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A B S T R A C T

Ever since the posttranslational modifications (PTMs) were discov-
ered and associated to evolution of many diseases, both experimental
and computational studies have gained pace to better understand the
mechanism behind PTMs. This thesis aims to investigate two kinds
of PTMs – acetylation and phosphorylation – in a tissue-specific man-
ner by utilizing the sequence and structural characteristics contained
in their environments. In the first part, we present a comprehensive
tissue-based analysis of sequence and structural features of lysine
acetylation sites (LASs). We show that acetylated substrates are char-
acterized by tissue-specific motifs both in linear amino acid sequence
and in spatial environments. We further demonstrate that the gen-
eral tendency of LASs to reside in ordered regions and, specifically,
in α-helices, is also subject to tissue specific variation. In line with
previous findings we show that LASs are generally more evolution-
arily conserved than non-LASs, especially in proteins with known
function and in structurally regular regions. On the other hand, as
revealed by metabolic pathway analysis, LASs have diverse cellu-
lar functions in different tissues and are frequently associated with
tissue-specific protein domains. In the second part, we present the
first comprehensive analysis of global and tissue-specific sequence
and structure properties of phosphorylation sites utilizing recent pro-
teomics data. We identified tissue-specific motifs in both sequence
and spatial environments of phosphorylation sites. Target site pref-
erences of kinases across tissues indicate that, while many kinases
mediate phosphorylation in all tissues, there are also kinases that ex-
hibit more tissue-specific preferences which, notably, are not caused
by tissue-specific kinase expression. We also demonstrate that many
metabolic pathways are differentially regulated by phosphorylation
in different tissues. The findings obtained from these two parts of the
thesis may imply the existence of tissue-specific enzymes and pro-
teases regulating posttranslational modifications. In the last part of
the thesis, we present the first tissue-specific phosphorylation site pre-
diction approach, TSPhosPred (Tissue-Specific Phosphorylation Pre-
diction) based on the feature set consisting of sequence-based and
structure-based environment characteristics of phosphorylation sites
as well as functional annotations. Experimental structures along with
predicted structures are also utilized, and yield an improved accu-
racy over existing tools in both cross-validation and independent test-
ing. Supportively, the cross-tissues prediction strengthens the neces-
sity and the significance of tissue-specific models to obtain improved
prediction of phosphorylation sites.
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Z U S A M M E N FA S S U N G

Seit der Entdeckung von Posttranslationaler Modifikation (PTM) und
ihrer Bedeutung in vielen Krankheiten ist die Anzahl an experimen-
tellen und theoretischen Studien, die sich mit den Mechanismus hin-
ter den PTM beschäftigen gestiegen. In dieser Doktorarbeit analysie-
ren wir Acetylierung und Phosphorylierung auf Gewebespezifische
Sequenzen und Strukturen. Im ersten Teil der Arbeit zeigen wir eine
umfassende Sequenz- und Struktur-Analyse von Gewebespezifischen
Lysin Acetylierung Stellen (LASs). Wir zeigen, dass acetylierte Sub-
strate durch gewebespezifische Sequenz und Struktur Motive gekenn-
zeichnet sind. Des weiteren zeigen wir, dass LASs bevorzugt in struk-
turell geordneten Regionen und Alpha-Helixen vorkommen. Überein-
stimmend mit vorhergehenden Studien zeigen wir, dass LASs stärker
konserviert sind als nicht LASs, vor allem in Proteinen mit bekannter
Funktion und in strukturell regelmäßigen Regionen. Die Analyse von
Stoffwechselwegen zeigten, dass LASs eine Vielzahl an gewebespezi-
fische Funktionen haben die häufig mit gewebespezifische Proteindo-
mänen assoziiert ist. Der zweite Teil enthält eine umfassende Analy-
se von globalen und gewebespezifischen Sequenzen und Strukturen
von Phosphorylierungsstellen. Wir identifizierten gewebespezifische
Motive sowohl in der Sequenz als auch der Struktur von Phospho-
rylierungsstellen. Die beobachtete gewebespezifische Präferenz von
Kinase Zielen zeigte, dass diese gewebespezifische Präferenz einiger
Kinasen von deren Genexpression unabhängig ist. Wir zeigten auch,
dass viele Stoffwechselwege durch gewebespezifische Phosphorylie-
rung reguliert sind. Die Ergebnisse aus beiden Teilen der Doktorar-
beit implizieren die Existenz von Enzymen und Proteasen die gewebe-
spezifische Phosphorylierung regulieren. Im letzten Teil der Doktor-
arbeit stellen wir die erste gewebespezifischen Phosphorylierungsstel-
len vorhersage Methode TSPhosPred (Tissue-Specific Phosphorylati-
on Prediction) vor. TSPhosPred nutzt zur gewebespezifischen Phos-
phorylierungsstellen Vorhersage die Phosphorylierungsstellen spezi-
fische Sequenz- und Struktur-eigenschaften. Durch die Kombination
von vorhergesagten und experimentell validierten Strukturen erreicht
TSPhosPred bessere Genauigkeit als bereits bekannte Methoden. Die
gewebespezifischen Kreuzvalidierung validierte die Bedeutung und
Notwendigkeit eines gewebespezifischen Modelles zur verbesserten
Vorhersage von Phosphorylierungsstellen.
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Part I

I N T R O D U C T I O N
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1
I N T R O D U C T I O N

Protein post-translational modification (PTM) is a mechanism occur-
ring after the translation is completed by ribosomes. It generally refers
to the covalently addition of a functional group to a protein that al-
ters the chemical makeup and function of the protein, and eventually
leads to different biological outcomes in response to requirements of
the cell. PTMs play important roles in protein signaling (Morrison
et al., 2002), cellular differentiation (Grotenbreg and Ploegh, 2007),
protein degradation (Geiss-Friedlander and Melchior, 2007), localiza-
tion (Sirover, 2012), and regulations of gene expression (Wang et
al., 2015) and protein-protein interactions (Duan and Walther, 2015).
PTM cross-talk where the PTM of a protein can also regulate the
PTMs of other proteins may also occur that leads to more aspects
of protein functions. Modifications are most often regulated by en-
zymes including kinases, acetyltransferases, glycosyltransferases etc.,
whereas reversible modifications (removal of functional groups and
reverse of the biological activity) are carried by proteases such as
phosphatases, deacetylases, glycosidases and so on. Many proteins
harbor post-translational modifications, and many domains within
proteins are even modified on more than one residue. Moreover, reg-
ulatory enzymes also go under auto-modification, yielding a large in-
terconnected network. This complex network carries high importance
since the abnormal regulation of PTMs is connected to evolution of
many diseases, such as cancer (See Figure 1 for proteome complex-
ity).

To date, more than 400 different PTM types on more than 90000

PTM sites have been identified by experimental analysis (Khoury,
Baliban, and Floudas, 2011). These modifications include phospho-
rylation, acetylation, glycosylation, ubiquitination, methylation, lipi-
dation and so on where phosphorylation and acetylation are the two
of most studied PTM types. Identification of PTMs harbors a great
insight in understanding the mechanism behind it; however, there
still exist many technical challenges in the development of specific
detection and purification methods, and these methods are costly
and labor-intensive. Alternatively, many computational methods have
been improved for in silico identification of modification sites. In the
remaining part of the Introduction section, we (i) introduce the exist-
ing experimental approaches in identifying PTMs, (ii) place a greater
focus on phosphorylation and acetylation, which are the PTM types
subjected to study in this thesis, (iii) give a background information
about computational approaches based on phosphorylation, and (iv)
describe the thesis motivation that leaded us to conduct this research.

3
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Figure 1: The evolution of post-translational modifications leading to pro-
teome complexity. Human genome consists of 20000 - 25000 genes,
whereas in the transcriptome level around 100000 transcripts
were processed, and alternative splicing occurs where appropriate.
However, the myriad of different post-translational modifications
substantially increases the size of proteome, which comprises over
one million proteins; hence, the complexity of proteome increases
relatively (Figure taken from (ThermoFisher Scientific)).

1.1 experimental methods

There are several methodologies currently used to identify PTMs (see
Table 1). The most conventional ones are in vitro PTM reaction assays
using Western blot analysis, radioactive isotope-labeled substrates,
and peptide and protein microarrays (Zhao and Jensen, 2009). How-
ever, they all contain bottlenecks, and are labor-intensive even though
they are useful. In the case of identification of protein methylation
and acetylation using radio-isotopes of carbon (C) and hydrogen (H),
for instance, modified proteins are hardly efficiently detected as C
and H are weak radio emitters. Western blot analysis is another ap-
proach where modification-specific antibodies are used to identify
the presence of a protein in a sample. Although this method is quite
efficient in detecting small amounts of proteins, especially immuno-
genic responses from infectious agents, it is not sufficient for complex
samples, and it depends on the prior knowledge of the position and
type of specific modifications, as well as the availability of antibodies
(Chandramouli and Qian, 2009). Protein or peptide microarrays, on
the other hand, is a high-throughput method where large number of
proteins can be monitored in parallel. Kinase assays, for instance, are
commonly used for peptide arrays to screen phosphorylation sites.
However, the identified candidate proteins subsequently require vali-
dation (Zhao and Jensen, 2009).

Recent advancements in mass spectrometry-based (MS-based) pro-
teomics over the last years have led to the identification of many
PTMs in almost any kind (Figure 2). The approaches for protein
characterization in MS-based proteomics can be classified into two:
(i) top-down proteomics where intact proteins are directly analyzed
to detect modifications, (ii) bottom-up proteomics, which includes
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1.1 experimental methods 5

Figure 2: Summary of mass spectrometry (MS)-based proteomics for the ly-
sine acetylation. A. The representation for the sample preparation.
Proteins are extracted from tissues, and digested into peptides.
Eventually, many peptides are obtained, but a small amount of
them is only acetylated as shown with yellow circles. The acety-
lated peptides are then enriched to reduce the complexity where
acetyllysine antibodies selectively bind to acetylated peptides. Pep-
tide fractionation approaches can also be applied to reduce the
complexity. B. The representation for the MS analysis of the acety-
lated peptides. Nanoflow liquid chromatography (LC) is used to
separate peptides from a reversed-phase column. After the elec-
trospray ionization, the mass-to-charge ratio of peptide ions (MS
spectra) is measured in the mass spectrometer. Finally, the ex-
istence and position of post-translational modifications, and the
abundance of peptides are found by computationally processing
MS spectra results (Figure taken from (Choudhary et al., 2014)).
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Method In vitro/in vivo Advantages Disadvantages

Radioactive isotope labeling In vitro or in vivo Reagents accessible Inconvenience or hazard low sensitivity
Western blotting In vitro or in vivo Good affinity Moderate sensitivity
Peptide/protein array In vitro Rapid, global scale Possibly non-specific, low sensitivity, requires verification
MS−proteomics In vitro Specific, global scale Need enrichment methods

Table 1: Experimental methodologies for identifying post-translational mod-
ifications (Table taken and modified from (Zhao and Jensen, 2009)).

the digestion of proteins into peptides (Choudhary et al., 2014). In
bottom-up proteomics, after proteins are extracted from their cellu-
lar environments, they are digested to peptides by proteases - for in-
stance the commonly used protease, trypsin (Olsen and Mann, 2013).
The modified peptides are further extracted from the pool of all pep-
tides by using liquid chromatography (LC) and ionized in the electro-
spray source. A particular position is assigned for the modification
type of interest using the In High Performance Liquid Chromatogra-
phy (HPLC) technique. Finally, eliminated peptides are subjected to
mass spectrometer where mass spectra and fragmentation spectra are
measured and recorded. Even though MS-based proteomics has over-
come some drawbacks of conventional methods mentioned above, it
still harbors limitations. For instance, overuse of trypsin for digesting
peptides only enable the identification of trypsin-accessible peptides.
Alternative proteases, on the other hand, lead to less specific and
costly outcomes (Choudhary et al., 2014). The lower abundance of
modified peptides also makes the identification from their fragmen-
tation spectra difficult (Olsen and Mann, 2013).

1.2 acetylation

Lysine acetylation is a reversible posttranslational modification (PTM),
which involves the transfer of an acetyl group to the epsilon-amino
group of a lysine residue of the substrate protein. This modification
was previously known to target only histones, but more recently
a broad spectrum of proteins was identified as acetylated and de-
acetylated by lysine acetyltranferases (KATs) and lysine deacetylases
(KDACs), respectively, underscoring the important role played by ly-
sine acetylation in diverse cellular processes including the regulation
of subcellular localization, protein stability, enzymatic activity, nu-
cleic acid binding, and protein-protein interactions. Studies of lysine
acetylation mechanisms moved into the scientific limelight ever since
their association with major diseases, such as cancer, was discovered.

Recent advancements in high-resolution mass spectrometry-based pro-
teomics have led to identification of thousands of lysine acetylation
sites (LASs) (Henriksen et al., 2012), rendering possible proteome-
wide in silico analyses of their sequence context as well as theoreti-
cal predictions of LASs (Basu et al., 2009; Hou et al., 2014; Lu et al.,
2011; Shao et al., 2012; Suo et al., 2012). Currently available data re-
veal significant diversity of amino acid sequences surrounding lysine
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acetylation sites, making it difficult to derive consensus acetylation
motifs. This diversity might be due to the broad variety of KATs and
KDACs encoded, for example, in the human and mouse genomes (22

KATs and 18 KDACs) as well as to non-enzymatic lysine acetylation
(Choudhary et al., 2014). Most of the LASs known today have not yet
been associated to their cognate KATs and KDACs due to the techni-
cal challenges in detecting KAT- and KDAC-specific acetylation sites
by high-throughput in vitro acetylation assays. To close this gap, Li
et al. made a commendable effort in manually assigning 384 known
LASs to three selected KAT families (Li et al., 2012), which, however,
is still a far cry from close to 5000 experimentally confirmed LASs
known from literature as of 2012.

Beyond linear sequence motifs, it has been hypothesized that the local
structural environments of lysines can influence their predisposition
to be recognized by KATs. Indeed, Kim et al. (Kim et al., 2006) found
that in mouse proteins, acetylated lysines prefer α-helical conforma-
tion, avoid disordered regions, and typically reside on protein surface.
At the same time Okanishi et al. (Okanishi et al., 2013), while con-
firming the tendency of acetylated lysines to be exposed, did not find
any relationship between acetylation propensity and local secondary
structure in Thermus thermophilus. Both studies were performed on
rather limited datasets of acetylation sites. Recent availability of much
larger proteome-wide acetylation assays warrants a deeper look into
the role of structure in shaping the substrate spectrum of KATs.

1.3 phosphorylation

Protein phosphorylation is a reversible posttranslational modification
(PTM) that represents the most common PTM type in eukaryotes, and
plays a crucial role in many essential cellular processes, including
cellular signaling, metabolism, differentiation, regulation of protein
activity and subcellular localization (Roskoski, 2015). Protein phos-
phorylation and de-phosphorylation are controlled by more than 500

protein kinases and more than 100 phosphatases, respectively, which,
in their turn, are regulated by phosphorylation, yielding a complex
picture of interconnected signaling pathways. As many of these path-
ways are disease-related, understanding the mechanisms of phospho-
rylation has become a high priority for drug design.

Quantitative mass spectrometry-based phosphoproteomics have re-
sulted in a massive amount of serine/threonine/tyrosine phospho-
rylation sites. However, methods to experimentally identify kinase
substrates are still costly and laborious that a substantial amount of
experimentally identified phosphorylation sites is still lack of exper-
imentally annotated kinase family. PhosphoSitePlus includes 209000

phosphorylation sites where only 13751 of them (6.6%) were identi-
fied with corresponding kinases (Imamura et al., 2014). As a result,
many studies made in silico attempts to derive consensus sequence
motifs depending on kinase family (Chen et al., 2011; Damle and Mo-
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hanty, 2014; Gnad, Gunawardena, and Mann, 2011; Miller et al., 2008;
Obenauer, Cantley, and Yaffe, 2003). Miller et al. introduced NetPhor-
est, which is an atlas of sequence motifs for phosphorylation sites
targeted by 179 protein kinases and 104 phospho-binding domains.
It further classifies the non-annotated experimentally identified phos-
phorylation sites to related kinases and phospho-binding domains.
This atlas also contributes to understanding of different characteris-
tics of phosphorylation signaling. Damle et al. built a network us-
ing experimentally identified kinase-substrate pairs and domains of
phosphoproteins, revealing novel patterns for domain preferences of
kinases. This network showed that many of the kinases phosphory-
late only a few proteins domains, whereas only a small number of ki-
nases phosphorylate a broad spectrum of protein domains. Although
many of these studies emphasized on substrate-specificity across ki-
nases where this substrate-specificity depends on sequence surround-
ings of phosphorylation sites, Chen et al. used motifs to derive more
biological information, and proposed that phosphorylation distribu-
tion is dependent on cellular compartment type (Chen et al., 2014).
Accordingly, cellular compartment-specific sequence motifs for phos-
phorylation were extracted, and experimentally identified phosphory-
lation sites were subsequently classified into corresponding cellular
compartments.

Studies also showed that spatial amino acid content surrounding
phosphorylation sites along with structural preferences play also an
important role in kinase active site (Durek et al., 2009; Iakoucheva
et al., 2004; Su and Lee, 2013; Tyanova et al., 2013). Durek et al.
mapped experimentally identified phosphorylation sites onto three-
dimensional structures, and categorized based on associated kinase.
The spatial environments of phosphorylation sites were characterized
in both global and kinase-specific manners, and further incorporated
along with sequence information in prediction of phosphorylation
sites. The preceding study by (Su and Lee, 2013) conducted a simi-
lar analysis as Durek et al., but with a more comprehensive dataset.
Tyanova et al., on the other hand, introduced a different aspect for
the analysis of structural properties of phosphorylation sites. Rather
than the static way, the dynamic properties of phosphorylation sites
with structural features were investigated at six time points of the
cell division cycle. This study showed that phosphorylation sites take
part in different functions depending on the need at different time
scales, and the tendency of phosphorylation sites regulated at differ-
ent time points of the cell division cycle is associated to structural
environments of those phosphorylation sites.

1.4 computational methods

Protein phosphorylation, as we mentioned in Section 1.3, is a com-
plex interconnected network carrying high importance since the ab-
normal regulation of phosphorylation is connected to evolution of
diseases, such as cancer. The identified number of phosphorylation
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sites to date, however, could not show the same pace as its impor-
tance in cellular processes due to the fact that experimental meth-
ods, i.e. mass spectrometry (MS)-based phosphoproteomics, are ex-
pensive and labor-intensive. As a consequence, computational ap-
proaches have been substantially studied to elucidate more phospho-
rylation sites, contributing to understanding of the mechanism be-
hind phosphorylation.

Based on the targeting area, available predictors can be classified into
four: (i) Kinase-specific predictors, which are based on the idea that
each kinase family targets different subset of substrates depending on
the sequence amino acid content around phosphorylation sites (Blom
et al., 2004; Fan et al., 2014; Gao and Xu, 2010; Li, Du, and Xu, 2010;
Suo et al., 2014; Xue et al., 2010), or sequence content in combination
with structural characteristics of phosphorylation sites (Blom, Gam-
meltoft, and Brunak, 1999; Durek et al., 2009; Hjerrild et al., 2004;
Linding et al., 2008; Saunders et al., 2008; Su and Lee, 2013). These
predictors take a protein sequence and the type of the kinase as in-
puts, and calculate the probability of each candidate site (serine/thre-
onine/tyrosine residues) in the query protein phosphorylated by the
given kinase. (ii) Organism-specific predictors, where not only human
phosphorylation sites, but also phosphorylation sites in other species
(Durek et al., 2010; Gao and Xu, 2010; Trost and Kusalik, 2013) have
also been predicted. (iii) Subcellular-specific predictors, which utilize
the information on localization of phosphorylation sites in subcellu-
lar compartments (Chen et al., 2014). (iv) Global predictors, which
distinguish globally phosphorylated phosphorylation sites from non-
phosphorylated counterparts. This kind of predictors calculates the
probability of a candidate site in the query sequence to be phospho-
rylated by any existing kinase (Dou, Yao, and Zhang, 2014; Zhao et
al., 2012) (see also reviews from (Trost and Kusalik, 2011; Xue et al.,
2010)).

