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Nomenclature

Matrices and Vectors
a column vector
ai, [a]i i-th element of column vector a
A matrix
aij, [A]ij i-th column, j-th row element of matrixA
AT transpose of matrixA
Tr (A) trace of a matrixA
diag (A) diagonal matrix containing the diagonal entries ofA
0M M -dimensional column vector with all entries equal to zero
OM M ×M -dimensional zero matrix
1M M -dimensional column vector with all entries equal to one
IM M ×M -dimensional identity matrix
∂f(a)
∂a

derivative of f(a) with respect to a, i.e.,
[
∂f(a)
∂a

]
ij

=
∂[f(a)]i
∂[a]j

Probability and Stochastics
x random variable
X support of the random variable x
θ system parameter
Θ parameter space of θ
θ̂(x) estimator of θ based on the data x
p(x) probability density or mass function
p(x;θ) parameterized probability density or mass function, likelihood function
p̃(x;θ) likelihood function of a replacement model
p(x | θ) conditional probability density or mass function
p(x,θ) joint probability density or mass function
Ex [·] expectation taken with respect to p(x)
Ex;θ [·] expectation taken with respect to p(x;θ)
Ex̃;θ [·] expectation taken with respect to the replacement model p̃(x;θ)
Ex|θ [·] conditional expectation taken with respect to p(x | θ)
Ex,θ [·] expectation taken with respect to p(x,θ)
x̄ sample-mean of x
Rx covariance matrix of the random variable x
F x(θ) Fisher information calculated with respect to p(x;θ)
F̃ x(θ) Fisher information calculated with respect to the replacement p̃(x;θ)
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Jx Bayesian information matrix
Ux recursive Bayesian information matrix
N (µ,R) Gaussian distribution with mean µ and covarianceR
µ̃l l-th raw moment
µl l-th central moment
µ̄l l-th normalized central moment
wl(θ) l-th natural parameter (exponential family)
tl(z) l-th sufficient statistic (exponential family)
λ(θ) log-normalizer (exponential family)
κ(z) carrier-measure (exponential family)
φl(z) l-th auxiliary statistic

Signals
x̆(t) analog signal
x(t) band-limited analog signal
y digital system output (linear system)
yn n-th digital system output sample (linear system)
z digital system output (nonlinear system)
zn n-th digital system output sample (nonlinear system)
s(θ) deterministic pilot-signal modulated by the parameter θ
η measurement noise
c chip sequence vector
w process noise (state-space model)
υ quantization offset (hard-limiter)

Variables
α evolution parameter (state-space model)
akn particle weight (particle filter, k-th particle, n-th time instance)
χ quantization loss
fc chip frequency
γ receive signal strength
κ oversampling / band-limitation factor
κl model parameter (soft-limiter model)
κw shape parameter (Weibull distribution)
κs smoothness factor (Rapp model)
κr location parameter (Rician model)
λ steady-state quality
λconv rate of convergence
λconst constant (convergence analysis)
ωc carrier frequency
ψ phase offset (wireless channel)
ρ power allocation (I/Q transmit signals)
τ time-delay parameter
ϕ phase offset (demodulator)
ζ direction-of-arrival (DOA)
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Numbers and Quantities
A number of antennas
B bandwidth
Br receive bandwidth
Bt transmit bandwidth
C carrier power
D dimensionality of the system parameter θ
K number of particles (particle filter)
Kthresh resampling threshold (particle filter)
L number of natural parameters / sufficient statistics
M dimensionality of the system output, number of samples (spatial)
N number of samples (temporal)
N0 noise power spectral density
N∆ relative delay
Nλ number of samples during the transient phase (tracking)
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Operations∫
X f(x)dx integral of f(x) over the alphabet X ,

i.e.,
∫
X1

∫
X2
. . .
∫
XN
f(x1, x2, . . . , xN)dx1dx2 . . . dxN

arg maxx∈X f(x) maximizer of f(x)∑N
n=1 xn sum of the elements x1, x2, . . . , xN

f(x)|x=x0 value of the function f(x) at x = x0

lnx natural logarithm (basis e)
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Symbols
> strictly greater
≥ equal or greater
� equal or greater (matrix sense)
= equal
, by definition equal to
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= asymptotically equal
∼ distributed according to the probability law
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Acronyms
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ADC analog-to-digital converter
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1. Introduction

In the last three decades wireless systems have become an accelerator for the evolution of the di-
gital age. Today wireless communication systems provide instant access to the internet with small
portable devices. Consumer-radar systems enable reliable sensing approaches for innovative appli-
cations like autonomous vehicles or smart houses. Satellite-based radio systems make wireless data
transmission possible worldwide, play a crucial role for navigation in the aviation sector and allow
distributed synchronization of critical infrastructure at the accuracy of atomic clocks. These exam-
ples show which impact wireless technology has onto human life today. Taking into account its
importance for society and the associated security issues, it is clear that a thorough understanding
of the performance limits of these pervasive systems is highly relevant.

The concept of wireless technology can be divided into four parts. Signal generation, trans-
mission, sensing and processing. In the first step digital information is converted into an adjusted
analog waveform which is then radiated by one or more transmit antennas. The electro-magnetic
radio-wave propagates over the wireless medium, is sensed by the receive antennas and after ana-
log pre-processing transformed into a digital representation. The final step, aiming at the extraction
of the desired information from the noisy receive data, takes place in the digital domain where fast
processing with smart algorithms can be performed.

The favorable design of such wireless systems is determined by various conflicting objectives.
On the one hand, a system architecture which allows to obtain high operational performance and
fast processing rates is desired. On the other hand, the wireless transmitter and receiver should
exhibit low power consumption, moderate production cost, and small circuit size. Especially, the
transition from the digital to the analog domain at the transmitter and the transition from the analog
measurement domain to the digital processing domain at the receiver form a bottleneck with respect
to the objective of obtaining a fast low-complexity wireless system [1].

Therefore, with respect to the latter notion this thesis focuses on the transformation of the con-
tinuous waveforms, acquired at the receive sensors (analog signal domain), into a representation
which is discrete in time and amplitude (digital signal domain). In particular its effect on the signal
parameter estimation performance of the receiver is analyzed. While an analog-to-digital (A/D)
conversion with high amplitude resolution allows to perform sophisticated digital processing on
dedicated hardware or with a general-purpose computer chip and to obtain high accuracy, the com-
plexity of the analog-to-digital converter (ADC) grows exponentially O(2b) with the number of
bits b. Thus, while the majority of the signal processing literature focuses on digital data mod-
els with high amplitude resolution, from a hardware-aware perspective a promising system design
option is to switch to data acquisition with coarse A/D resolution.

A radical approach is to use a single comparator which forwards only the sign of the analog re-
ceive signal and discards all information about the signal amplitude. This allows to obtain a cheap,
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14 1. Introduction

small and ultra-fast ADC device with extremely low energy consumption. As a single comparator
requires small driving power, the requirements for the radio amplifier are very low and an auto-
matic gain control (AGC) at the input of the ADC is not required. Further, the binary structure of
the resulting digital receive signal allows to perform basic signal processing operations by means
of efficient 1-bit arithmetic. However, despite these highly attractive properties, the nonlinear ap-
proach of using a 1-bit A/D conversion is associated with a substantial performance loss.

1.1 Outline
The following chapters consider this aspect in the context of signal parameter estimation. This
specific task is a subproblem within the field of statistical signal processing [2] and is concerned
with measuring signal parameters (e.g. attenuation, delay, Doppler-frequency, direction-of-arrival
(DOA)) from the noisy receive data. Such estimation problems are found in various applications
like wireless communication, radar, localization and GNSS positioning where the channel qual-
ity has to be determined or the distance, the velocity and the direction of a signal source is to be
measured. When the noisy receive signal is passed through a hard-limiter and the amplitude infor-
mation is discarded, the processing accuracy of the receiver degrades. In order to obtain a better
understanding under which circumstances low-complexity 1-bit A/D conversion is an attractive
system design option, the characterization of the performance gap between the 1-bit receive model
and an ideal receiver with ∞-bit resolution is the focus of this thesis. Using classical estimation
theoretic tools, we analyze this aspect under different setups and highlight the importance of in-
cluding side-information into the estimation procedure. In order to enable the performance analysis
of 1-bit receive systems with correlated noise models, we develop a pessimistic approximation for
the likelihood function and the Fisher information measure. Applying these mathematical tools, we
explore the performance limits of pilot-based channel estimation under 1-bit A/D conversion and
an adjusted analog radio front-end. Further, we analyze the problem of DOA parameter estimation
with large 1-bit sensor arrays.

1.1.1 Preliminaries
We start the discussion by reviewing the basic principles of A/D conversion and its complexity and
power consumption. We also highlight the difference between a conventional Delta-sigma ADC
with a single comparator and a low-complexity 1-bit ADC without feedback. Further, we review
various frameworks and concepts of estimation theory which allow to formulate practical param-
eter estimation algorithms and enable to describe the achievable accuracy with asymptotically
optimum processing rules in a compact analytic way. Applying these methods to signal models
with and without coarse quantization, we analyze the estimation theoretic performance loss in-
troduced by 1-bit ADCs in different channel parameter estimation scenarios. For the problem of
channel estimation with 1-bit measurements and a state-space model, we obtain the result that the
hard-limiting loss can be significantly diminished. Further, we analyze the additional loss which is
introduced when signal parameter estimation with 1-bit ADC and an unknown quantization offset
is performed.

When trying to extend the application of classical estimation theoretic tools to signal models
with noise correlation, we identify a fundamental problem. Due to a missing compact expression
for the orthant probability of a multivariate Gaussian variable, the required likelihood function at
the output of the quantizer becomes intractable. This hinders the derivation of efficient processing
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algorithms. Further, in the multivariate case the calculation of the Fisher information measure [3]
[4] under hard-limiting exhibits exponential complexity with respect to the dimensionality of the
observation model. Therefore an exact performance analysis turns out to be intractable in many
relevant cases.

1.1.2 Theoretical Contributions
To overcome this obstacle, we discuss different pessimistic approximations for the Fisher infor-
mation. After deriving two compact bounds for the univariate case, we show how the Fisher in-
formation matrix (FIM) can be approximated accurately through a generic lower bound after re-
placing the original stochastic system model by an equivalent distribution within the exponential
family. We prove under which circumstances the obtained approximation for the Fisher informa-
tion measure is tight. The presented information bound has the advantage that instead of an exact
characterization of the model likelihood, just the mean and the covariance of a set of auxiliary
statistics are required in order to approximately evaluate the estimation theoretic quality of the
signal processing system. For situations where the required moments of the transformed system
output are analytically intractable or unknown, the exponential replacement approach allows to
access the quality of stochastic systems in a simple measurement-driven way. Further, the con-
servative likelihood framework resulting from the exponential replacement enables to formulate
unbiased estimation algorithms which in practice achieve a performance which corresponds to the
pessimistic approximation of the Fisher information measure.

In summary, under any regular probabilistic system model, these results allow to answer ques-
tions like Which estimation performance can we at least expect from a certain measurement sys-
tem? and Which processing rule allows us to achieve this guaranteed performance in practice?.
Such aspects are of fundamental importance for problems in engineering where in general the exact
likelihood function is intractable or unknown for the technical system under investigation.

1.1.3 Practical Applications and Results
In order to demonstrate the practical impact of the obtained theoretic results, we outline the appli-
cation in the context of signal parameter estimation with 1-bit quantization. First, we focus on the
problem of system design for pilot-based channel parameter estimation with 1-bit ADC. For radio
front-end modifications which lead to independent noise models, we analyze the behavior of the
estimation accuracy. To this end, for GNSS-based synchronization, we take into consideration to
change the receive bandwidth of the system and to use multiple receive antennas with 1-bit ADCs.

Then we demonstrate how to use the exponential replacement framework in order to analyze the
possible estimation accuracy under 1-bit quantization with correlated noise models. By adjusting
various parts of the analog processing chain prior to the 1-bit ADC, we aim at minimizing the
parameter estimation error. In particular we analyze the beneficial effect of increasing the sampling
rate with 1-bit ADC, optimizing the analog pre-filter or introducing signal redundancy by the
technique of overdemodulation. The results show that the radio front-end of a wireless receiver
can be optimized such that the performance loss with 1-bit A/D conversion can be significantly
diminished. The framework of exponential replacement allows to verify this result for different
signal-to-noise ratio (SNR) regimes.

Finally, we analyze the problem of blind covariance-based parameter estimation where the
system parameter modulates the noise covariance structure before the hard-limiter. Such estima-
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tion problems arise in applications where the direction-of-arrival (DOA) parameter of a transmit
signal with unknown structure, impinging on a receive array, is to be determined. DOA parame-
ter estimation plays a key role for technologies like wireless multi-user communication, spectrum
monitoring, jammer localization and interference mitigation for satellite-based radio systems. For
this class of estimation problems the pessimistic performance analysis via the derived information
bound reveals the beneficial effect of using arrays with a large number of sensors. For such systems
the 1-bit quantization loss becomes small and signal processing can be performed at high accuracy.

In summary, the results of this thesis show that it is possible to significantly simplify the analog
complexity of signal processing systems by reducing the amplitude resolution of the ADC circuit
to a single bit. Under these circumstances, an adjusted analog system design, probabilistic system
modeling and advanced statistical signal processing in the digital domain allow to perform channel
parameter estimation at high accuracy. Further, the results for DOA estimation with 1-bit ADC
support the evolving academic discussion about shifting the design of wireless systems towards an
architecture with a massive number of sensors.

1.2 Publications

1.2.1 Article under Review
While finalizing this thesis, the results on the exponential replacement and the generalized lower
bound for the Fisher information matrix (Chapter 5, Section 3-5) have been pre-published (arXiv)
and submitted to a peer-reviewed journal:

1) M. S. Stein, J. A. Nossek, and K. Barbé, “Fisher Information Bounds with Applications in Non-
linear Learning, Compression and Inference,” online: http://arxiv.org/abs/1512.03473, arXiv
timestamp: 10th December 2015.

1.2.2 List of Publications
During the preparation of this thesis, several parts and some closely related aspects have been
published as articles in peer-reviewed journals or have been presented at international conferences:

2) M. S. Stein and J. A. Nossek, “A Pessimistic Approximation for the Fisher Information Mea-
sure,” to appear in IEEE Transactions on Signal Processing, 2016.

3) M. Stein, J. A. Nossek, and K. Barbé, “Measurement-driven Quality Assessment of Nonlinear
Systems by Exponential Replacement,” IEEE Int. Instrumentation and Measurement Technol-
ogy Conference (I2MTC), Taipei, Taiwan, 2016, pp. 1–5.

4) M. Stein, S. Bar, J. A. Nossek, and J. Tabrikian, “Performance Analysis for Pilot-based 1-bit
Channel Estimation with Unknown Quantization Threshold,” IEEE Int. Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016, pp. 4353–4357.

5) L. Zhang, M. Stein, and J. A. Nossek, “Asymptotic Performance Analysis for 1-bit Bayesian
Smoothing,” IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 2016, pp. 4458–4462.
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2. Analog-to-Digital Conversion

Due to the continuously increasing transistor density of integrated circuits (IC) over the last
decades, today signal processing is preferably performed in the digital domain. Digital algorithms
enable to execute complex operations on the available data in a fast way and can be easily extended
by advanced features. Further, additional processing speed, smaller system size and lower produc-
tion cost comes "for free" with every new generation of IC technology. However, as the physical
world which technical systems observe and interact with is an analog entity, for the majority of
modern signal processing problems it is inevitable to transform analog sensor signals into a digital
representation. This process is referred to as A/D conversion. Reciprocally, the interaction of the
computational domain with the physical world requires to translate digital numbers into continuous
analog waveforms. This process is referred to as digital-to-analog (D/A) conversion.

2.1 Basics, Power Consumption and Complexity
This thesis focuses on the A/D interface between the physical world and the digital processing
domain and analyzes the information loss associated with coarse A/D resolution when performing
signal parameter estimation.

The A/D conversion process starts with the analog receive signal y(t) ∈ R of duration To and
bandwidth B which is to be transferred into the digital sample domain (see Fig. 2.1) z ∈ ZN ,

y(t) zn
ADC

Fig. 2.1. Analog-to-Digital Converter (ADC)

where Z is the set of values which each sample zn can take. In Fig. 2.2 an exemplary analog
waveform with bandwidth B = 1.023 MHz and duration To = 5µs is depicted. Taking samples
of the analog waveform y(t) at discrete points in time and assuming an ideal sampler (see Fig.
2.3) with ∞-bit amplitude resolution, we obtain a discrete-time continuous-value version y of
the analog sensor signal y(t) like plotted in Fig. 2.4. The sampling theorem [5] states that if the
sampling rate of the ideal ADC satisfies

fs =
1

Ts
> 2B, (2.1)

the samples

yn = y
(
(n− 1)Ts

)
, n = 1, 2, . . . , N (2.2)
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Fig. 2.2. Band-limited Analog Signal (B = 1.023 MHz)

y(t) yn

Fig. 2.3. Ideal Analog-to-Digital Converter (∞-bit ADC)
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Fig. 2.4. Discrete-Time Continous-Amplitude Signal (fs = 2B)
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can be used to reconstruct the analog waveform y(t) without error. However, in practice the resolu-
tion of the A/D conversion is limited to b bits and only a finite set of numbers Z can be represented
at the output of the sampler. Such a realistic ADC device and a possible input-output function are

y(t) zn

Fig. 2.5. Realistic Analog-to-Digital Converter (b-bit ADC)

shown in Fig. 2.5. Using such an ADC circuit results in discrete-time samples

zn = f
(
y
(
(n− 1)Ts

))
, n = 1, 2, . . . , N (2.3)

with f(·) being a nonlinear quantization function, restricting the output of the ADC to a finite
alphabet Z . In comparison to the exact samples yn from the ideal ADC (Fig. 2.3), the quantized
samples zn contain errors

zn = yn + en (2.4)

as depicted in Fig. 2.6. Note that in practice, due to the quantization errors en, perfect reconstruc-

0 1 2 3 4 5
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s

z n

Fig. 2.6. Discrete-Time Discrete-Amplitude Signal (fs = 2B)

tion of the analog sensor signal y(t) from the samples z is impossible.
The circuit comprising the ADC device can be realized in different ways. The fastest architec-

ture is to use a flash implementation where 2b − 1 comparators sample the input signal in parallel
by comparing to individual threshold voltages. As the number of comparators grows exponentially
with the number of bits b, for fast high-resolution applications it is required to use two or more
ADC in a time-interleaved fashion [1]. An A/D conversion design with a single comparator is
possible when using the approach of successive approximation where in each iteration the input
voltage is compared to a different offset voltage in order to narrow the signal range to the desired
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resolution [6]. Alternatively, a Delta-sigma converter with high oversampling factor and a subse-
quent digital decimation filter can be used in order to obtain an ADC circuit with a small number
of comparators [7]. As a generic rule, the review of various ADC technologies and architectures in
[1] shows that the power PADC dissipated by the ADC circuit scales approximately

PADC ≈ βADC(2b − 1)fs, (2.5)

where βADC is a constant dependent on the particular ADC technology. With (2.5) it can be ob-
served that the number of bits b causes an exponential increase in the power consumption PADC

when fixing the sampling rate fs. Aiming at the same power dissipation PADC while increasing the
number of bits b by one requires to diminish the sampling rate fs by a factor of approximately two.

2.2 Low-Complexity 1-bit A/D Conversion
From the scaling law (2.5) it is clear that the A/D resolution b is a crucial point for the power
efficiency of the receive system. Further, the resolution b forms a bottleneck when sampling at
high rates or when using a high number of sensors. It is therefore an important issue to accurately
determine the number of bits b which are required for the particular application of interest. While

y(t) zn

Fig. 2.7. Low-Complexity Analog-to-Digital Converter (1-bit ADC)

a large number of bits b allows to neglect quantization effects during the performance analysis
and the algorithm design, the fact that most signal processing problems do not require accurate
reconstruction of the analog sensor signal y(t), indicates that already a few bits b can be sufficient
to solve certain signal processing tasks at the required accuracy level. For example in estimation
problems, the engineer is interested to implement a system which is able to measure certain signal
parameters (like Doppler-frequency, time-delay, signal strength, etc.) with the noisy receive signal
instead of exactly reconstructing its analog waveform y(t).

In order to simplify the discussion on the appropriate number of bits b on the following pages,
we focus on the simplest ADC concept. We set b = 1, such that the ADC circuit comprises a single
comparator sampling the signal sign while discarding all information about the signal amplitude
(see Fig. 2.7). This nonlinear approach has various advantages. According to (2.5), the power

y(t) ∫ zn

DAC

z(t− Ts)−

Fig. 2.8. Delta-Sigma Analog-to-Digital Converter

dissipation of the circuit is minimized for a given sampling frequency fs or the sampling rate can
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be set to the highest possible value when comparing to an ADC with b bits for a fixed power
consumption. Note that for an ADC device with b = 2, the power dissipation under a certain
sampling rate fs is already three times higher than for the 1-bit ADC, i.e.,

PADC|b=2

PADC|b=1

= 3. (2.6)

Further the amplification device before the 1-bit ADC can be drastically simplified as linearity and
an automatic gain control (AGC) is not required. Note that the low-complexity 1-bit ADC usually
operates close to fs = 2B and is therefore distinct from the 1-bit Delta-sigma ADC depicted in
Fig. 2.8. Such an ADC works in a considerably oversampled mode, i.e., fs = 2Bκ, where κ is in
the range from 8 to 512 [7]. In comparison to the low-complexity 1-bit ADC (Fig. 2.7), the Delta-
sigma modulator (Fig. 2.8) additionally requires a feedback loop with a DAC which can cause
instability.

For the analog waveform in Fig 2.2, the signal z ∈ {−1, 1}N from the low-complexity 1-bit
ADC (Fig. 2.7) is shown in Fig. 2.9. As z consists exclusively of binary elements, basic signal
processing operations (like correlation, etc.) can be performed in an efficient manner by using 1-
bit arithmetic. This makes 1-bit A/D conversion an attractive approach for diminishing the digital
complexity of the receiver. Note also that the data stream produced by a 1-bit ADC is of small
digital size which in particular is an advantage when considering receive systems with a large
number of sensors.

0 1 2 3 4 5

·10−6

−1

0

1

s

z n

Fig. 2.9. Discrete-Time Binary-Amplitude Signal (fs = 2B)

However, while it is clear that with respect to power consumption, production cost, sampling
speed and circuit size it is impossible to outperform the 1-bit ADC (Fig. 2.7), it causes strong
quantization errors. This leads to a substantial information loss during the A/D conversion process
and affects the signal processing performance when extracting information about the analog signal
y(t) from the digital samples z. In the next chapters we will focus on the accurate characterization
of this loss by comparing the performance of receive systems using the low-complexity 1-bit ADC
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(Fig. 2.7) and systems employing the ideal ∞-bit ADC (Fig. 2.3). There we elaborate on esti-
mation problems, where the rigorous analysis of asymptotically optimum and practically feasible
processing rules is possible by a compact information measure.



3. Estimation Theory and Performance Measures

In order to set the basis for the analysis of signal parameter estimation with 1-bit ADC, in this
chapter we briefly review the basic concepts and methods in the context of estimation theory. For
a thorough treatment we refer to [2] [8] [9].

The discipline of signal parameter estimation is concerned with the question of how to derive
an accurate estimate θ̂(Y ) ∈ RD from N independent observations

Y =
[
y1 y2 . . . yN

]
∈ RM×N (3.1)

of the random system output y ∈ Y following the parametric probability law p(y;θ). Here θ ∈ Θ
denotes a parameter, where the parameter space is a open subset Θ ⊂ RD. Y denotes the support
of the multivariate random variable y ∈ RM .

3.1 Regular Parametric Signal Models

For the discussion, we impose the restriction that all parametric models p(y;θ) exhibit finite en-
tropy and fulfill the regularity conditions. These conditions state that

p(y;θ) > 0, ∀y ∈ Y ,θ ∈ Θ, (3.2)

which implies that the support Y of the system output y is independent of the parameter θ. Further,
the first derivative ∂p(y;θ)

∂θ
and the second derivative ∂2p(y;θ)

∂θ2
are bounded. Due to these assumptions

both derivatives are absolutely integrable and by differentiation under the integral sign

Ey;θ

[(
∂ ln p(y;θ)

∂θ

)T
]

=

∫
Y

(
∂ ln p(y;θ)

∂θ

)T

p(y;θ)dy

=

∫
Y

1

p(y;θ)

(
∂p(y;θ)

∂θ

)T

p(y;θ)dy

=

∫
Y

(
∂p(y;θ)

∂θ

)T

dy

=

(
∂

∂θ

)T ∫
Y
p(y;θ)dy

= 0. (3.3)
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Further, taking the derivative of (3.3), we find

∂

∂θ

∫
Y

(
∂ ln p(y;θ)

∂θ

)T

p(y;θ)dy

=

∫
Y

(
∂2 ln p(y;θ)

∂θ2 p(y;θ) +

(
∂ ln p(y;θ)

∂θ

)T
∂p(y;θ)

∂θ

)
dy

=

∫
Y

(
∂2 ln p(y;θ)

∂θ2 +

(
∂ ln p(y;θ)

∂θ

)T
∂ ln p(y;θ)

∂θ

)
p(y;θ)dy

= 0, (3.4)

leading to a second important consequence of the regularity conditions

Ey;θ

[
∂2 ln p(y;θ)

∂θ2

]
= −Ey;θ

[(
∂ ln p(y;θ)

∂θ

)T
∂ ln p(y;θ)

∂θ

]
. (3.5)

Under the regularity conditions an important information measure is

F y(θ) , Ey;θ

[(
∂ ln p(y;θ)

∂θ

)T
∂ ln p(y;θ)

∂θ

]

= −Ey;θ

[
∂2 ln p(y;θ)

∂θ2

]
, (3.6)

the so called Fisher information measure [3] [4]. In the following sections, we review three dif-
ferent approaches to parameter estimation, present various processing rules θ̂(Y ) and depict the
available measures for analytic performance characterization.

3.2 Fisher Estimation Theory
First we discuss the problem of parameter estimation under a Fisher theoretic perspective [2]. The
fundamental assumption for inference within this framework is that the parameter θ is constant,
deterministic and unknown. A common measure for the performance of the estimator θ̂(Y ) is the
mean squared error (MSE) matrix

MSEY (θ) , EY ;θ

[(
θ̂(Y )− θ

)(
θ̂(Y )− θ

)T
]
. (3.7)

Note that the MSE matrix (3.7) in the Fisher estimation setting is a function of the parameter θ.

