
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Realzeit-Computersysteme

Resource-Aware Automotive Control Systems Design

Wanli Chang

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Gerhard Rigoll

Prüfer der Dissertation: 1. Prof. Dr. Samarjit Chakraborty

2. Prof. Anuradha Annaswamy, Ph.D.

Die Dissertation wurde am 03.06.2016 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 17.08.2017 angenom-
men.



ii



Abstract

As the automotive industry is entering the smart era through advances in sensing, computa-
tion, storage, communication, and actuation technologies, a larger number of more complex
control applications with better performances are expected to be on board. This requires an
implementation platform with abundant resources, which is undesired in the cost-sensitive au-
tomotive domain. The implementation platform, often embedded in an Electronic Control Unit
(ECU) and shared by multiple applications to save the cost, is mainly comprised of a processor
for computation, memory for storing instructions and data, and bus for internal and external
communication. Conventionally, automotive control systems are designed using model-based
approaches, where the details of the implementation platform are ignored. Techniques that inte-
grate the characteristics of implementation resources into control algorithms design are largely
missing. Such a separate design paradigm is too conservative in resources dimensioning and
utilization for modern vehicles.

This thesis presents novel approaches in automotive control systems design that take im-
plementation resources into consideration, aiming to improve the control performances for
a given amount of resources, or equivalently, realize the required control performances with
fewer resources. While communication resources have started to get explored in the literature
of networked embedded control systems, the focus of this thesis is on memory and computation
resources. As Electric Vehicles (EVs) have become a new trend in the automotive industry,
energy resources of EVs, i.e., the batteries, are also investigated.

In the typical two-level memory hierarchy of an onboard embedded implementation plat-
form, on-chip cache is the most costly component. A memory-aware sampling order, which
is proposed to run each application consecutively multiple times instead of all applications
in a conventional round-robin fashion, increases the cache reuse and improves control perfor-
mances. In particular, two techniques are presented. First, a memory analysis technique is used
to compute the guaranteed Worst-Case Execution Time (WCET) reduction due to the cache
reuse between two consecutive runs of one application. Second, a controller design technique
is tailored for non-uniform sampling with sensor-to-actuator delays shorter than or equal to the
sampling periods, which results from the WCETs of the memory-aware sampling order. The
approach to find the optimal sampling order that maximizes the overall control performance is
reported.

On the embedded implementation platform often runs a Time-Triggered (TT) Operating
System (OS) due to the safety-critical nature of automotive systems. Typically, a TT OS only
supports a limited set of predefined periods, from which the sampling period of a feedback con-
trol application has to be chosen. For a given performance requirement, the optimal sampling
period usually does not fall in this set, which forces the controller to be designed with a shorter



iv

sampling period than the optimal one — leading to an unnecessarily higher utilization of the
computation resources. In this thesis, a novel multirate controller that switches between the
available sampling periods offered by the TT OS is proposed, towards achieving an average
sampling period closer to the optimal one. The benefit is a lower processor utilization, while
the control performance requirement and the system constraints are still satisfied. The challenge
lies in the performance-oriented controller design under the non-uniform sampling scheme with
negligible sensor-to-actuator delays.

Battery is a key component of EVs. The effective battery capacity depends on the discharg-
ing current profile, which varies with different control strategies. For a given battery, it is desired
to increase the battery usage while satisfying the control performance requirement. A novel op-
timization framework is proposed in this thesis to explore the Pareto front between battery usage
and the control performance. Designers can then select the Pareto point according to the spe-
cific requirement and preference. As the processor in the embedded implementation platform
ages, the sampling period of the feedback control application is prolonged. This leads to control
performance deterioration, which is highly undesirable for safety-critical control applications
in EVs. Using the same framework with slight modification, the controller is re-optimized to
ensure that the control performance is kept with a modest compromise in the battery usage.

Throughout this thesis, state-feedback control applications with both linear and non-linear
control law are considered and naturally robust to uncertainties. Several well-established opti-
mization approaches are taken and novel optimization techniques are developed on top of them.
The iterative interior-point method is deployed for convex problems. Particle Swarm Optimiza-
tion (PSO) and gradient-based Sequential Quadratic Programming (SQP) are typically used
to solve non-convex single-objective problems. The non-dominated sorting genetic algorithm
(NSGA) is taken for non-convex multi-objective problems. A number of real-world applica-
tions that are detailed in the appendix validate the resource-aware automotive systems design
techniques proposed in this thesis.



Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Samarjit Chakraborty, for offering
me the opportunity to work with him on a number of exciting problems that eventually constitute
this thesis. I am constantly surprised by his intelligence, creativity and sense of responsibility.
I always feel fortunate to have his support and advice along the way.

I also thank Dr. Anuradha Annaswamy for hosting me at MIT. We had many interesting and
insightful discussions that broadened my view of research.

Dr. Dip Goswami has been very helpful, especially in giving me technical suggestions in a
number of occasions.

It was a great pleasure working with Dr. Jason Xue in Hong Kong, where I benefited from
him and his group in knowledge building and skill development.

I appreciate that Prof. Gerhard Rigoll chaired my defense.

v



vi



Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Communication Resources . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Memory Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Computation Resources . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Energy Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Mathematical Background 13
2.1 Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Feedback Control Applications . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 State-Feedback Control Law . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Control Performance and Sampling Period . . . . . . . . . . . . . . . 20

2.2 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Interior-Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Sequential Quadratic Programming . . . . . . . . . . . . . . . . . . . 23
2.2.4 Non-Dominated Sorting Genetic Algorithm . . . . . . . . . . . . . . . 24

3 Memory-Aware Automotive Control Systems Design 27
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Memory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Computation of Cache States . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Guaranteed WCET Reduction . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Control Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Controller Design with Uniform Sampling . . . . . . . . . . . . . . . 37
3.4.2 Controller Design with Non-Uniform Sampling . . . . . . . . . . . . . 38

vii



viii CONTENTS

3.4.3 Pole-Placement with Hybrid PSO . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Comparison of Controller Design Methods . . . . . . . . . . . . . . . 43

3.5 Optimal Sampling Order Computation . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Computation-Aware Automotive Control Systems Design 55
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 OSEK/VDX Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Multirate Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Linear State-feedback Controller . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Optimal Pole-Placement . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Alternative Controller Design for Scalability . . . . . . . . . . . . . . 62
4.3.4 Non-Uniform MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Battery- and Aging-Aware Automotive Control Systems Design 69
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Design Aspects of Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Battery Rate Capacity Effect . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Processor Aging in Embedded Control Systems . . . . . . . . . . . . . 73

5.3 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Battery-Aware Controller Design . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.3 Battery- and Aging-Aware Controller Design . . . . . . . . . . . . . . 78

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusion 85

Appendix 89
A Electronic Wedge Brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B Servo Motor Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C Electric Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
D Electro-Mechanical Braking System . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 101

List of Tables 103

List of Figures 106

Abbreviations 107



CONTENTS ix

Nomenclature 109



x CONTENTS



1
Introduction

Performance and reliability of automobiles are influenced by feedback control applications im-
plemented on board. At the inception of the first horseless carriage, some form of control was
already applied to motor vehicles. Engine idle speed control, which can be found in every mod-
ern vehicle powered by an Internal Combustion Engine (ICE), traces back to the Watt’s governor
in 1769. This device marking the origin of both feedback control and the industrial revolution
can be viewed as a mechanical idle speed feedback controller for a steam engine [BBC+07].

Over the last century, control has been applied to almost every aspect of vehicle operation,
from engine to drivetrain, from steering to braking. For instance, electronic powertrain control
was introduced in automobiles in the 1970s, aiming to substantially reduce emissions. As a
result, cars on the street today are 99% cleaner than they were when emission regulations were
first introduced in the 1960s. Applications including Anti-Lock Braking System (ABS), trac-
tion control, Electronic Stability Control (ESC), and active safety systems have decreased the
number and severity of accidents.

With advances in sensing, computation, storage, communication, and actuation technolo-
gies, more complex automotive control applications targeting better performances have emerged.
In the combustion engine control, homogeneous charge compression ignition has been devel-
oped to reduce NOx emission. These engines have a higher level of Exhaust Gas Recircula-
tion (EGR), yet the involved control technique is more sophisticated due to the fragile combus-
tion stability in load transients [CSJ07]. The level of EGR of conventional turbocharged diesel
engines can be increased as well. The operating range of the engine is partitioned in [OdR07].
Linear models are identified for each partition and Model Predictive Control (MPC) is applied
to take account of actuator saturation.

In the powertrain control, a Design for Six Sigma (DFSS) analysis approach is used to
determine automatic transmission gear content, aiming at fuel consumption minimization for
various powertrain systems [Rob14]. Conventional powertrain Active Noise Control (ANC)
systems have difficulty in tracking the fast engine speed variations. A number of modified

1



Filtered-x Least Mean Squares (FxLMS) algorithms are reported in [SFX+15] to achieve a
balanced noise reduction performance over a broad frequency range.

A unified chassis control strategy integrating Active Front Steering (AFS) and ESC is pro-
posed in [CCK+12] to improve agility, maneuverability, and vehicle lateral stability. Integrated
chassis control is also reported in [HJYK15] and [CLP+14] to enhance high speed cornering
performance and on-center handling behavior, respectively. In [HJYK15], individual chassis
control systems, such as ESC, Four Wheel Drive (4WD), Active Roll Control System (ARS),
and Electronic Control Suspension (ECS), are involved. Various chassis modules are analyzed
to verify the proposed integrated control strategy. In [CLP+14], MPC is used for optimal allo-
cation of sub-chassis control systems.

Along the direction of autonomous driving, which can be classified into five levels depend-
ing on the extent of automation as follows [NHTSA13], new control applications have debuted
in the modern premium cars.

• Level 0 (no automation): The driver is in complete and sole control of the primary
vehicle controls (brake, steering, throttle, and motive power) at all times, and is solely
responsible for monitoring the roadway and for safe operation of all vehicle controls.
Vehicles that have certain driver support/convenience systems but do not have control
authority over steering, braking, or throttle would still be considered “level 0" vehicles.
Examples include systems that provide only warnings (e.g., forward collision warning,
lane departure warning, blind spot monitoring) as well as systems providing automated
secondary controls such as wipers, headlights, turn signals, hazard lights, etc.

• Level 1 (function-specific automation): Automation at this level involves one or more
specific control functions; if multiple functions are automated, they operate independently
from each other. The driver has overall control, and is solely responsible for safe oper-
ation, but can choose to cede limited authority over a primary control, the vehicle can
automatically assume limited authority over a primary control, or the automated system
can provide added control to aid the driver in certain normal driving or crash-imminent
situations.

• Level 2 (combined-function automation): This level involves automation of at least two
primary control functions designed to work in unison to relieve the driver of control of
those functions. Vehicles at this level of automation can utilize shared authority when the
driver cedes active primary control in certain limited driving situations. The driver is still
responsible for monitoring the roadway and safe operation and is expected to be available
for control at all times and on short notice. The system can relinquish control with no
advance warning and the driver must be ready to control the vehicle safely.

• Level 3 (limited self-driving automation): Vehicles at this level of automation enable
the driver to cede full control of all safety-critical functions under certain traffic or envi-
ronmental conditions and in those conditions to rely heavily on the vehicle to monitor for
changes in those conditions requiring transition back to driver control. The driver is ex-
pected to be available for occasional control, but with sufficiently comfortable transition
time.

2



1. Introduction

Processor On-Chip Cache

Bus

Flash I/O Sensor

Actuator
Implementation Platform

Figure 1.1: A typical embedded implementation platform for automotive control applications.
The processor executes control programs. Instructions and data are stored in the flash memory.
On-chip cache accelerates the memory access. Programmable I/O peripherals are used for
communication with sensors and actuators.

• Level 4 (full self-driving automation): The vehicle is designed to perform all safety-
critical driving functions and monitor roadway conditions for an entire trip. Such a design
anticipates that the driver will provide destination or navigation input, but is not expected
to be available for control at any time during the trip. This includes both occupied and
unoccupied vehicles. By design, safe operation rests solely on the automated vehicle
system.

Nowadays, most vehicles with autonomous features in the market fall into Level 1 or 2. For
instance, Adaptive Cruise Control (ACC) enables the driver to cede limited authority over a
primary control. Lane keeping automatically assumes limited authority over a primary control.
Dynamic brake support provides added control to aid the driver in emergencies. Other emerg-
ing control applications include automated parking [MDG07], path tracking [Sni09], obstacle
avoidance [VdNMP07], and vehicle control at friction limits [Kri12].

1.1 Motivation
Automotive control applications are implemented on a platform embedded in an Electronic
Control Unit (ECU). A feedback control loop has three operations:

• Measurement: Sensors measure the states of the physical plants. This is also called
sampling.

• Computation: Taking the data from sensors, control programs are executed and compute
the control input.

• Actuation: The control input is sent to actuators, aiming to achieve certain desired be-
havior of the plants.

A typical embedded implementation platform for automotive control applications is shown in
Figure 1.1. There are often programs of multiple control applications executed on one proces-
sor, which necessitates an Operating System (OS) for coordination. The flash memory stores
all instructions and data. The on-chip cache accelerates the memory access. Programmable
Input/Output (I/O) peripherals are used for communication with sensors and actuators.

3



1.1. MOTIVATION

The implementation platform considerably impacts the control performances via, e.g., sam-
pling periods and sensor-to-actuator delays. The sampling period is defined as the time duration
between two consecutive measurements (or samplings) of the plant states under control. The
sensor-to-actuator delay is defined as the time duration between the measurement and the actu-
ation of one feedback control loop. If the processor or the memory access is not fast enough,
the execution time of the control program might be too long to meet the desired sampling
periods and sensor-to-actuator delays. Therefore, a larger number of more complex control ap-
plications calls for an implementation platform with abundant resources, which contradicts the
cost-sensitive nature of the automotive industry.

The algorithms development for control applications from a control-theoretical perspective
is well-established. The controller design methods can be drawn from a large pool of research
and practical experience that have been accumulated in the control community. However, little
attention has been paid to the embedded implementation platform. Control theorists and em-
bedded system engineers make model-based assumptions of the other side. Since most control
applications are safety-critical, such assumptions in this separate design paradigm are inevitably
conservative to guarantee the required control performances. As a result, the resources on the
embedded implementation platform, such as communication, computation and memory, are in-
efficiently utilized. This thesis presents new techniques in automotive control systems design
that take implementation resources into consideration, aiming to improve the control perfor-
mances for a given amount of resources, or equivalently, realize the required control perfor-
mances with fewer resources.

Motivated by the increasing worldwide efforts to reduce Greenhouse Gas (GHG) emis-
sions1, automotive manufacturers have been struggling in upgrading their ICEs. It is challeng-
ing to reduce emissions while keeping the engine performance. An alternative solution is an
Electric Vehicle (EV). Another major advantage of an EV is its independence of fossil fuels2.
Although the petrol price is quite low as this thesis is written, it might be hard to predict its
future trend. Besides, the torque and noise performances of an electric motor are generally bet-
ter than an ICE of the similar size at low speeds. Most major car manufacturers have presented
their mass-produced EVs, including Nissan Leaf, BMWi3, Volkswagen e-Golf, Chevy Volt, and
Tesla Model S.

One major issue that impedes the market acceptance of EVs is the range anxiety. The energy
resource is the major factor determining the driving range of an EV. Given a fixed battery
pack, it is desired to maximize the battery usage (i.e., maximize the effective battery capacity
and minimize the energy consumption of a control task instance), which is directly related to
the driving range. Different control strategies result in different discharging current profiles
and the battery usage depends on the discharging current profile. This thesis investigates the
control systems design in an EV taking the energy resource into consideration. The influence of

1For instance, the U.S. Environmental Protection Agency (EPA) and the Department of Transportation’s
National Highway Traffic Safety Administration (NHTSA) have set standards to reduce GHG emissions and
improve fuel economy that model years 2017-2025 cars and light trucks must reach 4.3 liters per 100 kilome-
ters [Age12].

2It is noted that both GHG emissions reduction and fossil fuels independence also depend on the way of
electricity generation.

4



1. Introduction

Nsta + 11 2 · · · Nsta 1· · · · · ·

slot mini-slot slot

time-triggered event-triggered

communication cycle

Figure 1.2: FlexRay bus with both time-triggered static and event-triggered dynamic segments

processor aging in the implementation platform on both the control performance and the battery
usage is explored, and countermeasures are proposed.

1.2 Resources
In this section, communication, memory, computation, and energy resources are described,
where there have been a number of works on communication-aware embedded control systems
design in the literature and the focus of this thesis is on the latter three types of resources.

1.2.1 Communication Resources

The number of bits that can be transmitted per unit of time over a communication network is
limited by the bandwidth. Precise characterization of the communication resources for automo-
tive control systems is protocol-specific. The communication protocols are broadly classified
into two groups — Event-Triggered (ET) and Time-Triggered (TT) networks. For instance,
Controller Area Network (CAN) is ET and has been widely used since its first official release in
1986 [Bos91]. FlexRay, which was designed about a decade ago to be faster and more reliable
than CAN, can be found in most premium cars [Fle05]. Media access control in FlexRay is
based on communication cycles of equal and predefined length in time. Each communication
cycle is divided into a TT static and an ET dynamic segment as shown in Figure 1.2. Messages
can be sent with FlexRay over either the TT or ET segment using a bandwidth of 10 Mbit/s.

The TT static segment follows a Timing Division Multiple Access (TDMA) policy for media
access control, where the entire segment is divided into multiple slots with the same predefined
length in time. In every segment, slots are statically indexed starting from 1 to Nsta, which is the
total number of TT slots in the static segment. Each application involved in the TT communi-
cation is assigned a dedicated index number and only uses the TT slot of this index to transmit
messages. This allows a predictable temporal behavior, since in every communication cycle,
an application is able to access the TT segment once, and the interval between two consecutive
allowed transmissions is fixed. If no messages from an application need to be sent on its given
slot, then the network is idle for this period of time, resulting in an inefficient utilization of
bandwidth.

In the ET dynamic segment, media access control is priority-based and the entire segment
is divided into mini-slots. Every application involved in the ET communication is associated
with an index and in effect, a priority. In a segment, each mini-slot is dynamically assigned an

5



1.2. RESOURCES

index. The starting index is Nsta + 1. The application matching the mini-slot index is allowed to
transmit a message. A message can be transmitted over multiple mini-slots and the mini-slots
transmitting the same message have the same index. After the transmission ends, the mini-slot
index is incremented. If the message is not ready when its mini-slot starts, the mini-slot goes
idle and the index is incremented. Since a mini-slot is typically much shorter than a TT slot,
the ET segment offers more efficient utilization of bandwidth compared to the TT segment.
The ET segment generally does not provide temporal guarantee due to its priority-based nature
of arbitration. The timing of a message over ET communication depends on the presence of
messages with higher priorities.

The research on networked control systems dates back to [HR88, Nil98, WYB99, ZBP01].
A number of recent efforts have been made to address the communication-aware embedded con-
trol systems design. An aperiodic strategy for dynamic allocation of bandwidth according to the
current state of the plants and available resources is proposed in [AT09]. Control loops closed
over CAN are discussed and illustrated on a train car. In [AGL15], an event-based control-
scheduling co-design strategy involving a set of continuous-time linear time-invariant plants is
proposed to address the challenges of variable communication delays, access constraints and
resource constraints. In [SCEP09], communication delay and jitter resulting from complex tim-
ing behavior are considered. A method integrating controller design and message scheduling
is developed to optimize the overall control performance. In [LWH+14], the network manage-
ment problem is addressed to reduce communication jitter and improve control performance. A
predictive compensator co-located with the actuator is proposed in [HSJ08] to deal with com-
munication outages. When a new control command is not received, a replacement one based on
the history of past control commands is suggested.

There are mainly two challenges in the communication-control co-design. First, the design
space can be too large to be tractable. There are many parameters to determine in the design
of the controller and the communication network. A combined design space can be difficult to
handle. This is aggravated by the increase of system size. Second, the trade-off between the
control performance and the communication resource utilization, which enables more design
freedom, has not been explored. Some first efforts have been made in [RZC+16] to address
these challenges.

1.2.2 Memory Resources
In the two-level memory architecture shown in Figure 1.1 (such as the XC23xxB Series mi-
crocontroller [Inf09] from Infineon that is popular in automotive systems), the flash memory
has a large size and can thus store all the application programs and data, but experiences high
read/write latencies (hundreds of processor cycles). The cache is faster with low read/write la-
tencies (several processor cycles), but usually limited in size due to its high cost. It is assumed
that the access times of cache and flash memory are tc and tm, respectively, where tc � tm.
In this thesis, the focus is on instruction memory, since control applications are typically not
data-intensive.

When a processor executes an instruction, it checks the cache first. If this instruction is
located in the cache, it is a cache hit and the access time is tc. If this instruction is not in the
cache, the memory block containing it is fetched from the flash memory and then written into

6



1. Introduction

cache. This is a cache miss and the access time is tm. Afterwards, when the same instruction
is called again by the processor, the access time is tc if it is still in the cache without being
replaced. This is a cache reuse.

A program usually has different execution paths resulting in different execution times. The
Worst-Case Execution Time (WCET) is defined to be the maximum length of time a program
takes to be executed. The WCET constrains the sampling period of a control application. There
are two general methods to reduce the WCET of a program — increasing the cache size and/or
cache reuse. In resource-aware automotive control systems design, it is desirable to minimize
the cache size while satisfying the performance requirement, or equivalently, improve the per-
formance for the given memory resources. Therefore, the cache reuse should be maximized.

Given a collection of control applications (e.g., C1, C2, C3), it is conventional to run the
control loops of them in a round-robin fashion (C1, C2, C3, C1, C2, C3, · · · ). Since the codes
for different control applications are different, the on-chip cache is frequently refreshed in this
process. This results in poor cache reuse and long WCET. In order to address this issue, a new
sampling order for the control applications is proposed, using which cache reuse is improved
and the WCET of each application is reduced. In particular, a non-uniform sampling scheme
is studied, where the control loop of each application is consecutively run multiple times — in
order to increase cache reuse, before moving on to the next application.

An example memory-aware sampling order (C1(1), C1(2), C1(3), C2(1), C2(2), C2(3), C3(1),
C3(2), C3(3), · · · ) is illustrated in Figure 1.3, where Ci(j) denotes the jth execution of the control
application Ci. Before the first execution Ci(1), the cache is either empty (i.e., cold cache) or
filled with instructions from other applications, that are not used by Ci (equivalent to cold cache).
The WCET of Ci(1) can be computed by a number of existing standard techniques [Wea08,
AGS+13, WGR+09]. Before the second execution Ci(2), the instructions in the cache are from
the same application Ci and thus can be reused. This results in more cache hits and hence shorter
WCET. Depending on which execution path the program takes, the amount of WCET reduction
varies. Therefore, a technique is required to compute the guaranteed WCET reduction of Ci(2)
and Ci(3) relative to Ci(1), independent of the path taken.

Control parameters of the applications, such as sampling periods and sensor-to-actuator
delays, can be derived from the WCET results. A controller must be tailored for the memory-
aware non-uniform sampling orders, so that the control performance can be improved. In sum-
mary, two main techniques are required — (i) cache analysis to compute the guaranteed WCET
reduction between two consecutive executions of one program; (ii) controller design for the
non-uniform sampling with sensor-to-actuator delays shorter than or equal to the sampling pe-
riods. On top of showing that an example sampling order under memory-aware automotive
control systems design results in better control performance, the approach to find the optimal
sampling order that maximizes the overall control performance is reported.

1.2.3 Computation Resources
For a given processor with a certain operating frequency, computation resources usually mean
the available execution time. When multiple applications share one processor, in general, the
performance of an application can be improved if it is allowed to access the processor for a
longer period of time. Computation-aware automotive control systems design aims to reduce

7



1.2. RESOURCES

START C1(1) C1(2) C1(3)

C2(1)C2(2)C2(3)

C3(1) C3(2) C3(3)

cold cache cache reuse cache reuse

cold cache

cache reusecache reuse

cold cache

cache reuse cache reuse

Figure 1.3: An example memory-aware sampling order with three control applications. Each
application is consecutively executed three times. After the first execution Ci(1), some instruc-
tions in the cache can be reused and thus the WCETs of the following two executions are
shortened.

the execution time of a control application, while still satisfying its performance requirement.
In this way, more applications can be mapped to the processor, thereby saving the cost. This is
the recent trend of ECU consolidation in the automotive industry.

Generally, a shorter sampling period allows the controller to respond to its plant more fre-
quently, and is thus potentially able to achieve better control performance with an appropriately
designed controller. The obvious downside is a higher processor utilization, which is defined to
be the WCET of an application divided by its sampling period. This prevents more functions
and applications from being integrated onto the processor. Therefore, the controller should use
the largest possible sampling period that is able to fulfill the control performance requirement
and satisfy the system constraints.

Due to the safety-critical nature of the automotive domain, TT OS usually runs on the pro-
cessor. For instance, OSEK/VDX (Open Systems and Their Corresponding Interfaces for Au-
tomotive Electronics/Vehicle Distributed Executive) OS [Con05, Fei03] is widely used in auto-
mobiles and considered in this thesis. OSEK/VDX OS only offers a limited set of predefined
periods, which implies that the sampling periods of control applications have to be taken from
this set. In most cases, the optimal sampling period is not directly realizable on the OS. The
conventional way to handle it is to use the largest sampling period offered by the OS that is
smaller than the optimal one. This is a straightforward method, yet leads to a waste of compu-
tational resources. It is desirable to minimize the processor utilization of an application, while
still satisfying the performance requirement.

Towards this goal, a multirate controller that switches between available sampling periods
offered by OSEK/VDX OS is proposed. A typical example with sampling periods of 2ms,
5ms and 10ms on OSEK/VDX OS is illustrated in Figure 1.4. Switching between two sam-
pling periods can only occur at the common multiplier of them. For instance, switching be-
tween 2ms and 5ms is possible at the time instant of 10ms, 20ms, and so on. Therefore,
possible sequences of sampling periods are {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms, repeat},

8



1. Introduction

2ms
Sampling

5ms
Sampling

10ms
Sampling

0 2 4 6 8 10 12 14 16 18 20

0 5 10 15 20

0 10 20

ms

ms

ms

Allowed switching among 2ms, 5ms and 10ms

Figure 1.4: Allowed switching instants among multiple sampling periods

{5ms, 5ms, 10ms, repeat}, and so on. The main challenge lies in the performance-oriented
multirate controller design under the non-uniform sampling scheme with negligible sensor-to-
actuator delays, aiming to reduce the processor utilization.

1.2.4 Energy Resources

For all practical purposes, a longer driving range is desired in EVs to increase their usability. A
battery pack with large capacity is needed to offer a long driving range. However, with larger
capacity, the battery weight also increases leading to higher energy consumption. Moreover,
the capacity is restricted by the space that can be allocated to the battery pack in EVs. One
potential solution to the above problem is to design the controller in such a way that the energy
consumption of a control task instance can be minimized.

All off-the-shelf battery packs are labeled with a nominal capacity. However, due to the rate
capacity effect, the effective capacity or Full Charge Capacity (FCC) of a battery pack, which is
defined to be the amount of electric charges that can be delivered from the battery after it is fully
charged, actually varies with different discharging current profiles [DS06, KQ11]. Generally
speaking, larger discharging current tends to reduce the effective capacity. For most common
lithium-ion batteries in the market, the capacity could potentially get significantly compromised
if the rate capacity effect is not properly considered in the control systems design.

In this thesis, an optimization framework considering the control performance as one design
objective and battery usage as the other is presented. The trade-off between these two design
objectives is explored by generating a Pareto front. The battery usage is quantified by the num-
ber of times the control system can reach a steady state after a disturbance occurs powered up by
a fully charged battery pack. In order to maximize the battery usage, the energy consumption of
a control task instance, i.e., the disturbance rejection, should be small and the battery effective
capacity should be increased by generating a battery-friendly discharging current profile.

In this context, the other important design aspect is processor aging. As a processor ages,
the switching time of its transistors increases, resulting in longer path delays. On-chip monitors
could be used to measure the delay of the critical path. It always has to be guaranteed that the
signal transmission can be complete along any path within one clock cycle [LBS10]. Therefore,
the processor operating frequency is reduced based on the new critical path delay.

9



1.3. ORGANIZATION

As discussed above, a shorter sampling period can potentially provide a better control per-
formance. Therefore, with a smaller processor operating frequency, the sampling period in-
creases and the control performance gets deteriorated, which is dangerous and thus highly un-
wanted for safety-critical applications in EVs, such as electric motor control. To deal with the
above situation, the same optimization framework can be slightly modified to re-optimize the
controller with the longer sampling period, which results from processor aging, aiming to en-
sure that the control performance is kept with an inconsiderable compromise on battery usage.

