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Abstract

The origin of the hierarchies in the Standard Model fermion masses and mixing angles
is one of the most puzzling questions in particle physics. In addition, experiments
have shown that neutrinos are massive particles, in contrast with the Standard
Model predictions. All of these issues indicate the existence of new physics. In
this thesis we study extensions of the Standard Model with new Higgs doublets
to solve these questions. The lighter fermion masses are generated with small
quantum effects, reproducing the hierarchies between the different fermion mass
generations. Moreover we can generate neutrino masses in the context of the see-saw
mechanism, by extending the model with at least one right-handed neutrino. The
mixing angles are calculated using zero-th order in perturbation theory. The Cabibbo–
Kobayashi–Maskawa matrix can be generated with a hierarchical structure, whereas
the Pontecorvo–Maki–Nakagawa–Sakata matrix follows an anarchical structure, in
agreement with experiments. In order to avoid stringent flavour observable constraints,
we work in the decoupling limit, taking a sufficiently large scale for new physics.

Zusammenfassung

Der Ursprung der hierarchischen Fermionenmassen und Mischungswinkel im Standard
Modell ist eine der größten ungelösten Fragen der Teilchenphysik. Außerdem haben
Experimente gezeigt, dass Neutrinos massive Teilchen sind, was im Widerspruch zur
Vorsage des Standard Modells steht. Diese Beobachtungen deuten auf die Existenz
neuer Physik hin. Um diese Probleme zu lösen werden in vorliegender Arbeit Er-
weiterungen des Standard Modells mit neuen Higgs Doublets untersucht. Dabei werden
die Massen der leichten Fermionen über kleine Quanteneffekte generiert. So können die
Massenhierarchien der verschiedenen Fermionengenerationen reproduziert werden. Des
Weiteren können die Neutrinomassen im Kontext des See-Saw Mechanismus generiert
werden, indem das Modell um mindestens ein rechtshändiges Neutrino erweitert wird.
Die Mischungswinkel werden in nullter Ordnung Störungstheorie berechnet. In Übere-
instimmung mit Experimenten weist die Cabibbo-Kobayashi-Maskawa Matrix dann
eine hierarchische Struktur auf, wohingegen die Pontecorvo–Maki–Nakagawa–Sakata
eine anarchische Struktur besitzt. Um die starken Schranken von Flavourobserv-
ablen zu umgehen, arbeiten wir im in dem Grenzfall, in dem durch die Wahl einer
ausreichend großen Energieskala die neue Physik entkoppelt ist.
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Introduction

We are currently living in a new era of discoveries in particle physics. Perhaps, the biggest
achievement of the last few years has been the discovery of the Higgs boson by the ATLAS and
CMS experiments, proving the self-consistency of the Standard Model of Particle Physics (SM)
as a successful theoretical framework for elementary particles. Nevertheless, there are still many
unanswered questions which the SM cannot accommodate, as for example neutrino masses. It is
known from neutrino oscillation experiments that neutrinos have mass. But the SM predicts them
as massless particles. Furthermore, experiments have shown that the scale of neutrino masses
is much lower than all the other SM fermions and the hierarchies between their masses seems
to be milder than for all other fermion types. But the nature of neutrino masses remains still
completely unknown. There are several models which introduce new physics to explain neutrino
masses. For example the so-called see-saw mechanism includes new right-handed neutrinos,
which couple to SM neutrinos through a Dirac mass term, as all other fermions. As right-handed
neutrinos are not charged under the SM gauge group, they can have large Majorana masses. In
this way, left-handed neutrinos obtain small masses, compatible with experiments.

Besides the need of new physics to understand experimental results that the SM alone cannot
explain, extensions of the SM are also studied to describe the parameters within SM. The origin
of the hierarchies in the SM flavour sector is one of the main open issues in particle physics. In
the SM, quarks and charged leptons couple to the Higgs boson through Yukawa interactions.
After electroweak symmetry breaking, these couplings set the value of the fermion masses. From
experiments we know that the SM fermion masses follow a completely hierarchical pattern. At
low energies, the corresponding Yukawa interactions are of the order O(10−6) up to O(1). There
have been several attempts to explain these strong hierarchies by extending the SM with new
particles or symmetries. A further issue that needs to be addressed is the mixing pattern of
fermions. As the Yukawa matrices are not diagonal in the SM flavour basis, flavour changing
charged currents appear in the weak sector when working in the mass basis. The fact that
neutrinos are massive means that this does not only happen in the quark sector, but also in the
lepton sector. Yet, the mixing pattern in the quark sector shows a strong hierarchical structure,
whereas the lepton mixing matrix has a completely anarchical arrangement. All of these problems
are discussed in detail in Chapter 1.
The hierarchies in the mass and mixing sector for quarks and leptons somehow suggests that

there must be an underlining mechanism which generates such a flavour structure. In this thesis
we introduce a framework to generate the masses and mixing angles of the SM fermion sector in
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one of the simplest extension of the SM, the Two Higgs Doublet Model (2HDM). This model
adds one extra Higgs doublet with the same quantum numbers of the SM Higgs to the SM. The
theoretical background of the 2HDM is presented in Chapter 2. Here we discuss the different
terms of the 2HDM Lagrangian and its phenomenological consequences, such as new sources of
Flavour Changing Neutral Currents (FCNCs) or CP violation.
In Chapter 3 we introduce a model to explain the quark masses and mixing angles in the

context of a general 2HDM with rank-1 Yukawa couplings at tree level. Within this framework
we are able to reproduce the strong hierarchies between the second and third generation of quarks
together with a completely hierarchical structure for the corresponding mixing sector. In order
to avoid current experimental limits on new scalar particles, we chose to work in the decoupling
limit, where the masses of the new Higgs bosons are much larger than the electroweak scale.
The lepton sector for this model is discussed in Chapter 4, where we extend the 2HDM with
right-handed neutrinos in order to generate the neutrino masses in the context of the see-saw
mechanism. As for the quark sector, we are able to generate the masses for the second and third
generation of leptons with their corresponding hierarchies. Additionally, the mixing sector for
leptons can be generated with the correct anarchical structure. In this part we also take the
decoupling limit to avoid flavour constraints.

The main problem of these scenarios is that the first generation of fermions remains massless.
Adding a new direction in flavour space for each fermion type can cure this problem. For this
reason, in Chapter 5, fermion masses are presented in the context of a general Three Higgs
Doublet Model (3HDM) with rank-1 Yukawa matrices. A basis independent analysis is performed
to present the results. As for the 2HDM, the decoupling limit is taken in order to avoid the
strong constraints from FCNCs. In this framework we are able to generate the mass of each one
of the SM fermions with the correct hierarchy, using the see-saw mechanism for the neutrino
sector.

A phenomenological analysis of a model which contains physics beyond the SM can constrain
the parameter space of the model and give us information on which are the most interesting
observables to study with new experimental data. In the case of the 2HDM and 3HDM, the
Yukawa interactions with the new Higgs can generate new sources of FCNCs and CP violation.
In the SM, there are no FCNCs at tree level and are suppressed at higher orders. For this reason
FCNCs are a good candidate to study models which might generate them at tree level and deviate
their value from the SM predictions. A similar situation happens with new sources of CP violation,
as the SM contains just one CP violating phase in the quark sector. In Chapter 6 we make a first
study of the impact of a the 2HDM explained above on different flavour observables which are
strongly constrained from experiments. This analysis allows us to set limits on the new Higgs
masses and determine which are the most interesting observables to study for these kind of models.
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Part I

Particle Physics in the LHC Era





CHAPTER 1

The Flavour Puzzle

The SM is a theory which successfully predicts the interaction between elementary particles.
Nevertheless, it is still an incomplete model as there are several questions which it cannot address.
The SM does not provide an explanation for the flavour structure in the fermion sector. The
Yukawa couplings with the SM Higgs boson generate the masses for all quarks and charged
leptons after spontaneous symmetry breaking. The enormous differences between fermion masses
is not well understood. The structure of the mixing sector is also an open problem which remains
unexplained in the SM. A further issue is the origin of neutrino masses. The SM does not predict
the existence of right-handed neutrinos. The absence of the latter forbids left-handed neutrinos
to acquire mass via Yukawa interactions, as all other fermions do. A renormalizable Majorana
mass term for left-handed neutrinos is not invariant under the SM gauge group, hence cannot be
included as part of the SM Lagrangian. Therefore neutrinos are massless particles in the SM.
This statement is in disagreement with experimental data. All of these problems are known as
the flavour puzzle.
In this chapter the physics regarding these open questions are presented. The chapter is

divided in three different sections. First, a brief theoretical introduction to flavour structures
in the SM is presented. In the second section the evidence for mixing in the lepton sector is
discussed. This leads us to the third section where different theoretical scenarios for neutrino
masses are presented. In particular we focus on the see-saw mechanism, as this is the framework
used during this thesis to generate neutrino masses.

1.1 Flavour in the Standard Model

The SM is a relativistic quantum field theory with gauge group GSM = SU(3)C×SU(2)L×U(1)Y .
The minimum SM fermion content to explain observations is summarised in Table 1.1. Each row
corresponds to three different generations of fermions. It contains a total of 6 flavour species
for quarks and 6 for leptons. Right-handed neutrinos are the only right-handed fermion partner
which is not included as part of the SM, as there is no experimental evidence of their existence.
If right-handed neutrinos were part of the particle content of the SM, they would not be charged
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under the SM gauge group. In other words, they would not have SM gauge interactions and
therefore, do not need to be included in the theory. Of course, a SM gauge singlet can always be
added as a theoretical extension.

SU(3)C SU(2)L U(1)Y

LL =
(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
1 2 −1

2

QL =
(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
3 2 1

6

eR, µR, τR 1 1 −1

uR, cR, tR 3 1 2
3

dR, sR, bR 3 1 −1
3

Table 1.1: SM fermion content.

The current status of the fermion parameters within the SM is discussed in the next part.
First the SM fermion masses are presented. Second, the mixing in the quark sector is discussed.

Standard Model Fermion Masses

If SM fermions would be massless, the SM would have the following global flavour symmetry

Gf = U(3)QL × U(3)LL × U(3)uR × U(3)dR × U(3)eR . (1.1)

This symmetry group is broken as soon as the Yukawa couplings are introduced in the Lagrangian.
The masses of the SM fermions arise from the Yukawa interactions with the SM Higgs boson
after electroweak symmetry breaking. These couplings are described by the following Lagrangian

−LYuk = (Yu)ijQ̄LiΦ̃uRj + (Yd)ijQ̄LiΦdRj + (Ye)ijL̄LiΦeRj + h.c. (1.2)

where Yu,d,e are the Yukawa couplings for each fermion type and ij indicates the matrix element.
The corresponding masses are proportional to the Yukawa singular values

diag (mx̃1 ,mx̃2 ,mx̃3) = v√
2
V †x̃LYx̃Vx̃R (1.3)

where v ' 246 GeV corresponds to the SM Higgs vacuum expectation value (vev), which sets the
scale of electroweak symmetry breaking. Here Vx̃L,R (with x̃ = u, d, e) are the matrices which
generate the singular value decomposition of Yx̃. Thus, they determine the rotation from the

18
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weak eigenstates
∣∣∣x̃f
L,R

〉
to the mass eigenstates

∣∣∣x̃m
L,R

〉
for SM fermions

∣∣∣x̃f
L,R

〉
= Vx̃L,R

∣∣∣x̃m
L,R

〉
. (1.4)

Note that in eq. (1.2), neutrinos have no Yukawa coupling which generates their masses due to
the non-existence of their right-handed partner. This is the reason why neutrinos are massless
particles in the SM.

Table 1.2 contains the different SM fermion masses and the corresponding approximate Yukawa
coupling value. Clearly, there is a strong hierarchy between the different fermion masses. For
example, the top quark mass is about 6 orders of magnitude larger than the electron mass or
5 orders of magnitude larger than the up quark mass. This strong mass hierarchy is not well
understood in the context of the SM. This scenario somehow suggests that there must be an
underlining mechanism to generate this mass pattern. There have been several ideas discussed

Mass [MeV] Yukawa coupling

me 0.511 3× 10−6

mµ 105.6 6× 10−4

mτ 1776.86± 0.12 10−2

mu 2.3+0.7
−0.5 10−5

md 4.8+0.5
−0.3 2× 10−5

ms 95± 5 5× 10−4

mc 1275± 25 7× 10−3

mb 4180± 30 2× 10−2

mt (173.21± 0.51)× 103 1

Table 1.2: SM fermion masses extracted from [6] and the corresponding approximate Yukawa
coupling value. The u, d, s, c and b mass are given in the MS scheme.

in the literature which try to explain the hierarchies between SM fermion masses. A popular
approach is to assume that the heaviest fermion masses are generated at tree level whereas the
lighter generations acquire their masses via quantum effects. In this way the hierarchy between
the different generations can be naturally explained. Some examples can be found in [7, 8] in the
context of supersymmetry, or by extending the gauge sector, for example in [9–11].

Let us finally mention that after quark and charged lepton masses are included as part of the
SM Lagrangian, the model is still invariant under the following accidental symmetry

U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ . (1.5)

Here U(1)B corresponds to baryon number conservation and U(1)Le , U(1)Lµ and U(1)Lτ corre-
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spond to the conservation of the individual lepton family numbers, Le, Lµ and Lτ , respectively.

The Quark Mixing Sector

The mixing sector in the SM arises because the mass eigenstates are not aligned in flavour space.
For quarks and charged leptons in the SM, the rotation from the flavour basis to the mass basis
described in eq. (1.4). The quark Yukawa couplings in the flavour basis are non-diagonal and
complex. Nevertheless, when one rotates the model to the mass basis, the Yukawa matrices become
diagonal matrices with real elements in the diagonal. This rotation also affects the weak sector and
introduces flavour changing couplings (charged vertices containing different flavour species) and
a CP violating phase. This information is contained in the Cabibbo–Kobayashi–Maskawa (CKM)
matrix. After rotating from the flavour basis to the mass basis, the weak charged current
transforms as

−g
2
√

2

(
ū c̄ t̄

)
f

(1−γ5)γµW †µ


d

s

b


f

+h.c. −→ −g
2
√

2

(
ū c̄ t̄

)
m

(1−γ5)γµW †µVCKM


d

s

b


m

+h.c.

(1.6)
where the f and m subscripts indicate the flavour or the mass basis, respectively and VCKM
corresponds to the CKM matrix, defined as

VCKM = V †uLVdL . (1.7)

The CKM matrix contains the misalignment between the left-handed up and down sector
mass eigenstates. As the up and down quark types have different flavour to mass basis rotation
matrices, the product of the left-handed rotation matrices generates a non-diagonal and complex
CKM matrix. This is experimentally testable through processes which contain the coupling of
the W boson with quark pairs. An example of such process is the B0 − B̄0 mixing, represented
in Fig 1.1. The CKM matrix elements enter in the vertices of the Feynman diagram and generate
flavour changing charged currents. Note that as VuLV †uL = VdLV

†
dL

= diag(1, 1, 1), there are no
FCNCs at tree level in the SM.

B0
q W

b̄

W

t̄ q̄

btq

B̄0
q

Figure 1.1: Feynman diagram for B0 − B̄0 mixing. Here q = d or s. The vertices of the diagram
contain the entries of the CKM matrix which allow charged current flavour violating
interactions.

The CKM matrix with 3 quark generations is a 3×3 unitary matrix, which can be parametrised
by three mixing angles and one CP violating phase as follows

20



1.1 Flavour in the Standard Model

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.8)

where cij = cos θij , sij = sin θij , θij are real mixing angles and δ is the CP violating phase. The
global fit presented in [12] for the CKM matrix at 1σ C.L. is

|VCKM | =


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =


0.974242+0.000079

−0.000158 0.22548+0.00068
−0.00034 0.00355+0.00017

−0.00015
0.22534+0.00068

−0.00034 0.97341+0.00011
−0.00018 0.04117+0.00090

−0.00114
0.00855+0.00021

−0.00027 0.04043+0.00088
−0.00112 0.999146+0.000046

−0.000038

 .
(1.9)

This fit has been done with the CKMfitter [13], using several flavour observables to constraint
different parts the parameter space. The strong hierarchies in the quark mixing sector are
immediately visible in VCKM . The matrix contains terms of order O(10−3) up to terms of
order O(1). As for the mass sector, such an unnatural hierarchy suggests that there might be a
mechanism beyond the tree level Yukawa couplings to explain quark mixing angles.

The CP violating part of the CKM matrix can be parametrised with the Jarlskog invariant J ,
defined as follows in the mass basis [14]

J
∑
m,n

εikmεjln = Im
(
VijVklV

∗
ilV
∗
kj

)
(1.10)

where Vab corresponds to the (a, b) entry of the CKM matrix. Another way of parametrising the
Jarlskog invariant in terms of the parameters in eq. (1.8) is

J = c12c23c
2
13s12s23s13 sin δ (1.11)

The current experimental value for the Jarlskog invariant is [6]

J = (3.06+0.21
−0.20)× 10−5. (1.12)

In the lepton sector, as neutrinos are massless particles, one can always rotate to the basis with
no flavour changing charged currents for leptons by redefining the neutrino eigenstates as follows

|νm
L 〉 → VeL |ν

m
L 〉 (1.13)

where VeL is the matrix which rotates the left-handed charged leptons from the flavour basis to
the mass basis. This rotation can always be done, as there is no neutrino mass term in the SM
Lagrangian. Therefore in the charged weak interactions for leptons are flavour conserving

−g
2
√

2

(
ē µ̄ τ̄

)
f

(1−γ5)γµWµ


νe

νµ

ντ


f

+h.c. −→ −g
2
√

2

(
ē µ̄ τ̄

)
m

(1−γ5)γµWµV
†
eL
VeL


νe

νµ

ντ


m

+h.c.

(1.14)
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as V †eLVeL = 1. As will now discuss be, this is an invalid scenario from observations.

1.2 Flavour with Massive Neutrinos

As just explained, in the SM neutrinos are massless particles implying there is no mixing in
the lepton sector. This is in contradiction with the experimental data. If neutrinos are massive
particles, charged leptons and neutrino flavour eigenstates cannot be simultaneously rotated to
the mass basis while leaving the Lagrangian invariant, just as happens in the SM quark sector.
With massive neutrinos, the product of the left-handed rotation matrices for charged leptons
and neutrinos determines the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. The latter
determines the strength of flavour changing charged currents through the W boson. One can
work in the basis where all the mixing comes from the neutrino sector. In this case the rotation
from the left-handed neutrino flavour eigenstates

∣∣∣νf
L

〉
to the mass eigenstates |νm

L 〉 is described
as follows ∣∣∣νf

L

〉
= U∗PMNS |νm

L 〉 . (1.15)

Here UPMNS corresponds to the PMNS matrix, which can be parametrised as [15]

UPMNS =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13



c12 s12 0
−s12 c12 0

0 0 1



eiα1 0 0

0 eiα2 0
0 0 1

 (1.16)

where sij = sin θij , cij = cos θij , δ is the Dirac CP phase (analogue to the CKM CP phase) and
α1,2 are the two Majorana phases. In order to have a better understanding of the phenomenology
of lepton mixing, neutrino oscillation is now presented.

1.2.1 Neutrino Phenomenology

It is known from quantum mechanics that an eigenstate |a〉 of a Hamiltonian Ha evolves from
time t = t1 to time t = t2 as

|a(t2)〉 = e−iHa∆t |a(t1)〉 (1.17)

with ∆t = t2 − t1. This can be used to calculate the probability of a neutrino created in flavour
eigenstate a to be detected as a flavour eigenstate b after a time ∆t. Using the approximation
for ultrarelativistic neutrinos 1

Ei − Ej '
m2
i −m2

j

2E (1.18)

1The approximation of ultrarelativistic neutrinos is valid, as the masses of neutrinos are known to be O(eV) and
the energy at which neutrinos can be detected is at least of 100 keV [16].
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1.2 Flavour with Massive Neutrinos

and taking L ' ∆t, being L the distance between creation and detection, the probability for
|νa〉 → |νb〉 happening is [17]

P (νa → νb;E,L) = | 〈νb | νa(t)〉 |2 (1.19)

= δab − 4
n∑
i<j

Re
[
UaiU

∗
ajUbiU

∗
bj

]
sin2 (m2

i −m2
j )L

4E + 2
n∑
i<j

Im
[
UaiU

∗
ajUbiU

∗
bj

]
sin

(m2
i −m2

j )L
2E

where Uxy corresponds to the xy entry of UPMNS . From this equation one can see that there are
two main necessary conditions for neutrinos to oscillate from one flavour eigenstate to another.
First, neutrino mass eigenstates must have different eigenvalues and second, leptons must mix.
Thus, UPMNS cannot be a diagonal matrix. Note that Majorana phases do not play any role
in neutrino oscillations. This means that measuring neutrino oscillations cannot determine
whether neutrinos are Dirac or Majorana particles. What makes neutrino oscillations particularly
interesting is that in contrast to the other fermions in the SM, due to the small difference
between their masses, their coherence length is large enough for oscillations to be measured at
experiments. For example, long-baseline accelerator experiments (L ∼ 105 m) with neutrino
energies of E ∼ 10 GeV are most sensitive to mass differences of ∆m2 = m2

i −m2
j ∼ 10−3 eV2

which is comparable to the actual neutrino mass differences as will now be seen. Furthermore,
for a well determined L/E, if the mass differences are distant from each other, the oscillation
probability can be well approximated by a two-family case.

