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Abstract

Precise attitude determination with low-cost GPS receivers requires integer ambiguity
resolution and reliable cycle slip correction. In this paper, a tree search of cycle slips is
proposed, which combines double difference GPS carrier phases from all visible satellites,
gyroscope and acceleration measurements, and a priori information on the baseline length
between both GPS receivers. The proposed method was verified in both a slalom drive with
high vehicle dynamics and a drive below trees with shadowed GPS signals: The residuals of
the fixed phase measurements were reduced to less than 15 cm throughout the measurement
period.
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1 Introduction

The availability of mass-market GPS receivers with carrier
phase tracking has led to a wide range of new applications of
RTK and attitude determination. However, the measurements
of low-cost GPS receivers differ in three aspects from the
measurements of geodetic receivers: First, code multipath
is much larger due to the small size of the patch antennas.
It can be 10m even in open-sky conditions, which is a
challenge for ambiguity resolution. Secondly, half cycle
slips occur much more frequently and at multiple satellites
simultaneously. Today, cycle slip detection and correction
can be performed reliably for geodetic receivers with inertial
sensors: Du and Gao (2012) differenced the carrier phase
measurements between two satellites and two subsequent
epochs such that clock offsets, ambiguities, biases and
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atmospheric delays are eliminated (except for the drift which
is in general negligible for periods of less than 1 s). This
leaves the change in position and the cycle slips as unknowns.
The change in position is predicted by an inertial sensor.
Thus, cycle slips can be determined on a satellite by satellite
basis by simple rounding. Du and Gao (2012) applied a
cascaded approach to two dual-frequency Novatel OEM4
receivers, i.e. the widelane cycle slips were determined first.
Subsequently, the extra-widelane cycle slips were resolved
and, finally, the L1 and L2 cycle slips were derived from the
widelane and extra-widelane cycle slips.

Dai et al (2009) proposed a cycle slip detection and
correction method for triple frequency GNSS receivers. They
used two triple frequency geometry-free phase combinations
and performed an integer least-squares estimation using the
LAMBDA method of Teunissen (1995).

Colombo et al (1999) also proposed a cascaded cycle slip
detection for dual frequency receivers. The widelane cycle
slips were fixed as described by Du and Gao (2012). The
individual L1 and L2 cycle slips were then directly fixed
with the help of the widelane cycle slips. They used an
Ashtech receiver and high-grade IMU with a gyroscope drift
of only 3ı/h, and were able to correct 99:1% of cycle slips
for data gaps of 5 s.
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Fig. 1 Residuals of fixed phase
solution during initialization: the
residuals are clearly smaller than
the wavelength and are drift-free,
which indicates a correct integer
ambiguity resolution. The biases
of up to 2 cm arise from a small
bias in the baseline length
constraint due to antenna phase
center offsets
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These methods can not be used for low-cost single-
frequency mass-market GNSS receivers and inertial sensors:
The receivers show half cycle slips, i.e. jumps of integer
multiples of �=2 D 9:5 cm, and substantial phase and code
multipath. The measurement model must be strengthened,
e.g. by including baseline a priori information as described
by Henkel and Kiam (2013).

A third difference between low-cost and geodetic
GNSS receivers is that the receiver clock offsets are
in the order of milliseconds instead of nanoseconds
(see Henkel and Gunther 2013), which implies that the
satellite movement within the time span of the differential
receiver clock offset is no longer negligible. A synchroniza-
tion correction is required to preserve the integer property of
the double difference (DD) ambiguities.

Therefore, we include the receiver clock offset explicitly
in our model for the DD carrier phase measurements. As the
baseline is short for attitude determination, atmospheric and
orbital errors can be neglected and we obtain

�
�'k1 .t C ı�1/ � �'l1.t C ı�1/

�

� �
�'k2 .t C ı�2/ � �'l2.t C ı�2/

�

D kx1.t C ı�1/� xk.t C ı�1 ���k1 /k
� kx1.t C ı�1/� xl .t C ı�1 ���l1/k
� kx2.t C ı�2/� xk.t C ı�2 ���k2 /k
C kx2.t C ı�2/� xl .t C ı�2 ���l2/k
C �Nkl