1.3 Organization

This thesis comprises six chapters. Chapter 1 is the introduction. The mathematical back-
ground, including the necessary basics of control theory and optimization techniques, is pre-
sented in Chapter 2. Feedback control applications are first described, following which are the
linear state-feedback control law and the non-linear MPC. The relationship between the control
performance and the sampling period is shown based on an Electronic Wedge Brake (EWB) de-
veloped by Siemens [FRBW+07]. The presented optimization techniques include the iterative
interior-point method, which can be deployed to solve convex problems, and Particle Swarm
Optimization (PSO), gradient-based Sequential Quadratic Programming (SQP), and genetic al-
gorithms for non-convex single- and multi-objective problems.

Chapter 3 discusses memory-aware automotive control systems design. The memory anal-
ysis technique that computes the guaranteed WCET reduction due to consecutive executions of
one control program is first given. A motivational example is used for the illustration pur-
pose. The control parameters, such as sampling periods and sensor-to-actuator delays, are
then derived based on the WCET results. The controller design techniques for both the con-
ventional memory-oblivious uniform sampling scheme and the proposed memory-aware non-
uniform sampling scheme are elaborated. The approach to compute the optimal sampling order
is explained. Experimental results are reported at the end of the chapter. Partial contents of this
chapter are included in [CGC+17].

Chapter 4 discusses computation-aware automotive control systems design. The OS used
in automobiles is described and the restriction on the choice of sampling periods is addressed.
The multirate controller design technique is presented to reduce the processor load while sat-
isfying the control performance requirement and system constraints. Contents of this chapter
also appear in [CGCHng].

Chapter 5 discusses battery- and aging-aware automotive control systems design. The de-
sign objective of battery usage is introduced with battery characteristics. The processor aging
and its influence on the control system is analyzed. Then the optimization framework and flow
are shown. Experimental results can be found at the end of the chapter and have been published
in [CPG+14].

The conclusion of this thesis is given in Chapter 6 and possible future work is discussed. All
real-world applications used in this thesis are detailed in the appendix. Relevant information
can also be found in [CFC+16, CC16, CPG+15].

10



1. Introduction

1.4 List of Publications

Parts of the main contributions presented in this thesis appear in the following publications:

• Wanli Chang, Alma Pröbstl, Dip Goswami, Majid Zamani, Samarjit Chakraborty, Battery-
and Aging-Aware Embedded Control Systems for Electric Vehicles, IEEE Real-Time Sys-
tems Symposium (RTSS), 2014.

• Wanli Chang, Dip Goswami, Samarjit Chakraborty, Jason Xue, Lei Ju, Sidharta An-
dalam, Memory-Aware Embedded Control Systems Design, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(4): 586-599, 2017.

• Wanli Chang, Dip Goswami, Samarjit Chakraborty, Arne Hamann, OS-Aware Auto-
motive Controller Design Using Non-Uniform Sampling, ACM Transactions on Cyber-
Physical Systems, forthcoming.

The following publications are generally related to the area of automotive control systems
and implementation resources:

• Martin Lukasiewycz, Sebastian Steinhorst, Florian Sagstetter, Wanli Chang, Peter Waszecki,
Matthias Kauer, Samarjit Chakraborty, Cyber-Physical Systems Design for Electric Vehi-
cles, Euromicro Conference on Digital System Design (DSD), 2012.

• Martin Lukasiewycz, Sebastian Steinhorst, Sidharta Andalam, Florian Sagstetter, Peter
Waszecki, Wanli Chang, Matthias Kauer, Philipp Mundhenk, Shreejith Shanker, Suhaib
Fahmy, Samarjit Chakraborty, System Architecture and Software Design for Electric Ve-
hicles, Design Automation Conference (DAC), 2013.

• Wanli Chang, Martin Lukasiewycz, Sebastian Steinhorst, Samarjit Chakraborty, Dimen-
sioning and Configuration of EES Systems for Electric Vehicles with Boundary-Conditioned
Adaptive Scalarization, IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2013. (Best Paper Nominee)

• Wanli Chang, Alma Pröbstl, Dip Goswami, Majid Zamani, Samarjit Chakraborty, Reli-
able CPS Design for Mitigating Semi-Conductor and Battery Aging in Electric Vechicles,
IEEE International Conference on Cyber-Physical Systems, Networks, and Applications
(CPSNA), 2015.

• Debayan Roy, Licong Zhang, Wanli Chang, Dip Goswami, Samarjit Chakraborty, Multi-
Objective Co-Optimization of FlexRay-based Distributed Control Systems, IEEE Real-
Time Embedded Technology & Applications Symposium (RTAS), 2016.

• Debayan Roy, Licong Zhang, Wanli Chang, Samarjit Chakraborty, Automated Synthesis
of Cyber-Physical Systems from Joint Controller/Architecture Specifications, Forum on
Specification & Design Languages (FDL), 2016.

11



1.4. LIST OF PUBLICATIONS

• Wanli Chang, Debayan Roy, Licong Zhang, Samarjit Chakraborty, Model-based Design
of Resource-Efficient Automotive Control Software, International Conference on Computer-
Aided Design (ICCAD), 2016.

• Samarjit Chakraborty, Mohammad Abdullah Al Faruque, Wanli Chang, Dip Goswami,
Marilyn Wolf, Qi Zhu, Automotive Cyber-Physical Systems: A Tutorial Introduction,
IEEE Design & Test, 33(4): 92-108, 2016.

• Wanli Chang, Samarjit Chakraborty, Resource-Aware Automotive Control Systems De-
sign: A Cyber-Physical Systems Approach, Foundations and Trends R© in Electronic De-
sign Automation, 10(4): 249-369, 2016.

• Wanli Chang, Licong Zhang, Debayan Roy, Samarjit Chakraborty, Control/Archi-tecture
Co-Design for Cyber-Physical Systems, Handbook of Hardware/Software Codesign, Springer,
2017.

• S. Ramesh, Birgit Vogel-Heuser, Wanli Chang, Debayan Roy, Licong Zhang, Samar-
jit Chakraborty, Specification, Verification and Design of Evolving Automotive Software,
Design Automation Conference (DAC), 2017.

• Michael Balszun, Debayan Roy, Licong Zhang, Wanli Chang, Samarjit Chakraborty, Ef-
fectively Utilizing Elastic Resources in Networked Control Systems, IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
2017. (Best Paper Award)

• Debayan Roy, Licong Zhang, Wanli Chang, Sanjoy Mitter, Samarjit Chakraborty, Ensur-
ing Safety through Semantics-Preserving Co-Synthesis of Cyber-Physical Systems, Pro-
ceedings of the IEEE, forthcoming.

12



2
Mathematical Background

The necessary mathematical background of this thesis includes the basics of the control the-
ory and the optimization techniques. Feedback control applications are described from the
state-space modelling, discretization and controllability, to control performance metrics and
constraints. For the linear state-feedback control, the closed-loop system stability is analyzed.
The feedback and feedforward gains are computed. The pole-placement technique is briefly
discussed. For the non-linear MPC, both the unconstrained and constrained cases are consid-
ered. A small case study based on the EWB developed by Siemens is shown to illustrate the
relationship between the control performance and the sampling period.

The novel optimization techniques proposed in this thesis are developed on top of four
methods. The iterative interior-point method is used for convex problems. In particular, it solves
the quadratic programming problem in the constrained MPC. PSO, gradient-based SQP and
genetic algorithms are all deployed for the non-convex pole-placement problem. The general
aim is to optimize the control performance, while respecting all constraints. In the context of
battery-aware automotive control systems design, there is another objective — the battery usage
— to optimize, which makes it a multi-objective optimization problem.

2.1 Control Theory

2.1.1 Feedback Control Applications
Plant dynamics: A control application is responsible for controlling a plant or dynamic sys-
tem. In particular, linear Single-Input Single-Output (SISO) control applications are considered,
where the dynamic behavior is modelled by a set of differential equations,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2.1)

13



2.1. CONTROL THEORY

where x(t) ∈ Rl is the system state, ẋ(t) is the derivative of x(t) with respect to time, y(t) is
the system output and u(t) is the control input. The number of system states is l. The system
(or state) matrix is A. The input matrix is B. The output matrix is C. These matrices A, B and
C are physical properties of the plant. System poles are eigenvalues of A. In a state-feedback
control algorithm, u(t) is computed utilizing x(t) (feedback signals) and then applied to the
plant, which is expected to achieve certain desired behavior.

Discretized dynamics: In most applications, the controller is implemented in a digital fashion
on a computer. This implies that the system states must be sampled when measured by the
sensors. Assuming the sampling period to be h, the sampled system state is denoted as

x[k] = x(tk), tk = kh, k = 0, 1, 2, 3, · · · . (2.2)

Similarly, the sampled system output is

y[k] = y(tk). (2.3)

The control input taking discrete values is denoted as u[k], which is passed through a Zero-
Order Hold (ZOH) and applied to the plant. The output of the ZOH is given by

u(t) = u[k], tk ≤ t < tk+1. (2.4)

Now the discretized dynamics of (2.1) can be derived. First of all,

y[k] = y(tk) = Cx(tk) = Cx[k]. (2.5)

The solution to (2.1) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (2.6)

Taking t0 = tk and t = tk+1, since tk+1 − tk = h,

x[k + 1] = eAhx[k] +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ

= eAhx[k] +

∫ tk+1

tk

eA(tk+1−τ)dτBu[k].

(2.7)

Defining a new variable τ ′ = tk+1 − τ , there is dτ ′ = −dτ . As τ ranges from tk to tk+1, τ ′

ranges from h to 0. Therefore,∫ tk+1

tk

eA(tk+1−τ)dτB =

∫ 0

h

eAτ
′
(−dτ ′)B =

∫ h

0

eAτ
′
dτ ′B. (2.8)

Then, the discretized dynamics is

x[k + 1] = Adx[k] +Bdu[k],

y[k] = Cx[k],
(2.9)

14



2. Mathematical Background

where

Ad = eAh, Bd =

∫ h

0

(eAτ
′
dτ ′)B. (2.10)

If A is invertible, the integral in Bd can be got rid of. Utilizing

d

dt
eAh = eAhA, (2.11)

Bd can be derived to be

Bd = A−1

∫ h

0

AeAτ
′
dτ ′B = A−1eAτ

′
∣∣∣h
τ ′=0

B = A−1(eAh − I)B, (2.12)

where I is the identity matrix.

System controllability: Controllability of a discrete system is defined as the ability to transfer
the system from any initial state x[0] = x0 to any desired final state x[kf ] = xf . Taking
k = 1, 2, . . . , n,

x[1] = Adx[0] +Bdu[0]

x[2] = Adx[1] +Bdu[1] = A2
dx[0] + AdBdu[0] +Bdu[1]

...
x[n] = Andx[0] + An−1

d Bdu[0] + · · ·+Bdu[n− 1].

(2.13)

x[n] can be written in a matrix form as

x[n]− Andx[0] = [Bd AdBd · · · An−1
d Bd]


u[n− 1]
u[n− 2]
· · ·
u[0]

 , (2.14)

where CO = [Bd AdBd · · · An−1
d Bd] is the square controllability matrix. If CO is

non-singular, the unique solution for the control input sequence in (2.14) is given by
u[n− 1]
u[n− 2]
· · ·
u[0]

 = CO−1(x[n]− Andx[0]). (2.15)

In this case, for any x[n] = xf , the solution in (2.15) determines the control input sequence that
transfers the initial system state x0 to the desired system state xf in n steps. It follows that the
controllability condition is equivalent to the non-sigularity of the controllability matrix CO.

Control performance: Settling time is a widely used metric to quantify the control perfor-
mance, especially for real-time control applications. The time it takes for the system output
y[k] to reach and stay in a closed region around the reference value r (e.g., 0.98r to 1.02r) is

15



2.1. CONTROL THEORY

the settling time of a control loop and denoted as ts. Shorter settling time implies better control
performance.

Another popular performance metric in the control context is a quadratic cost function,
which is given by

J =
N−1∑
k=0

[xT [k]Qx[k] + uT [k]Ru[k]], (2.16)

assuming that the system state x[k] is expected to stabilize at 0. Q is a positive semi-definite
matrix and R is a positive definite matrix. Since SISO applications are considered in this thesis,
uT [k] = u[k]. In some cases, there is also a term xT [N ]Sx[N ] added in the end, where S is
a positive semi-definite matrix. Q, R and S are all weight matrices. To optimize the control
performance, J is minimized. Among the three terms,

• xT [k]Qx[k] penalizes the transient state deviation;

• uT [k]Ru[k] penalizes the control effort;

• xT [N ]Sx[N ] penalizes the final state deviation.

System constraints: In almost every real-world system, due to the physical constraint of the
actuator, there is some maximum available control input signal and the controller needs to be
designed such that the maximum value of u[k] does not exceed this limit Umax, i.e., u[k] ≤
Umax. This is the constraint of the input saturation. Another constraint is on the peak overshoot,
which is defined as

ymax − r ≤ φ0r, (2.17)

where ymax is the maximum system output and φ0 is the overshoot threshold. The constraint
on the steady-state error has been discussed when defining the settling time. The system output
y[k] has to reach and stay in a closed region around r, i.e., the system has to settle. If the region
is [0.98r, 1.02r], then the steady-state error tolerance φe = 2%. Besides, in many real-time
control applications, there is a maximum allowed settling time t0s [LLB+12]. That is, ts ≤ t0s
must be satisfied.

2.1.2 State-Feedback Control Law
In the state-feedback control, the control input u[k] is computed based on the system state x[k].
There can be both linear and non-linear controllers, depending on the relationship between u[k]
and x[k].

Linear controller: The general structure of a linear controller is as follows,

u[k] = Kx[k] + Fr, (2.18)

where K is the feedback gain and F is the feedforward gain. Clearly, the relationship between
u[k] and x[k] is linear.

16



2. Mathematical Background

0.00 0.01 0.02

0

5

p = [0.5 0.5]

Time [s]

Sy
st

em
O

ut
pu

ty
[k

]

0.00 0.01 0.02

0

1

·105

p = [1.5 1.5]

Time [s]

Sy
st

em
O

ut
pu

ty
[k

]

Figure 2.1: Different system ouput responses for stable and unstable poles

Closed-loop system: With the linear controller as shown in (2.18), the system dynamics in (2.9)
becomes

x[k + 1] = (Ad +BdK)x[k] +BdFr, (2.19)

i.e., closed-loop dynamics.

Pole-placement: Different locations of closed-loop system poles, i.e., eigenvalues of (Ad +
BdK), result in different system behaviors. In pole-placement, poles are placed in desired loca-
tions (eigenvalues are set) often to fulfill various high-level goals, such as control performance
maximization and system constraints satisfaction. The desired poles p can be decided with em-
pirical or optimization techniques. This method is feasible since there is the freedom to choose
the feedback gain K.

Feedback and feedforward gain: Once pole locations are decided, the following characteris-
tics equation of z can be constructed with these poles as roots:

zn + γ1z
n−1 + γ2z

n−2 + · · ·+ γn = 0. (2.20)

Then the following is defined,

γc(Ad) = And + γ1A
n−1
d + γ2A

n−2
d + · · ·+ γnI. (2.21)

According to Ackermann’s formula [AU98], the feedback gain used to stabilize the closed-loop
system is calculated as

K = [0 · · · 0 1] CO−1 γc(Ad). (2.22)

The static feedforward gain F used to make the system output y[k] track the reference r is
computed by

F = 1/(Cd(I− Ad −BdK)−1Bd). (2.23)

System stability: All eigenvalues of (Ad + BdK) must have absolute values of less than unity
in order to ensure system stability [AM09]. This is illustrated with a double integrator example
as follows,

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
. (2.24)

17



2.1. CONTROL THEORY

The initial state is
[

0 0
]

and the reference value is 5. The sampling period is set as h =
0.001s. The system output responses for two sets of poles p =

[
0.5 0.5

]
and p =

[
1.5 1.5

]
are shown in Figure 2.1.

Restricted pole-placement: If the system is controllable, i.e., CO has full rank, there is no re-
striction on pole locations. The feedback gain K can be determined with (2.22). If CO does not
have full rank, some of the poles cannot be modified with any choice of K and thus are uncon-
trollable. Since CO is not invertible, (2.22) does not work, either. In this case, if the uncontrol-
lable poles are stable (with absolute values of less than unity), then the system is stabilizable.
Restricted pole-placement can be used for stabilizable systems in the way that only controllable
poles are placed in the desired locations and uncontrollable poles remain untouched. Therefore,
for the automotive control systems design discussed in this thesis, the system is required to be
at least stabilizable, if not controllable.

Non-linear MPC: In MPC, the relationship between the control input u[k] and the system
state x[k] is non-linear. Considering the quadratic cost function in (2.16), the goal is to find a
sequence of control inputs u[0], u[1], . . . , u[N − 1] that minimizes this cost function. Assuming
that S = Q and expanding (2.16),

J = xT [0]Qx[0] + [xT [1] xT [2] . . . xT [N ]]


Q 0 · · · 0
0 Q · · · 0
...

... . . . ...
0 · · · 0 Q




x[1]
x[2]

...
x[N ]



+ [uT [0] uT [1] . . . uT [N − 1]]


R 0 · · · 0
0 R · · · 0
...

... . . . ...
0 · · · 0 R




u[0]
u[1]

...
u[N − 1]

 .
(2.25)

Computing the system states as


x[1]
x[2]

...
x[N ]

 =


Bd 0 · · · 0
AdBd Bd · · · 0

...
... . . . ...

AN−1
d Bd AN−2

d Bd · · · Bd




u[0]
u[1]

...
u[N − 1]

+


Ad
A2
d

...
ANd

x[0], (2.26)

the quadratic cost function becomes

J = xT [0]Qx[0] + (S̄U + T̄ x[0])T Q̄(S̄U + T̄ x[0]) + UT R̄U, (2.27)

18



2. Mathematical Background

where

U =


u[0]
u[1]

...
u[N − 1]

 , Q̄ =


Q 0 · · · 0
0 Q · · · 0
...

... . . . ...
0 · · · 0 Q

 , R̄ =


R 0 · · · 0
0 R · · · 0
...

... . . . ...
0 · · · 0 R

 ,

T̄ =


Ad
A2
d

...
ANd

 , S̄ =


Bd 0 · · · 0
AdBd Bd · · · 0

...
... . . . ...

AN−1
d Bd AN−2

d Bd · · · Bd

 .
(2.28)

Expanding (2.27),

J = xT [0]Qx[0] + (UT S̄T + xT [0]T̄ T )Q̄(S̄U + T̄ x[0]) + UT R̄U

=
1

2
UT2(S̄T Q̄S̄ + R̄)U + 2xT [0]T̄ T Q̄S̄U + xT [0](Q+ T̄ T Q̄T̄ )x[0].

(2.29)

Defining
H = 2(S̄T Q̄S̄ + R̄), F = 2T̄ T Q̄S̄, Y = T̄ T Q̄T̄ , (2.30)

there is
J =

1

2
UTHU + xT [0]FU + xT [0]Y x[0]. (2.31)

It is clearly seen that this quadratic cost function J depends on the control input sequence U ,
for a given initial syste state x[0]. H , F and Y involve physical properties of the plant under
control (Ad and Bd) and the weights defined in the cost function (Q and R). It is important to
note that H is semi-definite, since Q is positive semi-definite, R is positive definite, and S has
full column rank.

Solving unconstrained MPC: If there are no constraints considered, computing the first deriva-
tive can be used to minimize the cost function (2.31). Solving

∂J

∂U
= HU + F Tx[0] = 0, (2.32)

the optimal control input sequence is

U∗ = −H−1F Tx[0]. (2.33)

Since
∂2J

∂U2
= H, (2.34)

is positive semi-definite, the obtained U∗ in (2.33) is a minimum. If H is non-singular (i.e.,
positive definite), the optimal U∗ is unique.

19



2.2. OPTIMIZATION TECHNIQUES

1 5 10 15
450

500

550

Sampling Period [ms]

Q
ua

dr
at

ic
C

os
t

Figure 2.2: The relationship between the control performance and the sampling period for the
EWB

Solving constrained MPC: In practice, there are often system constraints. For instance, the
input saturation might require

umin ≤ u[k] ≤ umax. (2.35)

This is a constrained convex quadratic programming problem and can be solved by a number of
optimization techniques. Both the active-set method and the interior-point method are widely
used. In this thesis, the interior-point method is used and will be elaborated in the next section.

2.1.3 Control Performance and Sampling Period

The relationship between the control performance and the sampling period is explored with the
EWB described in Section A. The input saturation constraint is that the supplied voltage of the
motor cannot exceed 12V . MPC is used in designing the control algorithm. The quadratic cost
function as in (2.16) serves as the control performance metric. The term of the control input
is excluded, since the input saturation is explicitly considered. The number of steps to look
ahead N is set to be 4. The weight matrix Q is assumed to be an identity matrix. Varying the
sampling period from 1ms to 15ms in integers, results are reported in Figure 2.2. It can be
clearly seen that as the sampling period gets longer, the quadratic cost increases, which means
that the control performance deteriorates. The underlying reason is that the controller is able to
interact with the plant more frequently under a shorter sampling period.

2.2 Optimization Techniques

2.2.1 Interior-Point Method

The interior-point method is widely used for convex optimization problems. In this thesis, it is
taken to solve the quadratic programming problem in MPC with inequality constraints, which

20



2. Mathematical Background

is formulated as follows,
min
x
q(x) = 1

2
xTGx+ xTd,

subject to

Ax ≥ b,

(2.36)

where G is symmetric and positive semi-definite.
Specializing the general Karush-Kuhn-Tucker (KKT) conditions for constrained optimiza-

tion [NW06], the necessary conditions for (2.36) can be obtained: If x∗ is a solution of (2.36),
there is a Lagrange multiplier vector λ∗ such that the following conditions are satisfied for
(x, λ) = (x∗, λ∗),

Gx− ATλ+ d = 0,

Ax− b ≥ 0,

(Ax− b)iλi = 0, i = 1, 2, . . . ,m,

λ ≥ 0.

(2.37)

Introducing y = Ax− b, these conditions in (2.37) can be rewritten as

Gx− ATλ+ d = 0,

Ax− y − b = 0,

yiλi = 0, i = 1, 2, . . . ,m,

(y, λ) ≥ 0.

(2.38)

Since both the objective function and the feasible region are convex, these necessary conditions
are also sufficient.

Defining

F (x, y, λ) =

 Gx− ATλ+ d
Ax− y − b

Y Λe

 , (y, λ) ≥ 0, (2.39)

where

Y = diag(y1, y2, . . . , ym), Λ = diag(λ1, λ2, . . . , λm), e = (1, 1, . . . , 1)T , (2.40)

Solving
F (x, y, λ) = 0, (y, λ) ≥ 0, (2.41)

generates the optimal x∗. There are a number of iterative ways to solve (2.41), including
Newton’s method with slight modification [NW06] and Mehrotra’s predictor-corrector algo-
rithm [Meh92].

2.2.2 Particle Swarm Optimization
PSO is a popular method to solve non-convex non-linear optimization problems and can be used
to locate the poles that maximize the control performance. A group of particles are randomly

21



2.2. OPTIMIZATION TECHNIQUES

−2 −1 0
1

2 −2
−1

0
1

2
0

1

2

p1
p2

p3
p4

p5

po

β1

β2

ϕ

Initialized points Converged points Global best points in iterations

Figure 2.3: With the particle swarm optimization method, five particles are randomly initilized
and converge to the optimum po.

initialized in the decision space with positions and velocities. They search for the optimum by
iteratively updating their positions. The search is led by two points. The first is the local best
point (in terms of the objective value) that has been reached by a particle. Every particle has its
own local best point. The second is the global best point that has been reached by all particles.

The velocity of a particle is determined by the following equation,

Vnew = α0Vcurrent + α1rand(0, 1)(Plbest − Pcurrent) + α2rand(0, 1)(Pgbest − Pcurrent), (2.42)

where Vnew is the new velocity, Vcurrent is the current velocity, Pcurrent is the current position, Plbest

is the local best point of this particle and Pgbest is the global best point of all particles. rand(0, 1)
is a random number with uniform distribution from the open interval (0, 1). α0 is the weight
inertia. α1 and α2 are cognitive and social scaling parameters. Widely used values for these
parameters are

α0 = 0.4, α1 = α2 = 2, (2.43)

which have been shown to have good performance in many optimization scenarios. The new
position of this particle is

Pnew = Pcurrent + Vnew. (2.44)

The algorithm is terminated once all particles have converged or the maximum number of iter-
ations has been reached.

A numerical example is used to illustrate the PSO. The formulation is as follows,

max
D

ϕ = e−
1
3
β1

3+β1−β22

subject to

D = {(β1, β2)| − 1.8 ≤ β1 ≤ 2, −2 ≤ β2 ≤ 2},
(2.45)

22



2. Mathematical Background

where β1 and β2 are two continuous decision variables, constrained in the decision space D.
The objective to maximize is ϕ. As shown in Figure 2.3, five particles are randomly initialized
at p1, p2, p3, p4 and p5. After 22 iterations, all five particles converge to the points around
the optimum po (1.0006, 0.0033, 1.9477). The path showing how the global best point evolves
iteratively is drawn, with certain points that are too close to others omitted for better illustration.

2.2.3 Sequential Quadratic Programming
SQP is a popular gradient-based optimization technique for single-objective non-convex prob-
lems. The entire process begins with a chosen starting point in the decision space, from which
SQP searches for a sequence of points, hopefully closer and closer to the optimal point until
either the optimal point is reached or termination criteria are satisfied. The question is then how
to iteratively find the next point, which is supposed to be better than the current point in terms
of the objective value. It needs to be known what is the search direction and how far to go along
this direction. Neither of them is easy to compute for a non-convex problem with significant
non-linearity. Therefore, an approximated local quadratic model is built around this current
point as

f(xp) =
1

2
xTpHxp + cTq xp, (2.46)

where xp is the current point. f(xp) is the objective value, H is the symmetric Hessian matrix
at xp. Both cq and xp are column vectors with the same number of elements.

The search direction can be computed in various ways. For instance, the direction of steepest
descent ds with potentially the best local improvement in the objective value f can be used. ds
is the opposite of the gradient as,

ds = − df

dxp
= −xTpH − cTq . (2.47)

After computing the search direction, the next step is to determine how far to go in this direc-
tion. Assuming that ∆ is the radius of the region where the confidence in the accuracy of the
approximated local quadratic model is high, a list of steps { ∆

nss
, 2∆
nss
, . . . ,∆} are tried, where nss

is the total number of steps and can be decided customarily. The step size with the best objec-
tive value f and all constraints fulfilled is chosen. Then a new quadratic model is established
around this point and the search process is iterated. When no step size gives improvement in f ,
the optimization algorithm is terminated. The other termination criterion is that the set maxi-
mum number of iterations is exceeded. It is noted that solving the quadratic model in an exact
manner as in Section 2.2.1 is not of much interest, since the model itself is only an approxi-
mation of the original problem in a restricted space. Instead, the aim is to compute the search
direction and the step size that locally find a next point better than the current point.

SQP is originally meant for single-objective optimization problems, yet can also be extended
to multi-objective optimization problems, where all objectives are converted into one. One
common way to do so is constructing a new objective f0 to be minimized with a weighted sum
of all objectives. Taking two objectives f1 and f2 as as an example,

f0 = w1 × f1 + w2 × f2, (2.48)

23



2.2. OPTIMIZATION TECHNIQUES

where w1 and w2 are weights of the two objectives f1 and f2 and

w1 + w2 = 1. (2.49)

In multi-objective optimization, if a point is worse than another point in every objective,
it is said to be dominated. If a point is not dominated by any other point in the feasible deci-
sion space, then this point is called a Pareto point. There can be multiple Pareto points, which
form the Pareto front. If SQP is able to reach the global optimum, when f0 in (2.48) is mini-
mized as the objective, the solution point must be on the Pareto front. This can be proven by
contradiction. If there is another point x′, which dominates the solution point x0, then

f1(x′) < f1(x0), f2(x′) < f2(x0). (2.50)

From (2.48),
f0(x′) < f0(x0). (2.51)

This contradicts that x0 is the global optimum for minimizing f0.

2.2.4 Non-Dominated Sorting Genetic Algorithm
There is a variety of stochastic methods developed to solve non-convex optimization problems.
Among them, the Non-Dominated Sorting Genetic Algorithm (NSGA) mimicking the process
of natural selection is widely applied to deal with multiple objectives [SD94]. The second
version of NSGA has three advantages over its predessor: (i) the computational complexity
of non-dominated sorting is reduced; (ii) elitism speeds up the performance; (iii) the sharing
parameter is no longer needed [DPAM02]. The entire flow of NSGA is illustrated in Figure 2.4,
consisting of four major steps — initilization, genetic operation, environmental selection, and
termination.