The above-mentioned studies have achieved great performance in
phosphorylation site prediction, but they harbor some drawbacks.
Namely, the regulation mechanism behind phosphorylation depend-
ing on different tissues has been shown, and the existence of tissue-
specific kinases and phosphatases has been proposed in some parts
of this thesis and previous studies. These findings decrease the ro-
bustness of models current predictors generate. On the other hand,
most of the existing predictors only utilized the sequence features
surrounding phosphorylation sites. However, it has been shown in
this thesis and previous studies that phosphorylation sites also har-
bor structural characteristics (Durek et al., 2009; Su and Lee, 2013;
Tyanova et al., 2013). The redundancy elimination has also been per-
formed at very generous thresholds where predictors using sequence
features would yield bias results. The prediction performance on phos-
phorylation prediction eventually remained not accurate and suffi-
cient – high specificity, but low sensitivity.
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1.5 thesis motivation and outline

The enzymes that catalyze PTM events have different expression lev-
els in different tissues and cellular compartments. Comprehensive
studies of protein glycosylation (Kaji et al., 2012), phosphorylation
(Lundby et al., 2012b) and acetylation (Lundby et al., 2012a) revealed
thousands of differentially modified sites, opening up the possibility
that PTM sites may possess substantially different sequence and spa-
tial properties across tissues, depending on which particular enzyme
catalyzes a particular modification event. The existence of compartment-
specific sequence signatures for phosphorylation (Chen et al., 2014;
Wijk et al., 2014) and lysine acetylation (Choudhary et al., 2009; Kim
et al., 2006; Lundby et al., 2012a; Shao et al., 2012) has already been
firmly established, whereas their tissue-specific preferences still re-
main unexplored. This thesis focuses on tissue-specific sequence and
structural preferences of acetylation and phosphorylation sites in Chap-
ter 2 and Chapter 3, respectively. In Chapter 4, we present the first
tissue-specific phosphorylation site prediction approach, TSPhosPred
(Tissue-Specific Phosphorylation Prediction), which aims to address
the drawbacks of current phosphorylation site predictors. We believe
that this thesis will enlarge the horizon of phosphorylation and acety-
lation, and contributes to understanding of the complex evolution of
post-translational modifications.
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T I S S U E - S P E C I F I C S E Q U E N C E A N D S T R U C T U R A L
E N V I R O N M E N T S O F LY S I N E A C E T Y L AT I O N S I T E S

Lysine acetylation is a reversible post−translational modification that
regulates a broad spectrum of biological activities across various cel-
lular compartments, cell types, tissues, and disease states. While com-
partment−specific trends in lysine acetylation have recently been in-
vestigated, its tissue-specific preferences remain unexplored. Here we
present the first comprehensive tissue-based approach analyzing the
sequence and structural features of lysine acetylation sites (LASs)
based on the recent experimental data of (Lundby et al., 2012a). We
assessed the extent of evolutionary conservation of LASs and its de-
pendence on functional and structural properties of proteins by com-
paring rat, mouse, and C.elegans acetylomes. We further investigated
tissue-specific functional roles and domain preferences of acetylated
proteins.

2.1 materials and methods

2.1.1 Data collection and preprocessing

The dataset used in our analysis contains 15474 lysine acetylation
sites (LASs) in 4541 proteins identified by high-resolution tandem
mass spectrometry in 16 rat tissues: brain, heart, muscle, lung, kidney,
liver, stomach, pancreas, spleen, thymus, intestine, skin, testis, testis
fat, perirenal fat, and brown fat (Lundby et al., 2012a). For each lysine-
acetylated peptide in each tissue we obtained information about the
UniProt (Consortium, 2014) IDs of the best-matching proteins (one
or more), the sequence position of the acetylated site, and the inten-
sity values (summed up extracted ion current of all isotopic clusters
associated with the peptide in the corresponding tissue).

In order to find the best-matching UniProt ID for each acetylated
peptide we applied the following procedure: (i) All fragments were
excluded from consideration. (ii) If there was only one UniProt ID
associated with an acetylated peptide, and its sequence position and
the sequence of the corresponding full-length protein in the UniProt
database were known, then we directly used that protein. (iii) Oth-
erwise, we aligned all pairs of proteins and then chose the pair hav-
ing the maximum sequence identity out of all pairs sharing at least
90% sequence identity. The idea behind this approach is to find those
UniProt proteins corresponding to the given peptide that show at
least some consistency in terms of their overall primary structure. If
no pair of proteins associated with the given peptide showed more
than 90% sequence identity, this peptide was excluded from consid-
eration. (iv) Finally, out of two aligned best−matching proteins we
retained the longer one. We obtained 10626 acetylation sites on 3541

13
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Datasets Description Number

Initial dataset LASs 10626

Proteins 3541

Structure-based dataset LASs 2566

Proteins 856

LAS1D (non-redundant sequence-based) LASs (positive set) 9868

Non-LASs (negative set) 94362

LAS3D (non-redundant structure-based) LASs (positive set) 2218

Non-LASs (negative set) 8777

Table 2: Data summary of lysine acetylation sites.

proteins, each of them having only one best-matching UniProt ID.
The decrease in the number of acetylation sites is due to not satisfy-
ing the above criteria, not finding the sequence of the corresponding
full-length protein in the UniProt database, or not finding a lysine
residue in the specified sequence position of the finally obtained pro-
tein.

2.1.2 Sequence (1D) environments of acetylated and reference (non−acetylated)
lysine residues

The positive dataset of tissue-specific LASs consisted of all lysine
acetylated sites displaying non-zero intensity values in the correspond-
ing tissue. The negative (reference or non-LASs) set was generated by
extracting all lysine residues not annotated as acetylated by Lundby
et al. (Lundby et al., 2012a) and relating them to those tissues in
which the protein harboring the reference site also has at least one
experimentally observed LAS. Then, we generated 21-mer sequences
(from position -10 to position +10) surrounding each site in both pos-
itive and negative datasets and performed homology reduction on
these 21-mers using CD-HIT (Li and Godzik, 2006) at the 90% iden-
tity threshold. Note that some of acetylation and reference sites occur
in more than one tissue. The resulting dataset, which we call LAS1D,
is composed of non-redundant 21-mer sequences corresponding to
9868 LASs and 94362 non-LASs (Table 2). The distribution of LASs
and non-LASs in different tissues is given in Figure 3.

We used the Two Sample Logo method (Vacic, Iakoucheva, and
Radivojac, 2006) for differential analysis of 21-mer occurrence in dif-
ferent tissues, using the corresponding LASs and non-LASs as posi-
tive and negative sample inputs, respectively. For example, LASs ob-
served in brain were compared to non-LASs in brain. Amino acids
were colored using the WebLogo defaults, and t-test with a cut-off
p-value of 0.05 was used to select significantly enriched residues. The
Motif-X online tool (Chou and Schwartz, 2011) was used to extract
motifs from the 21-mer sequences of LASs, using LAS and non-LAS
as the foreground and background datasets, respectively.
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Figure 3: Number of LASs and non-LASs from the LAS1D and LAS3D
datasets in different tissues.

2.1.3 Lysine acetylation sites with known 3D structure

In order to analyze the properties of spatial (3D) environments of
LASs we collected a dataset of proteins with known atomic structure
containing lysine residues annotated as acetylated by Lundby et al.
(Lundby et al., 2012a). Using the amino acid sequences of acetylated
proteins as queries we extracted the total of 1689 related 3D structures
from the Protein Data Bank (Berman et al., 2000) based on BLAST-P
(Camacho et al., 2009) hits with E-value <0.001 and sequence identity
>90%. We did not require the alignments to be global and to cover
the total length of the compared proteins as this would lead to a
dramatic reduction of our structural dataset. Instead, we selected the
alignments that cover the ±50 residue environment of the acetylation
sites with higher than 80% identity with the candidate structure. Us-
ing this procedure we obtained 2566 acetylation sites in 856 protein
structures after excluding low−resolution structures (> 3Å).

The structure-based positive and negative LASs datasets were gen-
erated as described above for sequence-based data. Homology reduc-
tion was again performed on 21-mer sequences surrounding LASs
and non-LASs at the 90% identity threshold. The resulting dataset,
which we call LAS3D, contains 2218 LASs and 8777 non-LASs in pro-
teins with known structures (see Table 2 and Figure 3).
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2.1.4 Statistics

Statistical analyses were performed using the R environment (Team,
2009) and custom Java programs. We used the non-parametric two-
sample Kolmogorov-Smirnov test and the Fisher test to assess the sig-
nificance of the differences between numerical and categorical datasets,
respectively. Relative frequency of a certain property (e.g. conserva-
tion) of LASs and their sequence neighborhoods observed in a given
tissue was compared to that of non-LASs and their sequence neigh-
borhoods observed in the same tissue. We used the non-parametric
Kruskal-Wallis test to perform multiple comparisons between expres-
sion profiles of KAT paralogs across tissues.

2.1.5 Three-dimensional (3D) environments of acetylated and reference (non-
acetylated) lysine residues

Spatial amino acid environments of LASs in the LAS3D dataset were
determined by calculating the occurrence of 20 different amino acid
types within the radial distances of 2 to 12 Å from the acetylated ly-
sine residue in accordance with the previous studies analyzing the
spatial environment of phosphorylation sites (Durek et al., 2009; Su
and Lee, 2013). Distances between amino acid residues were defined
based on the minimal distance between any pair of atoms belonging
to these residues. In order to isolate the influence of spatial struc-
ture from 1D sequence motifs we also defined pure 3D amino acid
environments of LASs by excluding from consideration those amino
acids already present in the sequence vicinity of LASs, as defined in
the previous section. In both cases the Fisher exact test was employed
to assess the significance of the differences between LASs and non-
LASs in each tissue, and these differences were efficiently visualized
using our in-house software tool. For each radial distance ranging
from 2 to 12 Å (in increments of 1Å) and for each amino acid type we
calculated (i) the significance (p-value) of the amino acid at that posi-
tion using Fisher exact test, and (ii) the odds ratio of the amino acid
at that position by dividing the normalized occurrence of acetylated
amino acids to that of non-acetylated amino acids.

2.1.6 Conservation analysis of lysine acetylation sites

Using an approach similar to the one given in (Weinert et al., 2011) we
extracted Caenorhabditis elegans orthologs of acetylated proteins con-
tained in the LAS1D dataset from the InParanoid database (Ostlund
et al., 2010) and compared the evolutionary conservation of LASs and
non-LASs based on Needleman-Wunsch alignments (Needleman and
Wunsch, 1970) between acetylated protein sequences and their C. el-
egans counterparts. We assessed the conservation by comparing the
frequency of conserved LASs among all LASs to the frequency of con-
served non-LASs among all non-LASs. Note that for this analysis we
used all C. elegans orthologs of mouse and rat acetylated proteins,
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including those that are not acetylated. Statistical significance of the
differences between the conservation of LASs and non-LASs was cal-
culated using the Fisher exact test.

2.1.7 Structural features of lysine acetylation sites

The surface accessibility of LASs and non-LASs in the LAS3D dataset
along with their sequence surroundings was calculated using NAC-
CESS (Hubbard and Thornton, 1993). We used the absolute (rather
than relative) accessibility scores of amino acid side chains produced
by NACCESS that are larger than zero. The rationale for this choice
is that in contrast to LASs, non-LASs often reside in the core of the
protein and considering such buried non-LASs could lead to biased
results.

We used DisEMBL (Linding et al., 2003) to predict disordered/un-
structured regions within protein sequences. A LAS/non-LAS in the
LAS1D dataset was considered to reside in a disordered region if it
was predicted by DisEMBL to be located in a region associated with
either loops/coils, or hot loops, or missing coordinates. Secondary
structure assignments were obtained from the DSSP database (Joosten
et al., 2011).

2.1.8 Analysis of structural folds and functional domains

We investigated structural folds of lysine acetylated proteins in each
tissue in the LAS3D dataset according to the class and protein domain
levels of the SCOP database (Murzin et al., 1995) hierarchy. At the pro-
tein domain level false discovery rate control was performed for mul-
tiple hypothesis correction in each tissue, all p-values were adjusted,
and the significance threshold after the correction p < 0.05 was used.
At the structural class level, the significance threshold p < 0.01 was
used.

2.1.9 KEGG pathway analysis

We identified enriched pathways across tissues in the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2006)
using the best-matching UniProt identifiers of each LAS and non-LAS
in the LAS3D dataset (see above). False discovery rate control was per-
formed for multiple hypothesis correction in each tissue, all p-values
were adjusted, and the significance threshold after the correction p <
0.01 was used.

2.1.10 Abundance of KAT paralogs

For each experimentally identified human KAT (Li et al., 2012) we
found the mouse ortholog as well as its paralogs using the KEGG
database. Protein expression levels of paralogs across tissues were
obtained from the PaxDb database (Wang et al., 2012).
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Figure 4: The comparison of 1D and 3D environments of global lysine acety-
lation sites. (A) Two sample logo analysis of global LASs in the
LAS1D dataset. (B) Two sample logo analysis of global LASs in
the LAS3D dataset. (C) 3D environments of LASs in the LAS3D
dataset. (D) Pure 3D environments of LASs in the LAS3D dataset.

2.2 results and discussion

2.2.1 Global and tissue-specific sequence motifs of lysine acetylation sites

It has been previously reported that LASs have compartment-specific
sequence motifs (Choudhary et al., 2009; Kim et al., 2006; Lundby
et al., 2012a; Shao et al., 2012). Here we first investigate both global
and tissue-specific acetylation trends at the sequence level based on
the LAS1D dataset. Across all tissues, amino acids with bulky side
chains are enriched at positions from -3 to +2 with respect to the
acetylated lysine (Figure 4A), as reported before (Choudhary et al.,
2009; Hou et al., 2014; Lundby et al., 2012a; Suo et al., 2012, 2013).
In accordance with the previous studies (Maksimoska et al., 2014)
we also find that glycine is strongly enriched at position -1, while
non-polar and hydrophobic isoleucine (I), valine (V) and leucine (L)
residues are preferred at positions +1 and +2. Negatively charged
residues frequently occur at positions from -3 to +3, while the wider
sequence context of LASs exhibits a strong preference to positively
charged residues.

LASs in individual tissues generally follow the global trends dis-
cussed above, but some tissue-specific trends are also clearly observed.
For instance, brain and muscle (Figure 5A and Figure 5B) harbor
LASs having asparagine (N) residue at the position +3 whereas pan-
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Figure 5: Two sample logo analysis of LASs from the LAS1D dataset in brain
(A), muscle (B), pancreas (C), perirenal fat (D), heart (E), brown fat
(F), stomach (G) and testis fat (H). See data on other tissues given
in Figure 28 - Figure 44.
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creas and perirenal fat (Figure 5C and Figure 5D) include LASs hav-
ing glutamine (Q) and asparagine residues, respectively, highly en-
riched at position -4. LASs in heart and stomach (Figure 5E and Fig-
ure 5G) show a strong preference for methionine (M) residue at both
positions -1 and -2, while in brown fat and muscle (Figure 5F and
Figure 5B) LASs need methionine only at position -2. Histidine (H)
residues are strongly preferred by LASs in testis fat at positions -2,
-3 and -4 (Figure 5H). In the downstream region of the acetylated
lysines negatively charged residues occur less frequently in thymus,
pancreas, perirenal fat and spleen (See Figure 28 – Figure 44 for more
detailed graphs for these and other tissues).

Besides the two-sample logo analysis, we also used the Motif-X soft-
ware to delineate tissue-specific sequence motifs in the LAS1D dataset
that significantly deviate from the global sequence pattern (Table 12).
For instance, the motifs I-AcK and I-X-X-AcK are only associated with
brain-specific LASs. Similarly, the motif E-X-AcK-Y is not observed
in any tissues except for intestine. We therefore conclude that tissue-
specific sequence motifs are not just random subsets of global motifs,
but rather reflect the required environment for acetylation in each
tissue.

Acetylation is regulated both enzymatically, by lysine acetyltran-
ferases (KATs), lysine deacetylases (KDACs) and bromo-domain- con-
taining acetyllysine binders, and non-enzymatically (Choudhary et
al., 2014). While the existence of compartment-specific KATs is still
being debated (Lundby et al., 2012a; Sadoul et al., 2011), our find-
ings may imply the existence of tissue-specific KATs and KDACs. We
were not able to detect significant differences in the abundance of
paralogs of experimentally identified KATs across different tissues,
which implies that tissue-specific motifs are not a result of tissue-
specific KAT expression. On the other hand, previous studies have
proposed that even though KATs might share a conserved substrate-
binding site, different non-catalytic subunits of KATs may cause the
diversity in substrate sequences (Berndsen et al., 2008; Clements et
al., 2003; Poux and Marmorstein, 2003). Thus, the tissue-specific sub-
strate sequences reported here may be suggestive of the existence of
tissue-specific non-catalytic subunits of KATs. Moreover, the fact that
chaperones associated with KATs influence their substrate specificity
(Berndsen et al., 2008; Fillingham et al., 2008; Recht et al., 2006) raises
the opportunity that this influence may be exercised in a tissue depen-
dent manner. On the other hand, we speculate that non-enzymatic
acetylation might also vary from tissue to tissue depending on the
concentration of metabolites (acetyl-CoA, acetyl-phosphate etc.) and
the pH level (Choudhary et al., 2014), leading to diverse substrate
sequences. Such diversity could conceivably be caused by the follow-
ing reasons: (i) absence of the recognition site by KATs, resulting in
random sequences being favored for deprotonation of amino groups
by acetyl-CoA, (ii) the requirement for specific lysine environment
for CoA donation of acetyl-CoA, (iii) regulation of enzymatic lysine
acetylation by non-enzymatic acetylation (crosstalk), such that if non-
enzymatic acetylation does not occur due to the low abundance of a
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metabolite, the regulated acetylation of another lysine would be ob-
structed and the substrate sequence of the corresponding KAT would
be underrepresented in that tissue.

2.2.2 Global and tissue-specific sequence motifs of lysine acetylation sites
in proteins with known 3D structure

We conducted a separate analysis of lysine acetylation sequence mo-
tifs in the LAS3D dataset, which only contains proteins with known
3D structure. Since this dataset is obviously depleted in disordered
regions and hence has a somewhat different amino acid composition,
the corresponding lysine acetylation motifs exhibit somewhat differ-
ent residue preferences compared with the full LAS1D dataset. The
enrichment of the disorder promoting glycine residue, for instance, is
not observed at position -1 of the global LAS signature (Figure 4B).
On the other hand, in some tissues, including brain, kidney and testis
the sequence neighborhoods of LASs are enriched in positively and
negatively charged residues, while in pancreas LASs require arginine
only at the amino acid position -7 (Figure 45). In pancreas, LASs in
the LAS3D dataset exhibit a strong preference for negatively charged
aspartic acid (D) residue at the amino acid position +3 and negatively
charged glutamic acid (E) at the amino acid position -2, which is in
strong contract to the tendencies found for pancreas based on the
entire LAS1D dataset (see above). Brain is characterized by the fre-
quent occurrence of negatively charged residues between amino acid
positions -2 to +3. LASs in intestine are special in that they are as-
sociated with enriched glycine (G) and methionine (M) residues at
positions -1 and -8, respectively, whereas none of the LASs observed
in other tissues have such preferences. Interestingly, as opposed to
global LAS signatures, LASs in stomach and testis fat do not harbor
any negatively charged residues, while LASs in kidney and thymus
show a strong preference for polar asparagine (N) residue at amino
acid position -3.

2.2.3 Spatial environments of lysine acetylation sites

In the spatial surroundings of LASs across all tissues there is a strong
depletion of cysteine (C), which is also avoided in the sequence mo-
tifs discussed above. In the close proximity of global acetylation sites
(around 2-3 Å away), strong enrichment of hydrophobic, aromatic,
low flexibility and order-promoting tyrosine (Y) and phenylalanine
(F) residues is observed (Figure 4C). Another prominent trend is
strong enrichment of positively charged, surface exposed, highly flex-
ible and disorder promoting arginine residue at larger distances (10

to 11 Å). Interestingly, enrichment of positively charged residues in
the 3D environment of global LASs is not as strong as in the 1D se-
quence neighborhood.

