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Zusammenfassung

Das Ziel der vorliegenden Arbeit ist es, ein stochastisches Modell für die Dispersion in porösen
Medien zu entwickeln und diskutieren. Der stochastische Prozess modelliert Geschwindigkeits-
inkremente durch einen Drift- und einen Diffusionsprozess im Geschwindigkeitsraum, so dass
die Geschwindigkeitsverteilung und die konditionierte Statistik der Geschwindigkeitsinkre-
mente erhalten werden. Der dreidimensionale Porenraum wird durch eine randome, drei-
dimensional periodische Kugelpackung repräsentiert. Das Geschwindigkeitsfeld wird durch
eine direkte Lösung der Navier-Stokes-Gleichung bei voller Auflösung des Porenraumes mit
Hilfe einer eingebetteten Randbedingung in einem Kartesischen Gitter erhalten. Die Strö-
mung wird durch einen räumlichen Druckgradienten angetrieben. Eine sorgfältige Validiere-
ung liefert die Abhängigkeit der Ergebnisse von der Gitterauflösung und der Größe des be-
trachteten elementaren Volumens. Das stochastische Modell wird an Hand des Transports
eines passiven Tracers in einem gerade Plattenkanal und der betrachteten Kugelpackung
validiert.
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Abstract

The aim of this work is to present and discuss in detail a model for dispersion in porous
media based on a stochastic velocity process. The stochastic velocity process consists of a
drift and a diffusion part. The model utilizes probability density functions and conditional
statistics of the velocity increments on the pore scale. The three dimensional porous domains
are represented by irregular sphere packs. The flow field on the pore scale has been obtained
by direct simulation of the Navier-Stokes equations under full representation of the pore
space by an Immersed Boundary condition in a Cartesian grid. Sphere packs are generated
by an algorithm that randomly places spheres under the constraint of periodicity in all three
space dimensions. The flow is driven by a constant pressure gradient. Careful validation is
undertaken to assess the dependence of the results on grid resolution and size of elementary
volume. The validity of the model is investigated for the transport of a passive tracer in a
simple channel and in a sphere pack.
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1 Introduction

The flow of fluids in porous media is of importance in many different fields. Resolving the
behaviour of fluids as they pass through porous media for example, provides an understand-
ing of groundwater flow and the issues concerning its contamination. The design of chemical
reactors, in which heat and mass transfer in porous catalysts are of importance, is also depen-
dent on prediction of flows through porous media [13]. Another example of a field benefiting
from the understanding of flows in porous media is the oil industry where a knowledge of
oil flow in reservoirs is of importance for a better understanding of the oil recovery process.
In medical sciences also, flows in porous media have relevance when considering fluid flow
through body tissues. A very challenging issue for instance is the brain-blood barrier which
prevents various drugs from reaching the brain. Models of transport in porous media can be
of vital help in finding ways of introducing drugs directly into the tissue and avoiding the
blood-brain barrier [35].

Here we present some background on different issues of and approaches to various aspects of
dealing with flows in porous media with emphasis on the dispersion phenomena, which we aim
at modelling in this work. We start by presenting an overview of the dispersion phenomena
which will be followed by some background on dealing with non-Fickian dispersion. In
the next section we will continue by comparing pore scale versus macro scale studies and
simulations of porous media flows. This will be followed by a very brief background on
standard discretization and random walk methods as they build the foundation of what is
presented in this work. The chapter will be concluded with the objectives and an overview
of what will be presented in this work.

1.1 Dispersion

Dispersion of tracers in porous media is one of the key processes in understanding and mod-
elling subsurface contaminant dynamics. When a tracer in a porous medium is spread over
a volume larger than what would be expected from the molecular diffusion and mean pore
velocity alone, the dispersion phenomena is said to have happened. It is generally accepted
that mechanical dispersion is the spreading of a tracer cloud in the porous medium due to the
variability of individual flow paths of tracer particles during convection through the irregular
pore space. The flow paths in a porous medium are tortuous and also the velocity varies
in each pore of the media, leading to an excessive spreading of the tracer. The dispersion
phenomena has been of immense interest to scientists in the study of flows in porous media
for more than a century. As early as 1905 for example Slichter [46] reported encountering
dispersive behaviour in his studies of ground water.

Dispersion involves two main effects that need to be modelled on the macroscopic scale. The
first one deals with the spatial spreading of plumes and fronts in a macroscopic point of view.
The second aspect of dispersion affects the mixing of species on a molecular level. The latter

1



2 1.1 Dispersion

aspect attains importance when thermodynamical, chemical or biological non-equilibrium
leads to reaction or degradation processes in the pore space.

In this work we focus on the first aspect which involves the spatial averaged concentrations of
the tracer on a Representative Elementary Volume (REV). Modeling dispersion on this level
has often been done by assuming an effective diffusivity for the tracer [2, 5]. The resulting
Advection-Diffusion Equation (ADE) can be solved by standard discretization methods (e.g.
FE, FV and FD) or by stochastic (random walk) methods.

Modelling dispersion by an effective diffusion coefficient, however, can only describe Fickian
dispersion, i.e. Gaussian spreading of tracer clouds. In Fickian dispersion it is assumed that
the dispersive mass flux of a tracer is linearly proportional to its concentration gradient.
By this definition dispersion is assumed to be independent of its history and of temporal
and spacial scales of measurement [12]. After a certain amount of time has passed since the
release of a tracer in a porous media, such that the successive velocities of each individual
particle are no longer correlated, the total displacement of a particle becomes equivalent
to the sum of all the successive displacements which are statistically independent. Then,
according to the “central limit theorem” regardless of the initial probability distribution of
elementary displacements the probability density of the sum of the displacements should
tend to the normal distribution. At a later time, t, the probability density of the displace-
ment of an individual particle according to the “ergodic hypothesis” is equivalent to the
spatial distribution at time t of a cloud of particles originating from the same place and
time and under the same conditions [2]. Therefore, one can expect the shape of the tracer
cloud to become Gaussian and the dispersion to be Fickian at later times. However these
assumptions do not generally hold (e.g. at early times when the successive velocities and
therefore displacements of particles are still correlated). It is worth mentioning that the re-
lation between diffusion of particles and their velocity correlation has long been established
by Taylor [50].

In their dispersivity measurements of 59 different field sites, for example, Gelhar et al. [10]
observed the variability of dispersion with respect to temporal and spacial scales of obser-
vation. In fact, non-Fickian dispersion is in general considered a result of heterogeneities
in the porous medium. Silliman and Simpson [45] investigated the effect of heterogeneity
on dispersion through a number of different sand packing arrangements. They reported
non-Fickian behaviour due to even small-scale heterogeneities. In 2002 Scheven and Sen
[44] reported their findings on the investigation of Stokes flow in random sphere packs con-
taining glass beads of constant diameter. Although the random domains they constructed
were practically homogeneous, they observed non-Fickian behaviour for advection length
scales of up to more than ten times the sphere diameter. They achieved Fickian diffusion
for large advective length scales when the diffusive length scale was greater than 30% of
the sphere diameter. It is clear that non-Fickian dispersion is not limited to highly hetero-
geneous domains but can also be observed at early transport times even in homogeneous
domains.

Non-Fickian dispersion is characterized by strongly skewed tracer distributions in space
and break-through curves with extremely long tails. On the other hand it has been ar-
gued [33] that in the early stages of dispersion, spatial concentration distributions (so-
called propagators) are strongly correlated with and mimic the velocity distribution func-
tion. Thus, it is of no surprise that early stage propagators on the pore scale - while
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resembling the velocity distribution function - show non-Fickian behaviour even in non-
heterogeneous materials such as random sphere packs [44]. It is therefore of inherent interest
to study the formation, the dynamics in and structure of velocity distributions on the pore
level.

1.2 Treating non-Fickian dispersion

For dealing with non Fickian dispersion, which is observed in the initial phase of trans-
port through porous media or in heterogeneous porous domains, various laboratory ex-
periments have been performed and special methods such as the use of the equation of
motion of a solute have been employed in order to derive a generalized dispersion equa-
tion.

In his paper “On the Transient Non Fickian Dispersion Theory”, Hassanizadeh [12] discusses
three different approaches of dealing with non fickian dispersion; namely the non Fickian
equations of Scheidegger ([43]), Tompson ([52]) and Strack ([48]). He then develops and
presents a general equation for dispersive mass flux which can in fact be considered a gen-
eralized form of the equations of the three afore mentioned researchers. Lowe and Frenkel
[25] simulated flow in rectangular boxes randomly packed with spheres using the Lattice
Boltzmann method and calculated velocity auto correlation functions and dispersion coeffi-
cients for various Peclet numbers. They observed anomalous, non-Fickian behaviours and
suggest that rather than being transient the non-Fickian dispersion can persist over time.
In 2000 Maier et al. [28] simulated dispersion in three dimensional regular and random
sphere packs. They also obtained the pore scale velocity in the domains using the Lattice
Boltzmann method and used a random walk particle tracking method to simulate the tracer
evolution for various Peclet numbers. They calculated the dispersion coefficient and the ve-
locity autocorrelation function for various variations of sphere pack and Peclet numbers and
evaluated the effect of periodic boundaries, spatial resolution and packing variations on the
dispersive behaviour. They investigated both the asymptotic (Fickian) and the non-Fickian
dispersion and the time at which the dispersion coefficient converges to the asymptotic
state.

In 2003 Levy and Berkowitz [23] performed three sets of experiments in order to observe the
breakthrough behaviour of contaminants in porous media of different levels of heterogeneity.
They used their findings to evaluate the classical ADE and the continuous time random
walk method. They observed non Fickian behaviour even in homogeneously packed domains.
They concluded that the continuous time random walk approach can yield a more accurate
breakthrough curve than the classical ADE method.

In general an efficient method of dealing with dispersion is through the stochastic approach
to flow and transport in porous media which aims at producing the statistical moments
of quantities such as velocity and concentration in the porous medium. One method is to
obtain governing equations of the statistical moments of the desired quantities with the help
of known statistics of the parameters which describe the fluid and the porous domain such
as permeability and log-conductivity [56] and then to solve these equations by means of
low order approximations as done by for example Gelhar et al. in 1979 [9]. Gelhar et al.
analysed the dispersion as a result of variations in the hydraulic conductivity field in an
aquifer. They described the mass transport process using a first order approximation and
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solved the resulting stochastic equation for concentration using spectral representations. The
use of low order methods however is not suitable for the cases where the variance of the log-
conductivity is high [33]. In 2008 Nowak et al. [36] showed the dependence of hydraulic
heads and velocities on the variance of log-conductivity using Monte Carlo simulations.
They resolved their three dimensional velocity fields on a large number of realizations by
solving the Darcy equation using a finite element method. In their 2008 paper on this study,
they offer insight into the credibility of first-order second moment (FOSM) methods for
evaluating moments of hydraulic heads. They observe a large deviation of the discharge
components from Gaussian distribution and suggest using more accurate methods such as
extensive Monte Carlo or higher order stochastic approaches if no assumptions on the shape
of distributions are justified. Directly obtaining the statistical moments of flow and transport
parameters by means of Monte Carlo simulations can produce accurate statistical values for
general cases of flow in porous media but accurate and sufficient Monte Carlo simulations
are very expensive computationally.

In this work we present a model for dispersion based on a similar model presented by Meyer
and Tchelepi [32] in 2010. Taking explicitly into account the form of the velocity Proba-
bility Density Function (PDF), Meyer and Tchelepi have constructed a model to describe
non-Fickian and Fickian dispersion. This approach is especially attractive as dispersion is
inherently connected to the velocity distribution function as previously discussed. In this ap-
proach, the evolution of a tracer cloud is represented by a random walk model in physical as
well as in velocity space. The random walk model in velocity space consists of a continuous
Markovian process and is equivalent to a Fokker-Planck equation for the velocity distribution
function involving a drift and a diffusion term. Meyer and Tchelepi demonstrated that both,
drift and diffusion in velocity space, can be obtained from velocity statistics [33]. They ob-
tained the drift term from the averaged velocity increments conditioned on the sample space
velocity while obtaining the diffusion term from the variance of the velocity increments
conditioned on sample space velocity. Both of these terms were obtained by stochastic simu-
lations and from Lagrangian displacement statistics of two-dimensional Darcy flow through
random permeability fields. The main difference between the model of Meyer and Tchelepi
and our model is that we calculate the drift and diffusion terms from the statistics obtained
from pore scale simulations on 3D domains. Both our model for dispersion and the model of
Meyer and Tchelepi will be discussed in detail at the beginning of chapter 3. A background
on pore scale studies of flow and transport in porous media is presented in the following
section.

1.3 Pore scale versus macro scale

In the stochastic approach to flows in porous media, the Darcy equation is almost always
taken as the governing equation for the flow. However, PDFs of velocity in porous media
vary with probe size down to the pore scale. This is evident when considering the simple
case of a laminar flow through a circular pipe. At each wall distance, the local velocity
differs from the bulk velocity, i.e. the velocity integrated over the cross section. Therefore,
the sample size required to determine the PDF of the velocity in a porous medium needs to
be considerably smaller than the average pore diameter. Due to experimental limitations,
laboratory experiments on porous media usually deal with averaged medium properties.
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There do nevertheless exist, some experimental studies involving detailed measurements of
pore scale velocities and tracer concentrations in porous media such as the work of Rashidi
et al. [41] who using a non-intrusive fluorescence imaging technique were able to conduct
three dimensional, pore scale measurements of grain geometry, flow velocities and tracer
concentrations in a sphere packed cylindrical column. Often, these studies more or less
suffer from a lack of sufficient resolution or limitations in the size of observation zones.
Until precise and efficient local measurement techniques are available for porous media,
numerical simulations are the only means of assessing local velocity distributions on the
pore level.

By directly solving the Navier-Stokes equations on the porous domain, one would not need
to model the dispersion or estimate the permeability, and the only uncertainty will be due
to the simplification of the complicated geometry of the pore space. Pore scale transport
models are therefore very appealing. In the introduction of a paper they published in 2011
Ovaysi and Piri [38] categorize these models into two groups. In the first group the ge-
ometry is represented as an idealized network of pores connected by throats while in the
second group “the equations of flow are directly solved on the pore space”. Many well-
known methods such as the Lattice-Boltzmann method, finite elements, difference or volume
methods, Monte Carlo method, smoothed particle hydrodynamics, moving particle semi im-
plicit model method, etc. can be employed for solving the equations of flow on the pore
space.

Here are listed a few examples of pore scale studies on flow and transport in porous me-
dia. One of the first three dimensional pore scale studies was that of Salles et al. [42] who
provided numerical pore scale results for periodic three dimensional homogeneous structures
containing arrays of identical unit cells. Four major possible types of these unit cells or
structures were investigated. In order to obtain the velocity field they numerically resolved
the Stokes equations on each local structure. They calculated the dispersion tensor for dif-
ferent types of porous media by various methods and investigated the dispersion behaviour
for various Peclet numbers. A very comprehensive pore scale study on flows in porous me-
dia was carried out by Maier et al. [29]. They used the Lattice Boltzmann method to
resolve the velocity field through various configurations of cylinders packed with spheres
at different spatial resolutions and flow rates and calculated the velocity distribution func-
tions. They investigated the effects of the spacial resolution, Reynolds number and cylinder
geometry on the velocity distribution. They also calculated the permeability for different
resolutions and compared their results to empirical formulas such as the Kozeny-Carman
equation.

In 2000 Zhang et al. [57] performed pore scale Lattice-Boltzmann simulations to obtain
parameters such as permeability and porosity at various locations and scales in a porous
medium and to quantify the size of the REV for heterogeneous material. A few years later,
Kainourgiakis et al. [15] reconstructed 3D porous domains and studied the transport proper-
ties of two phase flows through these structures. Their pore scale simulations were performed
using a finite difference scheme together with a compressibility relaxation algorithm. They
validated their resulting transport properties obtained through these simulations with exist-
ing data. In 2008 Lehmann et al. [22] attempted to identify the geometric properties which
are relevant for flow (especially multiphase flow) and transport in porous media by means of
pore scale simulations. They built artificial 3D porous structures with fixed geometric prop-
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erties (Minkowski functionals) and performed pore scale simulations on these domains by a
Lattice Boltzmann scheme. In their configurations the volume and surface of the domain ap-
peared to have a larger impact on the permeability than the curvature or connectivity of the
system. As another example of pore scale studies, Morais et al. [34] studied non-Newtonian
flows in a Swiss cheese porous domain model using the finite difference method. In their
paper published in 2010 Ovaysi and Piri [37] introduce a dynamic particle based method
for simulating three dimensional flow on the pore scale. Their strategy is to discretize the
whole domain (both solids and fluid) into particles and solve the N-S on each particle. They
employ this method to simulate transport in porous media as described in their 2011 paper
on this subject. In this work they perform pore scale studies on x-ray images of sandstones,
calculate dispersivity tensors using the method of moments and analyse the longitudinal dis-
persivity in the flow field for a wide range of Reynolds numbers. They investigate the impact
of inertial forces on longitudinal dispersion and the effect of grain size on solute transport at
the pore level [38]. Both these papers include a rather good literature review of pore scale
studies on flows and transport in porous media.

1.4 Standard discretization and random walk
methods

In this work we use a standard discretization (finite volume) method for resolving the velocity
field in porous media and using the results of that, we present a model for dispersion which
relies on a random walk, particle tracking method for modelling the tracer behaviour in the
porous medium. It is therefore appropriate to offer a brief background both on standard
discretization methods and on random walk methods used for flows and transport in porous
media.

The use of standard discretization methods for solving ADEs is well documented in lit-
erature. In 1995 Martys [31] investigated the applicability of computational methods in
simulating dispersion in 2D random porous media. He used the finite difference method
(FD) for solving both the Stokes equations and the ADE for various configurations. He then
extracted effective diffusion coefficients by evaluating the obtained concentration profiles.
As a further example one can point to the work of Acharya et al. [1] who used the finite
volume method (FV) for studying reactive transport in a 2D porous media or to the work
of Garmeh et al. [8] who utilized a finite element (FE) commercial code to model disper-
sion in 2D porous media and analysed the effect of porosity and heterogeneity on dispersion
coefficients.

On the other hand, random walk methods have been extensively used for modelling the
spreading of a tracer in porous media since the 1970s. In 1996 Labolle et al. [19] used the
random walk method to simulate tracer transport in porous media and investigated mass con-
servation issues in the case where interpolation schemes are used when obtaining velocities.
In their 2006 paper on modeling non-Fickian transport using a continuous time random walk
method, Berkowitz et al. [3] present a broad overview of the CTRW approach and compare it
to other methods of dealing with transport in porous media. As a more recent example Suciu
et al. [49] use a mixed finite element method (MFEM) to resolve the velocity field using the
Darcy and continuity equations and couple that with a global random walk (GRW) method
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to track a large number of particles in a porous medium.

1.5 Objective and overview

The objective of this work is to develop and test a model describing dispersion in porous me-
dia based on a model for dispersion proposed by Meyer and Tchelepi [33] in 2010. The model
is to be developed such that it describes the dispersion by the randomness of the tracer paths
in the pore level rather than by the heterogeneity of the macroscopic permeability field. The
aim is to reduce the geometrical complexity of the pore space to the detailed statistics of the
velocity field. The basis of the model is in-depth information concerning the pore scale ve-
locities and the conditional statistics of the velocity variation field. Validation of the model
should be carried out by comparing its results to those obtained via detailed pore scale sim-
ulations of transport in porous media. Direct Numerical Simulation (DNS) of pore scale flow
in porous media should be used to generate reliable data to quantify the different terms of the
model while DNS of pore scale transport in porous media is used to obtain tracer transport
data necessary for assessing the accuracy of the model.

