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Lehrstuhl für Realzeit-Computersysteme

Crowdsourcing Motion Maps based on FootSLAM
for Reliable Indoor Pedestrian Navigation in

Multistory Environments

Maria Jesus Garcia Puyol
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Zusammenfassung

Laut der amerikanischen Umweltschutzbehörde und der Europäischen Kommission ver-
bringen Amerikaner und Europäer 90% ihrer Zeit innerhalb von Gebäuden. Reisende
am Flughafen, Besucher im Museum oder Feuerwehrleute während einer Rettungsaktion
würden von hochgenauen Ortungsmöglichkeiten innerhalb von Gebäuden profitieren. Im
Gegensatz zu Ortungslösungen im Freien, stellt die Ortung in geschlossenen Räumen eine
besondere Herausforderung dar, weil satellitenbasierte Navigationsmethoden keine exakte
Positionierung ermöglichen und detaillierte Karten oftmals nicht verfügbar sind.

FootSLAM ist eine auf Bayes’scher Theorie basierende Methodik, die es ermöglicht ei-
ne Karte der Wahrscheinlichkeitsverteilung von Schritten eines Fußgängers in einer Um-
gebung anzunähern, bei gleichzeitiger Abschätzung der Position und Orientierung des
Fußgängers während dessen Fortbewegung. Um dies zu realisieren benötigt FootSLAM
ausschließlich Messungen der Schritte des Fußgängers - der sogenannten menschlichen
Odometrie. Diese Messungen können z.B. mittels einer am Fuß getragenen inertialen
Messeinheit oder der Sensorik eines Smartphones gesammelt werden.

Der FeetSLAM Algorithmus erweitert FootSLAM durch Crowdsourcing indem die Auf-
gabe der Kartierung an eine Gruppe aus kollaborierenden Fußgängern übergeben wird,
welche aktiv oder passiv Schrittmessungen in der gleichen Umgebung sammeln. FeetSLAM
kombiniert die resultierenden individuellen FootSLAM Karten, um eine umfangreichere
und genauere Karte der “begehbaren”Bereiche eines Gebäudes zu generieren.

Die vorliegende Arbeit erweitert und verbessert sowohl FootSLAM als auch FeetSLAM,
um die Lücke hin zu vollautomatisierter Gebäudekartografie mittels Crowdsourcing zu
schließen. Das Ziel ist es Benutzern Kartenmaterial mit einer Genauigkeit von weniger
als einem Meter zur Verfügung zu stellen, welches die Lokalisierung in Flughäfen, Museen
oder Einkaufszentren verbessert, die Zeit bis zur Auffindung von Opfern nach einem Not-
ruf verkürzt oder zur Koordination von Feuerwehrleuten während einer Rettungsaktion
beitragen kann.

Die Hauptbestandteile dieser Dissertation lauten wie folgt: 1) Erweiterung von FootSLAM
auf mehrstöckige Umgebungen, 2) Reduktion der Rechenkomplexität von FootSLAM von
O(t2) auf O(t log t), um die Verarbeitung von größeren Bereichen in Echtzeit zu ver-
einfachen, 3) Reduktion der Rechenkomplexität der Kartenkombination von FeetSLAM,
4) Analyse der Voraussetzungen und Anwendungsmöglichkeiten großflächiger Kartierung.

Nach dem Wissen der Autorin ist dies die erste Arbeit welche die Möglichkeit der Kar-
tierung von großen, mehrstöckigen Umgebungen in einer kollaborierenden Art und Weise
und unter Verwendung einzig von Inertialsensorik aufzeigt.
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Abstract

According to the United States Environmental Protection Agency and the European
Commission, Americans and Europeans spend 90 % of their time in indoor environments.
Travelers in an airport, visitors in a museum or firefighters during a rescue mission would
highly benefit from high-accurate indoor positioning. However, and in contrast to outdoor
navigation, indoor navigation is particularly challenging because satellite-based navigation
techniques do not yield accurate positions and precise indoor plans are often unavailable.

FootSLAM is a technique rooted in Bayesian theory that estimates the pose (position
and heading) of a pedestrian as he walks in a constrained environment while it simul-
taneously builds a map of step direction probabilities at the visited areas. To do this,
FootSLAM only needs measurements of the pedestrian’s steps – a.k.a. human odometry.
These measurements may be collected for example by means of a foot-mounted Inertial
Measurement Unit (IMU) or using the sensors of a smartphone.

The FeetSLAM algorithm crowdsources FootSLAM by assigning the mapping task to a
group of collaborating pedestrians who actively or passively collect step measurements
within the same environment. FeetSLAM merges the resulting individual FootSLAM
maps to generate a more complete and accurate map of the “walkable” areas.

This thesis extends and improves both FootSLAM and FeetSLAM to bridge the gap
towards fully automated crowdsourced indoor mapping. The goal is to provide users
with sub-meter accurate maps to improve localization in airports, museums or shopping
centers, reduce the time needed to find victims after an emergency call or coordinate a
firefighter team during a rescue mission.

The original contributions of this thesis are: 1) extending FootSLAM to multistory envi-
ronments, 2) reducing FootSLAM’s computational complexity from O(t2) to O(t log t) to
facilitate real-time processing of larger areas, 3) reducing the computational complexity
of the map combination step of FeetSLAM from quadratic to linear in the area of a floor,
and 4) analyzing the requirements and applications of large-scale mapping.

To the knowledge of the author, this is the first time to have shown the possibility of
mapping large multistory environments in a collaborative fashion using only inertial sen-
sors.

vi





Contents

1 Introduction 1
1.1 The Challenges of Indoor Pedestrian Navigation . . . . . . . . . . . . . . . 1

1.1.1 Infrastructure-based vs. Infrastructure-free Techniques . . . . . . . 2
1.1.2 Map-aided Pedestrian Dead Reckoning . . . . . . . . . . . . . . . . 3

1.2 Maps for Indoor Pedestrian Navigation . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Robotic SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Pedestrian SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 FootSLAM and FeetSLAM in a Nutshell . . . . . . . . . . . . . . . 6

1.3 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Technical Background 10
2.1 Big O Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Bayes Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The Kalman Filter (KF) . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 The Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . . 14
2.2.3 The Uncented Kalman Filter (UKF) . . . . . . . . . . . . . . . . . 15
2.2.4 Particle Filter (PF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Sequential Importance Sampling (SIS) Algorithm . . . . . . . . . . 16
2.2.6 The Rao-Blackwellized Particle Filter (RBPF) . . . . . . . . . . . . 18

2.3 Simultaneous Localization and Mapping (SLAM) . . . . . . . . . . . . . . 19
2.3.1 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Online SLAM Problem . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Full SLAM Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 FastSLAM: Rao-blackwellizing the SLAM Problem . . . . . . . . . 22

2.4 Human Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Gait Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Collecting Step Measurements With Inertial Sensors . . . . . . . . . 24
2.4.3 Strap-down Inertial Navigation . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Other Sensor Placements . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.5 Approach Used in this Thesis . . . . . . . . . . . . . . . . . . . . . 26

2.5 The FootSLAM Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Bayesian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Why Use a Dense Grid of Hexagons? . . . . . . . . . . . . . . . . . 30
2.5.3 Mapping Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.4 Localization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



Contents

2.5.5 Particle Map and Cumulative Map . . . . . . . . . . . . . . . . . . 35
2.5.6 Sequential Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.7 Error Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.8 RBPF Algorithm in FootSLAM . . . . . . . . . . . . . . . . . . . . 37
2.5.9 Open Research Questions . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Crowdsourcing FootSLAM: FeetSLAM . . . . . . . . . . . . . . . . . . . . 39
2.6.1 The Optimal Estimator . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.2 Suboptimal Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.3 Open Research Questions . . . . . . . . . . . . . . . . . . . . . . . 45

3 FootSLAM Maps from an Entropy Perspective 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Entropy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Map Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 Human Motion Uncertainty . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Pedestrian’s History of Poses as a Random Walk on a Weighted Graph . . 50
3.2.1 Markov Chain Interpretation . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Random Walk on a Weighted Graph . . . . . . . . . . . . . . . . . 53

3.3 FootSLAM Entropy Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Proposed Entropy Metrics and Interpretation . . . . . . . . . . . . 55
3.3.2 Map Entropy Conditioned on the History of Poses . . . . . . . . . . 58
3.3.3 Entropy Rate of the Pedestrian’s Steps . . . . . . . . . . . . . . . . 59
3.3.4 Relative Map Entropy Conditioned on the History of Poses . . . . . 59
3.3.5 Relative Entropy Rate of the Pedestrian’s Steps . . . . . . . . . . . 60

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Map Entropy and Step Entropy Rate for Map Quality Assessment . 62
3.4.3 Map Entropy and Step Entropy Rate over Time . . . . . . . . . . . 63
3.4.4 KL Divergence between Two Maps . . . . . . . . . . . . . . . . . . 64

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Multistory FootSLAM 69
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Extension of FootSLAM to Map Multistory Buildings . . . . . . . . . . . . 71

4.2.1 Hexagonal Prism Grid . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Mapping Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Localization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 Changes to the Rao-Blackwellized Particle Filter (RBPF) algorithm

for Multistory FootSLAM . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Effects of Depletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Floor Discontinuity Problem . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Misalignment Between Floor Maps . . . . . . . . . . . . . . . . . . 75

4.4 Modeling the Stochastic Drift of the z Component of the Odometry . . . . 77
4.4.1 Computing the Error . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



Contents

4.4.2 ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.4 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.5 Parameter Estimation of MA(2) . . . . . . . . . . . . . . . . . . . . 81

4.5 Estimating the Floor Separation . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Experimental Verification and Results . . . . . . . . . . . . . . . . . . . . . 83

4.6.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Reducing the Complexity of FootSLAM 89
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1 Introduction

Humans have always been interested in knowing where they are and what their surround-
ings have to offer. When outdoors and in good Line-of-sight (LoS) conditions, pedestrians
rely on Global Navigation Satellite System (GNSS) receivers to estimate their position
and navigate from one place to the next. However, indoor pedestrian navigation is a chal-
lenging problem because inside buildings and underground, satellite-based positioning
systems are not accurate enough. And yet, according to the United States Environmental
Protection Agency (EPA) [160] and the European Commission [47], Americans and Eu-
ropeans spend 90 % of their time in indoor environments. As a result, there is a strong
need for indoor location-based services in two main domains:

1. Mass market applications: Multimodal transportation networks and intercon-
nection points often require pedestrians to navigate their way through extensive
indoor and underground areas sometimes with outdoor transitions. For such peo-
ple on the move, smartphones, tablets and similar devices have become the central
point of reference in terms of communications and information services, for example
in an airport, in a mall or in a museum.

2. Emergency and situation awareness applications: On December 3, 1999, six
firefighters were killed during a fire in an abandoned six-story building in Mas-
sachusetts, USA [5]. One of the causes of the accident was that “even to long term
employees, the building was hard to navigate” [5], which made the firefighters get
lost trying to rescue two homeless people. In security operations or rescue missions,
knowing each team member’s relative position can increase situation awareness and
help coordinate the team. Similarly, 135 million people who are visually impaired
worldwide [159] are in need of a reliable pedestrian navigation system to undertake
daily tasks.

This thesis extends and improves two techniques, FootSLAM and its collaborative ap-
proach FeetSLAM, to build maps of step direction probabilities in a real-time collabora-
tive fashion. In turn, these maps may be used for improved map-aided indoor navigation,
allowing the development of mass-market and emergency applications.

1.1 The Challenges of Indoor Pedestrian Navigation

Accurate outdoor positioning solutions rely on GNSS signals (e.g. those collected by the
Global Positioning System (GPS) receiver of a smartphone). However, inside a building,

1



1 Introduction

in an urban canyon or underground, the presence of walls and other obstacles causes
diffraction, refraction and multipath effects, or losing LoS to a sufficient number of satel-
lites. This usually results in satellite signal degradation and can reduce drastically the
positioning accuracy [139].

1.1.1 Infrastructure-based vs. Infrastructure-free Techniques

Two main alternatives have been proposed to address the deficiencies of satellite signals
for indoor pedestrian navigation (see [51] for a survey on these alternatives for emergency
responders):

1) Infrastructure-based techniques, for example based on Received Signal Strength (RSS)
from Wireless Local Area Network (WLAN) access points [96], Radio Frequency Iden-
tification (RFID) tags [163], Ultra Wide Band (UWB) transmitters, Bluetooth Low
Energy (BLE) transmitters [49], wide area network nodes [118], cell towers [99], etc.

2) Infrastructure-free techniques such as Pedestrian Dead Reckoning (PDR) systems [71].
PDR consists of estimating the pose (3D position and heading) of a pedestrian at each
step by integrating the cumulative change in pose since the last step. To estimate
steps, PDR relies on inertial sensors (accelerometers, gyroscopes) – and sometimes
additional sensors like cameras, laser scanners, altimeters or magnetometers. Because
of their less privacy-invasive nature, accelerometers, gyroscopes and magnetometers
— nowadays present in all modern smartphones or integrated in an Inertial Measure-
ment Unit (IMU) — have been widely adopted to measure pedestrian steps. The
accelerometer measures linear acceleration, the gyroscope measures turn rates and the
magnetometer measures the magnetic field. Double integrating the acceleration yields
position change; integrating the turn rate yields attitude change. The magnetometer
is typically used to correct the biases of the gyroscope [1][166].

The main drawback of infrastructure-based techniques is that the infrastructure needs
to be installed and maintained. In addition, after an earthquake or during a fire, such
infrastructure might not be available. In contrast, inertial sensors and those often used
in conjunction (altimeter, magnetometer) have the great advantage that they are now
integrated in mobile devices (phones, tablets, watches, etc.) and thus highly ubiquitous.
The main disadvantage of pedestrian navigation based on inertial sensors is that it lacks
an anchor to a global coordinate system: The pose of the pedestrian can only be estimated
relative to his initial pose.

FootSLAM relies solely on human odometry measurements collected by means of a sensor
array containing the following: a triaxial accelerometer, a triaxial gyroscope and a triaxial
magnetometer. These sensors have a relatively low data rate, making both server based
positioning and on-device processing viable options. In addition, in pedestrian navigation
that is targeted to giving people reliable and useful walking directions, it is often forgotten
that in addition to body level accuracy1) one requires accurate orientation information in

1) By this we mean a targeted position estimate with an accuracy of roughly 0.5 to 1 m.
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order to know which way the person is facing. Given an absolute initial heading estimate,
human odometry intrinsically provides the orientation of the pedestrian by nature of its
close coupling to a model of the human body and pedestrian motion.

The FootSLAM framework, however, allows fusing other sensor measurements, when avail-
able, to improve its accuracy. These measurements may be WiFi RSS [26], GNSS mea-
surements [131] or human-reported markers [129]. These options are not explored in this
thesis.

1.1.2 Map-aided Pedestrian Dead Reckoning

Many researchers are working on the difficult problem of calculating PDR from sensors at
different body placements, such as pocket [149][110], wrist [120], foot-mounted [113][166]
or hand-held [24][151]. Usually, the placement of the array of sensors in the pedestrian’s
body determines the type of algorithm that we can apply to infer position and orientation
change. For example, if the sensor array is foot-mounted one can perform strap-down
inertial navigation [52]; if we use the sensors of a smartphone placed in the pocket, one
can resort to step counting, step length estimation and attitude estimation [110].

The challenge of PDR systems based only on inertial sensors is that the measurement error
(drift) grows unboundedly over time [165]. This is due to small errors in the acceleration
and angular velocity measurements, which are integrated into larger errors over time.

Despite the inherent drift of any form of PDR and even in the absence of other sensors,
knowledge of the map of the environment can be sufficient to provide accurate long-
term pedestrian positioning in 2D and 3D [97][164][14][98][89]. This is because suitable
estimators, such a particle filter [137], use the constraints imposed by the knowledge of
any relatively stable feature that influences human motion: In addition to walls, this
includes many other features of our rich indoor environment such as stalls, large pieces
of furniture, displays, counters, shopping aisles, door frames, that are very prominent in
many public spaces. However, note that building plans or indoor maps do not usually
contain any of this semi-static information and are often proprietary, outdated and rarely
available to the public.

1.2 Maps for Indoor Pedestrian Navigation

Several efforts are addressing the creation of a database of indoor maps: Google leads one
of the largest efforts to collect indoor building plans [65]; Open Street Maps [114] is also
starting to incorporate more detailed indoor plans. However, the available indoor maps
rarely reflect the physical layout of the venue with its many obstacles that significantly
constrain pedestrian motion.

Even if an existing indoor plan shows the physical layout of an indoor venue, this may
undergo changes over time. For example, the physical configuration of a supermarket or
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a conference room may change to adapt to new products or events. Sometimes, these
changes may happen so rapidly that the existing map can quickly become outdated,
obsolete and inaccurate.

We anticipate that collaborative mapping [141][58][122] will play an important role in
providing accurate maps and location information that can be used in particular by mul-
timodal travelers [106][125]. To generate such maps in an automated manner, we can
resort to the SLAM principle [145][45]. Simultaneous Localization and Mapping (SLAM)
addresses the estimation of the pose of a moving entity within an unknown environment
by simultaneously estimating the map of the environment as it moves.

Currently, many existing cleaning robots commence a cleaning cycle with no memory of
previous operations and perform SLAM during the cleaning process. This is a robust and
successful approach in most domestic environments where the robot is expected to clean
all areas within a room or home. It is also the case of firefighters during a rescue mission
in a building.

But for a pedestrian entering a large building who is searching for a specific place, it is more
appropriate to draw on an existing map. SLAM in this case might be used to generate the
initial map and then only to update the map to account for changes in the environment
or to refine its accuracy. In this thesis, we will refer to SLAM as a problem statement
pertaining to an algorithmic setting, not an actual application. In other words, a user
contributing to a collaborative mapping process might or might not be simultaneously
using a positioning service. However, the data collected in such a way will usually be
processed by algorithms falling within the SLAM domain. Furthermore, SLAM might be
conducted in an offline fashion many hours after the data has been collected.

1.2.1 Robotic SLAM

SLAM [45] was originally presented within the robotics community as a technique to
jointly estimate the position of a robot and the map of the detected landmarks. The
most well-known algorithmic implementations are: SLAM based on the Extended Kalman
Filter (EKF) [40][146][145][100], GraphSLAM [157] and FastSLAM [108], which is based
on a Rao-Blackwellized Particle Filter (RBPF) [42].

State-of-the art techniques for robotic mapping rely on cameras [38][88] and range finders
(for example laser scanners) [154]. In [153] Thrun surveys different robotic mapping
algorithms such as Kalman filter techniques, the expectation maximization algorithm
and hybrid approaches (eg. particle filters [137]). He differentiates between occupancy
grid maps and object maps.

More recently, a number of approaches have addressed the problem of collaboratively
mapping an environment using two or more robots, a problem known as collaborative
or (cooperative) SLAM. We can distinguish between techniques where the initial relative
position of the robots is well-known [154], techniques that require a rendezvous between
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the robots [74] and techniques where the relative initial position of the robots is un-
known [95][28][29] (see also survey in [6]). Most collaborative approaches are distributed
[152][95][19][27][116][39] to allow for collaborative (online) exploration. The approaches
in [19] and [28] combine the maps in a post-processing step in a centralized manner and
can be later used for localization.

1.2.2 Pedestrian SLAM

The main difference between robotic and pedestrian SLAM is that in the latter we have
no direct control over the pedestrian’s path: Whereas in the case of robots we can direct
their motion via control inputs, pedestrians roam rooms and other accessible areas of a
building following their own will. In addition, the sensors that we might be able to install
on a robot platform such as a laser scanner might be too invasive for a pedestrian. Ideally,
we would like to perform pedestrian SLAM using the sensors of a smartphone, which are
widely spread.

Pedestrian mapping approaches become scalable by crowdsourcing [75] the mapping
task: a group of pedestrians that carry the necessary sensors collaborate to build a more
accurate and complete map of an environment.

Next, we present an overview of existing techniques that address pedestrian SLAM, dif-
ferentiating between infrastructure-based and infrastructure-free approaches (Table 1.1).

Infrastructure-based Approaches

Most state-of-the-art smartphone-based approaches to pedestrian SLAM assume the ex-
istence of a pre-installed infrastructure, for example WiFi access points [26][50][141].
WiFiSLAM [50] uses Gaussian process latent variable models and a motion dynamics
model to estimate the location of unlabeled signal strength data. WiSLAM [26] maps the
position of the detected WiFi access points as the pedestrian walks.

SmartSLAM [143] uses the measurements of the inertial sensors of a smartphone (gy-
roscopes, accelerometers) for the measurement model and WiFi fingerprints for the ob-
servation model. CrowdInside [2] goes a step further and uses GPS traces and detected
elevators, stairways and escalators as anchor points to reset the errors of the noisy sensors
of a smartphone. Furthermore it is able to reconstruct the floor plan outline.

CrowdInside [2], SignalSLAM [107] and Walkie-Markie [141] rely on WiFi RSS measure-
ments (in the case of SignalSLAM also on any available infrastructure such as Bluetooth,
LTE, etc.) to correct the drifting errors of the step estimation algorithms performed in
the smartphone using its inertial sensors. Once the individual traces have been generated,
they are merged in a centralized manner.

There are also hybrid solutions in which humans and robots collaborate, such as [92],
which requires RFID tags to be previously deployed.
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Infrastructure-free Approaches

These approaches rely uniquely on sensors — IMUs, cameras, laser scanners, the sensors
of a smartphone, etc — that the pedestrian wears or carries while walking, for example
mounted on the shoe [128], in the pocket [86], on the chest [48], on the wrists [69], on the
head [32], installed on a backpack [66], in the form of a suit [67] or carrying them in the
hand [35][64].

Depending on the sensors used, different landmarks or features can be slammed2): Ac-
tionSLAM [69][70] and and the approach in [67] map location-related activities such as
door handling, sitting, drinking, writing, reading, etc. In [48] the authors rely on cameras
and LIDAR to map landmarks in the environment. FootSLAM [8] and FeetSLAM [136]
build probabilistic maps of human motion using only pedestrian step measurements.

1.2.3 FootSLAM and FeetSLAM in a Nutshell

FootSLAM [128] is an infrastructure-independent technique that can estimate maps of
human step direction probabilities (also called probabilistic maps of human motion)
in constrained environments (Fig. 1.1).

Constraints for 
human motion

Figure 1.1: Walls, doors, obstacles and other constraints in the environment channel
human motion.

A pedestrian walks collecting measurements of his steps with an accelerometer, a gy-
roscope and a magnetometer. These sensors are imperfect and their measurements are
inaccurate. To estimate and correct the sensor errors, FootSLAM builds on a cascaded
estimation architecture that comprises: 1) a low-level Kalman Filter [162] that fuses
high rate measurements collected by the sensors to produce (still noisy) step measure-
ments (odometry), and 2) an upper-level PF [137] that tracks different odometry error

2) Slamming here denotes the process of applying SLAM, in contrast to mapping
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WiSLAM [26] WiFi radio, IMU Step measurements are fused with RSS measurements follow-
ing a FastSLAM approach to map the position of the detected
Wi-Fi access points.

WiFiSLAM [50] WiFi radio Uses Gaussian process latent variable models and a motion
dynamics model to estimate the location of unlabeled signal
strength data.

SmartSLAM [143] GPS, WiFi radio,
accelerometer,
gyroscope, magne-
tometer

Switches between different sensor fusion algorithms based on
EKF and Particle Filter (PF) depending on the level of cer-
tainty in the system and on the availability of a WiFi finger-
print map.

CrowdInside [2] GPS, WiFi radio,
accelerometer,
gyroscope, magne-
tometer

Uses GPS traces and detected elevators, stairways and esca-
lators as anchor points to reset the errors of the noisy sensors
of a smartphone and to reconstruct the floor plan outline.

RFID-SLAM [92] RFID tags, IMU Corrects odometry trajectories from multiple collaborating
robots and humans while utilizing RFID transponders for data
association.

SignalSLAM [107] WiFi, Blue-
tooth, LTE radio,
accelerometer,
gyroscope, magne-
tometer

Builds multi-modal RF signal maps using the GraphSLAM
principle.

WalkieMarkie [141] WiFi radio,
accelerometer,
gyroscope, magne-
tometer

Creates internal pathway maps of buildings using WiFi-Marks
(trends in the WiFi signal strength) as landmarks.

In
fr
a
st
r
u
c
tu

r
e
-f
r
e
e
A
p
p
r
o
a
c
h
e
s

HeadSLAM [32] Laser, IMU Uses a Rao-Blakwellized Particle Filter to build a map of land-
marks of the environment. Scan matching is used to improve
the odometry-based position estimate.

ActionSLAM [69] Three IMUs Relies on a foot-mounted IMU for positioning and a hip-worn
sensor for both activity recognition and computation. Builds
on FastSLAM to estimate a map of location-tied activities.

XSens MVN suit [67] IMUs built on a
suit

Corrects odometry drift by using human activities as land-
marks as a pedestrian moves and constructs a topological map
of the visited areas.

Project Tango [64] Camera, Infrared
(IR), accelerom-
eter, gyroscope,
magnetometer

Tracks the location of the user using visual-inertial odometry
and corrects the odometry drift using the learned map of the
visited area, composed of the key visual features of a physical
space.

Project Cartogra-
pher

[66] Laser scanner,
IMU

Maps the indoor environment in real time and displays it on
an Android tablet connected to the backpack’s computer.

Multi-floor SLAM [48] Camera, LIDAR,
IMU, barometer

Fuses multiple sensor measurements following an incremental
smoothing and mapping algorithm to map multifloor environ-
ments.

FootSLAM, Pock-
etSLAM

[8][86] IMU Built on a FastSLAM approach to estimate the location of the
pedestrian and learn the map of walkable areas by processing
pedestrian step measurements.

FeetSLAM [136] IMU Processes multiple odometry datasets iteratively with Foot-
SLAM and merges them by finding the geometric transforma-
tion between the individual maps.

Table 1.1: Overview of pedestrian SLAM techniques.

hypotheses. When the pedestrian revisits an area (what we call “closing the loop”),
the errors can be corrected and a map of the visited areas is generated.

But a pedestrian who casually roams the shops, aisles and hallways at a mall or an
airport might not visit all areas in the building and might not “close the loop”. To deal
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with this, the collaborative counterpart of FootSLAM, called FeetSLAM [136], uses other
pedestrian’s steps to close the loop. The idea behind this is that walls, doors, furniture and
other obstacles constrain different pedestrians to walk following similar patterns (Fig. 1.1).

Operating in an iterative fashion, the “Turbo” FeetSLAM algorithm has been able to
merge several datasets collected by one or more pedestrians while walking within the
same environment, creating an extensive and more accurate probabilistic map of the
visited areas. One of the requirements is that the relative pose of the pedestrians is more
or less known [136].

1.3 Goals and Research Questions

FootSLAM [128] and its collaborative counterpart FeetSLAM [136] address the problem
of crowdsourcing the generation of pedestrian motion maps that can be used either in an
online or offline fashion for improved indoor pedestrian navigation. The goal is to provide
users with with sub-meter accurate maps to improve customer experiences in airports
and shopping centers, reduce the time needed to find victims after an emergency call or
coordinate a firefighter team during a rescue mission.

The aim of this work is to tackle the main deficiencies of FootSLAM and FeetSLAM to
bridge the gap towards fully automated crowdsourced indoor mapping. The most relevant
shortcomings of FootSLAM and FeetSLAM that are tackled in this thesis are:

1. Single Floor Mapping: The mathematical foundation and implementation of
FootSLAM is based solely on single floor exploration and does not allow us to map
multistory buildings. This thesis extends FootSLAM and the combination of maps
to multistory environments.

2. Offline Processing: FootSLAM’s näıve implementation of FastSLAM exhibits a
computational complexity that grows linearly with the area visited by the pedes-
trian, allowing only offline processing of collected data. This thesis proposes an
algorithm to lower the computational complexity of FootSLAM with the visited
area, to allow mapping large areas in quasi real-time.

3. Slow Map Combination: FeetSLAM combines a set of individual maps by find-
ing the geometric transformation that places each pair of individual maps within
the same coordinate system and combining first those maps that best explain the
observed spatial transitions of each other. This grows quadratically in the number
of maps. In addition, each combination of two maps grows quadratically in the
area explored by the user, making the algorithm very time-costly. To mitigate these
problems, in this thesis we will:

a) Define a metric that reflects the uncertainty of a FootSLAM map, i.e. how
accurate or complete a map is. This metric will allow us to sort a set of
maps by quality, which can be used to select the order in which the maps
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can be combined. This reduces the computational complexity growth rate of
combining the maps from quadratic to linear in the number of maps.

b) Reduce the computational complexity of combining two maps from quadratic
to linear in the area explored using a novel approach based on the Hough
transform [44].

4. Few Collected Datasets: So far FootSLAM and FeetSLAM have been evalu-
ated by processing datasets collected within two different buildings. During the
development of this thesis, we have collected numerous additional datasets at other
locations that further validate the FootSLAM and FeetSLAM algorithms.

5. Lack of Large-scale Mapping Analysis: Previous work has never analyzed the
costs of mapping the entire indoor world. This thesis will study the time needed
to map an area (by analyzing the frequency of visits of different building types)
and analyze the requirements to create and store indoor maps for the entire indoor
world.

1.4 Thesis Structure

This thesis is structured as follows:

Chapter 2 provides technical background on Bayes filters — including the Kalman Filter
(KF) and the PF —, SLAM, collecting and processing human odometry measurements
and the principles of FootSLAM and FeetSLAM.

Chapter 3 introduces a number of metrics based on (information) entropy that reflect the
uncertainty of a FootSLAM map and the uncertainty of a sequence of pedestrian’s steps
in an environment. The contents of this chapter have appeared in [84].

Chapter 4 extends FootSLAM to allow mapping multistory environments. The contents
of this chapter have appeared in [56].

Chapter 5 introduces a new data structure in FootSLAM that effectively reduces its com-
putational complexity and memory requirements and allows for quasi-real time processing.
The contents of this chapter have appeared in [60], [61] and [56].

Chapter 6 proposes a new approach to quickly combine different FootSLAM maps, which
opens the door to online cooperative mapping applications. The contents of this chapter
have been submitted to a journal [59].

Chapter 7 studies the requirements to build pedestrian motion maps of the entire indoor
world and describes the applications of FootSLAM probabilistic motion maps as well as
deployment alternatives for FeetSLAM. The contents of this chapter have appeared in
[58] and in [57].

Chapter 8 outlines the conclusions and possible future lines of work.
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This chapter provides an introduction to the technical background that will help the
reader get familiarized with the terms used in the following chapters.

FootSLAM is built on a two-tier cascaded estimation architecture [97]. The compo-
nents are:

1. A lower level human odometry generator that fuses the high-rate inertial measure-
ments (of the order of hundreds of Hz) to estimate the position and direction change
of the pedestrian, for example based on the KF (see Sections 2.2.1 to 2.2.3). Its
output is a Gaussian distribution representing the length and direction change of
the last step (see Section 2.4).

2. An upper level PF (details in Section 2.2.4) that runs at a lower rate (roughly at
1 Hz) and fuses the step measurements provided by the odometry generator with any
other available measurements. This is done following the FastSLAM factorization
(see Section 2.3.4).

FootSLAM is an implementation of the upper level PF that relies on repeatedly observing
similar spatial transitions (when the pedestrian revisits an area) to correct the errors that
perturb the odometry measurements.

The principle of this cascaded architecture is applicable to any form of odometry mea-
surements, for example those collected with the sensors of a smartphone or other mobile
device placed in the pocket, attached to the wrist or hand-held (see Section 2.4). Al-
though all odometry datasets in this thesis have been collected with a foot-mounted
IMU, FootSLAM is agnostic to the source of the odometry; the only requirement is that
measurement likelihoods used in the filter are modeled according to the new odometry
source (e.g. PocketSLAM [86]).

This chapter starts with an introduction to big O notation (Section 2.1) followed by an
overview of the theory behind the Bayes filters used in this thesis (Section 2.2). Next,
we provide an introduction to SLAM (Section 2.3) and we show how to collect human
odometry measurements (Section 2.4). Finally, we describe the basis of FootSLAM (Sec-
tion 2.5) and its multiuser extension FeetSLAM (Section 2.6), which are the cornerstones
of this thesis.
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2.1 Big O Notation

2.1 Big O Notation

In this thesis we will analyze the performance of many algorithms. An important aspect
of analyzing an algorithm refers to the determination of the needed resources for its
execution (computational time or memory requirements) as a function of the algorithm’s
input size [33].

Algorithms are usually analyzed in the asymptotic sense, i.e. for an arbitrary large input
size. Big O notation, omega notation and theta notation are used to this purpose. Here
we focus on big O notation: Big O notation, usually denoted as O, is used to express the
worst-case scenario for a given algorithm by providing an upper bound for its growth rate.
An algorithm exhibits a growth rate on the order of a mathematical function O(f(n)) if
[33]:

0 ≤ T (n) ≤ C · f(n); ∀n ≥ n0, (2.1)

where C and n0 are positive constants.

An algorithm is said to be constant growth rate if its complexity growth rate is bounded
by a value that does not depend on the size of the input n. It is written as O(1).

2.2 Bayes Filters

Many scientific problems require estimating the state of a dynamic system given noisy
measurements (also called observations) as they become available, i.e. processing them
sequentially rather than in batch. For instance, in pedestrian navigation we are interested
in estimating the pose of a pedestrian given (noisy) measurements collected as he walks,
for example odometry measurements, GNSS measurements, etc.

Bayes filters provide a suitable framework to address this. A Bayes filter, also known as
recursive Bayesian estimator, is a general probabilistic method that recursively estimates
the posterior probability density function (pdf) of the system over time, as new
incoming measurements become available, and taking into account the full state of the
system including any prior knowledge about the system dynamics. An estimator that
uses all available information is called optimal [155].

In Bayes filters, the true state at discrete time stamp k ∈ N is a random variable encoded
by xk, which is assumed to be a “hidden” Markov process. For our application, we assume
this process to be a Markov process of first order, i.e. the future state xk is conditionally
independent from past states x0:k−2 given the the present state xk−1. Mathematically:

p(xk|x0:k−1) = p(xk|xk−1), (2.2)

where x0:k−1 is the history of states up to time instant k − 1.

The goal of a Bayes filter is to estimate the full posterior:

p(x0:k|z1:k), (2.3)
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where z1:k is the history of noisy measurements, also called observations (e.g. laser scans,
pedestrian steps, etc.). See Dynamic Bayesian Network (DBN) in Fig. 2.1.

ିଵࢠ ࢠ ାଵࢠ

ିଵ࢞ ࢞ ାଵ࢞

Figure 2.1: DBN that characterizes the evolution of the “hidden” Markov process of first
order x (state) and the observations z.

The process is usually defined quantitatively with two functions [137][155]:

1. A possibly nonlinear function of the state transition fk : Rnx × Rnv → Rnx :

xk = fk(xk−1,vk−1), (2.4)

with vk−1 an i.i.d. process noise sequence and nx, nv the dimensions of the state
and process noise vectors, respectively.

2. A possibly nonlinear measurement function hk : Rnz × Rnn → Rnx :

zk = hk(xk,nk), (2.5)

with nk an i.i.d. measurement noise sequence and nz, nn the dimensions of the
measurement and measurement noise vectors, respectively.

Then, the estimation task is divided into two stages that are repeated every time a new
measurement becomes available [137]:

1. Prediction step: Uses the system model encoded in (2.4) to obtain the prior pdf of
xk:

p(xk|z1:k−1) =

∫
p(xk|xk−1) p(xk−1|z1:k−1) dxk−1. (2.6)

Note that the second term in the integral is the recursive term, which is assumed
known at time stamp k. In practice, it is assumed that an initial estimate of
p(x0|z0) = p(x0) is available. In addition, here we have applied that the state
at time stamp k is conditionally independent of the history of observations z1:k

conditioned on the previous state xk−1: p(xk|xk−1, z1:k) = p(xk|xk−1) (see DBN in
Fig. 2.1).

2. Update step: The newly available measurement zk is used to update the prior
density and compute the posterior using the Bayes’ rule:

p(xk|z1:k) =
p(zk|xk) p(xk|z1:k−1)

p(zk|z1:k−1)
, (2.7)
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where the denominator is a normalizing constant:

p(zk|z1:k−1) =

∫
p(zk|xk) p(xk|z1:k−1) dxk, (2.8)

and p(zk|xk) is the likelihood function defined by the measurement model (2.5).

The prediction and update equations (2.6) and (2.7) are a conceptual solution for the
estimation problem that cannot always be solved analytically. The two main families of
state estimation derived from the Bayes filter are Gaussian filters and non-parametric
filters.

Gaussian filters (e.g. KF, EKF, Unscented Kalman Filter (UKF) and information filter)
represent the posteriors by multivariate normal distributions and are the first tractable
solution to the estimation process. Non-parametric filters (e.g. histogram filters, particle
filters) approximate the posterior with a finite number of parameters and are suitable for
multivariate data and nonlinear/non-Gaussian processes with non-tractable solutions.

The following subsections provide a short introduction to the KF, the EKF and the UKF,
which are the basis to process inertial sensor measurements, followed by an introduction
to particle filters, with special focus on Rao-Blackwellized particle filters (which is used
in FootSLAM).

2.2.1 The Kalman Filter (KF)

The KF is a Gaussian filter that represents the posterior using a multivariate normal
distribution. The well-known formula for a multivariate normal distribution with mean
vector µ and covariance matrix Σ is:

N (x;µ,Σ) =
1

(2π)n/2 det(Σ)1/2
exp{−1

2
(x− µ)T Σ−1(x− µ)}, (2.9)

where det(·) represents the determinant of the matrix in brackets.

