the hybrid approaches combining MPI
with OpenMP or Pthreads, the availability of the needed thread safety level
is being checked through MPI_Init_thread. For the commtask approach, the
highest thread support, MPI_THREAD_MULTIPLE level is needed as any thread
can call MPI library functions any time. For the other hybrid approaches,
MPI_THREAD_FUNNELED and MPI_THREAD_SERIALIZED are appropriately used.

Concerning the MPI rank placement, it is important to place those ranks phys-
ically close together which communicate most frequently [53|. In cases where the
computational domain is split along a single dimension, each rank r has to com-
municate only with ranks » — 1 and r 4+ 1. By placing the ranks to the cores of
the nodes by filling each node before placing a rank on a new node, the minimal
inter-node communication is achieved. For the case where the computational do-
main is split along multiple axes (e.g. all axes as used in Section , the ranks
have to communicate with up to 6 neighbors. MPI offers functions to optimize
the rank placement for cases like these. Using the function MPI_Cart_create, a
new MPI communicator is being created to which topology information is being
attached [55]. First of all, this tells the MPI environment that the communica-
tion pattern of the program will be following three dimensional grid pattern. It
also allows the MPI environment to reorder (if configured to do so) the ranks
using the hardware information together with the topology information in or-
der to minimize inter-node communication. Finally, additional functions (e.g.
MPI_Cart_rank, MPI_Cart_shift) allow the programmer to get their communi-
cation partners as ‘neighbors in the grid” as opposed to manual computation of
the necessary rank numbers.

5.1.2. Different Kinds of Stencils Used

In each Jacobi step t + 1, i.e. each iteration of the program, every element in
the computational domain is updated using the values of elements from step t¢.

83

The elements which are to be used in the update are defined by the so called
stencil. Stencils are defined through the location of the source elements in re-
gard to the target element. Two important characteristics of a stencil are the
stencil order and the number of source elements. The order is defined through
the farthest distance of a source element from the target element along one di-
mension [63]. When higher precision is desired in stencil codes, higher order
stencils are used [26]. For example, the stencil used in [23] is a first order 7
point stencil. Here, the average of all direct neighbors in all three dimensions
and the value of the target element in step t is used to compute the new value
for step t + 1. The same kind of stencil is used in [97] with the difference that
the presented algorithm needs values not only from the previous iteration ¢, but
also from iteration ¢t — 1. In addition to a good explanation of the stencil order,
the authors of |63] use both a first order 19 point stencil and a sixth order 25
point stencil in their work.

Not all stencil based algorithms compute the average of the used stencil points
but add a weight to each source element. These weights can be fixed in space and
time or vary depending on the application. The authors of |20] state that they
use “a more versatile stencil stemming from a real-world application.” While the
stencil used is also a first order 7 point stencil, the weights associated with the
stencil points are fixed only in time, but not in space. Also the value of step
t of the target element is used multiple times in the computation of its new value.

In this work, two kinds of stencils are being used:

e First order 6 point stencil: Referred to as the 1n-Stencil, this stencil
uses the direct neighbors of the element which is to be computed.

1
1
= 6*(eiifl)jk+€Ei+1)jk+€§(jfl)k+€§(j+1)k+€§j(k71)+e§j(k+1)) (5.1)

e
e Fourth order 24 point stencil: Refered to as the 4n-Stencil, this
stencil used 4 neighbors in both directions of each dimension in the com-
putational domain.
i1 _ L ¢ ¢ i

Cijk = 51 * (€li1)jk T €li—2)jk T €(i—3)jk T Cli—a)jkT

¢ ¢ ¢
((i+3)k T €(i+a)jk T
s

i+2)jk te

€i(j— >k+% 2>k+€o skt €]

t
(i
t

e(z-l-l)]k +e
E z(]
t
€itjk T ik T ik t EiGrapt
t

€ij(k—1) T eij(kq) + eij(kf?)) + ez’j(k74)+
egj(k-&-l) + eﬁj(k+2) + ezj(k:—i-f%) + efj(k+4))

In regard to the results presented below, the important characteristics of these
stencils are the order of the stencil and the amount of necessary floating point

84

operations. The order directly influences the memory regions which need to
be accessed when computing the stencil and therefore also the necessary ghost
cells (discussed below) and MPI message sizes. The amount of floating point
operations for the used stencils is relatively small, making the problem memory

bound.

5.1.3. Computational Domain
Application Wide Size and Nomenclature

For the presented approaches and the corresponding results, the computational
domain can be defined application wide through the definition of the elements
in each of the three dimensions. Throughout this work, the dimensions will be
referred to as x-dimension, y-dimension, and z-dimension. The sizes provided to
the programs define the number of stencils which need to be computed through-
out every iteration. Additional memory regions needed to store boundary values
surrounding the computational domain will be added. A two dimensional ex-
ample computational domain can be seen in Figure (bottom-left). In this
example, a first order 4 point stencil is depicted for different elements showing
the dependencies in space. Due to the fact that a first order stencil uses elements
which are at most one element away in each dimension, a single row of boundary
elements is necessary, as depicted in Figure (top-left).

Memory for Each MPI Eank - Ghost Cells and Data Layout

For the domain decomposition, different options are available. Independent of
the question along which of the dimensions the domain will be split up, each
available MPI rank will end up with its own subblock of the computational
domain. The rank is responsible for storing and computing the values of the
elements in its subblock. For those sides of the subblock, which are on the
edge of the computational domain, the rank needs to store and initialize the
boundary values. For the sides which border on the subblock of another MPI
rank, so called ghost cells need to be added. As the update of the elements
on these sides need values from neighboring elements which are part of other
MPI ranks subblocks, these values need to be received by the corresponding
ranks and stored in order to be used. The number of element layers needed
for the ghost cells is the same as for the boundary values and defined through
the order of the used stencil. For the presented two dimensional example and
a set of nine MPI ranks, splitting the example computational domain in both
dimensions equally, the assignment of computational domain subblocks to MPI
ranks is shown in Figure (top-right). For nine ranks, the depicted splitting is
done equally along both dimensions. The correlation between ghost cells and the
corresponding elements in the neighboring MPI rank can be seen in Figure [5.1
(bottom-right).

85

Each rank allocates two matrices, the size of both including the elements
assigned to its subblock and the necessary boundary values and ghost cells. The
two copies alternately contain the computed values of step ¢t and are used to
store the new values for step t + 1. As the memory allocated for each matrix is
sequential, it is important to keep in mind the mapping of the three dimensions to
the used memory region. In this work, y-dimension is the innermost dimension,
such that stepping along the y-axis equals a sequential step in memory. The x-
dimension is the middle dimension, such that stepping along the x-axis equals a
step in memory of the size of the ranks elements in y-dimension, including ghost
cells and boundary values. Finally, the z-dimension is the outer dimension, such
that stepping along the z-axis corresponds to a step in memory of the size of an
y-x-plane.

Pinning and Memory Initialization

As some of the used HPC systems consist of nodes providing a NUMA environ-
ment, as discussed in Section [2.1.3] it is important to take into account where
memory resides and on which cores the used MPI ranks and their threads run.
For all presented test runs, the MPI ranks and the used threads have been pinned
to the available cores on the respective nodes in order to make sure that the work
on a given set of elements is performed on the same core as much as possible. Ex-
ceptions in case of possible work stealing in cases where the proposed commtask
approach is being used will be discussed below.

When allocating memory, especially large amounts of memory as needed for the
two copies of the computational domain, a widely used practice of operating
systems in combination with the hardware is to reserve the virtual memory only
and to defer the allocation of physical memory to the time it is accessed for
the first time. This first-touch policy is very important in regard to NUMA
domains and the use of threads [8,32.|68},71-73,94]. For MPI-Only applications,
pinning the ranks to cores is enough to make sure that the memory accessed by
the process is physically located close to the used core because of the way the
first-touch policy works. When using threads, the best practice is to make
sure that the first time a memory location is used is by the (pinned) thread,
which will use it mostly. Otherwise, when initializing the allocated memory us-
ing the main thread, the first-touch policy will try to allocate all memory
close to the core this thread is running on.

For all presented implementations, each thread initializes the memory region it is
going to work on directly after the memory allocation. Afterwards, the boundary
values can be initialized by any thread (in this case the master thread) with-
out changing the placement in the physical memory. The boundary values are
initialized as values in the range from 0.0 to 1.0 equally distributed across the
outer edges of the computational domain.

86

Optimizations

In addition to the presented optimizations (i.e. process and thread pinning,
memory allocation close to the core where it is mostly going to be used, the
minimization of inter-node communication) additional optimizations are still
possible and applicable to all versions presented below. They are even necessary,
as compilers are not good at optimizing stencil codes [24]. For this work, the
main optimization aspect has been accessing the matrix elements sequentially
in memory and applying cache blocking inside the ranks/threads computational
domain parts. For results comparing the different versions for a given set of com-
putational domains on the same hardware environment and node/core count, the
same cache block sizes have been used.

One of the optimizations applied, as described above, is taking into account
the first-touch policy when using threads (both OpenMP and manual use
of Pthreads). The impact of this was observed during the implementation and
testing phase of the hybrid MPI-commtask approach for the three-dimensional
computational domain distribution presented in Section [5.3] In a previous ver-
sion, the first-touch initialization of the computational domain has been done
by evenly splitting the used matrices (including the boundary values) to the used
threads. During computation phase, the computational domain blocks were com-
puted in regard to the actual elements which had to be computed (omitting the
boundary values). At the same time, the ranks computational domain has been
distributed along the x-dimension to the used threads, as cache blocking has
been done along this axis anyway. Due to unsatisfactory performance, the code
has been double checked and both issues have been fixed: The computational
domain blocks are now being computed exactly the same way in both the initial-
ization and computation phase. Also the threads split the ranks computational
domain along the z-axis. While they still do cache blocking along the x-axis,
this avoids the need to access memory close to another thread for nearly all ele-
ments. With these changes a performance improvement of up to 30% has been
observed for the used test scenarios. Therefore, these changes are part of the
implementations presented later in this chapter.

Other optimizations would have included vectorization, which has not been
applied in the presented results, as it would have been out of the scope of this
work. Nevertheless, vectorization and any other possible optimization which
could have been applied would have sped up the computational phase. There-
fore the communication phase would be larger in comparison to the computation
phase and the impact of being able to overlap communication with computation
would increase. None of the ideas behind the commtask would prevent opti-
mizations like vectorization or memory padding nor would those optimizations
prohibit the use of commtasks.

87

5.1.4. Implementations

Having discussed all aspects which are the same throughout the different ver-
sions, the differences and important characteristics of these are going to be pre-
sented here. For each of these versions, a close look at the actual steps taken
inside the time measured phase will be discussed. This includes the desired
repetition of computing all stencils and everything concerning the communi-
cation of data for the ghost cells. Starting with the simple MPI-Only version
with distinct communication and computation phases, the advanced implemen-
tations will build up to a version including everything presented in regard to the
commtasks.

MPI-Only

Every iteration of the program has two separate steps for communication and
computation. First the necessary “edge’-values for the ghost cells are communi-
cated, exchanging data from the previous iteration or initialization in the first
iteration. In the simpler case, distributing the computational domain along the
z-dimension only (see Section [5.2)), the MPI function MPI_Sendrecv is used once
for exchanging data along one direction of the z-axis and once along the other
direction. For the three-dimensional computational domain splitting version,
nonblocking MPI functions are used in order to avoid deadlocks and commu-
nication serialization. Each rank posts an MPI_Irecv for each neighbor before
initializing all needed send operations using MPI_Isend. These calls are directly
followed by a call to MPI_Waitall to finish the communication phase before
computation starts. Using these functions optimizes the communication phase
without overlapping it with the computation phase and therefore avoids the nec-
essary adjustments for it.

For each rank, the computation phase starts once all communication has fin-
ished. Since all necessary information for all elements is locally available to the
rank, it can compute all of them without the need to distinguish between ele-
ments which need information from other ranks and those who do not. During
this computation, all optimizations discussed above are applied.

Starting with the MPI-Only version, two directions can be taken in direction
of the commtask approach. Either it can be adjusted to use nonblocking com-
munication functions in order to overlap communication and computation (=
MPI-Only-Nonblocking), or it can be turned into a hybrid distributed-/shared-
memory program by parallelizing each MPI process using OpenMP or Pthreads
(= hybrid). In a later step these two version can be combined to a hybrid
version with overlap (= MPI-OpenMP-Nonblocking and MPI-PthreadClassic--
Nonblocking).

88

MPI-Only-Nonblocking

Based on the MPI-0Only implementations, this is the first step in trying to hide the
communication behind necessary (useful) computation using functions provided
by MPI. Both computational domain distribution versions start the iteration by
posting MPI_Irecv, and MPI_Isend calls for all neighbors in order to initialize
the data transfer of values for the ghost cells. Instead of waiting for the com-
munication to finish, the computation in each rank can start on those elements
which are independent of data transfers. For these computations, the discussed
optimizations are applied the same way as before, making sure that the commu-
nication dependent elements are omitted.

After all communication independent work is finished, successful reception of the
needed data must be checked using one of the MPI_Wait calls (e.g. MPI_Waitall
for the receive operations). Only then can each rank start computing the sten-
cils for the communication dependent edge elements. Once this is finished, if not
done so with the MPI_Waitall call before, the successful termination of the send
operations must be checked. For the presented implementations, a combined
MPI_Waitall has been used.

MPI-OpenMP

Using MPI-Only on hybrid hardware, such as the different HPC systems used
in this work, results in two different kinds of communication: intra-node com-
munication and inter-node communication. As each MPI rank is pinned to one
dedicated core, the communication partners can be located either on a different
core of the same compute node or on a different compute node in the system,
resulting in intra-node or inter-node communication, respectively.
The MPI implementations can optimize the communication by bypassing the
networking interface when intra-node communication is detected [29]. This op-
timization has been the subject of research in the field of high performance
computing [50,56|. Nevertheless, it might not be included in all MPI implemen-
tations |79]. As the affected ranks are individual processes, they do not share the
same memory space and, even for well optimized MPI implementations, at least
one copy operation is necessary to move the data from the sending ranks memory
to the receiver. By assigning multiple cores to each MPI rank, assigning larger
computational domain parts to each rank and parallelizing the work inside each
rank using OpenMP (or any other shared memory approach), the intra-node
communication can be omitted. Each thread and the core it is pinned to can
work on the same data the corresponding MPI-Only rank worked on and has
direct access to the data provided by other threads on the same node.
Concerning the computation, the simple approach of using the OpenMP for
construct turned out to be inefficient. While OpenMP creates the necessary
threads only once at the first time they are needed, keeping them idle for the next
OpenMP parallel region, the work distribution and overall performance slowed

89

down application performance drastically in all tested configurations. Therefore,
instead of using the OpenMP for construct inside the OpenMP parallel region,
the distribution was created manually based on the thread identifier (tid). For
all implemented MPI-0OpenMP versions, this turned out to be the best approach.
The main thread is responsible for all MPI related operations which would be
the same in case the OpenMP for construct would be used. As discussed above,
thread pinning and initialization of the memory according to the first-touch
policy has been applied and MPI_Init_thread was used in order to confirm
MPI_THREAD_FUNNELED support.