In this work, we first present properties of flows through porous domains with periodic
boundaries. We investigate the statistics and PDFs of velocity and velocity derivatives. In
contrast to many other such studies which are often limited to 1D or 2D cases, homogeneous
domains or oversimplified geometries where the velocity is computed using the Darcy equa-
tion, we fully resolve the velocity field by solving the Navier-Stokes equation using the DNS
method. Direct Numerical simulations are performed using our in-house code MGLET to
solve the Navier-Stokes equation and obtain the velocity field via a finite volume method.
MGLET uses the finite volume method for space discretization, third-order Runge-Kutta
for time integration and immersed boundary method for complex geometry treatment. The
porous media is represented as a cube, randomly packed with spheres with periodic bound-
aries. Next, we investigate a stochastic velocity model for dispersion proposed by Meyer
and Tchelepi [33] and venture to develop our own slightly modified version of the model.
Our model is based on a method for obtaining the velocity variation field independent of
the geometry of the porous media and relying solely on the pore scale velocity and velocity
derivative fields. By investigating the velocity variation field and its statistics conditioned
on velocity in a simple channel and in a sphere pack, we verify our model for dispersion
and determine the different terms. Finally we try out different variations of our model on
the flow in a channel and in a random sphere pack to appraise its validity as compared to
dispersion results obtained via DNS.
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In this chapter we present the results of our investigation of the steady flow field on the
pore scale of random sphere packs by direct numerical simulations. The porous media is
represented as a rectangular domain (REV), randomly or regularly packed with spheres. All
boundaries are assumed to be periodic. The full Navier-Stokes equations for an incompress-
ible, Newtonian fluid are solved by a Finite Volume method on a Cartesian grid. The irregular
pore space is represented by an Immersed Boundary Method.

The geometrical modelling of the porous media and the numerical method of solving the
governing equations for velocity and tracer transport are described in the following section.
In the second section of this chapter we present the validation of our method. After briefly
explaining and justifying our approach, we move on to presenting the results of our pore scale
simulations. These results will be split into two parts and make up the last two sections
of this chapter. The first part will focus on the properties, statistics and PDF of velocity
and velocity derivatives in a sphere pack. In the second part we present the results of our
simulation of tracer transport in a random sphere pack.

2.1 Method

In this section we present the governing equations of flow in the pore space and very briefly
explain our methods for solving them. We also present our representation of the pore space
geometry.

2.1.1 Solution of the Navier-Stokes and transport
equations

Direct Numerical simulations are performed using our in-house code MGLET to solve the
Navier-Stokes equation and obtain the velocity field. MGLET uses the finite volume method
for space discretization, third-order Runge-Kutta for time integration and immersed bound-
ary method for complex geometry treatment. The Navier-Stokes equations, i.e. the conser-
vation equations of mass and momentum are shown below where u, p, ρ and µ denote the
velocity, pressure, density and dynamic viscosity, respectively.

∇ ·u = 0 (2.1)

ρ∂tu + ρu · ∇u = −∇p+ µ∇2u (2.2)

9
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The transport equation for a passive tracer which is also solved by a finite volume method
using MGLET reads

∂c

∂t
= −u∇c+ Γ∇2c (2.3)

where c is the concentration of the tracer, u is the velocity vector and Γ is the molecular
diffusion.

These equations are integrated over Cartesian grid cells that are arranged on staggered
positions [11]. The spatial approximations are standard central difference approximations
[30]. On equidistant grids, these approximations are skew-symmetric [53] and obey advanta-
geous numerical properties such as conservation of mass, momentum and energy. The time
advancement is done by a low-storage third order Runge-Kutta method [55]. This basic
solver is well validated in various flow configurations including laminar and turbulent flows
(e.g. [6, 14, 39, 30, 58]). It has been shown that for viscous flow problems a second order
convergence with grid refinement is achieved [39, 40].

We apply periodic boundary conditions in all three space dimensions. The flow is driven by
a constant pressure gradient and advanced from rest until convergence is reached. As we
only deal with Reynolds numbers which are extremely small, the time to reach convergence
to steady state is mainly determined by the diffusion time scale κ/ν within the pore space,
κ being the permeability.

tdif =
κ

ν
(2.4)

Here tdif is the diffusive time scale while ν denotes the kinematic viscosity of the fluid. Once
the velocity field is resolved it can be used in the solution of the transport equation by
MGLET.

The pore space is represented in the Cartesian grid by a so-called Immersed Boundary
Method. The total space of the sphere pack (including both the pore and the solid space)
is discretized by a regular Cartesian mesh with cubic grid cells. The surface of the solid
material, constituting the pore space, lies in between the Cartesian grid cells. It is as-
sumed that at this surface, the velocity is zero (no-slip condition). This is achieved by a
special interpolation of the velocities in the cells adjacent to the pore surface. This inter-
polation uses second or higher order polynomials that assume the boundary value at the
pore surface. The method has been shown to be second order accurate with respect to
mesh refinement in space [40]. A special treatment of the volume fluxes during the pressure
correction step of the time advancement ensures conservation of mass throughout the whole
domain [39].

2.1.2 Generation of sphere packs

We represent the porous medium by rectangular sphere packs. These sphere packs were
generated in three different ways to produce a dense and ordered sphere pack, an inhomo-
geneous random sphere pack or a homogeneous random sphere pack. All three types of
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domains have periodic boundaries and are packed with spheres with a constant radius of
1mm.

The dense sphere pack is a rectangular domain of size (Lx, Ly, Lz) = (2
√

3, 2
√

3, 2)mm, well
packed with 13 spheres of radius 1mm. The spheres in the domain were arranged by a
hexagonal close packing method where layers of spheres are packed such that alternating
layers overlie one another [54, 7, 47]. The result is a periodic and dense sphere pack with
the minimum number of spheres possible. See figure 2.1. The porosity of this set-up is
ε = 0.282. In this work we use the term “dense” or “regular” when referring to this sphere
pack.

a b

Figure 2.1: Configuration of a regular sphere pack. Top view (a) and perspective view (b).

The inhomogeneous random sphere packs are made using a simple algorithm that places
spheres in a cubic domain such that no two spheres overlap. The algorithm starts by placing
spheres randomly on a vertical edge of the cubic domain and then copying this edge on the
other vertical edges such that the periodicity of the domain is satisfied. It then continues
by filling in one vertical plane surface of the domain with spheres and copying it onto the
opposite surface such that the domain remains periodic. Since the edges of the surface are
pre-filled with spheres and because the spheres are not permitted to penetrate each other the
centre of the surface will be more dense and between the central part and the edges there will
remain an area of high porosity. This procedure is carried out for the other pair of vertical
surfaces of the domain. Once all four vertical faces are packed with spheres the algorithm
randomly packs the bottom surface with spheres too and then copies that to the top surface
fulfilling the periodicity requirement. Finally the inside of the cube is filled randomly with
spheres. Again there exists a rather more porous area between the faces of the domain and
the inner region (see figure 2.2). This random sphere pack domain will simply be referred
to as “heterogeneous”. The average porosity of 15 different realizations of this set-up in the
case where the domain size is equal to 2.0cm, is ε = 0.450.



12 2.2 Validation

Figure 2.2: Cross section of a heterogeneous sphere pack.

For the homogeneous random sphere packs our goal was to pack the spheres as tightly as
possible and to limit our porosity to less than ε = 0.430. To do so, we used the package
described by Lieb et al. in [24] which is based on the algorithm developed by Lubachevsky
and Stilinger [26]. Such a randomly packed domain can be seen in figure 2.3. The average
porosity of 20 different realizations of this arrangement in the case where the domain size is
set to 2.0cm is ε = 0.354. The term “random sphere pack” in this dissertation without any
further explanation concerning the homogeneity or lack of in the domain refers to this type
of homogeneous random sphere pack.

To better see the difference between the sphere distributions in the heterogeneous and the
homogeneous random sphere packs figure 2.4 shows the porosity of cross sections nor-
mal to the x (streamwise) direction plotted against x for two different cases. The first
case is one realization of random and homogeneously packed domain of size 2.4cm and
the second case is one realization of random but inhomogeneously packed domain of size
2.0cm.

Notice how the porosity remains in the vicinity of its average throughout the whole length
of the domain in the case of the random (homogeneously packed) domain while in the case
of the heterogeneous pack the porosity is much higher near the two ends of the domain
but stays close to average elsewhere due to the particular sphere packing algorithm used in
making the heterogeneous domain.

2.2 Validation

In this part we aim at justifying our DNS results in terms of grid resolution, domain size
and the conformity of the macro-scale parameters obtained from our pore scale simulations
with empirical formulas.
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Figure 2.3: One realization of a random sphere pack.
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Figure 2.4: Porosity plotted over x for one realization of random and homogeneously packed do-
main of size 2.4cm and one realization of random but inhomogeneously packed domain
of size 2.0cm.

2.2.1 Convergence study on the dense sphere
pack

In order to select an efficient mesh size, a grid study was performed for water flowing through
the dense sphere pack described in section 2.1.2. This domain is periodic and tightly packed
with spheres of radius 1mm.

The validation was done in two steps. In the first step, we assessed the number of cells needed
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per sphere diameter for the intrinsic velocity to converge. In the second step, the behaviour
of the PDF of the velocity field was observed in order to determine after which level of grid
refinement the general shape of the PDF curve converges.

The flow was driven by a pressure gradient of 0.025 Pa/m in the x-direction. The Reynolds
number of this set-up was in the order of Re = ūL/ν = 2 × 10−4. Where, L is a char-
acteristic length scale (in our case the sphere diameter), and ν is the kinematic viscosity.
ū is defined as the mean streamwise pore velocity in the porous domain i.e. the intrinsic
velocity.

ū =
1

Vpore

∫
Vpore

u(~x) d~x (2.5)

Here Vpore is the volume of the pore space and u(~x) the local pore velocity. The average
streamwise pore velocity, ū is related to the streamwise superficial or Darcy velocity Us

by

Us = ū/ε (2.6)

where ε is the porosity. The mean transverse pore velocities in y and z direction, denoted
by v̄ and w̄, respectively, should be zero as the pressure gradient points only in the x
direction.

Figure 2.5a shows the mean pore velocity, ū, versus the number of grid cells per radius of
the grains. Starting from approximately 11 cells per sphere radius, the average pore velocity
obeys a monotonic convergence and the error is limited to less than 6% with meshes finer
than 24 grid cells per radius. The convergence is at least of second order, as figure 2.5b
demonstrates. Here, we plot the error with respect to the ū obtained using 56 grid cells per
radius as reference ūref .

error =
ū− ūref
ūref

(2.7)

In the second part of the validation study, we assess the prediction of the velocity PDF for
various grid refinements. To obtain the PDFs we divided the velocity field in the range
between −0.6ū to +10ū in 160 bins for each case, ū being the average pore velocity for
each configuration. The PDF value is normalized such that the area underneath each curve
remains equal to one. One can see that with an increase in the number of grid cells the
velocity PDFs converge to a certain shape, see figures 2.6 and 2.7. It appears that the
PDF at low velocities, which include the peak of the PDF curve, is especially sensitive to
the grid resolution. The almost singular behaviour of the PDF peak has been observed in
previous studies. Notably, in their paper concerning pore scale simulations of flow through
bead packs, Maier et al. come across such very sharp peaks near u = 0 and offer a geo-
metric argument (assuming monotonic variation of velocity away from the sphere surface)
for justifying this observation [29]. The PDFs at large velocities on the other hand, suffer
from statistical uncertainties as their probabilities tend towards zero. Note that the ve-
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Figure 2.5: Mean streamwise pore velocity in a dense sphere pack as a function of number of grid
cells per sphere radius (a). Error with respect to solution with 56 grid cells per radius
(b).

locity field is not very populated in the higher velocity range, especially when the grid is
coarse.

Taking everything together, we concluded that with 32 grid cells per sphere radius it will be
possible to obtain sufficiently accurate velocities and velocity PDFs. Therefore, we chose this
resolution for the simulations presented for the random sphere packs. The results presented
for the dense sphere pack are obtained using 56 cells per sphere radius (as the dense pack is
rather small and we can afford a finer grid) while those of the heterogeneous random sphere
packs are obtained using 20 cells per sphere radius.

 0.001

 0.01

 0.1

 1

 10

-1  0  1  2  3  4  5  6

 P
D

F
 (

u
) 

u/u-

20 cells/radius
32 cells/radius
40 cells/radius
56 cells/radius

a

 0

 0.5

 1

 1.5

 2

 2.5

-0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

 P
D

F
 (

u
) 

u/u-

20 cells/radius
32 cells/radius
40 cells/radius
56 cells/radius

b

Figure 2.6: Convergence of velocity PDF’s in a dense sphere pack with increasing grid resolution.
Each case is normalized by its corresponding ū. Total velocity domain plotted in semi
Log scale (a); zoom (b).
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Figure 2.7: Convergence of velocity PDF’s in a dense sphere pack with increasing grid resolution.
Each case is normalized by ū obtained using 56 cells per radius. Total velocity domain
plotted in semi Log scale (a); zoom (b).

2.2.2 Dependence of global variables on the size of the
REV.

Multiple realizations of random sphere packs were generated to gather statistics and to
acquire an estimation of the size of the REV. Porous domains of dimensions ranging from
(0.4cm)3 to (2.8cm)3, equivalent to (2D)3 to (14D)3 were generated using the the sphere
pack generator of Lieb et al. [24], D being the sphere diameter (D = 2mm). For each
domain size, 20 random realizations of sphere packs were generated using a fixed sphere
radius of 1mm. In each case the domain was meshed with elements of size 3.125× 10−5m
which is equivalent to 64 cells per sphere diameter. The flow was driven by a pressure
gradient of −0.025Pa/m in the x direction. The Navier-Stokes equations were solved by
DNS and the velocity field was obtained. The permeability, κ, for each case was calculated
by plugging the average streamwise superficial velocity, Us, obtained by DNS into the Darcy
equation.

κ = Us
µ

∇p
(2.8)

The statistical properties of the streamwise mean pore velocity ū, porosity ε and permeability
κ of the realization are given in table 2.1. As expected, with an increase in the size of
the domain the standard deviations of the permeability, porosity and mean pore velocity
in different realizations of the random sphere pack decrease. In other words, the global
properties of different realizations become more similar. We observed that for domains of
size 1.6cm (equivalent to = 8D) or larger, the standard deviation of the permeability of
different realizations normalized by the average permeability (the coefficient of variation,
CV) is limited to less than 2.2%. The coefficient of variation, CV , shows the extent of
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variability of a dataset in relation to its mean.

CV =
σ

m
(2.9)

In the above, σ represents the standard deviation of a population from its mean and m
represents the average of the said population. The coefficient of variation (CV) of the
porosity ε and mean pore velocity ū for domains of size 1.6cm or larger on the other hand
is limited to 0.7% and 2% respectively. See figure 2.8.

Table 2.1: Hydraulic properties of random sphere pack samples.

Domain size (D = 2mm) 2D 4D 6D 8D 12D 14D
Number of samples 20 20 20 20 20 20
Mean number of spheres 23.712 134.732 393.420 851.357 2605.401 4081
mean ε 0.378 0.382 0.361 0.358 0.354 0.354
CV of ε 0.054 0.046 0.018 0.007 0.003 0.003
mean ū (m

s
) 2.041E-7 2.008E-7 1.926E-7 1.919E-7 1.912E-7 1.916E-7

CV of ū 0.125 0.073 0.031 0.02 0.01 0.009
mean κ (m2) 3.33E-9 3.315E-9 3.015E-9 2.980E-9 2.940E-9 2.949E-9
CV of κ 0.122 0.091 0.029 0.022 0.011 0.012
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Figure 2.8: Coefficient of variation for the intrinsic velocity ū, permeability k and porosity ε plotted
against domain size, L, normalized by sphere diameter, D.

Also with an increase in the domain size, the mean magnitude of κ, ε and ū will converge to
certain values. The mean being the average over various random realizations of each domain
size. The domain size at which sufficient convergence is achieved can indicate the size of the
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REV for such porous structures. We accept a domain of size 2.4cm = 12D as sufficiently
large to yield acceptable statistical values.

The same procedure was carried out for heterogeneous sphere packs for comparison. Mul-
tiple realizations of sphere packs with sizes ranging from 0.4cm to 2.0cm were produced
and a pressure gradient of of −0.025Pa/m was imposed on the streamwise direction. The
Navier-Stokes equations were resolved on these domains by DNS using MGLET. Table 2.2
summarizes the results of these simulations. Here also the same trends can be seen although
less pronounced. For example notice how the coefficient of variation of the mean pore veloc-
ity and the permeability does not reduce as much as the random sphere packs with increase
in domain size. None of the heterogeneous domains of the sizes that we have evaluated can
be considered an REV. Of course in the case of the heterogeneous sphere packs a smaller
number of samples were studied. However, the structure of these domains are such that as
they grow in size so does the scale of their inhomogeneity.

Table 2.2: Hydraulic properties of heterogeneous sphere pack samples.

Domain Size (D = 2mm) 4D 5D 6D 7D 8D 10D
Number of samples 15 15 15 15 15 15
mean ε 0.525 0.498 0.488 0.471 0.463 0.450
CV of ε 0.024 0.020 0.013 0.008 0.005 0.006
mean ū (m

s
) 8.961E-7 8.161E-7 7.708E-7 7.024E-7 6.474E-7 5.832E-7

CV of ū 0.185 0.107 0.089 0.072 0.063 0.038
mean κ (m2) 2.020E-8 1.749E-8 1.625E-8 1.437E-8 1.303E-8 1.146E-8
CV of κ 0.194 0.120 0.096 0.077 0.066 0.042

For every sphere pack size, in the case of the random (and homogeneous) sphere packs, we
also calculated the PDF of velocities, for each realization, in the range of −4.15ū to 14.15ū
using 90 bins of size 0.203ū, and then averaged the PDFs over all 20 realizations. Here, ū
is the average of mean pore velocities over 20 sphere pack realizations of size 2.8cm. We
observed that the shape of the PDF curves of different realizations look more and more
similar as the domain size is increased. Also the average PDF of different domains converge
to a certain shape with an increase in domain size.

Figure 2.9 shows the the average PDF for three different domain sizes. Figure 2.9a and
2.9b show the complete PDF and the zoom in at small velocities in linear scaling, while
figure 2.9c shows the PDF in semi-logarithmic scales and figure 2.9d uses double-logarithmic
scaling and concentrates on positive velocities. The width of the line for each curve at
each velocity is equal to the standard deviation of the PDF value at that velocity for the
corresponding domain size. In these figures it is apparent that as the domain size increases
the width of the corresponding curve, which represents the variation for PDF of different
realizations, decreases. However, it appears that at small domain sizes (0.8cm = 4D), in
addition to a large standard deviation of the individual realizations, a systematic error occurs
at intermediate velocities as the PDF of the small domain size lies consequently below the
one of the large domain size. We therefore emphasize that a large domain size of at least
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1.6cm = 8D is necessary to predict the velocity PDF in a random sphere pack in a sufficiently
accurate way.
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Figure 2.9: Velocity PDFs in a random sphere pack for various domain sizes. Complete PDF (a),
zoom at small and negative velocities (b), semi logarithmic scale (c) and logarithmic
scale for positive velocities only (d).

2.2.3 Permeability

In order to further validate our results we compared the permeability calculated using the
data from our DNS results for each realization of each domain size of random sphere packs
with the permeability in sphere packs predicted by the Blake-Kozeny equation. The Blake-
Kozeny equation 2.10 relates the permeability κ of a grain packed domain with the porosity
ε and the grain size D. The factor 1/150 multiplied with these parameters is related to
the ratio of the mean length of the passages a flow has to go through and the thickness
of the layer that it goes through and is generally obtained by means of experiments [18, 4,
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27].