This description has been done assuming that neutrinos are travelling in vacuum. If neutrinos
travel through matter, neutrino oscillation might be modified due to their interaction with charged
leptons and nuclei. This is known as the Mikheyev–Smirnov–Wolfenstein (MSW) effect [18,19].

Experimental Evidence for Neutrino Oscillations

Let us start discussing solar neutrino oscillation. Electron neutrinos are produced inside the Sun
via the proton-proton (pp) chain and the CNO cycle. Experiments which study solar neutrino
fluxes on Earth, such as GALLEX [20], BOREXINO [21], SNO [22] or SuperKamiokande [23],
have measured a considerable lack of captured electron-neutrinos coming from the Sun with
respect to the theoretical predictions of the Standard Solar Model (SSM) [24]. The explanation
of such a disappearance is that electron neutrinos oscillate into muon and tau neutrinos. Actually,
solar neutrino oscillations can also be studied with reactor experiments with the proper L/E.
For example, the KamLAND experiment produces neutrinos by inverse β-decay, with energies of
O(MeV) and L ∼ O(100 km), which is indeed in the appropriate L/E range to study solar neutrino
oscillations. The two-flavour fit (taking into account the mixing just between two neutrino flavour
states) for several solar experimental results together with the KamLAND data for solar neutrino
oscillation correspond to ∆m2

21 = (7.46+0.2
−0.19) × 10−5 eV2 and tan2 θ12 = 0.427+0.027

−0.024 [25]. The
global analysis done in [26, 27] shows that the MSW effect in the region of large mixing angle is
indeed the solution to explain solar neutrino oscillations.
In second place, atmospheric neutrinos are produced due to the interaction of cosmic rays

with nuclei in the atmosphere, creating hadrons such as pions and kaons. These then decay into
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Chapter 1 The Flavour Puzzle

electrons or muons, and neutrinos. These neutrinos are produced at ∼ 15 km from detection if
they are vertically down-going or ∼13000 km if they are vertically up-going. Experiments which
study atmospheric neutrino oscillations, such as Soudan2 [28], MACRO [29] or Super-Kamiokande,
search in an energy range of ∼ 0.1− 10 GeV, hence are mostly sensitive to mass differences of
10−4 < ∆m2

atm < 0.1 [17]. Neutrinos created at long-baseline accelerators (L ∼ 100− 1000 km
and E ∼ 10 GeV) can also study similar mass ranges [6, 17]. These experiments have reported a
deficit of muon neutrinos events. The MINOS results in 2013 for a two-flavour hypothesis are
∆m2

32 = (2.41+0.09
−0.10)× 10−3 and sin2 2θ23 = 0.95+0.035

−0.036 ± 0.01 [30].
Finally, reactor neutrino experiments have L ∼ 1 km and produce antineutrinos at E ∼ MeV.

This L/E is sensitive to ∆m2 ∼ ∆m2
atm, but due to the low neutrino energies only positrons

can be produced via ν̄e + p → e+ + n. This means that reactor experiments can measure
θ13 directly, which corresponds to the third mixing angle. Some of these experiments are for
example Chooz [31], Double Chooz [32], RENO [33] and Daya Bay [34]. In 2012 the Daya
Bay collaboration reported a evidence of a non-zero θ13 mixing angle with an updated value of
sin2 2θ13 = 0.084± 0.005 [35].
Even if θ13 is small, it leads to subdominant oscillation effects due to interference in the

oscillation probability of the other types of processes. This interference has to be taken into
account to determine neutrino parameters. The most recent global fit analysis for the six neutrino
parameters, taking into account solar, atmospheric, reactor, and accelerator data at 1σ confidence
level [36,37] is summarised in Table 1.3.

Normal hierarchy (NH) Inverted hierarchy (IH)

sin2 θ12 0.304+0.013
−0.012 0.304+0.013

−0.012

sin2 θ23 0.452+0.052
−0.028 0.579+0.025

−0.037

sin2 θ13 0.0218+0.0010
−0.0010 0.0219+0.0011

−0.0010

δ 306+39
−70 254+63

−62

∆m2
21 (7.5+0.19

−0.17)× 10−5eV2 (7.5+0.19
−0.17)× 10−5eV2

∆m2
3l (2.457+0.0.047

−0.047 )× 10−3eV2 (−2.449+0.048
−0.047)× 10−3eV2

Table 1.3: Global fit parameters from neutrino oscillation data [36,37]. l = 1 for NH, l = 2 for
IH.

From this global fit, the 3σ range for the elements of the PMNS matrix are [36,37]

|UPMNS | =


|Ue1| |Ue2| |Ue3|
|Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| |Uτ3|

 =


0.801→ 0.845 0.516→ 0.580 0.137→ 0.158
0.225→ 0.517 0.441→ 0.699 0.614→ 0.793
0.246→ 0.529 0.464→ 0.713 0.590→ 0.776


(1.20)

which show a completely anarchical structure in contrast with the strong hierarchies of CKM
matrix.
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1.2 Flavour with Massive Neutrinos

From neutrino oscillation data only the squared difference between neutrino masses is known.
This scheme of masses leaves two possible scenarios:

• m1 < m2 � m3 known as the normal hierarchy

• m3 � m1 < m2 known as the inverted hierarchy.

The neutrino hierarchy can be determined thanks to the MSW effect, as the resonant condition for
the neutrino oscillation in matter depends on the sign of the mass difference squared ∆m2 [19,38].
Other methods to experimentally determine neutrino mass hierarchy is by the direct neutrino
mass measurement, if the mass hierarchy is normal [39].

As for neutrino oscillation data only the squared neutrino mass differences of can be determined,
the actual neutrino mass scale remains unknown. For this reason several experiments try to
constrain this mass. The most stringent current limits from the Troitsk experiment with
3H β decay is m2(eff)

ν =
∑
i |Uei|2m2

νi < (2.05 eV)2 [40]. The total neutrino mass defined as
mtot =

∑
mν , has an upper bound of 0.23 eV from the Planck collaboration results in 2015 [41].

This implies that the mass scale for neutrinos is very small in comparison to all other SM
fermions.

1.2.2 Neutrino Mass Models

Neutral fermions can be either Dirac or Majorana particles. Dirac fermions are a four component
spinor, ψD ≡ ψL + ψR and their mass term connects two different Weyl spinors. This is the case
of SM quarks and charged leptons. On the other hand, Majorana fermions are two component
spinors, ψM ≡ ψL + ψCL , where ψCL = Cν̄TL and C is the charge conjugation operator. The
Majorana mass term connects a Weyl spinor to its own CP conjugate.

In this section, these two different possible scenarios to describe the nature of neutrino masses
are discussed. The see-saw mechanism is also presented as a framework to generate neutrino
masses.

Dirac or Majorana?

As explained at the beginning of this chapter, SM fermions acquire their masses through the
Yukawa interactions with the SM Higgs after electroweak symmetry breaking. Accordingly,
fermion masses are proportional to the different Yukawa singular values, which take values
between O(10−6) and O(1).

The SM predicts neutrinos as massless particles. As new particles which are singlets under the
SM gauge group can always be added to the theory, one can easily add a Dirac mass term to
neutrinos by introducing right-handed neutrinos (SU(2)L × U(1)Y singlets). In such case, the
corresponding Yukawa interactions for neutrinos are

− Lmass
ν = (Yν)ijL̄LiΦ̃νRj + h.c.. (1.21)
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Chapter 1 The Flavour Puzzle

This means that the neutrino Dirac mass matrix is

MD = Yν
v√
2
. (1.22)

Even if this mass term is a simple SM extension, it seems quite an unattractive scenario. To
reach ∼eV neutrino masses the Yukawa couplings should be of the order ∼ O(10−11). The need
for such small Yukawa couplings suggests that the generation of neutrino masses arises from a
different mechanism than all other SM fermions.
An alternative scenario to generate neutrino masses is to assume that left-handed neutrinos

are Majorana particles. In this case, the mass term for left-handed neutrinos would be

− Lmass
ν = MMij ν̄

C
LLi

νLLj + h.c.. (1.23)

This mass term violates lepton number by two units, breaking the U(1)Le × U(1)Lµ × U(1)Lτ
accidental symmetry presented in eq. (1.5). Such a mass term is not allowed in the SM for the
other fermions due to electric charge conservation. But neutrinos are neutral particles.
If we want to generate a left-handed neutrino Majorana mass after spontaneous symmetry

breaking, higher dimensional terms have to be introduced. As left-handed leptons and the Higgs
field are SU(2)L doublets, a mass term such as LLLLφ is not invariant under the SU(2)L×U(1)Y
gauge group, thus is forbidden in the SM. But, if one introduces higher order terms, for example
(L̄Lφ̃)(φ̃TLCL ), a Majorana mass term for left-handed neutrinos can be generated, as such a
term is invariant under the SM gauge group. Nevertheless, this is a dimension 5 operator,
which means it is not renormalizable and has to be suppressed by some mass scale. Generating
left-handed neutrino masses with higher order operators is an attractive scenario, as the large
mass suppression might be able to generate small neutrino masses.

p

n

n

νL

νL

p

W

W
e−

e−

Figure 1.2: Feynman diagram for the neutrinoless double β decay due to a Majorana mass term
for left-handed neutrinos.

Experimentally, a way to determine whether the nature of neutrinos masses is Dirac or
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1.2 Flavour with Massive Neutrinos

Majorana is through the search for the neutrinoless double β decay. This process consists of
the decay of two neutrons into two electrons and two protons (see Fig. 1.2), hence violates
lepton number by two units and can only take place if neutrino are Majorana particles. The
current limits set by the GERDA collaboration for the half-life in neutrinoless double β decay
are T 0ν

1/2 > 2.1× 1025 years [42].

The see-saw mechanism

As previously discussed, there are two main scenarios to explain neutrino masses. Dirac neutrino
masses can be generated by including right-handed neutrino singlets to the SM. Majorana masses
can be accomplished by adding a non-renormalisable operator which is suppressed by some energy
scale. The see-saw mechanism is a scenario which involves both a Dirac mass term, generated
after spontaneous symmetry breaking, and a Majorana mass term for right-handed neutrinos. It
provides a natural way to explain the smallness of neutrino masses in comparison with other SM
fermions. This is known as the Type-I see-saw mechanism. The most general see-saw neutrino
mass Lagrangian is

− Lmass
ν = (Yν)ijL̄LiΦ̃νRj +MMij ν̄

C
RiνRj + h.c.. (1.24)

In this case a Majorana mass term for right-handed neutrinos is not forbidden by any symmetry,
as they are singlets under the SM gauge group. The mass matrixMν in the neutrino flavour
basis takes the form

Mν =
(

0 MD

MT
D MM

)
. (1.25)

The key point of this scenario is that the Majorana mass scale can be much larger than the
electroweak scale as it is not generated by electroweak symmetry breaking. If the mass matrix is
diagonalised, one gets two different submatrices, M1 and M2

Mdiag
ν = UTMνU =

(
M1 0
0 M2

)
. (1.26)

Here M1 is a 3× 3 matrix which corresponds to the left-handed mass eigenstates and M2 is an
n× n matrix which contains the mass eigenvalues of the n right-handed neutrinos. Taking into
account that MM �MD these mass matrices can be approximated as

M1 ' −MDM
−1
M MT

D , and M2 'MM. (1.27)

This means that the singular values of M1 are suppressed by the large Majorana mass. In
effective field theory, at energies much lower than MM, right handed neutrinos are decoupled
and left-handed neutrino masses can be described by a dimension-5 operator

− Leff
ν = κij

2 (L̄LiΦ̃)(Φ̃TLLj ) + h.c. (1.28)
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Chapter 1 The Flavour Puzzle

where the coefficient κij is defined as

κij = YνM
−1
M Y T

ν . (1.29)

This is indeed the dimension-5 operator that was previously presented for Majorana masses. Here
it naturally arises due to the large value of the Majorana mass term for right-handed neutrinos.

There are several advantages and disadvantages of the see-saw mechanism. In this scenario small
left-handed neutrino masses are naturally reproduced due to the large suppression ∼ v2/MM

without the need of including very small Yukawa couplings in the neutrino sector. As a
consequence, it also generates mixing in the lepton sector and new sources of CP violation. These
kind of models are phenomenologically rich, as Lepton Flavour Violation (LFV) arises from the
mixing terms. Also leptogenesis in the early Universe can be generated due to new sources of
CP violation and Lepton Number Violation (LNV).
Even if the see-saw scenario is a attractive framework to explain the smallness of neutrino

masses, it tends to generate a hierarchy between neutrino masses which is too large neutrino
mass hierarchies [43]. As will later be discussed, this drawback is indeed cured when introducing
an extra Higgs doublet to the model. Additionally, if one assumes Yukawa couplings comparable
to the other SM Yukawa couplings, the new right-handed singlets need to be very heavy, too
heavy to be produced at collider experiments. It is therefore a theoretical scenario which is
experimentally difficult to test. Nevertheless, due to the high scale for new physics, the see-saw
model predicts small contributions to LFV processes, in agreement with experimental bounds.

In this chapter we have presented the SM flavour sector and explained the evidence for and
consequences of massive neutrinos. The main four open questions have been discussed are

• The strong mass hierarchies between SM fermions.

• The smallness and mildness of neutrino masses with respect to the quarks and leptons.

• The strong hierarchies in the quark mixing sector.

• The anarchical structure of the lepton mixing matrix.

In the next chapters we present different scenarios where we try to understand this pattern,
commonly referred to as the flavour puzzle.
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CHAPTER 2

The Two Higgs Doublet Model

Even if the SM successfully describes the properties and interactions of almost all elementary
particles, many extension in the scalar sector have been studied in order to explain the questions
that the SM cannot solve. One of the simplest scenario is the SM extended by one additional
Higgs doublet with the same quantum numbers as the SM Higgs boson. This model is known as
the 2HDM. The new Higgs doublet can couple to the SM particles offering a rich phenomenology
in different sectors: new sources of CP violation, effects on FCNCs and LFV, or even different
dark matter scenarios.
In this chapter the theory of a general 2HDM is presented. First the theory of the most

general 2HDM is described. This leads us to discuss the phenomenological implications on
flavour observables in these scenarios. We then present different theoretical frameworks to reduce
the impact of general 2HDM on flavour observables in order to fulfil the strong experimental
constraints. Later, the CP violating part of a general 2HDM is explained. Finally we give a brief
overview of the current direct searches of Higgs particles beyond the SM at the LHC.

2.1 The Model

The 2HDM is an extension of the SM with one extra Higgs doublet with the same quantum
numbers as the SM Higgs. The most general scalar potential for two scalar doublets Φ1 and Φ2

with hypercharge Y = 1
2 can be written as follows [44]

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+ (2.1)

+ 1
2λ1

(
Φ†1Φ1

)2
+ 1

2λ2
(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

) (
Φ†2Φ1

)
+

+
[1

2λ5
(
Φ†1Φ2

)2
+ λ6

(
Φ†1Φ1

) (
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

) (
Φ†1Φ2

)
+ h.c.

]
.
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The two complex SU(2) doublets contain a total of eight fields

Φa =
(
φ+
a

φ0
a

)
=
(

φ+
a

(va + ρa + iηa)/
√

2

)
(2.2)

where a = 1, 2, v1/
√

2 and v2/
√

2 correspond to the values of the vev of each field after spontaneous
electroweak symmetry breaking

〈Φa〉 =
(

0
va√

2

)
. (2.3)

Note that this is not the most general vacuum for the 2HDM, as in the most general case, 〈Φ2〉 is

〈Φ2〉 =
(

u
v2√

2e
iξ

)
(2.4)

where u and ξ are real numbers. Nevertheless, if u 6= 0, the photon becomes a massive particle [45].
The value of ξ determines if there is spontaneous symmetry breaking of CP (see [44] for a review).
We set these two parameters to 0.

There are several conditions that the scalar potential should fulfil. First, there should not be
any directions in field space in which the Higgs potential V → −∞. The necessary and sufficient
conditions to fulfil this requirement are [46,47]

λ1 > 0 λ2 > 0 (2.5)
λ3 > −

√
λ1λ2 λ3 + λ4 − |λ5| > −

√
λ1λ2

Second, the conditions for minimizing the Higgs potential are [48]

m2
11 = m2

12 tan β − 1
2v

2
[
λ1 cos2

β +λ345 sin2 β + 3λ6 sin β cosβ + λ7 sin2 β tan β
]

(2.6)

m2
22 = m2

12 tan−1 β − 1
2v

2
[
λ1 sin2

β +λ345 cos2 β + 3λ6 cos2 β tan−1 β + λ7 sin2 β cosβ
]

(2.7)

where λ345 = λ3 + λ4 + λ5, tan β = v2
v1

and v2 = v2
1 + v2

2. Note that not all the Higgs fields are
physical. Three out of the eight scalar fields are Goldstone bosons that give mass to the W±

and Z bosons, just as in the SM. The remaining five fields correspond to physical Higgs bosons.

The Higgs Basis

In the most general 2HDM the scalar fields Φ1 and Φ2 are indistinguishable. This means that
one can always redefine the Higgs fields as an orthonormal linear combination of the fields in
eq. (2.2) without changing any phenomenological prediction of the model. In other words, the
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doublets can always be rotated to a new Higgs basis through the following transformation(
Φ̄1

Φ̄2

)
=
(

cosχ sinχ
− sinχ cosχ

)(
Φ1

Φ2

)
. (2.8)

Therefore, one can always rotate to the basis where just one of the Higgs , in this case Φ̄1, has a
vev v =

√
v2

1 + v2
2 and

〈
Φ̄2
〉

= 0. This is done by choosing χ = β, with β defined above. This
basis is known as the Higgs basis [49]. In this basis, the charged Goldstone bosons and the
physical charged Higgs states can be written in terms of the initial fields φ±1 and φ±2 as

G± = φ±1 cosβ + φ±2 sin β
H± = −φ±1 sin β + φ±2 cosβ. (2.9)

The neutral Goldstone boson and the physical pseudoscalar are calculated as linear combinations
of the imaginary fields of the Higgs doublets

G0 = η±1 cosβ + η±2 sin β
A = −η±1 sin β + η±2 cosβ. (2.10)

Finally the SM Higgs boson (the neutral CP-even Higgs field in Φ1, when working in the Higgs
basis) would be

hSM = ρ1 cosβ + ρ2 sin β (2.11)

and the other CP-even state

h2 = −ρ1 sin β + ρ2 cosβ. (2.12)

Making this basis rotation of the fields means that the parameters in the scalar potential also
have to be redefined to the new basis. But as mentioned above, such a redefinition does not
change the physics of the model.
The masses of the five Higgs fields can be calculated from the Higgs potential [48, 50]. For

CP-odd state A and charged Higgs, the masses are given by

m2
A = m2

12
sin β cosβ − v

2λ5 (2.13)

mH± = m2
A + 1

2v
2 (λ5 − λ4) . (2.14)

The masses of the neutral CP-even Higgs have to be calculated from the diagonalisation of the
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following squared mass matrix

M2 =
(

(m2
A + λ5v

2) sin2 β + λ1v
2 cosβ2 (−m2

A − λ5v
2 + λ345v

2) sin β cosβ
(−m2

A − λ5v
2 + λ345v

2) sin β cosβ (m2
A + λ5v

2) cos2 β + λ2v
2 sin β2

)
. (2.15)

Hence, the masses for the neutral CP-even Higgs bosons are

m2
H0,h = 1

2

[
M2

11 +M2
22 ±

√
(M2

11 −M2
22) + 4(M2

12)2
]

(2.16)

where H0 and h are the mass eigenstates,M2
ij corresponds to the ij entry of theM2 matrix.

The initial Higgs ρ1, ρ2 and the mass eigenstates neutral Higgs bosons h, H0 are related as
follows

H0 = ρ1 cosα+ ρ2 sinα
h = −ρ1 sinα+ ρ2 cosα. (2.17)

where α is the rotation angle which diagonalisesM2. If one then calculates what would the SM
Higgs boson be in terms of the mass eigenstates and the rotation angles α and β, one finds

hSM = H0 cos(β − α) + h sin(β − α) (2.18)

therefore, h corresponds to the SM Higgs boson only when cos(β − α) = 0.

Yukawa Interactions

The interactions of the Higgs fields with fermions are contained in the Yukawa part of the
Lagrangian. The Yukawa couplings in a general 2HDM take the form

−LYuk = (Y (a)
u )ijQ̄LiΦ̃auRj + (Y (a)

d )ijQ̄LiΦadRj + (Y (a)
e )ijL̄LiΦaeRj + h.c. (2.19)

where i, j = 1, 2, 3 are flavour indices, a = 1, 2 is the Higgs index, Φ̃a = iτ2Φ∗a and Y
(a)
u,d,e are

the 3× 3 Yukawa matrices for each fermion type. This part of the Lagrangian contains a large
number of free parameters. These Yukawa interactions are the responsible for the Dirac masses
of the fermion sector of the SM after spontaneous symmetry breaking, except for the neutrino
sector. Assuming Φ1 acquires all the vev, the quark and charged lepton masses are proportional
to the singular values of the Yukawa interactions with Φ1, exactly as for the SM Higgs presented
in Chapter 1. The quark mixing matrix VCKM is determined from the left-handed eigenvectors
of the up and down Yukawa couplings.