If p(xk−1|z1:k−1) is Gaussian, it can be shown that p(xk|z1:k) is also Gaussian if the
following requirements are met [162][137]:

1. The initial posterior p(x0) must be normally distributed.

2. The state transition function fk(xk−1,vk−1) must be a linear function in its argu-
ments with added Gaussian noise vk−1 of covariance Qk−1:

xk = Fkxk−1 + vk−1, (2.10)

where Fk is a known matrix that defines the linear function between xk−1 and xk.

3. The measurement function hk(xk,nk) must be linear in its arguments with added
Gaussian noise nk of covariance Rk:

zk = Hkxk + nk, (2.11)

where Hk is a known matrix that defines the linear function between xk and zk.
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Applying these assumptions to equations (2.6) and (2.7) yields:

p(xk−1|z1:k−1) = N (xk−1;µk−1|k−1,Σk−1|k−1) (2.12)

p(xk|z1:k−1) = N (xk;µk|k−1,Σk|k−1) (2.13)

p(xk|z1:k) = N (xk;µk|k,Σk|k), (2.14)

with:

µk|k−1 = Fkµk−1|k−1 (2.15)

Σk|k−1 = Qk−1 + FkΣk−1|k−1F
T
k (2.16)

µk|k = µk|k−1 +Kk(zk −Hkµk|k−1) (2.17)

Σk|k = Σk|k−1 −KkHkΣk|k−1, (2.18)

and:

Kk = Σk|k−1H
T
k S
−1
k (2.19)

Sk = HkΣk|k−1H
T
k +Rk, (2.20)

where Kk is the Kalman gain and Sk specifies the covariance of the innovation term
(zk −Hkµk|k−1) [137]. The Kalman gain specifies the impact of the new measurement in
the new posterior estimate.

The KF is computationally efficient and it is optimal in the Bayesian sense if the afore-
mentioned assumptions hold. However, KFs deal poorly with non-linearities in the state
transition and measurement models. To deal with Gaussian systems with non-linearities,
the EKF and UKF are called into play, which are suboptimal algorithms.

2.2.2 The Extended Kalman Filter (EKF)

The EKF relaxes the assumption that the state transition function and the measurement
function must be linear in their parameters. The key idea is to approximate the non-
linear functions by a linear function that is tangent to it at the mean of the Gaussian
[162]. EKFs rely on first order Taylor expansion for this linearization and approximate
the term p(xk|z1:k) by a Gaussian, yielding:

p(xk−1|z1:k−1) ≈ N (xk−1;µk−1|k−1,Σk−1|k−1) (2.21)

p(xk|z1:k−1) ≈ N (xk;µk|k−1,Σk|k−1) (2.22)

p(xk|z1:k) ≈ N (xk;µk|k,Σk|k), (2.23)

with:
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µk|k−1 = fk(µk−1|k−1) (2.24)

Σk|k−1 = Qk−1 + F̂kΣk−1|k−1F̂
T
k (2.25)

µk|k = µk|k−1 +Kk(zk − hk(µk|k−1)) (2.26)

Σk|k = Σk|k−1 −KkĤkΣk|k−1, (2.27)

where fk(·) and hk(·) are now non linear functions and F̂k and Ĥk are local linearizations
of those non-linear functions using the first order Taylor expansion [162].

The main drawback of the EKF is that the linearization of the functions can yield highly
unstable filters when the local linearity assumption does not hold. Moreover, the deriva-
tion of the Jacobian matrices, F̂k and Ĥk, is often problematic and can lead to imple-
mentation difficulties. For Gaussian systems with stark non-linearities, we can turn to
Unscented Kalman Filters.

2.2.3 The Uncented Kalman Filter (UKF)

The UKF applies a different linearization via the so-called unscented transform. The idea
is to deterministically extract sigma points from the Gaussian and pass these through
f(·). These sigma points are chosen as follows: one located at the mean and two per
dimension of the covariance, symmetrically placed along the main axis of each dimension
[81]. The reader can find the mathematical derivation in [81] and [155].

For non-linear systems the UKF performs equal to or better than the EKF, depending on
the degree of non-linearity and the uncertainty of the prior. An advantage of the UKF
over the EKF is that it does not require to compute Jacobians, which in many cases are
difficult to derive [81].

Note that if the true probability distribution p(xk|z1:k) is non-Gaussian then a Gaussian-
based approximation will never describe it well. For non-Gaussian/non-linear systems,
we can resort to particle filters.

2.2.4 Particle Filter (PF)

A particle filter is a sequential Monte Carlo algorithm that implements a recursive Bayes
filter by Monte Carlo simulations. The goal is to sequentially estimate a desired posterior
pdf by a set of Np random samples, called particles, each associated with a weight that
represents the probability of the particle being sampled from the pdf. As the number of
particles increases, the particle filter approaches the optimal Bayesian estimator [41].

The mathematical formulation for this discrete representation of the full pdf is:

p(x0:k|z1:k) ≈
Np−1∑
m=0

w
[m]
k δ(x0:k − x

[m]
0:k ), (2.28)
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where δ(·) is the Dirac delta, x0:k is the history of unobservable states whose pdf we
would like to estimate, z1:k is the history of observable states (e.g. measurements) and

w
[m]
k represents the weight assigned to particle m. The higher the density, the higher the

weight (Fig. 2.2). The weights are normalized so that

Np−1∑
m=0

w
[m]
k = 1.

Figure 2.2: Particle filter representation of a posterior density function. The circles in
the upper part represent the particles (samples). The circles in the lower part
represent the weight assigned to each particle: the higher the density, the
higher the weight.

Sampling from the state posterior p(x0:k|z1:k) at any given point in time k is seldom
possible. The most common approach to overcome this is the Sequential Importance
Sampling (SIS) algorithm.

2.2.5 Sequential Importance Sampling (SIS) Algorithm

The SIS algorithm is the basis of most particle filters. The key idea is to choose the
weights of the particles using the principle of importance sampling [41].

Assuming that p(x0:k|z1:k) ∝ q(x0:k|z1:k) is a pdf from which it is impossible to draw
samples but for which q(x0:k|z1:k) can be evaluated, we can define q(x0:k|z1:k) as the im-

portance density. If we drawNp particles x
[m]
0:k (2.28) from q(x0:k|z1:k), then the importance

weights are defined as [137]:

w
[m]
k ∝ p(x

[m]
0:k |z1:k)

q(x
[m]
0:k |z1:k)

. (2.29)

For this principle to work in a sequential manner, we can choose the importance density
to be factorized as follows [137]:

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k) · q(x0:k−1|z1:k−1) = q(xk|xk−1, zk) · q(x0:k−1|z1:k−1),
(2.30)
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and after introducing (2.30) in (2.29), the weight update equation becomes [137]:

w
[m]
k ∝ w

[m]
k−1

p(zk|x[m]
k )p(x

[m]
k |x

[m]
k−1)

q(x
[m]
k |x

[m]
k−1, zk)

. (2.31)

The posterior pdf at time stamp k is then approximated by:

p(xk|z1:k) ≈
Np−1∑
m=0

w
[m]
k δ(xk − x

[m]
k ), (2.32)

with the importance weights defined in (2.31)

A well-known problem of the SIS particle filter is the degeneracy problem or particle
depletion, whereby the unconditional variance of the importance weights increases over
time. The degeneracy problem arises after a few iterations, when all particles except
for one have low weight, hence hardly contributing to the computation of the posterior
[41]. Two methods are well-known to mitigate this problem: choosing an appropriate
importance density function and resampling.

Importance Density Function Choice

Choosing a suitable importance density function is crucial for the performance of the
particle filter. In [137], a number of importance density functions are proposed. The
simplest proposal distribution is to sample from the transitional prior:

q(xk|x[m]
k−1, zk) , p(xk|x[m]

k−1), (2.33)

which simplifies the weight update (2.31) to:

w
[m]
k ∝ w

[m]
k−1 p(zk|x

[m]
k ). (2.34)

However, there are cases in which the sensor measurements z0:k are more informative than
the motion model, and the resulting likelihood p(zk|x[m]

k ) has a much narrower variance
compared to the prior. Accordingly the posterior is closer in similarity to the likelihood
than to the prior and it has been shown that looking at the measurement zk improves
performance [137][111]:

q(xk|x[m]
k−1, zk) , p(xk|x[m]

k−1, zk) =
p(zk|xk) p(xk|x[m]

k−1)

p(zk|x[m]
k−1)

, (2.35)

yielding for the weight update (2.31):

w
[m]
k ∝ w

[m]
k−1 p(zk|x

[m]
k−1) = w

[m]
k−1

∫
p(zk|xk)p(xk|x[m]

k−1) dxk (2.36)
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Such importance density for the proposal step is optimal given that for any x
[m]
k−1, the new

weight w
[m]
k is conditionally independent of the value drawn for x

[m]
k conditioned on the

previous value xk−1.

In general we cannot analytically sample from p(xk|x[m]
k−1, zk) or evaluate the integral that

computes the predictive density p(zk|x[m]
k−1). However, when p(xk|x[m]

k−1, zk) is Gaussian,
we can sample from it.

Resampling

Resampling means drawing N ′p new particles from the existing set of Np particles (usually

N ′p = Np) according to their importance weight w
[m]
k (the higher the weight, the larger the

number of particles that are drawn from it) [45]. Drawing a particle (called “resampling”
particle) from a generating or “parent” particle usually means copying all its state infor-
mation with replacement. Resampling allows the particle filter to concentrate on particles
with large weight and eventually eliminate those that have a low weight.

Resampling can be performed deterministically, i.e. every n steps, or dynamically, when
the following approximation of the effective number of particles Neff [137]:

Neff =
1∑Np−1

m=0 (w
[m]
k )2

, (2.37)

falls under a threshold.

Particle filters based on the SIS algorithm pose the disadvantage that sampling in high-
dimensional spaces can be inefficient, with the computational complexity growing expo-
nentially with the dimension of the explored state space. Using the Rao-Blackwell formula,
we can marginalize out some of the variables for which a “tractable substructure” exists
[42].

2.2.6 The Rao-Blackwellized Particle Filter (RBPF)

Suppose we can split the hidden variables x0:k into two groups: x0:k = {r0:k,y0:k}, with
p(y0:k|r0:k, z1:k) being analytically tractable with a parametric representation. Then the
full posterior p(x0:k|z1:k) becomes:

p(x0:k|z1:k) = p(r0:k,y0:k|z1:k) = p(y0:k|r0:k, z1:k) p(r0:k|z1:k). (2.38)

Then, for each particle we store, not only a sample from p(r0:k|z1:k), represented by r
[m]
0:k ,

but also a parametric representation for p(y0:k|r
[m]
0:k , z1:k).

Since the dimension of p(r0:k|z1:k) is lower than that of p(r0:k,y0:k|z1:k), then the di-
mensionality of the space in which we sample is reduced, the computational complexity
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is lowered, and the same accuracy is expected with a lower number of particles. This
particle filter is called RBPF [42].

As we will show in Section 2.5, the RBPF is the basis of the FastSLAM factorization,
used in FootSLAM.

2.3 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) addresses the problem of placing a mov-
ing subject (e.g. a robot carrying laser scanners) in an unknown environment to simul-
taneously build a map of the environment and determine the pose of the subject within
that map [45][12].

Localizing a moving subject within a known map (localization) or building a map of
the environment given a series of known poses (mapping) are less complex problems in
that now both the map and the poses need to be simultaneously estimated as the subject
moves. SLAM can be seen as an instance of the “chicken and egg” problem: What comes
first, the map or the pose?

Solutions to the SLAM problem can be divided into online SLAM problem and full SLAM
problem, which we will describe shortly. Before that, we introduce the map variable.

2.3.1 Maps

In the context of SLAM, a map comprises a set of objects in the environment [155]:

m = {mi}, 0 ≤ i ≤ Nm − 1, (2.39)

where Nm is the number of objects in the environment and mi specifies the properties
of object i. There are two main types of maps: feature maps and location-based maps.
Feature maps comprise landmarks and mi also contains the coordinates of the landmark.
In location-based maps the index i refers to the physical location of the object.

Feature maps are commonly used when mapping an environment, where the map is con-
structed from exteroceptive sensor data (e.g. laser scanners). Location-based maps such
as occupancy grid maps, where each element mi specifies whether a cell in the grid is
occupied or not, are widely used in mobile robot navigation and are suitable for path
planning.

A problem that arises when using feature maps is that the landmarks may not be uniquely
identifiable, leading to the so-called data association problem: one must infer from the
data the correspondence between an observed feature and a landmark. To do this, usually
a correspondence variable cik is introduced to denote the correspondence between the
feature observed at discrete time k and the landmark mi.
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2.3.2 Online SLAM Problem

Online SLAM problems (see DBN in Fig. 2.3) estimate the joint posterior over the state
at time instant k, xk, and the (time invariant) map, m, conditioned on the history of
measurements z1:k and control inputs to the robot u0:k:

p(xk,m|z1:k,u0:k), (2.40)

in a recursive fashion.

ିଵࢠ ࢠ ାଵࢠ

ିଵ࢞ ࢞ ାଵ࢞



ିଵ࢛ ࢛ ାଵ࢛

Figure 2.3: DBN representing the online SLAM problem. The goal is to estimate the
joint posterior over the current state and the map.

Examples of online SLAM are SLAM based on the EKF (EKF-SLAM) [146][145][100],
SLAM with Sparse Extended Information Filters (SEIF-SLAM) [156] and SLAM based
on the RBPF – known as FastSLAM [108]. EFK-SLAM and SEIF-SLAM are briefly
introduced next, whereas the FastSLAM algorithm is detailed in Section 2.3.4.

EKF-SLAM

EKF-SLAM is the earliest implementation of the SLAM algorithm [155]. EKF-SLAM
maps are feature-based maps that comprise point landmarks. The more unique these
landmarks are, the better the performance. Since EKF-SLAM is based on the EKF, it
relies the Gaussian noise assumption for both the state transition model and measure-
ment model [100]. The idea is to use an incremental maximum likelihood estimator to
determine correspondences between the measurements and the landmarks, never revising
a correspondence decision [155].

The main limitations of EKF-SLAM is that updates require time quadratic in the number
of landmarks in the map and landmarks need to be sufficiently unambiguous [155].
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SEIF-SLAM

The SEIF-SLAM algorithm represents the posterior by a sparse information matrix. This
renders both the measurement step and motion update step independent of the number
of landmarks. For data association it can rely on an incremental maximum likelihood
estimator or perform a search on a tree containing all data association [156].

The main drawback of this technique is that it is based on a number of approximations to
first linearize and then sparsify the information matrix, resulting in less accurate results
than EKF-SLAM [155].

2.3.3 Full SLAM Problem

The full SLAM problem (see DBN in Fig. 2.4) addresses the estimation of the joint
posterior over the history of the state x0:k and the (time invariant) map, m, conditioned
on the history of measurements z1:k and control inputs to the robot u0:k:

p(x0:k,m|z1:k,u0:k). (2.41)

ିଵࢠ ࢠ ାଵࢠ
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Figure 2.4: DBN representing the full SLAM problem. The goal is to estimate the joint
posterior over the whole history of the state and the map.

Two algorithms that address the calculation of the full posterior are GraphSLAM [157]
and FastSLAM [108]. Because of its relevance in this thesis, FastSLAM is addressed in
the following subsection (Section 2.3.4).

GraphSLAM

The main idea behind GraphSLAM is to represent the full SLAM problem with a sparse
graph, which leads to a sum of nonlinear quadratic constraints [157]. The nodes in the
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graph are the robot poses x0:k and the map landmarks m = {mi}. A motion arc joins two
consecutive robot poses, whereas a measurement arc links the pose with the landmarks
that were measured from that pose. Each edge can be seen as soft constraint between
poses and landmarks and is represented by the negative log likelihood of the motion or
measurement models, respectively.

In GraphSLAM, the set of (nonlinear) contraints are linearized and transformed into a
sparse information matrix and an information vector. Optimizing the graph, i.e. mini-
mizing the sum of all constraints, leads to a nonlinear least squares problem and results
in a maximum likelihood estimate for the robot path and the map.

The key limitations of GraphSLAM are that the size of the graph grows linearly over time,
as the robot moves, and data association requires performing a greedy search algorithm
over all data association variables [157].

2.3.4 FastSLAM: Rao-blackwellizing the SLAM Problem

FastSLAM is a particle filter-based implementation of SLAM. As we saw, particle filters
are powerful estimators to maintain multiple hypothesis for the state.

A straight-forward implementation of SLAM using particle filters would scale exponen-
tially with the number of landmarks in the map [108]. However, FastSLAM exploits the
nature of SLAM with known correspondences that makes two disjoint map landmarks
conditionally independent conditioned on the robot path and history of measurements.
Thus, the full posterior p(x0:k,m|z1:k,u0:k) can be written as the following product:

p(x0:k,m|z1:k,u0:k) =
[Nm−1∏

i=0

p(mi|x0:k, z1:k)
]
· p(x0:k|z1:k,u0:k). (2.42)

The problem is decomposed into Nm + 1 estimation problems: Nm mapping problems
(one for each landmark in the map) and one localization problem.

Rao-Blackwellized particle filters (see Section 2.2.6) are suitable filters to tackle this prob-
lem. Following (2.38) each particle represents a sample from p(x0:k|z1:k,u0:k), indicated

by x
[m]
0:k , and also up to Nm parametric representations of the map, p(mi|x[m]

0:k , z1:k) with
0 ≤ i ≤ Nm − 1.

FastSLAM estimates the location of each landmark using one separate EKF [108]. This
is the key difference with respect to EKF-SLAM, where there is a single EKF in charge
of estimating the location of all landmarks in a joint manner.

Proposal Density Function

There are two main versions of the FastSLAM algorithm, which differ in the proposal
density function used to sample new poses [108]:
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• FastSLAM 1.0 uses the control inputs in the proposal function:

q(xk|x[m]
1:k−1,u0:k) = p(xk|x[m]

1:k−1,u0:k). (2.43)

• FastSLAM 2.0 draws particles from the following proposal function:

q(xk|x[m]
1:k−1,u0:k) = p(xk|x[m]

1:k−1,u0:k, z1:k), (2.44)

which also takes into account the measurements and is optimal in the Bayesian sense
(Section 2.2.5).

FastSLAM 1.0 causes most particles to receive low weights during the weight update since
the uncertainty regarding the control inputs is much higher relative to the uncertainty of
the robot’s sensors. Many particles with low weight do not survive resampling, making
the algorithm inefficient. By taking into account the measurement, FastSLAM 2.0 makes
the algorithm more efficient [155].

Computational Complexity of FastSLAM

It has been shown that a näıve implementation of the FastSLAM algorithm requires time
in O(NpNm). The bottleneck is the resampling step where N ′p particles are drawn from
the existing Np particles and for each particle, its Nm map estimates are copied with
replacement [108].

A more efficient implementation uses a tree-based data structure to store the maps [108].
Simply put, in such an implementation particles share parts of the map that are identical
and results in computational complexity that grows with O(Np logNm).

In Chapter 5, we will analyze the complexity of both a näıve implementation and a tree-
based implementation of FastSLAM within the context of FootSLAM.

2.4 Human Odometry

In the robotics community, odometry refers to measurements of the revolutions of a robot’s
wheels that can be used to estimate changes in the state of the robot. Similarly, human
odometry refers to the measurements of a pedestrian’s steps that can be processed to
track changes in his pose — his 3D position and orientation — over time.

2.4.1 Gait Cycle

The gait cycle can be divided into two phases: swing phase and stance phase. The
stance phase starts when the pedestrian’s heel touches the ground and finishes when the
pedestrian lifts the foot from the ground. The swing phase encompasses the remaining
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time when the foot is in the air until a new stance phase begins. The stance phase takes
about 60% of the gait cycle, whereas the swing phase takes up the other 40% [161].

In this thesis the term “detecting a step” means detecting the stance phase of the gait
cycle. A step measurement is defined as the distance and attitude change at the start of
the stance phase since the last stance phase.

2.4.2 Collecting Step Measurements With Inertial Sensors

The most widely used sensors to measure a pedestrian’s steps and track his pose without
a deployed infrastructure are accelerometers, gyroscopes and magnetometers [71]. An
accelerometer measures linear acceleration, a gyroscope measures angular velocity and a
magnetometer measures the magnetic field vector. Integrating the readings of the triaxial
gyroscope yields an estimate of the attitude change, while integrating twice the readings
of the triaxial accelerometer yields an estimate of the change in position in 3D.

These sensors are found in many forms: built in Micro Electromechanical Systems
(MEMS)-based IMUs but also in modern smartphones, tablets, smart watches [7] or
shoes [113][10].

To this date, the most reliable approach to pedestrian tracking using inertial sensors is
using a foot-mounted IMU [52][166][97][79][80][113][63]. In practice, travelers might use
lightweight wireless clip-on sensors for their shoes — as it has become popular among
sport enthusiasts [10] — or such sensors might even be integrated into shoes themselves
[113]. This might be appropriate for security applications or early technology adopters,
but mounting a sensor on the foot is often impractical for mass-market applications.

As a result, and given that the built-in sensors of smartphones and other mobile devices
have become more accurate, the navigation community is also exploring the possibility of
tracking a pedestrian’s pose with other sensor placements: in-pocket [149][110], attached
to the wrist [120] or allowing free motion, e.g. hand-held [1][78][127].

If the pedestrian can attach a sensor to the shoe, then given the proximity of the sensor
to the foot, one can integrate the acceleration readings to compute the change in position
of the pedestrian. This is known as strap-down Inertial Navigation System (INS).

2.4.3 Strap-down Inertial Navigation

Sensor measurements (specially those of low-cost sensors) are inaccurate and thus the
estimates of pose change suffer from drifting errors that grow without bounds over time
[165]. However, with foot-mounted sensors we can reliably detect periods of zero velocity
during the stance phase.

In 2005 Foxlin introduced Zero Velocity Updates (ZUPTs) as a pseudo-measurement in
an EKF [52] (Section 2.2.2). ZUPT pseudo-measurements allow the EKF to correct
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position, velocity, accelerometer biases, pitch, roll, and the pitch and roll gyro biases after
each stride. This reduces the error growth of inertial navigation from cubic to linear.
Yaw (heading) and the yaw gyro bias are the only important EKF states that remain
unobservable from ZUPT pseudo-measurements.

The magnetic field measurements can be used to correct short-term gyroscope biases, for
example by using Magnetic Angular Rate Update (MARU) [166] or Quasi-static periods
[1], which help stabilize the heading drift. When the sensor is mounted on the foot, we
can also use Zero Angular Rate Update (ZARU) as means of heading drift stabilization
[123].

2.4.4 Other Sensor Placements

Estimating the attitude and velocity of a pedestrian with sensor placements far from the
foot remains still a challenging problem and constitutes a research topic in itself. These
are the main challenges:

1. Periods of zero velocity cannot be detected accurately, and thus approaches such
as ZUPT cannot be used. As a result, it is much harder to estimate and correct
position, velocity, accelerometer biases, pitch, roll, and the pitch and roll gyro biases.

2. The angular displacement between the sensor frame and the body frame is usu-
ally unknown and can change over time, for example in the case of a hand-held
smartphone or when carrying a smartphone in a backpack.

These challenges make it infeasible to directly integrate acceleration measurements to
estimate the pedestrian’s steps and step length. In this case typically the problem is
separated into:

a) Step detection (also called step counting) [3][24][109]: A large number of algorithms,
often based on biomechanical models of human motion, have been proposed. These
algorithms include time domain, frequency domain and feature clustering approaches
[24].

b) Step length estimation: A number of empirical formulas to estimate step length
have been proposed [78][109]. Munoz et al. [109] propose a novel approach based on
the opening angle of the leg to measure step length when the sensor is placed in the
pocket or on the hip. Renaudin et al. use a linear relationship between step length
and step frequency, weighted by the user’s height (which needs to be also estimated)
[127][126].

c) Motion mode recognition, for example to differentiate between texting, placing a
phone call or carrying the phone in a bag [151] or to extract activities such as taking
an elevator or climbing stairs [53].

d) Attitude estimation [104][1][110]: if the sensor is attached to the pedestrian’s body
and the relative orientation between the user’s body frame and the sensor frame is
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known, then we can estimate the pedestrian’s heading.

e) Elevation or floor number estimation: This usually involves other sensors such as
a barometer [48][101], which measures air pressure and under stable weather conditions,
it can be used to measure elevation changes.

2.4.5 Approach Used in this Thesis

All the odometry datasets processed in this thesis have been collected with one single
foot-mounted IMU and the sensor measurements have been processed using the UKF in
[166]. This UKF substituted the EKF in the cascaded estimation architecture of [97] to
better capture non-linearities.

Based on ZUPT measurements for stance detection, this implementation of the UKF uses
MARUs [166] during the stance phase to estimate the gyro bias. The filter is composed of
15 states, with 3 states for each one of the following components: orientation (roll, pitch,
yaw), position vector, velocity vector, accelerometer bias and gyroscope bias. With one
single IMU we obtain one step measurement (step length and heading change) every two
steps, at roughly 1 (double) step per second (Fig. 2.5).

Figure 2.5: The step length ∆l and heading change ∆ψ of a pedestrian are measured with
a foot-mounted sensor. With one single sensor, we measure the pose change
between every second step.

Figure 2.6 shows an example of odometry measurements collected by a pedestrian while
walking with a foot-mounted IMU processed using the UKF of [166]. The measurements
clearly suffer from heading drift, visible on the upper part of the figure where the two
triangle-shaped paths should overlap with each other.

Note that the only requirement for FootSLAM is a source of stable odometry and other
sensor placements are not precluded. For example, PocketSLAM [86] performs FootSLAM
based on odometry collected with an IMU placed in the pocket.
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10m 

Figure 2.6: Example of odometry measurements collected by means of a foot-mounted
IMU and processed using the UKF in [166]. The resulting odometry clearly
suffers from heading drift.

2.5 The FootSLAM Principle

FootSLAM [8] addresses SLAM for pedestrians by jointly estimating the pose of the
pedestrian — his position and heading — and the map of the environment following a
Bayesian formulation, as new measurements become available. The input to FootSLAM
are human odometry measurements and the resulting map consists of the step direction
probabilities at each location that the pedestrian visits. It does not matter whether walls
or furniture constrain human motion, all these aspects are reflected in the FootSLAM
map.

FootSLAM processes human odometry measurements by means of a RBPF (Section 2.2.6)
to estimate the drifting errors of the odometry and to learn the step direction probabilities
at each location the pedestrian visits. To do that, the space is partitioned and each next
step of the pedestrian is drawn from a location dependent probability distribution that
only depends on his current position. FootSLAM rewards particles whose trajectory is
more compatible with the learned map. When a pedestrian revisits similar transitions in
the space, “closing the loop”, particles that register previously observed spatial transitions
are rewarded with a higher weight update. The result is a probabilistic map of human
motion that can be used for localization.

Work on FootSLAM before this thesis has focused on generating accurate human motion
maps in 2D environments [128][8]. Figure 2.7 depicts two step transition maps learned
by the particle with the highest likelihood corresponding to two walks within an office
building. On the image above, an extensive walk is depicted and the map encompasses
almost all offices and other walkable areas. Below, the corresponding map of a shorter
and less extensive walk is shown. Figure 2.8 shows the transition map of a building in
Vienna (Austria) that presents a rather interesting layout, as learned by the particle with
the highest likelihood.
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2 Technical Background

(a) FootSLAM map resulting from an odometry dataset collected during a long
walk.

(b) FootSLAM map resulting from an odometry dataset collected during a
shorter walk.

Figure 2.7: Examples of FootSLAM maps resulting from human odometry collected at an
office environment. The building plan is shown only as a reference.

From this section and forward we follow the notation first introduced in [128], whereby
bold capitalized letters represent random variables.

2.5.1 Bayesian Formulation

In FootSLAM, given the history of (noisy) step measurements (collected as explained
in Section 2.4), ZU

1:k, the goal is to jointly estimate the history of poses of the pedestrian
P 0:k and the map of the environment M [128]. Note that in contrast to robotic SLAM,
where the robot is controlled by a series of inputs that guide its movement, in pedestrian
SLAM we do not have control over the pedestrian’s path. Instead the pedestrian follows
his intent Int guided by visual cues Vis to avoid walls and others obstacles. The state in
FootSLAM is specified by the following unobservable variables (see DBN in Fig. 2.9):

1. The history of poses of the pedestrian, P 0:k.

2. The history of true step vectors U 0:k,

3. The history of correlated error states, E0:k that distort the step measurements
ZU

1:k.

4. The time invariant map of the environment in which the pedestrian walks, M .
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Figure 2.8: FootSLAM map resulting from an odometry dataset collected in a building
with an unusual layout.
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Vis
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Z E
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M

Time k‐1 Time k Time k+1

Figure 2.9: DBN of the FootSLAM estimation problem during three time slices. Source:
[54].

Then, following a recursive Bayesian formulation [128], FootSLAM addresses the problem
of estimating the full posterior:

p(P 0:k,U 0:k,E0:k,M |ZU
1:k) = p({PUE}0:k,M |Z

U
1:k). (2.45)

Following the FastSLAM factorization [108], FootSLAM employs a RBPF to decompose
the estimation problem into a pedestrian localization problem and a mapping problem
conditioned on the pedestrian’s poses. Mathematically, first we apply Bayes to the full
posterior:

p({PUE}0:k,M |Z
U
1:k)

Bayes
= p(M |{PUE}0:k,Z

U
1:k) · p({PUE}0:k|ZU

1:k), (2.46)
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Given the history of poses of the pedestrian P 0:k, the map M becomes conditionally inde-
pendent of the history of step vectors U 0:k, measurements ZU

1:k and errors E0:k (Fig. 2.9).
As a consequence, the full posterior can be simplified:

p(M |{PUE}0:k,Z
U
1:k) · p({PUE}0:k|ZU

1:k) = p(M |P 0:k)︸ ︷︷ ︸
mapping problem
conditioned on the
pedestrian’s poses

· p({PUE}0:k|ZU
1:k)︸ ︷︷ ︸

localization problem

. (2.47)

This equation is an example of the factorization of (2.38) (also known as Rao-
Blackwellization). Each particle m in the RBPF represents:

{p(M |P [m]
0:k ), p({PUE}[m]

0:k |Z
U
1:k)},

and as it will be shown shortly, a parametric representation is used for p(M |P [m]
0:k ).

FootSLAM represents human motion as a first order Markov process: The next step
of the pedestrian depends only on his current location (see Fig. 2.9). In order to es-
timate the probability distributions of human motion as a function of location, Foot-
SLAM partitions the 2D space into a grid of NH adjacent regular hexagons Hh ∈
{H0, H1, . . . , Hh, . . . , HNH−1

}, where the index h uniquely references a hexagon’s posi-
tion. The hexagon grid is composed of Nx columns and Ny rows, with NH = Nx · Ny

(Fig. 2.10(a)). Each hexagon Hh has 6 edges, which we denote with e ∈ {0, . . . , 5}
(Fig. 2.10(b)) or with ehj ∀j s.t. h 7→ j, where the symbol 7→ indicates that one can reach
hexagon Hj from hexagon Hh crossing edge ehj (Fig. 2.10(c)).

The indexing chosen for the grid of hexagons (Fig. 2.10(a)) allows us to quickly identify
the hexagon at which a particle is located, which in turn is needed to quickly determine
what edges the particle crossed when moving from one hexagon to the next (more insights
can be found in Sections 5.2.6 and 5.2.7 in [22]).

2.5.2 Why Use a Dense Grid of Hexagons?

We characterize the influence of location on human motion as a local probability distribu-
tion of the direction of motion. In many indoor environments this distribution will tend
to become independent after roughly one meter. Smaller displacements are very likely to
share similar distributions.

One can tile the 2D space using triangles, rectangles or hexagons. Using such polygons
leads to a simple mapping and weighting computation. These polygons allow either 90
degree or 60 degree discretization of direction of motion. We believe that the probabilities
of the directions of a person’s next step are approximately independent for discrete angular
ranges of about 60 degrees. For these reasons and for simplicity we have chosen hexagons.

This thesis builds on prior work of FootSLAM based on a hexagonal grid [128][8][131].
There have been no strong reasons to deviate from the hexagonal discretization of the
space. Other implementations are, of course, not precluded.

30



2.5 The FootSLAM Principle
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(a) Grid of hexagons used to discretize
the 2D space, composed of Nx = 4
columns and Ny = 4 rows.
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(b) Indices assigned to the
edges of each hexagon in the
grid.
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(c) Transition from hexagon
Hh to hexagon Hj crossing
edge ehj , corresponding to
edge number 1 of hexagon
Hh and edge number 4 of
hexagon Hj .

Figure 2.10: Definition of indices and variables used for the discretization of the space in
2D.

2.5.3 Mapping Problem

FootSLAM maps are location-based maps with the map defined as the set:

M = {M0,M1, . . . ,Mh, . . . ,MNH−1
}, (2.48)

where Mh represents itself a set of transition probabilities {M0
h ,M

1
h , . . . ,M

5
h} across the

6 edges of hexagon Hh. Unlike occupancy grid maps, whereby each cell is associated to a
binary state representing whether it is occupied or not, FootSLAM maps provide a richer
representation of each cell, indicating the probabilities of exiting a hexagon across each
one of its edges:

M
e(Uk)
h(P k−1) = P (P k ∈ Hj|P k−1 ∈ Hh), (2.49)

and such that Hh 6= Hj. Therefore, it represents the probability of crossing edge ehj
when leaving hexagon Hh to go into hexagon Hj by adding step vector U k to P k−1

(Fig. 2.10(c)). Also, we define Mh such that
e=5∑
e=0

M e
h = 1.

Since we do not know M e
h we let M e

h denote the map random variable whose conditional
distribution p(M e

h|P 0:k) we can estimate as a result of the history of pedestrian poses
P 0:k up to step k.
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The assumption of the division of the space into independent hexagons makes possible
the decomposition of the mapping problem into map estimation subproblems [128], one
for each hexagon:

p(M |P 0:k) =

NH−1∏
h=0

p(Mh|P 0:k). (2.50)

Finally, the full posterior of (2.47) can be written as:

p({PUE}0:k,M |Z
U
1:k) =

NH−1∏
h=0

p(Mh|P 0:k)︸ ︷︷ ︸
NH map estimators

· p({PUE}0:k|ZU
1:k)︸ ︷︷ ︸

one pose estimator

, (2.51)

Therefore, the full posterior can be divided into (NH + 1) estimators: NH estimators for
the computation of the posterior over the map and one for the computation over the
pedestrian’s poses, step vectors and correlated errors.

2.5.4 Localization Problem

The second term in (2.51) can be expressed recursively as:

p({PUE}0:k|ZU
1:k) ∝ p({PUE}k|{PUE}0:k−1,Z

U
1:k) · p({PUE}0:k−1|ZU

1:k−1)︸ ︷︷ ︸
recursion

, (2.52)

which yields, after using the conditional independence relationships encoded in the DBN
in Fig. 2.9 [128]:

p({PUE}0:k|ZU
1:k) ∝

error state transition︷ ︸︸ ︷
p(Ek|Ek−1) ·

measurement likelihood︷ ︸︸ ︷
p(ZU

k |U kEk) ·
conditional pose transition probability︷ ︸︸ ︷
p({PU}k|{PU}0:k−1)

· p({PUE}0:k−1|ZU
1:k−1)︸ ︷︷ ︸

recursion

,

(2.53)

starting from an arbitrary pose P 0 = (x, y, z, ρ), where (x, y, z) is the pedestrian position
in 3D (for now we consider z = 0,∀k) and ρ the pedestrian’s heading.

In the following we write h for the index of the outgoing hexagon h(P k−1) and e for the
crossed edge e(U k) for ease of notation (Fig. 2.10(c)). The third factor in (2.53), which
we define as I, is the FootSLAM term [128]. It can be computed by marginalizing over
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the map M :

I , p({PU}k|{PU}0:k−1) =

∫
M

p({PU}k|P k−1,M ) · p(M |P 0:k−1) dM

=

∫
M0

∫
Mh

∫
Mj

. . .

∫
MNH−1

p({PU}k|P k−1,Mh) ·
∏
i

p(M i|P 0:k−1) dM

=
∏
i\h

[ ∫
M i

p(M i|P 0:k−1) dM i

]
·
∫
Mh

p({PU}k|P k−1,Mh) · p(Mh|P 0:k−1) dMh,

(2.54)

where we have made use of the fact that the pose and true step {PU}k are assumed to
be conditionally independent of the history of poses previous to k− 1 and steps previous
to k conditioned on P k−1 and the map learned from those poses M .

The integrals inside the product all equate to unity. Thus all that remains is the integral
over Mh:

I ,
∫
Mh

p({PU}k|P k−1,Mh) · p(Mh|P 0:k−1) dMh. (2.55)

To solve this equation we will assume that p(Mh|P 0:k−1) follows a Dirichlet distribution.

Dirichlet Distribution as Conjugate Prior of Multinomial Distribution

Let’s assume that each one of the hexagons in the map corresponds to an unfair dice. The
same way the transition probabilities across each one of the edges is unknown to us, the
probability of each side of the dice showing up when rolling the dice is unknown to us.

Although the probability of each side of the dice is unknown, one can roll the dice n
times and count the number of times each one of the E = 6 sides shows up. These data
we get from observation follows a multinomial distribution. Remember: the multinomial
distribution is the multivariate generalization of the binomial distribution and gives the
probability of a particular combination of counts for each side.