κ =
D2ε3

150(1− ε)2
(2.10)

We observed that with an increase in the domain size the permeabilities obtained from our
domains converge very well to the Blake-Kozeny equation. We modified the constant factor
in the Blake-Kozeny equation from 1/150 to 1/144.3 and obtained an obvious convergence
with increase in domain size.

In figure 2.10, the permeabilities calculated from the simulated average pore velocity in the
domain are plotted against the porosity for various realizations of each domain size. Also the
permeabilities calculated using the Blake-Kozeny and our modified Blake-Kozeny are shown.
Figure 2.10b, zooms in to the points corresponding to the larger domains.
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Figure 2.10: Permeability plotted against porosity for various domain sizes of random sphere pack
compared to the Blake-Kozeny equation (2.10). Covering all porosities (a) zoomed
in to the porosities corresponding to the larger domains (b)

2.3 Velocity field from DNS

Here we present velocity statistics and velocity PDFs obtained by DNS in random sphere
packs complemented by those in a dense sphere pack or even in inhomogeneous sphere
packs where suitable. For the random sphere pack, the cubic domain has a size of (2.4cm)3

(equivalent to 12 sphere diameters in each direction) and a porosity of ε = 0.35 and is
randomly packed with spheres of radius 1mm. The size chosen is sufficiently large to consider
this domain as a rather good approximation of an REV. In the case of the inhomogeneous
and random sphere pack (which we simply call heterogeneous) the domain considered is of
size 2.0cm which is not large enough to be considered an REV. The dense sphere pack is
packed according to a close packing hexagonal packing method as explained in section 2.1.2.
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We simulated a low Reynolds number flow (in the order of Re = 4× 10−4) in each of these
sphere packed domains to obtain a steady state velocity field by applying a small pressure
gradient of −0.025Pa/m in the streamwise direction. All boundaries were assumed to be
periodic.

The resolutions were 112 cells per sphere diameter for the dense sphere pack, 40 cells per
sphere diameter for the heterogeneous sphere pack and 64 cells per diameter for the random
(and homogeneous) sphere pack. The random sphere packed domain has a very large number
of grid cells (approximately 453 × 106 cells). The results for the random sphere pack have
been obtained over all grid cells in one realization. In the case of the inhomogeneous sphere
pack where results are shown, they are the averages obtained over multiple realizations due
to smaller than REV size of these domains. In the following we discuss some statistical
variables of the velocities.

2.3.1 Velocity statistics

In tables 2.3 and 2.4 we document the minimum, maximum, average and higher statistical
moments around the mean of the pore scale velocity in the dense and the random sphere
pack respectively for all three velocity components. The velocity statistics of heterogeneous
random sphere packs are not presented here as we do not have DNS results of heterogeneous
sphere packs that are large enough to be considered an REV.

The sth statistical central moment ms around the mean of a population of n discrete points
denoted by θ1, θ2, ..., θn is defined as

ms =

n∑
i=1

(θi − θ̄)s

n
(2.11)

where θ̄ is the average of the population. The mean is the first raw moment of the distribu-
tion, M1. The sth raw moment of a population of n discrete points denoted by θ1, θ2, ..., θn
is defined as

Ms =

n∑
i=1

(θi)
s

n
(2.12)

The standard deviation is given as σ = m2
1/2, the skewness is defined by S = m3

m
3/2
2

and the

flatness is defined as F = m4

m2
2
.

One can see that the average cross-stream components for the random sphere pack are
approximately three to four orders of magnitude smaller than its average streamwise com-
ponent, ū. At a larger REV, the average of the cross-stream components should converge
to zero. For the dense sphere pack, the average cross-stream components are approximately
eight orders of magnitude smaller than that of the streamwise component and can be consid-
ered negligible. This of course is due to the fact that the dense sphere pack however small, is
in fact an REV as the spheres in it are uniformly distributed and as mentioned the domain
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Table 2.3: Statistics of local pore velocities in the x, y and z directions normalized by ū for the
random sphere pack.

quantity u v w
Min/ū -0.953 -5.976 -5.431
Max/ū 10.451 5.581 5.317
Mean/ū 1 -0.0004 -0.005
Standard deviation/ū 1.016 0.646 0.659
Skewness 1.579 -0.035 -0.009
Flatness 6.213 6.9425 6.551

Table 2.4: Statistics of local pore velocities in the x, y and z directions normalized by ū, for the
dense sphere pack.

quantity u v w
Min/ū -0.005 -1.595 -2.045
Max/ū 5.029 1.595 2.045
Mean/ū 1 -2.614E-8 -3.264E-9
Standard deviation/ū 0.939 0.399 0.553
Skewness 1.292 -1.291E-7 3.333E-8
Flatness 4.744 4.933 5.398

is periodic in every direction.

The standard deviations of the three velocity components are all in the same order of mag-
nitude as the average streamwise pore velocity, ū, both for the random and for the dense
sphere packs. As expected, the skewness of the cross-stream components in the random
sphere pack are small compared to that of the streamwise component. The difference be-
tween the skewness of the cross- stream and streamwise components is amplified in the dense
sphere pack again due to the regularity of the sphere arrangement. The flatness for both the
random and the dense sphere pack, however, is similarly large for all components and much
larger than the one of a Gaussian distribution which is 3.

In the random sphere pack the maximum value of the streamwise velocity is about ten times
larger than its mean, the intrinsic velocity ū, while the magnitudes of the cross stream compo-
nents can reach values of about five times larger than the magnitude of the intrinsic velocity
ū. In the case of the dense sphere pack the value of the streamwise velocity component is
approximately five times larger than that of the mean streamwise pore velocity, ū, and the
cross stream components are approximately 50 to 100 percent larger than ū. The longer tail
of the velocity distribution (larger maximum u) in the random sphere pack compared to that
of the dense sphere pack is due to its obvious higher heterogeneity. The more heterogeneous
a porous media is the more probable it is for velocities to have the opportunity to reach very
high values compared to the mean velocity.

Another point to consider is that there exist negative velocities in the streamwise component
for both the random and the dense sphere packs. The emergence of negative velocities will
be discussed in section 2.3.3.
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2.3.2 Velocity PDFs

Figure 2.11 shows the PDF of the streamwise velocity component, u for the random, the
dense and the inhomogeneous sphere packs. The PDFs for all were obtained by dividing
the velocities, ranging between −2ū and 16ū (ū being the respective average pore velocity
of each case), into 360 bins. The x axis is normalized by the intrinsic velocity, ū. The
PDF value in each curve is normalized such that the area underneath the curve is always
equal to unity. In the case of the inhomogeneous sphere pack the curve shown in the figure
represents the average PDF of 15 different realizations of inhomogeneous sphere packs of
size 2cm. This is because inhomogeneous sphere packs of size 2cm are not large enough to
be considered an REV and therefore an average of the PDFs is shown here simply to be
compared qualitatively with the PDFs of dense and random sphere packs. We plot the PDF
in four different scales to make several features visible.

One can see that the PDFs exhibit a maximum at a very a low velocity in all realizations.
There is a long tail to large velocities, with the maximum velocities being observed at more
than 10 times larger than the ū in the random, at about 5ū in the dense and at over 14ū
in the inhomogeneous sphere pack. The dense sphere pack’s velocity distribution is more
narrow than the one from the random sphere pack, which is not surprising as the pore
spacings exhibit a larger variation in the random sphere pack than in the dense sphere pack.
With the same logic its is obvious that the velocity PDF of the heterogeneous sphere pack
is even wider than that of the random sphere pack.

When comparing the PDFs another striking feature is that in the dense sphere pack, the
PDF has two kinks, one at about 1.3ū and another at about 2.2ū, best visible in the zoomed
linear plot, figure 2.11b. At velocities smaller than the first kink, there is a plateau in the
probability. Similar observations were made by Maier et al when studying a dense sphere
pack. They divided the velocity range into several regions in order to better explain the
various sections of the velocity PDF. According to Maier et al, u/ū < 0.5 correspond to the
regions surrounding the spheres. Regions of moderate velocity which have a quasi-tubular
shape with triangular cross sections correspond to 0.5 < u/ū < 1.7 and surround the high
velocity network of tubular flow structures (1.7 < u/ū) in the domain. They associate the
second peak in their PDF curve with the contribution from the junctions of the high velocity
structure [29].

For all three configurations, the PDF curves do not follow a normal or even log-normal
behaviour, as can be seen in figure 2.11d. The decay of the PDFs at large velocities rather
resembles an exponential decay for all three (figure 2.11c).

As expected, the PDFs of the transverse velocity components are different from those of the
streamwise component. The most prominent difference is the symmetry about the zero veloc-
ity, see figure 2.12. In this figure, both transverse velocity components, v and w, are plotted.
These PDFs are also obtained from DNS on the same dense, random and inhomogeneous
sphere packs by dividing the velocities (ranging between −16σ and 16σ) into 360 bins. The x
axis for these graphs are normalized by the standard deviation, σ, of their respective stream-
wise pore velocity, u. Again the curve representing the inhomogeneous sphere pack is in fact
the average of PDFs over 15 different realizations of inhomogeneous sphere packs. We have
also included in this figure the probability density curve of a normal distribution for compar-
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Figure 2.11: PDF of streamwise pore velocity in dense, random and heterogeneous sphere packs.
Whole velocity domain (a); Zoom at small velocities (b); semi-log plot (c) and log-log
plot at positive velocities (d).

ison. The probability density of the normal distribution is:

f(x) =
1√
2π
e−x2/2 (2.13)

Here the PDFs are symmetric and it is clear that the transverse velocities are smaller and far
more prevalent around zero. There is a considerable deviation from a Gaussian distribution
that has been added for comparison, which in the case of the random and dense sphere packs
already could have been expected from the large flatness values, see tables 2.3 and 2.4. As
expected in the case of the random sphere pack, the PDFs of v and w are identical, thus only
one curve is visible. This is because the random sphere pack is isotropic and the geometry
of transverse directions have no observable statistical difference with each other. The same
cannot be said of the curves representing heterogeneous sphere packs. The heterogeneous
sphere packs due to the method used for sphere packing are not isotropic by nature. Even
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averaging over 15 different realizations does not rectify the differences between the two trans-
verse directions. In the case of the dense sphere pack even more prevalent differences between
PDFs of v and w can be seen which is of course due to the fact that the dense sphere pack
arrangement is homogeneous but anisotropic by definition.
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Figure 2.12: PDF of transverse velocities in random, dense and inhomogeneous sphere packs.
Zoom at small velocities in linear scale (a) and semi-log scale for the complete velocity
range (b).

2.3.3 Negative velocities

As can be seen in tables 2.3 and 2.4 and concluded from figure 2.11 there exist small areas of
negative streamwise velocities. Negative velocities in sphere packs have also been reported
by others (see [29]). These negative velocities can not be interpreted as separated flow
regions which can be observed in high Reynolds number flows. The regions of back-flow
appear in small pockets attached to the surfaces of the spheres, see figure 2.13. There are
two possible situations which we could identify to give rise to negative velocities. The first
situation appears when two spheres approach each other and form a narrow gap as indicated
by the tiny spots of colour red in figure 2.13a. The second situation can be interpreted as
the back-flow regions as part of streamlines attached to the sphere surfaces which point in
upstream direction in the neighbourhood of stagnation points that are not centred in the
front of a sphere. This is a consequence of the irregularity of the sphere distribution. Figure
2.13b shows a close up of the streamlines at such a location. Figure 2.14 visualizes the
latter situation by a sketch. On the left side, we sketch streamlines in an ordered medium.
The stagnation points are in the center of the spheres and streamlines departing from the
stagnation point always point downstream. On the other hand, as sketched on the right
hand side of figure 2.14, if a stagnation point is not located in the center of a sphere, the
streamlines departing from this stagnation point would partly point in upstream and partly
point in downstream direction. This simple consideration can well explain the occurrence
of negative velocities at some distinct points in the random sphere pack. However, it is
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important to note that at these locations, we neither observed closed separation regions in
which a tracer could be trapped for a long time nor large connected regions of negative
streamwise velocity in which a tracer could be transported in upstream direction over a long
distance. Thus, the effect of negative streamwise velocities on tracer transport and residence
times of the tracer in these pockets is expected to be small.

a b

Figure 2.13: Locations at which negative velocities occur in the flow through a random sphere
pack: in a cross-stream plane (a) and along streamlines (b) indicated by the colour
red.

Figure 2.14: Conceptional sketch of streamlines in an ordered and a disordered sphere pack demon-
strating conditions under which negative streamlines can occur.

2.3.4 Velocity derivatives

In this work we shall introduce a model for dispersion which is based on the statistics of
the velocity variation field and the velocity derivatives are essential factors in the estimation
of the velocity variations. Here we present the statistics and PDFs of the first and second
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derivatives of pore velocity components, u, v and w in different directions of a random sphere
pack of size 2.4cm.

First derivatives of velocity components

Table 2.5 summarizes the statistics of the first derivatives of the streamwise velocity compo-
nent u in the three Cartesian directions, x, y and z. In order to compute the derivatives at
each grid point the central difference scheme was employed.

From symmetry arguments, < ∂u/∂xi > should tend towards zero, which is in fact the case.
The range of < ∂u/∂x > is considerably narrower than that of < ∂u/∂y > and < ∂u/∂z >.
The skewness is very small as well, pointing to a symmetric distribution which is natural
for the cross stream derivatives. For the streamwise component, it is a hint that the flow is
truly linear, i.e. in the Stokes regime. The flatness is larger than the one for a Gaussian in
all three directions.

Table 2.5: Statistics of first derivatives of the streamwise velocity component, u, in a random
sphere pack normalized by the intrinsic velocity and the sphere diameter, ū/D.

∂u
∂x

∂u
∂y

∂u
∂z

Minimum -56.693 -125.748 -140.525
Maximum 62.061 129.374 129.916
Mean 4.831E-5 -6.070E-3 -2.234E-3
Standard deviation 6.594 11.097 11.093
Skewness 2.403E-3 -1.211E-3 3.859E-3
Flatness 5.621 8.706 8.889

Tables 2.6 and 2.7 respectively show the statistics of the first derivatives of the cross stream
velocity components v and w in the three Cartesian directions. Again the average and the
skewness of ∂v/∂xi and ∂w/∂xi are rather small and again the range which each covers
appears to be narrower in its respective principal direction but not as dramatically as in the
case of < ∂u/∂xi >.

Table 2.6: Statistics of first derivatives of the cross stream velocity component, v, normalized by
the intrinsic velocity and the sphere diameter, ū/D.

∂v
∂x

∂v
∂y

∂v
∂z

Minimum -84.316 -58.506 -90.709
Maximum 71.773 57.317 89.432
Mean 1.464E-3 7.956E-5 5.971E-4
Standard deviation 5.415 4.880 5.406
Skewness -9.797E-4 -8.584E-3 1.514E-2
Flatness 9.269 7.119 11.115

Now, we turn to the probability distributions of the first derivatives of velocity components.
Figure 2.15 shows the PDF of the first derivatives of u normalized by ū/D. The PDF values
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Table 2.7: Statistics of first derivatives of the cross stream velocity component, w, normalized by
the intrinsic velocity and the sphere diameter, ū/D.

∂w
∂x

∂w
∂y

∂w
∂z

Minimum -82.629 -75.857 -62.725
Maximum 71.165 81.163 54.008
Mean -5.336E-4 1.114E-3 4.668E-6
Standard deviation 5.450 5.499 4.939
Skewness 6.623E-3 5.884E-3 -9.804E-3
Flatness 8.976 10.764 7.078

are normalized such that the area beneath each curve remains equal to 1. To obtain the
PDFs, we used 320 bins in the range between −142ū/D and 130ū/D. We can see that
the distribution of ∂u/∂y is identical to the ones of ∂u/∂z which is to be expected due to
the rotational symmetry of the sphere pack. The standard deviation of the longitudinal
derivative is smaller than the standard deviation of the cross stream derivatives. This leads
to a more narrow distribution of the longitudinal derivative (figure 2.15b). Although we
are primarily interested in the derivatives of the streamwise pore velocity component we
have also plotted the PDF of the first derivatives of v and w in figure 2.16 for the sake
of completeness. Notice that in general the standard deviation of the derivatives of each
velocity component is narrower in its respective direction than in the direction perpendicular
to it.
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Figure 2.15: PDF of ∂u
∂xi

in a random sphere pack normalized by ū/D. Linear scale zoomed around
small gradients (a) and semi-logarithmic scale for the complete range of gradients (b).

To compare the distribution of the first derivative of the streamwise pore velocity , u, with
that of a normal distribution in figure 2.17 we show the PDF of ∂u

∂xi
, each normalized by its

corresponding standard deviation σ. Again the PDF values are normalized such that the area
underneath each PDF curve is equal to one. Here we divided the derivative range between
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Figure 2.16: PDF of ∂v
∂xi

and ∂w
∂xi

in a random sphere pack normalized by ū/D plotted in semi-
logarithmic scale for the complete range of gradients.

−13σ to −13σ into 320 bins. The distributions of the first derivatives of the streamwise
velocity component are symmetric but non-Gaussian. The maximum absolute values are
more than 10 times larger than the standard deviation. It is clear in this figure that the
peak values are strongly pronounced - much more than in a Gaussian distribution, which
is also plotted for comparison (figure 2.17b). The decay at large values is slower than the
decay of a normal distribution. There is a trend towards an exponential decay, however,
unlike in the distribution (PDF) of the streamwise pore velocity (figure 2.11), this trend is
not fully clear.
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Figure 2.17: PDF of ∂u
∂xi

in a random sphere pack normalized by its respective standard deviation
σ. Linear scale zoomed around small gradients (a) and semi-logarithmic scale for the
complete range of gradients (b).
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Second derivatives of the streamwise velocity component

Table 2.8 shows the second derivatives of u in all combinations of direction for the previously
described random sphere pack of size 2.4cm. It is clear that the second derivatives are
strongly non-Gaussian, even the mixed ones as can be deduced from the flatness factors
which are even larger than the ones of the first derivatives. Also, the average value of
the second derivatives of the streamwise velocity component are not necessarily tending to
zero for sufficient statistics. We observe that the streamwise and the cross stream second
derivatives of the streamwise velocity component are negative in the mean. This reflects the
fact that at the sphere surfaces the velocity is zero while in the field, it is predominantly
positive. Therefore, the curvature of the spatial streamwise velocity field is predominantly
smaller than zero, as can be seen in table 2.8. This negativity of the second derivative of the
streamwise pore velocity can have a subtle effect on the average of the du field the equation
for which will be obtained in the next chapter.

Table 2.8: Statistics of second derivatives of the streamwise velocity component in a random sphere
pack normalized by the intrinsic velocity and the sphere diameter, ū/D2.

Min Max Mean Std dev Skew Flat
∂2u
∂x2 -1226.407 1614.642 -7.270 112.661 1.661 12.815
∂2u
∂y2

-1727.371 1724.317 0.041 112.289 -0.046 13.915
∂2u
∂z2

-1821.130 1841.601 -0.076 112.445 0.051 14.048
∂2u
∂x∂y

-4016.509 3896.262 -17.369 237.792 1.464 18.092
∂2u
∂x∂z

-2662.132 2794.736 0.006 152.737 -0.096 17.425
∂2u
∂y∂z

-3393.494 4120.845 -17.238 237.042 1.503 18.414

The PDFs of the second derivatives of u are either normalized by ū/D2 (figure 2.18) or by
their respective standard derivation (figure 2.19). The PDFs are obtained by dividing the
range between −2700ū/D2 and −3000ū/D2, or between −20σ and 22σ, respectively, into
320 bins. In these figures, curve a corresponds to ∂2u/∂x2, b to ∂2u/∂y2, c to ∂2u/∂z2, d
to ∂2u/(∂x∂y), e to ∂2u/(∂x∂z) and f to ∂2u/(∂y∂z). Curve g is a normal distribution for
comparison.