Tissue-specific spatial environment analysis reveals some additional
statistical trends. LASs in brain and stomach (Figure 6A and Fig-
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ure 6B) have a strong preference for glutamic acid and methionine
residues, respectively, whereas perirenal fat and spleen (Figure 6C
and Figure 6D) harbor LASs whose spatial environment is enriched
in histidine (H). Thus, patterns of amino acid usage around LASs
are generally consistent between 1D and 3D environments, although
some of the tendencies found at the primary structure level, such
as the enrichment of negatively charged residues in brown fat (Fig-
ure 6E) and the enrichment of glycine and tyrosine residues in intes-
tine (Figure 6F), are not observed in the 3D environments (see Fig-
ure 46 for more detailed graphs for all tissues).

Amino acid residues participating in local sequence motifs around
LASs are also situated in their spatial vicinity. In order to disentan-
gle the effects of sequence neighbors from those of spatial neighbors
we conducted a separate analysis of pure structural environments
(see Section 2.1). While only a weak enrichment of alanine (A) and
glycine residues is observed in global pure 3D environment trends
(Figure 4D), tissue-specific preferences are more strongly pronounced.
One of the striking examples is the strong enrichment of tyrosines
at a distance between 4 Å and 7 Å in spleen (Figure 6D). Similarly,
LASs residing in brown fat have a preference for hydrophobic ala-
nine and valine (V) residues in their pure 3D environments, which is
not observed when sequence context is also considered (Figure 6E).
Spleen harbors LASs enriched in tyrosine and isoleucine (I) residues
in their pure 3D environment, whereas tyrosine residues in the 1D
environment, and both tyrosine and isoleucine residues in the 3D en-
vironment are not enriched (Figure 6D). We thus find that, beyond
sequence motifs, there are statistically significant patterns of residue
preferences in the spatial environment of LASs, which implies that
the substrate-specificity of KATs and KDACs may be characterized
by both of sequence and spatial environments of LASs (see Figure 47

for more detailed graphs for all tissues).

2.2.4 Evolutionary conservation of lysine acetylation sites

Previous studies, in which the conservation of lysine acetylation in
Drosophila melanogaster or in humans was compared to that in ne-
matodes and zebrafish (Weinert et al., 2011), indicate that LASs are
significantly more conserved than non-LASs. With an approach sim-
ilar to the one given in (Weinert et al., 2011), we created sequence
alignments between rat and mouse proteins from the LAS1D dataset
and their C. elegans orthologs obtained from the InParanoid database
(Ostlund et al., 2010). We then compared the conservation frequency
of global rat and mouse LASs and non-LASs to the conservation fre-
quency of these sites in the C. elegans counterparts. As expected, we
find that acetylated lysine residues (conservation frequency of 45.7%)
are more conserved than non-acetylated lysine residues (conserva-
tion frequency of 41.3%) (p-value < 6.17 x 10-7), although at the tis-
sue level this trend was only significant in brain (48.12% and 40% of
LASs and non-LASs with p-value < 0.0028), lung (49.03% and 44.54%
of LASs and non-LASs with p-value < 0.0061) and thymus (50.87%
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Figure 6: Sequence (1D) and structural (3D and pure 3D) environments of
LASs from the LAS3D dataset represented by two sample logos
and circular plots, respectively. Data for four tissues is shown:
brain (A), stomach (B), perirenal fat (C), spleen (D), brown fat (E)
and intestine (F) (see Figure 45, Figure 46 and Figure 47 for all
tissues). The circular amino acid propensity plots were produced
by our in-house software tool. Color code for amino acid residue
enrichment in the circular plots: (i) red – enriched, if p-value < 0.05

and odds ratio > 1, (ii) blue – depleted, if p-value <0.05 and odds
ratio <1, and (iii) white –neither enriched nor depleted, if p-value
> 0.05.
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and 45.31% of LASs and non-LASs with p-value < 0.0011). We specu-
late that the weaker evolutionary conservation of acetylated positions
at the tissue level is due to the tissue-specific variation of protein
abundance levels, as was already shown for phosphoproteins (Levy,
Michnick, and Landry, 2012). We subsequently compared the conser-
vation of LASs and non-LASs separately in irregular/regular regions,
ordered/disordered regions, and functional/unknown proteins, mo-
tivated by the previous reports that the conservation of phosphory-
lation sites strongly depends on these key factors (Levy, Michnick,
and Landry, 2012). We find that according to the KEGG database
59.85% of all conserved global LASs reside in proteins with known
functions, whereas for conserved global non-LASs this percentage is
much lower, at 50.16% (p < 9.35 x 10-14). This observation is also
significant in all tissues except liver and pancreas (Table 14). On the
other hand, both global LASs and non-LASs are more frequently and
equally conserved in disordered and regular regions (57.19% and
58.37%, respectively for disordered regions; 60.43% and 60.95%, re-
spectively, for regular regions). We therefore conclude that acetyla-
tion sites follow the evolutionary trends similar to phosphorylation
processes in that they are more conserved in proteins with known
function and in structurally regular regions.

2.2.5 Tissue-specific structural properties of lysine acetylation sites

In line with the previous reports (Kim et al., 2006; Rojas et al., 1999;
Suo et al., 2012), both global LASs and the residues surrounding them
tend to be consistently more solvent exposed than non-acetylated
lysines and their 1D environment by about 10% on average (see Ta-
ble 15). No tissue-specific solvent exposure preference was observed.
Structural preferences of lysine acetylation sites display tissue-specific
character. For instance, LASs and the residues surrounding them in
all tissues except for thymus, spleen and pancreas reside significantly
more often in ordered regions than in disordered regions, as global
LASs also do. On the other hand, no enrichment of LASs for disor-
dered regions in any tissue was observed.

In all tissues except pancreas, testis fat, muscle and perirenal fat
both LASs and the residues in their close proximity tend to reside in
α-helices more often than in other types of secondary structure (Fig-
ure 48). Beyond the enrichment in α-helices, we also find that LASs in
stomach tend to avoid loops whereas LASs in testis are depleted in β-
sheets. In addition, in many tissues residues adjacent to LASs on the
C-terminal side are depleted in β-sheets. No structural preferences of
LASs could be observed in testis fat.

In terms of SCOP fold preferences global LASs and non-LASs show
the same behavior in that they are mainly found in all-α proteins
(Figure 49). The same trend exists in many individual tissues except
for muscle and brown fat where acetylation sites are significantly en-
riched in (α+β) proteins. On the other hand, LASs in heart, skin and
testis are significantly depleted in (α/β) proteins. Based on the anal-
ysis of B-factors we also find that LASs preferentially occur in more
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rigid regions of protein structures. LASs and the residues surround-
ing them have smaller B-factors than non-LASs do (Table 15).

2.2.6 Proteins containing acetylated lysines are involved in tissue-specific
biological pathways

It has been firmly established that the structural environment of phos-
phorylated residues is a key factor determining kinase specificity and
ultimately the functional role of phosphorylation processes (Su and
Lee, 2013; Tyanova et al., 2013). We therefore investigated whether
lysine acetylated proteins are specialized for various functions in dif-
ferent tissues. It is worth reminding that in all cases we compare the
enrichment or depletion of acetylated proteins in specific pathways
relative to non-acetylated proteins in each individual tissue (see Sec-
tion 2.1), so the trends presented below cannot be the consequence
of mere presence or absence of certain functions in those tissues.
In accordance with previous studies (Henriksen et al., 2012; Kim et
al., 2006; Lu et al., 2011; Patel, Pathak, and Mujtaba, 2011), we find
that global lysine acetylated proteins are involved in energy genera-
tion processes including the TCA cycle, fatty acid metabolism, and
glycine/serine/threonine metabolism. However, there are also signif-
icant differences between global and tissue-specific lysine acetylated
proteins in terms of their biological pathway preferences (Figure 7).
Similar to the trends in globally acetylated proteins, lysine acetylated
proteins in all tissues except for spleen, pancreas, testis fat and liver
take part in the citrate cycle (TCA cycle) pathway. On the other hand,
proteins involved in RNA transport show significant enrichment in
acetylation sites only in brain. Acetylation appears to play a role in
the terpenoid backbone biosynthesis pathway only in liver. We also
identified tissue-specific acetylation patterns in several disease path-
ways. It appears that only in heart acetylated proteins are involved
in the regulation of Type II diabetes mellitus, whereas Epstein-Barr
virus infection is only regulated by testis-specific acetylated proteins.

It has been shown in several studies that acetylated proteins not
only take part in nuclear processes, such as regulation of gene tran-
scription, but are also involved in signaling pathways. On the other
hand, it has also been previously proposed that differential lysine
acetylation between human liver and leukemia cells might be cell
type-dependent (Choudhary et al., 2009; Patel, Pathak, and Mujtaba,
2011). Our findings indicate the existence of biological processes that
are affected by acetylation in a tissue-specific manner. Compounds
modulating KAT-, KDAC- and bromo domain-containing proteins
show promise as potential drugs against cancer, cardiac illness, dia-
betes, and neurodegenerative disorders (Choudhary et al., 2014; Patel,
Pathak, and Mujtaba, 2011). Our observation that acetylated proteins
are involved in a number of tissue-specific disease pathways, com-
bined with the speculation about the existence of tissue-specific KATs,
KDACs and bromo domain-containing proteins discussed above, may
serve as an indication that small molecules and drugs can be designed
to target tissue-specific disease pathways.
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Figure 7: KEGG pathway analysis of the acetylated proteins from the LAS3D
dataset. Pathways with a corrected p-value < 0.01 in each tissue
are considered significant. Spleen and pancreas are not shown in
the figure since acetylated proteins in spleen and pancreas are not
enriched in any pathways.
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Unsurprisingly, tissue-specific preferences regarding biological path-
ways are accompanied by the variation in occurrence of acetylation
sites within key protein domains such as aldehyde reductase (dehy-
drogenase), creatine kinase C-terminal domain, mitochondrial class
kappa glutathione S-transferase, and phosphoglucose isomerase (Fig-
ure 50). Proteins containing the zeta isoform domain are exclusively
acetylated in brain. The zeta type protein kinase C (PKC) is expressed
in brain where it is involved in mitogenic signaling, cell proliferation,
cell polarity, inflammatory response, and maintenance of long-term
potentiation and memories. While it has been reported that two spe-
cific sites of this kinase need to be phosphorylated for its full activa-
tion (Consortium, 2014), our findings suggest that some of its sites
may also need to be acetylated. Class mu GST domain-containing
acetylated proteins are enriched testis. Mu belongs to the cytosolic
superfamily of Glutathione S-transferases (GSTs), which catalyze the
joining of glutathione (GSH) to xenobiotic substrates for detoxifica-
tion. GSTs also play role in the cell signaling processes. Overexpres-
sion of GSTP1-1 – an isozyme of the mammalian GST family - has
been associated to cancer. GSTP1-1 is a very important drug target
and its acetylation in testis warrants further investigation. Proteins
containing malate dehydrogenase (a component of the TCA cycle, see
above) and annexin v domains (whose function is still unknown) are
acetylated in many tissues.

2.3 conclusion

In this work we present evidence that lysine acetylation sites dis-
play tissue-specific preferences for certain residues both in their linear
amino acid sequence and in spatial environments. We further demon-
strate that LASs are generally more evolutionarily conserved than
non-LASs, the trend that is especially pronounced in proteins with
known function and in structurally regular regions. The occurrence
of LASs and the residues surrounding them in disordered regions
and regular secondary structures also displays a tissue-specific char-
acter. These findings imply the existence of tissue-specific KATs and
KDACs able to differentiate between various types of local structural
environments beyond mere amino acid content in sequence and in
spatial environments. Lysine acetylated proteins are specialized for
various functions in different tissues, and this specialization is sup-
ported by tissue-specific key domain preferences. Since compounds
modulating KAT-, KDAC- and bromo domain-containing proteins are
potential drugs against many diseases, including cancer, the specula-
tion about the existence of tissue-specific KATs, KDACs and bromo
domain-containing proteins indicates the need for tissue-specific drug
target designs.
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Phosphorylation is the most widespread and studied reversible post-
translational modification, and play a role in the regulation of almost
every cellular activity. Sequence and structural properties of global
phosphorylation sites, as well as of those specific for individual cel-
lular compartments, have been previously investigated. By contrast,
tissue-specific preferences of phosphorylation sites at the sequence
and structure level remain largely unexplored. In this study we per-
formed a comprehensive tissue-specific analysis of the sequence and
structural environments of phosphorylation sites as well as globally
phosphorylated sites, employing a recent experimental data by Lundby
et al. (Lundby et al., 2012b) that provides new insights into the under-
lying mechanism of phosphorylation. We demonstrate that substrate
recognition by kinases is guided by both sequence and structural fea-
tures of phosphorylation sites in a tissue specific manner. Based on
the known kinase-substrate associations we demonstrate that many
kinases are active in a tissue-specific manner, an effect which is ap-
parently not caused by tissue-specific expression of kinase genes. We
also examined differential functional roles and domain preferences of
phosphorylation sites across tissues (see Figure 8 for summary).

3.1 materials and methods

3.1.1 Datasets of phosphorylated and reference (non-phosphorylated) sites

We used the dataset from of 31480 phosphorylation sites in 7280 pro-
teins identified by high-resolution tandem mass spectrometry in 14

rat tissues: brain (dissected into cerebellum, cortex and brainstem),
heart, muscle, lung, kidney, liver, stomach, pancreas, spleen, thymus,
intestine, testis, perirenal fat, and blood (Lundby et al., 2012b). The
UniProt (Consortium, 2014) IDs of the best-matching proteins (one
or more), the sequence position of the phosphorylation site, and the
intensity values (summed up extracted ion current of all isotopic clus-
ters associated with the peptide in the corresponding tissue) were
gathered for each phosphorylation site in each tissue.

The best-matching UniProt ID for each phosphorylated peptide
was identified as described previously in Chapter 2. Briefly, we aligned
all pairs of proteins associated with a given peptide and chose the
longer protein of the pair having the maximum sequence identity out
of all pairs. We obtained 17917 phosphorylation sites on 5443 pro-
teins, each of them having only one best-matching UniProt ID. This
dataset contains 14661 phosphorylated serine sites (PSSs), 2832 phos-
phorylated threonine sites (PTSs), and 424 phosphorylated tyrosine
sites (PYSs) (Table 3). The decrease in the number of phosphorylation

31
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Figure 8: A graphical summary of the followed methodology for phospho-
rylation sites.

Datasets Sa Tb Yc Totald

Initial datasete
14661/348754 2832/215735 424/100083 17917/664572

PS1D-70
f

9254/128578 1594/82698 249/38598 11097/249874

Structure-based datasetg
729/7377 232/6564 69/4384 1030/18325

Structure-based and
solvent accessible dataseth

489/5941 181/5482 53/3981 723/15404

PS3D-90
i

423/4162 140/3790 46/2804 609/10756

Table 3: Data summary of phosphorylation sites. a Number of serine phos-
phorylation sites/non-phosphorylation sites. b Number of threo-
nine phosphorylation sites/non-phosphorylation sites. c Number
of tyrosine phosphorylation sites/non-phosphorylation sites. d To-
tal number of phosphorylation sites/non-phosphorylation sites in-
cluding all residue types. e Initial dataset directly obtained from
the study of Lundby et al. (Lundby et al., 2012b). f Sequence-based
dataset after sequence redundancy reduction on peptides at the
70% identity level. g The structure-based dataset where phosphopro-
teins were mapped on PDB structures. h The structure-based dataset
including solvent accessible phosphorylation/non-phosphorylation
sites. i Structure-based dataset after the sequence redundancy reduc-
tion on peptides at the 90% identity level.
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sites may be due to failure in finding either the best-matching UniProt
ID, or a serine (S)/threonine (T)/tyrosine (Y) residue in the specified
sequence position, or the sequence of the corresponding full-length
protein in the UniProt database.

We also generated a negative (reference or non-PSSs, non-PTSs, non
PYSs) dataset by extracting all S/T/Y residues not annotated as phos-
phorylated by Lundby et al. and matching them to those tissues in
which the protein containing the reference site had at least one ex-
perimentally observed PSS/PTS/PYS. Then, the 21-mer sequences
(from -10 to +10) surrounding each site in both positive and nega-
tive datasets were extracted, and homology reduction on these 21-
mers were performed using CD-HIT (Li and Godzik, 2006) at the 70%
identity threshold. Some of phosphorylation and reference sites are
found in more than one tissue. The statistics of the resulting datasets,
PS1D-70, can be found in Table 3 (11097 phosphorylation sites in 5286

proteins).

3.1.2 Identification of sequence motifs

We used the Two Sample Logo method (Vacic et al., 2006) to find
enriched and depleted residues in the 21-mer sequences occurring
in different tissues, using the associated PSSs/PTSs/PYSs and non-
PSS/non-PTSs/non-PYSs as positive and negative sample inputs, re-
spectively. For instance, PSSs/PTSs/PYSs found in kidney were com-
pared to non-PSS/non-PTSs/non-PYSs in kidney. The Motif-X online
tool (Chou and Schwartz, 2011) was employed to detect sequence mo-
tifs from 21-mer sequences where PSSs/PTSs/PYSs and non-PSS/non-
PTSs/non-PYSs were used as the foreground and background datasets,
respectively.

3.1.3 Obtaining 3D structures of phosphorylated proteins

We applied the same procedure as we described in Chapter 2 to col-
lect 3D structures of phosphorylated proteins. We extracted the to-
tal of 2079 related 3D structures from the Protein Data Bank based
on BLAST-P hits. After requiring at least 80% identity within the se-
quence segment spanning ±50 sequence positions around the phos-
phorylated residue, we obtained 1030 phosphorylation sites in 399

protein structures with the resolution better that 3Å.
Once the structure-based positive and negative PSSs/PTSs/PYSs

datasets were generated as described above for the sequence-based
data, homology reduction was again performed at the 90% identity
level, taking into account only solvent accessible phosphorylation
sites. The resulting dataset, which we call PS3D-90, contains 609 phos-
phorylation sites (423 PSSs, 140 PTSs and 46 PYSs) and 10756 non-
phosphorylation sites (4162 PSSs, 3790 PTSs and 2804 PYSs) in 332

proteins with known structures (Table 3). The number of PSSs, PTSs
and PYSs in each tissue can be found in Table 19, Table 20 and Ta-
ble 21, respectively. Since the number of PYS per tissue in the PS3D-
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90 dataset is too low, we generally avoided tissue-based analyses of
PYSs in the PS3D-90 dataset.

3.1.4 Statistics

The R environment (Team, 2009) was used for statistical analyses.
For the numerical data we used the non-parametric two-sample Kol-
mogorov Smirnov test, whereas the Fisher exact test was applied for
the categorical data. The comparisons were made within each tis-
sue where the occurrence of a particular property of phosphorylation
sites was compared to that of non-phosphorylation sites.

3.1.5 Spatial (3D) environments of phosphorylated and reference (non-phosphorylated)
serine/threonine/tyrosine residues

By calculating the occurrence of 20 different amino acid types within
the radial distances of 2 to 12 Å from the phosphorylated S/T/Y
residue, and excluding amino acids already present in the sequence
vicinity of PSSs/PTSs/PYSs, 3D and pure 3D environments of phos-
phorylation sites in the PS3D-90 dataset were determined, respec-
tively. Distances between amino acid residues were defined based
on the minimal distance between any pair of atoms belonging to
these residues. For both type of environment the Fisher exact test
was performed to assess the significance of the differences between
PSSs/PTSs/PYSs and non-PSS/non-PTSs/non-PYSs in each tissue,
and we used our in-house software tool to visualize these differences
efficiently. We applied the procedure defined in Chapter 2 to find the
propensity of each amino acid type at each radial distance ranging
from 2 to 12 Å (in increments of 1Å).