3.2.1 Maximum-Likelihood Estimator
A possible processing procedure given the data Y is the maximum-likelihood estimator (MLE)

θ̂(Y ) , arg max
θ∈Θ

p(Y ;θ)

= arg max
θ∈Θ

ln p(Y ;θ)

= arg max
θ∈Θ

N∑
n=1

ln p(yn;θ). (3.8)
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The MLE aims at maximizing the log-likelihood function ln p(Y ;θ) with respect to θ given the
data Y . It therefore provides the estimate θ̂(Y ) of the parameter θ which would have made the
observations Y most likely. Alternately to the maximization (3.8), the solution θ̂(Y ) for the MLE
is found by solving for the root (

∂ ln p(Y ;θ)

∂θ

)T

= 0D (3.9)

in θ ∈ Θ.
In order to review the properties of the MLE [2], note that with the law of large numbers the

log-likelihood function converges to its expectation

ln p(Y ;θ) =
N∑
n=1

ln p(yn;θ)

a→ N

∫
Y

ln p(y;θ)p(y;θt)dy, (3.10)

where θt is the true parameter. From the non-negativity of the Kullback-Leibler divergence∫
Y

ln

(
p(y;θt)

p(y;θ)

)
p(y;θt)dy ≥ 0, (3.11)

we see that ∫
Y

ln p(y;θt)p(y;θt)dy ≥
∫
Y

ln p(y;θ)p(y;θt)dy, (3.12)

which shows that setting θ = θt maximizes (3.10) in the asymptotic regime and therefore the MLE
(3.8) is consistent, i.e.,

θ̂(Y )
a→ θt. (3.13)

Let us consider the Taylor expansion of the score function (3.9) around the true parameter θt(
∂ ln p(Y ;θ)

∂θ

∣∣∣∣
θ=θ̂(Y )

)T

=

(
∂ ln p(Y ;θ)

∂θ

∣∣∣∣
θ=θt

)T

+
∂2 ln p(Y ;θ)

∂θ2

∣∣∣∣
θ=θ̄

(
θ̂(Y )− θt

)
= 0D, (3.14)

where θ̄ is a value between θ̂(Y ) and θt. Using the MLE, (3.9) we obtain(
∂ ln p(Y ;θ)

∂θ

∣∣∣∣
θ=θt

)T

= − ∂2 ln p(Y ;θ)

∂θ2

∣∣∣∣
θ=θ̄

(
θ̂(Y )− θt

)
. (3.15)

By rearrangement we further have

√
N
(
θ̂(Y )− θt

)
=

(
− 1

N

∂2 ln p(Y ;θ)

∂θ2

∣∣∣∣
θ=θt

)−1(
1√
N

∂ ln p(Y ;θ)

∂θ

∣∣∣∣
θ=θt

)T

. (3.16)
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From the independence of the observations yn, n = 1, 2, . . . , N , and the law of large numbers it
follows that

− 1

N

∂2 ln p(Y ;θ)

∂θ2

∣∣∣∣
θ=θ̄

= − 1

N

N∑
n=1

∂2 ln p(yn;θ)

∂θ2

∣∣∣∣
θ=θ̄

a→ −Ey;θt

[
∂2 ln p(y;θ)

∂θ2

∣∣∣∣
θ=θt

]
= F y(θt), (3.17)

where we used that by the consistency of the MLE θ̄ a→ θt when θ̂(Y )
a→ θt. As the expression

1√
N

∂ ln p(Y ;θ)

∂θ

∣∣∣∣
θ=θt

=
1√
N

N∑
n=1

∂ ln p(yn;θ)

∂θ

∣∣∣∣
θ=θt

(3.18)

is a sum of independent and identically distributed random variable with expectation

EY ;θt

[
1√
N

N∑
n=1

∂ ln p(yn;θ)

∂θ

∣∣∣∣
θ=θt

]
=

1√
N

N∑
n=1

Eyn;θt

[
∂ ln p(yn;θ)

∂θ

∣∣∣∣
θ=θt

]
= 0T (3.19)

and covariance

EY ;θt

[(
1√
N

N∑
n=1

∂ ln p(yn;θ)

∂θ

∣∣∣∣
θ=θt

)T(
1√
N

N∑
n=1

∂ ln p(yn;θ)

∂θ

∣∣∣∣
θ=θt

)]

=
1

N

N∑
n=1

Eyn;θt

[(
∂ ln p(yn;θ)

∂θ

∣∣∣∣
θ=θt

)T(
∂ ln p(yn;θ)

∂θ

∣∣∣∣
θ=θt

)]
= F y(θt), (3.20)

asymptotically we have (
1√
N

∂ ln p(Y ;θ)

∂θ

∣∣∣∣
θ=θt

)T
a∼ N (0,F y(θt)). (3.21)

Slutsky’s theorem [10] states that with two random variablesX1 andX2 and a constant matrixA

X1
a∼ p(X1), X2

a→ A (3.22)

it holds that

X1X2
a→X1A, X2X1

a→ AX1. (3.23)

Therefore, with the asymptotic result (3.21) and (3.17), we have
√
N
(
θ̂(Y )− θt

) a∼ N
(
0,F−1

y (θt)
)
. (3.24)

Equivalently we can write

θ̂(Y )
a∼ N

(
θt,

1

N
F−1
y (θt)

)
. (3.25)

This means that if the number of samples N is sufficiently large, the estimates θ̂(Y ) calculated
by the maximum-likelihood procedure (3.8) are Gaussian distributed around the true parameter θt
with a covariance matrix 1

N
F−1
y (θt).
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3.2.2 Cramér-Rao Lower Bound

In the following we are going to analyze the fundamental performance limit which is achievable
within a particular class of estimation procedures. To this end, we restrict the discussion to unbiased
processing rules for which

EY ;θ

[
θ̂(Y )

]
= θ, (3.26)

irrespective of the number of observations N contained in Y . As for all considered parametric
models (

∂

∂θ

)T ∫
Y
f(y)p(y;θ)dy =

∫
Y
f(y)

(
∂p(y;θ)

∂θ

)T

dy, (3.27)

under any function f(·) which does not present θ as an argument, we can reformulate (3.26)∫
YN
θ̂(Y )p(Y ;θ)dY = θ (3.28)

and by differentiating on both sides obtain∫
YN
θ̂(Y )

∂p(Y ;θ)

∂θ
dY = ID. (3.29)

Further, with the property ∫
YN
θ
∂p(Y ;θ)

∂θ
dY = θ

∂

∂θ

∫
YN

p(Y ;θ)dY

= 0D, (3.30)

the identity (3.29) can be expanded∫
YN

(
θ̂(Y )− θ

)∂p(Y ;θ)

∂θ
dY = ID (3.31)

and written as ∫
YN

(
θ̂(Y )− θ

)∂ ln p(Y ;θ)

∂θ
p(Y ;θ)dY = ID, (3.32)

where we used the property of the logarithm

∂ ln p(y;θ)

∂θ
=

1

p(y;θ)

∂p(y;θ)

∂θ
. (3.33)
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Using (3.32) and the covariance inequality (see Appendix A1) we obtain the matrix inequality∫
YN

(
θ̂(Y )− θ

)(
θ̂(Y )− θ

)T
p(Y ;θ)dY

�

(∫
YN

(
θ̂(Y )− θ

)∂ ln p(Y ;θ)

∂θ
p(Y ;θ)dY

)

·

(∫
YN

(
∂ ln p(Y ;θ)

∂θ

)T
∂ ln p(Y ;θ)

∂θ
p(Y ;θ)dY

)−1

·

(∫
YN

(
∂ ln p(Y ;θ)

∂θ

)T(
θ̂(Y )− θ

)T
p(Y ;θ)dY

)

=

(
N

∫
Y

(
∂ ln p(y;θ)

∂θ

)T
∂ ln p(y;θ)

∂θ
p(y;θ)dy

)−1

. (3.34)

The left hand side of (3.34) is identified to be the mean squared error (MSE) matrix

MSEY (θ) , EY ;θ

[(
θ̂(Y )− θ

)(
θ̂(Y )− θ

)T
]

(3.35)

of the estimator θ̂(Y ) and the right hand side of (3.34) the Fisher information matrix

F y(θ) , Ey;θ

[(
∂ ln p(y;θ)

∂θ

)T
∂ ln p(y;θ)

∂θ

]
. (3.36)

Therefore the inequality (3.34) is equivalent to

MSE(θ) � 1

N
F−1
y (θ). (3.37)

The equation (3.37) is known as Cramér-Rao lower bound (CRLB) [11] [12] and restricts the MSE
matrix of any unbiased estimate θ̂(Y ) to dominate the inverse of the Fisher information matrix.
With the asymptotic unbiasedness of the MLE and its covariance (3.25) it can be concluded that the
MSE of the MLE asymptotically equals the CRLB. Therefore, the MLE is said to be asymptotically
efficient. This result is relevant in practice, as it allows to access the asymptotic performance of the
MLE in a compact analytical way by using

MSEY (θ)
a
=

1

N
F−1
y (θ). (3.38)

As a simple example for visualization of the asymptotic equality (3.38), consider the problem

y = s(θ) + η

= γx+ η, (3.39)

where the parameter θ = γ is the signal strength with which the pilot signal x ∈ {−1, 1}N is
received and η ∼ N

(
0, IN

)
. The MLE is given by

γ̂(y) =
xTy

xTx
, (3.40)
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while the Fisher information measure is found to be

F (θ) = xTx

= N. (3.41)

For the example (3.39), Fig. 3.1 shows the CRLB and the MSE obtained with the MLE (3.40) for
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Fig. 3.1. Performance MLE γ̂(y) vs. CRLB (SNR = 10 dB)

different numbers of samples N when averaging over 10000 noise realizations. As predicted by
(3.38), it can be observed that both measures obtain the same value. This correspondence between
the MSE of the MLE and the CRLB enables us in the following chapters to discuss the quality of
a certain system model p(y;θ) without having to simulate the MLE. Further, we can compare the
achievable accuracy of two system designs p(y;θ) and p(z;θ) by consulting the Fisher informa-
tion matrices F y(θ) and F z(θ).

3.3 Bayesian Estimation with Prior Information
The Bayesian perspective onto parameter estimation is fundamentally different. Here the parameter
θ is treated as a random variable which is distributed according to a probability law

θ ∼ p(θ) (3.42)

which is known a priori [8]. Therefore the prior knowledge p(θ) can to be incorporated into the
estimation process in order to obtain higher processing performance. Note that in contrast to (3.36),
the MSE matrix of a Bayesian estimator θ̂(Y )

MSEY , EY ,θ

[(
θ̂(Y )− θ

)(
θ̂(Y )− θ

)T
]

= Eθ

[
EY |θ

[(
θ̂(Y )− θ

)(
θ̂(Y )− θ

)T
]]

(3.43)

is a constant matrix as the error measure is averaged with respect to p(θ).
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3.3.1 Conditional Mean Estimator
In the Bayesian setting the optimum algorithm for the inference for θ is the conditional mean
estimator (CME)

θ̂(Y ) , Eθ|Y [θ] =

∫
Θ

θ
p(Y |θ)p(θ)

p(Y )
dθ

=

∫
Θ
θp(Y |θ)p(θ)dθ∫

Θ
p(Y |θ)p(θ)dθ

. (3.44)

3.3.2 Bayesian Cramér-Rao Lower Bound
In order to bound the performance of (3.44) from below, note that

EY ,θ

[(
θ̂(Y )− θ

)∂ ln p(Y ,θ)

∂θ

]
= EY

[
θ̂(Y ) Eθ|Y

[
∂ ln p(Y ,θ)

∂θ

]]
− EY ,θ

[
θ
∂ ln p(Y ,θ)

∂θ

]
= −EY ,θ

[
θ
∂ ln p(Y ,θ)

∂θ

]
(3.45)

and

EY ,θ

[
θ
∂ ln p(Y ,θ)

∂θ

]
= Eθ

[
θEY |θ

[
∂ ln p(Y ,θ)

∂θ

]]
= Eθ

[
θEY |θ

[
∂ ln p(Y |θ)

∂θ
+
∂ ln p(θ)

∂θ

]]
= Eθ

[
θ
∂ ln p(θ)

∂θ

]
=

∂

∂θ

∫
Θ

θp(θ)dθ −
∫
Θ

∂θ

∂θ
p(θ)dθ

= −ID. (3.46)

Therefore, with the Bayesian version of the covariance inequality (see Appendix A2) it is possible
to show that the MSE matrix (3.43) for any estimator θ̂(Y ) (possibly biased) dominates

MSEY � EY ,θ

[(
θ̂(Y )− θ

)∂ ln p(Y ,θ)

∂θ

]
EY ,θ

[(
∂ ln p(Y ,θ)

∂θ

)T
∂ ln p(Y ,θ)

∂θ

]−1

· EY ,θ

[(
∂ ln p(Y ,θ)

∂θ

)T(
θ̂(Y )− θ

)T

]

= EY ,θ

[
θ
∂ ln p(Y ,θ)

∂θ

]
EY ,θ

[(
∂ ln p(Y ,θ)

∂θ

)T
∂ ln p(Y ,θ)

∂θ

]−1

· EY ,θ

[(
∂ ln p(Y ,θ)

∂θ

)T

θT

]

= EY ,θ

[(
∂ ln p(Y ,θ)

∂θ

)T
∂ ln p(Y ,θ)

∂θ

]−1

, (3.47)
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where we have used

Eθ|Y

[
∂ ln p(Y ,θ)

∂θ

]
=

∫
Θ

∂ ln p(Y ,θ)

∂θ
p(θ|Y )dθ

=

∫
Θ

∂ ln p(θ|Y )

∂θ
p(θ|Y )dθ

=

∫
Θ

∂p(θ|Y )

∂θ
dθ

=
∂

∂θ

∫
Θ

p(θ|Y )dθ

= 0D. (3.48)

The matrix on the right hand side of inequality (3.47) is called the Bayesian Fisher information
matrix (BFIM) and can be decomposed

JY , EY ,θ

[(
∂ ln p(Y ,θ)

∂θ

)T
∂ ln p(Y ,θ)

∂θ

]

= EY ,θ

[(
∂ ln p(Y |θ)

∂θ
+
∂ ln p(θ)

∂θ

)T(
∂ ln p(Y |θ)

∂θ
+
∂ ln p(θ)

∂θ

)]

= EY ,θ

[(
∂ ln p(Y |θ)

∂θ

)T
∂ ln p(Y |θ)

∂θ

]
+ Eθ

[(
∂ ln p(θ)

∂θ

)T
∂ ln p(θ)

∂θ

]
(3.49)

as with (3.3)

EY ,θ

[(
∂ ln p(Y |θ)

∂θ

)T
∂ ln p(θ)

∂θ

]
= Eθ

[
EY |θ

[(
∂ ln p(Y |θ)

∂θ

)T
∂ ln p(θ)

∂θ

]]

= Eθ

[
EY |θ

[(
∂ ln p(Y |θ)

∂θ

)T
]
∂ ln p(θ)

∂θ

]
= 0. (3.50)

Further,

JY = EY ,θ

[(
∂ ln p(Y |θ)

∂θ

)T
∂ ln p(Y |θ)

∂θ

]
+ Eθ

[(
∂ ln p(θ)

∂θ

)T
∂ ln p(θ)

∂θ

]

= Eθ

[
EY |θ

[(
∂ ln p(Y |θ)

∂θ

)T
∂ ln p(Y |θ)

∂θ

]]
+ Eθ

[(
∂ ln p(θ)

∂θ

)T
∂ ln p(θ)

∂θ

]

= N Eθ

[
Ey|θ

[(
∂ ln p(y|θ)

∂θ

)T
∂ ln p(y|θ)

∂θ

]]
+ Eθ

[(
∂ ln p(θ)

∂θ

)T
∂ ln p(θ)

∂θ

]

= N Eθ [F y(θ)] + Eθ

[(
∂ ln p(θ)

∂θ

)T
∂ ln p(θ)

∂θ

]
= N F̄ y + JP , (3.51)
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where the expected Fisher information matrix (EFIM)

F̄ y , Eθ [F y(θ)] (3.52)

characterizes the average contribution of the data y and JP the contribution of the prior knowledge
p(θ) to the reduction of the MSE [8]. Contrary to the result (3.25) in the Fisher framework, where
the MLE asymptotically achieves the CRLB, in the Bayesian setting the CME (3.44) only attains
the BCRLB

MSE �
(
N F̄ y + JP

)−1
, (3.53)

in the special case where p(θ|Y ) is multivariate Gaussian [8].

3.3.3 Maximum A Posteriori Estimator
In many cases the evaluation of the integrals involved in the CME processing rule (3.44) is not pos-
sible in closed form. Therefore it is common to resort to the suboptimal approach of the maximum
a posteriori (MAP) estimator

θ̂(Y ) , arg max
θ∈Θ

ln p(Y ,θ)

= arg max
θ∈Θ

(
ln p(Y |θ) + ln p(θ)

)
. (3.54)

Due to the fact that

ln p(Y |θ) + ln p(θ) =
N∑
n=1

ln p(yn|θ) + ln p(θ)

a
=

N∑
n=1

ln p(yn|θ), (3.55)

the MAP estimator is asymptotically equivalent to the MLE. Therefore, the MSE of the MAP in
the asymptotic regime is given by

MSEY
a
=

1

N
Eθ
[
F−1
y (θ)

]
, (3.56)

where the right hand side of (3.56) is referred to as the expected Cramér-Rao lower bound
(ECRLB).

3.4 Bayesian Estimation with State-Space Models
Estimation with state-space models makes use of the fact that in various applications the parameter
θ is not constant over the observation time To. While the parameter might change from sample
n− 1 to n, the two realizations of the system state θn−1 and θn exhibit a stochastic relation which
is expressed by a state-space model

θn ∼ p(θn|θn−1) (3.57)

with an initial distribution

θ0 ∼ p(θ0). (3.58)

Further, the measurement model can in general also dependent on the sampling time

yn ∼ p(yn|θn). (3.59)
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3.4.1 Parameter Estimation with Tracking
The formulation of an inference problem with a state-space model allows to combine the measure-
ment (3.59) and the process model (3.57) in order to calculate the optimum tracking filter

θ̂n(Y n) =

∫
Θ

θnp(θn|Y n) dθn (3.60)

of the parameter vector θn, where we write the receive matrix with all observations up to the n-th
sampling step as

Y n =
[
y1 y2 . . . yn

]
. (3.61)

The average tracking error in the n-th block is given by the tracking MSE matrix

MSEY n , EY n,θn

[(
θ̂(Y n)− θn

)(
θ̂(Y n)− θn

)T
]
. (3.62)

3.4.2 Recursive Bayesian Cramér-Rao Lower Bound
In order to determine the fundamental performance limit defined by the combination of a measure-
ment (3.59) and a state-space model (3.57), it is possible to use the BCRLB (3.53) by expanding
the parameter space after each observation block and consider the according entries of the growing
matrix JY n . In [13] [14] a recursive method was presented which uses the fact that the MSE matrix
of the n-th step always dominates

MSEY n � U−1
Y n
, (3.63)

where the tracking information measure UY n can be calculated recursively

UY n = U 22
n −U 21

n (UY n−1 +U 11
n )−1U 12

n + Eθn
[
F yn(θn)

]
. (3.64)

The first required information matrix

U 11
n , Eθn,θn−1

[(
∂ ln p(θn|θn−1)

∂θn−1

)T(
∂ ln p(θn|θn−1)

∂θn−1

)]
(3.65)

can be interpreted as an information measure associated with the problem of estimating θn−1 given
θn by using only the state-space model (3.57). The second information matrix, connected to the
problem of exclusively using the state-space model (3.57) in order to estimate θn given θn−1 in
the n-th sampling step, is defined as

U 22
n , Eθn,θn−1

[(
∂ ln p(θn|θn−1)

∂θn

)T(
∂ ln p(θn|θn−1)

∂θn

)]
. (3.66)

An additional information matrix, associated with the interaction between the measure (3.65) and
(3.66), is

U 12
n , Eθn,θn−1

[(
∂ ln p(θn|θn−1)

∂θn−1

)T(
∂ ln p(θn|θn−1)

∂θn

)]
=
(
U 21
n

)T
. (3.67)
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The Bayesian version of the sample-based Fisher information measure F̄ yn required in (3.64), is
calculated under the definition

F yn(θn) , Eyn|θn

[(
∂ ln p(yn|θn)

∂θn

)T(
∂ ln p(yn|θn)

∂θn

)]
, (3.68)

where the expectation is taken with respect to θn ∼ p(θn). Note that the required marginal is given
by

p(θn) =

∫
Θn−1

. . .

∫
Θ0

p(θn,θn−1, . . . ,θ0)dθn−1 . . . dθ0, (3.69)

where

p(θn,θn−1, . . . ,θ0) = p(θ0)
n∏
k=1

p(θk|θk−1). (3.70)

A comprehensive derivation of the recursive bound (3.63) from the BCRLB (3.47) is found in [8,
pp. 92 ff.]. Note that it is not possible to guarantee in general that the Bayesian tracking algorithm
(3.60) achieves the information bound (3.63).



4. Parameter Estimation with Hard-Limited Receive Signals

Having reviewed the basics of estimation theory in the previous chapter, we start discussing the
information loss associated with low-complexity 1-bit A/D conversion in the different estimation
frameworks. After giving an overview on the related literature, we discuss the hard-limiting loss
in the Fisher estimation and in Bayesian estimation setting. Further, we demonstrate the beneficial
effect of incorporating state-space models into the problem of signal processing with 1-bit ADC.
Finally, we discuss the additional loss which is introduced when the 1-bit quantizer exhibits an
unknown offset.

4.1 Related Work
In the context of signal processing the analysis of nonlinear systems is a long standing problem
[15] [16] [17] [18] [19] [20] [21] [22] [23] [24]. The works [25] [26] on the spectrum of quan-
tized noise form the classical references on the particular problem of hard-limiting, while [20] is
one of the first works studing statistical relations between input and output of generic nonlinear
devices. The works [27] [28] [29] investigate inference of the spectral components of Gaussian ran-
dom processes after hard-limiting. Estimating state-space parameters based on quantized signals
is considered in the early publication [30]. A first reference for maximum-likelihood estimation
with a hard-limiter is [31]. Expressions for the autocorrelation function of hard-limited Gaussian
noise are derived in [32], while the estimation of autocorrelation parameters is analyzed in [33].
The benefits of oversampling hard-limited signals is discussed in [34] [35]. A survey on replacing
the quantization device by a linear modeling approach is considered in [36]. More recently, [37]
studies parameter estimation of sinusoidal functions in noise after hard-limiting. The paper [38]
investigates quantizers with dynamically adjusted offset level. The authors of [39] elaborate on
the estimation of direction-of-arrival (DOA) parameters with 1-bit signals from multiple receive
sensors. Adding noise prior to the quantization operation and exploiting the effect of stochastic
resonance for ADC design is proposed in [40]. The effect of a hard-limiter on the performance of
moment estimators is discussed in [41], while [42] forms a popular reference on quantization-loss
in the area of GNSS signal processing. An asymptotic analysis of estimation with hard-limited sig-
nals, correlated noise and randomized quantization offset is found in [43]. The work of [44] shows
that a constant quantization offset maximizes the parameter estimation performance with a hard-
limiter. In [45] 1-bit quantization enhanced by dithering and feedback is considered, while in [46]
the estimation performance is characterized with respect to the ADC resolution. The work [47]
experimentally identifies the importance of the analog pre-filter for sampling with a 1-bit ADC.

The characterization of the system performance with 1-bit ADC has recently also gained atten-
tion in the field of communication theory. The performance limits of communication systems with

37
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1-bit ADC have been derived in [48] [49]. The benefit of oversampling the analog receive signal
for communication over a noisy channel is discussed in [50] [51]. In [52] the authors analyze the
adjustment of the quantizer by changing to an asymmetric hard-limiter with non-zero quantization
threshold. The work [53] observes that noise correlation can increase the capacity of multiple-input
multiple-output (MIMO) communication channels with coarsely quantized receive signals at low
SNR.

4.2 Hard-Limiting Loss in the Fisher Estimation Framework
In the next sections we analyze the 1-bit quantization-loss under the different frameworks intro-
duced in Chapter 3. For the discussion we assume an analog sensor signal y(t) ∈ R of the form

y(t) = γs(t; θ) + η(t). (4.1)

The continious-time signal y(t) consists of a deterministic transmit signal s(t; θ) ∈ R which is
attenuated by the factor γ ∈ R and modulated by the parameter θ ∈ R. White random noise
η(t) ∈ R, summarizing the effect of the analog low-noise amplifier at the receive sensor and
interfering signal sources, distorts the receive signal in an additive way. The receive signal y(t)
is low-pass filtered to a one-sided bandwidth of B and sampled with a rate of fs = 2B = 1

Ts
.

Collecting N subsequent data points at the sampling device, we form the observation block

y = γs(θ) + η (4.2)

y, s(θ),η ∈ RN , with the individual vector entries

yn = y
(
(n− 1)Ts

)
, (4.3)

sn(θ) = s
(
(n− 1)Ts; θ

)
, (4.4)

ηn = η
(
(n− 1)Ts

)
, n = 1, 2, . . . , N. (4.5)

Due to the strict relation between the bandwidth B of the ideal low-pass filter and the sampling
interval Ts, the noise observations η form a multivariate Gaussian random variable with

Eη [η] = 0N , (4.6)

Eη
[
ηηT

]
= IN . (4.7)

Therefore the parametric probability density function of the receive signal y can be written

p(y; θ) =
1

(2π)
N
2

exp

(
−1

2

(
y − γs(θ)

)T(
y − γs(θ)

))

=
1

(2π)
N
2

N∏
n=1

exp

(
−1

2

(
yn − γsn(θ)

)2
)
, (4.8)

while the noise follows a zero-mean Gaussian probability law

p(η) =
1

(2π)
N
2

exp

(
−1

2
ηTη

)

=
1

(2π)
N
2

N∏
n=1

exp

(
−1

2
η2
n

)
. (4.9)



4.2 Hard-Limiting Loss in the Fisher Estimation Framework 39

The low-complexity receiver with 1-bit ADC has exclusively access to a hard-limited version of
the receive signal

z = sign (y), (4.10)

where the element-wise signum function is defined

sign (x) ,

{
+1 if x ≥ 0

−1 if x < 0.
(4.11)

After this operation, the probability of the binary receive samples zn being +1 or −1 is

p(zn = +1; θ) =

∫ ∞
−γsn(θ)

p(ηn)dηn

= Q (−γsn(θ))

= 1−Q (γsn(θ)) (4.12)

and

p(zn = −1; θ) =

∫ −γsn(θ)

−∞
p(ηn)dηn

= 1−Q (−γsn(θ))

= Q (γsn(θ)) , (4.13)

such that the parameterized probability mass function of the observation vector z is

p(z; θ) =
N∏
n=1

(
1−Q (γznsn(θ))

)
=

N∏
n=1

Q (−γznsn(θ)) . (4.14)

Note that the Q-function is defined

Q (x) ,
1√
2π

∫ ∞
x

exp
(
− u2

2

)
du. (4.15)

Calculating the Fisher information measure of the hard-limiting receiver (4.10), we find that

Fz(θ) = Ez;θ

[(
∂ ln p(z; θ)

∂θ

)2
]

=
N∑
n=1

Ezn;θ

[(
∂ ln p(zn; θ)

∂θ

)2
]

=
N∑
n=1

(
∂p(zn=+1;θ)

∂θ

)2

p(zn = +1; θ)
+

N∑
n=1

(
∂p(zn=−1;θ)

∂θ

)2

p(zn = −1; θ)
. (4.16)
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With the derivatives of the parametric probability mass function

∂p(zn; θ)

∂θ
= zn

γ√
2π

∂sn(θ)

∂θ
exp

(
−γ

2s2
n(θ)

2

)
, (4.17)

the Fisher information measure is found to be given by

Fz(θ) =
γ2

2π

N∑
n=1

∂s2n(θ)
∂θ

exp (−γ2s2
n(θ))

Q (γsn(θ)) Q (−γsn(θ))
. (4.18)

As a performance reference for the nonlinear 1-bit system, consider the ideal receiver (4.2) which
has access to the high-resolution signal y. For this kind of receive system, the Fisher information
measure is found to be

Fy(θ) = Ey;θ

[(
∂ ln p(y; θ)

∂θ

)2
]

= γ2

(
∂s(θ)

∂θ

)T
∂s(θ)

∂θ

= γ2

N∑
n=1

∂s2
n(θ)

∂θ
. (4.19)

In order to compare the ideal receiver (4.2) and the low-complexity 1-bit system (4.10) with respect
to the achievable estimation accuracy, we define the relative performance loss by the ratio

χ(θ) ,
Fz(θ)

Fy(θ)
. (4.20)

With Q (0) = 1
2
, we obtain in the limit

lim
κ→0

e−κ
2

Q (κ) Q (−κ)
= 4, (4.21)

such that we can analyze the hard-limiting loss (4.20) for asymptotically low SNR [26]

lim
γ→0

χ(θ) = lim
γ→0

γ2

2π

∑N
n=1

∂s2n(θ)

∂θ
exp(−γ2s2n(θ))

Q(γsn(θ)) Q(−γsn(θ))

γ2
∑N

n=1
∂s2n(θ)
∂θ

=
2

π
. (4.22)

Note that (4.22) is −1.96 dB when expressed as equivalent reduction in SNR.

4.3 Hard-Limiting Loss in the Bayesian Estimation Framework
From the Bayesian perspective an analysis of the 1-bit loss follows a similar approach. Here the
parameter θ has to be treated as a random variable which is distributed according to a prior distri-
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bution θ ∼ p(θ). The Bayesian information measure with N observations is

Jz = Ez,θ

[(
∂ ln p(z, θ)

∂θ

)2
]

= Eθ

[
Ez|θ

[(
∂ ln p(z|θ)

∂θ

)2
]]

+ Eθ

[(
∂ ln p(θ)

∂θ

)2
]

= NF̄z(θ) + JP . (4.23)

Equivalently, for the ideal reference receiver we have

Jy = Ey,θ

[(
∂ ln p(y, θ)

∂θ

)2
]

= NF̄y(θ) + JP . (4.24)

Defining the relative performance gap in the Bayesian setting by

χ ,
Jz
Jy

=
NF̄z(θ) + JP
NF̄y(θ) + JP

, (4.25)

allows us to compare both receive systems. For the asymptotic analysis in the low SNR regime

lim
γ→0

lim
N→∞

χ = lim
γ→0

lim
N→∞

NF̄z(θ) + JP
NF̄y(θ) + JP

= lim
γ→0

F̄z(θ)

F̄y(θ)

=
2

π
, (4.26)

we obtain the same result as in the Fisher estimation framework (4.22) by making the number of
observations N sufficiently large.

4.4 Hard-Limiting Loss for Estimation with State-Space Models
Now, we assume that the parameter θ changes with each sample yn or zn. Further, a stochastic
model p(θn|θn−1) describing the temporal evolution of the parameter from one sample to another
is available. This allows us to perform parameter estimation with tracking over subsequent blocks
and to calculate the current block estimate θ̂n based on the observations of the current block and
all preceding blocks (tracking). For simplicity we assume that the channel parameter θn evolves
according to an autoregressive model of order one, i.e.,

θn = αθn−1 + wn, (4.27)

where α ∈ R. The innovation wn ∈ R is modeled as a Gaussian random variable with

Ewn [wn] = 0, ∀n, (4.28)

Ewn

[
w2
n

]
= σ2

w, ∀n. (4.29)
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Under these assumptions the transition probability function of the parameter θn is given by

p(θn|θn−1) =
1√

2πσw
exp

(
−(θn − αθn−1)2

2σ2
w

)
. (4.30)

For the first block we assume an initial prior

p(θ0) =
1√

2πσ0

e
− (θ0−µ0)

2

2σ20 . (4.31)

Note that for such a state-space model, the marginal

p(θn) =

∫
Θn−1

∫
Θn−2

. . .