The second derivatives ∂2u/∂x2, ∂2u/∂y2 and ∂2u/∂z2 have skew distributions, best seen
in figure 2.18a, while the mixed derivatives are evenly distributed. However, the curvature
of ∂2u/∂x2 is the only one at which the maximum PDF occurs at a non-zero value. The
cross-stream curvatures have the highest probability at zero values, but there are consider-
ably larger probabilities at intermediate negative than at intermediate positive values. All
second derivatives have a more pronounced peak than a normal distribution at the same
standard deviation, see figure 2.19a. On the other hand, all second derivatives decay much
slower at large magnitudes than a normal distribution, and we observe values of more than
15σ. Maximum absolute values are about 15 times larger than the corresponding standard
deviations. The mixed second derivatives are more symmetric than the unmixed ones, but
are much wider than a Gaussian distribution.
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Figure 2.18: PDF of ∂2u
∂xi∂xj

in a random sphere pack normalized by ū/D2. Curve a corresponds to

∂2u
∂x2 , b to ∂2u

∂y2
, c to ∂2u

∂z2
, d to ∂2u

∂x∂y , e to ∂2u
∂x∂z and f to ∂2u

∂y∂z . Linear scale zoomed around

small gradients (a) and semi-logarithmic scale for the complete range of gradients (b).
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Figure 2.19: PDF of ∂2u
∂xi∂xj

in a random sphere pack normalized by its respective standard devia-

tion σ. Curve a corresponds to ∂2u
∂x2 , b to ∂2u

∂y2
, c to ∂2u

∂z2
, d to ∂2u

∂x∂y , e to ∂2u
∂x∂z and f to

∂2u
∂y∂z . Curve g is a normal distribution for comparison. Linear scale zoomed around
small gradients (a) and semi-logarithmic scale for the complete range of gradients
(b).

2.4 Evolution of a tracer in a sphere
pack

Here we report the outcome of solving the transport equation on a homogeneous random
sphere pack of size 2.4cm. The velocity field resulting from an imposed pressure gradient
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of −0.025Pa/m2 in the sphere packed domain filled with water is obtained using MGLET
as described before. The Reynolds number of the set-up is approximately Re = 4 × 10−4.
The PDF and statistics of the velocity field were discussed in detail in sections 2.3.1 and
2.3.2.

The governing equation for transport of a passive tracer (equation 2.3) is also solved using
MGLET. By passive tracer we mean the same fluid as the one which flows in the porous
domain with the exact same properties but with a certain concentration value assigned to
it. In other words the tracer does not react with or affect the fluid or solid phases in the
domain. Since the porous domain is not very large we replicate the periodic flow field of
size 2.4cm in the x (streamwise) direction five times in order to give room to the tracer to
evolve. In this way we obtain a domain of size (Lx, Ly, Lz) = (12, 2.4, 2.4)cm. At every
point in this domain the velocity is known. The velocity field is of course repeated five
times in the length of the domain. The boundaries of the domain for the transport process
are again periodic in all directions. The tracer is initialized such that on the central cross
section perpendicular to the streamwise direction (at x = 5.998cm) the concentration of the
tracer at each grid point is c = 1kg/m3 and on all other points the concentration is set to
c = 0.

2.4.1 Effect of pore space on tracer evolution

Here we compare the evolution of a tracer in a porous medium to its evolution in an empty
and unbounded domain. In an unbounded domain one would expect that the shape of the
tracer cloud in the streamwise direction would follow that of a normal distribution with a
mean equivalent to the velocity multiplied with time, which represents the position of the
center of mass of the cloud, and a standard deviation of

σ(t) =
√

2Γt (2.14)

where σ is the standard deviation of the location of tracer particles. With this defini-
tion σ(t) represents the half width of the cloud at time t in the case of Fickian disper-
sion.

Considering a molecular diffusion coefficient of Γ = 1 × 10−11m2/s we solved the transport
equation in a homogeneous random sphere pack of size 2.4cm for two different velocity fields.
In one case the velocities at every point were set to zero and in the other we used the same
velocity field explained in sections 2.3.1 and 2.3.2. We calculated the standard deviation of
the concentration distribution of the tracer for these two cases and plotted them over time
together with σ(t) from equation 2.14. See figure 2.20.

It is clear that the presence of the pore space at zero velocity inhibits the growth of the tracer
cloud. Maier et al. [28] report similar behaviour in the case where the Peclet number is zero
and have calculated the ratio of the effective diffusivity to the molecular diffusivity for differ-
ent cases. The square root of this ratio is equivalent to the ratio of the diffusive length scale
in the porous medium to the diffusive length scale had the domain been non-porous and free
of obstacles. This is the definition of tortuosity as defined by Bear [2]. In short, the spheres in
the porous domain block the natural Brownian diffusion of the tracer. However as is evident
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Figure 2.20: Standard deviation of the tracer positions in a non-porous domain, in a porous domain
with zero velocity and in a porous domain with non-zero velocity.

in figure 2.20, in the presence of velocity the porous domain increases the growth and spread-
ing of the tracer cloud beyond what is expected from the average pore velocity and molecular
diffusion alone. This phenomena is called dispersion.

2.4.2 Effect of the Peclet number tracer
evolution

The Peclet number, Pe, is a dimensionless measure of the rate of advection of a tracer to its
rate of diffusion or in other words, the ratio of the diffusive time scale to the advective time
scale in the transport of a tracer. The Schmidt number, Sc, is also a dimensionless measure
of the ratio of the rate of viscous diffusion to the rate of molecular diffusion. The Peclet and
Schmidt numbers are described in the following equations.

Pe =
tdif
tadv

=
L2/Γ

L/ū
=
ūL

Γ
(2.15)

Sc =
ν

Γ
=

ν

ūL
× ūL

Γ
=
Pe

Re
(2.16)

In the above, L is the a length scale, ū the average pore velocity, Γ is the molecular diffusion
coefficient and ν is the kinematic viscosity.

We have chosen a molecular diffusion coefficient of Γ = 1× 10−11m2/s for our simulations of
tracer transport in porous media. This translates to a Peclet number of Pe = 37.11 based
on a length scale of L = D = 2mm, D being the sphere diameter in the porous domain.
The average pore velocity, ū, in the case of the random sphere pack of size 2.4cm is ū =
1.856× 10−7m/s. The Schmidt number of our set-up is Sc = ν/Γ = 105, ν = 1× 10−6m2/s
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being the kinematic viscosity of water.

However we would first like to demonstrate the effect of the Peclet number on dispersion in
the afore mentioned random sphere pack of size 12× 2.4× 2.4cm3. The tracer is initialized
on the central cross section of the domain perpendicular to the streamwise direction at time
t = 0. Using the velocity field obtained via DNS (and described in section 2.3) the transport
equation was solved for three different molecular diffusion coefficients. Figure 2.21 shows the
centre of mass of the cloud (mean location of grid points weighted with tracer concentration)
for three different molecular diffusion coefficients Γ = 5 × 10−12m2/s, Γ = 1 × 10−11m2/s
and Γ = 1 × 10−10m2/s which correspond to Peclet numbers of Pe = 74.22 , Pe = 37.11
and Pe = 3.71 considering a length scale of L = D = 2mm and to Schmidt numbers of
Sc = 200000, Sc = 100000 and Sc = 10000 respectively. Moreover, considering the same
length scale, these molecular diffusion coefficients correspond respectively to diffusion time
scales (L2/Γ) of tdif = 8 × 105s, tdif = 4 × 105s and tdif = 4 × 104s. The advection time
scale would in each case be tadv = ū/L = 1.0776 × 104s. Figure 2.21 also includes a curve
corresponding to the centre of the cloud should it have evolved in a non-porous and infinite
volume following the equation

x̄(t) = ū.t+ x̄0 (2.17)

where x̄(t) is the location of the centre of the cloud at time t and x̄0 is the location of the
centre of the cloud at the initial time and where ū is the average streamwise pore velocity
obtained via DNS (see section 2.3.1). It is evident that with an increase in the Peclet
number the centre of the cloud moves faster with time even though the average streamwise
pore velocity for all three cases is the same. This is due to the fact that at time t = 0
the tracer is initialized on a cross section of the domain perpendicular to the streamwise
direction and is not spread over the whole domain. As the domain is not exactly large
enough to be considered an REV the average streamwise pore velocity on this cross section
(ūsec = 1.86m/s) is slightly different from (and in this case higher than) the average pore
velocity in the whole domain (ū = 1.856m/s). As time passes and the tracer spreads to more
and more points in the domain the velocity PDF and therefore the average velocity of the
grid points weighted by the tracer concentrations will converge to that of the total domain.
This will be further elaborated upon in the next subsection.

Figure 2.22 shows the standard deviation of the tracer cloud (half width of the cloud in
case of Fickian dispersion) for two different Peclet numbers. For each case the thicker curve
represents the condition where both advection and diffusion occurs (using the same velocity
field mentioned before) and the thinner curve represents a pure diffusion condition with zero
velocity at every point in the domain. As can be observed in this figure there exists a far
more significant difference between the half width of the cloud in the case of pure diffusion
and that of advection plus diffusion for the higher Peclet number. It is clear that when the
Peclet number is higher the varying velocity in the domain has more effect on and escalates
the dispersion in the domain.
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Figure 2.21: Location of centre of mass of tracer cloud over time. t = 0 to t = 2000s (a) and
t = 1000s to t = 2000s (b)
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Figure 2.22: Standard deviation of the tracer cloud positions in a random sphere pack for two
different Peclet numbers.

Figure 2.23 shows the shape of the cloud at time t = 2000s for three different Peclet numbers.
The concentration of the tracer integrated over each cross section perpendicular to the
streamwise direction yields the shape of the tracer cloud. In order to obtain the shape
of the cloud we calculated the PDF of the location of grid points weighted with the tracer
concentration. The bins were chosen such that each bin contains exactly one grid point in
the streamwise direction. Higher Peclet numbers correspond to lower diffusion coefficients
and therefore the higher the Peclet number the less spread out the cloud is at a given time.
In this figure however another important feature catches the eye. Notice how the skewness
of the curves increase with increasing Peclet numbers. Time t = 2000s is still early enough
for all three configurations to be in a state of non-Fickian diffusion, i.e. for the velocities
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of grid points affected by the tracer to be still correlated. On their pore scale simulations
of transport in random sphere packs Maier et al. [28] report non-Fickian dispersion up
until three times the advective time scale, D/ū, where D is the sphere diameter and ū the
average pore velocity. In their experiment on domains packed with glass spheres Scheven
et al. [44] report similar results in the same order of magnitude. They reach Fickian
dispersion length scales ten times larger than the sphere diameter (which corresponds to
times ten times larger than the advection time scale) and diffusion length scales larger than
0.3D. Based on our configuration if we consider t = 10D/ū as the time to reach asymptotic
dispersion, non-Fickian dispersion would continue until more than t = 100000s. The diffusion
length scale at this time for all three Peclet numbers mentioned above would be larger than
0.3D.
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Figure 2.23: PDF of the position of tracer particles at time t = 2000s in a random sphere pack
for different Peclet numbers.

In order to better observe the effect of Peclet number on the skewness of a tracer cloud
in the non-Fickian phase please see figure 2.24. Here the skewness of the tracer cloud is
calculated at various times during the evolution of the tracer in the random sphere pack and
the results are plotted for the three different diffusion coefficients (Peclet numbers). One
can see that the higher the Peclet number the more skewed the the tracer cloud is or in
other words the more the dispersion strays from Fickian dispersion. The ratio of diffusion
effects to advection effects increase with decreasing Peclet number and more diffusion results
in more jumping of the tracer from one velocity streamline to another resulting in a more
homogeneous experience of the velocity field by the tracer.
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Figure 2.24: Skewness of the tracer cloud at various times in a random sphere pack for different
Peclet numbers.

2.4.3 Tracer transport results

We aimed at simulating the evolution of a tracer in a homogeneous random sphere pack in
order to observe and quantify the dispersion. It is clear that with a lower molecular diffusion
coefficient (higher Peclet number) the dispersion would be more evident. However we were
limited in our simulations in two ways. On one hand the diffusion number had to be kept well
below one and on the hand the pore Peclet number had to be kept well under two in order for
the finite volume simulation to stay stable. The diffusion number, δ and the cell Peclet num-
ber, Pecell, are defined by equations 2.18 and 2.19 respectively.

δ =
Γ∆t

∆x2
(2.18)

Pecell =
ū∆x

Γ
(2.19)

∆x here, is the grid size used in the finite volume simulation of the tracer transport. We
use a grid size of ∆x = 3.125 × 10−5m in our simulations as we did also for resolving the
velocity field. With this resolution if the molecular diffusion is set to Γ = 5 × 10−12m2/s,
Γ = 1 × 10−11m2/s or Γ = 1 × 10−10m2/s the cell Peclet number will be Pecell = 1.1596,
Pecell = 0.5798 and Pecell = 0.05798 respectively and in order to keep the diffusion num-
ber below one the time step dt has to be kept well below 195.313s, 97.656s and 9.766s
respectively. As the grid is rather fine it can be seen that the time step is not severely
restricted by the diffusion number. However the cell Peclet number easily becomes prob-
lematic. For a diffusion coefficient of Γ = 5 × 10−12m2/s we were only able to run the
simulation up to time t = 6000s before the solution started to become unstable and af-
fected by wriggles. In order to be able to simulate lower diffusion coefficients (and there-
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fore higher Peclet numbers) one would need to use a finer mesh. We decided to focus
on a diffusion coefficient of Γ = 1 × 10−11m2/s which corresponds to a Peclet number of
Pe = 37.11.

Figures 2.25, 2.26 and 2.27 respectively display the evolution of the centre of mass of the
tracer, the standard deviation of the streamwise position of tracer particles and the skewness
of the tracer cloud over time. These statistical quantities are found at every time step by
calculating the statistical moments of the position of grid points, weighted by the concentra-
tion, at that time. Please note that the time necessary for the centre of mass of the tracer
cloud to move, with the average pore velocity, a length equal to that of a sphere diameter is
tadv = 10776s
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Figure 2.25: Centre of mass of the tracer cloud plotted against time in a random sphere pack for
Pe = 37.11.

Because at the initial time all points on the cross section containing the tracer have a concen-
tration value of c = 1kg/m3, it is clear that the initial value for the half width of the cloud
has to be zero and that the tracer cloud is not skewed. In the early times when the dispersion
is still non-Fickian the skewness increases with time as the cloud develops. After some time
passes however the shape of the tracer cloud becomes more and more symmetric and tends
towards a Gaussian profile and therefore the skewness begins to decrease. In other words the
non-Fickian dispersion gradually converges to a Fickian one.

To calculate the dispersion coefficient at each time, t, from our DNS results we calculate
the variance of the concentration distribution and divide that by 2t. Figure 2.28 shows
the dispersion coefficient, ΓD = σ2/(2t), normalized by the molecular diffusion, Γ = 1 ×
10−11m/s2, plotted against time. σ2 here is the variance of the concentration distribution in
space. Notice that ΓD varies over time and therefore the dispersion cannot be Fickian. Also
ΓD/Γ appears to be gradually converging towards a value pointing to a gradual transition
towards asymptotic dispersion.

As previously mentioned the tracer is initialized on a cross section perpendicular to the
streamwise direction. Since the domain that we use is not large enough to be considered
an REV but is rather only an approximation of an REV, the velocity PDF on the cross
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Figure 2.26: Standard deviation of tracer positions plotted against time in a random sphere pack
for Pe = 37.11.
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Figure 2.27: Skewness of the tracer cloud plotted against time in a random sphere pack for Pe =
37.11.

section does not exactly match that of the whole domain. In figure 2.29 the velocity PDF
is plotted for various times. For better visibility the figure is zoomed in at velocities with
higher probability. In order to obtain the velocity PDF, at each grid point the velocity is
weighted by the concentration. The velocity range is between −2ū and 16ū and is divided
into 360 bins. ū is the average streamwise pore velocity in the random sphere pack domain.
The velocity PDF of the total domain unweighed by the concentration is also plotted for
comparison. Notice how the velocity PDF of points containing non-zero concentration values
(weighted by the concentration) develops with time and converges to the PDF of the total
velocity field.
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Figure 2.30 shows the average velocity of points occupied by the tracer (weighted with the
tracer concentration) which is denoted by ūt and normalized by the average pore velocity in
the total domain , ū over time. Notice how the ratio of ūt to ū converges toward one with
time.
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Figure 2.30: Mean pore velocity of tracer cloud normalized by the mean pore velocity, ū of the
domain in a random sphere pack over time.

Figure 2.31 shows the shape of the cloud (obtained by calculating the PDF of x coordinate
of grid points weighted by concentration) at various times after the release of the tracer.
Notice how the skewness initially begins to increase with time and then gradually begins
to decrease until the shape of the cloud becomes more and more similar to a Gaussian
distribution.
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Figure 2.31: Shape of the tracer cloud over time in a random sphere pack. t = 500s to t = 10000s
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3 Modelling Dispersion

In this chapter we present a model for dispersion based on the conditional statistics of
the velocity increment (du) field. The statistics and PDFs of the velocity variation field
will be presented and the main parameters of our stochastic velocity model will be dis-
cussed in detail. We elaborate upon both flow through a sphere pack and through a sim-
ple channel flow for comparison. We will use the model to predict the behaviour of a
tracer in both a channel and a sphere pack and will compare the results to benchmark
solutions.

This chapter is organized as follows. In the first section we introduce a model for dispersion
based on a stochastic velocity process. This model will be used for resolving the transport
of a tracer in a channel and in a sphere pack. In the second section we present the set-up of
a simple channel flow. The set-up of the sphere pack, its properties and the statistics of its
velocity field have been described in the previous chapter. In the third section of this chapter
we describe the statistics, conditional statistics and PDFs of the velocity variation, du, field
both in the channel and in the sphere pack. This section also includes the determination
of the parameters (drift and diffusion terms) of our model. In the fourth and fifth sections
of this chapter we present the results of tracer transport obtained from our model in the
channel and in the sphere pack respectively.

3.1 A model for dispersion in porous
media

In this section, we will present a stochastic process for velocities in porous media based on
the model of Meyer and Tchelepi [33]. Their model has been demonstrated to reproduce the
velocity distribution function well. However, the demonstration has been only conducted for
two-dimensional Darcy flow in random permeability fields and is unable to account for neg-
ative velocities[33]. We then develop a link towards Eulerian statistics in three-dimensional
velocity fields on the pore scale, such as the velocity fields in random sphere packs and mod-
ify the model of Meyer et al. to produce a dispersion model based on the pore scale velocity
and velocity variation fields.

3.1.1 A Markovian process for velocity in porous
media

Meyer and Tschelepi [33] proposed a continuous stochastic Markovian process consisting of a
drift and a diffusion term in velocity space. This process is able to represent the velocity PDF
if drift and diffusion are suitably calibrated. The stochastic process for velocity increments

43
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du is formulated as follows.

du0 = a(u0)dt+ b(u0)dW (t) (3.1)

Here W (t) is a Wiener process and a(u0) and b(u0) are drift and diffusion terms respectively.
In order to magnify small velocities u0 is defined as

u0 = ln(|u|/U) (3.2)

with u being the longitudinal velocity, and U the average longitudinal velocity. It is clear
that with this configuration negative longitudinal velocities cannot be accounted for. Meyer
and Tchelepi determine the drift and diffusion terms from the statistics obtained by Monte
Carlo simulations where the Darcy equation is solved on 2D porous domains. In this set-up,
only positive velocities occur. The drift and diffusion functions are obtained by conditioned
statistics of velocity increments du0.

a(u0) =
〈du0|u0〉

dt
(3.3)

b(u0)
2 =
〈du20|u0〉

dt
− 〈du0|u0〉

2

dt
(3.4)

This means, the drift term in velocity space of the Markovian process is determined by the
conditioned average of velocity increments and the diffusion term by conditioned variances
of the velocity increments. Meyer and Tchelepi [33] obtained the conditioned statistics from
Lagrangian pathlines in a Monte-Carlo simulation. They also point out the similarities
to the approach of [21, 20]. The transition probabilities in velocity space are therefore
determined by the first and second moments of conditioned velocity increments. In the next
section, we show how the velocity increments are linked to conditioned Eulerian velocity
statistics.