At first, an initial population is generated. This process is often random. Offsprings are
then produced with genetic operators including mainly crossover and mutation. The crossover
function tries to keep the good genes of parents, which generally means that the offsprings are
close to parents in the decision space. The mutation function deviates from parents and produces
offsprings in unexplored regions of the objective space. It is not necessary that an offspring only
has two parents, as inspired in biology. The population is now composed of these offsprings.

During each successive generation including this one, a proportion of the existing popula-
tion is selected as parents to breed a new generation. Individual solutions are selected through a
fitness-based process, where fitter solutions as measured by a fitness function are typically more
likely to be selected. Certain selection methods rate the fitness of each solution and preferen-
tially select the best solutions. Other methods rate only a random sample of the population, as
the former process may be very time-consuming. The optimization objective function is often
used for fitness evaluation. In some problems, it is hard or even impossible to explicitly define
the fitness expression and a simulation may be used to determine the fitness function value.

Elitism can be implemented for environmental selection, so that the next generation is se-
lected among both parents and offsprings. This not only speeds up convergence but also ensures
that good solutions will not be lost once they are found. In order to deal with multiple objectives,

24



2. Mathematical Background

Initial population generation

Offsprings production via crossover and mutation

Selection for next generation

Population converged? Generation number exceeded?

Termination

yes

no

no

yes

Figure 2.4: Optimization flow of the non-dominated sorting genetic algorithm

all parents and offsprings are sorted and ranked by its level of domination. For each solution,
if it is not dominated by any other solution, then it is given a rank of 1. All solutions with the
rank of 1 form the first front. Then the first front is removed and the second front is formed
with non-dominated solutions among the rest. All solutions on the second front have a rank of
2. This process is iterated until all solutions are assigned a rank. The new generation is filled
in the way that solutions with lower ranks have priorities. This non-dominated sorting feature
in environmental selection favors those solutions on or close to the Pareto front. There are two
termination conditions — whether the population has converged and whether the maximum
allowed number of generations has been exceeded.

25



2.2. OPTIMIZATION TECHNIQUES

26



3
Memory-Aware Automotive Control Systems

Design

In the cost-sensitive and resource-constrained embedded platforms that are used to implement
automotive control algorithms, memory subsystems constitute an important component, and on-
chip caches contribute significantly towards their cost. There have been many efforts on cache
reuse maximization, for improving the real-time performance, such as the worst-case execution
time (WCET), of embedded software [BW08]. However, the characteristics of control systems
and metrics of control performance have not been directly incorporated into these techniques.

In this chapter, a Cyber-Physical System (CPS)-oriented approach brings two very disparate
classes of techniques — cache modeling and program analysis on one hand, and controller de-
sign on the other hand — together and quantifies the resulting benefit. The idea is to shorten the
sampling periods of the control applications with execution (i.e., sampling) orders that increase
the cache reuse. Such memory-aware execution of control applications implies non-uniform
sampling. Generally, the non-uniform sampling scheme is undesirable in control systems, since
the controller design has to deal with switching instability, making it challenging to optimize
the control performance. In this presented method, the key is that the sampling order is a design
parameter and known in the controller design phase. Exploiting the knowledge of the sampling
order, a controller design technique is proposed to improve the control performance.

The organization of this chapter is as follows. Section 3.1 reviews the literature in memory
analysis and control theory. Section 3.2 discusses the memory analysis technique to compute
the guaranteed WCET reduction due to consecutive executions of one control program. A mo-
tivational example is presented to illustrate the technique. Section 3.3 derives the control timing
parameters, such as sampling periods and sensor-to-actuator delays, from WCETs. Controller
design methods for both uniform and non-uniform sampling are illustrated in Section 3.4, in-
cluding the pole-placement technique with the hybrid PSO. Section 3.5 computes the optimal

27



3.1. RELATED WORK

Research ingredients of our work: (i) memory exploitation; (ii) program timing analysis; (iii)
guaranteed WCET reduction computation for consecutive executions; (iv) control performance
optimization; (v) input saturation constraint; (vi) non-uniform sampling; (vii) offline computation.

Research Question Not Addressed
Control performance maximization by explor-
ing the trade-off between memory and CPU
usage [RHC06]

(i), (ii) and (iii)

Cache misses reduction with dynamic task
scheduling [BW08] (ii) and (iii)

Timing-related cache analysis in various con-
texts [WGR+09, NMR03, CMRT09, KFM11] (iii)

Memory analysis literature

Research Question Not Addressed
System stability under arbitrary switching se-
quences [LA09] (iv)

LQR for the control performance maximiza-
tion [LW13] (v) and (vi)

Online MPC for maximizing the control per-
formance with input saturation constraint re-
spected [RM09]

(vi) and (vii)

Control theory literature

• A novel cache analysis technique to compute the non-uniform sampling order and perform
sensor-to-actuator delay characterization for a feedback controller, related to (i), (ii), (iii),
(vi) and (vii).

• A novel offline memory-aware controller design technique for timing resulting from
specific memory access patterns, related to (i), (iv), (v), (vi) and (vii).

Our contributions

Figure 3.1: Position of the work in Chapter 3 in the memory analysis and control theory litera-
ture

sampling order. Experimental results are reported in Section 3.6 and Section 3.7 makes some
concluding remarks of this chapter.

3.1 Related Work

The position of Chapter 3 in the memory analysis and control theory literature is illustrated in
Figure 3.1. The trade-off between memory and CPU usage in a feedback scheduling system,
which dynamically adjusts the sampling periods of control tasks to maximize the overall con-
trol performance, is explored in [RHC06]. However, it is not considered how memory can be
exploited to improve the system performance. In [BW08], the round-robin scheduling of mul-
tiple tasks on an embedded operating system is dynamically tuned during program execution,
adapting to changes in work load and external input stimulus. As a result, cache misses are
reduced and the system performance is improved.

Cache analysis for timing-related computation has been studied in a number of works
[WGR+09, NMR03, CMRT09, KFM11]. The architectural influence on static timing analysis
of embedded hard real-time systems is described in [WGR+09]. The cache-related preemption
delay is analyzed in [NMR03] for a multi-task embedded system with preemption, and extended
to streaming applications in [CMRT09] for cache-aware timing estimation. The set-associative
cache is considered in [KFM11]. In this chapter, the existing approach is modified to com-

28



3. Memory-Aware Automotive Control Systems Design

pute guaranteed WCET reduction due to cache reuse between two consecutive executions of
the same application, which is then exploited by the tailored controller design method in the
memory-aware sampling order to achieve better control performance.

Works in control theory literature with non-uniform sampling focus on guaranteeing sta-
bility of the resulting switched system [LA09]. Generally, theoretical tools such as Common
Quadratic Lyapunov Function (CQLF) and Switched Lyapunov Function (SLF) tackle arbitrary
switching between sampling periods to assure stability of the overall closed-loop system. In this
chapter, as opposed to arbitrary switching, the switching order is precisely known in the design
phase, i.e., from the memory-aware sampling order. The aim is further performance optimality
by exploiting this additional knowledge about the switching behavior.

In the field of optimal control, techniques such as Linear Quadratic Regulator (LQR) [LW13]
are well-developed. By adjusting the weights in the quadratic cost, a trade-off between the input
magnitude and the settling time can be achieved. However, these existing optimal control meth-
ods cannot be directly applied in the memory-aware automotive control systems design, since
first, they are not specifically tuned for switched systems, and second, they do not explicitly
consider the constraint on the input signal, which exists in all real-life systems.

The combination of performance optimization and input constraints is addressed by MPC
techniques [RM09] — another well-developed area. First, MPC performs online optimization in
every sampling period, making it computationally heavy and unsuitable for being implemented
on certain resource-constrained embedded platforms. Second, the control law in MPC tech-
niques is non-linear in nature due to online optimization in every sample and existing literature
on MPC does not explicitly handle switching between multiple linear sub-systems. Building
upon these previous works discussed above, the presented method in this chapter formulates
an optimal pole-placement problem, where poles of sub-systems are decision variables, the in-
put constraint is explicitly respected and the settling time is the optimization objective. Unlike
MPC, the controller design is performed off-line making scalability a less important aspect.

3.2 Memory Analysis

As discussed in Chapter 1, consecutively executing the same control application increases the
cache reuse and decreases the WCET, which potentially improves the control performance with
an appropriately designed controller. An example memory-aware sampling order is (C1(1),
C1(2), C1(3), C2(1), C2(2), C2(3), C3(1), C3(2), C3(3), · · · ), as illustrated in Figure 1.3 In this
section, the guaranteed WCET reduction for the second and subsequent executions of a control
application (Ci(2) and Ci(3) in the above example sampling order) is computed. The technique
is derived from previous research [NMR03, CMRT09] and modified to suit this work. Starting
from a Control Flow Graph (CFG), equations to compute the Reaching Cache States (RCS) and
Live Cache States (LCS) of each node are set up, based on which the fixed-point computation is
performed. Afterwards, the guaranteed WCET reduction can be calculated. Figure 3.2 presents
a motivational example to illustrate this approach. Only instruction cache is considered in this
chapter.

29



3.2. MEMORY ANALYSIS

Entry

b0 : m0

b1 : m1,m2,m3 b2 : m2,m3

b3 : m4

Exit

> > > >
c0 c1 c2 c3

m0 > > >
c0 c1 c2 c3

m0 > m2 m3

c0 c1 c2 c3

m0 m1 m2 m3

m0 > m2 m3

c0 c1 c2 c3

m0 > > >
c0 c1 c2 c3

m0 m1 m2 m3

c0 c1 c2 c3

m4 m1 m2 m3

m4 > m2 m3

c0 c1 c2 c3

RCSINb0

RCSINb2RCSINb1

RCSOUTb2

RCSOUTb1

RCSINb3

RCSOUTb3

Cache lines Memory blocks
c0 m0,m4

c1 m1

c2 m2

c3 m3

Figure 3.2: A motivational example for memory analysis. Five memory blocks are mapped
to four cache lines. Memory blocks executed by each basic block are shown. RCSIN and
RCSOUT in the initialization phase are illustrated.

3.2.1 Basic Definitions

In the two-level memory hierarchy of the typical automotive control system shown in Figure 1.1,
there are Nc cache lines, denoted as CL = {c0, c1, . . . , cNc−1} and the flash main memory has
Nm blocks, denoted as M = {m0,m1, . . . ,mNm−1}. Each memory block is mapped to a
fixed cache line. The example in Figure 3.2 has four cache lines and five memory blocks. A
basic block is a straight-line sequence of code with only one entry point and one exit point.
This restriction makes a basic block highly amenable for program analysis. The presented
CFG, consisting of four basic blocks B = {b0, b1, b2, b3}, has all the three key elements of a
control program, i.e., sequential basic blocks, branches and a loop. Therefore, it is suitable for
illustrating the memory analysis technique.

There are three key terms in memory analysis that are described as follows:

• cache states: A cache state cs is described as a vector ofNc elements. Each element cs[i],
where i ∈ {0, 1, . . . , Nc − 1}, represents the memory block in the cache line ci. When
the cache line ci holds the memory block mj , where j ∈ {0, 1, . . . , Nm − 1}, cs[i] = mj .

30



3. Memory-Aware Automotive Control Systems Design

If ci is empty, it is denoted as cs[i] = ⊥. If the memory block is unknown, it is denoted
as cs[i] = >. CS is the set of all possible cache states.

• reaching cache states: RCS of a basic block bk, denoted as RCSbk , is the set of all
possible cache states when bk is reached via any incoming path.

• live cache states: LCS of a basic block bk, denoted as LCSbk , is the set of all possible
first memory references to cache lines at bk via any outgoing path.

Since the focus is on WCET reduction between two consecutive executions of Ci, e.g., Ci(1)
and Ci(2), it is necessary to compute the RCS of the exit point in Ci(1) and the LCS of the entry
point in Ci(2). By comparing all possible pairs of cache states, the guaranteed number of cache
hits and thus WCET reduction can be calculated. In the following, equations for the RCS and
LCS computation are first discussed.

3.2.2 Computation of Cache States
In the RCS computation, genbk is first defined as the cache state describing the last executed
memory block in every cache line for the basic block bk. Assuming that b0 in Figure 3.2 executes
m0 and then m4, instead of only m0, the last executed memory block in c0 is m4. Therefore,
genb0 is [m4,⊥,⊥,⊥]. For the example in Figure 3.2,

genb0 = [m0,⊥,⊥,⊥], genb1 = [⊥,m1,m2,m3],

genb2 = [⊥,⊥,m2,m3], genb3 = [m4,⊥,⊥,⊥].
(3.1)

There are two equations involved in the RCS computation that calculate RCSIN and RCSOUT ,
where RCSIN of a basic block bk is the RCS before bk is executed and RCSOUT is the set of
all possible cache states after bk is executed. First, RCSOUTbk

can be calculated from RCSINbk as

RCSOUTbk
= {T (bk, cs)|cs ∈ RCSINbk }, (3.2)

where T is a transfer function defined as follows: For any cache state cs ∈ CS and basic
block bk ∈ B, there is a cache state cs′ = T (bk, cs), where for any cache line ci ∈ CL and
i ∈ {0, 1, . . . , Nc − 1},

cs′[i] =

{
cs[i] : if genbk [i] = ⊥;

genbk [i] : otherwise.
(3.3)

RCSINbk can be calculated as

RCSINbk =
⋃

p∈predecessor(bk)

RCSOUTp , (3.4)

where predecessor(bk) is the set of all immediate predecessors of bk.
The RCS computation is composed of two phases: initialization and fixed-point computa-

tion. As illustrated with the example in Figure 3.2, the initialization phase starts from the entry

31



3.2. MEMORY ANALYSIS

Table 3.1: Computation of RCSIN for the motivational example
Basic Block RCSIN

Initialization

b0 {[>,>,>,>]}
b1 {[m0,>,>,>]}
b2 {[m0,>,>,>]}
b3 {[m0,m1,m2,m3], [m0,>,m2,m3]}

Fixed-Point Computation Results

b0 {[>,>,>,>]}
b1 {[m0,>,>,>], [m0,m1,m2,m3]}
b2 {[m0,>,>,>]}
b3 {[m0,m1,m2,m3], [m0,>,m2,m3]}

Table 3.2: Computation of RCSOUT for the motivational example
Basic Block RCSOUT

Initialization

b0 {[m0,>,>,>]}
b1 {[m0,m1,m2,m3]}
b2 {[m0,>,m2,m3]}
b3 {[m4,m1,m2,m3], [m4,>,m2,m3]}

Fixed-Point Computation Result

b0 {[m0,>,>,>]}
b1 {[m0,m1,m2,m3]}
b2 {[m0,>,m2,m3]}
b3 {[m4,m1,m2,m3], [m4,>,m2,m3]}

basic block b0 with RCSINb0 = {[>,>,>,>]}. The element is > since the analysis is inde-
pendent of the program executed before b0. According to (3.2), RCSOUTb0

is calculated to be
{[m0,>,>,>]}. Since b0 is the only immediate predessor of b2, RCSINb2 is equal to RCSOUTb0

based on (3.4). Due to the self loop, b1 has both itself and b0 as immediate predessors. However,
since RCSOUTb1

has not been initialized yet, RCSINb1 is equal to RCSOUTb0
. In the same man-

ner, RCSOUTb1
, RCSOUTb2

, RCSINb3 and RCSOUTb3
are computed, following the program flow as

shown both in Figure 3.2, Table 3.1 and Table 3.2. The initialization phase is completed once
all basic blocks have been visited.

The next phase is fixed-point computation. RCSIN and RCSOUT of all basic blocks are
computed iteratively with (3.4) and (3.2). This phase is terminated once the fixed point is
reached, i.e., RCSIN and RCSOUT of all basic blocks remain unchanged. The program RCS
is defined as the RCSOUT of the exit basic block, i.e., RCS = RCSOUTb3

. Results are reported
in Table 3.1 and Table 3.2.

The LCS computation can be done in a similar fashion. genbk is defined as the cache state
describing the first executed memory block in every cache line for the basic block bk. For the
sake of explanation, taking the same assumption when defining genbk for RCS computation that
b0 in Figure 3.2 executes m0 and then m4, instead of only m0, the first executed memory block
in c0 is m0. Therefore, genb0 is [m0,⊥,⊥,⊥]. LCSIN of a basic block bk is the LCS after bk is

32



3. Memory-Aware Automotive Control Systems Design

Table 3.3: Computation of LCSIN for the motivational example
Basic Block LCSIN

Initialization

b3 {[>,>,>,>]}
b2 {[m4,>,>,>]}
b1 {[m4,>,>,>]}
b0 {[m4,m1,m2,m3], [m4,>,m2,m3]}

Fixed-Point Computation Results

b3 {[>,>,>,>]}
b2 {[m4,>,>,>]}
b1 {[m4,>,>,>], [m4,m1,m2,m3]}
b0 {[m4,m1,m2,m3], [m4,>,m2,m3]}

Table 3.4: Computation of LCSOUT for the motivational example
Basic Block LCSOUT

Initialization

b3 {[m4,>,>,>]}
b2 {[m4,>,m2,m3]}
b1 {[m4,m1,m2,m3]}
b0 {[m0,m1,m2,m3], [m0,>,m2,m3]}

Fixed-Point Computation Results

b3 {[m4,>,>,>]}
b2 {[m4,>,m2,m3]}
b1 {[m4,m1,m2,m3]}
b0 {[m0,m1,m2,m3], [m0,>,m2,m3]}

executed and can be derived from

LCSINbk =
⋃

s∈successor(bk)

LCSOUTs , (3.5)

where successor(bk) is the set of all immediate successors of bk. LCSOUT of bk is the LCS
before bk is executed with

LCSOUTbk
= {T (bk, cs)|cs ∈ LCSINbk }. (3.6)

LCS computation also comprises two phases of initialization and fixed-point computation.
The only difference from the RCS computation is that the initialization phase starts from the
exit basic block and ends in the entry basic block. Detailed results for the motivational example
are reported in Table 3.3 and Table 3.4. The program LCS is defined to be the LCSOUT of the
entry basic block, i.e., LCS = LCSOUTb0

. It is noted that since the presented cache analysis
technique is based on the fixed-point computation over the program CFG, it inherently handles
loop structures.

3.2.3 Guaranteed WCET Reduction
Conceptually, the program RCS is the set of all possible cache states after the program finishes
execution by any execution path, and the program LCS is the set of all cache states, where

33



3.3. CONTROL TIMING PARAMETERS

each cache state contains memory blocks that may be firstly referenced after the program starts
execution, for any execution path to follow. Both the RCS and LCS could contain multiple
cache states. Each pair with one cache state cs from the program RCS and one cache state
cs′ from the program LCS represents one possible execution path between the two consecutive
executions. For any cache line ci in a pair, if cs[i] is equal to cs′[i] and they are not equal to >,
then there is certainly a hit and thus WCET reduction. Whether there is a hit for a particular
cache line can be determined by the functionH defined as follows,
∀cs ∈ CS, cs′ ∈ CS and ci ∈ CL, where i ∈ {0, 1, . . . , Nc − 1},

H(cs, cs′, ci) =

{
1 : if cs[i] = cs′[i] ∧ cs[i] 6= ⊥;
0 : otherwise.

(3.7)

The number of hits can be counted with the functionHT defined as,
∀cs ∈ CS and cs′ ∈ CS,

HT (cs, cs′) =
Nc−1∑
i=0

H(cs, cs′, ci). (3.8)

The guaranteed number of hits among all possibilities is calculated as

G(RCS,LCS) = min
cs∈RCS,cs′∈LCS

(HT (cs, cs′)). (3.9)

Given that the main memory access time and the cache access time are respectively tm and tc,
the guaranteed WCET reduction is computed as

Ēg = G(RCS,LCS)× (tm − tc) ≈ G(RCS,LCS)× tm, (3.10)

where the approximation can be taken if tc � tm.
For the motivational example, there are two cache states in the RCS (RCSOUTb3

) and two
cache states in the LCS (LCSOUTb0

). In total, there are four pairs and the number of hits are calcu-
lated to be 3, 2, 2 and 2 with (3.8). For instance,HT ([m4,m1,m2,m3], [m0,m1,m2,m3]) = 3.
Therefore, the guaranteed number of hits is 2 according to (3.9), no matter which path the pro-
gram takes. From (3.10), the guaranteed WCET reduction is 2 × (tm − tc), or approximately
2 × tm, when tc � tm. It is noted that this result is obtained from the small example used for
illustration. More WCET reduction is expected for larger realistic programs.

Using the memory analysis technique presented in this section to compute the guaranteed
WCET reduction due to consecutive executions of one program, together with standard WCET
analysis approaches to compute the default WCET of one program without considering the
execution order, the effective WCETs of a memory-aware sampling order can be calculated
and used to determine the control timing parameters, such as sampling periods and sensor-to-
actuator delays. This will be shown in the next section.

3.3 Control Timing Parameters
As discussed in Chapter 1, the overall control loop in an embedded implementation platform
performs three operations: measure, compute and actuate. The general timing model of a con-
trol loop is illustrated in Figure 3.3. The compute operation executes the control program, which

34



3. Memory-Aware Automotive Control Systems Design

Actual execution time E ≤ Ewc

Compute

Worst-case execution time Ewc = τsa

Measure Actuate Measure

Sampling period h

Figure 3.3: The general timing model of a control loop

takesE time units. The sampling period is denoted by h. The time interval between the measure
and the corresponding actuate operations in the same sampling period is the sensor-to-actuator
delay τ sa, which is equal to the WCET of the control program Ewc.

Two exapmle sampling orders are used to show the derivation of control timing parameters
from the WCET results. As illustrated in Figure 3.4, S1 is the conventional memory-oblivious
scheme and summarized as follows,

S1: C1(1)→ C2(1)→ C3(1)→ C1(2)→ C2(2)→ C3(2)→ C1(3)→ C2(3)→ C3(3)→ · · · .

There is no cache reuse in S1 between consecutive executions, considering that different con-
trol applications typically have different instructions to execute. In other words, when Ci(j)
starts execution, all instructions of Ci need to be brought into the cache from the flash memory.
Therefore,

Ewc
i (1) = Ewc

i (2) = · · · = Ewc
i , (3.11)

where Ewc
i (j) is the WCET of the jth execution for Ci. The WCET of the application Ci is

denoted by Ewc
i , since all executions of the same application have equal WCET. This can be

computed with standard WCET analysis techniques, as discussed before. Clearly, all control
applications run with a uniform sampling period of

h =
∑
i=1,2,3

Ewc
i . (3.12)

Moreover, for the sensor-to-actuator delay,

τ sai = Ewc
i . (3.13)

As illustrated in Figure 3.5, S2 is an example memory-aware sampling order and summa-
rized as,

S2: C1(1)→ C1(2)→ C1(3)→ C2(1)→ C2(2)→ C2(3)→ C3(1)→ C3(2)→ C3(3)→ · · · .

The effective WCET taking into account the cache reuse between consecutive executions is
denoted as Ēwc

i (j). From the above discussion,
∀i ∈ {1, 2, 3},

Ēwc
i (1) = Ewc

i , (3.14)

since there is no cache reuse from the previous program for the first execution of every appli-
cation Ci(1). Ēwc

i (2) and Ēwc
i (3) are shorter than Ēwc

i (1) due to cache reuse. The amounts of

35



3.3. CONTROL TIMING PARAMETERS

h = Ewc
1 + Ewc

2 + Ewc
3

C1(1) C2(1) C3(1) C1(2) C2(2) C3(2)

Meas.1
Actu.1 Actu.2 Actu.3

Meas.2 Meas.3
Ewc

1 Ewc
2 Ewc

3

τsa1 = Ewc
1

Figure 3.4: In S1, there is no cache reuse between consecutive executions. The WCET of all
executions for the same applicationEwc

i remains constant. The sampling period of every control
application h is uniform under this scheme. The sensor-to-actuator delay τ sai is equal to Ewc

i .

cache reuse are the same for Ci(2) and Ci(3) in the worst case. Denoting the guaranteed WCET
reduction as Ēg

i ,
∀i ∈ {1, 2, 3},

Ēwc
i (2) = Ēwc

i (3) = Ēwc
i (1)− Ēg

i . (3.15)

From these varying WCETs, the sampling periods of all three applications can be calculated.
Taking C1 as an example, there are three sampling periods h1(1), h1(2) and h1(3), which repeat
themselves periodically,

h1(1) = Ēwc
1 (1), h1(2) = Ēwc

1 (2), h1(3) = Ēwc
1 (3) + ∆, (3.16)

where ∆ is computed as
∆ =

∑
i=2,3

∑
j=1,2,3

Ēwc
i (j). (3.17)

Similar derivation can be done for C2 and C3. The average sampling period of an application
havg is

havg =

∑
i=1,2,3

∑
j=1,2,3

Ēwc
i (j)

3
< h. (3.18)

According to (3.14) and (3.15),

havg <

∑
i=1,2,3

3× Ewc
i

3
. (3.19)

From (3.12),
havg < h. (3.20)

Moreover, the corresponding sensor-to-actuator delay τ sai (j) also varies with cache reuse as
∀i ∈ {1, 2, 3},

τ sai (1) = hi(1) = Ēwc
i (1), τ sai (2) = hi(2) = Ēwc

i (2), τ sai (3) = Ēwc
i (3). (3.21)

As all control timing parameters have been derived, it can be seen that the sampling period
hi(j) of a control application is non-uniform for the memory-aware scheme. The average sam-
pling period of S2 is shorter than the uniform sampling period of S1 as shown in (3.18), due to

36



3. Memory-Aware Automotive Control Systems Design

∆ =
∑

i=2,3

∑
j=1,2,3

Ēwc
i (j)

C1(1) C1(2) C1(3) C2(1) C2(2) C2(3) C3(1) C3(2) C3(3) C1(4) C1(5) C1(6)

τsa1 (j): Ēwc
1 (1) Ēwc

1 (2) Ēwc
1 (3)

h1(j): Ēwc
1 (1) Ēwc

1 (2) Ēwc
1 (3) + ∆ Ēwc

1 (1)

Figure 3.5: In S2, the WCETs of the same control application vary, due to cache reuse. The
sampling period for a control application is non-uniform.

the WCET reduction resulting from cache reuse. The sensor-to-actuator delay τ sai (j) varies as
shown in (3.21). The next task is developing a controller design method to exploit shortened
non-uniform sampling periods and achieve better control performance, which is reported in the
next section. The controller design method for the memory-oblivious uniform sampling scheme
S1 is also presented.

3.4 Controller Design

3.4.1 Controller Design with Uniform Sampling
As can be derived from (3.12) and (3.13), for an application Ci under the conventional memory-
oblivious sampling scheme S1, the constant sampling period h is larger than the constant sensor-
to-actuator delay τ sai . Therefore, the discrete-time system in (2.9) becomes

x[k + 1] = Adx[k] +B1(τ sai )u[k − 1] +B0(τ sai )u[k], (3.22)

where

B0(τ sai ) =

∫ h−τsai

0

eAtdt ·B, B1(τ sai ) =

∫ h

h−τsai
eAtdt ·B. (3.23)

In (3.22), it is assumed that u[−1] = 0 for k = 0. Clearly, the system dynamics depends on
both u[k] and u[k − 1]. Thus, a new system state is defined as z[k] =

[
x[k] u[k − 1]

]T and
the transformed system becomes

z[k + 1] = AS1z[k] +BS1u[k],

y[k] = CS1z[k],
(3.24)

where

AS1 =

[
Ad B1(τ sai )
0 0

]
, BS1 =

[
B0(τ sai ) I

]T
, CS1 =

[
C 0

]
. (3.25)

AS1 is a square matrix.
Next, the following input signal is applied,

u[k] = KS1z[k] + FS1r. (3.26)

37



3.4. CONTROLLER DESIGN

The closed-loop system is then

z[k + 1] = (AS1 +BS1KS1)z[k] +BS1FS1r. (3.27)

In order to find the poles resulting in the best control performance with the pole-placement
technique, a constrained optimization problem is formulated. Decision variables are the con-
trollable closed-loop system poles, i.e., the controllable eigenvalues of (AS1 + BS1KS1). The
optimization objective is the control performance. One constraint is that the closed-loop system
is stable, i.e., the decision variables have absolute values of less than unity. Another constraint
is the input saturation. As discussed in Chapter 2, constraints on the overshoot and steady-state
accuracy are also considered. The method to solve this challenging non-convex optimization
problem is elaborated later in this section. After the poles are placed, the feedback gain KS1

is then calculated according to (2.22). The feedforward gain FS1 is computed by (2.23). As
long as (AS1, BS1) is stabilizable, i.e., uncontrollable poles have absolute values of less than
unity, the above design is feasible. This design method is adapted from sampled-data systems
literature and is suitable for the systems with known sensor-to-actuator delay shorter than the
sampling period [BK08].