Finally two options for assigning cores to MPI ranks have been considered.
The option used for the results presented in this work, in case not stated other-
wise, is one rank per node with one thread per available core. Instead of assigning
an entire compute note to each rank, the second option is to use NUMA domain
sockets. For each NUMA domain socket, one MPI rank is created. Internally the
rank places one thread on each of the cores inside the socket. While this intro-
duces intra-node communication between the sockets, the threads run in a UMA
domain like environment. This option has been tested for the one dimensional
domain decomposition approach presented in Section but was not applied
in detail, as the results were nearly identical to using one node per rank. For the
results presented in Section the second option has been applied and results
will be presented.

The main differences to an MPI-0Only version are the direct memory access in-

side the processes memory region instead of the intra-node communication and
the fact that, for the corresponding elements, no ghost cell memory has to be
allocated.
In the one dimensional domain decomposition versions, the mapping of ele-
ments to be computed to the available cores is the same for both MPI-Only
and MPI-0penMP. Observed differences in timing results can therefore be directly
credited to the communication part of the application. For the three dimensional
domain decomposition approach, the element to rank and thread, respectively,
has been optimized individually. This allows for the different approaches to
incorporate all of its optimization potential.

MPI-OpenMP-Nonblocking

In order to implement the MPI-OpenMP-Nonblocking version of the algorithm,
all aspects of the MPI-OpenMP and MPI-Only-Nonblocking versions have been
considered. Work items have been distributed to the available threads using their
tid. The main thread takes care of the communication initialization before all
threads work on the communication independent work. After the main thread
confirms successful communication completion using MPI_Waitall, all threads
share the communication dependent work.

90

MPI-PthreadClassic-Nonblocking

Implementing the same work distribution as the MPI-OpenMP-Nonblocking ver-
sion, this version is implemented using classic Pthreads instead of OpenMP for
the shared memory parallelization. The first difference is that the thread man-
agement is not done inside a library such as OpenMP. All threads are active
during all Jacobi steps, i.e. they are created before and destroyed after the mea-
surement points. As the used HPC systems are dedicated to one user job at a
time, having active idle threads on the available cores is efficient, and it is not
necessary to suspend them as no other processes need the resources at the same
time.

In addition, the threads are used to parallelize the necessary MPI function calls.
Depending on the number of neighbors an MPI rank has to communicate with,
multiple threads can for example be used to call MPI_Isend and MPI_Irecv for
the different messages. As this is being done concurrently, the thread level which
has to be tested is not MPI_THREAD_FUNNELED, as in the MPI-OpenMP and MPI-
-OpenMP-Nonblocking versions, but MPI_THREAD_MULTIPLE. In the same way as
the MPI-OpenMP-Nonblocking version, this version does not overlap communi-
cation code phases with computation code phases, i.e. all threads synchronize
between the calls to the communication initialization functions and the compu-
tation as well as after the computation phase, etc. This does not mean that MPI
cannot overlap the actual communication with computation, as is desired when
implementing the algorithm this way.

The other aspects such as pinning and memory initialization regarding the
first-touch policy, have been applied.

As this version has been implemented only for the three-dimensional compu-
tational domain decomposition, the distribution of matrix elements to threads
has been optimized and is different from the element to core mapping in the cor-
responding MPI-Only versions. Testing different distributions, it turned out that
splitting the ranks computational domain block along the z-dimension and ap-
plying cacheblocking along the y-axis and x-axis is most efficient. This reduces
the spatial and temporal access to other threads’ memory along the splitting
borders while giving each thread a memory region to work on which is entirely
sequential in memory. Other tested distributions were splitting along the x-axis
as cache blocking along this axis is done anyway and giving each thread the entire
z-dimension to work along. Another approach was splitting the ranks computa-
tional domain along multiple axes in the same way as done on the higher level
for the MPI ranks. Both of the latter versions were inferior in performance to
the used approach.

91

Commtask

One possible way of implementing the aspects concerning the proposed commtask
(see Chapter [4)) would be to extend an existing OpenMP implementation. Nev-
ertheless, the open source OpenMP versions do not use a common work pool for
their worksharing constructs. One of the possible implementations to choose is
the GOMPE| OpenMP implementation for the GNU Compiler Collectionﬂ The
task scheduling code is part of the thread barrier synchronization code, as this
is a point where all tasks have been created and are available to the OpenMP
runtime. At the same time, the work scheduling for the OpenMP for construct is
done separately, such that the execution of index-sets assigned in a parallelized
for loop will never be mixed with the execution of scheduled tasks.

As the goal of the presented implementations is to compare the performance
of the approaches and not the ease with which it can be implemented in a
given OpenMP compiler and runtime, a manual implementation has been chosen.
Therefore the presented implementation uses Pthreads in such a way that they
represent the behavior of a possible OpenMP implementation using Pthreads
internally, as done in GOMPE|.

Implementing a library providing work queues, which can be accessed in parallel
by multiple threads, each thread creates one work queue for the communica-
tion independent work. This queue is being filled with the index blocks defined
through the cache blocking (x-dimension and y-dimension) and a new block size
determining the amount of work done before a thread should check communica-
tion dependent steps (z-dimension). In accordance with the presented commtask
approach, this represents a high level OpenMP for schedule static, splitting the
communication independent work to the used threads. On a lower level the indi-
vidual threads split their work internally into blocks corresponding to a dynamic
schedule. This corresponds to the presented OpenMP schedule static-ws, as pre-
sented in Chapter [3] Additionally the main thread creates work queues for the
communication dependent work, as defined through the commtask as presented
in Section (4.4

The steps taken by the individual threads, which are repeated until all work has
been done, are shown in Algorithm

The Pthread implementation is representative for an OpenMP implementation
supporting the commtask approach being transformed into code using Pthreads.
The work to core mapping is the same as in the MPI-OpenMP versions as well
as the MPI-Only versions with the expected differences: The communication de-
pendent work is assigned to those threads which have the resources for them
first and as soon as the communication has been finished. Other threads keep
on working on the communication independent work. In the final steps, threads
finishing their own work early, due to less overhead through communication de-

"https://gcc.gnu.org/projects/gomp/
*https://gcc.gnu.org/

92

https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/

Algorithm 5.1 Work selection for threads using the commtask approach

1: if |(Communication finished) then
2: if !(Executed by other thread) then
3: Check communication with MPI_Test
4: end if
5: end if
6: if Communication finished then
7 while Communication dependent work exists do
8: Take index block from respective work queue
9: Compute stencils for index block
10: end while
11: end if
12: if Thread local work exists then
13: Take index block from own work queue
14: Compute stencils for index block
15: else
16: if Work exists for different thread then
17: Take index block from respective work queue
18: Compute stencils for index block
19: end if
20: end if

pendent work, use their resources to reduce the workload of threads which have
participated in communication dependent steps by using the added workstealing.

For two different domain decomposition approaches, namely 1D-Decomposition
and 3D-Decomposition, the implementations have been executed for different
combinations of nodes, cores per node, computational domain sizes, etc. The
results will be presented in the following Section[5.2)and Section[5.3] respectively.

93

P °
(s ° E}
o |lo ol o .
E} Ps o o
| @ []
)
o |—ro
°
" :
o/ o
Ps rﬂ‘ja
A L
. ° (/
o—{:‘ja (\ \
i} \
ol Jlo °
° ° o o |
°
|
\
J
°
o e+ 1x
Py

Figure 5.1.: Example computational domain. bottom-left: 9x9 element compu-

94

tational domain with first-order 4 point stencil examples. top-left:
Computational domain with memory region for boundary values.
One additional element in each direction due to the first order sten-
cil used. top-right: Decomposition to 9 ranks splitting evenly along
both dimensions. bottom-right: Decompositied computational do-
main with ghost cells and representative examples of corresponding
memory regions.

5.2. One-dimensional Decomposition

5.2.1. Computational Domain Decomposition

The algorithm and the different implementations presented in the previous sec-
tion are targeted to use many computational cores spread out across multi-
ple hardware nodes in a parallel computing environment, especially high per-
formance computers. The combined hardware, including (but not limited to)
cores, memory and network, is used to work on a single problem instance de-
fined through the three dimensional computational domain. The only aspect
concerning the presented implementations not discussed above is the question of
how this computational domain is being distributed to the used MPI processes.
In this section, the three dimensional computational domain is being split along
one axis only. This is the easiest approach concerning the complexity of the im-
plementation for programmers. The choice of axis is relatively straightforward.
The results in Section showed that using non-contiguous buffers introduces
high overhead and seems to negatively influence the overlap capabilities of the
proposed commtask. The layout of the computational domain in combination
with the programming language C results in the fact that multiple planes made
of the x- and y-dimension are located sequentially in memory. Splitting along
the z-axis, assigning computational domain blocks to each MPI rank with com-
munication partners only in the z-dimension creates dependencies in such a way
that the necessary communication buffers are sequential in memory. All but
the two extreme ranks (0 and MPI_Comm_size — 1) communicate with the two
adjacent ranks only. The two exceptions have a single communication partner.

Splitting in the other two dimensions would either result in using “stripes” from
the computational domain matrix (i.e. splitting along the x-dimension) or us-
ing single elements (i.e. splitting along the y-dimension). For both, distributed
and shared memory communication, this would results in overhead. For MPI
messages, the distributed data would have to be either joined into a contiguous
memory buffer or sent in multiple messages (or a combination of both). For
shared memory access to the corresponding regions, the non sequential planes
would result in more accesses to different cache lines. Nevertheless, as will be
discussed and shown in Section 5.3 a domain decomposition across multiple axes
can be advantageous as the overall relation of communication dependent to com-
munication independent elements is reduced. For the one dimensional splitting,
no advantage can be found or observed by splitting along the x-dimension or
y-dimension.

The implementations used for the presented results in this section use the
in-Stencil as presented in Section [3.1.2] As this is a first order stencil, each
rank needs one x-y-plane from each neighbor to compute the border elements
in this neighbor’s direction. At the same time, each rank has to send one plane
to each neighbor in each iteration. The message size for these runs is therefore

95

directly defined through the size of the x- and y-dimensions. The implementa-
tions use double as the data type to store each element. The used systems have
a size of 8-bytes per double. The size S for each necessary message M for a
computational domain of dimensions x,y,z is therefore:

Sy = x xy x 8 Byte (5.3)

In order to optimize the communication patterns on the used system, the ranks
are placed by filling up a node before placing the next rank on a new node.
Therefore the inter-node communication is limited to the messages between those
ranks with a direct neighbor is located on a adjacent node. The communication
pattern for inter-node communication does not change between the different ver-
sions. For all hybrid approaches, the rank placed on each node is responsible
for the computational domain part which is made of all parts assigned to the
same node in the MPI-Only version. As the splitting is along the z-axis only,
the messages even contain the same part of the computational domain with the
same size. The difference is in the cores and the respective processes and threads
which are communicating. While, for the MPI-0Only version, the communication
always happens between fixed ranks pinned to a fixed core, the MPI-OpenMP ver-
sions always have the master thread and its dedicated core doing all MPI related
work. The commtask approach dynamically assigns this work to any available
threads.

The intra-node communication of the MPI-Only implementations is replaced by
shared memory accesses in all hybrid versions as the hybrid versions presented
here all use one MPI rank per available node with one thread for each available
core.

Computational Domain Sizes

For the presented results, two aspects have been looked at in regard to the chosen
computational domain sizes. As discussed above, the message sizes are directly
dependent on the chosen x- and y-dimensions. This is also directly related to
the amount of time which can be saved when achieving real communication
overlap, i.e. synchronization and data transfer overlap. The presented result
graphs show stencil updates per second (higher is better) for different message
sizes (larger messages on the right). The message sizes are the result of different
chosen dimensions for the x- and y-axes. The dimensions range from small x-
and y-dimensions(e.g. = = 500 and y = 300 on the Woodcrest Cluster) to large
ones (e.g. = 2000 and y = 2000 on the SuperMUC Fat Nodes).

The second aspect is the amount of work needed to be performed on each avail-
able core and therefore the amount of communication independent work which
can be used to hide all communication related steps. This is directly related
to the z-dimension of the computational domain. In order to have comparable
results throughout the different used clusters, the z-dimension has been defined

96

through the amount of cores available. Defining the planes per core as ppc,
every x-y-combination has been combined with the different values ppc = 5,
ppc = 10, ppc = 20, ..., ppc = 50. This results in different sized z-dimensions
(e.g. z=1200, z = 2400, z = 4800, z = 7200, z = 9600 and z = 12000 for each
x-y-combination used on the LiMa Cluster).

5.2.2. Discussion of Results

Woodcrest ICE SuperMUC LiMa
Fatnodes

(64*4 cores) | (16*4 cores) | (5*40 cores) | (20%12 cores)
MPI-Only 5.2 5.17 5.22 5.28]
MPI-Only-Nonblocking 0.3 0.18 0.23
MPI-Only-Nonblocking 0.4
with MPI_Test o
MPI-OpenMP 0.5 .24
MPI-OpenMP-Nonblocking 5.6 5.19 5.25
MPI-OpenMP .7 5.20 .26
with MPI_Test o
commtask |5.21| |5.27|

Table 5.1.: Overview of result graphs

An overview of the different graphs for the different implementations on the
used HPC systems can be found in Table 5.1l For all presented results, the
communication phase in the MPI-Only version is shorter than the computation
phase in each iteration. Therefore it is theoretically possible to hide the entire
communication behind the computation.

All in all, the presented results show that the impact of communication is visi-
ble and all but the commtask approaches are not able to overlap communication
with useful computation. The results show two different general tendencies: For
the larger and newer multi-socket systems in the SuperMUC Fat Nodes and the
LiMa Cluster, the use of hybrid parallelization results in a clear advantage over
the MPI-Only implementations. Nevertheless, neither adding nonblocking com-
munication to the MPI-Only nor the MPI-OpenMP version results in the desired
overlap. Using the proposed commtask approach, the stencil update per second
rate is both at least as high as in any other result for the same system as well as
independent from the message size, as the entire communication can be hidden
in all cases.