3.1.2 Eulerian velocity increments

In this work we assess statistics of the velocity increments du in an Eulerian frame using the
statistics of velocities obtained through pore scale simulations on a random sphere pack. We
determine velocity increments for tracer particles moving according to Langevin’s equation.
The main differences with the analysis of [33] is that we do not use the mapping, equation
(3.2), as the pore scale velocities can be negative and that we evaluate the velocity increments
in Eulerian space using a Taylor series expansion for the velocity fields obtained by our 3D
DNS in pore space. The latter allows for distinguishing between the effects of molecular
diffusion and velocity variations along the streamlines on the velocity increments, as will be
demonstrated in the following.

In order to obtain du we combine the Taylor series expansion for du, truncated after the
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second order term,

du =
∂u

∂xk
dxk +

1

2

∂2u

∂xi∂xj
dxidxj (3.5)

with the Langevin equation for small tracer particles.

dxi = uidt +
√

2ΓdtNi (3.6)

Note that dW =
√
dtN where N is a Gaussian process with unit variance. In other words,

N is a normally distributed random number with an average of 0 and a standard deviation
of 1

After substituting dx from equation (3.6) into equation (3.5), we obtain:

du =
√

2Γdt
∂u

∂xi
Ni︸ ︷︷ ︸

term 1

+ dtui
∂u

∂xi︸ ︷︷ ︸
term 2

+ Γdt
∂2u

∂xixj
NiNj︸ ︷︷ ︸

term 3

+
√

2Γdtdtui
∂2u

∂xixj
Ni︸ ︷︷ ︸

term 4

+
1

2
dt2uiuj

∂2u

∂xixj︸ ︷︷ ︸
term 5

(3.7)

The Eulerian equation describing du consists of five different terms. The first two terms
correspond to the first term of the Taylor expansion and the next three terms of du correspond
to the second term of the Taylor expansion. The velocity variations along the streamlines
are represented by terms 2 and 5. Terms 1 and 3 are due to molecular diffusion and term 4
is a mixed term. Thus, one can clearly identify which process has to be modelled in equation
3.1 if dispersion on a pore scale level is being considered. We will assess these terms together
with other statistical quantities in the next sections.

After verifying that du can in fact be described by a drift and a diffusion term we attempted
to enhance the model of Meyer and Tchelepi by formulating a similar stochastic equation
for the increments in velocity space from first principles. We define the following veloc-
ity stochastic process which is in fact the basis for a random walk process in the velocity
space.

du = Updt+
√

2ΓpdtN (3.8)

Here Up is a drift term conditioned on u and Γp is a diffusion term conditioned on u. The
equivalent Fokker-Planck equation to this velocity stochastic process reads

∂P

∂t
= −∂(PUp)

∂u
+
∂2(PΓp)

∂u2
(3.9)

where P is the Probability density function of the velocity. This equation is nothing other
than the continuous advection-diffusion PDE in the velocity space [51]. Notice that PUp

represents the drift flux in velocity space while ∂(PΓp)/∂u represents the diffusive flux in
velocity space. In the following we attempt to determine Γp and Up for a given range of u.
The velocity probability density function, P , is of course easily attainable from the resolved
velocity field.
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Diffusion term Γp

In order to determine Γp in a given very small range of u assuming that in this range Γp and
Up are constant and equal to their average values in that range, Γp and Up respectively, we
evaluate the variance of du according to equation 3.8

var(du) =< Updt− Updt+
√

2Γpdt.N −
√

2Γpdt.N >2 (3.10)

Since Γp and Up are constant and the variance of N is equal to 1 by definition, we conclude
that

var(du) = (
√

2Γpdt. < N −N >)2 = 2Γpdt < N −N >2= 2Γpdt (3.11)

and obtain Γp

Γp =
var(du)

2dt
(3.12)

Drift term Up

We use three different methods for calculating the drift term. The first method of finding
Up is to assume that both the drift and the diffusion terms stay constant in each small range of
velocity and to simply take an average of both sides of equation 3.8

< du >=< Updt > + <
√

2Γpdt.N > (3.13)

Since we assume that in the given range of u, Γp and Up are constant we conclude that

< du >= Updt+((((
((((

(√
2Γpdt < N > (3.14)

The average of N is zero by definition and therefore the second term on the right hand side
can be eliminated. It follows that for each velocity range the drift term obtained via this
method is simply the mean of du, in that certain velocity range, divided by time.

Up1 =
< du >

dt
(3.15)

The drift term obtained via this method will be denoted as Up1. One must consider however,
that the du field obtained via 3.7 cannot explicitly account for the bounce back at sphere
surfaces. More explanation about this issue will be offered in section 3.3. Although we
cannot account for the bounce back at the sphere surfaces we try to implicitly include the
effects of the bounce back on the drift term by enforcing the velocity PDF as shown for the
second method of obtaining Up.
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In the second method of obtaining the drift term, we assume that we are dealing with a steady
flow where the velocity PDF stays constant in time. Therefore it follows from equation 3.9
that

∂(PUp)

∂u
=
∂2(PΓp)

∂u2
(3.16)

As was also done in the first method we again assume that in each small range of u the drift
and diffusion terms remain constant. It therefore follows that

Up
∂P

∂u
= Γp

∂2P

∂u2
(3.17)

By integrating over the specific range of u, at which we want to calculate the drift term,
on both sides and considering that the velocity flux remains constant at each velocity, we
obtain

UpP = Γp
∂P

∂u
(3.18)

Finally by using the Γp obtained in section 3.1.2 the drift term which will be denoted by Up2

is determined

Up2 =
1

P

var(du)

2dt

∂P

∂u
(3.19)

This method of determining Up attempts at enforcing the actual shape of the velocity PDF in
the stochastic velocity model. In this method a specific form of the Fokker-Planck equation
is used that is based on the assumption that the diffusion term, Γp, remains constant in
a given range of u. This assumption is not sufficiently accurate and therefore we add a
correction term to the stochastic model for du (equation 3.8) to reduce the adverse affect of
this simplification on our model. The stochastic velocity variation in the case where Up2 is
used therefore reads

du = (Up +
∂Γp

∂u
)dt+

√
2Γpdt.N (3.20)

This correction term is similar to the Itô correction term added to the random walk equation
for the path of particles as described by Kinzelbach and Uffink in 1991 [16]. They observed
that without the correction term the particles will accumulate in areas of lower dispersion (as
cited in the paper of Kitanidis [17]). The analogy in our model would be that the velocities
will be more prevalent in the ranges of velocity at which Γp is lower without the correction
term.

The third method of obtaining Up is similar to the second method. Again taking into account
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the fact that we only deal with steady flows where the velocity PDF stays constant in time,
we arrive at equation 3.16. After integrating this equation over the velocity range at which
we want to find the drift term we obtain

UpP =
∂(PΓp)

∂u
(3.21)

Again no constant value remains after integration in the above as the velocity fluxes remain
constant at each velocity. Taking the formula for Γp from equation 3.12 we obtain Up3 which
denotes the drift term obtained via the third method.

Up3 =
1

P

∂(PΓp)

∂u
=

1

2dtP

∂(var(u)P )

∂u
(3.22)

This method is a conservative way of enforcing the Fokker-Planck into our model. Once Up

and Γp are determined one can use the stochastic velocity model (equation 3.8 to obtain the
velocity at each step of a random walk of a given particle.

3.2 Channel

In order to evaluate our stochastic velocity model and especially the drift and diffusion terms
in the model, we consider a simple channel flow the specifications of which are shown in figure
3.1.

Figure 3.1: Set-up of the channel flow

The flow velocity in the x direction of the channel is defined by

u = − 1

2µ
(h2 − y2)∇P (3.23)
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while the velocity in the y and z directions are zero. µ is the dynamic viscosity, h is
the half width of the channel and ∇P is the pressure gradient driving the flow. We set
µ = 0.001kg/(m.s) and ∇P = −0.025Pa/m2. The channel is infinite in directions x and
z and in the y direction the width of the channel is set to 2h = 2mm. We deliberately set
these parameters such that the flow in the channel would be more or less comparable to the
flow in a typical channel inside the sphere pack which we are interested in. The streamwise
velocity profile in the channel using these parameters will be

u = 12.5(h2 − y2) (3.24)

3.3 du and the drift and diffusion terms

It was explained in section 3.1.2 that our model of interest for dispersion in porous media
relies on the statistical properties of the velocity increments in the domain conditioned on
the velocity, du|u. Please note that we focus only on the velocities and velocity increments
in the streamwise direction.

The du field can be obtained in two ways. One method is to plug in the Langevin equation
for the transport of a particle into the Taylor expansion of du in order to find du as a
function of velocity and velocity variations as shown in equation 3.7 for a given molecular
diffusion, Γ, and in a certain time step, dt. We will refer to this method of finding du as
the “LT” method (for Langevin and Taylor). The LT method does not allow for the explicit
consideration of the boundaries imposed by sphere surfaces in the case of the sphere pack
or the channel wall in the case of the channel. The other method is to evenly spread out a
large number of particles into the domain (in which the velocity is know at every location),
take note of the velocity that each particle has in its certain location and then allow the
particles to diffuse with a given molecular diffusion, Γ and for a certain time step dt. A
simple bounce back at solid surfaces is imposed. One can then simply find the difference
between the new velocity and the original velocity of each particle. In this way the du field
can be determined. This method will be referred to as the particle method. In some figures
the results obtained via the particle method will be distinguished with the letters “RW” (for
random walk).

The drift term, Up, and diffusion term, Γp, are the building blocks of our model as explained in
section 3.1.2. In order to determine these parameters we use the statistics of du conditioned
on u together with information concerning the pore velocity PDF in the case of drift terms
Up2 and Up3. In the case of the random sphere pack the du is obtained using the LT method.
In the case of the channel flow we have two sets of conditional statistics of du over 50 bins
of u. The first set corresponds to du obtained using the particle method and the second set
corresponds to du obtained from the LT method.

In this section we first present the characterisations of the du field in a simple channel and
then follow that with the determination of the drift and diffusion terms of the model. The
same will be presented for the flow in a random sphere pack.
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3.3.1 du in a channel

Here the du field was calculated once using the particle method by evenly distributing 200
million particles in a cross section of the channel and once by using the LT method. Here,
we are mainly focused on identifying the differences in the properties of du obtained by the
two different methods. The particle method of obtaining the du field is straightforward. It
is only important to note that when the particles are allowed to diffuse for one time step,
those particle which attempt to move out of the boundaries of the channel are bounced back
at the wall. For the LT method we take 200 million equidistant points on a cross section of
the channel, calculate the velocity at each point using equation 3.24 and then find the du for
each point from equation 3.7. Considering that the transverse velocities are zero and that
the streamwise velocity is constant in the x and z directions, equation 3.7 can be simplified
to

du =
∂u

∂y

√
2ΓdtN +

1

2

∂2u

∂y2
(2Γdt)N2 (3.25)

where N is a normally distributed random number (with a mean of zero and a standard
deviation of one). The first term in equation 3.25 corresponds to the first term in equa-
tion 3.7 and the second term corresponds to the third term in equation 3.7. Using the
equation for the streamwise pore velocity (equation 3.23), one can further simplify du
to

du =
∇p
µ
y
√

2ΓdtN +
∇p
µ

(Γdt)N2 (3.26)

For calculating the du field in both methods the molecular diffusion coefficient was set to
Γ = 1 × 10−11m2/s and time step size was set to dt = 1s. Table 3.1 shows the statistics
of du obtained using each method and also the statistics of the streamwise pore velocity
field. All values except for skewness and flatness, which are dimensionless, are normalized
by the average velocity in the channel. The average of u can also be easily found analytically
by integrating equation 3.24 between ymin = −1mm and ymax = +1mm and then dividing
by the channel width, 2h. Considering the width of the channel as the length scale, the
Peclet number of this set-up would be Pe = 1666.667. The Schmidt number is equal to
Sc = 100000.

< u >=
1

2h

∫ h

−h

udy =
1

2h

∫ h

−h

−∇P
2µ

(h2−y2)dy = −∇P
4µh

(h2y− y
3

3
)
∣∣∣h
−h

= 8.333×10−6m/s

(3.27)

It is clear that the statistics of du differ slightly between the two methods of obtaining du.
The mean du theoretically has to be zero for example, but with a finite number of points or
particles at which du is calculated we are not able to achieve a complete zero. However, both
methods yield a very small average du although the average du from the particle method is
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Table 3.1: Statistics of u and du in a channel

u du (particle) du (LT)
Minimum /ū 0 -6.736E-2 -6.847E-2
Maximum /ū 1.5 6.979E-2 7.088E-2
Mean /ū 1 4.485E-7 -3.079E-5
Standard deviation /ū 4.472E-1 7.718E-3 7.745E-3
Skewness -6.389E-1 1.464E-4 -2.342E-2
Flatness 2.143 5.374 5.401

two orders of magnitude smaller than the one from the LT method. Also one would expect
the skewness of du to be zero. In this respect too, statistics of the particle method are more
accurate. This discrepancy can be explained by the fact that by using the particle method
the boundaries of the channel are accounted for through the bounce back condition placed
on them. In the case of the LT method however, the boundary is not taken into account.
By taking an average over equation 3.26, which describes the LT method of obtaining du,
we arrive at

< du >=
��

���
���

��
<
∇p
µ
y
√

2ΓdtN >+ <
∇p
µ

(Γdt)N2 > (3.28)

It is clear that the mean du obtained via the LT method will always acquire a negative value
in the channel flow. Please note that the first terms in the above equations are cancelled out
due to the symmetry of the random number N and the y field.
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Figure 3.2: PDF of u in a channel flow. Linear scale(a) and logarithmic scale (b).

The PDF of u is shown in figure 3.2 both in the linear scale and in the logarithmic scale.
The PDF curve is normalized by ū and obtained by dividing the range between 0 and
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1.5ū into 360 bins. The PDF of du is shown in figure 3.3. These PDFs were also nor-
malized by ū and obtained by dividing the range between −0.071ū and 0.071ū into 360
bins. Notice how the PDF of du obtained by the two different methods are almost identi-
cal.
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Figure 3.3: PDF of du in a channel flow. Linear scale(a) and semi logarithmic scale (b).
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Figure 3.4: Conditional mean of du in a channel flow. Complete figure (a) and zoom in at smaller
values of average du (b).

The conditional mean, standard deviation and variance of du are plotted in figures 3.4,
3.5 and 3.6. The conditional statistics were obtained by dividing the range between the
maximum and minimum u into 50 bins and for each bin calculating the statistics of du
values that correspond to the u values residing in that bin. Each figure shows one curve
corresponding to conditional statistics of du from the particle method and one from the LT
method. No curve representing the conditional statistics of the analytically obtained du is
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Figure 3.5: Conditional standard deviation of du in a channel flow. Linear scale (a) and logarithmic
scale (b).
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Figure 3.6: Conditional variance of du in a channel flow. Linear scale (a) and logarithmic scale
(b).

presented as such curves would practically be exactly the same as the ones obtained by du
from the particle method. The mean and standard deviation values are normalized by ū in
the channel and the variance is normalized by ū2. For each bin the normalized statistical
value is plotted against the median of the bin normalized by ū.

In figure 3.4 it can easily be observed that the only main difference between the conditional
mean of du obtained by the LT method and that obtained by the particle method is in
the first bin. This is due to the fact that the first bin of u corresponds to the boundaries
of the channel which were simply ignored in the LT method and at which a bounce back
was introduced for the particle method. The same is true for the standard deviation and
variance of du as evident in figures 3.5 and 3.6. The difference is seen in the velocity bins
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corresponding to the area near the channel walls.

The method of obtaining du appears to affect the first two bins of the conditional skewness
and flatness of du. See figures 3.7 and 3.8. These conditional statistics are also obtained
and plotted using the procedure explained above the only difference being that skewness and
flatness are dimensionless and are therefore not normalized.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

S
k

e
w

n
e
ss

(d
u

)

u/u-

LT
RW

Figure 3.7: Conditional skewness of du in a channel flow.
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Figure 3.8: Conditional flatness of du in a channel flow. Complete figure (a) and zoom in at smaller
flatness values (b).
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3.3.2 Diffusion term, Γp, in a channel

According to equation 3.12 for each bin of u, the calculation of Γp is straightforward. Fig-
ure 3.9 shows Γp plotted over u for the channel flow. Here the number of bins is set to
50. Notice how this figure matches that of the conditional variance of du in the chan-
nel (figure 3.6). Here again it is evident that the diffusion term obtained via LT or the
particle method, differ only in the first velocity bin corresponding to the channel bound-
aries.
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Figure 3.9: Γp normalized by ū2 plotted against the median of velocity bins normalized by ū for
flow in a channel. Linear scale (a) and logarithmic scale (b).

3.3.3 Drift term, Up, in a channel

The drift term, Up, was calculated in three different ways. According to equation 3.15 one
method is to simply take the average du in each bin and divide it by the time step size
dt to find the drift term of that bin. The second method relies on the PDF of u and its
gradient with respect to u in each bin and also the standard deviation of du, see equation
3.19. The drift term obtained using this method ensures that the velocity PDF obtained
from the model matches the velocity PDF used for finding the drift term. In order to reach
equation 3.19 however, it was assumed that drift and diffusion terms remain constant in
each velocity bin. A more general way of obtaining the drift term is via equation 3.22.
When the drift term is found using this method the velocity PDF obtained from running
the model again matches that used for obtaining Up and the model yields more accurate
results.

In the case of the channel flow, the conditional statistics of du used for determining the
drift term is found using 50 velocity bins. The drift term obtained using the first method
(Up1) is plotted against the median of velocity bins in figure 3.10 both for du values ob-
tained using the LT method and those obtained using the particle method. Both axes are
normalized by ū. It is clear that the two curves differ due to the fact that in using the LT
method the walls of the channel are not accounted for. The curves representing Up1 are
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exactly the same as those representing < du > (see figure 3.4), as these terms are directly
related.
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Figure 3.10: Up1 normalized by ū plotted against the median of velocity bins normalized by ū for
flow in a channel. Complete figure (a) and zoomed in at small values of Up1 (b).

Figure 3.11 shows the the drift term obtained using the second method (Up2). Here one can
see that because of using the velocity PDFs the curve representing (Up2) from the LT method
mimics that of the particle method except in the area of the first velocity bin. However there
exists a major problem in both curves. Both curves have positive values in every bin. By
examining equation 3.19 one can see that since the PDF of u in the channel and the variance
of du are always positive the sign of (Up2) would follow that of the gradient of the PDF which
is itself always positive in the channel. This does not match the drift term obtained from the
average du in each bin. It is clear that a constantly positive drift term would continuously
increase the velocity rather than making it adhere to a certain distribution. Such a situation
was foreseen in the process of arriving at the equation for (Up2). In order to remedy this
issue a correction term is added to the stochastic equation for velocity variation (equation
3.8) as shown in equation 3.20.
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Figure 3.11: Up2 normalized by ū plotted against the median of velocity bins normalized by ū for
flow in a channel. Complete figure (a); zoomed in at small values of Up2 (b); zoomed
in at small values of u (c) zoomed in at large values of u(d).

