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Abstract— This paper introduces an online motion planning
algorithm and a motion generation methodology for underactu-
ated dynamic planar walking on uneven terrain. The key idea
is to utilize a database of Motion Primitives and use them as
training examples in a regression methodology, which is utilized
when there is no match between the terrain variation and the
Motion Primitives in the database. Among the key features
which enable the algorithm to be suitable for real-time purposes
is the proposed best first graph search approach and the small
inference time of the regression methodology, which in this
paper is the Gaussian Process.

I. INTRODUCTION

Underactuated walking robots are trading off control au-

thority with more efficient and human-like locomotion. In

order to achieve these objectives, careful understanding of

the dynamics underlying their motion is necessary. By that,

the natural dynamics of such a robot can be exploited and

utilized in the synthesis of sophisticated feedback controllers,

which in turn are able to cope with the aforementioned

reduced control authority.

However, the dynamics of such robots are highly nonlinear

due to the dynamic coupling of the rotational degrees of

freedom. Thus, designing walking motions online is compu-

tationally costly. As an alternative, a repertoire of walking

primitives can be computed offline and employed online in

order to steer the motion of the robot based on different

terrain specifications.

The idea of utilizing a database of motion primitives in

order to control the motion of a robot has been studied in

the literature for different kinds of tasks like balancing and

motion planning for an aerial vehicle [1], [2]. In the field of

walking robots, an early work can be found in [3], where

a database of walking primitives was employed in order to

navigate JOHNNIE, a fully-actuated humanoid robot. In [4],

a compass gait robot was steered through an environment

with obstacles using only 3 asymptotically stable walking

primitives. Recently, it was shown how a database of motion

primitives can be used for motion planning on uneven terrain

for a compass gait and a 5-link walking robot [5]. In that

work however, the authors assume that the feedback terms
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of the controller can compensate for an error between the

encountered terrain and the final stride height of the chosen

primitive.

Depending on the size of the database and the knowledge

of the terrain, different motion planning techniques can be

used. For cases with full knowledge of the environment,

classic graph search algorithms can be utilized, like in [3],

[4]. If a large database renders graph search intractable,

online predictive approaches can be utilized so that the search

horizon is limited to a few steps and new plans can be

generated in each step very fast. The challenge though is

to know which sequences of motion primitives are feasible,

since in underactuated walking robots there is always the

risk that the robot does not have enough kinetic energy to

overcome the potential energy barrier. Concrete guaranties

whether a sequence of such primitives is feasible or not are

given in [6]. In addition, worth mentioning is the work on

LQR-trees [7], where reachable sequences of controllers can

be generated, even though the region of attraction for each

controller is estimated in a conservative way using Sum-of-

Squares optimization.

Another challenge is that, even with a very large database

of motion primitives, there will always be cases in which

there is no primitive corresponding to the current terrain

height [5]. In this paper we alleviate this limitation. In order

to do so, a regression technique for the generation of walking

primitives is introduced and utilized when the database does

not contain a primitive which corresponds to the specific

terrain variation. This is achieved by designing a database

of primitives for walking, ascending and descending stairs

and then learning a Gaussian Process which can generate

new gaits. Thus, we are able to reduce the cardinality of the

database, in order to use efficient motion planning techniques

and still react to unforeseen terrain variations. An interesting

evaluation of different regression methodologies (including

the Gaussian Process Regression) with respect to constraint

violation for a fully actuated biped can be found in [8].

Another advantage is that the primitives are extracted

based on the Hybrid Zero Dynamics framework [9]. Thus the

motion planning utilizes a 2-dimensional state representation

instead of the full system state which is always higher-

dimensional. The robotic model under study is a 5-link biped,

which constitutes a minimalistic model capable of walking

on uneven terrain, without suffering from foot scuffing like

the compass gait. The underactuation is due to the fact

that these robots have point feet. Note however that the

methodology is generalizable to any robotic system with one

degree of underactuation.