For the smaller and older systems, ICE and Woodcrest, the combined use of
OpenMP with MPI results in a decrease of the observed stencil updates per sec-
ond rate. Adding nonblocking communication to either the MPI-Only or the

97

MPI-OpenMP again does not result in the desired overlap. Nevertheless, manually
adding MPI_Test calls to the MPI-OpenMP-Nonblocking version on the Wood-
crest Cluster results in partial overlap as can be seen when comparing Figure[5.6
and Figure[5.7] Nevertheless this works only for small messages. Using the pro-
posed commtask approach, the same high and message size independent stencil
update rates can be observed as on the other two system.

Woodcrest Cluster

Using 64 nodes of the Woodcrest Cluster providing 4 cores each, a total of 256
cores were used for the presented results. Information about the Woodcrest
Cluster can be found in Appendix

The base of the comparison is the MPI-0Only implementation using blocking com-
munication functions as described above. Comparing these measurements in
Figure [5.2] with the results of the MPI-Only-Nonblocking implementation in
Figure [5.3] no real difference can be seen. As expected, the the use of nonblock-
ing communication function does not result in any speedup.

1010
1.8 10 T

1.6
1.4
1.2

1]
0.8 2
0.6 - 2
0.4

Stencil-updates / second

—eo— > w1020
0.2 —+—30—+—40--50

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.2.: 3D-Jacobi with a one dimensional domain decomposition. MPI-Only
on 64 nodes of the Woodcrest Cluster.

One of the initial tests done was also placing MPI_Test calls manually inside
the communication independent work of the MPI-Only-Nonblocking version. As
the benchmark presented in the previous Chapter [d] showed that for all tested
MPI implementations a relatively small number of calls to MPI_Test can result
in overlap in an easy setup, the question is whether or not this works in real life
applications as well. Looking at the test results in Figure [5.3], it can clearly be

98

1.8 ¢ ‘

1.4
1.2

0.8

0.4

Stencil-updates / second

o 5 = 1020
0.2 ——30—+—40-e-50

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.3.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-Only-Nonblocking on 64 nodes of the Woodcrest Cluster.

seen that this is not the case.

Turning to the hybrid MPI-OpenMP approach of combining MPI with OpenMP
using blocking communication functions, it can be seen (Figure that for the
environment in the Woodcrest Cluster, no advantage compared to the MPI-Only
approach can be observed. On the contrary, a decrease in performance is visible.
While it is small for the computational domain setups with larger message sizes,
the decrease is dominant for setups with little work and small messages.

Adding nonblocking communication to the MPI-0OpenMP approach does also not
result in the desired overlap, as shown in Figure [5.6]

The first increase in performance for this cluster can be observed when manu-
ally placing MPI_Test calls into the MPI-OpenMP-Nonblocking implementations.
This version achieves a better stencil updates per second performance by achiev-
ing communication overlap as can be seen in Figure The performance im-
provement is larger for computational domain setups with little work and small
messages. The impact decreases with the increase of the message sizes and is
smallest for those computational domains with large messages and larger values
for ppc.

Reasons for the missing performance gains can be a combination of 1) the over-
head of adding the MPI_Test calls, 2) a not optimal amount and timing of the
added MPI_Test calls, and 3) resulting imbalances between the used threads.

While the MPI-Only and MPI-OpenMP versions using blocking communication
behave as expected, the use of nonblocking communication and even the manual
addition of MPI_Test calls does not result in the desired overlap of communica-

99

1.8 T

1.4
1.2

0.8

0.4

Stencil-updates / second

—o— 5 = 10—e20
0.2 ——30—+—40-+-50

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.4.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-Only-Nonblocking calling MPI_Test regularely on 64 nodes of
the Woodcrest Cluster.

tion with the communication independent work. As all the chosen computational
domain setups result in times for the communication phases which are shorter
than the respective computation phases, a total overlap would be the optimal
outcome. Applying the proposed commtask approach to the same computational
domain setups on the same hardware environment shows stencil updates per sec-
ond rates which are very close to this, as can be seen in Figure [5.8 While the
results for very small message sizes are worse than the MPI-OpenMP-Nonblocking
version with MPI_Test calls, the stencil updates per second rates for larger mes-
sages are high, independent of the message size. While the overhead of assigning
the communication related work dynamically to the used threads and adding
work stealing to the implementation can be seen when little has to be done in
regard to communication, the overhead is negligible in comparison to the im-
provements gained for cases with long communication phases.

Before looking at the results obtained on the other HPC systems, which have
been summarized above, in more detail, a closer look at the results from the
Woodcrest Cluster shows that the observed performance improvement is actu-
ally a result from the goals of using commtasks. Using the Intel Trace Ana-
lyzer and Collectorﬂ (ITAC), a test run has been executed on three nodes of
the Woodcrest Cluster. The used computational domain has the dimensions
of (z,y,z) = (500,500,600). Five Jacobi iterations have been executed and
recorded together with the necessary initialization and finalization phases of

Shttps://software.intel.com/en-us/intel-trace-analyzer

100

https://software.intel.com/en-us/intel-trace-analyzer

1.8 ¢ ‘
16|
1.4
12|

0.8
0.6 i
0.4

Stencil-updates / second

o 5 = 1020
0.2 ——30—+—40--50 | |
| | | | | | | |

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.5.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-OpenMP on 64 nodes of the Woodcrest Cluster.

the implementations. As the Woodcrest Cluster provides four cores per node,
the MPI-Only version starts 12 ranks, placing ranks PO — P3, P4 — P7 and
P8 — P11 on the three nodes, respectively. For the MPI-OpenMP-Nonblocking
and commtask versions, three ranks (PO, P1, P2) are placed on one node each,
starting one thread per available core (PXTO, ..., PXT3). The MB sent per
iteration and rank are 3.8MB and the value for the used planes per core is
ppn = 50. As ITAC on Woodcrest does not record the OpenMP threads used by
the MPI-OpenMP-Nonblocking version, only the traces for the three ranks can
be seen in the respective figures. The existence, and correct use of the threads
has been confirmed.

The traces for the entire program execution for MPI-Only (Figure |5.9)), MPI-
-OpenMP-Nonblocking (Figure and commtask (Figure show the five
iterations with the necessary communication phases. While seeing the clearly
defined communication phases for the blocking communication in the MPI-Only
implementation is as expected, the visible communication phases for the MPI-
-OpenMP-Nonblocking version show that communication is indeed not being
overlapped. Taking a closer look at the traces of one iteration (Figure
confirms the observation of the benchmarks in the previous chapter: The main
part of the communication is done during the call to MPI_Wait.

In comparison to this, the traces for the commtask implementation show a shorter
runtime for the entire execution. The communication phases, while still visible
through the lines representing the individual messages, are not visible as time

101

1.8 ¢ ‘

1.4
1.2

0.8

0.4

Stencil-updates / second

—o— 5 = 10—e20
0.2 ——30—+—40-+-50

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.6.: 3D-Jacobi with a one dimensional domain decomposition. MPI-
-OpenMP-Nonblocking on 64 nodes of the Woodcrest Cluster.

spent in MPI functions. A closer look at one iteration (Figure shows that
while multiple calls to MPI_Test are done by each thread, these are negligibly
short. Also, the communication partners are no longer fixed, but the messages
are sent dynamically between two threads of the respective neighboring ranks.
These traces show that the communication related steps are no longer executed
during calls to MPI library functions and suggest that actual overlap of commu-
nication with useful computation has been achieved. Nevertheless, it is not clear
what the individual cores spend their time on during the application part of the
traces, i.e. outside the MPI functions. In order to show that the observed perfor-
mance improvement is actually a result of the presented commtask approach and
the resulting overlap and work balancing inside the nodes, additional measure-
ments of the same test scenario have been done using the software LIKWID |[88].
Using the same node/core count and computational domain, ten iterations have
been executed for these measurements. Using likwid-perfCtr, the tool has
been used to measure how many double precision floating point operations have
been executed on each core of the “middle” node, hosting ranks P4 — P7 in the
MPI-Only and rank P1 in the MPI-OpenMP-Nonblocking and commtask cases.
As these operations are the useful work concerning the Jacobi steps, this shows
how efficiently the cores are used in regard to the actual goal. Again, the com-
munication phases are clearly visible for the MPI-Only version in Figure [5.14]
The MFlop/s (mega floating point operations per second) drop to zero for all
cores during the communication phases. While not as pronounced, the same
holds true for the MPI-OpenMP-Nonblocking measurements in Figure As

102

o)

=] B

(@]

Q

2 i

~

8 1} |

=

S 08| .

]

= 06/ |

=

g 04} i

n o 5 = 1020
0.2 ——30—+—40--50 | |

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.7.: 3D-Jacobi with a one dimensional domain decomposition. MPI-
-OpenMP-Nonblocking calling MPI_Test regularely on 64 nodes of
the Woodcrest Cluster.

shown above, the calls to MPI_Wait are indicated here. Looking at Figure [5.16
the advantage of the commtask approach can clearly be seen. While the iter-
ations are still recognizable by slight drops in the MFlop/s rate for individual
cores, all cores are executing a high and constant number of double precision
floating point operations throughout the entire program execution. While the
slight drops indicate the calls to MPI_Test, it is shown that the resources of the
used system are dedicated to useful work and the necessary, but not directly
useful, communication can be hidden efficiently.

ICE Cluster

Using 16 nodes of the second single socket system, the ICE Cluster, a total of
128 cores are available for the results presented here. Showing a behavior similar
to the results discussed for the Woodcrest Cluster, a decreasing performance for
setups with larger messages can be seen for the MPI-0Only implementation in Fig-
ure No difference can be observed when separating communication depen-
dent from independent work and using nonblocking communication functions in
the MPI-Only-Nonblocking implementation (Figure . As mentioned above,
using a classic hybrid approach does result in performance penalties for this sys-
tem. As the measurements for MPI-OpenMP-Nonblocking in Figure [5.19] show,
the penalties for this are quite high. Manually adding MPI_Test calls decreases
the performance further (Figure . Nevertheless, using a combined shared-
and distributed memory parallelization as proposed in this work can overcome

103

1.8 T

14}
1.2 :

0.8 .

0.4

Stencil-updates / second

—o— 5 = 10—e20
0.2 ——30—+—40-+-50

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.8.: 3D-Jacobi with a one dimensional domain decomposition. commtask
on 64 nodes of the Woodcrest Cluster.

these drawbacks and make optimal use of the provided hardware environment
as can be seen when looking at the commtask results in Figure As with the
results for the Woodcrest Cluster, the stencil update per second rate is high inde-
pendent from the necessary communication load. The same aspects as discussed
above apply.

SuperMUC Fat Nodes

In contrast to the two systems discussed above, the SuperMUC Fat Nodes are
providing a multi-socket non uniform memory access (NUMA) environment.
Each node has four sockets with ten cores each. For the MPI-Only versions,
this results in a large number of rank pairs having to do intra-node communi-
cation as well as a lot of concurrent access to the same physical memory. The
presented results were configured to use 200 cores on a total of five nodes of the
system. For this setup a lot more intra-node communication partners exist as
rank pairs which do actual inter-node communication. The MPI-0Only implemen-
tation does not perform very well, as can be seen in Figure [5.22] The results
get even slightly worse for the MPI-Only-Nonblocking implementation (s. Fig-
ure 523).

The main difference from the results presented for the two single socket systems
(i.e. ICE Cluster and Woodcrest Cluster) is the impact of using hybrid par-
allelization even in the classic way. Just going from MPI-Only to MPI-OpenMP,
both using blocking communication, increases the performance drastically. Es-
pecially for computational domain configurations with smaller message sizes, the

104

Figure 5.9.: ITAC traces: MPI-Only version of a test setup using three nodes on
Woodcrest Cluster. 5 iterations for a computational domain with
dimensions (x,y,z) = (500,500,600).

hardware resources can be used a lot more efficiently. Nevertheless, the impact
of larger messages for each rank in each iteration can be seen in the correspond-
ing results in Figure (.24 Again, making use of nonblocking communication
functions when splitting communication independent and dependent work does
not make a difference (Figure . While it cannot be expected that adding
MPI_Test calls manually to the MPI-OpenMP-Nonblocking version results in per-
formance improvements on this system due to the results presented in Chapter [4]
the dramatic performance loss seen in Figure was not expected. No strat-
egy for placing the MPI_Test calls (i.e. different loops in the computation of the
communication independent work) improved this.

Reducing the overhead of message progression by dynamically assigning the work
to the available threads in the commtask implementation again turned out to
work very well. Work balancing together with the achieved communication
overlap resulted in the stencil updates per second rate shown in Figure [5.27]
Independent of the message size, the performance is as high as in the best com-
bination for the MPI-OpenMP implementations. Especially for large messages, a
lot of time was needed for the communication which now can be hidden behind
useful work perfectly.

LiMa Cluster

The LiMa Cluster provides dual socket NUMA environments with 12 cores per
node. Using 20 nodes of the system, the presented results base on the use of 240
cores. Less cores per node than on the SuperMUC Fat Nodes seem to be the
reason why the MPI-0Only version does show pretty good performance as can be

105

A pplication n Application

X 0 XX

Application IvApplication hA ation h.Application hApplication hApplication

Figure 5.10.: ITAC traces: MPI-OpenMP-Nonblocking version of a test setup us-
ing three nodes on Woodcrest Cluster. 5 iterations for a computa-
tional domain with dimensions (x,y,z) = (500,500,600).

seen in Figure[5.28] Nevertheless a similar performance increase can be observed
when switching from MPI-Only to hybrid MPI-OpenMP(Figure . Especially
for computational domains with less communication independent work, the hy-
brid approach increases performance. Adding nonblocking communication does
not make a difference (Figure , again analogous to the results presented
for the SuperMUC Fat Nodes. Applying the proposed commtask results in the
desired efficient use of the system, as shown in Figure

106

cation 4
I A

Figure 5.11.: ITAC traces: commtask version of a test setup using three nodes on
Woodcrest Cluster. 5 iterations for a computational domain with
dimensions (x,y,z) = (500,500,600).

Figure 5.12.: ITAC traces: MPI-OpenMP-Nonblocking version of a test setup us-
ing three nodes on Woodcrest Cluster. Detailed view of one compu-
tation phase surrounded by two communication phases for a com-
putational domain with dimensions (x,y,z) = (500,500,600).