3.4.2 Controller Design with Non-Uniform Sampling
For the convenient discussion, the notation of sampling orders is first defined. The number of
consecutive executions for any application Ci, where i ∈ {1, 2, . . . , n}, in one period is de-
noted by mi. Then, the periodically repeating sampling order is denoted by (m1,m2, . . . ,mn).
For the ease of understanding, a simple sampling order (2, 2, 2) of three control applications
is considered in illustrating two controller design techniques under non-uniform sampling —
one aims for performance optimality and the other targets better scalability on the number of
consecutive executions mi. Generalization to any periodic sampling order is straightforward
and briefly discussed.

Holistic design: The controller for an application Ci with l system states can be designed in
a holistic way that results in the optimal control performance. As shown in Figure 3.6, there
are two sampling periods hi(1) and hi(2), which are repeated periodically. The two switching
systems are

x[k + 1] = A1x[k] +B1u[k],

x[k] = A2x[k − 1] +B1
2u[k − 1] +B2

2u[k],
(3.28)

where B1
2 and B2

2 depend on the second sampling period hi(2) and the sensor-to-actuator delay
of the second execution τ sai (2). The system output is y[k] = Cx[k]. It should be noted that x[k]
is influenced by both u[k − 1] and u[k], since τ sai (2) is smaller than hi(2), i.e., u[k] is applied
before the sensing of x[k].

Introducing a new state z[k] =
[
x[k] u[k]

]T , the system becomes

z[k + 1] = Ahol
1 z[k] +Bhol

1 u[k + 1],

z[k] = Ahol
2 z[k − 1] +Bhol

2 u[k],
(3.29)

38



3. Memory-Aware Automotive Control Systems Design

hi(1) hi(2) hi(1) hi(2)

tk-2 tk-1 tk tk+1 tk+2Time:

x[k-2] x[k-1] x[k] x[k+1] x[k+2]Measure:

u[k-1] u[k] u[k+1] u[k+2]Actuate:

K1 K2 K1 K2Gain:

Figure 3.6: Periodically switched sampling periods for Ci in the schedule (2, 2, 2)

where

Ahol
1 =

[
A1 B1

0 0

]
, Bhol

1 =

[
0
I

]
, Ahol

2 =

[
A2 B1

2

0 0

]
, Bhol

2 =

[
B2

2

I

]
. (3.30)

Both Ahol
1 and Ahol

2 are square matrices. The system output is y[k] =
[
C 0

]
z[k].

There are two control inputs that need to be designed within one period,

u[k + 1] = K1z[k] + F1r,

u[k] = K2x[k − 1] + F2r.
(3.31)

The closed-loop system dynamics are then,

z[k + 1] = (Ahol
1 +Bhol

1 K1)z[k] +Bhol
1 F1r,

z[k] = (Ahol
2 +Bhol

2 K2)z[k − 1] +Bhol
2 F2r.

(3.32)

The number of poles to place, i.e., the number of eigenvalues in (Ahol
1 + Bhol

1 K1) and
(Ahol

2 + Bhol
2 K2), is 2l + 2. This is a constrained non-convex non-linear optimization prob-

lem. The objective to maximize is the control performance of Ci. Decision variables are the
poles and thus the number of dimensions in the decision space is 2l+ 2. The technique to solve
this pole-placement optimization problem is presented later in this section. Once poles are
placed, K1 and K2 are computed with (2.22). Then, F1 and F2 can be calculated as per (2.23).
With this holistic method, both feedback gains are designed together taking all the information
into account. The maximum control performance can be obtained if the optimization technique
returns the optimal poles. However, when Ci is consecutively executed mi times in a sampling
order, the number of dimensions in the decision space becomes mi(l + 1), which compromises
the scalability.

Scalable design: Since there are two control inputs resulting from two consecutive executions
within one period for Ci in the sampling order (2, 2, 2), the controller can be designed for each
of them separately to achieve better scalability. Considering the first execution and ignoring the
second1, without u[k] and u[k + 2], as illustrated in Figure 3.7, the system dynamics becomes,

x[k] = A0x[k − 2] +B1
0u[k − 3] +B2

0u[k − 1]. (3.33)

1When the number of consecutive executions is larger than 2, similarly only the first execution is considered
and all the rest are ignored. Later, the following executions are brought back one by one as described in the next
paragraph.

39



3.4. CONTROLLER DESIGN

hi hi

tk-2 tk-1 tk tk+1 tk+2Time:

x[k-2] x[k-1] x[k] x[k+1] x[k+2]Measure:

u[k-1] u[k+1]Actuate:

K1 K1Gain:

Figure 3.7: Timing of the scalable controller design technique when only the first execution is
considered in a period

The system output remains unchanged.
Introducing a new state v[k] =

[
x[k] u[k − 1]

]T ,

v[k] = Ascav[k − 2] +Bscau[k − 1], (3.34)

where

Asca =

[
A0 B1

0

0 0

]
, Bsca =

[
B2

0

I

]
. (3.35)

The system output is y[k] =
[
C 0

]
v[k].

The control input is,
u[k − 1] = K1v[k − 2] + F1r, (3.36)

which closes the loop and thus the system dynamics becomes,

v[k] = (Asca +BscaK1)v[k − 2] +BscaF1r. (3.37)

The number of poles, i.e., the number of eigenvalues in (Asca + BscaK1) to place is l + 1.
The optimization problem to solve is similar to the one in the holistic method, yet the number
of dimensions in the decision space is l+1. Once poles are placed, K1 and F1 can be calculated
as per (2.22) and (2.23).

Given K1 and F1 for u[k − 1] (u[k + 1]) as calculated, the second execution can be brought
back, taking u[k] (u[k + 2]) into account. Considering the accurate system dynamics is (3.32),
only the eigenvalues of (Ahol

2 +Bhol
2 K2) need to be determined. Therefore, the number of poles

to place is l + 1, which is also the number of dimensions in the decision space. After the
pole-placement, K2 and F2 can be computed accordingly. When Ci is consecutively executed
more than twice in a sampling order, i.e., mi > 2, following the above process, the third and
following executions can be brought back one by one. Such an optimization problem with
l + 1-dimensional decision space needs to be solved mi times to obtain the maximum control
performance. Therefore, the advantage of this controller design method is the scalability on mi.
The disadvantage is that the poles might not be optimal in maximizing the control performance,
since control inputs are not designed together but considered separately. Specifically, when
designing K1 and F1 for u[k − 1], there is not all the information (the second execution and
u[k] ignored). Then, K2 and F2 for u[k] are designed based on K1 and F1. It is important to
note that the stability of the overall closed-loop dynamics is still guaranteed while these gains
are not necessarily optimal in the control performance.

40



3. Memory-Aware Automotive Control Systems Design

3.4.3 Pole-Placement with Hybrid PSO
As discussed in Chapter 2, PSO is a popular method to solve non-convex optimization prob-
lems and can be used in locating the poles that maximize the control performance. One major
issue with the conventional PSO is its tendency for fast and premature convergence before the
global optimum is found, since its search is highly directional [SM09]. This problem gets more
severe as the number of dimensions in the decision space grows larger. A technique is proposed
in [YS05], in which the search is led by the opposite direction of the worst point that has been
visited. The advantage is that the decision space can be better explored, while the search is still
conducted in the direction where good points (not necessarily the best points) are expected to
be located. However, the drawback is that particles may have difficulty to converge.

In this thesis, a hybrid PSO method, which is able to well explore the decision space and
converge to local optima, is proposed. The entire search process is divided into two phases.
Phase I includes the first k iterations. The velocity update equation is as follows,

Vnew = α0Vcurrent + α1rand(0, 1)(Plbest − Pcurrent) + α2rand(0, 1)(Pgbest − Pcurrent)

+ α3rand(0, 1)(Plworst − Pcurrent) + α4rand(0, 1)(Pgworst − Pcurrent),
(3.38)

where Plworst is the worst point of this particle and Pgworst is the worst point of all particles.
The parameters α3 and α4 are larger than α1 and α2. Phase I tries to explore the decision space
while avoiding premature convergence. Phase II includes the rest iterations. The velocity update
equation is

Vnew = α0Vcurrent + α3rand(0, 1)(Plbest − Pcurrent) + α4rand(0, 1)(Pgbest − Pcurrent)

+ α1rand(0, 1)(Plworst − Pcurrent) + α2rand(0, 1)(Pgworst − Pcurrent).
(3.39)

This phase helps all particles to converge. The number k can be determined empirically.
The numerical example in (2.45) with a different set of initial particles is used to show the

difference between the proposed hybrid PSO technique and the conventional one. Results are
shown in Figure 3.8 and 3.9. In the conventional PSO, five particles are randomly initialized at
p1, p2, p3, p4 and p5. After 13 iterations, all five particles converge to points around the local
optimum pl. The path showing how the global best point evolves iteratively is drawn, with
certain points that are too close to others omitted for better illustration. It can be seen that the
search is highly directed towards the global best point in each iteration. The global optimum
is not found and particles quickly converge to the local optimum before exploring the decision
space sufficiently enough.

In the proposed hybrid PSO method, the same initial points are used. After 22 iterations,
all five particles converge to points around the global optimum pg. Both paths showing how the
global best and worst points evolve iteratively are drawn, with certain points too close to others
omitted. The search is driven by both the best and worst points. The decision space is better
explored and the global optimum is found. It is noted that the proposed method takes more
iterations for all particles to converge. This numerical example is meant to show the difference
between the hybrid PSO method and the conventional one. In the experiments later shown in
this chapter, equal computational efforts are made for fair comparison. That is, there will be
more particles for the conventional method.

41



3.4. CONTROLLER DESIGN

−2 −1 0
1

2 −2
−1

0
1

2
0

1

2

p1

p2p3
p4

p5

pl

β1

β2

ϕ

Initialized points Converged points Global best points in iterations

Figure 3.8: With the conventional particle swarm optimization method, five particles are ran-
domly initilized and converge to the local optimum pl.

−2 −1 0
1

2 −2
−1

0
1

2
0

1

2

p1

p2p3
p4

p5

pg

β1

β2

ϕ

Initialized points Converged points
Global best points in iterations Global worst points in iterations

Figure 3.9: With the novel hybrid particle swarm optimization method, five particles are ran-
domly initialized and converge to the global optimum pg.

42



3. Memory-Aware Automotive Control Systems Design

1 2 3 4 5

2

3

4

5

6

Number of Consecutive Executions

Se
ttl

in
g

Ti
m

e
[m

s]

Scalable design
Holistic design

Figure 3.10: Comparison of two design methods in the achieved optimal control performance

3.4.4 Comparison of Controller Design Methods

With the optimization technique presented above, the two controller design methods described
in Section 3.4.2 can be evaluated by maximizing the control performance of a double integrator
presented in (2.24). The initial state is

[
0 0

]
and the reference value r is 0.3. The comparison

between these two controller design methods in the achieved optimal control performance as the
number of consecutive executions increases from 1 to 5 is shown in Figure 3.10. The sampling
order (m1,m2,m3) with three applications is considered and it is assumed that m1 = m2 =
m3. The WCET of the first execution is assumed to be 2µs and the WCET of the following
consecutive executions is assumed to be 1µs. The control performance is quantified by the
settling time. Although the PSO technique does not guarantee the optimal solution, these results
of settling time in Figure 3.10 fulfill the following two criteria:

• all particles have converged;

• when the number of particles is increased by 100 times, the result remains unchanged.

The holistic method is able to achieve better control performance.
The comparison between these two controller design methods in computational efforts,

quantified by the computation time taken in the optimization process maximizing the control
performance, is shown in Figure 3.11. The experiments are done with an Intel i5 processor op-
erating at 2.6GHz and with 4GB RAM. It can be seen that the scalable method indeed exhibits
excellent scalability on the number of consecutive executions. The computational time exceeds
20 minutes for the holistic method, when considering the sampling order (5, 5, 5). The num-
ber of consecutive executions mi is typically not large, since there is often a constraint on the
maximum allowed idle time of an application, in order to prevent the system from being driven
to an unsafe state by perturbations. Since the control performance maximization for a given
sampling order is an offline task, the computational efforts required by the holistic method are
often acceptable. However, when mi is large, evaluating the control performance of one sam-
pling order could take long time with the holistic method. When the number of applications n is
large, there can be too many sampling orders requiring control performance evaluations, since
the number of sampling orders is exponential on n. In both situations, the scalable method can
be applied to reduce the computation time to a reasonable level.

43



3.5. OPTIMAL SAMPLING ORDER COMPUTATION

1 2 3 4 5

0

500

1,000

1,500

Number of Consecutive Executions

C
om

pu
ta

tio
n

Ti
m

e
[s

] Scalable design
Holistic design

Figure 3.11: Comparison of two design methods in computional efforts

3.5 Optimal Sampling Order Computation
After presenting the method to evaluate the control performance of one application, the overall
control performance of one sampling order can be defined as a weighted sum of application
control performances. When the settling time ts is used as the metric to quantify the control
performance J , for an application Ci,

Ji = 1− ts,i
t0s,i
, (3.40)

where t0s,i is the requirement of the settling time and serves as the normalization reference. Since
both ts,i and t0s,i are positive numbers, Ji is less than 1. The overall control performance is then,

Jall =
n∑
i=1

wiJi =
n∑
i=1

wi(1−
ts,i
t0s,i

), (3.41)

where wi is the weight of the application Ci and,

n∑
i=1

wi = 1. (3.42)

The next stage is to find the optimal one among all sampling orders. Following the assump-
tion that there are n applications, the formulation is

max
{m1,m2,...,mn}

Jall

subject to

{mi ∈ N+|i ∈ {1, 2, . . . , n}}.

(3.43)

The objective to optimize is the overall control performance.
Besides all the constraints on individual applications that have been discussed, there is a

constraint on the timing of the sampling order that for an application Ci, the maximum allowed
idle time is tidle

i to prevent the application from being driven to an unsafe state by perturbations.
The idle time is defined as the interval between two consecutive sampling instants and thus

44



3. Memory-Aware Automotive Control Systems Design

Given: Objective to optimize — Overall control performance
Decision variables — {mi ∈ N+|i ∈ {1, 2, . . . , n}}

Initialization: A point in the decision space (i.e., a schedule) is randomly
initilized as pc = (m0

1,m
0
2, . . . ,m

0
n).

Search Direction: Models of certain orders (mostly linear or quadratic) are
built to calculate the gradients of all dimensions in the deicision space at pc.
When the gradient of a direction is not available due to schedule infeasibility,
it is taken as −∞. The direction with the largest gradient is selected.

Step size: Since the step size is fixed to be 1, the closest point to pc along
the selected direction is pf .

Termination condition: Does the schedule corresponding to pf have better
overall control performance than pc?

Output: The search is terminated. The optimum is pc.

pc = pf

No

Yes

Figure 3.12: The gradient-based search algorithm for discrete decision space

equal to the sampling period. Denoting hmax
i to be the longest sampling period of Ci in a periodic

sampling order,
∀i ∈ {1, 2, . . . , n},

hmax
i ≤ tidle

i . (3.44)

The number of dimensions in the decision space is equal to n. This is a nonlinear dis-
crete optimization problem and the simplest method to solve it is exhaustive search. Denoting
the number of values that mi can take with |mi|, the total number of schedules to evaluate is
n∏
i=1

|mi|. Considering that the overall control performance evaluation is computationally inten-

sive, a more efficient method than brute force is required. One popular class of techniques to
solve nonlinear discrete optimization problems is based on the continuation approach. The dis-
crete problem is transformed to a continuous problem, which can be solved by the modified
Newton method [Ng02]. The requirement is that the objective function can be continuously
evaluated. However, the overall control performance can only be evaluated discretely. For
example, a sampling order like (2.5, 3.5, 4.8) does not have any practical sense and there is
no overall control performance associated with it. Therefore, the continuation approach is not
suitable in this context.

A gradient-based search algorithm is proposed to find the optimal sampling order efficiently.
It is similar to SQP, yet applied in the discrete decision space. As discussed in Chapter 2, in
SQP, an approximate quadratic model is built to derive the search direction. Building the n-
dimensional quadratic model is not suitable in this context for two reasons. First, it is very likely
that the direction computed from the quadratic model is not available in the discrete decision
space. Second, in order to build the quadratic model in the n-dimensional decision space, the

45



3.5. OPTIMAL SAMPLING ORDER COMPUTATION

3 3.5 4 4.5 5 5.5 6 3

4

5

6

40

60

80

(3,4)

(4,3) (4,4) (5,4)

(4,5)

(5,5)

(6,6)

(6,5)

η1

η2

ρ

Figure 3.13: A motivational example with two decision variables to illustrate the gradient-based
search algorithm. The global optimum is at (η1 = 5, η2 = 5).

overall control performance needs to be evaluated 2n+
(
n
2

)
times, which is non-polynomial on

the number of applications n.

In the proposed approach, for every dimension of the decision space, one model is built,
which can be of any order depending on the characteristics of applications. The gradient of each
dimension can then be calculated. The direction with the largest positive gradient is selected.
For instance, besides the current point whose overall control performance is already known, one
quadratic model requires evaluating the overall control performance of two points (one on each
side) of the current point. Since there are n models, the search direction determination process
takes 2n evaluations of overall control performance, at the maximum. If some overall control
performance values have already been computed, this number can be smaller than 2n. The
step size is fixed to be 1. The termination condition is that the closest point along the selected
direction does not give any improvement of the objective value. The current point is then the
optimum. This gradient-based search algorithm for discrete decision space is summarized in
Figure 3.12 and illustrated with a motivational example in Figure 3.13.

In this example, there are two integer decision variables 3 ≤ η1 ≤ 6 and 3 ≤ η2 ≤ 6. The
objective to maximize is ρ. The starting point is randomly initialized at (η1 = 4, η2 = 4). The
quadratic model is used to calculate the search direction. Since the number of dimensions in
the decision space is 2, two quadratic models are built. One is from the points (3, 4), (4, 4)
and (5, 4) along the dimension of η1. The other is from the points (4, 3), (4, 4) and (4, 5) along
the dimension of η2. Comparing the two gradients at (4, 4) of these two quadratic models, the
one along the positive direction of η2 is larger and thus the move is in this direction by 1 to
(4, 5). With the same process, the next point after (4, 5) is computed to be (5, 5), from which
no improvement can be achieved in any direction. Therefore, the search is terminated and the
optimum point is (5, 5), which matches the result obtained from the exhaustive search.

46



3. Memory-Aware Automotive Control Systems Design

Table 3.5: Experimental configuration for memory analysis
Clock Frequency Number of Cache Lines Cache Line Size Hit/Miss Penalty

20 MHz 128 16 Byte 1/100 cycle

The gradient-based search algorithm does not guarantee finding the global optimum. There
are two methods to improve the search performance with a trade-off in computational efforts.
First, parallel searches can be conducted. As the number of initialized points is increased, the
chance that the global optimum can be found rises. Second, the termination condition can
be modified to avoid being trapped at the local optimum. For instance, when the randomly
initialized point is at (6, 6) in Figure 3.13, the negative η2 direction has the largest gradient.
However, the next point along this direction (6, 5) does not have a better objective value than
(6, 6). It is noted that the linear model is used to calculate the gradient, since (6, 6) is on the
boundary and neighbor points only exist on one side. The search will terminate at the local
optimum (6, 6) and fails to find the global optimum (5, 5).

If the improvement is not necessary to continue the search process and slight deterioration
is tolerated, it is likely that the search will not be trapped at a local optimum. For example, the
tolerance threshold γ is set to be 10% and the rule that the search does not revisit any point is
enforced. From (6, 6), the next point is (6, 5), since the objective value of (6, 5) is larger than
0.9 multiplying the objective value of (6, 6). The next point after (6, 5) is (5, 5). It can be seen
that the search is not trapped at the local optimum (6, 6) anymore and finds the global optimum
(5, 5). Although a larger γ increases the chance of getting out of local optima, there is also a
higher risk that the search will not terminate at the global optimum. Therefore, the tolerance
threshold is set according to the objective space.

3.6 Experimental Results

In order to evaluate the proposed memory-aware automotive control systems design, three con-
trol applications are considered: C1, C2 and C3. C1 is position control of a servo motor that can
be used, e.g., in a steer-by-wire system [Yih05]. Details can be found in Section B. C2 is speed
control of a DC motor that can be used in electric vehicle cruise control [CPG+14]. Details are
presented in Section C. C3 is control of the EWB system developed by Siemens as a brake-by-
wire solution [FRBW+07], which has been discussed in Chapter 2 and elaborated in Section A.
All three control applications run on the same processor.

As shown in Table 3.5, the processor clock frequency is 20MHz. The cache is set to have
128 cache lines and each cache line is 16 bytes. When there is a cache hit, it takes 1 clock cycle
to fetch the instruction and when there is a cache miss, it takes 100 clock cycles. WCET results
with and without cache reuse for all three applications are shown in Table 3.6. It is noted that
the WCET reduction is guaranteed in all cases.

The two example sampling orders S1 and S2 in Section 3.3 are taken to illustrate the deriva-
tion of control timing parameters. Based on standard WCET analysis techniques applied to
the control programs, the WCETs of all three applications without any cache reuse in S1 are

47



3.6. EXPERIMENTAL RESULTS

computed to be

Ewc
1 = 907.55µs, Ewc

2 = 645.25µs, Ewc
3 = 749.15µs,

Which are summarized in Table 3.6. Thus, the uniform sampling period as in (3.12) is

h =
∑
i=1,2,3

Ewc
i = 2301.95µs.

The constant sensor-to-actuator delay τ sai is given by (3.13),
∀i ∈ {1, 2, 3},

τ sai = Ewc
i .

In S2, according to (3.14),
∀i ∈ {1, 2, 3},

Ēwc
i (1) = Ewc

i .

Based on the memory analysis approach presented in Section 3.2, the guaranteed numbers of
cache hits for the three applications are

G1 = 92, G2 = 95, G3 = 104.

From the memory configuration in Table 3.5, the cache access time is 1 processor clock cycle,
i.e., tc = 0.05µs, and the main memory access time is 100 processor clock cycles, i.e., tm =
5µs. Therefore, according to (3.10), the guaranteed WCET reduction due to cache reuse for C1

can be calculated as

Ēg
1 = G1 × (tm − tc) = 92× (5− 0.05)µs = 455.4µs.

Similarly,
Ēg

2 = 470.25µs, Ēg
3 = 514.8µs.

According to (3.15), the reduced effective WCETs are
∀j ∈ {2, 3},

Ēwc
1 (j) = 452.15µs, Ēwc

2 (j) = 175µs, Ēwc
3 (j) = 234.35µs.

These are summarized in Table 3.6. Then the sampling periods can be obtained. Taking C1 as
an example, using (3.16) and (3.17),

h1(1) = 907.55µs, h1(2) = 452.15µs, h1(3) = 2665.25µs.

As in (3.18), the average sampling period of all three applications in S2 is calculated to be
1341.65µs with 42% of reduction compared to the uniform sampling period in S1. The corre-
sponding sensor-to-actuator delay τ sai (j) is obtained with (3.21).

The weights, settling deadlines and maximum allowed idle times of all three applications are
presented in Table 3.7. The holistic design method and the hybrid PSO are used to evaluate the
overall control performance of one sampling order. The process of finding the optimal schedule
with the gradient-based search algorithm is illustrated in Figure 3.14. Two sampling orders are
initialized as (4, 2, 2) (C1 is consecutively executed 4 times, followed by C2 twice and C3 twice)

48



3. Memory-Aware Automotive Control Systems Design

Table 3.6: WCET results with and without cache reuse for all three control applications. The
WCET reduction is guaranteed in all cases.

Application WCET w/o Cache Reuse WCET Reduction WCET w/ Cache Reuse
C1 907.55 µs 455.40 µs 452.15 µs
C2 645.25 µs 470.25 µs 175.00 µs
C3 749.15 µs 514.80 µs 234.35 µs

Table 3.7: Application parameters
Application C1 C2 C3

Weight (wi) 0.4 0.4 0.2
Settling deadline [ms] (t0s,i) 45 20 17.5

Maximum allowed idle time [ms] (tidle
i ) 3.4 3.9 3.5

and (1, 2, 1), with overall control performances 0.166 and 0.107, respectively. From (4, 2, 2),
there are three dimensions and four directions to go, since (5, 2, 2) and (4, 2, 1) are infeasible
sampling orders. Infeasiblity results from violation of constraints that have been discussed.
Taking the sampling order (5, 2, 2) as an example, the longest sampling period hmax

3 is 3.77 ms,
based on the WCET results shown in Table 3.6. The constraint on the timing of the sampling
order in (3.44) is violated, since hmax

3 > tidle
3 as shown in Table 3.7. The positive direction

along m3 has the largest gradient and thus the move is from (4, 2, 2) to (4, 2, 3). Following the
same process, the move is made from (4, 2, 3) to (3, 2, 3). At (3, 2, 3), no improvement can
be achieved in any direction and thus the search is terminated. The sampling order (3, 2, 3) is
indeed the global optimum, verified by the exhaustive search. The overall control performance
is 0.195.

The other search path starting from (1, 2, 1) moves to (1, 2, 2) and then (2, 2, 2). At (2, 2, 2),
the positive direction along m3 gives the largest gradient. However, the overall control perfor-
mance of (2, 2, 3) is smaller than that of (2, 2, 2). Thus, the search will be terminated, trapped
at the local optimum without reaching the global optimum (3, 2, 3). As discussed before, the
tolerance threshold γ can be used to address this issue. In this case , γ is set to be 6%. Since
the overall control performance of (2, 2, 3) (0.137) is better than that of (2, 2, 2) multiplied with
0.94 (0.145 × 0.94 = 0.136), the search continues and moves to (2, 2, 3). Following that, the
global optimum (3, 2, 3) is reached. It is noted that the positive direction along m1 gives the
largest gradient at (3, 2, 3). Since the overall control performance of (4, 2, 3) (0.181) is less
than that of (3, 2, 3) multiplied with 0.94 (0.195×0.94 = 0.183), the search is terminated at the
global optimum.

Comparison of the system output response between the conventional memory-oblivious
sampling order S1 and the optimal memory-aware sampling order (3, 2, 3) for all the three con-
trol applications is presented in Figure 3.15, 3.16 and 3.17. Comparison of control performances
quantified by the settling times between the conventional memory-oblivious sampling order S1
and the optimal memory-aware sampling order (3, 2, 3) for all the three control applications is
reported in Table 3.8. It can be seen that with the memory-aware automotive control systems

49



3.6. EXPERIMENTAL RESULTS

1
2

3
4

5 1

2

3

1

2

3

(3,2,3,0.195)
(4,2,3,0.181)

(4,2,2,0.166)

(2,2,2,0.145)

(2,2,3,0.137)

(2,2,1,0.134)
(1,2,1,0.107)

(4,2,1)

(5,2,2)

(4,3,2,0.165)

(4,1,2,0.165)

(3,2,2,0.134)

(2,3,2,0.124)

(2,1,2,0.095)

(1,2,2,0.124)

m1

m2

m
3

Figure 3.14: The gradient-based search to find the optimal sampling order of the automo-
tive control systems case study with two initial sampling orders. Each point is denoted with
(m1,m2,m3, Jall). The point size indicates the overall control performance of the sampling or-
der, yet not to scale. Empty circles represent infeasible sampling orders. Only selected feasible
sampling orders are shown.

0 1 2 3 4 5 6

·10−2

0

0.1

0.2

0.3

Time [s]

Sy
st

em
O

ut
pu

ty
[k
]

[r
ad

]

Memory-Oblivious S1
Optimal Memory-Aware (3, 2, 3)

Figure 3.15: Control system output of the memory-oblivious and optimal memory-aware sam-
pling orders for the control application C1

design, the control performances can be improved by 10 − 20%, which is quite significant for
the cost-sensitive domains.