The Yukawa sector of a general 2HDM induces tree level FCNCs. In the SM, the diagonalisation
of the mass matrices automatically diagonalises the Yukawa interactions avoiding tree level
FCNC. In the general 2HDM the Yukawa interactions with both Higgs in principle cannot
be simultaneously diagonalised. In the Higgs basis, once the Yukawa couplings with Φ1 are
diagonalised as in eq. (1.3), the Yukawa couplings with Φ2 also have to be rotated to the same
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basis as follows

Ỹ
(2)
x̃ = V †x̃LY

(2)
x̃ Vx̃R (2.20)

where x̃ = u, d, e. Here Ỹ (2)
x̃ is in general a non-diagonal matrix. Therefore, FCNCs quark-Higgs

interactions at tree level arise from the non-diagonal entries in Ỹ (2)
x̃ . These couplings are strongly

constrained by precision flavour observables and cannot be avoided unless some symmetry is
imposed. The impact of the Yukawa couplings on flavour physics and methods to accommodate
a 2HDM with the stringent experimental limits are discussed in more detail in Section 2.2.
Finally, the Yukawa couplings are complex matrices. Hence, the couplings with Φ2 carry new
CP violating phases. CP violation in a general 2HDM is discussed in detail in Section 2.4.
Here it has been assumed that right-handed neutrinos do not exist and therefore there is no

Dirac mass term for neutrinos. If right-handed neutrinos would couple to the Higgs bosons via
Yukawa interactions and this would be the only coupling that generates neutrino masses, the
flavour discussion for the lepton sector would be exactly equivalent to the quark flavour sector.

Gauge Bosons Interactions

Introducing new Higgs doublets in the model does not only generate new Yukawa couplings
with the fermionic sector but also new couplings to the SM vector bosons. Nevertheless, not
all combinations of Higgs bosons are allowed to couple with gauge bosons. For example, CP
is conserved in the scalar sector at tree level. Therefore couplings such as ZhH are forbidden.
Trilinear couplings with two identical Higgs bosons such as Zhh are forbidden due to Bose
statistics. The allowed couplings for a 2HDM are summarised in Table (2.1) [51].

cos(β − α) sin(β − α) Angle Independent

H0W+W− hW+W− V V φφ, V V AA, V V H+H−

H0ZZ hZZ γH+H−

ZAh ZAH0 ZH+H−

W±H∓h W±H∓H0 W±H∓A

ZW±H∓h ZW±H∓H0 ZW±H∓A

γW±H∓h γW±H∓H0 γW±H∓A

Table 2.1: Dependence of the couplings between gauge bosons and Higgs bosons in a 2HDM as a
function of the mixing angles α and β. Here φ = h or H0 and V V = W+W−, ZZ, Zγ,
or γγ.

It is important to remark that there are no couplings of the neutral Higgs to photons or gluons
at tree level. Nevertheless, these couplings do appear at the one loop level and are particularly
important for Higgs production at colliders via processes of gluon-gluon fusion or neutral Higgs
detection via γγ decay.
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2.2 Flavour Physics in a 2HDM

As previously explained, in a general 2HDM there is no way to simultaneously diagonalise both
Yukawa matrices for a given type of quark. The off-diagonal elements of the Yukawa matrices
lead to FCNCs processes which strongly constrain the parameter space of the model due to the
stringent experimental limits. In this section an overview of the impact of a general 2HDM on
flavour observables is presented. We can divide such processes into two types: tree level and loop
processes. We assume we are working in the Higgs basis, hence all the flavour effects beyond the
SM come from the Yukawa couplings with Φ(2).

Tree Level Contributions

In the 2HDM there are two kind of processes that receive tree level contributions from the Yukawa
couplings: FCNCs and charged current processes. First of all, a model with flavour changing
neutral Yukawa couplings (with h, H0 and A) at tree level gives rise to FCNCs processes at tree
level. As experiments are in very good agreement with the SM, FCNCs are strongly constrained.
Hence any kind of new physics which contributes to such processes must be strongly suppressed.
We can divide the tree level FCNCs in two different kind of processes

• Muonic decays of neutral mesons such as Bs,d → µ+µ−, KL → µ+µ− or D̄0 → µ+µ−. The
Feynman diagram corresponding to these kind of processes is shown on the left panel in
Fig. 2.1,

• ∆F = 2 processes such as K − K̄, D0 − D̄0 or Bs,d − B̄s,d mixing. The Feynman diagram
for these kind of processes is presented on the right panel in Fig 2.1.

qi

qj

X0

lm

lm
qi qj

X0

qj qi

Figure 2.1: Tree level FCNCs processes generated via neutral Higgs Yukawa couplings in a
general 2HDM. Left: Feynman diagram contributing to muonic neutral meson decays.
Right: Feynman diagram contributing to ∆F=2 processes. X0 corresponds to h, H0

or A.

If the lepton sector is also taken into account, one can have a third kind of process from the
coupling with neutral mesons.

• Flavour changing lepton decays such as τ → µµµ and µ → eee. The Feynman diagram
corresponding to the first process is represented in Fig 2.2.
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µ−

τ− X0

µ+

µ−

Figure 2.2: Feynman diagram in a general 2HDM contributing to LFV τ decay. X0 corresponds
to h, H0 or A.

Second, the 2HDM also contributes at tree level to charged current processes. These kind of
processes, already exist in the SM and are mediated by a W boson. Some examples are B → τν,
B → Dτν or D → τν. These kinds of meson decays are particularly interesting to study due
to the large coupling of third generation of fermions to charged Higgs particles. Experimental
results from the BABAR collaboration studying semileptonic B decays showed discrepancies
with respect to the SM for different channels at 3.4 σ when combined [52]. If these results are
confirmed, new physics is needed to explain them. The Feynman diagram of the charged Higgs
contributing to the B → Dτν processes as example is shown in Fig. 2.3.

c

b H−

ν

τ

Figure 2.3: Feynman diagram of the B → Dτν process via tree level Yukawa couplings.

Nevertheless, as such processes already exist in the SM at tree level, FCNCs are usually more
interesting observables from a phenomenological point of view.

Loop Contributions

The good agreement of experiments with the SM predictions already constraints a large part of
the parameter space of the 2HDM with the tree level processes described above. Nevertheless,
there are also stringent constraints coming from one loop processes which give further information
of the unconstrained area of the parameter space of the model. Even if the tree level processes
previously discussed also receive a radiative corrections, in this part we only discuss processes
which first appear at the one loop level. For the quark sector, the Yukawa couplings to the top
quark remain unconstrained from tree level contributions. In Fig. 2.4 the B → Xsγ meson decay
through a one loop contribution is shown. This decay is an example of a radiative process that
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constraints part of the remaining parameter space.

qk

b Φ(2) s

γ

Figure 2.4: Feynman diagram contributing to b → sγ process via one loop process. Here Φ(2)

corresponds to h, H0, A or H−

In the lepton sector, processes such as µ→ eγ or the magnetic moment of a charged lepton,
which appear at the loop level, can also strongly constraint the Yukawa sector. In particular,
these kind of processes do not only receive contributions from one loop diagrams, but can have
stronger contributions from a two loop diagram known as the Barr-Zee diagram [53] in some
regions of the parameter space. The one and two loop diagrams for the µ→ eγ processes are
shown in Fig. 2.5.

lk, ν

li Φ(2) lj

γ

lkli

X0

lj

γ, Z

t, b, τ

γ

Figure 2.5: Radiative Feynman diagrams contributing to the l → l′γ process. The right panel
shows the one loop diagram. The left panel shows the two loops (Barr-Zee) diagram.
Here Φ(2) corresponds to h, H0, A or H− and X0 corresponds to h, H0 or A

These are some of the flavour observables which receive significant contributions from new
Yukawa interactions in a general 2HDM. Such processes are strongly constrained by the stringent
flavour experimental constraints hence, need to be suppressed. In the next section, different
methods to make new Yukawa couplings compatible with experimental data are discussed.

2.3 Suppressing Flavour Effects

We discuss here three different approaches to suppress large contributions to flavour observables
from Yukawa couplings in a general 2HDM. These methods are natural scenarios with absence of
fine-tuning in the Yukawa sector to accommodate flavour constraints. It is important to mention
that LFV is absent because neutrinos are massless particles in the SM. However, it is known that
neutrinos do have mass and the lepton sector mixes through weak interactions. Also, as we have
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just seen, in a general 2HDM there are LFV processes that appear via Yukawa couplings with
charged leptons. We keep the assumption of massless neutrinos for the discussion in this section
and just focus on the quark sector. Nevertheless, this issue is addressed in the next chapters.

2.3.1 Type-I and II 2HDM

The most popular models that avoid FCNCs processes at tree level are the Type I and the Type
II 2HDM. In the Type I 2HDM [54,55] quarks couple to just one of the Higgs doublets. This can
be achieved by imposing a Z2 symmetry under which the two Higgs doublets transform as

(Φ1,Φ2) Z2−−−−→ (−Φ1,Φ2) . (2.21)

Fermions are even under this symmetry. This is calculated in a general basis, therefore quarks
just acquire their masses from the vev of Φ2. Hence, the Yukawa Lagrangian reads

−LYuk = (Y (2)
u )ij q̄LiuRjΦ̃2 + (Y (2)

d )ij q̄LidRjΦ2 + (Y (2)
e )ijL̄LieRjΦ2 + h.c.. (2.22)

The scalar Higgs potential also changes after imposing the Z2 symmetry: the terms λ6, λ7 and
m2

12 do not appear in these models unless Z2 is violated.
In the Type II 2HDM [55,56], the right-handed up family couples to one of the Higgs doublet

whereas the right-handed down family couples to the other one. This can be fulfilled by imposing
a Z2 symmetry, equivalent to the Type I 2HDM for the Higgs sector but

uR
Z2−−−→ uR and dR

Z2−−−→ −dR (2.23)

for the fermion sector. This transformation can also be interchanged for up and down right-handed
quarks.
As the Higgs fields transform equally for both models, the Higgs potential in the Type II

2HDM is the same as the Type I 2HDM. However, some models in the literature assume that
the imposed Z2 symmetry is softly broken by including the m2

12 term in the Higgs potential. It
is important to remark that Supersymmetric models have the same Yukawa couplings as the
Type II model.

In general in the Type II 2HDM, for the lepton sector, it is assumed that charged right-handed
leptons transform as the down sector. Yet, this is not a necessary condition and in the literature
some models impose that leptons transform as up quarks under the Z2 symmetry. These models
are known as flipped 2HDM [57]. Also, lepton-specific models assume that quarks behave as a
Type I scenario (therefore just couple to Φ2) whereas leptons couple to Φ1 [58, 59].

In conclusion, the Type I and Type II 2HDM assume that there is one single Yukawa matrix for
each fermion, coupling just to one single Higgs doublet. As a consequence, all Yukawa matrices
can be diagonalised at the same time and no FCNCs appear at tree level.
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2.3.2 The Aligned 2HDM

The aligned limit for the 2HDM [60] is another scenario in which a new Higgs doublet is added
to the SM without FCNCs at tree level. In these kind of models FCNCs are avoided by imposing
that the Yukawa couplings of the two doublets are aligned in flavour space. In other words, the
Yukawa matrices have to be proportional to each other (separately for u, d type quarks and
charged leptons)

Y
(2)
x̃ = A

(2)
x̃ Y

(1)
x̃ (2.24)

where x̃ = u, d, e. Here Y (1)
x̃ , Y

(2)
x̃ are the Yukawa couplings with Φ1 and Φ2, respectively, and

A
(2)
x̃ are arbitrary complex numbers. This scenario guarantees that all Yukawa matrices can

simultaneously be diagonalised, avoiding FCNCs at tree level. Of course, in the Higgs basis,
the singular values of Y (1)

x are proportional to the masses of quarks and charged leptons. In
such scenario, the only source of flavour violation comes from the CKM matrix, which does
not only appear in weak interactions via the W boson, but also in the Yukawa couplings of
the charged scalars in Φ2. Nevertheless, quantum corrections spoil the alignment between the
Yukawa couplings [61].

What makes these models particularly interesting is the freedom of the parameters A(2)
x . The

fact that the Yukawas are aligned avoids tree level FCNCs but A(2)
x̃ are complex couplings which

can acquire any value, leading to new sources of CP violation even in the absence of FCNCs at
tree level. In this scenario, the Higgs potential is the same as the general 2HDM potential.

2.3.3 Ansatz on the Yukawa Textures

The suppression of FCNCs in a general 2HDM can be achieved by assuming a determined
texture for the Yukawa matrices. In [62] Cheng-Sher proposed a framework where FCNCs are
proportional to the square root of the masses of the quarks involved. The Cheng-Sher ansatz
states that in the Higgs basis, the Yukawa matrices of quarks with Φ2 take a hierarchical structure
following (

Y (2)
q

)
ij

= ∆q
ij

√
mimj

v
(2.25)

where ∆q
ij are Yukawa matrix parameters which determine the texture of the Yukawa coupling

and are model dependent (see for example [63] for the six-texture form of the mass matrix or [64]
for the four-flavour form). The bounds on ∆q

ij can be derived from experimental limits and
depend on the mass of the Higgs bosons.
This framework controls the FCNCs processes as, if one assumes ∆q

ij ∼ O(1), the Yukawa
couplings with the first two generations, which set the most stringent FCNCs bounds, become
strongly suppressed. In contrast with the Type I, Type II and the alignment limit, using this
ansatz, FCNC are not avoided at tree level, as the framework predicts non-vanishing non-diagonal
entries in the Yukawa couplings with Φ2 in the Higgs basis. This means that even if this scenario
can fulfil the strong experimental constraints, experiments might be able to detect the small
off-diagonal Yukawa couplings.
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2.3.4 The Decoupling Limit

Another natural scenario to avoid large FCNCs processes arising from Yukawa couplings in a
2HDM is the decoupling limit [48, 50]. This limit does not eliminate FCNCs at tree level but
instead suppresses them by increasing the new physics scale, making it much larger than the
electroweak scale. In other words, this limit is accomplished by imposing the masses of the four
Higgs H0, H±, A are much larger than the mass of the h boson,

mA ' mH0 ' mH± � mh ∼ v. (2.26)

In this limit, the effects of the heavy Higgs states are decoupled at low energies, relevant for
current experiments. A consequence of the decoupling limit is that the mixing angles α and β
defined above have to fulfil cos(α− β) ' 0. This can be shown as follows.
First, let us assume that the Higgs self-couplings are ∼ O(1). Second, once mH0 � mh is

assumed, from eq. (2.16) one finds [48]

m2
H0 ' m2

A (2.27)
m2
h ' f11(λi) cos2 β + f22(λi) sin2 β + f12(λi) sin 2β ∼ O(v2) (2.28)

where f11,22,12(λi) are the 11, 22, and 12 part of the matrix entries in eq. (2.15) which do not
contain m2

A, respectively. If one calculates the value of cos(β − α) in this scenario one finds
(see [48] for a detailed calculation)

cos(β − α) ' O
(
m2
h

m2
H0

)
' 0. (2.29)

Thus, in this limit the light field h behaves as the SM Higgs. This means that all the couplings
with the gauge bosons summarized in Table 2.1 which are proportional to cos(α− β) vanish.

As in the Cheng-Sher ansatz, the decoupling limit there is no basis in which all the Yukawa
couplings can be simultaneously diagonalised. When rotating to the fermion mass basis, the only
flavour violating couplings are contained in the Yukawa couplings with Φ2. This can be seen
from eq. (2.20). Not only do these Yukawa couplings generate tree level FCNCs but also new
sources of CP violation. Even if new physics effects in the decoupling limit are suppressed by the
square or even the fourth power of the mass of the heavy Higgs, they are phenomenologically
interesting, as the Yukawa couplings to the new bosons generate new flavour and CP violating
processes which could be detectable.

2.4 CP violation

In the SM, the hermiticity of the Higgs potential requires all its parameters to be real. This
means that all the CP violation in the SM comes from the Yukawa sector. After the rotation of
the fermion fields, just one CP violating phase remains physical for quarks (and one for leptons,
assuming that neutrinos have Dirac masses). This is the CKM CP phase. In contrast to this
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scenario, the general 2HDM contains further physical complex phases, not only in the Yukawa
matrices but also in the Higgs potential. In this section CP violation in a general 2HDM is
presented. Remember we chose the vev for both Higgs doublets to be real to avoid spontaneous
CP violation.

The Scalar Sector

The scalar potential of a general 2HDM is written in eq. (2.1). The Higgs potential is hermitian,
therefore the parameters m2

11, m
2
22, λ1, λ2, λ3 and λ4 have to be real. The remaining parameters

m2
12, λ5, λ6 and λ7 can be complex. The Higgs potential contains then a total of 14 parameters,

10 real and 4 complex. Let us now discuss how many of these parameters are actually physical.
The scalar doublets Φ1 and Φ2 can always be rotated to a new Higgs basis by a unitary

transformation Φ′a = UΦa where U is a U(2) matrix [44]:

U = e−iψ
(

cos θ e−iξ sin θ
−eiχ sin θ ei(χ−ξ) cos θ

)
. (2.30)

Of course, the parameters in the potential also have to be transformed when the fields are
redefined. Such a transformation can therefore be used to absorb non-physical parameters from
the potential. Here, the ψ phase does not change the scalar potential parameters as it is a global
U(1) rotation. Consequently, only the remaining three parameters in the U matrix can be used
to absorb three parameters (2 complex and 1 real) from the potential, leaving the latter with
only 11 physical parameters. In other words, one can rotate to the basis where the Higgs mass
matrix is diagonal (m2

12=0), eliminating two degrees of freedom (1 real and 1 complex) and then
rephase Φ2 (eliminating a further complex parameter), leaving the 2HDM potential with a total
of two CP violating phases.

The Scalar-Fermion Sector

In this subsection new sources of CP violation coming from the scalar-fermion Yukawa interactions
in a general 2HDM are presented. To begin with the discussion, we start calculating the CP
violating phase coming from the SM Yukawa couplings in the quark sector. The SM quark
Yukawa Lagrangian is in general a complex matrix. Nevertheless one can always rotate the quark
fields to the mass basis

uL → VuLuL dL → VdLdL (2.31)
uR → VuRuR dR → VdRdR.

With such a field rotation the Yukawa matrices can be diagonalised with positive values in the
diagonal. This means that the phases in the Yukawa sector disappear. Of course, the phases do
not actually disappear but are transferred to the charged current couplings through the CKM
matrix. The CKM matrix with 3 quark generations is a 3×3 unitary matrix, which can be
parametrized with a total of 9 degrees of freedom (3 angles and 6 phases). Yet, one can still
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rephase the quark fields in order to remove five of these phases, leaving the CP violating phase
of the CKM matrix. The SM CP violating phase can be parametrized through the Jarlskog
invariant defined in eq. (1.10).
Let us continue the discussion in the basis where just one CP violating phase appears in the

CKM matrix with diagonal Yukawa couplings with Φ1. Once Φ2 is introduced, two new complex
Yukawa couplings appear, Y (2)

u and Y (2)
d . Each matrix contains 9 real and 9 complex parameters.

None of the complex parameters can be eliminated with the rotation of the quark fields (unless
some of the entries of the Yukawa couplings are 0 or assumed to be real). Else, new phases
would appear in the SM sector. Therefore, a general 2HDM has 18 complex parameters in the
scalar-fermion sector for quarks in addition to the CP violating CKM phase .
A similar description can be done for the lepton sector. However, as the nature of neutrino

masses still remains undiscovered, the properties of CP violation in the lepton sector are unknown.

2.5 Direct searches for new Higgs bosons

In July 2012 the ATLAS and CMS collaborations announced the observation of a new particle
compatible with the SM Higgs boson. This particle has a mass of about 125 GeV. After this
discovery, the parameter space for 2HDM has been significantly constrained. Searches for new
Higgs boson states had already been done by other experiments such as the LEP experiments or
Tevatron. None of these experiments found signals of new physics and were only able to set limits
in the parameter space. Nevertheless, with the second LHC run a new area of the parameter
space in the 2HDM will be uncovered or even signals of physics beyond the SM compatible with
new Higgs bosons might be detected.
In this section some of the latest results for new Higgs boson searches for both Run-I and

Run-II of the LHC are presented to give an idea of the current experimental status of direct
searches for new Higgs bosons.

ATLAS: Run I

In this part some of the latest results from the ATLAS collaboration for the Run-I at the LHC
are summarised. The searches during the first run did not show any strong evidence for physics
beyond the SM. The following studies have been done with an energy of

√
s = 8 TeV and

integrated luminosity of 20.3 fb−1.

Neutral Higgs boson

• The ATLAS collaboration has set an upper limit on σ(gg → A) × BR(A → ZhSM ) ×
BR(hSM → ff̄), where hSM corresponds to the Higgs boson detected with a mass of 125
GeV. The analysis has been done for A boson masses in a range from 220 to 1000 GeV, in
the context of a general 2HDM. The results are 0.098 to 0.013 pb for f = τ and 0.57 to
0.014 pb for f = b [65].
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• Searches for neutral Higgs decays in different channels have been able to exclude regions of
the 2HDM parameter space and set a lower limit pseudoscalar mass mA > 370 GeV [66] in
the context of the "h" Minimal Supersymmetric Standard Model (hMSSM) [67].

• The ATLAS collaboration has investigated the process t→ hSMq with q = u or c. This
process does not exist at tree level in the SM and is suppressed at higher orders due to
the GIM mechanism. New particles inside the loops tend to enlarge the branching ratio
of such processes. The ATLAS collaboration has set limits on the branching ratio of the
process, leading to the most stringent bounds on the Yukawa couplings y(1)

tc < 0.13 and
y

(1)
tu < 0.13 [68].