107

Figure 5.13.: ITAC traces: commtask version of a test setup using three nodes on
Woodcrest Cluster. 5 iterations for a computational domain with
dimensions (x,y,z) = (500,500,600).

600 T

500 -

S|

t“"'amld!lmu u*‘*‘*& iﬁﬁnlr M‘inmu“

ﬂl |

Time(s)

400 |-

300 -

MFlop/s

200 -

100

Figure 5.14.: LIKWID double precision floating point per second (FLOAT DP)
measurements using three nodes of the Woodcrest Cluster:
MPI-Only. 10 iterations for a computational domain of the dimen-
sions (x,y,z)=(500,500,600). The results show the measurements of
the middle node hosting ranks 4 to 7.

108

600

500 -

400 |

300 |-

MFlop/s

200 [

100

Time(s)

Figure 5.15.: LIKWID double precision floating point per second (FLOAT DP)
measurements using three nodes of the Woodcrest Cluster: MPI-
-OpenMP-Nonblocking. 10 iterations for a computational domain
of the dimensions (x,y,z)=(500,500,600). The results show the
measurements of the middle node hosting rank 1 using 4 OpenMP
threads.

109

600

500 -

400

300 [

MFlop/s

200 -

100

Time(s)

Figure 5.16.: LIKWID double precision floating point per second (FLOAT DP)
measurements using three nodes of the Woodcrest Cluster:
commtask. 10 iterations for a computational domain of the dimen-
sions (x,y,2)=(500,500,600). The results show the measurements of
the middle node hosting rank 1 using 4 threads.

1nl0
9 10
e
]
8 15} 1
#
~
8
= 1+ :
3
&
7
=
@ 0.5} 1
wn o 5 —m10—e20
——30—+—40--e-50
| | | | | | | |

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.17.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-Only on 16 nodes of the ICE Cluster.

110

o
3
T

|

Stencil-updates / second

o 5 = 10——20
——30——40-e-50
| | | | | | | |

0 2 4 6 8 10 12 14 16 18

MB sent per iteration and rank

Figure 5.18.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-Only-Nonblocking on 16 nodes of the ICE Cluster.

1010
2 10 T
e}
S
8 15} s
4
~—
8
)= 1 s
e}
3,
7
=
E 0.5 s
wn o 5 w1020
——30——40-e-50
| | | | | | | |

0 2 4 6 8 10 12 14 16 18

MB sent per iteration and rank

Figure 5.19.: 3D-Jacobi with a one dimensional domain decomposition. MPI-
-OpenMP-Nonblocking on 16 nodes of the ICE Cluster.

111

1010

2 T T T T T
—eo— H = 10—e—20
E ——30—+—40--+e-50
8 15} -
?
~
&
= 1 :
=
2,
T
=
§ 0.5 N
N
| | | | | | | |

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.20.: 3D-Jacobi with a one dimensional domain decomposition. MPI-
-OpenMP-Nonblocking calling MPI_Test regularely on 16 nodes of
the ICE Cluster.

<

g

S) N

Q

3

~

o}

A= 1r |

<

3,

7

=

@ 0.5} 8

n o H m-10—-—20
——30—+—40--e-50

| | | | | | | |

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.21.: 3D-Jacobi with a one dimensional domain decomposition.
commtask on 16 nodes of the ICE Cluster.

112

.1010

2.5 \ \
—eo— H —m10—e—20
ol —+—30—+—40-e-50 |
1.5 I

Stencil-updates / second

MB sent per iteration and rank

Figure 5.22.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-Only on 5 nodes of the SuperMUC Fat Nodes.

1010
2.5 10 \ \ I
—eo— H w1020
ol —+—30——40--e-50 |
1.5 I

Stencil-updates / second

MB sent per iteration and rank

Figure 5.23.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-Only-Nonblocking on 5 nodes of the SuperMUC Fat Nodes.

113

2.5 T T T
—eo— 5 —m10——20
= ——30—+—40--+e-50
= 2 8
S
?
? 1.5/.’./0‘/6\‘”\‘\'\‘\‘ i
)
o]
=
= |
=
5
= 0.5 1
! ! ! ! ! !
0 5 10 15 20 25 30 35

MB sent per iteration and rank

Figure 5.24.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-OpenMP on 5 nodes of the SuperMUC Fat Nodes.

2.5+

?/

Stencil-updates / second

1 [|
051 o 5 —m10—e—20
——30—+—40---50
| | | | | |
0 5 10 15 20 25 30 35

MB sent per iteration and rank

Figure 5.25.: 3D-Jacobi with a one dimensional domain decomposition. MPI-
-OpenMP-Nonblocking on 5 nodes of the SuperMUC Fat Nodes.

114

1010

2.5
o)
g 2
(@]
Q
<D}
wn
\
o 15|
()]
+~
fav]
=
= 1
&
[w]
()
+
wn

\ \ \
—eo— 5 m10—e—20

——30——40-e-50

5 10 15 20 25 30 35
MB sent per iteration and rank

Figure 5.26.: 3D-Jacobi with a one dimensional domain decomposition. MPI-
-OpenMP-Nonblocking calling MPI_Test regularely on 5 nodes of

the SuperMUC Fat Nodes.

.1010

—eo— H m10—e—20

——30——40-e-50

2.5
<
g
5]
Q
4
E 1.5)
k=
=
= 1
=
g
= 0.5
0
Figure 5.27

5 10 15 20 25 30 35
MB sent per iteration and rank

.2 3D-Jacobi with a one dimensional domain decomposition.

commtask on 5 nodes of the SuperMUC Fat Nodes.

115

Stencil-updates / second

0.5 —o— 5 = 1020 |
—+—30——40-+-50
| | | | | | | |

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.28.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-Only on 20 nodes of the LiMa Cluster.

Stencil-updates / second

0.5 —o— 5 w1020 |
——30—+—40--e-50

0 2 4 6 8 10 12 14 16 18

MB sent per iteration and rank

Figure 5.29.: 3D-Jacobi with a one dimensional domain decomposition.
MPI-OpenMP on 20 nodes of the LiMa Cluster.

116

Stencil-updates / second

0.5 o 5 = 1020 | |
——30—+—40-e-50
| | | | | | | |

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.30.: 3D-Jacobi with a one dimensional domain decomposition. MPI-
-OpenMP-Nonblocking on 20 nodes of the LiMa Cluster.

Stencil-updates / second

0.5 o 5 = 1020 |
——30——40-e-50

0 2 4 6 8 10 12 14 16 18
MB sent per iteration and rank

Figure 5.31.: 3D-Jacobi with a one dimensional domain decomposition.
commtask on 20 nodes of the LiMa Cluster.

117

5.3. Three-dimensional Decomposition

5.3.1. Computational Domain Decomposition

While the one dimensional domain decomposition used in the previous Sec-
tion[5.2is the easiest from a programming standpoint, it is not the most efficient.
As the communication in the parallel Jacobi algorithm can be seen as (necessary)
overhead, it should be minimized if it can not be removed, or hidden, entirely.
The common approach to do this is by minimizing the relation of useful work
(i.e. stencil computations) to the surface of the computational blocks assigned
to the used MPI ranks (i.e. message sizes). This is done by splitting the compu-
tational domain into multiple dimensions and assigning the resulting blocks to
MPI-ranks, which are therefore also placed in a three dimensional virtual grid.
Depending on the placement of the rank in regard to the computational domain
block it is being assigned, a rank can have a different number of neighbors. In
cases where the computational domain is being split along two axes, two to four
neighbors are possible. In cases where the distribution is done along all three
axes, ranks can have anything from three to six neighbors. Due to the fact that
the number of neighbors differs between the used ranks, imbalances in regard to
the amount of data necessary to communicate and the communication dependent
work exist. Additionally, the placement of ranks on the provided nodes in the
system is not as straight forward as with one-dimensional splitting. In order to
minimize the communication distance MPI provides library functions to optimize
and facilitate the assignment of computational domain blocks to ranks. For this
work, this has been done using the MPI-function MPI_Cart_create, which creates
a new MPI communicator to which topology information has been attached. The
rank order may be renumbered by the MPI implementation. Through additional
functions, such as MPI_Cart_shift and MPI_Cart_coords, the neighbors in the
created cartesian topology can, for example, be determined easily.

Another major difference to the one-dimensional splitting is the data layout
for the different messages needed to be exchanged with the different neighboring
ranks. The same as discussed above applies: Messages sent along the z-dimension
are based on x-y-planes and therefore a communication buffer which is sequential
in memory. Communication along the x-dimension is based on z-y-planes. As
elements sequential in the y-axis are also sequential in memory, these messages
are based on multiple stripes. The length of each stripe is dependent on the
ranks assigned part of the y-dimension. The number of stripes depends on the
assigned x-dimension size. Communication along the y-dimension is based on
z-x-planes which are made of individual elements which are distributed in the
computational domain’s memory region evenly, depending on the x- and z-sizes
assigned to the corresponding rank.

As shown in the previous Chapter[d] a lot of overhead seems to be necessary when
using noncontiguous memory regions for communication. For MPI-Only imple-
mentations using blocking communication functions, this overhead is smaller

118

than the performance improvement gained through the overall minimized com-
munication, but the impact on overlapping and the hybrid approaches has to be
seen with the measurements presented below.

The implementations used for the presented results in this section use the
4n-Stencil, as presented in Section As this is a fourth order stencil,
each rank needs to send and receive four respective planes to and from each
communication partner. The message sizes are defined through the respective
sub-dimensions assigned to the rank. As the number of ranks is different for
the different versions (MPI-Only vs. hybrid approaches), the message sizes dif-
fer between them. With fewer ranks used in the hybrid implementations, the
computational domain parts assigned to the ranks are larger and therefore as
well the necessary messages. Nevertheless, the number of messages per iteration
for all ranks per iteration are reduced. The intra-node communication is again
replaced by shared memory accesses inside the ranks.

Computational Domain Sizes

For the presented results for the three dimensional computational domain de-
composition, the chosen dimensions are cubic in all cases. For a chosen system
setup (i.e. HPC system, number of nodes on the system, computed iterations),
different cubic computational domains have been used, starting with small do-
main sizes up to large sizes using nearly all of the available main memory. The
presented result graphs show time in seconds (Time (s)) or the speedup compared
to the respective MPI-0Only version on the y-axis compared to the computational
domain size on the x-axis. The x-axis is scaled linearly in regard to overall
computational domain size, i.e. the number of elements defined for the entire
computational domain.

5.3.2. Discussion of Results

Dell notebooks | CoolMUC-2 | CoolMUC-2

(2*4 cores) (2*4*7 cores) | (27*28 cores)
Time(s) 5.32 5.34 5.36
Speedup 5.33 5.35 5.37]

Table 5.2.: Overview of result graphs

An overview of the different graphs presenting the results from the different
used systems can be found in Table Three different setups have been used to
represent different scenarios of possible resource environments. For programmers
who do not have very large dedicated HPC systems available, parallelization is
still possible through the use of multiple regular computers or notebooks. Two
Dell notebooks running the Linux operating system have been directly connected

119

via an Ethernet cable. Using a switch and more notebooks, the same setup can
easily be extended to use more compute nodes (i.e. notebooks or desktop PCs)
in order to provide more computational cores. Each of the two notebooks pro-
vide a uniform memory access (UMA) environment with four cores, as hyper
threading has been turned of for the test executions.

For programmers who have access to a small set of connected servers, tests have
been executed on two nodes of the CoolMUC-2. Each node on the CoolMUC-2
provides a NUMA environment with four sockets providing seven cores each.
For the hybrid approaches, other than for the other system setups used, one MPI
rank has been used per socket, not per node. Therefore eight MPI ranks have
been used, each being pinned to a socket and each of its seven threads pinned
to one of the respective cores. While the compute nodes do provide a NUMA
environment, the shared memory parallelization inside the ranks happens in a
UMA subenvironment.

Finally, to investigate the behavior of the implementations on a larger HPC sys-
tem, 27 nodes of CoolMUC-2 have been used. As a three dimensional domain
decomposition is done, this allows for a splitting of each dimension into three
parts, resulting in cubic subdomains for each of the 27 ranks.

As the OpenMP versions did not perform well for the approach taken in Sec-
tion the versions used here are as follows: MPI-Only, for which the commu-
nication phase has been implemented using MPI_Isend and MPI_Irecv for all
communication partners followed directly by MPI_Waitall. This avoids dead-
locks while not having to separate communication independent from the de-
pendent work. Instead of the MPI-OpenMP versions, a hybrid version combining
MPI with Pthreads has been implemented, as described above (MPI-Pthread-
Classic-Nonblocking). The two versions represented in the result graphs dif-
fer only in regard to the use of MPI_Test. While one version implements the
classic approach of not calling into the MPI library during the computational
phase (communication independent computation), the second version does so
at the beginning of the computation of cache each block. Both versions distin-
guish between communication dependent and independent work. Finally, the
commtask version implements the combination of all proposed aspects, including
work stealing, dynamic message progression and prioritization of communication
dependent work by scheduling it as soon as the respective communication is fin-
ished.

Only for the scenario using 27 nodes of the CoolMUC-2 did the MPI-Pthread-
Classic-Nonblocking version show better performance than the MPI-Only ap-
proach. For the other setups, they were outperformed by MPI-Only. Never-
theless, using the commtask approach, the performance was better than the
MPI-Only approach in all cases. The improvement was little for the two setups
using two nodes only but was able to result in a large performance improvement
when using the 756 cores of the 27 nodes on CoolMUC-2, especially for large

120

3,500 p——— T T

—o— MPI-Only
3,000 || g MPI-Pthread no MPI_Test |
—e— MPI-Pthread with MPI_Test
2,500 + |
—— commtask
»2,000 |- |
E
= 1,500 |
1,000 |
500 |- s
| | | | | | |
5 3) 2 2)
AN (@Y 4N o o RN

Size of cubic computational domain

Figure 5.32.: 3D-Jacobi with a three dimensional domain decomposition. Times
for 1000 iterations executed on 2 Dell notebooks connected via
direct Ethernet. For each version - computational domain combi-
nation, the time for the best splitting of the dimensions is shown.

computational domains. In all cases the commtask approach improved perfor-
mance of the hybrid implementations.

Dell notebooks

On the two Dell notebooks, the eight cores were used as follows. As in all
presented results, the MPI-Only version started one rank per core. The three
dimensional splitting of the computational domain was done by splitting each
axis into two parts (22 = 8). For the hybrid approaches, one rank was placed on
each node, using four threads each.

