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Abstract—A sensitivity analysis is performed for information
rates of decoupling receiver matching circuits for antenna arrays.
The sensitivity is computed by varying the antenna spacing, the
device tolerances, and the relative bandwidth. The information
rates are considerably reduced at antenna spacings below one-
quarter wavelength.

I. INTRODUCTION

Antenna arrays should be made compact to save space but
antenna proximity causes antenna coupling and correlation
which may reduce information rates. Matching circuits placed
at the transmitter and receiver antennas serve to de-couple the
antennas, or even better to maximize the mutual information
between the transmitted bits and the received signal after
quantization. This paper investigates matching circuits for
narrowband and broadband signals. Sections II and III review
models and theory for single-input, single-output (SISO) and
multiple-input, multiple-output (MIMO) systems, respectively.
Section IV presents a sensitivity analysis, where the sensitivity
is computed by varying the antenna spacing, the device
tolerances, and the relative bandwidth. Section V concludes
the paper.

II. SISO ANTENNA SYSTEMS

A. Amplifier Noise

Rothe and Dahlke [1] introduced a theory of noisy fourpoles
to characterize their noise behavior. The equivalent Thévenin
representation of a noisy fourpole is given in Figure 1.
Following the notation in [2] we define

β = E[|iN |2] = 4kT0Wgn (1)

RN =

√
E[|vN |2]

E[|iN |2]
(2)

ρ =
E[vN i

?
N ]√

E[|iN |2]E[|vN |2]
(3)

where β is the input-referenced noise current total power, k
is Boltzmann’s constant, T0 is the environment equilibrium
temperature, W is the bandwidth in which the system operates,
gn is the equivalent noise conductance of the amplifier, RN

is the equivalent noise resistance, and ρ is the correlation
coefficient between the noise voltage and the noise current.
The noise random variables iN and vN are modeled as zero
mean Gaussian with variances β and βR2

N respectively. This
is consistent with the noise parameter definitions from [1].

B. External Noise

Apart from the noise originating at the active elements
(amplifiers) there is also noise at the antenna [3]. Let <{X}
and ={X} be the real and imaginary parts of the variable
X , respectively. Using the Rayleigh-Jeans approximation, the
antenna noise source can be represented by an equivalent
Thévenin voltage source with (see [3])

E[|vSN |2] = 4kTAW<{ZAR} (4)

where the antenna noise temperature TA is the equivalent
temperature of a resistor with resistance <{ZAR} required to
produce the same noise power as the actual environment seen
by the antenna.

C. Impedance Matching

Consider Figure 2 where the amplifier impedance matrix is

Zamp =

[
Zamp11 Zamp12

Zamp21 Zamp22

]
(5)

and there is a lossless and reciprocal matching circuit

ZM =

[
ZM11 ZM12

ZM12 ZM22

]
= j

[
XM11 XM12

XM12 XM22

]
(6)

where the XMab are real numbers. Following the development
and notation in [2, Sec. IV.B], the source impedance

Zout = − Z2
M12

ZAR + ZM11
+ ZM22 (7)

should satisfy Zout = Zopt where

Zopt = RN

(√
1−={ρ}2 + j={ρ}

)
. (8)

This choice maximizes the SNR which becomes [2, eq. (78)]

SNR =
E[|vS |2]

4kTAW<{ZAR}F
(9)

where F is the noise figure (here defined with respect to TA)
given by [2, eq. (82)]

F = 1 +
βRN

2kTAW

(√
1−={ρ}2 −<{ρ}

)
. (10)

There is a class of ZM that satisfies the constraint (8). For
example, a simple choice is ZM11 = −j={ZAR} so that

ZM = j

[
−={ZAR} ±

√
<{ZAR}<{Zopt}

±
√
<{ZAR}<{Zopt} ={Zopt}

]
.

(11)



Fig. 1: Noisy fourpole models and equivalent circuits

Fig. 2: Single antenna front-end receiver with impedance matching

III. MIMO ANTENNA SYSTEMS

A. System Model

The system model of Sec. II can be extended to MIMO
systems (see, e.g., [2], [4]). Figure 3 shows a MIMO system
with M transmit antennas, N receive antennas, and a 2N×2N
matching circuit (more generally, one could use 2N × 2Namp

matching circuits with Namp 6= N and Namp amplifiers). We
consider only M = N throughout this paper. Our focus will
be on matching and we begin with a narrow-band assumption,
i.e., the bandwidth is a small fraction of the carrier frequency.
We will assume as in Sec. II that the matching networks are
passive, lossless, and reciprocal. We consider the amplifiers to
be operated in the linear regime.