Charged Higgs boson

• The existence of charged Higgs bosons has also been studied by the ATLAS collaboration.
The latest study regarding these searches is presented in [69], through the decay H+ → tb

in the context of a general 2HDM. A mass range between mH± = 200− 600 GeV has
been explored with a production via gb→ tH+, (with electron or muon final state). An
excess of 2.4 standard deviations is found for values mH± = 300 and 400 GeV. For masses
between 0.4 and 2.0 TeV (with electron or muon final state) and 1.5–3.0 TeV (for hadronic
final state) the s-channel production qq′ → H±. No significant excess is found and just
upper limits on the σ(qq′ → H±) × BR(H+ → tb) were set: 0.13 and 6.7 pb, 0.09 and
0.22 pb, respectively.

ATLAS: Run II

In December 2015 the ATLAS collaboration has released the first results for the second LHC
run with searches of new neutral Higgs bosons in the context of the Minimal Supersymmetric
Standard Model (MSSM) in the mmod

h scenario, defined in [70], at 3.2 fb−1 luminosity. The
study has been done in a mass range 200 GeV – 1.2 TeV for neutral Higgs boson decaying into
ττ and bb̄ [71]. No signal has been found for either of the searches and have just been able to
set bounds on the parameter space. However ATLAS has observed an excess in the diphoton
channel at 750 GeV with a local significance of 3.6 σ and a second excess at 1.6 TeV with a local
significance of 2.8 σ [72].

CMS: Run I

The CMS collaboration results in Run-I regarding searches for Higgs bosons are in agreement
with the ATLAS searches. There is no strong evidence for physics beyond the SM. Here we
present the latest CMS results regarding searches for new scalar bosons during Run-I. The
results correspond to pp collisions with a center-of-mass energy of

√
s = 8 TeV and luminosity of

19.7 fb−1.

Neutral Higgs boson
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• The CMS collaboration has presented the results of searches for heavy scalar bosons decaying
via H0 → hSMhSM in a mass range of 260 < mH0 < 350 GeV heavy pseudoscalar bosons
decaying via A→ Z hSM in a mass range of 220 < mA < 350 GeV. The interpretation has
been done in the MSSM with low tan β and 2HDM Type-II scenarios. The results have
showed no excess, and CMS has just been able to set upper limits on the cross section of
the process [73].

• Further searches for pseudoscalar Higgs bosons have been presented in [74] for the A→ ττ

decay, produced in association with a bb̄ pair, in the context of a Type-II 2HDM. The
results are consistent with the SM predictions. A pseudoscalar Higgs with a mass below
80 GeV in a Type-II scenario (coupling to down-type quarks) is excluded.

Charged Higgs boson

• The process t→ H±b and H± → cs̄ for light charged Higgs has been studied in the context
of a general 2HDM [75]. No signal of such process has been found. Therefore just an upper
limit on Br(t → H±b) of 1.2 to 6.5 % has been set for masses between 90 and 160 GeV
(assuming a Br(H± → cs̄)=100%).

CMS: Run-II

The CMS collaboration has presented a similar result to the one of the ATLAS collaboration of
the signal on the two-photon final state with invariant mass of 760 GeV and local significance of
2.6 σ [76]. The search has been done with a luminosity of 2.6 fb−1.

The Run-II ATLAS and CMS results have generated large interest in the theoretical particle
community. Several theoretical scenarios can explain the diphoton excess. In particular, the
2HDM is one of the models which has been studied immediately after the signal was reported.
For example in [77] (Type-I and Type-II) and [78] (Type-I in the decoupling limit) the 2HDM
extended with a family of vector-like quarks and leptons is studied. The authors claim that these
scenarios are capable of explaining the diphoton excess seen by both experiments. In [79], [80]
and [81] a general 2HDM has been studied and the parameter space has been scanned in order
to constraint such model. The authors claim that, in order to explain the diphoton excess, one
has to add a considerable amount of additional degrees of freedom and large Yukawa couplings
to generate large couplings to photons. This result is consistent with [77] and [78]. In [79]
and [80] the authors consider vector-like quarks as new degrees of freedom in order to explain
the signal. This shows the amount of interest that signals of physics beyond the SM generates
in the scientific community, and in particular the interest of the 2HDM. Future Higgs searches
made by the ATLAS and CMS collaboration might be able to prove whether the signal is a real
sign of new physics or not.
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CHAPTER 3

Generating the Quark Parameters
in a Two Higgs Doublet Model

The origin of the hierarchies of fermion masses and mixing angles is one of the biggest mysteries
in particle physics. In this chapter we present a mechanism to naturally generate the hierarchies
in the quark sector by extending the SM with an extra Higgs doublet, following [1]. In this
model, no new fermions or extra symmetries are introduced. For this study the lepton sector is
neglected. As discussed in Chapter 2, a general 2HDM tends to generate large effects on flavour
observables and usually discrete symmetries are used to avoid them. However, flavour violating
effects can be suppressed in the decoupling limit, where the scale of new physics arises at a
sufficiently large energy. This is the limit taken for the model discussed in this chapter.

3.1 Standard Model Flavour Structures in a 2HDM

The Yukawa Lagrangian of a general 2HDM is given in eq. (2.19). For convenience and without
loss of generality, we choose to work in the Higgs basis, where Φ1 acquires all of the vev. Hence,
〈Φ1〉 = v/

√
2 with v ' 246 GeV and 〈Φ2〉 = 0 . This means that the fermion mass matrices are

proportional to the Yukawa couplings with Φ1.

3.1.1 The Rank-1 Limit

The main assumption taken in this model is that the tree level Yukawa couplings have very
hierarchical singular values. In practice, the Yukawa matrices can be taken to be of rank-1 at
tree level. After this assumption is made, by the proper transformation of the quark fields, the
tree level Yukawa couplings with Φ1 can be written at the cut-off scale Λ as

Y (1)
u (Λ) =


0 0 0
0 0 0
0 0 y

(1)
u

 , Y
(1)
d (Λ) =


0 0 0
0 0 εy

(1)
d

0 0 y
(1)
d

 , (3.1)
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which generate the following masses for the top and bottom quarks, respectively

mt|tree = y(1)
u v/

√
2,

mb|tree = y
(1)
d

√
1 + ε2v/

√
2. (3.2)

As the Yukawa matrices are of rank-1, the remaining quark masses are zero at tree level in this
scenario

mc|tree = mu|tree = 0 ,
ms|tree = md|tree = 0 . (3.3)

From the above tree level Yukawas, only the |Vtb| term in the CKM matrix can be determined.
The reason is that, as the Yukawa matrices are of rank-1, only the top and bottom mass eigenstates
are fixed. As VCKM contains the product of the matrices with the different left-handed mass
eigenstates for both the up and the down sector, only the product of the top and bottom mass
eigenstates is determined. The left-handed eigenstates for the first and second generation can
be rotated leaving the Lagrangian invariant. Nevertheless, we know that the CKM matrix is a
unitary matrix. Therefore

VCKMV
†
CKM = 1. (3.4)

This means that even if the |Vub| and |Vcb| terms are undetermined at tree level, they have to
fulfil the following condition

|Vub|2 + |Vcb|2 = ε2. (3.5)

It is known from experiments that this combination has to be � 1. This means that one should
take the limit ε→ 0. This limit is assumed from now on. In this case, |Vtb| = 1. Thus, at tree
level, the structure of the CKM matrix is

|VCKM | =


? ? 0
? ? 0
0 0 1

 (3.6)

where the "?" entries correspond to terms that cannot be determined from the tree level Yukawas
and exclusively depend on the mixing between the first and second generation of left-handed
quarks. This scenario is presented in Fig. 3.1, where a simplified graphical representation of the
left-handed eigenstates at tree level is shown to better understand the outcome of the model. In
this figure just the third generation of left-handed eigenvectors are determined. On the left panel,
the scenario for ε 6= 0 is shown. The first and second generation have degenerate eigenvalues
(with value 0) and their eigenvectors are undetermined. Even so, they have to lay on the surface
perpendicular to the third generation eigenvector (on the red surface for the up-type quarks and
on the blue surface for the down-type quarks). On the right panel, the scenario with ε→ 0 is
shown. This limits imposes that the bottom and top left-handed mass eigenstates have to be
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aligned. In this scenario, the surface where the first and second generation lay coincides for both
quark types. In this way, the structure of the CKM matrix is consistent with the experimental
values in a first approximation. The scenario for the right-handed sector is very similar. The
eigenstates of the third generation are determined at tree level. Nevertheless, the misalignment
between the top and the bottom right-handed eigenvectors has no physical consequence.

∣∣∣∣∣∣∣
t
(0)
L

〉

Tree Level

∣∣∣∣∣∣∣
b
(0)
L

〉

ǫ 6= 0

∣∣∣∣∣∣∣
t
(0)
L

〉

,
∣∣∣∣∣∣∣
b
(0)
L

〉Tree Level

ǫ = 0

Figure 3.1: Tree level scenario for rank-1 Yukawa couplings. After imposing ε→ 0, the top and
bottom left-handed mass eigenstates are aligned. The first and second generation
must lay on the surface perpendicular to them.

In this scenario, the couplings with Φ2 are also taken to be of rank-1. As the quark fields have
already been rotated to the basis where eq. (3.1) is fulfilled, the Yukawa couplings with Φ2 have
to take the most general rank-1 matrix form

Y (2)
u (Λ) = U †L


0 0 0
0 0 0
0 0 y

(2)
u

UR ,

Y
(2)
d (Λ) = D†L


0 0 0
0 0 0
0 0 y

(2)
d

DR , (3.7)

where UL,R, DL,R are 3 × 3 unitary matrices. As in this case the Yukawa matrix elements
are (Y (2)

u )ij = y
(2)
u (UL)∗3i(UR)3j , (Y (2)

d )ij = y
(2)
d (DL)∗3i(DR)3j , only the last row of the unitary

matrices is relevant. We parametrise this row as

(UL)31 = eiρuL sin θuL sinωuL ,
(UL)32 = eiξuL sin θuL cosωuL ,
(UL)33 = eiχuL cos θuL , (3.8)
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and equivalently for UR, DL, DR. In this model we are just interested in reproducing the mass
hierarchy pattern and the structure of the mixing matrices and not in understanding the origin
or value of the CKM CP violating phase. We therefore neglect any of the complex phases of the
model in this chapter for the sake of simplicity.

3.2 Quantum Corrections in Quark Sector

The rank-1 Yukawa matrices generate masses for the top and bottom quarks, leaving the first
and second generation massless and the mixing between the latter completely undetermined.
In this section, the results for the one loop corrections to the Yukawa couplings with Φ1 using
perturbation theory are presented. As will now be discussed, in this framework we are able to
generate masses for the second generation of quarks and reproduce the hierarchical structure of
the CKM matrix. In order to calculate the impact of loop corrections to the Yukawa couplings
we use the leading-log approximation

Y (1)
u |1−loop ' Y (1)

u |tree + 1
16π2β

(1)
u log Λ

MH
,

Y
(1)
d |1−loop ' Y

(1)
d |tree + 1

16π2β
(1)
d log Λ

MH
, (3.9)

where MH corresponds to the mass of the new Higgs (which is much larger than the SM Higgs
mass) and β(1)

u , β(1)
d are the beta-functions, defined in Appendix A.1.

3.2.1 Preliminaries: Degenerate Perturbation Theory

In this part the method used to calculate the masses and mixing angles for degenerate states is
presented. The calculations done here are for the up-type quarks, but are completely analogous
for the down sector. In order to determine the CKM matrix, we are just interested in calculating
the left-handed rotation matrix VuL , defined in eq. (1.3). Therefore, our calculations are done
using perturbation theory on H(0)

u , defined as

H(0)
u = Y (1)

u Y (1)†
u

∣∣∣
tree

(3.10)

and is diagonalised as
H(0)
udiag = V †uLH

(0)
u VuL . (3.11)

This means that H(0)
u is a 3× 3 matrix which just has one well defined eigenvector,

∣∣∣t(0)
L

〉
, and

eigenvalue,
(
y

(1)
u

)2
. We now define H(1)

u , which contains the perturbation corrections to H(0)
u

H(1)
u = H(0)

u + λu δH
(1)
u

∣∣∣
tree

= (3.12)

= Y (1)
u Y (1)†

u + λuY
(1)
u δY (1)†

u + λuδY
(1)
u Y (1)†

u

∣∣∣
tree

(3.13)
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where λu is a perturbation parameter, which in our case takes the value 1
16π2 log Λ

MH
, and

δY
(1)
u = β

(1)
u corresponds to the loop corrections to the Yukawa coupling Y (1)

u . Perturbation
theory for non-degenerate states consists of calculating the series expansion around the initial
eigenvalues and eigenstates. As in our case there are two degenerate eigenstates at tree level,
zero-th order in perturbation theory1 has to be used to calculate the undetermined eigenvectors.
Their corresponding eigenvalues are calculated at first order in perturbation theory, as at tree
level they are determined with value 0. The calculation is done as following these steps

• Define the projector operator Pu which defines the subspace perpendicular to
∣∣∣t(0)
L

〉
Pu = 1−

∣∣∣t(0)
L

〉〈
t
(0)
L

∣∣∣ . (3.14)

• Calculate the perturbation δHu projected on the subspace perpendicular to
∣∣∣t(0)
L

〉
δĤ(1)

u = PuδH
(1)
u Pu (3.15)

• Calculate the eigenvalues and eigenvectors for λuδĤ(1)
u .

In our case the result still does not break degeneracy. Therefore, we have to consider higher
order corrections. The next steps in our calculations are

• We add the corrections proportional to λ2
u and define H(2)

u

H(2)
u = H(0)

u + λuδH
(1)
u + λ2

uδH
(2)
u = (3.16)

= Y (1)
u Y (1)†

u + λuY
(1)
u δY (1)†

u + λuδY
(1)
u Y (1)†

u + λ2
uδY

(1)
u δY (1)†

u

∣∣∣
tree

. (3.17)

• As we are now taking terms proportional to λ2
u, we also have take into account higher order

corrections with terms which also contain λ2
u. With all this, the matrix that one has to

diagonalise is

δĤ(2)
u = PuδH

(2)
u Pu − PuδH(2)

u

1− Pu
y

(1)2
u

δH(2)
u Pu. (3.18)

• We take the terms only up to order λ2
u in δĤ(2)

u .

1For a full Hamiltonian H = H(0) + λδH with eigenvectors |iL〉 and unperturbed eigenvectors
∣∣∣i(0)
L

〉
, if there is a

subset of degenerate unperturbed eigenstates, zero-th order in perturbation theory fixes them univocally, using
the perturbation λδH: ∣∣∣i(0)

L

〉
= lim
λ→0

|iL〉
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In our case, as
∣∣∣t(0)
L

〉
= (0, 0, 1)T , assuming that the Yukawa couplings are real parameters in the

flavour basis, the matrix which has to be diagonalised is

λ2
uδĤ

(2)
u = λ2

u


δy2

11 + δy2
12 δy21δy11 + δy22δy12 0

δy21δy11 + δy22δy12 δy2
21 + δy2

22 0
0 0 0

 (3.19)

where δyij corresponds to the ij entry of the δY (1)
u matrix. The eigenvalues and eigenvectors

of λ2
uδĤ

(2)
u correspond to the first and second generation for the up-type quarks. The eigenvalues

are then suppressed by a factor λ2
u, as they are calculated at second order in perturbation theory.

Therefore the corresponding Yukawa singular values for the first and second generation are
suppressed by a λu factor. The eigenvectors contain no suppression and are of norm 1.

This solution is valid only if the eigenstate which is determined at tree level (in this case
∣∣∣t(0)
L

〉
)

is (0, 0, 1). Nevertheless, if this is not the case, one can just rotate all the calculations to this
basis, and do the inverse rotation to give the answer in the initial basis.

3.2.2 A Scenario with Rank-2 Yukawa Couplings

We have just seen how to use perturbation theory to calculate the eigenvalues and eigenvectors
in a degenerate case. It is important to remark that in this scenario, the loop corrections increase
the rank of the Yukawa couplings with Φ1 to rank-2 at most. This can be proved as follows. If
one takes the β functions in Appendix A.1, one can see that its structure for both up or down
quark type always follows the pattern

1
16π2 log Λ

MH
β

(1)
u,d = A

(1)
u,dY

(1)
u,d +B

(1)
u,dY

(2)
u,d (3.20)

where A(1)
u,d and B(1)

u,d are combinations of the different Yukawa matrices and contain the loop
suppression factor. The rank of A(1)

u,d and B(1)
u,d is not important for this discussion. As Y (1)

u,d and
Y

(2)
u,d are rank-1 matrices, one can write them as the outer product of two vectors

1
16π2 log Λ

MH
β

(1)
u,d = A

(1)
u,d

∣∣∣y(1)
u,dL

〉〈
y

(1)
u,dR

∣∣∣+B(1)
u,d

∣∣∣y(2)
u,dL

〉〈
y

(2)
u,dR

∣∣∣ =
∣∣∣δỹ(1)

u,dL

〉〈
y

(1)
u,dR

∣∣∣+∣∣∣δỹ(2)
u,dL

〉〈
y

(2)
u,dR

∣∣∣
(3.21)

where
∣∣∣y(1)
u,dL

〉
has been redefined to

∣∣∣δỹ(1)
u,dL

〉
to absorb matrices A(1)

u,d and B
(1)
u,d in order to simplify

the discussion. If now the β functions are used to calculate the 1-loop Yukawa couplings Y (1)
u,d ,

one finds

Y
(1)
u,d |1−loop '

∣∣∣y(1)
u,dL

〉〈
y

(1)
u,dR

∣∣∣+∣∣∣δỹ(1)
u,dL

〉〈
y

(1)
u,dR

∣∣∣+∣∣∣δỹ(2)
u,dL

〉〈
y

(2)
u,dR

∣∣∣ =
∣∣∣y′(1)
u,dL

〉〈
y

(1)
u,dR

∣∣∣+∣∣∣δỹ(2)
u,dL

〉〈
y

(2)
u,dR

∣∣∣
(3.22)

where
∣∣∣y′(1)
u,dL

〉
=
∣∣∣y(1)
u,dL

〉
+
∣∣∣δỹ(1)

u,dL

〉
. As the one loop Yukawa couplings with Φ1 can be written as

a linear combination of two outer products, the rank of the matrix can be at most of rank-2.
This discussion is valid at any loop.
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Physical Parameters

As the Yukawa matrices can be at most of rank-2 after including radiative corrections, the
first generation of quarks remains massless in this model. Therefore, not all of the parameters
presented in eqs. (3.1) and (3.7) are physical. One way of counting how many initial parameters
are actually physical is through the following rule [82]

#Physical Parameters = #Total Parameters−#Broken Generators. (3.23)

A rank-1 Yukawa coupling in a general basis contains a total of 5 real parameters and 5 phases.
In the absence of Yukawa couplings, there is a global U(3)3 symmetry. This symmetry breaks
to a U(1)3 when including the Yukawa matrices when the first generation of quarks remains
massless. In other words

U(3)QL × U(3)uR × U(3)dR −→ U(1)uR × U(1)dR × U(1)B (3.24)

The number of generators for U(3) are 9. A U(3) matrix contains 3 real parameters and 6 phases.
Instead U(1) has only one generator, which corresponds to a phase. Therefore

20 R Parameters− 9 Broken R Parameters = 11 R Physical Parameters
20 Phases− 15 Broken Phases = 5 Physical Phases

Thus, the model contains a total of 16 physical parameters. The non-physical parameters in
eqs. (3.1) and (3.7) with real Yukawa couplings correspond to ωuR and ωdR , which parametrise
the U(1) transformation for the first generation of right-handed quarks. This will be discussed
later in detail.

3.2.3 Masses for the Second Generation of Quarks

The values of the quark masses for the second generation can now be calculated at one loop,
using the results in Section 3.2.1. The Feynman diagrams which contribute to increase the
Yukawa matrix rank using perturbation theory are shown in Fig. 3.2. In both cases, the coupling
of quarks with Φ2 must generate a new direction in flavour space.