The performance of the MPI-Only and MPI-PthreadClassic-Nonblocking ver-
sions is quite close in regard to absolute timing, as can be seen in Figure [5.32
The MPI-PthreadClassic-Nonblocking versions are a little worse for nearly all
computational domains chosen, and it can be seen that adding MPI_Test calls
manually to the code nearly always results in overhead. Especially for larger
computational domains can the commtask approach improve performance. Due
to the little communication done and the previous detailed analysis on the be-
havior of the approach, this suggests that the communication is actually hidden
behind useful computation. The performance differences can be seen more clearly
when looking at the speedup of the different versions in respect to the MPI-Only
implementation in Figure [5.33]

121

1-2\\ T

Speedup

0.8 —.— MPI-Only a
—a— MPI-Pthread no MPI_Test
—e— MPI-Pthread with MPI_Test

—k— commtask
| | |

S I 5 5 5
RAMIVIRA NN U o o
Size of cubic computational domain

Figure 5.33.: 3D-Jacobi with a three dimensional domain decomposition.
Speedup against the best observed MPI-0Only version for 1000 iter-
ations executed on 2 Dell notebooks connected via direct Ethernet.

CoolMUC-2 - two nodes

The timing results for the execution of the different versions on two nodes of the
CoolMUC-2 can be seen in Figure and the corresponding speedup in Fig-
ure [5.35] For these results, one MPI rank was placed on each of the eight sockets
of the two nodes, each using seven threads for the respective cores for the hybrid
approaches. As the overall number of ranks in the MPI-Only version was not
cubic, different splittings of the different dimensions have been tested. These
resulted in different times, showing that splitting along multiple dimensions is
better than a one dimensional domain decomposition as used in Section [5.2
(which, on the other hand, is easier to implement). The used splittings along
the three dimensions are {z,y,z} = {4,2,7},{4,1,14},{2,1,28},{1,1,56}, in
order of decreasing performance. As a result, different splittings have also
been executed for the hybrid approaches, showing different performance as well,
but with the difference that the performance can not be ordered as for the
MPI-Only approach. The tendency of the used splittings in decreasing per-
formance is {z,y,2} = {2,2,2},{2,1,4},{1,1,8}. Nevertheless, for the MPI--
PthreadClassic-Nonblocking version with MPI_Test calls the splitting {z, y, z}
= {2, 1,4} outperformed the even splitting for the largest chosen computational
domain size, if only slightly.

For each implementation, the presented results use the best observed time from
the different splittings.

122

Time(s)

250

I T T

—o— MPI-Only
200 | —=— MPI-Pthread no MPI_Test

—e— MPI-Pthread with MPI_Test

—k— commtask
150
100

50 -
| | |
2503 5003 7503 10003

Size of cubic computational domain

Figure 5.34.: 3D-Jacobi with a three dimensional domain decomposition. Times
for 1000 iterations executed on 2 nodes of the CoolMUC-2. For
each version - computational domain combination, the time for the
best splitting of the dimensions is shown.

Speedup

1.4
1.2
1
0.8 /
—o— MPI-Only
0.6 —a— MPI-Pthread no MPI_Test
) —eo— MPI-Pthread with MPI_Test
—— commtask
| | | |
2503 5003 7503 10003

Size of cubic computational domain

Figure 5.35.: 3D-Jacobi with a three dimensional domain decomposition.
Speedup against the best observed MPI-Only version for 1000 iter-
ations executed on 2 nodes of the CoolMUC-2.

123

400 I

T
—— MPI-Only
—=— MPI-Pthread no MPI_Test
300 | | —— MPI-Pthread with MPI_Test .
—k— commtask
=
= 200]
=
100 |- s
| | |
7502 15003 22503 30003

Size of cubic computational domain

Figure 5.36.: 3D-Jacobi with a three dimensional domain decomposition. Times
for 1000 iterations executed on 27 nodes of the CoolMUC-2. For
each version - computational domain combination, the time for the
best splitting of the dimensions is shown.

Looking at the results it can be seen that the hybrid approach can only out-

perform the MPI-Only version when all proposed optimizations are applied in
the form of the commtask approach. The other hybrid approaches perform worse
and are unable to make use of the theoretical advantages.
With little communication due to the use of only two nodes, and therefore lit-
tle inter-node communication, the advantages of using the proposed commtask
approach are limited. Nevertheless, the hybrid codes are improved by applying
the concepts proposed throughout this work.

CoolMUC-2 - 27 nodes

For these results, presented in Figures[5.36|and .37} 27 nodes of the CoolMUC-2
cluster have been used. This results in 756 ranks on 756 cores for the MPI-Only
version and 27 ranks on one node each for the hybrid approaches. Each rank
uses 28 threads which are being pinned to one core each.

As for the setup described above, different splittings were used and showed differ-
ent performance. For the MPI-Only approach, the used splittings are {x,y, 2z} =
{9,4,21},{9,2,42}, {8,1,42},{9,1, 84} in decreasing performance. A difference
between {x,y, 2z} = {9,2,42},{8,1,42} is very small, but the gap between the
best and worst splitting increases with increasing computational domain size. For
the MPI-PthreadClassic-Nonblocking versions the behavior is similar indepen-
dent of the question whether or not MPI_Test is being called. {z,y,z} = {3,3,3}

124

1.6 .
1.4 .
(o}
= 1.2 |
g
(o}
n 14 o |
—o— MPI-Only
—a— MPI-Pthread no MPI_Test
0.8 —e— MPI-Pthread with MPI_Test
—t— commtask
06 | | |
7503 15002 22503 30003

Size of cubic computational domain

Figure 5.37.: 3D-Jacobi with a three dimensional domain decomposition.
Speedup against the best observed MPI-0Only version for 1000 iter-
ations executed on 27 nodes of the CoolMUC-2.

is worse than a splitting along two dimensions only, which has been done using
{z,y,z} ={1,3,9} and {3,1,9} with a slight advantage for the former for large
computational domains. This is surprising as the first results in more commu-
nication along the y-dimension, which consists of single elements distributed
throughout the used memory regions instead of “stripes” of elements as would
be the case for communication along the x-dimension.

For the commtask approach, the same splittings were used and the performance
was closer to the expected behavior: Splitting along the y-dimension in favor of
the x-dimension results in worse performance. While for small computational
domains the even splitting along all dimensions is best, for larger computa-
tional domains the splittings in order of decreasing performance are {z,y,z} =
{1,3,9},{3,3,3},{3,1,9}. Splitting in multiple dimensions reduces the ratio of
communication to computation and not splitting along the y-dimension avoids
having to deal with an MPI data type describing many individual double values
distributed throughout physical memory.

With the large number of nodes, the inter-node communication necessary is
larger than in a setup with two nodes only. Also, the number of ranks which
have to communicate with six different neighbors in the MPI-0Only version is a lot
larger. Communication has a larger impact, and being able to hide communica-
tion behind computation results in a larger potential for performance improve-
ment as compared to the other setups. All hybrid approaches outperform the
MPI-Only approach for all but the smallest computational domain sizes. While
the MPI-PthreadClassic-Nonblocking approaches show better performance for

125

mid sized computational domains, the commtask approach is better for small sizes
and best for very large computational domains.

All in all it can be said that using the commtask approach in a three dimen-

sional domain decomposition does not have the same, clearly visible, impact
on performance as has been observed when applying it to the one dimensional
domain decomposition described previously. It is able to improve hybrid imple-
mentations and shows increasing advantages with larger problem sizes on larger
clusters.
The performance improvements cannot be attributed to the communication over-
lap as clearly and the observed performance improvements seem to be a result
of the combination of communication overlap and work balancing inside the
compute nodes.

Looking back at the results of the benchmark presented in Section .2} it
is no surprise that the impact is less observable as with the one dimensional
splitting. For communication based on sequential memory buffers, the results
showed that nearly all the time spent in the communication functions is actually
used for data transfer. When achieving data transfer overlap, these times were
reduced to practically nothing. In contrast, when using MPI data types to create
noncontiguous communication buffers, additional overhead was introduced. It
has been shown that this overhead is related to the necessary data movement
done inside the MPI library in order to create temporary sequential memory
buffers, which are communicated. Therefore the time spent inside the library
functions is, in large part, spent on local operations.

As the data types used in the three dimensional Jacobi algorithm are less uniform
and different data types are used for different communication partners, it is not
clear which approach and which optimizations are applied inside the MPI library,
but it can be assumed with high certainty that only a (possibly small) part of the
time spent in the library is needed for data transfer. As the additional overhead
cannot be overlapped, the impact of using the commtask approach is reduced in
this regard.

Nevertheless the combination of all aspects still provides improvements to the
hybrid implementations as the available threads can share the load of necessary
overhead and balance out the useful work at the same time in order to minimize
imbalances and, therefore, idle times on the available cores.

5.4. Discussion

The proposed commtask approach, presented in Chapter 4] has been applied to
a stencil algorithm, namely a three dimensional Jacobi algorithm, representing
a wide range of programs which have stencil codes at their core. These stencil
codes exhibit hierarchical parallelism, which matches both the hybrid hardware
and hybrid programming models which have been discussed earlier in this work.

126

The computational domain of the computed problem can be split into three
dimensional subdomains, which can be assigned to higher level parallelization
units, i.e. the used MPI ranks. These in turn can internally split the assigned
part of the computational domain again and assign these parts to the available
threads when parallelized in a hybrid fashion.

Communication at the MPTI layer is necessary due to the fact that required val-
ues from neighbor elements at the edge of the subdomains from the previous
iteration have been computed by a different rank. Depending on the kind of
stencil used, especially the order of the stencil (Section , these messages
have different sizes. Depending on the used domain decomposition approach,
the message buffers for these messages also have a different memory footprint.
Two kinds of computational domain decompositions have been applied and eval-
uated: one dimensional splitting of the computational domain (Section and
a multi-dimensional decomposition (Section [5.3).

Applying a one-dimensional computational domain decomposition is easiest
from a programming point of view. The resulting communication pattern uses
message buffers which are sequential in memory, which has been shown to work
very well with manual progression functions, as discussed in Chapter [l Starting
with an MPI-0Only implementation using blocking communication in a communi-
cation phase, other different implementations have been created and evaluated.
These include MPI-0Only-Nonblocking, for which the communication dependent
work and communication independent work have been separated. The block-
ing communication phase has been exchanged with nonblocking communication
functions, surrounding the communication independent work. The same has
been done for a hybrid MPI-OpenMP version, resulting in the combination of hi-
erarchical parallelization and nonblocking communication in the MPI-OpenMP--
Nonblocking implementation. Finally, all aspects discussed in regard to the
proposed commtask have been implemented using a Pthread based OpenMP like
runtime. Details on the implementations have been presented in Section [5.1.4]
For an extensive set of computational domain configurations, all implementa-
tions have been executed and evaluated on multiple modern HPC systems, in-
cluding the LiMa Cluster and SuperMUC. For all combinations but the commtask
implementation, the impact of increasing communication requirements can be
observed. While this is expected for implementations using blocking communica-
tion, i.e. separate communication and computation phases, the results confirm
what has been shown with the benchmark presented in the previous chapter.
Not one of the used MPI implementations, which included Intel MPI, IBM MPI,
MPT MPI and MPICH2, is able to provide real communication overlap even
when making use of the corresponding MPI functions.

The results show that, while smaller single socket HPC systems like the used
ICE Cluster and Woodcrest Cluster do not benefit from a hybrid implemen-
tation approach, new multi-socket systems like SuperMUC and LiMa can be
used with higher efficiency when combining distributed with shared memory

127

parallelization. Nevertheless, the impact of increasing communication overhead
for larger computational domains is still clearly visible. Only when looking at
the presented results for the commtask implementation can all systems be used
perfectly in regard to communication overlap. Perfect overlap of the entire com-
munication, including data transfer, has been observed for all test scenarios. As
for all cases, the communication was less time-consuming than the computation,
all used cores have been optimally used for useful computation throughout the
entire program execution.

Splitting the computational domain in multiple dimensions is improving the
ratio of communication to computation and minimizes communication overhead.
The implementation is more complex as multiple communication partners in
multiple dimensions have to be considered. Additionally the data layout of the
message buffers needed for the different neighbors is different for each dimension.
The three dimensional computational domain is mapped to a one dimensional
memory region and depending on the chosen communication dimension, the
used message buffer is either sequential, consists of multiple (smaller) sequen-
tial memory regions, or many individual elements. The use of message buffers
which are not sequential in memory introduces a lot of overhead in regard to
communication (as shown in Section. Nevertheless, the advantage through
minimizing the overall communication requirements is larger, resulting in per-
formance improvements compared to a one dimensional domain decomposition
approach. Due to the reduced percentage of the entire program execution used
for actual message transfer, the impact of being able to hide communication
behind useful work is reduced. The results showed that this is especially true
when using a small number of compute nodes with little inter-node communica-
tion. Even when implementing the shared memory part on a lower level using
Pthreads instead of OpenMP, the MPI-Only approach can outperform the hybrid
versions. Nevertheless, applying the commtask approach on such configurations
can at least improve the hybrid approach to match the MPI-Only counterpart.
The true potential of the commtask approach has been shown when using it
together with a three dimensional domain decomposition on a larger part of
a modern multi-socket HPC system, namely 27 nodes of the CoolMUC-2 pro-
viding 756 cores in total. As observed with the results of the one dimensional
domain decomposition, the hybrid parallelization can make better use of the
hardware than the MPI-Only approach, even when no communication overlap
can be achieved. Especially for large computational domains with increasing
communication demands, the results show that the commtask approach can op-
timize this further. Together with the observations made in earlier parts of this
work, the results indicate that perfect communication overlap has been achieved
and idle times of the available computational cores have been minimized.

For both computational domain decomposition approaches, manually adding
the message progression function calls to different parts of the implementations,

128

e.g. at the end of the computational loops at different levels (elements, lines,
planes), has been done. In all cases this resulted in additional overhead and
decreased performance without achieving the desired overlap.

The application of the commtask approach to real HPC algorithms works and

is able to improve hybrid implementations. For cases where the communication
buffers are sequential in memory the time spent in communication related func-
tions is reduced to basically nothing and the communication successfully hidden
behind useful computation. In cases where MPI data types are needed, the ad-
vantages of applying the commtask approach outweigh the introduced overhead
when a lot of inter-node communication is necessary. Even when this is not the
case, it improves other hybrid approaches to a point where it can at least match
MPI-Only implementations.
Additionally, adding MPI awareness to the used OpenMP runtime offers opportu-
nities in regard to optimizing message progression. As the necessary parameters,
like number and timing of calls to the message progression functions, are depen-
dent on the used HPC system and the provided software environment, they can
be optimized by system experts and provided through system software without
the need to change the parallel software and reduce its portability.