∫
Θ0

p(θn|θn−1)p(θn−1|θn−2) · . . . · p(θ0)dθn−1dθn−2 · . . . · dθ0 (4.32)

follows a Gaussian distribution N (µn, σ
2
n) for which the mean and the variance evolve over time

according to

µn = Eθn [θn] = αnµ0, (4.33)

σ2
n = Eθn

[
(θn − Eθn [θn])2

]
= α2nσ2

0 +

( n∑
i=1

α2(n−i)
)
σ2
w. (4.34)

In order to avoid divergence of the state-space variance (4.34), we restrict α to 0 ≤ α < 1, such
that in the limit

lim
n→∞

Eθn [θn] = 0, (4.35)

lim
n→∞

Eθn

[
(θn − Eθn [θn])2

]
=

1

1− α2
σ2
w. (4.36)

With the state-space model (4.27), the required derivatives for the evaluation of the information
measures (3.65), (3.66) and (3.67) are

∂ ln p(θn|θn−1)

∂θn−1

=
(θn − αθn−1)α

σ2
w

, (4.37)

∂ ln p(θn|θn−1)

∂θn
= −(θn − αθn−1)

σ2
w

, (4.38)

such that we obtain

U11
n = Eθn−1

[
Eθn|θn−1

[(
∂ ln p(θn|θn−1)

∂θn−1

)2
]]

=
α2

σ2
w

, (4.39)

U22
n = Eθn−1

[
Eθn|θn−1

[(
∂ ln p(θn|θn−1)

∂θn

)2
]]

=
1

σ2
w

, (4.40)

U12
n = Eθn−1

[
Eθn|θn−1

[
∂ ln p(θn|θn−1)

∂θn−1

∂ ln p(θn|θn−1)

∂θn

]]
= − α

σ2
w

. (4.41)
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Consequently, the recursive rule (3.64) for the computation of the tracking information measure
Uzn is given by

Uzn = U22
n − U21

n (Uzn−1 + U11
n )−1U12

n + Eθn [Fz(θn)]

=
1

σ2
w

− α2

σ4
w

(
Uzn−1 +

α2

σ2
w

)−1

+ F̄zn

=

(
σ2
w +

α2

Uzn−1

)−1

+ F̄zn (4.42)

and accordingly for the ideal receiver (infinite resolution)

Uyn =

(
σ2
w +

α2

Uyn−1

)−1

+ F̄yn , (4.43)

where the initial value in both cases is

Uz0 = Uy0 =
1

σ2
0

. (4.44)

4.4.1 Steady-State Tracking Performance
After an initial transient phase, the tracking algorithm reaches a steady-state such that the estima-
tion error saturates and

Uzn = Uzn−1 , ∀n > Nλ, (4.45)

where Nλ defines the number of observations during the transient phase. Using the steady-state
condition (4.45) in (4.42) and solving for Uz, we obtain

Uz = lim
n→∞

Uzn

=
1− α2

2σ2
w

+
F̄∞z
2

+

√(
1− α2

2σ2
w

+
F̄∞z
2

)2

+
α2F̄∞z
σ2
w

, (4.46)

where the expected steady-state Fisher information is

F̄∞z , lim
n→∞

Eθn [Fz(θn)]

= lim
n→∞

F̄zn . (4.47)

The situation that the last term α2F̄z
σ2
w

in (4.46) dominates the tracking information measure Uz arises
if the two conditions (

1− α2

2σ2
w

)2

� α2F̄∞z
σ2
w

, (4.48)(
F̄∞z
2

)2

� α2F̄∞z
σ2
w

(4.49)
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are fulfilled. The first condition (4.48) can be reformulated

(1− α2)2 � α2σ2
wF̄
∞
z (4.50)

and the second condition (4.49) can be stated as

F̄∞z �
α2

σ2
w

. (4.51)

Substituting (4.51) into (4.50), we get

1− α2 � α2, (4.52)

which is satisfied if we set α close to one. Hence, if α is close to one (4.52) and the informative
quality of the state-space model indicated by α2

σ2
w

(4.39) is much higher than the expected steady-
state Fisher information F̄∞z of the observation model (4.51), the steady-state tracking information
measure Uz can be approximated by

Uz ≈

√
α2F̄∞z
σ2
w

. (4.53)

For the comparison between the quantized receiver and the ideal system, we define the 1-bit quan-
tization loss for parameter estimation and tracking in the n-th block as

χn =
Uzn
Uyn

, (4.54)

such that asymptotically

χ = lim
n→∞

χn

=
Uz
Uy
, (4.55)

where the steady-state tracking information measure Uy for the ideal reference receiver is

Uy =
1− α2

2σ2
w

+
F̄∞y
2

+

√(
1− α2

2σ2
w

+
F̄∞y
2

)2

+
α2F̄∞y
σ2
w

, (4.56)

with the expected steady-state Fisher information of the ideal receiver (∞-bit)

F̄∞y = lim
n→∞

Eθn [Fy(θ)]

= lim
n→∞

F̄y(θ). (4.57)

Under the assumption that the state-space model p(θn|θn−1) exhibits a much higher estimation
theoretic quality than the observation models, independent of the form of the receiver, i.e.,

F̄∞z �
α2

σ2
w

, (4.58)

F̄∞y �
α2

σ2
w

, (4.59)
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it is possible to evaluate the steady-state loss for a slow temporal state-space evolution

lim
α→1

lim
n→∞

χn = lim
α→1

χ

= lim
α→1

Uz
Uy

≈

√
F̄∞z
F̄∞y

. (4.60)

Note that as long as (4.58) and (4.59) are fulfilled, the result (4.60) holds in general, independent of
the considered SNR regime. This implies that compared to the Fisher estimation or the Bayesian
inference approach, tracking the parameter with the use of a slowly evolving state-space model
leads to a 1-bit quantization loss which is potentially by a factor of two smaller when expressed in
dB. With the result (4.60) and (4.26), we can make the explicit statement that for signal parameter
estimation and tracking in the low SNR regime, the 1-bit quantization loss is

lim
γ→0

lim
α→1

χ ≈
√

2

π
. (4.61)

4.4.2 Convergence and Transient Phase Analysis
In order to further analyze the behavior of the 1-bit receive system, we consider the convergence
of the recursive information measure (4.42). The goal is to determine the number of measurements
which are required to fulfill the steady-state condition (4.45). To this end, we define a transient
phase of quality λ > 1, with the duration

Nz,λ , inf
{
n ≥ 1

∣∣∣|Uzn − Uz| ≤ 10−λ|Uz0 − Uz|
}
. (4.62)

The measure Nz,λ characterizes the number of observation blocks which are required from the
start of the tracking procedure to the steady-state entry point of quality λ. The rate of convergence
λconv ∈ R of recursion (4.42) is found by solving

lim
n→∞

|Uzn − Uz|
|Uzn−1 − Uz|λconv

= λconst (4.63)

with respect to λconv under a constant λconst ∈ R, λconst <∞. As the derivative

∂Uzn
∂Uzn−1

∣∣∣∣
Uzn−1=Uz

= α2(σ2
wUz + α2)−2 6= 0, (4.64)

we have λconv = 1, i.e., the order of convergence is linear and

λconst = α2(σ2
wUz + α2)−2. (4.65)

With |Uzn − Uz| ≈ λnconst|Uz0 − Uz|, the duration of the transient phase Nz,λ is found to be
approximately

Nz,λ ≈ −
λ

log λconst
. (4.66)
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Assuming that the conditions (4.58) and (4.59) are satisfied while α is close to one and
√
σ2
wF̄
∞
z +

α > 1 is satisfied, it is possible to use the approximation

λconst ≈
(√

σ2
wF̄
∞
z + α

)−2

. (4.67)

In this case, the duration of the transient phase is

Nz,λ ≈
λ

2 log
(√

σ2
wF̄
∞
z + α

) . (4.68)

Specifying the additional relative delay N∆ which is introduced by 1-bit quantization

N∆ =
Nz,λ
Ny,λ

, (4.69)

where Ny,λ is the duration of the transient phase for the ideal receive system, we find that

N∆ ≈
log
(√

σ2
wF̄
∞
y + α

)
log
(√

σ2
wF̄
∞
z + α

)
≈

√
F̄∞y
F̄∞z

, (4.70)

independent of the choice of the steady-state accuracy λ. Further, with

lim
γ→0

√
F̄∞y
F̄∞z

=

√
π

2

≈ 1.25 (4.71)

it can be concluded that with slow state-space evolution (α → 1) and low SNR (γ → 0), the
transient phase Nz,λ with the 1-bit receiver takes approximately 25% longer than with the ideal
system.

4.4.3 Satellite-Based Synchronization at Low SNR
As an application, we consider a satellite-based synchronization problem where a transmitter x(t)
sends a known periodic signal of the form

x(t) =
∞∑

c=−∞

[c](1+mod(c,Nc))g(t− cTc). (4.72)

The vector c ∈ {−1, 1}Nc is a binary sequence with Nc symbols. Each symbol has a duration Tc
and g(t) is a band-limited rectangular transmit pulse. A Doppler-compensated receiver observes
an attenuated and delayed copy of the transmit signal

y(t) = γs(t; θ(t)) + η(t)

= γx(t− τ(t)) + η(t) (4.73)
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with AWGN η(t) and time-delay τ(t). By band-limiting and sampling the analog signal (4.73)
according to the sampling theorem, the ideal receiver obtains the digital receive signal

yn = γs(τn) + ηn, (4.74)

while a low-cost 1-bit version of the receiver operates exclusively on the basis of the signal sign

zn = sign (yn)

= sign (γs(τn) + ηn). (4.75)

The temporal evolution of the time-delay parameter θn = τn can be approximated by

θn = αθn−1 + wn. (4.76)

Note, that in this radio-based ranging example, α is related to the movement of transmitter and
receiver. For simplicity, we assume that the state-space parameter α is constant over the considered
amount of blocks and is known at the receiver. The receivers task is to estimate the distance to the
transmitter in each observation block n by measuring the time-delay parameter τ̂n.

Because the optimum estimator (3.60) is difficult to calculate in this situation we use a subopti-
mal nonlinear filter [54] for simulations. The particle filter is based on approximating the posterior
probability of the parameter θn given all available data Zn

p(θn|Zn) ≈
K∑
k=1

aknδ(θn − θkn)

= p̃(θn|Zn) (4.77)

by K particles θkn. The particle weights akn ≥ 0 satisfy

K∑
k=1

akn = 1, (4.78)

such that a sample-wise estimate θ̂n can be calculated by

θ̂n =
K∑
k=1

aknθ
k
n. (4.79)

Using the transition probability function p(θn|θn−1) as the importance density, the particle weights
are updated recursively

ãkn = akn−1p(zn|θkn) (4.80)

and normalized

akn =
ãkn∑K
k=1 ã

k
n

, (4.81)

in order to fulfill (4.78). If the effective number of particles

Keff =
1∑K

k=1(akn)2
(4.82)
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falls below a certain threshold Kthresh, i.e.,

Keff ≤ Kthresh, (4.83)

a resampling step is performed, which replaces the particles by sampling K times from p̃(θn|Zn).
For simulations, we use the signal of the 5-th GPS satellite with Nc = 1023, Tc =

(1.023 MHz)−1 and a rectangular transmit pulse g(t) [55]. According to the chip rate, the one-
sided bandwidth of the receiver is set to B = 1.023 MHz. The sampling rate is set to fs = 2B and
each observation has the durationMTs = 1 ms, i.e., an observation vector containsM = 2046 data
samples. The SNR is set to SNR = −15.0 dB. For the state-space model, we choose α = 1− 10−3

and σw = 10−3 and the initialization setup (4.31) is µ0 = 398.7342 · Tc and σ0 = 0.1 · Tc. For
N = 250 blocks, we generate 100 delay processes and run the nonlinear filters with K = 100 par-
ticles for each delay process 1000 times with independent noise realizations while the resampling
threshold is set to Kthresh = 0.66K. The results depicted in Fig. 4.1 show that the analytic range
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Fig. 4.1. Tracking Error - Ranging

tracking errors U−1
zn and U−1

yn
in meter approach the asymptotic steady-state errors U−1

z and U−1
y .

Further, it can be observed that both nonlinear filters are efficient, such that the errors MSEzn and
MSEyn reach the theoretic tracking bounds U−1

zn and U−1
yn

. Therefore, in Fig. 4.2, the quantization
loss χn defined in (4.54) is visualized. It is observed that at the beginning of the tracking process,
the performance gap between both receivers is moderate (χn = −1.38 dB at n = 1), due to the
same initial state-space uncertainty σ2

0 . In the transient phase, the quantization loss becomes quite
pronounced (χn = −1.90 dB at n = 15). While reaching the steady-state phase (n > 250), the
loss converges to χ = −0.93 dB.

4.4.4 UWB Channel Estimation at Low SNR
As a second application we consider the estimation of the channel quality in the context of ul-
tra wide-band (UWB) communication. Similar to the satellite-based ranging problem, the receive
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Fig. 4.2. 1-bit Tracking Loss - Ranging

signal of a synchronized receiver during a pilot phase can be modeled

yn = s(θn) + ηn
= γnxn + ηn, (4.84)

where xn is the discrete-time form of a known pilot signal with analog structure as in (4.72) and γn
is the signal receive strength. Note, that in contrast to the ranging problem, the parameter θn = γn
in the ideal receive model (4.84) shows up in a linear form. The task of a low-cost 1-bit UWB
receiver

zn = sign (y)

= sign (γnxn + ηn) (4.85)

is to estimate the signal attenuation γ̂n for each pilot block, while the channel coefficient γn = θn
follows the temporal evolution model (4.27). In contrast to the ranging application, we assume
B = 528 MHz, a Nyquist transmit pulse g(t) of bandwidthB andNc = 10 symbols with SNRdB =
−15.0 dB. The state-space model parameters are α = 1 − 10−4 and σw =

√
(1− α2) SNR. The

initialization setup is µ0 =
√

SNR and σ0 = 0.05. In Fig. 4.3 it can be seen that, like in the
ranging application, the nonlinear filters, simulated with 1000 channel coefficient processes and
100 independent noise realizations, perform efficiently and therefore close to the tracking bounds
U−1
zn or U−1

yn
. These bounds asymptotically equal the analytic steady-state errors U−1

z and U−1
y . In

Fig. 4.4, the performance loss χn is depicted in dB. As in the ranging problem, it is observed that
the loss after the initial transient phase recovers and approaches χn = −1.02 dB. Note that for both
of the considered applications, the asymptotic loss is slightly different from χ = −0.98 dB, as the
low SNR and the slow channel evolution assumption are not fully valid for the chosen simulation
setups.



50 4. Parameter Estimation with Hard-Limited Receive Signals

0 50 100 150 200 250

2

3

4

·10−2

n

R
M

SE
√

MSEzn√
U−1
zn√

U−1
z√

MSEyn√
U−1
yn√

U−1
y

Fig. 4.3. Tracking Error - UWB Channel Estimation

0 50 100 150 200 250

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

n

χ
[d

B
]

χn
χ

Fig. 4.4. 1-bit Tracking Loss - UWB Channel Estimation



4.5 Hard-Limiting Loss with Unknown Quantization Threshold 51

4.5 Hard-Limiting Loss with Unknown Quantization Threshold

Up to this point, we have considered receive systems with 1-bit ADC which can be modeled by a
symmetric hard-limiting operation (4.11). However in practice the ADC will exhibit a quantization
offset which is different from zero. One could argue that in such a case the threshold can be adjusted
during runtime. However, a problem that arises when the quantization level of a 1-bit ADC is to be
controlled, is the fact that a high resolution digital-to-analog converter (DAC) is required in order
to set an analog offset voltage source. As the complexity of DACs scales O(2b) with the number
of bits b, this stands in contradiction with the main motivation behind 1-bit ADC technology,
which is an energy and hardware efficient radio front-end. Therefore, low-complexity 1-bit ADCs
will lack the feature of an accurately adjustable quantization level. Rather, a low-cost sampling
device will be constructed such that the hard-limiting level is fixed to a constant value. Inevitable
mismatches of the circuit parts during the production process and external effects will lead to an
unknown quantization level of the sampler, such that calibration or a method which estimates and
compensates the unknown threshold during runtime is required.

Therefore in this section, the performance loss associated with 1-bit quantization and an un-
known threshold is analyzed for the application of pilot-based channel estimation. The problem
is studied under the assumption that the channel parameter and the quantization level are deter-
ministic unknown. We characterize the optimal performance in the asymptotic regime, which is
associated with the maximum likelihood estimator (MLE) for the deterministic setup and analyze
the 1-bit loss with unknown quantization level.

For the discussion we consider the problem of pilot-based receive strength estimation. There-
fore, the digital signal model of the ideal receive system with infinite resolution is given by

y = s(θ) + η

= γx+ η, (4.86)

where x ∈ RN is a pilot signal of known structure, γ ∈ R characterizes the signal receive strength
and η ∈ RN is AWGN with elements of unit variance. For simplicity, we assume a phase-shift
keying (BPSK) transmitter and a synchronized receiver such that x ∈ {−1, 1}N , where

1

N

N∑
n=1

xn = 0. (4.87)

The low-complexity receiver is equipped with a 1-bit ADC which provides the digital signal

z = sign (y − υ1N)

= sign (γx+ η − υ1N), (4.88)

where 1N ∈ RN denotes the all-ones vector and υ ∈ R forms an unknown threshold level. With
θ = γ the conditional probability density function of the resulting binary received signal is

p(z; θ, υ) =
N∏
n=1

Q (zn(υ − θxn)) . (4.89)
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Under the assumption that the ideal receiver treats θ as deterministic unknown, the asymptotically
optimum unbiased estimator is the maximum likelihood estimator (MLE)

θ̂(y) , arg max
θ∈Θ

p(y; θ)

= arg max
θ∈Θ

N∑
n=1

ln p(yn; θ), (4.90)

with the corresponding MSE

MSEy(θ) , Ey;θ

[(
θ̂(y)− θ

)2
]
. (4.91)

The 1-bit receiver considers the signal strength parameter θ and the threshold υ as deterministic
unknown. The MLE is therefore based on joint estimation of the parameter θ and the threshold υ,
such that [

θ̂(z) υ̂(z)
]T

, arg max
θ∈Θ,υ∈R

p(z; θ, υ)

= arg max
θ∈Θ,υ∈R

N∑
n=1

ln p(zn; θ, υ), (4.92)

with the corresponding error

MSEz(θ, υ) , Ez;θ,υ

[(
θ̂(z)− θ

)2
]
. (4.93)

For the ideal receiver and estimation with the MLE, the MSE can be approximated asymptotically
by the CRLB

MSEy(θ)
a
= F−1

y (θ), (4.94)

where with (4.86) the Fisher information measure is found to be

Fy(θ) = Ey;θ

[(
∂ ln p(y; θ)

∂θ

)2
]

=
N∑
n=1

x2
n

= N. (4.95)

For the 1-bit receiver, the estimation of the threshold υ̂(z) has an effect onto the inference of the
attenuation parameter θ̂(z). The corresponding CRLB for the estimator θ̂(z) is

MSEz(θ, υ)
a
=

Fz,υυ(θ, υ)

Fz,θθ(θ, υ)Fz,υυ(θ, υ)− F 2
z,θυ(θ, υ)

. (4.96)
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The required individual Fisher information measures are given by

Fz,θθ(θ, υ) = Ez;θ,υ

[(
∂ ln p(z; θ, υ)

∂θ

)2
]

=
N∑
n=1

Ezn;θ,υ

[
x2
n exp (−(υ − θxn)2)

2πQ2 (zn(υ − θxn))

]

=
N∑
n=1

x2
n exp (−(υ − θxn)2)

2π
(

Q (υ − θxn)−Q2 (υ − θxn)
)

=
N

2

(
ψ+(θ, υ) + ψ−(θ, υ)

)
, (4.97)

where the third equality is due to the fact that with (4.89)

Ezn;θ,υ

[
1

Q2 (zn(υ − θxn))

]
=
∑
zn=±1

Q (zn(υ − θxn))

Q2 (zn(υ − θxn))

=
1

Q (υ − θxn)−Q2 (υ − θxn)
(4.98)

and the last equality in (4.97) stems from the BPSK modulation of x and the definition

ψ±(θ, υ) ,
exp (−(υ ± θ)2)

2π
(

Q (υ ± θ)−Q2 (υ ± θ)
) . (4.99)

Along the same lines, we have

Fz,υυ(θ, υ) = Ez;θ,υ

[(
∂ ln p(z; θ, υ)

∂υ

)2
]

=
N∑
n=1

Ezn;θ,υ

[
exp (−(υ − θxn)2)

2πQ2 (zn(υ − θxn))

]
=
M

2

(
ψ+(θ, υ) + ψ−(θ, υ)

)
(4.100)

and

Fz,θα(θ, υ) = Ez;θ,υ

[
∂ ln p(z; θ, υ)

∂θ

∂ ln p(z; θ, υ)

∂υ

]
= −

N∑
n=1

Ezn;θ,υ

[
xn exp (−(υ − θxn)2)

2πQ2 (zn(υ − θxn))

]
=
N

2

(
ψ+(θ, υ)− ψ−(θ, υ)

)
. (4.101)

Note that if the quantization level υ is known to the 1-bit receiver, the asymptotic performance is

MSE?z(θ, υ)
a
= F−1

z,θθ(θ, υ). (4.102)
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To characterize the information loss introduced by the hard-limiter, we define the quantization loss
via the two MSE ratios

χ(θ, υ) ,
MSEy(θ)

MSEz(θ, υ)

a
=
Fz,θθ(θ, υ)Fz,υυ(θ, υ)− F 2

z,θυ(θ, υ)

Fz,υυ(θ, υ)Fy,θθ(θ)

= 2
ψ+(θ, υ)ψ−(θ, υ)

ψ+(θ, υ) + ψ−(θ, υ)
(4.103)

and

χ?(θ, υ) ,
MSEy(θ)

MSE?z(θ, υ)

a
=
Fz,θθ(θ, υ)

Fy,θθ(θ)

=
1

2

(
ψ+(θ, υ) + ψ−(θ, υ)

)
. (4.104)

Fig. 4.5 shows the performance loss (4.103) for different SNR levels in solid lines, where we
use the convention SNR = γ2. Note that the loss is symmetric for negative thresholds υ. The
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Fig. 4.5. Quantization Loss - χ (solid) and χ? (dashed)

results show that for the considered application, a quantization level υ close to zero is in general
preferable and that the performance gap increases with the SNR. Additionally, with dashed lines,
Fig. 4.5 shows the alternative loss (4.104) with known quantization level. While in the low SNR
regime the estimation of υ has no effect onto the estimation of θ, the situation changes within the
medium SNR regime. Here the fact that the threshold is known can have a beneficial effect, in
particular when υ is far from zero.
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The discussion shows that in the low SNR regime the negative effect of the unknown offset υ
onto the performance of θ̂(z) vanishes. This confirms that 1-bit ADCs are an interesting option for
low SNR applications. For signal processing with 1-bit ADCs in the medium SNR regime careful
hardware design is required such that the threshold υ is close to the symmetric case.

4.6 Hard-Limiting Loss with Correlated Noise Models
On the last pages, we have restricted the discussion to the characterization of the hard-limiting loss
for system models of the form

y = s(θ) + η, (4.105)

where the noise covariance matrix exhibits a diagonal structure

Eη
[
ηηT

]
= IM . (4.106)

When taking into consideration a more general class of problems, where the covariance has a
generic structure

Eη
[
ηηT

]
= Rη, (4.107)

for the ideal receiver we obtain the measurement model with correlated noise

p(y;θ) =
1

(2π)
N
2

√
detRη

exp

(
−1

2

(
y − s(θ)

)T
R−1
η

(
y − s(θ)

))
. (4.108)

With N observation blocks, for such a model we find the MLE by solving

θ̂(Y ) = arg max
θ∈Θ

ln p(Y ;θ)

= arg max
θ∈Θ

N∑
n=1

ln p(yn;θ)

= arg min
θ∈Θ

N∑
n=1

(
yn − s(θ)

)T
R−1
η

(
yn − s(θ)

)
. (4.109)

With the property of the Gaussian score(
∂ ln p(y;θ)

∂θ

)T

=

(
∂s(θ)

∂θ

)T

R−1
η

(
y − s(θ)

)
, (4.110)

the problem of solving the MLE optimization problem (4.109) with respect to θ can be formulated
equivalently as finding the root

N∑
n=1

(
∂s(θ)

∂θ

)T

R−1
η

(
yn − s(θ)

)
= 0 (4.111)

or (
∂s(θ)

∂θ

)T

R−1
η

(
ȳ − s(θ)

)
= 0, (4.112)
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where we denote the sample mean by

ȳ =
1

N

N∑
n=1

yn. (4.113)

Note, that with (4.110) the Fisher information measure of the multivariate model (4.108) is directly
available by

F y(θ) = Ey;θ

[(
∂ ln p(y;θ)

∂θ

)T
∂ ln p(y;θ)

∂θ

]

= Ey;θ

[(
∂s(θ)

∂θ

)T

R−1
η

(
y − s(θ)

)(
y − s(θ)

)T
R−1
η

∂s(θ)

∂θ

]

=

(
∂s(θ)

∂θ

)T

R−1
η Ey;θ

[(
y − s(θ)

)(
y − s(θ)

)T
]
R−1
η

∂s(θ)

∂θ

=

(
∂s(θ)

∂θ

)T

R−1
η

∂s(θ)

∂θ
. (4.114)

A second important multivariate model in statistical signal processing is a multivariate Gaussian
distribution with zero-mean and parametric covariance

Ry(θ) = Ey;θ

[
yyT

]
, (4.115)

such that the parametric probability density function of the receive signal is given by

p(y;θ) =
1

(2π)
N
2

√
detRy(θ)

exp

(
−1

2
yTR−1

y (θ)y

)
. (4.116)

Given N independent data snapshots y, maximizing the likelihood is performed by calculating

θ̂(Y ) = arg max
θ∈Θ

ln p(Y ;θ)

= arg max
θ∈Θ

N∑
n=1

ln p(yn;θ)

= arg min
θ∈Θ

ln
(

detRy(θ)
)

+ Tr
(
R̄y(Y )R−1

y (θ)
)
, (4.117)

where the sample mean covariance matrix is given by

R̄y(Y ) =
1

N

N∑
n=1

yny
T
n . (4.118)

For the case of a single parameter θ, we obtain the Fisher information of (4.116) by [2, p. 47]

Fy(θ) =
1

2
Tr

(
R−1
y (θ)

∂Ry(θ)

∂θ
R−1
y (θ)

∂Ry(θ)

∂θ

)
. (4.119)
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4.6.1 Likelihood Representation with Hard-Limiting and Correlated Noise
The situation changes fundamentally if a nonlinear transformation

z = f(y) (4.120)

is involved. In the case where we wish to process the output data z with the efficient approach of
maximizing the likelihood (3.8), an exact representation of the parametric output model p(z;θ)
is required. In general the likelihood of the transformed output (4.120) is found by evaluating an
integral of the form

p(z;θ) =

∫
Y(z)

p(y;θ)dy, (4.121)

where Y(z) is the subset of Y which is mapped by f(·) to the output signal z. In the case of a
element-wise hard-limiter

z = sign (y), (4.122)

computation of such an integral requires the orthant probability of a multivariate Gaussian variable
(multivariate version of the Q-function (4.15)). Unfortunately, a general compact expression for
the orthant probability is an open mathematical problem. Only for the cases M ≤ 4 solutions are
provided in literature [56] [57]. The problem becomes even worse, if one is interested in analy-
tically evaluating the estimation performance of the 1-bit receive system. The associated Fisher
information matrix

F z(θ) =

∫
Z

(
∂ ln p(z;θ)

∂θ

)T
∂ ln p(z;θ)

∂θ
dz

=
∑
Z

(
∂ ln p(z;θ)

∂θ

)T
∂ ln p(z;θ)

∂θ
(4.123)

is computed by summing the outer product of the score function over the discrete support of z.
As Z contains 2M possible receive constellations, direct computation of Fz(θ) is prohibitively
complex when the dimensionality M of the model (4.122) is large.

4.6.2 Bussgang Decomposition for Hard-Limited Noisy Signals
In the context of communication theory, [53] [58] show that for

x ∼ N (0,Rx), η ∼ N (0,Rη), (4.124)

the transmission line

z = sign (y)

= sign (x+ η) (4.125)

can be approximated through a Bussgang decomposition

z ≈ x′ + η′, (4.126)
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where the random variables follow Gaussian probability laws

x′ ∼ N
(
0,Rx′

)
, (4.127)

η′ ∼ N
(
0,Rη′

)
. (4.128)

The corresponding covariance matrices of the Bussgang model (4.126) are

Rx′ =
2

π
diag (Ry)−

1
2 Rx diag (Ry)−

1
2 (4.129)

and

Rη′ =
2

π

(
arcsin

(
diag (Ry)−

1
2 Ry diag (Ry)−

1
2
))

− 2

π
diag (Ry)−

1
2 Ry diag (Ry)−

1
2

+
2

π
diag (Ry)−

1
2 Rη diag (Ry)−

1
2 (4.130)

with

Ry = Rx +Rη. (4.131)

It can be shown that the model (4.126) provides a pessimistic equivalent system (in an information
theoretic sense). To this end, it was proven in [53] [58] that the coding capacity of the transmission
line (4.125) is in general lower bounded by

max
p(x)

I(x; z) ≥ 1

2
log2 det

(
1M +R−1

η′ Rx′

)
, (4.132)

where the right hand side of (4.132) is the capacity of the Bussgang model (4.126). For the problem
of signal parameter estimation with a model (4.108), the decomposition (4.126) can not be applied
as the input to the quantizer y is not zero-mean. While this is the case for models like (4.116),
by the result (4.132) it is not guaranteed that the Bussgang approach (4.126) forms an equivalent
pessimistic replacement model with respect to Fisher information (estimation theoretic sense).
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In the preceding chapters, it has become evident that the Fisher information measure [3] [4] is a
strong estimation theoretic tool which provides access to the fundamental quality of a parametric
system with respect to the inference of its unknown parameters. In particular for Gaussian mod-
els (4.108) (4.116), the information measure forms a method to characterize the capability of the
system with respect to the estimation problem in a compact way (4.114) (4.119). However, as
demonstrated with the simple example of a hard-limited multivariate Gaussian system (4.122), the
calculation of the Fisher information can become intractable already for simple nonlinear trans-
formations of the receive signal. Further, in the situation where the system model p(z;θ) is not
available in an analytical form, the Fisher information measure can not be determined. This forms
a fundamental problem for the analysis of real-world signal processing systems which exhibit
nonlinear effects like saturation, phase distortion and quantization. After such nonlinear trans-
formations of the sensor signals the characterization of the likelihood function p(z;θ) and the
assessment of the estimation theoretic quality of the resulting output model becomes challenging.
Taking into account all nonlinear effects and internal noise sources usually results in a situation
where the output model p(z;θ) is mathematically intractable such that it can only be determined
in a measurement-driven way.

In this chapter we will show that compact pessimistic approximations for the Fisher informa-
tion measure can be obtained [59] [60]. These lower bounds are based on the parametric charac-
terization of the moments of the system output z (or a transformed version of it) which usually are
better tractable then the likelihood function p(z;θ) itself. We generalize these results by replac-
ing the actual system model by an equivalent distribution in the exponential family and show how
to obtain a practical algorithm which achieves the performance guaranteed by the inverse of the
pessimistic Fisher information measure. Finally, we discuss the connection between the concept
of maximum likelihood and the generalized method of moments which can be established by the
exponential replacement. With various examples we try to outline some practical and estimation
theoretic problems where the presented results turn out useful and provide interesting insights.