One could try to use the multinomial distribution to compute the probability of each side
showing up. However, this will be a very poor estimate within the first few dice rolls. A
much better approach is to incorporate prior expectations (in statistics just called prior).
In Bayesian statistics this is done using a Dirichlet distribution.

The Dirichlet distribution is the multivariate generalization of the Beta distribution and it
is the conjugate prior of the multinomial distribution. This means that if the data we get
from observations follows a multinomial distribution and we assume a prior Dirichlet dis-
tribution, then the posterior distribution also follows an (updated) Dirichlet distribution
[72].

Intuitively we would like to start with a uniform probability across the sides of the dice
(a fair dice). Upon rolling the dice and observing what side shows up, we can update our
knowledge and learn how likely it is for a side to show up.
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In FootSLAM we assume that p(Mh|P 0:k−1) follows a Dirichlet distribution. Concep-
tually, this Dirichlet distribution represents the belief that the probabilities of E = 6
mutually exclusive events (a hexagon’s edge being crossed) are {M0

h , . . . ,M
5
h}, i.e.

{p(M 0
h = M0

h |P 0:k−1), . . . , p(M 5
h = M5

h |P 0:k−1)} given that each event has been observed
ueh − 1 times. Thus, for each hexagon Hh, the Dirichlet distribution is parametrized by a

vector with six positive real numbers: {u0
h, . . . , u

5
h} and with uTh =

5∑
e=0

ueh, which can be

written as:

D(p(M 0
h = M0

h |P 0:k−1), . . . , p(M 5
h = M5

h |P 0:k−1);u0
h, . . . , u

5
h) =

1

B(u0
h, . . . , u

5
h)

e=5∏
e=0

M e
h ,

(2.56)
where:

B(u0
h, . . . , u

5
h) =

e=5∏
e=0

Γ(ueh)

Γ(uTh )
, (2.57)

is the Beta function and:

Γ(x) =

∫ ∞
0

e−ttx−1dt, (2.58)

is the Gamma function.

The expected probability of crossing edge e of hexagon Hh then becomes [72]:

E[p(M e
h = M e

h|P 0:k−1)] =
ueh
uTh

(2.59)

In FootSLAM we choose a uniform prior probability across all edges of any hexagon:

αeh = 0.8 and αTh =
e=5∑
e=0

αeh. The term αeh refers to the prior virtual counts, chosen

empirically to be 0.8 for all edges when no other information is available. Thus E[p(M e
h =

M e
h)] = 1/6 ∀ e in the absence of edge transitions.

In our PF implementation, to learn the local map M
[m]
h , for each hexagon that a particle

visits, we count the number of times the particle m has crossed that edge, Ce
h. To store the

counts we use a data structure called Hexagon Transition Counters (HTC). An HTC is a
vector composed of six elements. Each vector element registers the number of transitions
Ce
h across an edge. The associated HTC to hexagon Hh that has been visited by particle

m is:
{Ch}[m] = {C0

h, C
1
h, C

2
h, C

3
h, C

4
h, C

5
h}[m]. (2.60)

Note that when written in bold face, Mh denotes the unknown random variable that we
wish to estimate: The transition probabilities across the edges of a hexagon. On the other
hand, Ch represents an HTC, i.e. the vector of 6 hexagon transition counters from which
the probabilities can be inferred [128].
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Given an initial prior Dirichlet distribution:

D(p(M 0
h = M0

h), . . . , p(M 5
h = M5

h);α0
h, . . . , α

5
h),

and having crossed the edges of the hexagon {C0
h, . . . , C

5
h} times as result of a pedestrian’s

pose sequence P 0:k−1, the posterior distribution follows:

D(p(M 0
h = M0

h |P 0:k−1), . . . , p(M 5
h = M5

h |P 0:k−1);α0
h + C0

h, . . . , α
5
h + C5

h).

Then using the fact that p({PU}[m]
k |P

[m]
k−1,Mh) ∝ M e

h (per (2.49)) and that

p(Mh|P [m]
0:k−1) follows a Dirichlet distribution with observed counts {C0

h, . . . , C
5
h}, Equa-

tion (2.55) yields:

I [m] ∝
{
Ce
h + αeh

CT
h + αTh

}[m]

, (2.61)

where Ce
h are the number of transitions across the crossed edge e of hexagon Hh in the

map of the particle m computed up to step k and CT
h =

e=5∑
e=0

Ce
h.

If a particle crosses several edges with one single step measurement, this translates into a
product of probabilities for all edges crossed [128].

2.5.5 Particle Map and Cumulative Map

Particle Map

As mentioned earlier, in FootSLAM at time stamp k, each particle m in the RBPF
represents {p(M |P [m]

0:k ), {PUE}[m]
k }.

For the particles to effectively represent p(M |P [m]
0:k ), each particle is assigned its own data

structure to store the associated map estimates corresponding to the pedestrian’s history
of poses P

[m]
0:k . This structure is referred to as particle’s map or, in short, map.

Each particle’s map, {M}[m], comprises the set of visited hexagons N [m]
vis with their cor-

responding HTCs, i.e.:

{M}[m] = {Hh, {Ch}[m]}; ∀Hh ∈ N [m]
vis . (2.62)

The work previous to this thesis builds on a näıve FootSLAM implementation, which
stores each particle’s map using a lookup table. Each entry in the table corresponds to
a visited hexagon and its HTC. This implementation is memory and computationally
inefficient because:

1. Particles that share the same history of poses (for example, after resampling) will
have duplicated entries in their corresponding lookup tables.
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2. In the resampling step, N ′p new particles are drawn from the existing set of Np par-

ticles according to their importance weight w
[m]
k (see Section 2.2.5). In FootSLAM,

the entire map {M}[m] = {Hh, {Ch}[m]} needs to be copied (with replacement) from
the resampling particle. But the size of the lookup table will grow as the pedestrian
explores new areas, making resampling more and more computationally inefficient
over time. In particular, this implementation exhibits a computational complexity
that grows with O(t2), preventing the FootSLAM algorithm from being executed in
real-time.

In Chapter 5, we will analyze the complexity of the current algorithm in more detail
and propose a reduced-complexity implementation, which will allow real-time mapping of
larger areas.

Cumulative Map

The hexagon transition estimates of the Np particles’ maps can be compressed in the
form of a cumulative map, also called expected map in [21]. This cumulative map {M}cum

contains the hexagons visited by all particles with their corresponding cumulative HTCs,
{Ch}cum:

{M}cum = {Hh, {Ch}cum}; ∀Hh ∈ N cum
vis , (2.63)

where N cum
vis = ∪ N [m]

vis ; for m = 0, . . . , Np − 1.

The cumulative HTC is computed using the weights of each particle w[m]:

{Ch}cum = {C0
h, C

1
h, C

2
h, C

3
h, C

4
h, C

5
h}cum, (2.64)

where:

{Ce
h}cum =

Np−1∑
m=0

w[m] · {Ce
h}[m]. (2.65)

In this thesis, we also refer to these maps as posterior maps. Note, however, that this
compression loses information contained in the full posterior.

2.5.6 Sequential Estimation

Importance Density

To allow for sequential estimation (2.30), the RBPF implementation of FootSLAM sam-
ples — using from hundreds to tens of thousands of particles — from the following recur-
sive importance density function [8]:

q({PUE}0:k|ZU
1:k) = q({PUE}k|{PUE}0:k−1,Z

U
1:k) · q({PUE}0:k−1|ZU

1:k−1).

36



2.5 The FootSLAM Principle

When using odometry measurements provided by the lower-level UKF of [166], the full
measurement likelihood p(Ek|Ek−1) · p(ZU

k |U kEk) has a much narrower variance com-
pared to the pose transition probability I (2.55). Accordingly the posterior is closer in
similarity to the measurement likelihood than to the pose transition probability. In such
cases looking at the measurements ZU

1:k improves performance (see Section 2.2.5).

In particular, the importance density has been chosen as [128]:

q({PUE}k|{PUE}0:k−1,Z
U
1:k) , p(Ek|E[m]

k−1) · p(U k|ZU
kE

[m]
k ). (2.66)

Weight Update

The weight associated to each particle m is updated using the formula for a particle filter
weight update (2.29), which for the importance density function in FootSLAM resolves
to [8]:

w
[m]
k ∝ p({PUE}0:k|ZU

1:k)

q({PUE}0:k|ZU
1:k)
∝ w

[m]
k−1 ·

{
Ce
h + αeh

CT
h + αTh

}[m]

. (2.67)

2.5.7 Error Models

The main error sources that distort 2D odometry measurements are explained in [128]
and [134]. The following error components are considered (see also Algorithm 3 in [134]):

• Additive white translational noise.

• White noise on the estimated heading change.

• Additive colored angular error between the heading of the pedestrian and that mea-
sured since the last step. This is known as odometry heading drift and it is the most
visible error source. The heading drift is encoded in the error state and follows a
random walk process of order 1 with additive zero mean Gaussian noise with a
standard deviation that is proportional to the square root of the time elapsed [134].

2.5.8 RBPF Algorithm in FootSLAM

A summary of the RBPF algorithm in FootSLAM is recalled here [8]:

1) Initialize all Np particles pose P
[m]
0 ← (x, y, z = 0, ρ = 0) and draw initial error states

E
[m]
0 from a proposed initial distribution.

2) For each time step k when a new step measurement is available:

a) Draw particles from the proposal density in (2.66) from left to right: Sample from

p(Ek|E[m]
k−1) and add the drawn error vector to ZU

k to compute U k.
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b) For all particles, compute the new pose of the pedestrian P
[m]
k by adding the step

vector U
[m]
k to P

[m]
k−1.

c) Update the weight w
[m]
k of each particle m using (2.67).

d) Normalize particle’s weights to sum to unity.

e) Update the transition counters of the crossed edges corresponding to step starting

in P
[m]
k−1 ∈ Hh and finishing in P

[m]
k ∈ Hj. In FootSLAM we assume that motion

is equally likely backwards and forward and update the counters of both the
outgoing hexagon and the incoming hexagon: C

ehj
h and C

ejh
j , respectively. See

more details below.

f) Resample if required.

In a nutshell, particles that revisit similar transitions are rewarded thus allowing the
generation of a reliable map of the walked areas when the pedestrian closes a loop.

Update of Hexagon Transition Counters (Mapping)

The map update consists of the addition of one count to the counters of those edges that
were crossed when particle m moved from P

[m]
k−1 to P

[m]
k .

For example, if particle m crossed edge e = 2 of hexagon Hh, such a transition is mapped
as follows:

{Ch→e=2}[m] = {C0
h, C

1
h,C

2
h + 1, C3

h, C
4
h, C

5
h}[m], (2.68)

where Ch→e=2 indicates that the HTC has been updated after crossing edge 2.

The update of the HTC is the most fundamental step in the RBPF because it represents
the basis for the particle weight computation (step 2c). If particle m revisits hexagon Hh

crossing an edge that it had already crossed, it will be rewarded with a greater weight
update than the other particles that are not revisiting edge transitions. As a result of
this reward, the particle’s hypotheses for the history of pedestrian’s poses, step vectors
and errors {PUE}[m]

0:k will be considered to be more likely the one that the pedestrian
and the system actually followed.

2.5.9 Open Research Questions

The accuracy of FootSLAM maps is governed by the average dimension of the physical
structures (i.e. 1 m around doors, 2 m along corridors). Revisiting areas helps the estima-
tor converge more quickly, but it is limited to 2D exploration. In addition, processing the
collected data by a walking pedestrian is performed in an offline fashion, due to memory
and computational constraints.

This thesis addresses the following topics to provide more insights into the FootSLAM
approach and improve its performance:
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1. Interpretation of a pedestrian’s sequence of steps on a FootSLAM map as a random
walk on a weighted graph (Chapter 3).

2. Calculation of the uncertainty of FootSLAM probabilistic maps as an indicator of
the quality of the resulting map (Chapter 3).

3. Extension of FootSLAM to allow mapping multistory environments (Chapter 4).

4. Analysis of the computational complexity of FootSLAM, identification of main bot-
tlenecks and reduction of its complexity for real-time localization and mapping of
large areas (Chapter 5).

2.6 Crowdsourcing FootSLAM: FeetSLAM

In crowdsourcing [75] a group of people or community performs a task that had been
traditionally assigned to specific individuals. Building on FootSLAM, FeetSLAM [136]
maps indoor environments in a crowdsourced manner.

In FeetSLAM, a number of pedestrians Nd walk through accessible rooms and areas of
a building collecting measurements of their steps actively or passively. We can envision
three different scenarios [54]:

1. All walks start with the same initial pose or finish with the same end pose (or both)
and overlap in explored area to a certain degree.

2. The walks do not necessarily start or finish with the same pose but overlap in
explored area to a certain degree.

3. The walks do not necessarily start or finish with the same pose and do not necessarily
overlap in the explored area.

For example, we might have a number of datasets obtained from an office environment
whose corresponding FootSLAM maps may be inaccurate because FootSLAM did not
reach convergence, e.g. if the pedestrian did not revisit areas (“closing the loop”). The
key idea behind FeetSLAM is to use the observed spatial transitions of other pedestrians
in the FootSLAM estimation process of a dataset collected by a different pedestrian. After
jointly processing the datasets, they reach convergence and their combined map represents
all visited areas (Figure 2.11). Areas in which the pedestrians were walking more often
(darker hexagons) help reach convergence and can be represented more accurately.

The challenge of FeetSLAM is finding a suitable estimator that scales well with the number
of collaborating pedestrians and the area explored by those pedestrians.
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Figure 2.11: Combined FootSLAM map obtained from six walks in an office environment
(in aquamarine) after 10 iterations using the FeetSLAM algorithm. The
total duration of these 6 datasets was roughly 66 minutes. Darker hexagons
represent hexagons with more edge transition counts that correspond to more
frequented areas. The building layout was not used during FeetSLAM, but
it is shown as a reference.

2.6.1 The Optimal Estimator

The extension of FootSLAM to the multiuser scenario processes all collected datasets (in
parallel or sequentially) and needs to include the unknown starting conditions SC (initial
pose parameters and their associated uncertainties) in the state [54]. The environment is
the binding element between the pedestrians. The Bayesian estimator for a Nd-pedestrian
scenario addresses the computation of the following posterior [136]:

p({PUE}1:Nd
0:k ,SC1:Nd ,M |{ZU

1:k}1:Nd). (2.69)

Figure 2.12 shows the DBN for a 2-pedestrian scenario. Note that for this DBN, the time
indexes k are the same for the walks. This is not a requirement for the map merging
algorithm, in which the data are processed offline, and hence can be obtained from walks
occurring at different times. Conceptually, this means pairing the time indexes k of the
walks and using padding (adding samples with value 0) when the walks are not equally
long.

An example of this optimal estimator for collaborative SLAM can be found in the robotic
domain in [74]. The approach builds on a single RBPF that estimates the map and the
history of poses of the robots assuming that the relative pose between the robots can be
accurately determined when the robots encounter each other.

Unfortunately, using a particle filter either in parallel or sequentially to process a large
number of datasets, particles would suffer from particle depletion [137], since they would
have to explore the state space of all odometry error sequences E1:Nd

0:k for all the pedestrians
and all starting conditions SC1:Nd . In addition, also due to depletion, when processing the
datasets in a sequential fashion, FootSLAM would be biased towards the maps generated
in the early stages.

But not everything is lost. In [136] and [54], it was shown that the DBN of Fig. 2.12
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Figure 2.12: DBN for the FeetSLAM estimation problem with two pedestrians during
three time slices (extracted from [54]).

shares some similarities with a family of codes, known as “Turbo”’ codes [17], which can
be decoded with a – suboptimal but less complex – iterative detector that performs with
good error correction.

2.6.2 Suboptimal Estimator

The proceedings paper in [136] introduced “Turbo” FeetSLAM, a suboptimal estimator
for multiuser mapping that borrows the following heuristics from “Turbo” codes [17]:

1. The problem is decomposed into smaller segments.

2. The data are processed in an iterative fashion.

3. Each stage feeds the next with “prior” information.

In a nutshell, given Nd datasets, at each iteration the iterative “Turbo” FeetSLAM al-
gorithm processes independently each dataset using FootSLAM (step 1) and stores the
resulting posterior FootSLAM maps. Then, it computes a prior map for the next iteration
for each dataset (step 3) by combining the other Nd − 1 maps (see diagram in Fig. 2.13).
Proceeding like this, the individual FootSLAM estimation runs are benefited from the
knowledge of the other walks observed transitions, acting as a “loop closure” event.
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Figure 2.13: Diagram illustrating the “Turbo” FeetSLAM algorithm. Extracted from
[136].

Using Other Maps in the FootSLAM Estimation Process

To incorporate prior knowledge about the transition counts, one can extend FootSLAM’s
weight update equation (2.67) to take into account the counts from another map:

w
[m]
k ∝ w

[m]
k−1 ·

{
Ce
h + αeh + βeh

CT
h + αTh + βTh

}[m]

, (2.70)

where βeh is the prior count for edge e of hexagon Hh and βTh =
5∑

e′=0

βe
′

h . This is the result

of assuming that the prior distribution of each local hexagon’s map follows a Dirichlet
distribution with parameters:

D(p(M0
h = M0

h |P 0:k−1), . . . , p(M5
h = M5

h |P 0:k−1);α0
h + β0

h, . . . , α
5
h + β5

h).

Note that in order to use a map as a prior for a given dataset, the map shall not contain
any contributions from that dataset. This is an important requirement that must be held
in order to provide the dataset with information from other walks while avoiding biasing
it with its own contribution. This is analogous to the prior construction in “Turbo”
decoding and loopy belief propagation [105].

Controlling the Influence of the Prior Map

To avoid that a dataset dominates the resulting combined map and following concepts
from simulated annealing [91], it was proposed to modify the prior maps by applying a
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weakening function and a smoothing function to its transition counts [136][54]:

• The weakening function divides the transition counts of a map by a weakening factor
that is greater than 1. The effect is controlling the influence of the prior map on
the weight update of (2.70).

• The smoothing function spreads the transition counts of each edge among itself and
that same edge of the six neighboring hexagons. The effect can be seen as a blurring
function, allowing particles to be rewarded when crossing similar transitions in the
vicinity.

Over the iterations these modifications are gradually reduced, allowing the improvements
of each individual map to be propagated to other maps by means of the prior.

Proceeding like this, after each iteration the resulting individual and global FootSLAM
maps become more accurate [136]. With this iterative processing the combined map is
not dominated by one dataset, but it is the result of balancing the characteristics of each
dataset with the effect of averaging out errors.

However, note that including other walks in a given FootSLAM estimation process or
combining a number of maps is only possible, if we are able to relate all walks within the
same coordinate system. In the absence of absolute anchors (e.g. GPS measurements) and
given that FootSLAM maps are translation and rotation invariant, FootSLAM maps will
not necessarily share the same coordinate system (Fig. 2.14). Thus, we need to find the
geometric transformations that relate all the individual maps within the same coordinate
system.

Figure 2.14: Two FootSLAM maps (depicted in blue and green) that are the result of
processing two odometry datasets collected within the same building, but
using different coordinate systems. Figure extracted from [136].
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Geometric Transformation between Two Maps

Given two map instances of the same environment, MP and MQ (see example in Fig. 2.14),
the existing implementation of the “Turbo” FeetSLAM algorithm [136] addresses the
geometric transformation search problem by applying a brute-force approach: we apply
different transformations – different sets of angular and spatial displacements – to one of
the maps, we project the transition counts of both maps to a common grid of hexagons
and rely on a log-likelihood-based correlation function to determine the best fit between
them.

The projection onto a common grid of hexagons is necessary since after applying a geo-
metric transformation to one of the maps, their hexagons will not necessarily be aligned.
The common grid, called target grid in [136], can be that of the map that remains un-
changed. In [136] the geometric transformation and the projection of the transition counts
onto a target grid are performed in one step. Two factors indicate the proportion of the
transition counts of each transformed edge that are assigned to the edges of the target
grid (see details in Section 3.2 of [136] and in [54]):

1. A distance factor takes into account the relative distance between each trans-
formed hexagon and the hexagons in the target grid.

2. An angular factor takes into account the relative orientation between the trans-
formed edge and the target edges.

The log-likelihood based correlation function used to select the geometric transformation
that makes one map MP explain best the transitions of another map MQ is defined as
[136]:

logLV(MP ,MQ) =

∑
h∈H

MQ

e=5∑
e=0

Ce
h
Q · log(

Ce
h
P + αeh

CT
h
P

+ αTh
)

∑
h∈H

MQ

CT
h

Q

+

β ·
∑

h∈H
MQ

CT
h

Q · CT
h

P

∑
h∈H

MQ

CT
h

Q
, (2.71)

where β is a hexagon correlation factor, empirically chosen as β = 0.04, HMQ is the set
of hexagons of map MQ and the superindices P and Q indicate that the counts are those
of MP and MQ, respectively.

In practice, to find the geometric transformation between two maps with manageable com-
plexity, the transformation search space is limited to a finite range using the uncertainty
regarding the starting conditions [136][54]. For now, we assume that the relative pose
between the collaborating pedestrians is more or less well-known. In real-world scenarios,
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the pedestrian might carry a GNSS receiver and have visibility to a sufficient number of
satellites briefly during her walk, for example, before entering the building [131].

Computational Complexity of the Transformation Search

The map combination step in [136] applies N tr
x translation values along the x axis times

N tr
y translation values along the y axis times Nr rotations values to MQ and relies on the

Bayesian-motivated function in (2.71) to determine the best fit to MP .

The computational complexity of cross-correlating two maps using (2.71) grows in the
number of hexagons of the maps O(NH). This operation is performed Nr ·N tr

x ·N tr
y times,

which is of the order of O(Nx · Ny) = O(NH) since we can consider Nr constant, i.e.
Nr = O(1). Thus, the total complexity order is O(NH · NH) = O(N2

H): the “Turbo”
FeetSLAM algorithm exhibits a computational complexity that grows quadratically in
the area explored.

Computational Complexity of Combining Nd Maps

At each iteration, the algorithm needs to combine the Nd available individual maps into
one single map (and eventually subtract the one map for which we are computing the prior
map). To do this, in [136] each iteration is divided into Nd − 1 stages at which two maps
are combined. To select which pair to combine next in an optimal manner, it was proposed
to find the geometric transformation between all remaining combinations of maps, and
then combine the pair with the highest log-likelihood value (2.71). This requires (Nd−1)2

map combinations at each iteration [136][54], which grows quadratically in the number of
datasets, O(N2

d ) (more details can be found in Section 6.6 in [54]).

Although this procedure is accurate and robust, it does not scale well with the number
of datasets and it is very time-inefficient.

2.6.3 Open Research Questions

The main challenge and bottleneck of the “Turbo” FeetSLAM algorithm is finding the
geometric transformation that places all collected datasets within the same coordinate
system.

This thesis addresses the following topics that improve and scale the performance of
FeetSLAM:

1. Introduce an entropy-based metric to select the order in which the maps should be
combined, reducing the dependency of the map combination step from quadratic to
linear in the number of datasets (Chapter 3).
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2. Derive an entropy-based indicator of the degree of similarity between two maps,
which may serve as an alternative to (2.71) to select the transformation that makes
one map explain best the transitions of another map (Chapter 3).

3. Propose an alternative approach to reduce the computational complexity of the
brute-force transformation search approach of [136] (Chapter 6).

4. Extend the combination of the maps to multistory environments (Chapter 6).

5. Analyze the population requirements, computation time and memory needed to
map the whole indoor world under certain assumptions and outline applications
and deployment alternatives for crowdsourced mapping (Chapter 7).
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3 FootSLAM Maps from an Entropy
Perspective

Chapter 2 has given an introduction to Bayes filters, SLAM, human odometry and the
pedestrian localization and mapping techniques FootSLAM and FeetSLAM. FootSLAM
maps are a probabilistic representation of human motion. These maps are intrinsically
uncertain because they are inferred from noisy step measurements, collected by a pedes-
trian with free will and because the pedestrian’s spatial transitions are mapped using a
discrete representation of the space (a grid of hexagons).

In order to better understand the uncertainty regarding human motion, in this chapter
we introduce a new interpretation of a pedestrian’s sequence of steps conditioned on a
map using a random walk on a weighted graph. This interpretation provides a novel
understanding of the inner workings of FootSLAM.

In addition, we present a number of entropy-based metrics to measure the uncertainty of
FootSLAM maps and the uncertainty regarding a pedestrian’s next step conditioned on
a map. These metrics will be used to answer the following questions:

1. How good is a FootSLAM map? The uncertainty of the map and the uncer-
tainty regarding the pedestrian’s next step conditioned on that map can be used to
measure the quality of the map and to evaluate the performance of the FootSLAM
estimation algorithm.

2. Can we find the geometric transformation between two maps using en-
tropy metrics? We will apply relative entropy metrics to find the geometric trans-
formation that places two maps within the same coordinate system in order to
combine them.

3. Can we reduce the computational complexity of the “Turbo” FeetSLAM
algorithm? We will propose sorting map instances of the same environment by
increasing uncertainty. Then the “Turbo” FeetSLAM algorithm shall add one map
at a time to the existing combined map, starting with the maps with the lowest
uncertainty. This will reduce the computational complexity of combining Nd maps
from O(N2

d ) to O(Nd).

The main contributions of this chapter, authored by Kaiser et al. have been published in
[84].

This chapter is organized as follows: Section 3.1 defines uncertainty in the context of
FootSLAM probabilistic maps and reviews related work. Section 3.2 introduces a rep-
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resentation of the pedestrian’s history of poses as a random walk on a weighted graph,
and Section 3.3 derives a number of entropy and relative entropy metrics as indicators of
uncertainty. Finally, Section 3.4 shows experimental results and Section 3.5 discusses the
main contributions of this chapter.

3.1 Introduction

3.1.1 Entropy Definitions

Entropy In the information theory domain, (Shannon) entropy is used to characterize
the uncertainty about a source of information [140]. For our purpose, it is the expected
value of the information contained in any hexagon’s local map.

We define differential entropy as the entropy of a continuous random variable, simply
shortened by entropy and we denote it by h(·) [34].

We define entropy rate as the rate of growth of the entropy of a discrete stochastic
process over time and we denote it by H(·).

To avoid confusion with variable names, in this chapter we will use index i to refer to the
outgoing hexagon (as opposed to h used in Section 2.5) and index j for incoming hexagon.

Relative Entropy We define the relative entropy (or Kullback-Leibler (KL) divergence),
dKL(p||q) between two probability density functions p(x) and q(x) of the same random
variable x as a measure of the information loss incurred when q(x) is used as an ap-
proximation of the true distribution p(x) [34]. To describe p(x) with the approximating
distribution q(x) we will need:

h(p(x)) + dKL(p(x)||q(x)) bits ,

instead of h(p(x)) bits. With this definition dKL is always greater than 0, and 0 if and
only if p(x) = q(x) and it can be used to reflect how well q(x) explains p(x). Note that
this function is asymmetric.

In our analysis of the uncertainty of probabilistic FootSLAM maps based on human
odometry we can distinguish between map uncertainty and human motion uncertainty.

3.1.2 Map Uncertainty

In FootSLAM, given that we estimate spatial transitions (the map) conditioned on a se-
quence of observations (the pedestrian’s step measurements), maps are uncertain because
of the following reasons:
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1. Main corridors and some areas of a building such as conference rooms are visited
more often than other rooms; likewise, public buildings such as airports or shopping
centers are visited more frequently than residential buildings. Therefore, the number
of observations is location-dependent and as a result, areas with a lower number of
visits will be more uncertain than areas more frequently visited.

2. Step measurements are collected by means of inaccurate sensors. This can lead to
errors when mapping spatial transitions.

3. FootSLAM maps are based on a discrete representation of the space (a grid of
hexagons), which leads to a quantization of the step direction probabilities (in this
case the pedestrian has 6 angular choices at each location) and which limits the
spatial resolution to the size of each hexagon.

To measure the map’s uncertainty we can turn to Shannon’s information theory. This
theory, presented in 1948 [140], has inspired several research articles in cartography for
quantifying the information contents and uncertainty of a map. Bjørke [20] describes
the problems of applying Shannon’s theory to cartography. In his work, he focuses on
applying Shannon’s information theory to the syntactic component of a map and defines
the terms map entities and map information source. He distinguishes between topological
entropy, metrical entropy and positional entropy. In addition, he points out that one way
to deal with spatial correlation within the map is the computation of the weighted mean
of the entropy at different orders of neighborhood.

The idea of computing the entropy of a map has also been exploited in robotics [11].
First, a database of optical flow images for different objects are collected by robots.
Then, offline, entropy maps are built from those images. Finally, following a sequential
Bayesian approach, these maps are used to guide the motion of the robot along the optimal
trajectory that minimizes the uncertainty of recognition.

In the field of robotic SLAM, Blanco et al. [21] address the calculation of the uncertainty
of maps built with a RBPF-based approach. The problem is similar to FootSLAM’s, but
instead of using an angular transition probability map, their map representation is based
on an occupancy grid: The space is divided into cells (squares) and the binary probability
of occupancy/freeness of that cell is stored. To eliminate the influence of the cells not
explored by the robot, Blanco et al. propose to calculate the entropy-based information
metric for all cells of a map [21]:

I =
∑
x,y

(Hmax − Hx,y), (3.1)

where Hx,y represents the entropy of the cell at column x and row y and Hmax is the
maximum cell entropy. In their article, they also compare the map mean information
with the joint entropy of the map and the robot path proposed by [148]. It is shown that
when computing the joint entropy, the map entropy dominates and the path entropy is
hidden. In [148] the entropy of the individual particle maps is calculated, whereas Blanco
et al. propose to use the expected map - a weighted average of all particle maps of the
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RBPF, what we have called posterior or cumulative map - in order to measure also the
consistency of the all particle maps.

In this chapter, and similarly to [20], we will apply Shannon’s theory to the syntactic
component of FootSLAM probabilistic maps (built on a grid of hexagons) and restrict our
problem to calculating the positional entropy. Per definition of the positional entropy,
all occurrences of the map entities are seen as unique events and spatial correlations
are not considered. As proposed in [21], in our experiments, when performing entropy
calculations, we will focus on computing the entropy of cumulative maps (Section 2.5.5).

3.1.3 Human Motion Uncertainty

This uncertainty represents the degree of unpredictability of human motion. Naturally,
it is very difficult if not impossible to model and characterize this process accurately. For
instance, intentions will vary depending on personality, culture, season of the year and
past experiences at a specific location.

The predictability of human motion has been studied in [147] and more recently in [144].
Based on the mobility patterns of mobile phone users Song et al. [147] show that human
mobility is predictable to a 93% [147]. The authors use a combination of the empirically
determined user entropy and Fano’s inequality to evaluate this predictability. However,
their evaluation comprises datasets with very low spatiotemporal resolution and no topo-
logical constraints. Smith et al. [144] show that this upper bound for the predictability
of human motion can actually decrease almost exponentially as the spatial resolution
increases.

In the derivation of FootSLAM we assumed that the probability of a certain human step
is only dependent on the current location, in other words, that the human is memory-less,
and makes choices based entirely on what her intentions are at each particular location.
In the following section, we describe this simple (first order) location dependent model of
human motion as a random walk on a weighted graph.

3.2 Pedestrian’s History of Poses as a Random Walk on
a Weighted Graph

This section presents a novel interpretation of the sequence of pedestrian poses as a ran-
dom walk on a weighted graph. This provides new insights on the FootSLAM estimation
process and will prove useful to derive metrics regarding the uncertainty of a pedestrian’s
steps in Section 3.3.

The theory of a random walk on a finite network was introduced by Doyle and Snell in
[43] further described by Lovasc [103]. More information can be found in [34].
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3.2.1 Markov Chain Interpretation

Consider the stochastic process of being located at one of the NH hexagons in the grid
as a result of the sequence of pedestrian poses P 0:k. We represent this process as H0:k.
The set of states corresponds to the pedestrian being located at any of the hexagons of
the set H = {H0, H1, . . . , Hi, Hj . . . , HNH−1}. Note that we use k as the time index for
the random variable H and i, j as spatial indices of the hexagons.

To compute the joint probability over the sequence of pedestrian poses conditioned on the
map we can use as a proxy the joint probability over the hexagons at which the pedestrian
was located at each time step (see more interpretation remarks in the next section).
Remember that in Section 2.5.4 we assumed that the current pose of the pedestrian only
depends on his previous pose (i.e. a Markov process of order one). As a result, the
conditional distribution of Hk depends only on the value of the previous observation
Hk−1 = Hi. Then, the joint probability distribution over the poses conditioned on the
map results in a chain of conditional probabilities:

p(P 0:k|M ) ≡ p(H0:k) = p(Hk|Hk−1) · p(Hk−1|Hk−2) · · · p(H1|H0) · p(H0). (3.2)

This is called a Markov chain of order one and we denote it as P .

In the same way the pedestrian can start his walk in any of the hexagons and move from
one hexagon to the next, the associated Markov chain can start in any of the states and
can move successively from one state to the next (Fig. 3.1). Each one of these moves is
called step or transition [34].

In FootSLAM we learn the probability of moving from hexagon Hi to hexagon Hj by
counting the number of times a particle crosses the edges of the hexagons it visits (recall
(2.61)). This yields:

P (Hk = Hj|Hk−1 = Hi) = pij =
Cij + αij
CT
i + αTi

. (3.3)

Since this probability is independent of k (because we assumed that the underlying map
M of step direction probabilities is time invariant and it has been already learnt), the
Markov chain is said to be stationary : we can shift the sequence of poses (or hexagons)
by any amount l, P l:k+l, and its joint distribution conditioned on the map p(P l:k+l|M)
remains the same.

Thus, the chain can be defined by the initial distribution ~x0 = p(H0) and the so called

transition matrix ~P. The transition matrix represents all possible transitions from any
hexagon (state) in the hexagonal grid (Markov chain) to any other hexagon (state). The
transition matrix for our transition map is therefore a NH ×NH matrix:

~P =


p0,0 · · · p0,NH−1

...
. . .

...

pNH−1,0 · · · pNH−1,NH−1

 (3.4)
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Figure 3.1: Undirected graph (on the right) associated to the FootSLAM transition map
on the left. Each visited hexagon (in gray) is related to a state in the graph.
The outer hexagons around the visited ones are drawn with a dashed line and
represented by the state Hout. The edges crossed by the pedestrian are marked
in blue and represented in the graph by blue links. The pedestrian can move
from one state (hexagon) to another with a probability proportional to the
weights cij, shown on next to each link.

Clearly, each row of the transition matrix will consist of six elements unequal to zero at
the connecting hexagons – and zeros for the remaining elements. Note that we assume
that with every step the pedestrian takes, he is located at a different hexagon, i.e. pii = 0.
Furthermore, any Markov transition matrix has to fulfill the condition∑

j

pij = 1, ∀ j = 0, . . . , NH − 1 .

Given the transition matrix ~P and the state distribution at time ~xk−1 = p(Hk−1), com-
puting state probability distribution at time k is as simple as:

~xk = ~xk−1
~P. (3.5)

After n steps, the entries pnij of ~P
n

(the transition matrix raised to the n-th power)
represent the probability that the pedestrian, initially located at Hi will move to Hj in n
steps.

Markov Chain Properties

FootSLAM maps consist of a set of visited hexagons with their corresponding hexagon
transition counters (recall (2.63)). However, the pedestrian can leave the mapped area
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with a positive probability (thanks to the prior counts represented by α terms in (2.61)),
making our transition map virtually infinite. Nevertheless, we can assume that the transi-
tion map lies on a globe (Fig. 3.2) so that the associated Markov chain is finite. Proceeding
like this, the following properties hold:

• The grid of hexagons has no borders but yet it is finite, i.e. the Markov chain is
finite. Furthermore, we can study the subset of states of the Markov chain corre-
sponding to the hexagons that the pedestrian visited (in dark gray in Figs. 3.1 and
3.2).

• The Markov chain represented by the grid of hexagons is irreducible (also called
ergodic): it is possible to reach any hexagon from any other hexagon in a finite
number of steps.

• The Markov chain is aperiodic, i.e. the states do not return to the starting position
with a certain period.

• The Markov chain is recurrent, i.e. with a probability of one it is possible to return
to a hexagon within finite time.

Figure 3.2: Globe representation of a FootSLAM map obtained in an office environment.
The hexagons visited by the pedestrian are marked in darker colors.

For any irreducible and aperiodic Markov chain with transition matrix ~P, there exists
a unique stationary distribution ~π = {πi} ∀ i s.t. Hi ∈ H that is independent from the
initial distribution ~x0 of the chain and that satisfies [37][34]:

~π ~P = ~π . (3.6)

3.2.2 Random Walk on a Weighted Graph

A network is defined as an undirected graph G with a set of vertices (also called nodes)
corresponding to the states and a set of links (also called edges or branches) that connect
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the nodes. Each link is associated to a non-negative weight cij = cji, usually called
conductance in electric networks. A random walk on G is a Markov chain with the
elements of the transition matrix defined as [34][121]:

pij =
cij
cTi
, (3.7)

where cTi =
∑
j

cij.

Comparing (3.3) with (3.7) it is easy to verify that the random walk P 0:k−1 = P0:k−1

conditioned on the map M corresponds to a sequence of nodes in a graph, i.e. hexagons
in the grid, and that the links between the hexagons have a weight defined as cij = Cij+αij.