The structure of this paper is as follows. In section II

some insight on underactuated robotic walking is given and

in section III an introduction to the Hybrid Zero Dynamics

approach is presented. In section IV the design procedure

of the database is explained as well as the conditions under

which a sequence of primitives is feasible. In section V, the

learning process is explained and evaluated. In section VI,

the motion planning algorithm is introduced which is based

on a best first approach. Section VII includes two sample

cases that validate our approach. Section VIII concludes the

paper with a general discussion of the proposed methodology

and directions for future work.

II. UNDERACTUATED WALKING

Underactuated walking is modelled as a hybrid process

with two discrete states: the single support and the rigid

impact. In order to explain these two phases more thoroughly,

the dynamics of underactuated walking are introduced. They

are based on the Lagrangian formulation and the assumption

of rigid bodies. Here, motion is restricted in the sagittal

plane, but the proposed methodology can be extended to the

3D case [10].

A. Single Support

During the single support, the legs of the robot are labelled

as ”stance” and ”swing”. The stance leg is pinned on the

ground and the swing leg moves forward with an adequate

foot clearance in order to become the new stance leg,

concluding the single support phase. The state x of such a

robot contains the joint positions q and the joint velocities q̇,

i.e. x = [qT q̇T ]T . Thus, a robot with n degrees of freedom

has a 2n-dimensional state. Utilizing Lagrangian dynamics,

the equations of motion can be expressed as

D(q)q̈ +C(q, q̇)q̇ +G(q) = Bu, (1)

where D(q) ∈ R
n×n is the mass-inertia matrix, C(q, q̇) ∈

R
n×n is the matrix of centrifugal and Coriolis terms, G(q) ∈

R
n summarizes the gravitational terms, B ∈ R

n×(n−1) is

the input matrix and u ∈ R
n−1 is the vector of generalized

torques. For this paper, friction and disturbance forces are

assumed to be negligible or can be counteracted by feedback

control, as in [5]. The challenge in controlling such a system

is due to the fact that the input matrix B is non-square. Thus,

when applying input-output feedback linearization methods,

there will be dynamics which are non-observable known

as zero dynamics. However, they have to be taken into

account when designing individual walking gaits but also

when concatenating different gaits in a single motion plan.

Section III explains the zero dynamics and the methodology

to design feedback controllers for underactuated walking

robots in more detail.

B. Rigid Impact

The rigid impact takes place when the swing leg es-

tablishes contact with the ground. The impact is assumed

to be inelastic and instantaneous. At the rigid impact, the

leg previously pinned on the ground (i.e. the stance leg)

loses contact with the ground and the role of the legs is

switched. Additionally, the impact causes a discontinuity on

the joint velocities q̇ which can be determined by the impact

map ∆ and the pre-impact joint velocities q̇−. Instead of

introducing an additional model for the single support with

the new stance leg, we relabel (or equivalently transform)

the coordinates of the robot. Formally, this can be expressed

as

q+ = Rq−

q̇+ = R∆(q−)q̇− = ∆s(q
−)q̇−

(2)

where the plus and minus superscripts denote the post-impact

and pre-impact state of the system respectively and R is the

relabelling matrix.

III. HYBRID ZERO DYNAMICS OF WALKING

Control design for underactuated walking robots has been

a topic of extensive investigation in the literature [9], [11],

[12]. The main idea is to design a set of virtual holonomic

constraints and enforce them by input-output feedback lin-

earization. More specifically, the controller design can be

formulated as a tracking control problem where the outputs

are defined as

hi(t) = qi(t)− qdi (t), i = 1, ..., n− 1, (3)

where qdi is the desired trajectory corresponding to the i-th
degree of freedom (DoF). The index i runs from 1 to

n − 1, since a desired trajectory cannot be enforced on

the underactuated DoF qn (without loss of generality qn is

the underactuated DoF). In walking, time t can be replaced

by a monotonically time-increasing variable θ(x), which

replaces trajectories by paths and we can rewrite h(t) as

h(θ(x)) = h(x). This variable is usually the underactuated

coordinate of the robot qn or a function of it. In order to

facilitate the design process of the walking controller, a short

introduction to the Hybrid Zero Dynamics of walking is

necessary. Connection with the robotic model under study

can be found in Fig. 1. For more details on Hybrid Zero

Dynamics, the reader is encouraged to refer to [9].

q5

θ

q3 q2

q4q1(xs, ys)

(0, 0)

Fig. 1. Kinematic model of the biped under study. The underactuated DoF
is the torso angle q5. The Cartesian coordinates of the swing leg are denoted
as (xs, ys). The x-axis is pointing to the right and the y-axis upwards.