5.1 First-Order Fisher Information Lower Bound

For the initial discussion, consider an univariate parametric system, characterized by a probability
distribution function p(z; θ), with a single parameter θ ∈ Θ and a random output z ∈ Z , where Z
denotes the support of z. Further, we assume that p(z; θ) takes a complicated or intractable analytic
form. In order to determine the fundamental estimation theoretic performance of p(z; θ), we follow

59
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the idea of approximating the true information measure

Fz(θ) ,
∫
Z

(
∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz (5.1)

from below [59], i.e.,

Fz(θ) ≥ F̃z(θ), (5.2)

where F̃z(θ) is a pessimistic version of the Fisher information measure.

5.1.1 Derivation of the Fisher Information Lower Bound
To this end, we use the Cauchy-Schwarz inequality [61] which states that for two real-valued
functions f(·) and g(·)∫

X
f 2(x)p(x)dx

∫
X
g2(x)p(x)dx ≥

(∫
X
f(x)g(x)p(x)dx

)2

. (5.3)

Applying the inequality (5.3) with

f(z; θ) =
∂ ln p(z; θ)

∂θ
(5.4)

and a generic function g(z; θ) in order to lower bound the Fisher information

Fz(θ) =

∫
Z
f 2(z; θ)p(z; θ)dz, (5.5)

we obtain the generic pessimistic approximation

Fz(θ) =

∫
Z

(
∂ log p(z; θ)

∂θ

)2

p(z; θ)dz

≥

( ∫
Z g(z; θ)∂ log p(z;θ)

∂θ
p(z; θ)dz

)2∫
Z g

2(z; θ)p(z; θ)dz

= F̃z(θ). (5.6)

In the following we discuss two different choices for the function g(z; θ). For

g(z; θ) = z − µ1(θ), (5.7)

where the output mean µ1(θ) is given by

µ1(θ) ,
∫
Z
zp(z; θ)dz, (5.8)
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it follows that∫
Z
g(z; θ)

∂ log p(z; θ)

∂θ
p(z; θ)dz =

∫
Z

(
z − µ1(θ)

)∂ log p(z; θ)

∂θ
p(z; θ)dz

=

∫
Z

(
z − µ1(θ)

)∂p(z; θ)

∂θ
dz

=

∫
Z
z
∂p(z; θ)

∂θ
dz −

∫
Z
µ1(θ)

∂p(z; θ)

∂θ
dz

=
∂

∂θ

∫
Z
zp(z; θ)dz − µ1(θ)

∂

∂θ

∫
Z
p(z; θ)dz

=
∂µ1(θ)

∂θ
. (5.9)

With the definition of the variance

µ2(θ) ,
∫
Z

(
z − µ1(θ)

)2
p(z; θ)dz, (5.10)

we find ∫
Z
g2(z; θ)p(z; θ)dz = µ2(θ), (5.11)

such that with (5.6) we obtain a first lower bound for the Fisher information measure

Fz(θ) ≥
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

= F̃z(θ). (5.12)

Note that this information bound was derived as a side result in an early paper [59] by rearranging
the Cramér-Rao inequality [11] [12], but did not find attention in the signal processing literature as
its practical relevance was not emphasized.

5.1.2 Interpretation of the Fisher Information Lower Bound
For an interpretation of the bounding result (5.12), consider instead of the original model p(z; θ) a
Gaussian parametric model of the form

q(z; θ) =
1√

2πµ2(θ)
exp

(
−
(
z − µ1(θ)

)2

2µ2(θ)

)
, (5.13)

with mean µ1(θ) and variance µ2(θ). If the dependency between µ2(θ) and the parameter θ is
ignored and

∂µ2(θ)

∂θ
= 0, ∀θ ∈ Θ (5.14)
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is postulated for the model (5.13), the Gaussian Fisher information measure is

FG(θ) =

∫
Z

(
∂ log q(z; θ)

∂θ

)2

q(z; θ)dz

=

∫
Z

((
z − µ1(θ)

)
µ2(θ)

∂µ1(θ)

∂θ

)2

q(z; θ)dz

=
1

µ2
2(θ)

∫
Z

(
z − µ1(θ)

)2
q(z; θ)dz

(
∂µ1(θ)

∂θ

)2

=
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

(5.15)

and matches the pessimistic approximation (5.12) for the original model p(z; θ)

F̃z(θ) =
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

. (5.16)

This shows that the bounding approach (5.12) can be interpreted as a replacement of the original
system p(z; θ) by an Gaussian parametric system (5.13) with equivalent mean and variance, for
which the inequality

Fz(θ) ≥ FG(θ) = F̃z(θ) (5.17)

holds. So the Fisher information Fz(θ) of the original system p(z; θ) always dominates the infor-
mation measure FG(θ) calculated for the equivalent Gaussian system (5.13). Note that while for
the special case of an additive system this observation is a well-discussed result [63] [64], with
(5.12) this illustrative interpretation can be extended to non-additive systems p(z; θ).

5.1.3 Quality of the Information Bound - Hard-Limiter
In order to show, that already the simple bound (5.12) has the potential to approximate the Fisher
information measure of certain system models in an accurate way, we consider a hard-limiting
example

z = sign(θ + η − υ), (5.18)

where the 1-bit quantizer with offset υ processes a Gaussian input signal with mean θ ∈ R and
unit variance, i.e., η ∼ N (0, 1). In this case the conditional probabilities for the two output con-
stellations are

p(z = +1; θ) =

∫ ∞
−θ+υ

pη(η)dη

= Q (−θ + υ)

= 1−Q (θ − υ) , (5.19)

p(z = −1; θ) =

∫ −θ+υ
−∞

pη(η)dη

= 1−Q (−θ + υ)

= Q (θ − υ) (5.20)
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and the corresponding derivatives are

∂p(z = +1; θ)

∂θ
=

1√
2π

exp

(
−(θ − υ)2

2

)
, (5.21)

∂p(z = −1; θ)

∂θ
= − 1√

2π
exp

(
−(θ − υ)2

2

)
. (5.22)

Therefore, the exact Fisher information of the system (5.18) is

F (θ) =

∫
Z

1

p(z; θ)

(
∂p(z; θ)

∂θ

)2

dz

=

(
exp

(
− (θ−υ)2

2

)
√

2π

)2(
1

Q (−θ + υ)
+

1

Q (θ − υ)

)

=
1

2π

exp (−(θ − υ)2)

Q (θ − υ) Q (−θ + υ)
. (5.23)

In order to apply the information bound (5.12), the mean of the output (5.18) is required

µ1(θ) =

∫
Z
zp(z; θ)dz

= 1− 2 Q (θ − υ) (5.24)

together with the variance

µ2(θ) =

∫
Z

(
z − µ1(θ)

)2
p(z; θ)dz

= 4 Q2 (θ − υ)
(
1−Q (θ − υ)

)
+
(
2 Q (θ − υ)− 2

)2
Q (θ − υ)

= 4
(

Q (θ − υ)−Q2 (θ − υ)
)

= 4 Q (θ − υ)
(
1−Q (θ − υ)

)
. (5.25)

With the derivative of the mean (5.24) being

∂µ1(θ)

∂θ
=

√
2

π
exp

(
−(θ − υ)2

2

)
, (5.26)

the pessimistic approximation of the Fisher information measure

F̃ (θ) =
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

=
1

2π

exp (−(θ − v)2)

Q (θ − υ) Q (−θ + υ)
(5.27)

matches the exact result (5.23).
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5.2 Second-Order Fisher Information Lower Bound

However, a simple counter example, where expression (5.12) obtains a loose result, is immediately
constructed. To this end, consider a generic parametric Gaussian probability law

p(z; θ) =
1√

2πµ2(θ)
e
− (z−µ1(θ))

2

2µ2(θ) . (5.28)

The exact Fisher information of model (5.28) is [2, pp. 47]

Fz(θ) =
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

+
1

2µ2
2(θ)

(
∂µ2(θ)

∂θ

)2

, (5.29)

and is equal to the right hand side of (5.12) only for the case where the variance is constant, i.e.,

∂µ2(θ)

∂θ
= 0, ∀θ ∈ Θ. (5.30)

Obviously the inequality (5.12) does in general not take into account the variation of the variance
µ2(θ) in the parameter θ and the resulting contribution to the Fisher information measure Fz(θ).

5.2.1 Derivation of the Fisher Information Lower Bound
Due to this insight, we aim at an improvement of (5.12) by utilizing the Cauchy-Schwarz inequality
(5.3) under a more general approach. To this end, in (5.6) we choose

f(z; θ) =
∂ ln p(z; θ)

∂θ
(5.31)

and

g(z; θ) =

(
z − µ1(θ)√

µ2(θ)

)
+ β(θ)

(
z − µ1(θ)√

µ2(θ)

)2

− β(θ), (5.32)

where β(θ) ∈ R is a variable to be determined later. With the manipulations∫
Z

(
z − µ1(θ)√

µ2(θ)

)
∂ ln p(z; θ)

∂θ
p(z; θ)dz =

∫
Z

(
z − µ1(θ)√

µ2(θ)

)
∂p(z; θ)

∂θ
dz

=
1√
µ2(θ)

(∫
Z
z
∂p(z; θ)

∂θ
dz − µ1(θ)

∫
Z

∂p(z; θ)

∂θ
dz

)

=
1√
µ2(θ)

(
∂

∂θ

∫
Z
zp(z; θ)dz − µ1(θ)

∂

∂θ

∫
Z
p(z; θ)dz

)

=
1√
µ2(θ)

∂µ1(θ)

∂θ
, (5.33)
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∫
Z

(
z − µ1(θ)√

µ2(θ)

)2
∂ ln p(z; θ)

∂θ
p(z; θ)dz =

∫
Z

(
z − µ1(θ)√

µ2(θ)

)2
∂p(z; θ)

∂θ
dz

=
1

µ2(θ)

(∫
Z
z2∂p(z; θ)

∂θ
dz − 2µ1(θ)

∫
Z
z
∂p(z; θ)

∂θ
dz

+ µ2
1(θ)

∫
Z

∂p(z; θ)

∂θ
dz

)

=
1

µ2(θ)

(
∂

∂θ

∫
Z
z2p(z; θ)dz − 2µ1(θ)

∂

∂θ

∫
Z
zp(z; θ)dz

)

=
1

µ2(θ)

(
∂

∂θ

(
µ2(θ) + µ2

1(θ)
)
− 2µ1(θ)

∂µ1(θ)

∂θ

)

=
1

µ2(θ)

∂µ2(θ)

∂θ
, (5.34)

where we have used the fact that∫
Z
z2p(z; θ)dz = µ2(θ) + µ2

1(θ), (5.35)

and ∫
Z
β(θ)

∂ ln p(z; θ)

∂θ
p(z; θ)dz = β(θ)

∫
Z

∂ ln p(z; θ)

∂θ
p(z; θ)dz

= β(θ)
∂

∂θ

∫
Z
p(z; θ)dz

= 0, (5.36)

the identity∫
Z
g(z; θ)

∂ ln p(z; θ)

∂θ
p(z; θ)dz =

∫
Z

(
z − µ1(θ)√

µ2(θ)

)
∂ ln p(z; θ)

∂θ
p(z; θ)dz

+ β(θ)

∫
Z

(
z − µ1(θ)√

µ2(θ)

)2
∂ ln p(z; θ)

∂θ
p(z; θ)dz

−
∫
Z
β(θ)

∂ ln p(z; θ)

∂θ
p(z; θ)dz

=
1√
µ2(θ)

∂µ1(θ)

∂θ
+
β(θ)

µ2(θ)

∂µ2(θ)

∂θ
(5.37)

is found. For further discussion, we additionally require

µ3(θ) ,
∫
Z

(
z − µ1(θ)

)3
p(z; θ)dz, (5.38)

µ4(θ) ,
∫
Z

(
z − µ1(θ)

)4
p(z; θ)dz (5.39)
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and their normalized versions

µ̄3(θ) ,
∫
Z

(
z − µ1(θ)√

µ2(θ)

)3

p(z; θ)dz

= µ3(θ)µ
− 3

2
2 (θ), (5.40)

µ̄4(θ) ,
∫
Z

(
z − µ1(θ)√

µ2(θ)

)4

p(z; θ)dz

= µ4(θ)µ−2
2 (θ). (5.41)

Note that µ̄3(θ) is referred to as the skewness, an indicator for the asymmetry of the output dis-
tribution p(z; θ), while µ̄4(θ) is called the kurtosis, a characterization for the shape of the output
distribution p(z; θ). Both moments stand in relation through Pearson’s inequality [65]

µ̄4(θ) ≥ µ̄2
3(θ) + 1. (5.42)

A compact and elegant proof on (5.42) can be found in [66]. For the denominator which is required
to form (5.6), with the function (5.32) we get∫
Z
g2(z; θ)p(z; θ)dz =

∫
Z

((
z − µ1(θ)√

µ2(θ)

)
+ β(θ)

(
z − µ1(θ)√

µ2(θ)

)2

− β(θ)

)2

p(z; θ)dz

=

∫
Z

(
z − µ1(θ)√

µ2(θ)

)2

p(z; θ)dz + β2(θ)

∫
Z

(
z − µ1(θ)√

µ2(θ)

)4

p(z; θ)dz

+ β2(θ)

∫
Z
p(z; θ)dz + 2β(θ)

∫
Z

(
z − µ1(θ)√

µ2(θ)

)3

p(z; θ)dz

+ β(θ)

∫
Z

(
z − µ1(θ)√

µ2(θ)

)
p(z; θ)dz − β2(θ)

∫
Z

(
z − µ1(θ)√

µ2(θ)

)2

p(z; θ)dz

= 1 + 2β(θ)µ̄3(θ) + β2(θ)µ̄4(θ)− β2(θ), (5.43)

by taking into account that ∫
Z

(
z − µ1(θ)√

µ2(θ)

)2

p(z; θ)dz = 1 (5.44)

and ∫
Z

(
z − µ1(θ)√

µ2(θ)

)
p(z; θ)dz = 0. (5.45)

Therefore, with (5.6), (5.37) and (5.43) it can be shown, that the Fisher information can in general
not fall below

Fz(θ) =

∫
Z

(
∂ log p(z; θ)

∂θ

)2

p(z; θ)dz ≥

( ∫
Z g(z; θ)∂ log p(z;θ)

∂θ
p(z; θ)dz

)2∫
Z g

2(z; θ)p(z; θ)dz

=
1

µ2(θ)

(
∂µ1(θ)
∂θ

+ β(θ)√
µ2(θ)

∂µ2(θ)
∂θ

)2

1 + 2β(θ)µ̄3(θ) + β2(θ)(µ̄4(θ)− 1)
. (5.46)

Note, that an alternative bound based on raw moments and cumulants is found in [60, eq. 2.5].
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5.2.2 Optimization of the Fisher Information Lower Bound
The expression (5.46) contains the factor β(θ), which can be used to optimize the Fisher informa-
tion lower bound (5.46). For the trivial choice of β(θ) = 0, the expression becomes

Fz(θ) ≥
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

, (5.47)

which turns out to be the first-order bound (5.12). To improve this result, take into consideration
that the problem

x? = arg max
x∈R

h(x) (5.48)

with

h(x) =
(a+ xb)2

1 + 2xc+ x2d
(5.49)

and

bc− ad 6= 0, (5.50)

has a unique maximizing solution

x? =
ac− b
bc− ad

. (5.51)

Consequently, the tightest form of (5.46) is given by

Fz(θ) ≥
1

µ2(θ)

(
∂µ1(θ)
∂θ

+ β?(θ)√
µ2(θ)

∂µ2(θ)
∂θ

)2

1 + 2β?(θ)µ̄3(θ) + β?2(θ)(µ̄4(θ)− 1)

= F̃z(θ), (5.52)

with the optimization factor

β?(θ) =

∂µ1(θ)
∂θ

µ̄3(θ)− 1√
µ2(θ)

∂µ2(θ)
∂θ

1√
µ2(θ)

∂µ2(θ)
∂θ

µ̄3(θ)− ∂µ1(θ)
∂θ

(µ̄4(θ)− 1)

=
∂µ1(θ)
∂θ

√
µ2(θ)µ̄3(θ)− ∂µ2(θ)

∂θ
∂µ2(θ)
∂θ

µ̄3(θ)− ∂µ1(θ)
∂θ

√
µ2(θ)(µ̄4(θ)− 1)

. (5.53)

Note that the Fisher information Fz(θ) requires to integrate the squared score function
(∂ ln p(z;θ)

∂θ

)2

over the whole support Z . In contrast, the alternative measure F̃z(θ) exclusively requires the mean
µ1(θ), the variance µ2(θ), the skewness µ̄3(θ) and the kurtosis µ̄4(θ) in parametric form.

Also note that for the case where the identity

∂µ1(θ)

∂θ

√
µ2(θ)µ̄3(θ) =

∂µ2(θ)

∂θ
, ∀θ ∈ Θ, (5.54)
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holds, the optimization of (5.52) results in

β?(θ) = 0 (5.55)

and the approximation (5.52) obtains the compact form of the first-order bound (5.12).
To ensure that the approximation (5.52) is always positive, it has to hold that

1 + 2β(θ)µ̄3(θ) + β2(θ)(µ̄4(θ)− 1) ≥ 0, ∀β(θ), θ. (5.56)

In order to demonstrate that this is the case, consider the fact that by construction

(1 + β(θ)
√
µ̄4(θ)− 1)2 = 1 + 2β(θ)

√
µ̄4(θ)− 1 + β2(θ)(µ̄4(θ)− 1)

≥ 0, ∀β(θ), θ. (5.57)

With Pearson’s inequality (5.42) we have√
µ̄4(θ)− 1 ≥ |µ̄3(θ)| , ∀θ, (5.58)

such that

1 + 2β(θ) |µ̄3(θ)|+ β2(θ)(µ̄4(θ)− 1) ≥ 0, ∀β(θ), θ. (5.59)

As the inequality (5.59) holds irrespectively if β(θ) is positive or negative, we equivalently have

1 + 2β(θ)µ̄3(θ) + β2(θ)(µ̄4(θ)− 1) ≥ 0, ∀β(θ), θ. (5.60)

5.2.3 Special Cases of the Fisher Information Lower Bound
In order to derive simplified forms of the conservative information measure F̃z(θ), let us consider
some special cases. For the situation where the first moment µ1(θ) does not vary with the system
parameter θ, i.e.,

∂µ1(θ)

∂θ
= 0, ∀θ ∈ Θ, (5.61)

we obtain

β?(θ) = − 1

µ̄3(θ)
, (5.62)

such that a pessimistic approximation F̃z(θ) for the information measure Fz(θ) is given by

F̃z(θ) =
1

µ2(θ)

(
− 1

µ̄3(θ)
√
µ2(θ)

∂µ2(θ)
∂θ

)2

1− 2 + (µ̄4(θ)−1)

µ̄23(θ)

=
1

µ2
2(θ)

(∂µ2(θ)
∂θ

)2

µ̄4(θ)− µ̄2
3(θ)− 1

. (5.63)

When the variance µ2(θ) is constant within θ, i.e.,

∂µ2(θ)

∂θ
= 0, ∀θ ∈ Θ, (5.64)
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it holds that

β?(θ) = − µ̄3(θ)

(µ̄4(θ)− 1)
. (5.65)

In this situation we obtain the pessimistic Fisher information measure

F̃z(θ) =
1

µ2(θ)

(
∂µ1(θ)
∂θ

)2

1− 2
µ̄23(θ)

(µ̄4(θ)−1)
+

µ̄23(θ)

(µ̄4(θ)−1)

=
1

µ2(θ)

(∂µ1(θ)
∂θ

)2

1− µ̄23(θ)

(µ̄4(θ)−1)

. (5.66)

Note that (5.66) equals the expression in (5.12) whenever the skewness µ̄3 vanishes. In general the
relation (5.42) makes (5.66) larger than the first-order bound (5.12).

For symmetric output distributions with zero skewness, i.e.,

µ̄3(θ) = 0, (5.67)

we verify that the optimization of the information bound derived in (5.52) results in

β?(θ) =
∂µ2(θ)
∂θ

∂µ1(θ)
∂θ

√
µ2(θ)(µ̄4(θ)− 1)

, (5.68)

such that

F̃ (θ) =
1

µ2(θ)

(
∂µ1(θ)
∂θ

+

(
∂µ2(θ)
∂θ

)2
∂µ1(θ)
∂θ

µ2(θ)(µ̄4(θ)−1)

)2

1 +
( ∂µ2(θ)

∂θ
∂µ1(θ)
∂θ

√
µ2(θ)(µ̄4(θ)−1)

)2

(µ̄4(θ)− 1)

=

(∂µ1(θ)
∂θ

)2
µ2(θ)(µ̄4(θ)− 1) +

(∂µ2(θ)
∂θ

)2

µ2
2(θ)(µ̄4(θ)− 1)

=
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

+
1

µ2
2(θ)(µ̄4(θ)− 1)

(
∂µ2(θ)

∂θ

)2

. (5.69)

5.2.4 Quality of the Information Bound - Models with Continuous Support
In order to analyze the tightness of the derived lower bound F̃z(θ), we consider different examples
where the exact Fisher information measure Fz(θ) can be derived in compact form. First we discuss
several well-studied distributions with continuous support Z .

5.2.4.1 Gaussian System Output

Consider the system output z to follow a generic Gaussian distribution in parametric form

p(z; θ) =
1√

2πν2(θ)
e
− (z−ν1(θ))

2

2ν2(θ) . (5.70)



70 5. Fisher Information and the Exponential Replacement

The exact Fisher information measure is given by

F (θ) =
1

ν2(θ)

(
∂ν1(θ)

∂θ

)2

+
1

2ν2
2(θ)

(
∂ν2(θ)

∂θ

)2

. (5.71)

As for this case the output mean and variance are

µ1(θ) = ν1(θ), (5.72)
µ2(θ) = ν2(θ) (5.73)

and the skewness and the kurtosis are

µ̄3(θ) = 0, (5.74)
µ̄4(θ) = 3, (5.75)

with (5.69) we get the approximation

F̃z(θ) = =
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

+
1

µ2
2(θ)(µ̄4(θ)− 1)

(
∂µ2(θ)

∂θ

)2

=
1

ν2(θ)

(
∂ν1(θ)

∂θ

)2

+
1

2ν2
2(θ)

(
∂ν2(θ)

∂θ

)2

, (5.76)

which obviously is an exact approximation for the original information measure (5.71).

5.2.4.2 Exponential System Output

As another example we analyze the case where samples from a parametric exponential distribution

p(z; θ) = ν(θ)e−ν(θ)z, (5.77)

with ν(θ) ≥ 0 and z ≥ 0, can be collected at the system output. The score function under this
model is

∂ ln p(z; θ)

∂θ
=

1

ν(θ)

∂ν(θ)

∂θ
− z∂ν(θ)

∂θ
, (5.78)

such that the exact Fisher information is given by

Fz(θ) =

∫
Z

(
∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz

=

∫
Z

(
1

ν(θ)

∂ν(θ)

∂θ
− z∂ν(θ)

∂θ

)2

p(z; θ)dz

=
1

ν2(θ)

(
∂ν(θ)

∂θ

)2

+

(
∂ν(θ)

∂θ

)2 ∫
Z
z2p(z; θ)dz − 2

1

ν(θ)

(
∂ν(θ)

∂θ

)2 ∫
Z
zp(z; θ)dz

=
1

ν2(θ)

(
∂ν(θ)

∂θ

)2

, (5.79)
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where we used the fact that for an exponential distribution∫
Z
zp(z; θ)dz =

1

ν(θ)
, (5.80)∫

Z
z2p(z; θ)dz =

2

ν2(θ)
. (5.81)

For the approximation F̃z(θ) the required mean and variance are

µ1(θ) =
1

ν(θ)
, (5.82)

µ2(θ) =
1

ν2(θ)
(5.83)

and the skewness and kurtosis are

µ̄3(θ) = 2, (5.84)
µ̄4(θ) = 3, (5.85)

such that we obtain

∂µ1(θ)

∂θ

√
µ2(θ)µ̄3(θ) = − 2

ν3(θ)

∂ν(θ)

∂θ

=
∂µ2(θ)

∂θ
, (5.86)

producing β?(θ) = 0 as noted in (5.55). We therefore arrive at the inequality discussed in (5.12)

F̃z(θ) =
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

= ν2(θ)

(
− 1

ν2(θ)

∂ν(θ)

∂θ

)2

=
1

ν2(θ)

(
∂ν(θ)

∂θ

)2

, (5.87)

which obviously matches the exact Fisher information of the exponential system model (5.79).

5.2.4.3 Laplacian System Output

For a third example, we assume that the output z follows a parametric Laplace distribution with
zero mean, i.e.,

p(z; θ) =
1

2ν(θ)
e−

|z|
ν(θ) . (5.88)

The score function is then given by

∂ ln p(z; θ)

∂θ
= − 1

ν(θ)

∂ν(θ)

∂θ
+
|z|
ν2(θ)

∂ν(θ)

∂θ
(5.89)
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and the exact Fisher information is found to be

Fz(θ) =

∫
Z

(
∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz

=
1

ν2(θ)

(
∂ν(θ)

∂θ

)2

+
1

ν4(θ)

(
∂ν(θ)

∂θ

)2 ∫
Z
|z|2 p(z; θ)dz

− 2
1

ν3(θ)

(
∂ν(θ)

∂θ

)2 ∫
Z
|z| p(z; θ)dz

=
1

ν2(θ)

(
∂ν(θ)

∂θ

)2

, (5.90)

where we have used ∫ ∞
−∞
|z|2 1

2ν(θ)
e−

|z|
ν(θ) dz = 2ν2(θ) (5.91)

and ∫ ∞
−∞
|z| 1

2ν(θ)
e−

|z|
ν(θ) dz = 2

∫ ∞
0

z
1

2ν(θ)
e−

z
ν(θ) dz

= ν(θ). (5.92)

The mean and variance of the system output are

µ1(θ) = 0, (5.93)
µ2(θ) = 2ν2(θ) (5.94)

and the skewness and kurtosis are

µ̄3(θ) = 0, (5.95)
µ̄4(θ) = 6. (5.96)

As the first moment is constant with respect to the system parameter θ, the approximation takes
the form (5.63) and we obtain

F̃z(θ) =
1

µ2
2(θ)

(
∂µ2(θ)
∂θ

)2

(µ̄4(θ)− 1)

=
1

4ν4(θ)

(
4ν(θ)∂ν(θ)

∂θ

)2

5

=
4

5

1

ν2(θ)

(
∂ν(θ)

∂θ

)2

. (5.97)

In contrast to the other examples, the information bound F̃z(θ) is not tight under the Laplacian
system model (5.88). However, note that F̃z(θ) still allows to obtain a pessimistic characterization
for the exact Fisher information measure Fz(θ) of the Laplacian model.
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5.2.5 Quality of the Information Bound - Models with Discrete Support
In the following we extend the discussion about the tightness of the approximation F̃z(θ) to the
case where the system output z takes values from a discrete alphabet Z .

5.2.5.1 Bernoulli System Output

As a first example for such kind of system outputs, observations from a parametric Bernoulli
distribution with

p(z = 1; θ) = 1− p(z = 0; θ)

= ν(θ) (5.98)

are considered, where

0 < ν(θ) < 1, ∀θ ∈ Θ. (5.99)

The Fisher information measure under this model is

Fz(θ) =

∫
Z

(
∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz

=
∑
Z

(
∂p(z; θ)

∂θ

)2
1

p(z; θ)

=

(∂p(z=1;θ)
∂θ

)2

p(z = 1; θ)
+

(∂p(z=0;θ)
∂θ

)2

p(z = 0; θ)

=
1

ν(θ)(1− ν(θ))

(
∂ν(θ)

∂θ

)2

. (5.100)

The mean and the variance are

µ1(θ) = ν(θ), (5.101)
µ2(θ) = ν(θ)(1− ν(θ)), (5.102)

with derivatives

∂µ1(θ)

∂θ
=
∂ν(θ)

∂θ
, (5.103)

∂µ2(θ)

∂θ
=
(
1− 2ν(θ)

)∂ν(θ)

∂θ
. (5.104)

The skewness is

µ̄3(θ) =
∑
Z

(
z − µ1(θ)√

µ2(θ)

)3

p(z; θ)

=

(
1− ν(θ)√

ν(θ)(1− ν(θ))

)3

ν(θ) +

(
−ν(θ)√

ν(θ)(1− ν(θ))

)3

(1− ν(θ))

=
1− 2ν(θ)√
ν(θ)(1− ν(θ))

(5.105)
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and the kurtosis is given by

µ̄4(θ) =
∑
Z

(
z − µ1(θ)√

µ2(θ)

)4

p(z; θ)

=

(
1− ν(θ)√

ν(θ)(1− ν(θ))

)4

ν(θ) +

(
−ν(θ)√

ν(θ)(1− ν(θ))

)4

(1− ν(θ))

=
1

ν(θ)(1− ν(θ))
− 3. (5.106)

As

∂µ1(θ)

∂θ

√
µ2(θ)µ̄3(θ) =

(
1− 2ν(θ)

)∂ν(θ)

∂θ

=
∂µ2(θ)

∂θ
(5.107)

and consequently β?(θ) = 0, the approximation takes the simplified form (5.12)

F̃z(θ) =
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

=
1

ν(θ)(1− ν(θ))

(
∂ν(θ)

∂θ

)2

. (5.108)

It becomes clear that also for a binary system output z, following a parametric Bernoulli distri-
bution (5.98), the derived expression (5.108) is a tight approximation for the original inference
capability (5.100).