B. Transmitter Equations

We assume that both the transmitter matching circuit and
the antennas are lossless, i.e., E[<{vH

AT iAT }] = E[<{vH
T iT }]

where the vectors have length N = M and where vH is the
conjugate transpose of v. The transmit power is

E[<{vH
AT iAT }] = E[<{iHATZ

H
AT iAT }]

= E[<{vH
GCTvG}] (12)

where

CT = (ZT + ZG)
−H

ZH
MT21(ZMT22 + ZAT )−HZH

AT

(ZMT22 + ZAT )−1ZMT21 (ZT + ZG)
−1 (13)

is the transmit coupling matrix. Relating the noiseless antenna
input and output currents and voltages we have[

vAT

vAR

]
=

[
ZAT ZATR

ZART ZAR

] [
iAT

iAR

]
(14)

where ZAT and ZAR are the respective transmit and receive
array impedance matrices, and ZATR and ZART are the
respective channel impedances from the transmitter to the
receiver and from the receiver to the transmitter. Given the

large separation that usually exists between terminals, the re-
scattered power is negligible and we can assume ZATR ≈ 0.
The resulting transfer matrix is

ZTCR =

[
ZAT 0
ZART ZAR

]
. (15)

C. Channel Model and Fading

The physical channel ZART is generally stochastic and can
be modeled by methods presented in [5]. We use the widely
known Kronecker model [5]. For example, the component
receive and transmit covariance matrices in the Kronecker
model for a uniform linear array (ULA) are given in [2][4].
We compute [2, eq. (16)]

vL = CL(X + ZR)−1FR (HvG + vnoise) (16)

where

H = ZARTYTT (17)

vnoise = vSN + F−1
R (ZRiN − vN ) (18)

with the component matrices [2, eq. (17)-(20)]

CL = ZL(ZL + Z22amp)−1 (19)

FR = ZMR21(ZMR11 + ZAR)−1 (20)
ZR = ZMR22 − FRZMR12 (21)

X = Z11amp − Z12amp(Z22amp + ZL)−1Z21amp (22)

YTT = FT
T (ZT + ZG)

−1 (23)

FT = ZMT12(ZMT22 + ZAT )−1 (24)
ZT = ZMT11 − FTZMT21. (25)

We assume that FR in (20) is invertible. Observe from (16)
that CL(X + ZR)−1FR multiplies both the signal and noise
and is invertible. We thus focus on the voltage signal

v̂L = HvG + vnoise. (26)



Fig. 3: MIMO front-end transceiver with matching

We will restrict attention to passive, lossless, and reciprocal
matching networks, i.e., ZMR has imaginary entries and
ZMR = −ZH

MR. The matching network impedance matrix
thus has the form

ZMR =

[
ZMR11 ZMR12

ZT
MR12 ZMR22

]
= j

[
XMR11 XMR12

XT
MR12 XMR22

]
(27)

where the XMRab are real matrices, and XMR11 and XMR22

are symmetric.

D. Amplifier Noise

The voltage and current noise noise sources are modeled by
Gaussian random variables with zero mean and second order
statistics given by [2, eq. (10)]

E[iN iHN ] = βI (28)

E[vNvH
N ] = βR2

NI (29)

E[vN iHN ] = ρβRNI. (30)

Diagonal noise covariance matrices [2] [4] [6] are reasonable
if the amplifiers are well isolated on a chip.

E. External Noise

Suppose the background noise is due to randomly polarized
planar waves propagating from all angles uniformly. We follow
the development of [2] to write the open circuit noise voltage
covariance as

E[vSNvH
SN ] = 4kTAW<{ZAR} (31)

where <{ZAR} is positive semidefinite. If there are additional
losses, the antenna impedance may be augmented by a real
positive definite matrix RAL at an equivalent noise tempera-
ture TAL to obtain

E[vSNvH
SN ] = 4kTAW<{ZAR}+ 4kTALWRAL. (32)

F. Gaussian Channel MIMO Mutual Information

Suppose the voltages are sampled once per symbol (recall
that we are working with a narrowband assumption) and
that we abuse notation and represent the samples by vG

and v̂L. Suppose further that the receiver knows H, i.e.
the receiver has perfect channel state information (CSI). The
mutual information between the source and the load voltages
is

I(vG; v̂L) = h(v̂L)− log2

(
(πe)N det(Cnoise)

)
≤ log2 det

(
I + C−1

noiseZARTYTTCvG
YH

TTZ
H
ART

)
(33)

where h(v̂L) is the differential entropy of v̂L, CvG
is the

covariance matrix of vG and

Cnoise = 4kTAW<{ZAR}
+ β F−1

R

(
ZRZ

H
R +R2

NI− 2RN<{ρZH
R}
)
F−H

R . (34)

We have equality in (33) if and only if vG is a Gaussian
distributed vector.