To simplify the results, one can use the assumption y(1)
d , y

(2)
d � y

(1)
u , y

(2)
u . This is a reasonable

assumption as it is known from observations that y(1)
d � y

(1)
u . One finds that

y2
c,s(MH) '

( 1
16π2 log Λ

MH

)2 2∑
i,j=1

(
β

(1)
u,dij

(Λ)
)2

(3.25)

where β(1)
u,dij

is the ij entry of the β(1)
u,d matrices. Hence, at one loop the approximate ratio between
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Φ2

qi qk

qjqj

Φ1

Φ2

qi qkqjqj

Φ1

Figure 3.2: One loop Feynman diagrams in β(1)
u,d which generate a mass for the second generation

of quarks.

the Yukawa couplings of the second and third generation of quarks are [1]

yc
yt

'
( 1

16π2 log Λ
MH

) 3
4(y(2)

u )2 sin 2θuL sin 2θuR , (3.26)

ys
yb
'
( 1

16π2 log Λ
MH

)
y

(1)
u y

(2)
u y

(2)
d

y
(1)
d

cos θuR sin θdRNd , (3.27)

where

Nd =
[
9 sin2 θdL cos2 θuL + 4 cos2 θdL sin2 θuL − 3 sin 2θdL sin 2θuL cos(ωdL − ωuL)

]1/2
. (3.28)

As one can see from eq. (3.27), all of the Yukawa couplings of the second generation contain
a loop suppression which immediately generates a smaller value for them with respect to the
third generation. Nevertheless, the logarithmic term enhances the value of the second generation
masses, as in principle the cut-off scale can be much larger than the heavy Higgs mass.
Let us now discuss in detail the dependence of the masses with respect to the Yukawa

parameters. After taking the assumption y
(1)
d , y

(2)
d � y

(1)
u , y

(2)
u , the Feynman diagram which

mainly contributes to the radiative generation of the charm mass is the left diagram in Fig. 3.2.
The only way for the charm quark to radiatively couple to Φ1 is through Φ2, which at the
same time has to couple to the top quark. This diagram corresponds to the wave-function
renormalization diagram proportional to Tr(Y (1)

u Y
(2)†
u )Y (2)

u in β(1)
u . This can also be seen from

eq. (3.27). In order to generate the charm mass, one needs non-vanishing cos θuL cos θuR and
sin θuL sin θuR . These two terms parametrise the mixing between the top quark and the lightest
generations through Φ2. This mixing is the only way to transfer the electroweak symmetry
breaking from the third to the second generation.
In the case of the strange quark mass, the dependence with the parameters of the model is
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3.2 Quantum Corrections in Quark Sector

more sophisticated. The reason is that both the wave-function renormalization and the vertex
diagram in Fig. 3.2, contribute to generate the strange mass. These diagrams are proportional
to Tr(Y (2)

u Y
(1)†
u )Y (2)

d and Y (2)
u Y

(1)†
u Y

(2)
d in β(1)

d , respectively. The first term, which corresponds
to the left Feynman diagram in Fig. 3.2, requires similar conditions to the ones needed to
generate the charm mass. In this case the non-vanishing terms have to be cos θuL cos θuR and
sin θdL sin θdR . Here, cos θuL cos θuR implies that the Higgs Φ2 has to couple to the top quark,
whereas sin θdL sin θdR means that Φ2 has to couple to the lightest generations of the down-type
quarks. This corresponds to the Feynman diagram where the top quark is inside the loop. On
the other hand, Y (2)

u Y
(1)†
u Y

(2)
d corresponds to the right diagram in Fig. 3.2. For this term to

contribute to the generation of the strange quark mass, cos θuR sin θuL 6= 0 and cos θdL sin θdR 6= 0.
Here cos θuR sin θuL 6= 0 means that the left-handed doublet of the light quarks has to couple to
the right-handed top quark through Φ2 and cos θdL sin θdR 6= 0 indicates that the left-handed
doublet of the third generation of quarks has to couple to the right-handed light down type
quarks also through Φ2. In other words, the third generation of quarks has to be the inside the
loop, coupling to both Φ1 and Φ2.

In this scenario, as the Yukawa matrices with Φ1 can be at most of rank-2, the first generation
of quarks remains massless. Nevertheless, as will later be discussed, by introducing additional
flavour structures to the model, as for example introducing extra Higgs doublets or taking rank-2
matrices at tree level, one can generate a non-vanishing mass for the first generation. In the
latter case, radiative corrections to the masses of the second generation can be larger than the
tree level contribution. Hence, in this case, the results deduced from rank-1 Yukawa couplings
are still a good approximation.
Finally, the effects of such a model on precision flavour observables are negligible as the

decoupling limit is taken for this analysis. Nevertheless, the masses which are generated
radiatively depend logarithmically on the mass of the heavy Higgs and therefore, modifying the
scale of new physics barely changes the predictions in the quark sector.

3.2.4 Radiative Effects on the CKM Matrix

At tree level, the mixing between the first and second generation of quarks is completely
undetermined. This can be resolved using perturbation theory of degenerate states. The mixing
between the first and second generation for each quark type can be parametrised with a mixing
angle ζu,d, such that the mixing matrix for each quark type is

Vu,dL =


cos ζu,d sin ζu,d 0
− sin ζu,d cos ζu,d 0

0 0 1

 . (3.29)

Using the result in eq. (3.19) one finds

ζu,d = tan−1

β(1)
u,d11

β
(1)
u,d21

+ β
(1)
u,d12

β
(1)
u,d22

(β(1)
u,d21

)2 + (β(1)
u,d22

)2

 . (3.30)
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Knowing that VCKM = V †uLVdL , the Cabibbo angle can be calculated

Vus ' −Vcd '
3 sin θdL cos θuL sin(ωdL − ωuL)

Nd
(3.31)

and the value for the remaining diagonal element is

Vud ' Vcs '
√

1− V 2
us. (3.32)

It is interesting that the masses of the second generation of quarks arise at one loop and hence
contain a loop suppression factor which naturally generates the hierarchy between the second
and third generation of quarks. But even if the Cabibbo angle is generated by the one loop
corrections, it contains no loop suppression factor. Figure 3.3 shows a simplified graphical
representation of the left-handed eigenstates at one loop to better understand the outcome of
the model. As we have seen in Section 3.1, at tree level, just the third generation eigenvectors
are determined. The first and second generation have to lay on the surface perpendicular to
the latter. The top and bottom left-handed eigenstates are imposed to be aligned at tree
level. Once the one loop corrections are included, the degeneracy between the first and second
generation is broken if the correction has some misalignment with respect to the third generation
eigenvector. In Fig 3.3, |δỹu,dL〉 represents the left-handed part of the loop correction, defined
in eq. (3.22). The second generation eigenvalue is proportional to the length of the projection
on the perturbation of the surface perpendicular to the third generation. It is therefore loop
suppressed. The direction projection of the perturbation |δỹu,dL〉 on the surface perpendicular
to the third generation, determines the direction of the second generation eigenvector. As this
eigenvector was undetermined at tree level, even if the loop eigenvalue is very small, it breaks
the tree level degeneracy between first and second generation, leaving the eigenvectors totally
determined. If the perturbation breaks the degeneracy, the vectors which are generated contain
no loop suppression. Therefore, the Cabibbo angle is not loop suppressed. In perturbation theory
language, the Cabibbo angle is generated at zero-th order. This mechanism was actually noted
in previous works [83–85] for the mixing in the neutrino sector with degenerate mass eigenvalues.
Note that the Cabibbo angle depends only on left-handed parameters. The necessary condition to
to generate a non-vanishing Cabibbo angle is that the left-handed charm and strange eigenvectors
have to be misaligned, therefore sin(ωdL − ωuL) 6= 0.
After the one loop corrections, at zero-th order in perturbation theory, the structure of the

CKM matrix is

|VCKM | =


Vud Vus 0
Vcd Vcs 0
0 0 1

 (3.33)

Once the eigenvectors are determined at zero-th order in perturbation theory, one can use first
order perturbation theory to calculate higher order corrections of all the CKM matrix elements.
In this case we are interested in calculating the corrections to the terms which are zero. The
result are
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Figure 3.3: Graphical representation of the left-handed quark mass eigenstates after introducing
the one loop corrections. The small perturbations |δỹu,dL〉 determine a new direction
in space and generate a non-zero eigenvalue for the second generation of quarks. The
misalignment between the projector of these two vectors determines the value of the
Cabibbo angle, θc.

Vub '
( 1

16π2 log Λ
MH

) 3y(1)
u y

(2)
u y

(2)
d

y
(1)
d

sin θdL cos θdR cos θuL cos θuR sin(ωdL − ωuL) ,

Vcb '
( 1

16π2 log Λ
MH

)
y

(1)
u y

(2)
u y

(2)
d

y
(1)
d

{
1
4
y

(1)
d y

(2)
u

y
(2)
d y

(1)
u

sin 2θuL(3 cos 2θuR + 2)

+ cos θdR cos θuR [2 cos θdL sin θuL − 3 sin θdL cos θuL cos(ωdL − ωuL)]} . (3.34)

Of course these terms do contain the loop-suppression factor and now the right-handed parameters
contribute to the first order perturbation corrections. This is because we are calculating the
corrections of a vector which is already determined.

It is important to mention that some of the parameters of this model are univocally determined.
In this scenario we have two massless particles, the up and the down quark. There is hence an
unbroken U(1)uR × U(1)dR symmetry. As explained above, this means that the couplings of the
right-handed part of the first generation of quarks have no physical meaning. This can also be
seen as follows. If one calculates the Yukawa couplings in the mass basis, one finds

Ỹ
(2)
u,d (MH) ' y(2)

u,d


0 − sin θu,dL sin θu,dR sin

(
ζu,dL − ωu,dL

)
− cos θu,dR sin θu,dL sin

(
ζu,dL − ωu,dL

)
0 sin θu,dL sin θu,dR cos

(
ζu,dL − ωu,dL

)
cos θu,dR sin θu,dL cos

(
ζu,dL − ωu,dL

)
0 cos θu,dL sin θu,dR cos θu,dL cos θu,dR

 .

(3.35)
As expected, ωu,dR do not appear in Ỹ

(2)
u,d . One can then set ωu,dR = 0. Furthermore, the
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approximate values for the right-handed angles θu,dR can be calculated from the following quark
parameters

ys
yb

Vus
Vub
' tan θdR ,

yc
yt

Vus
Vtd
' 3 sin 2θuR

2 + 3 cos 2θuR
, (3.36)

which gives θuR ≈ 0.16, θdR ≈ 1.06.
Of course, there are degeneracies between the remaining parameters. Nevertheless, under

the assumption that the couplings for each quark-type are of the same order, and the mixing
angles are of O(1), one can naturally reproduce the experimental values for the second and third
generation of masses and the mixing in the quark sector. Still, this is not a predictive model and
unfortunately contains a large number of free parameters.

58



CHAPTER 4

Lepton Masses and Mixing Angles in a 2HDM see-saw

In the previous chapter we have presented the results of the quantum effects on the masses and
mixing angles in the quark sector in a context of a 2HDM with rank-1 Yukawa couplings at tree
level. In this chapter the results for the lepton sector are presented, following the discussion
in [2]. The masses of the charged lepton sector follow a similar pattern to the quark sector.
Nevertheless, as neutrinos are massless in the SM, the picture completely changes, as physics
beyond the 2HDM has to be introduced to generate neutrino masses. In what follows we assume
neutrino masses arise from the see-saw mechanism by adding right-handed neutrinos. In this
scenario, one can also generate a completely anarchical PMNS matrix.

4.1 Tree Level Results

In this section we present the tree level results for charged leptons and neutrino masses together
with the lepton mixing matrix in the context of a general 2HDM. In contrast with the quark
sector, not only a new extra Higgs doublet is introduced but also right-handed neutrinos in order
to generate neutrino masses in the see-saw framework. Here, the Yukawa couplings are also
assumed to be rank-1 at a cut-off scale Λ. The decoupling limit is taken again for the analysis,
in order to make the model compatible with experimental constraints. In the second part of this
section, we present the results in a simplified scenario, where the 2HDM is extended by just one
right-handed neutrino.

4.1.1 The General Framework

Following the description presented in Chapter 1, the flavour dependent part of the see-saw
mechanism extended with an extra Higgs doublet is described by the following Lagrangian

− Llep = Y
(a)
e,ij l̄LiΦaeRj + Y

(a)
ν,ij l̄LiΦ̃aνRj −

1
2MM,ij ν̄

C
RiνRj + h.c. (4.1)
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where i, j = 1, 2, 3 are flavour indices, a = 1, 2 is a Higgs index and Φ̃a = iτ2Φ∗a. As for the quark
sector, we also work in the Higgs basis for convenience. Hence 〈Φ0

1〉 = v/
√

2, with v ' 246 GeV
and 〈Φ0

2〉 = 0. This means that the charged lepton and neutrino Dirac masses are proportional to
the singular values of Y (1)

e and Y (1)
ν , respectively. Here MM is the Majorana mass matrix for the

right-handed neutrinos, and its singular values M1, ...,MN , correspond to the Majorana masses
for N right-handed neutrinos.
The first assumption taken in this part is that the Majorana mass scale is much larger than

the mass of the extra Higgs bosons, as the former does not arise from electroweak symmetry
breaking. As for the previous chapter, we denote the masses of the four new Higgs states, H0, A0

and H±, as MH . At the scale of the lightest right-handed neutrino, M1, it is useful to describe
the Lagrangian in eq. (4.1) with the following effective Lagrangian

−Lν,eff = Y
(a)
e,ij l̄LieRjΦa + 1

2κ
(ab)
ij (l̄LiΦ̃a)(Φ̃T

b l
C
Lj) + h.c.. (4.2)

In this case, the dimension five operators are

κ(ab)(M1) = (Y (a)
ν M−1

M Y (b)T
ν )(M1) . (4.3)

As the only Higgs that acquires a vev is Φ1, the neutrino mass matrix, defined in eq. (1.25) at
this scale is

Mν(M1) = v2

2 κ
(11)(M1) , (4.4)

and is diagonalised following eq. (1.26). This is valid for any number of right-handed neutrinos.

4.1.2 The Tree Level See-Saw with one Right-Handed Neutrino

Following the framework used for the quark sector, here the Yukawa matrices are also assumed
to be of rank-1. To simplify this scenario, we assume the model contains just one right-handed
neutrino with mass MM �MH . Nevertheless, this discussion can be extended to a model with
N right-handed neutrinos.

Physical Parameters

Before computing the tree level results, we calculate how many of the parameters of the model
are indeed physical. As happened in the quark sector, in this scenario there is one massless
charged lepton which generates a U(1) symmetry in the model. The symmetry group in the
lepton sector before and after introducing the Yukawa couplings is

U(3)LL × U(3)eR −→ U(1)eR. (4.5)

The number of initial parameters in the charged lepton sector is counted as for any of the quark
type: 5 real parameters and 5 phases for each Yukawa coupling. The Yukawa coupling for the
neutrino sector is assumed to be a dimension-3 vector. Therefore each neutrino Yukawa vector
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contains a total of 3 real parameters and 3 phases. Using eq. (3.23), the number of physical
parameters is calculated as follows

16 R Parameters− 6 Broken R Parameters = 10 R Physical Parameters
16 Phases− 11 Broken Phases = 5 Physical Phases.

This means that the model contains a total of 15 physical parameters.

Analytical Results

As some of the parameters of the model are not physical, they can be rotated away by redefining
the lepton fields. We chose to work in the charged leptons mass basis for simplicity. The Yukawa
couplings with Φ1 in this basis are written, at the cut-off scale Λ, as

Y (1)
e (Λ) =


0 0 0
0 0 0
0 0 y

(1)
e

 , Y (1)
ν (Λ) = y(1)

ν


0

sinα
cosα

 . (4.6)

As the Yukawa matrices are of rank-1, only the third generation has a non-vanishing mass.
Therefore

mτ |tree = v√
2
y(1)
e , mµ|tree = me|tree = 0 (4.7)

m3|tree = v2

2
y

(1)2
ν

MM
, m2|tree = m1|tree = 0 (4.8)

Note that the misalignment in the quark sector between the up and down tree level Yukawa
couplings with Φ1 was parametrised with the ε parameter, which was later assumed ε→ 0. This
limit was taken to mimic the hierarchical structure of the CKM matrix. We will now see that
this assumption should not be imposed for the lepton sector. The PMNS matrix at tree level has
the following structure

UPMNS =


? ? ?
? ? ?
? ? cosα

 (4.9)

where "?" indicates the unknown parameters due to the undetermined eigenvectors of the first
and second generation. In this scenario, even if only Uτ3 is determined at tree level, Ue3 and Uµ3

have to fulfil
U2
e3 + U2

µ3 = sin2 α. (4.10)

As the PMNS matrix has a completely anarchical, we have to keep α > 0. Beyond the generation
of neutrino masses, this assumption is the key difference between the quark and the lepton sector.
This discussion is represented in Fig 4.1. In this scenario the tree level Yukawa couplings with
Φ1 determine the eigenvectors of the third generation and their corresponding eigenvalues. The
first and second generation are undetermined, but as for the quark sector, they have to lay on
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α

Tree level
∣∣∣∣∣∣∣
ν
(0)
3L

〉

∣∣∣∣∣∣∣
τ
(0)
L

〉

α

Figure 4.1: Tree level scenario for a 2HDM extended with one right-handed neutrino. The third
generation eigenvalues and eigenvectors of leptons are determined. The misalignment
between them is parametrised by the angle α. The red and blue surfaces represent
the subspaces where the first and second generation of charged leptons and neutrinos
have to lay on, respectively.

the surface perpendicular to the third generation (the red surface corresponds to charged leptons
and the blue surface corresponds to neutrinos). The misalignment between the eigenstates of the
third generation is parametrised by α.
The Yukawa interactions of leptons with Φ2 are also rank-1. Hence, for the charged lepton

sector the corresponding matrix in this basis is

Y (2)
e (Λ) = E†L


0 0 0
0 0 0
0 0 y

(2)
e

ER. (4.11)

EL,R are 3×3 matrices, analogous to eq. (3.8). Due to the residual U(1)eR symmetry discussed
above, ωeR is not a physical parameter and therefore can be set to zero in this scenario.
The Yukawa coupling of neutrinos with Φ2 takes a vector form

Y (2)
ν (Λ) = y(2)

ν


eiρν sin θν sinων
eiξν sin θν cosων
eiχν cos θν

 . (4.12)

In the following sections we neglect any phase contribution for simplicity.
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4.2 Quantum Corrections in the Lepton Sector

In this section we present results of the quantum corrections to the Yukawa couplings in the
lepton sector. As for the quark sector, we are able to radiatively generate the masses of the
second generation of leptons and determine univocally the entries of the PMNS matrix.

4.2.1 Radiative Corrections at MM Scale

The analysis done in this part is completely analogous to the results presented in Section 3.2.
The leading-log approximation is used to calculate the one loop Yukawa couplings for charged
leptons and neutrinos. At the scale of decoupling of the right-handed neutrinos, taking the
leading-log approximation, the Yukawa couplings are

Y
(a)
e,ij (MM) ' Y (a)

e,ij (Λ) + 1
16π2β

(a)
e,ij(Λ) log Λ

MM
,

Y
(a)
ν,i (MM) ' Y (a)

ν,i (Λ) + 1
16π2β

(a)
ν,i (Λ) log Λ

MM
, (4.13)

respectively. The beta-functions β(a)
e , β(a)

ν can be found in Appendix A.1. Note that in this case,
the scale at which the Yukawa couplings are calculated at one loop is MM.
As discussed in Section 3.2.2, the radiative corrections contained in the beta functions leads

at most to Yukawa couplings of rank-2. This is indeed the case for charged leptons. The
corresponding Feynman diagrams to generate charged lepton masses are exactly the same as
for the quark sector, shown in Fig. 3.2, changing quarks by leptons. In this case the Yukawa
couplings for the second generation of charged leptons can be calculated at MM as

y2
µ(MM) '

( 1
16π2 log Λ

MM

)2 2∑
i,j=1

(
β

(1)
e,ij(Λ)

)2
. (4.14)

Once the mass degeneracy between the first and second generation of charged leptons is broken,
the corresponding eigenvectors become unambiguously fixed. They can also be calculated using
the results in Section 3.2.1. Following the notation in eq. (1.3), the unitary matrices VeL and
VeR ,

VeL(MM) '


cos ζeL sin ζeL 0
− sin ζeL cos ζeL 0

0 0 1

 , VeR(MM) '


cos ζeR sin ζeR 0
− sin ζeR cos ζeR 0

0 0 1

 , (4.15)

where

tan ζeL =

β(1)
e,11β

(1)
e,21 + β

(1)
e,12β

(1)
e,22

(β(1)
e,21)2 + (β(1)

e,22)2

∣∣∣∣∣∣
Λ

, tan ζeR =
β

(1)
e,11β

(1)
e,12 + β

(1)
e,21β

(1)
e,22

(β(1)
e,12)2 + (β(1)

e,22)2

∣∣∣∣∣∣
Λ

. (4.16)

For convenience, at the MM scale we rotate the lepton fields to the basis where the Yukawa
coupling of charged leptons with Φ1 is diagonal. We call the Yukawa coupling in this new basis
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Ỹ
(a)
e (MM) which is calculated as

Ỹ (a)
e (MM) = (V †eLY

(a)
e VeR)(MM). (4.17)

For the neutrino sector the scenario is slightly different. It is also useful to define the neutrino
Yukawa couplings in the basis where Ỹ (1)

e (MM) is diagonal

Ỹ (a)
ν (MM) = (V †eLY

(a)
ν )(MM) . (4.18)

At the MM scale, the neutrino Yukawa couplings receive quantum corrections following
eq. (4.13). If one introduces the one loop corrections to calculate the effective couplings κ(ab),
one finds that at the MM scale

κ
(ab)
ij (MM) = 1

MM
Ỹ

(a)
ν,i Ỹ

(b)
ν,j

∣∣∣
MM

. (4.19)

As one can see, these couplings are still a rank-1 matrices. As left-handed neutrino masses are
generated by κ(11), at this energy scale, the first and second generation of left-handed neutrinos
remain massless.

α

One loop–MM
∣∣∣∣∣∣∣
ν
(0)
3L

〉

∣∣∣∣∣∣∣
τ
(0)
L

〉

α

∣∣∣∣∣∣∣
e
(0)
L

〉

∣∣∣∣∣∣∣
µ
(0)
L

〉

∣∣∣∣∣∣∣
δỹ

(2)
eL

〉

Figure 4.2: Graphical representation of the left-handed eigenvectors in the lepton sector at an
energy scale MM. At this scale, the eigenvectors for the first and second generation
of charged leptons are determined. This is not the case for the left-handed neutrinos,
as the radiative corrections do not generate a new direction in flavour space.

This scenario is shown in a graphical representation in Fig 4.2. For charged leptons, at an
energy scale MM the loop correction generates a new direction in flavour space which breaks
the degeneracy between the first and second generation. The eigenvalue is directly proportional
to the projection of the perturbation on the subspace perpendicular to

∣∣∣τ (0)
L

〉
, and defines the

direction of the eigenvector. The same situation has to happen in the right-handed sector, as the
Dirac mass connects the left- and right-handed eigenstates.
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4.2 Quantum Corrections in the Lepton Sector

As the corrections to the neutrino Yukawa couplings do not determine a new direction in
flavour space, there is no way to determine the left-handed eigenstates of the corresponding first
and second generations.