Note that cji = cji for any pair of neighboring hexagons, since Cij = Cji (remember we
increment both Cij and Cji when crossing edge eij, see Fig. 2.10(c)) and αij = 0.8 ∀ i, j.

If we define:

cG =

NH−1∑
i=0

cTi =

NH−1∑
i=0

(CT
i + αTi ) = CM + αM ,

with CM =
∑NH−1

i=0 CT
i and αM =

∑NH−1

i=0 αTi , and:

πi =
cTi
cG

=
CT
i + αTi

CM + αM
, (3.8)

such a Markov chain has the additional property that it is reversible with respect to the
probability ~π, i.e. :

πi pij = πj pji, ∀ i, j . (3.9)

As a result, ~π represents the unique stationary distribution for the reversible Markov
chain [37].

Our goal in this chapter is to derive a metric to measure the uncertainty of a pedestrian’s
steps and the uncertainty of a FootSLAM map. For this purpose, we now introduce the
concepts of map entropy, step entropy rate, relative map entropy and relative step entropy
rate within the context of FootSLAM.

3.3 FootSLAM Entropy Metrics

In this section we are interested in deriving metrics to measure the following uncertainties:

1. The uncertainty of the map (Fig. 3.3(a)). Since a hexagon’s local map follows
a (continuous) Dirichlet distribution, we propose using the differential entropy to
measure its uncertainty. This metric reflects how certain the learned transition
probabilities at each hexagon are.
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3.3 FootSLAM Entropy Metrics

2. The uncertainty of the pedestrian’s steps (Fig. 3.3(b)), which is influenced by the
interplay between the constraints of the environment and the pedestrian’s choice of
movement therein. As shown in Section 3.2, the sequence of pedestrian’s steps can
be interpreted as a discrete stochastic process, with each step placing the pedestrian
at a different hexagon. As such, we shall measure its uncertainty based on its entropy
rate.

3.3.1 Proposed Entropy Metrics and Interpretation

The map uncertainty and step direction uncertainty can be computed based on:

i) The history of noisy measurements ZU
1:k = ZU

1:k, where ZU
1:k is a given measurement

sequence.

ii) The history of poses P 0:k = P0:k, where P0:k is true pose sequence. This is unknown
to us but we can suppose that we have a genie who can tell us about the true pose.

iii) The true map M = M , also given by a genie.

For ease of notation in the following derivations we will omit the step vector U k, since
knowledge of P k and P k−1 gives us knowledge of the step vector U k. Also note that we
will omit the particle index m or the superindex cum when calculating entropy metrics
since all the equations apply for both a particle’s transition map and the cumulative map.

An overview of the different kinds of entropy metrics is provided in Table 3.1. Similar
reasoning can be applied to the relative entropy between two map instances inferred
from two pose sequences in the same environment and to the relative entropy rate of the
pedestrian’s steps between two pose sequences in the same environment.

map entropy step entropy rate source

convergence ⇓ h(p(M |ZU
1:k = ZU

1:k)) limk→∞H(ZU
k |ZU

1:k−1 = ZU
1:k−1) FootSLAM

infinite observations ⇓ h(p(M |P 0:k = P0:k)) limk→∞H(P k|P 0:k−1 = P0:k−1) genie pose

h(p(M |M = M))→ no uncertainty H(P k|P k−1 = Pk−1,M = M) genie map

Table 3.1: Overview of entropy metrics. We distinguish between map entropy and step
entropy rate based on the sequence of measurements ZU

1:k, on the sequence of
true poses P0:k, or the true map M . On the left side, ⇓ indicates the following: if
FootSLAM converges, the metrics based on the sequence of step measurements
become equivalent to the metrics based on the true pose; if in addition we have
infinite observations, this leads to a map with no uncertainty and the step
entropy rate would encompass the remaining uncertainty of the next step of
the pedestrian.
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3 FootSLAM Maps from an Entropy Perspective

(a) People walking at the entrance of a museum (Tadao
Ando Museum, Fort Worth, TX). Each color represents
the hexagons visited by each pedestrian corresponding
to their history of poses. The map entropy represents
the average uncertainty of the learned transition prob-
abilities at each hexagon.

(b) A pedestrian chooses her next step based on her
current location, her visual cues, her intentions and the
constraints of the environment. The arrows indicate
the possible directions she can take to exit the hexagon
where she is currently located. The step entropy rate
measures the average uncertainty regarding her next
step.

Figure 3.3: Illustration of map entropy and step entropy rate.

FootSLAM Convergence

In our subsequent numerical evaluations we cannot resort to a genie, hence we shall assume
that FootSLAM achieves good convergence and we can therefore approximate the output
of the genie using the estimated history of poses by FootSLAM.
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3.3 FootSLAM Entropy Metrics

To be specific, we define perfect convergence of FootSLAM if the estimated pose sequence
is equal to the (true) genie-sequence in the sense that the genie-sequence and the Foot-
SLAM sequence lead to identical estimates of the map. This is the same as saying that
the estimated sequence might still be perfect in this sense, despite small deviations from
the genie-sequence, if all map relevant information is identical, e.g. leads to the same
discrete transitions in the map.

If perfect convergence is achieved then we are able to determine the map entropy
h(p(M |P 0:k = P0:k)) and the step entropy rate limk→∞H(P k|P 0:k−1 = P0:k−1). In the
following sections we refer to the entropy metrics conditioned on the estimated history of
poses, assuming sufficiently good convergence.

Infinite Observations

The entropy metrics conditioned on the true map (last row of Table 3.1) are metrics that
we are not able to calculate since the map itself is being estimated from finite and not
necessarily representative walks.

If we had the true map, the map entropy given the true map would obviously result
in no remaining uncertainty. On the other hand, the step entropy rate given the true
map H(P k|P k−1 = Pk−1,M = M) would encompass the remaining uncertainty of the
next step of the pedestrian that is only influenced by the pedestrian’s free choice within
the perfectly known physical constraints and other physical features of the environment.
Conceptually one can imagine numerous ways to quantify the statistical influence of the
environment on human motion. Obstacles and constraints obviously physically enforce
limitations on motion, but features such as signs, desks, items on display in a museum,
semantically relevant features such as a podium in a conference room, all couple with
the human cognitive system and influence motion. In addition, it is to be expected that
such influencing factors are dependent on the individual, and the state of the individual
and her context (such as travel plans, etc). Since we have no observation of the physical
environment, we shall rely on the human pose sequence as the only state that we can use
to encode the environment’s influence on motion. This is equivalent to saying that an
infinitely long sequence of representative poses P0:∞ is as informative about the person’s
next step as the perfect map.

As a result, the step entropy rate will be assumed to be constant over time and the step
entropy rate given the genie history of poses P 0:k−1 = P0:k−1 approaches asymptotically
this constant for k →∞:

lim
k→∞

H(P k|P 0:k−1 = P0:k−1) = H(P k|P k−1 = Pk−1,M = M) .

The next subsections show the mathematical derivation of these metrics.
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3 FootSLAM Maps from an Entropy Perspective

3.3.2 Map Entropy Conditioned on the History of Poses

In this section we address the computation of the uncertainty of the map M conditioned
on the history of poses P 0:k = P0:k, denoted h(p(M |P0:k)). Note that in the following for
convenience we abbreviate the condition P 0:k = P0:k with P0:k. Map entropy h(p(M |P0:k))
takes into account how many times a transition of the map is measured and how certain
a learned transition probability is. The map entropy can be calculated as the average of
the hexagon entropies [34]:

h(p(M |P0:k)) =
1

NH

NH−1∑
i=0

h(p(M i|P0:k)) , (3.10)

given that the discretization into a grid of independent hexagons renders the local maps
M i independent of one another (2.50).

To compute the entropy of a hexagon’s local map p(M i|P0:k) we rely on the assumption
that p(M i|P0:k) follows a Dirichlet distribution, which is a continuous distribution (see
Section 2.5.4). The formula for the entropy of a continuous random variable x, usually
called differential entropy is [34]:

h(p(x)) = −
∫ x=∞

x=−∞
p(x) log p(x)dx. (3.11)

If the logarithm has 2 as base, then the entropy is expressed in bits. In this chapter,
we will use the unit bits. Note that the range of the entropy defined in this manner is
(−∞, 0] bits. The lower the entropy value, the lower the uncertainty about the random
variable.

In our case p(x) = p(M i|P0:k) follows a Dirichlet distribution (2.56) with parameters
ui = {uij} = {Cij + αij} ∀ j 7→ i, where the symbol 7→ indicates that hexagon Hi and
hexagon Hj share a connecting edge. As a result, the differential entropy has the following
closed-form [9]:

h(p(M i|P0:k)) = log B(CT
i + αTi ) + (CT

i + αTi − 6)Ψ(CT
i + αTi )

−
∑
j 7→i

(Cij + αij − 1)Ψ(Cij + αij)), (3.12)

with the same Beta function defined in (2.57) and Gamma function of (2.58) and Digamma
function defined as:

Ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
. (3.13)

The maximum entropy of the map (obtained by inserting (3.12) in (3.10)) occurs for
Cij + αij = 1 ∀ j 7→ i, and has a value of h(p(M |P0:k)) = −4.79 bits.
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3.3 FootSLAM Entropy Metrics

3.3.3 Entropy Rate of the Pedestrian’s Steps

Consider now the Markov chain P of the sequence of pedestrian poses P 0:k = P0:k. The
appropriate question to address is the rate of growth of its entropy with k. The entropy
rate of a stochastic process X is defined as [34]:

H(X ) = lim
k→∞

1

k
H(X0:k). (3.14)

The conditional entropy H’(X ) of a stochastic process X0:k is defined as [34]:

H’(X ) = lim
k→∞

H(Xk|X0:k−1). (3.15)

For a stationary stochastic process, both limits exist and they are equal to: H’(X ) =
H(X ) = H(X1|X0), which for a Markov chain P with stationary distribution ~π and

transition matrix ~P yields [34]:

H(P) = lim
k→∞

H(P k|P 0:k−1) =

NH−1∑
i=0

πi
∑
i 7→j

H(pij), (3.16)

with:

H(pij) = −pij log pij . (3.17)

By inserting (3.7) and (3.8) in (3.16) we obtain:

H(P) = −
NH−1∑
i=0

CT
i + αTi

CM + αM

∑
j 7→i

Cij + αij
CT
i + αTi

log
Cij + αij
CT
i + αTi

. (3.18)

The entropy rate of the sequence of pedestrian poses provides us with the stationary
growing rate of the step entropy, i.e., the uncertainty regarding each next step. In other
words, it represents the average entropy of the next move from Hi to Hj out of each
hexagon Hi ∈ H, with the average weighted by the stationary probability of being in
state Hi.

The maximum entropy rate occurs with an equally probable Markov chain (πi =
1/NH ∀ i s.t. Hi ∈ H) with uniform transition probabilities (pij = 1/6 ∀ j 7→ i) and
has a value of H(P) = 2.584 bits.

3.3.4 Relative Map Entropy Conditioned on the History of Poses

The relative entropy between two distributions p and q of a continuous random variable
x is defined as [34]:

dKL(p||q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx . (3.19)
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3 FootSLAM Maps from an Entropy Perspective

Suppose we have two sequences of pedestrian poses PP
0:k and PQ

0:k, each yielding an estimate
of the same map, MP and MQ respectively. We define p = p(M |PP

0:k) and q = p(M |PQ
0:k)

and our goal is to compute the relative entropy between them.

Similarly to the derivation of the map entropy conditioned on the history of poses in
Section 3.3.2, to compute the map relative entropy we rely on the assumption that the
local maps at each hexagon are independent of each other, thus yielding:

dKL(p||q) =
∑

i∈H
MP

dKL(pi||qi) , (3.20)

where pi = p(M i|PP
0:k), qi = p(M i|PQ

0:k) and HMP is the set of hexagons in MP .

Furthermore, we assume that pi and qi follow each a Dirichlet distribution with parameters
{uij} = {CP

ij + αPij} and {vij} = {CQ
ij + αQij}, respectively. Then resolving (3.20) for a

Dirichlet distribution yields [117]:

dKL(p||q) =
∑

i∈H
MP

log
Γ(CTP

i + αTPi )

Γ(CTQ
i + αTQi )

+
∑
j 7→i

log
Γ(CP

ij + αPij)

Γ(CQ
ij + αQij)

+
∑
j 7→i

(
CQ
ij + αQij − CP

ij − αPij
)
·
(

Ψ(CQ
ij + αQij)−Ψ(CTQ

i + αTQi )
)
, (3.21)

with the Gamma and Digamma function definitions in (2.58) and (3.13), respectively.

This equation of the relative map entropy measures the difference between two distribu-
tions of the same map and therefore can be used on a hexagon basis to detect similarities
between two maps.

3.3.5 Relative Entropy Rate of the Pedestrian’s Steps

Suppose that P and Q are two Markov chains representing two different pose sequences
PP

0:k and PQ
0:k, respectively. Each one of those pose sequences results in a FootSLAM

map, namely, MP and MQ. If their transition matrices are ~P and ~Q, respectively, we can
compute the relative step entropy rate (or divergence rate, dr) as follows [121]:

drKL(P||Q) = lim
k→∞

1

k
dKL(p(P k|PP

0:k−1)||p(P k|PQ
0:k−1)) =

∑
i∈H

MP

πPi
∑
j 7→i

pij log
pij
qij

, (3.22)

where ~πP = {πPi } is the unique stationary distribution of ~P.

Inserting (3.7) and (3.8) in (3.22) we obtain:

drKL(P||Q) =
∑

i∈H
MP

CTP
i + αTi
CP
M + αM

∑
j 7→i

CP
ij + αij

CTP
i + αTi

log

CP
ij + αij

CTP
i + αTi
CQ
ij + αij

CTQ
i + αTi

, (3.23)
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where the superindices P and Q in the counters indicate that they belong to map MP

and map MQ, respectively, and HMP represents the set of hexagons visited by PP
0:k.

The relative step entropy rate between two pose sequences describes how well the map
constructed as a result of P P

0:k, i.e. MP , explains the uncertainty regarding the steps of
the pose sequence PQ

0:k.

In the next section we apply these entropy metrics to FootSLAM maps obtained by
procesing real odometry data collected in an indoor environment.

3.4 Experimental Results

3.4.1 Experiment Settings

Two pedestrians collected a total of 6 datasets D1, . . . , D6 within the same office environ-
ment (depicted in Fig. 3.4). The pedestrians walked between 5 and 25 minutes wearing
a foot mounted IMU (MTx - Xsens R©). The data were preprocessed by a step estimator
based on ZUPTs and an UKF [166] and then used as input for the FootSLAM algorithm,
which was executed offline. In the estimation process, the radius of the hexagons was
set to r = 0.5 m and the number of particles used in the RBPF was Np = 10 000. The
resulting posterior maps are denoted as M1, . . . ,M6.

-

6

x[m]

y[m]

0
0

68

17

Figure 3.4: Floor plan of the second floor of an office building.

Dependency of Entropy Metrics with the Size of the Map

The map entropy and step entropy rate equations ((3.10) and (3.16), respectively) depend
on the number of hexagons NH in the grid. However, adding the entropy of the hexagons
that have not been visited by a walk (each with maximum entropy corresponding to
equiprobable crossings of their edges) hides the entropy values of the hexagons that were
visited during the walk.

To cope with this problem we calculate the map entropy and step entropy rate by summing
over all the hexagons contained in any of the maps we wish to compare, but excluding all
the hexagons that have not been visited (the rest of the world).
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3 FootSLAM Maps from an Entropy Perspective

(a) Map M1: h(p(M |P1
0:k)) = −5.11 bits,

limk→∞H(P k|P 1
0:k−1) = 2.51 bits

(b) Map M2: h(p(M |P2
0:k)) = −5.08 bits,

limk→∞H(P k|P 2
0:k−1) = 2.52 bits

(c) Map M3: h(p(M |P3
0:k)) = −5.02 bits,

limk→∞H(P k|P 3
0:k−1) = 2.54 bits

(d) Map M4: h(p(M |P4
0:k)) = −5.10 bits,

limk→∞H(P k|P 4
0:k−1) = 2.50 bits

(e) Map M5: h(p(M |P5
0:k)) = −5.32 bits,

limk→∞H(P k|P 5
0:k−1) = 2.45 bits

(f) Map M6: h(p(M |P6
0:k)) = −5.33 bits,

limk→∞H(P k|P 6
0:k−1) = 2.43 bits

Figure 3.5: Posterior maps corresponding to the six collected datasets D1-D6. The start-
ing position of the pedestrian is marked in red. The corresponding map en-
tropy h(p(M |Pd

0:k)) and the step entropy rate values limk→∞H(P k|P d
0:k−1) of

the maps M1 to M6 are shown in each caption.

3.4.2 Map Entropy and Step Entropy Rate for Map Quality
Assessment

The map entropy h(p(M |Pd
0:k)) values and step entropy rate values

limk→∞H(P k|P 0:k−1 = P d
0:k−1) values of the maps M1 to M6 are shown in the

captions of Fig. 3.5. The superindex d indicates the dataset number.

Map M6 has the lowest map entropy and step entropy rate. The entropy values of M6 are
closely followed by M5, and M3 presents the highest entropy, reflecting the uncertainty
over the large unvisited areas. From visual inspection of Fig. 3.5 one expected such
results: map M6 is the most extensive and accurate and M3 the least.

Note that a higher map entropy value is also reflected in a higher step entropy rate value.
However, one advantage of using the map entropy over the step entropy to asses the
goodness of a map is that the map entropy reflects the number of visits per hexagon.
Maps corresponding to walks that revisit areas more often results in lower entropy.
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To illustrate that, we show the results for the differential entropy of the map M6 for
different map strengthening factors in Fig. 3.6: The transition counters of the map are
multiplied with the map strengthening factor, simulating a higher number of visits. For
strengthening factors greater than 100, the differential entropy decreases linearly with
the logarithm of the strengthening factor despite the fact that we only increased the
total counters of each hexagon and did not change relationship of the edge transition
probabilities.
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Figure 3.6: Differential map entropy of the map M6 (Fig. 3.5(f)) conditioned on the
history of poses (3.12) for different map strengthening factors. For a map
strengthening factor greater than 100, the differential entropy decreases lin-
early with the logarithm of the strengthening factor.

We propose to use the map entropy as a metric to choose the order in which Nd maps are
combined in the iterative “Turbo” FeetSLAM algorithm (see Section 2.6.2): we shall order
the maps by increasing entropy and start combining the maps with the lowest entropy
until we have one single combined map. This effectively reduces the complexity of the
combination step from O(N2

d ) to O(Nd).

3.4.3 Map Entropy and Step Entropy Rate over Time

We have illustrated the behavior of the map differential entropy (Fig. 3.7(a)) and the
step entropy rate (Fig. 3.7(b)) over time for dataset D4. For visual comparison, Figure
3.8 shows the estimated posterior map (in gray) and that of the particle with the highest
likelihood (in blue) during the FootSLAM estimation process. We show snapshots for
time indices k equal to 48, 50, 88, 128, and 154. The entropy calculations only take into
account the visited hexagons at each time index.

Before time index k = 50 (Fig. 3.8(a)) the pedestrian visits half of the corridor and walks
back to his starting position. At time index k = 50 the estimations converge (Fig. 3.8(b))
which is reflected in the high decrease of entropy. After this, new areas being explored
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3 FootSLAM Maps from an Entropy Perspective

results in an increase of the entropy. This is shown in Fig. 3.8(c), which shows a high
diversity of hypothesis (they light gray fan-like shape). When revisiting again parts of
the corridor, some particle map hypotheses are rewarded and others are killed due to
resampling (e.g. time index k = 128 and k = 154, Fig. 3.8(d) and 3.8(e), respectively),
with a sudden decrease in entropy. One can see from the figures that the small jumps in
the curves reflect very well the exploring and convergence events.

50 100 150 200 250 300 350

−6.5

−6

−5.5

−5

Time Index k

D
iff

er
en

tia
l E

nt
ro

py
 [b

its
]

(a) Differential map entropy for dataset D4

over time h(p(M |P 4
0:k)). At the beginning

the entropy is maximum: −4.79 bits.
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(b) Step entropy rate limk→∞H(P k|P 4
0:k−1)

for dataset D4 over time. At the beginning
the entropy is maximum: 2.58 bits.

Figure 3.7: Differential entropy and entropy rate for dataset D4 over time. The visual
representations of the posterior map at different time indices are shown in
Fig. 3.8. At time index k = 50 the estimations converge (Fig. 3.8(b)) which
is reflected in the high decrease of entropy at this time index. After that, new
area is explored resulting in an increase before it decreases again. The jumps
reflect very well the exploring and convergence situations.

3.4.4 KL Divergence between Two Maps

In this section we show the KL divergence between two maps of the same environment:
M6 (Fig. 3.5(f)) and M5 (Fig. 3.5(e)) resulting from two pose sequences, P6

0:k and P5
0:k,

respectively, dKL(p(M |P6
0:k)||p(M |P5

0:k)). To illustrate the behavior of the KL distance,
we will apply a series of geometric transformations to M5:

• Spatial translations along the x axis,

• Spatial translations along the y axis,

• Rotations about the starting pose,

followed by a projection onto the same coordinate system [136] and compute the KL
divergence between M6 and M5 transformed (Fig. 3.9).

The minimum relative entropy is reached for no translation or rotation (as expected,
because the maps were initially aligned), indicating that the steps in P 5

0:k are explained
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well by the transition probabilities of M6. Whereas the KL divergence grows slowly with
the shifts along the x-axis (Fig. 3.9(a)) – given that the maps still share a portion of the
corridor (with similar spatial transitions) —, the curve is more steep for translations along
the y-axis (Fig. 3.9(b)), which quickly make the two maps not share the main horizontal
corridor.

Finally, Fig. 3.9(c) shows the KL divergence between M5 rotated about the starting
hexagon (in red) and M6 unchanged. The minimum is reached when the two maps are
aligned (M5 unchanged), but we can see that towards the rotation value of π radians there
is a local minimum due to the symmetries in the building, which make the left side of the
corridor fall onto the right side of the corridor and vice-versa.

Similar results were obtained for the relative entropy rate of the pedestrian’s step (3.23).

These results show how the relative map entropy and relative step entropy rate are valid
metrics to express how well the transition probabilities of one map can explain those of
another map. These results suggest that we can use the relative map entropy between two
maps and relative step entropy rate to find the best geometric transformation that places
the two maps within the same coordinate system as an alternative for the log-likelihood-
based correlation function (2.71), initially proposed in [136].

3.5 Discussion

FootSLAM maps are a probabilistic representation of human motion and, as such, they are
uncertain. In this chapter we have differentiated between the uncertainty of the map itself
and the uncertainty regarding human motion. To better grasp human motion uncertainty
we have introduced a new interpretation of a pedestrian’s sequence of steps conditioned
on a map as a random walk on a weighted graph, expanding our understanding regarding
the inner workings of the FootSLAM estimation process.

We have introduced four entropy-based metrics to measure the uncertainty of the map
and the uncertainty of the pedestrian’s steps. Table 3.2 summarizes the main insights
derived from the experiments. The most impactful result is that we can use the map
entropy to reduce the complexity of the “Turbo” FeetSLAM algorithm from quadratic to
linear in the number of datasets if we sort the maps by increasing uncertainty.

Future work should address the following topics:

• Analyze the correlation between the accuracy of map-aided navigation based on a
FootSLAM map and the measured uncertainty of the map: Do maps with lower
uncertainty provide better localization accuracy?

• Measure and analyze the uncertainty of a single particle’s map or the uncertainty
of the pose estimates of the particle cloud over time.

• Extend the presented entropy metrics to multistory environments.
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Name Formula Remarks

Map Entropy h(p(M |P0:k)) Reflects the inherent uncertainty of the map. It reflects
the number of visits of the hexagons. It can be used to
select the order in which maps are combined in Feet-
SLAM, reducing its complexity from O(N2

d ) to O(Nd).

Step Entropy Rate limk→∞ H(P k|P0:k−1) Reflects the uncertainty regarding the pedestrian’s next
step. It does not reflect the number of visits of the
hexagons.

Relative Map Entropy dKL(p(M |PP0:k)||

p(M |PQ0:k))

Describes how well each hexagon’s local map distribu-
tion explains that of another map. It can be used to
find the geometric transformation that places two maps
within the same coordinate system.

Relative Step Entropy Rate lim
k→∞

1/k dKL(p(P k|PP0:k−1)||

p(P k|PQ0:k−1))

Describes how well the map learnt as a result of PP0:k,

MP , explains the steps of the pose sequence PQ0:k. It can
also be used to find the geometric transformation that
places two maps within the same coordinate system.

Table 3.2: FootSLAM entropy metrics.

• Investigate if these entropy metrics can be used to measure the convergence rate of
FootSLAM.
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(a) Time index k = 48 (b) Time index k = 50

(c) Time index k = 88 (d) Time index k = 128

(e) Time index k = 154

Figure 3.8: Cumulative posterior map obtained by FootSLAM estimation at time indices
k equal to 48, 50, 88, 128, and 154. Different shades of gray encode the weight
of the corresponding particle (darker means higher weight). The current posi-
tion is marked in red. The posterior map of the most likely particle is shown
in blue.
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3 FootSLAM Maps from an Entropy Perspective
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(a) Relative entropy between two maps M6
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(b) Relative entropy between two maps M6

(unchanged) and M5 translated along the
y-axis.
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(c) Relative entropy between two maps M6

(unchanged) and M5, where M5 is rotated
about its starting position.

Figure 3.9: Relative entropy between two maps M6 and M5 as a function of the transfor-
mation applied to M5.
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4 Multistory FootSLAM

Chapter 3 has introduced entropy-based metrics to measure the uncertainty of FootSLAM
maps and the uncertainty regarding a pedestrian’s next step. These FootSLAM maps are
built on a 2D grid of hexagons and thus do not allow the pedestrian to map different
floors of a building in one single walk.

In this chapter we extend FootSLAM to allow mapping and localization in multistory
environments. In our work we assume that vertical human motion is relatively rare
compared to horizontal motion; we live and work mainly in horizontal floors. Vertical
transitions (stairways, escalators or elevators) are thus very informative and repeated
observations of such transitions can act as a strong loop closure event in the FootSLAM
estimation process, helping the algorithm converge.

The two main missing pieces that we will address to allow for multistory FootSLAM are
the following:

1. Extending the two-dimensional grid of hexagons to allow the mapping of several
floors. For this we will use a grid composed of layers of hexagonal prisms (Fig. 4.1).

2. Deriving a suitable error model for the odometry error along the z axis. We will use
an autoregressive integrated moving average (ARIMA) model to model the error
series of the odometry along the vertical component.

The major challenge of this work is particle depletion: We use a particle filter with a
finite number of particles to represent different hypotheses for the state. In a multistory
environment the pedestrian is much less likely to revisit regularly areas during his walk
(“closing the loop”) and the resampling process may eliminate valid hypotheses for the
state lying far back in time. In this chapter we will address a number of particle depletion
effects and show the resulting FootSLAM maps after processing real-world data collected
in three multistory environments. To the knowledge of the author, this has been the first
time to show the feasibility of mapping multistory indoor environments using only inertial
sensors.

The main contributions of this chapter have been published in [56].

The rest of this chapter is organized as follows: Section 4.1 reviews related work, Section
4.2 presents the theoretical extension of FootSLAM for multistory environments and Sec-
tion 4.3 addresses particle filter depletion effects. Next, Section 4.4 introduces a model
for the vertical component of the odometry error and Section 4.5 describes a method to
extract the floor separation from the noisy odometry measurements. To asses the valid-
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Figure 4.1: On the bottom: The pedestrian takes a step with his right foot (depicted in
black) U k, moving from P k−1 to P k. We can only observe the measurement
of the step ZU

k , which is subject to an additive error EU
k . On the top: The

grid of hexagonal prisms discretizes the 3D world. A particle m moves from
P

[m]
k−1 to P

[m]
k , crossing two faces f (marked in red) as a result of its proposed

step U
[m]
k .

ity of the proposed algorithm, Section 4.6 describes three experimental settings and the
resulting probabilistic maps.

4.1 Related Work

One problem that arises when mapping multistory buildings is the resulting map mis-
alignment between different floors when no inter-floor constraints are assumed.

The articles [87] and [77] address this problem when mapping the environment with robots:
[87] presents an approach that identifies global structural constraints to align the maps of
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4.2 Extension of FootSLAM to Map Multistory Buildings

each floor; [77] uses visual odometry to align the maps of the different floors, which are
treated independently.

In the pedestrian navigation community, [142] uses the sensors in a smartphone (ac-
celerometers and gyroscopes) to measure the steps of a pedestrian. The smartphone
barometer detects floor changes and map matching is used to revise the position esti-
mates and to remove possible misalignments between the floor maps. Another approach
is presented in [48], where the authors address the mapping of a multistory building by
collaborating pedestrians (or pedestrians and robots) that wear a vest-mounted array of
sensors and whose paths overlap. A barometer detects stairway transitions and an IMU
detects elevator transitions. The system generates a series of submaps that are connected
when overlapping areas of the map are discovered, but the maps of each floor are treated
separately. The extension of actionSLAM to multistory environments [70] relies on the
recognition of stair climbing to allow mapping with sub-room accuracy.

4.2 Extension of FootSLAM to Map Multistory Buildings

In FootSLAM, we are interested in estimating the probability distributions of human
motion as a function of location. In order to be able to map vertical transitions, the 2D
hexagonal grid of Section 2.5 has been now replaced by a grid of uniformly distributed
hexagonal prisms.

4.2.1 Hexagonal Prism Grid

For the sake of simplicity we assume that our environment fits within a 3D grid composed
of Nx columns, Ny rows and Nz layers of hexagonal prisms (Fig. 4.1). Thus, the number
of hexagonal bases is NH = Nx · Ny and the total number of prisms is NH = NH · Nz =
Nx ·Ny ·Nz.

A hexagonal prism Hi , {h, l} ∈ H = {H0, . . . ,HNH−1} is a polyhedron with hexagonal
base Hh with 0 ≤ h ≤ NH − 1 of radius r, a given height HH and located at layer Ll with
0 ≤ l ≤ Nz − 1 (Fig. 4.1). Thus, the index i or its decomposition into the pair of indices
h and l uniquely represent a hexagon’s position, with i defined as:

i = l ·NH + h.

A hexagonal prism has six lateral faces f ∈ {0, . . . , 5}, a lower face f = 6 and an upper
face f = 7.

Later in this chapter we will refer to the coordinates of a prism Hi as the 3D coordinates
(x, y, z)Hi , where (x, y)Hi = (x, y)h are the coordinates of the center of its hexagonal base
and zHi corresponds to the z coordinate at the center of the layer.
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4 Multistory FootSLAM

4.2.2 Mapping Problem

For the case with a grid of hexagonal prisms (2.50) becomes:

p(M |P 0:k) =

NH−1∏
i=0

p(M i|P 0:k), (4.1)

where M i = Mh,l represents the local map of prism Hi = {h, l}, that is, an 8-tuple vector
of random variables denoting the probability of transition across each face f ∈ {0, · · · , 7}.
Thus, the mapping problem is now composed of NH problems.

Now the transition probabilities of a prism are encoded in:

Mh,l = (M0
h,l,M

1
h,l,M

2
h,l,M

3
h,l,M

4
h,l,M

5
h,l,M

6
h,l,M

7
h,l),

and (2.49) becomes:

M
f(Uk)
H(P k−1) = P (P k ∈ Hj|P k−1 ∈ Hi), (4.2)

where Hi = {h, l}, Hj = {h′, l′} and Hi 6= Hj — the pedestrian moved to another prism,
H(P k−1) refers to prism where P k−1 lies and f(U k) represents the face of that prism
that was crossed when taking step U k to move to P k (Fig. 4.1 shows an example with
two face crossings). From now on we will use the shortcut i or {h, l} for H(P k−1) and
f for f(U k). We can estimate each local map M i = Mh,l, the transition probabilities
unknown to us, using a vector data structure Ch,l whereby each vector element stores the

transition counters Cf
h,l across one of the eight faces.

Finally, the factorized full posterior of (2.51) can be written as:

p({PUE}0:k,M |Z
U
1:k) =

NH−1∏
i=0

p(M i|P 0:k)︸ ︷︷ ︸
NH map estimators

· p({PUE}0:k|ZU
1:k)︸ ︷︷ ︸

one pose estimator

, (4.3)

Therefore, the full posterior can be divided into (NH + 1) estimators, NH estimators for
the computation of the posterior over the map and one for the computation over the
pedestrian’s poses, step vectors and correlated errors.

4.2.3 Localization Problem

For a grid composed of hexagonal prisms the FootSLAM term (2.61) becomes:

I ,
∫
Mh,l

p({PU}k|P k−1,Mh,l) · p(Mh,l|P 0:k−1) dMh,l ∝
Cf
h,l + αfh,l

CT
h,l + αTh,l

, (4.4)
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4.2 Extension of FootSLAM to Map Multistory Buildings

where Cf
h,l is the number of times that face f of prism Hi = {h, l} has been crossed up

to time step k and CT
h,l =

∑f=7
f=0C

f
h,l and αTh,l =

∑f=7
f=0 α

f
h,l. Thus, particles that revisit

similar transitions obtain a greater reward over time.

The term αfh,l refers to the virtual prior counts, which in [128] had the empirically chosen
value of 0.8 for all six lateral edges (now lateral faces f ∈ {0, . . . , 5}) (see Section 2.5).
In Section 4.3.1 we address the use of the virtual prior counts for the lateral faces in
more detail. On the other hand, given that vertical transitions such as stairways, ramps,
escalators and elevators are relatively rare, we can assume that the prior probability of
human vertical motion is lower than the prior probability of human horizontal motion.
For this reason, we have empirically chosen αfh,l = 0.05 , ∀ f ∈ {6, 7} ∀ h, l. Thus, when
the pedestrian revisits a vertical transition, it helps the convergence of the map, acting
as a wormhole in the particle filter estimation process.

4.2.4 Changes to the RBPF algorithm for Multistory FootSLAM

The RBPF algorithm used in FootSLAM is detailed in Section 2.5 and in [8]. The two
main steps of the algorithm are the proposal and the weight update steps, which we
explain next.

Proposal Step

As mentioned in Section 2.5.7, Algorithm 3 in [134] describes the proposal step for the
horizontal odometry error component and consists of a slow and fast angular random walk
process and a white noise component. The particular proposal density function for the
vertical component of the odometry errors is studied in Section 4.4.

Weight Update Step

The weight update step takes into account the product of all instances of (4.4) for each face
crossed. In [128] it had been proposed to apply a non-linear function to the weight update
based on the angle of the current step vector in order to account for directional biases in
the hexagonal grid. In this work we have adopted a weight computation that accounts
for steps spanning many faces and which does not suffer from directional biases. The
underlying thought is to see a weight update as a reward for a particle having traveled in
a particular direction; the hexagonal grid leads to a relatively coarse angular and spatial
discretization. In order to make the weight update as invariant to the hexagonal grid
as possible (including the hexagonal prisms’ orientation in space, radius and height) we
will compute the geometric mean of the weight update (4.4) and account for the accrued
change in traveled odometry Oc. The use of the geometric mean is motivated by the fact
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4 Multistory FootSLAM

that weights are multiplicative. Thus, (2.67) becomes:

w
[m]
k ∝ w

[m]
k−1 ·


N

[m]
c∏
j=1

I
[m]
j


η[m]

, (4.5)

where N
[m]
c is the number of faces crossed by particle m since the last weight update and

I
[m]
j is computed using (4.4) for the j-th face crossing of particle m (for example in Fig.

4.1, Nc = 2). We define η[m] as follows:

η[m] =
ς ·Oc

N
[m]
c

, (4.6)

where Oc is the accrued change in traveled odometry and ς is a scale factor: We are
incorporating one “face’s worth” of (4.4) per ς = 1.1 meters of traveled odometry.

We have observed sudden stark weight contrasts that sometimes immediately trigger
resampling, which results in a pronounced loss of diversity. Therefore, following Algorithm
4 in [134], we retain temporary weights for each particle that are only multiplied into the
existing weight after having been geometrically averaged using (4.5) over a sufficiently
large odometry (here we wait six times the radius of the hexagons).

4.3 Effects of Depletion

A problem encountered of using particle filters with a finite number of particles is the loss
of diversity of hypotheses describing the state space lying far back in time [13]. This is
due to the resampling step whereby locally good particles tend to be duplicated and weak
particles are often erased. This causes particle depletion in areas that had been visited in
the past, since the resampling process eliminates hypotheses that might have been valid in
the previous time points. In the next subsections we address two problems that arise from
this depletion effect and that represent the two main challenges of multistory FootSLAM.

4.3.1 Floor Discontinuity Problem

In the two dimensional world we already experience very large loops but for the exper-
imental data [128][57][136][61], we have nonetheless achieved convergence. However, in
a large multistory building, the length of the loops can be much bigger because of the
additional freedom to explore more stories; this appears to be compounded in buildings
with multiple stairways.

In particular, when a pedestrian visits a given floor intermittently and the time between
visits is relatively long, depletion in the number of hypotheses for the floor height can
cause a discontinuity in the map: due to the drift and other errors of the odometry the
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4.3 Effects of Depletion

different visits to the floor may be mapped into multiple prism layers, each with a different
elevation.