129

CHAPTER O

Conclusions

6.1. Summary

During a given computational phase, two kinds of workloads generally exist
in typical modern high performance computing applications: communication-
dependent and communication-independent work. The overlap of communica-
tion with communication-independent work has been discussed and analyzed in
detail in this work (Section . It has been shown that while the MPI standard
offers the necessary functions which should be able to overlap communication
with computation, it cannot be achieved with modern MPI implementations on
modern HPC systems (Section [4.1)).

Different reasons why this is the case have been discussed. Due to the fact that
no calls to the MPI library are done during the computation phase, behind which
the communication should be hidden, steps like hardware programming are not
taken care of, and instead of being overlapped with computation, communica-
tion is moved to the communication termination function. The two possible
ways discussed in literature to achieve overlap are the use of progress threads
and manual progression. As discussed in this work, the use of progress threads is
not always possible nor feasible. The focus of this work was manual progression,
i.e. the use of progression functions throughout the computation phase.

The behavior of different MPT implementations and their capabilities to over-
lap communication without and with calls to progression functions has been
benchmarked and analyzed in detail (Section . The results show that while
no implementation is able to achieve overlap per default, it is possible through
the use of progression functions. Nevertheless, it has also been shown that the
correct use of these, in regard to timing and number of calls, is crucial to perfor-
mance. Manual placement in MPI-0nly parallelized codes is difficult when trying

131

to achieve overlap with minimal additional overhead. Even when achieving the
overlap on one system, the same approach can behave differently on another.

A different approach to program for modern HPC systems is combining shared-
and distributed-memory parallelization in a hybrid way. At a higher level, MPI
is used for parallelization, placing one rank on each compute node or on each
socket in the provided NUMA environment. At a lower level, each MPI rank
parallelizes the assigned work in a shared-memory fashion using Pthreads or
OpenMP. While this approach corresponds to the hybrid hardware setup of the
used HPC systems, it is being discussed controversially in literature. Even for
the same algorithm, it can be better or worse than an MPI-0Only implementation
depending on the used system or even on the chosen input data.

Its advantages have been discussed throughout this work and its potential in re-
gard to communication overlap has been the focus of the presented approaches.
Through MPI awareness, the lower level parallelization, i.e. the OpenMP runtime,
can be notified of outstanding asynchronous communication requests. Together
with knowledge about the used HPC system and its software environment, the
OpenMP runtime can take care of scheduling and calling progression functions. A
respective extension to the OpenMP standard, namely commtasks, has been pro-
posed and discussed in detail (Section . Together with a new schedule for the
OpenMP loop parallelization construct (Chapter, the proposed commtasks have
additional advantages. Besides optimal use and timing of progression functions,
NUMA awareness is being added to hybrid programs. Work balancing inside the
MPI ranks is achieved through work stealing between the used OpenMP threads.
Finally, idle times and parallelization overhead are minimized by scheduling com-
munication related work steps with a high priority.

The proposed approaches have been implemented for the Jacobi Relaxation
method, working on a three dimensional computational domain (Chapter |5)).
This algorithm represents a wide range of so called stencil codes as well as, in re-
gard to this work, programs which can be parallelized in a hierachical manner. A
large set of test scenarios has been executed on different HPC systems for many
different parallel implementations: MPI-Only as well as hybrid MPI-OpenMP im-
plementations, both using blocking and nonblocking communication functions,
and the proposed commtask implementation.

The results show that perfect communication overlap can be achieved with the
proposed approach and performance can be improved drastically especially for
hybrid implementations. Resource usage is additionally optimized due to the
fact that idle times are minimized on the used cores. At the same time, the
ease of use for programmers is achieved through minimal changes to the existing
OpenMP standard and the fact that optimizations in regard to the use of progres-
sion functions is moved to HPC system vendors and administrators, who can
fine tune the proposed OpenMP extensions in the installed OpenMP runtime.

132

6.2. Future Work

It has been shown that the proposed commtask approach works well on the used
HPC systems together with the used MPI implementations. The chosen algorithm
for the proof of concept example was able to prove the potential and effective-
ness of the approach, but also revealed shortcomings of the existing MPI im-
plemenations in regard to communication using noncontiguous memory buffers.
Future research can address this problem and extend the proposed commtask im-
plementations accordingly. Also, it would be interesting to investigate how the
approach can benefit different types of parallel programs, especially those follow-
ing a master-worker scheme. As those have irregular communication patterns,
communication awareness in the used OpenMP runtime can remove the burden of
checking for communication requests from the application programmer.

While the focus of this work has been manual progression, the use of progress
threads is also be possible in combination with the proposed commtasks. In-
stead of scheduling progression functions, the OpenMP runtime can interact with
progress threads in cases where they are part of future MPI implementations.
This would remove the overhead introduced by the necessity to call progression
functions while keeping all benefits of the commtasks. Communication termina-
tion can be made known to the OpenMP runtime through the progress thread.
Prioritizing communication related work, e.g. pre- and post-communication de-
pendent work, can be done as proposed together with work balancing.

Finally, the newest version of the MPI standard introduced nonblocking collec-
tive operations. These require different steps from different MPI ranks at different
times, such as forwarding messages to other ranks or even computational steps
while accumulating data during operations such as MPI_Iallreduce. An MPI
aware OpenMP runtime could recognize the need for action and schedule it to
available threads with high priority through the use of the proposed commtasks,
as well as counteract introduced overhead and imbalances by applying the pro-
posed work stealing. Future research should be done to investigate where the
bottlenecks lie in this regard and in which way the proposed commtask can over-
come these.

133

Appendix

135

APPENDIX A

System Descriptions

This chapter describes all systems used throughout this work. All but one system
are high performance computing (HPC) systems, installed either at the “Leibniz
Supercomputing Centre’ﬂ (LRZ) or the “Regionales RechenZentrum Erlangen’ﬂ
(RRZE). Three systems entered the TOP50(E| list: The SuperMUC Thin Nodes
entered the list in June, 2012, on rank number four. The LiMa Cluster entered
the list in November, 2010, on rank number 130 and the Woodcrest Cluster in
November, 2006, on rank 124.

"https://www.lrz.de
*https: //www.rrze.fau.de/
3http://top500.org/

137

https://www.lrz.de
http://top500.org/

A.1. SuperMUC Fat Nodes

The SuperMUC Fat Nodes are part of the SuperMUC Phase 1 installation at
the Leibniz Supercomputing Centre (LRZ). They have been installed 2011 and

consist of one island with 205 nodes.

The system details for the nodes and the used interconnect can be seen in the

following table.

Processor Type

Intel Westmere-EX Xeon E7-4870 10C

Nominal Frequency [GHz|

2.4

Total Number Nodes 205
Total Number Cores 8200
Total Peak Performance [PFlop/s| 0.078
Total Linpack Performance [PFlop/s| | 0.065
Total size of memory [TByte] 52
Processor per Node 4
Cores per Processor 10
Cores per Node 40
Memory per Core [GByte] 6.4
Interconnect Technology Infiniband QDR
UMA/NUMA NUMA

138

A.2. SuperMUC Thin Nodes

Also part of the SuperMUC Phase 1 installation at the Leibniz Supercomputing
Centre (LRZ), the SuperMUC Thin Nodes have been installed 2012. They con-
sist of 18 islands hosting 512 nodes each. This system entered the TOP500 list
of supercomputers at rank number four in June, 2012.

The system details for the nodes and the used interconnect can be seen in the

following table.

Processor Type

Intel SandyBridge-EP Xeon E52680 8C

Nominal Frequency [GHz|

2.7

Total Number Nodes 9216
Total Number Cores 147456
Total Peak Performance [PFlop/s| 3.2
Total Linpack Performance [PFlop/s| | 2.897
Total size of memory [TByte] 288
Processor per Node 2
Cores per Processor 8
Cores per Node 16
Memory per Core [GByte] 2
Interconnect Technology Infiniband FDR10
UMA/NUMA NUMA

139

A.3. CoolMUC-2

Also part of the Linux Cluster at the Leibniz Supercomputing Centre (LRZ),
the CoolMUC-2 has the same processors as the Phase 2 of the SuperMUC.
The system details for the nodes and the used interconnect can be seen in the
following table.

Processor Type Intel Haswell EP
Nominal Frequency |GHz| 2.6

Total Number Nodes 384

Total Number Cores 10752

Total Peak Performance [TFlop/s| | 447

Total size of memory [TByte] 24.6

Processor per Node 2

Cores per Processor 14

Cores per Node 28

Memory per Core |GByte] 2.3

Interconnect Technology Infiniband FDR14
UMA/NUMA NUMA

140

A.4. LiMa Cluster

The LiMa Cluster has been installed at the “Regionales RechenZentrum Erlan-
gen” (RRZE) in 2010. In November of the same year, it entered the TOP500

list of supercomputers on rank 130.

The system details for the 500 compute nodes and the used interconnect can be

seen in the following table.

Processor Type

Intel Westmere Xeon 5650

Nominal Frequency |GHz| 2.66
Total Number Nodes 500
Total Number Cores 6000
Total Peak Performance |[TFlop/s| 64
Total Linpack Performance [TFlop/s| | 56.7
Total size of memory [TByte] 11.7
Processor per Node 2
Cores per Processor 6
Cores per Node 12
Memory per Core [GByte] 2

Interconnect Technology

Infiniband QDR

UMA /NUMA

NUMA

141

A.5. ICE Cluster

The ICE Cluster has been installed at the Leibniz Supercomputing Centre (LRZ)
in 2010. The system details for the 64 nodes and the used interconnect can be
seen in the following table.

Processor Type Intel Nehalem-EP Xeon E5540
Nominal Frequency |GHz| 2.53

Total Number Nodes 64

Total Number Cores 512

Total Peak Performance [TFlop/s| | 5.2

Total size of memory [TByte] 1.5

Processor per Node 2

Cores per Processor 4

Cores per Node 8

Memory per Core |GByte| 3

Interconnect Technology Infiniband DDR
UMA/NUMA UMA

142

A.6. Woodcrest Cluster

The Woodcrest Cluster has been installed at the “Regionales RechenZentrum Er-
langen” (RRZE) in 2006. In November of the same year, it entered the TOP500
list of supercomputers on rank 124. The system has been updated throughout
the years.

The details for the system used in this work can be seen in the following table.

Processor Type Intel Woodcrest Xeon 5160 2C
Nominal Frequency |GHz| 3

Total Number Nodes 212

Total Number Cores 728

Total Peak Performance [TFlop/s| 8.736
Total Linpack Performance [TFlop/s| | 5.416
Total size of memory |[TByte] 14
Processor per Node 2

Cores per Processor 2

Cores per Node 4

Memory per Core |GByte| 2
Interconnect Technology Infiniband
UMA/NUMA UMA

143

A.7. Dell Notebook Cluster

This system consists of two high end office notebooks, connected through di-
rect Ethernet. Both notebooks were running the same Linux operating system
(Ubuntu 12.04LTS) and used the MPICH (version 3.0.4) MPI implementation.
The system details can be seen in the following table.

Processor Type Intel Core i7-3740QM
Nominal Frequency |[GHz| 2.7

Total Number Nodes 2

Total Number Cores 8

Total size of memory [GByte| | 32

Processor per Node 1

Cores per Processor 4

Cores per Node 4

Memory per Core |GByte] 4

Interconnect Technology Direct Ethernet
UMA/NUMA UMA

144

APPENDIX B

Benchmark: Asynchronous Communication Capabilities of MPI
Implementations

B.1. Additional results

Detailed timing measurements as discussed in Section [£:2] The following mea-
surements show the communication timer measurements corresponding to the
results presented in Figure [4.10

145

12

10 + s
8 |
— —e— 100MB
T 6 1 |-= 50MB
E —eo— 10MB
41 1 |—— 5MB
—— 2MB
2 1 |- IMB
-=- 512kB
O ® | |-e-128B
10
Version(Sync/Async/Async(x))
(a) 128kB to 100MB
1.2 3
10 |
0.8 |
)
< 06| |
é —e— 10MB
04 1 |-= 5MB
—eo— 2MB
0.2 1 |—— 1MB
——512kB
0 " | |-e-128B
10

Version(Sync/Async/Async(x))
(b) 128kB to 10MB

Figure B.1.: Results micro benchmark new: ICE 2 nodes INTEL40 2MSGs no
stripping COMMUNICATION time TOTAL only

146

12

10 - =
8 [|
— —e— 100MB
T 6 1 |-= 50MB
é —eo— 10MB
41 1 |—— 5MB
—— 2MB
2 1 |-e- 1MB
-=- 512kB
0 ® | |-e-128KB
10
Version(Sync/Async/Async(x))
(a) 128kB to 100MB
1.2 B
1 [|
0.8 |
)
%5 0.6 |
E —o— 10MB
0.4 1 |-= 5MB
—eo— 2MB
0.2} 1 |—— 1MB
——512kB
U " | |e-128kB
10

Version(Sync/Async/Async(x))
(b) 128KB to 10MB

Figure B.2.: Results micro benchmark new: ICE 2 nodes INTEL40 2MSGs no
stripping COMMUNICATION time WAIT only

147

1073

af |
31 N
- —e— 100MB
T 92l 4 |-=— 50MB
é —e— 10MB
—— HMB
10 1 |—— 2MB
-e- 1MB
-m- H12kB
0 . | | | | | | - 128kB
S A 2 4 10
Version(Sync/Async/Async(x))
(a) 128kB to 100MB
1073
T
20 N
1.5+ 8
=
[«b)
E 1r | |-e—10MB
—=— HMB
0.5 | |—e— 2MB
—— 1MB
——512kB
0 . | | | | | | e 128kB
S A 2 4 10

Version(Sync/Async/Async(x))
(b) 128KB to 10MB

Figure B.3.: Results micro benchmark new: ICE 2 nodes INTEL40 2MSGs no
stripping COMMUNICATION time TEST only zoom

148

—e—100MB
—=— 50MB
—e— 10MB
—— 5MB
1 |—— 2MB
-e- 1MB
-=- 512kB
-e- 128kB

Time(s)

wmn

A 2 4 10
Version(Sync/Async/Async(x))

(a) 128kB to 100MB

1074

—eo— 10MB
—=— 5MB
1 - |—e— 2MB
—— 1MB
——512kB
-o-128kB

Time(s)
o
T
|

| | | | |
S A 2 4 10
Version(Sync/Async/Async(x))

(b) 128kB to 10MB

Figure B.4.: Results micro benchmark new: ICE 2 nodes INTEL40 2MSGs no
stripping COMMUNICATION time INIT only

149

Bibliography

(1]

2]

3]

4]

[5]

[6]

F. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer, and D. Nikolopoulos.
Application-Level Energy Awareness for OpenMP. In Proceedings of the
11th International Workshop on OpenMP, IWOMP 2015, pages 219-232,
Berlin, Heidelberg, 2015. Springer.