4.2.2 Determining the Lepton Parameters at the MH Scale

The Yukawa couplings Y (1)
e is subject to quantum corrections between the scale MM and MH .

Using the leading-log approximation one finds

Y
(a)
e,ij (MH) ' Y (a)

e,ij (MM) + 1
16π2β

(a)
e,ij(MM) log MM

MH
. (4.20)

With this, one can calculate the Yukawa couplings for the charged lepton sector at an energy
scale MH . The corresponding Yukawa singular values are

yτ (MH) ' y(1)
e

yµ(MH) ' 1
16π2


 2∑
i,j=1

(
β

(1)
e,ij(Λ)

)2
1/2

log Λ
MM

+

 2∑
i,j=1

(
β

(1)
e,ij(MM)

)2
1/2

log MM
MH

 ,

ye(MH) = 0 . (4.21)

Taking these results, if one calculates the ratio between the muon and tau masses, finds

mµ

mτ
' 1

16π2
y

(2)
e

y
(1)
e

(P 2 +Q2)1/2 , (4.22)

where P and Q are defined as

P ≡ y(1)
ν y(2)

ν pν log
( Λ
MM

)
+

∑
x=e,u,d

y(1)
x y(2)

x px log
(
MM
MH

)
, (4.23)

Q ≡ y(1)
ν y(2)

ν qν log
( Λ
MM

)
+

∑
x=e,u,d

y(1)
x y(2)

x qx log
(
MM
MH

)
, (4.24)

and px, qx are functions of the angles inside the Yukawa matrices Y (2)
x (Λ). They are given in

Appendix A.2. In this framework the first generation remains massless even if the Yukawa
couplings at a scale MM are already of rank-2. This is because there is no new direction in
flavour space added to the model which can generate a mass for the first generation. Therefore,
the discussion in Section 3.2.2 remains valid for charged leptons at this energy scale.

It is possible to estimate the value of the mass ratio between the second and third generation
of charged leptons, even if it depends on several parameters. Here, px and qx exclusively depend
on the mixing angles inside the Yukawa couplings with Φ2. If one takes generic values for these
angles, px and qx acquire values O(0.1). Furthermore, it is also reasonable to assume y(2)

x ∼ y(1)
x .

With this, the main contribution to the muon mass comes from the neutrino Yukawa coupling
or from the up-type Yukawa coupling. In the latter case, as the MM � MH , the mass ratio
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is enhanced by the logarithm. For example, if one sets Λ = 1019 GeV, MM = 1014 GeV and
MH = 104 GeV, one gets log(Λ/MM) ∼ 10 and log(Λ/MH) ∼ 30. Therefore, the ratio between
the muon and the tau mass can be approximated to

mµ

mτ
∼ (0.01− 0.1)y

(2)
e

y
(1)
e

max
{
y(1)
ν y(2)

ν , 3y(1)
u y(2)

u

}
. (4.25)

In Fig. 4.3 we show the probability distribution of this mass ratio with the assumptions mentioned
above and a flat linear distribution for the Yukawa mixing angles in Y (2)

x , between 0 and 2π. The
blue histogram contains the quantum effects generated only by neutrinos, fixing y(1)

ν = y
(2)
ν = 1,

whereas the red histogram shows the results for the quantum effects generated only by the top
quark, with y(1)

u = y
(2)
u = 1. If changing the values of the Yukawa couplings, the probability

distribution would be rescaled on the horizontal axis. The experimental value for the muon
and tau masses shows a large hierarchy between them. This suggests that the generation of
the muon mass is dominated by the diagram with the right-handed neutrino inside the loop.
Nevertheless, the proper ratio between the masses can be generated from the top loop diagram
by the appropriate choice of the parameters of the model.
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Figure 4.3: Probability distribution for mµ/mτ from a random scan of the angles in the model.
The blue curve only contains the effects generated by neutrinos, whereas the blue
curve only contains the contribution of the top quark.

For the charged lepton mixing sector, as the matrices which diagonalise the Yukawa couplings
with Φ1 are already determined at MM, at the MH scale they only receive loop suppressed
corrections. Hence, they approximately read as eq. (4.15). For the neutrino sector, κ(11)(MM) is
of rank-1. Therefore there are two degenerate, vanishing masses. Nevertheless, below MM, κ(ab)

ij

is also subject to radiative corrections

κ
(ab)
ij (MH) ' κ(ab)

ij (MM) + 1
16π2β

(a)
κ(ab),ij

(MM) log MM
MH

(4.26)
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where βκ(ab) is contained in Appendix A.1. As was already noted in [86], there is only one term
in the β function which generates a radiative mass for the second generation of left-handed
neutrinos in such a scenario. It is contained in the last term in eq. (A.6), and corresponds to

2λ5
Ỹ

(2)
ν Ỹ

(2)T
ν

MM
, (4.27)

where λ5 is a coupling constant in the potential presented in eq. (2.1). The corresponding
Feynman diagram, which contributes to induce a mass for the second generation, is shown in Fig.
4.4.

νLi

〈
Φ(1)

〉

Φ(2)Φ(2)

νLj

νR νR

λ5

〈
Φ(1)

〉

Figure 4.4: One loop Feynman diagram which generates a non-vanishing mass for νL2 .

With all this, one finds that the neutrino masses at the MH scale, neglecting subdominant
effects, are

m3(MH) ' v2

2MM
|Ỹ (1)
ν |2 , (4.28)

m2(MH) ' 1
16π2

λ5v
2

MM

[
|Ỹ (2)
ν |2 −

(Ỹ (2)T
ν Ỹ (1)

ν )2

|Ỹ (1)
ν |2

]
log MM

mH
, (4.29)

m1(MH) ' 0. (4.30)

The ratio between the masses of the second and third generation is then

m2
m3
' λ5

8π2

(
y

(2)
ν

y
(1)
ν

)2

(1− cos2 ψ) log MM
mH

. (4.31)

Here, cosψ ≡ cosα cos θν + sinα sin θν cosων determines the misalignment between Y
(1)
ν and

Y
(2)
ν . This outcome is quite intuitive, as to generate a non-vanishing neutrino mass for the

second generation, there must be a Yukawa coupling pointing in a new direction in flavour space.
Therefore, sinψ > 0 to generate m2 6= 0. This scenario is slightly different from the quark sector,
as the right-handed neutrinos are Majorana particles and the mass term for the left-handed
sector is generated in the see-saw mechanism. Here, m1(MH) can be approximated to be zero.
Nevertheless, the latter is not exactly zero, but receives corrections from two loop diagrams [87].

67



Chapter 4 Lepton Masses and Mixing Angles in a 2HDM see-saw

The discussion in Section 3.2.2 is therefore not valid for the neutrino sector if taking into account
higher loop corrections.

As done for charged leptons, we want to estimate the magnitude of the neutrino mass ratio in
this scenario. If we again take generic values for the Yukawa mixing angles on gets cosψ = O(0.1)
and with Λ = 1019 GeV and MM = 1014 GeV (therefore, log(Λ/MM) ∼ 10), one finds

m2
m3
' (0.1− 1)λ5

(
y

(2)
ν

y
(1)
ν

)2

. (4.32)

In Fig. 4.5 we show the probability distribution for the mass ratio m2/m3. For this plot
y

(1)
u ' y(2)

u and λ5 = 1 have been assumed. A flat linear distribution for the mixing angles inside
the Yukawa couplings with Φ2 has been taken. One can see that indeed, m2/m3 = O(0.1), which
is in agreement with experimental data.
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Figure 4.5: Probability distribution ofm2/m3 using a flat linear random scan of Yukawa angles
at the cut-off scale.

Now, as the degeneracy between the first and second generation is broken, the neutrino mixing
matrix is univocally determined. Its second and third column, neglecting subleading effects, read

Vν,i3(mH) ' Ỹ
(1)
νi

|Ỹ (1)
ν |

,

Vν,i2(mH) ' 1
N2

[
Ỹ (2)
ν − Ỹ

(2)T
ν Ỹ

(1)
ν

|Ỹ (1)
ν |2

Ỹ (1)
ν

]
, (4.33)

with |Ỹ (a)
ν |2 =

∑
i(Ỹ

(a)
νi )2 and

N2 ≡
[
Ỹ (2)T
ν Ỹ (2)

ν − (Ỹ (2)T
ν Ỹ (1)

ν )2

|Ỹ (1)
ν |2

]1/2

, (4.34)
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where the neutrino Yukawa couplings Ỹ (a)
ν are all evaluated at the scale MM.

With the flavour basis to the mass basis rotation well determined, the PMNS matrix can be
calculated. The PMNS mixing angles approximately read

tan θ12 '
sin ζeL cosα (cosα sin θν cosων − sinα cos θν)− cos ζeL sin θν sinων

cosα sin θν (cos ζeL cosων + sin ζeL sinων)− cos ζeL sinα cos θν
,

sin θ13 ' − sin ζeL sinα ,
tan θ23 ' cos ζeL tanα , (4.35)

where ζeL is defined in eq. (4.16). From these results it can be seen that in the limit α→ 0, one
gets a hierarchical PMNS matrix, as happened for the CKM matrix. Therefore, the amount
of misalignment between the rank-1 Yukawa couplings at tree level determines the complete
structure of the mixing matrix.
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Figure 4.6: One loop scenario at the MH scale for the lepton sector. The eigenstates of the
charged leptons were already determined atMM and now only receive loop suppressed
corrections (not plotted here, for simplicity). A small correction to κ(11) generates a
new direction in flavour space in the neutrino sector, which determines the eigenvector
for the second generation.

The scenario at the MH scale is represented in Fig 4.6. At the MM scale, the left- and
right-handed eigenvectors for the charged leptons are already known whereas for the left-handed
neutrinos are completely undetermined. At the MH scale, the former only receive corrections
which are loop suppressed. In the case of neutrinos, they receive radiative corrections which
generate a small perturbation in flavour space, determining the eigenvalue and eigenvector for
the second generation. The eigenvalue is proportional to the projection of the perturbation on
the blue surface squared and the same projection determines the direction of the corresponding
eigenvector. Thus, all eigenstates are now determined for the lepton sector.
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Let us mention that the angle ζeL is in general neither maximal nor minimal. Therefore the
contribution of charged leptons to the neutrino mixing is in principle not negligible. In this
scenario the PMNS matrix has in principle an anarchical structure.
From the model it is possible to univocally determine the parameters α and ζeL in terms of

the angles θ12 and θ13

sin2 α ' sin2 θ13 + tan2 θ23
1 + tan2 θ23

, (4.36)

sin2 ζeL '
sin2 θ13(1 + tan2 θ23)

sin2 θ13 + tan2 θ23
. (4.37)

Taking the known experimental values for the mixing angles, one obtains | sinα| ' 0.65, | sin ζeL | '
0.23. Furthermore, the angles θν and ων also are constrained to fulfil the following expression

tan θν '
sinα(tan θ12 cos ζeL − cosα sin ζeL)

tan θ12 cosα cos(ζeL − ων)− cos2 α cosων sin ζeL + cos ζeL sinων
. (4.38)

In this framework, both the values for the masses of the second and third generation of
leptons and the lepton mixing angles can be naturally accommodated. Nevertheless, the first
generation remains massless and the number of physical parameters is too large to make the
model predictive. As was already mentioned in Chapter 3, including new flavour structures,
therefore a new direction for each lepton type in Fig. 4.6, can generate a radiative mass for the
first generation.
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CHAPTER 5

Fermion Masses in a Three Higgs Doublet Model

In the previous chapters a framework to generate the masses and mixing angles of quarks and
leptons in a general 2HDM has been presented. With the assumption of rank-1 Yukawa matrices,
the hierarchies between the second and third generation of masses can naturally be reproduced.
Furthermore, the mixing matrices for both quark and lepton sectors can be generated with the
correct structure through radiative corrections. Even if the model is an appealing scenario to
describe the fermion parameters, it has a strong drawback: the first generation of fermions is
still massless. This is of course in disagreement with experiments.

In this chapter the analytical results for the SM fermion masses in the context of a 3HDM are
presented. The analysis is basis independent and follows the calculations in Chapters 3 and 4.

5.1 The Flavour Structure at Tree Level

In this part the fermion parameters are calculated at tree level in a 3HDM. The model consists
in adding two new Higgs doublets to the SM, with the same quantum numbers as the SM Higgs.
For the neutrino sector, the masses are generated in the see-saw framework. Hence, one has to
add at least one right-handed neutrino to the model.
The Higgs potential for a 3HDM is given by [88,89]

V = m2
ab

(
φ†aφb

)
+ 1

2λabcd
(
φ†aφb

) (
φ†cφd

)
(5.1)

with a, b, c, d = 1, 2, 3. Note that for a, b, c, d = 1, 2, one recovers the 2HDM potential in eq. (2.1).
The Yukawa and neutrino parts of the Lagrangian are completely analogous to eq. (2.19) and

eq. (4.1), respectively, with a = 1, 2, 3. Following the analysis in the previous chapters, we take
the limit of rank-1 Yukawa couplings at a cut-off scale Λ. To make a basis independent analysis,
we write the Yukawa matrices as an outer product of two dimension-3 vectors

Y
(a)
x̃ (Λ) =

∣∣∣y(a)
x̃L

〉〈
y

(a)
x̃R

∣∣∣ , (5.2)
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where x̃ = u, d and e. To simplify the scenario, we just add one right-handed neutrino to the
model. Therefore the corresponding neutrino Yukawa couplings are

Y (a)
ν (Λ) =

∣∣∣y(a)
νL

〉
. (5.3)

To make the model compatible with the current experimental constraints, we take the decoupling
limit. Therefore the bosons in Φ2 and Φ3 take masses much larger than the SM Higgs mass. For
simplicity we collectively denote the heavy masses by MH .

Physical Parameters

It has already been discussed, that the amount of parameters in the Yukawa sector of the 2HDM
is too large to make the model predictive. In the 3HDM we are adding one new Yukawa coupling
for each fermion type, increasing the number of parameters by 20 in the quark sector and 16 in
the lepton sector. Furthermore, as we will now see, one can generate the masses for all fermions
in this scenario. Here we calculate how many of the parameters in the model are indeed physical.
For the quark sector, in the absence of Yukawa couplings, there is a global U(3)3 symmetry

which breaks into U(1)B once the quarks masses are introduced

U(3)QL × U(3)uR × U(3)dR −→ U(1)B (5.4)

Following rule in eq. (3.23), this means that the number of physical parameters are

30 R Parameters− 9 Broken R Parameters = 21 R Physical Parameters
30 Phases− 17 Broken Phases = 13 Physical Phases

For the lepton sector the group that breaks is

U(3)LL × U(3)eR (5.5)

The neutrino Yukawa couplings are assumed to be dimension 3 vectors. Hence, the number of
physical parameters in the lepton sector is calculated as

24 R Parameters− 6 Broken R Parameters = 18 R Physical Parameters
24 Phases− 12 Broken Phases = 12 Physical Phases

Therefore, for the Yukawa quark sector, from the total of 60 parameters in the model, there are
only 34 which are physical. The Yukawa lepton sector contains a total of 48 parameters. But only
30 of them are physical. This means that, as for the 2HDM, this model is also non-predictive.

Tree Level Masses

Following the previous chapters, for simplicity and without loss of generality we chose to work
in the basis where just one of the Higgs doublets acquires a vev. Therefore

〈
Φ0

1
〉

= v/
√

2 and
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〈
Φ0

2
〉

=
〈
Φ0

3
〉

= 0. From the rank-1 Yukawa matrices presented in eq. (5.2), the masses at tree
level are completely analogous to the ones in the 2HDM. They are calculated as follows

m
(0)
x̃3 |tree = v√

2

√〈
y

(1)
x̃L

∣∣∣ y(1)
x̃L

〉〈
y

(1)
x̃R

∣∣∣ y(1)
x̃R

〉
, (5.6)

for x̃ = u, d, e. As we want to generate neutrino masses in the see-saw scenario, one has to
take into account that there is a Majorana mass term for right-handed neutrinos. Therefore the
neutrino mass Lagrangian follows eqs. (4.1–4.3). Taking the Yukawa coupling in eq. (5.3), the
mass for the third generation neutrino is

m(0)
ν3 |tree = v2

2

〈
y

(1)
νL

∣∣∣ y(1)
νL

〉
MM

. (5.7)

As in the 2HDM, the first and second generation of fermions remain massless at tree level.

5.2 Basis Independent Quantum Corrections

In order to calculate the one loop corrections to the Yukawa couplings in a 3HDM, we use the
leading-log approximation defined in eq. (3.9) for the quark sector and eqs. (4.13), (4.20) for the
lepton sector. The corresponding β functions are defined in Appendix A.1.

5.2.1 Generating Rank-3 Yukawa Couplings

In the framework of a 2HDM with rank-1 Yukawa couplings there are only two determined
directions in flavour space. This means that one can generate at most one radiative mass, leaving
the first generation of fermions massless. In a 3HDM, one Yukawa coupling is added for each
fermion type with respect to the 2HDM. Therefore, following the discussion in Section 3.2.2, in a
3HDM, the one loop corrections can be written as

1
16π2 log E1

E2
β(1)
x (E1) = Ax

∣∣∣y(1)
xL

〉〈
y(1)
xR

∣∣∣+Bx
∣∣∣y(2)
xL

〉〈
y(2)
xR

∣∣∣+ Cx
∣∣∣y(3)
xL

〉〈
y(3)
xR

∣∣∣ (5.8)

=
∣∣∣δỹ(1)

xL

〉〈
y(1)
xR

∣∣∣+ ∣∣∣δỹ(2)
xL

〉〈
y(2)
xR

∣∣∣+ ∣∣∣δỹ(3)
xL

〉〈
y(3)
xR

∣∣∣
with E1

E2
= Λ

MH
for quarks, at MM, E1

E2
= Λ

MM
for charged leptons and at MH , E1

E2
= MM

MH
for

leptons. Hence, following eq. (3.22), the Yukawa couplings with Φ1 at one loop are

Y (1)
x |1−loop '

∣∣∣y(1)
xL

〉〈
y(1)
xR

∣∣∣+ ∣∣∣δỹ(1)
xL

〉〈
y(1)
xR

∣∣∣+ ∣∣∣δỹ(2)
xL

〉〈
y(2)
xR

∣∣∣+ ∣∣∣δỹ(3)
xL

〉〈
y(3)
xR

∣∣∣ (5.9)

=
∣∣∣y′(1)
xL

〉〈
y(1)
xR

∣∣∣+ ∣∣∣δỹ(2)
xL

〉〈
y(2)
xR

∣∣∣+ ∣∣∣δỹ(3)
xL

〉〈
y(3)
xR

∣∣∣ .
This corresponds to a rank-3 matrix. As there are three different rank-1 Yukawa matrices for each
fermion type, the model generates three different directions in flavour space. Hence the masses
of the first and second generations of fermions are both induced through radiative corrections in
this scenario. A completely analogous scenario is to assume that in a 2HDM, at least one of the
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Yukawa matrices is of rank-2, for each fermion type. In such case, the model would also contain
three different directions in flavour space for each fermion type and thus generate masses for all
fermion generations.

5.2.2 Fermion Masses at One Loop

We now present the analytical results for the radiative fermion masses. Using the result in
eq. (3.19), one finds that the corresponding eigenvalues y2

x2 and y2
x1, generated at zero-th order

in perturbation theory in a basis independent analysis are

y2
x2 + y2

x1 ' Tr(PxQx), (5.10)
y2
x2y

2
x1 ' Det(Px)Det(Qx) (5.11)

where Pxa,b and Qxa,b correspond to the ab entry of the 2× 2 Px and Qx matrices, defined as

Pxa,b =
〈
δỹ(a+1)
xL

∣∣∣PxL ∣∣∣δỹ(b+1)
xL

〉
, (5.12)

Qxa,b =
〈
y(a+1)
xR

∣∣∣PxR ∣∣∣y(b+1)
xR

〉
. (5.13)

Furthermore, PxL and PxR are the operators that project any vector to the subspace perpendicular
to
∣∣∣y(1)
xL

〉
and

∣∣∣y(1)
xR

〉
, respectively

PxL,R = 1−

∣∣∣y(1)
xL,R

〉〈
y

(1)
xL,R

∣∣∣〈
y

(1)
xL,R

∣∣∣ y(1)
xL,R

〉 . (5.14)

Here,
∣∣∣δỹ(2,3)

xL

〉
are vectors which are loop suppressed. The loop suppression generates smaller

masses for both first and second generation with respect to the third generation. These vectors
are calculated at the MH scale. The corresponding expressions can be found in Appendix A.3.
Note that for the neutrino sector, to calculate the masses we want to find the singular values
of κ(11). This means that here y2

ν2 and y2
ν1 should not be the eigenvalues of the Yukawa matrix

with Φ1 but of κ(11)κ(11)∗. Therefore, for the neutrino sector, this discussion is only valid when
changing R→ L. Hence, Qν is defined as

Qνa,b =
〈
y

(a+1)
bL

∣∣∣PxL ∣∣∣y(b+1)
νL

〉
. (5.15)

Thus, the masses of the first and second generation of neutrinos are calculated as follows

mν1,2 = v2

2 yν1,2. (5.16)

In Fig. 5.1 the graphical representation of the Yukawa sector following the results in eqs. (5.10)
and (5.11) at the MH scale is shown. On the left (right) panel, the left- (right-) handed sector is
represented. For the left-handed sector, the vectors

∣∣∣y(1)
xL

〉
determine the left-handed eigenvalues

of the third generation of fermions, exactly as for the 2HDM. The one loop corrections induce two
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∣∣∣∣∣∣∣
y
(1)
xL

〉

∣∣∣∣∣∣∣
δỹ

(2)
xL

〉

∣∣∣∣∣∣∣
δỹ

(3)
xL

〉

θxL
axL

bxL

∣∣∣∣∣∣∣
y
(1)
xR

〉

∣∣∣∣∣∣∣
y
(2)
xR

〉
∣∣∣∣∣∣∣
y
(3)
xR

〉

bxR
axRθxR

Figure 5.1: Graphical representation of the one loop scenario in a 3HDM for both left- and
right-handed sectors at the MH scale. See text for details.

new vectors in flavour space,
∣∣∣δỹ(2)

xL

〉
and

∣∣∣δỹ(3)
xL

〉
. Each one of these vectors generates a projection

in the surface perpendicular to
∣∣∣y(1)
xL

〉
, which we call axL and bxL . The angle between the latter is

θxL . A similar situation happens for the right-handed sector. In this case, the two vectors which
generate two new directions in space with respect to

∣∣∣y(1)
xR

〉
are

∣∣∣y(2)
xR

〉
and

∣∣∣y(3)
xR

〉
. These vectors

are not loop suppressed. The projections on the subspace perpendicular to
∣∣∣y(1)
xR

〉
are named axR

and bxR . These projections are misaligned by an angle θxR . Hence, using eqs. (5.10), (5.11), the
Yukawa couplings of the second and first generation are written in terms of these new parameters
as

(y2
x2 + y2

x1)(MH) '
[
a2
xL
a2
xR

+ b2xLb
2
xR

+ 2 (axLbxL cos θxL) (axRbxR cos θxR)
]

(5.17)

(y2
x2y

2
x1)(MH) '

[(
a2
xL
b2xL sin2 θxL

) (
a2
xR
b2xR sin2 θxR

)]
. (5.18)

It is straightforward to see which are the conditions needed to generate radiative masses for the
lightest generations. To induce the masses for the second generation of fermions one needs at
least

•
∣∣∣δỹ(2)

xL

〉
or
∣∣∣δỹ(3)

xL

〉
misaligned from

∣∣∣y(1)
xL

〉
and

•
∣∣∣y(2)
xR

〉
or
∣∣∣y(3)
xR

〉
misaligned from

∣∣∣y(1)
xR

〉
.