In this case study, there are 76 sampling orders to evaluate when the brute force is deployed
to find the optimal sampling order, including 74 feasible ones and 2 infeasible ones violat-

50



3. Memory-Aware Automotive Control Systems Design

0 1 2 3 4 5 6

·10−2

80

100

120

Time [s]

Sy
st

em
O

ut
pu

ty
[k
]

[r
ou

nd
/s

]

Memory-Oblivious S1
Optimal Memory-Aware (3, 2, 3)

Figure 3.16: Control system output of the memory-oblivious and optimal memory-aware sam-
pling orders for the control application C2

0 1 2 3 4 5 6

·10−2

0

1,000

2,000

Time [s]

Sy
st

em
O

ut
pu

ty
[k
]

[N
]

Memory-Oblivious S1
Optimal Memory-Aware (3, 2, 3)

Figure 3.17: Control system output of the memory-oblivious and optimal memory-aware sam-
pling orders for the control application C3

ing the requirement on the settling time, which are known only after the control performance
evaluation. Using the computer with an Intel i5 processor operating at 2.6GHz and with 4GB
RAM, evaluating the application control performance takes from seconds (when mi = 1) to
hours (when mi > 5). Completing the exhaustive search of all 76 sampling orders costs days.
With the proposed gradient-based search algorithm, the search starting from (4, 2, 2) evaluates
9 sampling orders, which is 11.8% of the 76 schedules using brute force. The search starting
from (1, 2, 1) evaluates 18 sampling orders. Furthermore, the searches starting from all feasible
sampling orders are able to reach the global optimum, with the tolerance threshold of 6%.

The control performances are also evaluated with the conventional PSO method for com-
parison to the hybrid PSO technique. For all feasible sampling orders, the overall control per-
formance obtained by the hybrid PSO is at least not worse than that from the conventional PSO.
Comparison for the optimal sampling order (3, 2, 3) is shown in Table 3.9. It is noted that the
hybrid technique takes more iterations to converge with the same number of particles. For fair

51



3.7. REMARKS

Table 3.8: Control performance comparison for all three applications between the conventional
memory-oblivious sampling order S1 and the optimal memory-aware sampling order (3, 2, 3)

Application C1 C2 C3

Settling time for S1 [ms] 43.2 17.7 17.3
Settling time for (3, 2, 3) [ms] 37.7 15.3 14.4

Control performance improvement of (3, 2, 3) compared to S1 [%] 13 14 17

Table 3.9: Control performance comparison for the optimal sampling order (3, 2, 3) between
the conventional and hybrid PSO

PSO C1 settling time J1 C2 settling time J2 C3 settling time J3 Jall

Conventional 38.74 ms 0.139 15.29 ms 0.236 16.11 ms 0.079 0.166
Hybrid 37.68 ms 0.163 15.28 ms 0.236 14.44 ms 0.175 0.195

comparison, the computational efforts are equalized by increasing the number of particles in the
conventional PSO method. It can be seen that the hybrid PSO technique achieves better control
performances of all three applications for the optimal sampling order (3, 2, 3).

Using the overall control performances obtained from the conventional PSO method, searches
from certain starting sampling orders might not be able to reach the optimal one (3, 2, 3). One
example is shown in Figure 3.18. The initial sampling order is (4, 2, 2), from which there
are three dimensions and four directions to go, since (5, 2, 2) and (4, 2, 1) are infeasible sam-
pling orders. The positive direction along m3 has the largest gradient. However, the over-
all control performance of (4, 2, 3) (0.152) is worse than that of (4, 2, 2) multiplied with 0.94
(0.163 × 0.94 = 0.153). Therefore, the search will not continue and (4, 2, 2) becomes the
optimal sampling order.

3.7 Remarks
This chapter proposes techniques of memory-aware automotive control systems design and con-
siders multiple applications running on a single processor with shared cache. While exploiting
existing program analysis techniques in conjunction with cache modeling, the analysis focuses
on estimating the guaranteed WCET reduction due to consecutive executions of the same pro-
gram, which is required in computing the non-uniform sampling order for a feedback controller.
Estimating such WCET reduction has not been studied before, mostly since until now there has
been no useful context for studying it. In addition, controller design aiming for optimal con-
trol performance with non-uniform sampling relies on the proposed technique that exploits the
shortened WCET in the memory-aware sampling order.

The overall control performance is maximized by an optimal choice of sampling order tak-
ing into account the effects of cache reuse, in an integrated framework of sampling order com-
putation and controller optimization. As has been shown, this leads to a two-stage optimization
problem. First, the optimal controller poles are located maximizing the overall control perfor-
mance of a given sampling order. Second, the optimal sampling order among all feasible ones
is found.

52



3. Memory-Aware Automotive Control Systems Design

3

4

5 1

2

3

1

2

3
(3,2,3,0.166)

(4,2,3,0.152)

(4,2,2,0.163)

(4,2,1)

(5,2,2)

(4,3,2,0.150)

(4,1,2,0.151)

(3,2,2,0.133)

m1

m2

m
3

Figure 3.18: When the conventional PSO is used, the search starting from (4, 2, 2) is not able to
reach the global optimum (3, 2, 3).

In the existing memory-conscious algorithms design (e.g., in real-time tasks), the programs
are treated as black boxes and their functionality is not considered. This chapter explicitly
considers the properties of control algorithms. In particular, the optimal choice of the control
algorithms parameters, such as the gain values, are dependent on their sampling periods and
sensor-to-actuator delays, which in turn are determined by the WCETs they experience. In the
case of other algorithms, their parameter values are not updated on the basis of the WCETs.
Hence, while memory-conscious algorithms design for other domains stops at WCET mini-
mization, whether and how simultaneously modifying the controller parameters in response to
the reduced WCET leads to improved control performance, is an open question. This chapter
makes the first efforts to answer this question.

While the direct-mapped cache (i.e., 1-way set-associative cache) is assumed, the presented
technique can be adapted to handle set-associative cache. For example, considering fully asso-
ciative cache in the example of Figure 3.2, when computing RCSOUTb3

from RCSINb3 , the mem-
ory block m4 can be loaded to any cache line, which gives RCSOUTb3

five more cache states, i.e.,
[m0,m4,m2,m3], [m0,m1,m4,m3], [m0,>,m4,m3], [m0,m1,m2,m4], and [m0,>,m2,m4].
From this, it can be seen that the number of cache states in RCS and LCS is larger for set-
associative cache, which means that the guaranteed WCET reduction could be smaller. Details
can be found in [KFM11].

The number of possible data inputs is very large in the state-feedback control under con-
sideration. In addition, a control program typically contains a large number of branches, which
are dynamically evaluated according to the data values. Small value changes of some data input
may trigger different execution paths and overall execution times. Hence, estimating the WCET

53



3.7. REMARKS

of the control software on the basis of exploring all possible inputs or a portion of them, instead
of following the static memory analysis technique as is shown in this chapter, is not practically
feasible. Actual execution time larger than the WCET cannot be tolerated by safety-critical
control applications.

The contribution of this chapter is the synergistically integrated framework of memory-
aware automotive control systems design, which further provides new insights and design op-
tions in line with the CPS-oriented design philosophy, where the goal is to study control theory
and embedded systems with the same footing. Accounting for on-chip cache behavior motivates
new techniques for control algorithms design, that are otherwise not used. These techniques
open up a number of possibilities for co-design and co-optimization of control algorithms, code
placement, and memory-aware control tasks scheduling, that will be pursued in the future.

54



4
Computation-Aware Automotive Control

Systems Design

ECU consolidation is a recent trend in the automotive industry triggering the need to maximize
the number of functions and applications that share the limited computation resources on an
ECU. In this chapter, a common automotive setup that a feedback control application is in-
tegrated on an ECU with other applications is studied. ECUs usually run TT OS due to the
safety-critical nature of the automotive domain. OSEK/VDX OS, which is a class of widely
used TT OS in automobiles providing services like task management, resource management,
and error treatment, is considered1. The goal of computation-aware automotive control sys-
tems design is to minimize the processor utilization of an application, while still satisfying the
performance requirement, system constraints and restriction on sampling periods from the OS.
This enables an ECU to accommodate more applications.

The main technical challenge is designing a controller for the non-uniform schedule, which
switches between available sampling periods offered by the OS. Building upon existing tech-
niques in control systems with non-uniform sampling and optimal control theory, a novel con-
troller design approach for the linear state-feedback control is proposed to optimize the settling
time, and explicitly respects the hard physical constraint of the input signal. A new PSO tech-
nique with adaptive parameterization is used in the controller pole-placement. The proposed
idea is evaluated on the real-life Electro-Mechanical Braking (EMB) system. The multirate
schedule is also tested in MPC with the EWB system. The number of applications that can be
implemented on an ECU is doubled, which is significant resource saving for the cost-sensitive
automotive domain.

1OSEK is a joint project in the German automotive industry founded in 1993 with initial partners of BMW,
Bosch, DaimlerChrysler, Opel, Siemens and Volkswagen. It was later joined by the French car manufacturers
PSA and Renault introducing their VDX approach. The goal is to define an industry standard for an open-ended
architecture for distributed control units in vehicles.

55



4.1. RELATED WORK

The organization of this chapter is as follows. Section 4.1 discusses the related work on
computation-aware embedded control systems design, together with some recent contributions
on optimal control and non-uniform sampling. Section 4.2 describes the OSEK/VDX OS. The
multirate linear state-feedback controller design is presented in Section 4.3, with the optimal
pole-placement technique using adaptively parameterized PSO. An alternative controller design
is explained for better scalability. Besides the linear controller, non-uniform non-linear MPC
is illustrated. Section 4.4 reports the experimental results. The linear state-feedback controller
is evaluated on the EMB system and the MPC is evaluated on the EWB system. Section 4.5
makes concluding remarks of this chapter.

4.1 Related Work

A number of works have been reported on computation-aware embedded control systems de-
sign [CMV+06, MFFR02, GFB11, SEP+10]. A resource management strategy adjusting the
task periods at runtime considering the response over a finite time horizon of the plants is
proposed in [CMV+06] to maximize the control performance. Flexible timing constraints are
proposed in [MFFR02] to achieve faster reaction by adaptively choosing the controller sampling
rate and completion time upon transient perturbations, while wastage of resources is avoided
when the system is in equilibrium. In [GFB11], a novel controller design technique based
on a hierarchy of controllers is proposed, so that when the allocated execution time is short,
a low-level computationally light controller is activated to achieve basic control performance
and when the execution time is long, a high-level computationally intensive controller is used
aiming for better control performance. The trade-off between control performance and CPU
usage is explored in [SEP+10] by dynamic scheduling of multiple self-triggered control tasks
executed on one processor. None of the efforts above address the restriction from the OS.

There have been continuous efforts in research of optimal control and non-uniform sam-
pling. Notable ones include [BB14] and [CBMC11]. The optimal sampling problem is tackled
in [BB14], where the sampling instants and control inputs are selected to minimize a given
function of the system state and control input. In particular, a necessary condition for the op-
timality of a set of sampling instants is derived and a quantization-based sampling strategy is
proposed to be computationally tractable. The optimality of this method is proved in first-order
systems. However, the sampling periods in this work can be arbitrarily chosen and no con-
straints (e.g., from the OS as is studied in this chapter) are taken into account. In addition, the
proposed method is only applied in the LQR problem, which is relatively easy to analyze due to
its quadratic cost function. In this chapter, the settling time, which is an important performance
metric for real-time control applications, is also considered.

Online optimal sampling period assignment is investigated in [CBMC11] in order to maxi-
mize the control performance. A feedback scheduler is developed to periodically assigns new
sampling periods based on the current plant states. It is shown that most computation can be
done offline and stored in a look-up table. Again, only the quadratic cost function is considered
and the selection of sampling periods is not restricted. Besides, since the switching is not fixed,
yet occurs depending on the plant states in real-time, stability cannot be guaranteed. Building
upon these previous works discussed above, the method for the linear state-feedback control that

56



4. Computation-Aware Automotive Control Systems Design

Table 4.1: An example OSEK/VDX OS time table of applications release
Time Release
0ms Applications with periods of 2ms/5ms/10ms
2ms Applications with the period of 2ms
4ms Applications with the period of 2ms
5ms Applications with the period of 5ms
6ms Applications with the period of 2ms
8ms Applications with the period of 2ms
10ms Repeat actions at 0ms

is presented in this chapter formulates an optimal pole-placement problem for a non-uniform
schedule known in the design time, where the input signal saturation is explicitly respected, the
settling time is minimized and the stability is ensured.

4.2 OSEK/VDX Operating System
OSEK/VDX OS is a class of real-time OS widely used in the automotive industry. In general, an
OSEK/VDX OS supports preemptive fixed-priority scheduling. That is, priorities are assigned
to applications and at any point in time, the task with the highest priority among all active ones
is executed. Tasks can be triggered by events (e.g., interrupts, alarms, etc.) or by time. In the TT
scheme, each application gets released and is allowed to access the processor periodically. There
are various periods of release times and each application is assigned one. Different applications
may have different periods. Every time an application is released, its program gets the chance
to be executed.

A time table containing all the periodic release times within the alleged hyperperiod (i.e.,
the minimum common multiple of all periods) needs to be configured. An example with a set
of three periods 2ms, 5ms and 10ms is illustrated in Table 4.1. The hyperperiod is equal to
10ms and the time table repeats itself every 10ms by reseting the timer. Independent of the
triggering mode (i.e., be it ET or TT), the assigned priority will still determine the execution
order of applications. In the TT scheme, a higher priority is typically assigned to the application
released with a shorter period, since this generally results in a more efficient use of the processor.

An example with two applications C1 and C2 sharing one ECU is illustrated in Figure 4.1.
C1 has a period of 2ms and C2 has a period of 5ms. The execution time of C1 is assumed to
be 0.7ms and the execution time of C2 is assumed to be 2ms. C1 has a higher priority than
C2. Within a hyperperiod of 10ms, C1 is released at 0ms, 2ms, 4ms, 6ms, 8ms and 10ms. C2

is released at 0ms, 5ms and 10ms. It can be seen that C2 is executed only when C1 does not
require to access the ECU. For instance, at 0ms, both C1 and C2 are released and require access
to the ECU. C1 is permitted to be executed while C2 has to wait. At 0.7ms, C1 completes its
execution and C2 gets the access to the ECU.

It is assumed that the set of available periods restricted by OSEK/VDX is φ. As discussed in
Chapter 1, control applications have to be sampled with one period or a combination of multiple
periods from φ. In the latter case, switching between two sampling periods can only occur at the

57



4.3. MULTIRATE CONTROLLER DESIGN

C1 C2 C1 C2 C1 C2 C1 C2 C1execution

Time 0ms 2ms 4ms 5ms 6ms 8ms 10ms

Release (C1, C2) C1 C1 C2 C1 C1 (C1, C2)

Figure 4.1: Release and execution time of two applications sharing one ECU. C1 with a sam-
pling period of 2ms has a higher priority than C2 with a sampling period of 5ms. Execution
times of C1 and C2 are 0.7ms and 2ms, respectively.

common multiplier of them, as has been illustrated in Figure 1.4. Often, the optimal sampling
period for a control application does not belong to the set φ. The simple and straightforward
method used in practice is to select the largest sampling period in φ that is smaller than the
optimal one. Taking the example in Table 4.1, assuming that the optimal sampling period is
7.5ms, then 5ms is chosen as the sampling period to be used. This results in a higher processor
utilization, which is another important design aspect.

Denoting Ewc
i to be the worst-case execution time (WCET) of a control application Ci, if

the uniform sampling period is h, the processor utilization for Ci is

Li =
Ewc
i

h
. (4.1)

The upper bound on the utilization of any processor is 1. Considering a single processor p,∑
{i|Ci runs on p}

Li ≤ 1. (4.2)

Clearly, increasing the sampling period of a control application decreases its processor utiliza-
tion, and thus potentially enables more applications to be integrated on the ECU.

4.3 Multirate Controller Design
The design problem for a control application Ci in this chapter is to reduce the processor uti-
lization Li, while satisfying the settling time requirement t0s,i, the system stability and the input
saturation constraint Umax,i. Towards this, a multirate controller switching between multiple
sampling periods in φ is proposed. In this chapter, the sensor-to-actuator delay is neglected.
When the sensor-to-actuator delay has to be considered, the controller design technique pre-
sented in Chapter 3 can be used.

The cyclic sequence of sampling periods for a control application defines a schedule S,

S = {T1, T2, T3, . . . , TN}, (4.3)

where ∀j ∈ {1, 2, . . . , N}, Tj ∈ φ. It implies the sequence of sampling periods as,

T1 → T2 → · · · → TN → T1 → T2 → · · · → TN → repeat

58



4. Computation-Aware Automotive Control Systems Design

Repeat

A switching cycle

Tk,1 Tk,2

tk tk+1 tk+2 tk+NSampling Instants:

Sampling Periods:

x[k] x[k + 1] x[k + 2] x[k +N ]Feedback State:

x[k] x[k] x[k] x[k +N ]Feedback State:
(K1, F1) (K2, F2) (K3, F3) (K1, F1)Controller Gain:

K̂1 K̂2 K̂3 K̂1Controller Gain:

Figure 4.2: Cyclically switched linear systems

Following the assumption in (4.1) that the WCET of Ci is Ewc
i , the processor utilization for Ci

over S is
Li =

NEwc
i

N∑
j=1

Tj

. (4.4)

4.3.1 Linear State-feedback Controller
Dictated by the schedule S, N systems switch cyclically in a deterministic fashion. When
tk+1 − tk = Tk,j , the dynamics is

x[k + 1] = Ad(Tk,j)x[k] +Bd(Tk,j)Kjx[k] +Bd(Tk,j)Fjr, (4.5)

as referred to (2.19) The key in the linear state-feedback controller design is to compute the
feedback gain Kj for each system with pole-placement, based on which, the static feedforward
gain Fj can be derived with (2.23).

As seen in Figure 4.2, after the first sampling interval of a switching cycle,

x[k + 1] = Ad(Tk,1)x[k] +Bd(Tk,1)K̂1x[k] +Bd(Tk,1)F1r. (4.6)

It is noted that K1 is the feedback gain based on the most recent system state x[k] and used to
compute the control input. K̂1 is the equivalent feedback gain based on the starting system state
x[k] of a switching cycle. In this case that only one sampling period is considered, K̂1 = K1.
The feedforward gain F1, which is related to K1, is also based on the most recent system state
and used to compute the control input. The closed-loop system matrix is denoted as Acl,1 and

Acl,1 = Ad(Tk,1) +Bd(Tk,1)K̂1. (4.7)

If the pair (Ad(Tk,1), Bd(Tk,1)) is controllable, K̂1 can be designed by pole-placement. Poles to
place are eigenvalues of Acl,1. The number of poles is thus lN , where l is the number of system
states and N is the number of sampling periods in the schedule. F1 is computed as per (2.23).

After the second sampling interval,

x[k + 2] = Ad(Tk,2)x[k + 1] +Bd(Tk,2)K2x[k + 1] +Bd(Tk,2)F2r. (4.8)

59



4.3. MULTIRATE CONTROLLER DESIGN

To consider the overall dynamics of the first two sampling periods, the relation between x(tk+2)
and x(tk) is derived as

x[k + 2] = Ad(Tk,2)Acl,1x[k] +Bd(Tk,2)K2Acl,1x[k]

+ (Ad(Tk,2) +Bd(Tk,2)K2)Bd(Tk,1)F1r +Bd(Tk,2)F2r.
(4.9)

Letting
K̂2 = K2Acl,1, (4.10)

then (4.9) becomes

x[k + 2] = Ad(Tk,2)Acl,1x[k] +Bd(Tk,2)K̂2x[k]

+ (Ad(Tk,2) +Bd(Tk,2)K2)Bd(Tk,1)F1r +Bd(Tk,2)F2r.
(4.11)

Similar to (4.7),
Acl,2 = Ad(Tk,2)Acl,1 +Bd(Tk,2)K̂2. (4.12)

It is noted that (4.11) has the same form as (4.6). If the pair (Ad(Tk,2)Acl,1, Bd(Tk,2)) is control-
lable, K̂2 can be designed by pole-placement and K2 is derived with (4.10), as long as Acl,1 is
non-singular. Poles to place are eigenvalues of Acl,2. F2 is computed as per (2.23). Continuing
the above analysis, the following can be defined as
∀j ∈ {1, 2, . . . , N},

Acl,j = Ad(Tk,j)Acl,j−1 +Bd(Tk,j)K̂j, (4.13)

and Acl,0 = I. If the pair (Ad(Tk,j)Acl,j−1, Bd(Tk,j)), where j ∈ {1, 2, . . . , N}, is controllable,
K̂j can be designed by pole-placement. Poles to place are eigenvalues of Acl,j . As long as
Acl,j−1 is non-singular, Kj is derived by

Kj = K̂jA
−1
cl,j−1. (4.14)

Fj is computed as per (2.23).

4.3.2 Optimal Pole-Placement
Now the optimization problem for the pole-placement can be formulated as,

min
D
ts

subject to

u[k] ≤ Umax; ts ≤ t0s; ∀j ∈ {1, 2, . . . , N}, rank(Acl,j) = l,

(4.15)

where poles are decision variables and the settling time ts is to be minimized as the objective.
There are four constraints. First, the input saturation has to be respected. Second, the settling
time requirement has to be satisfied. Third, all closed-loop system matrices Acl,j must be non-
singular. Fourth, D is a domain of poles with absolute values less than unity and ensures the
system stability.

60



4. Computation-Aware Automotive Control Systems Design

Table 4.2: Randomly initialized points in the numerical example of PSO
Initial Point p1 p2 p3 p4 p5

β1 -1.7 -0.8 -1.4 0.5 1.9
β2 -1 1.5 -1.8 1.8 1.6
ϕ 0.3456 0.0562 0.0241 0.0619 0.0525

It is challenging to solve such a constrained non-convex optimization problem with signifi-
cant non-linearity. The efficient PSO technique as discussed in Chapter 2 is used. Constraints
are handled in the following way. In comparison, a point that respects all constraints is always
better than a point that violates at least one constraint, no matter what their objective values
are. When comparing two points that both either respect all constraints or violate at least one
constraint, the point with a shorter settling time is better.

As mentioned in Chapter 3, one major issue with PSO is its tendency for fast and premature
convergence before the global optimum has been found, since its search is highly directional.
This problem gets more severe as the number of dimensions in the decision space grows larger.
The cognitive and social scaling parameters α1 and α2 have a significant impact on the search
behavior and convergence of PSO. If α1 is larger than α2, the PSO tends to have better local
searches around the points, yet converges more slowly. If α2 is larger than α1, the PSO often
converges fast before thoroughly searching the local area around each point, which might miss
the global optimum. This is a trade-off between optimality and efficiency. It is challenging to
achieve both simultaneously.

There have been a number of works investigating the parameterization of PSO [JJ13, Ped10,
NES11]. Various existing strategies for PSO parameters setting are summarized in [JJ13], which
discusses some future research directions. A list of good parameter choices for several bench-
marks is reported in [Ped10]. An adaptive inertia weight is proposed in [NES11] and uses the
success rate of the swarm as its feedback parameter to ascertain the particles’ situation in the
search space. In this chapter, an adaptive parameterization approach for the cognitive and social
scaling parameters with a constant sum is proposed. As the iteration number increases, α1 is
decreased and α2 increases. The basic idea is that at the beginning of the optimization when
particles are more disperse, local areas are better searched aiming to explore a larger space.
When the optimization approaches to the end, particles are close to one another, and the focus
is put on convergence. The goal is to achieve optimality and efficiency at the same time.

Assuming that the iteration number is q (0 < q ≤ qmax, where qmax is the maximum number
of iterations), the cognitive and social scaling parameters can be computed as,

α2 = f(
q

qmax
), α1 = 4− α2, (4.16)

where the constant sum of α1 and α2 is taken as 4. f is a function that can be customarily
decided. In this chapter, an exponential function is used as,

f(x) = 0.5e2x + 0.1. (4.17)

The numerical example in Chapter 3 is used to show the advantage of the proposed adap-
tively parameterized PSO technique. Five particles are randomly initialized at p1, p2, p3, p4 and

61



4.3. MULTIRATE CONTROLLER DESIGN

−2 −1 0
1

2 −2
−1

0
1

2
0

1

2

p1

p2p3
p4

p5

pg

β1

β2

ϕ

Initialized points Converged points Global best points in iterations

Figure 4.3: With the proposed novel particle swarm optimization method with adaptive param-
eterization, five particles are randomly initialized and converge to the global optimum pg.

p5, as shown in Table 4.2. Among them, p1 has the best objective value. These initial points are
the same as in Chapter 3 and the result with the conventional PSO technique has been illustrated
in Figure 3.8. After 13 iterations, all five particles converge to points around the local optimum
pl (β1 = −1.7997, β2 = 8.3188 × 10−3, ϕ = 1.1540). The search is highly directed towards
the global best point in each iteration. The global optimum is not found and particles quickly
converge to the local optimum before exploring the decision space sufficiently.

The proposed novel PSO method with adaptive parameterization is illustrated in Figure 4.3.
The same initial points are used as in Table 4.2. After 13 iterations, all five particles converge to
points around the global optimum pg (β1 = 9.8765×10−1, β2 = −3.9853×10−3, ϕ = 1.9474).
The path showing how the global best point evolves iteratively is drawn, with certain points
too close to others omitted. It can be seen that the decision space is better explored and the
global optimum is found. This numerical example demonstrates the advantage of the novel
PSO method over the conventional one.

4.3.3 Alternative Controller Design for Scalability

As discussed before, the number of dimensions in the decision space using the controller design
presented in Section 4.3.1 is lN . When the number of sampling periods in a schedule N is very
large, solving the pole-placement optimization problem could be computationally too heavy,
even for an offline task. The PSO-based technique naturally offers a solution — decreasing
the number of particles and iterations. However, this renders the result stochastic with a large
variation and considerably dependent on the choices of initialization, which is often undesirable.

62



4. Computation-Aware Automotive Control Systems Design

Here, an alternative controller design aiming for better scalability on the number of sampling
periods is provided.

The complexity of the proposed controller in Section 4.3.1 comes from that the closed-loop
dynamics of all the sampling periods are considered and optimized. A simpler design technique
is to assume identical dynamics for the systems with the same sampling period. That is, if
Tj = Tj′ , the poles and feedback/feedforward gains of these two systems are the same. Clearly,
the solution is suboptimal, since the assumption that poles are identical for systems with the
same sampling period does not necessarily hold. The advantage is a smaller decision space. The
number of decision variables (i.e., poles to place) becomes lN ′ — the number of states of the
plant multiplied by the number of distinctive sampling periods in the schedule. Therefore, when
the number of sampling periods N in the schedule S is very large and the number of distinctive
sampling periods N ′ is relatively small, this alternative controller has better scalability on the
number of sampling periods.

4.3.4 Non-Uniform MPC

In order to show that the proposed multirate controller is effective in both the linear and non-
linear control, non-uniform MPC is analyzed. Following the derivation in Chapter 2, the
quadratic cost remains as (2.25). Taking a schedule (10ms, 10ms, 20ms) as an example and
considering the next three sampling periods, the system states can be computed as

 x[1]
x[2]
x[3]

 =

 Bd(10ms) 0 0
Ad(10ms)Bd(10ms) Bd(10ms) 0

Ad(20ms)Ad(10ms)Bd(10ms) Ad(20ms)Bd(10ms) Bd(20ms)


×

 u[0]
u[1]
u[2]

+

 Ad(10ms)
Ad(10ms)2

Ad(10ms)2Ad(20ms)

x[0],

(4.18)

if the next three sampling periods are 10ms, 10ms, and 20ms.
The quadratic cost function then becomes

J = xT [0]Qx[0] + (S̄1U + T̄1x[0])T Q̄(S̄1U + T̄1x[0]) + UT R̄U, (4.19)

which is similar to (2.27), except that S̄ and T̄ are replaced by S̄1 and T̄1, respectively, where

S̄1 =

 Bd(10ms) 0 0
Ad(10ms)Bd(10ms) Bd(10ms) 0

Ad(20ms)Ad(10ms)Bd(10ms) Ad(20ms)Bd(10ms) Bd(20ms)


T̄1 =

 Ad(10ms)
Ad(10ms)2

Ad(10ms)2Ad(20ms)

 .
(4.20)

63



4.4. EXPERIMENTAL RESULTS

Table 4.3: Settling time and processor utilization of three schedules
Schedule Settling Time Requirement Processor Utilization

S1 = {5ms} 253.69ms Violated 14%

S2 = {2ms} 110.44ms Satisfied 35%

S0 (novel PSO) 128.6ms Satisfied 24.5%

S0 (conventional PSO) 154.05ms Violated 24.5%

When the next three sampling periods are 10ms, 20ms, and 10ms,

S̄2 =

 Bd(10ms) 0 0
Ad(20ms)Bd(10ms) Bd(20ms) 0

Ad(20ms)Ad(10ms)Bd(10ms) Ad(10ms)Bd(20ms) Bd(10ms)


T̄2 =

 Ad(10ms)
Ad(10ms)Ad(20ms)
Ad(10ms)2Ad(20ms)

 .
(4.21)

In the cost function (4.19), S̄2 and T̄2 replace S̄1 and T̄1, respectively. When the next three
sampling periods are 20ms, 10ms, and 10ms,

S̄3 =

 Bd(20ms) 0 0
Ad(10ms)Bd(20ms) Bd(10ms) 0
Ad(10ms)2Bd(20ms) Ad(10ms)Bd(10ms) Bd(10ms)


T̄3 =

 Ad(20ms)
Ad(10ms)Ad(20ms)
Ad(10ms)2Ad(20ms)

 .
(4.22)

In the cost function (4.19), S̄3 and T̄3 replace S̄1 and T̄1, respectively. In total, there are three
constrained quadratic programming problems that can be solved by the interior-point method
presented in Chapter 2.