A. Control Law

The main principle in Hybrid Zero Dynamics is the

introduction of a coordinate transformation, such that the

outputs h and their time derivatives are zeroed.

Assuming that the dynamics of the robot are expressed in

state-space form

ẋ =

[

q̇

D(q)−1(−C(q, q̇)q̇ −G(q) +Bu)

]

= f(x) + g(x)u,

(4)

the feedback controller which zeroes the outputs h is given

by

u(x) = (LgLfh(x))
−1(v(x)−L2

fh(x)), (5)

where the Lie derivatives are defined as

LgLfh(x) =
∂h

∂q
D−1B, (6)

and

L2
fh(x) =

[

∂
∂q

(∂h
∂q

q̇) ∂h
∂q

]

[

q̇

D−1(−Cq̇ −G)

]

.

(7)

Here the arguments of the matrix and vector functions are

omitted for brevity. The term v(x) in (5) is taken to be a

PD term

v(x) = −KDLfh(x)−KPh(x), (8)

where KD and KP are (n − 1) × (n − 1) positive definite

matrices. Under the control law (5), the outputs are zeroed

and the zero dynamics need to be checked for orbital

stability.

B. Zero Dynamics Manifold

The Zero Dynamics Manifold is formally defined as

Z = {x|h(x) = 0,Lfh(x) = 0} , (9)

where Lfh(x) =
∂h
∂q

q̇.

Let x ∈ Z and define γ0 as the last row of the mass-

inertia matrix D, then the coordinates can be transformed

into

ξ1 = θ, ξ2 = γ0q̇. (10)

The variable θ is shown in Fig. 1 and is therefore defined as

θ = cTq =
[

−1 0 −1/2 0 −1
]

q. The variable ξ2 is

the angular momentum conjugate to the underactuated DoF

q5. With this transformation the joint positions and velocities

can be reconstructed by

q = H−1

[

qd

ξ1

]

and q̇ =

[

∂h
∂q

γ0

]−1 [
0
ξ2

]

, (11)

where H =

[

H0

cT

]

and H0 =
[

In−1 0(n−1)×1

]

.

The remaining analysis of the Hybrid Zero Dynamics fol-

lows from [9] and is given without any proofs. A difference is

made on the description of the fixed point which corresponds

to the post-impact state of the robot, instead of the pre-impact

one. This difference is done to facilitate the formulation

of the Motion Planning Algorithm, as will be described in

section VI.

C. Orbital stability of zero dynamics

The derivatives of ξ1 and ξ2 can be written as

ξ̇1 = κ1(ξ1)ξ2

ξ̇2 = κ2(ξ1)
(12)

where

κ1(ξ1) =
∂θ

∂q

[

∂h
∂q

γ0

]−1 [
0
1

]

(13)

κ2(ξ1) = −
∂V

∂qn
(14)

In (14), V is the potential energy function of the system (4).

The impact event is taken into account by the resets

ξ+1 = θ+ (15)

ξ+2 = δzeroξ
−

2 (16)

The quantity δzero accounts for the angular momentum

exchange at the impact and can be computed analytically

based on the dynamics of the system, i.e.