To tackle this problem, we assume that the floor separation Sfloor is constant and that it
is known or can be inferred from the odometry data (as explained in Section 4.5). Given
the floor separation, we can compute which prism layers coincide with a floor. Since the
presence of horizontal walkable areas in between floors is relatively scarce, it is reasonable
to assume that the prior likelihood of horizontal motion within prism layers that coincide
with a floor is higher than that likelihood within prisms layers that do not coincide with
a floor (for example during stairway transitions). To avoid the discontinuity problem we
propose to set slightly stronger virtual prior counts at those prism layers Ll that coincide
(symbol ↔) with a floor:

αfh,l = 0.8, f ∈ 0, . . . , 5, ∀ h ∀ l↔ floor

αfh,l = 0.5, f ∈ 0, . . . , 5, ∀ h ∀ l = floor. (4.7)

These values have been empirically chosen after careful visualization of the particle cloud
during the FootSLAM estimation process for many datasets.

4.3.2 Misalignment Between Floor Maps

FootSLAM is rotationally invariant if we do not use any heading sensor. Ideally, Foot-
SLAM’s posterior distribution would retain a high degree of angular diversity (relative to
any initial heading that is assumed at k = 0). However, due to the finite number of parti-
cles, typically a few angular hypotheses will remain after some time. When a pedestrian
has spent some time on a floor, the resulting small set of map hypotheses for that floor
might not necessary overlap with the maps on other floors (see Fig. 4.2).

However, we can assume a certain degree of structural similarities between the different
floors in the building, namely the position of stairways, lifts or main corridors. We can
include a prior factor g(·) in the FootSLAM term (2.70) that takes into account the
number of transitions across the crossed face f at the other prism layers with the same
hexagonal base Hh. We obtain:

I =
Cf
h,l + αfh,l + g(Kf

h − C
f
h,l)

CT
h,l + αTh,l + g(KT

h − CT
h,l)

, (4.8)

where Kf
h =

∑l=Nz−1
l=0 Cf

h,l, is the aggregated transition counter corresponding to the

crossed face f for all layers in the grid with hexagonal base Hh, and KT
h =

∑f=7
f=0 K

f
h .

In our experiments we use g(Kf
h − Cf

h,l) = β · (Kf
h − Cf

h,l) with degree of structural
similarities β = 0.3 and for quick computation of the weight update equation, we also
store the aggregated counters Kf

h during the map update step. Other non-linear functions
g(·) are to be studied in future work.
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4 Multistory FootSLAM

Figure 4.2: Illustration of a moderate presentation of the misalignment effect: the top
view of a FootSLAM map corresponding to Walk 1 (see Section 4.6 for more
details). Different floors are marked with different colors. There is a clear
misalignment between the corridors of the different floors.

Proceeding in this way, we can correct possible misalignments between different floors in
an online fashion (Fig. 4.3), as opposed to the approaches in [87] and [142], which correct
the floor misalignment in a post-processing step.

Figure 4.3: Top view of a FootSLAM map corresponding to Walk 1 (see Section 4.6 for
more details). The misalignment has been corrected using the aggregated
counts of the other levels as inter-floor constraint. The floor plan of the
ground floor is shown for comparison, which is why hexagons in colors other
than dark blue may appear to violate some of the walls that are specific to
the ground floor such as the one separating the two upper right rooms.
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4.4 Modeling the Stochastic Drift of the z Component of the Odometry

4.4 Modeling the Stochastic Drift of the z Component
of the Odometry

As mentioned in Chapter 2, FootSLAM splits the estimation process into two levels:
The UKF in [166] integrates the noisy IMU measurements and an upper level RBPF
processes the UKF odometry output. The particles in the RBPF propose errors (first
term in (2.66)) in order to model the drift in the odometry. As mentioned in Chapter 2,
FootSLAM splits the estimation process into two levels: The UKF in [166] integrates the
noisy IMU measurements and an upper level RBPF processes the UKF odometry output.
The particles in the RBPF randomly propose errors (first term in (2.66)) in order to
model the drift in the odometry.

The main error sources that distort the 2D odometry used in this section are introduced
in Section 2.5.7. In this contribution, we focus on finding a suitable model for the errors
that perturb the z component of the odometry, visible in Figures 4.4 and 4.9. For a
complete review of the error sources in INSs, the reader is referred to [165].

4.4.1 Computing the Error

For simplicity, we will study the error present in the vertical component of the odometry
resulting from a walk on a single floor (Fig. 4.4). We assume a constant floor height and
thus any change from the initial z measurement corresponds to errors.

ARIMA models have been widely used to model many empirical signals such as electricity
prices, stock prices and storms, when random changes in the slope of the series — trends
(in the example a negative trend)— are present [23]. Examples of ARIMA models within
the field of inertial navigation can be found in [115] and [62], where the drift of gyroscopes
is modeled accordingly. However, our goal is to model the odometry, not the error present
in the raw measurements collected with inertial sensors.

4.4.2 ARIMA Model

An ARIMA model is composed of an autoregressive (AR) model of order p, d integrations
(I) and a moving average (MA) model of order q. The ARIMA(p, d, q) model can be
expressed as follows [23]:

φ(B)∇dzk = θ(B)wk, (4.9)

where

• zk represents the series we wish to model and wk are independent i.i.d samples from
a normal distribution N (w; 0, σw).

• B is the backward shift operator, i.e. Bm · zk = zk−m.

• ∇ = (1−B) is the backward difference operator, i.e. ∇zk = zk − zk−1.
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Figure 4.4: Odometry along the vertical axis, zk, collected during one walk within one
floor (in blue) with respect to the ground truth (in red). In this case the
odometry corresponds to the error present in the series.

• φ(B) = 1−φ1B−φ2B
2 · · · −φpBp is a stationary AR operator (its roots lie outside

the unit circle) of order p.

• φ(B)∇d is the generalized (non-stationary) AR operator with d roots equal to unity.

• θ(B) = 1 − θ1B − θ2B
2 − θqBq is an invertible MA operator (its roots lie outside

the unit circle) of order q.

Two steps help identify an ARIMA model [23]:

1. Iteratively difference zk until the resulting series y
(d)
k = ∇dzk becomes stationary.

2. Identify the resulting autoregressive-moving average (ARMA) series, ARMA(p, q):

φ(B)y
(d)
k = θ(B)wk.

We can rely on the sample Autocorrelation Function (ACF) (see Appendix A.1) and
sample Partial Autocorrelation Function (PACF) (Appendix A.2) to estimate the model
orders p, d, q.

Note that we will follow these steps to model the error that perturbs the vertical compo-
nent of the odometry obtained using the UKF algorithm in [166]; the model orders and
parameters will only apply to odometry obtained with that algorithm. Nevertheless, the
mathematical procedure is general and remains valid for any data with a stochastic drift.
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4.4 Modeling the Stochastic Drift of the z Component of the Odometry

4.4.3 Proposed Model

For clarity, we first introduce the error model and postpone its validation from data. Our
hypothesis is that the error series zk can be represented by an ARIMA(0,2,2) model. We
define yk as the one time differenced series yk = ∇zk and xk as the two-time differenced
series xk = ∇2zk. The series ỹk refers to yk with the mean µy removed, ∆tk to the time
elapsed between step k and step k − 1 and dk to the drift series. nk is the driving noise
series of the drift, generated by a MA(2) filter with parameters θ1 and θ2 that filters
independent i.i.d. samples from a normal distribution wk ∼ N (w; 0, σw) (Fig. 4.5).

+ 𝑤𝑘 𝑑𝑘 𝑦𝑘 
MA(2) 𝑧𝑘 

𝜇𝑦 

𝑦�𝑘 

𝜃1 ∆𝑡𝑘  

x 

𝜃2 

𝑛𝑘 

Figure 4.5: Diagram of the error model for the vertical component of the odometry. wk
are independent i.i.d. samples from a normal distribution N (w; 0, σw). MA(2)
stands for moving average filter of order 2.

The series are related as follows:

zk = zk−1 + yk

yk = ỹk + µy

ỹk = ∆tk · dk
dk = dk−1 + nk

nk = wk − θ1wk−1 − θ2wk−2

I(1)

I(1)

MA(2).

(4.10)

For simplicity, we assume that the series is evenly spaced with ∆tk =1 s, ∀ k. Differencing
the error series zk yields:

yk = ∇zk = ỹk + µy = dk + µy, (4.11)

which is a non-stationary series, given the non-stationarity of dk. Differencing the series
one more time results in:

xk = ∇2zk =

nk︷ ︸︸ ︷
dk − dk−1 = wk − θ1wk−1 − θ2wk−2, (4.12)

which is stationary for all values of θ1 and θ2 [23]. Hence, differencing two times (d = 2)
renders the original zk series stationary, as expected for a model with two integrations.

Given that the autocovariance (A.1) of wk is cww(l) = σ2
w δ(l), the autocovariance of the

two-time differenced series xk is obtained by simple insertion of (4.12) in (A.1):

cxx(l) =
m=2∑
m=−2

γm δ(l −m), (4.13)
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with autocovariance coefficients:

γ0 = σ2
w(1 + θ2

1 + θ2
2) (4.14)

γ−1 = γ1 = −σ2
wθ1(1− θ2) (4.15)

γ−2 = γ2 = −σ2
wθ2, (4.16)

which is the well-known result for a moving average model of order 2 [23].

4.4.4 Model Identification

In this section we identify the model orders for the error series zk depicted in Fig. 4.4.
The sample ACF and the sample PACF of zk, not shown here for brevity, correspond to
a non-stationary series, since the ACF does not tend to zero and the PACF is negligible
from lag 2 [23].

Differencing the series zk as in (4.11) yields µy = −0.00623 m, an offset that causes the
negative trend. The ACF and PACF of ỹk decay quickly (Fig. 4.6) but die rather slowly
— we have plotted two lines that correspond to the 95% confidence in the estimates of
the ACF and PACF, indicating when the coefficients are negligible (see Appendices).

0 2 4 6 8 10 12 14
−1

0

1

lag

Sample ACF

1 3 5 7 9 11 13 15
−1

0

1

lag

Sample PACF

Figure 4.6: Sample ACF and sample PACF of ỹk. The limits for the 95 % confidence
interval are shown as a reference (see Appendices).

A second differentiation (4.12) results in a fast decaying ACF (with negligible coefficients
from lag 3) and a PACF that decays quickly but dies slowly (Fig. 4.7). These plots
suggest that xk is stationary [23]. Thus, the number of integrations d is 2.

The next step is to identify the resulting ARMA series. Since the PACF dies slowly and
the ACF is negligible from lag 3, a MA(2) seems suitable to model the series as shown in
(4.13) (see also Appendices). As a result, our proposed model follows an ARIMA(0,2,2).
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Figure 4.7: Sample ACF and sample PACF of xk. The limits for the 95 % confidence
interval are shown as a reference (see Appendices).

4.4.5 Parameter Estimation of MA(2)

Computing the autocovariance (A.1) of our example series xk and identifying the co-
efficients γ0 (4.14), γ1 (4.15) and γ2 (4.16) yields θ1 = 0.636, θ2 = 0.354 and σw =
8.85 · 10−3 m/s.

Fig. 4.8 shows the periodogram estimate [119] of the spectrum of xk (in blue) and the
theoretical spectrum of xk with the estimated parameters (in red). In our view, this figure
supports the validity of our model.

We have applied the model individually to 10 walks with a total duration of ca. 4 hours.
Table 4.1 shows the mean and standard deviation of the model parameters, which are
consistent for different walks. Furthermore, the offset µy is on average -8.47 mm; however
in our implementation we have set it to 0.0 m.

θ1 θ2 σw

mean 0.614 0.305 1.28 · 10−2 m/s

std. dev. 0.0895 0.0566 3.34 · 10−3 m/s

Table 4.1: Mean and standard deviation of the parameters of the MA(2) model for the
two-time differenced series xk.

The proposal density function of the RBPF consists of the normal distribution wk ∼
N (w; 0, σw) and the error series will be generated as in Fig. 4.5. The recursion starts
with w−2 = w−1 = 0.0 and we draw w0 from N (w; 0, σw) and d−1 from N (d; 0, σd) with
σd = 0.05 m/s (chosen empirically).

81



4 Multistory FootSLAM

−3 −2 −1 0 1 2 3

−100

−80

−60

−40

−20

ω (rad)

10
lo

g
1
0
X

(e
j
ω
)

 

 

Periodogram
ARIMA(0,2,2)

Figure 4.8: Periodogram spectrum estimate X(ejω) of the two-time differenced series xk =
∇2zk with zk as shown in Fig. 4.4 (blue curve) and theoretical spectrum
estimate for the proposed model in (4.10) (red curve).

4.5 Estimating the Floor Separation

In this work, we extract the floor separation from the odometry data under the following
assumptions:

• The separation between the floors in the building is constant.

• The pedestrian does not use elevators or escalators, but only staircases.

Given the odometry data such as those in Fig. 4.9 (in blue), the steps to estimate the
floor separation are:

1. Detect stairway transitions.

2. Compute the vertical lengths of the stairway transitions, Lstw. Note that the stair-
way transitions can correspond to more than one floor.

3. Group the lengths into B bins with mean µj, B = {B1, B2, Bj, . . . , BB}.

4. Obtain an estimate of the floor separation Ŝfloor in the building given the bins.

Steps 1 to 3 are performed using Algorithm 1 which is based on Algorithm 1 in [48] but
uses bins instead of a Gaussian Mixture Model and odometry data instead of altimeter
data. Step 1 is achieved by using the differenced odometry yk = ∇zk = zk − zk−1 and
computing its standard deviation std(·) within a window Wk. During stairway transitions,
the standard deviation is greater than in floor areas. The threshold tstd has been set to
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0.1 m. The method add(·) appends the last computed stairway length to the bins B by
choosing the bin with the closest mean or adding a new bin when the distance to any
mean is greater than a second threshold tbin = 0.5 m.

Algorithm 1 StairwaysDetection
Input: zk, yk
Output: B
1: onF loor =true
2: index = 1
3: for each time step k do
4: isF loork = std(yk ·Wk) < tstd // Wk is a rectangular sliding window of length L centered at k
5: if isF loork and not onF loor then
6: onF loor =true // walking out of the stairway
7: f = max(k − L/2, 1) // finishing index of the stairway
8: Lstw = zf − zs // Lstw is stairway length
9: add(B, Lstw)

10: else if not isF loork and onF loor then
11: onF loor =false // walking into the stairway
12: s = min(length(yk), k + L/2) // starting index of the stairway
13: end if
14: end for

Given the set of bins B that contain the stairway transition lengths we can estimate
the floor separation by finding the (possibly) missing fundamental L0, i.e. the Greatest
Common Divisor (GCD) of theB non-integer numbers µj, ∀ j ∈ {1, . . . , B}. Thus, Ŝfloor =
L0. In our example of Fig. 4.9, we obtain three bins about µ1 = 3.667 m, µ2 = 7.183 m,
µ3 = 14.273 m — corresponding to 1, 2 and 4 floor transitions, respectively. The estimated
floor separation results in Ŝfloor =3.591 m and the real floor separation is Sfloor =3.54 m.
Thus, the error for this dataset is of the order of 10−2 m.

We can now compute the elevation of each floor with respect to the ground floor and the
corresponding floor numbers, as shown in Fig. 4.9 (in green). Note that we can freely
choose the number of intermediate prism layers between two floors (FootSLAM maps
vertical resolution), but typically we use 3 to 10 layers. We set stronger horizontal priors
on those layers that coincide with a floor, applying (4.7).

4.6 Experimental Verification and Results

In this section we evaluate the performance of the proposed multistory FootSLAM algo-
rithm in three multistory environments by presenting the resulting maps.
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Figure 4.9: Odometry along the z axis for one walk (in blue). A negative drifting error
is clearly visible. In green, the floor number (starting from 0) have been
computed following the algorithm explained in Section 4.5.

Walk Sfloor Ŝfloor HH Nz Location Floor Area Nstw Nfloor Duration

1 3.54m 3.591m 1.18 m 32 DLR building 103 70 m×20 m 2 7 26 min

2 3.49m 3.503m 0.5817 m 64 TUM building N4 25 m×25 m 2 7 18 min

3 3.58m 3.522m 0.597 m 64 TUM building 9 15 m×110 m 3 5 36 min

Table 4.2: Particular settings for each walk.

4.6.1 Experiment Settings

A pedestrian walked with a shoe-mounted IMU, the cable-connected MTx - Xsens R©, that
measured his steps while walking. The data were recorded in August and September
2011. The UKF algorithm described in [166] was used as the dead reckoning algorithm.
We deployed Np = 30 000 particles for the RBPF and the following parameters for the
predefined prism grid: r = 0.5m, Nx = 256, Ny = 256.

The pedestrian undertook three walks within three different buildings: Walk 1, Walk 2 and
Walk 3 (Figs. 4.10, 4.11 and 4.12, respectively). Walk 1 was undertaken at building 103
at DLR whereas Walk 2 and Walk 3 took place at TUM buildings 9 and N4, respectively.
Table 4.2 shows the particular settings for the prism height HH and the number of prism
layers Nz along with estimated floor separation Ŝfloor of each building. The true floor
separation Sfloor was known. In addition, the table shows the floor area of one floor
(roughly), the number of stairways used Nstw, the number of visited floors Nfloor and the
duration of each walk.
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During the three walks, the pedestrian walked within the floors and from one floor to
the next using the stairway, i.e. no elevators or escalators were used. The pedestrian
walked at a normal pace and during office hours, avoiding obstacles such as other walking
pedestrians and furniture.

4.6.2 Results

Figures 4.10(c), 4.11(b) and 4.12(b) show the resulting maximum a posteriori FootSLAM
maps for the three walks. Different colors represent different floors and blue rectangular
polyhedrons correspond to non-floor prism layers, indicating ramps or stairway transi-
tions. For comparison we have also depicted the odometry measurements of Walk 1
(Fig. 4.10(b)), which clearly suffers from heading drift. Interactive PDF files with the
FootSLAM maps are available at [55].

Walk 1

Walk 1 took place at German Aerospace Center (DLR) office building 103 (Fig. 4.10(a)).
The building covers an area of roughly 70 m×20 m. The walk had a duration of ca. 26
min, covering 6 floors and the roof. Two sets of stairways were visited both going up and
down. Figure 4.10(c) shows the resulting FootSLAM map.

Walk 2

Walk 2 took place at Technical University of Munich (TUM) office building N4 (Fig.
4.11(a)). The building covers an area of roughly 25 m×25 m. The walk had a duration
of ca. 18 min, covering a total 7 floors also using two stairways. Figure 4.11(b) shows the
resulting FootSLAM map.

Walk 3

Walk 3 took place at TUM office building 9 (Fig. 4.12(a)). The building covers an area
of roughly 15 m×110 m. The walk had a duration of ca. 36 min, covering a total 5 floors.
Three sets of stairways and a ramp were used during the walk. Figure (Fig. 4.12(b))
depicts the resulting the FootSLAM map. The pedestrian walked outdoors for a while,
corresponding to the wide loop.

4.7 Discussion

We have shown that FootSLAM is a suitable technique to estimate the probabilistic maps
of multistory environments using data collected using inertial sensors. Contrary to what
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(a) DLR building 103.
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Figure 4.10: Building where the Walk 1 took place (Fig. 4.10(a)), its corresponding odom-
etry (Fig. 4.10(b)) and the resulting FootSLAM map (Fig. 4.10(c)).

one might expect, the problem of multistory mapping is much more difficult than mapping
2D areas. This is because of the extra freedom of the pedestrian to explore much larger
loops and the relatively small inter-story separation.

The main challenges that we have encountered in this work have been 1) The drifting
odometry, for which we have derived a suitable model representation, and 2) The two
problems associated to particle depletion: the discontinuity problem and the misalign-
ment problem. To address these problems, we rely on the assumption that artificial
human environments are more likely to exhibit horizontal walkable surfaces over vertical
transitions. Then, we have addressed the floor discontinuity problem by measuring the
floor separation in the building or estimating it from the collected data and by setting
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(a) TUM building N4. (b) FootSLAM map.

Figure 4.11: Building where the Walk 2 took place (Fig. 4.11(a)) and the resulting Foot-
SLAM map (Fig. 4.11(b)).

(a) TUM building 9. (b) FootSLAM map

Figure 4.12: Building where the Walk 3 took place (Fig. 4.12(a)) and the resulting Foot-
SLAM map (Fig. 4.12(b)). In this case three stairways were used and a ramp
outdoors.

stronger priors for prism layers that coincide with a floor; we have addressed the misalign-
ment between floor maps by assigning a degree of structural similarities between the floors
β = 0.3 that still allows the mapping of story-specific areas and wide corridors. Note that
in these three examples there are strong structural similarities such as the position of the
main corridors and stairways and further work will need to include other experiments in
which there are no such symmetries across the floors.

Besides the results presented for three large buildings, we have conducted numerous other
experiments (not shown for brevity and including other buildings) with similar results.
Due to the scale of the experiments, we could not precisely track the true path followed
by the pedestrian during the walks, making it impossible to compute the error in the
positioning estimate over time. However, we have been able to verify for all experiments
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that the visits of the pedestrian to each floor were mapped onto the corresponding prism
layer. In addition, we have manually aligned the FootSLAM map of each floor with the
available building floor-plan (as in Fig. 4.3) and we have confirmed by visual inspection
that each floor map reflects the visited offices (see [22]).

The accuracy of the maps — meaning its ability to reflect doors, pathways, obstacles, etc.
— depends on the chosen spatial resolution, namely the radius of the hexagons r and the
height of the prisms HH. The chosen settings, r = 0.5 m and HH as shown in Table 4.2
represent a good compromise between resolution and memory requirements. In [134] we
explore the use of a hierarchical grid with different radii to map the local disturbances
of the magnetic field; such an approach could be useful for FootSLAM but care must be
taken since using too small or too big cells would violate the local map independence
assumptions of FootSLAM [8].

The main practical limitation of the work presented here is that our validation of mul-
tistory FootSLAM is based on a foot-mounted IMU. The next milestone towards mass-
market applications is to replicate these results using the sensors of a smartphone even
when the user is performing different activities such as wandering, running, jumping,
texting, calling, etc. [151].

Future work shall address the mapping of much larger buildings, structures with different
floor separations and weak structural similarities across floors. Hereby the use of other
sensors such as altimeters, magnetometers, WiFi signal strength and GPS is expected to
ensure the robustness of FootSLAM. For example, we have processed the data from Walk
1 successfully applying magnetic field intensity SLAM [134]; the results are discussed in
[133]. Two videos that show the particle filter estimation process in two different buildings
are available online [132][135].
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FootSLAM

Chapter 4 has extended FootSLAM to allow mapping multistory buildings. However,
as discussed in Section 2.5.5, the data structure used to store the particles maps during
the FootSLAM estimation process do not allow real time processing of the odometry
measurements collected when exploring large areas.

In this chapter we analyze the complexity of the existing FootSLAM algorithm implemen-
tation (Section 5.1), identify main bottlenecks and present a new geographic tree-based
data structure, called H-tree (Section 5.2), that reduces the computational complexity of
FootSLAM and allows quasi real-time processing. Building on the H-tree, we also pro-
pose an approach to size-adaptive FootSLAM (Section 5.3), whereby the mapping grid
can grow as new areas are explored.

Additionally, in this chapter we introduce an alphabet of symbols to compactly represent
the eight transition counters that store the number of times that each particle has crossed
the faces of a hexagonal prism (Section 5.4). This will result in memory savings and faster
hexagon counts updates when exploring new areas.

Finally, we have collected and processed several odometry datasets and we show the
improvements in memory requirements and computational performance in single-story
and multistory environments (Section 5.5).

The main contributions of this chapter have appeared in [60], [61] and [56].

5.1 Näıve FootSLAM Complexity Analysis

In the existing “näıve” implementation of FootSLAM (from now on called näıve Foot-
SLAM), each particle’s map:

{M}[m] = {Hh,l, {Ch,l}[m]},

is implemented by means of a lookup table.

As explained in Section 4.2.2, FootSLAM’s implementation of FastSLAM uses, in the
limit, NH separate estimators over the map. Thus, with Np particles in the particle filter,
FootSLAM maintains a total of Np ·NH map estimators.
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The existing implementation of FootSLAM fixes the number of particles Np. However, in
the worst-case scenario, a person will visit a constant number of new prisms per time step.
To cope with this situation, we envision a scalable implementation for FootSLAM in which
the total number of prisms in the mapping area NH can be dynamically incremented over
time to allow the mapping of large areas. Thus, the number of prisms in the mapping
area will be considered a linear function of time: NH = O(t).

Our goal is to analyze the computational complexity growth over time of the different steps
of the RBPF algorithm (Section 2.5.8) given the input parameter NH: T (NH) = T (t).
Since Np remains constant during the FootSLAM estimation process, the analysis with
one particle is valid for any Np. The complexity of the FootSLAM algorithm after time
t, when the walk is over, can be obtained simply by summing the resulting complexity
order per time step over all time steps.

Clearly, steps 2a, 2b, 2c and 2d of the RBPF (Section 2.5.8) require constant time at
every time step k:

T 2a, 2b, 2c, 2d
k (t) = O(1). (5.1)

We will focus our attention on the last two steps of the RBPF algorithm (update and
resampling steps) and analyze their dependency with the number of hexagonal prisms NH
and their impact on the complexity growth rate over time.

5.1.1 Complexity of the Update Step

The update step in näıve FootSLAM is related to the search and insertion costs of a
lookup table, {M}[m] = {Hh,l, {Ch,l}[m]}. This lookup table has been implemented using
a hash table whereby collisions are prevented using a bijective correspondence between
the hexagonal prisms and their hash code. Therefore, the time requirements of search
and insertion are constant [33]:

T upd
k (t) = O(1). (5.2)

5.1.2 Complexity of the Resampling Step

At the resampling step, each resampling particle needs to copy (with replacement) the
state vector of the parent particle, including the map. Two cases can be easily differenti-
ated when analyzing FootSLAM’s complexity:

1. Exploration of White Space: By exploration of white space (ws) we refer to the
stage in which particles explore new areas, visiting new hexagonal prisms. Thus, the
size of the hash table grows linearly with time, making the resampling step require
linear time in the number of visited prisms. As a consequence, the resampling step
after an exploration phase depends on the time step k itself:

Tws
k (t) = O(Nvis(k)) = O(t). (5.3)
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2. Revisiting Areas: When the particles revisit prisms, the size of the lookup table
remains constant, e.g. with Nvis entries. Therefore, the run-time of the resampling
step will not depend on the time elapsed: Each particle needs to copy Nvis entries.
In that case, the resampling step requires constant time:

T rev
k (t) = O(Nvis) = O(1). (5.4)

As it can be observed, the complexity of näıve FootSLAM per time step is dominated by
the resampling step during exploration phases, that is, FootSLAM requires time linear in
the covered area for each time step k.

Hence, after integrating over all steps k we obtain the requirements in time per FootSLAM
estimation process:

TFS(t) = O(t2). (5.5)

As a conclusion, we can state that the bottleneck of näıve FootSLAM is located at the
resampling step when new areas are being discovered, showing a quadratic-in-time
complexity growth rate.

FootSLAM’s main goal is the mapping of large areas in quasi real-time applications [57].
The complexity analysis in this section indicates that a per-particle map data structure is
not a suitable approach. In the next section we describe a new data structure that allows
us to reduce the complexity growth rate of FootSLAM from O(t2) to O(t log t). This data
structure is called H-tree and it is presented in the next section.

5.2 The H-tree: A New Data Structure for
Complexity-reduced FootSLAM

The H-tree or Hexagon Tree is a tree-based data structure specifically designed for Foot-
SLAM to reduce its time requirements from quadratic to linear times logarithmic, as
suggested by [108]. Before further comments on the H-tree, a brief introduction to basic
concepts of a tree-based data structure is summarized for clarity [33]:

1. A tree is an acyclic connected graph in which all nodes have one parent node except
for the top node nr (called root). Trees are usually drawn growing downwards.

2. All nodes have zero or more children nodes. Nodes that have no children are called
leaves.

3. The degree of a node refers to the number of children of a node.

4. Any node can be reached following a unique path from the root node. The path is
composed of edges or links.

5. The depth of a node is the length of the path that goes from the root to the node.
The height of the tree refers to depth of the deepest node in the tree.
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6. A balanced tree is a tree whose leaves are all located at the same depth.

The H-tree builds on the R-tree [68], that is, the H-tree is a geographic tree-based data
structure. The R-tree is a balanced tree that uses rectangular shapes to quickly index geo-
graphical coordinates. Objects that are close to one another are grouped and represented
by means of a bounding rectangle. Each node in the tree refers to a rectangle. A leaf
node’s rectangle refers uniquely to an object. The higher levels contain the aggregation
of the lower levels.

The H-tree in FootSLAM is actually composed of two substructures: The Global H-tree
(one per FootSLAM estimation process) and the Dynamic H-tree (one per particle). As we
shall explain, the choice of such decomposition avoids the computational cost of constantly
rebalancing the Dynamic H-trees during the mapping process - as opposed to the approach
by [108], where only the dynamic structures are present.

In the following subsections, the Global and the Dynamic H-tree are presented in more
detail.

5.2.1 The Global H-tree

The Global H-tree is a tree-based data structure that exists once and only once per
FootSLAM estimation process. The Global H-tree is a tree-based data structure that
stores all hexagonal prisms of the 3D mapping space, hence containing only geographic-
related information: the coordinates of the hexagonal prisms, stored at the leaf level. The
grid of prisms shown in Fig. 4.1 can be decomposed into two dimensions (left side of Fig.
5.1), generating two subtrees in the Global H-tree (right side of Fig. 5.1), a 2D-subtree
and a 3D-subtree:

• 2D-subtree: it stores and represents all NH hexagons in the 2D grid (top left of Fig.
5.1) and has a height H2D = logsNH , where s is the degree of its internal nodes.
Each “leaf” node corresponds to the root node of the 3D-subtree and has sz children.
The degree s of the nodes can be decomposed into two components: sx and sy, with
the following geographical meaning: Nodes located at depth D = (H2D − 1) refer
to groups of sx columns of sy hexagonal bases.

• 3D-subtree: it stores and represents the Nz prism layers for any hexagonal base
(bottom left of Fig. 5.1). Its nodes have sz children, except for the leaf nodes, that
have no children. Its height is H3D = logsz Nz.

The Global H-tree groups prisms that are located nearby. The root node nr of the
Global H-tree refers to all the hexagons (and prisms) in the grid. Lower levels refer to
smaller groups of prisms. Both global and dynamic trees have in common the following
characteristics:

• The maximum degree of all internal nodes is s in the 2D-subtree and sz in the
3D-subtree.
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Figure 5.1: Construction of the Global H-tree. The hexagonal grid of Fig. 4.1 is composed
of Nx ·Ny = 4 · 4 = 16 hexagonal bases (top left) and Nz = 2 layers (bottom
left). The resulting Global H-tree using a degree of s = 4 and sz = 2 is shown
on the right. The root node nr of the Global H-tree (depth D = 0) refers to all
NH = 32 prisms in the grid (marked in blue); each node one level below, up to
depth D = H2D = 2, refers to a group of prisms s = 4 times smaller (e.g. the
green node refers to the prisms with base {H0, H1, H4, H5}, and the red node
refers only to the prisms with base H0). Finally the levels under D = H2D

refer always to groups of prisms sz = 2 times smaller, i.e. light brown refers
to l = 0 and dark brown to l = 1. The prisms are stored at the leaf level.

• The tree is balanced: all leaves are located at the same depth.

• The height of the tree is Htree = H2D +H3D.

• Generating and accessing a partial tree (e.g., the path to a leaf) can be done in time
O(Htree) = O(logsNH + logsz Nz) = O(logNH).

• Each leaf refers unambiguously to a hexagonal prism in the grid.

The path to a hexagonal base with index h, path(h), is composed of the links that lead
from the root node nr to the root of its 3D-subtree.

Remember that in the 2D grid the h index assigned to each hexagonal base was chosen to
compute quicly the hexagonal base at which a particle is located given its 2D coordinates
(Section 2.5.2): starting with 0 for the first row and first column and increasing the index
for each column until there are no more columns in that row. These indices however do
not allow for an efficient mapping of each hexagonal base to its path.
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Thus, we store the paths to the hexagonal bases for quick indexing of hexagons and paths
to each hexagon in the tree when a particle accesses its map:

pathshex = {Hh, path(h)}, 0 ≤ h ≤ NH − 1. (5.6)

Note that we do not need to store the paths from the hexagonal base to the corresponding
layer because given a layer index 0 ≤ l ≤ Nz − 1, the mapping to its corresponding path
is defined by the layer index l. See more remarks at the end of this chapter.

Degree of the Nodes and Number of Nodes

The number of hexagons in the grid NH is adjusted to be a power of s, or s to be a root
of NH . In order for the Global H-tree to be perfectly balanced and full, Nx must be a
power of sx and Ny a power of sy for all nodes to have exactly s children. We choose
Nx = Ny and sx = sy = s so that the only condition that must apply is that NH be a
power of s. Additionally, for the structure to become a tree, sx = sy ≥ 2, i.e. s ≥ 4.
Furthermore, the degree of the nodes is upper bounded by the number of hexagons in the
grid, so 4 ≤ s ≤ NH . Similarly, 2 ≤ sz ≤ Nz and Nz must be a power of sz to have full
nodes in the 3D subtree.

In addition, the number of nodes Nn in the Global H-tree corresponding to the grid can
be computed as follows:

Nn =

logsNH∑
k=0

sk +

logsz Nz∑
j=0

sjz =
slogsNH+1 − 1

s− 1
+
s

logsz Nz+1
z − 1

sz − 1
=
s ·NH − 1

s− 1
+
sz ·Nz − 1

sz − 1
.

(5.7)

As a result, important considerations when choosing s are:

• The greater the s or the sz, the fewer the nodes.

• The greater the s or the sz, the greater the memory that needs to be allocated
per node - given that each node is composed of an array of s or sz pointers to the
children nodes.

• The greater the s or the sz, the shallower the tree. Since accessing and generating
a partial tree has a cost in time (logsNH + logsz Nz), the lower the access time is.

• As shall be shown, the greater the s or the sz, the longer the run-time of the
resampling step when using the H-tree.

5.2.2 The Dynamic H-tree

For each one of the Np particles in the particle filter, we build a (sparse) Dynamic H-tree
that contains the prisms that the particle visits along with their corresponding prism
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Figure 5.2: Dynamic H-tree of a particle that has visited nine prisms in two different
layers (colored in gray on the left side). At the leaf level D = Htree = 3 the
prism transition counters {Ch,l} are stored, whereas depth D = H2D = 2 the
aggregated counters for all layers, {Kh}, are stored.

transition counters Ch,l. Each Dynamic H-tree is based on the relative position between
the nodes and links that lead to the prisms in the Global H-tree. Fig. 5.2 illustrates an
example for a particle that has visited nine prisms. Note that in contrast to the Global
H-tree, which is composed of one single 3D-subtree, the Dynamic H-tree contains a 3D-
subtree for each hexagonal base that the particle visits. To achieve an efficient weight
update step each Dynamic H-tree also stores, at depth D = H2D and for each visited
hexagonal base, the aggregated transition counters Kh used in (4.8).

The first time the particle visits a prism, the path to its hexagonal base is obtained from
the table of paths of the Global H-tree (5.6) and the corresponding nodes that lead to the
hexagonal prism are copied into the Dynamic H-tree. If the particle revisits a prism, the
Global H-tree is only needed to retrieve the path to the hexagonal base in the Dynamic
H-tree.

In contrast to [108], using the Global H-tree as a reference, there is no need to con-
stantly rebalance the Dynamic H-trees when new hexagons are stored. Nevertheless, this
approach still allows for occasional redefinition of the trees, if we need to extend the
mapping area as we explain in Section 5.3.

We have stated that each particle owns a dynamic tree. We shall see that some parts
of a Dynamic H-tree (subtrees) can be shared by particles that have a common history
of visited prisms. This is the strength of the H-tree and it is further explained in the
next subsections within the context of the resampling and update steps of the FootSLAM
algorithm.
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5.2.3 Resampling Step in the Dynamic H-tree

As explained before, at the resampling step a set of N ′p particles is generated from the
existing Np particles based on their weights. A näıve approach duplicates the state infor-
mation for all the particles that resample from a parent particle, as we showed with the
hash table (Section 5.1.2).

The H-tree allows us to use another approach whereby all resampling particles share the
information from the parent particle, avoiding duplicity of information: Equivalently to
[108] the map of a resampling particle can initially be copied from a parent particle by
merely copying the pointers of the root node of its Dynamic H-tree (maximum s). Figure
5.3 illustrates this concept for two resampling particles RP1 and RP2 that sample from a
parent particle PP with a 2D grid.
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Figure 5.3: Resampling in the H-tree: Two resampling particles RP1 and RP2 resample
from a parent particle PP by copying the pointers of its Dynamic H-tree
root-node. RP1 and RP2 share the common hexagon map depicted on the
left.

Operating in this manner, the resampling part of the algorithm does not depend on the
number of visited prisms by each particle, but on the degree of the H-tree s, which is a
constant value. The smaller the s, the shorter it takes to perform resampling.

5.2.4 Update of Hexagon Transition Counters in the Dynamic H-tree

When two or more particles resample from the same parent particle, they share the same
nodes and the same visited prisms with their corresponding HTCs (hexagon transition
counters). If one of these particles needs to update the HTC of a prism, then the path
leading to it needs to be duplicated - with replacement [108]. Duplicating a path means
duplicating its nodes and links. Figure 5.4 shows an example for particles RP1 and RP2

with a 2D grid.
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Figure 5.4: Update step in the Dynamic H-trees: After the resampling step, RP1 exits
H10 and revisits H5. These hexagons’ HTCs are common to particle RP2

and cannot be directly updated. Instead, the paths that lead to them must
be duplicated before the update to avoid changing the map of particle RP2.
Particle RP2 visits a new hexagon (H14) and needs to copy some of the nodes
to avoid adding visited hexagons to RP1. On the left, the common map to
both particles after the update. On the right, the map that each particle
possesses.