It is far more accurate to use the third method of obtaining the drift term, Up3, from
equation 3.22, see figure 3.12. Here there is a reasonably good agreement between the curve
corresponding to du from the LT method and the one corresponding to du from the particle
method. Also the drift term is not continuously positive but rather fluctuates between
positive and negative values over different velocity bins. The function of the drift term in
each bin is to push back the straying velocities toward the mean pore velocity and to prevent
the velocities from going out of the velocity extrema bounds.

To have an overview of the differences between the three methods of obtaining the drift term,
figure 3.13 shows the drift terms obtained from the three different methods using the condi-
tional statistics of du obtained by the LT method. When the LT method is used for obtaining
the du field, it is clear that while the second method of obtaining the drift yields positive Up2

values over the complete velocity range, the first and third methods seem to create more sim-
ilar drift values. The exception is at the first velocity bin where using the first method gives a
very low drift term as opposed to the other two methods which are based on the velocity PDF
and can to some extent account for the channel boundaries.
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Figure 3.12: Up3 normalized by ū plotted against the median of velocity bins normalized by ū for
flow in a channel. Complete figure (a); zoomed in at small values of Up3 (b); zoomed
in at small values of u (c) zoomed in at large values of u(d).
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Figure 3.13: Up obtained by the LT method normalized by ū plotted against the median of velocity
bins normalized by ū for flow in a channel. Complete figure (a); zoomed in at small
values of Up (b); zoomed in at small values of u (c) zoomed in at large values of u(d).
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The same is done for the particle method of obtaining the du field. Figure 3.14 shows the
drift term obtained in three different ways using the conditional statistics of du obtained by
the particle method. Again Up1 and Up3 seem to be more similar to each other as opposed
to Up2 which is always positive. At the first velocity bin, which corresponds to the walls of
the channel, all three drift terms acquire a large positive value that is different for each. The
magnitude of this value can very well depend on the size of the velocity bins used to find
the conditional statistics of du.
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Figure 3.14: Up obtained by the particle method normalized by ū plotted against the median of
velocity bins normalized by ū for flow in a channel. Complete figure (a); zoomed in
at small values of Up (b); zoomed in at small values of u (c) zoomed in at large values
of u(d).
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3.3.4 du in a random sphere pack

For the flow in a random sphere pack of size 2.4cm which was characterized in detail in the
previous chapter we used the LT method to obtain the du field. According to equation 3.7
du consists of five different terms. In order to evaluate the importance of each term and
study their statistics we calculated each of these five terms separately at each grid point for
different values of Γ and dt.

In the first step we determined the effect of dt on du. We observed that for even large values
of dt the first and third terms are the main contributors to du and the other three terms
can be considered negligible. Figure 3.15 shows the absolute value of the average du and
the variance of du normalized by ū plotted against the time step size in log-log scale. It is
quite clear that the relationship between both the average and the variance of du with time
is practically linear even for large time steps up to dt = 10s. We choose a time step of size
dt = 1s for displaying our results.
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Figure 3.15: Average du plotted against time step size (a) and variance of du plotted against time
step size (b).

Statistics and PDF of du in a random sphere pack

Here, in the case of the sphere pack, we only use the LT method for obtaining the du field
as our initial goal was to model the velocity process and the dispersion by relying solely on
the velocity and velocity derivatives fields. Using the particle method for obtaining the du
requires detailed information concerning the pore geometry in order to introduce the bounce
back at sphere surfaces and is beyond the scope of this work.

As the flow in the sphere pack is steady, it is clear that the average du logically has to be
zero in the whole domain, but using the LT method we always end up with a small negative
value for < du >. As shown in the case of the channel flow, this is due to the fact that the
LT method does not account for the bounce back at the surface of spheres. However as the
average of du only affects the drift term, Up1 (when it is obtained using the first method via
equation 3.15), we are more interested in the standard deviation of du and the PDF of u as
these parameters affect the drift term obtained by the second and the third methods, Up2 and
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Up3 respectively (equations 3.19 and 3.22). Therefore, we calculated the statistical moments
(up to the 4th moment) of du and each of its components and plotted their respective
probability density distributions. The diffusion coefficient is set to Γ = 1 × 10−11m2/s
and the time step size to dt = 1s. The mean pore velocity is ū = 1.85 × 10−7m/s and
according to that the Reynolds number in the domain is approximately Re = 3.7 × 10−4 .
The Schmidt number of this set-up is Sc = 1× 105 and considering a length scale equivalent
to the sphere diameter the Peclet number of the set-up is Pe = 37.11. The statistics of the
five terms and du are shown in table 3.2. The values in this table are normalized by the
average streamwise pore velocity, ū. Considering the range of values each of these terms
cover, we concluded that the first three terms are the main contributors to the standard
deviation of du while the first and third terms are the main contributors to the average du.
It is evident that the first term, which contains velocity derivatives and molecular diffusion
(see equation 3.7), is quite symmetric and contributes to the diffusion behaviour in the
velocity space. Terms 3 and 5, both of which contain the second derivatives of velocity, on
the other hand have large skewness values and point to the drift behaviour in the velocity
space.

Table 3.2: Statistics of du and its components in a sphere pack with Pe = 37.11. The extrema,
mean and standard deviation are normalized by ū and the variance is normalized by ū2

Term1 Term2 Term3 Term4 Term5 du
Min/ū -1.162 -2.937E-2 -1.155E-1 -4.557E-3 -2.021E-4 -1.094
Max/ū 1.062 2.180E-2 1.789E-1 3.365E-3 7.135E-5 1.178
Mean /ū 1.813E-6 1.056E-8 -1.030E-4 4.220E-10 2.425E-8 -1.011E-4
Variance/ū2 1.402E-3 5.670E-7 4.049E-6 5.599E-10 1.140E-12 1.407E-3
Std dev/ū 3.744E-2 7.530E-4 2.012E-3 3.366E-5 1.067E-6 3.751E-2
Skewness -1.091E-4 -1.191E-1 3.598 -3.289E-2 -1.602E+1 1.961E-2
Flatness 1.561E+1 2.757E+1 1.080E+2 6.945E+1 1.033E+3 1.576E+1

We also plotted the PDF of the five terms plus du obtained using the same configuration,
as shown in figure 3.16. The PDFs were obtained by dividing the range between −193σ and
−193σ into 750 bins, σ being the respective standard deviation of each term or du. The
PDF curve of each is normalized by its respective standard deviation and the PDF of a
normal distribution is also plotted in the figure. Please note that the PDF curves for Term1
and du are not easily distinguishable as they are very similar. Term1 of course is the main
contributor to du . Also notice that neither du nor any of of its components have a normal
distribution. As expected, the third and fifth terms appear very skewed and account for the
drift pattern in the velocity space. A drift terms aids at pushing back the velocity towards
its average. The other terms seem more symmetric and rather than drifting the velocity
toward its mean, will diffuse the velocity.

Conditional statistics of du in a random sphere pack

In the next step we calculated the statistics of du and each of its terms conditioned on the
longitudinal velocity, u. This was done by dividing the velocity field into a certain number
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Figure 3.16: PDF of du and its components each normalized by its respective standard deviation.
Figures are zoomed in at areas of higher probability for better visibility. Linear scale
(a) and logarithmic scale (b).

of bins. We will first demonstrate the sensitivity of the conditional statistics to the number
of velocity bins. Figure 3.17 shows the median of the most populous velocity bin for each
case plotted against the number of bins. These points demonstrate the velocity at which
the peak of the velocity PDF occurs should we use the corresponding number of bins to find
it.
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Figure 3.17: Median of the most populous velocity bin for each case plotted against the number
of bins.

It is quite clear that the location of the peak of the velocity PDF is very sensitive to the bin
size. In calculating the drift terms Up2 and Up3 (equations 3.19 and 3.22) we rely on the slope
of the velocity PDF which of course can vary greatly at the point of maximum velocity PDF
depending on the bin size. Also, in order to find the conditional statistics of du (necessary
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for obtaining both drift and diffusion terms) at the most frequently occurring velocities, it
is necessary to use very fine velocity bins. However increasing the number of bins is very
problematic due to the very long and sparse positive tail of the velocity PDF. As the number
of bins increases the bins at the edges of the domain (those corresponding to negative or large
positive velocities) will contain less and less data points and the statistics of du found on
these bins will be unreliable due to the low data population.

This is evident in figures 3.18 and 3.19 which show the conditional mean and variance of
du for various number of bins respectively. In these figures the x axis shows the median
velocity of each bin normalized by ū. The average du and variance of du are normalized by
ū/t and ū2/t respectively. The time scale t is equivalent to the time step size. As the time
step size is dt = 1s, from here onward both in the text and in figures we will simply mention
normalization by ū and ū2. Again as is observed in these figures, when we zoom in to the
most populated velocity bins the curves differ quite a lot from each other depending on the
number of bins used for getting the conditional statistics. However, as the number of bins
increase the curves become more similar.
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Figure 3.18: Mean du conditioned on u plotted against median of velocity bins in sphere pack.
Both axes are normalized by ū. Complete velocity domain (a) zoomed in at most
probable velocity bins (b).

For presenting the conditional statistics of du in the following we use 32 velocity bins, as
this will provide a sufficiently accurate qualitative representation of the behaviour of du
conditioned on u and we can avoid the scattering which results from using finer bins to some
extent.
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Figure 3.19: Variance of du conditioned on u plotted against median of velocity bins in sphere
pack. Variance values are normalized by ū2 while the x axis is normalized by ū.
Complete velocity domain (a) zoomed in at most probable velocity bins (b).

Figure 3.20 shows the extrema of du and its components normalized by the average pore
velocity, ū, plotted against different velocity ranges. The values on the x axis of this figures
and the next 4 figures in this section are the median of the velocity bins normalized by the
average pore velocity ū. Figure 3.21 shows the average value of the different terms and du
normalized by ū as a function of velocity, while figure 3.22 displays the variance normalized
by ū2. The skewness of du and its components plotted as a function of velocity can be seen
in figure 3.23. The flatness of all terms plus du plotted against velocity can be seen in figure
3.24. These 6 figures (figures 3.20 to 3.24) are plotted from the data obtained using the
velocity field and assuming a molecular diffusion coefficient of Γ = 10−11m/s2 and a time
step size of dt = 1s . The Peclet number, in this set-up, based on a length scale of one
sphere diameter is Pe = 37.11.

In all the above figures concerning the conditional statistics of du and its terms, the curve
representing term 1 is very similar to (and often indistinguishable from) the one representing
du. From figures 3.20 and 3.23 it is again evident that terms 3 and 5 are skewed and point
to a drift behaviour in the velocity space as opposed to the rest of the terms which are more
or less symmetric and contribute more to a diffusion behaviour in the velocity space. This
reconfirms what was already observed in the statistics and PDFs of the different terms of
du. A drift in the velocity space works at pushing back the velocity towards the average
pore velocity, ū. This drift and diffusion behaviour point to the validity of the stochastic
velocity model, as described by Meyer and Tchelepi [33].
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Figure 3.20: Normalized extrema of all terms and du plotted against median of velocity bins
normalized by average pore velocity in a sphere pack.
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Figure 3.21: Normalized mean of all terms and du plotted against median of velocity bins normal-
ized by average pore velocity in a sphere pack.
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Figure 3.22: Variance of all terms and du conditioned on u plotted against median of velocity bins
in a sphere pack. Variance values are normalized by ū2 while the x axis is normalized
by ū. Normal scale (a) and semi-log scale (b).
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Figure 3.23: Skewness of all terms and du conditioned on u plotted against normalized median of
velocity bins in a sphere pack. Complete figure (a) zoomed in at smaller skewness
values (b).
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Figure 3.24: Flatness of all terms and du conditioned on u plotted against normalized median of
velocity bins in a sphere pack. Normal scale (a) and semi-log scale (b).
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3.3.5 Diffusion term, Γp, in a sphere pack

In the case of the sphere pack we are also interested in the effect of the number of bins
on the diffusion term. Here again we calculated Γp using equation 3.12. Figure 3.25 shows
Γp plotted over u for the random sphere pack under study. In this figure the x axis is
normalized by the average pore velocity, ū, of the whole domain. Each curve represent a
different number of velocity bins. At each bin the value of Γp is plotted against the median
of the bin divided by ū. Notice how similar this figure is to figure 3.19. This is of course to
be expected as Γp is directly related to the conditional variance of du. As the number of bins
increase the population of each bin decreases and the statistics of the bins corresponding to
the lower and higher end of the velocity range become less reliable due to the lower number
of data points. The bins that each contain 0.1 percent or more of the total velocity points
roughly lie between −0.33ū and 5.83ū. Figure 3.25b shows a zoom in at the more populated
bins. This figure demonstrates that as the number of bins increase the areas of the curves
corresponding to the more populous velocity bins become more similar while the other parts
of the curves diverge.
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Figure 3.25: Γp normalized by ū2 plotted against the median of velocity bins normalized by ū for
flow in a sphere pack. Complete figure (a) and zoom in at more probable bins (b).

3.3.6 Drift term, Up, in a sphere pack

Here again the three methods of obtaining the drift term, Up, are presented. In the case of
the sphere pack however we have only the data points corresponding to du obtained via the
LT method. To find the drift term with either one of the three methods the statistics of du
conditioned on u is used. The conditional statistics of du have been found using different
numbers of velocity bins.

Figures 3.26 shows the drift term obtained using the first, second and third method (equa-
tions 3.15 , 3.19 and 3.22) for various numbers of bins. The bins which include 0.1 percent
or more of the total data points lie between −0.33ū and 5.83ū and the figures on the right
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hand side are zoomed in to this range. Note that both axes are normalized by the average
pore velocity in the domain, ū.
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Figure 3.26: From top to bottom Up1, Up2 and Up3 obtained by the LT method plotted against
the median of velocity bins for flow in a sphere pack. Both axes are normalized by ū.
Figures on the right hand side are zoomed in at the more populated velocity bins.
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What instantly catches the eye in the graphs of figure 3.26 is that using 16 or 32 bins cannot
give an accurate description of the behaviour of the drift term, Up, over different velocity
ranges. However, as the number of bins increases, the curves become somewhat more similar.
We were not however, able to increase the number of bins enough to obtain a convergence
due to the fact that small bins especially at the areas near the extrema of the velocity space
will not be sufficiently populated to yield acceptable conditional statistics as our velocity
data base does not contain many points in these areas.

Another point of interest is the considerable differences between the different methods of
obtaining Up. It is of course expected that the first method for finding Up (equation 3.15)
cannot be accurate. This is due to the fact that the conditional statistics of du which are used
to find the drift term cannot account for the bounce back at sphere surfaces and that the first
method offers no remedy for this problem as was seen in the case of the channel flow. The
second and third methods of obtaining the drift term, Up, yield slightly more similar results
as both these methods aim at overcoming the bounce back issue by enforcing the velocity
PDF. The differences seen between these two methods are not necessarily critical since the
drift terms obtained by them will eventually be used in different stochastic processes for
velocity. In the case of Up2 the stochastic process described via equation 3.20 will be used
which contains a correction term. In the case of Up3 however, no correction term is necessary.
Using this argument one would expect Up1 and Up3 to be actually more similar since in the
case of Up1 no correction term will be used either. This however is not true when the du
field is obtained via the LT method due to the inability of Up1 to account for the bounce
back issue. The similarity between Up1 and Up3 was shown for the channel flow when the
particle method (which accounts for bounce back at the walls) was used for obtaining the
du field.

As it appears that using 16 or 32 bins is far too coarse and that Up1 will potentially yield
poor dispersion results we will now focus exclusively on Up2 and Up3 obtained using 64, 128
and 256 velocity bins. Figure 3.27 shows Up2 normalized by ū plotted against the median of
velocity bins normalized by ū.

Figure 3.27a shows the complete curves. It is quite evident that with an increase in the
number of bins the drift curves becomes more and more jagged. Figure 3.27b zooms in at
the velocity bins that each approximately contain at least 0.1 percent of the velocity points.
The differences between the curves obtained via different number of velocity bins is less
pronounced in the velocity range where the bins are more populated. However, even here
major differences can be seen in the bins corresponding to lower velocities which are in fact
the most probable velocities and correspond to the peak of the velocity PDF. Figure 3.27c
zooms in at the lower end of the velocity spectrum. Here it is evident that qualitatively
the three curves behave in a similar manner. The peaks and valleys of the curves however,
are shifted with respect to each other. It must be noted that the drift terms corresponding
to the lowest velocities (below −0.33ū) cannot be relied upon since the velocity bins that
correspond to them are severely underpopulated. The main point of interest here for each
curve is its most populated bin and the few adjacent bins to that on either side. The most
populated bin as was mentioned before is dependent on the number of bins (See section 3.3.4
and figure 3.17). When 64, 128 or 256 bins are used the median of the most populated bin
lies at 0.027ū, 0.071ū and 0.004ū respectively. Figure 3.27d zooms in at the upper end of
the velocity spectrum. Here due to a lack of sufficient data points in the velocity bins the
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drift curves become very jagged. Of course the higher the number of the velocity bins the
less populated the bins at the end are. The overall average behaviour of the curves however
are quite similar.
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Figure 3.27: Up2 obtained by the LT method plotted against the median of velocity bins for flow
in a sphere pack. Both axes are normalized by ū. Complete figure (a), zoomed in
at more probable velocities (b), zoomed in at smaller velocities (c) and zoomed in at
larger velocities (d).

Figure 3.28 shows the same for Up3. All that was said of the effect of number of bin sizes
on the drift for Up2 applies to Up3 also, even though the shape of Up3 curves are significantly
different from those of Up2. This difference will however be accounted for in the stochastic
velocity process by adding a correction term in the case where Up2 is applied. Up3 is affected
by the velocity PDF. When less bins are used for obtaining the velocity PDF, the peak of
the PDF at small velocities is underestimated and instead the velocities closer to the mean
pore velocity will become slightly more probable. It is to be expected that the drift term
which pushes the velocities toward the mean velocity will have a higher peak when less bins
are used.

We will now take a deeper look at the differences of the various methods of determining
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Figure 3.28: Up3 obtained by the LT method plotted against the median of velocity bins for flow
in a sphere pack. Both axes are normalized by ū. Complete figure (a), zoomed in
at more probable velocities (b), zoomed in at smaller velocities (c) and zoomed in at
larger velocities (d).

the drift term, Up. Figure 3.29 shows the drift term obtained via the statistics of du (from
the LT method) and using 128 velocity bins plotted against the median of the velocity
bins. Both axes are normalized by ū. The three curves correspond to the three different
methods of finding Up. Here again it is clear that the three methods result in significantly
different drift terms especially at the lower and most probable velocity bins. Up2 and Up3

look qualitatively comparable while Up1 is completely different from them both as it does
not consider the boundary conditions. The differences between Up2 and Up3 in the vicinity
of zero velocity can be due to the different interpretation of the diffusive flux considered for
deriving these drift terms. This is comparable to what was observed in the channel at very
small velocities.
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Figure 3.29: Up plotted against the median of velocity bins for flow in a sphere pack. Both axes
are normalized by ū. Complete figure (a), zoomed in at more probable velocities (b),
zoomed in at smaller velocities (c) and zoomed in at larger velocities (d).

3.4 Tracer transport in a channel

In this section we present the results of our transport model for various configurations of
Up and ΓP in the channel flow introduced in section 3.2. The transport model was run
using the Up and Γp values explained in the previous section. The statistics of the transport
model for each method of obtaining du (LT or particle method) and for each of the three
methods of obtaining Up are compared to our benchmark solution of tracer transport in the
channel.