12 C �=2�Nkl
12 .t/Cm'kl12

.t C ı�1; t C ı�2/

C "'kl12
.t C ı�1; t C ı�2/; (1)

with the carrier wavelength �, the undifferenced phase mea-
surement 'kr of receiver r and satellite k, the receiver clock

offset ı�r , the receiver position xr , the satellite position xk ,
the DD integer ambiguity N kl

12, the DD half cycle slip �N kl
12,

the DD phase multipath m'kl
12

and the DD phase noise "'kl
12

.
The synchronization correction is given by

��'kl12.t C ı�1; t C ı�2/ (2)

D .ek1 .t C ı�1//
T
�
x1.t C ı�1/ � xk.t C ı�1 ���k1 /

�

� .el1.t C ı�1//
T
�
x1.t C ı�1/� xl .t C ı�1 ���l1/

�

� .ek1 .t C ı�2//
T �x1.t C ı�2/� xk.t C ı�2 ���k2 /

�

C .el1.t C ı�2//
T
�
x1.t C ı�2/� xl .t C ı�2 ���l2/

�
:

We linearize the norms in (1), apply the synchronization
correction of (2) and a cycle slip correction to write the
linearized corrected DD phase and code measurements in
matrix-vector notation as

�
�'12
�12

�
D Hb12 C AN12 C

�
m'12

m�12

�
C
�
"'12
"�12

�
(3)

withH and A being the implicitly defined DD geometry and
ambiguity coefficient matrices, and b12 being the baseline
between both receivers. The integer least-squares estimation
of the DD integer ambiguities and baseline coordinates is
improved by some a priori information l on the baseline
length, which leads to the constrained integer least-squares
estimation problem:

minb122R3�1;N122ZK�1 k
�
�'12
�12

�
�Hb12 � AN12k2˙�1

'12

s: t: kb12k ŠD l: (4)

A solution to this problem was developed in Teunissen (2006,
2010). Figure 1 shows the fixed phase residuals of this
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estimator for DD phase measurements from two u-blox LEA
6T GPS receivers mounted on the roof of a car. The residuals
are clearly smaller than the wavelength and are drift-free,
which indicates a correct integer ambiguity resolution. The
biases of up to 2 cm arise most likely from a bias in the
baseline length constraint due to antenna phase center offsets.

2 Initial Calibration of Inertial Sensors

We start with a rough alignment by transforming the mea-
sured acceleration as and angular rotation rate !s from the
sensor-fixed (s-) frame to the body-fixed (b-) frame (aligned
with longitudinal and transversal axis of car), i.e.

ab
rough D C b

s a
s D R1.�

b
s /R2.�

b
s /R3. 

b
s /a

s

!b
rough D C b

s !
s D R1.�

b
s /R2.�

b
s /R3. 

b
s /!

s; (5)

where the roll angle �b
s , the pitch angle �b

s and the yaw
angle  b

s are approximated from the mounting of the sen-
sor on the body and Ri is the rotation around the i -th
axis. Subsequently, we average !b

rough in static conditions to
determine the biases bb

! , which are then subtracted from the
measurements:

!b D !b
rough � bb

!: (6)

The acceleration measurements are also averaged over time
in static conditions to reduce the noise. The obtained Nab

is expressed in terms of the Euler angles �, � ,  and the
gravitational acceleration g, i.e.

Nab D C b
n Nan � R1.�/R2.�/R3. /.0; 0; g/

T C b Nab C � Nab

D g � .� sin �; cos � sin �; cos � cos�/T C b Nab C � Nab ;

(7)

with the bias b Nab and noise � Nab . The biases and misalignment
errors �� and �� between GPS and INS sensors are deter-
mined by least-squares estimation once the car is moving, i.e.

min
��;��;b

Nab

k Nab � g �
0

@
� sin.� C��/

cos.� C��/ sin.� C��/

cos.� C��/ cos.� C��/

1

A � b Nabk2

(8)

The roll and pitch angles can then be derived from (7)
without the need of knowing g as

� D atan
�
. Nab
y � b Nab

y
/=. Nab

z � b Nab
z
/
�

(9)