For the first generation to acquire a mass, a misalignment of the projections is needed for both
left- and right-handed sectors. This means that

• both
∣∣∣δỹ(2)

xL

〉
and

∣∣∣δỹ(3)
xL

〉
have to be misaligned from

∣∣∣y(1)
xL

〉
,

• both
∣∣∣y(2)
xR

〉
and

∣∣∣y(3)
xR

〉
have to be misaligned from

∣∣∣y(1)
xR

〉
and
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• both angles θxL and θxR have to be larger than zero.

Both masses are loop suppressed, as axL and bxL contain the corresponding loop factor. As
mentioned above, for the neutrino sector one has to change R→ L.
It is known from experiments that one of these two Yukawa singular values has to be larger

than the other one, due to the hierarchies between the first and second generation of masses. We
assign yx1 to the smallest eigenvalue and yx2 to the next-to-smallest eigenvalue. This means that
the Yukawa couplings of the first and second generation at the MH scale approximately read

y2
x2(MH) ' Tr(PxQx)|MH

, (5.19)

y2
x1(MH) ' Det(Px)Det(Qx)y−2

x2

∣∣∣
MH

. (5.20)

Using the simplified expressions in eqs. (5.17), (5.18), one can calculate the ratio between the
first and second generation of masses. Assuming for simplicity axL,R ∼ bxL,R , one finds

mx1

mx2
' sin θxL sin θxR

2 + 2 cos θxL cos θxR
. (5.21)

This means that the hierarchy between the first and second generation of fermions is fixed by
the misalignment parametrised by θxL,R . Taking a misalignment of θxL,R ∼ O(0.1), one gets
mx1/mx2 ∼ O(10−3). Therefore, in this scenario, without strong assumptions we are generating
the masses for the third generation of fermions at tree level and radiative masses for the first
and second generation, with a hierarchy between them determined by the distribution of the
Yukawa couplings in flavour space.

Of course, one can always take the 2HDM limit, in which at least one of the following conditions
is fulfilled

• axL � bxL and/or

• axR � bxR

or vice versa. With at least one of these assumptions one also generates a strong hierarchy
between both masses

mx1

mx2
' bxLbxR sin θxL sin θxR

axLaxR
� 1. (5.22)

In this limit, the expression for mx2 is the same as for the 2HDM.
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CHAPTER 6

Constraints from Flavour Physics

In the previous chapters we have presented different extensions of the SM with extra Higgs
doublets to explain the hierarchies between the masses and the pattern of the mixing angles
in the fermion sector. In order to make the models compatible with the current experimental
constraints, we have taken the decoupling limit. As explained in Chapter 2, this limit does not
avoid FCNCs or new sources of CP violation, but suppresses new physics effects by assuming
that the scale of new physics is much higher than the electroweak scale.

In this chapter we make a phenomenological analysis of a general 2HDM with rank-1 Yukawa
couplings, following Chapters 3 and 4 . We study the impact of new physics on flavour observables
in order to understand which observables are most sensitive to the model and to set a limit on
the scale of new physics.

6.1 The ∆F = 2 Observables: Basic formulae

This part contains a description of the basic formulae for the ∆F = 2 observables in K − K̄
and B0

s,d − B̄0
s,d mixing systems and rare K and B meson decays. In particular, the observables

discussed are ∆Ms, ∆Md, Sψφ and SψKS for the B sector, and ∆MK and εK for the K sector.

6.1.1 ∆F = 2 within the Standard Model

B Physics

In the SM, the B0
d,s and B̄0

d,s mesons mix. The mixing happens because their mass eigenstates
are a linear combination of the flavour eigenstates. In the SM, the dominant contribution comes
from box diagrams as the one in Fig. 1.1. The mixing is parametrised through the difference
between the two mass eigenvalues, which is proportional to the absolute value of the off-diagonal
12 entry of the B meson mass matrix, defined as [90]

M12(d,s) = G2
F

12π2M
2
WmB(d,s)

(
λ

(d,s)
t

)2
F 2
B(d,s)

B̂B(d,s)ηBS0(B(d,s)) , (6.1)
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where the relevant CKM factors that enter meson mixing are defined as

λ
(d)
t = V ∗tbVtd, λ

(s)
t = V ∗tbVts . (6.2)

Here, MW corresponds to the W boson mass, FBd,s are meson constants, ηB contains short
distance QCD corrections, B̂B(d,s) are SM non-perturbative factors given in [90] and S0(xt) is
the flavour universal real valued function which describes the top contribution to the one-loop
box function, and is defined as [91,92]

S0(xt) = 4xt − 11x2
t + x3

t

4(1− xt)2 − 3x2
t log xt

2(1− xt)3 , (6.3)

where xt = m2
t /M

2
W . The ∆B = 2 mass differences for the Bd,s systems are [93]

∆Md,s = MH
d,s −ML

d,s = 2|M12(d,s)| , (6.4)

where H and L denote heavy and light, respectively. Using then eq. (6.1), one finds

∆Md = G2
F

6π2M
2
WmBd |λ

(d)
t |2F 2

Bd
B̂BdηBS0(xt) , (6.5)

∆Ms = G2
F

6π2M
2
WmBs |λ

(s)
t |2F 2

BsB̂BsηBS0(xt) . (6.6)

The numerical calculations for the SM predictions in [94] give

∆Md = (0.53± 0.02) ps−1 and ∆Ms = (20.31± 3.25) ps−1 (6.7)

and the current experimental values are [95,96]

∆Md = (0.5050± 0.0021± 0.0010) ps−1 and ∆Ms = (17.757± 0.021) ps−1 . (6.8)

Furthermore, the mixing induced CP violation for the Bd,s system is parametrised by Sψφ and
SψKS . This asymmetry is given by given by [6]

SψX sin(∆Md,st) = Γ(B̄d,s → J/ψX)− Γ(Bd,s → J/ψX)
Γ(B̄d,s → J/ψX) + Γ(Bd,s → J/ψX)

(6.9)

where X corresponds to φ or KS . In the SM Sψφ is parametrised in terms of the βs phase,
Vts = |Vts| e−iβs , as follows

Sψφ = sin(2|βs|). (6.10)

The current experimental value measured by the LHCb collaboration [97] and the SM prediction
[98] are

sin−1 Sexpψφ = −0.058± 0.050 rad and sin−1 SSMψφ = −0.036± 0.002 rad, (6.11)
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respectively. In the SM, SψKS is parametrised in terms of the β phase

SψKS = sin(2β) (6.12)

with Vtd = |Vtd| e−iβ. The corresponding experimental value measured by the Heavy Flavour
Averaging Group [99] and the SM prediction [100] are

SexpψKS
= 0.682± 0.019 and SSMψKS = 0.832+0.013

−0.033, (6.13)

respectively. As one can see, the experimental results for Sψφ are in good agreement with the SM
predictions whereas SψKS shows a 2.7σ deviation from the SM [100]. It is therefore interesting
to study the contribution of new physics which might change the theoretical predictions of these
observables.

K Physics

Just as for B mesons, the K meson mass eigenstates, KS and KL, are a mixture of the CP
eigenstates K1 and K2 [93]

KS,L = K1,2 + εKK2,1√
1 + |εK |2

. (6.14)

Here, εK is the parametrisation of indirect CP violation in kaon decay

εK = 〈(ππ)I=0|KL〉
〈(ππ)I=0|KS〉

= κεe
iϕε

√
2(∆MK)exp

[
=
(
MK

12

)]
, (6.15)

where ϕε = (43.5± 0.05)◦ is a superweak phase defined as [101]

ϕε = arctan
(2∆MK

∆ΓK

)
(6.16)

with ∆ΓK = ΓS − ΓL being the difference between decay widths and κε = 0.94 ± 0.02 is a
suppression factor which takes into account ϕε 6= 45◦ and includes long distance effects [102,103].
Here, ∆MK is the mass difference between the two mass eigenstates, and is defined as

∆MK = 2<
(
MK

12

)
, (6.17)

where MK
12 is the 12 entry of the mass matrix for the flavour eigenstates, completely analogous

to the B system (with xc = m2
c/M

2
W ),

(
MK

12

)∗
= G2

F

12π2F
2
KB̂KmKM

2
W

[
λ2
cη1S0(xc) + λ2

t η2S0(xt) + 2λcλtη3S0(xc, xt)
]
, (6.18)

and
λi = V ∗isVid . (6.19)
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The ηi factors are QCD corrections evaluated at the NLO level in [104–108]. For η1 and η3 also
NNLO corrections are known [109,110]. Here S0(xc, xt) is a one-loop box function [92]

S0(xc, xt) = −3xtxc
4(−1 + xt)(−1 + xc)

− xt(4− 8xt + x2
t )xc log xt

4(−1 + xt)2(−xt + xc)

+ xtxc(4− 8xc + x2
c) log xc

4(−1 + xc)2(−xt + xc)
. (6.20)

As KL and KS are not CP eigenstates, both can decay into CP even (for example, (ππ)I=0)
and CP odd (for example, (πππ)I=0) final states via K1 and K2, respectively. The εK parameter
determines the probability of KL and KS of decaying into a CP even or a CP odd final state.
The experimental value [6] and the SM prediction [110] are

|εK |exp = (2.228± 0.011)× 10−3 |εK |SM = (1.81± 0.28)× 10−3, (6.21)

respectively. From these two results one can see that in principle there is a slight tension between
the theoretical prediction and experimental data. As experiments become more precise, we
will be able to determine whether this tension is due to statistical fluctuations or new physics.
Furthermore, the SM prediction for the KL −KS mass difference calculated in [110] is

∆MSM
K = (0.47± 0.18)× 10−2ps−1 (6.22)

whereas the current experimental value is [6]

∆M exp
K = (0.5292± 0.0009)× 10−2ps−1. (6.23)

As for the B sector, any contribution of new physics might change the theoretical prediction
for these observables. Nevertheless, they have to be compatible with the experimental results. In
the next part we present the parametrisation of new physics to all the observables presented here.

6.1.2 New Physics on ∆F = 2 Observables

We have just presented the formulas for different ∆F = 2 observables within the SM. As it has
already been mentioned, new physics might contribute to change the value of these observables.
In such case, the expressions presented above have to be redefined. For the B sector, we redefine
SψKS and Sψφ as follows

SψKS = sin(2β + 2ϕBd) , Sψφ = sin(2|βs| − 2ϕBs) , (6.24)

where ϕBd and ϕBs contain the new physics contribution and are directly related to the phases
of the functions S(Bq)

2ϕBq = −Arg(S(Bq)) , q = s, d. (6.25)
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where

S(Bd,s) = S0(xt) + ∆S(Bd,s). (6.26)

Here ∆S(Bd,s) contains the information of new physics. Furthermore

∆Md = G2
F

6π2M
2
WmBd |λ

(d)
t |2F 2

Bd
B̂BdηB|S(Bd)| , (6.27)

∆Ms = G2
F

6π2M
2
WmBs |λ

(s)
t |2F 2

BsB̂BsηB|S(Bs)| . (6.28)

For the K sector, MK
12 is redefined as

(
MK

12

)∗
= G2

F

12π2F
2
KB̂KmKM

2
W

[
λ2
cη1S0(xc) + λ2

t η2S(K) + 2λcλtη3S0(xc, xt)
]
, (6.29)

with

S(K) = S0(xt) + ∆S(K) . (6.30)

where ∆S(K) contains the contribution of new physics. The explicit expressions in the general
case for ∆S(Bd,s) and ∆S(K) can be found in Sec. 3.2 of [111]. The general structure for these
corrections is

∆S(M) ∼
∑

X,Y=L,R

∆ij
X∆ij

Y

M2
H

∑
k

CkXY (µH)〈QkXY (µH ,M)〉 . (6.31)

with M = Bd,s,K. Here, CkXY (µH) correspond to the different Wilson coefficients and
〈QkXY (µH ,M)〉 are the hadronic matrix elements between two different states. There are
several operators which can contribute to change the theoretical value of these observables which
are not included in the SM. In the following section we present the contributing new operators
in the context of a general 2HDM with rank-1 Yukawa matrices together with the numerical
analysis on the different ∆F = 2 observables.

6.2 ∆F = 2 Observables Analysis

In this section we present the flavour analysis made for a general 2HDM with rank-1 Yukawa
couplings, following Chapters 3 and 4.

6.2.1 Preliminaries

In order to make the analysis for the different flavour observables presented above, the model
is rotated to the mass basis at the MH scale, following eq. (2.20). As already explained, the
off-diagonal elements in Ỹ (2)

d generate flavour changing currents at tree level. The translation
between the notation in the previous chapters and previous studies in the literature, such as [111],
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is

∆ij
R = −

(
Ỹ

(2)
d

)
ij

=
(
∆ji
L

)∗
. (6.32)

Hence

Ỹ
(2)
d = −


∗

(
∆sd
L

)∗ (
∆bd
L

)∗
∆sd
R ∗

(
∆bs
L

)∗
∆bd
R ∆bs

R ∗

 . (6.33)

In [111] the authors distinguish these four scenarios:

1. Left-handed scenario (LHS) with complex ∆ij
L 6= 0 and ∆ij

R = 0,

2. Right-handed scenario (RHS) with complex ∆ij
R 6= 0 and ∆ij

L = 0,

3. Left-Right symmetric scenario (LRS) with complex ∆ij
L = ∆ij

R 6= 0,

4. Left-Right asymmetric scenario (ALRS) with complex ∆ij
L = −∆ij

R 6= 0,

As explained in Chapter 3, the mass of the lightest quarks vanishes and makes the first column
of Ỹ (2)

d zero. This means that we have ∆sd,bd
R = 0 and thus

• LHS for Bd and K sector

• mixed scenario for Bs: both LH and RH couplings but with different strength (neither
LRS nor ALRS).

The diagonal entries are flavour conserving and are not particularly interesting to study in
this analysis. Nevertheless, they contribute to change the value of the masses and the mixing
angles in the quark sector and have to be taken into account for the numerical analysis.

The operators which are not present in the SM but contribute to the B0
q − B̄0

q mixing (q = s, d)
here are

QSLL
1 =

(
b̄PLq

) (
b̄PLq

)
, (6.34a)

QSLL
2 =

(
b̄σµνPLq

) (
b̄σµνPLq

)
, (6.34b)

where PR,L = (1 ± γ5)/2 and the colour indices are suppressed. For K0 − K̄0 mixing the two
new operators are

QSLL
1 = (s̄PLd) (s̄PLd) , (6.35a)

QSLL
2 = (s̄σµνPLd) (s̄σµνPLd) . (6.35b)

(6.35c)
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In order to calculate ∆S(M) in this model we define

T (Bq) = G2
F

12π2F
2
BqB̂BqmBqM

2
W

(
λ

(q)
t

)2
ηB, (6.36)

T (K) = G2
F

12π2F
2
KB̂KmKM

2
W

(
λ

(K)
t

)2
η2. (6.37)

Then

T (Bq)[∆S(Bq)]SLL = −(∆bq
L (H))2

2M2
H

[
CSLL

1 (µH)〈QSLL
1 (µH , Bq)〉+ CSLL

2 (µH)〈QSLL
2 (µH , Bq)〉

]
(6.38)

T (Bq)[∆S(Bq)]LR = −∆bq
L (H)∆bq

R (H)
M2
H

[
CLR

1 (µH)〈QLR
1 (µH , Bq)〉+ CLR

2 (µH)〈QLR
2 (µH , Bq)〉

]
,

(6.39)
where the Wilson coefficients Cai (µH) including NLO QCD corrections are given by [112]

CSLL
1 (µ) = CSRR

1 (µ) = 1 + αs
4π

(
−3 log M

2
H

µ2 + 9
2

)
, (6.40)

CSLL
2 (µ) = CSRR

2 (µ) = αs
4π

(
− 1

12 log M
2
H

µ2 + 1
8

)
,

CLR
1 (µ) = −3

2
αs
4π ,

CLR
2 (µ) = 1− αs

4π
3
N

= 1− αs
4π ,

and the matrix elements are given by

〈Qai (µH , Bq)〉 ≡
mBqF

2
Bq

3 P ai (µH , Bq). (6.41)

They are evaluated at the matching scale µH = O(MH) and P ai are the coefficients introduced
in [113]. In the K sector we have

T (K)[∆S(K)]SLL = −(∆sd
L (H))2

2M2
H

[
CSLL

1 (µH)〈QSLL
1 (µH ,K)〉+ CSLL

2 (µH)〈QSLL
2 (µH ,K)〉

]
.

(6.42)
The matrix elements are given as

〈Qai (µH ,K)〉 ≡ mKF
2
K

3 P ai (µH ,K) (6.43)

and the Wilson coefficients are as in eq. (6.40) in the Bq sector.
Usually lattice calculations give 〈Qai (µ)〉 at scales µ ∼ 2 GeV. As we want to study the

contribution of the new couplings to the different flavour observables, 〈Qai (µ)〉 have to be
calculated at the new physics scale. This is done by using the corresponding Renormalization
Group Equations (RGEs). The analytic expressions are given in [113]. In Table 6.1 we summarise
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the central values of 〈Qai (µH)〉, for µH = 100 TeV, given in the MS-NDR scheme. The results
are based on the lattice calculations in [114] for the B0

s,d-B̄0
s,d system and in [115, 116] for the

K0-K̄0 system.

〈QSLL
1 (µH)〉 〈QSLL

2 (µH)〉

K0-K̄0 −0.097 −0.174
B0
d-B̄0

d −0.11 −0.20
B0
s -B̄0

s −0.16 0.30

〈QLR
1 (µH)〉 〈QLR

2 (µH)〉

B0
s -B̄0

s −0.33 0.45

Table 6.1: Hadronic matrix elements 〈Qai (µH)〉 in units of GeV3 at µH = 100 TeV.

6.2.2 Numerical Results

In this part we present the numerical results for the ∆F = 2 observables discussed above in the
context of a general 2HDM with rank-1 Yukawa couplings. The model studied here contains in
general a total of 11 real and 5 complex parameters for the quark sector. The large amount of
paramenters makes very challenging to find an analytical expression for each one of the flavour
observables. For this reason we do a numerical study of the model. The ∆F = 2 observables can
constrain the following ratios of the model

∆sd
L,R/MH , ∆bd

L,R/MH , ∆bs
L,R/MH . (6.44)

In the model, the elements of Ỹ (2)
d are not independent of each other. Therefore, the B and the

K sector cannot be treated separately. The study made in [111] showed that the constraints
on the ratios in eq. (6.44) were of the order of O(10−3/TeV) for Bs system, O(10−4/TeV) for
Bd system and O(10−5/TeV) for K system. As in principle there is no hierarchy between the
elements in Ỹ (2)

d , we expect the strongest constraints from εK and ∆MK . One also has to check if
the CP asymmetry Sψφ puts further constraints on the phases in ∆bs

L,R. Note that the observable
which gives the strongest constraint, can strongly depend on the model. As an example, the
model studied in [117] shows the strongest new physics constraints coming from B meson decays.
The new physics effects in ∆Md,s and |εK | scale like ' 1/M2

H whereas the entries in Ỹ
(2)
d

depend logarithmically on MH . In order to find a lower bound on MH to make the ∆F = 2
observables compatible with the current experimental constraints, we first have a look at the
off-diagonal elements in Ỹ (2)

d . In Fig. 6.1 we show the result in [111] for the allowed region for
∆sd
L /MH = −s̃12e

iδ12/MH using |Vub| = 3.1× 10−3 (left plot) |Vub| = 4.0× 10−3 (right plot) and
|Vcb| = 0.0406 for both plots, with MH = 1 TeV and the following εK and ∆MK constraints

0.75 ≤ ∆MK

(∆MK)SM
≤ 1.25, 2.0× 10−3 ≤ |εK | ≤ 2.5× 10−3. (6.45)
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Figure 6.1: Allowed ranges for ∆MK (red) and εk (blue) in eq. 6.45, with |Vub| = 3.1 × 10−3

(left plot) |Vub| = 4.0× 10−3 (right plot) and |Vcb| = 0.0406 for both plots at MH = 1
TeV. The results are taken from [111].