5.2.5.2 Poisson System Output

As a second example with discrete output, we consider the Poisson distribution. The samples at
the output z are distributed according to the model

p(z; θ) =
νz(θ)

z!
e−ν(θ), (5.109)

with

Z = {0, 1, 2, . . .} (5.110)

and

ν(θ) > 0, ∀θ ∈ Θ. (5.111)

The derivative of the log-likelihood is given by

∂ ln p(z; θ)

∂θ
=

z

ν(θ)

∂ν(θ)

∂θ
− ∂ν(θ)

∂θ
, (5.112)
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such that we calculate

Fz(θ) =

∫
Z

(
∂ ln p(z; θ)

∂θ

)2

p(z; θ)dz

=

∫
Z

(
z

ν(θ)

∂ν(θ)

∂θ
− ∂ν(θ)

∂θ

)2

p(z; θ)dz

=
1

ν2(θ)

(
∂ν(θ)

∂θ

)2 ∫
Z
z2p(z; θ)dz − 2

ν(θ)

(
∂ν(θ)

∂θ

)2 ∫
Z
zp(z; θ)dz +

(
∂ν(θ)

∂θ

)2

=
1

ν(θ)

(
∂ν(θ)

∂θ

)2

, (5.113)

where we have used that∫
Z
zp(z; θ)dz =

∞∑
z=0

z
νz(θ)

z!
e−ν(θ) = ν(θ), (5.114)∫

Z
z2p(z; θ)dz =

∞∑
z=0

z2ν
z(θ)

z!
e−ν(θ) = ν(θ) + ν2(θ). (5.115)

In order to apply the approximation (5.52), we require mean and variance which are given by

µ1(θ) = ν(θ), (5.116)
µ2(θ) = ν(θ), (5.117)

together with the skewness and the kurtosis

µ̄3(θ) =
1√
ν(θ)

, (5.118)

µ̄4(θ) =
1

ν(θ)
+ 3. (5.119)

As these quantities exhibit the property

∂µ1(θ)

∂θ

√
µ2(θ)µ̄3(θ) =

∂ν(θ)

∂θ

=
∂µ2(θ)

∂θ
, (5.120)

we obtain β?(θ) = 0 and the approximation is given by the first-order bound (5.12)

F̃ (θ) =
1

µ2(θ)

(∂µ1(θ)

∂θ

)2

=
1

ν(θ)

(∂ν(θ)

∂θ

)2

(5.121)

which is tight with respect to the exact information measure (5.113).
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5.2.6 Applications
Within this section, we outline possible applications of the presented information bound (5.52). To
this end, we present three problems for which F̃ (θ) provides interesting and useful insights. The
discussed problems cover theoretic as well as practical aspects in statistical signal processing.

5.2.6.1 Minimum Fisher Information

A common assumption in the field of signal processing is that noise affects technical receive sys-
tems in an additive way. Therefore a system characterization of high practical relevance is a signal
model with independent additive noise

y = s(θ) + η, (5.122)

where s(θ) is a deterministic pilot signal modulated by the unknown parameter θ (for example
attenuation, time-delay, frequency-offset, etc.) and η is additive independent random noise with
fixed variance σ2. Within this framework, the question which distribution p(η) provides the small-
est Fisher information has received attention [63] [64] [67] [68] [69] [70] [71] [72]. In order to see
that our approach allows to analyze this relevant special case, note that with (5.12) for the system
model (5.122)

Fy(θ) ≥
1

µ2(θ)

(
∂µ1(θ)

∂θ

)2

=
1

σ2

(
∂s(θ)

∂θ

)2

, (5.123)

where equality is obtained if p(η) is a Gaussian distribution with constant variance σ2. This shows
that for additive noisy systems like (5.122) with fixed variance σ2, a Gaussian assumption provides
the worst-case scenario from an estimation theoretic perspective [63] [64].

The presented second-order bounding approach (5.52) allows us to generalize this statement.
If for any system p(z; θ) (including non-additive systems) the output z exhibits the characteristic

µ1(θ) = Ez;θ [z]

= s(θ), (5.124)

µ2 = Ez;θ

[(
z − µ1(θ)

)2
]

= σ2, (5.125)

the result (5.66) shows that the Fisher information measure can not violate

Fz(θ) ≥
1

µ2

(
∂µ1(θ)
∂θ

)2

1− µ̄23(θ)

(µ̄4(θ)−1)

. (5.126)

This lower bound is minimized by a symmetric distribution µ̄3(θ) = 0. The resulting expression

Fz(θ) ≥
1

µ2

(
∂µ1(θ)

∂θ

)2

, (5.127)
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reaches equality under the assumption that p(z; θ) follows an additive Gaussian system model

p(z; θ) =
1√

2πσ2
e−

(z−s(θ))2

2σ2 , (5.128)

such that the worst-case model assumption with respect to Fisher information Fz(θ) under the
considered restrictions (5.124) and (5.125) is in general additive and Gaussian.

In the more general setting, where also the output variance exhibits a dependency on the system
parameter θ,

µ1(θ) = Ez;θ [z]

= s(θ), (5.129)

µ2(θ) = Ez;θ

[
(z − µ1(θ))2

]
= σ2(θ) (5.130)

and additionally the output distribution is symmetric, i.e.,

µ̄3(θ) = 0, (5.131)

the result (5.69) allows to conclude, that the Fisher information is in general bounded below

Fz(θ) ≥
1

σ2(θ)

(
∂s(θ)

∂θ

)2

+
1

σ4(θ)(µ̄4(θ)− 1)

(
∂σ2(θ)

∂θ

)2

. (5.132)

As the system model

p(z; θ) =
1√

2πσ2(θ)
e
− (z−s(θ))2

2σ2(θ) (5.133)

exhibits the inference capability

Fz(θ) =
1

σ2(θ)

(
∂s(θ)

∂θ

)2

+
1

2σ2(θ)

(
∂σ4(θ)

∂θ

)2

, (5.134)

by comparing (5.132) and (5.134) it can be concluded that for all cases where the kurtosis fulfills

µ̄4(θ) ≤ 3, (5.135)

from an estimation theoretic perspective the parametric Gaussian model (5.133) forms a conserva-
tive assumption.

5.2.6.2 Information Loss of the Squaring Device

Another interesting problem in statistical signal processing is to characterize the estimation the-
oretic quality of nonlinear receive and measurement systems. The Fisher information measure
Fz(θ) is a rigorous mathematical tool which allows to draw precise conclusions with respect to
this question. However, depending on the nature of the nonlinearity, the exact calculation of the
information measure Fz(θ) can become complicated. As an univariate example for such a scenario
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consider the problem of analyzing the intrinsic estimation theoretic capability of a system with a
squaring sensor output

z = y2 (5.136)

with respect to the inference of the mean θ > 0 of a Gaussian input

p(y; θ) =
1√
2π

e−
(y−θ)2

2 (5.137)

with unit variance. In such a case the system output z follows a non-central chi-square distribution
parameterized by θ. As the analytical description of the associated likelihood function p(z; θ) in-
cludes a Bessel function, the characterization of the Fisher information Fz(θ) in compact analytical
form is non-trivial. We short-cut the derivation by using the presented approximation F̃z(θ) instead
of Fz(θ). The first two output moments are found to be given by

Ez;θ [z] = Eη

[
θ2 + 2θη + η2

]
= θ2 + 1

= µ1(θ), (5.138)

Ez;θ

[(
z − µ1(θ)

)2
]

= Eη

[
(θ2 + 2θη + η2 − θ2 − 1)2

]
= Eη

[
η4 + 4η3θ + 4η2θ2 − 2η2 − 4ηθ + 1

]
= Eη

[
η4 + (4θ2 − 2)η2 + 1

]
= 3 + 4θ2 − 2 + 1

= 2(2θ2 + 1)

= µ2(θ), (5.139)

where we have introduced the auxiliary random variable

η = y − θ. (5.140)

The third central output moment is

Ez;θ

[(
z − µ1(θ)

)3
]

= Eη

[
(θ2 + 2θη + η2 − θ2 − 1)3

]
= Eη

[
η6 + 6η5θ + 12θ2η4 − 3η4 + 8η3θ3 − 12η3θ − 12η2θ2 + 3η2

+6ηθ − 1]

= Eη

[
η6 + (12θ2 − 3)η4 − (12θ2 − 3)η2

]
− 1

= 15 + 3(12θ2 − 3)− (12θ2 − 3)− 1

= 24θ2 + 8

= 8(3θ2 + 1)

= µ3(θ), (5.141)
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while the fourth central moment is given by

Ez;θ

[
(z − µ1(θ))4

]
= Eη

[
(θ2 + 2θη + η2 − θ2 − 1)4

]
= Eη

[
η8 + 8η7θ + 24η6θ2 − 4η6 + 32η5θ3

−24η5θ + 16η4θ4 − 48η4θ2 + 6η4 − 32η3θ3

+24η3θ + 24η2θ2 − 4η2 − 8ηθ + 1
]

= Eη

[
η8 + (24θ2 − 4)η6 + (16θ4 − 48θ2 + 6)η4 + (24θ2 − 4)η2 + 1

]
= 105 + 15(24θ2 − 4) + 3(16θ4 − 48θ2 + 6) + 24θ2 − 4 + 1

= 12(4θ4 + 20θ2 + 5)

= 12
(
(2θ2 + 1)2 + 16θ2 + 4

)
= 12

(
(2θ2 + 1)2 + 4(4θ2 + 1)

)
= µ4(θ). (5.142)

The skewness and the kurtosis of the system output are therefore

µ̄3(θ) = µ3(θ)µ
− 3

2
2 (θ)

=
8(3θ2 + 1)

2
√

2(2θ2 + 1)
3
2

=
2
√

2(3θ2 + 1)

(2θ2 + 1)
3
2

, (5.143)

µ̄4(θ) = µ4(θ)µ−2
2 (θ)

=
12
(
(2θ2 + 1)2 + 4(4θ2 + 1)

)
4(2θ2 + 1)2

=
12(4θ2 + 1)

(2θ2 + 1)2
+ 3. (5.144)

With the two derivatives

∂µ1(θ)

∂θ
= 2θ,

∂µ2(θ)

∂θ
= 8θ, (5.145)
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we obtain

β?(θ) =
∂µ1(θ)
∂θ

√
µ2(θ)µ̄3(θ)− ∂µ2(θ)

∂θ
∂µ2(θ)
∂θ

µ̄3(θ)− ∂µ1(θ)
∂θ

√
µ2(θ)(µ̄4(θ)− 1)

=
2θ
√

2
√

2θ2 + 12
√

2(3θ2+1)

(2θ2+1)
3
2
− 8θ

8θ 2
√

2(3θ2+1)

(2θ2+1)
3
2
− 2θ
√

2
√

2θ2 + 1
(

12(4θ2+1)
(2θ2+1)2

+ 2
)

=
8(3θ2 + 1)(22 + 1)− 8(2θ2 + 1)2

16
√

2
√

(2θ2 + 1)(3θ2 + 1)− 4
√

2
√

2θ2 + 1
(
6(4θ2 + 1) + (2θ2 + 1)2

)
=

(2θ2 + 1)√
2
√

(2θ2 + 1)

2(3θ2 + 1)− 2(2θ2 + 1)

4(3θ2 + 1)−
(
6(4θ2 + 1) + (2θ2 + 1)2

)
=

√
(2θ2 + 1)√

2

2θ2

(12θ2 + 4)−
(
(24θ2 + 6) + (4θ4 + 4θ2 + 1)

)
= −

θ2
√

2
√

(2θ2 + 1)

(4θ4 + 16θ2 + 3)
(5.146)

and the approximation of the Fisher information measure (5.52) is finally given by

F̃z(θ) =
1

µ2(θ)

(
∂µ1(θ)
∂θ

+ β?(θ)√
µ2(θ)

∂µ2(θ)
∂θ

)2

1 + 2β?(θ)µ̄3(θ) + β?2(θ)(µ̄4(θ)− 1)

=
1

2(2θ2 + 1)

(
2θ − 8θ3

(4θ4+16θ2+3)

)2

1− 2θ2
√

2
√

(2θ2+1)

(4θ4+16θ2+3)
2
√

2(3θ2+1)

(2θ2+1)
3
2

+
(
θ2
√

2
√

(2θ2+1)

(4θ4+16θ2+3)

)2(
12(4θ2+1)
(2θ2+1)2

+ 2
)

=
2θ2
(

1− 4θ2

(4θ4+16θ2+3)

)2

(2θ2 + 1)− 2θ2
√

2
(4θ4+16θ2+3)

2
√

2(3θ2+1)
1

+ 4θ4

(4θ4+16θ2+3)2

(
6(4θ2 + 1) + (2θ2 + 1)2

)
=

2θ2
(

1− 4θ2

(4θ4+16θ2+3)

)2

(2θ2 + 1)− 8θ2(3θ2+1)
(4θ4+16θ2+3)

+ 4θ4(6(4θ2+1)+(2θ2+1)2)
(4θ4+16θ2+3)2

=
2θ2
(

(4θ4 + 16θ2 + 3)− 4θ2
)2

(2θ2 + 1)(4θ4 + 16θ2 + 3)2 − 8θ2(3θ2 + 1)(4θ4 + 16θ2 + 3) + 4θ4(4θ4 + 28θ2 + 7)

=
2θ2
(
4θ4 + 12θ2 + 3

)2(
4θ4 + 12θ2 + 3

)(
8θ6 + 24θ4 + 18θ2 + 3

)
=

2θ2
(
4θ4 + 12θ2 + 3

)(
8θ6 + 24θ4 + 18θ2 + 3

) . (5.147)

Fig. 5.1 depicts the approximative information loss

χ̃(θ) =
F̃z(θ)

Fy(θ)
, (5.148)
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Fig. 5.1. Performance Loss - Squaring Device

when squaring the random input variable y. As a comparison also the corresponding loss for a
symmetric hard-limiter (5.18 with υ = 0) is visualized. It can be observed that for small values
of θ the information about the sign (hard-limiting) of the system input y conveys much more
information about the input mean θ than the amplitude (squaring). For θ ≥ 0.75 the situation
changes and the squaring receiver outperforms the hard-limiter when it comes to estimating the
mean θ of the input y from samples of the system output z. Note that for the squaring device the
pessimistic approximation (5.52) allows us to assess the crossing point θ = 0.75 in a conservative
way.

5.2.6.3 Measuring Inference Capability after Soft-Limiting

A situation that can be encountered in practice is that the analytical characterization of the system
model p(z; θ) or its moments is difficult. If the appropriate parametric system model p(z; θ) is
unknown, the direct consultation of an analytical tool like the Fisher information measure Fz(θ)
becomes impossible [62]. However, in such a situation the presented approach of the information
bound F̃z(θ) allows to numerically approximate the Fisher information measure Fz(θ) at low com-
plexity. To this end, the moments of the system output z are measured in a calibrated setup, where
the parameter θ can be controlled or determined by Monte-Carlo simulations. We demonstrate this
validation technique by using a soft-limiter model, i.e., the system input y is transformed by

z =

√
2

πκl2

∫ y

0

exp

(
− u2

2κl2

)
du

= erf

(
y√
2κl2

)
, (5.149)

where κl ∈ R is a constant model parameter and

erf (x) ,
2√
π

∫ x

0

exp
(
−u2

)
du (5.150)
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is the error function. This nonlinear model can for example be used in order to characterize satu-
ration effects in analog system components. In Fig. 5.2 the input-to-output mapping of the model
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Fig. 5.2. Input-to-Output - Soft Limiter Model

(5.149) is depicted for different setups κl. As input we consider a Gaussian distribution with unit
variance like in (5.137). The output mean µ1(θ), the variance µ2(θ), the skewness µ̄3(θ) and the
kurtosis µ̄4(θ) are measured by simulating the nonlinear system output with 109 independent re-
alizations for each considered value of the input mean θ. The result is shown in Fig. 5.3. After

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

θ

µ1(θ)
µ2(θ)
µ̄3(θ)
µ̄4(θ)

Fig. 5.3. Measured Moments - Soft-Limiter Model (κl = 0.5)

numerically approximating the required derivatives ∂µ1(θ)
∂θ

, ∂µ2(θ)
∂θ

, which are depicted in Fig. 5.4,
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Fig. 5.4. Measured Derivatives - Soft-Limiter Model (κl = 0.5)

the approximation (5.52) is calculated. In Fig. 5.5 the measured information loss χ̃(θ) of the soft-
limiter model is shown, where the dotted line indicates the exact information loss χ(θ) with a
symmetric hard-limiter (5.18) which is equivalent to a soft-limiter with κl → 0.
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Fig. 5.5. Performance Loss - Soft-Limiter Model
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5.3 Generalized Fisher Information Lower Bound
While the second-order approach on bounding the Fisher information measure (5.52) turns out to
provide tight results for various cases (Bernoulli, exponential, Gaussian or Poisson distribution),
we have also identified an example where the information bound is loose (Laplace distribution).
Looking at the properties of these example distributions, it becomes obvious that for the tight cases
the sufficient statistics are z (exponential, Bernoulli, Poisson) or z and z2 (Gaussian). In contrast,
the zero-mean Laplace distribution has the sufficient statistic |z|. Such a statistic is not well cap-
tured by z and z2, which we have used in centralized and normalized form for the construction
of the second-order bound (5.52). Might this be the reason why the approximation (5.52) fails to
generate a tight bound under the Laplacian distribution?

5.3.1 Fisher Information Lower Bounds and Sufficient Statistics
Addressing this question, in the following we pick the log-normal distribution with known scale
parameter σ and the Weibull distribution with known shape parameter κw as additional examples.
Like the Laplace distribution, the log-normal distribution has sufficient statistics which are distinct
from z and z2, i.e., ln z and ln2 z. The Weibull distribution has the property that its sufficient
statistic is zκw . Therefore, the second-order Fisher information bound (5.52) should be tight for the
Weibull distribution when κw = 1 and κw = 2 and loose in any other configuration, including the
log-normal distribution, in order to confirm an existing connection between the construction of the
information bound and the sufficient statistics of the model p(z; θ).

5.3.1.1 Log-normal Distribution

The log-normal distribution with known scale parameter σ > 0 is characterized by the probability
density function

p(z; θ) =
1√

2πσ2z
exp

(
−(log z − θ)2

2σ2

)
(5.151)

with z > 0. The log-likelihood function is given by

ln p(z; θ) = −1

2
ln 2πσ2 − ln z − 1

2σ2
(log z − θ)2. (5.152)

The score function is

∂ ln p(z; θ)

∂θ
=

1

σ2
(log z − θ), (5.153)

with its derivative

∂2 ln p(z; θ)

∂θ2
= − 1

σ2
. (5.154)

Therefore, the Fisher information measure with respect to the parameter θ is given by

Fz(θ) = Ez;θ

[(
∂ ln p(z; θ)

∂θ

)2
]

= −Ez;θ

[
∂2 ln p(z; θ)

∂θ2

]
=

1

σ2
. (5.155)
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For the evaluation of the mean and the variance we use the fact that the l-th raw moment of the
log-normal distribution is

Ez;θ

[
zl
]

= µ̃l(θ)

= elθ+
1
2
l2σ2

. (5.156)

Accordingly, the mean and its derivative are given by

µ1(θ) = Ez;θ [z]

= eθ+
1
2
σ2

, (5.157)
∂µ1(θ)

∂θ
= eθ+

1
2
σ2

. (5.158)

The variance and its derivative are

µ2(θ) = Ez;θ

[(
z − µ1(θ)

)2
]

= µ̃2(θ)− µ2
1(θ)

= e2θ+σ2

(eσ
2 −1), (5.159)

∂µ2(θ)

∂θ
= 2 e2θ+σ2

(eσ
2 −1). (5.160)

The skewness of the log-normal system model is obtained by

µ̄3(θ) = Ez;θ

[(
z − µ1(θ)√

µ2(θ)

)3
]

=
µ̃3 − 3µ1(θ)µ̃2(θ) + 2µ3

1(θ)

µ
3
2
2 (θ)

=
e3θ+ 9

2
σ2 −3 eθ+

1
2
σ2

e2θ+2σ2
+2 e3θ+ 3

2
σ2

(e2θ+σ2(eσ2 −1))
3
2

=
e3θ+ 9

2
σ2 −3 e3θ+ 5

2
σ2

+2 e3θ+ 3
2
σ2

e3θ+ 3
2
σ2

(eσ2 −1)
3
2

=
e3σ2 −3 eσ

2
+2

(eσ2 −1)
3
2

=
(eσ

2 −1)2(eσ
2

+2)

(eσ2 −1)
3
2

=
√

(eσ2 −1)(eσ
2

+2) (5.161)
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and the kurtosis is found to be

µ̄4(θ) = Ez;θ

[(
z − µ1(θ)√

µ2(θ)

)4
]

=
µ̃4 − 4µ1(θ)µ̃3(θ) + 6µ2

1(θ)µ̃2(θ)− 3µ4
1(θ)

µ2
2(θ)

=
e4θ+8σ2 −4 eθ+

1
2
σ2

e3θ+ 9
2
σ2

+6 e2θ+σ2
e2θ+2σ2 −3 e4θ+2σ2

(e2θ+σ2(eσ2 −1))2

=
e4θ+8σ2 −4 e4θ+5σ2

+6 e4θ+3σ2 −3 e4θ+2σ2

e4θ+2σ2(eσ2 −1)2

=
e6σ2 −4 e3σ2

+6 eσ
2 −3

(eσ2 −1)2

=
(eσ

2 −1)2(3 e2σ2
+2 e3σ2

+ e4σ2 −3)

(eσ2 −1)2

= 3 e2σ2

+2 e3σ2

+ e4σ2 −3. (5.162)

For the assessment of the quality of the information bound (5.52) we define the ratio between the
approximation (5.52) and the exact information measure (5.155)

χ(θ) ,
F̃z(θ)

Fz(θ)
. (5.163)

As the gap (5.163) is independent of θ, in Fig. 5.6, we depict χ(θ) for different values of the known
scale parameter σ. It can be observed that for a scale parameter σ > 1 the difference between F̃z(θ)
and the exact Fisher information Fz(θ) becomes large.
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Fig. 5.6. Bounding Gap - Log-Normal Distribution
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5.3.1.2 Weibull Distribution

As a second example, we study the quality of the Fisher information bound F̃ (θ) for the case of
the Weibull distribution. The Weibull distribution with known shape parameter κw is characterized
by the probability density function

p(z; θ) =
κw
θ

(z
θ

)κw−1

e−( z
θ

)κw (5.164)

with z, θ, κw > 0. The log-likelihood of the distribution is

ln p(z; θ) = lnκw − ln θ + (κw − 1) ln z − (κw − 1) ln θ −
(z
θ

)κw
(5.165)

and the score function is given by

∂ ln p(z; θ)

∂θ
= −1

θ
− (κw − 1)

1

θ
+ κw

(z
θ

)κw−1 z

θ2

= −κw
θ

+
κw
θ

(z
θ

)κw
=
κw
θ

((z
θ

)κw
− 1

)
. (5.166)

The derivative of the score function has the form

∂2 ln p(z; θ)

∂θ2
= −κw

θ2

((z
θ

)κw
− 1

)
+
κw
θ

(
− κw

(z
θ

)κw−1 z

θ2

)
= −κw

θ2

((z
θ

)κw
− 1

)
− κ2

w

θ2

(z
θ

)κw
= −κw(κw + 1)

θ2

(z
θ

)κw
+
κw
θ2
. (5.167)

Consequently, the Fisher information measure is given by

Fz(θ) = Ez;θ

[(
∂ ln p(z; θ)

∂θ

)2
]

= −Ez;θ

[
∂2 ln p(z; θ)

∂θ2

]
=
κw(κw + 1)

θκw+2
Ez;θ [zκw ]− κw

θ2

=
κw
θ2

(
(κw + 1)

θκw
Ez;θ [zκw ]− 1

)
=
κw
θ2

(
(κw + 1)Γ (2)− 1

)
=
(κw
θ

)2

, (5.168)

where we used the property that the l-th raw moment of the Weibull distribution is

µ̃l = Ez;θ

[
zl
]

= θlΓl, (5.169)
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with the shorthand notational convention

Γl , Γ
(

1 +
l

κw

)
(5.170)

for the Gamma function

Γ (x) ,
∫ ∞

0

ux−1 exp (−u)du. (5.171)

For the information bound (5.52) we require the first moment

µ1(θ) = Ez;θ [z]

= θΓ1, (5.172)

its derivative
∂µ1(θ)

∂θ
= Γ1, (5.173)

the second central moment

µ2(θ) = Ez;θ

[(
z − µ1(θ)

)2
]

= µ̃2(θ)− µ2
1(θ)

= θ2
(
Γ2 − Γ 2

1

)
, (5.174)

its derivative
∂µ2(θ)

∂θ
= 2θ

(
Γ2 − Γ 2

1

)
, (5.175)

the skewness of the Weibull system model

µ̄3(θ) = Ez;θ

[(
z − µ1(θ)√

µ2(θ)

)3
]

=
µ̃3 − 3µ1(θ)µ̃2(θ) + 2µ3

1(θ)

µ
3
2
2 (θ)

=
θ3Γ3 − 3θ3Γ1Γ2 + 2θ3Γ 3

1

θ3
(
Γ2 − Γ 2

1

) 3
2

=
Γ3 − 3Γ1Γ2 + 2Γ 3

1(
Γ2 − Γ 2

1

) 3
2

, (5.176)

and the kurtosis

µ̄4(θ) = Ez;θ

[(
z − µ1(θ)√

µ2(θ)

)4
]

=
µ̃4 − 4µ1(θ)µ̃3(θ) + 6µ2

1(θ)µ̃2(θ)− 3µ4
1(θ)

µ2
2(θ)

=
Γ4 − 4Γ1Γ3 + 6Γ 2

1Γ2 − 3Γ 4
1(

Γ2 − Γ 2
1

)2 . (5.177)
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Fig. 5.7. Bounding Gap - Weibull Distribution

In Fig. 5.7 we plot the information loss χ(θ) for different shape values κw = 1, . . . , 5. Note, that in
this example the loss χ(θ) is independent of the parameter θ. It can be observed that the information
bound F̃z(θ) is tight for the cases where the shape of the distribution is κw = 1 and κw = 2 while
the quality of F̃z(θ) degrades significantly for the cases where κw > 2.

The Weibull example is of special interest for the analysis of the quality of the approximation
(5.52) as it contains cases where the Fisher information lower bound is tight and cases where it
is not. We have verified that (5.52) is tight for the Bernoulli, exponential, Gaussian and Poisson
distributions. These distributions have in common that their sufficient statistics are z or z and z2.
Interestingly, for the Weibull distribution the sufficient statistic is given by zκw and the information
bound (5.52) is only tight for κw = 1 and κw = 2. Additionally, the approximation of the Fisher
information (5.52) is loose for the log-normal distribution and the Laplacian distribution, both
cases where the sufficient statistics are distinct from z or z2. This indicates a connection between
the sufficient statistics and the quality of lower bounds for the Fisher information bound. Note, that
the information bound (5.52) was constructed through the Cauchy-Schwarz inequality

∫
Z
f 2(z; θ)p(z; θ)dz ≥

( ∫
Z f(z; θ)g(z; θ)p(z; θ)dz

)2∫
Z g

2(z; θ)p(z; θ)dz
(5.178)

by using the functions

f(z; θ) =
∂ ln p(z; θ)

∂θ
(5.179)

and

g(z; θ) =

(
z − µ1(θ)√

µ2(θ)

)
+ β(θ)

(
z − µ1(θ)√

µ2(θ)

)2

− β(θ). (5.180)

The latter contains the statistics z and z2 in normalized central form. This corresponds to the
sufficient statistics of the distributions where (5.52) provides tight results.



90 5. Fisher Information and the Exponential Replacement

5.3.2 Fisher Information and the Exponential Family

Another interesting observation is the fact that all example distributions discussed so far belong
to the exponential family. Therefore, in order to obtain a better understanding on Fisher informa-
tion and possible lower bounds, we adapt our level of abstraction and study the properties of the
Fisher information measure for distributions of the exponential family. Restricting to such a class
of distributions allows to provide an identity connecting Fisher information and a weighted sum of
the derivatives of the expected sufficient statistics. The weight of each statistic within this sum is
the derivative of the associated natural parameter. In order to provide the main results in a general
form in the following we focus on the multivariate case p(z;θ) with output variable z ∈ RM and
a multi-dimensional parameter θ ∈ RD.