� D atan
�
�. Nab

x � b Nab
x
/=
q
. Nab
y � b Nab

y
/2 C . Nab

z � b Nab
z
/2
�
:

We initialize the heading from the GPS fixed solution.
Once the Euler angles and a rough estimate of the absolute
position (longitude �, latitude ') is available from GPS,
the coordinate frame transformation from the b-frame to the
ECEF e-frame is determined as

C e
b D C e

nC
n
b (10)

with

C e
n D

0

@
� sin ' cos� � sin� � cos' cos�
� sin ' sin� cos� � cos' sin�

cos' 0 � sin'

1

A (11)

and C n
b D .C b

n /
�1 D .R1.�/R2.�/R3. //

�1. The rotation
matrix C b

e D .C e
b /

�1 is then transformed to a Quaternion as
described in Jekeli (2001):

q D 1

kŒqa; qb; qc; qd 	k � Œqa; qb; qc; qd 	T (12)

with the four quaternion elements qa, qb , qc and qd .

3 Integration of Orientation
with Quaternions

Jekeli (2001) derived the time-derivative of C b
e as

PC b
e D C b

e ˝
e
be; (13)

which represents a differential equation with unknown C b
e .

The skew-symmetric matrix ˝e
be is given by

˝e
be D

0

@
0 �!3 !2
!3 0 �!1

�!2 !1 0

1

A ; (14)

where the angular rotation rates !i of the e-frame w.r.t. the
b-frame are obtained from (6) by subtracting the earth rota-
tion rate, i.e.

.!1; !2; !3/
T D !b � C b

e � .0; 0; !E/
T DW !b

be: (15)

The differential equation of (13) shall be solved with Quater-
nions. Jekeli (2001) transformed the 3 � 3 matrix equation
of (13) to the 4 � 1 vector equation

Pq D 1

2
Aqq; (16)

with the quaternion q and the matrix of angular velocitiesAq .
The latter one is given by
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Aq D

0

BB
@

0 !1 !2 !3
�!1 0 !3 �!2
�!2 �!3 0 !1
�!3 !2 �!1 0

1

CC
A : (17)

We performed the integration of the Quaternion with the
third order Runge-Kutta method (see Jekeli 2001), i.e. the
Quaternion at time tnC1 is given by

q.tnC1/ D q.tn C h/ (18)

D q.tn/C h �
�
1

6
ıq0 C 2

3
ıq1 C 1

6
ıq2

�
;

where h D 2ıt denotes the integration time and ıq0, ıq1 and
ıq2 denote the coefficients given by

ıq0 D 1

2
Aq.tn/q.tn/

ıq1 D 1

2
Aq.tn C h

2
/ .q.tn/C h=2ıq0/

ıq2 D 1

2
Aq.tn C h/ .q.tn/� hıq0 C 2hıq1/ : (19)

Once the integrated quaternion is determined, it is trans-
formed back to a rotation matrix.

4 Cycle Slip Detection and Correction

The fixed double DD carrier phase measurement for satellite
pair fk; lg is modeled as

�.'kl
12 � LN kl

12/ D eklb12 C �=2�N kl
12 C "kl

12; (20)

with the single difference ekl between the unit vectors point-
ing from the satellites to the receiver, the baseline vector b12
between both receivers, the carrier wavelength �, the fixed
DD integer ambiguity N kl

12, the unknown DD cycle slip (CS)
�N kl

12 and the DD phase noise "kl
12. Solving (20) for �N kl

12

yields

� LN kl
12 D

�
1

�=2

�
�.'kl

12 � LN kl
12/ � ekl ObIMU

12

�	
; (21)

where Œ�	 denotes the rounding operator and ObIMU denotes the
baseline estimate of the IMU that was obtained in four steps:
First, the IMU was initialized with the validated GPS attitude
solution of the last GPS measurement epoch. Subsequently,
the orientation was integrated using IMU measurements
between the epochs of the last and current GPS measurement.
The integration was performed with quaternions as described

in the previous section. In a third step, the quaternions
were transformed to Euler angles and, finally, the horizontal
baseline estimate was obtained from the heading  IMU and
baseline length a priori information l as

ObIMU
12 D l � .sin. IMU/; cos. IMU//

T : (22)

The cycle slip correction of (21) might be erroneous if the
initial calibration of the IMU was erroneous.