R. Amorim, G. Haase, M. Liebmann, and R. W. dos Santos. Compar-
ing CUDA and OpenGL Implementations for a Jacobi Iteration. In Pro-
ceedings of the International Conference on High Performance Computing
Stmulation, HPCS 09, pages 22-32, Washington, DC, USA, 2009. IEEE
Computer Society.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical report, EECS Department, University of
California, Berkeley, 2006.

D. Bailey, E. Barscz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-
toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel Benchmarks.
NAS technical report RNR-94-007, NASA Ames Research Center, Moffett
Field, CA, 1994.

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing Band-
width Limited Problems Using One-Sided Communication and Overlap.
In Proceedings of the 20th International Parallel and Distributed Process-
ing Symposium, IPDPS 2006, page 10 ff., Washington, DC, USA, 2006.
IEEE Computer Society.

I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham. Performance
Analysis of Asynchronous Jacobi’s Method Implemented in MPI, SHMEM

151

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

152

and OpenMP. In International Journal of High Performance Computing
Applications, pages 97-111. Sage Publications, Inc., Thousand Oaks, CA,
USA, 2012.

R. A. F. Bhoedjang, T. Ruhl, and H. Bal. User-Level Network Interface
Protocols. Computer, 31(11):53-60, 1998.

J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C. A. Nelson,
and C. D. Offner. Extending OpenMP for NUMA Machines. In Proceed-
ings of the 2000 ACM/IEEE Conference on Supercomputing (CDROM),
Supercomputing 00, Washington, DC, USA, 2000. IEEE Computer Soci-
ety.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-per-Second Local Area
Network. IEEE Micro, 15(1):29-36, 1995.

S. W. Bova and G. F. Carey. A Distributed Memory Parallel Element-by-
Element Scheme for Semiconductor Device Simulation. Computer Methods
in Applied Mechanics and Engineering, 181(4):403 — 423, 2000.

R. Brightwell, R. Riesen, and K. D. Underwood. Analyzing the Impact of
Overlap, Offload, and Independent Progress for Message Passing Interface
Applications. In International Journal of High Performance Computing
Applications, volume 19, pages 103-117. Sage Publications, Inc., Thousand
Oaks, CA, USA, 2005.

R. Brightwell, K. Underwood, and R. Riesen. An Initial Analysis of the
Impact of Overlap and Independent Progress for MPI. In Proceedings of the
11th European PVM/MPI Users’ Group Meeting, EuroPVM/MPI, pages
370-377, Berlin, Heidelberg, 2004. Springer.

R. Brightwell and K. D. Underwood. An Analysis of the Impact of MPI
Overlap and Independent Progress. In Proceedings of the 18th Annual
International Conference on Supercomputing, SC 2008, ICS ’04, pages 298—
305, New York, NY, USA, 2004. Association for Computing Machinery.

D. Buettner, J. T. Acquaviva, and J. Weidendorfer. Real Asynchronous
MPI Communication in Hybrid Codes through OpenMP Communication
Tasks. In Proceedings of the International Conference on Parallel and Dis-
tributed Systems, ICPADS, pages 208-215, Washington, DC, USA, 2013.
IEEE Computer Society.

F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on IBM SP for
the NAS benchmarks. In Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing (CDROM), Supercomputing ’00, page 12, Washington,
DC, USA, 2000. IEEE Computer Society.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Carribault, M. Perache, and H. Jourdren. Enabling Low-Overhead Hy-
brid MPI/OpenMP Parallelism with MPC. In Proceedings of the 6th Inter-
national Workshop on OpenMP, IWOMP, pages 1-14, Berlin, Heidelberg,
2010. Springer.

J. Cecilia, J. Garcia, and M. Ujaldon. CUDA 2D Stencil Computations for
the Jacobi Method. In Proceedings of the 10th International Conference
on Applied Parallel and Scientific Computing, PARA 2010, pages 173-183,
Berlin, Heidelberg, 2012. Springer.

B. M. Chapman, L. Huang, H. Jin, G. Jost, and B. R. de Supinski. Toward
Enhancing OpenMP’s Work-sharing Directives. In Proceedings of the 12th
International Conference on Parallel Processing, Euro-Par’06, pages 645—
654, Berlin, Heidelberg, 2006. Springer.

W.-Y. Chen, C. Iancu, and K. Yelick. Communication Optimizations for
Fine-Grained UPC Applications. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques, PACT
'05, pages 267278, Washington, DC, USA, 2005. IEEE Computer Society.

M. Christen, O. Schenk, E. Neufeld, P. Messmer, and H. Burkhart.
Parallel Data-Locality Aware Stencil Computations on Modern Micro-
Architectures. In Proceedings of the IEEE International Symposium on
Parallel Distributed Processing, IPDPS 2009, pages 1-10, Washington, DC,
USA, 2009. IEEE Computer Society.

G. Da Costa and J.-M. Pierson. Characterizing Applications from Power
Consumption: A Case Study for HPC Benchmarks. In st International
Conference on Information and Communication on Technology for the
Fight against Global Warming, ICT-GLOW 2011, pages 10-17, Berlin,
Heidelberg, 2011. Springer.

A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany. Transformations to
Parallel Codes for Communication-Computation Overlap. In Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, SC ’05, page 58
ff., Washington, DC, USA, 2005. IEEE Computer Society.

K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Opti-
mization and Performance Modeling of Stencil Computations on Modern
Microprocessors. SIAM Review, 51(1):129-159, 2009.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick. Stencil Computation Optimization and
Auto-Tuning on State-of-the-Art Multicore Architectures. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2008, pages 1-12, Washington, DC,
USA, 2008. IEEE Computer Society.

153

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

154

S. Didelot, P. Carribault, M. Pérache, and W. Jalby. Improving MPI
communication overlap with collaborative polling. Computing, 96(4):1-16,
2013.

H. Dursun, K. I. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia,
A. Nakano, and P. Vashishta. A Multilevel Parallelization Framework for
High-Order Stencil Computations. In Proceedings of the 15th International
FEuro-Par Conference on Parallel Processing, Euro-Par '09, pages 642653,
Berlin, Heidelberg, 2009. Springer.

A. Eichenberger, C. Terboven, M. Wong, and D. an Mey. The Design of
OpenMP Thread Affinity. In Proceedings of the 8th International Work-
shop on OpenMP, IWOMP 2012, pages 15-28, Berlin, Heidelberg, 2012.
Springer.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain,
D. J. Daniel, R. L. Graham, and T. S. Woodall. OpenMPI: Goals, Concept,
and Design of a Next Generation MPI Implementation. In Proceedings
of the 11th European PVM/MPI Users’ Group Meeting, FuroPVM/MPI
2004, pages 97-104, Berlin, Heidelberg, 2004. Springer.

B. Goglin and S. Moreaud. KNEM: a Generic and Scalable Kernel-Assisted
Intra-node MPI Communication Framework. In Journal of Parallel and

Distributed Computing, pages 176-188. Association for Computing Ma-
chinery, New York, NY, USA, 2013.

R. Grabner, F. Mietke, and W. Rehm. Implementing an MPICH-2 Channel
Device Over VAPI on InfiniBand. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium, page 184 ff., Washington,
DC, USA, 2004. IEEE Computer Society.

R. Graham, S. Poole, P. Shamis, G. Bloch, G. Bloch, H. Chapman, M. Ka-
gan, A. Shahar, I. Rabinovitz, and G. Shainer. ConnectX-2 InfiniBand
Management Queues: First Investigation of the New Support for Network
Offloaded Collective Operations. In Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, CCGrid,
pages 53-62, Washington, DC, USA, 2010. IEEE Computer Society.

G. Hager, G. Jost, and R. Rabenseifner. Communication Characteristics
and Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-
Core SMP Nodes. In Proceedings of the Cray Users Group Conference.
Cray User Group, Inc., 2009.

G. Hager, G. Schubert, T. Schoenemeyer, and G. Wellein. Prospects
for Truly Asynchronous Communication with Pure MPI and Hybrid

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

MPI/OpenMP on Current Supercomputing Platforms. In Proceedings of
the Cray Users Group Conference. Cray User Group, Inc., 2011.

D. S. Henty. Performance of Hybrid Message-Passing and Shared-Memory
Parallelism for Discrete Element Modeling. In Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, SC’00, Washington, DC,
USA, 2000. IEEE Computer Society.

T. Hoefler and A. Lumsdaine. Message Progression in Parallel Computing -
To Thread or not to Thread. In Proceedings of the 2008 IEEE International
Conference on Cluster Computing, pages 5—12, Washington, DC, USA,
2008. IEEE Computer Society.

C. Iancu, P. Husbands, and P. Hargrove. HUNTing the Overlap. In Pro-
ceedings of the 14th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2005, pages 279-290, Washington, DC,
USA, 2005. IEEE Computer Society.

InfiniBand Trade Association. InfiniBand Architecture Volume 1 and Vol-
ume 2, 2015. http://www.infinibandta.org/content/pages.php?pg=
technology_public_specification. [Online, accessed April 3, 2015].

M. Jiayin, S. Bo, W. Yongwei, and Y. Guangwen. Overlapping Commu-
nication and Computation in MPI by Multithreading. In Proceedings of
the International Conference on Parallel and Distributed Processing Tech-
niques and Applications & Conference on Real-Time Computing Systems
and Applications, PDPTA 2006, pages 52-57. CSREA Press, 2006.

J. Ke, M. Burtscher, and E. Speight. Tolerating Message Latency Through
the Early Release of Blocked Receives. In Proceedings of the 11th Interna-
tional Conference on Parallel Processing, Euro-Par’05, pages 1929, Berlin,
Heidelberg, 2005. Springer.

C. Keppitiyagama and A. Wagner. Asynchronous MPI Messaging on
Myrinet. In Proceedings of the 15th International Parallel and Distributed
Processing Symposium, page 8 ff., Washington, DC, USA, 2001. IEEE
Computer Society.

M. Kowarschik, U. Riide, C. Weif, and W. Karl. Cache-Aware Multigrid
Methods for Solving Poisson’s Equation in Two Dimensions. Computing,
64(4):381-399, 2000.

R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman, and D. Panda.
Lock-Free Asynchronous Rendezvous Design for MPI Point-to-Point Com-
munication. In Proceedings of the 15th FEuropean PVM/MPI Users’
Group Meeting, EuroPVM/MPI, pages 185-193, Berlin, Heidelberg, 2008.
Springer.

155

http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

156

W. Lawry, C. Wilson, A. MacCabe, and R. Brightwell. Comb: A Portable
Benchmark Suite for Assessing MPI Overlap. In Proceedings of the IEEE
International Conference on Cluster Computing, pages 472475, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

B. P. Lester. The Art of Parallel Programming. Prentice Hall, 1993.

G. Liu and T. S. Abdel-Rahman. Computation-Communication Overlap
on Network-of-Workstation Multiprocessors. In Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and
Applications, New York, NY, USA, 1998. Association for Computing Ma-
chinery.

J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas,
P. Wyckoff, and D. Panda. Performance Comparison of MPI Implementa-
tions over InfiniBand, Myrinet and Quadrics. In Proceedings of the 2003
ACM/IEEE Conference on Supercomputing, SC’03, page 58 ff., New York,
NY, USA, 2003. Association for Computing Machinery.

J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, D. Panda,
and P. Wyckoff. Microbenchmark Performance Comparison of High-Speed
Cluster Interconnects. IEEE Micro, 24(1):42-51, 2004.

J. Liu, J. Wu, and D. Panda. High Performance RDMA-Based MPI Im-
plementation over InfiniBand. In Proceedings of the 17th Annual Interna-
tional Conference on Supercomputing, 1CS’03, pages 167-198, New York,
NY, USA, 2004. Association for Computing Machinery.

R. D. Loft, S. J. Thomas, and J. M. Dennis. Terascale Spectral Element
Dynamical Core for Atmospheric General Circulation Models. In Proceed-
ings of the 2001 ACM/IEEE Conference on Supercomputing, SC’01, pages
18-18, New York, NY, USA, 2001. Association for Computing Machinery.

A. Mamidala, D. Faraj, S. Kumar, D. Miller, M. Blocksome, T. Gooding,
P. Heidelberger, and G. Dozsa. Optimizing MPI Collectives Using Effi-
cient Intra-node Communication Techniques over the Blue Gene/P Super-
computer. In Proceedings of the 2011 IEEE International Symposium on
Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW,
pages 771-780, Washington, DC, USA, 2011. IEEE Computer Society.

V. Marjanovi¢, J. Labarta, E. Ayguadé, and M. Valero. Overlapping Com-
munication and Computation by Using a Hybrid MPI/SMPSs Approach.
In Proceedings of the 24th ACM International Conference on Supercomput-
ing, pages 5-16, New York, NY, USA, 2010. Association for Computing
Machinery.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

K. Mehta, E. Gabriel, and B. Chapman. Specification and Performance
Evaluation of Parallel I/O Interfaces for OpenMP. In Proceedings of the 8th
International Workshop on OpenMP, IWOMP 2012, pages 1-14, Berlin,
Heidelberg, 2012. Springer.

G. Mercier and J. Clet-Ortega. Towards an Efficient Process Placement
Policy for MPI Applications in Multicore Environments. In Proceedings
of the 16th European PVM/MPI Users’ Group Meeting, FEuroPVM/MPI,
pages 104-115, Berlin, Heidelberg, 2009. Springer.

Message Passing Interface Forum. MPI-1.0: A Message-Passing Interface
Standard, 1994. http://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps!
[Online, accessed August 8, 2011].

Message Passing Interface Forum. MPI-3.0: A Message-Passing In-
terface Standard, 2012. http://www.mpi-forum.org/docs/mpi-3.0/
mpi30-report.pdf. [Online, accessed July 13, 2013].

S. Moreaud, B. Goglin, R. Namyst, and D. Goodell. Optimizing MPI
Communication within Large Multicore Nodes with Kernel Assistance. In
Proceedings of the 2010 IEEE International Symposium on Parallel and
Distributed Processing, Workshops and Phd Forum, IPDPSW, pages 1-7,
Washington, DC, USA, 2010. IEEE Computer Society.