3.1.6 Structural properties of phosphorylation sites

We extracted structural features of phosphorylation sites as described
in Chapter 2. Briefly, we utilized NACCESS (Hubbard and Thornton,
1993) to calculate the surface accessibility of phosphorylation sites
and their sequence environments. DisEMBL (Linding et al., 2003) was
used to predict disordered regions in each phosphorylated protein
sequence. We gathered the secondary structure annotations from the
DSSP database (Joosten et al., 2011). Note that the number of PYSs
associated with known secondary structures was not sufficient for
comparison; therefore, they were excluded from this analysis.

3.1.7 Analysis of structural folds and functional domains

Structural folds of phosphorylated proteins from the PS3D-90 dataset
in each tissue were examined according to the class and protein domain
levels of the SCOP hierarchy (Murzin et al., 1995). At the structural
class level, the significance threshold p < 0.05 was used, whereas at
the protein domain level false discovery rate control was performed
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for multiple hypothesis correction in each tissue, and the significance
threshold after the correction p < 0.05 was used after all p-values
were adjusted. Note that the numbers of PTSs and PYSs associated
with known SCOP folds were not sufficient for comparison; therefore,
they were excluded from this analysis.

3.1.8 KEGG pathway analysis

Using the best-matching UniProt identifiers of each PSSs/PTSs/PYSs
and non-PSSs/non-PTSs/non-PYSs in the PS1D-70 dataset, pathways
obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Kanehisa et al., 2006) were analyzed across tissues, and
enriched pathways were detected. False discovery rate control was
performed for multiple hypothesis correction in each tissue, and the
significance threshold after the correction p < 0.01 was used after all
p-values were adjusted.

3.1.9 Kinase analysis

In order to analyze enriched kinases across tissues, we used the substrate-
matched kinase data given by Lundby et al. (Lundby et al., 2012b)
where phosphorylated protein sequences were matched against mo-
tifs of known kinases using the PHOSIDA Motif Matcher toolkit (Gnad,
Gunawardena, and Mann, 2011). This toolkit finds the matches of 33

previously identified kinase motifs around each phosphorylation site
in a particular protein sequence. The list of matched kinases is as
follows: AKT, ATM, ATR, AURORA, AURORA-A, CAMK2, CDK1,
CDK2, CHK1, CHK2, CK1, CK2, ERK/MAPK, GSK3, NEK6, PKA,
PKD, PLK, PLK1, and RAD53. Based on these assignments, matched
kinases of 8836 out of 11097 phosphorylation sites could be deter-
mined for the PS1D-70 dataset. We compared the counts of PSSs/PTSs/
PYSs in each tissue phosphorylated by each kinase to the occurrence
of non-PSSs/non-PTSs/non-PYSs in the corresponding tissue. False
discovery rate control was performed for multiple hypothesis correc-
tion in each kinase class, all p-values were adjusted, and the signifi-
cance threshold after the correction p < 0.01 was used.

Relationships between kinases, tissues and motifs were visualized
by means of a tripartite graph as implemented in Cytoscape (Shan-
non et al., 2003). Only the motifs that are significantly enriched in
each tissue (Table 16) and the corresponding kinase motifs provided
in Phosida (Gnad, Gunawardena, and Mann, 2011) were considered
while drawing the graph.

3.1.10 Tissue-specific expression of kinases

For each kinase we identified the corresponding rat UniProt ID from
the PhosphoSitePlus database (Hornbeck et al., 2012), which con-
tains experimentally identified kinase-substrate data. If no rat infor-
mation was found, we attempted to find mouse and human UniProt
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Figure 9: (A) Two sample logo analysis of global PSSs in the PS1D-70 dataset.
(B) Two sample logo analysis of global PSSs in the PS3D-90 dataset.
(C) 3D environments of global PSSs in the PS3D-90 dataset. (D)
Pure 3D environments of global PSSs in the PS3D-90 dataset.

IDs, in this order of preference. If a query kinase could not be iden-
tified in the rat, mouse or human proteomes based on the Phos-
phoSitePlus database, it was excluded from further analysis. Protein
expression levels of kinases across tissues were obtained from the
PaxDb database (Wang et al., 2012). Since no tissue-specific expres-
sion data for rat proteins is provided in PaxDb, we used PaxDb data
for the mouse orthologs of rat or human kinases obtained from the
KEGG database. For some of the kinases considered in this study
PhosphoSitePlus contains information for multiple isoforms (for in-
stance, GSK3A and GSK3B isoforms for GSK3). In such cases, the
expression of each isoform was analyzed separately. To assess the
existence of tissue-specific kinase expression, a one-sample t-Test was
used. The expression value of a particular kinase in a particular tissue
was compared to expression values of the same kinase in all tissues.
All p-values were adjusted and the significance threshold after the
correction p < 0.01 was used.

3.2 results and discussion

3.2.1 Analysis of sequence motifs of global phosphorylation sites

We first examined global phosphorylation trends at the sequence level
based on the PS1D-70 dataset. In general our findings are in line pre-
vious studies (Chen et al., 2014; Schwartz and Gygi, 2005; Villen et al.,
2007; Zhao et al., 2012). Proline (P) residues are enriched at position
+1 with respect to globally phosphorylated serine and threonine sites
(Figure 9A and Figure 51). Negatively charged glutamic acid (E) and
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aspartic acid (D) residues as well as polar serines are also enriched in
the upstream regions of phosphorylated serine, threonine and tyro-
sine (Y) sites (Figure 9A, Figure 51A, and Figure 52A). There is also a
strong trend for charged lysine (K) and arginine (R) residues to be en-
riched in the sequence neighborhood of phosphorylated serines and
threonines, except for the positions from +1 to +4.

3.2.2 Tissue-based analysis of sequence motifs of phosphorylated sites

Previous studies have shown that beyond the general trends, phos-
phorylation sites exhibit kinase-specific sequence and spatial motifs
as well as compartment-specific sequence motifs (Chen et al., 2014;
Durek et al., 2009; Su and Lee, 2013). The availability of experimen-
tally identified tissue-specific phosphorylation sites has now enabled
us to examine phosphorylation trends across tissues. Our analysis
of the PS1D-70 dataset revealed clear tissue-specific preferences. For
instance, only PSS in perirenal fat have phenylalanine (F) residues
at position +1 (Figure 10A), whereas only PSS in pancreas and testis
have a preference for glutamine (Q) residues at position -2 (Figure 10B
and Figure 10C). Only in cortex, glycine (G) residues are enriched at
position -3 with respect to central phosphorylated serine sites (Fig-
ure 10D). Histidine residues are only enriched at position +6 in blood
(Figure 10E), whereas PSS in stomach and liver show preferences for
asparagine (N) residues at position +3 (Figure 10F and Figure 10G). In
contrast to the global trends, none of the tissue-specific phosphoryla-
tion sites show any enrichment for serine residues at position +1 (See
Figure 53 – Figure 70 for more detailed graphs for these and other
tissues). Tissue-specific trends for PTSs are also quite prominent. For
instance, only PTS in cortex show a preference for methionine (M)
residues at position -6, whereas asparagine residues are strongly pre-
ferred at positions -7 and -8 only in muscle (Figure 71). Glutamine
residues are enriched for PTSs in blood at position -7.

We utilized the Motif-X software to identify enriched sequence mo-
tifs that are exclusively tissue-specific and cannot be detected when
analyzing global trends (Table 16). For instance, the motifs pS-P-E,
pS-P-X-X-E, E-X-X-X-X-X-X-X-X-pS-P, E-X-X-X-X-pS, pS-X-X-X-X-X-X-
X-X-D, pS-X-X-X-X-X-X-X-X-E, E-X-X-X-X-X-X-X-X-pS and pS-X-X-X-
X-X-X-X-X-K are only associated with brain-specific PSS. On the other
hand, the motif pS-X-X-X-X-D is only observed in PSS in liver. These
observations indicate that individual tissues harbor specific sequence
environments for phosphorylation.

Lundby et al. have already investigated sequence motifs of phospho-
rylation sites in two tissues - brain and testis - but in their work com-
parison was performed between tissue-specific and global phospho-
rylation sites. Using global sequence signatures of phosphorylation
sites as a background dataset for studying tissue-specific motifs may
fail to reveal potential systematic biases existing in the foreground
dataset and can lead to random and non-informative motif signals
(Yao et al., 2013). In this work we investigate the enrichment or de-
pletion of phosphorylation sites relative to their non-phosphorylated
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Figure 10: Two sample logo analysis of PSSs from the PS1D-70 dataset in
perirenal fat (A), pancreas (B), testis (C), cortex (D), blood (E),
stomach (F), liver (G) and heart (H). See data on other tissues
given in Figure 53 - Figure 70.
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Figure 11: Sequence (1D) and structural (3D and pure 3D) environments of
PSSs, PTSs, and PYSs from the PS3D-90 dataset represented by
two sample logos and circular plots, respectively. Data for brain
and kidney is shown (see the figures in Appendix A for all tis-
sues). The circular amino acid propensity plots were produced
by our in-house software tool. Color code for amino acid residue
enrichment in the circular plots: (i) red – enriched, if p-value <
0.05 and odds ratio > 1, (ii) blue – depleted, if p-value < 0.05 and
odds ratio < 1, and (iii) white –neither enriched nor depleted, if
p-value > 0.05.
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counterparts in each individual tissue, thus ensuring that the trends
found are not due to the tissue-dependent variation of protein abun-
dance or individual biological roles of proteins. In other words, en-
riched motifs identified through this approach are solely due to phos-
phorylation processes occurring in a particular tissue and not any
other tissue-specific properties. We detected 15.4% and 17.1% more
enriched/depleted residues in the sequence environment of phospho-
rylation sites in brain and testis, respectively, based on two sample
logos, even though some trends for certain residues at particular po-
sitions overlap in both studies (58.8% and 57.5% in brain and testis,
respectively) (see Table 17 and Table 18). Note that we applied sepa-
rate two sample logo analyses for serine and threonine sites, whereas
Lundby et al. combined both residues. Furthermore, discriminative
motif analysis using the Motif-X software yielded qualitatively dif-
ferent tissue-specific motifs compared to the motifs obtained in the
previous study by Lundby et al. One of the most significant motifs
we identified - E-X-X-X-X-pS - is only observed in brain but not in
any other tissue (Table 16), whereas residue E in the corresponding
position has not been even found enriched using the former method
(X and pS here represent any residue and phosphorylated serine, re-
spectively). We found that the residue G is enriched at position -1
in testis and the positively charged residues R and K are enriched
at almost all positions in downstream regions of phosphorylated ser-
ines in both brain and testis, whereas none of these effects could be
observed using global phosphorylation sites as a background set. Sim-
ilarly, residue P is enriched in all tissues at position +1 in our anal-
ysis; however, Lundby et al. found P to be enriched at that position
in brain, but not in testis. We also found the motif pS-X-X-R to be
highly specific for testis, while the residue R is in fact depleted in the
corresponding position in the previous study.

High specificity of kinase action is an important requisite for exquisite
regulation of signal transduction processes (Kobe et al., 2005). In ac-
cordance with this notion, compartment-specific kinases have been
proposed in a previous work (Chen et al., 2014), whereas the exis-
tence of compartment- and tissue-specific acetyltransferases (KATs)
has also been discussed in Chapter 2 and (Lundby et al., 2012a; Sadoul
et al., 2011). The substrate sequence specificity among tissues identi-
fied in this work suggests the existence of tissue-specific kinases and
phosphatases.

3.2.3 Tissue-based analysis of phosphorylation sequence motifs in proteins
with known 3D structure

As a pre-requisite for the investigation of structural trends (see be-
low), we performed a separate analysis of phosphorylation sequence
motifs in the subset of proteins possessing a known 3D structure
(dataset PS3D-90). The results obtained are markedly different from
the ones derived from the PS1D-70 dataset due to the fact that struc-
turally characterized proteins are depleted in disordered regions, which
leads to a different amino acid composition. Specifically, negatively
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charged residues, as well as disorder-related glycine and serine residues
are less pronounced in this dataset. For instance, aspartic acid and
glutamic acid are not observed at position +1 of the global and tissue-
specific PSSs (Figure 9B, Figure 11 and Figure 73). Lysine and ala-
nine (A) residues are enriched at positions +4 and +6 of the global
PSS in the PS3D-90 dataset, whereas they are not enriched at the
same positions of the global PSS in the PS1D-70 dataset, where lysine
residues are even depleted at position +4. Glutamic acid residues
are depleted at positions -4 and +7 for structurally known PSS in
brain, whereas they are enriched at these positions in the PS1D-70

dataset. PSS in heart have strong preferences for alanine and proline
residues at positions -4 and -3, respectively, whereas such preferences
could not be observed in the PS1D-70 dataset, and proline residues
are even depleted at position -3. Asparagine and glutamine residues
are generally enriched in the upstream regions of structurally known
tissue-specific sites, whereas there are mainly depleted in the PS1D-
70 dataset.

3.2.4 Tissue-specific spatial motifs of phosphorylation sites

Previous studies found only minor differences between the 3D struc-
tural surroundings of phosphorylated and non-phosphorylated sites,
whereas stronger trends were observed when taking into account
kinase preferences (Durek et al., 2009). In this study we detected
more significant spatial motifs associated both with global and tissue-
specific PSSs. In accordance with (Durek et al., 2009), arginine, pro-
line, leucine and serine residues are enriched in the spatial environ-
ment of global PSSs, but we also found aspartic acid, lysine and glu-
tamine residues to be enriched (see Figure 9C). Frequent occurrence
of aspartic acid residues has also been observed in 1D and 3D envi-
ronments of PSSs in previous studies (Lundby et al., 2012b; Su and
Lee, 2013).

Similar to the trend in the sequence motifs discussed above cysteine
(C) residues are strongly avoided in the spatial surroundings of PSS
in all tissues. Strong enrichment of proline and aspartic acid residues
is observed in close proximity of global PSS (around 2-5 Å away, see
Figure 9C), which again parallels the trends in sequence motifs. How-
ever, the enrichment of leucine residues, at a distance range of 6 to
7 Å, is not found in the sequence environment. On the other hand,
no enrichment of glutamic acid is observed in the 3D environment
even though glutamic acid is highly enriched in the sequence motifs
of global PSS.

We also found tissue-specific trends in the spatial environments of
phosphorylation sites (Figure 76, Figure 77 and Figure 78). PSS in
brain have a strong preference for arginine residues, and it is much
more predominant than the enrichment in the 1D environment. His-
tidine and cysteine residues are strongly depleted in the 3D environ-
ment of PSS in kidney, whereas no preference for these residues is
observed in the 1D environment. Thus, patterns of amino acid usage
around phosphorylated sites are generally consistent between 1D and
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3D environments, although some of the tendencies found at the spa-
tial environment are not observed in the 1D environment alone.

In order to disentangle the influence of local amino acid content
from the effects caused by spatial proximity, we performed a sepa-
rate analysis of pure structural environments (see Section 3.1). While
only a weak enrichment of certain amino acid residues is observed in
global pure 3D environments of PSSs (aspartic acid, Figure 9D) and
PTSs (aspartic acid and glycine, Figure 51), tissue-specific preferences
are more clear cut (Figure 79, Figure 80 and Figure 81). For instance,
aspartic acid residues at a distance between 3 Å and 12 Å with respect
to PTSs are strongly enriched in brain, which is not observed when
sequence context is also considered. Similarly, PTS residing in kidney
have a preference for histidine only when their pure 3D environments
are considered. These findings imply that there are statistically sig-
nificant patterns in spatial residue preferences of phosphorylation
sites in addition to significant sequence patterns. Previous studies
have shown that the spatial context plays a role in the recognition
of substrates by kinases (Durek et al., 2009; Su and Lee, 2013). Here
we found that the amino acid composition in 3D varies in a tissue-
dependent manner, which implies that both sequence and spatial en-
vironments of phosphorylation sites may play a role in determining
the substrate-specificity of kinases and phosphatases across tissues.

3.2.5 Structural properties of phosphorylation sites

It has been previously shown that phosphorylation sites generally
reside in unstructured and disordered regions (Huttlin et al., 2010;
Kreegipuu, Blom, and Brunak, 1999). We assessed the disordered
region preferences of phosphorylation sites in the PS1D-70 dataset,
where disordered regions were predicted from phosphorylated se-
quences. We found that PSSs and the residues surrounding them fol-
low the same tendency in all individual tissues (Figure 82), while
PTSs display the preference for disordered regions in all tissues ex-
cept for muscle (Figure 83).

Based on the experimental structures of phosphorylated proteins,
we also analyzed structural properties of phosphorylation sites in the
PS3D-90 dataset. However, we were only able to assess the global
preferences of phosphorylated sites since the datasets of proteins with
known 3D structure phosphorylated in a tissue specific manner were
not large enough to obtain statistically significant results.

Global PSSs, PTSs and PYSs along with the residues surrounding
them are consistently and significantly more solvent exposed than
non-PSSs, non-PTSs and non-PYSs and their 1D environments by
about 30.73% (p < 2.2 x 10-16), 27.05% (p < 6.9 x 10-6) and 30.02%
(p < 1.5 x 10-3) on average, respectively (see Table 19, Table 20 and
Table 21), which is in line with previous reports (Durek et al., 2009;
Kim et al., 2006; Suo et al., 2012). We also found that PSSs prefer-
entially occur in more flexible regions of protein structures, as as-
sessed by the B-factor analysis. Globally phosphorylated serine sites
and the residues surrounding them in a very close proximity have
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Figure 12: KEGG pathway analysis of the serine phosphorylated proteins
from the PS1D-70 dataset. Pathways with a corrected p-value <
0.01 in each tissue are considered as significantly enriched. In-
significant results are represented by white color. Only the tissues
with at least one significantly enriched pathway are shown.

larger B-factor values than their non-phosphorylated counterparts do
(Table 19). Globally phosphorylated PSSs and PTSs in the PS3D-90

dataset display a clear tendency to reside in loops (Figure 85 and
Figure 86).

3.2.6 Phosphorylated proteins take part in tissue-specific biological path-
ways

As previous studies we also have shown in Chapter 2 that the struc-
tural environment of phosphorylation and acetylation sites plays an
important role in determining kinase/acetyltransferase specificity and
ultimately the functional role of phosphorylation and acetylation pro-
cesses (Su and Lee, 2013; Tyanova et al., 2013). Hence, we conducted
a tissue-based analysis for phosphorylated proteins to assess their
specialization for various functions in different tissues. Following the
work in Chapter 2, we compare phosphorylated proteins in specific
pathways to non-phosphorylated counterparts in each individual tis-
sue (see Section 3.1), which makes this analysis independent from
the mere presence or absence of certain functions in the respective
tissues. Crucial roles of phosphorylated proteins in membrane trans-
port, metabolism, signaling pathways, and their disease related path-
ways are in general well-known. We found that globally phospho-
rylated serine sites are linked to various processes, including ABC
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transporters activities, adherens junction formation, cardiac muscle
contraction system, energy generation processes of glycolysis/gluco-
neogenesis, pyruvate metabolism and lysine degradation, hedhedog
signaling pathway, leukocyte transendothelial migration system, tight
junction, and ubiquitin mediated proteolysis (see full list in Figure 12).
Proteins carrying serine phosphorylation are associated with disease
processes and macromolecules affecting tumor progress, including
the regulation of arryhythmogenic right ventricular cardiomyopathy
(ARVC) and basel cell carcinoma diseases, and proteoglycans in can-
cer.

Serine phosphorylated proteins display distinctly different biologi-
cal pathway preferences both in a global and tissue-specific manner.
For example, proteins involved in synaptic vesicle cycle show signifi-
cant enrichment in PSSs only in cortex. Only proteins phosphorylated
on serine residues in muscle play a role in regulation of diseases in-
cluding amoebiasis, systematic lupus erythematosus and viral car-
cinogenesis, whereas only phosphorylation in blood appears to be
involved in the regulation of malaria disease, which is a parasitic
protozoans-caused disease transmitted by the biting of mosquitoes
(WHO, 2015).