In this case, the cycle slip correction (CSC) can be
improved by jointly estimating the CSC and baseline coordi-
nates using fixed DD phase measurements from all available
satellites, the IMU baseline estimate of (22) and the baseline
length a priori information, i.e.

min
b12;�N12

kz12 �Hb12 �A�N12k2˙�1
'

s: t: kb12k D l;

(23)

with the combined GPS/INS measurement vector

z12 D
 
�.'12 � LN12/

ObIMU
12

!

; (24)

andH being the redefined .KC3/�3DD geometry matrix,
A.�=2/ is the extended .K C 3/ � q CSC coefficient matrix
for q DD cycle slips, and l describes the a priori information
on the baseline length. The minimization of (23) includes
a search of �N12 inside a predefined search space volume

2 and an iterative computation of b12 for each integer can-
didate vector �N12. We use the orthogonal decomposition
of Teunissen (1995) to rewrite the sum of squared errors
of (23) as

kz12 �Hb12 � A�N12k2˙�1
z12

D k� ON12 ��N12k2˙�1
ON12

C k Lb12.�N12/� b12k2˙�1
Lb12

C kP?NA P
?
H z12k2˙�1

z12
; (25)

with P?
H being the projector on the orthogonal complement

of the range space ofH and NA D P?
H A. The first term on the

right side was further developed by Teunissen (1995):

k� ON12 ��N12k2˙�1

� ON12

D
kX

lD1

.�N l
12 �� ON lj1;:::;l�1

12 /2

.�
� ONlj1;:::;l�1

12
/2

;

(26)

with � ON lj1;:::;l�1
12 being the l-th conditional cycle slip esti-

mate. Setting (26) into (25), defining the search space volume

2 as an upper bound on (25), adding the baseline length
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constraint as a zero term, and solving for the k-th ambiguity
yields:

.�Nk
12 �� ONkj1;:::;k�1

12 /2

�2
� ONkj1;:::;k�1

12

� 
2 � kP?NA P
?
H z12k2˙�1

z12
(27)

�
k�1X

lD1

.�N l
12 �� ON lj1;:::;l�1

12 /2

.�
� ONlj1;:::;l�1

12
/2

� min
b12;�

�
k Lb12.N12/ � b12k2˙�1

Lb12

C � � .kb12k2 � l2/
�

with the Lagrange multiplier �.
We set the partial derivative of the last term w.r.t. b12 to zero
and solve it for b12 to obtain

Ob12.�/ D .˙�1
Lb12 C �1/�1˙�1

Lb12
Lb12.N12/ (28)

Setting Ob12.�/ into the length constraint finally results in a
root finding problem:

f .�/ D k Ob12.�/k2 � l2 ŠD 0: (29)

As the roots of f .�/ can not be found in closed form, we use
the iterative Newton method. The Lagrange parameter � is
given at the .nC 1/-th iteration by

�.nC1/ D �.n/ � f .�/=
@

@�
f .�/

ˇ
ˇ
ˇ
ˇ
�D�.n/

(30)

with

@

@�
f .�/ D 2. Ob12.�//T @

@�
. Ob12.�//: (31)

Let Q.�/ D ˙�1
z12 C � � 1, then

Ob12.�/ D . Q.�//�1˙�1
z12

z12; (32)

and

@

@�
. Ob12.�// D @

@�
. Q�1.�//˙�1

z12 z12

D � Q�1.�/
@

@�
. Q.�// Q�1.�/˙�1

z12
z12

D � Q�1.�/ Q�1.�/˙�1
z12

z12: (33)

5 Measurement Analysis

In this section, the proposed cycle slip detection and correc-
tion method is verified with real data. We used the following
measurement setup:
• measurement period:

week number: 1738, TOW 2 f159;156 s; 159;812 sg
• measurement location (area of test drive):

longitude 2 f11:41869ı; 11:42815ıg
latitude 2 f47:99410ı; 47:99723ıg

• measurement equipment:
– 2 LEA 6T GPS receivers, 5 Hz, u-blox
– 2 single frequency patch antennas, u-blox
– 1 MPU 9150 inertial sensor, 100 Hz, Invensense

• installation:
– mounting of GPS antennas on roof of car
– alignment of baseline between antennas with longitu-

dinal axis of car
– baseline length: Nl D 1:32m, �Nl D 1 cm
Figure 2 shows selected sections of the test drive. In

the first two sections, the car was passing below trees and
between two buildings. The code and carrier phase signals
of all visible satellites are temporarily affected by significant
multipath. The last subfigure shows a slalom drive with high
receiver dynamics.