4.4 Experimental Results
The proposed multirate controller design technique is evaluated with an EMB system used in au-
tomobiles, as shown in Section D. The set of available sampling periods offered by OSEK/VDX
OS is

φ = {1ms, 2ms, 5ms, 10ms, 20ms, 50ms, 100ms, 200ms, 500ms, 1sec}. (4.23)

As shown in Table 4.3 and Figure 4.4, the schedule S1 = {5ms} cannot meet the settling
time requirement. The largest sampling period smaller than 5ms in φ is 2ms. The sched-
ule S2 = {2ms} is able to fulfill all the requirements. According to (4.1), using the WCET
requirement in Table D.3, the processor utilization of S2 is 35%. As discussed before, this
number can be unnecessarily large and prevents more applications from sharing the ECU.

64



4. Computation-Aware Automotive Control Systems Design

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

1

2

·10−3

Time [s]

Sy
st

em
O

ut
pu

ty
[k

]
[m

]

Schedule S1 = {5ms}
Schedule S2 = {2ms}
Schedule S0 (novel PSO)

Figure 4.4: System output of three different schedules. The proposed novel PSO technique is
used for S0.

Table 4.4: Poles of closed-loop system matrices
Closed-loop system matrix Poles

Acl,1 [0.9202 0.6460 0.8334 0.6243 0.6802]

Acl,2 [0.6902 0.1039 0.4454 0.7232 0.5911]

Acl,3 [0.4671 0.2641 0.6241 0.1696 0.5199]

Acl,4 [0.4060 0.4473 0.7508 0.0751 0.1369]

Acl,5 [0.8570 0.2319 0.7864 0.3954 0.4922]

Acl,6 [0.6598 0.0952 0.7009 0.7579 0.8847]

Acl,7 [0.7284 0.2338 0.1384 0.4873 0.0415]

Then the schedule S0 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms} switching between 2ms
and 5ms is evaluated. This sequence of sampling periods satisfies the OSEK/VDX OS re-
quirement as discussed in Section 4.2. The multirate controller is designed as proposed in
Section 4.3 and the novel PSO with adaptive parameterization as in Section 4.3.2 is used for
optimal pole-placement. 50 particles are used and converge after 16 iterations. Increasing the
number of particles beyond 50 does not further improve the control performance. 35 poles of
seven closed-loop system matrices are reported in Table 4.4. S0 has a slightly longer settling
time than S2, but still fulfills the requirement. According to (4.4), the processor utilization is
24.5%, achieving a 30% reduction compared to S2. The settling time of S0 is also evaluated
using the conventional PSO technique. 50 particles are used and the convergence also takes 16
iterations. As reported in Table 4.3, the solution does not satisfy the requirement.

Comparison of the optimal controller presented in Section 4.3 and the scalable controller
in Section 4.3.3 is shown in Table 4.5. The settling time generated by the scalable controller
is longer than that of the optimal one and violates the requirement. However, it only takes 15
particles that converge after 9 iterations. Increasing the number of particles beyond 15 does

65



4.4. EXPERIMENTAL RESULTS

Table 4.5: Comparison of the optimal and scalable controller design
Controller Settling Time Requirement Particle Iteration Time
Optimal 128.6ms Satisfied 50 16 1448s

Scalable 157.05ms Violated 15 9 36s

not further improve the control performance. The total computation time on a computer with
an Intel i5 processor operating at 2.6GHz with 4GB RAM is 36s, compared to 1448s for the
optimal controller. Although 1448s sounds acceptable for an offline task, when a schedule
has more sampling periods than S0, the computation could take hours or even days due to
the increase of the decision space dimensions. In such a case, if the number of distinctive
sampling periods is small, the scalable controller design can be used first to check whether the
requirements can be satisfied.

Now we consider a case that multiple applications are to be implemented on ECUs. For
the convenience of illustration, all applications are assumed to be identical to the EMB system
discussed before with the WCET of 0.7ms. As reported above, the schedule S2 = {2ms} is
able to satisfy the control performance requirement and system constraints. Under S2, an ECU
is able to accommodate two applications according to (4.2). Under the multirate schedule S0,
four applications can share one ECU, where detailed invocation timing is presented in Figure 4.5
and Table 4.6. While the schedule forC1 andC2 is {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms}, the
schedule for C3 and C4 is {5ms, 5ms, 2ms, 2ms, 2ms, 2ms, 2ms}. The switching of sampling
periods occurs every 10ms for both schedules. When an application is in the shorter sampling
period (2ms in this case), it occupies the ECU more often. Therefore, these two variants of
S0 are essentially opposite to each other, so that when some applications require more frequent
access to the ECU, others are in the longer sampling period (5ms in this case), requesting the
execution less often. In this way, the number of applications packed onto the ECU can be
maximized.

It is noted that preemption is supported in OSEK/VDX. For instance, at 1.4ms when both
C1 and C2 finish their first invocations, C3 is started and allowed to access the processor for
0.6ms. After that, C3 is suspended, waiting for the second invocations of C1 and C2. Then,
C3 resumes and completes its first invocation. It can be seen that the number of applications
that are accommodated by an ECU is doubled with the proposed OS-aware multirate controller
design, which is significant for the cost-sensitive automotive domain.

MPC is used to show that the proposed multirate controller is effective in both linear and
non-linear control. The EWB system presented in Section A is evaluated. The schedule S ′0 =
{10ms, 10ms, 20ms} is taken as an example. It is assumed that the quadratic cost of every ms
is computed and that the sum is expected to be below 550.

As shown in Table 4.7, the schedule S4 = {20ms} cannot meet the quadratic cost require-
ment. The largest sampling period smaller than 20ms in φ is 10ms. The schedule S3 = {10ms}
is able to fulfill all the requirements. Then the schedule S ′0 = {10ms, 10ms, 20ms} switch-
ing between 10ms and 20ms is evaluated. This sequence of sampling periods satisfies the
OSEK/VDX OS requirement as discussed in Section 4.2. The multirate controller is designed

66



4. Computation-Aware Automotive Control Systems Design

0ms 2ms 4ms 6ms 8ms 10ms 15ms 20ms

0ms 5ms 10ms 12ms 14ms 16ms 18ms 20ms

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C1 C2 C1 C2

C3 C4 C3 C4 C3 C4 C3 C4 C3 C4C3 C4 C3 C4

C3 C4 C3 C4

C1, C2: 2ms C1, C2: 5ms

C3, C4: 5ms C3, C4: 2ms

Figure 4.5: Invocation timing of four control applications under the schedule S0. The schedule
for C1 and C2 is {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms}, and the schedule for C3 and C4 is
{5ms, 5ms, 2ms, 2ms, 2ms, 2ms, 2ms}. Preemption is allowed in OSEK/VDX OS.

Table 4.6: Exact invocation starting times of four control applications under the multirate sched-
ule S0. When one invocation is preempted, two starting times are separated by a forward slash
and the number in the bracket indicates the duration. The timing unit is ms.

Invocation C1 C2 C3 C4

1 0 0.7 1.4(0.6)/3.4(0.1) 3.5(0.5)/4.7(0.2)
2 2 2.7 5.6(0.4)/7.4(0.3) 7.7(0.3)/9.4(0.4)
3 4 4.9 10 10.7
4 6 6.7 12 12.7
5 8 8.7 14 14.9
6 11.4(0.6)/13.4(0.1) 13.5(0.5)/14.7(0.2) 16 16.7
7 15.6(0.4)/17.4(0.3) 17.7(0.3)/19.4(0.4) 18 18.7

Table 4.7: Quadratic cost of three schedules
Schedule Quadratic Cost Requirement

S3 = {10ms} 512.33 Satisfied
S4 = {20ms} 580.16 Violated

S ′0 = {10ms, 10ms, 20ms} 513.40 Satisfied

as discussed in Section 4.3.4. S ′0 has a slightly larger quadratic cost than S3, but still fulfills
the requirement.

4.5 Remarks
This chapter discusses computation-aware automotive control systems design. In particular,
to deal with the restriction imposed by the OS on sampling periods for control applications,
a novel performance-oriented multirate controller design technique is proposed, in which an
adaptively parameterized PSO is used for optimal pole-placement. It reduces the processor

67



4.5. REMARKS

utilization, while satisfying the control performance requirement and system constraints. This
saves the scarce computational resources on the automobiles and enables integration of more
functions and applications along the philosophy of ECU consolidation. A case study shows
that the number of control applications that share an ECU can be doubled with the proposed
OS-aware controller design.

In the controller design, the sensor-to-actuator delay is neglected. The method dealing with
the sensor-to-actuator delay shorter than or equal to one sampling period has been presented in
Chapter 3. Two new PSO-based techniques are illustrated in Chapter 3 and this chapter, aiming
to address the issue of premature convergence. The technique in Chapter 3 makes use of the
worst point in deciding the search direction and the technique in this chapter adaptively adjusts
the cognitive and social scaling parameters to encourage local exploration in the beginning
search phase and global convergence in the ending search phase.

When the control performance is desired to be maximized instead of serving as a require-
ment to be satisfied, using the proposed multirate controller, there can be various schedules with
non-uniform sampling that are able to achieve a trade-off between control performance and the
use of computational resources. Synthesizing the optimal computation-aware schedule can be
a direction of future work.

While in this chapter the focus is on single-core ECUs, the presented approach can be ex-
tended to multi-core architectures. There are several challenges to be addressed. First of all, it
might be necessary due to load balancing requirements to distribute different parts of complex
control applications to different cores. This introduces additional delays for sensor to actuator
cause-effect chains that need to be taken into account during controller design to ensure sta-
bility. Moreover, the placement of shared instructions and data to local and global memories
including memory arbitration effects needs to be considered, since this has major influence on
the execution times of control programs.

68



5
Battery- and Aging-Aware Automotive

Control Systems Design

A reduced emission, independence from fossil fuels, improvement of energy conversion effi-
ciency, together with better torque and noise performances at low speeds have made EVs a
potential alternative of conventional vehicles with ICEs. Battery is a key component in an EV.
In order to achieve a larger driving range, it is desirable to make the most use of the battery with
a given nominal capacity. Therefore, on one hand, the energy consumption of a control task
should be minimized and on the other hand, the discharging current profile should maximize
the effective capacity of the battery.

In this chapter, an optimization framework with both control performance and battery usage
considered as design objectives is proposed. The control performance metric is the settling time
and the battery usage is quantified by the number of times the control system can reach a steady
state after a disturbance occurs powered up by a fully charged battery pack. With gradient-based
and stochastic methods implemented, this battery-aware controller design offers a Pareto front
of well-distributed and non-dominated solutions. The trade-off between these two objectives is
explored.

Besides battery, another important design aspect is processor aging. As briefly discussed in
Chapter 1, the processor operating frequency is decreased along with its use. This results in a
longer sampling period for a control application and potentially degraded control performance,
which cannot be tolerated in the safety-critical domain. The same optimization framework as
above is used with slight modification. The controller is re-optimized to mitigate the processor
aging effect in the way that the control performance is kept not deteriorataed with an incon-
siderable compromise on the battery usage. Throughout this chapter, the electric motor control
presented in Section C is used as an example application.

The organization of this chapter is as follows. Section 5.1 discusses the literature in optimal
sampling period selection, battery rate capacity effect and processor aging. In Section 5.2, two

69



5.1. RELATED WORK

design aspects for embedded control systems in EVs are discussed. Battery usage is introduced
as the other design objective with the rate capacity effect taken into account, besides the control
performance indexed by settling time. Processor aging and its influence on the control sys-
tem sampling period are analyzed. Section 5.3 presents the optimization framework and flow.
Experimental results are reported in Section 5.4 and Section 5.5 makes some remarks of this
chapter.

5.1 Related Work

There have been a number of works on choosing the optimal sampling period for feedback
control applications [BC08, ZSWM08]. The delay is part of the linear cost function in [BC08]
and estimated using an approximate response-time analysis. The optimal period assignment
problem is solved analytically and the performance improvement is verified. The task schedul-
ing problem for feedback control applications is studied in [ZSWM08] in order to optimize
the performance of both the computing unit and the physical plant. The control law and the
task scheduling algorithm are co-designed for predictable performance and power consump-
tion. However, none of the works have directly investigated the relationship of the control
system with properties of the input energy source (i.e., battery) and effects caused by the under-
lying processing platform aging, which are two important aspects in embedded control systems
design for EVs.

In battery modelling, one important issue to address is the rate capacity effect that the ca-
pacity of a battery cell varies with different discharging current profiles. In general, researchers
have developed three types of battery models to characterize this effect. An electrochemical
model is based on chemical processes taking place within the battery [SRW07]. These models
describe the battery processes in great detail, which makes them the most accurate among all
types of models. However, highly detailed description makes the models complex and difficult
to configure. Electrical-circuit models use circuit elements to simulate battery behavior. The
first such model was proposed in [Hag93]. They are simpler than the electrochemical models
and thus computationally less expensive. However, it still takes considerable efforts to config-
ure the electrical-circuit models. Especially the lookup tables used in the model require lots of
experimental data on the battery behavior. An analytical model describes the battery at a higher
level of abstraction than the other two types. The major properties of the battery are modeled
by a couple of equations, which makes this type of model much easier to use. In this chapter,
the extended Peukert’s law presented in [RV01] is used to characterize battery capacity rate
effect. With carefully chosen parameters based on experimental data, reasonable accuracy of
about 10% error can be achieved.

As a processor ages, the transistor switching time is increased and the path delay gets pro-
longed. Signals may not be able to go through some of the paths within one clock cycle, which
results in timing constraint violation and false calculation. This issue can be handled by safety
margins, supply voltage regulation or clock frequency scaling [MKB+12]. Currently, the most
widely-used method is implementing a frequency or voltage guard band. The processor is op-
erated at a lower frequency or higher voltage that meets worst-case path delays. It is noted that
a higher supply voltage makes transistor switching faster. In this way, as the processor ages and

70



5. Battery- and Aging-Aware Automotive Control Systems Design

gets slower, the system does not have to be changed. However, the guard band can be quite
big, leading to a passive design and a waste of resources[LDF+11]. In cost-sensitive domains
like EVs, there is a strong motivation to make full use of resources and minimize the guard
band, while reliable functionality is maintained. Instead of having a fixed setting that deals with
worst-case conditions, some newer approaches suggest changing settings dynamically. By mon-
itoring the critical path, delays are detected and the supply voltage of the processor is adjusted
accordingly [BTW+09]. These approaches are effective but can be difficult to implement. The
supply voltage is usually limited by the maximum allowable input current in the circuit, cooling
constraints and other temperature-dependent reliability issues, which are sensitive in the auto-
motive domain. In this chapter, theautonomous frequency scaling is used to deal with processor
aging [MKB+12]. On-chip monitors could be used to watch the critical path delay, based on
which, the processor operating frequency is adjusted by a frequency synthesis circuit to ensure
that signals can go through all paths within one clock cycle. Timing constraints are respected
and functions are guaranteed to be correct.

5.2 Design Aspects of Electric Vehicles
In this section, two important design aspects of EVs — battery usage and processor aging —
are discussed. Besides the settling time ts as one design objective for control performance, r
is made the other design objective to quantify battery usage. r is defined to be the number of
times the control system can reach a steady state after a disturbance occurs with a fully charged
battery pack, taking account of the rate capacity effect. Then processor aging and its influence
on the control performance are analyzed.

5.2.1 Battery Rate Capacity Effect
The battery pack is one of the most important components in EVs. Battery capacity is the major
factor determining the driving range of an EV. A natural objective of embedded control systems
design for EVs is to minimize the energy consumption of each control task invocation. However,
this is not enough to thoroughly and accurately consider the energy impact from control systems
design. Due to battery rate capacity effect, the FCC of a battery pack varies depending on
discharging current profiles. This effect needs to be considered in embedded control systems
design for EVs since different controller designs result in different current profiles. The rate
capacity effect is described by extended Peukert’s law [RV01] as shown below,

Lt =
a(∑n

k=1 Ik(t′k+1−t
′
k)

Lt

)d , (5.1)

which is able to handle non-constant loads. t′1 = 0 is the starting time stamp and Lt = t′n+1 is
the total duration that the battery can be used before next charging and divided into n slots. In
this chapter, each slot is equal to one sampling period of the control system. For the kth time
slot, Ik is the average current for the sampling period from tk to tk+1. a and d are determined
by experimental data. It is noted that this is an approximation of the battery rate capacity effect

71



5.2. DESIGN ASPECTS OF ELECTRIC VEHICLES

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.4

0.6

0.8

Norminal capacity: 0.54 mAh

Average Discharging Current [A]

Fu
ll

C
ha

rg
e

C
ap

ac
ity

[A
h]

Figure 5.1: Relationship between battery FCC and average discharging current

by considering the average discharging current. As discussed in Section 5.1, more accurate
methods can be used as well, and the entire framework presented in this chapter still holds. The
battery capacity under the discharging current profile {(I1, t1), (I2, t2), . . . , (In, tn)} is

QFCC =
n∑
k=1

Ik(tk+1 − tk). (5.2)

Ideally, both QFCC and a are equal to the nominal battery capacity Qnom and d = 1.
In this chapter, the lithium-ion rechargeable batteries with lithium cobalt oxide cathode and

graphite anode produced by Sony (UP383562) is used. The operating voltage of each cell is
3.7V . One constraint on the battery pack is that the current drawn from each cell cannot exceed
a certain value Imaxc . From the experimental data in [Son], a and d can be calculated as 0.45
and 1.32, respectively. The relationship between the FCC of a battery cell and the average
discharging current is shown in Figure 5.1. The nominal capacity labeled with the battery is
0.54Ah.

Besides ts as a design objective to quantify the control performance, battery usage is pro-
posed as the other objective in the embedded control systems design for EVs, which is charac-
terized by the number of times r the control system can reach a steady state after a disturbance
occurs with a fully charged battery pack. In order to maximize r, (i) the energy consumption
of each single control task invocation has to be small, and (ii) the average discharging current
is desirable to be small to improve the FCC. Assuming that the battery only powers the electric
motor control task, which is presented in Section C, based on control system description in
Chapter 2 and (5.1), r can be calculated as

r =
a(∑nsp

k=1 Ik(tk+1−tk)

ts

)d
× ts

, (5.3)

where ts is the time taken to complete one single control task invocation, i.e., settling time, as
discussed before. tk+1 − tk is the sampling period of the control system, i.e., h. These time
slots are constant since control systems with constant sampling period are dealt with in this

72



5. Battery- and Aging-Aware Automotive Control Systems Design

chapter. nsp is the total number of sampling periods in each invocation. Referring to Chapter 2
and Section C, when the controller design is decided, from experiments the value of ts and the
supplied current profile can be obtained, based on which the sum of current

∑nsp

k=1 Ik(tk+1− tk)
can be derived. In general, with different controller designs, i.e., eigenvalue selections, these
two objectives ts and r take different values. The relationship between these two objectives is
not explicit since the sum of current also varies depending on how the controller is designed.
Therefore, it is necessary to develop an optimization technique to optimize both ts and r while
all constraints must be satisfied.

5.2.2 Processor Aging in Embedded Control Systems
Electronics plays a major role in embedded control systems of modern vehicles. A processor is
the key part ensuring correct functioning and timing behavior in control. As the transistor size
keeps shrinking, processors are becoming more and more susceptible to aging, which could
get control performance degraded. This is dangerous and highly undesirable in safety-critical
applications like EVs. The main transistor aging mechanisms are Hot Carrier Injection (HCI)
and Negative Bias Temperature Instability (NBTI) [MIMG08]. They cause degradation in the
electrical characteristics of transistors, such as a shift of the threshold voltage [SB03]. As a
result, the switching times of transistors are prolonged.

There are many paths for digital signal transmission in a processor and each path consists
of a number of transistors. The time that a signal takes to travel through the path is called path
delay. As transistors require more time for switching, the path delay is increased [LBS10]. It
has to be ensured that the signal transmission along any path can be completed within one clock
cycle. Therefore, the operating frequency of the processor is determined by the worst-case
path delay, which is the path with the longest delay and called the critical path. With the above
analysis, it is known that as a processor ages, the signal may not be able to travel through certain
paths within one clock cycle if the operating frequency remains fixed. This could produce
incorrect functional results, that cannot be tolerated by safety-critical applications like motor
control in EVs.

As discussed in Section 5.1, one appropriate way to keep functions correct in the domain
of EVs is reducing the operating frequency. Before everything, the extend of aging needs to be
known. An on-chip aging monitor could be implemented to watch the delay of the critical path.
Shrinking transistor dimensions make larger within-die and die-to-die variations [PA12]. The
static timing analysis at the circuit level is not able to precisely determine which path among
all is the critical one in modern processors. However, all critical path candidates, which are
a subset of all paths in the processor that can become the critical one during the runtime, can
be identified. To avoid interference on real functions run on the processor, CPRs, which are
replicas of these candidates, are fabricated on the chip [PA12]. The aging monitor then sends
signals to CPRs to get the current critical path delay, based on which it is known whether
the operating frequency needs to be reduced and if so, by how much. A frequency generator
changes the operating frequency accordingly, if necessary.

When the processor operating frequency is decreased, the execution time of control pro-
grams gets longer. The sampling period is mainly constrained by the control program WCET.
Therefore, the sampling period of the control system is increased. It is possible to avoid the

73



5.3. OPTIMIZATION FRAMEWORK

aging effect by inserting a safety margin between the WCET and the sampling period. How-
ever, this is a waste of resources and not desirable for cost-sensitive applications like EVs. In
general, a shorter sampling period means more frequent response from the controller and thus
potentially better control performance. When the increased sampling period due to processor
aging is fed into the control system, the results showing how control performance changes can
be obtained.

Based on the method presented in [MKB+12], it can be estimated how much processor
aging can be expected in EVs. The processor only ages when it is used, i.e., in the non-idle state.
Taking an electric taxi as an example, the drivers take shifts and the car is driven approximately
20 hours every day. The processor is always in the non-idle state while the car is driven. After
4 years of use, the overall operation time of the processor is approximately 5

6
× 4 ≈ 3.33 years.

According to the results presented in [MKB+12], the processor is roughly 10% slower.

5.3 Optimization Framework

As discussed in Section 5.2, three design aspects — control performance, battery usage and
processor aging — are considered. In this section, the optimization framework for battery-aware
controller design is first presented. This is a constrained bi-objective optimization problem
with control performance and battery usage as objectives. Both gradient-based and stochastic
methods are used to solve it. They complement each other with their respective advantages
to obtain well-distributed non-dominated Pareto points. An algorithm is proposed to further
improve the distribution quality. The trade-off between the control performance Qb and battery
usage Rb can then be explored. Afterwards, the framework is slightly modified for battery- and
aging-aware controller design to ensure that the control performance keeps not getting degraded,
i.e., Q′b ≥ Qb.

5.3.1 Battery-Aware Controller Design

In this battery-aware controller design optimization problem, the two closed-loop eigenvalues
(i.e., poles) p1 and p2 in the closed-loop system dynamics of electric motor control are decision
variables to tune. The space for the eigenvalues is restricted in the real positive plane — which
is the case in most of the real-life design problems. This is particularly acceptable considering
the possible oscillation with complex eigenvalues in speed control of EVs. Therefore,

∀i ∈ {1, 2}, 0 ≤ pi < 1. (5.4)

It can be seen that the design space is continuous. As discussed before, the two objectives
to optimize are

• the settling time of the control task ts and

• the number of times r the control system can reach a steady state after a disturbance
occurs with a fully charged battery pack.

74



5. Battery- and Aging-Aware Automotive Control Systems Design

Pareto front
Pareto points with the
desired distribution

(w1 = 0.2, w2 = 0.8)
(w1 = 0.7, w2 = 0.3)

f1

f2

Figure 5.2: Illustration of how SQP locates Pareto points with various pairs of weights

ts should be minimized and r should be maximized. Usually an optimization technique takes
objectives either to minimize or maximize but not both. Therefore, in this chapter, f1 = ts and
f2 = −r are to be minimized.

There are several constraints to be satisfied. As shown in (C.18), the control input, i.e., the
duty cycle of the PWM control signals c is constrained as 0 ≤ c ≤ 1. As shown in (C.19),
the current in the motor cannot exceed the maximum allowed current, i.e., Imaxm . The current
drawn from each cell cannot be larger than Imaxc as explained in Section 5.2.1. For automotive
control applications, timing is critical. It is often necessary to guarantee that each control task
meets the settling time requirement, leading to the constraint ts ≤ t0s as discussed before. The
last constraint is related to overshoot and explained in (2.17).

In solving a constrained bi-objective optimization problem, there are typically two goals to
achieve:

• the solution point is on the Pareto surface and

• there is a good distribution of solution points.

The first goal ensures that the solution point is not dominated by any other point. In other
words, no other point is better than the solution in both objectives. The second goal gives
designers more freedom to choose solutions under different circumstances. In this controller
design optimization problem with significant non-linearity and non-convexity, the design space
is continuous with infinite design choices. There is no relationship between objectives and
decision variables that can be explicitly formulated. Therefore, it is a challenging task to achieve
both optimization goals.

5.3.2 Optimization Techniques
There are generally two types of heuristic techniques to solve such a constrained bi-objective
optimization problem as presented above: gradient-based and stochastic methods [KSD07].
They have different advantages and disadvantages. As discussed in Chapter 2, SQP is a popular
gradient-based optimization technique for single-objective non-convex problems and can be
extended to solve multi-objective problems by scalarization. However, SQP is good at finding

75



5.3. OPTIMIZATION FRAMEWORK

x1 x2

x3

x4 x5

q2
3

q1
3

f1

f2

Figure 5.3: Illustration of the crowding distance calculation for Pareto points distribution quality
quantification

local optima and also easily gets trapped by them, which makes it lose track of global optima.
A common way to improve the global awareness of SQP is taking multiple starting points to
explore different regions, yet it is often a challenging task to select an appropriate list of starting
points covering the entire objective space. In practice, starting point selection is usually on the
random base and thus the objective space is only partially searched.

SQP is also weak in locating a good distribution of Pareto points in multi-objective opti-
mization. Taking two objectives as an example, different pairs of weights (w1, w2) find different
Pareto points. For example, optimizing f0 constructed by (w1 = 1, w2 = 0) and (w1 = 0, w2 =
1) finds the solution optimizing f1 and f2, respectively. And (w1 = 0.5, w2 = 0.5) corresponds
to the point with equal emphasis on both objectives. However, a set of equally distant pairs
of weights does not necessarily produce a set of equally distant Pareto points. As shown in
Figure 5.2, when applying a pair (w1, w2), the straight line with the gradient of −w1

w2
starts from

the lower-left corner and approaches the Pareto front. The first intercepting point between the
straight line and the Pareto front is then the Pareto point corresponding to this pair (w1, w2).
Given the convex Pareto front in Figure 5.2, theoretically, an appropriate set of weight pairs
is able to locate a good distribution of Pareto points, yet it is often difficult to identify such a
set since the information regarding the Pareto front is always missing. It becomes especially
difficult when the gradient change along the Pareto surface is small. Besides, Pareto points in
the non-convex region of the Pareto front cannot be located by SQP at all.

Stochastic methods have also been developed to solve such a constrained bi-objective opti-
mization problem. One example is the popular NSGA discussed in Chapter 2. The advantage
of NSGA over SQP lies in its stochastic nature. More of the objective space can be explored,
so that it is very likely that a good distribution of Pareto points can be selected from the final
converged population. NSGA is not easily trapped by local optima and thus has better global
awareness. This is also its weakness that converged solutions are not guaranteed to be local op-
tima. Considering that both gradient-based and stochastic optimization methods have different
advantages, both of them are implemented and the solutions found by them are combined. The
overall runtime is in minutes and scalability is not an issue, since the number of objectives is
fixed to be two and the controller design is an offline task.