5.3.2.1 The Exponential Family

The multivariate exponential family with a parameter θ ∈ RD is the set of probability density or
mass functions, which can be factorized

p(z;θ) = exp

(
L∑
l=1

wl(θ)tl(z)− λ(θ) + κ(z)

)
, (5.181)

where wl(θ) ∈ R is the l-th natural parameter, tl(z) ∈ R is the associated sufficient statistic,
λ(θ) ∈ R is the log-normalizer and κ(z) ∈ R is the so-called carrier measure. The log-likelihood
function of the exponential family (5.181) is given by

ln p(z;θ) =
L∑
l=1

wl(θ)tl(z)− λ(θ) + κ(z), (5.182)

while the score function is

∂ ln p(z;θ)

∂θ
=

L∑
l=1

∂wl(θ)

∂θ
tl(z)− ∂λ(θ)

∂θ
. (5.183)

As discussed in (3.3), an essential property of the score function (5.183) is that its expected value
vanishes, i.e.,

Ez;θ

[
∂ ln p(z;θ)

∂θ

]
= 0T. (5.184)

Therefore, with (5.183) it holds that for the exponential family

L∑
l=1

∂wl(θ)

∂θ
Ez;θ [tl(z)] =

∂λ(θ)

∂θ
. (5.185)
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5.3.2.2 Fisher Information within the Exponential Family

With the definition of the Fisher information we obtain

F (θ) =

∫
Z

(
∂ ln p(z;θ)

∂θ

)T(
∂ ln p(z;θ)

∂θ

)
p(z;θ)dz

=

∫
Z

(
∂ ln p(z;θ)

∂θ

)T( L∑
l=1

∂wl(θ)

∂θ
tl(z)

)
p(z;θ)dz

−
∫
Z

(
∂ ln p(z;θ)

∂θ

)T
∂λ(θ)

∂θ
p(z;θ)dz, (5.186)

where we have used (5.183) in the second step to substitute one of the involved score functions.
Using (5.184), we obtain

F (θ) =
L∑
l=1

(∫
Z

∂ ln p(z;θ)

∂θ
tl(z)p(z;θ)dz

)T
∂wl(θ)

∂θ

−

(∫
Z

(
∂ ln p(z;θ)

∂θ

)T

p(z;θ)dz

)
∂λ(θ)

∂θ

=
L∑
l=1

(∫
Z

∂p(z;θ)

∂θ
tl(z)dz

)T
∂wl(θ)

∂θ
−
(∫

Z

∂p(z;θ)

∂θ
dz

)T
∂λ(θ)

∂θ

=
L∑
l=1

(
∂

∂θ

∫
Z
p(z;θ)tl(z)dz

)T
∂wl(θ)

∂θ

=
L∑
l=1

(
∂ Ez;θ [tl(z)]

∂θ

)T
∂wl(θ)

∂θ
. (5.187)

Defining the vector of sufficient statistics

t(z) =
[
t1(z) t2(z) . . . tL(z)

]T
, (5.188)

its expected value

µt(θ) = Ez;θ [t(z)] , (5.189)

and the vector of natural parameters

w(θ) =
[
w1(θ) w2(θ) . . . wL(θ)

]T
, (5.190)

we can reformulate the identity (5.187) in a compact form

F (θ) =

(
∂µt(θ)

∂θ

)T
∂w(θ)

∂θ
. (5.191)
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5.3.2.3 Univariate Gaussian Model with a Single Parameter

As an example for the identity (5.191), consider the univariate parametric Gaussian distribution

p(z; θ) =
1√

2πσ2(θ)
exp

(
−
(
z − s(θ)

)2

2σ2(θ)

)
(5.192)

with z ∈ R and parameter θ ∈ R. The natural parameters are

w1(θ) =
s(θ)

σ2(θ)
, (5.193)

w2(θ) = − 1

2σ2(θ)
(5.194)

and the two corresponding sufficient statistics are

t1(z) = z, (5.195)
t2(z) = z2. (5.196)

Therefore, the expectations of the sufficient statistics are

Ez;θ [t1(z)] = µ(θ), (5.197)
Ez;θ [t2(z)] = σ2(θ) + s2(θ). (5.198)

With the derivatives of the natural parameters

∂w1(θ)

∂θ
=

1

σ2(θ)

∂s(θ)

∂θ
− s(θ)

σ4(θ)

∂σ2(θ)

∂θ
, (5.199)

∂w2(θ)

∂θ
=

1

2σ4(θ)

∂σ2(θ)

∂θ
(5.200)

and the derivatives of the expected sufficient statistics

∂ Ez;θ [t1(z)]

∂θ
=
∂s(θ)

∂θ
,

∂ Ez;θ [t2(z)]

∂θ
=
∂σ2(θ)

∂θ
+ 2s(θ)

∂s(θ)

∂θ
, (5.201)

using the identity for the exponential family (5.187) we obtain

F (θ) =
∂w1(θ)

∂θ

∂ Ez;θ [t1(z)]

∂θ
+
∂w2(θ)

∂θ

∂ Ez;θ [t2(z)]

∂θ

=
1

σ2(θ)

(∂s(θ)
∂θ

)2

+
1

2σ4(θ)

(∂σ2(θ)

∂θ

)2

. (5.202)

It can be verified [2, pp. 47] that (5.202) is the actual Fisher information measure for the parametric
Gaussian model (5.192).
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5.3.3 The Exponential Replacement
If the parametric model p(z;θ) belongs to the exponential family, the natural parameters w(θ)
and the associated expected values of the sufficient statistics µt(θ) are known, the identity (5.191)
shows that the Fisher information measure can be computed by evaluating a sum instead of inte-
grating the squared score function. In the inconvenient situation where it is unclear if the model
p(z;θ) belongs to the exponential family and the sufficient statistics t(z) or the natural parameters
w(θ) are unknown, the identity (5.191) can not be applied in order to derive the Fisher information
measure. However, the Fisher identity of the exponential family (5.191) provides a guideline for
the construction of strong Fisher information lower bounds for any kind of stochastic system.

To this end, the original system p(z;θ) is replaced by a counterpart in the exponential family
p̃(z;θ), which is equivalent with respect to a set of L auxiliary statistics

φl(z) : RM → R, l = 1, 2, . . . , L. (5.203)

After selecting (5.203), with the definition

φ(z) =
[
φ1(z) φ2(z) . . . φL(z)

]T
, (5.204)

we determine the expected values

µφ(θ) = Ez;θ [φ(z)]

=

∫
Z
φ(z)p(z;θ)dz, (5.205)

Rφ(θ) = Ez;θ

[(
φ(z)− µφ(θ)

)T(
φ(z)− µφ(θ)

)]
=

∫
Z
φ(z)φT(z)p(z;θ)dz − µφ(θ)µT

φ(θ) (5.206)

under the original probability law p(z;θ) and choose the exponential family distribution p̃(z;θ)
with sufficient statistics t(z) = φ(z) and equivalent expected values

µφ(θ) = Ez̃;θ [φ(z)]

=

∫
Z
φ(z)p̃(z;θ)dz, (5.207)

Rφ(θ) = Ez̃;θ

[(
φ(z)− µφ(θ)

)T(
φ(z)− µφ(θ)

)]
=

∫
Z
φ(z)φT(z)p̃(z;θ)dz − µφ(θ)µT

φ(θ) (5.208)

as replacement model. By p̃(z;θ) being of the form (5.181), with L weighting vectors bl(θ) ∈ RD

summarized in the matrix

B(θ) =
[
b1(θ) b2(θ) . . . bL(θ)

]T
, (5.209)

the score function of the exponential replacement factorizes

∂ ln p̃(z;θ)

∂θ
= φT(z)B(θ)−αT(θ) (5.210)
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where the normalizer α(θ) ∈ RD.
Through the covariance inequality it is possible to show that the Fisher information matrix

F̃ (θ) =

∫
Z

(
∂ ln p̃(z;θ)

∂θ

)T
∂ ln p̃(z;θ)

∂θ
p̃(z;θ)dz (5.211)

of the equivalent exponential replacement is always dominated by the information measure

F (θ) =

∫
Z

(
∂ ln p(z;θ)

∂θ

)T
∂ ln p(z;θ)

∂θ
p(z;θ)dz (5.212)

of the original system. To this end, note that

Ez;θ

[(
∂ ln p(z;θ)

∂θ

)T
∂ ln p̃(z;θ)

∂θ

]
=

∫
Z

(
∂ ln p(z;θ)

∂θ

)T(
φT(z)B(θ)−αT(θ)

)
p(z;θ)dz

=

(∫
Z
φ(z)

∂p(z;θ)

∂θ
dz

)T

B(θ)

=

(
∂µφ(θ)

∂θ

)T

B(θ)

= F̃ (θ), (5.213)

where we have used the identity (5.191) in the last step. Further, under the equivalences (5.207)
and (5.208)

Ez;θ

[(
∂ ln p̃(z;θ)

∂θ

)T
∂ ln p̃(z;θ)

∂θ

]

= Ez;θ

[(
φT(z)B(θ)−αT(θ)

)T(
φT(z)B(θ)−αT(θ)

)]
= Ez̃;θ

[(
φT(z)B(θ)−αT(θ)

)T(
φT(z)B(θ)−αT(θ)

)]
= Ez̃;θ

[(
∂ ln p̃(z;θ)

∂θ

)T
∂ ln p̃(z;θ)

∂θ

]
= F̃ (θ). (5.214)

Therefore, with the covariance inequality (Appendix A1), (5.213) and (5.214)

F (θ) � Ez;θ

[(
∂ ln p(z;θ)

∂θ

)T
∂ ln p̃(z;θ)

∂θ

]
Ez;θ

[(
∂ ln p̃(z;θ)

∂θ

)T
∂ ln p̃(z;θ)

∂θ

]−1

· Ez;θ

[(
∂ ln p̃(z;θ)

∂θ

)T
∂ ln p(z;θ)

∂θ

]
= F̃ (θ)F̃

−1
(θ)F̃

T
(θ)

= F̃ (θ). (5.215)
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5.3.4 Generalized Lower Bound for the Fisher Information Matrix
We use the property (5.215) of the exponential replacement in order to establish a generic lower
bound on the FIM (5.212) of the original system p(z;θ). Therefore, let us assume that a good
choice for the normalizer is

α(θ) = BT(θ)µφ(θ). (5.216)

Then it holds that

F̃ (θ) = Ez̃;θ

[(
∂ ln p̃(z;θ)

∂θ

)T
∂ ln p̃(z;θ)

∂θ

]

= Ez̃;θ

[(
φT(z)B(θ)−αT(θ)

)T(
φT(z)B(θ)−αT(θ)

)]
= BT(θ)

(
Ez̃;θ

[
φ(z)φT(z)

]
− µφ(θ)µT

φ(θ)

)
B(θ)

= BT(θ)Rφ(θ)B(θ), (5.217)

such that with (5.213) and (5.215) we obtain

F (θ) � F̃ (θ)F̃
−1

(θ)F̃ (θ)

=

(
∂µφ(θ)

∂θ

)T

B(θ)
(
BT(θ)Rφ(θ)B(θ)

)−1
BT(θ)

∂µφ(θ)

∂θ
. (5.218)

The question is now how to choose φ(z) and optimize B(θ) such that the right hand side of
(5.218) is maximized in matrix sense?

If the underlying statistical model p(z;θ) is from the exponential family type (5.181) and the
sufficient statistics φ(z) = t(z) are used for the approximation p̃(z;θ), it is possible to obtain a
tight bound (5.218). To see this, note that with φ(θ) = t(θ) and optimized weightingsB?(θ), due
to the definition (5.206), we have

B?T(θ)Rφ(θ)B?(θ) = Ez;θ

[
B?T(θ)t(θ)tT(θ)B?(θ)

]
−B?T(θ)µt(θ)µT

t (θ)B?(θ).
(5.219)

Now let us assume that a possible optimizer is

B?(θ) =
∂w(θ)

∂θ
, (5.220)

where w(θ) are the natural parameters of the original system p(z;θ). Then with (5.219)

B?T(θ)Rφ(θ)B?(θ) = Ez;θ

[(
∂w(θ)

∂θ

)T

t(θ)tT(θ)
∂w(θ)

∂θ

]

−
(
∂w(θ)

∂θ

)T

µt(θ)µT
t (θ)

∂w(θ)

∂θ
. (5.221)

Substituting

∂ ln p(z;θ)

∂θ
= tT(z)

∂w(θ)

∂θ
− ∂λ(θ)

∂θ
(5.222)
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and

Ez;θ

[
∂ ln p(z;θ)

∂θ

]
= µT

t (θ)
∂w(θ)

∂θ
− ∂λ(θ)

∂θ
= 0T, (5.223)

in (5.221), we obtain

B?T(θ)Rφ(θ)B?(θ) = E

[(
∂ ln p(z;θ)

∂θ
+
∂λ(θ)

∂θ

)T(
∂ ln p(z;θ)

∂θ
+
∂λ(θ)

∂θ

)]

−
(
∂λ(θ)

∂θ

)T(
∂λ(θ)

∂θ

)
= Ez;θ

[(
∂ ln p(z;θ)

∂θ

)T(
∂ ln p(z;θ)

∂θ

)]

=

(
∂µt(θ)

∂θ

)T
∂w(θ)

∂θ
. (5.224)

Using (5.220) and (5.224) in (5.218) we finally arrive at

F (θ) �
(
∂µt(θ)

∂θ

)T
∂w(θ)

∂θ
, (5.225)

which, due to the identity (5.191), holds with equality for the exponential family.

5.3.5 Optimization of the Generalized Fisher Information Lower Bound
In the following we discuss how to perform the optimization of the right hand side of (5.218) when
the sufficient statistics t(z) are unknown and we have to resort to a set of auxiliary statistics φ(z).
Substituting

B(θ) = R
− 1

2
φ (θ)B′(θ) (5.226)

in (5.218) under the constraint that

B′T(θ)B′(θ) = I, (5.227)

we obtain a modified bound

F (θ) �
(
∂µφ(θ)

∂θ

)T

R
− 1

2
φ (θ)B′(θ)B′T(θ)R

− 1
2

φ (θ)
∂µφ(θ)

∂θ
. (5.228)

The right hand side of (5.228) is maximized in the matrix sense under the constraint (5.227) with

B′(θ) = R
− 1

2
φ (θ)

∂µφ(θ)

∂θ

((
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ

)− 1
2

. (5.229)
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Using (5.229) and (5.226) in (5.218), we obtain the result that for any parameterized probability
distribution p(z;θ) and any set of L auxiliary statistics φ(z), with the definitions (5.205) and
(5.206), the Fisher information matrix F (θ) dominates

F (θ) �
(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ
. (5.230)

Note that due to the tightness of the bound (5.230) for exponential family models (5.181),
besides (5.191) we have an additional identity

F (θ) =

(
∂µt(θ)

∂θ

)T

R−1
t (θ)

∂µt(θ)

∂θ
(5.231)

for such kind of system models.

5.4 Applications
In the following we will demonstrate applications of the presented main result (5.230). For simplic-
ity, we focus on univariate problems z ∈ R with a single parameter θ ∈ R. We utilize the generic
result (5.230) in order to formulate a specific information bound involving the derivatives of the
first L raw moments [60]. For the initial example of a log-normal and a Weibull distribution, we
test the quality of this approximation of the Fisher information. By constructing a second bound
which takes into consideration raw moments, the expected absolute value and the expected log-
value, we show how to use the information bound (5.230) in order to learn informative statistics of
a parametric system with unknown output model and how to determine the minimum guaranteed
interference capability of the model by calibrated measurements. In order to emphasize the prac-
tical impact, we demonstrate this aspect with the Rapp model [73], which is popular for modeling
the saturation effect of solid-state power amplifiers.

5.4.1 Fisher Information Lower Bound with L Moments
In order to test a generalization of the approach (5.52) with the derivatives of L raw moments, we
use the obtained result (5.230) under the convention

φl(z) = zl (5.232)

and apply the resulting information bound to the log-normal (5.151) and the Weilbull model
(5.164). The required expectations (5.205) and (5.206) of the auxiliary statistics φl(z) are directly
available by the fact that for the log-normal distribution (5.151) the l-th raw moment is given by

Ez;θ

[
zl
]

= elθ+
1
2
l2σ2

(5.233)

and therefore its derivative is

∂ Ez;θ

[
zl
]

∂θ
= l elθ+

1
2
l2σ2

. (5.234)

Accordingly, for the Weibull distribution (5.164) we have

Ez;θ

[
zl
]

= θlΓl, (5.235)
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Fig. 5.9. Bounding Gap (L Moment Bound) - Log-normal Distribution

and

∂ Ez;θ

[
zl
]

∂θ
= lθl−1Γl. (5.236)

In Fig. 5.8 and Fig. 5.9 the approximation accuracy
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χ(θ) =
F̃z(θ)

Fz(θ)

=

(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

Fz(θ)
(5.237)

for different values L is depicted. For the Weibull distribution (5.164), for which the result is
depicted in Fig. 5.8, we observe, that the bound with L = 1 (5.12) and L = 2 (5.52) can be
significantly improved by incorporating the derivatives of the third and the fourth moment. In
contrast for the log-normal distribution (5.151) taking into account more than the first two raw
moments results only in a slight performance improvement (see Fig. 5.9). In order to visualize the
result of the optimization of the bound (5.218), in Fig. 5.10 the normalized absolute weights

b̄?l (θ) =
|b?l (θ)|∑L
l=1 |b?l (θ)|

(5.238)

are plotted for the Weibull example, where with (5.226) and (5.229)

b?l (θ) =

[
R−1
φ (θ)

∂µφ(θ)

∂θ

]
l√(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

. (5.239)

The individual normalized weights b̄?l (θ) indicate the importance of the corresponding auxiliary
statistic φl(θ) = zl in the approximation of the Fisher information. It can be seen, that for the
Weibull distribution the sufficient statistic zκw attains the full weight in the cases κw = 1, 2, 3, 4. In
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Fig. 5.10. Optimized Weights - Weibull Distribution (L = 4)

contrast for the log-normal distribution it is observed in Fig. 5.11 that none of the moments obtains
full weight. However, the first moment plays a dominant role, in particular when σ > 0.6. Note,
that for the log-normal distribution with known scale parameter σ, ln z is a sufficient statistic.
Incorporating it into the approximation by using φ1(z) = ln z would change the situation and
provide a tight approximation for Fz(θ).
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5.4.2 Measurement-Driven Learning of Nonlinear Statistical Models

The previous section indicates an interesting application of the presented result (5.230). Being able
to describe the expectations (5.205) and (5.206) for an arbitrary statistical model p(z; θ) with an
arbitrary set of auxiliary functions φ(z), the optimization result (5.229) can be used in order to
identify, among the auxiliary statistics φ(z), candidates for the sufficient statistics of the system
model. Further, together with (5.205) and (5.206), the information bound (5.230) allows to specify
the minimum inference capability that can be guaranteed to be achievable for the model of interest.
This has high practical relevance as in real-world applications technical systems are subject to var-
ious random and nonlinear effects. Under such circumstances an accurate analytical description of
the probability density or mass function p(z; θ) is usually hard to obtain. Nevertheless, to be able
to identify transformations of the data exhibiting high information content is attractive in such a
situation. Such functions can be used for applications like efficient data compression and for the
formulation of high-resolution estimation algorithms. Further, a conservative approximation of the
Fisher information measure like (5.230) allows to benchmark the performance of estimation algo-
rithms on the system under investigation or to identify system layouts of high estimation theoretic
quality. If the system parameter θ can be controlled in a calibrated setup, the entities (5.205) and
(5.206) and therefore an exponential replacement p̃(z; θ) can be determined for any system p(z; θ)
by measurements at the system output z.

5.4.2.1 Nonlinear Amplification Device

We demonstrate such a measurement-driven learning approach for the exponential replacement
p̃(z; θ) in a calibrated setup with the example of a solid-state power amplifier. The system param-
eter θ of interest is assumed to be the direct-current offset (the mean) at the input of the nonlinear
device. For the mapping from the input x to the output y of the amplifier, we apply the Rapp model



5.4 Applications 101

−4 −2 0 2 4
−1

−0.5

0

0.5

1

x

z

κs = 8.00
κs = 2.00
κs = 1.00
κs = 0.50
κs = 0.25

Fig. 5.12. Input-to-Output - Rapp Model

[73]

z =
x

(1 + |x|2κs)
1

2κs

, (5.240)

where here κs is a smoothness factor. Fig. 5.12 depicts the input-to-output relation of this nonlinear
system model for different values of κs. We apply a Gaussian input

x = θ + η (5.241)

with η ∼ N (0, 1) to the nonlinear system (5.240), set

φ(z) =
[
z z2 z3 z4 |z| ln |z|

]T (5.242)

and for each value of θ approximate the expectations (5.205) and (5.206), with 108 independent
realizations of the system output, by their sample mean. Fig. 5.13 shows the approximated loss

χ(θ) =

(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

Fx(θ)
(5.243)

which is introduced by the nonlinear Rapp model with smoothness factor κs = 2.0. Note, that
Fx(θ) is the Fisher information with respect to θ at the input x of the nonlinear Rapp model. It is
observed that for an input mean θ > 2.0, the saturation of the nonlinear Rapp model introduces a
significant information loss. Fig. 5.14 shows the normalized absolute weights b̄?l associated with
each statistic, which have been attained by the optimization (5.229). It can be seen that here the
second moment and the expected absolute value play a dominant role in the approximation of the
Fisher information measure.
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Fig. 5.15. Performance Loss - Rician Model

5.4.2.2 Rician System Model

As a second example we investigate a Rician model

z =
√
x2

1 + x2
2, (5.244)

where x1 ∼ N (θ cos(κr), 1) and x2 ∼ N (θ sin(κr), 1). Such a model is popular in wireless com-
munications in order to describe the strength of the line-of-sight (LOS) propagation in relation to
the multi-path channels [74] [75]. Further, one finds such models in biomedical signal processing
for the characterization of brain scan images with fMRI [76]. Fig. 5.15 shows the information loss
of the Rician system

χ(θ) =
1

Fx(θ)

(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ
(5.245)

in dB. Note, that the Fisher information measure with respect to θ under direct access to both
inputs x1 and x2 is Fx(θ) = 1 and that (5.245) is independent of κr. It becomes visible that
phase information is extremely important for small values of the distance parameter θ. This kind
of information is discarded by the Rician model (5.244).

5.5 Signal Processing under the Exponential Replacement
Finally, we address the question how to perform estimation of the system parameter θ under an
unknown statistical system model p(z; θ) after having learned the properties µφ(θ) and Rφ(θ)
with an arbitrary set of L auxiliary statistics φ(z) by calibrated measurements or by analytical
derivations. To this end, we show that consistent estimators can be obtained from compressed
observations of the system output which achieve a performance equivalent to the inverse of our
pessimistic approximation for the Fisher information measure (5.230).
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5.5.1 Conservative Maximum-Likelihood Estimation
To this end, we assume that N independent output samples of the system p(z; θ) have been ob-
served, such that the data vector z ∈ RN is available. First we apply a data compression step by
using the auxiliary statistics φ(z) to form the sample mean

φ̃ =
1

N

N∑
n=1

φ(zn) (5.246)

and subsequently discarding the original data z. Note that this reduces the size of the data by
a factor of N

L
. In the situation where the analytic characterization of the data-generating model

p(z; θ) is available, given the observations z one would resort to the maximization of the log-
likelihood

θ̂(z) = arg max
θ∈Θ

ln p(z; θ)

= arg max
θ∈Θ

N∑
n=1

ln p(zn; θ). (5.247)

In the situation where no description of the model p(z; θ) is available this is not possible. Therefore
here we follow the idea of replacing the original system p(z; θ) by a distribution in the exponential
family (5.181) with log-likelihood function

ln p̃(z; θ) = βT(θ)φ(z)− λ(θ) + κ(z) (5.248)

and the equivalent behavior of the first and second moment of φ(θ)∫
Z
φ(z)p̃(z; θ)dz =

∫
Z
φ(z)p(z; θ)dz, (5.249)∫

Z
φ(z)φT(z)p̃(z; θ)dz =

∫
Z
φ(z)φT(z)p(z; θ)dz. (5.250)

The estimation is then perform by a conservative maximum-likelihood estimate (CMLE)

θ̂(z) = arg max
θ∈Θ

ln p̃(z; θ)

= arg max
θ∈Θ

N∑
n=1

ln p̃(zn; θ). (5.251)

Note, that β(θ) are the natural parameters and φ(z) the sufficient statistics of the exponential
replacement p̃(z; θ). Therefore, the score function takes the form

∂ ln p̃(z; θ)

∂θ
=
∂βT(θ)

∂θ
φ(z)− ∂λ(θ)

∂θ
. (5.252)

By setting

b(θ) =
∂β(θ)

∂θ
(5.253)
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and using the fact that for the exponential family

∂λ(θ)

∂θ
= µT

φ(θ)
∂β(θ)

∂θ
, (5.254)

it is possible to write the score function (5.252)

∂ ln p̃(z; θ)

∂θ
= bT(θ)

(
φ(z)− µφ(θ)

)
. (5.255)

The CMLE (5.251) is found by setting the replacement score of the observed data z to zero, i.e.,

∂ ln p̃(z; θ)

∂θ

∣∣∣∣
θ=θ̂

= 0. (5.256)

For independent samples, the receive score can be written

∂ ln p̃(z; θ)

∂θ
=

N∑
n=1

∂ ln p̃(zn; θ)

∂θ

= bT(θ)
N∑
n=1

(
φ(zn)− µφ(θ)

)
= NbT(θ)

(
φ̃− µφ(θ)

)
, (5.257)

such that the CMLE θ̂(φ̃) is found by solving

bT(θ)
(
φ̃− µφ(θ)

)
= 0 (5.258)

with respect to θ. Note, that for the calculation of the CMLE (5.258), access to the original data z
is not required. The CMLE can be found by having exclusively access to the compressed data φ̃.

Note that by the law of large numbers in the asymptotic regime we obtain

1

N

N∑
n=1

ln p̃(zn; θ)
a→
∫
Z

ln p̃(z; θ)p(z; θt)dz

= βT(θ)µφ(θt)− λ(θ) + κ̄ (5.259)

where θt is the true parameter. Therefore (5.259) is maximized when

∂βT(θ)

∂θ
µφ(θt)−

∂λ(θ)

∂θ
=
∂βT(θ)

∂θ
µφ(θt)−

∂βT(θ)

∂θ
µφ(θ)

= 0, (5.260)

i.e., θ = θt, where we have used (5.185). This shows that the CMLE (5.251) is consistent, i.e.,

θ̂(z)
a→ θt. (5.261)

In order to analyze the performance of the CMLE, we proceed according to [2, p. 212] and use a
Taylor expansion of the replacement score function around the true parameter θt

∂ ln p̃(z; θ)

∂θ

∣∣∣∣
θ=θ̂

=
∂ ln p̃(z; θ)

∂θ

∣∣∣∣
θ=θt

+
∂2 ln p̃(z; θ)

∂θ2

∣∣∣∣
θ=θ̄

(θ̂ − θt) (5.262)
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in conjunction with the mean value theorem, such that θ̄ lies between θ̂ and θt. Due to (5.256)

∂ ln p̃(z; θ)

∂θ

∣∣∣∣
θ=θt

= − ∂2 ln p̃(z; θ)

∂θ2

∣∣∣∣
θ=θ̄

(θ̂ − θt), (5.263)

such that

√
N(θ̂ − θt) =

1√
N

∂ ln p̃(z;θ)
∂θ

∣∣∣
θ=θt

− 1
N

∂2 ln p̃(z;θ)
∂θ2

∣∣∣
θ=θ̄

. (5.264)

With (5.261) the denominator of (5.264)

− 1

N

∂2 ln p̃(z; θ)

∂θ2

∣∣∣∣
θ=θ̄

= − 1

N

N∑
n=1

∂2 ln p̃(zn; θ)

∂θ2

∣∣∣∣
θ=θ̄

(5.265)

converges towards the constant value

−Ez;θt

[
∂2 ln p̃(z; θ)

∂θ2

∣∣∣∣
θ=θt

]
= bT(θt)

∂µφ(θt)

∂θ
, (5.266)

where we have used the derivative of the replacement score

∂2 ln p̃(z; θ)

∂θ2
=

(
∂b(θ)

∂θ

)T(
φ(z)− µφ(θ)

)
− bT(θt)

∂µφ(θt)

∂θ
(5.267)

and the property

Ez;θ

[
∂2 ln p̃(z; θ)

∂θ2

]
= −bT(θt)

∂µφ(θt)

∂θ
. (5.268)

Due to the central limit theorem and the property

Ez;θ

[
∂ ln p̃(z; θ)

∂θ

]
= 0, (5.269)

the nominator of (5.264)

1√
N

∂ ln p̃(z; θ)

∂θ

∣∣∣∣
θ=θt

=
1√
N

N∑
n=1

∂ ln p̃(zn; θ)

∂θ

∣∣∣∣
θ=θt

(5.270)

converges to a Gaussian random variable with zero mean

Ez;θt

[
1√
N

N∑
n=1

∂ ln p̃(zn; θ)

∂θ

∣∣∣∣
θ=θt

]
=
√
N Ez;θt

[
∂ ln p̃(z; θ)

∂θ

∣∣∣∣
θ=θt

]
= 0 (5.271)

and variance

Ez;θt

[(
1√
N

N∑
n=1

∂ ln p̃(zn; θ)

∂θ

∣∣∣∣
θ=θt

)2
]

= Ez;θt

[(
∂ ln p̃(z; θ)

∂θ

)2
∣∣∣∣∣
θ=θt

]

= Ez;θt

[(
bT(θt)

(
φ(z)− µφ(θt)

))2
]

= bT(θt)Rφ(θt)b(θt). (5.272)
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With Slutsky’s theorem [12, pp. 255], it follows that asymptotically

√
N(θ̂ − θt) ∼ N

0,
bT(θt)Rφ(θt)b(θt)(

∂µφ(θt)

∂θ

)T

b(θt)b
T(θt)

∂µφ(θt)

∂θ

 . (5.273)

Therefore, if p(z; θ) is the data-generating model, the CMLE θ̂(φ̃), asymptotically in N , produces
estimates which are Gaussian distributed

θ̂ ∼ N

(
θ,

1

N

bT(θ)Rφ(θ)b(θ)(∂µφ(θ)

∂θ

)T
b(θ)bT(θ)

∂µφ(θ)

∂θ

)
. (5.274)

Using the best weighting

b?(θ) = R−1
φ (θ)

∂µφ(θ)

∂θ

((
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ

)− 1
2

(5.275)

for the auxiliary statistics, the CMLE is found by solving(∂µφ(θ)

∂θ

)T
R−1
φ (θ)√((∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

)(φ̃− µφ(θ)
)

= 0. (5.276)

As

b?T(θ)Rφ(θ)b?(θ)(∂µφ(θ)

∂θ

)T
b?(θ)b?T(θ)

∂µφ(θ)

∂θ

=
1(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

, (5.277)

the CMLE estimator then achieves a performance equivalent to the inverse of the approximation
(5.230) for the Fisher information measure by producing estimates

θ̂ ∼ N

(
θ,

1

N

1(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

)
. (5.278)

5.5.2 Connection to the Generalized Method of Moments
By squaring the CMLE (5.258) can be reformulated

θ̂(φ̃) = arg min
θ∈Θ

(
φ̃− µφ(θ)

)T
b(θ)bT(θ)

(
φ̃− µφ(θ)

)
, (5.279)

which is identified as a special case of Hansen’s estimator [77]

θ̂(z) = arg min
θ∈Θ

(
1

N

N∑
n=1

f(zn; θ)

)T

D(θ)

(
1

N

N∑
n=1

f(zn; θ)

)
(5.280)

with the moment condition

f(z; θ) = φ(z)− µφ(θ) (5.281)
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and an optimized weighting matrix

D?(θ) =
R−1
φ (θ)

∂µφ(θ)

∂θ

(∂µφ(θ)

∂θ

)T
R−1
φ (θ)((∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

) . (5.282)

The generalized method of moments (5.280) is an extension of the classical method of moments
[78], derived by considering orthogonality conditions [77]

Ez;θt [f(z; θt)] = 0 (5.283)

under the true parameter θt. It is interesting to observe, that we obtain the method (5.280) as
a straightforward maximum-likelihood estimator after approximating the original system model
p(z; θ) through a set of auxiliary statisticsφ(z) by the closest (in the sense of the Fisher information
measure) equivalent distribution p̃(z; θ) within the exponential family. Therefore the equivalent
exponential replacement provides a potential unifying link, like subtly requested by [79], between
Pearson’s method of moments [78] and Fisher’s competing concept of likelihood [3].