Figure 3 shows the fixed double difference phase residuals
before cycle slip detection and correction over time. In the
upper left corner, a skyplot shows the satellite geometry.
We applied an elevation mask of 20ı. At 176, 241 and 401 s,
the car was passing below trees or between two buildings,
which resulted in phase jumps of more than 10 half cycles.
The largest residuals correspond to the satellites of lowest
elevation. Numerous additional slips of f�2;�1; 0;C1;C2g
cycles can be observed in between the major jumps.

Figure 4 shows the fixed double difference phase residuals
after cycle slip detection and correction (CSC) using only
GPS measurements in (23). The residuals are substantially
lower than in Fig. 3 but there remain numerous undetected
cycle slips.

Figure 5 shows the fixed double difference phase residuals
after GPS/INS-based cycle slip detection and correction. The
residuals of all satellites are substantially reduced to less
than 15 cm. Variations of the residuals of more than 1 cm
correspond mainly to the double difference phase multipath.
The subplot in the lower right corner shows the fixed phase
residuals only for the three satellites of highest elevation. One
can observe three sections with severe multipath.
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Fig. 2 Selected sections of the
test drive: the first two sections
are in a high multipath
environment. The last section is
characterized by high receiver
dynamics. (a) 136–156 s: passing
below trees, (b) 172–177 s:
passing between two buildings,
(c) 330–404 s: slalom drive

Fig. 3 Fixed phase residuals
before cycle slip detection and
correction: The residuals are
jumping by more than 10 half
cycles at 176, 241 and 401 s,
where the car was passing below
trees or between two buildings.
The largest residuals correspond
to the satellites of lowest
elevation. The satellite geometry
is shown in the skyplot (20ı

elevation mask) in the upper left
corner. Numerous additional
slips of f�2;�1; 0;C1;C2g
cycles can be observed in
between the major jumps
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Figure 6 shows a comparison of the heading estimates
with GPS-only CSC and with GPS/INS combined CSC. In
the first 100 s, the car was standing. The noise of the heading
estimates is in the order of 0:1ı only. In the test drive, the
heading with GPS-only CSC differs by up to 30ı from the
heading with GPS/INS combined CSC, as the GPS-only CSC
can not correct for all cycle slips in heavy multipath environ-
ments. The enlarged periodic heading variations between 330
and 380 s indicate high receiver dynamics and correspond to
the slalom drive. The GPS-only based CSC corrects at 341 s
its erroneous ambiguities and, thus, follows the combined
GPS/INS solution. The enlarged heading between 390 and
405 s shows some ripples in the heading estimate for the
GPS/INS CSC. In this section, the car was passing below
a tree and all code and carrier phases were affected by
substantial multipath.

The reliability of the GPS/INS combined CSC depends
on the drift of the IMU. We re-initialize the IMU at every

GPS measurement epoch after cycle slip correction with
the GPS solution. Consequently, the drift of the IMU only
between two subsequent GPS measurement epochs (0.2 s) is
relevant. Figure 7 shows the difference between the heading
of the IMU without continuous GPS-based calibration and
the heading of the GPS/INS-combined solution. We can
observe a slight continuous drift of less than 0:5ı with
temporarily increased variations. The increased variations of
up to 1ı=0:2 s are most likely caused by heading errors of
the GPS/INS-combined solution (in multipath environments)
and not by changes of the IMU’s drift. A cycle slip correction
can still be performed reliably.