G. Capacity

The capacity is obtained by maximizing the mutual infor-
mation over the transmitter and receiver matching networks,
subject to the power constraints

1

4<{ZG}
Tr{CvG

} ≤ Pav (35)

1

4<{ZG}
E{<{vH

GCTvG}} ≤ Prad. (36)

where ZG is the common diagonal entry of ZG and the factor
4 is because the signals are complex envelopes of a sinusoidal
carrier with power 1/2 and we assume that the power from the
source vG is delivered to a conjugate matched load. We further
assume all voltage sources are identical. The constraint (35)
limits the total available power assuming all generators are
identical, which for decoupled antennas with perfect matching
also constrains the radiated power. However, in a coupled
MIMO system the available power is not necessarily the



same as the radiated power, which is the quantity constrained
by regulatory bodies. This has been highlighted in [6] that
introduced the radiated power constraint (36).

To determine the optimal receiver matching network we
use the following theorem whose proof is outlined in the Ap-
pendix. Consider Hermitian matrices A,B. We write A � B
if the matrix A − B is positive semidefinite and A � B if
A−B is positive definite.

Theorem 1: For a fixed M � 0 and C1,C2 � 0 we have

C1 � C2 ⇒ log2 det
(
I + C−1

2 M
)
> log2 det

(
I + C−1

1 M
)
.

We now rewrite Cnoise in (34) as

4kTAW<{ZAR}+ βF−1
R

(
(ZR − ZoptI)(ZR − ZoptI)

H

−2RN<{ρZH
R}+ 2<{ZoptZ

H
R}
)
F−H

R . (37)

From the lossless property of the matching network, namely
that the available power at the input and output of the matching
network is conserved, we compute

<{ZR} = FR<{ZAR}FH
R. (38)

Thus, from (37) we have

Cnoise � 4kTAW<{ZAR}F (39)

where F is the noise figure (10). We have equality in (39) if
ZR = ZoptI, and there is a class of ZMR that accomplishes
this. A simple approach (see [2], [4], but also [7]) is to choose
ZMR11 = −j={ZAR} and

ZMR = j

[
−={ZAR} (<{ZAR}<{Zopt})1/2

(<{ZAR}<{Zopt})1/2 ={Zopt}I

]
.

(40)

IV. SENSITIVITY ANALYSIS

We next evaluate the sensitivity of the above matching
circuits by varying the device tolerances, the bandwidth, and
the antenna spacing.

1) Antennas: Suppose both the transmit and receive arrays
are ULAs with half-wavelength (resonant) dipoles with center
feed oriented in parallel to each other. Closed form expressions
for the self and mutual impedance of very thin wire dipoles
are derived in [8]; however no such expressions exist for the
radiation patterns. This motivates evaluating the antenna array
impedance matrix and patterns using a numerical method of
moments (MoM) method provided by the Antenna Toolbox in
Matlab and benchmarked against 4nec2 [9] software. We use
dipoles of length λ/2 and width λ/100 separated by spacings
no smaller than 0.05λ. We evaluate the antenna properties at
the center frequency fc = 800MHz.

2) Noise Parameters: We consider amplifiers with RN =
57.73Ω, Zopt = 56.74 + j10.66, and minimum noise factor
Fmin = 1.312 dB. These parameters are motivated by con-
sidering perfectly unilateral amplifiers with Zamp12 = 0 Ω,
|Zamp21| >> 1, and Zamp11 = Z∗

opt, i.e., we consider

Zamp =

[
Z∗
opt 0

Zamp21 Zamp22

]
. (41)
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Fig. 4: Rates with receiver CSI vs. antenna spacing

Such models do not depart much from well designed catalog
amplifiers used in [4] [6]. Note, however, that Zamp does not
affect the capacity calculation.

3) Achievable Rates: We consider CSI at the receiver while
the transmitter knows only the statistics of the channel. Power
allocation is chosen to be diagonal isotropic CvG

= Pav

N I,
which may be suboptimal.

For each antenna spacing we evaluate the rate by Monte
Carlo simulation with 25000 channel realizations. We compare
the optimal receive matching rates with:

• idependent and identically distributed (iid) fading and
noise; the fading is Rayleigh and flat, and the receiver
noise is spatially white.

• self matching, i.e., the dipole antennas are matched to the
optimal noise impedance of the amplifier so that

ZMR,self,ab = j diag (XMRab) (42)

where diag(·) retains the diagonal of a matrix.
We note that for uncoupled and uncorrelated MIMO RF

chains the individual chain SNR is equal to our definition of
the SISO SNR. The SISO SNR is defined as

SNR =
Pav

Fmin4kTAW<{ZAR}
.