6. System Design for Pilot-Based Estimation with 1-bit ADC

While the approach of using 1-bit ADCs is highly attractive with respect to hardware complexity
and energy efficiency, it has a strong impact on the channel parameter estimation performance of
the receiver. As discussed in Chapter 4, for applications with low SNR the relative performance
gap between a 1-bit system and an ideal receiver with infinite A/D resolution is moderate with
2/π (−1.96 dB) [26]. In contrast, for the medium to high SNR regime the loss is much more
pronounced. However, switching to an A/D conversion with coarse resolution allows to exploit
other system design options like increasing the bandwidth of the receiver or using a sensor ar-
ray with multiple antennas. The generic Fisher information lower bound (5.230) and the concept
of exponential replacement (5.248) enables us to discuss the estimation theoretic performance
limits of hard-limited signal models with correlated noise. This makes it possible to analyze the
hard-limiting loss for wireless channel estimation with oversampling or with an adjusted analog
pre-filter and to examine if it is possible to push the 1-bit performance loss below the classical
benchmark of 2/π.

Therefore, in this chapter we discuss the estimation performance with 1-bit ADC and a modi-
fied wireless radio front-end. After deriving the required expressions for the performance analysis
of signal parameter estimation with 1-bit quantization under the exponential replacement frame-
work, by the example of a Global Navigation Satellite System (GNSS) receiver, we discuss the
behavior of the estimation performance when extending the bandwidth of the receiver or when
increasing the number of receive antennas in different receive scenarios. Then we analyze the in-
fluence of the sampling rate by oversampling the analog receive signal, i.e., choosing the sampling
rate fs higher than twice the bandwidthBr of the analog receive pre-filter. Further we show that for
a fixed sampling rate the analog pre-filter can be adjusted in order to maximize the Fisher informa-
tion measure at the output of the 1-bit ADC. Finally, we discuss the demodulation operation and
demonstrate that using more than two mixing channels (quadrature demodulator) when sampling
with 1-bit ADCs can result in significant performance improvements. Like oversampling, the ap-
proach of overdemodulation creates redundancy before the hard-limiting operation and therefore
allows to partially compensate the 1-bit performance loss for the task of channel estimation.

6.1 Performance of Pilot-Based Estimation with 1-bit ADC
During the discussion in this chapter we focus on pilot-based estimation where the structure of the
transmit signal s(θ) is known to the receiver. Therfore we can assume the signal model

p(y;θ) =
1

(2π)
N
2

√
detRη

exp

(
−1

2

(
y − s(θ)

)T
R−1
η

(
y − s(θ)

))
(6.1)
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with a fixed covariance matrix Rη prior to the hard-limiting operation which is performed on the
noisy receive data

z = sign (y). (6.2)

6.1.1 Fisher Information Bound for Pilot-Based Estimation under 1-bit ADC
To circumvent calculation of the exact likelihood function (4.121) and the exact Fisher information
(4.123) in the cases where the noise covarianceRη does not exhibit a diagonal structure, we use the
bounding approach (5.230) presented in Chapter 5 in order to approximate the Fisher information
in a pessimistic way. To this end, here we use identity to form the required auxiliary statistics

φ(z) = z, (6.3)

such that the mean

µφ(θ) = Ez;θ [φ(z)]

= Ez;θ [z]

= µz(θ) (6.4)

and the covariance matrix

Rφ(θ) = Ez;θ

[
φ(z)φT(z)

]
− µφ(θ)µT

φ(θ)

= Ez;θ

[(
z − µz(θ)

)(
z − µz(θ)

)T
]

= Rz(θ) (6.5)

are required in order to calculate a lower bound (5.230) for the Fisher information measure

F (θ) �
(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ

=

(
∂µz(θ)

∂θ

)T

R−1
z (θ)

∂µz(θ)

∂θ
. (6.6)

The first moment (6.4) can be determined element-wise by

µz,m(θ) = p
(
zm = 1;θ

)
− p
(
zm = −1;θ

)
= 1− 2 Q

(
sm(θ)√
[Rη]mm

)
. (6.7)

For the second moment (6.5) the diagonal elements are given by

[Rz(θ)]mm = 1− µ2
z,m(θ), (6.8)

while the off-diagonal entries are calculated

[Rz(θ)]ij = 4Ψij(θ)−
(
1− µz,i(θ)

)(
1− µz,j(θ)

)
, (6.9)



6.2 Uncorrelated Noise - System Design for 1-bit GNSS Synchronization 111

where Ψij(θ) is the cumulative density function (CDF) of the bivariate Gaussian distribution

p(yi − si(θ), yj − sj(θ);θ) ∼ N

([
0
0

]
,

[
[Rη]ii [Rη]ij
[Rη]ji [Rη]jj

])
(6.10)

with upper integration border
[
−si(θ)− sj(θ)

]T. The required derivative of the first moment is
found by the element-wise rule[

∂µz(θ)

∂θ

]
ij

=
2 exp

(
− s2i (θ)

2[Rη ]ii

)
√

2π[Rη]ii

[
∂s(θ)

∂θ

]
ij

. (6.11)

Note that the particular choice of the auxiliary statistics φ(z) = z used here results in a multivari-
ate and multiple parameter version (6.6) of the first-order information bound (5.12).

6.2 Uncorrelated Noise - System Design for 1-bit GNSS Synchronization
As an application of low resolution A/D conversion with an adjusted system design, the prob-
lem of range estimation in the context of satellite-based positioning is considered. While 1-bit
ADCs degrade the positioning performance of Global Navigation Satellite System (GNSS) re-
ceivers, their simplicity allows to realize sampling at high spatial and temporal rates in an energy
and hardware efficient way. This is of practical interest due to the fact that the development of
high-performance GNSS receive systems becomes challenging if one imposes strict constraints on
the available power, chip size or money budget. As the operation of critical infrastructure like mo-
bile communication systems, electric distribution networks or financial trading systems depends
on correct time synchronization attained through GNSS receive systems, robustness against inter-
ference and multi-path propagation is another important requirement that must be met by the re-
ceiver design without violating the technical limitations defined by the available hardware. Under
the assumption that the receive system operates on the basis of an efficient estimation algorithm,
two fundamental design options exist in order to obtain high positioning accuracy and robustness
against channel imperfections like multi-path propagation. One is to extend the amount of receive
antennas, the other is to implement a higher receive bandwidth through fast temporal sampling
rates. In the following we analyze the estimation theoretic performance limits of 1-bit GNSS re-
ceive systems which exploit these design options.

6.2.1 System Model
To this end, we assume a GNSS receiver with an uniform linear array (ULA) which consists of
A antennas. The antennas are placed with a spacing corresponding to half the carrier wavelength.
Each antenna, a = 1, 2, . . . , A, has an analog in-phase output yI,a(t) ∈ R and an analog quadrature
output yQ,a(t) ∈ R. The overall analog GNSS receive signal from all sensors can be written in
vector notation by

y(t) =
[
yT
I (t) yT

Q(t)
]T ∈ R2A, (6.12)

with yI(t),yQ(t) ∈ RA and

yI/Q(t) =
[
yI/Q,1(t) yI/Q,2(t) . . . yI/Q,A(t)

]T
. (6.13)
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The coherent and Doppler-compensated receive model

y(t) =γSA(ζS)x(t− τS) + γPA(ζP )Φ(ψP )x(t− τP ) + η(t) (6.14)

is assumed to comprise a line-of-sight satellite signal x(t − τS) ∈ R2, a multi-path component
x(t− τP ) ∈ R2 and sensor noise η(t) ∈ R2A. The line-of-sight satellite signal x(t− τS) impinges
on the array attenuated by γS ∈ R under the angle ζS ∈ R and with time-shift τS ∈ R, while the
multi-path component x(t − τP ) arrives attenuated by γP ∈ R with a time-delay τP ∈ R, angle
ζP ∈ R and phase-offset ψP ∈ R. The receive setup is depicted in Fig. 6.1. The steering matrix of

GNSS Rx

Fig. 6.1. GNSS Receive Setup with Multi-Path Propagation

the receive array as a function of the angle-of-arrival parameter ζ

A(ζ) =
[
AT
I (ζ) AT

Q(ζ)
]T ∈ R2A×2, (6.15)

is determined by the steering matrix corresponding to the in-phase sensor outputs

AI(ζ) =


α1(ζ) β1(ζ)
α2(ζ) β2(ζ)

...
...

αA(ζ) βA(ζ)

 ∈ RA×2 (6.16)

and the steering matrix associated with the quadrature outputs

AQ(ζ) =


−β1(ζ) α1(ζ)
−β2(ζ) α2(ζ)

...
...

−βA(ζ) αA(ζ)

 ∈ RA×2, (6.17)

where for both matrices the single entries are given by

αa(ζ) = cos
(
(a− 1)π sin (ζ)

)
, (6.18)

βa(ζ) = sin
(
(a− 1)π sin (ζ)

)
. (6.19)
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The channel phase-offset is modeled by the rotation matrix

Φ(ψ) =

[
cos (ψ) − sin (ψ)
sin (ψ) cos (ψ)

]
∈ R2×2 . (6.20)

The transmit signal of the GNSS satellite consists of an in-phase and a quadrature transmit com-
ponent

x(t) =
[√
ρCxI(t)

√
(1− ρ)CxQ(t)

]T ∈ R2, (6.21)

where C is the carrier power in Watts and 0 ≤ ρ ≤ 1 determines the power allocation between the
in-phase and quadrature component. The sensor noise

η(t) =
[
ηT
I (t) ηT

Q(t)
]T ∈ R2A (6.22)

consists of 2A independent and wide-sense stationary Gaussian random processes

ηI/Q(t) =
[
ηI/Q,1(t) ηI/Q,2(t) . . . ηI/Q,A(t)

]T ∈ RA, (6.23)

with flat power spectral density of N0

2
Watts per Hertz. Band-limiting the 2A analog receive signals

(6.12) by ideal low-pass filters with one-sided bandwidth Br and sampling at a rate of fs = 1
Ts

with fs = 2Br for a duration of To = NTs, results in a digital receive signal of the form

y = γS(A(ζS)⊗ IN)x(τS) + γP (A(ζP )Φ(ψP )⊗ IN)x(τP ) + η

= s(θ) + η, (6.24)

where we summarize the channel parameters in the vector

θ =
[
ζS τS ζP ψP τP

]T ∈ R5 (6.25)

and for notational convenience use

s(θ) = γS(A(ζS)⊗ IN)x(τS) + γP (A(ζP )Φ(ψP )⊗ IN)x(τP ). (6.26)

The entries of the signal vectors in (6.24) are given by

x(τ) =
[
xT
I (τ) xT

Q(τ)
]T ∈ R2N , (6.27)

η =
[
ηT
I ηT

Q

]T ∈ R2AN , (6.28)

ηI/Q =
[
ηT
I/Q,1 ηT

I/Q,2 . . . ηT
I/Q,M

]T ∈ RAN , (6.29)

with

xI(τ) =
[
xI(−τ) . . . xI((N − 1)Ts − τ)

]T
, (6.30)

xQ(τ) =
[
xQ(−τ) . . . xQ((N − 1)Ts − τ)

]T
, (6.31)

ηI/Q,m(τ) =
[
ηI/Q,m(0) . . . ηI/Q,m((N − 1)Ts)

]T
. (6.32)

Due to the antenna spacing and the strict relation between bandwidth and sampling rate fs = 2Br,
the covariance matrix of the sensor noise is

Rη = E
[
ηηT

]
= I2AN . (6.33)

In the following we assume that the ADC for each of the M = 2A output channels is a symmetric
hard-limiter, such that the final digital receive data z ∈ {−1, 1}2AN is given by

z = sign
(
y
)
. (6.34)
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6.2.2 Performance Analysis
In order to discuss the performance of the receiver in a compact analytical way, it is assumed that
the maximum-likelihood estimator (MLE)

θ̂(z) = arg max
θ

ln p(z;θ) (6.35)

is used for the estimation of the channel parameters θ. As shown in (3.38)

MSE(θ)
a
=

1

N
F−1
z (θ) (6.36)

holds in the asymptotic regime, such that with a pessimistic version of the FIM

F z(θ) � F̃ z, (θ) (6.37)

we can bound the resulting asymptotic estimation error of the MLE from above

1

N
F̃
−1

z (θ) �MSE(θ). (6.38)

For the conservative approximation of the FIM (6.6), the derivatives

∂s(θ)

∂θ
=
[
∂s(θ)
∂ζS

∂s(θ)
∂τS

∂s(θ)
∂ζP

∂s(θ)
∂ψP

∂s(θ)
∂τP

]
(6.39)

with

∂s(θ)

∂ζS
= γS

(∂A(ζS)

∂ζS
⊗ 1N

)
x(τS), (6.40)

∂s(θ)

∂τS
= γS

(
A(ζS)⊗ 1N

)∂x(τS)

∂τS
, (6.41)

∂s(θ)

∂ζP
= γP

(∂A(ζP )

∂ζP
Φ(ψP )⊗ 1N

)
x(τP ), (6.42)

∂s(θ)

∂ψP
= γP

(
A(ζP )

∂Φ(ψP )

∂ψP
⊗ 1N

)
x(τP ), (6.43)

∂s(θ)

∂τP
= γP

(
A(ζP )Φ(ψP )⊗ 1N

)∂x(τP )

∂τP
(6.44)

and

∂Φ(ψ)

∂ψ
=

[
− sin (ψ) cos (ψ)
− cos (ψ) − sin (ψ)

]
(6.45)

are required, where the derivatives of the transmit signal with respect to the time-delay are

∂x(τ)

∂τ
=
[
∂xT

I (τ)

∂τ

∂xT
Q(τ)

∂τ

]T

, (6.46)[
∂xI/Q(τ)

∂τ

]
i

= −
dxI/Q(t)

dt

∣∣∣
t=(i−1)Ts−τ

(6.47)
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and the derivative of the steering matrix is

∂A(ζ)

∂ζ
=
[
∂AT

I (ζ)

∂ζ

∂AT
Q(ζ)

∂ζ

]T

, (6.48)

with the in-phase component

∂AI(ζ)

∂ζ
=


∂α1(ζ)
∂ζ

∂β1(ζ)
∂ζ

∂α2(ζ)
∂ζ

∂β2(ζ)
∂ζ

...
...

∂αA(ζ)
∂ζ

∂βA(ζ)
∂ζ

 (6.49)

and a quadrature component

∂AQ(ζ)

∂ζ
=


−∂β1(ζ)

∂ζ
∂α1(ζ)
∂ζ

−∂β2(ζ)
∂ζ

∂α2(ζ)
∂ζ

...
...

−∂βA(ζ)
∂ζ

∂αA(ζ)
∂ζ

 , (6.50)

while the individual entries are

∂αa(ζ)

∂ζ
= −(a− 1)π cos (ζ) sin

(
(a− 1)π sin (ζ)

)
, (6.51)

∂βa(ζ)

∂ζ
= (a− 1)π cos (ζ) cos

(
(a− 1)π sin (ζ)

)
. (6.52)

In order to analyze the potential of 1-bit GNSS receivers with multiple antennas and high temporal
sampling rates, we will compare the achievable ranging accuracy of different receive setups to an
ideal reference system with infinite ADC resolution. To this end we focus on the accuracy of the
range measurement obtained by estimating the line-of-sight propagation delay τ̂S which is given
by

MSE(τS) =
[
F−1
z (θ)

]
22

(6.53)

and is directly related to the accuracy of the final positioning solution of the GNSS system. In
order to compare different receive systems with infinite A/D resolution to a reference system, we
introduce the relative performance measure

χ∞(θ) =

[
F−1

REF(θ)
]

22[
F−1
y (θ)

]
22

, (6.54)

where the FIM for an ideal receiver which has access to the unquantized receive signal y is

F y(θ) =

(
∂s(θ)

∂θ

)T
∂s(θ)

∂θ
. (6.55)

For a comparison of the 1-bit receive system with the reference system the relative performance
measure

χ1-bit(θ) =

[
F−1

REF(θ)
]

22[
F̃
−1

z (θ)
]

22

, (6.56)
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is used, where the pessimistic FIM for the quantized receiver is

F̃ z(θ) =

(
∂µz(θ)

∂θ

)T

R−1
z (θ)

∂µz(θ)

∂θ
. (6.57)

The relative performance measures (6.54) and (6.56) allow to characterize the gain or loss in esti-
mation accuracy in terms of an equivalent change in SNR. For example, a system which exhibits
χ = 3.0 dB attains the same performance as the reference system with the satellite using the
double amount of transmit power. Note that in such a case the root mean squared error of the es-
timation solution is diminished accordingly by a factor of 1√

2
. Also note that (6.56) is in general a

pessimistic measure for the quantization loss, i.e., the 1-bit performance gap can be smaller than
indicated by (6.56). For the special case of uncorrelated noise, (6.56) forms an exact measure due
to the result (5.27).

In all discussed GNSS scenarios we assume the transmitter to be a satellite of the American
GPS system sending C/A - L1 signals [55] with a symbol duration of Tc = 1

fc
at a carrier frequency

of 2πωc = 1575.42 MHz. The reference frequency of the system is fc = 1.023MHz. The transmit
signal is limited to a one-sided bandwidth ofBt = 11.253 MHz (main-lobe and 5 side-lobes) at the
satellite, an civil I/Q power allocation of ρ = 1 is assumed and the receive strength is C/N0 = 45.0
dB-Hz at each sensor. After demodulation to baseband, the receiver restricts the receive signal of
each antenna to a one-sided bandwidth of Br = κfc , κ ≥ 1 by using an ideal low-pass filter and
samples at a rate of fs = 2Br for a duration of To = 1 ms. For the reference receive system with
infinite ADC resolution, we assume A = 2 antennas and κ = 1, such that

F REF(θ) =

(
∂s(θ)

∂θ

)T
∂s(θ)

∂θ

∣∣∣∣∣
A=2,κ=1

. (6.58)

6.2.2.1 Line-of-Sight GNSS Channel Synchronization

The first scenario we discuss is a simple line-of-sight receive situation without multi-path (see Fig.
6.2). In this case, the receive signal model (6.24) simplifies to

GNSS Rx

Fig. 6.2. Line-of-Sight GNSS Receive Setup

y = γS(A(ζS)⊗ IN)x(τS) + η

= s(θ) + η, (6.59)
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where the channel parameters are

θ =
[
ζS τS

]T
. (6.60)

For the performance analysis, we set the angle of the direct path to ζS = 0. In order to visualize
the behavior of the estimation error in correspondence to the number of receive antennas A, Fig.
6.3 depicts the relative performance χ∞, where an ideal receive system with A antennas operating
at a bandwidth κ = 1 is compared to the reference system with A = 2 antennas and κ = 1. It
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Fig. 6.3. Performance vs. Number of Antennas A

can be observed that doubling the number of receive antennas results in a gain of χ∞ = 3.0 dB.
This is also the case for systems with 1-bit ADC, which in general show a performance χ1-bit that
lies−2.0 dB below the performance of receivers with infinite ADC resolution. The result indicates
that using a 1-bit GNSS receiver with A = 3 antennas allows to approximately obtain the same
performance as with the ideal reference system with A = 2 antennas. Taking into consideration
that a 2-bit receive system would require 3 times more comparators for the realization of the ADC
circuit than a 1-bit receiver, it becomes clear that using A = 6 antennas with 1-bit resolution
instead of A = 2 and 2-bit ADC resolution will lead to a system design which is at least 3 dB
better with respect to the problem of channel synchronization in the low SNR regime under the
same number of comparator operations per sample.

In contrast Fig. 6.4 shows the behavior of the estimation performance χ as a function of the
receive bandwidth κ. Therefore, under the relative performance measure χ∞ an ideal receive sys-
tem with infinite ADC resolution, A = 2 antennas and receive bandwidth κ ≥ 1 is compared to
the reference system operating at κ = 1. In parallel the figure of merit χ1-bit is depicted in Fig.
6.4 in order to show the relative performance of a system with 1-bit ADC. It is observed that the
receive bandwidth κ is a crucial design criterion for high-performance GNSS systems as it allows
to significantly increase the channel synchronization performance. This is due to the fact that for
the Fisher information of the time-delay parameter τS the SNR per Hz exhibits a quadratic weight
with respect to the frequency offset from the carrier frequency fc. As the spectral power density
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Fig. 6.4. Performance vs. Receive Bandwidth κ

of the satellite signal, and consequently the SNR per Hz decays quadratically with frequency, a
linear growth of the accuracy, similar to the case with A antennas, is observed. The 1-bit GNSS
receive systems benefit from the same effect while their relative performance χ1-bit in this sce-
nario lies constantly −2.0 dB below the performance of the receivers with a high-resolution ADC.
Consequently, a receiver with 1-bit A/D conversion, sampling at a temporal rate of approximately
κ = 1.5, is sufficient to outperform the ideal reference system with κ = 1.0. Recalling from Chap-
ter 3 that the 1-bit system can be operated at least at κ = 3 under the same power consumption
(2.5) as a 2-bit receiver, it becomes clear that from a performance-oriented perspective the ADC
resolution plays a minor role in this low SNR application. For the GNSS synchronization problem,
the receive bandwidth is the dominating design. This leads to the result that with a fixed number
of comparator operations per time instance, a 1-bit ADC with κ ≥ 3 outperforms any other system
with higher A/D resolution and κ = 1.

6.2.2.2 GNSS Channel Synchronization under Multi-Path Propagation

For the second scenario, we assume that the GNSS satellite signal is received through the line-
of-sight path with an additional multi-path component (see Fig. 6.5). The receive signal model
therefore is as derived in (6.24)

y = γS(A(ζS)⊗ IN)x(τS) + γP (A(ζP )Φ(ψP )⊗ IN)x(τP ) + η

= s(θ) + η (6.61)

with the channel parameter vector

θ =
[
ζS τS ζP ψP τP

]
. (6.62)

The time-delays of the direct path and the multi-path component are chosen such that ∆τ =
τP − τS = 0.1Tc while the angles are ζS = 0 and ζP = π

16
. The multi-path attenuation is set to

γP =
√

0.5γS , i.e., −3.0 dB in comparison to the direct path, and the phase offset is ψP = 0.
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GNSS Rx

Fig. 6.5. GNSS Receive Setup with Multi-Path Propagation

In order to investigate the behavior of the GNSS synchronization performance under multi-path
propagation in correspondence with the number of antennas A, Fig. 6.6 visualizes the relative
performance χ∞ with respect to an ideal receive system with infinite ADC resolution, A = 2
antennas and κ = 1. It becomes clear that the positioning performance is substantially increased
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Fig. 6.6. Estimation Performance vs. Number of Antennas A

if a higher number of antennas A is used. In this specific GNSS scenario using A = 6 instead
of A = 2 antennas with ideal ADCs allows to attain the same performance as in a multi-path
free (MPF) scenario (χ∞, MPF, dashed line). The 1-bit GNSS system with A = 3 antennas already
outperforms the ideal reference system with A = 2 by χ1-bit = 3.71 dB under the chosen multi-
path propagation setup. Fig. 6.7 shows a similar comparison where the performance scaling is
visualized as a function of the receive bandwidth κ. With the performance measure χ∞ an ideal
receive system with infinite ADC resolution, A = 2 antennas and a receive bandwidth of κ ≥ 1
is compared to the reference system with A = 2 operating at κ = 1. It can be observed that also
the receive bandwidth κ is an effective design option in order to mitigate the effect of multi-path
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Fig. 6.7. Estimation Performance vs. Receive Bandwidth κ

propagation. Increasing the receive bandwidth by factor κ = 5 with an ideal ADC allows to obtain
the same performance as in a multi-path free scenario (χ∞, MPF, dashed line). Fig. 6.7 shows that in
the considered case already with a bandwidth of κ = 1.35 the 1-bit system outperforms the ideal
reference receiver with κ = 1.

We have carried out a performance analysis of GNSS receive systems with ideal ADC and 1-
bit ADC with respect to the achievable synchronization accuracy. The investigation under different
numbers of receive antennas and receive bandwidths shows that these two design parameters are
key for the development of robust high-performance GNSS receive systems. The resolution of the
ADC only plays a secondary role. If a very simple symmetric 1-bit ADC is used, high receive
bandwidth and multiple antennas can be realized in an energy and hardware-efficient way. The
achievable performance gain clearly outweighs the loss that has to be taken into account due to
the nonlinearity of the 1-bit ADCs. Already increasing the number of antennas or the receive
bandwidth by a factor of 2 allows to attain a positioning accuracy with 1-bit ADC which is higher
than with any other A/D resolution. This shows that the energy and hardware budget of GNSS
receive systems should not be invested into the resolution of the ADCs but into the number of
receive sensors and the receive bandwidth. This will allow to build efficient and reliable high-
performance receivers capable of coping with challenging GNSS receive situations.

6.3 Correlated Noise - System Design for Channel Estimation with 1-bit ADC
While in the last section, we have focused on system design modifications which result in receive
signal models without noise correlation, on the next pages we consider adjustments of the analog
radio front-end which introduce noise correlation. As with hard-limiting these models are challeng-
ing to analyze by means of the Fisher information measure (see Section 4.6), we make use of the
approximation (5.230) in order to explore possible information gain. In particular, we discuss over-
sampling the analog receive signal without changing the analog receive filter. Further, for a fixed
sampling rate we verify the impact of the analog pre-filter onto the estimation performance of the
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channel parameters. Then we discuss the demodulation operation and analyze the estimation per-
formance which is achieved withM > 2 demodulation output channels (overdemodulation) which
are sampled with 1-bit ADCs.

6.3.1 Impact of the Sampling Rate and the Analog Pre-filter
For the discussion of oversampling and pre-filter adjustment, we assume a real-valued receive
signal of the form

y̆(t) =
√
Cx̆(t− τ) + η̆(t), (6.63)

with C ∈ R being the carrier power and τ ∈ R a time-delay. The signal is filtered by an ideal
low-pass filter

H(ω) =

{
1 if |ω| ≤ 2πBr

0 else
(6.64)

with bandwidth Br, such that the analog receive signal is given by

y(t) = y̆(t) ∗ h(t)

=
√
Cx(t− τ) + η(t). (6.65)

The received pilot signal has the form

x(t) =
+∞∑
c=−∞

[c](1+mod(c,Nc))g(t− cTc), (6.66)

with c ∈ {−1, 1}Nc being a binary chip sequence with Nc = 1023 elements and a chip frequency
fc = 1

Tc
= 1.023 MHz, such that the chip-duration is Tc = 977.52 ns and the signal x(t) is periodic

with To = 1 ms. The received pilot pulse

g(t) =
1

π
√
Tc

[
Si

(
2πBr

(
t+

Tc
2

))
− Si

(
2πBr

(
t− Tc

2

))]
is the band-limited version of a rectangular pulse ğ(t), where we use the definition

Si(t) =

∫ t

0

sin(x)

x
dx. (6.67)

Assuming AWGN η̆(t) with constant power spectral density N0

2
, the temporal auto-correlation

function of the additive noise after low-pass filtering

r(t) =

∫ ∞
−∞

η(α)η(α− t)dα, (6.68)

can be characterized by the inverse Fourier transform of the auto-correlation function in the fre-
quency domain

r(t) =
1

2π

∫ ∞
−∞

N0

2
|H(ω)|2 e−jωtdω

= BrN0 sinc (2Brt), (6.69)
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where

sinc(x) =
sin (πx)

πx
. (6.70)

The analog signal y(t) is sampled with a sampling frequency of fs = 1
Ts

such that the digital
receive signal

y =
√
Cx(τ) + η (6.71)

with vector entries

ym = y
(
(m− 1)Ts

)
, (6.72)

xm(τ) = x
(
(m− 1)Ts − τ

)
, (6.73)

ηm = η
(
(m− 1)Ts

)
(6.74)

is obtained. Due to the form of the auto-correlation function (6.69) of the noise the temporal co-
variance matrix

Rη = E
[
ηηT

]
(6.75)

is given by

[Rη]ij = BrN0 sinc (2BrTs |i− j|). (6.76)

It is observed that temporally white noise, i.e.,

Rη = BrN0IN (6.77)

is obtained only if the relation between the sampling rate fs and the low-pass filter bandwidth
fs = 2Br is exactly satisfied. Note, that the carrier-to-noise ratio C

N0
is a measure for the available

receive power at the antenna which is independent of the filter bandwidth Br. This is important
in order to obtain a fair comparison in the following when changing the analog receive filter. For
consistency with prior sections, we rewrite the digital signal model

y = γx(τ) + η

= s(θ) + η (6.78)

with γ =
√

C
BrN0

, such that the channel parameters are

θ =
[
γ τ

]T (6.79)

and the noise covariance is normalized to

[Rη]ij = sinc (2BrTs |i− j|). (6.80)
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6.3.2 Oversampling the Analog Receive Signal with 1-bit ADC
First, we consider the effect of oversampling the receive signal by fixing the receive bandwidth to
Br = 1.023 MHz and using a sampling rate of fs = 2Brκ with κ ≥ 1. As a reference we use the
ideal receive system having access to y and exhibiting a Fisher information matrix

F y(θ) =

(
∂s(θ)

∂θ

)T

R−1
η

∂s(θ)

∂θ
. (6.81)

Note that due to the sampling theorem, (6.81) is independent of the oversampling factor κ. For the
1-bit receive system having exclusively access to a hard-limited version of the receive signal

z = sign (y), (6.82)

we calculate a conservative approximation of the FIM by

F̃ z(θ) =

(
∂µz(θ)

∂θ

)T

R−1
z (θ)

∂µz(θ)

∂θ
(6.83)

and evaluate the performance gap to the ideal benchmark with respect to the estimation of both
channel parameters by

χγ(θ) =

[
F−1
y (θ)

]
11[

F̃
−1

z (θ)
]

11

, (6.84)

χτ (θ) =

[
F−1
y (θ)

]
22[

F̃
−1

z (θ)
]

22

. (6.85)

Fig. 6.8 shows the 1-bit quantization loss χγ(θ) for the attenuation parameter γ as a function
of the oversampling factor κ. It can be observed that the performance gap can be diminished by
approximately 1 dB through oversampling. For example, in the low SNR regime whereC/N0 = 30
dB-Hz, the loss without oversampling, i.e., κ = 1, is −1.96 dB and reduces to −1.02 dB for
κ = 5. A similar behavior is observed for medium SNR settings with C/N0 = 55 dB-Hz and
C/N0 = 60 dB-Hz where oversampling recovers approximately 1 dB of the loss while the initial
loss without oversampling is more pronounced than in the low SNR case. An interesting result is
obtained when analyzing the 1-bit quantization loss χτ (θ) for the delay parameter τ as a function
of the oversampling factor κ (see Fig. 6.9). While for the low SNR regime the loss χτ (θ) shows
to be very similar to the performance gap χγ(θ), in the medium SNR regime we observe a strong
performance improvement through oversampling. In the situation where C/N0 = 60 dB-Hz, the
initial loss without oversampling is −3.51 dB while with oversampling with κ = 5 we reach a gap
of only −0.99 dB.