The benchmark solution of tracer transport in the channel is obtained by releasing 4000001
particles uniformly in a cross section perpendicular to the streamwise direction and at po-
sition x = 0. Each particles is then allowed to both diffuse with a Brownian motion
(Γ = 1 × 10−11m2/s) and to move with its velocity with time steps of size dt = 1s.
Then according to the new vertical location, y, of the particles their new velocity is cal-
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culated (equation 3.24) and the process is repeated in order to get a time evolution of
the spreading of the particles. At the boundaries a simple bounce back condition is im-
posed.

The same procedure is carried out for the tracer transport using our model. The only differ-
ence is that at each time step the new velocity of each particle is calculated, not according
to the particle’s position, but instead using the stochastic velocity process (equation 3.8 or
in the case where Up2 is used equation 3.20). In this model regardless of how the parameters
of the model were found, the geometry of the channel is not explicitly accounted for (we do
not even consider the vertical locations of the particles) meaning that we do not have any
bounce back of the particles at the walls of the channel. Our model is based on the velocity
rather than on position. If at any step the velocity of a particle goes beyond the velocity
bounds it is simply put back at the velocity boundary.

3.4.1 Characteristics of the tracer cloud

We will start this subsection by presenting the results obtained using the drift term, Up1.
Figure 3.30 shows the mean location, x, of particles in the channel plotted against time in the
case where Up1 is used. For the first curve in this figure, Up1 is obtained using the statistics
of du from the LT method. The second curve corresponds to the statistics of du from the
particle method and the third curve demonstrates the benchmark solution for transport of
particles.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  10000  20000  30000  40000  50000

m
ea

n
 x

 (
m

)

t

LT
particle

bench mark

a

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 32000  34000  36000  38000  40000  42000

m
ea

n
 x

 (
m

)

t

LT
particle

bench mark

b

Figure 3.30: Mean position (x) of particles plotted against time for flow in a channel. Model uses
Up1 from both the LT method and the particle method. Results of the benchmark
solution are included for comparison. Complete figure (a) and zoomed in at later
times (b).

When the drift term, Up, for each velocity range is found by taking the average du in that
velocity range it is clear that if the du is obtained using the LT method the average du of
the smallest velocity range corresponding to the channel walls will be much smaller than
expected as the LT method uses no bounce back at the wall. It is therefore not surprising
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that the heart of the cloud of particles moves slower when the du is taken from the LT
method than when it is calculated using the particle method. Figure 3.30 however shows
that even when du is calculated using the particle method using Up1 does not yield an exact
velocity for the tracer cloud. This slight inaccuracy, which is most probably due to the
limited number of bins used for calculation of the conditional statistics of du, is magnified
for the higher statistical moments of the particle positions. This can be observed by looking
at figures 3.31 and 3.32. These figures show the standard deviation of the location of tracer
particles (which represents the width of the cloud) and the skewness of the cloud of particles
respectively at various times.

In the case of the standard deviation it surprisingly appears that Up1 obtained via the LT
method yields better results than Up1 from the particle method. Concerning the skew-
ness values, neither the LT method nor the particle method seem to have any particu-
lar advantage over each other when Up1 is taken as the drift term in the velocity pro-
cess.
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Figure 3.31: Standard deviation of location (x) of particles plotted against time for flow in a
channel. Model uses Up1 from both the LT method and the particle method. Results
of the benchmark solution are included for comparison. Complete figure (a) and
zoomed in at later times (b).

We now turn to the results obtained using the drift term, Up2. Figure 3.33 shows the mean
location, x, of particles in the channel plotted against time in the case where Up2 is taken
as the drift term in the model. It is clear that using Up2 both the LT method of obtaining
du and the particle method overestimate the velocity with which the cloud moves forward.
As explained before Up2, which is obtained using equation 3.19, is positive for all ranges of
u in the channel. However, a correction term is added to equation 3.8 which counteracts the
constant positive drift in the velocity field to some extend. From figure 3.5 it is evident that
the correction term, seen in equation 3.20, is negative in the channel flow. As can be seen
in figure 3.33, the mean location of tracer particles obtained via Up2 from the LT method is
practically identical to that from the particle method.
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Figure 3.32: Skewness of location (x) of particles plotted against time for flow in a channel. Model
uses Up1 from both the LT method and the particle method. Results of the benchmark
solution are included for comparison.
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Figure 3.33: Mean location (x) of particles plotted against time for flow in a channel. Model uses
Up2 from both the LT method and the particle method. Results of the benchmark
solution are included for comparison. Complete figure (a) and zoomed in at later
times (b).
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Figures 3.34 and 3.35 demonstrate the standard deviation of the location of tracer particles
and their skewness respectively at various times. The drift term Up2 from both the LT
method and the particle method of obtaining du, equally overestimate the standard deviation
of particle positions. The skewness is also comparable for the two methods although the
particle method of obtaining the du field yields a Up2 which can predict the skewness values
slightly more accurately. However the skewness is visibly underestimated regardless of how
the du field is obtained when Up2 is used.
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Figure 3.34: Standard deviation of location (x) of particles plotted against time for flow in a
channel. Model uses Up2 from both the LT method and the particle method. Results
of the benchmark solution are included for comparison. Complete figure (a) and
zoomed in at later times (b).
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Figure 3.35: Skewness of location (x) of particles plotted against time for flow in a channel. Model
uses Up2 from both the LT method and the particle method. Results of the benchmark
solution are included for comparison.
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One can conclude that the first two methods of determining the drift in velocity can to
some extend and up to a certain time predict the evolution of tracer in the channel. The
results are however not accurate. Neither Up1 nor Up2 appears to have an advantage over the
other. Also neither the LT method of finding du nor the particle method appear to have any
clear cut advantage over the other. One can postulate that 4000001 particles cannot yield a
large enough data base to predict the behaviour of a cloud of particles or more conceivably
that using only 50 bins for the velocity is not sufficient for finding accurate statistics of du
conditioned on u. This coarseness in dealing with the statistics is however necessary as our
main goal is to predict the evolution of tracers and the dispersion phenomenon in a random
sphere pack in the case of which we are limited in the number of data points in the velocity
field and consequently in the number of velocity bins that can be used. In studying the
dispersion in a channel we would like to determine the best method in the case where data
points are limited.

The third method of finding the drift term for the evolution of velocities yields considerably
better results. Here we have also run the model for longer times to make sure that the
better results persist over time. Please note that the advective time scale considering a
length scale equal to the width of the channel L = 2h = 2mm and the mean velocity of
< u >= 8.333×10−6m/s is tadv = 240s. Figure 3.36 shows the mean location, x, of particles
in the channel plotted against time in the case where Up3 is used. It is clear that by using
Up3, which is obtained using equation 3.22, both the LT method of obtaining du and the
particle method predict the velocity with which the cloud moves forward exceptionally well.
In this case as in the case of using Up1 no correction term is used in the stochastic equation
for du (equation 3.8).
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Figure 3.36: Mean location (x) of particles plotted against time for flow in a channel. Model uses
Up3 from both the LT method and the particle method. Results of the benchmark
solution are included for comparison. Complete figure (a) and zoomed in at later
times (b).

Also notice how well the standard deviation and the skewness of the location of particles
from the model matches that of the benchmark solution as evident in figures 3.37 and 3.38.
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Both the LT method of obtaining the du field and the particle method yield drift terms,
Up3, which can produce practically the same mean, standard deviation and skewness values
of the particle positions.
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Figure 3.37: Standard deviation of location (x) of particles plotted against time for flow in a
channel. Model uses Up3 from both the LT method and the particle method. Results
of the benchmark solution are included for comparison. Complete figure (a) and
zoomed in at later times (b).
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Figure 3.38: Skewness of location (x) of particles plotted against time for flow in a channel. Model
uses Up3 from both the LT method and the particle method. Results of the benchmark
solution are included for comparison.

To better compare the results obtained via different drift terms we present the following.
Figures 3.39 and 3.40 show the mean of particle positions obtained via the model using
the three different drift terms in the case where du is obtained from the LT method and
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particle method respectively. Concerning the average particle positions, it is evident that
Up3 both from the particle method and from the LT method produces the best results. Up2

from both the LT and the particle method yields equally inaccurate results. Up1 from the
particle method however gives considerably better average position values than Up1 from the
LT method.
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Figure 3.39: Mean location (x) of particles plotted against time for flow in a channel. Up and Γp

are extracted from the statistics of du obtained from the LT method. Results of the
benchmark solution are included for comparison. Complete figure (a) and zoomed in
at later times (b).
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Figure 3.40: Mean location (x) of particles plotted against time for flow in a channel. Up and Γp

are extracted from the statistics of du obtained from the particle method. Results of
the benchmark solution are included for comparison. Complete figure (a) and zoomed
in at later times (b).

Figures 3.41 and 3.42 show the standard deviation of particle positions obtained via the
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model using the three different drift terms in the case where du is obtained from the LT
method and particle method respectively. Again in general Up3 appears to produce the most
accurate standard deviation values. Results obtained using Up2 are not very good both for
Up2 from the particle method and from the LT method. Surprisingly Up1 from the LT method
produces accurate results comparable to that from Up3 while Up1 from the particle method
does not produce acceptable standard deviation values.
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Figure 3.41: Standard deviation of location (x) of particles plotted against time for flow in a
channel. Up and Γp are extracted from the statistics of du obtained from the LT
method. Results of the benchmark solution are included for comparison. Complete
figure (a) and zoomed in at later times (b).
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Figure 3.42: Standard deviation of location (x) of particles plotted against time for flow in a
channel. Up and Γp are extracted from the statistics of du obtained from the particle
method. Results of the benchmark solution are included for comparison. Complete
figure (a) and zoomed in at later times (b).
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Figures 3.43 and 3.44 show the skewness of particle positions obtained via the model using
the three different drift terms in the case where du is obtained from the LT method and
particle method respectively. Again both for the LT method and the particle method of
obtaining the du field, Up2 performs poorly while the results when Up3 is taken as the drift
term matches those of the benchmark solution very closely.
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Figure 3.43: Skewness of location (x) of particles plotted against time for flow in a channel. Up

and Γp are extracted from the statistics of du obtained from the LT method. Results
of the benchmark solution are included for comparison.
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Figure 3.44: Skewness of location (x) of particles plotted against time for flow in a channel. Up

and Γp are extracted from the statistics of du obtained from the particle method.
Results of the benchmark solution are included for comparison.

In summary regardless of whether the particle or the LT method is used for obtaining the
du field, the drift term Up3 yields very accurate statistical results in the case of the channel
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flow. Up1 however, which is equivalent to the drift term used by Meyer and Tchelepi ([33])
produces inaccurate statistics both when it is obtained from the LT method (in terms of
mean particle positions) and when obtained from the particle method (in terms of standard
deviation of particle positions).

3.4.2 Velocity PDFs

In order to have a better overview of the quality of each method of determining the pa-
rameters in our stochastic model for velocity we also examine the velocity PDF at various
time steps when the tracer is transported via our model and compare it with the velocity
PDF of the benchmark solution. Figure 3.45 shows the streamwise velocity PDF at very
early time (t = 1s). Figure 3.45a shows the PDF resulting from velocity drift and diffusion
terms obtained from the LT method while figure 3.45b shows those obtained by the particle
method.
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Figure 3.45: Velocity PDF for flow in a channel at time t = 1s for different methods of obtaining
Up. Results of the benchmark solution are included for comparison. Up and Γp

obtained by the LT method (a) and particle method (b).

It is clear that at very early times all the PDF curves lie on each other since the particles
almost exactly have the same velocity as their initial state. However, as time passes particles
will acquire new velocities depending on the way they evolve which is in turn dependent on
the transport model. The benchmark PDF of course does not change over time. The
difference seen between the benchmark PDF in figures 3.45 and figure 3.2a is due to the fact
that to get the velocity PDF in figure 3.2, we used 360 bins while here only 50 bins are used.
This is because the drift and diffusion terms in our model are based on the statistics of du
conditioned on 50 velocity bins and therefore can at best mimic the PDF obtained using 50
bins.

Figure 3.46 shows the streamwise velocity PDF at a later time, t = 10000s, for both the LT
and the particle methods. With the average velocity in the channel (ū = 8.333× 10−6m/s),
the tracer cloud can be displaced a length of more than 40 times the width of the chan-
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nel (2h = 2mm). Notice that at this time the PDF curves found using different ver-
sions of the model differ slightly from each other and from that of the benchmark solu-
tion.
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Figure 3.46: Velocity PDF for flow in a channel at time t = 10000s for different methods of
obtaining Up. Results of the benchmark solution are included for comparison. Up

and Γp obtained by the LT method (a) and particle method (b).

In order to better see the the differences we zoom in at smaller velocities as shown in figure
3.47 and at larger velocities as shown in figure 3.48.
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Figure 3.47: Velocity PDF for flow in a channel at time t = 10000s for different methods of
obtaining Up zoomed in at smaller velocities. Results of the benchmark solution are
included for comparison. Up and Γp obtained by the LT method (a) and particle
method (b).
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Figure 3.48: Velocity PDF for flow in a channel at time t = 10000s for different methods of
obtaining Up zoomed in at larger velocities. Results of the benchmark solution are
included for comparison. Up and Γp obtained by the LT method (a) and particle
method (b).

It is evident that except for the case where Up1 (which does not enforce the velocity PDF) is
used and even then only for the smaller velocities that occur near the walls of the channel,
using the LT or the particle method for obtaining the statistics of du makes no significant
difference in the quality of the velocity PDFs obtained. In conclusion these figures show that
the PDFs obtained from the model match that of the benchmark solution very well even at
later times. Also it can be seen in figure 3.48 regardless of whether the LT method is used for
finding the du field or the particle method, the peak of the velocity PDF which occurs at the
highest velocities is underestimated by Up1 and therefore it is to be expected that the centre
of mass of the tracer cloud should move more slowly when the model is used with Up1 than
what the benchmark results show (see figures 3.39 and 3.40). Similarly Up2 overestimates
the percentage of the largest velocities as can again be seen in figure 3.48 and therefore it
is clear that the mean location of particles when Up2 is used will move faster than it would
with the benchmark results (see again figures 3.39 and 3.40).

3.4.3 Tracer cloud

We will now present the actual shape of the tracer cloud in the channel over time. To do
so we calculate the probability density of the particle locations (x) at different times. The
range of x is between x = 0 and x = 1m and is divided into 4000 bins. The percentage of
particles residing in each bin is calculated and from that the PDF is obtained. This PDF
represents the shape of the tracer cloud. Figure 3.49 shows the evolution of the tracer cloud
from the benchmark solution over time. It is clear that as time passes the cloud both spreads
and moves forward in the streamwise direction. Also, the shape of the cloud smooths out
with time.
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Figure 3.49: Shape of the tracer cloud in a channel flow at various times from the bench mark
solution. Early times (a) and later times (b).
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Figure 3.50: Shape of the tracer cloud in a channel flow at time t = 1000s. Curves for which the
drift terms are calculated from the LT and the particle method are displayed on the
top (a,b) and on the bottom (c,d) respectively. The left hand side shows the complete
PDFs while the figures on the right are zoomed in at farther locations.



88 3.4 Tracer transport in a channel

Figure 3.50 and 3.51 show the PDF of particle locations at times t = 1000s and t = 10000s
respectively. Each figure includes the PDFs obtained through the conditional statistics of
the du field from the LT and from the particle method and also distinguishes between the
results from different methods of calculating the drift term, Up. It is clear that at the early
time t = 1000s there is no obvious difference in whether the LT method is used for obtaining
the du field or the particle method. The curves for the different methods look almost exactly
alike. Differences in the results obtained from the two methods are more obvious at much
later times.
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Figure 3.51: Shape of the tracer cloud in a channel flow at time t = 10000s. Curves for which the
drift terms are calculated from the LT and the particle method are displayed on the
top (a,b) and on the bottom (c,d) respectively. The left hand side shows the complete
PDFs while the figures on the right are zoomed in at farther locations.

It is evident from figure 3.51 that even at later times (t = 10000s) there exists no particular
difference between using the particle method or the LT method for obtaining du. The only
rather slight difference is limited to the case where the drift term Up1 (equation 3.15) is
used and even in that case the differences can only be observed in the first part of the PDF
curves (corresponding to lower velocities). It can also be observed that Up2 cannot yield
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reliable results at later times. Another observation is that the third method of obtaining the
drift term (equation 3.22) yields the most accurate results. In order to better observe the
behaviour of the model the shape of the cloud at a much later time, t = 40000s, is plotted
in figure 3.52. Because very fine bins are used for calculating the PDFs the resulting curves
become very jagged as the particles spread out away from each other with time. Therefore
the probability in each bin is shown with dots in figure 3.52 for better visibility. At this time
the differences between the LT and the particle methods become more visible. Here again it
is quite clear that Up3 produces the most reliable results regardless of whether the LT or the
particle methods have been used for obtaining the du filed.

a b

c d

Figure 3.52: Shape of the tracer cloud in a channel flow at time t = 40000s. Curves for which the
drift terms are calculated from the LT and the particle method are displayed on the
top (a,b) and on the bottom (c,d) respectively. The left hand side shows the complete
PDFs while the figures on the right are zoomed in at farther locations.

We conclude our study of tracer transport in a channel by observing that in general if the
drift term Up3 is used in the stochastic velocity model the results obtained from the model
very closely match that of the benchmark solution regardless of whether the drift term is
obtained from the LT or the particle method. The conditional statistics of the du field
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obtained by the LT method lack the information concerning the boundaries of the domain.
When these statistics are used for finding the drift term in the stochastic velocity process,
some workaround methods can be employed to alleviate the issues arising from this issue
and at the same time to enforce the velocity PDF in the model. For the diffusion term,
Gammap, obtained via the conditional statistics of du from the LT method however, no
such strategies are used and the diffusion term in this case simply does not contain explicit
information concerning the domain’s boundaries. In the case of the channel however, as the
boundaries only affect the smallest velocity range this does not have an observable effect on
the results found using the model.

3.5 Tracer transport in a Sphere Pack

Here we will compare the results of the DNS solution of the transport ADE (equation 2.3)
from MGLET (as was presented in section 2.4.3) with those obtained by our model via
particle tracking. The Reynolds number of the flow is approximately Re = 4× 10−4 and the
molecular diffusion is set to Γ = 1× 10−11m2/s. The tracer is initialized on the central cross
section of the domain perpendicular to the streamwise direction of the flow. DNS results for
transport were obtained by solving the ADE via a finite volume method using MGLET on
a domain of size 12 × 2.4 × 2.4cm3. This domain contains 5 identical cubic sections of size
2.4× 2.4× 2.4cm3 (replicated in the streamwise direction) each of which are periodic. The
velocity field has been resolved via DNS simulations using MGLET on one cubic domain
and has been replicated 5 times to produce the velocity field of the larger domain. When
the ADE is solved on this domain the velocity field is repeated five times and the tracer
as a whole inevitably re-experiences various flow structures as it moves along the different
sections of the domain.

In the case of the model however, it should be noted that the geometry is not taken into
account explicitly. Only in resolving the velocity field on the sphere packed domain of size
2.4 × 2.4 × 2.4cm3 is the geometry of the porous media used. From the velocity field the
du field is obtained and from that the drift and diffusion terms of the stochastic velocity
model. As opposed to the DNS of the tracer transport, in the model particles evolving in
time are not forced to encounter any specific flow or geometrical structures at specific spacial
intervals. We however accept this discrepancy between DNS and model as the domain size
at which the velocity is resolved is rather large and by the time the bulk of the tracer is
transported from where it is to the same spot in the adjacent sub-domain it would have
undergone enough diffusion to prevent an observable re-correlation of velocities. Another
point to mention is that in the case of the sphere pack the du field is obtained via the LT
method only.