The complexity of the update step grows with the height of the tree Htree:

T upd
k = O(Htree) = O(logsNH + logsz Nz)

= O(logNH + logNz) = O(log(NH ·Nz))

= O(logNH). (5.8)

In contrast to näıve FootSLAM, the update step using the H-tree shows a dependency
on the number of prisms in the grid NH. In the worst-case scenario the mapping area
grows over time, i.e. NH = O(t). As a result, T upd

k = O(log t). The total complexity of
FootSLAM integrates over all time steps to:

TFS(t) = O(t log t). (5.9)

Note that when the number of prisms in the grid remains constant, the complexity of
FootSLAM grows linearly with time, allowing real-time processing.

5.2.5 Memory Savings

A further advantage of using a tree-based data structure is the savings in memory, visible
after the resampling steps. When resampling, N ′p new unique particles are generated from
the old set of Np particles by copying the pointers of the parent particle’s root-node. If on
average X particles are drawn from a given particle, then we experience a 1/X reduction
in memory since we can reclaim the memory occupied by the obsolete particles. This effect
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will be specially visible when loop closure takes place, that is, when the pedestrian revisits
an area. In the limit, when all particles resample from one single surviving particle, we
experience a ratio of 1/Np savings in memory. Note that these memory savings are relative
to the previous resampling step.

Figure 5.5 illustrates this idea over 4 resampling steps. At each resampling step some
hypotheses are erased (marked with a cross) and memory is deallocated.
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k 

 

 

 

 

 

Figure 5.5: On the top, particles’ hypotheses lifetime: Five different particles Pi are ini-
tialised at time step k = 0. At resampling time step k = 1, particle P1 and P2

resample from particle P1. P2 previous hypothesis is erased, marked with a
cross. Likewise, particles P3, P4 and P5 resample from P5. At resampling time
step k = 2, all particles are resampled from P3. The only surviving hypothesis
is that of P3. On the bottom, the surviving history of hypotheses for the five
particles is shown. At k = 2 the memory requirements have been reduced 5
times with respect to k = 1.

The reason for using a geographic approach for the H-tree is even clearer at this point:
We live and work in buildings where large, unvisited spaces are rare. Therefore, our
geographically defined Dynamic H-trees for a completed FootSLAM map will tend to
become densely populated, except for perhaps the last (meter level) nodes. The underlying
assumption which we believe that justifies this, is that for a given area, human accessibility
is approximately uniform, except for meter level granularity.

If we assume that the space accessible to a pedestrian is not randomly distributed, but
consists of groups of accessible areas (hexagonal prisms, in our case), then a geographic
tree-based data structure will lead to a lower number of nodes needed in each Dynamic
H-tree. Our Global H-tree is built grouping prisms that are nearby. Thus, visiting sur-
rounding hexagonal prisms between two resampling steps translates into very local changes
in the Dynamic H-trees. Only the nodes at the lower levels, i.e. a subpath, need to be
generated. For example, suppose that particle RP2 in Figure 5.4 visits H15 after H14.
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Then, adding hexagon H15 to the tree requires only adding one extra leaf node. As a con-
sequence, in average less memory needs to be allocated than in the case in which prisms
are randomly stored at the leaf level.

5.3 Size-adaptive FootSLAM based on the H-tree

FootSLAM uses a grid of hexagons as base for localization and mapping. This grid needs
to be large enough to map the transitions of the pedestrian during the whole duration of
her walk. With a fixed predefined hexagonal grid, a problem arises if the pedestrian walks
out of the mapping area: her motion cannot be mapped in the form of face transitions, i.e.
the map will be incomplete, and she cannot be located. Thus, we propose an approach
to extend the original predefined hexagonal grid of NH hexagonal bases according to the
extent of the walk itself, allowing for size-adaptive FootSLAM. A similar approach may
be applied to the 3D subtrees if new layers are visited.

5.3.1 Expanding the Hexagonal Grid

In the following let NG
H denote the number of hexagons in the hexagonal grid that is

predefined at the beginning of FootSLAM and NH the total number of hexagons in the
mapping area. Note that at the beginning of FootSLAM NH = NG

H . Additionally, let nG
refer to the node that corresponds to all the hexagons in the predefined grid and nr refer
to the root of the node, which are the same at the beginning.

As we shall explain, only the paths to the NG
H hexagons in the predefined grid need to be

stored.

A good criteria to expand this base grid is when any of the Np particles visits one the
hexagons one column or row away from the border. In the case of our example grid
(Figure 5.1), when a particle visits any hexagon in column 2, we expand the grid to the
left and when a particle visits any hexagon in column 3, the grid is expanded to the right.
Similarly, if a particle visits any hexagon in row 2, then the grid is expanded on the top,
and when a particle visits a hexagon in row 3, the grid is expanded on the bottom. Special
cases are the corner areas, for example when a particle visits H5 (row 2 and column 2),
then the grid is expanded to the left, on the upper part and also on the top left corner.

A straightforward approach would generate a larger hexagonal grid and re-build the Global
H-tree according to it. The problem with such an approach is that the memory require-
ments of the Global H-tree would grow with the total number of hexagons. In addition we
would have the added computational requirement of re-building the whole Global H-tree
and storing the path to each hexagon again. Thus, we propose an alternative that takes
advantage of symmetries in any hexagonal grid.

Let us take our predefined hexagonal grid composed of NG
H = Nx · Ny hexagons as base

hexagonal grid. The mapping area is then expanded by attaching new hexagonal grids
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Figure 5.6: FootSLAM predefined G0 as base hexagonal grid, with NG
H = 16. The

hexagons visited by a particle are marked with different colors. In this ex-
ample, the particle moved from H0 ∈ G0 to H6 ∈ G4. When the particle
visited H0 ∈ G0, the grids G1, G2 and G3 were attached to G0. Similarly,
when the particle visited H10 ∈ G0, then G4, G5 and G6 were attached. Thus,
the number of grids NG is 7.

Gg of the same dimensions as the base grid where needed. An example has been depicted
in Figure 5.6, where a particle moved from H0 ∈ G0 to H6 ∈ G4 triggering the extension
of the matrix in different directions. Operating in this manner, the hexagons within each
grid share the same layout and the total number of hexagons NH can be computed as
NH = NG

H ·NG where NG is the number of grids.

As we shall see, the advantage of this approach is that we can control the growth of the
grid of hexagonal prims and the Global H-tree, while making the complexity growth of
FootSLAM only dependent on the logarithm of the number of grids NG.

5.3.2 Expanding the Global H-tree

Expanding the Global H-tree to accommodate a new grid of hexagons can be done as
follows: if the root nr of the tree is full (i.e. the root has s children nodes), a new root
node - also with degree s - is generated and the older root node is reattached to the new
root node. If the root node is not full (i.e., there are fewer than s children nodes), a new
path from the root node to nG is created (Figure 5.7).
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Figure 5.7: Extension of the 2D subtree of the Global H-tree of Figure 5.1 after attaching
six new hexagonal grids G1···6 to the predefined hexagonal grid G0 (Figure
5.6). The Global H-tree has grown two levels on the top.

This procedure is equivalent to having two subtrees within the 2D-subtree:

• A grid subtree with height HG = dlogsNGe: the upper part of the tree, from the
level of nr to the level of nG. This subtree is used to access the desired grid.

• A hexagon subtree with height HH = logsN
G
H : the lower part of the tree (from nG

downwards). This subtree points to the hexagons within any grid.

As a result, the total height of the 2D-subtree is:

H2D = HH +HG = logsN
G
H + dlogsNGe = dlogs(NG ·NG

H )e = dlogsNHe. (5.10)

The paths to each grid Gg, path(g), are now also stored for quick indexing of each grid
in the tree when a particle accesses its map:

pathsgrid = {g, path(g)}, 0 ≤ g ≤ NG − 1. (5.11)

An advantage of this approach is that expanding the Global H-tree does not require
us to rebuild the hexagon subtree or compute the paths to the hexagons again, but
it only requires us to add occasionally some nodes in the grid subtree and add a new
path to pathsgrid when a new grid is attached. Furthermore, the Global H-tree memory
requirements over time will only grow with the number of nodes in the grid subtree,
but not with the total number of hexagons. However, there will be additional memory
requirements for the new data structure used to store the paths to the grids.

5.3.3 Rebalancing the Dynamic H-trees

Every time the Global H-tree adds one or more levels to its grid subtree, the Np Dynamic
H-trees need to be rebalanced by reattaching the root node of the Dynamic H-tree to the
new root node.
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From that moment on, the particles can visit hexagons in the other grids (for example
the orange, green and red hexagons in Figure 5.6) and update their maps (Figure 5.8).
To do that, each particle uses the Global H-tree to retrieve the path to the grid to which
each hexagon belongs and the path to the hexagon within that grid (Equations (5.11) and
(5.6) respectively).
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Figure 5.8: Dynamic H-tree of a particle that has visited {H0, H4, H5, H10, H11}G0 (in
blue), HG5

12 (in orange), HG6
0 (in green) and {H3, H6}G4 (in red). The paths to

each grid and hexagon have been obtained from the Global H-tree in Figure
5.7.

5.3.4 Complexity Analysis of Size-Adaptive FootSLAM

The update step still requires time proportional to the height of the H-trees:

T updk (t) = O(Htree) = O(dlogsNGe+ logsN
G
H + logsz Nz), (5.12)

which for a fixed number of hexagonal bases NG
H and layers Nz per grid becomes:

T updk (t) = O(logsNG) = O(logNG) (5.13)

In the worst case scenario, when ∆NG new grids need to be added every time step to
meet the mapping requirements, for example when no areas are being revisited and the
pedestrian walks at a constant pace, then:

T updk (t) = O(log t). (5.14)

Hence, the complexity of FootSLAM remains the same with the adaptive-size algorithm.

As an example, suppose we have a 2D predefined grid of Nx = 125 times Ny = 125
hexagons with s = sx · sy = 5 · 5 = 25. If the hexagons have a radius r = 0.5 m, then
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the area covered by one grid is AG ≈ 1002 m2. The height of the hexagon subtree is
HH = log25 125 = 3.

If our goal is to map an area A of say 3 km by 3 km, then we will need NG = A/AG = 900
grids by the end of the walk. The height of the grid subtree will need to grow from HG = 0
to HG = dlog25 900e = 3. As a consequence, even with a rather small base grid and a
rather large area to be mapped, the computational cost of FootSLAM will grow slowly.

Note that if NG remains constant through the whole FootSLAM estimation process, Foot-
SLAM requires linear time, given that the log t factor is fixed by the constant height
of the tree over time.

5.4 Compact Representation of Hexagon Transition
Counters

Using concepts of source coding and lossless data compression [138], we can encode the dif-
ferent combinations of transition counts that the counters of an HTC (hexagon transition
counters) can take on for any hexagonal prism Hi. This codification is a compact repre-
sentation (alphabet) for the set of transition counters across the faces of the hexagonal
prisms.

The alphabet can map up to T transitions per face. Therefore, there are (T + 1) possible
values (to account for 0 transition counts) for the eight counters to adopt and repetition
is allowed. Hence the alphabet A is composed of S = (T + 1)8 symbols. The first symbol
A0 and last symbol AS−1 of the alphabet correspond, respectively, to:

A0 ↔ {0, 0, 0, 0, 0, 0, 0, 0}
AS−1 ↔ {T, T, T, T, T, T, T, T}.

Similarly to the Global H-tree, this alphabet is constructed at the beginning of the Foot-
SLAM estimation process and exists only once. The alphabet is particularly effective
during the exploration phases of FootSLAM that requires much particle diversity. As it
shall be explained next, it will help reduce FootSLAM memory requirements.

5.4.1 Memory Savings

The alphabet is used to avoid storing the full HTC of the hexagons that the particles visit.
Instead, the symbol corresponding to the HTC is stored at the leaf level of the particle’s
Dynamic H-tree.

The HTC data structure consists of a vector of length six. In our Java implementation
it has been constructed using an array of eight Byte values, which requires 32 Bytes. On
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A0 ↔ {0, 0, 0, 0, 0, 0, 0, 0}
A0→f=0 A0→f=1 A0→f=2 A0→f=3 A0→f=4 A0→f=5 A0→f=6 A0→f=7

l l l l l l l l
{1, 0, 0, 0, 0, 0, 0, 0} {0, 1, 0, 0, 0, 0, 0, 0} {0, 0, 1, 0, 0, 0, 0, 0} {0, 0, 0, 1, 0, 0, 0, 0} {0, 0, 0, 0, 1, 0, 0, 0} {0, 0, 0, 0, 0, 1, 0, 0} {0, 0, 0, 0, 0, 0, 1, 0} {0, 0, 0, 0, 0, 0, 0, 1}

Table 5.1: Example of symbol transitions given symbol A0 ↔ {0, 0, 0, 0, 0, 0, 0, 0}. Given
a transition across any of the faces, the next possible symbols have been pre-
computed.

the other hand, each alphabet symbol is represented by a Short value, which requires only
2 Bytes.

Nevertheless, one should note that once a particle enters or leaves a hexagonal prism
across a face whose counter had registered the maximum number of transitions, T , the
symbol is converted back to an array of Bytes (HTC). The particle’s Dynamic H-tree will
then store the full HTC for that hexagon.

5.4.2 Efficient Map Updates

Say a particle is located at a hexagonal prism Hi whose associated set of transition
counters Ch,l corresponds to symbol Ai. The particle can leave the hexagonal prism using
any of the eight faces. The particle can update the symbol by:

• Retrieving the corresponding Ch,l of symbol Ai.

• Updating Ch,l given the transition across face f : Ch,l→f as explained in Section
2.5.8.

• Obtaining the symbol Ai→f that corresponds to the updated HTC Ch,l→f , if it exists.

However, for efficient map updates, for each alphabet symbol Aj the eight next possible
symbols Aj→f ∀f are precomputed and stored during the construction of the alphabet.
Table 5.1 represents an example for symbol A0.

Operating in this manner, the update of a symbol requires only to know which face was
crossed when leaving the hexagonal prism, avoiding explicit conversion to an HTC.

During exploration phases, when particles are visiting new hexagons and there exists much
diversity of hypotheses, memory requirements grow with the visited area. The alphabet
will play a significant role during those phases, reducing the rate of growth of the memory
requirements.
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5.5 Experimental Verification

5.5.1 Methodology

Walk Covering a Large 2D Area

FootSLAM has been specifically developed to map indoor environments. However, to eval-
uate the reduction in complexity of the proposed map structure a pedestrian undertook
a walk outdoors - but without satellite navigation - covering a relatively large 2D area
(ca. 100 m by 100 m) area. The walk lasted over 13 minutes and the step measurement
data were collected using an MTx - Xsens R© IMU sensor attached to her shoe. The data
collected (Figure 5.9(a)) were processed single threaded on an Intel R© Xeon R© processor
with a clock speed of 3.46 GHz.

In the FootSLAM algorithm we use Np = 30 000 particles and a single hexagonal grid
composed of NG

H = Nx ·Ny = 256 · 256 hexagonal bases with Nz = 1. We will study the
performance of FootSLAM by varying the maximum number of mapped transitions by
the alphabet, T , and the degree of the nodes in the Global H-tree.

Figures 5.9(b) and 5.9(c) show the FootSLAM maps corresponding to the odometry data.
Clearly, FootSLAM was able to correct the drifting errors visible in the odometry data.
A video showing the evolution of FootSLAM’s estimation process can be found in [25].

Walk in a Multistory Environment

For a further validation of the proposed algorithm, we also processed the multistory
dataset collected during Walk 3 of Section 4.6.2 with Nx = 256, Ny = 256, Nz = 64,
s = 16, sz = 2 and Np = 30 000. We will show the evolution of the number of nodes
during the walk as an indicator of the memory improvements.

FootSLAM has been implemented on a Java platform. Next, the constraints that the
implementation presents for T and s are explained.

5.5.2 Maximum Number of Mapped Transitions by the Alphabet

We represent alphabet symbols by means of a Short type, which in Java covers a range
of (216 − 1) possible values. Consequently the number of symbols in the alphabet S
is bounded by this value and the maximum value that T can take on for 8 faces is:
T = blog8(216 − 1)c − 1 = 4. However, when mapping a 2D environment, we only allow
transitions across the 6 lateral faces. Thus the maximum value that T can have is:
T = blog6(216 − 1)c − 1 = 5.

From the moment when a particle has crossed one of the faces of a hexagon more than
that limit, the symbol is converted to an instance of HTC.
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10m 

(a) Odometry.

10m 

(b) Maximum a posteriori map.

10m 

(c) Cumulative map.

Figure 5.9: Odometry recorded during the walk (Figure 5.9(a)) and FootSLAM output
maps: map corresponding to the maximum a posteriori hypothesis (hypothesis
of the particle with the highest likelihood) for the history of pedestrian’s poses
(Figure 5.9(b)) and cumulative map with the aggregated information of all
particles (Figure 5.9(c)). Note that the building layout is only shown as a
reference. The building geographic coordinates are: (48.084758, 11.277903).

Of course one can think of a more sophisticated alphabet that allows larger counts for the
lateral faces than for the upper and lower faces (which have a lower probability of being
crossed).

5.5.3 Limit for the Degree of the Nodes

We use a Byte representation for the links of each node, so we must limit the degree s
of the nodes to be 255 or fewer. Applying all conditions stated in Section 5.2.1, the only
two values we can use for the H-tree are: s = 4 and s = 16, which correspond to a tree
height of Htree = H2D = 8 and Htree = H2D = 4 respectively.
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Note that we have chosen to encode the path using a vector of Byte values due to the
considerable number of paths to be stored (NG

H ) when the Global H-tree is generated.
Using a Short type or an Integer type is also possible if the available memory allows it.
Alternatives to lower the memory requirements of the H-tree are left for future work (see
Section 5.6.1).

5.5.4 Time Performance

In the following we will use the term näıve FootSLAM to refer to the implementation of
FootSLAM of Section 5.1 and H-tree FootSLAM for the complexity-reduced implemen-
tation based on the H-tree. Naturally, the resulting map is the same no matter which
approach is used.

Figure 5.10 shows the measured time performance of näıve FootSLAM (red curve) and
H-tree FootSLAM for two different degree values: s = 4 (pink line) and s = 16 (blue line
for T = 5 and green line for T = 0, which are overlapping).

0 100 200 300 400 500 600 700 8000

200

400

600

800

1000

1200

1400

1600

walk duration (s)

to
ta

l C
P

U
 ru

n−
tim

e 
(s

)

H−tree (s=4,  T=5)
H−tree (s=16, T=5)
H−tree (s=16, T=0)
Naïve FootSLAM
y=x
Quadratic−fit

Figure 5.10: Measured run-time of the FootSLAM algorithm for the walk depicted in
Figure 5.9 for different FootSLAM implementations: naive FootSLAM (red
curve) and H-tree FootSLAM (dash-dotted pink line, blue line with cross
markers and green line with circle markers). Real-time processing is depicted
by a black line. The dashed cyan curve represents the best fitting quadratic
curve to the performance of naive FootSLAM.

Our experimental results are consistent with the theoretical analysis of FootSLAM: Näıve
FootSLAM shows a quadratic in time complexity growth rate (the dashed cyan curve
corresponds to the best quadratic-fitting curve). On the other hand and as discussed in
Section 5.3.4, H-tree FootSLAM requires time in t log t, which for a single grid composed
of a fixed number of hexagons NG

H , results in linear time complexity growth rate.

The use of a tree-based data structure like the H-tree shows a clear advantage over the
previous näıve FootSLAM implementation. After ca. 400 seconds, näıve FootSLAM is
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not able to perform in real-time. On the other hand, the time requirements of H-tree
FootSLAM stay always under the real-time processing limit (black line).

The use of different values for the degree of the nodes gives the same order of complexity
growth rate (linear times log), but changes the speed of growth (the slope). In this case, a
greater degree value (blue and green lines, corresponding to shallower trees) improves the
performance of H-tree FootSLAM. Such result does not imply that the performance will
always improve for a greater degree value: A greater s will also slow down the resampling
step.

As could have been expected, using the alphabet does not improve the performance in
terms of run-time: for T = 0 (no alphabet) and T = 5 the performances are practically
the same (the blue and green line overlap). Our approach of storing the possible symbol
transitions (Section 5.4.2) has allowed the alphabet-based implementation to maintain
the speed of the update step of the implementation with no alphabet. The advantage of
using the alphabet is visible in terms of memory requirements, as we shall show next.

5.5.5 Memory Performance

Figure 5.11 depicts the measured memory performance of näıve FootSLAM (red curve)
and H-tree FootSLAM for two degree values, s = 4 (pink and black curves) and s = 16
(blue and green curves). In contrast to Figure 10 in [60], where the effect of Java’s
garbage collector was visible, Figure 5.11 shows the minimum memory requirements for
each implementation (as a result of connecting the local minima after garbage collection).

As argued at the end of Section 5.2.5, H-tree FootSLAM performs better than näıve Foot-
SLAM in terms of memory requirements. This is visible in Figure 5.11 since the memory
requirements of näıve FootSLAM increase almost monotonically over time, whereas the
memory needed for the H-tree implementation remains bounded. The highest memory re-
quirements of H-tree FootSLAM correspond to ca. 1050MB (green curve, s = 16, T = 0),
while näıve FootSLAM highest memory requirements correspond to ca. 2525MB.

On the other hand, given a degree value s, the use of the alphabet (blue curve for s = 16
and pink curve for s = 4) improves the memory performance of the H-tree implementation
without an alphabet (green curve for s = 16 and black curve for s = 4). The improvements
are specially important during exploration phases, i.e. between t = 0 and t = 220 seconds,
between t = 375 and t = 450 seconds and between t = 475 and t = 625 seconds.

Furthermore, given a fixed maximum number of precomputed transitions (T = 5), the
memory performance of H-tree FootSLAM for s = 4 (pink curve) improves over that of
H-tree FootSLAM with s = 16 (blue curve). This is because of the fact that even though
the number of nodes that need to be generated to insert all visited hexagons is lower for
s = 16 than for s = 4 (Equation (5.7)), each node of degree s = 16 requires more memory.
This result does not imply that lower degree values will always perform better in terms
of memory, since there is always a trade off between the number of nodes allocated in
memory and the size of each node.
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Figure 5.11: Measured memory performance of naive FootSLAM (red curve) and H-tree
FootSLAM with degree values s = 4 (dash-dotted pink curve) and s = 16
(green curve with circle markers (T = 0) and blue curve with cross markers
(T = 5)) for the walk depicted in Figure 5.9.

Number of Nodes

We can also measure the efficiency of our H-tree implementation in terms of the number
of tree nodes allocated in memory during the walk. Figure 5.12 shows the total number
of nodes for all particles, that is, the sum of the number of nodes used in the Np = 30000
Dynamic H-trees, compared to the number of actually allocated nodes in memory. As
discussed in Section 5.2.5, when the pedestrian closes a loop, a greater number of particles
is resampled from a few particles and the memory requirements decrease, visible in a
reduction in the number of allocated nodes in memory. As expected, a shallower tree
(s = 16) requires to allocate fewer nodes in memory than in the case of a deeper tree
(s = 4).

Fig. 5.13(b) illustrates the impact of the H-tree in multistory environments. The dataset
was collected during Walk 3 of Section 4.6.2. In Fig. 5.13(b) we have depicted the total
number of nodes for all particles divided by 3 (in red), and the total number of nodes
actually allocated in memory during the FootSLAM estimation process (in blue).

After about 100 s, the pedestrian visited a corridor that he had previously visited but one
floor below, acting as a prior (point A in Fig. 5.13(a)). At roughly 300 s the pedestrian
went back along a corridor (point B), closing a loop. Despite loop closure, the number of
total nodes grows monotonically except between 600 s and 1400 s, while the pedestrian was
standing (area C). Afterward the pedestrian kept walking and exploring. Point D marks
a path out of the building and point E corresponds to the exploration of a ramp; both
these loops represent novel areas associated with a strong increase in the total number
of nodes whereas the memory requirement falls after each loop closure. The evolution of
the blue curve is nearly constant because due to resampling particles are sharing a large
proportion of the map.

The H-tree has also been successfully applied to efficiently map the magnetic field in
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Figure 5.12: Total number of tree nodes for all particles (circle marker) and number of
allocated nodes in memory (cross marker) needed during the walk depicted in
Figure 5.9 for s = 4 (red curves) and s = 16 (blue curves). At roughly t = 230
and t = 610 seconds the pedestrian started to close two big loops. After the
subsequent resampling steps, a greater number of particles share common
parts of their Dynamic H-trees, visible in the reduction in the number of
allocated nodes in memory.

multistory environments [134]. Two videos that show the particle filter estimation process
in two different buildings are available online [132][135].

5.6 Discussion

In this chapter we have studied the complexity of a näıve FootSLAM implementation.
The resampling step represents the bottleneck, showing a linear dependency with the
covered area per time step. Such dependency makes FootSLAM exhibit a quadratic-in-
time complexity growth rate that prevents real-time processing.

To address this, we have presented a new geographic tree-based data structure, called
H-tree, reducing FootSLAM’s computational growth rate in time from quadratic to linear
times logarithmic. This data structure also reduces the memory footprint of FootSLAM,
specially after resampling, since particles that share a common history of visited areas
can now share the same local maps.

In addition, an alphabet of symbols has been introduced to compactly represent map
estimates (hexagon transition probabilities) by the particles. The alphabet reduces the
memory requirements of FootSLAM especially during exploration phases in which much
particle diversity of hypotheses is needed.

The following subsections discuss additional improvements to the techniques presented in
this chapter.
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5.6.1 H-tree Memory Improvements

Storing the paths to each hexagonal base (5.6) could be avoided by assigning a second
index to each hexagonal base (see Fig. 5.14).

The memory requirements of assigning a new index to each one of the NH hexagonal
bases is, if using an Integer (4 Bytes): 4NH Bytes. In contrast, the table of paths needs
NH entries each with a path of logsNH Bytes. The impact of these memory savings will
be greater the larger the number of hexagons in the grid NH is.

Note: we still need to store the grid indices used throughout this thesis for quick indexing
of the hexagons, which is critical to determine what faces were crossed by the particles.

Further work should explore ways to reduce the memory footprint of the H-tree and the
grid of hexagonal prisms.

5.6.2 Closing Larger Loops

The algorithms and data structures presented in this chapter allow us to use FootSLAM
in real-time while mapping larger areas. However, due to computation and memory
limitations, the mapping area (the hexagonal grid) cannot grow indefinitely. We could
apply a similar approach to Hierarchical SLAM [46], whereby the map is sliced into local
maps as the subject (in this case a robot) moves, and then a higher global map level
system imposes loop closure constrains to join and fuse the local maps.
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(a) Resulting FootSLAM map from Walk 3 in Section 4.6. We have labeled
with letters interesting locations for which the number of H-tree nodes
(Fig. 5.13(b)) shows interesting behavior.
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(b) Total number of Dynamic H-tree nodes for all 30 000 particles
(red) and number of allocated nodes in memory (in blue) for Walk 3
(Fig. 5.13(a)) using s=16 and sz = 2. We have divided the total number of
nodes by 3 to be able to distinguish interesting events (labeled with letters)
in the blue curve. Thanks to the H-tree, the particles share the storage
resources for common parts of the map. See main text for a comparative
description.

Figure 5.13: Example of the reduction in memory resources needed when using the H-tree
in a multistory environment.
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Figure 5.14: Alternative indices assigned to the hexagonal bases.
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FeetSLAM’s Map Combination Step

The FeetSLAM algorithm, introduced in Section 2.6, combines the resulting maps from
several walks to yield more accurate and complete maps that can be used for reliable
indoor pedestrian navigation. In Chapter 3 we derived an entropy-based metric to measure
the uncertainty of maps that can be used to select the order in which a set of maps is
combined, reducing the complexity of FeetSLAM from quadratic to linear in the number
of datasets. In Chapter 4 we extended FootSLAM to map multistory environments and
in Chapter 5 we have presented an approach to reduce its computational complexity and
memory requirements towards real-time estimation.

The remaining challenge towards real-time collaborative mapping with FeetSLAM is to
reduce the complexity of the map combination step. The goal is to quickly find the
geometric transformation between any pair of maps so that they can be combined to
one map. This chapter proposes an alternative algorithm to the transformation search of
[136], which performs a brute-force search over rotation, translation and scale.

Our proposed algorithm computes the angular spectrum (using the Hough transform) and
angular spectra of two FootSLAM maps and correlates these spectra to find candidates
for the rotation and translation, respectively, that places the maps within the same coor-
dinate system. This approach reduces the complexity of the map combination step from
quadratic to linear in the explored area of a floor.

We will show the results of combining 2-6 maps resulting from data collected in three
single floor environments and one multistory environment. The average time to combine
two maps has been reduced from tens of minutes to 4 seconds.

The main contributions of this chapter have been submitted to a journal [59].

6.1 Problem Statement: Fast Map Combination Step

To formulate the problem, let’s assume that we can represent the FootSLAM probabilistic
motion map of a building floor by a (finite) set of n points:

P = {{p0, C̄p0} . . . , {pi, C̄pi}, . . . , {pn−1, C̄pn−1}}, (6.1)
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where pi ∈ R2 represents a point in 2D Cartesian space and C̄pi ∈ R[0,1] encodes the local
probability of a certain angular transition at that coordinate as learned by the FootSLAM
algorithm [128].

When using only inertial sensors, i.e. when no global coordinate system is available,
FootSLAM probabilistic maps are rotation and translation invariant. As a consequence,
given two FootSLAM maps represented by point sets P and Q, respectively, we are
interested in finding the geometric transformation T that we need to apply to Q to best
match the point set P so that we can add their contributions to compose a combined
map.

Finding the geometric transformation between two point sets is a classical problem in
computer vision and is known as point set matching. Our problem falls into the category
of point set matching with unknown correspondence, since we only assume that the indi-
vidual maps (and thus the resulting point sets) overlap to certain degree, for example in
a scenario where multiple pedestrians roam throughout the same building but enter from
different locations.

In our case T is a scale-preserving isometry, also known as rigid transformation, which
preserves the Euclidean distances between every pair of points. For simplicity, note that
in this contribution we are not optimizing for scale, because our datasets collected with
a foot-mounted sensor array [136] seem to share a similar scale factor.

Given a point qi = (x, y) ∈ Q, we define T (qi,∆θ,∆x,∆y) = (xT , yT ) with:
xT

yT

1

 =


cos ∆θ − sin ∆θ ∆x

sin ∆θ cos ∆θ ∆y

0 0 1




x

y

1

 , (6.2)

which corresponds to a planar counterclockwise rotation of ∆θ about the origin of the
coordinate system followed by a translation (∆x,∆y). When merging maps from multi-
story buildings, we assume that the displacement along the vertical axis ∆z is known (or
can be inferred with an independent method, for example using an altimeter).

Remember that the underlying structure of FootSLAM maps is a grid of hexagonal prisms
(see Chapter 4). To take care of the possible mismatch between the transformed point
set QT and P , before adding the two point sets, MQT is projected onto the same grid as
MP (more details in Section 6.4.1).

6.1.1 Contributions

The approach proposed in this chapter adapts and extends Carpin’s work in [28] to Foot-
SLAM maps. Carpin proposes merging two occupancy grid maps – obtained by two
robots that carry laser scanners – by converting them first to binary images. Then,
his proposed algorithm computes for each map its angular spectrum (using the Hough
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Transform (HT)) and spatial spectra along the x and y axes. This simplifies the transfor-
mation search problem by dividing it into three separate problems: finding ∆θ, ∆x and
∆y, respectively.

The main novelty of our work with respect to Carpin’s lies in the nature of the maps to
merge: occupancy grid maps obtained with laser scans intrinsically reflect the presence of
linear features such as walls, which is a pre-requisite to compute the angular spectrum of
a map based on the HT; FootSLAM probabilistic maps encode the local probabilities of
human motion at the visited areas. With the particular case of FootSLAM maps, we show
how one can still apply the HT to any human motion based map, given that human motion
also exhibits linear features: pedestrians tend to walk following straight lines and avoiding
obstacles, for example when walking in a corridor or crossing a door. Our approach does
not require to convert the maps to pixels: we work directly with a suitable representation
of the probabilistic map that lends itself to the HT and the spatial spectra in order to
identify the transformation between two maps. Furthermore, FootSLAM maps are the
result of processing data collected by walking pedestrians using only low-cost inertial
sensors instead of laser range-finders. This poses two major advantages:

a) since many pedestrians in the modern world already walk on a daily basis carrying
smartphones with inertial sensors, the effort to scale the mapping task to the whole
indoor world may be conducted in a passive manner and without having to deploy
robots, and

a) inertial sensors pose fewer privacy concerns than laser range-finders because they reveal
no critical information about the environment or other humans.

Finally, in this chapter we also study the complexity of the algorithm and apply the
algorithm to three single-story environments and one multistory environment.

The rest of this chapter is organized as follows: Section 6.1.2 reviews related work in
the field of point set matching. Section 6.2 introduces the HT and defines the Hough
Spectrum (HS) and Section 6.3 explains how to obtain the angular and spatial spectra
of a FootSLAM map. Section 6.4 explains how to combine two FootSLAM maps using
their angular and spatial spectra. To this end, we show how to extend the projection of
FootSLAM maps to multistory environments. Next, Section 6.5 studies the computational
complexity growth of the proposed algorithm and Section 6.6 describes the experiments
and the results.

6.1.2 Related Work on Point Set Matching

Many different algorithms tackle the problem of aligning 3D point clouds [15].

The Iterative Closest Point (ICP) algorithm [18] iterates to find the geometric trans-
formation that minimizes the difference between the points of a source point cloud and
those of a target point cloud. To achieve convergence, the ICP algorithm requires the two
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point clouds to be similar, for example, if these point clouds come from two close-in-time
successive scans by a robot carrying a laser scanner with low noise.

The Largest Common Point Set (LCP) family of algorithms, popular in the field of Biology,
attempts to identify substructures within two 3D point clouds (for example those of two
proteins) [31][4]. In the worst-case scenario, the complexity of the algorithm runs in
O(n7.5), being n the number of samples in the point set to transform.

In the field of object recognition Belongie et al. [16] present a novel approach to deal
with non-rigid transformations and unknown correspondences: for each point in one point
cloud, the authors propose finding its corresponding point in a second point cloud by look-
ing at their shape contexts. The complexity of the proposed algorithm exhibits quadratic
and cubic growth in the number of points in each shape. This approach remains a promis-
ing alternative not investigated in this thesis.

Hough introduced the Hough Transform (HT) in a patent filed in 1962 [73] as a technique
to recognize complex patterns. The HT has been widely used in computer vision and
image processing to extract lines and curves [44] and other shapes (see [76] for a survey
on the topic). In the robotic community, the Hough Scan Matching [30] is a non-iterative,
deterministic 2D scan matching method based on the HT that is able to track multiple
solutions in unstructured environments using the angular spectrum of two successive
scans. In [28], the idea of the angular spectrum based on the HT is extended by defining
the spatial spectrum to quickly find the geometric transformation that aligns two 2D
occupancy grid maps generated by two robots that explore the same environment carrying
laser scanners. Once aligned, the two maps can be combined to generate a more extensive
map.

6.2 The Hough Transform and the Hough Spectrum

The maps that are the result of FootSLAM will tend to well represent the major structures
of the indoor environment, like corridors. Hence, we are motivated to focus on detecting
lines given that walls usually constrain pedestrians to walk following straight segments in
indoor environments. These detected lines can be used in turn to infer the main angular
contributions of a walk. Although there exist other algorithms that may be more time
efficient to detect lines, the HT is a robust algorithm to deal with noisy point clouds.

6.2.1 The Hough Transform (HT)

The HT parametrizes a straight line in the Cartesian plane R2 (input space) using [44]:

ρ = x cos θ + y sin θ, (6.3)

where (x, y) represent the Cartesian coordinates of the points along the line, and ρ and θ
are the parameters of the polar parameter space (Hough space) also in R2. The parameter
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ρ corresponds to the normal distance from the center of the Cartesian coordinate system
to the line; the parameter θ (0 ≤ θ ≤ π) denotes the angle between the x axis and the
normal line (Fig. 6.1). Thus, a straight line in the input space corresponds to a point in
the parameter space.

𝑥

𝑦

𝜃

𝜌

𝑂

Figure 6.1: Polar parametrization of a straight line.

To detect lines, we proceed as follows [44]: For each point (x, y) in the input space (a ma-
trix of dimensions h×w) we compute the corresponding pairs (ρ, θ) using (6.3). To lower
the computational burden of the algorithm, both θ and ρ are quantized using, respectively,
Nθ bins of size ∆q

θ = π/Nθ rad and Nρ bins of size ∆q
ρ m with Nρ = max{h,w}/∆q

ρ and
period π. A bidimensional accumulator array accumulates the number of appearances for
each bin. The local maxima in the accumulator indicate the presence of the main angular
contributions (lines) in the input space. As we shall show, applied to human motion
within a building, it can reflect the presence of long linear structures, such as corridors.