There are various ways to quantify the distribution quality for a set of Pareto points. In this
problem of embedded controller design for EVs, the distribution in the objective space instead of
decision variable space is investigated since it is important to see the trade-off between control
performance and battery usage. The popular method of crowding distance calculation described
in [DPAM02] is modified to suit this context. As illustrated in Figure 5.3, assuming that there

76



5. Battery- and Aging-Aware Automotive Control Systems Design

Algorithm 1: Removal of less representative solution points according to crowding dis-
tance ranking

Input: S = {x1, x2, . . . , xn}, nd, {ρ1, ρ2}, {f1, f2}
Output: Sd = {x1, x2, . . . , xnd

}
for j ∈ {1, 2, . . . , n− nd} do

for i ∈ {1, 2, . . . , n− j + 1} do
calculate q1

i and q2
i for the element xi as in (5.5);

end
for k ∈ {1, 2} do

sort S based on qki from maximum to minimum;
for i ∈ {1, 2, . . . , n− j + 1} do

assign the position value (1 for maximum to n− j + 1 for minimum) of xi in
S to rki ;

end
end
for i ∈ {1, 2, . . . , n− j + 1} do

calculate r0
i as in (5.7);

end
Sort S based on r0

i from maximum to minimum to be {x1, x2, . . . , xn−j+1};
Remove xn−j+1 from S;

end
Sd = S;

are two objectives {f1, f2} and n solution points {x1, x2, . . . , xn} ordered by the value of either
objective, for each point xi, i ∈ {1, 2, . . . , n}, that is not at the end of this point sequence, the
crowding distance of xi in terms of the objective fk, k ∈ {1, 2} can be calculated as

qki = |fk(xi+1)− fk(xi−1)|, (5.5)

where xi+1 and xi−1 are the two closest points to xi on each side, respectively. Since a set of
Pareto points that are non-dominated is dealt with, xi+1 and xi−1 are closest to xi in terms of
both objectives. Both end points of the point sequence are excluded from crowding distance
calculation. The overall crowding distance for the objective fk is

q̄k =
1

n− 2

n−1∑
i=2

qki . (5.6)

A smaller crowding distance q̄k indicates that these solution points are more crowded in terms of
the objective fk and thus the distribution quality is low. Larger crowding distances are desirable
since they represent a good distribution where all solution points are more representative.

Optimization techniques are required to explore the objective space as much as possible in
order to find more Pareto points. However, among all found points, some can be very close to
others. They are not representative and thus should be removed. The question is then which

77



5.4. EXPERIMENTAL RESULTS

points to remove so that the overall crowding distance can be maximized. First, for each point,
the two crowding distances corresponding to the two objectives are computed. Two ranks r1

and r2 are assigned to it based on the comparison in crowding distances with other points. For
instance, if the point xi has the maximum crowding distance in terms of f1 among all n points,
then r1

i = 1. If xi has the minimum crowding distance, then r1
i = n. The overall rank of xi is

r0
i = ρ1r

1
i + ρ2r

2
i , (5.7)

where ρ1 and ρ2 are importance factors of two objectives. These values depend on the applica-
tion and

ρ1 + ρ2 = 1. (5.8)

For example, if in an application, f1 is the single key objective, then ρ1 can be set to 1 and ρ2 to
0. In this case, r0

i is equal to r1
i and all points are ranked according to their crowding distances

in terms of f1. After each point xi has an overall rank r0
i , the point with the smallest r0

i is
removed from the solution set. The entire process starting from crowding distance calculation
is iterated until the desirable number of points nd is reached. Both end points of the point
sequence are always kept in the set to maintain the coverage of the solution set. The algorithm
is shown in Algorithm 1. It is noted that there are two objectives in this embedded controller
design problem for EVs. Everything presented in this section can be easily extended to a multi-
objective optimization problem.

5.3.3 Battery- and Aging-Aware Controller Design
As discussed in Section 5.2, processor aging prolongs the control system sampling period, open-
ing up the possibility of control performance deterioration. This has to be prevented for safety-
critical applications like motor control in EVs as it endangers lives of both passengers and the
driver. For instance, in ACC, if it takes more than original time to change the motor speed after
the vehicle is driven for some time, accidents might occur. In order to ensure that the control
performance does not get degraded, i.e., Q′b ≥ Qb, the optimization framework for battery-
aware controller design is modified. One constraint is added for every generated solution that
ts must not get longer. The constraint ts ≤ t0s is then not needed any more. Battery usage
r becomes the single objective in this battery- and aging-aware controller design optimization
problem. The goal will only be approaching the global optimum as closely as possible. In order
to achieve it, the objective space needs to be fully explored, to find local optima and compare
them. Therefore, both SQP and the genetic algorithm are used for their respective advantages.
For SQP, no objective conversion is necessary. A simpler genetic algorithm is implemented to
replace NSGA in the sense that sorting is only based on the objective value r in environmental
selection. The algorithm to improve distribution quality is removed as only one single solution
is looked for and the distribution is no longer relevant.

5.4 Experimental Results
In this section, the optimization results of the battery-aware embedded control systems design
for EVs are first shown. Solutions produced by SQP and NSGA are combined and sorted by

78



5. Battery- and Aging-Aware Automotive Control Systems Design

0.8 0.9 1 1.1 1.2 1.3 1.4

1400

1600

1800

2000

2200

ts [s] (Control Performance)

r
(B

at
te

ry
U

sa
ge

) SQP
NSGA

Figure 5.4: Non-dominated solutions found by SQP and converged solutions found by NSGA.
For SQP, 20 random starting points and 3 pairs of weights for objective conversion are used. For
NSGA, 20 random starting points are used and the maximum allowed number of generations
is 10. Many NSGA solutions are dominated by SQP solutions but NSGA covers more of the
objective space.

domination. Only non-dominated ones are kept. The algorithm is illustrated to improve the
distribution quality of the solution set. The trade-off between control performance Qb and
battery usage Rb is explored. Then processor aging effects are reported in terms of both design
objectives: control performance Q′b and battery usage R′b. It is shown that with controller
design re-optimization in battery- and aging-aware controller design, the safety-critical control
performance can be kept not getting degraded with a slight compromise on battery usage, i.e.,
Q′b ≥ Qb.

The electric motor control presented in Section C is used for evaluation with a starting
sampling period of 0.1s before processor aging. The battery pack consists of 100 cells in series
and 30 cells in parallel. Each cell has a unit voltage of 3.7V , as presented in Section 5.2.1. The
settling time is expected to be below 1.5s and the maximum allowed current in the battery cell
Imaxc is 5A.

In the battery-aware controller design, solutions produced by both SQP and NSGA in the
objective space are shown in Figure 5.4. For SQP, three pairs of weights (w1 = 1, w2 = 0),
(w1 = 0, w2 = 1) and (w1 = 0.5, w2 = 0.5) are used for objective conversion and 20 starting
points are randomly selected. All points converge to local optima and are sorted by domination.
Only non-dominated solutions remain. For NSGA, 20 random starting points are used and the
maximum allowed number of generations is 10. Converged solutions are automatically non-
dominated. From the results, it can be seen that SQP tends to find better points locally but fails
to explore certain regions of the objective space. Some of the solutions generated by NSGA
are not locally optimal and dominated by solutions from SQP. But NSGA covers more of the
objective space and provides more choices to select for a better distribution. These findings
match our analysis on both optimization techniques in Section 5.3. All solutions from SQP
and NSGA are combined and sorted by domination. Only non-dominated ones are left and
presented in Figure 5.5. Compared with solutions generated by SQP or NSGA alone, combined
results are better in objective values and cover more of the objective space.

79



5.4. EXPERIMENTAL RESULTS

0.8 0.9 1 1.1 1.2 1.3 1.4

1400

1600

1800

2000

2200

ts [s] (Control Performance)

r
(B

at
te

ry
U

sa
ge

)

Figure 5.5: Combined solutions found by both SQP and NSGA. Dominated ones are removed.

0.8 0.9 1 1.1 1.2 1.3 1.4

1400

1600

1800

2000

2200

ts [s] (Control Performance)

r
(B

at
te

ry
U

sa
ge

)

Figure 5.6: Final non-dominated solutions for the battery-aware embedded control system de-
sign. The distribution quality improvement algorithm is applied.

From the distribution point of view, some of the points in Figure 5.5 are very close to
others and thus redundant. There is still space to improve the distribution quality. Based on
the method explained in Section 5.3, the two crowding distances are computed to be q̄1 =
0.065 and q̄2 = 70.925. Then Algorithm 1 is taken to improve the distribution quality. In the
embedded controller design for EVs, the objective of control performance f1 = ts is safety-
critical and more relevant to the vehicle performance. Therefore, ρ1 = 1 and ρ2 = 0 are set
as the distribution quality in f1 is more of a concern. It is noted that other pairs of importance
factors for distribution quality can be used as well based on the designer’s choice. Assuming that
the desirable number of solutions nd is 8, Algorithm 1 is executed and the final results are shown
in Figure 5.6. It is visually obvious that the distribution quality is improved. Quantitatively, the
two crowding distances become q̄1 = 0.190 and q̄2 = 215.860, respectively. Approximately,
for every interval of 0.1s in settling time, there is one solution to choose. The trade-off between
control performance Qb and battery usage Rb can be clearly seen in Figure 5.6. If a solution
point with better control performance is desired, then battery usage has to be compromised, and
vice versa. The designer can then make the selection based on different cases.

The change in processor operating frequency leads to a decreased sampling frequency of
the controller, for which the safety-critical design objective control performance could get de-

80



5. Battery- and Aging-Aware Automotive Control Systems Design

Table 5.1: Aging effects in settling time and battery usage with and without controller de-
sign re-optimization. Degradation is calculated with respect to objective values before aging.
Negative numbers indicate improvement. Degr. stands for Degradation and re-opt. stands for
re-optimization.

Point Number 1 2 3 4 5 6 7 8
ts before aging [s] 0.779 1.100 0.900 0.800 1.003 1.407 1.309 1.208

ts after aging w/o re-opt. [s] 0.846 1.199 0.979 0.869 1.091 1.536 1.427 1.317
Degr. in ts w/o re-opt. [%] 8.55 8.96 8.78 8.62 8.82 9.11 9.05 9.02
ts after aging with re-opt. [s] 0.753 0.980 0.809 0.796 0.870 1.310 1.200 1.090
Degr. in ts with re-opt. [%] -3.29 -10.92 -10.11 -0.56 -13.2 -6.89 -8.28 -9.77

r before aging 1346 1880 1662 1552 1731 2131 2062 1910
r after aging w/o re-opt. 1467 1822 1575 1450 1862 2245 2182 2034

Degr. in r w/o re-opt. [%] -8.99 3.09 5.23 6.54 -7.57 -5.34 -5.83 -6.48
r after aging with re-opt. 1336 1787 1539 1543 1683 2073 2008 1883

Degr. in r with re-opt. [%] 0.75 4.92 7.38 0.55 2.76 2.72 2.59 1.42

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

1400

1600

1800

2000

2200

ts [s] (Control Performance)

r
(B

at
te

ry
U

sa
ge

) before aging
after 10% aging

Figure 5.7: Aging effects in both settling time and battery usage. Two points for the same
design case before and after aging are connected with a dotted line. Control performance gets
deteriorated for all eight solutions generated in battery-aware controller design if the controller
design does not change. Exact values can be found in Table 5.1.

graded. In the following experiments, it is assumed that the sampling period is increased by
10%, as discussed in Section 5.2.2 from 0.1s to 0.11s. In Figure 5.7 and Table 5.1, the aging
effects in settling time and battery usage are shown for the eight controller designs generated for
battery-aware controller design in Figure 5.6, assuming that the controller eigenvalues do not
change. The two points with the same controller design before and after aging are connected
with a dotted line. It is found that the battery usage and settling time get changed when the
processor ages and the control system sampling frequency decreases. Compared to Rb, the bat-
tery usage R′b gets degraded in some cases and improved in other cases. Compared to Qb, the
safety-critical design objective QoC Q′b gets deteriorated for every solution. In one case, even
the hard constraint ts ≤ 1.5s is violated.

81



5.5. REMARKS

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

1400

1600

1800

2000

2200

ts [s] (Control Performance)

r
(B

at
te

ry
U

sa
ge

) before aging
after aging with re-optimization

Figure 5.8: Aging effects mitigation with controller design re-optimization. Two points for the
same design case before aging and after aging with controller re-optimization are connected
with a dotted line. For all eight solutions generated in battery-aware controller design, control
performance is kept not deteriorated with a slight compromise on battery usage.

As discussed in Section 5.3, it is necessary to ensure that the control performance does not
get worse even when the processor ages, i.e., Q′b ≥ Qb. With controller design re-optimization,
results are shown in Figure 5.8 and Table 5.1. The two points connected with a dotted line
represent the same design case before aging and after aging with controller re-optimization. One
can see that it is possible to find new controller design eigenvalues that ensure no degradation
of control performance. The price paid is that the battery usage has slightly deteriorated for all
design cases. It is noted that which sampling period is optimal for embedded systems control
in EVs is a challenging question to answer motivating future work, since both objectives need
to be considered, together with constraints and aging effects. The framework presented in this
paper guarantees no compromise in control performance due to processor aging, given any
original sampling period. Besides, controller design re-optimization is an offline task. A look-
up table with controller eigenvalues corresponding to processor operating frequency is stored
in the controller memory. There is a small safety margin to accommodate slight processor
aging. When the extend of aging exceeds this safety margin, on-chip monitors realize that it is
necessary to reduce the processor frequency. The frequency generator makes the change, and
the controller adjusts its eigenvalues accordingly. With a larger look-up table, a smaller safety
margin can be set and thus the resource utilization can be improved.

5.5 Remarks
In this chapter, a design optimization framework for embedded control systems in EVs — ex-
plicitly studying various trade-offs among (i) control performance (ii) battery usage and (iii)
processor aging — is presented. The results reported in battery-aware controller design show
that a higher control performance implies a lower battery usage and vice versa. This frame-
work essentially offers the possibility to achieve trade-offs from the Pareto front. Furthermore,
when the processor ages, the control performance gets deteriorated. A modified version of
the optimization framework is used in battery- and aging-aware controller design and experi-

82



5. Battery- and Aging-Aware Automotive Control Systems Design

mented considering 10% reduction in processing speed due to aging. Results show that control
performance deterioration due to aging can be mitigated by a little compromise on battery us-
age. Thus, the presented framework allows to preserve the safety-critical guarantees in spite of
processor aging at the cost of a slightly lower battery usage.

In this chapter, electric motor control, which is a safety-critical application, is considered.
Therefore, the control performance cannot be deteriorated as the processor ages. It is common
that multiple applications run on one ECU. Some of the applications can be comfort-related,
such as suspension control. Besides the controller re-optimization method presented in this
chapter that keeps control performances of safety-critical applications not degraded with a de-
crease on the battery usage along the processor aging, control performances of these comfort-
related applications could also be compromised to fulfill the same purpose.

Besides battery rate capacity effect considered in this chapter, battery aging also has sig-
nificant impact on the battery usage and can be influenced by controller design. In order to
precisely take battery aging effect into account, battery tests with discharging current profiles
under real-world automotive scenarios are required. With these test results, it can be known
which controller design better mitigates the battery aging. This makes the Pareto front explor-
ing the trade-off between control performance and battery usage practically more useful.

Building a hybrid electrical energy storage (EES) system consisting of a supercapacitor and
a battery could also mitigate battery aging, which is mainly caused by large discharging currents
that can be supplied by the supercapacitor [SKS+11], since the life cycles of supercapacitors are
considerably larger than those of lithium-ion batteries. There have been works studying EES
systems with multiple elements [PCKW10] and how to dimension them. However, none of the
papers have considered battery aging in the CPS design context, which can be explored in the
future work.

83



5.5. REMARKS

84



6
Conclusion

The automotive industry is cost-sensitive. In the past decade, the complexity of automotive
systems has increased significantly, with modern automobiles equipped with more and more
functions, which makes it much more challenging for the implementation to keep cost-efficient.
Along the research direction of system dimensioning, this thesis studies control systems taking
memory, computation, and energy resources into consideration. The goal is to achieve better
control performance with a given implementation platform, or equivalently, reduce the system
cost while satisfying all the requirements.

When the memory is shared by multiple applications running on one processor and executed
in a round-robin fashion, the cache is frequently refreshed, resulting in long WCET. A sampling
order that consecutively executes every application multiple times is proposed in Chapter 3 in
order to increase the cache reuse and shorten the WCET. The control performance is improved
by the framework integrating memory analysis and non-uniform controller design. The optimal
sampling order is computed to fully realize the potential of a memory-aware sampling order.

There have been no previous works in memory-aware embedded control systems design.
The efforts in Chapter 3 open up a number of possible topics that can be pursued in the future.
For example, in a scratchpad-based multi-core architecture, it is worth of investigating how the
scratchpad memory should be partitioned among applications, so that the overall control per-
formances can be maximized. Conventionally, the WCET is used as the optimization objective.
However, this WCET-driven solution might not be optimal for control performance. Therefore,
new techniques need to be developed for the scratchpad partitioning in the control context.

In the cache-based architecture, besides the memory-aware sampling order, another possible
way to improve the control performance is cache locking. It is interesting to know which way
behaves better. This could depend on the ratio between the program size and the cache size. The
technique to determine which part of the code should be allocated into the cache is required.

Memory and communication resources can be taken account of together in automotive con-
trol systems design. For instance, the choices of sampling periods can be restricted by the

85



communication cycles in the FlexRay bus. Without considering the memory, there is a trade-
off between control performance and bus load. That is, to achieve better control performance,
the bus load is high. The memory adds another dimension to this problem. To realize a smaller
sampling period, the cache or scratchpad size needs to be larger as well. This is a more thorough
exploration of the trade-off between the performance and system dimensioning.

As a class of widely used OS in automobiles, OSEK/VDX-compliant OS offer a limited set
of periods. A multirate schedule is able to realize the required control performance requirement,
while reducing the processor load, thereby enabling more applications to be integrated into an
ECU. Such OS-aware automotive control systems design presented in Chapter 4 has not been
studied before.

With different memory architectures, sizes, and uses, the WCET of a control program varies.
The trade-off between memory resources and computation resources is an interesting direction
to pursue in the future, especially for a multi-core ECU. In general, this thesis addresses each
individual type of resources of the implementation platform and develops relevant techniques.
As all the necessary techniques are ready, all types of resources can be taken into account
together, resulting in the holistic resource-aware automotive control systems design.

While the implementation platform with computation, memory and communication re-
sources exists in every modern vehicle, the energy resource is of particular interest for EVs, due
to the relatively slow progress in the battery technology development. Since there has been no
significant improvement in the battery material and mechanism in the past decade, it is impor-
tant for control theorists and automotive engineers to make the best use of the limited capability
provided by the battery. In particular, it is desirable to minimize the energy consumption of
each control task invocation and generate a friendly discharging current profile (low average
and peak current). Along this line, a trade-off between the control performance and the battery
usage is explored in Chapter 5.

The difference between the energy resource and other resources on the implementation plat-
form is that the trade-off involving the system dimensioning for the processor, memory and
communication bus occurs during the design phase. For instance, once the vehicle is on the
road, it is rare and difficult to change the size of the memory. However, the battery usage can be
adjusted in the real-time, which only requires change of controller poles. This offers more flex-
ibility to handle the negative effects along the use of vehicles, such as processor aging. As the
processor ages, the processor operating frequency is decreased and the sampling period is pro-
longed. Re-optimized controller is able to maintain the control performance with a compromise
in the battery usage.

This thesis discusses both linear and non-linear control algorithms, involving techniques
of offline contoller optimization. Online optimal control (e.g., selecting the optimal sampling
period or poles depending on the real-time system states) is more robust. However, the challenge
is mainly on how to avoid heavy computation. One potential direction is to make use of deep
learning. For instance, a neural network can be trained offline. The supervised learning can be
conducted by MPC. The reinforcement learning can be conducted in experiments. The benefit
of deep learning is that once the training is done, the online effort is minimal — similar to
looking up a table. All sorts of disturbance can be well handled.

A number of optimization techniques to solve non-convex problems are presented in this
thesis. Due to the complexity, heuristics are often deployed. It is barely true that one heuristic

86



6. Conclusion

is able to take many real-life problems — with different dimensions, domain shapes and con-
straints. Therefore, customized techniques developed based on the understanding of the specific
problem are necessary to achieve excellent optimality and efficiency.

Automotive systems have always been cost-sensitive and are expected to continue to be so.
Conventional design techniques do not consider resources due to the small number of simple
control applications implemented on board. As the automotive industry is entering the smart era
with more and more functions, resource-aware automotive control systems design will play a
key role, aiming to achieve better performance and efficient dimensioning simultaneously. This
thesis makes some first theoretic efforts along this research direction, which are validated by
real-life control systems. More possibilities are opened up and discussed that can be pursued
by researchers and engineers in the automotive, embedded system and control domains.

87



88



Appendix

A Electronic Wedge Brake
This section presents a brake-by-wire solution called EWB, developed by Siemens [FRBW+07].
The EWB uses the self-reinforcing wedge principle, thereby making the required actuation force
and power much lower than the conventional electromechanical brakes. Experiments show that
the EWB outperforms hydraulic systems in the braking distance, especially on surfaces with
low friction. The simplified model is illustrated in Figure A.1 and the state-space model is
derived as follows.

Along the direction parallel to the braking disc,

mv̇ = FM cosα + FB − FR sinα = FM cosα + µFN − FR sinα, (A.1)

where m is the wedge mass, v is the wedge velocity along the x direction, v̇ is the wedge
acceleration along x, α is the wedge angle, FM is the force applied by the motor, FN is force
between the wedge and the disc, and FR is the force between the wedge and the calliper.

Along the perpendicular direction to x,

mv̇ tanα = FM sinα + FR cosα− FN . (A.2)

Considering the spring connecting the callipers,

FN = Kcalx tanα, (A.3)

where x is the wedge position, assuming that FN is zero when x is zero. Combining (A.1)
and (A.2),

v̇ =
1

m(1 + tan2 α)
(

1

cosα
FM + (µ− tanα) tanαKcalx), (A.4)

To relate the motor angular position θm and ωm to the force FM , the connection system is
modelled by a stiffness Kaxial and a viscous damping Daxial. Therefore,

FM = Kaxial(θm
L

2π cosα
− x) +Daxial(ωm

L

2π cosα
− v) (A.5)

The simplified roller screw has a lead L and a constant torque-to-force efficiency η, where
0 < η < 1. The torque from the motor is then

MM =
LFM
2πη

(A.6)

89



A. ELECTRONIC WEDGE BRAKE

Calliper

Disc

Calliper

WedgeFM

FN

FB

FR

α

x

Kcal

(θm, ωm)

um

im

(Rm, Lm)

Figure A.1: A simplified model of the electronic wedge braking system

Table A.1: Paramters of the EWB
µ α Kcal Kaxial m Daxial L

0.4 0.2π 4× 104N/m 8× 104N/m 0.2kg 300Ns/m 0.2m
η Jm Dm Km Lm Rm um

0.6 10−3kgm2 0.3Nms 0.5Nm/A 10−3H 1Ω up to 12V

The motor used to drive the wedge is a brushless single-phase DC motor driven by a voltage
um and modelled with the resistance Rm, inductance Lm, viscous damping Dm as friction, and
torque constant km as follows,

˙im = −Rm

Lm
im −

km
Lm

ωm +
1

Lm
um, (A.7)

where im is the motor current and ˙im is the first derivative of the motor current with respect to
time. Assuming Jm to be the moment of inertia of the rotor, there is

Jmω̇m = kmim −MM −Dmωm. (A.8)

Combining (A.4), (A.5), (A.6), (A.7), and (A.8), the state-space model of the EWB can be
formulated as in (2.1), where

A =


0 1 0 0 0

(µ−tanα) sinαKcal−Kaxial

m sec2 α cosα
− Daxial

m sec2 α cosα
LKaxial

2πm sec2 α cos2 α
LDaxial

2πm sec2 α cos2 α
0

0 0 0 1 0
LKaxial

2πJmη
LDaxial

2πJmη
− L2Kaxial

4π2Jm cosαη
− L2Daxial

4π2Jm cosαη
− Dm

Jm
km
Jm

0 0 0 − km
Lm

−Rm

Lm

 , (A.9)

and

B = [0, 0, 0, 0,
1

Lm
]
T

, C = [Kcal tanα, 0, 0, 0, 0]. (A.10)

The system state is [x, v, θm, ωm, im]. The control input is um. The system output is FN . Pa-
rameters are listed in Table A.1.

90



6. Conclusion

compute

measure actuate

digital output

analog

output

servo amplifierservo motor

Load

Controller

DACMaxon Motor
ADS 50/5

Harmonic Drive
PMA-5A

E
nc

od
er

A
ct

ua
to

r

Figure B.2: Experimental setup of servo motor position control

B Servo Motor Position Control
Position control of a servo motor can be found, e.g., in a steer-by-wire system [Yih05]. As
shown in Figure B.2, the shaft of the servo motor (Harmonic Drive) [Dri] is attached to a
rigid stick with 300g of weight at the end. The position of the motor shaft is measured by
digital quadrature encoders attached to the motor shaft. The motor provides a desired amount
of torque (computed by the control program) using a Digital-to-Analog Converter (DAC) via a
servo amplifier (Maxon Motor) [Mot11].

The above system of servo motor position control has two states: x1(t), the angular position
and x2(t), the angular velocity of the shaft. Within the control loop, the measure operation
reads the quadrature encoder to obtain x1(t) and x2(t); the compute operation executes the
control program and computes the input current u(t) for the motor and the actuate operation is
performed using the DAC. The control objective is to keep the rigid load at a certain angular
position. Since the output is the angular position x1(t), y(t) = x1(t). The dynamics of the
above system is represented as in (2.1) with

A =

[
0 1
37 7.5

]
, B =

[
0

6450

]
, C =

[
1 0

]
. (B.11)

The maximum current that the servo amplifier can supply to the motor is 1.5 ampere. Therefore,
u(t) ≤ 1.5A must be respected by the controller.

C Electric Motor Control
Electric motor control is a key function in EVs. As shown in Figure C.3, a DC motor running in
the speed control mode is considered. The controller is supposed to operate the motor at various
speeds according to driver input or environmental requirements. V is the DC voltage provided
by the battery pack. R and L are resistance and inductance in the armature circuit. e is the Back
Electromotive Force (EMF) from the motor. The Insulated Gate Bipolar Transistor (IGBT)
works as a switch controlled by Pulse-Width Modulation (PWM) signals at the gate. When the
switch is on, V is applied to the armature circuit. When the switch is off, the diode flows out
remaining current in the motor and thus the applied voltage is equivalent to zero.

Periodic PWM signals are shown in Figure C.4, where the duty cycle c is calculated as

c =
ton
tperiod

, (C.12)

91



C. ELECTRIC MOTOR CONTROL

V

R L

e
PWM Signal

Shaft

θ

bθ̇

Field
Fixed

Figure C.3: Modelling DC motor with the armature circuit powered up by a battery pack

and the effective voltage applied in the armature circuit is

Veff = cV. (C.13)

It can be clearly seen that Veff is adjustable by controlling PWM signals.
In general, the torque T generated by a DC motor is proportional to the armature current i

and the strength of the magnetic field. It is assumed that the magnetic field is constant and thus
the torque is calculated as

T = Kti, (C.14)

whereKt is the motor torque constant. The angular position of the motor is denoted to be θ. The
angular velocity and acceleration are then θ̇ and θ̈, respectively. The back EMF is proportional
to the angular velocity of the shaft by a constant factor Ke as follows,

e = Keθ̇. (C.15)

A viscous friction model is assumed and the friction torque is proportional to the shaft angular
velocity θ̇ by a factor of b. Now the following governing equations can be derived based on
Newton’s second law and Kirchhoff’s law [RKHB08],

Jθ̈ + bθ̇ = Kti, L
di

dt
+Ri = cV −Keθ̇, (C.16)

where J is the moment of inertia of the motor.
The state-space system modelling as in (2.1) becomes

d

dt

[
θ̇
i

]
=

[
− b
J

Kt

J

−Ke

L
−R
L

] [
θ̇
i

]
+

[
0
V
L

]
c,

y =
[

1 0
] [ θ̇

i

]
.