δzero = γ0(q
+)∆s(q

−)

[

∂h
∂q

(q−)

γ0(q
−)

]−1 [
0
1

]

. (17)

Since the zero dynamics manifold is 2-dimensional, the

stability analysis is simplified. In this manifold, Lagrangian

dynamics can be introduced and kinetic and potential energy

functions can be defined as Kzero(ξ1) and Vzero(ξ1) respec-

tively. The formal definition of these functions is

Kzero(ξ1) =
1

2

(

ξ̇1
κ1(ξ1)

)2

= ζ2 (18)

Vzero(ξ1) = −

∫ ξ1

θ+

κ2(ξ1)

κ1(ξ1)
dξ1. (19)

If the kinetic energy at the beginning of the walking motion

ζ+2 is greater than the maximum value of the potential energy

V MAX
zero , the numeric integration of the zero dynamics (12) will

yield a periodic orbit. Formally, if

V MAX
zero − ζ+2 < 0, (20)

a periodic orbit exists and if 0 < δ2zero < 1, it is exponentially

stable. The associated Poincaré Map is given by

ρ(ζ+2 ) = δ2zeroζ
−

2 = δ2zero(ζ
+
2 − Vzero(θ

−)). (21)

The fixed point of this orbit is

ζ∗2 =
δ2zero

δ2zero − 1
Vzero(θ

−), δ2zero 6= 1 (22)

and its domain of attraction is the set

Dzero =
{

ζ+2 > 0|ζ+2 − V MAX
zero > 0

}

. (23)

Thus, the dimensionality of the system can be reduced

from 2n to 2. This leads to a 1-dimensional Poincaré Map

where the stability analysis can be conducted with analytical

expressions. The same holds for the domain of attraction.



IV. MOTION PRIMITIVES

The desired trajectories qd of the output functions h are

parametrized as Bézier polynomials of order M , such that

qdi (θ) =

M
∑

k=0

αi
k

M !

k!(M − k)!
sk(1− s)M−k, (24)

where s is defined as s(q) = θ(q)−θ+

θ−−θ+ .

The coefficients α can be obtained through numeric

optimization where the relations described in section III

regarding feasibility and stability are included in the set

of nonlinear constraints. In this paper, these coefficients α

are used to define the motion primitives. The optimization

process is adopted from [9] and the cost to be minimized is

the sum of squared torques per step

J =
1

ℓ−(α)

∫ T

0

‖u(t,α)‖22dt, (25)

where T is the total duration of the gait of the corresponding

primitive.

A. Transition between Primitives

A transition between different periodic primitives allows

aperiodic walking. Assume that a transition from primitive

Gα to a primitive Gβ is required. Then the transition is

feasible only if

ζ+2 − V MAX,α→β
zero > 0. (26)

If equation (26) is fulfilled then the state of the robot after

the impact will be inside the domain of attraction of the

periodic primitive Gβ . The quantity V α→β
zero can be computed

as in (19) where the integration interval now is from θ+α to

θ−β . That means, that the joint positions at the end of the

transition will be identical to that of primitive Gβ , unlike

the joint velocities.

B. Database of Motion Primitives

The number of primitives in the database is dependent on

the expected terrain variations and possibly on the compu-

tational resources available. For the proposed methodology,

the cardinality of the database does not need to be large,

since the regression technique - as is going to be presented

in section V - is able to enrich the capabilities of a small

database by generating new primitives when they are needed.

The important quantities in the motion primitives and their

explanations are presented in Table I. After defining the role

of each term in Table I, a motion primitive P is formally

defined as the tuple

P =
{

α, θ−, Vzero, V
MAX
zero , δzero, ℓ

−, h−
}

(27)

and describes both periodic and aperiodic primitives. In this

work, the cost (25) associated with each primitive is not

included in the definition (27), since it strongly depends on

the post-impact state of the robot x+ which is not fixed

during aperiodic walking.

TABLE I

STRUCTURE OF A MOTION PRIMITIVE

Quantity Explanation

α
The Bézier coefficients, which describe the feedforward
controller (5)

θ− Pre-impact value of θ. It is used to define s(q)

Vzero
Used for the computation of ζ+

2
during motion planning

according to (21)

δzero
Used for the computation of ζ+

2
during motion planning

according to (21)

V MAX
zero

Necessary in order to evaluate the validity of a transition
according to (26)

ℓ−

Final stride length. Even though it can be reconstructed
by the Bézier coefficients α and the value θ−, it is
desirable to be included in the primitive definition in
order to facilitate the motion planning and primitive
generation

h−
Final stride height. The justification is the same as for
the stride length ℓ−

V. REGRESSION METHOD

In this section, the regression method is presented, which

enables the online generation of walking patterns, when there

is no primitive in the database which matches the terrain

variation.