Globally phosphorylated proteins on threonine residues are involved
in energy metabolism and disease related pathways including viral
myocarditis, viral carcinogenesis and tight function processes. Tissue-
specific preferences can only be detected for phosphoproteins in mus-
cle that they also take part in the regulation of diseases such as amoe-
biasis, arrhythmogenic right ventricular cardiomyopathy (ARVC) and
systematic lupus erythematosus (Figure 88). These findings show that
biological processes are regulated by phosphorylation in a tissue de-
pendent manner. Kinases are one of the most important drug targets
for a number of diseases - including cancer, hypertension, Parkin-
son’s disease, and autoimmune diseases (Roskoski, 2015). The fact
that phosphoproteins exhibit tissue-specific preferences in the reg-
ulation of disease pathways implies that designing drugs targeting
tissue-specific disease pathways may be a promising avenue towards
improved and more specific therapeutic effects, as suggested previ-
ously in Chapter 2.

In order to assess the association between biological pathways and
functional domains harboring phosphorylated sites, we first analyzed
statistical preferences at the top level of the SCOP hierarchy, struc-
tural class. Except for the slight enrichment of cerebellum-, brain- and
blood-specific PSSs in all-α proteins, we could not detect any signif-
icant trends (Figure 87). At the second level of the SCOP hierarchy,
which reflects structural folds, we identified a number of significant
preferences for PSSs, which parallel tissue-specific biological pathway
preferences described above. Protein domains found to be phospho-
rylated in a tissue-specific manner include fructose-1,6-bisphosphate
aldolase domain, which belongs to the glycolysis pathway, and crea-
tine kinase C-terminal domain, which is a key enzyme responsible for
the intracellular energetic homeostasis of vertebrate excitable tissues
and for catalysis of the reversible transfer of the high-energy phos-

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



3.2 results and discussion 45

blo
od

br
ain

br
ain
ste
m

ce
reb

ell
um

co
rte
x

he
art

int
es
tin
e

kid
ne
y

liv
er

lun
g

mu
sc
le

pa
nc
rea

s

pe
rir
en
alF
at

sp
lee
n

sto
ma
ch

tes
tis

thy
mu
s

AK
T

AT
M

AT
R

AU
RO

RA
AU
RO
RA
-A

CA
MK

2
CD
K1

CD
K2

CH
K1

CH
K2

CK
1

CK
2

ER
K/
MA

PK
GS
K3

NE
K6

PK
A

PK
C

PK
D

PL
K

PL
K1

Po
lo 

bo
x

Pr
oli
ne

WW
 G

ro
up

IV
Kin
as
es

Tissues

0.0
00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

p-v
alu
es

Fi
gu

re
1

3
:T

is
su

e
pr

ef
er

en
ce

s
of

ki
na

se
s

ta
rg

et
in

g
se

ri
ne

ph
os

ph
or

yl
at

ed
si

te
s

in
th

e
PS

1
D

-7
0

da
ta

se
t.

Ti
ss

ue
s

w
it

h
a

co
rr

ec
te

d
p-

va
lu

e
<

0
.0

1
in

ea
ch

ki
na

se
cl

as
s

ar
e

co
ns

id
er

ed
si

gn
ifi

ca
nt

ly
en

ri
ch

ed
fo

r
th

e
co

rr
es

po
nd

in
g

ki
na

se
cl

as
se

s.
In

si
gn

ifi
ca

nt
re

su
lt

s
ar

e
re

pr
es

en
te

d
by

w
hi

te
co

lo
r.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



46 tissue-specific phosphorylation sites

phate between the ATP/ADP and creatine/phosphocreatine systems
(Chen et al., 2012) (Figure 90). The beta-chain of hemoglobin is phos-
phorylated on serine residues only in blood, which may imply the
relevance of phosphorylation for the oxygen transport function. The
cytosolic class alpha glutathione S-transferase (GST) domain resides
in proteins phosphorylated on serine residues only liver where the
GST domain catalyzes the joining of glutathione to xenobiotic sub-
strates for detoxification. GSTs also plays a role in cell signaling and
the overexpression of GSTP1-1 – an isozyme of the mammalian GST
family - has been associated to cancer (Laborde, 2010), making it a
potential drug target and warranting an experimental investigation of
its phosphorylation. Globally phosphorylated proteins carrying thre-
onine phosphorylation harbor the same domains as serine phospho-
rylated proteins do, but their tissue-specific preferences differ (Fig-
ure 91). For instance, only phosphoproteins in thymus include the hi-
stone H2A domain, which gains function in DNA repair after serine
phosphorylation of one of its variants (Jakob et al., 2011). We therefore
propose that threonine phosphorylation in thymus might also gener-
ate new functions of the H2A proteins. The adipocyte lipid-binding
protein (ALBP), which is a carrier protein in fatty acid metabolism
and has roles in many diseases (Baxa et al., 1989), creatine kinase
N-domain, which is an important enzyme in energy-consuming pro-
cesses, and cAMP-dependent PK catalytic subunit domain, which is
essential for phosphorylation of some proteins (Manni et al., 2008),
are phosphorylated on threonine residues only in perirenal fat.

3.2.7 Kinases target tissue-specific phosphorylation sites

Echoing what we have performed in Chapter 2, in which we pro-
posed the existence of tissue-specific lysine acetyltranferases (KATs)
and lysine deacetylases (KDACs), the findings presented here imply
the existence of tissue-specific protein kinases and phosphatases. The
wealth of information on kinase-substrate association enabled us to
examine kinase classes in different enriched tissues. Lundby et al.
matched known sequence motifs of kinases to identified sequence mo-
tifs of tissue-specific phosphorylation and observed sequence motifs
recognized by different kinases specific across tissues. Based on the
association between phosphorylation sites and kinases provided by
Lundby et al., we examined tissue-specific target site preferences of ki-
nases. Many kinases, including CK1, GSK3, NEK6, and PKA, mediate
serine/threonine phosphorylation in all tissues, while some other ki-
nases show more tissue-specific preferences (Figure 13). For instance,
phosphorylation sites targeted by AURORA-A are only prominent in
cerebellum, perirenal fat and testis, whereas PKC mediated phospho-
rylation is particularly pronounced in brain (as well as in brainstem,
cerebellum and cortex) and testis. Similar to the study by Huttlin et
al. (Huttlin et al., 2010) where tissue-specific protein expression and
phosphorylation were shown to be uncorrelated, we compared the
expression of each kinase in all tissues and found that the observed
tissue-specific kinase preferences in phosphorylation are not caused

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



3.2 results and discussion 47

Figure 14: Comparison of the Ser/Thr kinase expression across tissues. Ex-
pression values are colored in log scale. Kinases with a corrected
p-value < 0.01 in each tissue are considered significant and are
indicated with black circles. Grey rectangles represent kinases
whose expression values could not be found in the downloadable
dataset of the PaxDb database. Note that only the expression val-
ues of tissues drawn here could be found in the PaxDb database.
The median value 8.671 is assumed as the midpoint, calculated
from all expression values in this heatmap.
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Figure 15: Tripartite graph showing interactions between serine phosphory-
lation motifs, kinases and tissues. The red parallelograms, yellow
circles and green octagons represent kinases, motifs and tissues,
respectively. Phosphorylated serine residues in motifs are repre-
sented with pS. Threonine and tyrosine phosphorylation sites are
not shown in the network since no match between consensus ki-
nase motifs and enriched tissue motifs was found.

by tissue-specific kinase expression. For instance, even though PKC
mediated phosphorylation is only prominent in testis and brain (also
including brainstem, cerebellum and cortex), the expression levels of
PKCA (an isoform of PKC) are quite similar in all tissues except for
spleen where it is more strongly expressed. Conversely, we found
phosphorylation sites targeted by AKT1 in many tissues including
spleen and liver (Figure 13), whereas AKT1 itself is less expressed in
liver versus other tissues, and its expression level is similar in spleen
and other tissues (Figure 14).

To better understand the kinase-tissue association, we built a tri-
partite graph joining kinases, motifs and tissues as nodes (Figure 15).
Edges between kinases and motifs indicate that a consensus motif
for the corresponding kinase is provided in the PHOSIDA database
(Gnad, Gunawardena, and Mann, 2011). Edges between motifs and
tissues mean that a given tissue contains phosphorylation sites en-
riched for the corresponding motifs in their sequence environment (as
given in Table 16). Note that this graph is only a very small currently
available subset of the general network connecting motifs, kinases
and tissues. Nevertheless, we discovered some remarkable trends,
such as the enrichment of the motif RXXpS in all tissues. This motif
serves as a hub motif on the network, but only the kinase CAMK2 tar-
gets the phosphorylation sites containing the motif RXXpS in their en-
vironments. Phosphorylation sites in liver are enriched for the motif
RXpS in addition to the motif RXXpS, and as a result it can be inferred
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that the kinases PKA and CAMK2 are highly active in liver. The motif
PXpSP, is only targeted by the kinase ERK/MAPK in spleen. In pan-
creas the motifs pSXXE and RXXpS are enriched, which are required
by the kinases CK2 and CAMK2. The kinases CDK1 and CDK2 target
the motif pSPXR both globally and in a thymus-specific fashion.

3.3 conclusions

Here we present a comprehensive study of phosphorylation sites
at the sequence and structure level in 14 rat tissues based on the
proteomics data recently published by Lundby et al. (Lundby et al.,
2012b). We show that phosphorylation sites display tissue-specific
preferences for certain residues in their linear amino acid sequence.
Primary sequence motifs of phosphorylation sites in two tissues -
brain and testis - have already been investigated by Lundby et al., but
in their work the comparison was performed between tissue-specific
and global phosphorylation sites. By contrast, in this work we com-
pare the enrichment or depletion of phosphorylation sites to their
non-phosphorylated counterparts in each individual tissue, which al-
lowed us to uncover some previously unnoticed trends. Beyond the
known tendency of phosphorylation sites and the residues surround-
ing them to reside in disordered regions and irregular secondary
structures, we also identified tissue-specific preferences for certain
residues in their spatial environments. In addition to the previously
described tissue-specific sequence motifs targeted by kinases (Huttlin
et al., 2010; Lundby et al., 2012b), our findings would seem to indicate
that tissue-specific spatial motifs in the substrates also play a role in
kinase targeting. We also demonstrate that while many kinases medi-
ate phosphorylation in all tissues, there are also kinases that operate
in a tissue-specific manner. Interestingly, tissue-specific kinase pref-
erences are not correlated with tissue-specific kinase expression. The
tripartite graph connecting kinases, tissues and motifs reveals that
some motifs are prominent in many tissues, but are only targeted by
few kinases.

Similar to what we present in Chapter 2, in which we postulated
that tissue-specific KATs and KDACs may control lysine acetylation,
the findings presented here both at the sequence and structure level
confirm the existence of tissue-specific protein kinases and phosphatases,
as initially suggested by Huttlin et al. (Huttlin et al., 2010). Given the
strong dependence of protein function on tissue context, it appears
plausible that the intricate processes involved in kinase action, in-
cluding the regulation of the catalytic domain by the hydrophobic
spines (Schwartz and Murray, 2011), co-localization of the kinase and
the substrate as a pre-requisite for substrate recruitment (Kobe et al.,
2005), substrate sequestration or masking, which modulate availabil-
ity for phosphorylation, may be tissue-specific. However, our analysis
of the associations between kinases and amino acid sequence motifs
failed to reveal any clear preferences of kinases for individual tissues.
We therefore speculate that tissue specialization for kinase-substrate
binding may be encoded at the 3D structure level.
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P R E D I C T I O N O F T I S S U E - S P E C I F I C
P H O S P H O RY L AT I O N S I T E S B Y I N T E G R AT I N G

S E Q U E N C E - A N D S T R U C T U R E - B A S E D
F E AT U R E S
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4
P R E D I C T I O N O F T I S S U E - S P E C I F I C
P H O S P H O RY L AT I O N S I T E S B Y I N T E G R AT I N G
S E Q U E N C E - A N D S T R U C T U R E - B A S E D F E AT U R E S

The recent advancements in high-throughput techniques enabled the
identification of many novel phosphorylation sites; however, these
techniques are still time-consuming and costly. Alternatively, many
in silico studies have become very popular. Although successful, they
still harbor some drawbacks as mentioned in Section 1.4, such as
utilized features, generosity in redundancy elimination and so on.
On the other hand, in Chapter 3 we have presented the evidence for
tissue-specific kinases and proteases which regulate phosphorylation
in a tissue-specific manner. To make use of this fact and address the
above-mentioned drawbacks, here we present the first tissue-specific
phosphorylation site prediction approach, TSPhosPred (Tissue-Specific
Phosphorylation Prediction), based on the random forest (RF) algo-
rithm. Our method uses sequence- and structure-based features as
well as functional annotations. In order to obtain more accurate pre-
dictions, we also mapped the phosphorylated proteins onto Protein
Data Bank (PDB) structures, and utilized experimental structures along
with predicted structures. Both cross-validation and independent test-
ing were applied, and prediction performance of each was presented.
We also compared our method with an existing predictor on indepen-
dent test data. Cross-tissues prediction was also performed in order
to show the uniqueness of each tissue prediction model.

4.1 materials and methods

4.1.1 Data collection and preprocessing

We used the same phosphorylation dataset, and performed similar
preprocessing steps as defined in Chapter 3. In summary, we used
the dataset from Lundby et al. where 31480 phosphorylation sites
on 7280 proteins were established in 14 rat tissues, including brain
(dissected into cerebellum, cortex and brainstem), blood, lung, heart,
muscle, pancreas, kidney, liver, stomach, spleen, thymus, intestine,
testis, and perirenal fat (Lundby et al., 2012b). In each tissue, the se-
quence position, intensity values, and the best-matching proteins of
each phosphorylation peptide were collected from the dataset. We
utilized the previously described method in Chapter 3 to identify the
best-matching UniProtId for each phosphorylated peptide. Finally,
we obtained 17917 phosphorylation sites on 5443 proteins Table 4.

In order to assess the influence of structural information into classi-
fication, we obtained 3D structures of phosphorylated proteins from
the Protein Data Bank (PDB) using the procedure we previously de-
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Datasets Description S T Y Total

Initial dataset Phosphorylation 14661 2832 424 17917

Reference 348754 215735 100083 664572

PS1D-50 Phosphorylation 7065 1410 236 8711

Reference 71201 43256 20090 134547

Structural dataset Phosphorylation 729 232 69 1030

Reference 7377 6564 4384 18325

Structural and solvent accessible dataset Phosphorylation 489 181 53 723

Reference 5941 5482 3981 15404

PS3D-70 Phosphorylation 379 126 36 541

Reference 4162 3790 2804 10756

Table 4: Data summary of phosphorylation sites used in classification.

scribed in Chapter 2 and Chapter 3. With the resolution better than
3Å, we collected 1030 phosphorylation sites on 399 proteins Table 4.

4.1.2 Training and independent test sets

We generated prediction models for 17 tissues (including dissected
parts of brain), 3 residue types and different subsets of features, each
of them having their own training and independent test sets. All ser-
ine (S)/threonine (T)/tyrosine (Y) sites displaying non-zero intensity
values in a tissue were considered in the positive set. The negative set
consists of all S/T/Y residues not annotated as phosphorylated by
Lundby et al., and matched to those tissues on which the protein con-
taining the negative site has at least one positive site. Even though all
these sites are not necessarily true negatives, a large fraction of them
is expected to be. We subsequently extracted the 21-mer sequences
(from -10 to +10) surrounding each site in positive and negative sets.

• Sequence-based data - Homology reduction of 21-mers at the 50%
identity level was performed separately on both positive and nega-
tive sets (PS1D-50) by using CD-HIT (Li and Godzik, 2006). Then,
the second step homology reduction was done between positive and
negative sets at the 45% identity level again using CD-HIT. If a 21-
mer from positive set and a 21-mer from negative set had more than
45% sequence similarity, we kept the 21-mer in the positive set, and
eliminated the corresponding similar 21-mer from the negative set.
We called the resulting dataset, including positive and negative sets,
PS1D.

• Structure-based data - Homology reduction of 21-mers was again
performed separately on both positive and negative sets by using CD-
HIT at the 70% identity level due to the lack of structurally known
proteins (PS3D-70). Then, the second step homology reduction was
done at the 45% sequence identity level as applied for the sequence-
based data. We called the resulting dataset, including positive and
negative sets, PS3D.

80% of each positive and negative set in final datasets was ran-
domly selected to train models and evaluate the performance in 10-
fold cross-validation tests. The remaining 20% was used as indepen-
dent test data to evaluate if prediction models are over-fitting for
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PS1D PS3D
Tissue Description pS pT pY pS pT

Brain Positive 1832 276 28 89 19

Negative 19547 14345 6911 900 869

Brainstem Positive 1052 147 17 61 9

Negative 13941 9781 4711 685 668

Cortex Positive 1320 185 16 68 14

Negative 14801 10519 5112 771 759

Cerebellum Positive 1287 165 18 61 11

Negative 16629 11811 5617 733 705

Testis Positive 985 102 12 33 4

Negative 14737 9964 4555 480 473

Pancreas Positive 239 25 3 7 2

Negative 4460 2797 1299 182 184

Stomach Positive 848 93 14 47 11

Negative 13093 8740 4185 567 609

Liver Positive 761 105 14 73 16

Negative 12560 8167 3973 649 645

Perirenal fat Positive 679 97 11 41 5

Negative 10292 6773 3300 437 450

Intestine Positive 943 103 13 50 8

Negative 14325 9756 4597 598 634

Kidney Positive 775 77 9 49 7

Negative 11510 7803 3715 545 556

Spleen Positive 1273 157 21 55 5

Negative 17423 12052 5584 685 690

Thymus Positive 1368 168 12 49 5

Negative 17713 12444 5641 607 606

Lung Positive 1276 153 23 52 5

Negative 18580 12803 5822 625 656

Muscle Positive 433 120 38 65 37

Negative 7107 4560 2255 430 470

Heart Positive 444 57 15 32 6

Negative 7250 4745 2223 337 356

Blood Positive 270 37 5 27 5

Negative 4300 2841 1314 326 315

Table 5: Data summary of phosphorylation sites used in training depending
on tissue and residue types in both PS1D and PS3D datasets.
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56 prediction of tissue-specific phosphorylation sites

the training data. The statistics of datasets depending on tissues and
modification types is given in Table 5. In order to produce a valid
machine learning model, we discarded the training sets having less
than 20 positive samples. This also means that tyrosine phosphoryla-
tion sites were discarded from prediction models. Although the num-
ber threonine phosphorylation sites was not as sufficient as the num-
ber of serine phosphorylation sites, we still performed tissue-specific
phosphorylation site prediction for threonine residues. However, note
that the availability of more tissue-specific threonine phosphorylation
sites would make the prediction model more robust.

4.1.3 Feature extraction

The extracted features were trained in 6 different categories: (i) sequence-
based data (PS1D) with position-specific scoring matrix (PSSM) en-
coding, (ii) sequence-based data with binary encoding, (iii) sequence-
based data with PSSM encoding plus functional features and pre-
dicted structural features, (iv) sequence-based data with binary en-
coding plus functional features and predicted structural features, (v)
structure-based data (PS3D) with PSSM encoding plus functional fea-
tures and real structural features, (vi) structure-based data with bi-
nary encoding plus functional features and real structural features
(See Table 6).

4.1.3.1 Sequence-based features

Position-specific scoring matrix (PSSM): PSSM profile of a sequence
shows the probability of each residue of the sequence at a specific
position in the multiple sequence alignment. PSSM profiles were ob-
tained from PSI-BLAST, using the default parameters and the fil-
tered UniRef90 dataset from the UniProt Knowledgebase (UniProtKB)
(UniProt, 2010). For each position of the peptide, PSSM scores of 20

different amino acids were considered. Therefore, PSSM encoding of
each positive or negative site was represented in a feature vector with
the dimension of 20 (amino acid type) x 21 (window size).

Binary encoding: In order to take into account the compositional char-
acteristics of the amino acid sequences, we employed the simplest bi-
nary encoding algorithm. In this scheme we used 21 types of amino
acids, which are given as ARNDCQEGHILKMFPSTWYVX.
Each amino acid is represented by a 21-dimensional binary vector
that while A corresponds to (100000000000000000000), X corresponds
to (000000000000000000001) and represents the artificial residues in
the peptide sequences having less than 10 residues in the upstream
or downstream region of the phosphorylated serine (S) / threonine
(T) / tyrosine (Y) residues. In total, each positive or negative site is
represented in a binary vector with the dimension of 21 (amino acid
type) x 21 (window size).