The average power in both the MIMO and SISO settings
can be obtained from the above definition.

A. Antenna Spacing

Figure 4 shows the rate for M = N = 4 as a function of the
spacing between antenna elements at the receive array for the
cases of interest listed above. The SNR is fixed at 20dB. For
small spacings the rates achieved by coupled dipoles exceed
the ones achieved with iid fading and noise. This is due to



−10 −5 0 5 10 15 20
0

5

10

15

20

25

30

SNR(dB)

R
at

e
[b

/s
/H

z]

iid Rayleigh fading
optimal matching d/λ=0.1
optimal matching d/λ=0.2
self matching d/λ=0.1
self matching d/λ=0.2
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the improved power collection of the decoupled and matched
array due to its larger effective aperture compared with the
uncoupled array [10].

Figure 5 plots the rate vs. (SISO) SNR for two antenna
separations d = 0.1λ and d = 0.2λ. At low SNR the gap
between suboptimal and optimal matching is not significant
and therefore tighter spacings can be used with suboptimal
matching without large rate penalties. However, at high SNR
the gap is significant. For example at a spacing of 0.1λ and
a rate of 15 bits/s/Hz there is a SNR backoff of 7 dB as
compared to optimal matching.

We remark that an optimal decoupling network is complex
and may result in a large and bulky front-end. An optimal
matching network has a complexity of 2N2 +N network ele-
ments and requires connections between all pairs of antennas
in general. Research into low complexity implementations of
such networks is presented in [7] and references therein.

B. Device Variations

The receiver matching network was derived by maximizing
the mutual information at one frequency. However, most
applications operate over a large spectral range. In addition,
realistic components will cause the entries of the matching
network to differ from the desired ones for reasons such
as losses, parasitic effects, availability of only a discrete set
of nominal values (e.g. for lumped elements), fabrication
tolerances, temperature and aging effects. We investigate the
robustness of the matching network to device variations.

Figure 6 plots the average achievable rate as a function of
antenna spacing at an SNR of 20dB. The tolerances have been
chosen to be the same for all four component sub-matrices of
ZMR. Here tolerance does not refer to the individual discrete
inductor or capacitor tolerances, i.e., we do not consider
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particular realizations and topologies. We instead lump all the
variations into a final variation of the chosen ZMR values.
These variations are uniformly distributed around the nominal
value in the interval [−tol,+tol]. The averaging is done over
1000 realizations of the channel and over 1000 instances of
the perturbed matching network. The standard deviation of the
rate is represented by the vertical bars. We note that tolerance
has significant impact at spacings below 0.25λ. At a tolerance
level of 10%, placing antennas 0.2λ apart achieves about the
same average performance as 0.5λ.



C. Broadband Rates

Figure 7 shows the rate as a function of antenna spacing
at double sided bandwidths of 1%, 5% and 10% of the
carrier frequency fc. The receiver optimal matching network
is computed for the parameters at the central frequency. The
relative bandwidth is divided in K = 200 equally spaced
bands. The mid-frequency in each band is be denoted as fk.
Therefore the total rate per band is

I(vG; v̂L) =
1

K

K∑
k=1

log2 det (I+

C−1
noise,fk

ZART,fkYTT,fkCVG
YH

TT,fk
ZH

ART,fk

)
(43)

where all other channel and network parameters except the
matching network are evaluated at the mid-frequencies fk over
which the summation is done. The plot shows that the optimal
matching network is highly frequency selective. This motivates
the need for a broadband solution for matching networks for
coupled MIMO systems, which has been studied in [11], [12],
[13], [14], [15] for example.

V. CONCLUSION

The sensitivity of information rates of receiver matching
circuits was analyzed with respect to the antenna spacing, the
device tolerances, and the relative bandwidth. The analysis
shows that the information rates are considerably reduced at
antenna spacings below one-quarter wavelength. The results
motivate developing matching circuits that are robust to uncer-
tainties in the device parameters, and that give good broadband
performance.

APPENDIX

Combining the following Propositions proves Theorem 1.
Proposition 1: If A � B then for every operator X we have

XHAX � XHBX.
Proposition 2 (Corollary 7.7.4 in [16]): If A � B � 0 then

B−1 � A−1.
Proposition 3 (Corollary 7.7.4 (b) in [16]): If A � B � 0

then detA � detB.
Proposition 4: If A � B then A + I � B + I.
Proposition 5: According to Theorem 7.2.6 in [16], for a

positive semidefinite matrix M there is a positive semidefinite
matrix D such that D2 = M and D can be denoted as M1/2.
Then we have the following identity:

det
(
I + C−1M

)
= det

(
I + M1/2C−1M1/2

)
. (44)
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