This shows that oversampling is a simple approach in order to compensate the loss introduced
by a hard-limiting ADC. While the obtained performance gain for medium SNR scenarios is de-
pendent on the considered parameter, for the low SNR the beneficial effect of oversampling seems
to be parameter independent. Besides verifying the classical loss of −1.96 dB for κ = 1, it is
interesting to observe that for κ = 3 the loss for both parameters is not higher than−1.10 dB. This
indicates that when using a fixed receive bandwidth Br and the same number of comparators the
1-bit system will exhibit a low SNR regime loss which is less than −1.10 dB when comparing to
any higher A/D resolution.
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Fig. 6.8. Performance Loss χγ vs. Oversampling κ
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6.3.3 Adjusting the Analog Pre-Filter with 1-bit ADC
As another possibility to adjust the radio front-end, we discuss the analog pre-filter. To this end, we
fix the sampling rate to fs = 2.046 MHz and choose the bandwidth of the ideal analog low-pass
filter Br = κfs

2
with κ ≤ 1. In Fig. 6.10 the performance loss for estimation of the signal strength

γ is depicted. While for the medium SNR receive scenario with C/N0 = 60 dB-Hz the information
loss constantly increases from−3.69 dB to−4.86 when diminishing κ, for the low SNR regime it is
observed that the information loss can be reduced from−1.96 dB (κ = 1) to−1.60 dB (κ = 0.65).
It is interesting to see that the Fisher information in front of the quantizer becomes significantly
smaller for κ < 0.8 while behind the quantizer the Fisher information in the low SNR regime
increases until κ = 0.65. A similar effect is found for the time-delay parameter τ in Fig. 6.11.
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Fig. 6.10. Performance Loss χγ vs. Filter Bandwidth κ

Here for the low SNR regime the Fisher information after the quantization operation increases
from −1.96 dB (κ = 1) to −1.80 dB (κ = 0.85) while for the ideal system the information
measure becomes small due to the filter blocking high frequency components. In contrast to the
signal strength parameter γ, for the time-delay parameter this effect can also be observed in the
medium SNR regime. In the case of C/N0 = 60 dB-Hz the loss diminishes from−2.55 dB (κ = 1)
to −2.41 dB (κ = 0.85). The results show that the analog pre-filter has a significant impact onto
the estimation performance which can be achieved with a 1-bit ADC.

6.3.4 Overdemodulation with 1-bit ADC
Finally, the design of the analog demodulator for receivers with low-resolution ADC is investi-
gated. For infinite ADC resolution, demodulation to baseband with M = 2 orthogonal sinusoidal
functions (quadrature demodulation) is an optimum design choice with respect to system perfor-
mance. For receivers which are restricted to ADCs with low amplitude resolution we show here
that this classical approach is suboptimal under an estimation theoretic perspective. To this end, we
analyze the channel parameter estimation performance when formingM > 2 analog demodulation
channels prior to low-complexity 1-bit ADCs.
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In order to demodulate the carrier signal to baseband, classical receivers use a demodulator
with in-phase and quadrature channel. Within each channel the receive signal is multiplied with a
sinusoid, oscillating at carrier frequency, where the two sinusoids are kept orthogonal by a phase
offset of π

2
[80, p. 582ff.]. While for receivers with infinite A/D resolution this method induces no

information-loss during the subsequent transition from the analog to the digital domain, here we
show that M > 2 demodulation channels allow to significantly reduce the loss due to coarse signal
quantization.

For the discussion we assume a single transmitter

x̆(t) = x̆1(t)
√

2 cos (ωct)− x̆2(t)
√

2 sin (ωct), (6.86)

where ωc ∈ R is the carrier frequency and x̆1/2(t) ∈ R are two independent input signals. The
analog receiver observes

y̆(t) = γx̆1(t− τ)
√

2 cos (ωct− ψ)− γx̆2(t− τ)
√

2 sin (ωct− ψ) + η̆(t), (6.87)

where γ ∈ R, γ ≥ 0 is the attenuation and τ ∈ R a time-shift due to signal propagation. ψ ∈ R
characterizes the channel phase offset and η̆(t) ∈ R is AWGN. For the demodulation to baseband
the receiver forms m = 1, . . . ,M channel outputs by performing the multiplications

y̆m(t) = y̆(t) ·
√

2 cos (ωct+ ϕm)

= γx̆1(t− τ)
(

cos (2ωct− ψ + ϕm) + cos (ψ + ϕm)
)

− γx̆2(t− τ)
(

sin (2ωct− ψ + ϕm)− sin (ψ + ϕm)
)

+ η̆(t)
√

2 cos (ωct+ ϕm) (6.88)

with constant demodulation offsets ϕm. Behind a low-pass filter h(t;Br) of bandwidth Br, the
m-th output channel is

ym(t) = γx1(t− τ)
(

cos (ψ) cos (ϕm)− sin (ψ) sin (ϕm)
)

+ γx2(t− τ)
(

sin (ψ) cos (ϕm) + cos (ψ) sin (ϕm)
)

+ cos (ϕm)η1(t) + sin (ϕm)η2(t), (6.89)
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where

η1(t) =
√

2 cos (ωct)
(
h(t;Br) ∗ η̆(t)

)
, (6.90)

η2(t) = −
√

2 sin (ωct)
(
h(t;Br) ∗ η̆(t)

)
(6.91)

are independent wide-sense stationary Gaussian random processes with unit power spectral den-
sity. The described demodulation operation is depicted in Fig. 6.12. Note that we use the notation
x(t) = h(t;Br)∗x̆(t), where ∗ is the convolution operator. Defining the demodulation offset vector

ϕ =
[
ϕ1 ϕ2 . . . ϕM

]T
, (6.92)

the output signals of the M demodulation channels can be written as

y(t) = A(ϕ)
(
γΦ(ψ)x(t− τ) + η(t)

)
(6.93)

with the analog signals

y(t) =
[
y1(t) y2(t) . . . yM(t)

]T
, (6.94)

x(t− τ) =
[
x1(t− τ) x2(t− τ)

]T
, (6.95)

η(t) =
[
η1(t) η2(t)

]T (6.96)

and the matrices

A(ϕ) =


cos (ϕ1) sin (ϕ1)
cos (ϕ2) sin (ϕ2)

...
...

cos (ϕM) sin (ϕM)

 , (6.97)

Φ(ψ) =

[
cos (ψ) sin (ψ)
− sin (ψ) cos (ψ)

]
. (6.98)

Sampling each of the M output channels at a rate of fs = 1
Ts

= 2Br for the duration of T = NTs

and defining the parameter vector θ =
[
ψ τ

]T, the digital receive signal is comprised of N
temporally white snapshots yn ∈ RM with

yn = γA(ϕ)Φ(ψ)xn(τ) +A(ϕ)η′n = γsn(θ) + ηn. (6.99)

The individual digital samples are given by

yn =
[
y1

(
(n− 1)Ts

)
y2

(
(n− 1)Ts

)
. . . yM

(
(n− 1)Ts

)]T
, (6.100)

xn(τ) =
[
x1

(
(n− 1)Ts − τ

)
x2

(
(n− 1)Ts − τ

)]T
, (6.101)

η′
n =

[
η1

(
(n− 1)Ts

)
η2

(
(n− 1)Ts

)]T
. (6.102)

The sampled noise η′n is a zero-mean Gaussian variable with E
[
η′
nη

′T
n

]
= I2 while the snapshot

noise covariance is

Rη = E
[
ηnη

T
n

]
= A(ϕ)AT(ϕ). (6.103)
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Fig. 6.12. Analog Radio Front-End with Overdemodulation (M > 2)

In the following, we assume that the ADC for each of the M output channels is a symmetric
hard-limiter, such that the final digital receive data zn ∈ {−1, 1}M is given by

zn = sign
(
yn
)
. (6.104)

In order to discuss the benefits of usingM > 2 demodulation outputs, it is assumed that the receiver
infers the deterministic but unknown channel parameters θ by using the maximum-likelihood es-
timator (MLE)

θ̂(Z) = arg max
θ∈Θ

ln p(Z;θ) = arg max
θ∈Θ

N∑
n=1

ln p(zn;θ), (6.105)

where the receive signal with N snapshots has the form

Z =
[
z1 z2 . . . zN

]
. (6.106)

The performance analysis can be conducted along the lines (6.36) - (6.38), where the required
derivatives are given by

∂sn(θ)

∂θ
=
[
∂sn(θ)
∂ψ

∂sn(θ)
∂τ

]
=
[
A(ϕ)∂Φ(ψ)

∂ψ
xn(τ) A(ϕ)Φ(ψ)∂xn(τ)

∂τ

]
, (6.107)

with

∂Φ(ψ)

∂ψ
=

[
− sin (ψ) cos (ψ)
− cos (ψ) − sin (ψ)

]
, (6.108)

∂xn(τ)

∂τ
= −

[
dx1(t)

dt
dx2(t)

dt

]T ∣∣∣
t=((n−1)Ts−τ)

. (6.109)

For visualization, we use a GNSS example where the transmitter sends pilot signals

x1/2(t) =
∞∑

c=−∞

[c1/2](1+mod (c,Nc))g(t− cTc). (6.110)
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The signals c1/2 ∈ {−1, 1}Nc are binary vectors with Nc = 1023 symbols, each of duration
Tc = 977.52 ns, g(t) is a rectangular transmit pulse and mod (·) is the modulo operator. The
receiver bandlimits the signal to Br = 1.023 MHz and samples at a rate of fs = 2Br in order to
obtain temporally white snapshots. After one signal period To = 1 ms, the receiver has available
MN = M · 2046 samples for the estimation task. The unknown channel parameters are assumed
to be θ =

[
π
8

0
]T. The demodulation offsets are equally spaced ϕm = π

M
(m − 1) and the

performance is normalized with respect to an ideal system with infinite ADC resolution andM = 2

χψ/τ (θ) =
[F−1

y (θ)]11/22

[F̃
−1

z (θ)]11/22

, (6.111)

where the FIM of the reference system is

F y(θ) = γ2

N∑
n=1

(
∂sn(θ)

∂θ

)T(
∂sn(θ)

∂θ

)
. (6.112)

Note that for M = 2 the noise in both channels is independent. Under this condition it holds that
the approximated FIM with hard-limiting is exact, i.e., F̃ z(θ) = F z(θ). Therefore, χψ/τ (θ)

∣∣
M=2

characterizes the 1-bit performance loss with classical I/Q demodulation precisely. For the case
M > 2 the ratio χψ/τ (θ) provides a pessimistic approximation.
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Fig. 6.13. Performance Loss χψ vs. SNR

Fig. 6.13 and 6.14 show the estimation performance χψ(θ) and χτ (θ) for different choices
of M versus the SNR. For both parameters M = 16 allows to diminish the quantization-loss
at SNR = −15.0 dB from χψ/τ (θ) = −1.99 dB to χψ/τ (θ) = −1.07 dB. For high SNR (e.g.
SNR = +10.0 dB, M = 16), the gain is much more pronounced. The loss for phase estimation
can be reduced from χψ(θ) = −7.92 dB to χψ(θ) = −0.51 dB. For the delay parameter τ , the
1-bit loss changes from χτ (θ) = −6.45 dB to χτ (θ) = −3.18 dB.
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Fig. 6.14. Performance Loss χτ vs. SNR

Summarizing this section, a receiver which uses M > 2 demodulation channels to map the
analog carrier signal to baseband has been analyzed. While with high ADC resolution this ap-
proach leads to redundant data, here it was shown by an estimation theoretic investigation, that for
receivers which are restricted to low A/D resolution significant performance improvements can be
achieved if more than two demodulation channels are used. During system design this opens the
possibility to trade-off the A/D resolution (exponential complexity) against the number of demod-
ulation channels (linear complexity).



7. Covariance-Based Parameter Estimation with 1-bit ADC

As discussed in Section 4.6.1, the open problem of a compact expression for the orthant proba-
bility makes formulation of the exact likelihood function of a multivariate Gaussian signal model
after hard-limiting challenging and therefore hinders optimum 1-bit signal processing. This is in
particular the case when covariance-based estimation is considered where the signal parameter of
interest modulates the covariance matrix structure of the multivariate Gaussian input distribution
to the 1-bit quantizer. Note that in Chapter 6 we have focused on the problem of estimating the
location parameter of a hard-limited multivariate Gaussian variable with fixed covariance matrix
(4.108). Here we center the discussion around the estimation of a parameter changing the covari-
ance matrix structure of a zero-mean multivariate Gaussian variable (4.116) from 1-bit quantized
observations.

Such a signal processing problem arises in wireless applications where the direction-of-arrival
(DOA) parameter of a random transmit signal impinging on a receive array with multiple antennas
is to be determined. Due to the problem with the representation of the exact 1-bit likelihood under
noise correlation, formulation of efficient processing methods for DOA estimation from coarsely
quantized data and an analytical performance assessment have, despite their high practical rel-
evance, only found very limited attention in the literature. The main work [39] concerned with
efficient 1-bit DOA estimation has to restrict the analytical discussion to A = 2 sensors due to the
problem outlined in (4.123) and to resort to empirical methods of high computational complexity
for cases where A > 2.

Here we apply the method of replacing the original system model by an equivalent distribution
within the exponential family (exponential replacement) to the blind DOA estimation problem.
That way we circumvent calculation of the exact likelihood, obtain a conservative analytic ap-
proximation of the system model and can calculate the Fisher information measure for 1-bit DOA
estimation under setups with an arbitrary number of sensors. This enables us to formulate a con-
servative approximation to the Cramér-Rao lower bound (CRLB) and to derive an asymptotically
achieving conservative maximum-likelihood estimator (CMLE). The 1-bit DOA performance ana-
lysis based on the exponential replacement points out that a low-complexity radio front-end design
with 1-bit ADC is in particular suitable for DOA estimation with a large number of array elements
operating in the medium SNR regime.

7.1 System Model

For the application of blind DOA parameter estimation with 1-bit ADC, we assume a uniform
linear array (ULA) with A sensors, where the spacing between the antennas is equal to half the
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wavelength. With a signal source

x =
[
xI xQ

]T ∈ R2, (7.1)

consisting of independent zero-mean Gaussian in-phase and quadrature components with

Ex
[
xxT

]
= I2 (7.2)

and under a narrowband assumption, the unquantized receive signal of size M = 2A

y =
[
yT
I yT

Q

]T ∈ RM , (7.3)

can be written in a real-valued notation

y = γA(ζ)x+ η, (7.4)

where ζ is the direction under which the transmit signal x impinges on the receive array. Note, that
η ∈ RM is independent zero-mean AWGN with

Eη
[
ηηT

]
= IM . (7.5)

The full array steering matrix

A(ζ) =
[
AT
I (ζ) AT

Q(ζ)
]T ∈ RM×2, (7.6)

is modulated by the DOA parameter ζ ∈ R and consists of an in-phase steering matrix and a
quadrature steering matrix as given in (6.16)-(6.18). Therefore, with θ = ζ the parametric covari-
ance of the unquantized receive signal is

Ey;θ

[
yyT

]
= Ry(θ)

= γ2A(θ)AT(θ) + IM (7.7)

and the receive signal of a low-complexity receiver with 1-bit ADC can be modeled

z = sign (y). (7.8)

7.2 Performance Analysis for 1-bit Covariance-Based Estimation
In order to apply the pessimistic approximation of the Fisher information (5.230) for DOA estima-
tion with 1-bit hard-limiting, we use the auxiliary statistics

φ(z) = vech
(
zzT

)
, (7.9)

where vech (B) denotes the half-vectorization of the symmetric matrix B, i.e., the vectorization
of the lower triangular part ofB. The required mean (5.205) is given by

µφ(θ) = Ez;θ [φ(z)]

= Ez;θ

[
vech

(
zzT

)]
= vech

(
Ez;θ

[
zzT

])
= vech (Rz(θ)) , (7.10)
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where by the arcsine law [81, pp. 284] the quantized covariance matrix is

Rz(θ) =
2

π
arcsin

(
1

γ2 + 1
Ry(θ)

)
. (7.11)

For the derivative of the mean (7.10) we find

∂µφ(θ)

∂θ
= vech

(
∂Rz(θ)

∂θ

)
, (7.12)

where the derivative of the quantized covariance matrix (7.11) is found element-wise

[
∂Rz(θ)

∂θ

]
ij

=
2
[
∂Ry(θ)

∂θ

]
ij

π(γ2 + 1)
√

1− 1
(γ2+1)2

[Ry(θ)]2ij

(7.13)

with the derivative of the unquantized receive covariance matrix (7.7) being

∂Ry(θ)

∂θ
= γ2

(
∂A(θ)

∂θ
AT(θ) +A(θ)

∂AT(θ)

∂θ

)
. (7.14)

The derivative of the steering matrix is

∂A(θ)

∂θ
=
[
∂AT

I (θ)

∂θ

∂AT
Q(θ)

∂θ

]T

(7.15)

with the in-phase component and the quadrature component given by (6.49)-(6.51). For the second
moment of the auxiliary statistics (5.206), the expectation

Ez;θ

[
φ(z)φT(z)

]
= Ez;θ

[
vech

(
zzT

)
vech

(
zzT

)T
]

(7.16)

is required. This implies to evaluate all the expected values

Ez;θ [zizjzkzl] , i, j, k, l ∈ {1, . . . ,M}. (7.17)

For the cases i = j = k = l or i = j 6= k = l, we obtain

Ez;θ [zizjzkzl] = Ez;θ

[
z4
i

]
= Ez;θ

[
z2
i z

2
k

]
= 1. (7.18)

If i = j = k 6= l, the arcsine law [81] [82] results in

Ez;θ [zizjzkzl] = Ez;θ

[
z3
i zl
]

= Ez;θ [zizl]

=
2

π
arcsin

(
1

(γ2 + 1)2
[Ry(θ)]il

)
, (7.19)
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like in the case i = j 6= k 6= l, where

Ez;θ [zizjzkzl] = Ez;θ

[
z2
i zkzl

]
= Ez;θ [zkzl]

=
2

π
arcsin

(
1

(γ2 + 1)2
[Ry(θ)]kl

)
. (7.20)

The case i 6= j 6= k 6= l requires special care, as

Ez;θ [zizjzkzl] = Pr {zizjzkzl = 1} − Pr {zizjzkzl = −1} (7.21)

involves the evaluation of the 24 = 16 orthant probabilities

Pr {±zi > 0,±zj > 0,±zk > 0,±zl > 0} (7.22)

of a quadrivariate zero-mean Gaussian variable with covariance matrix

Ryiyjykyl(θ) =


1 rij(θ) rik(θ) ril(θ)

rij(θ) 1 rjk(θ) rjl(θ)
rik(θ) rjk(θ) 1 rkl(θ)
ril(θ) rjl(θ) rkl(θ) 1

 . (7.23)

A compact solution for this problem, requiring calculation of four one-dimensional integrals, is
given in [57].

7.2.1 Quantization Loss for 1-bit DOA Estimation
Using the information bound (5.230) and the results (7.12) (7.16), we can evaluate the quantization
loss for 1-bit DOA parameter estimation with A > 2 sensors in a pessimistic manner by forming
the information ratio

χ(θ) =
F̃z(θ)

Fy(θ)

=

(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

Fy(θ)
. (7.24)

In Fig. 7.1 we plot the performance loss (7.24) versus SNR = γ2 for two different DOA setups
(θ = 10◦ and θ = 70◦). It can be observed that the quantization loss with A = 2 is χ(θ) =(

2
π

)2 (−3.92 dB) in the low SNR regime. Further, over all SNR values the loss χ(θ) becomes
smaller for arrays with a larger number of antennas A = 4 or A = 8. Especially, in the SNR
range of −10 to 0 dB, which is a regime of high practical relevance for energy-efficient broadband
mobile communication systems, the array size A plays a beneficial role and the gap between the
1-bit receiver and the ideal receive system becomes significantly smaller for the setting A = 8.
However, for situations where SNR > 5 dB the quantization loss becomes pronounced for all
receive scenarios. In Fig. 7.2 the performance loss χ(θ) is depicted as a function of the DOA
parameter θ for three different array sizes (A = 2, 4, 8). It can be seen that while the quantization
loss χ(θ) decreases with the number of sensors A, it also becomes less dependent on the DOA
parameter θ for large arrays. In Fig. 7.3 the quantization loss χ(θ) is shown for a large number
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Fig. 7.1. Performance Loss χ vs. SNR (1-bit DOA)
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Fig. 7.3. Performance Loss χ vs. Array Elements (1-bit DOA)

of antennas A. For a low SNR receive setup (SNR = −15 dB), the gap between the quantized
receiver and the unquantized receiver vanishes approximately linear with the array size A, while
for a medium SNR scenario (SNR = −3 dB), the relative performance of the 1-bit receive system
strongly improves by increasing the amount of receive sensors A. Finally, in Fig. 7.4 we compare
the performance of the 1-bit receive system for different numbers of antennas A by normalizing to
an ideal reference system with A = 2. Therefore we depict the quantization loss

χ2(θ) =
F̃z(θ)

Fy(θ)|A=2

=

(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

Fy(θ)|A=2

(7.25)

for three different SNR levels (low, medium and high). It becomes clear that by doubling the
numbers of sensors to A = 4, the 1-bit system outperforms the ideal system with A = 2 in all
three considered situations. With A = 6 the 1-bit system is significantly better than the ideal
receive system with A = 2. This shows that for DOA estimation the number of sensors has a much
stronger impact onto the performance of the receive system than the resolution of the ADC.

7.2.2 1-bit DOA Estimation with the CMLE Algorithm
In order to demonstrate that the framework of exponential replacement also provides a guideline
how to achieve the guaranteed performance

EZ;θ

[(
θ − θ̂(Z)

)2
]
≈ 1

N
(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ

= PCRLB(θ), (7.26)
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Fig. 7.4. Performance Loss χ2 vs. Array Elements (1-bit DOA)

in Fig. 7.5 we plot the accuracy (RMSE) of the conservative maximum-likelihood estimation
(CMLE) algorithm (5.258) for an array size of A = 4, a DOA parameter θ = 5◦ and N = 1000
samples averaged over 10000 noise realizations. It can be observed that in the considered scenario
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Fig. 7.5. CMLE Performance - 1-bit DOA Estimation (A = 4, θ = 5◦)

the CMLE performs close to the pessimistic approximation of the CRLB (PCRLB).
Summarizing this chapter, we have discussed the method of exponential replacement in the

context of 1-bit DOA estimation with a single signal source and a receive array of A sensors.
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The associated pessimistic approximation for the Fisher information measure allows to analyze
the achievable DOA estimation accuracy for arrays with A > 2 in a conservative manner. Addi-
tionally, the exponential replacement provides a guideline how to achieve the accuracy guaranteed
by the resulting pessimistic approximation of the CRLB. The performance analysis shows that in
the medium SNR regime DOA estimation with 1-bit ADC can be performed at high accuracy if
the number of array elements A is large. Further, with respect to the achievable estimation accu-
racy it is beneficial to trade-off ADC resolution versus the amount of array sensors. These results
strongly support the current discussion on future wireless systems which use a large number of
low-complexity sensors, i.e., 1-bit massive MIMO wireless systems [83] [84] [85].



8. Concluding Remarks

We have considered the problem of signal parameter estimation with 1-bit ADC. While using
an A/D conversion with coarse amplitude resolution allows to obtain an ultra-fast, low-cost and
energy-efficient wireless receive system, the nonlinear characteristic of the sampling device causes
an information loss with respect to the problem of estimating signal parameters from the noisy
receive signal.

Within this thesis we have tried to characterize this loss in an accurate way for various setups.
After reviewing the classical loss of 2/π (−1.96 dB) [26] for location parameter estimation with
1-bit quantizer in the low SNR regime, we have demonstrated that incorporating side-information
in the form of state-space models allows to reduce the quantization loss to

√
2/π (−0.98 dB).

This result is of high practical relevance as various low SNR signal processing tasks like radar or
satellite-based positioning exhibit wireless channels with high temporal correlation among their
parameters on sample level.

For the case when the quantization offset of the 1-bit ADC is unknown and has to be estimated
during runtime, we have analyzed the additional quantization loss which is introduced by joint
estimation of the signal parameter and the quantization level. The results show that a symmetric
quantizer is favorable for the estimation of a location parameter while the additional loss due to
the unknown offset vanishes in the low SNR regime.

Elaborating on the estimation theoretic analysis of the hard-limiting loss for signal models
with correlated noise, we have identified a fundamental problem with implications far beyond the
topic of quantized signal processing. When the analytical likelihood function of the system model
is intractable (like for multivariate Gaussian models with 1-bit quantization) or unknown (like for
many physical signal processing systems) it is not possible to apply strong processing rules like the
maximum-likelihood estimator or to conduct an analytic performance analysis based on the Fisher
information measure. In order to contribute to the understanding of this problem, we have followed
the approach of approximating the classical Fisher information measure in a pessimistic way. For
the univariate case we have discussed two compact bounds which are based exclusively on the
mean, the variance, the skewness and the kurtosis of the system output. Studying the properties
of the Fisher information measure for distributions belonging to the exponential family, we have
established the method of exponential replacement. By the exponential replacement we embed
an arbitrary stochastic model into the convenient framework of the exponential family by finding
the closest (in the sense of Fisher information) equivalent model. This results in a generic lower
bound for the Fisher information matrix and a mismatched system model which produces consis-
tent results with a guaranteed performance for the problem of signal parameter estimation with
intractable or unknown system models.
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140 8. Concluding Remarks

Using the exponential replacement framework we have conducted a performance analysis for 1-
bit signal processing tasks with a modified wireless radio front-end. For the application of satellite-
based synchronization, we have shown that 1-bit systems with slightly higher receive bandwidth
or a moderately larger number of receive sensors are capable of outperforming ideal systems with
infinite A/D resolution in different receive situations. Also the possibility of oversampling the
analog receive signal in the temporal domain or performing overdemodulation in the I/Q domain
in conjunction with low-complexity 1-bit ADC has been considered. The results show that it is
possible to obtain high signal processing accuracy with low-complexity 1-bit ADC through simple
adjustments of the analog radio front-end.

Finally, we have discussed the problem of covariance-based estimation under hard-limiting. For
the problem of blind 1-bit DOA estimation, the derived Fisher information lower bound allows to
analyze the performance of 1-bit receive systems with a large number of receive sensors. Through
the Fisher information lower bound it has been possible to demonstrate that for this particular
problem the performance gap between a 1-bit system and a∞-bit system becomes smaller when
the number of antennas increases.

In conclusion the results of this thesis show that low-complexity 1-bit A/D conversion is an
attractive design option for systems performing wireless measurement tasks. It allows to signif-
icantly reduce the power consumption and the production cost of the system components, while
an adjusted analog radio front-end design and advanced model-based statistical signal processing
in the digital domain allows to ensure high system performance. Note that, given the exceptional
relevance of wireless technology for the modern information society, the conceptual implications
of this discussion are far-reaching. Today, wireless systems are mainly designed along a linear
paradigm, leading to signal processing systems with few high-quality sensors. In contrast, this the-
sis indicates that the investigation of performance-oriented system architectures with a massive
number of low-complexity sensors may need significantly more attention.



Appendix

A1 Covariance Inequality
Consider two multivariate random variables x ∈ RM ,y ∈ RN which follow the joint probability
distribution p(x,y). Given x, construct the auxiliary random variable

ŷ(x) = Ex,y
[
yxT

]
Ex
[
xxT

]−1
x. (A1)

Observing that by construction

Ex,y
[
(y − ŷ(x))(y − ŷ(x))T

]
� 0, (A2)

shows that

Ey
[
yyT

]
− Ex,y

[
yxT

]
Ex
[
xxT

]−1
Ex,y

[
xyT

]
� 0, (A3)

such that it holds that

Ey
[
yyT

]
� Ex,y

[
yxT

]
Ex
[
xxT

]−1
Ex,y

[
xyT

]
. (A4)

A2 Bayesian Covariance Inequality
For a more general form [8] of the covariance inequality (A4), consider that for two functions
f(x,y) ∈ RM , g(x,y) ∈ RN and a matrixA ∈ RM×N it holds that by construction

Ex,y

[(
f(x,y)−Ag(x,y)

)(
f(x,y)−Ag(x,y)

)T
]
� 0, (A5)

such that we obtain the matrix inequality

Ex,y
[
f(x,y)fT(x,y)

]
� Ex,y

[
f(x,y)gT(x,y)

]
AT +AEx,y

[
g(x,y)fT(x,y)

]
−AEx,y

[
g(x,y)gT(x,y)

]
AT. (A6)

Substituting in (A6)

A = Ex,y
[
f(x,y)gT(x,y)

]
Ex,y

[
g(x,y)gT(x,y)

]−1
, (A7)

we obtain

Ex,y
[
f(x,y)fT(x,y)

]
� Ex,y

[
f(x,y)gT(x,y)

]
Ex,y

[
g(x,y)gT(x,y)

]−1

· Ex,y
[
g(x,y)fT(x,y)

]
. (A8)
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