K nearest neighbors (KNN) score: It has been known that close sequence
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58 prediction of tissue-specific phosphorylation sites

clusters of phosphorylation sites plays important role in kinase and
phosphatase targeting as substrates of same kinases share common
sequences. In order to benefit from local sequence clusters of phos-
phorylated peptides, we followed the same approach defined in (Gao
and Xu, 2010; Suo et al., 2012).

Briefly, (i) we calculated the distance between each query 21-mer to
other 21-mers in both positive and negative sets. The distance func-
tion is defined as below:

Dist(m1,m2) = 1−

∑l
i=1 Sim(m1(i),m2(i))

l
(1)

where l is the length of peptide sequence (l=21 in this study), and
Sim is the amino acid similarity matrix based on a normalized amino
acid substitution matrix defined as below:

Sim(x,y) =
M(x,y) −min(M)

max(M) −min(M)
(2)

where x and y are two amino acids of the compared 21-mers, M is the
substitution matrix (BLOSUM62 in this study), max(M) is the largest
number in the matrix, and min(M) is the smallest number in the ma-
trix.

(ii) After sorting distance scores of each query 21-mer, the percent-
age of k nearest neighbors from the positive set determines the KNN
score of the corresponding 21-mer. Since sequences in the positive set
are assumed to be similar to each other and distant from sequences
in the negative set, positive sites are expected to have higher KNN
scores, whereas negative sites are expected reversely.

Since the optimum k value depends on the ratio between positive
set size and negative set size, we chose different k values for each
prediction model (See Table 7). The details are given in Section 4.2.
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pS pT

0.075% 0.1% 1% 2% 4% 0.25% 0.5% 1% 2% 4%

Blood seqPSSM X X

seqBinaryEnc X X

seqPSSM+predStr X X

seqBinaryEnc+predStr X X

seqPSSM+realStr X X X

seqBinaryEnc+realStr X X X

Brain seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Brainstem seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Cerebellum seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Cortex seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Heart seqPSSM X X X X

seqBinaryEnc X X X X

seqPSSM+predStr X X X X

seqBinaryEnc+predStr X X X X

seqPSSM+realStr X X

seqBinaryEnc+realStr X X

Intestine seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Kidney seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Liver seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Lung seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X
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60 prediction of tissue-specific phosphorylation sites

seqBinaryEnc+realStr X X X X X

Muscle seqPSSM X X X X

seqBinaryEnc X X X X

seqPSSM+predStr X X X X

seqBinaryEnc+predStr X X X X

seqPSSM+realStr X X

seqBinaryEnc+realStr X X

Pancreas seqPSSM X X X

seqBinaryEnc X X X

seqPSSM+predStr X X X

seqBinaryEnc+predStr X X X

seqPSSM+realStr X X

seqBinaryEnc+realStr X X

Perirenal fat seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Spleen seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Stomach seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Testis seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Thymus seqPSSM X X X X X

seqBinaryEnc X X X X X

seqPSSM+predStr X X X X X

seqBinaryEnc+predStr X X X X X

seqPSSM+realStr X X X X X

seqBinaryEnc+realStr X X X X X

Table 7: The summary of k values chosen for each prediction model in dif-
ferent tissues.

4.1.3.2 Structure-based features

Spatial environment encoding: As we have mentioned in Chapter 3, spa-
tial surroundings of phosphorylation sites follow certain specific pat-
terns. To incorporate these patterns of spatial environments and ben-
efit from them, we calculated the occurrence of 20 different amino
acid types within the radial distances of 2 to 12 Å for both positive
and negative sites. Then, each site was represented in a vector with
the dimension of 10 (radial distance size) x 20 (amino acid type).

Spatial environment probability score: Similar to previous approach, we
also represented the contribution of spatial surroundings with a prob-
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ability score. First, we calculated the significance (p-value) of each
amino acid type at a specific position (ranging from 2 to 12 Å in
increments of 1 Å) using Fisher exact test. Then, we multiplied the
p-values of all amino acids in the <12 Å radial distance of each site,
which gives the spatial environment probability score of each positive
or negative site.

Secondary structure: Secondary structure assignments for all positive
and negative sites along with the residues surrounding them in the
PS3D dataset were obtained from the DSSP database (Joosten et al.,
2011). The obtained structures were categorized into 3: alpha, beta
and loop.

We also utilized PSIPRED (McGuffin, Bryson, and Jones, 2000) to
find predicted secondary structures for all sites in the PS1D dataset.
The default parameters with the filtered UniRef90 dataset from the
UniProt Knowledgebase (UniProtKB) were used (UniProt, 2010). The
obtained structures were again categorized as alpha, beta and loop.

Solvent accessibility: The solvent accessibility of each positive and neg-
ative site along with their sequence surroundings in the PS3D dataset
was calculated using NACCESS (Hubbard and Thornton, 1993).

The accessibility scores for phosphorylation and non-phosphorylation
sites in the PS1D dataset were predicted using SPPIDER (Porollo and
Meller, 2007).

B-factor: We obtained the B-factors of each site along with sequence
surroundings in the PS3D dataset from Protein Data Bank.

Disordered region: We used DisEMBL (Linding et al., 2003) to pre-
dict disordered/unstructured regions within protein sequences. Each
positive and negative site along with sequence surroundings in both
PS1D and PS3D datasets were considered to reside in a disordered
region if it was predicted by DisEMBL to be located in a region as-
sociated with either loops/coils, or hot loops, or missing coordinates.
A positive or negative site was eventually represented with a 1-digit
categorical feature that it can either be in a disordered, or an ordered
region.

Structural folds and functional domains: We incorporated the structural
folds and domains of each protein in the PS3D dataset from the
SCOP database using the class and protein domain levels (Murzin et
al., 1995). We represented structural folds in a categorical variable
where it can be all alpha proteins, all beta proteins, alpha and beta
proteins (a+b), alpha and beta proteins (a/b), multi-domain proteins
(alpha and beta), small proteins, coiled coil proteins, and membrane
and cell surface proteins and peptides.
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4.1.3.3 Functional features

Gene ontology (GO) terms: GO terms of each protein in both PS1D
and PS3D datasets were gathered from the downloadable rat-filtered
dataset of Gene Ontology Consortium (Gene Ontology, 2015) as of
May 26, 2015. We used 3-digit binary encoding where each digit rep-
resents the association of each site to biological processes, cellular
components and molecular functions.

Pathways: We obtained the pathways each protein takes place from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2006). KEGG pathways of phosphorylation and non-
phosphorylation proteins from both PS1D and PS3D datasets were
obtained.

4.1.4 Machine learning

Tissue-based phosphorylation site prediction was treated as a binary
classification problem where each phosphorylated residue type can
be classified as phosphorylated in a particular tissue or not phospho-
rylated at all. We used random forest (RF) machine learning tech-
nique (Breiman, 2001) implemented in the R (Team, 2009) Caret pack-
age (Kuhn, 2008), since there are many advantages of this method. RF
ensembles the ntree decision trees, and trains each tree with a subset
of training samples (sampling with replacement) that guarantees to
use many of samples in the training data for each tree. Random forest
gives an output value between 0 and 1 that is the fraction of decision
trees voting for phosphorylation in a particular tissue. The decisions
are not sensitive to outliers, and it does feature selection by building
trees on better performing features.

Since random forest allows using a max of 32 categories for a fea-
ture, we separated features (domain and pathway features) having
more than 32 different values into 2 categorical variables where each
categorical variable may have a value between 0 and 31. Applying
this approach, 1024 (32 x 32) different values can be represented.

We generated 2 (residue type) x 17 (tissue type) x 6 (feature cate-
gory) prediction models, and each model was trained on 300 trees
with a 10-fold cross-validation by splitting the data into 10 parts and
using 9 parts for training and the remaining part for testing. As seen
in Table 4, the number of negative samples surpasses that of positive
samples. To overcome this class imbalance problem, we performed
undersampling for the majority class with the ratio of 1:1 that posi-
tive and negative sample sizes are equal to each other when growing
each tree. With this approach we guaranteed to use as many nega-
tive samples as possible in training, as the number of trees (300 in
this study) used in random forest gets larger. The mtry value, which
is the number of variables randomly sampled as candidates at each
split, was tuned based on the best Area Under the Receiver-Operating
Characteristic Curve (AUC) measure, and the best value of mtry was
used to train each model.
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4.1.5 Prediction performance assessment

In order to evaluate the predictions, we used Accuracy (ACC), Sensi-
tivity (SEN), Specificity (SPE), and Area Under the Receiver-Operating
Characteristic Curve (AUC) measures. AUC is the area under the
Receiver-Operating Characteristic Curve plot where axes of the plot
are true positive rate (SEN) and false positive rate (FPR). For each
classifier, we adjusted the optimal cut-off threshold for class probabil-
ities (the best of both specificity and sensitivity values), rather than
choosing the conventional 50% cut-off. The overall qualities of the
classifiers were mostly compared based on AUC values. The evalua-
tion measures were formulized below:

ACC =
TP+ TN

TP+ TN+ FP+ FN
(3)

SEN =
TP

TP+ FN
(4)

SPE =
TN

TN+ FP
(5)

FPR =
FP

TN+ FP
(6)

TP, TN, FP and FN correspond to the numbers of true positives, true
negatives, false positives and false negatives, respectively.

4.1.6 Comparing with existing tools

As we first implemented tissue-specific phosphorylation site predic-
tion, there is no other tool performing prediction in a tissue-specific
manner. We, therefore, compared the our performance to predictors
developed for globally phosphorylated site prediction. Musite was
the only tool that was still available, easily downloadable and used
by the time we conducted this work ((Gao and Xu, 2010; Gao et al.,
2010)). M. musculus pre-trained model with default parameters was
used since no pre-trained model for rat is available. When calculat-
ing the sensitivity score for Musite, we only counted phosphorylated
serines in a particular tissue as positives. The reason is that in our
training sets we only included phosphorylated serine residues in the
corresponding tissue as positive instances. Therefore, true positive
rate, or sensitivity, was calculated for Musite results by dividing the
number of predicted phosphorylated serine residues to the number
of all phosphorylated residues in the corresponding tissue – the other
predicted phosphorylated serine residues were just ignored.
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Figure 16: Comparison of KNN scores between serine phosphorylation and
non-phosphorylation sites depending on tissues in the PS1D data.

4.2 results and discussions

4.2.1 Predictive performance of sequence environments surrounding phos-
phorylation sites

In Chapter 3 we have shown that phosphorylation sites display tissue-
specific preferences for certain residues in their linear amino acid se-
quence environment. For instance, only serine phosphorylation sites
in perirenal fat have phenylalanine (F) residues at position +1, whereas
only serine phosphorylation sites in pancreas and testis have a pref-
erence for glutamine (Q) residues at position -2. Histidine residues
are only enriched at position +6 in blood, whereas phosphorylated
serine residues in stomach and liver show preferences for asparagine
(N) residues at position +3. All these results derived the significance
of sequence environment surrounding phosphorylation sites used
in tissue-specific phosphorylation prediction. The sequence environ-
ment content was represented as a feature in two ways: (i) PSSM
profile encoding, which shows the probability of each residue of the
query sequence at a specific position in the multiple sequence align-
ment, and (ii) Binary encoding, which resembles the amino acid con-
tent and position of residues surrounding phosphorylation sites and
non-phosphorylation sites.
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Figure 17: Comparison of KNN scores between serine phosphorylation and
non-phosphorylation sites depending on tissues in the PS3D data.
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Figure 18: Comparison of KNN scores between threonine phosphorylation
and non-phosphorylation sites depending on tissues in the PS1D
data.
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Figure 19: Comparison of KNN scores between threonine phosphorylation
and non-phosphorylation sites depending on tissues in the PS3D
data.

4.2.2 KNN scores as features

A KNN score is an indicator for similarity of local sequence surround-
ing a query site to local sequences surrounding sites in positive set
and negative set. The higher score means that the query site is more
similar to the positive set, whereas a lower score shows that it is more
similar to the negative set. When the sizes of positive and negative
sets are equal, the threshold can be set to 0.5, meaning that scores
greater than 0.5 is more similar to the positive set and vice versa.
However, we used all the negative samples in this study and handled
the class imbalance problem by setting positive and negative sample
sizes equal to each other while growing each tree of random forest.
Therefore, as seen in Figure 16 - Figure 19, positive sites may also
have scores smaller than 0.5, and the distributions are slightly differ-
ent than the ones in previous studies (Gao and Xu, 2010; Suo et al.,
2012).

The k nearest neighbors is set as the percentage of the size of the
training set. Due to the class imbalance problem between positive and
negative sets, this k value is highly sensitive to positive to negative
ratio of each training set, and the size of dataset. This means that for
a model, if the k value is too small, then all positive samples in the
model might get a KNN score of 1 or very close to 1, and negative
samples might get a KNN score of 0 or very close to 0 where the
classifier using that k value as a parameter would give a very high
accuracy even though this is not the case. On the other hand, if the
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k value is too large, then positive and negative samples might get
similar KNN scores where those KNN scores used as feature in a
predictor might not have any distinguishing power. Therefore, we
chose the optimal k value/values for each model depending on tissue,
modification type and used features Table 7.

Even though we set a very stringent threshold for sequence redun-
dancy elimination and it is assumed that similarities found by KNN
are not as a result of protein homology if the training set is non-
redundant (Suo et al., 2012), we still observed that k value might
cause bias on classification performance when the optimal k value
is not chosen. Therefore, we trained each of 6 categories mentioned
in Section 4.1 with and without KNN scores to better understand
the contribution of KNN score, and to minimize the bias of protein
homology on classification performance.

4.2.3 Influence of spatial amino acid content and structural environment
of phosphorylation sites on prediction

We have shown in Chapter 3 that the amino acid composition in
3D varies in a tissue-dependent manner, which implies that both se-
quence and spatial environments of phosphorylation sites may play
a role in determining the substrate-specificity of kinases and phos-
phatases across tissues. For instance, PSS in brain have a strong prefer-
ence for arginine residues, and it is much more predominant than the
enrichment in the 1D environment. Histidine and cysteine residues
are strongly depleted in the 3D environment of PSS in kidney, whereas
no preference for these residues is observed in the 1D environment.
Therefore, we encoded spatial environment surrounding phospho-
rylation sites in an effort to increase the accuracy of tissue-specific
phosphorylation site prediction. We also utilized secondary structure
and accessibility scores of phosphorylation sites and the residues sur-
rounding them obtained by mapping phosphorylated proteins on
experimental protein structures. The dataset size (PS3D) is rather
small in comparison to the dataset size obtained from sequence envi-
ronment (PS1D). However, the performance of prediction using spa-
tial content and experimental structures is quite comparable. To our
knowledge this is the first study using experimental structures in the
prediction of phosphorylation sites. In addition, we used predicted
secondary structures, predicted disordered regions, and predicted ac-
cessibility scores in order to obtain a larger training dataset, and yield
a better performance.

4.2.4 The contribution of functional annotations on phosphorylation pre-
diction

Functional features have been incorporated into the prediction of
posttranslational modification sites in previous studies, and shown
that functional features are valuable features leading to a higher pre-
diction performance (Fan et al., 2014; Li et al., 2014). In Chapter 3, we
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have also observed that biological processes are regulated by phos-
phorylation in a tissue dependent manner. As a result, we utilized GO
annotation and KEGG pathways to assess the contribution of func-
tional annotations on tissue-specific phosphorylation site prediction.
In this study, functional annotation did not contribute to prediction as
significant as reported by previous studies. The possible reason may
be the fact that we generated the negative set of non-phosphorylation
sites from phosphorylated proteins. Since the entire rat proteome was
not use as the negative set, the decision about the influence of func-
tional annotation on tissue-specific phosphorylation prediction might
not be accurate.
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pS pT

AUC(%) ACC(%) SEN(%) SPE(%) AUC(%) ACC(%) SEN(%) SPE(%)

Blood seqPSSM 93.07/79.25 87.98/73.62 90.98/76.3 84.98/70.95 92.28/70.88 92.9/69.95 100/75.83 85.8/64.07

seqBinaryEnc 92.98/80.46 87.48/76.5 90/76.3 84.95/76.7 93.18/81.51 92.75/79.83 97.5/81.67 87.99/77.99

seqPSSM+predStr 93/79.74 87.55/75.9 90.26/79.39 84.84/72.42 93.05/75.95 93.31/77.23 100/82.5 86.61/71.96

seqBinaryEnc+predStr 92.82/81.41 88.26/77.32 92.22/78.15 84.3/76.49 92.15/76.13 92.05/72.94 100/70 84.09/75.89

seqPSSM+realStr 87/88.02 89.88/90.5 95/100 84.75/81 X X X X

seqBinaryEnc+realStr 89.23/88 91.38/90.76 100/100 82.77/81.52 X X X X

Brain seqPSSM 88.48/82.2 80.53/74.92 80.62/73.98 80.45/75.86 89.85/77.63 84.04/72.37 85.49/75.29 82.59/69.44

seqBinaryEnc 88.88/85.4 81.23/78.16 80.68/78.99 81.78/77.34 89.5/81.03 83.24/77.82 85.16/76.85 81.32/78.78

seqPSSM+predStr 88.92/82.92 81.26/75.36 81.11/74.42 81.42/76.31 88.9/76.87 83.12/73.38 82.59/77.88 83.65/68.88

seqBinaryEnc+predStr 89.13/84.23 81.57/77.27 81.5/76.85 81.63/77.7 88.8/78.63 82.62/74 82.28/71.79 82.96/76.22

seqPSSM+realStr 86.97/74.81 83.13/75.87 87.64/76.39 78.61/75.36 X X X X

seqBinaryEnc+realStr 87.93/78.49 84.49/78.19 85.42/78.61 83.56/77.78 X X X X

Brainstem seqPSSM 90.48/82.23 82.7175.31 83.02/75 82.4/75.62 93.24/76.23 87.76/73.33 89.14/75.62 86.38/71.04

seqBinaryEnc 90.26/83.69 82.73/77.33 83.08/76.24 82.37/78.42 92.53/79.36 86.29/76.17 89.1/76.1 83.48/76.24

seqPSSM+predStr 90.42/82.62 83.85/75.96 85.11/74.91 82.59/77.02 92.15/77.25 88.2/75.25 91.14/79.71 85.25/70.78

seqBinaryEnc+predStr 90.18/82.73 83.51/77.18 83.36/75.18 83.66/79.18 92.39/80.97 87.29/77.58 87.76/80.14 86.82/75.02

seqPSSM+realStr 89.71/77.09 87.52/76.96 91.67/76.9 83.37/77.01 X X X X

seqBinaryEnc+realStr 90.46/78.6 89.26/78.49 91.67/78.57 86.85/78.4 X X X X

Cerebellum seqPSSM 89.71/82.8 82.71/76.02 83.73/75.8 81.68/76.24 91.23/75.75 86.84/73.86 90.26/75.07 83.42/72.65

seqBinaryEnc 89.77/84.94 82.16/78.58 81.9/77.86 82.42/79.3 90.76/78.74 84.26/75.88 85.4/73.31 83.12/78.46

seqPSSM+predStr 89.94/83.4 82.93/76.46 82.65/75.95 83.21/76.96 91.11/77.33 85.32/73.97 86.65/76.32 83.99/71.61

seqBinaryEnc+predStr 89.94/83.83 82.59/77.49 83.22/76.92 81.96/78.06 90.33/79.59 84.56/74.11 86.03/73.2 83.1/75.02

seqPSSM+realStr 89.32/76.54 86.74/74.2 91.67/75.48 81.82/72.92 X X X X

seqBinaryEnc+realStr 90.85/78.6 87.78/78.29 91.67/78.81 83.9/77.77 X X X X

Cortex seqPSSM 89.32/82.16 81.96/75.36 82.81/74 81.11/76.73 92.04/74.34 85.99/71.82 86.96/72.92 85.03/70.71