For walking on uneven terrain the input is the desired

final stride length and height. The outputs are the Bézier

coefficients α (see (24)), except the first two, since as shown

in [9] they depend on the pre-impact state of the robot

x−, i.e. the previously executed primitive. In this work, the

learning model employed is the Gaussian Process, due to its

fast learning and inference time and the fact that it was able

to learn the nonlinear dependencies between the gaits quite

well. A brief introduction to the Gaussian Process follows.

A. Gaussian process [13]

The Gaussian process GP is a collection of random

variables, any finite number of which have a joint Gaussian

distribution N . The Bézier coefficients α1:n−1
2:M are generated

according to

α1:n−1
2:M (φ) ∼ GP(m(φ), k(φ,φ′)), (28)

where φ = [ℓ− h−]
T

is the input, m the mean function and k
the covariance function. The mean and covariance functions

can also be defined as

m(φ) = E[α1:n−1
2:M ] (29)

k(φ,φ′) = cov[m(φ),m(φ′)]. (30)

The joint Gaussian distribution N (µ,K) is defined by a

covariance matrix Kij = k(φi,φj) of dimension N × N ,

where N is the number of existing primitives and a mean

µ = [m(φ1),m(φ2), ...,m(φN )]T . The behaviour of the

output functions is determined by the covariance kernels. It

is common practice to employ a zero mean function µ and

a squared exponential covariance kernel given by

k(φ,φ′) = σ2
fexp

(

−
1

2
(φ− φ′)TΣ−1(φ− φ′)

)

, (31)
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Fig. 2. The range of values for which the regression method can generate
periodic gaits. Yellow color indicates periodic gaits, while red indicates
non-periodic ones.

where σ2
f is the length scale and Σ = σ2

φI the standard

deviation with I the identity matrix. The quantities σf and

σφ are referred to as the hyperparameters of the Gaussian

Process and are combined in λ = [σf σφ]
T .

B. Evaluation of the Regression Method for Periodic Gaits

The regression method is trained offline and can be utilized

online for motion planning. The database of primitives is

extracted according to section IV for a grid from 0.4 to 0.7 m

for ℓ and from -0.15 to 0.10 m for h. The step increment for

ℓ is 0.05 m and for h it is 0.01 m. With these specifications,

the database contains 182 periodic primitives as well as all

the transitions between them.

The important quantities when a generated gait is em-

ployed are δzero, Vzero, V MAX
zero and the justification is the

same as in Table I. The verification of (20) is illustrated in

Fig. 2 and the quantity δzero for periodic walking is presented

in Fig. 3 for a densely sampled grid of points corresponding

to the stride length and height of the motion primitives in

the database. For a gait to be periodic and exponentially

stable, (20) as well as 0 < δ2zero < 1 must hold. Since, the

later holds for the whole grid, the interest is shifted towards

Fig. 2. There, it is obvious that the regression method can

generate periodic gaits for a very large range of values.

A limitation arises for stair descent with a very large

or small step length. At this range, the nonlinear relations

between the Bézier coefficients of the periodic gaits are

highly uncorrelated and cannot be easily captured by the

Gaussian Process. This finding was expected, since during

stair descent the robot is taking advantage of gravity and

utilizes more of its natural dynamics. Therefore the range of

solutions is very small for these gaits. This finding is also

supported by the fact that as the height decreases, the range

of step lengths corresponding to periodic gaits decreases.

C. Online Generation of Motion Primitives

The value of q5 at the end of the gait is given by solving

the equation ys(α, q5) = h−, i.e. equating the vertical

component of the swing leg with the desired final stride

height (see Fig. 1). This ensures that the generated gaits

Stride length(m) Height(m)

δzero

0.4

0.6

0.8

0.4

0.5

0.6

0.7
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0

0.05

0.10

Fig. 3. The quantity δzero for the generated walking gaits.

will always match the encountered terrain variations. In order

to compute Vzero and V MAX
zero very fast, the function Vzero is

computed on a sufficiently dense grid of points of ξ1, so that

it can be numerically integrated using the cumulative sum.