The proposed CSC of (27) jointly determines the baseline
coordinates and integer cycle slips using both GPS DD
carrier phases and the IMU-predicted baseline. It finds the
optimized trade-off between minimizing the GPS measure-
ment residuals and minimizing the IMU-predicted baseline
residuals. We compare the performance of this optimized
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Fig. 4 Fixed phase residuals
after GPS-based cycle slip
detection and correction: the
residuals are substantially
reduced but there remain
numerous undetected cycle slips
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Fig. 5 Fixed phase residuals
after GPS/IMU-based cycle slip
detection and correction: the
residuals of all satellites are
reduced to less than 15 cm. The
“noise” in the residuals
corresponds to the double
difference phase multipath. The
subplot in the lower right corner
shows the fixed phase residuals
only for the three satellites of
highest elevation. One can
observe three sections with
severe multipath

0 100 200 300 400 500
−15

−10

−5

0

5

10

15

Time [s]

R
es

id
ua

ls
 o

f f
ix

ed
 p

ha
se

 s
ol

ut
io

n 
[c

m
]

PRN 21 − PRN 29
PRN 25 − PRN 29
PRN 27 − PRN 29
PRN 30 − PRN 29
PRN 31 − PRN 29 0 100 200 300 400 500

−5

0

5

Fig. 6 Heading determination
with GPS/INS combined cycle
slip correction (marked in blue)
and GPS-only (marked in orange)
cycle slip correction: the noise
level of both heading estimates is
in the order of 0:1ı in static
conditions and increases to 1ı in
high multipath environments (e.g.
passing below a tree between 395
and 405 s). The periodic
variations between 330 and 380 s
indicate high receiver dynamics.
The GPS-based heading
temporarily differs from the
GPS/INS-based heading due to
some uncorrected half cycle slips
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approach to the performance of an integer least-squares CSC
estimation with the baseline vector considered known and
fixed from the IMU. This alternative approach also combines
GPS and INS measurements. However, the integer least-

squares estimation only of the CSC does not guarantee
a final baseline estimate to be close to the one from the
IMU. Figure 8 shows that the heading of the integer least-
squares estimation can differ by up to 20ı from the combined
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Fig. 7 Drift of heading of
inertial sensor without continuous
GPS-based calibration: the
change of the heading between
two subsequent epochs is in
general less than 0:5ı. The
largest variation of 1ı=0:2 s
occurs during the passing below
trees, where the coupled
GPS/INS was itself more noisy.
A cycle slip correction can still
be performed reliably
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Fig. 8 Cycle slip correction with
GPS/INS: the heading of the
integer least-squares cycle slip
estimation with fixed IMU
baseline differs by up to 20ı from
the heading of the combined
cycle slip and baseline estimation
using both GPS and IMU
measurements. This indicates that
a pure integer least-squares
estimation is not sufficient. As
the combined estimator finds an
optimized trade-off between
minimizing the squared
measurement residuals and
minimizing the baseline vector
residuals, it finds the correct
cycle slip correction with highest
success rate
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solution. This shows again the need for the proposed cycle
slip detection and correction method, which combines all
available measurement and a priori information and mini-
mizes the sum of the measurement residuals and a priori
information residuals.

The reliability of cycle slip detection and correction can
also be verified by adding artificial cycle slips to the raw
phase measurements. We have tested all f�2;�1; 0;C1; 2g
cycle slip combinations for f1; 2; 3g simultaneous cycle slips
at a moment of high receiver dynamics (t D 342 s), and
observed that all cycle slip combinations were correctly
found.

6 Conclusion

In this paper, a method for reliable cycle slip detection and
correction was proposed for low-cost GPS receivers with
high receiver dynamics in challenging environments. It com-
bines double difference GPS carrier phases from all visible

satellites, gyroscope and acceleration measurements, and a
priori information on the baseline length. It performs a tree
search for finding the cycle slip corrections. The estimator
was first tested by a simulation of artificial cycle slips. It
turned out to be extremely powerful if the IMU was properly
calibrated, i.e. it was able to correct simultaneous cycle slips
at all visible satellites. Subsequently, the proposed method
was verified in a test drive with two low-cost GPS receivers
and a low-cost 9-axes INS. The residuals of the fixed phase
measurements after cycle slip correction remained less than
15 cm in both a slalom drive with high receiver dynamics and
passages below trees.
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