6.2.2 The Hough Spectrum (HS)

Given the HT accumulator array of an input space, Censi et al. define the HS as follows
[30]:

HS(θj) =

Nρ−1∑
i=0

HT(θj, ρi)
2, 0 ≤ j ≤ Nθ − 1. (6.4)

with a period of π rad. The HS represents the angular spectrum of the input space, i.e.
the distribution of angles in the input space, which is independent of translations along
the x and y axes. Shortly, we will show how this property may be used to identify the
main linear contributions of human motion within a building.

In the following we will introduce the Hough Transform in the context of FootSLAM
maps, the Hough Spectrum as a representation of the angular features of a map, and
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spatial spectra as a representation of the location of the main features of a map along the
axes of a 2D Cartesian coordinate system.

6.3 Applying HT and HS to FootSLAM Probabilistic
Maps

6.3.1 Angular Spectrum of FootSLAM Maps based on the Hough
Transform

The angular spectrum of a FootSLAM map shall reflect the orientation of the main linear
motion contributions. In this section we show how to apply (6.4) to a single layer of
hexagonal prisms.

In the image processing domain the input space of the HT comprises an image’s pixels [44].
That is why Carpin [28] transforms the rich laser-scanner based occupancy grid map before
any further processing occurs. However, probabilistic motion maps are fundamentally
different from occupancy grid maps, with each cell encoding 8 face transition probabilities.
We need to find suitable representation for the hexagonal map that lends itself to the HT.
We choose our input space P (6.1) to encompass the center points of the lateral faces of
the visited hexagons (Fig. 6.3), with each center point encoding the count ratio of that
face: C̄f

h,l, defined as:

C̄f
h,l =

Cf
h,l

Ch,l
, (6.5)

which can be interpreted as a local transition probability.

To apply the HT, we set an arbitrary point within the map as center of rotation (marked
in red in Fig. 6.2(a)). For each layer Ll, first each center point pfh,l of a face f of a

hexagonal base Hh is transformed to the polar parameter space and then C̄f
h,l is added to

the corresponding bin (ρ, θ) of the accumulator array.

For the map of Fig. 6.2(a) the accumulator of the HT (Fig. 6.2(b)) has a maximum score
at ρ = 0 m and θ = 46.5 deg (and θ = 226.5 deg), which is expected after visual inspection.

For layer Ll the HS is calculated as follows:

HS(θj, l) =

Nρ−1∑
i=0

HT(θj, ρi, l)
2, 0 ≤ l ≤ Nz − 1, (6.6)

For each layer, the local maxima indicate a higher probability of a strong angular pref-
erence at the corresponding θ value. For the single-layered map of Fig. 6.2(a) the HS
(Fig. 6.2(c)) peaks at θ = 46.5 deg (and θ = 226.5 deg), which is independent of ρ and
thus independent of (x, y).
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𝑥

𝑦

𝜃

𝑂

(a) FootSLAM posterior map of an office envi-
ronment. The red dot corresponds to an arbi-
trarily chosen center of the coordinate system to
compute the HT. The dashed line represents the
perpendicular line to the main linear motion con-
tributions (corresponding to walking along the
corridor) learned by the HT. The solutions {θ =
46.5 deg, θ = 226.5 deg}) represent the angle be-
tween the normal and the x axis (the y axis grows
downwards).

(b) Representation of the accumulator ar-
ray of the HT of the FootSLAM map of
Fig. 6.2(a), with period 180 deg: A jet color
scale encodes the value of the accumulator
array. The maximum is located at ρ = 0 m
and θ = {46.5, 226.5} deg.
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(c) Normalized Hough Spectrum of the
FootSLAM map of Fig. 6.2(a), with pe-
riod 180 deg. The maximum is located at
θ = {46.5, 226.5} deg.

Figure 6.2: Example of a FootSLAM posterior map 6.2(a), its corresponding HT accu-
mulator array 6.2(b) and the resulting angular spectrum based on the HS
6.2(c).

6.3.2 Spatial Spectra of FootSLAM Maps along the Cartesian Axes

The spatial spectra of a FootSLAM map shall reflect the main features of a map along
the Cartesian axes.

To compute the spatial spectra, for each visited hexagonal prism {h, l}, we project the
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6.3 Applying HT and HS to FootSLAM Probabilistic Maps

count ratio of faces Fx = {0, 1, . . . , 5} onto the x coordinate of the center of the hexagonal
base and the count ratio of faces Fy = {1, 2, 4, 5} onto the y coordinate of the center of
the hexagonal base (Fig. 6.3).
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Figure 6.3: Top view of the hexagonal grid in Fig. 4.1. The indices k and j correspond
to the discretization used for the projection of a FootSLAM map onto the x
and y axes respectively. For example, the hexagon depicted in gray (column
k = 2, row i = 2) shall be projected onto k = 2 and j = 4. We have marked
with a dot the center of each face to project and its associated face number f .

X Spatial Spectrum

We can compute the spatial spectrum along the x axis (XS) of a layer Ll of hexagonal
prisms as follows:

XS(k, l) =

Ny−1∑
i=0

[
C̄0
h(k,i),l +

f=4∑
f=1,f 6=3

C̄f
h(k,i),l · cos(π/3) + C̄3

h(k,i),l

]
,

0 ≤ k ≤ Nx − 1,

0 ≤ l ≤ Nz − 1, (6.7)

where h(k, i) refers to the index of the hexagonal base located at column k and row i of
the prism grid (Fig. 6.3).
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6 Reducing the Complexity of FeetSLAM’s Map Combination Step

Y Spatial Spectrum

To obtain the spatial spectrum along the y axis (YS) of a given layer Ll of hexagonal
prisms, for each row of hexagonal bases i, (0 ≤ i ≤ Ny − 1), there are two y coordinates
onto which we can project the count ratio, one for even columns and one for odd columns.
We call j the “wide-sense” row number (Fig. 6.3):

YS(j, l) =
Nx−1∑
k=0

∑
f∈Fy

C̄f
h(k,i),l · sin(π/3),

with j = i · 2 + i mod 2,

0 ≤ i ≤ Ny − 1,

0 ≤ l ≤ Nz − 1. (6.8)

6.3.3 Combining Maps: Particle’s Map vs. Posterior Map

Ozkucur and Akin [116] use posterior maps to find the geometric transformation between
two maps. Then, when a robot transforms the posterior map of another robot, the trans-
formed map is merged with each one of the particle’s maps. To find the transformation
between two maps, Dinnissen [39] uses the map estimate of the particle with the highest
weight of each robot’s particle filter.

Although our proposed approach can be applied on a per particle’s map basis, we have
chosen to work with posterior maps (as defined in (2.63)) because they encode all the
particles’ map hypotheses, it scales well with the number of particles and because of the
reliable results obtained by [136]. From now on, we will refer to FootSLAM posterior
maps as FootSLAM maps, but notice that the following algorithms can be applied to a
particle’s map.

6.4 Geometric Transformation Between Two Maps based
on Angular and Spatial Spectra

Given two FootSLAM maps, we will use MP to refer the FootSLAM map with point set
P that is the fixed reference and MQ to refer to the FootSLAM map with point set Q
that we transform to fit MP . We define QR = T (Q,∆θ, 0.0, 0.0) as the rotated point set
and QS = T (QR, 0.0,∆x,∆y) as the shifted rotated point set.

To estimate the transformation between P and Q (or MP and MQ), we follow the algo-
rithm outlined in [28] but applied to FootSLAM maps instead of images:
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6.4 Geometric Transformation Between Two Maps based on Angular and Spatial Spectra

1. Pre-align the angular features of MP to the Cartesian axes by computing the HS
and applying the rotation value ∆θ with the maximum score. For simplicity, MP

represents this already aligned map.

2. Cross-correlate the Hough spectra of MP and MQ to find the angular displacement
∆θ between them.

3. Rotate MQ by ∆θ to obtain MQR .

4. Cross-correlate the spatial spectra of MP and MQR to find the spatial displacement
between them, ∆x and ∆y.

5. Apply ∆x and ∆y to MQR to obtain MQS .

6. Combine MQS with MP .

In our extension of FootSLAM to multistory buildings, the transformation search problem
remains the same if we assume that the relative position of the maps along the z axis
is known (for example when the pedestrians carry a barometer that provides absolute
height).

6.4.1 Projection of Multistory FootSLAM Maps

As explained in Section 2.6.2, applying a transformation to a FootSLAM map is always
done in conjunction with a projection onto a target grid, i.e. a reference grid for all maps
we wish to combine. This is a prerequisite to be able to apply a correlation function
between two maps or add their contributions.

The projection is performed with the help of two factors, namely a distance factor and
an angular factor. These two factors are used to compute the proportion of the transition
counts of an edge of a hexagonal base that shall be assigned to any edge in the target
grid.

In this section we propose an alternative to the distance factor presented in [136] and that
also accounts for the upper and lower face transition counts of a multistory map. The
angular factor is explained in Section 3.2 of [136] and is only applied to the lateral faces.

New Distance Factor to Project Lateral Faces

The distance factor proposed in [136] is computed as the distance between the center of
each transformed hexagon and the center of each target hexagon that lies in the vicinity of
the transformed hexagon. The proportion of the counts assigned to each target hexagon
is defined by a weight that is inversely proportional to the distance. Such a weight is not
robust against distances close to zero and different scaling factors between the transformed
and target prisms.
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6 Reducing the Complexity of FeetSLAM’s Map Combination Step

Here we propose a new distance factor for the lateral faces of a prism. Given a transformed
prism of MQS (drawn with dashed lines in Fig. 6.4(a))), for each lateral face we can draw
a circle with the diameter set to the radius of the prism’s hexagonal base (red circle in
Fig. 6.4(a)). The distance factor is defined as the overlapping area between that circle and
the circles corresponding to the lateral faces in the target grid (blue circles in Fig. 6.4(a)).

Now, for each target lateral face (marked with the blue circles) we multiply the weight
based on the angular factor and this distance factor and normalize them to sum to 1. The
final weight represents the proportion of the transformed face’s transition counts that will
be assigned to each target face.

Distance Factor for Upper and Lower Faces

To project the transition counts of the upper and lower faces of a transformed prism we
can draw a circle centered at the center of its hexagonal base and with the same radius
(red circle in Fig. 6.4(b)). The distance factor is defined as the overlapping area between
that circle and the circles corresponding to the hexagonal bases in the target grid (blue
circles in Fig. 6.4(b)). The proportion of the transition counts of the upper and lower face
that is assigned to each target prism is the distance factor after being normalized to sum
to one over all target prisms (marked in blue).

6.4.2 Cross-correlating Two Angular or Spatial Spectra

The cross-correlation between two angular or spatial spectra measures the similarity be-
tween the two spectra as a function of an angular or spatial displacement, respectively.
Thus, local maxima in the cross-correlation may provide a list of possible candidates for
the angular and spatial displacements to apply to a map to best explain the data of the
other map.

Given the angular spectra at layer Ll of two point sets, HSP(θj, l) and HSQ(θj, l) respec-
tively, we can compute the angular cross-correlation (AC) between them as their circular
cross-correlation, with bin size ∆q

θ = π/Nθ and period π:

ACP,Q(∆θ, l) =

j=Nθ−1∑
j=0

HSP(θj, l)HSQ(θj + ∆θ, l),

0 ≤ ∆θ ≤ (Nθ − 1) ·∆q
θ. (6.9)

On the other hand, given the spatial spectra at layer Ll over the x axis of two maps
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(a) Representation of the compu-
tation of the distance factor for
one lateral face as the overlapping
area between the red circle (cor-
responding to the a lateral face of
one prism of the transformed map
MT ) and each blue circle (corre-
sponding to any lateral face of a
prism of the target grid with which
the red circle overlaps).

(b) Representation of the compu-
tation of the distance factor for
the upper and lower faces as the
overlapping area between the red
circle (corresponding to the up-
per or lower face of a prism of the
transformed map MT ) and each
blue circle (corresponding to the
upper or lower face of a prism of
the target grid with which the red
circle overlaps).

Figure 6.4: Illustration of the computation of the distance factors. The hexagon in dashed
lines is the top view of the prism we are projecting and the hexagons in
continuous lines represent the top view of the target grid.

XSP(k, l) and XSQ(k, l), we can compute their cross-correlation as follows:

XCP,Q(∆k, l) =
k=∞∑
k=−∞

XSP(k, l) · XSQ(k + ∆k, l),

−∞ ≤ ∆k ≤ ∞. (6.10)

Likewise, we can compute the cross-correlation over the y axis at layer Ll by applying:

YCP,Q(∆j, l) =

j=∞∑
j=−∞

YSP(j, l) · YSQ(j + ∆j, l),

−∞ ≤ ∆j ≤ ∞. (6.11)

Finally, to obtain the translation in meters (∆x,∆y) (see Fig. 6.3):

∆x = 1.5 · r ·∆k [m], (6.12)

∆y =
√

3/2 · r ·∆j [m]. (6.13)
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6 Reducing the Complexity of FeetSLAM’s Map Combination Step

In addition, we can compute the cumulative cross-correlation over all prism layers Ll
for any of the cross-correlations defined above by summing the cross-correlation over all
layers weighted by the geometric average of the total number of counts for that layer

Cl =
∑
h

Ch,l between the two maps. For example, for AC (6.9):

ACP,Q(∆θ) =
l=Nz−1∑
l=0

ACP,Q(∆θ, l) ·
√
CPl · C

Q
l . (6.14)

6.4.3 Map Combination Example

In this section we show how to combine two FootSLAM maps of the same environment,
in particular the maps shown in Fig. 6.5(a).
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(a) MP (left) and MQ (right).
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(b) MP (left) and MQR

(right).
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(c) Combined FootSLAM
map.

Figure 6.5: Two FootSLAM maps during the process of being combined.

The first step is to find the angular displacement between the two maps. Given the HS of
each map (Figures 6.6(a) and 6.6(b)), we can compute the angular cross-correlation using
(6.9) (Fig. 6.6(c)). The maxima are located at ∆θ = 132.5 deg and ∆θ = 312.5 deg. In
this case, the correct angular displacement is ∆θ = 312.5 deg. Shortly we will show how
to discriminate between these two solutions.

We apply a rotation of ∆θ = 312.5 deg to MQ to obtain MQR with QR =
T (Q, 312.5 deg, 0.0, 0.0), depicted on the right side of Fig. 6.5(b). The maps are clearly
still shifted with respect to each other.
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(a) Normalized Hough Spectrum HSP of the
map on the left side of Fig. 6.5(a), with pe-
riod 180 deg.
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(b) Normalized Hough Spectrum HSQ of
the map on the right side in Fig. 6.5(a), with
period 180 deg.
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(c) Normalized angular cross-correlation
ACP,Q(∆θ), with period 180 deg. The max-
imum is located at ∆θ = 132.5 deg (and
∆θ = 312.5 deg)

Figure 6.6: Normalized Hough Spectra of maps in Fig. 6.5(a) (Fig. 6.6(a) and Fig. 6.6(b))
and angular cross-correlation between them (Fig. 6.6(c)).

The next step is to obtain the spatial spectra of both maps and compute their cross-
correlations to obtain the translation between them (Fig. 6.7). Remember that we have
pre-aligned the angular contributions of MP with the x and y axes so that the spatial
spectra effectively reflect the contributions of the maps along the Cartesian axes.

The maxima of the spatial cross-correlations along x and y are located at ∆k = −29
and ∆j = −62, which correspond to ∆x = −21.75 m and ∆y = −26.85 m, respec-
tively. Fig. 6.5(c) shows the resulting combined map, i.e. MC = MP + MQS with
QS = T (QR, 0.0,−21.75 m,−26.85 m).

6.4.4 Using Lists of Possible Values

When merging maps, we need to identify regions that overlap between them. For example,
Birk and Carpin [19] propose using a function that measures how much two occupancy
grid maps overlap and searches stochastically for the best transformation.

To quantify how well the data of one map explains the other, Section 3.3 of [136] chooses
a likelihood function rooted in the Bayesian formulation of FootSLAM with an extra
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(a) Normalized X spectrum of P,
XSP , depicted on the left side of
Fig. 6.5(b).
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(b) Normalized X spectrum of
QR, XSQR , depicted on the right
side of Fig. 6.5(b).
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(c) Normalized spatial cross-
correlation along the x axis,
XCP,QR . The maximum is
located at ∆k = −29
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(d) Normalized Y spectrum of P,
Y SP , depicted on the left side of
Fig. 6.5(b).
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(e) Normalized Y spectrum of
QR, XSQR , depicted on the right
side of Fig. 6.5(b).
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(f) Normalized spatial cross-
correlation along the y axis,
Y CP,QR . The maximum is
located at ∆j = −62.

Figure 6.7: Normalized spatial spectra and cross-correlations of the maps depicted in
Fig. 6.5(b). Index k represents the column number in the prism grid and
index j represents the “wide-sense” row number, which considers two rows
per prism grid row (Fig. 6.3).

heuristic term (2.71). A map that represents where one person has walked should be a
good fit in explaining the walk of another in the same environment.

In this contribution we extend the logarithmic likelihood value (logLV) of (2.71) to ac-
commodate the transitions across the upper and lower faces, yielding:

logLV(MP ,MQ) =

=

∑
{h,l}∈H

MQ

f=7∑
f=0

CfQ
h,l · log(

CfP
h,l + αfh,l

CTP
h,l + αTh,l

)

∑
{h,l}∈H

MQ

CTQ
h,l

+

β ·
∑

{h,l}∈H
MQ

CTQ
h,l · C

TP
h,l∑

{h,l}∈H
MQ

CTQ
h,l

(6.15)

To be able to track multiple hypothesis in a non-iterative fashion, we keep Nmax hy-
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potheses for the angular displacement (the highest Nmax local maxima of the angular
cross-correlation between two maps). For each angular displacement candidate, we com-
pute XC and YC and transform MQR with all possible spatial combinations of the Nmax

greatest local maxima of XC and the Nmax greatest local maxima of YC. Thus, we track a
total of N3

max possible geometric transformations. Finally, we decide which transformation
to apply by selecting the one that yields the maximum logLV (6.15).

Operating like this we can overcome possible rotational or spatial symmetries of the
building as well as building structures that are not orthogonal. In addition, tracking a
number of transformation hypothesis helps confront the problem of merging maps that
do not overlap in great degree.

6.4.5 Transformation Search Range

In this work we assume some knowledge regarding the relative starting position and head-
ing of the pedestrians. In the case of the angular displacement, we use this information
to discriminate between the solutions ∆θ deg and ∆θ + 180 deg.

In the professional market domain, this is a feasible assumption, since most of the walks
start outside around the same coordinates (for example, at the firetruck) and the team
members enter the building using only a few entrances. Alternatively, GNSS or other
pre-installed infrastructure might be partially available during the walks [131][26].

6.5 Computational Complexity Analysis

In this section we analyze the computational complexity of the map combination step
based on angular and spatial spectra and compare it to the brute-force approach in [136],
which is the only existing implementation. We are interested in studying the complexity
growth of the algorithm as the space visited by the pedestrians grows asymptotically to
infinity. For this purpose, we will rely on asymptotic notation to express the worst-case
scenario (Section 2.1).

6.5.1 Complexity of the Brute-force Approach

As we stated in Section 2.6.2, the map combination step in [136] applies N tr
x translation

values along the x axis times N tr
y translation values along the y axis times Nr rotations

values to Q and relies on the Bayesian-motivated function in (6.15) to determine the best
fit to P .

The computational complexity of cross-correlating two multistory maps using (6.15) grows
in the number of prisms of the maps O(NH) = O(Nx ·Ny ·Nz). This operation is performed
Nr ·N tr

x ·N tr
y times, which is of the order of O(Nx ·Ny) = O(NH) since we can consider Nr
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independent of the area of the maps, i.e. Nr = O(1). Thus, the total complexity order is
O(NH ·NH) = O(Nz ·N2

H).

6.5.2 Complexity of the Proposed Approach

For our proposed algorithm, the complexity study is based on the following premises:

1. The input space for the HT comprises, for each prism layer with 6 lateral faces,
Ns = 6 ·NH = O(NH) points.

2. The number of bins Nθ is independent of the area Nθ = O(1) but the number of bins
Nρ depends linearly on the largest dimension of one layer in the hexagonal prism
grid Nρ = O(Nx) (for simplicity we assume Nx = Ny).

In the following, we study the complexity of each one of the parts of our HT-based
algorithm for one single prism layer. The resulting complexity for multistory maps is
computed by integrating the complexity per layer for all layers.

Complexity of HT Algorithm

When calculating the HT we take the Ns points of the input space and transform them
into a Nρ ·Nθ Hough space. This requires computational complexity in O(Ns) = O(NH).

Complexity of HS Algorithm

Computing the HS requires, for each bin 0 ≤ j ≤ Nθ − 1, to compute the sum of Nρ

elements. The computational complexity of the HS grows with O(NθNρ) = O(Nx).

Complexity of Spatial Spectra Computation

The computation of the spatial spectra along the x axis requires, for each column 0 ≤
k ≤ Nx − 1 to compute the sum over the Ny rows of 6 elements, i.e. it has a complexity
growth of O(Nx · Ny) = O(NH). The same reasoning applies to the computation of the
spatial spectra along the y axis.

Complexity of the Cross-correlations

The cross-correlation of two HSs requires O(Nθ ·Nθ) = O(1); the cross-correlation of two
spatial spectra requires O(Nx ·Nx) = O(NH).

This is the main reduction in complexity gained by the proposed algorithm. There is no
longer a quadratic dependency with the explored area: it has been reduced to linear.
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Complexity for All Prism Layers

The complexity of the spectra-based approach to finding the geometric transformation
between two maps is, after integrating for all layers:

O(Nz ·NH) = O(NH).

Remember that we track N3
max = O(1) candidates for the transformation (Section 6.4.4)

and use (6.15) to decide which transformation to apply. As explained in Section 6.5.1,
applying (6.15) has a computational complexity of O(NH).

Thus, the complexity of the proposed approach is O(Nz · NH) = O(NH). We have been
able to reduce the complexity of the map merging step from quadratic to linear in the
explored area of a floor.

6.6 Experimental Validation

6.6.1 Experimental Settings

In all the experiments a pedestrian walked with foot-mounted IMU, in particular the cable
connected MTx from x-Sens and the measurements were processed by the UKF in [166]
to generate step measurements. The pedestrians deliberately revisited areas, i.e. closing
the loop, and walked at a normal pace. The datasets were processed in an offline fashion
by doing the following:

1. Process each dataset with FootSLAM to build individual maps.

2. Order the maps by increasing map entropy as defined in (3.10).

3. Combine the two maps with the lowest map entropy into an individual map using
the angular and spatial spectra of the maps as explained in this chapter.

4. Go back to 2. and repeat until only one single combined map is left.

The common settings for all walks are: Np = 10 000, Nx = 256, Ny = 256, Nθ = 360 deg
(i.e. ∆q

θ = 0.5 deg) ∆q
ρ = 0.5 m, r = 0.5 m.

Experiment 1

A pedestrian undertook 3 walks within the first floor of a typical office environment in
2010/2011 (DLR building TE01 in Oberpfaffenhofen, Germany). The building is struc-
tured into a rectangular corridor with offices on both sides. Fig. 6.8 shows the individual
maps (on the top) and their combination (on the bottom).
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10 m

Figure 6.8: Three FootSLAM maps of DLR building TE01 (on the top) and their com-
bined map. The building layout (in blue) with the furniture layout (in pink)
have been manually aligned to the FootSLAM map and are shown only as a
reference.

Experiment 2

Two pedestrians undertook 6 walks within the second floor of an office building (DLR
building 103 in Oberpfaffenhofen, Germany) over several months in 2012. The structure
comprises two long corridors separated by a common area. The pedestrians visited almost
all offices on both sides of the corridors along with the two balconies. Fig. 6.9 shows the
individual maps and their combination.

Experiment 3

One pedestrian collected four datasets on the second floor of the Stata Center in Cam-
bridge, Massachusetts (USA) in March 2011. The building structure is far from a typical
office environment, with almost no rectilinear corridors or rectangular rooms. Fig. 6.10
shows the individual maps and their combination. In this case, the use of a list of local
maxima (Section 6.4.4) turned crucial for finding the correct transformation.

Experiment 4

A pedestrian collected two datasets within six floors of DLR Building 103 in September
2012. The pedestrian walked within each floor and used stairways to transition from
one floor to the next, i.e. no elevators or escalators were used. The floor separation
in the building is 3.54 m and we used Nz = 64 and HH = 0.59 m. Fig. 6.11 shows
the two multistory maps and the resulting combined map. To illustrate how the HT
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10 m

Figure 6.9: Six FootSLAM maps of DLR building 103 (on the top) and their combined
map. The building layout has been manually aligned to the FootSLAM map
and is shown only as a reference.

10 m

Figure 6.10: Four individual maps of the second floor of the Stata Center (on the top) and
their combined map (on the bottom). The building layout has been manually
aligned to the FootSLAM map and is shown only as a reference.
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works for maps with multiple layers Fig. 6.13 shows the angular spectra and angular
cross-correlation of the maps depicted in Fig. 6.11.

6.6.2 Results

The results suggest that we can successfully apply the HT to reduce the computational
and time requirements of the map combination step of FeetSLAM for typical buildings
with strong angular preferences that constrain motion to be approximately linear. In
particular, we found that HT-based FeetSLAM yields the same qualitative results as
the only FeetSLAM implementation to date [136] for all the data collected. The map
combination process has been sped up and the time requirements to combine two maps
have been reduced from tens of minutes to an average of 4 seconds for each pair of maps.

We have overlaid each floor with the available building plan and have manually checked
that each visited office was correctly mapped, reflecting the presence of walls, furniture
and other obstacles.

The resolution of the transformation search is limited by the number of bins Nθ and the
radius of the hexagonal bases r (since we project a FootSLAM map onto the axes on a
column and row basis). The values Nθ = 360, i.e. ∆q

θ = 0.5 deg and r = 0.5 m seem to
yield successful results for all experiments.

6.7 Discussion: Towards Online Map Merging

To quickly find the geometric transformation between two maps, we have applied the al-
gorithm proposed by Carpin [28], which simplifies the transformation search using angular
and spatial spectra, reducing the complexity of the map merging step from quadratic to
linear in the area of a floor: Using the HT, we have been able to obtain the angular spec-
trum of a FootSLAM map; projecting the map onto the Cartesian axes, we have computed
its spatial spectra. The novelty of our work lies in the fact that in our approach:

1. The mapping entities are walking pedestrians with free will instead of guided moving
robots.

2. The pedestrians carry only inertial sensors, instead of laser scanner or cameras,
which have lower data-rates, are low cost and raise fewer privacy issues.

3. The data are processed by a particle filter that generates a map composed of cells
(hexagonal prisms) each associated with 8 probabilities, instead of an occupancy
grid map with cells associated to a binary state.

4. The map nature is fundamentally different: instead of directly showing walls and
obstacles. FootSLAM maps reflect human motion, which is constrained to be linear
in typical buildings.
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6.7 Discussion: Towards Online Map Merging

(a) Multistory map MP .

(b) Multistory map MQ.

(c) Combined map.

Figure 6.11: Two multistory maps MP (Fig. 6.11(a)) and MQ (Fig. 6.11(b)) and the re-
sulting combined map (Fig. 6.11(c)). Different colors encode different floors.
Hexagonal prisms with vertical transitions are marked with a blue rectangu-
lar polyhedron, reflecting the position of stairs.
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floor 1

floor 0

floor 2

floor 3

floor 4

floor 5

floor 6

Figure 6.12: HT of each floor’s motion map MP in Fig. 6.11(a), each with period 180 deg.

5. We work directly with our map representation, instead of having to convert the map
to a binary image.

6. We have applied the approach to multistory environments.

7. We have provided with a detailed analysis of the complexity of the proposed algo-
rithm.

This reduction in complexity is fundamental for the generation of an indoor map database
and may open the door to online applications, for example in security and emergency team
operations (more in Chapter 7).

However, the limitations of the presented map merging algorithm with unknown starting
pose and no rendezvous between the pedestrians are:

1. The maps must overlap in some degree. Knowledge of the starting pose of the
pedestrians can help when the maps do not overlap in great degree. For example,
due to the symmetries in the building, the third map on the top of Fig. 6.9 is
successfully merged only when we roughly know the starting conditions of the walk.

2. The individual maps should have low uncertainty, i.e. the FootSLAM estimation
process of the corresponding dataset must converge. This might require individual
pedestrians to revisit areas in order to close the loop.

3. For robustness, we have chosen the HT as a basis to compute the angular spectrum of
FootSLAM maps. Further work shall address using simpler line detection algorithms
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(a) Normalized Hough Spectrum of each floor of the multistory
map MP in Fig. 6.11(a), with period 180 deg.
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(b) Normalized Hough Spectrum of each floor of the multistory
map MQ in Fig. 6.11(b), with period 180 deg.
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(c) Normalized angular cross-correlation ACP,Q(∆θ), with pe-
riod 180 deg.

Figure 6.13: Normalized Hough Spectra of the two multistory maps in Fig. 6.11(a) and
Fig. 6.11(b) and their cross-correlation. Fig. 6.13(c) indicates that the maps
are displaced 32.5 deg (correct solution) or 32.5 + 180 = 212.5 deg.
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that may perform with lower complexity.

4. Finding the angular displacement between two maps may fail in those cases in which
the building shows angular symmetries or no angular preferences. Nevertheless,
typical buildings exhibit clear angular preferences.

5. The map merging process based on the HT will fail if the maps do not share the
same scale. A possible solution could be to augment FootSLAM maps with features
[95], use the a shape-context metric [16] or identify key-points as in [158], making
the algorithm scale invariant.

6. Our work assumes that the relative position along the z coordinates of two given
maps is known. This may not always be the case. Without an external reference
such as a barometer, this is a hard problem to resolve given that buildings are usually
symmetric across floors. Another possibility is the include the local distortions of
the magnetic field in the map [134]. Since the magnetic signature is different across
floors, we expect this to allow floor levels to be differentiable to a much larger degree
than the probabilistic map of human motion.

7. We have proposed one single alternative to the only existing implementation of
[136], which shows a reduced computational complexity that seems to be sufficient
for quasi real-time collaborative mapping. Other approaches should be explored in
future work.
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Applications

Chapter 6 has proposed a new algorithm to reduce the time requirements of combining
maps in FeetSLAM. Our vision is to use such advances in FeetSLAM to generate a map
database of the indoor world to allow the development of location-based applications.
This chapter focuses on two main topics:

1. Estimating the time and resources necessary to build such a crowdsourced indoor
map database. To do this, under a number of assumptions we will make estimates
about the size of the indoor world, analyze the time to accurately map an area
depending on how often it is visited and estimate the computational, memory and
communication requirements to build this indoor map database.

2. Reviewing location-based applications, e.g. first responder applications vs. mass-
market applications, and alternative deployment scenarios for FeetSLAM, e.g. with
a centralized or decentralized approach to build or use crowdsourced maps.

We will show that using a crowdsourced approach we could collect sufficient step mea-
surement data within a couple of months for those areas that are frequently visited (which
usually coincide with those areas where location-based services are needed the most, e.g. a
shopping mall). In addition, we will show that the computational effort to build an indoor
map database of the whole world using FeetSLAM would require less than a month using
5000 cores and that the maps could be compressed and stored using only 200 gigabytes
of memory.

The main contributions of this chapter have been published in [58] and in [57].

This chapter is organized as follows: in Section 7.1 we present the methodology used to
estimate the requirements of large-scale mapping. Section 7.2 explains the characteristics
of map-aided PDR. We continue by estimating the size of the indoor world in Section 7.3
and Section 7.4 introduces the concepts of visiting frequency and proportion of mapping
individuals to compute the required time to map a given area. Next, Section 7.5 calculates
the effort in terms of computational and memory requirements needed to map the indoor
world and briefly addresses privacy issues. Finally, Section 7.6 outlines applications for
human motion maps and possible deployment scenarios for FeetSLAM.
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7.1 Methodology

We will base our work in this chapter on a number of assumptions:

• The majority of our society walks in some form or the other every day, or they
conduct comparable forms of motion such as using a wheelchair.

• Some of these people will contribute to the mapping process. This could be as active
volunteers or simply by accepting that data are collected anonymously during usage
of a device or service.

• People are most likely to need navigation services in unfamiliar environments, usu-
ally outside private residences.

• The mapping process is largely governed by the normal usage of a building. In other
words, we propose that motion actively directed by the goal of mapping will remain
the exception.

• We postulate that any successful positioning scheme drawing on maps will need
to be able to coast through unmapped or poorly mapped areas. (Map-aided PDR
fulfills this requirement and will be a special case discussed below).

• Those places at which more people desire or use a navigation service correspond to
places more frequented by people that can contribute to mapping.

• Much of our indoor world is heavily frequented by people, at least part of the time.

We have chosen in this chapter to approach the map generation problem from two direc-
tions. On the one hand we will look at small, individual areas of a building and look at
the frequency with which they might be visited by humans. On the other hand we will
look at the data that result directly from an average contributing person. By making
assumptions about the proportion of actively contributing people within society we can
make estimates of:

1. How long it will take to map different areas of a building, and

2. The computational resources required to achieve this globally.

This fits with a possible introduction scenario where the only factor that changes sig-
nificantly over time is the proportion of pedestrians (ρ) who at any point in time might
actively or passively contribute to a collaborative mapping effort. Coverage will grow
most quickly where people tend to go, perhaps with a bias reflecting the social and tech-
nological background of the contributors (especially early adopters who might belong to
specific social groups).

140



7.2 Map Characteristics of Map Aided PDR and FootSLAM

7.2 Map Characteristics of Map Aided PDR and
FootSLAM

We recall that PDR drawing on maps for positioning is able to coast through unmapped
or poorly mapped areas. Indeed, from a probabilistic perspective a FootSLAM map, in
the absence of any observations, is equivalent in its mapping characteristics to an entirely
open area that exerts no influence on human motion within it. Hence a PDR segment in
an unmapped area will deteriorate in accuracy just as it would were a person to walk in a
(known, i.e. mapped) nonrestrictive region. It is the strong motion restrictions imposed
by walls that maintain the position accuracy while a pedestrian walks in a building;
after entering a room through a door the accuracy might be on the order of 1 meter,
deteriorating while the user is in a large space until the next constrictive opening is
passed.

It is very likely that a typical building contains areas of varying visiting frequency, perhaps
spanning several orders of magnitude. A pedestrian in such a building will usually enter
through areas with (relatively) high visiting frequency and cover longer distances in areas
of average to high visiting frequency. Similarly, the areas in the building that strongly
channel pedestrians’ motion are more likely to be visited more frequently in the first
place (for example the main corridors in Figure 2.11). This advantageous situation will
mean that during the course of FootSLAM mapping those areas that are most beneficial
towards achieving good positioning accuracy are usually mapped more quickly than the
less relevant areas.

7.3 How Big is Indoors?

With a world population of approximately 7 billion humans as of 2012, we will approxi-
mate the total number of pedestrians Np we may have to localize to be 10 · 109.

In Europe (EU 27 plus Norway and Switzerland) there are approximately 512 million
inhabitants spread over ca. 25 billion square meters [124], which means that there is a
ratio of ca. 50 m2 per person. If we assume that this number provides an estimate for
the extent of indoor area per person, we can postulate that there are Sw = 5 · 1010 m2 of
indoor area in the world to be potentially mapped.

However, one must note that only 25% of the indoor areas in the EU correspond to non-
residential areas, i.e. public/open spaces where users could strongly benefit from LBSs.
Nevertheless, our goal here is to estimate the costs of mapping all kinds of indoor areas,
without further differentiation of application domains.
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7.4 Rate of Coverage

7.4.1 Walking Speed

Pedestrians exhibit different walking speeds depending on their gender, age and weather
conditions among other factors. Speeds vary, on average, between 1.16 and 1.56m/s
[94]. For example, using one single foot-mounted IMU to obtain a pedestrian’s step
measurements we can assume that the average step rate v is roughly one (double) step
per second.

7.4.2 Visiting Frequency

We define the visiting frequency f of an area to be the number of people passing through
it in a given period. We do not distinguish between the direction of travel or speed and
we assume no pedestrian sources or drains. For the sake of simplicity and because of the
discretization of current implementations of FootSLAM we will typically refer to an area
of one square meter.

When quantifying the length of time needed to map indoor areas it is clear that we shall
have to take into account the large differences in the number of times these areas are
visited by people. But we have not found a source or process that could quantify the
probability distribution of the visiting frequency in our very diverse indoor world. One
might speculate that the visiting frequency distribution approximately follows a structure
such as a Zipf distribution [167]. One approach to approximate it might be to model a
typical day-in-my-life of a representative set of people and estimate where they spend their
time (e.g. working in an office, going out, traveling, shopping, etc). To help understand
and quantify the variability in visiting frequency, we shall define six profiles of visiting
frequency of one square meter, in decreasing order of visiting frequency:

1. Maximal frequency: 2 people passing through the square meter per second: 172 800
visits per day (for example the area around a turnstile before entering a platform
in an underground station of a big city).

2. High frequency: 0.1
s

(one person every ten seconds): 8 640 visits per day (perhaps a
busy museum or shop entrance, with roughly 3 million visitors per year).

3. Medium frequency: 0.01
s

(one person every 100 seconds): 864 visits per day (area in
front of a busy ATM; entrance to an elevator).

4. Low frequency: 0.001
s

(one person every 1 000 seconds, i.e. just over 3 per hour):
86.4 visits per day (low frequented region of a typical office corridor).

5. Very low frequency: 0.0001
s

(one person every 10 000 seconds, i.e. roughly ten persons
per day): 8.64 visits per day (entrance of a residential building).
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6. Minimal frequency: 0.00001
s

(one person every 100 000 seconds, i.e. roughly one
person per day): 8.64 visits in 10 days (a storage room that is not frequently visited,
roughly once a day).