Since the function Vzero corresponds to potential energy, it is

concave which makes the computation of V MAX
zero very easy

and fast. The computation of δzero requires only a simple

evaluation of (17). The post-impact joint positions are given

by the primitive that was already executed and the pre-impact

ones can be extracted by the Bézier coefficients α1:n−1
2:M

which are the outcome of the Gaussian Process inference.

More precisely, regarding the computational cost, the

Gaussian Process regression has an algorithmic complexity

of O(m) [14], where m in this case is the total number

of training examples. Regarding the dynamic feasibility, the

cumulative sum for integrating the function Vzero is a linear

operation which depends on the size of the grid of ξ1 points.

Finding the maximum V MAX
zero is also a linear operation.

On the other hand, finding a feasible solution online

using optimization constitutes a very difficult problem. The

decision variables are (M−1)×(n−1) and we have nonlinear

constraints regarding the feasibility of the system and the

periodicity. Even if the optimization is only with respect to

the constraints, i.e. finding a set of decision variables that

respect the terrain variations and satisfy the constraints, the

Gaussian Process is going to return a gait much faster.

Finally, for aperiodic walking an evaluation of the feasibil-

ity of transitions is not helpful, since it is subject to the post-

impact state of the robot, which is not known beforehand.

A solution to this problem is presented in section VI, where

the feasibility is checked online with the aid of a look-ahead

approach.

VI. MOTION PLANNING ALGORITHM

The motion planning algorithm takes as input the terrain

description and gives as an output a sequence of primitives

which can traverse this terrain. It is based on a best first

approach. This is due to the limited computation time, which

is dictated by the duration of the gait. In a few words, we

want the motion planning algorithm to terminate before the

robot concludes its current step. The sketch of the algorithm

is presented in Fig. 4. The search node of the list ’TREE’ is

assumed to have a structure described in Table II. Initially



TABLE II

STRUCTURE OF A SEARCH NODE

Quantity Justification

P Associated primitive as described in table I

ζ+
2

Necessary for checking the feasibility of transitions
and choosing primitives

predecessor Father of current node in the search tree

k Depth of the current node in the search tree

(x,y) Cartesian coordinates of the swing leg on the terrain

ID
Takes discrete values from the set ’N’, ’G’, denoting
nominal and generated node respectively

the structure TREE contains the currently executed node p.

At each execution step we choose the best node in TREE.

The evaluation criterion assumed for selecting the best node

d is defined as

d← argmaxi{ζ
+
2,i} (32)

The motivation behind this comes from (26). That is, the

greater the value of ζ+2 is, the greater the number of available

primitives gets. The maximum allowed depth of the TREE

is D and thus we check if the best node is in this depth.

• If this is true, we backtrack in TREE to find the

predecessor g of d in depth 1. If the execution of g
will bring the robot past the goal value ”terrainX”, then

the algorithm is terminated. Otherwise, the structure

TREE is re-initialized with the node g, whose primitive

is executed when the robot concludes its current step.

• If this is not true, we have to check if the node p is a

nominal one (p.ID = ’N’).

Then we iterate along all the (ℓ−, h−) combinations

corresponding to primitives in the database to find the ones

that match the terrain variations. For that, the ID information

of the best node d is important.

• If the best node is a nominal one, we check the dynamic

and kinematic feasibility of each primitive Pi.

• If it is a generated one, we utilize the Gaussian Process

to generate primitives giving as an input each (ℓ−, h−)
combination of the primitives in the database and then

we check the dynamic and kinematic feasibility of

each generated primitive Gi. Generating primitives that

match the (ℓ−, h−) combinations of the primitives in

the database will prevent us from using the regression

when it is not necessary, i.e. we have primitives in the

database with an (ℓ−, h−) combination that matches the

terrain variation.