Even if in our case, |Vub| and |Vcb| are not completely fixed but vary within a certain range,
the shape of the allowed region shown in Fig. 6.1 should not vary significantly but would just be
slightly shifted. The allowed region corresponds to s̃12/MH ≈ 10−5/TeV. Doing different scans
with the model studied here we have found that the typical values for the real and imaginary
part of ∆sd

L (which, as mentioned above, does not strongly vary with MH , as its dependence
is logarithmic) is of the order of O(10−3)−O(10−2) (see Fig. 6.2). This means that the large
deviations from the SM arise for MH . 100 TeV. For this reason, for the following flavour
analysis, the scale of new physics is fixed at MH = 100 TeV.

-0.04 -0.02 0.00 0.02 0.04
-0.010

-0.005

0.000

0.005

0.010

Re(Δ
L

sd)

Im
(Δ

Ls
d
)

MH = 100 GeV

Figure 6.2: ∆sd
L for MH = 100 TeV.

The numerical analysis is divided in three different steps. First, we calculate points in the
parameter space of the model which fulfil the constraints of the masses and mixing angles values
at MH = 100 TeV. The CP violating phase in the CKM has to be reproduced in this analysis.
Therefore we take the phase ρuL 6= 0 (see eq. (3.8)). In order to reduce the number of parameters
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we fix the couplings with Φ1

y(1)
u = 1.09, y

(1)
d = 0.04 (6.46)

and we constraint the couplings with Φ2

0.2 < y(2)
u < 1.5, 0 < y

(2)
d < 0.24. (6.47)

The mass values used to constrain the parameters in this first part have been calculated using
RunDec [118], running the mass values in [6] to 100 TeV. The masses for the second and third
generation of quarks are constrained to

470 MeV < mc < 680 MeV, 55 MeV < ms < 100 MeV (6.48)
107 GeV < mt < 145 GeV, 1600 MeV < mb < 2800 MeV.

Instead, the CKM matrix elements used are the results in [6]. The complex phase of the CKM
is calculated using the Jarlskog invariant. The error bars used for the first constraining analysis
are 3× 1σ error bars in [6] for each element of the CKM sector.
Second, using each set of points which fulfil all of the mass, mixing angles and CP phase

constraints, we calculate Ỹ (2)
d . In Fig. 6.3 the values of the real and imaginary parts for ∆sd

L,R,
∆bd
L,R and ∆bs

L,R are shown. As one can see, there is no strong hierarchy between any of the
entries, which means that a priori all the contribution of new physics are of the same order for
each observable.
Finally, the results are used to calculate the ∆F = 2 observables previously discussed. The

range for each one of the observables which the points have to fulfil to be considered compatible
with experimental constraints are

16ps−1 ≤ ∆Ms ≤ 20 ps−1 (6.49)
0.46ps−1 ≤ ∆Md ≤ 0.56ps−1

0.004ps−1 ≤ ∆MK ≤ 0.0066ps−1

0.0019 ≤ |εK | ≤ 0.0025
−0.14 ≤ Sψφ ≤ 0.14

0.64 ≤ SψKS ≤ 0.72

As one can see, we use very large errors to take into account the theory and CKM uncertainties.
Since the strongest constraints come from the K sector, smaller errors in the B sector do not
change the outcome.
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Figure 6.3: Comparison of the real and imaginary parts of ∆sd
L,R, ∆bd

L,R and ∆bs
L,R.

The correlation between different ∆F = 2 observables is shown in Fig. 6.4. The total number
of initial points is 1173. The red points indicate the SM predictions. This means that the value
for each observable is calculated using exclusively the CKM matrix prediction and neglecting
any new physics contributions. The blue points correspond to the results containing new physics,
hence both the CKM matrix and Ỹ (2)

d contributions. The yellow points indicate the SM points
(red points) which fulfil all the ∆F = 2 constraints indicated in eq. (6.49). There is a small
amount of the SM points which fulfil the ∆F = 2 constraints: from the 1173 initial points, only
180 pass the εK constraint and 189 the SψKS constraint. The green points indicate the new
physics points (blue points) which fulfil all the ∆F = 2 constraints. From the blue points, 190
pass the SψKS constraint and only 12 pass the εK constraint. Only 3 points pass all of the
∆F = 2 constraints. We do not identify any typical correlation between observables, as the new
physics effects are very small for all observables except for εK and ∆MK , as predicted from the
beginning.
Finally in Fig. 6.5 we show the correlations between εK , SψKS and |Vub,cb|. As one can see,

the model can generate both inclusive and exclusive values for |Vub,cb|. Nevertheless, due to
the constraints coming from εK , the points which fulfil all the constraints belong to values
|Vcb| ≈ 0.04.
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Figure 6.4: Correlation between various ∆F = 2 flavour observables forMH = 100 TeV. Red: SM
points; blue: SM and new physics points; yellow: SM points that pass all constraints;
green: SM and new physics points that pass all constraints.
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Figure 6.5: Correlations between εK , SψKS and |Vub,cb|. Colour code as in Fig. 6.4.

To summarise the results in this section, we have found that the new physics contributions
to the different flavour observables for masses MH . 100 TeV are too large to make the model
compatible with experimental constraints. We have made a numerical analysis for several ∆F = 2
observables, taking MH = 100 TeV. For this mass value we have been able to find a small amount
of points which survive all the constraints. At this scale the effects on the Bs,d sector are very
SM-like. The observable which gets the largest effects from new physics is εK . If in the future
the experimental results of εK continue to disagree with the SM prediction, this model might be
able to cure the tension. Nevertheless if there is some disagreement in the B sector, the model
cannot help improve the theoretical agreement with the data.

6.3 ∆F = 1 Observables Analysis

In the last section we have studied in detail the impact of a 2HDM with rank-1 Yukawa couplings
on ∆F = 2 observables at MH = 100 TeV. In this section a first analysis to study the impact of
this model on ∆F = 1 observables is made. It is assumed that the main contribution to generate
a radiative muon mass comes from the top quark (see left panel in Fig. 3.2). The points which
fulfil all the quark masses and mixing constraints from the previous section, are reused for the
analysis in this part. The parameters of the model are constrained to fulfil
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y(1)
e < 0.01, y(2)

e < 0.1 (6.50)

As for the quark sector, there is also a residual symmetry due to the massless electron which
makes the first column of Ỹ (2)

e be zero. To simplify the scenario, CP violation is neglected in the
lepton sector. Following the steps of the previous section, we take the points that fulfil following
the muon and tau mass constraints

17.5 MeV < mµ < 315 MeV, 296 MeV < mτ < 5330 MeV. (6.51)

One can see that these constraints are very flexible, as the analysis in this part is just a first
approach to understand if the impact of the model on ∆F = 1 observables can be stronger than
for ∆F = 2 observables. We do not impose any constraints on the mixing sector. This is because
neutrinos play no role in this analysis and the strength of their contribution cannot be fixed. In
principle Bs,d → µ+µ− is one of the observables which can be most sensitive to these kind of
scenarios.
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Figure 6.6: Numerical results for B(Bs → µ+µ−) and B(Bd → µ+µ−). Colour code as in Fig. 6.4.

The results from this analysis are shown in Fig. 6.6. The values obtained for these branching
ratios are not fixed but vary between the values

B(Bs → µ+µ−) ∈ [1.9, 4.0] · 10−9 , (6.52)
B(Bd → µ+µ−) ∈ [0.6, 1.2] · 10−10 . (6.53)

Here, B corresponds to the time-integrated branching ratio, which takes into account the non-
vanishing ∆Γs = ΓsL − ΓsH .

The new physics contribution are negligible for Bs,d → µ+µ− in this scenario, as we find that
the effects are below 0.1% on both observables. The current experimental values for these two
observables are [119]

B(Bs → µ+µ−)exp =
(
2.8+0.7
−0.6

)
· 10−9 , (6.54)
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6.3 ∆F = 1 Observables Analysis

B(Bd → µ+µ−)exp =
(
3.9+1.6
−1.4

)
· 10−10. (6.55)

One can see that SM points for both observables are below the current experimental values and
the contribution of new physics is too small to cure this effect.

From this analysis we can conclude the most sensitive observable to new physics contributions
in this model is still εK .
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Conclusions

One of the most striking features of the fermion sector in the SM are the strong hierarchies
between the different masses together with the hierarchical mixing pattern for quarks. Such a
structure for the SM fermion parameters suggests the existence of new physics. Furthermore, the
evidence of massive neutrinos and mixing in the lepton sector is one of the main indications for
the need of physics beyond the SM.

In this thesis we have worked in the framework of a general 2HDM to explain these issues. First
we have presented the impact on the quark masses and mixing angles. The main assumption
made is tree level Yukawa couplings are of rank-1. In this scenario we have shown that quantum
effects can generate the correct mass hierarchy between the second and third generation of quarks.
By imposing the third generation of left-handed quarks to be aligned at tree-level, we are able
to reproduce the hierarchical structure of the CKM matrix once the radiative corrections are
introduced. The most interesting point is that, even if the Cabibbo angle is generated due to
quantum effects, its value is not loop suppressed, in contrast with masses generated radiatively.
To avoid the stringent constraints coming from flavour physics, we have taken the decoupling
limit. This limit assumes that the masses of the new Higgs bosons, collectively denoted by MH ,
are much larger than the electroweak scale. This limit has small effects on the parameters which
are radiatively generated and depend on MH , as their dependence on the new physics scale is
logarithmic.
We have also calculated the lepton parameters in the context of the see-saw model extended

with one extra Higgs doublet. As for the quark sector, we have assumed that all tree level
Yukawa couplings are of rank-1 at the Λ cut-off scale. We have also taken the decoupling limit
to avoid flavour constraints. To simplify the scenario we have introduced just one right-handed
neutrino for the see-saw mechanism, even if the discussion is valid for any number of right-handed
neutrinos. The Majorana mass of the right-handed neutrino is taken to be much larger than MH .
The masses of the third generation of leptons arise at tree level. Furthermore, the anarchical
structure of the PMNS matrix is already fixed by the tree level misalignment between the
left-handed eigenvectors of the third generation of leptons. Nevertheless, at this scale, only
the 33 entry of the PMNS matrix can be determined. When taking into account the quantum
corrections at the Majorana scale, the second generation of charged lepton acquires a mass. It is
not until the MH scale that the degeneracy between the masses of the first and second generation
of neutrinos is broken. The hierarchy between the second and third generation of lepton masses
can be correctly reproduced in this model. Indeed, the model tends to generate a milder hierarchy



Conclusions

for the neutrino sector than for all other fermions, in agreement with experiments. At this
scale, the PMNS matrix is univocally determined. In contrast to the quark sector, keeping the
misalignment between the third generation of leptons makes the PMNS elements take completely
anarchical values.

In the framework of a general rank-1 2HDM, the first generation of fermions remains massless.
To fix this issue, a basis independent analysis in the context of a 3HDM has been presented. In
this scenario, the third generation of fermions acquire their masses at tree level whereas the first
and second generation of masses appear from radiative corrections. The hierarchy between the
masses of the first and second generation can be naturally reproduced by the proper choice of
misalignment between the different Yukawa matrices.
The main drawback of these kind of models is that due to the large number of physical

parameters, they are not predictive scenarios. Nevertheless, they are attractive frameworks
in which one can naturally explain the structure of the parameters in the SM fermion sector.
Furthermore they open new interesting doors to the phenomenology in the flavour sector. Even
if the decoupling limit ensures that the heavy Higgs mass scale can be large enough to suppress
the contribution to new physics, new phenomena might be observed in future experiments. A
numerical study to understand the impact of a 2HDM with rank-1 Yukawa couplings on different
B and K physics observables and set a lower scale for MH has been made. The results show
that the observable which is most sensitive to the model is εK . The impact on the B sector is
mainly SM-like in this scenario. The analysis shows that for MH . O(100) TeV the deviations
from the SM are too large to make the model compatible with current experimental constraints.
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APPENDIX A

Renormalization Group Equations

A.1 Beta functions in NHDM Extended with Right-Handed
Neutrinos

We present in this part the RGEs of the different Yukawa couplings Y (a)
u,d,e,ν in the context of a

general N -Higgs Doublet Model (NHDM) extended with right-handed neutrinos. The RGE of a
Yukawa coupling is calculated through the β function as

µ
dY

(a)
u,d,e,ν(µ)
dµ

= 1
16π2β

(a)
u,d,e,ν(µ) (A.1)

where a = 1, ..., N .

A.1.1 Below MM

The beta-functions for the SM extended by multi-Higgs doublets calculated in [120–122]. For
energy scales below the right-handed neutrino Majorana mass they are given by

β(a)
u =

(
−8g2

s −
9
4 g

2 − 17
12 g

′2
)
Y (a)
u +

∑
b

Tr
(
3Y (a)

d Y
(b)†
d + 3Y (a)†

u Y (b)
u + Y (a)

e Y (b)†
e

)∗
Y (b)
u

+
∑
b

(
−2Y (b)

d Y
(a)†
d Y (b)

u + 1
2Y

(b)
d Y

(b)†
d Y (a)

u + Y (a)
u Y (b)†

u Y (b)
u + 1

2Y
(b)
u Y (b)†

u Y (a)
u

)
, (A.2)

β
(a)
d =

(
−8g2

s −
9
4 g

2 − 5
12 g

′2
)
Y

(a)
d +

∑
b

Tr
(
3Y (a)

d Y
(b)†
d + 3Y (a)†

u Y (b)
u + Y (a)

e Y (b)†
e

)
Y

(b)
d

+
∑
b

(
−2Y (b)

u Y (a)†
u Y

(b)
d + 1
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d + Y
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)
(A.3)

β(a)
e =

(
−9

4g
2 − 15
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3Tr

(
Y (a)†
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+ Tr
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where gs, g and g′ stand for the SU(3)C , SU(2)L and U(1)Y gauge coupling constants, respectively.
Below MM, neutrino masses are described by the dimension five operators κ(ab). Here a, b =

1, ..., N . The renormalization group equations for the couplings κ(ab) are

µ
dκ(ab)

dµ
= 1

16π2β
(ab)
κ (µ) (A.5)

where the corresponding beta functions were also calculated in [120] and read

β(ab)
κ =

∑
c

1
2

[
Y (c)
e Y (c)†
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+
∑
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2λacbdκ(cd) . (A.6)

Here the quartic couplings λacbd are defined in eq. (5.1).

A.1.2 Above MM

If a multi-Higgs doublet model is extended with right-handed neutrinos in the context of the
see-saw mechanism, above the Majorana mass MM, the β functions read

β
(a)MM
u,d = β

(a)
u,d +

∑
b

Tr(Y (a)†
ν Y (b)

ν )Y (b)
u,d , (A.7)
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(A.9)

A.2 P and Q Functions in the Lepton Sector

The functions P and Q, defined in eqs. (4.24), determine the ratio between the muon and the tau
mass, eq. (4.22). They are a linear combination of the functions px and qx, with x = e, ν, u, d,
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A.3 Left-handed Perturbation Vectors in a 3HDM

which are explicitly given by

pe = 1
4 sin 2θeL sin 2θeR sinωeL ,

qe = 1
4 sin 2θeL sin 2θeR cosωeL , (A.10)

pν = −2 cos θeL sin θeR cosα sin θν sinων
+ sin θeL sin θeR (cosα sinωeL cos θν + sinα sin θν (sinωeL cosων − 2 cosωeL sinων)) ,

qν = −2 cos θeL sin θeR cosα sin θν cosων
+ sin θeL sin θeR cosωeL (cosα cos θν − sinα sin θν cosων) , (A.11)

pu = 3 cos θuL cos θuR sin θeL sin θeR sinωeL ,
qu = 3 cos θuL cos θuR sin θeL sin θeR cosωeL , (A.12)

pd = 3 cos θdL cos θdR sin θeL sin θeR sinωeL ,
qd = 3 cos θdL cos θdR sin θeL sin θeR cosωeL . (A.13)

A.3 Left-handed Perturbation Vectors in a 3HDM

The vectors
∣∣∣δỹ(a)

xL

〉
used to calculate the masses of the second and first generation of fermions in

eqs. (5.19) and (5.20), are presented below for each different fermion type. The expressions for
this section are calculated for a 3HDM. Hence are valid for i = 2, 3. The vectors are calculated
using the β functions in Appendix A.1, and the rank-1 Yukawa matrices defined in eqs. (5.2)
and (5.3).

Quark Sector

The vectors for the quark sector are calculated at the MH scale. They are given by∣∣∣δỹ(i)
uL

〉∣∣∣
MH

= 1
16π2 log Λ

MH

[
A(i)
u

∣∣∣y(i)
uL

〉
+B(i)

u

∣∣∣y(i)
dL

〉]
. (A.14)∣∣∣δỹ(i)

dL

〉∣∣∣
MH

= 1
16π2 log Λ

MH

[
A

(i)
d

∣∣∣y(i)
dL

〉
+B

(i)
d

∣∣∣y(i)
uL

〉]
, (A.15)

where

A(i)
u = 3

〈
y(1)
uL

∣∣∣ y(i)
uL

〉〈
y(1)
uR

∣∣∣ y(i)
uR

〉
+ 3

〈
y

(1)
dL

∣∣∣ y(i)
dL

〉〈
y

(1)
dR

∣∣∣ y(i)
dR

〉
,

B(i)
u = −2

〈
y

(1)
dL

∣∣∣ y(i)
uL

〉〈
y

(1)
dR

∣∣∣ y(i)
dR

〉
,

A
(i)
d = 3

〈
y

(1)
dL

∣∣∣ y(i)
dL

〉〈
y

(1)
dR

∣∣∣ y(i)
dR

〉
+ 3

〈
y(1)
uL

∣∣∣ y(i)
uL

〉〈
y(1)
uR

∣∣∣ y(i)
uR

〉
,
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B
(i)
d = −2

〈
y(1)
uL

∣∣∣ y(i)
dL

〉〈
y(1)
uR

∣∣∣ y(i)
uR

〉
Lepton Sector

As explicitly seen in Appendix A.1, the RGEs for the lepton sector in the context of an NHDM
extended with right handed neutrinos depend on whether the energy scale is above or below the
Majorana mass MM. Here we present the

∣∣∣δỹ(a)
xL

〉
vectors for the lepton sector above and below

the scale of decoupling of the right-handed neutrinos

Above MM

Above the MM scale, only
∣∣∣δỹ(i)

eL

〉
can be determined. The latter reads

∣∣∣δỹ(i)
eL

〉∣∣∣
MM

= 1
16π2 log Λ

MM

[
A(i)
e

∣∣∣y(i)
eL

〉
+B(i)

e

∣∣∣y(i)
νL

〉]
, (A.16)

where

A(i)
e = 3

〈
y(1)
uL

∣∣∣ y(i)
uL

〉〈
y(1)
uR

∣∣∣ y(i)
uR

〉
+ 3

〈
y

(1)
dL

∣∣∣ y(i)
dL

〉〈
y

(1)
dR

∣∣∣ y(i)
dR

〉
(A.17)

+
〈
y(1)
eL

∣∣∣ y(i)
eL

〉〈
y(1)
eR

∣∣∣ y(i)
eR

〉
+
〈
y(1)
νL

∣∣∣ y(i)
νL

〉
B(i)
e = −2

〈
y(1)
νL

∣∣∣ y(i)
eL

〉
.

Below MM

When calculating the RGEs below the MM scale,
∣∣∣δỹ(i)

eL

〉
receives loop suppressed corrections and∣∣∣δỹ(3)

ν

〉
arises. At the MH scale these vectors read

∣∣∣δỹ(i)
eL

〉∣∣∣
MH

=
∣∣∣δỹ(i)

eL

〉∣∣∣
MM

+ 1
16π2 log MM

Mφ

[
A(i)
e

∣∣∣y(i)
eL

〉]
, (A.18)∣∣∣δỹ(2)

ν

〉∣∣∣
MH

= 1
MM

1
16π2 log MM

MH

(
2λ1212

∣∣∣y(2)
ν

〉
+ 2λ1213

∣∣∣y(3)
ν

〉)
,∣∣∣δỹ(3)

ν

〉∣∣∣
MH

= 1
MM

1
16π2 log MM

MH

(
2λ1313

∣∣∣y(3)
ν

〉
+ 2λ1213

∣∣∣y(2)
ν

〉)
, (A.19)

where

A(i)
e = 3

〈
y(1)
uL

∣∣∣ y(i)
uL

〉〈
y(1)
uR

∣∣∣ y(i)
uR

〉
+ 3

〈
y

(1)
dL

∣∣∣ y(i)
dL

〉〈
y

(1)
dR

∣∣∣ y(i)
dR

〉
(A.20)

+
〈
y(1)
eL

∣∣∣ y(i)
eL

〉〈
y(1)
eR

∣∣∣ y(i)
eR

〉
.
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