(C.17)

The states are the angular velocity of the motor θ̇ and the armature current i. The control input
is the duty cycle c and the system output is θ̇. The control task is to make θ̇ approach a certain
value θ̇ref . It is clear that the constraint on the control input is

0 ≤ c ≤ 1. (C.18)

92



6. Conclusion

Switch Off

Switch On

Duty Cycle 70%

tperiod

ton

Figure C.4: Pulse-width modulation control signals in the armature circuit to adjust the DC
voltage applied to the rotor

Table C.2: Parameters and constraints of the motor control system
J [kgm2] b [Nms] Kt [Nm/A] Ke [V/(rad · s)] R [Ω] L [H] V [V ] Imaxm [A]

0.15 0.03 0.1 0.1 1 0.01 370 300

Control Input

12V Onboard Battery

Electric
Motor

Position 0r

Braking Lever

Figure D.5: A simplified model of the electro-mechanical braking system

Another constraint is on the largest current that can be sustained by wires in the motor, i.e.,

i ≤ Imaxm . (C.19)

Example parameters of the entire motor control system are shown in Table C.2. The oper-
ating voltage V of the battery pack is 370 V. Constraints of the control system design are also
shown in Table C.2. The maximum allowed current in the motor Imaxm is 300 A, for the sake of
thermal safety.

D Electro-Mechanical Braking System

The simplified model of an EMB system from Bosch is shown in Figure D.5. When the EMB is
active, the braking lever should reach a reference position r, which is at the braking disc, within
the desired settling time t0s. This is the position mode. The requirement on the settling time
ensures the reactiveness of the system. After that, a certain force is applied in the force mode.
The electric motor mobilizing the braking lever is powered by the onboard battery, which has a
voltage of 12V . The position mode of the EMB is of interest in several scenarios: braking, disk
wiping, and pre-crash preparations. The system dynamics can be modeled as (D.20) with five
system states — motor current, motor angular velocity, motor angular position, lever velocity,

93



D. ELECTRO-MECHANICAL BRAKING SYSTEM

Table D.3: EMB system requirements
Settling time requirement t0s Input saturation Umax Reference r WCET Ewc

150ms 12V 2mm 0.7ms

and lever position.

A =


−520 −220 0 0 0
220 −500 −999994 0 2× 108

0 1 0 0 0
0 0 66667 −0.1667 −1.3333× 107

0 0 0 1 0

 , B =


1000

0
0
0
0

 ,
C =

[
0 0 0 0 1

]
.

(D.20)

Example requirements are summarized in Table D.3.

94



Bibliography

[Age12] The U.S. Environmental Protection Agency. EPA and NHTSA Set Standards to
Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017-
2025 Cars and Light Trucks , 2012.

[AGL15] S. Al-Areqi, D. Görges, and S. Liu. Event-based Control and Scheduling Code-
sign: Stochastic and Robust Approaches. IEEE Transactions on Automatic Con-
trol, 60(5):1291–1303, 2015.

[AGS+13] S. Andalam, A. Girault, R. Sinha, P. Roop, and J. Reineke. Precise Timing Anal-
ysis for Direct-Mapped Caches. In DAC, 2013.

[AM09] K. Astrom and R. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, 2009.

[AT09] A. Anta and P. Tabuada. On the Benefits of Relaxing the Periodicity Assumption
for Networked Control Systems over CAN. In RTSS, pages 3–12, 2009.

[AU98] J. Ackermann and V. Utkin. Sliding Mode Control Design based on Ackermann’s
Formula. IEEE Transactions on Automatic Control, 43(2):234–237, 1998.

[BB14] E. Bini and G. Buttazzo. The Optimal Sampling Pattern for Linear Control Sys-
tems. IEEE Transactions on Automatic Control, 59(1):78–90, 2014.

[BBC+07] S. Brennan, J. Buckland, U. Christen, I. Haskara, and I. Kolmanovsky. Edito-
rial: Special Issue on Control Applications in Automotive Engineering. IEEE
Transactions on Control Systems Technology, 15(3):403–405, 2007.

[BC08] E. Bini and A. Cervin. Delay-Aware Period Assignment in Control Systems. In
RTSS, pages 291–300, 2008.

[BK08] A. Bhave and B. Krogh. Performance Bounds on State-Feedback Controller with
Network Delay. In CDC, 2008.

[Bos91] Bosch. CAN Specification Version 2.0, 1991.

[BTW+09] K. Bowman, J. Tschanz, C. Wilkerson, S. Lu, T. Karnik, V. De, and S. Borkar.
Circuit Techniques for Dynamic Variation Tolerance. In DAC, pages 4–7, 2009.

95



BIBLIOGRAPHY

[BW08] K. Batcher and R. Walker. Dynamic Round-Robin Task Scheduling to Reduce
Cache Misses for Embedded Systems. In DATE, 2008.

[CBMC11] A. Cervin, M. Belasco, P. Marti, and A. Camacho. Optimal Online Sampling
Period Assignment: Theory and Experiments. IEEE Transactions on Control
Systems Technology, 19(4):902–910, 2011.

[CC16] W. Chang and S. Chakraborty. Resource-Aware Automotive Control Systems De-
sign: A Cyber-Physical Systems Approach. Foundations and Trends R© in Elec-
tronic Design Automation, 10:249–369, 2016.

[CCK+12] W. Cho, J. Choi, C. Kim, S. Choi, and K. Yi. Unified Chassis Control for the Im-
provement of Agility, Maneuverability, and Lateral Stability. IEEE Transactions
on Vehicular Technology, 61(3):1008–1020, 2012.

[CFC+16] S. Chakraborty, M. Al Faruque, W. Chang, D. Goswami, M. Wolf, and Q. Zhu.
Automotive Cyber-Physical Systems: A Tutorial Introduction. IEEE Design &
Test, 33:92–108, 2016.

[CGC+17] W. Chang, D. Goswami, S. Chakraborty, J. Xue, L. Ju, and S. Andalam. Memory-
Aware Embedded Control Systems Design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36:586–599, 2017.

[CGCHng] W. Chang, D. Gowami, S. Chakraborty, and A. Hamann. OS-Aware Automotive
Controller Design Using Non-Uniform Sampling. ACM Transactions on Cyber-
Physical Systems, forthcoming.

[CLP+14] S. Chang, B. Lee, Y. Park, H. Cho, and M. Kim. Integrated Chassis Control for
Improving On-Center Handling Behavior. SAE International Journal of Passen-
ger Cars — Mechanical Systems, 7(3):1002–1008, 2014.

[CMRT09] S. Chakraborty, T. Mitra, A. Roychoudhury, and L. Thiele. Cache-Aware Timing
Analysis of Streaming Applications. Real-Time Systems, 41(1):52–85, 2009.

[CMV+06] R. Castane, P. Marti, M. Velasco, A. Cervin, and D. Henriksson. Resource Man-
agement for Control Tasks based on the Transient Dynamics of Closed-Loop Sys-
tems. In ECRTS, 2006.

[Con05] OSEK/VDX Consortium. OSEK/VDX Operating System Specification Version
2.2.3, 2005.

[CPG+14] W. Chang, A. Pröbstl, D. Goswami, M. Zamani, and S. Chakraborty. Battery- and
Aging-Aware Embedded Control Systems for Electric Vehicles. In RTSS, 2014.

[CPG+15] W. Chang, A. Pröbstl, D. Goswami, M. Zamani, and S. Chakraborty. Reliable
CPS Design for Mitigating Semiconductor and Battery Aging in Electric Vehi-
cles. In CPSNA, 2015.

96



BIBLIOGRAPHY

[CSJ07] C. Chiang, A. Stefanopoulou, and M. Jankovic. Nonlinear Observer-based Con-
trol of Load Transitions in Homogeneous Charge Compression Ignition Engines.
IEEE Transactions on Control Systems Technology, 15(3):438–448, 2007.

[DPAM02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197, 2002.

[Dri] Harmonic Drive. Produktbeschreibung PMA.

[DS06] D. Doerffel and S. Sharkh. A Critical Review of Using the Peukert Equation for
Determining the Remaining Capacity of Lead-Acid and Lithium-Ion Batteries.
Journal of Power Sources, 165(2):395–400, 2006.

[Fei03] P. Feiler. Real-Time Application Development with OSEK: A Review of the
OSEK Standards. Technical report, Carnegie Mellon University, 2003.

[Fle05] FlexRay Consortium. The FlexRay Communications System Specifications Ver-
sion 2.1, 2005.

[FRBW+07] J. Fox, R. Roberts, C. Baier-Welt, L. Ho, L. Lacraru, and B. Gombert. Modeling
and Control of a Single Motor Electronic Wedge Brake. Technical report, SAE,
2007.

[GFB11] L. Greco, D. Fontanelli, and A. Bicchi. Design and Stability Analysis for Anytime
Control via Stochastic Scheduling. IEEE Transactions on Automatic Control,
56(3):571–585, 2011.

[Hag93] S. Hageman. Simple PSpice Models Let You Simulate Common Battery Types.
Electronic Design News, 38:117–129, 1993.

[HJYK15] H. Heo, E. Joa, K. Yi, and K. Kim. Integrated Chassis Control for Enhancement
of High Speed Cornering Performance. SAE International Journal of Commercial
Vehicles, 8(1):102–109, 2015.

[HR88] Y. Halevi and A. Ray. Integrated Communication and Control Systems: Part I–
Analysis. Journal of Dynamic Systems, Measurement, and Control, 110:367–373,
1988.

[HSJ08] E. Henriksson, H. Sandberg, and K. Johansson. Predictive Compensation for
Communication Outages in Networked Control Systems. In CDC, pages 2063–
2068, 2008.

[Inf09] Infineon. XC2300B-Series 16/32-bit µC for Automotive Safety, 2009.

[JJ13] A. Jordehi and J. Jasni. Parameter Selection in Particle Swarm Optimiza-
tion: A Survey. Journal of Experimental and Theoretical Artificial Intelligence,
25(4):527–542, 2013.

97



BIBLIOGRAPHY

[KFM11] J. Kleinsorge, H. Falk, and P. Marwedel. A Synergetic Approach to Accurate
Analysis of Cache-Related Preemption Delay. In EMSOFT, 2011.

[KQ11] T. Kim and W. Qiao. A Hybrid Battery Model Capable of Capturing Dynamic
Circuit Characteristics and Nonlinear Capacity Effects. IEEE Transactions on
Energy Conversion, 26(4):1172–1180, 2011.

[Kri12] K. Kritayakirana. Autonomous Vehicle Control at the Limits of Handling. PhD
thesis, Stanford University, 2012.

[KSD07] A. Kumar, D. Sharma, and K. Deb. A Hybrid Multi-Objective Optimization Pro-
cedure Using PCX based NSGA-II and Sequential Quadratic Programming. In
CEC, pages 3011–3018, 2007.

[LA09] H. Lin and P. Antsaklis. Stability and Stabilizability of Switched Linear Sys-
tems: A Survey of Recent Results. IEEE Transactions on Automatic Control,
54(2):308–322, 2009.

[LBS10] D. Lorenz, M. Barke, and U. Schlichtmann. Aging Analysis at Gate and Macro
Cell Level. In ICCAD, 2010.

[LDF+11] C. Lefurgy, A. Drake, M. Floyd, M. Alle, B. Brock, J. Tierno, and J. Carter. Active
Management of Timing Guardband to Save Energy in POWER7. In MICRO,
pages 1–11, 2011.

[LLB+12] O. Ljungkrantz, H. Lonn, H. Blom, C. Ekelin, and D. Karlsson. Modelling of
Safety-Related Timing Constraints for Automotive Embedded Systems. In SAFE-
COMP, 2012.

[LW13] E. Lavretsky and K. Wise. Robust and Adaptive Control. Springer London, 2013.

[LWH+14] Q. Leng, Y. Wei, S. Han, A. Mok, W. Zhang, and M. Tomizuka. Improving
Control Performance by Minimizing Jitter in RT-WiFi Networks. In RTSS, 2014.

[MDG07] B. Müller, J. Deutscher, and S. Grodde. Continuous Curvature Trajectory De-
sign and Feedforward Control for Parking a Car. IEEE Transactions on Control
Systems Technology, 15(3):541–553, 2007.

[Meh92] S. Mehrotra. On the Implementation of a Primal-Dual Interior Point Method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[MFFR02] P. Marti, J. Fuertes, G. Fohler, and K. Ramamritham. Improving Quality-of-
Control Using Flexible Timing Constraints: Metric and Scheduling. In RTSS,
2002.

[MIMG08] R. Mishra, D. Ioannou, S. Mitra, and R. Gauthier. Effect of Floating-Body and
Stress Bias on NBTI and HCI on 65-nm SOI pMOSFETs. IEEE Electron Device
Letters, 29(3):262–264, 2008.

98



BIBLIOGRAPHY

[MKB+12] A. Masrur, P. Kindt, M. Becker, S. Chakraborty, V. Kleeberger, M. Barke, and
U. Schlichtmann. Schedulability Analysis for Processors with Aging-Aware Au-
tonomic Frequency Scaling. In RTCSA, pages 11–20, 2012.

[Mot11] Maxon Motor. Product Specifications, 2011.

[NES11] A. Nickabadi, M. Ebadzadeh, and R. Safabakhsh. A Novel Particle Swarm Op-
timization Algorithm with Adaptive Inertia Weight. Applied Soft Computing,
11(4):3658–3670, 2011.

[Ng02] K. Ng. A Continuation Approach for Solving Nonlinear Optimization Problems
with Discrete Variables. PhD thesis, Stanford University, 2002.

[NHTSA13] U.S. Department of Transportation National Highway Traffic Safety Administra-
tion. Preliminary Statement of Policy Concerning Automated Vehicles, 2013.

[Nil98] J. Nilsson. Real-Time Control Systems with Delays. PhD thesis, Lund Institute of
Technology, 1998.

[NMR03] H. Negi, T. Mitra, and A. Roychoudhury. Accurate Estimation of Cache-Related
Preemption Delay. In CODES, 2003.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[OdR07] P. Ortner and L. del Re. Predictive Control of a Diesel Engine Air Path. IEEE
Transactions on Control Systems Technology, 15(3):449–456, 2007.

[PA12] J. Park and J. Abraham. A Fast, Accurate and Simple Critical Path Monitor for
Improving Energy-Delay Product in DVS Systems. In ISLPED, pages 391–396,
2012.

[PCKW10] M. Pedram, N. Chang, Y. Kim, and Y. Wang. Hybrid Electrical Energy Storage
Systems. In ISLPED, pages 363–368, 2010.

[Ped10] M. Pedersen. Good Parameters for Particle Swarm Optimization. Technical re-
port, Hvass Laboratories, 2010.

[RHC06] S. Robertz, D. Henriksson, and A. Cervin. Memory-Aware Feedback Scheduling
of Control Tasks. In ETFA, 2006.

[RKHB08] M. Ruderman, J. Krettek, F. Hoffmann, and T. Bertram. Optimal State Space
Control of DC Motor. In IFAC, 2008.

[RM09] J. Rawlings and D. Mayne. Model Predictive Control: Theory and Design. Nob
Hill Publishing, 2009.

[Rob14] D. Robinette. A DFSS Approach to Determine Automatic Transmission Gearing
Content for Powertrain-Vehicle System Integration. SAE International Journal of
Passenger Cars — Mechanical Systems, 7(3):1138–1154, 2014.

99



BIBLIOGRAPHY

[RV01] D. Rakhmatov and S. Vrudhula. An Analytical High-Level Battery Model for
Use in Energy Management of Portable Electronic Systems. In ICCAD, pages
488–493, 2001.

[RZC+16] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty. Multi-Objective
Co-Optimization of FlexRay-based Distributed Control Systems. In RTAS, 2016.

[SB03] D. Schroder and J. Babcock. Negative Bias Temperature Instability: Road to
Cross in Deep Submicron Silicon Semiconductor Manufacturing. Journal of Ap-
plied Physics, 94(1):1–18, 2003.

[SCEP09] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated Scheduling and Synthesis of
Control Applications on Distributed Embedded Systems. In DATE, pages 57–62,
2009.

[SD94] N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated Sort-
ing Genetic Algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[SEP+10] S. Samii, P. Eles, Z. Peng, P. Tabuada, and A. Cervin. Dynamic Scheduling and
Control-Quality Optimization of Self-Triggered Control Applications. In RTSS,
2010.

[SFX+15] G. Sun, T. Feng, J. Xu, M. Li, and T. Lim. Modified FxLMS Algorithm with
Equalized Convergence Speed for Active Control of Powertrain Noise. SAE Inter-
national Journal of Passenger Cars — Mechanical Systems, 8(3):868–872, 2015.

[SKS+11] D. Shin, Y. Kim, J. Seo, N. Chang, Y. Wang, and M. Pedram. Battery-
Supercapacitor Hybrid System for High-Rate Pulse Load Applications. In DATE,
2011.

[SM09] D. Sedighizadeh and E. Masehian. Particle Swarm Optimization Methods, Tax-
onomy and Applications. International Journal of Computer Theory and Engi-
neering, 1(4):486–502, 2009.

[Sni09] J. Snider. Automatic Steering Methods for Autonomous Automobile Path Track-
ing. Technical report, Robotics Institute, Carnegie Mellon University, 2009.

[Son] Sony. Lithium Ion Rechargeable batteries Technical Handbook.

[SRW07] K. Smith, C. Rahn, and C. Wang. Control Oriented 1D Electrochemical Model
of Lithium Ion Battery. Energy Conversion and Management, 48(9):2565–2578,
2007.

[VdNMP07] J. Villagra, B. d’Andrea Novel, H. Mounier, and M. Pengov. Flatness-based Vehi-
cle Steering Control Strategy with SDRE Feedback Gains Tuned via a Sensitivity
Approach. IEEE Transactions on Control Systems Technology, 15(3):554–565,
2007.

100



BIBLIOGRAPHY

[Wea08] R. Wilhelm and et al. The Worst-Case Execution-Time Problem — Overview
of Methods and Survey of Tools. ACM Transactions on Embedded Computing
Systems, 7(3):1–53, 2008.

[WGR+09] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand.
Memory Hierarchies, Pipelines, and Buses for Future Architectures in Time-
Critical Embedded Systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 28(7):966–978, 2009.

[WYB99] G. Walsh, H. Ye, and L. Bushnell. Stability Analysis of Networked Control Sys-
tems. In ACC, pages 2876–2880, 1999.

[Yih05] P. Yih. Steer-by-Wire: Implications for Veicle Handling and Safety. PhD thesis,
Stanford University, 2005.

[YS05] C. Yang and D. Simon. A New Particle Swarm Optimization Technique. In ICSE,
2005.

[ZBP01] W. Zhang, M. Branicky, and S. Phillips. Stability of Networked Control Systems.
IEEE Control Systems, 21(1):84–99, 2001.

[ZSWM08] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney. Task Scheduling for Con-
trol Oriented Requirements for Cyber-Physical Systems. In RTSS, pages 47–56,
2008.

101



BIBLIOGRAPHY

102



List of Tables

3.1 Computation of RCSIN for the motivational example . . . . . . . . . . . . . . 32
3.2 Computation of RCSOUT for the motivational example . . . . . . . . . . . . . 32
3.3 Computation of LCSIN for the motivational example . . . . . . . . . . . . . . 33
3.4 Computation of LCSOUT for the motivational example . . . . . . . . . . . . . 33
3.5 Experimental configuration for memory analysis . . . . . . . . . . . . . . . . . 47
3.6 WCET results with and without cache reuse for all three control applications . . 49
3.7 Application parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Control performance comparison for all three applications between two sam-

pling orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Control performance comparison between different PSO techniques . . . . . . 52

4.1 An example OSEK/VDX OS time table of applications release . . . . . . . . . 57
4.2 Randomly initialized points in the numerical example of PSO . . . . . . . . . . 61
4.3 Settling time and processor utilization of three schedules . . . . . . . . . . . . 64
4.4 Poles of closed-loop system matrices . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Comparison of the optimal and scalable controller design . . . . . . . . . . . . 66
4.6 Exact invocation starting times of four control applications under the multirate

schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Quadratic cost of three schedules . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Aging effects in settling time and battery usage with and without controller
design re-optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1 Paramters of the EWB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
C.2 Parameters and constraints of the motor control system . . . . . . . . . . . . . 93
D.3 EMB system requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

103



LIST OF TABLES

104



List of Figures

1.1 A typical embedded implementation platform for automotive control applications 3
1.2 FlexRay bus with both time-triggered static and event-triggered dynamic segments 5
1.3 An example memory-aware sampling order with three control applications . . . 8
1.4 Allowed switching instants among multiple sampling periods . . . . . . . . . . 9

2.1 Different system ouput responses for stable and unstable poles . . . . . . . . . 17
2.2 The relationship between the control performance and the sampling period for

the EWB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 A numerical example with the PSO method . . . . . . . . . . . . . . . . . . . 22
2.4 Optimization flow of the non-dominated sorting genetic algorithm . . . . . . . 25

3.1 Position of the work in Chapter 3 in the memory analysis and control theory
literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 A motivational example for memory analysis . . . . . . . . . . . . . . . . . . 30
3.3 The general timing model of a control loop . . . . . . . . . . . . . . . . . . . 35
3.4 Derivation of control timing parameters from WCETs for a memory-oblivious

sampling order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Derivation of control timing parameters from WCETs for a memory-aware sam-

pling order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Periodically switched sampling periods for Ci in the schedule (2, 2, 2) . . . . . 39
3.7 Timing of the scalable controller design technique when only the first execution

is considered in a period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 A numerical example with the conventional PSO method for comparison . . . . 42
3.9 A numerical example with the proposed hybrid PSO method for comparison . . 42
3.10 Comparison of two design methods in the achieved optimal control performance 43
3.11 Comparison of two design methods in computional efforts . . . . . . . . . . . 44
3.12 The gradient-based search algorithm for discrete decision space . . . . . . . . 45
3.13 A motivational example with two decision variables to illustrate the gradient-

based search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.14 The gradient-based search to find the optimal sampling order . . . . . . . . . . 50
3.15 Control system output of the memory-oblivious and optimal memory-aware

sampling orders for the control application C1 . . . . . . . . . . . . . . . . . . 50
3.16 Control system output of the memory-oblivious and optimal memory-aware

sampling orders for the control application C2 . . . . . . . . . . . . . . . . . . 51

105



LIST OF FIGURES

3.17 Control system output of the memory-oblivious and optimal memory-aware
sampling orders for the control application C3 . . . . . . . . . . . . . . . . . . 51

3.18 Suboptimal result of the conventional PSO . . . . . . . . . . . . . . . . . . . . 53

4.1 Release and execution time of two applications sharing one ECU . . . . . . . . 58
4.2 Cyclically switched linear systems . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Numerical result with adaptively parameterized PSO . . . . . . . . . . . . . . 62
4.4 System output of three different schedules . . . . . . . . . . . . . . . . . . . . 65
4.5 Invocation timing of four control applications under the multirate schedule . . . 67

5.1 Relationship between battery FCC and average discharging current . . . . . . . 72
5.2 Illustration of how SQP locates Pareto points with various pairs of weights . . . 75
5.3 Illustration of the crowding distance calculation for Pareto points distribution

quality quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Non-dominated solutions found by SQP and converged solutions found by NSGA 79
5.5 Combined solutions found by both SQP and NSGA . . . . . . . . . . . . . . . 80
5.6 Final non-dominated solutions for the battery-aware embedded control system

design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Aging effects in both settling time and battery usage . . . . . . . . . . . . . . . 81
5.8 Aging effects mitigation with controller design re-optimization . . . . . . . . . 82

A.1 A simplified model of the electronic wedge braking system . . . . . . . . . . . 90
B.2 Experimental setup of servo motor position control . . . . . . . . . . . . . . . 91
C.3 Modelling DC motor with the armature circuit powered up by a battery pack . . 92
C.4 Pulse-width modulation control signals in the armature circuit to adjust the DC

voltage applied to the rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
D.5 A simplified model of the electro-mechanical braking system . . . . . . . . . . 93

106



Abbreviations

ICE Internal Combustion Engine

ABS Anti-Lock Braking System

ESC Electronic Stability Control

EGR Exhaust Gas Recirculation

MPC Model Predictive Control

DFSS Design for Six Sigma

ANC Active Noise Control

FxLMS Filtered-x Least Mean Squares

AFS Active Front Steering

4WD Four Wheel Drive

ARS Active Roll Control System

ECS Electronic Control Suspension

ACC Adaptive Cruise Control

ECU Electronic Control Unit

OS Operating System

I/O Input/Output

GHG Greenhouse Gas

EPA Environmental Protection Agency

NHTSA National Highway Traffic Safety Administration

EV Electric Vehicle

ET Event-Triggered

107



LIST OF FIGURES

TT Time-Triggered

CAN Controller Area Network

TDMA Timing Division Multiple Access

WCET Worst-Case Execution Time

FCC Full Charge Capacity

EWB Electronic Wedge Brake

PSO Particle Swarm Optimization

SQP Sequential Quadratic Programming

SISO Single-Input Single-Output

ZOH Zero-Order Hold

KKT Karush-Kuhn-Tucker

NSGA Non-Dominated Sorting Genetic Algorithm

CPS Cyber-Physical System

CQLF Common Quadratic Lyapunov Function

SLF Switched Lyapunov Function

LQR Linear Quadratic Regulator

CFG Control Flow Graph

RCS Reaching Cache States

LCS Live Cache States

DAC Digital-to-Analog Converter

EMF Back Electromotive Force

IGBT Insulated Gate Bipolar Transistor

PWM Pulse-Width Modulation

EMB Electro-Mechanical Braking

HCI Hot Carrier Injection

NBTI Negative Bias Temperature Instability

CPR Critical Path Replicas

EES Electrical Energy Storage

108



Nomenclature

Control

• x system state

• u control input

• y system output

• A system (state) matrix

• B input matrix

• C output matrix

• h sampling period

• Ad discretized system matrix

• Bd discretized input matrix

• CO controllability matrix

• ts settling time

• r reference

• J quadratic cost

• Q weight matrix of the transient state

• R weight matrix of the control input

• S weight matrix of the final state

• Umax input saturation

• ymax maximum system output

• φ0 overshoot threshold

• φe steady-state error tolerance

109



LIST OF FIGURES

• t0s settling time requirement

• K feedback gain

• F feedforward gain

Memory

• C control application

• Nc number of cache lines

• CL set of cache lines

• Nm number of main memory blocks

• M set of main memory blocks

• B set of basic blocks

• ⊥ empty cache line

• > unknown cache line

• cs cache state

• gen cache state describing the first/last executed memory block in every cache line for
a basic block in LCS/RCS computation

• CS set of cache states

• tm main memory access time

• tc cache access time

• τ sa sensor-to-actuator delay

• Ewc WCET of a control program

• Ēwc effective WCET of a control program

• Ēg guaranteed WCET reduction

Computation

• φ set of available periods offered by OS

• L processor utilization

• p processor

• S schedule

110



LIST OF FIGURES

Battery

• r number of times the control system can reach a steady state after a disturbance occurs
with a FCC battery

• Lt total duration of battery use before next charging

• Qnom nominal battery capacity

• Imaxc maximum current of a battery cell

• nsp number of sampling periods in an invocation

111


	Abstract
	Acknowledgements
	Introduction
	Motivation
	Resources
	Communication Resources
	Memory Resources
	Computation Resources
	Energy Resources

	Organization
	List of Publications

	Mathematical Background
	Control Theory
	Feedback Control Applications
	State-Feedback Control Law
	Control Performance and Sampling Period

	Optimization Techniques
	Interior-Point Method
	Particle Swarm Optimization
	Sequential Quadratic Programming
	Non-Dominated Sorting Genetic Algorithm


	Memory-Aware Automotive Control Systems Design
	Related Work
	Memory Analysis
	Basic Definitions
	Computation of Cache States
	Guaranteed WCET Reduction

	Control Timing Parameters
	Controller Design
	Controller Design with Uniform Sampling
	Controller Design with Non-Uniform Sampling
	Pole-Placement with Hybrid PSO
	Comparison of Controller Design Methods

	Optimal Sampling Order Computation
	Experimental Results
	Remarks

	Computation-Aware Automotive Control Systems Design
	Related Work
	OSEK/VDX Operating System
	Multirate Controller Design
	Linear State-feedback Controller
	Optimal Pole-Placement
	Alternative Controller Design for Scalability
	Non-Uniform MPC

	Experimental Results
	Remarks

	Battery- and Aging-Aware Automotive Control Systems Design
	Related Work
	Design Aspects of Electric Vehicles
	Battery Rate Capacity Effect
	Processor Aging in Embedded Control Systems

	Optimization Framework
	Battery-Aware Controller Design
	Optimization Techniques
	Battery- and Aging-Aware Controller Design

	Experimental Results
	Remarks

	Conclusion
	Appendix
	Electronic Wedge Brake
	Servo Motor Position Control
	Electric Motor Control
	Electro-Mechanical Braking System

	Bibliography
	List of Tables
	List of Figures
	Abbreviations
	Nomenclature