seqBinaryEnc 89.88/85.14 82.18/77.96 82.88/79.24 81.47/76.67 92.2/81.7 87.16/78.12 89.71/75.29 84.61/80.96

seqPSSM+predStr 89.82/82.79 82.35/75.22 84.41/76.89 80.28/73.54 91.13/76.7 85.16/72.78 87.49/73.33 82.83/72.22

seqBinaryEnc+predStr 90.09/84.15 82.12/77.21 82.58/76.36 81.66/78.06 91.6/81.29 86.28/76.5 88.71/77 83.85/76

seqPSSM+realStr 87.88/78.21 85.14/75.74 86.67/80.95 83.61/70.52 X X X X

seqBinaryEnc+realStr 89.13/79.41 86.78/78.02 83.33/79.52 85.22/76.51 X X X X

Heart seqPSSM 92.98/74.71 86.22/70.67 89.18/71.53 83.25/69.81 91.69/69.14 88.99/65.02 95/66 82.98/64.03

seqBinaryEnc 93.2/78.62 86.39/73.64 88.06/71.66 84.72/75.61 93.63/70.34 91.05/72.39 95/74.33 87.1/70.45

seqPSSM+predStr 92.66/76.43 86.1/71.51 88.05/71.53 84.15/71.5 91.05/69.55 89.27/64.09 95/62.33 83.55/65.85

seqBinaryEnc+predStr 92.77/77.16 86.2/73.02 88.07/72.54 84.33/73.5 92.33/69.11 90.46/68.41 95/74.33 85.92/62.49

seqPSSM+realStr 85.7/83.88 84.98/84.07 88.33/85 81.63/83.15 X X X X

seqBinaryEnc+realStr 85.86/83.89 86.54/84.24 85.83/85 87.25/83.48 X X X X

Intestine seqPSSM 91.13/83.67 84.31/77.9 85.23/77.04 83.39/78.76 91.39/74.28 87.41/72.24 91/75.18 83.82/69.29

seqBinaryEnc 91.58/85.42 83.98/78.74 84.73/79.33 83.24/78.16 90.93/74.88 87.11/72.52 94.18/70.82 80.04/74.22

seqPSSM+predStr 91.22/83.08 84.49/76.44 85.33/76.62 83.66/76.26 90.93/76.7 86.52/75.86 91/79.09 82.04/72.64

seqBinaryEnc+predStr 91.5/84.44 84.72/78.22 84.31/78.47 85.14/77.97 91.89/76.35 89.46/73.3 95/74.82 83.93/71.79

seqPSSM+realStr 94.54/84.18 91.71/82.11 96/86 87.41/78.22 X X X X

seqBinaryEnc+realStr 93.9/83 90.89/81.88 94/84 87.79/79.75 X X X X

Kidney seqPSSM 91.45/84.63 84.12/78.12 84.6/77.35 83.63/78.88 92.92/75.09 90.51/75.05 95/78.93 86.02/71.18

seqBinaryEnc 92.15/85.45 85.56/78.94 88.12/77.8 82.98/80.08 94.67/80.42 90.81/78.19 92.14/76.61 89.48/79.76

seqPSSM+predStr 91.66/84.02 84.7/76.52 85/76.45 84.4/76.59 93.58/76.55 91.48/74.32 96.25/76.79 86.7/71.86

seqBinaryEnc+predStr 91.84/84.04 85.17/77.71 87.09/76.64 83.24/78.78 94.19/81.4 90.97/78.03 92.32/84.29 89.62/71.78

seqPSSM+realStr 92.93/89.17 91.7/86.82 96/85.5 87.41/88.15 X X X X

seqBinaryEnc+realStr 93.99/89.35 94.12/87.07 100/85.5 88.24/87.07 X X X X

Liver seqPSSM 91.16/80.45 83.73/73.81 84.34/76.45 83.12/71.18 93.21/70.92 90.79/69.44 94.18/70.55 87.4/68.33

seqBinaryEnc 91.21/83.04 84.29/76.38 84.5/78.05 84.08/74.71 93.67/76.03 90.64/75.13 94.36/74.36 86.91/76

seqPSSM+predStr 91.24/80.79 84.17/74.26 84.61/72.76 83.73/75.76 91.97/73.87 88.56/74.35 91.36/79.27 85.75/69.43

seqBinaryEnc+predStr 91.28/81.85 83.57/76.16 83.84/74.77 83.3/77.56 92.2/77.28 89.26/75.82 91.64/74.64 86.87/77

seqPSSM+realStr 90.75/77.48 87.08/78.17 90.18/83.57 83.99/72.77 X X X X

seqBinaryEnc+realStr 90.15/78.4 86.23/79.16 88.93/83.57 83.53/74.75 X X X X

Lung seqPSSM 89.95/81.53 82.73/74.72 81.87/73.94 83.59/75.5 90.22/72.54 84.15/70.69 86.92/71.17 81.39/70.2

seqBinaryEnc 90.93/85.52 83.8/77.85 84.33/78.37 83.27/77.33 90.77/78.28 85.01/76.23 87.67/71.25 82.36/81.21

seqPSSM+predStr 90.04/82.39 83.24/75.15 85.41/76.22 81.07/74.08 90.03/74.13 85.23/71.45 86.92/73.75 83.54/69.15

seqBinaryEnc+predStr 90.72/84.52 83.59/77.46 83.93/76.88 83.25/78.04 90.98/79 85.72/73.65 89.46/76.42 81.98/70.87

seqPSSM+realStr 92.73/85.44 90.47/86.11 94.33/89 86.61/83.23 X X X X

seqBinaryEnc+realStr 93.27/86.68 91.34/86.53 94.33/87 88.35/86.06 X X X X

Muscle seqPSSM 92.89/72.22 86.33/67.93 87.17/70.38 85.49/65.49 88.28/68.03 83.9/66.67 87.27/60.99 80.53/72.42

seqBinaryEnc 92.97/74.47 86.3/70.43 89.39/67.88 83.2/72.98 85.57/66.47 79.48/65.68 85.83/67.5 73.14/63.86

seqPSSM+predStr 92.59/74.85 86.02/69.77 87.91/70.36 84.14/69.17 87.39/68.04 82.63/67.43 88.18/64.55 77.08/70.32

seqBinaryEnc+predStr 93.21/76.97 86.33/72.47 87.53/74.14 85.14/70.8 86.91/74.21 82.92/71 90/72.5 75.83/69.5

seqPSSM+realStr 84.22/79.92 82.25/81.31 83.1/84.76 81.4/77.85 X X X X
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seqBinaryEnc+realStr 86.44/81.24 83.89/79.88 84.52/80 83.26/79.77 X X X X

Pancreas seqPSSM 94.53/79.66 88.85/74.89 89.93/73.12 87.78/76.66 92.42/68.93 94.28/75.41 100/81.67 88.56/69.16

seqBinaryEnc 94.5/83.58 90.04/78.3 93.73/77.41 86.35/79.19 90.66/68.12 93.98/56.15 100/50 87.95/62.3

seqPSSM+predStr 94.66/81.6 90.49/76.03 94.57/76.11 86.41/75.96 91.99/68.83 94.71/65.97 100/63.33 89.42/68.62

seqBinaryEnc+predStr 93.9/83.72 89.62/77.97 92.05/78.22 87.2/77.71 91.97/71.63 94.05/59.46 100/66.67 88.1/52.24

seqPSSM+realStr X X X X X X X X

seqBinaryEnc+realStr X X X X X X X X

Perirenal fat seqPSSM 91.23/78.19 84.05/72.12 85.64/72.93 82.45/71.31 93/70.6 88.44/68.87 91.67/73.22 85.22/64.52

seqBinaryEnc 91.46/80.56 84.52/74.88 85.13/74.67 83.91/75.1 93.81/76.63 89.04/74.8 93.89/73.11 84.19/76.5

seqPSSM+predStr 91.19/79.21 84.32/72.74 85.51/72.04 83.13/73.45 91.89/71.38 87.45/71.9 91.56/72.33 83.34/71.47

seqBinaryEnc+predStr 91.26/79.91 83.77/74.03 82.18/74.66 85.37/73.41 92.99/76.84 88.91/74.51 91.78/76.33 86.05/72.69

seqPSSM+realStr 91.81/78.84 90.54/79.89 98/85 83.07/74.77 X X X X

seqBinaryEnc+realStr 91.81/80.87 90.29/78.3 95/82.5 85.59/74.1 X X X X

Spleen seqPSSM 90.51/82.71 83.5/75.92 84.66/75.37 82.34/76.47 90.67/74.2 87.25/71.97 87.25/71.96 82.42/71.98

seqBinaryEnc 91.53/86.53 84.07/79.97 84.14/81.93 84.01/78.05 91.12/81 90.5/77.48 90.5/76.96 80.44/78.01

seqPSSM+predStr 90.5/82.97 83.65/76.01 84.34/75.69 82.96/76.32 91.64/77.55 91.71/73.85 91.71/76.42 82.36/71.28

seqBinaryEnc+predStr 90.86/84.78 84.44/77.85 85.94/77.37 82.94/78.32 91.52/81.75 89.79/76.86 89.7978.33 84.74/75.39

seqPSSM+realStr 93.78/88.17 91.75/85.77 96/90.67 87.5/80.88 X X X X

seqBinaryEnc+realStr 90.92/85.62 89.91/85.54 90.33/89.33 89.49/81.74 X X X X

Stomach seqPSSM 90.14/80.34 83.5/73.92 85.55/71.8 81.45/76.03 91.5/74.17 89.05/72.93 95.89/69.67 82.21/76.2

seqBinaryEnc 90.81/82.5 83.72/77.58 83.14/75.36 84.3/79.81 91.85/77.04 88.4/75.4 94.67/74.11 82.13/76.68

seqPSSM+predStr 90.39/80.61 83.76/73.56 85.42/73.81 82.1/73.3 91.12/73.82 88.41/70.71 94.56/73 82.27/68.42

seqBinaryEnc+predStr 90.74/82.51 83.11/76.39 82.89/76.41 83.33/76.38 91.62/77.15 88.65/74.87 92.33/78.44 84.97/71.29

seqPSSM+realStr 91.39/83.83 89.42/83.25 91.5/87 87.33/79.5 X X X X

seqBinaryEnc+realStr 91.3/83.77 90.46/84.02 91.5/85 89.41/83.05 X X X X

Testis seqPSSM 91.14/80.82 84.03/74.89 84.97/73.79 83.09/75.98 92.77/74.89 90.03/73.9 95.09/76.73 84.98/71.08

seqBinaryEnc 91.72/83.43 84.32/76.74 85.08/76.14 83.56/77.35 92.69/81.28 89.56/78.38 94.09/80.36 85.03/76.4

seqPSSM+predStr 91.1/81.01 84.71/75.24 85.67/72.97 83.75/77.5 93.34/77.32 90.54/74.62 95.09/75.45 85.99/73.79

seqBinaryEnc+predStr 91.44/82.63 84.82/76.34 86.7/74.92 82.93/77.77 93.17/82.43 89/78.58 90.09/78.36 87.91/78.79

seqPSSM+realStr 95.21/87.05 95.78/86.96 100/96.67 91.56/77.26 X X X X

seqBinaryEnc+realStr 95.15/82.45 95.83/81.35 100/85 91.67/77.71 X X X X

Thymus seqPSSM 91.61/84.38 84.72/77.03 85.02/77.53 84.41/76.54 92.03/79.19 87.34/76.12 90.44/72.72 84.24/79.51

seqBinaryEnc 92.54/87.61 85.1/80.94 86.18/81.07 84.01/80.81 92.68/83.19 87.93/78.58 90.48/78.6 85.38/78.56

seqPSSM+predStr 91.63/84.58 84.84/77.31 85.02/76.72 84.67/77.88 91.73/81.61 87.57/77.1 89.26/77.43 85.87/76.77

seqBinaryEnc+predStr 92/86.95 85.03/80.4 85.81/81.29 84.24/79.52 92.38/84.12 88.29/80.47 88.16/78.53 88.41/82.4

seqPSSM+realStr 93.6/79.19 92.02/80.2 96/86 88.04/74.39 X X X X

seqBinaryEnc+realStr 92.99/80.14 90.23/81.31 89.5/88 90.95/74.61 X X X X

Table 8: Classification performance analysis of 10-fold cross validation for
each prediction model in different tissues with/without using the
KNN score. For some tissues and modification types, the sizes of
dataset containing real protein structures were not sufficient for
the prediction. Therefore, the corresponding results are represented
with “X”.

4.2.5 Predictive performance of the random forest model on tissue-specific
phosphorylation sites

To evaluate the performance of tissue-specific phosphorylation site
prediction, 10-fold cross-validation was performed on 17 tissue-specific
training sets for each serine and threonine residue types. We ran-
domly divided each training dataset into 10 folds, and used each fold
as the testing data to validate the trained model using the remaining
9 folds. Each fold was eventually used as a testing data. Note that the
KNN score was calculated for each turn separately as the negative
set changed in each turn. For each category defined in Section 4.1 10-
fold cross-validation was applied, and the features contained in each
category were summarized in Table 6.

The predictive performance of each model without using the KNN
score was presented in Table 8, and corresponding AUC curves were
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plotted in Figure 20 and Figure 24 for serine and threonine residues,
respectively. The prediction models for serine phosphorylation sites
in all tissues concluded with considerably high performance – AUC
scores ranging from 72.22 to 89.35, whereas prediction models for
threonine phosphorylation sites yielded comparably high performance
resulting in AUCs scores between 66.47 and 84.12. The findings show
that the PSSM encoding, and binary encoding have the greatest im-
pact on prediction performance. It is noteworthy to state here that we
applied a very stringent sequence redundancy cut-off. In all tissues
the binary encoding yielded a slightly higher performance than the
PSSM encoding (AUCs of 0.822 and 0.851 for the PSSM encoding, and
the binary encoding, respectively for serine phosphorylation sites in
cortex). Incorporating the predicted structures and functional annota-
tions along with the PSSM or binary encoding almost never improved
the prediction performance except for muscle and blood. The model
named as seqBinary+predStr has the highest AUCs of 0.814 and 0.77

for serine phosphorylation sites in blood and muscle, respectively.
The features, in particular accessibility scores and secondary struc-
tures of phosphorylation sites and the residues surrounding them,
had higher variable importance along with the PSSM or binary en-
coding scheme in prediction models. The models for phosphorylated
serine residues using experimental protein structures along with the
PSSM or binary encoding scheme, on the other hand, resulted in the
highest performance in some tissues including perirenal fat, muscle,
blood, heart, kidney, spleen and stomach. The feature spatial prob-
ability score contained in the categories seqPSSM+realStr and seqBi-
nary+realStr outperformed among the other features, and leaded to a
better prediction performance by having the highest variable impor-
tance in prediction models. These findings pointed out that predicted
structures do not have the distinguishing power in tissue-specific
phosphorylation site prediction as much as experimantal structures
do.

With the addition of KNN score on top of six categories, a much
larger increase in AUC scores was obtained for almost all prediction
models in all tissues (See Table 8) – for serine phosphorylation sites
ranging from 84.22 to 95.21 (See Figure 22), whereas for threonine
phosphorylation sites ranging from 85.57 to 94.67 (See Figure 26). In
particular, the prediction models for serine phosphorylation sites in
blood and pancreas achieved very high performance, AUCs of 92.82

and 94.66, respectively even though the percentage of k nearest neigh-
bors in those tissues was set to only 1% of the training dataset. This
shows that the KNN score is a valuable feature in tissue-specific phos-
phorylation site prediction, but choosing the non-optimal k value
would result in highly biased predictions. Our observations have
shown that a very stringent sequence redundancy elimination is re-
quired prior to the KNN score calculation, and if the positive set to
negative set size ratio is rather than 1:1, the k value becomes so sensi-
tive to the size of dataset, and finding the optimal k value gets prior
importance.
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pS pT

AUC(%) ACC(%) SEN(%) SPE(%) AUC(%) ACC(%) SEN(%) SPE(%)

Blood seqPSSM 94.39/79.02 89.24/65.87 83.33/83.33 89.61/64.79 93.1/71.23 83.5/88.95 100/62.5 83.31/89.25

seqBinaryEnc 94.39/84.07 86.85/84.57 88.06/74.63 86.78/85.2 92.17/81.48 77.99/74.65 100/75 77.75/74.65

seqPSSM+predStr 93.75/73.98 86.36/65.43 86.36/69.7 85.3/65.17 93.97/79.27 83.22/74.41 100/87.5 83.03/74.26

seqBinaryEnc+predStr 93.5/75.08 90.36/76.07 83.58/64.18 90.78/76.82 95.34/87.7 94.29/74.93 87.5/87.5 94.37/74.79

seqPSSM+realStr 93.14/91.24 89.41/83.53 100/100 88.61/82.28 X X X X

seqBinaryEnc+realStr 88.89/85.39 79.31/80.46 100/100 77.78/79.01 X X X X

Brain seqPSSM 89.74/84.13 81.81/78.75 81.8/71.93 81.82/79.39 91.53/83.54 84.73/74.97 85.29/82.35 84.72/74.83

seqBinaryEnc 89.59/85.64 80.72/79.32 83.81/76.59 80.43/79.57 92.17/82.91 82.37/78.68 85.29/77.94 82.32/78.69

seqPSSM+predStr 90.49/85.9 82.21/76.79 83.11/79.83 82.13/76.5 91.96/83.49 86.35/81.87 83.82/75 86.4/82

seqBinaryEnc+predStr 91.21/87.61 82.89/79.77 85.34/81.84 82.67/79.57 93.16/85.85 85.82/81.74 85.29/75 85.83/81.87

seqPSSM+realStr 93.04/78.3 85.6/72.84 85.71/71.43 85.59/72.97 X X X X

seqBinaryEnc+realStr 94.35/81.12 83.67/74.29 95.24/80.95 82.59/73.66 X X X X

Brainstem seqPSSM 91.36/82.37 85/75.63 81.99/74.71 85.22/75.7 92.64/68.8 83.48/66.34 91.67/66.67 83.35/66.34

seqBinaryEnc 91.19/84.11 80.76/79 86.26/75.57 80.34/79.25 93.49/75.84 81.22/84.68 88.89/61.11 81.1/85.03

seqPSSM+predStr 92.08/84.51 86.53/83.44 81.99/71.26 86.87/84.36 91.91/71.35 83.27/61.08 86.11/75 83.23/60.87

seqBinaryEnc+predStr 92.04/85.13 86.26/81.08 83.59/77.1 86.46/81.38 92.82/73.02 77.83/58.93 94.44/75 77.59/58.69

seqPSSM+realStr 90.89/73.12 80.87/66.67 92.86/78.57 79.88/65.68 X X X X

seqBinaryEnc+realStr 91.7/78.87 84.78/68.48 85.71/71.43 84.71/68.24 X X X X

Cerebellum seqPSSM 90.04/84.17 82.8/76.65 83.44/74.38 82.75/76.83 91.27/83.54 77.27/74.92 90.24/82.93 77.09/74.81

seqBinaryEnc 90.4/85.71 82.36/80.55 81.93/77.57 82.39/80.78 91.96/81.67 81.29/75.98 92.68/82.93 81.13/75.88

seqPSSM+predStr 90.9/85.22 82.11/79.66 85/77.19 81.88/79.85 91.68/83.32 82.31/78.78 85.37/80.49 82.27/78.76

seqBinaryEnc+predStr 91.76/87.66 81.67/82.72 85.67/81 81.36/82.85 92.37/84.7 86.94/79.28 82.93/80.49 86.99/79.27

seqPSSM+realStr 88.36/81.02 77.44/70.77 100/78.57 75.69/70.17 X X X X

seqBinaryEnc+realStr 89.17/73.55 77.04/74.49 92.86/71.43 75.82/74.73 X X X X

Cortex seqPSSM 90.44/84.43 83.39/75.12 82.93/75.31 83.43/75.1 93.13/84.04 89.14/77.41 88.89/80 89.14/77.37

seqBinaryEnc 90.18/84.9 86.18/78.31 79.94/76.29 86.73/78.49 93.4/83.02 81.64/74.68 93.33/82.22 81.44/74.55