3.5.1 Characteristics of the tracer cloud

Figure 3.53 shows the mean position, x, of tracer particles (centre of mass of the tracer cloud)
over time in the case where Up1 is taken as the drift term in the stochastic velocity process.
To obtain the drift and diffusion terms the conditional statistics of du were obtained using
different bin size resolutions. Also included in the figure is a curve representing the centre
of mass of the tracer cloud obtained via DNS solution of the transport equation. This is
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done by taking the mean of the position of grid points weighted by the tracer concentration.
The drift term represented by Up1, for each velocity range is found by taking the average du
in that velocity range (see equation 3.15). As was demonstrated in the case of the channel
flow it is clear that if the du is obtained using the LT method the average du of the velocity
ranges corresponding to the sphere boundaries will be underestimated as the LT method
does not consider the bounce back at the wall. Therefore the heart of the cloud of particles
moves slower than it should. Another interesting point about figure 3.53 is that the centre of
mass of the tracer cloud shows no trend of converging towards DNS results with increasing
resolution of velocity bins.
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Figure 3.53: Centre of mass of the tracer cloud in a sphere pack over time obtained via different
numbers of velocity bins in the case where Up1 is used together with the centre of
mass of the cloud from DNS results.

The second method of obtaining the drift term attempts at alleviating the lack of accounting
for bounce back at sphere surfaces by taking into account the velocity PDF (see equation
3.19). Figure 3.54 shows the centre of mass of the tracer cloud over time in the case where
Up2 is taken as the drift term in the stochastic velocity process. Different curves represent
the different numbers of bins used for the statistics of the du field conditioned on veloc-
ity and the benchmark solution is also included. It is quite clear that this method yields
better results in terms of the centre of mass of the tracer cloud. Also it is evident that
finer velocity bins (used for obtaining the conditional statistics of du) yield more accurate
results.

The third method of obtaining the drift term can also overcome the bounce back issue of the
LT method for the results concerning the centre of mass of the cloud. The centre of mass
of the tracer cloud is plotted over time in figure 3.55 in the case where Up3 is used. Again
various bin sizes were used for the conditional statistics of du as shown in the figure together
with the benchmark solution. This method also yields better results in terms of the centre of
mass of the tracer cloud as opposed to when Up1 is considered.

To better compare the performance of the three different methods of obtaining the drift
term with regards to the advection of the centre of mass of the tracer cloud over time we
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Figure 3.54: Centre of mass of the tracer cloud in a sphere pack over time obtained via different
numbers of velocity bins in the case where Up2 is used together with the centre of
mass of the cloud from DNS results.
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Figure 3.55: Centre of mass of the tracer cloud in a sphere pack over time obtained via different
numbers of velocity bins in the case where Up3 is used together with the centre of
mass of the cloud from DNS results.

have plotted the curves obtained using 256 velocity bins (for du|u) in figure 3.56. It is
evident from this figure that Up1 as a drift term is inadequate for predicting the advection
of the tracer cloud. Up2 and Up3 yield far better results in this regard with Up3 being
slightly better than Up2 although this is not very clear in the figure as the difference is very
small. As a side note, for every 10000 seconds the tracer cloud is displaces by a length
almost equal to that of a sphere diameter (D = 2mm) with the average pore velocity of
ū = 1.856× 10−7m/s.

The evolution of the standard deviation of streamwise positions of the tracer particles is
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Figure 3.56: Centre of mass of the tracer cloud at various times obtained via different formulations
of the drift term, using 256 velocity bins together with the centre of mass of the cloud
from DNS results. Complete figure (a) and zoom at later times (b).

crucial in characterising its dispersion in a porous media. The standard deviation of the
locations of tracer particles in the domain obtained via our model and the standard deviation
of the locations of grid points weighted by the tracer concentration in the porous domain
from DNS simulations of the transport equation are plotted in figure 3.57. These quantities
represent the half width of the tracer cloud in the case of Fickian-dispersion. In this figure
the results of four different configurations of the model (using different numbers of bins for
the conditional statistics of du) are shown. In each case Up1 has been used as the drift
term in the model. It is clear that the model underestimates the growth of the tracer
cloud in the streamwise direction and also no improvement is evident by using finer bins for
calculating conditional statistics of du and from there the drift and diffusion terms in the
model.

The discrepancy between the standard deviation values predicted by the model and that
obtained by DNS simulations when Up1 is considered as the drift term was to be expected due
to the previously mentioned problems with using Up1 as the drift term when du is obtained
via the LT method. However the issues are not improved by using Up2 or Up3 either. Figures
3.58 and 3.59 demonstrate the standard deviation of particle positions obtained via drift
terms Up2 and Up3 respectively. Each figure shows the results obtained by using various
numbers of velocity bins. In the case where Up2 is used one can see that with an increase
in bin resolution the standard deviation values obtained by the model tend slightly more
towards that obtained by DNS (see figure 3.58b). The same cannot be said for the case
where Up3 is used. Nevertheless, both return similar curves and for higher bin resolutions
the use of Up3 has no significant advantage over the use of Up2.
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Figure 3.57: Standard deviation of particle positions at various times obtained using Up1, with
various numbers of velocity bins together with the centre of mass of the cloud from
DNS results. Complete figure (a) and zoom at later times (b).
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Figure 3.58: Standard deviation of the tracer cloud at various times obtained using Up2, with
various numbers of velocity bins together with the centre of mass of the cloud from
DNS results. Complete figure (a) and zoom at later times (b).

As an overview of the performance of the three different methods of obtaining the drift
term with regards to the standard deviation of particle positions over time we have plotted
the curves representing the different drift terms obtained using 256 velocity bins for the
conditional statistics of du in figure 3.60. Surprisingly this figure shows that when Up1 is used
as the drift term it can predict the half width of the cloud slightly better than when Up2 or
Up3 are used. However, regardless of the drift term used, the results obtained from the model
significantly underestimate the growth of the tracer cloud.

Another important parameter for quantifying non-Fickian dispersion is the skewness of the
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Figure 3.59: Standard deviation of the tracer cloud at various times obtained using Up3, with
various numbers of velocity bins together with the half width of the cloud from DNS
results. Complete figure (a) and zoom at later times (b).
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Figure 3.60: Standard deviation of the tracer cloud at various times obtained via different formu-
lations of the drift term Up, using 256 velocity bins together with the half width of
the cloud from DNS results. Complete figure (a) and zoom at later times (b).

tracer cloud. Figure 3.61 shows the skewness of the location, x, of tracer particles over time
in the case where Up1 is taken as the drift term in the stochastic velocity process. Drift
and diffusion terms were obtained using different bin size resolutions for the conditional
statistics of du. Also included in the figure is a curve representing the skewness of the tracer
concentration in the case of the DNS simulation of the transport equation (equation 2.3).
One can see that with an increase in the number of velocity bins used for obtaining the
drift and diffusion terms the skewness increases. This is due to the increased scattering
of the conditional mean and variance of du at the extremities of the velocity spectrum
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where velocity bins are sparsely populated. Regardless of the number of bins the model
overestimates the skewness dramatically.
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Figure 3.61: Skewness of the tracer cloud at various times obtained via different numbers of veloc-
ity bins in the case where Up1 is taken as the drift term together with the skewness
of the cloud from DNS results.

Figures 3.62 and 3.63 show the same for the cases where Up2 and Up3 are used as drift terms
in the stochastic velocity model. The overall behaviour of the skewness over time is very
similar to the case where Up1 is used. However, it appears that the skewness is less dependent
on the number of bins in these cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10000  20000  30000  40000  50000

S
k

e
w

n
e
ss

 x

t (s)

32 bins
64 bins

128 bins
256 bins

DNS

Figure 3.62: Skewness of the tracer cloud at various times obtained via different numbers of veloc-
ity bins in the case where Up2 is taken as the drift term together with the skewness
of the cloud from DNS results.
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Figure 3.63: Skewness of the tracer cloud at various times obtained via different numbers of veloc-
ity bins in the case where Up3 is taken as the drift term together with the skewness
of the cloud from DNS results.

For all three drift terms of Up1, Up2 and Up3 the evolution of skewness over time looks very
similar to that obtained by DNS and the difference is only in the magnitude of the skewness
rather than its behaviour. To better compare the three different drift terms figure 3.64 shows
the evolution of skewness for each drift term (in the case where 256 velocity bins are used for
the conditional statistics of du) together with that obtained from DNS. Although all three
terms greatly overestimate the skewness of the tracer cloud, the curve corresponding to Up3

shows the most severe overestimation. This is in contrast to what was seen in the channel
flow. One must consider that the sphere pack is composed of many small and irregular
channels. Any error that existed in the case of the simple channel flow would be magnified
in a system that contains numerous channels.

The dispersion coefficient, ΓD, was determined at each time, t, both from our DNS results
by calculating the variance of the streamwise positions of grid points, x, weighted by the
concentration and from the model by calculating the variance of particle positions. The
variance was then divided by twice the time t to obtain the dispersion coefficient. Figure
3.65 shows the dispersion coefficient, ΓD, normalized by the molecular diffusion, Γ = 1 ×
10−11m/s2, plotted against time both for DNS and for the model in the case when 256
bins are uses for the conditional statistics of du and different drift terms are used in the
model. For all the curves ΓD/Γ appears to be gradually converging towards a value pointing
to a gradual transition towards asymptotic dispersion. However, the model dramatically
underestimates the dispersion rate.

In general we conclude that our stochastic velocity model is able to predict the centre of
mass of the cloud over time reasonably well but underestimates its spreading (the standard
deviation of particle positions) and overestimates its skewness. Of course to get the diffusion
and drift terms of the stochastic velocity model the du field was found using the LT method
which cannot account for the complicated boundaries of the sphere surfaces. To compensate
we attempted to enforce the velocity PDF in the model by using Up2 and Up3. It should
be noted however that the diffusion term, Γp, which we did not modify or enhance is also
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Figure 3.64: Skewness of the tracer cloud at various times obtained via 256 velocity bins in the
cases where Up1, Up2 and Up3 formulations are used for the drift term together with
the skewness of the cloud from DNS results.
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affected by not considering the boundaries as was shown in the channel flow (figure 3.9).
We were also limited by the size of our velocity data base the finite size of which prohibits
a better resolution for the conditional statistics of du.

3.5.2 Velocity PDFs

Here we scrutinize the accuracy of the model in predicting the velocity PDF of a tracer
spreading in a sphere pack. In order to have a benchmark to compare with, at various times
we take the velocity of grid points in the domain obtained by DNS, weigh them by the tracer



3 Modelling Dispersion 99

concentration at the grid point and calculate the velocity PDF at that time. What we obtain
is equivalent to the velocity PDF of tracer particles in the domain at different times. We
then compare these PDFs to the velocity PDFs of tracer particles in our stochastic velocity
model.

First we demonstrate the effect of bin refinement in obtaining drift and diffusion terms
on the accuracy of the velocity PDF. Figure 3.66 shows the velocity PDF obtained using
different drift terms, from the conditional statistics of du via two different number of bins
at time t = 250s. Each figure includes the PDF of the total velocity field and the velocity
PDF of the tracer cloud. In figure 3.66a all PDFs are obtained using 64 bins as this is
the number of bins used for the conditional statistics of du used in the model. In figure
3.66b, all PDFs are found using 256 bins for the same reason. When the drift and diffusion
terms in the model are obtained by n bins the velocity PDF of the tracer obtained via the
model can at best match the actual velocity PDF obtained via n bins. As was previously
explained in section 2.4.3, at an early time (t = 250s) the velocity PDF of the tracer cloud
does not exactly match that of the whole domain due to the way the tracer is initialized.
The velocity PDF obtained using the model (via different drift terms) also does not match
that of the whole domain but neither does it exactly match the velocity PDF of the tracer
obtained via DNS. The difference however, except in the case where Up1 is taken as the drift
term, is not very dramatic. This was to be expected as we have already established that
Up1 does not enforce the velocity PDF in the model and that it cannot yield the correct
drift in the stochastic process for velocity due to the method which was used for obtaining
du.
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Figure 3.66: Velocity PDFs at time t = 250s obtained via different formulations of the drift term.
(a) 64 bins were used for finding the PDFs and for obtaining drift and diffusion terms
in the model. (b) 256 bins were used for finding the PDFs and for obtaining drift
and diffusion terms in the model.

It is clear that the results of the tracer transport from our model using Up1 cannot predict
the velocity distribution of the tracer. The shift that can be seen in the velocity PDF
obtained using Up1 is due to the fact that boundary conditions of the sphere surfaces were
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accounted for. We omit the results obtained via Up1 in the next figure (figure 3.67) and zoom
in further into more probable velocities in order to better see the effect of the bin size on the
quality of the results. From this figure it appears that the more bins used for obtaining drift
and diffusion terms results in a slightly better prediction of the velocity PDF by the model
especially in the case where Up3 is taken as the drift term.
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Figure 3.67: Velocity PDFs at time t = 250s obtained via different drift terms zoomed in at more
frequently occurring velocities. (a) 64 bins were used for finding the PDFs and for
obtaining drift and diffusion terms in the model. (b) 256 bins were used for finding
the PDFs and for obtaining drift and diffusion terms in the model.

Figure 3.68 shows the same but for a later time, t = 40000s. Please not that as was
mentioned in section 2.4.3 the advective time scale for this set-up is tadv = 10776s. At time
t = 40000s the velocity PDF of the whole domain matches that of the tracer cloud obtained
by DNS. This is because the tracer has had time to spread over more of the domain and has
experiences all of the velocities in the pore space. The velocity PDF of the tracer predicted
by the model however differs from the DNS results. Although the PDFs obtained from Up2

and Up3 are slightly different it seems that both these drift terms have an equal capability
for enforcing the velocity PDF in the evolution of the tracer cloud by the model. From these
figures we conclude that Up2 and Up3 both have the ability to predict the particle velocity
distributions quite well. However for both Up2 and Up3 the peak of the velocity PDF, which
corresponds to the smallest velocities is underestimated and instead the probability of the
velocities closer to ū is overestimated. Therefore the bulk of the tracer cloud, when the model
is used with either of these drift terms, moves at a speed slightly higher than is observed in
the DNS results as can be observed in figure 3.56. Also as by using these drift terms the
velocities remain closer to the mean pore velocity, ū, the spreading of the tracer cloud is
underestimated as can be seen in figure 3.60.
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Figure 3.68: Velocity PDFs at time t = 40000s obtained via different formulations of the drift
term zoomed in at more frequently occurring velocities. (a) 64 bins were used for
finding the PDFs and for obtaining drift and diffusion terms in the model. (b) 256
bins were used for finding the PDFs and for obtaining drift and diffusion terms in
the model.

3.5.3 Tracer cloud

We will now present the actual shape of the tracer cloud in the sphere pack over time, both
from the DNS of the transport equation and from the results of our model. The set-up is
the same as was explained in section 2.4. To obtain the shape of the tracer cloud in the case
of the DNS we calculate the probability density of the streamwise position of grid points, x,
weighted by the tracer concentration and in the case of the model we simply calculate the
probability density of the streamwise locations (x) of particles. The range of x is between 0
and 12cm and is divided into 3840 bins such that in the case of the DNS each bin contains
exactly one grid point in the x direction. This PDF represents the shape of the tracer cloud.
Figure 3.69 shows the shape of the tracer cloud at different times both from DNS and the
model. In the case of the model we present in this figure the results obtained from using
drift and diffusion terms obtained via 256 velocity bins and drift terms obtained via different
methods.

It is clear that the drift term Up1 does not produce a good approximation of the tracer
behaviour even at early times. Up2 and Up3 return very similar and slightly better results.
Both however, underestimate the spreading of the tracer cloud. As was explained in the
previous subsection this is due to the underestimation of the peak of the velocity PDF and
overestimation of the probability of velocities in the vicinity of ū (see figure 3.68). The
kinks in the velocity PDF obtained by DNS at time t = 40000S (figure 3.69d)are due to
the shape of the spheres and the irregular shape of the domain. This shows up because
at this time the bulk of the tracer cloud has moved a distance equivalent to a few sphere
diameters. The model however cannot capture these irregularities and yields a smooth
PDF.
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Figure 3.69: Shape of tracer in a sphere pack at various times. Different curves represent the
different methods of obtaining the drift term in the model and results from DNS.

To better see the evolution of the tracer cloud figure 3.70 shows the shape of the cloud over
time from the DNS results (represented by thicker lines) and from the model. In the case
of the model the results are calculated via drift term, Up3, obtained using 256 velocity bins.
These curves are practically indistinguishable from those calculated using Up2 as the drift
term.

The model is able to predict the motion of the centre of the tracer cloud reasonably well
but the spreading of the cloud calculated from the results of the model is clearly less than
that from the DNS of the tracer transport. The model is also able to demonstrate how
the skewness of the cloud first increases with time and then after a certain time begins to
decrease. In general the model is able to mimic the qualitative behaviour of the tracer but
quantitatively the results of the model are rather inaccurate.
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4 Conclusions and Outlook

In this work the statistics and PDFs of pore scale velocity components and velocity fluxes in
a random sphere pack were studied in detail. Direct numerical simulations were performed
to obtain the pore scale velocity field. The validity of our simulations were thoroughly evalu-
ated by intensive grid studies and determination of the effect of the REV size on the results.
The evolution of a passive tracer in the sphere pack was investigated by DNS simulations of
the transport process and a model for dispersion was developed and tested both for a simple
channel flow and for a sphere packed domain. The issues regrading this model were elabo-
rated upon in detail and certain shortcomings were identified.

We observed that although our stochastic velocity model for dispersion is able to qualitatively
model the dispersive behaviour, quantitatively it is not reliable. This is especially evident
in predicting the higher statistical moments of the concentration distribution in space such
as the skewness of the tracer cloud. Here we will point to the most important issues that
contribute to the inaccuracy of our model.

In the first place our model is based on the conditional statistics of the velocity variation
(du) field. The velocity variation field in the case of the sphere pack was obtained via
a method which is unable to account for the boundaries of the sphere surfaces. Various
strategies for overcoming this issue were employed. These strategies appeared to be very
effective in the case of the channel flow but do not adequately alleviate the problems in the
case of the sphere pack. Another contributing factor is that the strategies employed were all
aimed at correcting the drift term in the stochastic velocity model. No attempt was made
to correct the diffusion term, Γp, which is also affected by the boundaries as was shown in
the case of the channel flow. The second contributing factor in the inaccuracy of our results
is that the statistics of the velocity variation field, du, conditioned on the velocity, were
found using a limited number of velocity data points. As a consequence, the conditional
statistics were not well resolved. Although we obtained the velocity field on a very fine mesh
the population of the pore velocity data was not sufficient for populating fine bins at the
extremities of the velocity domain due to the long tails of the velocity distribution. The last
factor concerning our results is the initialization of the tracer. The tracer was initialized
on a cross section of the domain which was not a representative of the total domain as the
domain was not large enough to be considered a real REV. However the different terms in
our model were obtained via the properties of the velocity and velocity variation field of the
whole domain.

The most important step that can be taken to improve the model is to make sure to obtain
the velocity variation field via a Lagrangian random walk step, which we call the particle
method in the text. In this way the velocity variation field will itself contain the information
concerning the pore boundaries. However, as was shown for the channel flow even this
method of obtaining the velocity variation field leaves room for improvement of the drift
term used in the stochastic velocity method. This is mainly due to the resolution of the
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conditional statistics of the velocity variation field. In order to obtain a better resolution a
very large velocity data base or the use of adaptive bin sizes is required. Discretization of
the domain into finer bins or even the use of a larger domain is an important step toward the
improvement of the method. Using a domain large enough to be considered an appropriate
REV has the added benefit of providing cross sections large enough to be representatives of
the whole domain. Therefore, initializing the tracer on just a cross section rather than on
the whole domain will pose no problem in using a model based on the statistics of the whole
domain.
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