These profiles of visiting frequency will be later used to compute an estimate of the
required time to map a given area.

7.4.3 Proportion of Mapping Individuals

Mobile phone penetration has reached almost 100% in modern society and it is to be
expected that the proportion of user devices with high computing power resources will
increase and eventually lead to a dominance of devices with a least smartphone computing
capabilities. One can only speculate, however, with regards to the proportion of pedestri-
ans ρ who at any point in time might actively or passively contribute to a collaborative
mapping effort while going about their daily lives.

7.4.4 Time-to-map

FootSLAM as well as other many forms of Simultaneous Localization and Mapping will
require several visits to a certain area in order to achieve a map with some degree of
reliability or local coverage. As far as FootSLAM is concerned we can achieve a high
accuracy of a local map after roughly 10 to 100 visits. Using these two limits we can use
the above quantitative definitions and assumptions to compute the time-to-map of areas
corresponding to each of the different profiles of visiting frequency:

Tmap =
Nvis

f · ρ
. (7.1)

Figure 7.1 shows the time required to map different types of venues. The red rectangle
shows the cases that are of particular interest and relevance. The required time to map an
area ranges from 20 seconds for the turnstile type of area (ρ = 0.25, f = 2 s−1, Nvis = 10)
to roughly one year for those areas that are less frequently visited, such as a residential
entrance (ρ = 0.0025, f = 10−4 s−1, Nvis = 10 and ρ = 0.025, f = 10−4 s−1, Nvis = 100).

7.5 Effort

7.5.1 Computational Effort

FootSLAM

We will assume that a healthy and active person takes about Ns = 10 000 steps per day.
We can also assume that 50% of this activity takes place in open/public spaces, with
FootSLAM activated, i.e. NFS

s = 5 000 steps.
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Figure 7.1: Time-to-map an area of one square meter given the frequency of visit-
ing pedestrians f assuming different values for the density of collaborating
pedestrians ρ = {0.0025, 0.025, 0.25} and different needs of number of visits
Nvis = {10, 100}. The red rectangle shows the cases that are relevant.

Thus, at a roughly walking rate v of one step per second the data collected during one day
have a duration of d = NFS

s /v =5 000 seconds. If we process these data on a single core
processor at 100 times faster-than-realtime rate, then the required CPU time to process
the data of a single walk is: TCPU = d/100 = 50 seconds.

FeetSLAM

Using the FeetSLAM algorithm the maps obtained by different walks within the same
building can be merged to generate a more accurate and complete map of the indoor
environment. For the following calculations, we will assume that an average building has
a floor surface area of Sb = 100 m×100 m.

In case a large number of individual maps is available, they can be combined using a tree
structure, whereby smaller groups of maps first combined. Later on, the combined maps
of each group are merged until one single final map is available. If we choose to combine
maps in groups of Nm = 4 maps and apply the map entropy metric (3.10) to select the
order in which we combine the maps, then one iteration of the FeetSLAM algorithm takes
about 3 minutes in a single core processor and the time to run 4 iterations - at which
point we have shown good convergence results - will be bounded by 10 minutes (later
iterations reduce the area where translations and rotation values are searched for and
take less time). If we assume that NM = 64 maps of an indoor environment are enough
to achieve great accuracy (areas are revisited between 10 and 100 times) and that we can
execute Ng = NM/Nm = 16 FeetSLAM processes in parallel, we could obtain the total
combined map of the building in Tb = logNm(NM) · 10 min= 3 · 10 min = 30 min.

As a consequence, running FeetSLAM for our Sw = 5 · 1010 m2 of estimated indoor area
in groups of Sb = 104 m2 and using Nc=5000 cores of standard desktop performance (ca.
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3GHz) operating in parallel, we could have the entire indoor world mapped in Tw =
Sw/Sb · Tb/Nc ≈ 21 days, i.e. in less than a month.

If we can apply the Hough spectrum and spatial spectra (Chapter 6) to quickly find the
geometric transformation between two maps, combining Nm = 4 maps takes of the order
of 10 seconds, and we could reduce even further the amount of time needed to map indoor
environments.

7.5.2 Memory Requirements

Uncompressed, a simple multistory FootSLAM map using hexagonal prisms requires 8
counters per hexagon prism. Assuming that the prisms that lie in between floor levels can
be represented efficiently (as they represent a prism without any lateral face transitions)
we approximately need to represent prisms covering the floor surface area. We assume
that we can represent most occurring hexagon prisms with 4 byte values. As a result, the
map of a building with a floor surface area of Sb = 104 m2 can be stored using Mb = 40
KB.

Assuming Sw = 5 ·1010 m2 of indoor area we require roughly Mw = Sw/Sb ·Mb = 2 ·1011 =
200 gigabytes of memory to store the maps of the indoor world. However, we postulate
that we can compress this with loss-less source encoding by at least a factor of four, and
much higher compression factors might be achieved if small amounts of distortion can be
tolerated.

7.5.3 Communication Effort

We assume that a pedestrian either contributing to the mapping task or with localization
needs will carry a device that computes his step vectors (e.g. with an UKF, see Section 2.4)
on his mobile device. A server will be in charge of processing these step vectors using
FootSLAM. If we can quantize each step vector to 4 bytes, then roughly 4 bytes per
second need to be uploaded to the server.

The map merging process (FeetSLAM) may also be performed at the server. Later on,
pedestrians can access or download the combined maps of the buildings they visit, with
a size of the order of tens of kilobytes.

7.5.4 Privacy Issues

Technologies that help determine the precise position of people allow for an immense
number of location-based services. Nevertheless, these technologies also open the door
to mischievous usage of these data. Having accurate information about the places that
an individual visits and the times when these visits took place can reveal aspects of his
private life, for example disabilities, likes and dislikes, place of residence, etc. and could
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be used by third parties for unwanted advertising purposes among others. Such privacy
issues are not within the scope of this thesis, but we suggest that the same regulations
that apply for other location sensors (e.g. GPS) may be applied to the inertial sensor
data (see Section IV-A.2 of [128]).

In the personal domain we believe using FootSLAM as a base for localization is clearly an
acceptable compromise for indoor navigation since the data collected by inertial sensors
do not reveal sensitive information of the environment - as opposed to visual SLAM
approaches - such as other people’s location.

7.6 Applications and Deployment Scenarios

So far this thesis has addressed many theoretical, implementation and empirical aspects
of FootSLAM and FeetSLAM to build a database of probabilistic motion maps. This
section explores the main applications of these technologies. We can differentiate between
the following two scenarios:

a) Rescue and emergency teams in need of high situation awareness. Knowledge of the
map of the environment and the relative position of the team members helps the
coordination of the mission at hand, increasing the chances of its success. This usually
requires online cooperation between the pedestrians.

b) Travelers at an airport or pedestrians in a shopping center that are in need of location-
based services. The generation of the map in this case can be done in an offline fashion
and then served to the users in a later stage.

In the following sections, we will illustrate a number of online and offline applications
and present two approaches to implement FeetSLAM: a centralized and a decentralized
approach. In addition, we will also explore the use of other sensors and the cooperation
with robots to increment robustness, performance and safety.

7.6.1 FeetSLAM Online and Offline Applications

Online Applications

In online applications, a building is mapped by multiple collaborating pedestrians with
the objective of providing immediate map and position information to one another or
to external users. We envision the following online applications, particularly targeted to
security and emergency teams:

• Rescue team coordination: A rescue team enters a building through the same or
different entrances. Keeping track of the positions helps obtain a status about
already visited areas and helps to find areas which have not been explored yet.
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• Firefighters safety: Fire fighters operating under respiratory protection in a smoke-
filled building are under extreme stress and high risk of hazardous situations. Know-
ing their exact locations and the shortest route to get there increases the safety
during the operations and would prevent incidents such as the one described in [5].
Figure 7.2 illustrates such a situation fire fighters often need to face.

Figure 7.2: A team of firefighters undertakes a rescue operation under respiratory protec-
tion. The generation of a map of the environment they move in and knowing
the position of the rest of the team members can be crucial for the success of
the operation. Source: US Navy (Licence CC BY 2.0).

• Law enforcement operations: Precise determination of the position of all agents
involved in the mission and the knowledge of this position on a map can improve
mutual situation awareness and potentially reduce the risk of accidentally harming
a team member as well as help coordinate the team.

• Search for missing people in outdoor areas: In areas like deep forest, tunnels or
canyons, the use of GNSS is prevented. FeetSLAM can be used to generate a map
of the areas as they are visited by the search team and help speed up the search
process, specially under bad weather conditions.

In these applications the real-time requirements are severe and usually no prior map data
are available, or the map has significantly changed due to the event itself. Doors can be
locked or walls might have been destroyed, opening new routes for movement.

Offline Applications

In offline applications we wish to derive a map that can be stored on a server or distributed
to localization devices that use it to perform map-aided pedestrian dead reckoning. As
more data are collected, the new walks can be incorporated and the maps be refined.
Some examples of these offline applications are:
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• Mass-market applications: Providing users with localization capabilities and con-
text awareness within museums, public buildings, airports, libraries, etc. FootSLAM
maps reflect the frequency of visits of the different areas of a building. This informa-
tion could help identify possible locations for information stands or advertisements.

• Localization services for visually impaired people: FeetSLAM maps reflect the layout
of the walls, the furniture and other obstacles and can be used by people with reading
or vision disabilities, possibly through speech translation.

• Support to mobility-impaired people: These individuals might greatly benefit from
FootSLAM maps in which the location of ramps and elevators can be indicated.
Also, these maps can help find the shortest path to the destination, avoiding long
detours that may cause more discomfort to the pedestrian with the walking disabil-
ity.

• Intelligence services: Intelligence services can use FootSLAM to generate a map of
buildings they are interested in. In this kind of applications, not depending on an
external preinstalled infrastructure is a valuable characteristic.

• Evacuation routes: Evacuation routes for events with multitudinous attendance can
be planed using FeetSLAM. In case of emergency, these routes can be sent to all
the mobile terminals, avoiding locked doors and other obstacles. These applications
are especially important in public buildings, airports, and any other buildings with
high density of people. The maps can help make the crowd move in a coordinate
manner and without colliding with each other, following a swarm behavior.

• Rapid response to accidents: A person among a multitudinous group of persons
and located in a huge and complex building structure such as a museum, a football
stadium or a concert hall, can be reached more quickly thanks to the knowledge of
the map of the area, provided the person’s location within this map is known. If
such person had just suffered a critical incident (e.g. a heart attack), the time to
locate him becomes crucial. Furthermore, determining the position of the closest
defibrillator, which could also be indicated in the map, can increase the probabilities
of saving the person [36].

The next section reviews two alternative approaches to collaboratively build and use
crowdsourced maps.

7.6.2 Centralized and Decentralized Approaches

In the centralized approach, the pedestrians only exchange information with a server, but
not with each other. In contrast, in the decentralized approach, the pedestrians exchange
data directly with each other and compute their own individual map and their own version
of the combined map.
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Centralized Approach

The pedestrians collaborate to build a crowdsourced map but do not interact with each
other directly. The pedestrians can be involved in the combined map generation process
in more or less degree:

a) The pedestrians are responsible for collecting the odometry data. In this case, the
pedestrians are only equipped with a sensor array.

b) The pedestrians can also generate their own FootSLAM map. To this end, the pedes-
trians must also carry a device able to perform FootSLAM on the collected odometry
data (e.g. a tablet or smartphone).

c) The pedestrians can also generate the combined map using the information that they
obtain from the server. In this scenario, the pedestrians need to be equipped with a
device able to perform FeetSLAM given all the pedestrian’s collected datasets.

Pedestrian equipped with IMU, 
transceiver  and  a FootSLAM processor  

Central 
server 

Figure 7.3: Centralized FeetSLAM: Four pedestrians have entered the building through
the main entrance. Each one of them is equipped with an IMU, a transceiver
and in this case, a FootSLAM processor. All of them are able to generate
a map of the areas they have visited, shown by their side. In this case, the
central server is in charge of the generation and distribution of the combined
map.

Likewise, the server can take on one of the following possibilities:

a) The server takes all individual datasets or FootSLAM maps and is responsible for the
generation of the combined map, which can be then distributed to the pedestrian’s
terminals.

b) The server coordinates the information exchange, but the combined map is computed
at each one of the pedestrian’s terminal.
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The more responsibilities the pedestrians have, the more robust the system is against a
failure in the central server or in the communication links. However, this comes at the
cost of higher power, memory and computation requirements on the pedestrian’s device
(e.g. a smartphone).

Figure 7.3 depicts how this centralized approach would work: Each pedestrian has direct
access to her own individual map and they communicate with the central server using the
available network to compute a combined map with the other pedestrian’s maps. The
arrows indicate the possibility of communication between a pedestrian and the central
server.

Decentralized approach

In this approach, the pedestrians exchange data directly with each other and compute
their own individual map and their own version of the combined map. It is possible to
exchange odometry data, individual FootSLAM maps or even the combined map.

Figure 7.4 illustrates this decentralized approach for online applications: Each pedestrian
has direct access to her own individual map, but to be able to compute a combined map
they need to communicate with the other pedestrians using the available network. The
arrows indicate the possibility of communication between two pedestrians.

Pedestrian equipped with IMU,  
transceiver  and a FeetSLAM processor 

Figure 7.4: Decentralized FeetSLAM: The four pedestrians have now access to the maps
of some of the other pedestrians and are able to compute their own partial
combined map. This map can be sent to the other pedestrians, helping all
pedestrians have knowledge of the position of all the other pedestrians.
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Communication Network

The communication can be set up using a centralized network or a decentralized ad hoc
network. If the FeetSLAM processing is done centrally, a connection to the central server
has to be constantly available, either given implicitly through the centralized network, or
through a multihop connection using the decentralized network. If both communication
and processing is organized centrally, the system can still benefit from the decentralized
network.

A synchronization system needs to be defined and the amount and order of data transmit-
ted (e.g. the whole map obtained by each pedestrian, or only the last computed portion
since the last transmission) has to be determined. This is especially important as the
pedestrians are constantly moving and the time available for data transmission is limited
to the time the two pedestrians are within communication range.

Map information which has most relevance in the direct vicinity of a person can be
exchanged with communication partners located in the vicinity. Operational teams are
expected to have their own communication network which could be used to distribute
maps.

7.6.3 Sensor Fusion Approaches

FootSLAM draws on the exclusive use of inertial sensors, but its framework allows the
integration of other sensors, what we call sensor fusion. These new sensors may help
anchor the maps to an absolute coordinate system and may help estimate the relative
position of the collaborating pedestrians. This can reduce the range of the transformation
space to explore when finding the transformation that places all maps within the same
coordinate system, reducing drastically the time to combine maps. These are some of the
possible techniques:

• Use a GNSS receiver to anchor the map to a global coordinate system when possible
(e.g. before entering the building) [131].

• If a WiFi network is available, use WiFi RSS [26] to improve the accuracy of each
individual map and anchor the maps to an absolute coordinate system.

• Use the concept introduced by PlaceSLAM [129], whereby recognizable markers are
used to help the FootSLAM algorithm converge. These could be markers already
available in the environment, like optical features, or these could be markers that are
manually placed in or around the building, e.g RFID tags, BLE beacons or UWB
stations, but whose position is known. Furthermore, if the position of another
pedestrian or a potentially involved robot is known, this information can be used as
a form of dynamic PlaceSLAM.

• Estimate the relative position between the pedestrians, which can be inferred when
they are in close proximity, for example using Bluetooth scans [93], opportunistic
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acoustic ranging [102] or Ultra Wide Band (UWB) ranging [150][112].

• When mapping multistory environments, use an altimeter to estimate the floor at
which the pedestrians are located [48].

7.6.4 Human-Robot Collaborative Mapping

There are scenarios in which human intervention is partially prevented, such as a building
in danger of collapsing, uncontrolled fire, hazardous materials, etc. In these scenarios, it
can be useful to call robots into play [92][48]. The robots can perform some parts of the
exploration and undertake the mapping role. The following scenario is envisioned: The
pedestrian performing the mapping task enters the building carrying a robot up until a
point where the robot is set free. Then, the pedestrian exchanges his current location
with the robot, who can start then performing his SLAM process, using visual sensors,
PlaceSLAM or any available mapping and localization process. The robot can access and
explore those areas where human life is threatened or where human access is not possible.
Again, the whole process can be optionally anchored to a global coordinate system using
a GNSS receiver before entering the building. Figure 7.5 illustrates this idea.

(GPS anchor) 

FootSLAM and SLAM 

Pedestrian equipped with IMU 

Robot with SLAM capabilities 

Pedestrian carrying robot 

Robot drop-off 
and exchange of 
coordinates 

Figure 7.5: Example of human-robot collaborative mapping: A pedestrian carrying a
robot enters the building from the outside world optionally anchoring her
position to the global coordinate system using a GNSS receiver. Once inside
the building, the pedestrian uses FootSLAM to generate a map of the areas
she visits and locate herself within it. She reaches a certain point where she
drops the robot off, which starts performing SLAM using the last coordinates
of the pedestrian as starting point. The pedestrian leaves the building and
the robot continues mapping the building autonomously.
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7.6.5 Influence on the Collaborating Pedestrians

There exist a number of factors that have an influence on the mapping accuracy of Foot-
SLAM, therefore affecting the resulting combined maps and the speed of the combination
process:

• Number of users: the more users, the greater the area that can be potentially
mapped, but also the longer it takes to generate a combined map.

• Overlap of the areas visited by the pedestrians: overlap between the individual maps
helps to find the best transformation between maps and also increases the conver-
gence when using one as prior of the other. In addition, as shown in Section 3.4,
the greater the number of observed spatial transitions at each hexagon’s local map,
the lower the uncertainty of the map.

• Duration of the walks (extension of the visited area and revisited area): the longer
a walk lasts, the more the area is revisited (helping convergence) or the more area
is explored (helping extensive mapping).

• Loop closure: closing loops helps the FootSLAM algorithm converge.

• Use of other sensors to anchor the map to an absolute coordinate system and esti-
mate the relative position between the pedestrians, e.g. GNSS [131] or WiFi [26]
when available.

Thus, the collaborating pedestrians could be instructed or rewarded to walk for a longer
time in certain areas, to close loops, to revisit areas, to flag some markers, to use other
sensors, etc. so that a more extensive and accurate combined map is generated [82].

7.7 Discussion

In this chapter we have estimated the time-to-map a given area as a function of the
proportion of contributing pedestrians, the frequency of visits of that area and a required
number of visits (related to the required accuracy of the map). We have shown that areas
that are frequently visited could be mapped in less than a day and areas that are hardly
ever visited would take years to be mapped. Nevertheless, we believe that those areas
that are frequently visited are the areas that represent possible targets for location-based
applications, e.g. airports, underground stations, shopping centers, etc.

Using FeetSLAM, we have estimated that the maps of the entire indoor world could be
stored using roughly 200 gigabytes and that the time to compute these maps using tens of
walks per area would take less than a month on 5000 cores. These initial estimates suggest
the feasibility of our proposed mapping technique to build an indoor map database within
an affordable period of time and with relatively sparse user penetration.

In this chapter we have also discussed a number of applications of FootSLAM maps,
differentiating between online and offline applications and a centralized and decentralized
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approaches with the possibility of using extra sensors or robots.

First responders and mass market applications would highly benefit from deploying these
techniques. Future work should address bridging the gap towards a real mapping and
localization system and its maintenance and reliability. To do this, crowdsourced step
measurement data should be collected by many pedestrians walking normally either in an
active or passive manner and processed following a centralized or decentralized approach
to validate our proposed approaches.
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8.1 Conclusions

FootSLAM is a technique that estimates probabilistic maps of human motion in con-
strained environments using only step measurements (a.k.a. human odometry) collected
by a walking pedestrian. FeetSLAM extends this idea to multiple pedestrians who col-
laborate in the mapping task in a crowdsourced manner.

In this thesis, we have extended FootSLAM and FeetSLAM to address the efficient map-
ping of multistory buildings using only human odometry, in our case obtained with a
foot-mounted IMU. We have presented a Bayesian formulation and particle filter imple-
mentation of multistory FootSLAM and have applied the algorithm to real-world data.
Towards online cooperative FeetSLAM in such environments, we have addressed the re-
duction in complexity of both FootSLAM and FeetSLAM. To the knowledge of the author,
this is the first time to have shown the possibility of mapping large multistory environ-
ments in a collaborative fashion using only inertial sensors.

We believe that FootSLAM is a suitable ingredient for mass-market applications where
data collected by traveling pedestrians is used to create navigable maps in heavily fre-
quented areas such as airports, stations, shopping centers and other public buildings.
Additionally, the FootSLAM map of a building could help optimize the building’s opera-
tions, usage and infrastructure, by using the frequency of visits to identify hot-spots and
bottlenecks, plan alternative routes, extract paths for people with special needs, etc.

Alternatively, the work in this thesis opens the door to using FeetSLAM in an online
fashion to increase situation awareness during rescue operations and team operations.

8.1.1 Summary of Contributions

The main contributions of this thesis are the following:

1. Improvement of the mathematical foundation, theoretical background and interpre-
tation of FootSLAM:

a) Derivation of entropy-based metrics to measure the uncertainty of FootSLAM
maps, the uncertainty of the pedestrian’s steps and the similarities between
two maps or pose sequences.
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b) Interpretation of a sequence of pedestrian poses in an environment as a random
walk on a weighted graph.

c) Collection of multiple additional human odometry datasets, both in single-
story and multistory environments, followed by a validation assessment of
FootSLAM.

2. Improvement of the FootSLAM and FeetSLAM implementations towards collabo-
rative real-time mapping of multistory environments:

a) Extension of FootSLAM and FeetSLAM to multistory environments by ex-
tending the grid of hexagons to a grid of hexagonal prisms, addressing particle
depletion problems such as floor misalignment, deriving a model for the drift-
ing odometry error along the z component, providing an algorithm to compute
the floor separation in a building from odometry data, and extending the pro-
jection and geometric transformation of FootSLAM maps to also account for
the upper and lower prism faces.

b) Implementation of a new map data structure, to reduce the complexity of
FootSLAM from O(t2) to O(t log t), which becomes linear in time for a fixed
number of hexagonal bases in the grid and allows real-time mapping of larger
areas.

c) Derivation of size-adaptive FootSLAM to map large areas with a grid of hexag-
onal prisms that grows with the mapping needs of the walk.

d) Reduction of the computational complexity of combining a set of FootSLAM
maps by:

i Using an entropy-based metric to select the order in which a set of maps
is combined, reducing the dependency with the number of datasets from
quadratic to linear.

ii Reducing the complexity of finding the geometric transformation that
places two maps within the same coordinate system. By means of the
Hough spectrum and spatial spectra of the FootSLAM maps involved, the
complexity of the transformation search has been reduced from quadratic
to linear in the area of a floor.

3. Analysis of large-scale mapping requirements and indoor pedestrian navigation ap-
plications:

a) Study of the time needed to map an area as a function of the proportion of the
contributing pedestrians, the frequency of visits of that area and a required
number of visits. We have also provided a rough estimate of the memory and
time requirements of mapping the whole indoor world.

b) Outline of the main applications and deployment alternatives of crowdsourced
FootSLAM maps, both in the mass-market and first responder domains.
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8.2 Further Work

Further work could target the following research tasks to improve FootSLAM and Feet-
SLAM:

1. Towards more realistic scenarios:

a) Explore additional sensor placements: The walking datasets used in this thesis
have been collected with a foot-mounted IMU. Further work should explore
collecting step measurements with sensors placed or carried at different body
positions, with the goal of moving the collection to more ubiquitous devices
such as smartphones, tablets or watches. For example, PocketSLAM [86] has
shown how to apply FootSLAM to datasets collected with an IMU placed in
the pocket of the user.

b) Process datasets collected following more realistic walk patterns, in which the
pedestrians jump, run or their walks are much shorter (not necessarily “closing
the loop”) and have few overlapping areas with the other walks.

c) Include elevators and escalators in the multistory FootSLAM estimation pro-
cess, for example by detecting such events as proposed in [53].

d) Expand FootSLAM maps with semantic features. Note that currently Foot-
SLAM and FeetSLAM do not lead to maps that can be directly used in a user
facing application such as feature-rich venue map. Research is being directed
to actively learn such semantic maps if they are not already available [69][2].

2. Research accuracy improvements:

a) Investigate the impact of a more complex model of human motion, so far
assumed a first order Markov process, in the accuracy of FootSLAM.

b) Explore alternatives to the existing discretization of the space based on hexag-
onal bases. A possibility is to use a grid of squares, and store for each square
a histogram of angular transition counts [130].

c) Address failure modes:

• Open areas: To converge, FootSLAM and FeetSLAM’s premise is the pres-
ence of walls, doors and obstacles that constrain pedestrians to walk fol-
lowing similar patterns in the environment. In open areas, FootSLAM’s
mapping accuracy will deteriorate just as much as PDR does. In those
cases, relying on the local distortions of the magnetic field as shown in
[134] can help achieve sub-meter accuracy even in open areas.

• Symmetries in the environment: Map-based inertial navigation based only
on a FootSLAM motion map might fail in those cases in which there are
symmetries in the environment, e.g. parallel aisles on a supermarket that
look almost identical in terms of spatial transitions. In those cases, the
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use of cameras, BLE beacons or magnetic field measurements could help
resolve these ambiguities.

d) Use additional sensors: The experiments in this thesis have been undertaken
using only inertial sensors and a magnetometer. However, FootSLAM’s frame-
work allows using other sensors following a multi-sensor fusion approach, for
example GPS [131], altimeter or WiFi RSS [26]. Using a sensor that provides
an absolute reference could help improve the performance of FeetSLAM, an-
choring the poses of the pedestrian to a global coordinate system. This would
play a very important role in robustifying the search of the transformation that
places a set of maps within the same coordinate system.

e) Measure the accuracy of map-aided navigation based on a FootSLAM map by
collecting the ground-truth trajectory of the pedestrian during a walk.

3. Multistory online FeetSLAM and maintenance:

a) Extend the entropy metrics to multistory maps.

b) Collect additional multistory datasets within a building and process them with
FeetSLAM to further validate the combination of multistory maps.

c) Tackle map exchange for online applications: To experimentally validate the
applicability of FeetSLAM to the different scenarios presented in this thesis,
further research needs to address the online exchange of maps between the
mapping agents or between the agents and a central server.

d) Address FeetSLAM maintenance: This work has focused on FeetSLAM boot-
strap, that is, the generation of a global map with no previous information.
However, another challenging aspect of mapping is updating and dealing with
the mapping of time-variant environments — for example, crowded environ-
ments or office rooms with varying furniture layout. We could rely on crowd-
sourced mapping to collect statistically sufficient data and, similarly to traffic
maps, we could generate dynamic maps of a given environment that would
reflect its state at different times of the day, the week or the year.
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A Appendix

A.1 Autocorrelation Function

The autocovariance of a series zk with N samples describes the linear dependence of a
series with a time-shifted version of itself, i.e. as a function of the time elapsed — called
lag — between them [23].

For a stationary process, the autocovariance at lag l is defined as:

czz(l) = E[(zk − µz)(zk+l − µz)], (A.1)

where µz is the mean of zk (constant for a stationary process).

An estimate of the autocovariance, called sample autocovariance is:

ĉzz(l) =
1

N

N−l∑
k=1

(zk − µz)(zk+l − µz), ∀ l ∈ {0, . . . , L}. (A.2)

The sample autocorrelation is then defined as:

ρ̂zz(l) =
czz(l)

czz(0)
. (A.3)

The sequence of the autocorrelation coefficients ρ̂zz(l) as a function of the lags l is called
Autocorrelation Function (ACF) [23]. The following apply:

1. The ACF of an autoregressive (AR) process of order p decays exponentially or as a
damped sine wave.

2. For a moving average (MA) process of order q, only the first q coefficients
ρzz(1) . . . ρzz(q) are non-zero [23]. In that case, the standard error (σρ) of the ACF
for the autocorrelation coefficients of order greater than q is approximately:

σρ '
1√
N
{1 + 2(ρ̂zz(1)2 + ρ̂zz(2)2 + . . .+ ρ̂zz(q)

2)}1/2. (A.4)

Usually, it is convenient to plot two lines about zero at ±2σρ for the hypothesis in
mind, which correspond to the 95% confidence in ρ̂zz(l).
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A.2 Partial Autocorrelation Function

Partial autocorrelation refers to the autocorrelation between the series zk and zk+l after
removing any existing dependence within zk+1 . . . zk+l−1. It can be seen as a function of
the autocorrelations. The sequence of the partial autocorrelation coefficients φzz(l) as a
function of the lags l is called Partial Autocorrelation Function (PACF) [23].

We can obtain an estimation of the PACF (known as sample PACF) by fitting succes-
sively AR processes of orders 1, 2, 3,. . . by least squares and keeping the last coefficient
φ̂zz(1), φ̂zz(2), φ̂zz(3), . . . at each stage. The following apply:

1. The PACF of an AR of order p is non-zero at the first p coefficients φzz(1), . . . , φzz(p).
In that case, the standard error (σφ) of the estimated PACF for the estimated partial
autocorrelation coefficients of order greater than p is approximately [23]:

σφ '
1√
N
. (A.5)

Usually, it is convenient to plot two lines about zero at ±2σφ for the hypothesis in

mind, which correspond to the 95% confidence in φ̂zz(l).

2. The PACF of a MA process of order q decays exponentially or following the form
of a damped sine.
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List of Acronyms and Symbols

Acronyms

ACF Autocorrelation Function

AR autoregressive

ARIMA autoregressive integrated moving average

ARMA autoregressive-moving average

BLE Bluetooth Low Energy

DBN Dynamic Bayesian Network

DLR German Aerospace Center

EKF Extended Kalman Filter

EPA Environmental Protection Agency

GCD Greatest Common Divisor

GNSS Global Navigation Satellite System

GPS Global Positioning System

HS Hough Spectrum

HT Hough Transform

HTC Hexagon Transition Counters

ICP Iterative Closest Point

IMU Inertial Measurement Unit

INS Inertial Navigation System

IR Infrared

KF Kalman Filter

LCP Largest Common Point Set

LoS Line-of-sight
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MA moving average

MARU Magnetic Angular Rate Update

MEMS Micro Electromechanical Systems

PACF Partial Autocorrelation Function

pdf probability density function

PDR Pedestrian Dead Reckoning

PF Particle Filter

RBPF Rao-Blackwellized Particle Filter

RFID Radio Frequency Identification

RSS Received Signal Strength

SIS Sequential Importance Sampling

SLAM Simultaneous Localization and Mapping

TUM Technical University of Munich

UKF Unscented Kalman Filter

UWB Ultra Wide Band

WLAN Wireless Local Area Network

ZARU Zero Angular Rate Update

ZUPT Zero Velocity Update
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Symbols

General

p(x) Probability density function of x.

p(x, y) Joint probability density function of x and y.

p(x|y) Conditional probability density function of x given y.

N (x;µ, σ) Normal distribution of random variable x with mean µ and standard devi-
ation σ.

N (x;µ,Σ) Multivariate normal distribution of random variable x with mean vector µ
and covariance matrix Σ.

E[·] Expectation for the variable in the brackets.

δ(l) Kronecker delta (which is 1 for lag l = 0 and 0 otherwise) or Dirac delta
(which is ∞ for l = 0 and 0 otherwise).

R Set of real numbers.

N Set of natural numbers.

a ∝ b a is proportional to b.

B(·) Beta function.

Γ(·) Gamma function.

Ψ(·) Digamma function.

D(·) Dirichlet distribution.

O(·) Big O notation.

d·e Ceiling function that returns the smallest following integer.

b·c Floor function that returns the largest previous integer.

Random Variables

X Random variable.

X0:k The history of the random variable from the beginning up to time instant k.

P k The pose of a pedestrian at time instant k.

U k Pedestrian step vector at time instant k, representing the pose change from
P k−1 to P k.
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Ek The (correlated) odometry errors at time instant k.

ZU
k Step measurement vector at time instant k.

Visk The visual cues and signals that the pedestrian sees at time instant k.

Intk The intent of the pedestrian at time instant k.

SC Starting conditions regarding the pose of the pedestrian.

M The map of the environment, which is assumed time invariant.

Hexagonal Grid

Nx Number of columns in a grid of hexagons or hexagonal prisms.

Ny Number of rows in a grid of hexagons or hexagonal prisms.

Nz Number of layers in a grid of hexagons or hexagonal prisms.

NH Number of hexagonal bases in a grid of hexagons or hexagonal prisms.

NH Number of hexagonal prisms in a grid of hexagonal prisms.

Hh Hexagonal base in a grid, with 0 ≤ h ≤ NH − 1.

H The set of hexagons {H0, H1, . . . , HNH−1}.

r The radius of a hexagon.

Ll A layer in a grid of hexagonal prisms, with 0 ≤ l ≤ Nz − 1.

Hi, {h, l} A hexagonal prism with hexagonal base Hh at layer Ll, indexed by i =
l ·NH + h

H The set of hexagonal prisms {H0,H1, . . . ,HNH−1}.

HH The height of a hexagonal prism.

e The edge of a hexagon 0 ≤ e ≤ 5.

eij Index used to refer to the common edge between two hexagons Hi and Hj.

f Index used for the faces of a hexagonal prism 0 ≤ f ≤ 7.

(·)eh Variable for the edge e of hexagon Hh.

(·)Th Sum of the variable over all edges of hexagon Hh.

(·)fh,l Variable for the face f of hexagonal prism {h, l}.

(·)Th,l Sum of the variable over all faces of hexagonal prism {h, l}.

j 7→ i A neighboring Hj that shares a connecting edge with hexagon Hi.
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NG
H Number of hexagons in the predefined grid G.

NG Number of grids.

Gg A grid composed of NG
H hexagons, indexed by g.

Particle Filter Implementation

Np Number of particles.

Neff Effective number of particles.

[m] Index of a particle, with 0 ≤ m ≤ Np − 1

{·}[m]
k The superindex and subindex apply to all variables within the curly brackets.

αeh Virtual prior counts for edge e of hexagon Hh.

Ce
h Number of transitions counted for edge e of hexagon Hh.

Kf
h Number of transitions counted for face f of hexagon Hh across all layers.

βeh Prior counts from another FootSLAM map for edge e of hexagon Hh.

w[m] The weight associated to particle [m].

q(·) Importance density function.

I
[m]
j FootSLAM weight update term for particle [m] when crossing j-th face.

N [m]
vis Set of hexagons visited by particle m.

{M}[m] Data structure used to store the map of particle m.

(·)cum Superindex used to refer to cumulative posterior maps.

MP Map learned for a dataset labeled with P .

HMP Set of hexagons in MP .

↔ Variable on the left corresponds to variable on the right.

= Variable on the left does not correspond to variable on the right.

Sfloor Floor separation.

Ŝfloor Estimated floor separation.

Entropy

h(·) Differential entropy of a continuous random variable.

H(·) Entropy rate of a discrete stochastic process.
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cij Conductance between two node i and node j in a weighted graph.

~P Transition matrix of a Markov chain.

pij Element in row i and column j in the ~P .

~x Initial distribution of a Markov Chain.

~π Stationary distribution of an irreducible and aperiodic Markov Chain.

dKL(p(x)||q(x)) Relative entropy between two probability density functions p(x) and
q(x)

H0:k Stochastic process representing the pedestrian being located at a differ-
ent hexagons over time.

ARIMA Model

p Autoregressive order.

q Moving average order.

i Number of integrations.

B Backward shift operator.

∇ Backward difference operator.

φ(B) Stationary autorregressive operator of order p.

θ(B) Invertible moving average operator of order q.

θ1, θ2 Moving average coefficients.

γ0, γ1, γ2 Autocovariance coefficients.

cxx Autocovariance of time series x.

H-tree and Alphabet

nr Root node representing the full grid.

nG Node that represents all the hexagonal prisms in the predefined grid.

Htree Height of the H-tree.

H2D Partial height of the H-tree that maps the hexagonal bases.

H3D Partial height of the H-tree that maps each hexagonal base to a hexagonal
prism.

HG Partial height of the 2D subtree that maps the grids.
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HH Partial height of the 2D subtree that maps each grid to its hexagonal bases.

D Depth in the tree.

s Degree of the nodes in the 2D subtree.

sz Degree of the nodes in the 3D subtree.

Nn Number of nodes in the tree.

T Maximum number of mapped transitions by the alphabet.

S Number of symbols in the alphabet.

As Symbol number s in the alphabet.

Map Transformation and Combination

Nd Number of datasets.

∆θ Counterclockwise planar rotation about the center of coordinates.

∆x Spatial translation along the x axis.

∆y Spatial translation along the y axis.

∆z Spatial translation along the z axis.

P Point set corresponding to a FootSLAM map with hexagonal prism set HP .

QT Transformed point set Q.

QR Rotated point set Q.

QS Shifted version of rotated point set QR.

(ρ, θ) Polar parametrization of a 2D point.

Nθ Number of bins used to quantize θ.

Nρ Number of bins used to quantize ρ.

∆q
θ With of the bins used for the quantization of θ.

∆q
ρ With of the bins used for the quantization of ρ.

Nr Number of rotation values applied in the brute-force transformation search.

N tr
x Number of translation values along the x axis applied in the brute-force

transformation search.

N tr
y Number of translation values along the y axis applied in the brute-force

transformation search.

Nmax Number of hypotheses kept for rotation and translation values.
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