J. Nieplocha, V. Tipparaju, M. Krishnan, G. Santhanaraman, and D. K.
Panda. Optimisation and Performance Evaluation of Mechanisms for La-
tency Tolerance in Remote Memory Access Communication on Clusters.
In International Journal of High Performance Computing and Network-
ing, IJHPCN, pages 198-209, New York, NY, USA, 2004. Association for
Computing Machinery.

OpenMP Architecture Review Board. OpenMP application program in-
terface. http://www.openmp.org, [Online, accessed January 10, 2016].

OpenMP Architecture Review Board. OpenMP-3.0: Application Program-
ming Interface, 2008. http://www.openmp.org/mp-documents/spec30.
pdf. |Online, accessed March 30, 2011].

OpenMP Architecture Review Board. OpenMP-3.1: Application Program-
ming Interface, 2011. http://www.openmp.org/mp-documents/0OpenMP3.
1.pdf. [Online, accessed August 1, 2011].

OpenMP Architecture Review Board. OpenMP-4.0: Application Program-

ming Interface, 2013. http://www.openmp.org/mp-documents/0OpenMP4.
0.0.pdf. [Online, accessed January 15, 2014].

157

http://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.openmp.org
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[62]

[63]

[64]

[65]

|66]

[67]

[68]

[69]

[70]

[71]

158

OpenMP Architecture Review Board. OpenMP-4.5: Application Pro-
gramming Interface, 2015. |http://www.openmp.org/mp-documents/
openmp-4.5.pdf. [Online, accessed December 1, 2015].

L. Peng, R. Seymour, K.-i. Nomura, R. K. Kalia, A. Nakano, P. Vashishta,
A. Loddoch, M. Netzband, W. Volz, and C. Wong. High-Order Stencil
Computations on Multicore Clusters. In Proceedings of the IEEE Interna-

tional Symposium on Parallel Distributed Processing, IPDPS 2009, pages
1-11, Washington, DC, USA, 2009. IEEE Computer Society.

F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The
Quadrics Network (QsNet): High-Performance Clustering Technology. In
Proceedings of the 9th Symposium on High Performance Interconnects,
HOTI ’01, page 125 ff., Washington, DC, USA, 2001. IEEE Computer
Society.

H. Pritchard, D. Roweth, D. Henseler, and P. Cassella. Leveraging the
Cray Linux Environment Core Specialization Feature to Realize MPI Asyn-
chronous Progress on Cray XE Systems. In Proceedings of the Cray Users
Group Conference. Cray User Group, Inc., 2012.

M. Pérache, P. Carribault, and H. Jourdren. MPC-MPI: An MPI Imple-
mentation Reducing the Overall Memory Consumption. In Proceedings
of the 16th European PVM/MPI Users’ Group Meeting, FuroPVM/MPI,
pages 94-103, Berlin, Heidelberg, 2009. Springer.

M. Pérache, H. Jourdren, and R. Namyst. MPC: A Unified Parallel Run-
time for Clusters of NUMA Machines. In Proceedings of the 14th Inter-
national FEuro-Par Conference on Parallel Processing, Euro-Par '08, page
78-88, Berlin, Heidelberg, 2008. Springer.

R. Rabenseifner. Communication Bandwidth of Parallel Programming
Models on Hybrid Architectures. In Proceedings of the 4th International
Symposium on High Performance Computing, ISHPC, pages 437-448,
Berlin, Heidelberg, 2002. Springer.

R. Rabenseifner. Hybrid Parallel Programming on HPC Platforms.
http://www.compunity.org/events/ewomp03/omptalks/Tuesday/
Session7/TO1p.pdf, 2003. |Online, accessed Juli 10, 2013].

R. Rabenseifner. Hybrid Parallel Programming: Performance Problems
and Chances. In Proceedings of the Cray Users Group Conference. Cray
User Group, Inc., 2003.

R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP Paral-
lel Programming on Clusters of Multi-Core SMP Nodes. In Proceedings
of the Euromicro Conference on Parallel, Distributed, and Network-Based

http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.compunity.org/events/ewomp03/omptalks/Tuesday/Session7/T01p.pdf
http://www.compunity.org/events/ewomp03/omptalks/Tuesday/Session7/T01p.pdf

[72]

73]

[74]

[75]

[76]

7]

78]

[79]

Processing, pages 427-436, Washington, DC, USA, 2009. IEEE Computer
Society.

R. Rabenseifner and G. Wellein. Communication and Optimization As-
pects of Parallel Programming Models on Hybrid Architectures. In In-
ternational Journal of High Performance Computing Applications, pages
49-62. Sage Publications, Inc., 2003.

H. Saito, G. Gaertner, W. Jones, R. Eigenmann, H. Iwashita, R. Lieber-
man, M. van Waveren, and B. Whitney. Large System Performance of
SPEC OMP2001 Benchmarks. In Proceedings of the 4th International Sym-
posium on High Performance Computing, ISHPC, pages 370-379, Berlin,
Heidelberg, 2002. Springer.

J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis. Quantifying
the Potential Benefit of Overlapping Communication and Computation in
Large-Scale Scientific Applications. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC’06, page 17 ff., Washington, DC, USA,
2006. IEEE Computer Society.

G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R. Thakur, W. Gropp,
and D. Panda. Natively Supporting True One-Sided Communication in
MPI on Multi-core Systems with InfiniBand. In Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGRID 09, pages 380-387, Washington, DC, USA, 2009. IEEE Com-
puter Society.

D. Schmidl, T. Cramer, C. Terboven, D. Mey, and M. Miiller. An OpenMP
Extension Library for Memory Affinity. In Proceedings of the 10th Interna-
tional Workshop on OpenMP, IWOMP, pages 103—114, Berlin, Heidelberg,
2014. Springer.

A. G. Shet, P. Sadayappan, D. E. Bernholdt, J. Nieplocha, and V. Tip-
paraju. A Framework for Characterizing Overlap of Communication and
Computation in Parallel Applications. Cluster Computing, 11(1):75-90,
2008.

P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-Copy OS-Bypass
NIC-Driven Gigabit Ethernet Message Passing. In Proceedings of the
ACM/IEEE 2001 Conference on Supercomputing, SC’01, page 49 ff.,
Washington, DC, USA, 2001. IEEE Computer Society.

L. Smith and M. Bull. Development of Mixed Mode MPI/OpenMP Ap-
plications. In Journal on Scientific Programming, pages 83-98. IOS Press,
Amsterdam, The Netherlands, 2001.

159

[30]

[81]

[82]

[33]

[84]

[85]

[36]

[87]

[38]

160

A. Sohn, J. Ku, Y. Kodama, M. Sato, H. Sakane, H. Yamana, S. Sakai,
and Y. Yamaguchi. Identifying the Capability of Overlapping Compu-
tation with Communication. In Proceedings of the 1996 Conference on
Parallel Architectures and Compilation Techniques, PACT 96, page 133
ff., Washington, DC, USA, 1996. IEEE Computer Society.

V. Strumpen and T. Casavant. Exploiting Communication Latency Hiding
for Parallel Network Computing: Model and Analysis. In Proceedings of
the International Conference on Parallel and Distributed Systems, pages
622-627, Washington, DC, USA, 1994. IEEE Computer Society.

V. Subotic, J. Sancho, J. Labarta, and M. Valero. The Impact of Applica-
tion’s Micro-Imbalance on the Communication-Computation Overlap. In
Proceedings of the 19th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, PDP, pages 191-198, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA Read Based Ren-
dezvous Protocol for MPI over InfiniBand: Design Alternatives and Bene-
fits. In Proceedings of the Eleventh ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’06, pages 32-39, New
York, NY, USA, 2006. Association for Computing Machinery.

C. Terboven, D. Schmidl, T. Cramer, and D. an Mey. Assessing OpenMP
Tasking Implementations on NUMA Architectures. In Proceedings of the
8th International Workshop on OpenMP, IWOMP, pages 182—-195, Berlin,
Heidelberg, 2012. Springer.

X. Teruel, M. Klemm, K. Li, X. Martorell, S. Olivier, and C. Terboven.
A Proposal for Task-Generating Loops in OpenMP. In Proceedings of
the 9th International Workshop on OpenMP, IWOMP, pages 1-14, Berlin,
Heidelberg, 2013. Springer.

R. Thakur and W. Gropp. Open Issues in MPI Implementation. In Pro-
ceedings of the 12th Asia-Pacific Conference on Advances in Computer Sys-
tems and Architecture, ACSAC, pages 327-338, Berlin, Heidelberg, 2007.
Springer.

R. Thakur and W. Gropp. Test Suite for Evaluating Performance of
MPI Implementations That Support MPI THREAD MULTIPLE. In
Proceedings of the 14th European PVM/MPI Users’ Group Meeting, Eu-
roPVM/MPI, pages 46-55, Berlin, Heidelberg, 2007. Springer.

J. Treibig, G. Hager, and G. Wellein. LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments. In Pro-
ceedings of the 39th International Conference on Parallel Processing Work-

[39]

[90]

[91]

[92]

193]

[94]

[95]

[96]

[97]

shops, ICPPW’10, pages 207-216, Washington, DC, USA, 2010. IEEE
Computer Society.

R. F. van der Wijngaart and H. Jin. NAS Parallel Benchmarks, Multi-
Zone Versions. NAS technical report NAS-03-010, NASA Ames Research
Center, Moffett Field, CA, 2003.

H. D. Vasava and J. M. Rathod. Software Based Distributed Shared Mem-
ory (DSM) Model Using Shared Variables Between Multiprocessors. In
Proceedings of the International Conference on Communications and Sig-
nal Processing, ICCSP, pages 1431-1435, Washington, DC, USA, 2015.
IEEE Computer Society.

S. Venkatasubramanian and R. W. Vuduc. Tuned and Wildly Asyn-
chronous Stencil Kernels for Hybrid CPU/GPU Systems. In Proceedings
of the 23rd International Conference on Supercomputing, ICS ’09, pages
244-255, New York, NY, USA, 2009. Association for Computing Machin-
ery.

B. Wang, D. Schmidl, and M. Miiller. Evaluating the Energy Consumption
of OpenMP Applications on Haswell Processors. In Proceedings of the
11th International Workshop on OpenMP, IWOMP, pages 233-246, Berlin,
Heidelberg, 2015. Springer.

G. Wellein, G. Hager, A. Basermann, and H. Fehske. Fast Sparse Matrix-
Vector Multiplication for TeraFlop/s Computers. In Proceedings of the 5th

Conference on High Performance Computing for Computational Science,
VECPAR 2002, pages 287-301, Berlin, Heidelberg, 2003. Springer.

G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske. Efficient
Temporal Blocking for Stencil Computations by Multicore-Aware Wave-
front Parallelization. In Proceedings of the 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference, COMPSAC 09,
pages 579-586, Washington, DC, USA, 2009. IEEE Computer Society.

S. Whalen, S. Engle, S. Peisert, and M. Bishop. Network-Theoretic Classi-
fication of Parallel Computation Patterns. In International Journal of High

Performance Computing Applications, pages 159-169. Sage Publications,
Inc., Thousand Oaks, CA, USA, 2012.

J. White III and S. Boya. Where’s the Overlap? - An Analysis of Popu-
lar MPI Implementations. In Proceedings of the 3rd MPI Developer’s and
User’s Conference, Atlanta, Georgia, USA, 1999. MPI Software Technol-
ogy Press.

S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick.

Scientific Computing Kernels on the Cell Processor. In International Jour-

161

98]

[99]

[100]

162

nal of Parallel Programming, pages 263-298. Kluwer Academic Publishers,
Norwell, MA, USA, 2007.

T. Woodall, G. Shipman, G. Bosilca, R. Graham, and A. Maccabe. High
Performance RDMA Protocols in HPC. In Proceedings of the 13th Eu-
ropean PVM/MPI Users’ Group Meeting, EuroPVM/MPI, pages 76-85,
Berlin, Heidelberg, 2006. Springer.

W. Yu, D. Buntinas, R. Graham, and D. Panda. Efficient and Scalable Bar-
rier over Quadrics and Myrinet with a new NIC-based Collective Message
Passing Protocol. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium, page 182 ff., Washington, DC, USA,
2004. IEEE Computer Society.

W. Yu, D. Buntinas, and D. Panda. High Performance and Reliable NIC-
based Multicast over Myrinet/GM-2. In Proceedings of the 2003 Interna-
tional Conference on Parallel Processing, ICPP’03, pages 197-204, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

	Contents
	Introduction
	Motivation
	Contribution
	Structure of Thesis

	Parallel Programming Models
	OpenMP
	Parallelization and Work Distribution
	Work Scheduling and Balancing
	OpenMP in NUMA Environments

	MPI
	Theory of Asynchronous Communication

	Hybrid MPI-OpenMP
	Potential of Hybrid MPI-OpenMP Parallelization

	NUMA Aware Work-Scheduling and Work-Balancing for OpenMP
	OpenMP Schedule static-ws: Introduction
	OpenMP Schedule static-ws: Definition
	Discussion

	Hybrid MPI-OpenMP:Real Asynchronous MPI-Functionality throughMPI-aware OpenMP Runtimes
	Challenges of Asynchronous MPI-Functionality
	Analyzing Asynchronous Communication Capabilities of MPI Implementations
	Benchmark Goals
	Design Goals
	Description of Benchmark
	Benchmark Results: Expectations
	Benchmark Results: Measurements and Analysis
	Using MPI Datatypes

	Advancing Asynchronous MPI Communication at OpenMP Scheduling Points
	Introducing A New OpenMP Construct commtask
	OpenMP Construct commtask
	Internal Control Variables
	Environment Variables
	Environment Routine: omp_set_commtask_priority
	Environment Routine: omp_get_commtask_priority

	Discussion

	Real Asynchronous MPI-Communication: Proof of Concept
	Introduction to a Representative Example
	Main Algorithm Steps
	Different Kinds of Stencils Used
	Computational Domain
	Implementations

	One-dimensional Decomposition
	Computational Domain Decomposition
	Discussion of Results

	Three-dimensional Decomposition
	Computational Domain Decomposition
	Discussion of Results

	Discussion

	Conclusions
	Summary
	Future Work

	Appendix
	System Descriptions
	SuperMUC Fat Nodes
	SuperMUC Thin Nodes
	CoolMUC-2
	LiMa Cluster
	ICE Cluster
	Woodcrest Cluster
	Dell Notebook Cluster

	Benchmark: Asynchronous Communication Capabilities of MPI Implementations
	Additional results

	Bibliography