The kinematic feasibility is done by utilizing a set of

intermediate configurations and doing collision checks. The

dynamic feasibility is checked by computing the quantities

Vzero and V MAX
zero as described in subsection V-C and then

evaluating equation (26).

In any case, feasible primitives are appended in TREE.

If no primitive in the database was found and no valid

primitive was generated, a set of primitives is generated. This

procedure is executed for a grid of L equally distributed

step lengths ℓ− in the range
[

ℓ−MIN, ℓ
−

MAX

]

. The desired

value h− is equal to the terrain variation in a distance ℓ−

Currently executed

node p (TREE= p)

Find best node

d in TREE

Is depth of

d equal to D
(d.k == D)?

Is node d
nominal?

Find primitives in DB s.t. they

match the terrain variations

Is it

dynamically

and

kinematically

feasible?

Is it

dynamically

and

kinematically

feasible?

Generate L primitives

for a set of [ℓ− h−]
T

that match the

terrain variations

Find predecessor of

d in depth 1

Generate 1 primitive

Append in TREE

Is g.x≥terrainX?

p = g

END

d

g

Pi

Gi

Gi

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Fig. 4. Flow diagram describing the motion planning algorithm. The
kinematic and dynamic feasibility is checked for each primitive that is either
chosen from the database or generated from the Gaussian Process.

from the stance leg of the robot. When the L primitives

are generated, each is checked again for its kinematic and

dynamic feasibility and if it is a valid node, it is appended in

TREE. Finally, it should be noted that D and L are design

parameters that dependent on the computational resources

available.

VII. SIMULATION EVALUATION

This section presents an evaluation of the algorithm pro-

posed in section VI. The robotic model in this experiment

matches the parameters of the 5-link biped RABBIT [15].

In Fig. 5 a horizon of D=3 steps ahead is utilized and the

total amount of primitives which are allowed to be generated

by the Gaussian Process is L=7. The red configurations

denote final robot poses with a [ℓ− h−]T specification that

does not belong to the aforementioned grid and the regression

technique had to be utilized for the transition to and from

them. Since the algorithm involves only lower dimensional

dynamics and the inference time of the Gaussian Process is

small, the proposed methodology can be utilized for online

motion planning. An interesting result arises when the second

generated gait shows that the robot leans forward in order
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Fig. 5. Walking sequence produced with the algorithm proposed in
section VI. The black configurations correspond to gaits that match the
aforementioned grid, while the red ones do not.
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Fig. 6. Walking sequence for a terrain with a challenging transition at the
beginning. The Gaussian Process has to be employed to take a transition
from a step with a height of 0.099m to another one with a height of
−0.148m.

to gain more momentum and overtake a big step, as it is

indicated on the second nominal primitive as well.

In Fig. 6 another evaluation is presented for a more

challenging terrain. For this case, the robot has to take

an initial step with a height equal to 0.099m followed

by a step of height equal to −0.148m. The step down

generated transition (2nd red configuration) has a final stride

length ℓ− of 0.4039m and a final stride height h− of

−0.148m. According to figure Fig. 2 a periodic gait with

this specification cannot be generated. The purpose of this

example is to show that even though the generation of such

a periodic gait is infeasible, a feasible transition that ends

up in a pose with the specified ℓ− and h− values can be

generated.

VIII. CONCLUSION

This paper proposed an online motion planning algorithm

for walking on uneven terrain, using motion primitives which

are extracted based on the Hybrid Zero Dynamics approach.

The key idea is that, when there is a mismatch between the

final stride length of the motion primitives in the database

and the terrain height, a regression technique can be used to

generate a primitive that matches the terrain variation. For

that, the regression method uses the motion primitives in

the database as training examples. The algorithm is shown

to be efficient since it uses the Hybrid Zero Dynamics of

the robot which are 2-dimensional and the inference time of

the regression technique (Gaussian Process in this paper) is

very small. Simulation studies are presented in section VII.

In the future, a more extensive study on the computational

advantage of the proposed methodology will be performed.
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