seqPSSM+predStr 90.88/85.7 83.76/76.17 82.01/81.4 83.92/75.7 93.41/85.33 88.09/77.72 91.11/84.44 88.04/77.6

seqBinaryEnc+predStr 91.2/87.03 83.82/81.29 82.98/81.16 83.89/81.3 94.3/87.8 88.56/82.69 88.89/77.78 88.55/82.77

seqPSSM+realStr 91.92/78.68 86.41/75.73 87.5/75 86.32/75.79 X X X X

seqBinaryEnc+realStr 92.79/79.38 88.94/72.6 87.5/81.25 89.06/71.88 X X X X

Heart seqPSSM 92.24/78.8 84.49/71.17 84.26/71.3 84.51/71.17 91.24/53.19 82.37/50.21 100/38.46 82.18/50.34

seqBinaryEnc 91.95/77.73 85.17/68.31 85.46/71.82 85.16/68.1 92.78/73.13 84.4/74.56 100/64.29 84.22/74.68

seqPSSM+predStr 92.03/74.88 79.06/75.4 87.96/62.04 78.53/76.2 89.58/53.76 79.87/66.58 100/46.15 79.65/66.81

seqBinaryEnc+predStr 90.83/73.58 82.1/71.33 82.73/67.27 82.06/71.58 90.86/65.54 80.48/64.05 100/64.29 80.25/64.09

seqPSSM+realStr 72.91/78.31 84.27/84.27 71.43/71.43 85.37/85.37 X X X X

seqBinaryEnc+realStr 81.41/80.12 81.11/86.67 71.43/71.43 81.93/87.95 X X X X

Intestine seqPSSM 87.49/80.51 79.76/71.23 79.92/75.64 79.75/70.94 89.02/73.53 77.44/63.88 92/76 77.29/63.76

seqBinaryEnc 87.93/81.61 81.71/74.34 75.32/75.32 82.13/74.28 89.91/79.16 81.04/77.18 88/72 80.97/77.24

seqPSSM+predStr 87.5/81.32 76.34/75.34 81.62/76.5 75.99/75.26 91.8/73.14 77.2/64.45 96/76 77.01/64.34

seqBinaryEnc+predStr 88.12/82.46 76/77.44 81.28/73.19 75.65/77.72 92.19/79.02 85.67/72.96 88/76 85.64/72.93

seqPSSM+realStr 90.48/82.07 76.88/81.25 91.67/66.67 75.68/82.43 X X X X

seqBinaryEnc+realStr 90.46/74.72 77.02/77.02 91.67/66.67 75.84/77.85 X X X X

Kidney seqPSSM 89.02/81.08 80.35/75 80.73/74.48 80.33/75.04 88.72/48.41 79.92/46.77 100/50 79.73/46.74

seqBinaryEnc 89.85/83.39 82.35/80.55 79.79/70.98 82.52/81.2 92.5/80.12 85.82/79.12 88.89/72.22 85.79/79.18

seqPSSM+predStr 88.9/81.83 80.32/75.16 80.21/75 80.33/75.17 88.97/61.48 80.63/51.3 100/72.22 80.45/51.1

seqBinaryEnc+predStr 89.79/82.9 79.32/74.27 84.46/78.76 78.97/73.97 90.46/63.16 82.32/51.37 100/72.22 82.15/51.18

seqPSSM+realStr 92.5/80.53 86.9/65.52 90.91/90.91 86.57/63.43 X X X X

seqBinaryEnc+realStr 78.61/77.87 82.99/80.27 63.64/63.64 84.56/81.62 X X X X

Liver seqPSSM 91.51/78.98 81.98/71.14 85.71/71.96 81.76/71.09 91.52/66.87 85.36/60.06 92.31/73.08 85.27/59.89

seqBinaryEnc 92.39/84.59 83.12/79.96 87.37/78.42 82.86/80.06 93.42/74.71 83.12/69.13 92.31/73.08 82.99/69.08

seqPSSM+predStr 91.4/80.06 83.16/74.78 85.71/72.49 83/74.92 92.05/71.09 84.49/60.59 96.15/84.62 84.34/60.29

seqBinaryEnc+predStr 92.84/84.9 81.5/81.95 89.47/74.73 81.01/82.38 92.55/71.31 85.15/61.25 92.31/69.23 85.06/61.15

seqPSSM+realStr 91.16/85.38 86.52/76.4 83.33/83.33 86.88/75.63 X X X X

seqBinaryEnc+realStr 92.06/86.92 86.03/82.12 88.89/83.33 85.71/81.99 X X X X

Lung seqPSSM 89.13/83.08 80.88/78.17 81.45/73.9 80.84/78.47 88.42/74.25 76.63/65.27 92.11/73.68 76.45/65.17

seqBinaryEnc 90.17/84.05 82.83/73.94 82.39/79.56 82.86/73.56 88.87/74.74 80.51/76.28 78.95/71.05 80.53/76.34

seqPSSM+predStr 89.97/83.08 78.78/73.73 86.48/77.67 78.25/73.46 89.51/78.36 77.47/67.32 94.74/81.58 77.26/67.15

seqBinaryEnc+predStr 90.5/86.02 80.91/79.22 84.28/79.25 80.69/79.22 90.86/83.06 80.45/72.33 89.47/78.95 80.34/72.25

seqPSSM+realStr 87.01/64.15 86.14/75.3 75/58.33 87.01/76.62 X X X X

seqBinaryEnc+realStr 86.7/64.02 82.14/60.12 75/66.67 82.69/59.62 X X X X

Muscle seqPSSM 93/77.34 82.82/71.01 92/72 82.3/70.96 91.79/75.31 84.37/68.65 88.89/66.67 84.26/68.7

seqBinaryEnc 90.88/69.34 83.39/74.68 81.48/52.78 83.5/76.01 89.85/68.15 80.22/75.26 82.76/55.17 80.16/75.77

seqPSSM+predStr 92.88/78.82 84.65/75.2 88/66 84.46/75.72 91.49/78.1 84.37/60.97 85.19/77.78 84.35/60.57

seqBinaryEnc+predStr 92.33/78.5 82.22/78.5 84.26/65.74 82.1/79.28 92.18/80.53 86.56/82.62 82.76/68.97 86.66/82.97

seqPSSM+realStr 91.83/84.11 86.07/77.87 93.75/75 84.91/78.3 X X X X
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seqBinaryEnc+realStr 90.92/83.97 85.37/72.36 93.75/93.75 84.11/69.16 X X X X

Pancreas seqPSSM 96.31/83.98 91.13/83.63 88.14/72.88 91.29/84.2 90.93/66.67 85.23/70.31 100/80 85.12/70.24

seqBinaryEnc 95.83/87.03 87.98/84.65 91.53/74.58 87.79/85.19 93.83/80.92 86.93/72.16 100/80 86.84/72.1

seqPSSM+predStr 96.33/85.36 91.05/74.94 89.83/83.05 91.11/74.51 93.89/62.1 85.37/76.99 100/60 85.26/77.11

seqBinaryEnc+predStr 95.82/84.87 87.98/74.77 93.22/79.66 87.7/74.51 94.65/69.03 85.37/65.77 100/80 85.26/65.67

seqPSSM+realStr X X X X X X X X

seqBinaryEnc+realStr X X X X X X X X

Perirenal fat seqPSSM 90/81.4 79.08/78.64 86.31/68.45 78.61/79.31 90.12/64.23 82.33/51.67 87.5/75 82.26/51.34

seqBinaryEnc 90.41/83.25 80.12/73.04 85.8/79.88 79.74/72.59 92.92/77.98 82.52/72.03 91.67/75 82.39/71.99

seqPSSM+predStr 91.12/83.38 81.21/76.73 85.12/76.19 80.95/76.77 89.72/62.61 78.7/63.37 91.67/66.67 78.52/63.32

seqBinaryEnc+predStr 91.35/85.03 84.13/82.09 82.25/75.74 84.25/82.5 91.54/65.47 85.61/58.28 83.33/70.83 85.64/58.1

seqPSSM+realStr 97.07/85.91 92.31/73.5 100/100 91.67/71.3 X X X X

seqBinaryEnc+realStr 96.6/85.24 90.6/79.49 100/77.78 89.82/79.63 X X X X

Spleen seqPSSM 89.44/81.12 81.56/76.69 82.33/70.66 81.51/77.13 90.59/74.31 84.13/81.7 84.21/60.53 84.13/81.96

seqBinaryEnc 90.54/83.48 83.63/79.41 82.7/71.7 83.7/79.98 93.05/84.09 86.1/78.56 86.84/76.32 86.09/78.59

seqPSSM+predStr 89.65/83.23 81.71/75.64 83.28/76.34 81.6/75.59 88.32/74.93 81.43/71.51 86.84/71.05 81.36/71.51

seqBinaryEnc+predStr 90.63/85.07 84.46/77.15 82.7/77.67 84.59/77.11 91.76/79.35 78.72/88.95 89.47/63.16 78.59/89.28

seqPSSM+realStr 91.4/79.04 83.52/66.48 92.31/84.62 82.84/65.09 X X X X

seqBinaryEnc+realStr 79.51/74.79 83.7/64.67 76.92/76.92 84.21/63.74 X X X X

Stomach seqPSSM 88.77/80.46 80.14/78.15 82.86/67.62 79.97/78.83 91.27/72.32 82.48/63.64 95.46/72.73 82.35/63.55

seqBinaryEnc 90.08/83.85 83.92/79.62 80.1/73.46 84.17/80.01 89.82/75.84 81.91/74.48 81.82/81.82 81.91/74.4

seqPSSM+predStr 89.5/81.25 79.71/79.88 82.86/70.48 79.51/80.49 91.97/71.03 82.3/64.32 95.46/81.82 82.17/64.15

seqBinaryEnc+predStr 90.47/83.17 82.8/74.59 81.99/76.78 82.86/74.45 90.81/77.25 81.69/73.03 95.45/72.73 81.55/73.03

seqPSSM+realStr 91.53/75.26 80.13/84.77 90.91/63.64 79.29/86.43 X X X X

seqBinaryEnc+realStr 88.78/73.6 84.87/67.11 81.82/81.82 85.11/65.96 X X X X

Testis seqPSSM 89.96/81.56 79.72/72.12 85.31/79.18 79.35/71.65 90.82/69.43 81.88/74.98 96/60 81.74/75.13

seqBinaryEnc 90.54/83.62 82.82/77.96 81.3/76.02 82.93/78.09 90.67/73.38 77.18/78.37 96/60 76.99/78.55

seqPSSM+predStr 90.73/84.34 81.89/76.57 85.71/76.74 81.64/76.56 91.13/72.17 84.08/54.55 88/80 84.04/54.29

seqBinaryEnc+predStr 91.28/85.24 83.03/80.23 84.55/75.61 82.93/80.54 91.31/73.99 83.14/62.54 88/76 83.09/62.41

seqPSSM+realStr 93.75/74.26 91.27/74.6 87.5/87.5 91.53/73.73 X X X X

seqBinaryEnc+realStr 93.91/71.95 89.76/81.89 87.5/62.5 89.92/83.19 X X X X

Thymus seqPSSM 90.11/84.3 85.02/78.08 80/77.65 85.41/78.11 91.29/80.6 78.58/75.11 90.24/73.17 78.43/75.14

seqBinaryEnc 91.03/87.07 82.7/79.49 84.75/81.82 82.54/79.31 90.31/83.36 77.34/78.48 90.24/75.61 77.17/76.5

seqPSSM+predStr 90.22/84.78 81.59/81.61 83.24/74.41 81.46/82.17 91.45/77.21 82.97/78.49 85.37/65.85 82.94/78.65

seqBinaryEnc+predStr 90.58/86.37 81.08/80.52 85.63/80.94 80.73/80.48 91.18/80.55 83.08/79.05 82.93/73.17 83.09/79.13

seqPSSM+realStr 91.21/82 83.85/71.43 90.91/81.82 83.33/70.67 X X X X

seqBinaryEnc+realStr 91.45/78.18 84.57/84.57 90.91/63.64 84.11/86.09 X X X X

Table 9: Classification performance analysis of independent testing for each
prediction model in different tissues with/without using the KNN
score. For some tissues and modification types, the sizes of datasets
containing experimental protein structures were not sufficient for
prediction. Therefore, the corresponding results are represented
with “X”.

4.2.6 Prediction on independent test data

In order to assess if prediction models are over-fitting for the training
data, we also carried out the prediction models on independent test
data. Note that proteins in independent test data were not used in
training. In most tissues prediction models displayed similar perfor-
mances on independent testing and 10-fold cross-validation, whereas
the models obtained using the independent test data yielded higher
performance in some tissues (See Table 9, Figure 21 and Figure 23 for
serine residues with/without using the KNN score, Figure 25 and Fig-
ure 27 for threonine residues with/without using the KNN score). For
instance, the model for phosphorylated serine residues using the cate-
gory seqBinaryEnc+predStr without the KNN score in cortex achieved
an AUC of 87.03, whereas the model using the same category in 10-
fold cross-validation achieved an AUC of 84.15 in cortex. The same
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category in liver also yielded a higher performance using indepen-
dent test set (AUC of 84.9) rather than 10-fold cross-validation (AUC
of 81.85). These findings imply that the prediction models are not
over-fitting for the training data.

4.2.7 Cross-tissues performance evaluation on independent testing

In order to assess the uniqueness performance of each tissue-specific
model, we performed cross-tissues prediction against 13 tissues. The
prediction was just conducted with the features defined in the seqBina-
ryEnc category to reduce the computational time and the complexity
of representation of results. The independent test data of each tissue
was created separately. We first split 70% of the sites in the PS1D
dataset for training, and the remaining 30% for the testing. As there
exist phosphorylation sites occurring in more than one tissue, note
that we avoided the cases where a phosphorylation site was used in
both training and testing. We subsequently conducted pairwise tests
by assessing the prediction performance of independent test data of
all other 12 tissues on a trained model of a particular tissue. The
primary models, in almost all tissues, performed the highest phos-
phorylation site prediction performance on primary tissues as seen
in Table 10 (based on AUCs). The performances did not vary substan-
tially in non-primary tissues, because some phosphorylation sites are
shared by more than one tissue, and as we do not have sufficient
tissue-specific phosphorylation sites, we could not use mutually ex-
clusive training sets of phosphorylation sites where each phosphory-
lation site just occur in one tissue. In other words, although there is
not any overlap between training and testing sets, for instance train-
ing and testing sets of brain and kidney, respectively, this does not
mean that a phosphorylation site in brain cannot be phosphorylated
in kidney inherently, because the prediction model for brain was not
trained with phosphorylation sites occurring only in brain. Given the
fact that mutually exclusive sets of phosphorylation sites were not
used for training the models, these findings still show that more ac-
curate phosphorylation site predictions can be obtained when tissue-
specific sites are taken into account. This fact supports the importance
of tissue-specific phosphorylation site prediction.

4.2.8 Performance comparison with the existing prediction tools

We compared the performance of our prediction models in different
tissues to that of Musite on independent test dataset (Gao and Xu,
2010). We used pre-trained M. Musculus prediction model of Musite
with default parameters since training model on rat is not available.
Our method outperformed in all tissues when sensitivity score is
taken into account, whereas Musite performed slightly better in terms
of specificity (Table 8). Note that when calculating sensitivity scores,
we only counted phosphorylated serine residues in a particular tissue
as true positives. As we mentioned before, the existing tools present
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84 prediction of tissue-specific phosphorylation sites

Tissue TSPhosPred Musite

Sn (%) Sp (%) Sn (%) Sp (%)

Blood 83.33 89.61 37.88 91.69

Brain 81.8 91.53 47.59 89.12

Heart 84.26 84.51 40.74 88.21

Intestine 79.92 79.75 41.45 89.79

Kidney 80.73 80.33 45.31 90.27

Liver 85.71 81.76 45.5 91.25

Lung 81.45 80.84 48.74 89.57

Muscle 92 82.3 26 91.01

Pancreas 88.14 91.29 55.93 84.52

Perirenal fat 86.31 78.61 48.81 89.2
Spleen 82.33 81.51 49.84 89.06

Stomach 82.86 79.97 40.48 89.37

Testis 85.31 79.35 45.71 90.22

Thymus 80 85.41 53.53 89.99

Table 11: Performance comparison for phosphorylated serine residue predic-
tion between Musite and TSPhosPred based on independent test
sets in different tissues. The prediction model using the seqPSSM
category with the KNN score was compared to Musite using M.
musculus pre-trained model with default parameters.

prediction models with low sensitivity and high specificity; however,
TSPhosPred achieved a great performance on both true positive and
true negative rates.

4.3 conclusions

In Chapter 2 and Chapter 3 we have underscored the importance
of tissue-specific analysis of posttranslational modifications that the
mechanism behind phosphorylation and acetylation follow a tissue-
specific pattern. In particular for phosphorylation, we detected tissue-
specific sequence and spatial motifs around phosphorylation sites
along with tissue-specific structural preferences. These findings de-
rived the existence of tissue-specific kinases and phosphatases that
directed us to perform phosphorylation site prediction in a tissue-
specific manner to obtain an improved performance in comparison
to existing methods. In this work we have developed the novel com-
prehensive approach, TSPhoPred that performs a high-quality tissue-
specific phosphorylation site prediction based on various informa-
tive features. In addition to sequence-based features, we also utilized
structure-based features where both experimental structures and pre-
dicted structures were taken into account. We observed that experi-
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mental structures along with the encoding for linear amino acid con-
tent achieved the highest performance for some tissues. The cross-
tissues prediction analysis with performance comparison with exist-
ing tools shows the originality of, and the necessity for tissue-specific
phosphorylation site prediction. TSPhoPred provided not only high
specificity, but also high sensitivity for almost all tissues, and it out-
performed the existing tools developed for globally phosphorylated
sites in terms of distinguishing power between phosphorylation sites
and non-phosphorylation sites. However, given the fact that different
training datasets might lead various performance results, this is the
first study on the prediction of tissue-specific phosphorylation sites
that there is not any existing tool available to make a fair comparison
including only tissue-specific sites on training datasets.

This study has underscored that tissue-specific phosphoproteomics
still harbors potential to reveal the regulatory mechanism of phos-
phorylation. Further experimental verifications are required follow-
ing the findings here. As future work, a feature selection method can
also be applied before prediction to avoid noisiness, and redundancy
that heterogeneous features might lead (Li et al., 2014). Moreover, in
order to better assess the influence of some features on tissue-specific
phosphorylation site prediction, i.e. functional annotations, the pre-
diction can be performed on a negative set generated from the entire
rat proteome containing also non-phosphorylated proteins. However,
this approach may also increase the false negative rate, because the
phosphorylated proteins have already been well studied with respect
to phosphorylation, as a result, extracted non-phosphorylation sites
in those proteins are more likely to be true negatives (Trost and Kusa-
lik, 2013). Last but not least, in this study we used the most compre-
hensive dataset for tissue-specific phosphorylation sites (containing
17 different tissues). However, experimentally identified phosphory-
lation sites in single tissues coming from separate studies can also
be combined to the current training set to increase a training set size
even though the aim in this study was to form the training data con-
taining phosphorylation sites from the same experiment on the same
species.
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In this thesis we have conducted a comprehensive sequence- and
structure-based analysis of tissue-specific acetylation and phospho-
rylation sites, and presented evidence that lysine acetylation sites
and phosphorylation sites display tissue-specific preferences for cer-
tain residues both in their linear amino acid sequence and in spatial
environments. We also showed tissue-specific characteristics for the
structural organization around the binding sites of lysine acetylation
sites and phosphorylation sites. We further demonstrated that LASs
are generally more evolutionarily conserved than non-LASs, which is
especially prominent in structurally regular regions and in proteins
with known function. We also presented that both phosphorylated
and acetylated proteins are specialized for various functions in differ-
ent tissues, and this specialization is supported by tissue-specific key
domain preferences.

The tripartite graph connecting kinases, tissues and motifs, on the
other hand, reveals that some phosphorylation motifs are prominent
in many tissues, but are only targeted by few kinases.

We were not able to detect significant differences in the abundance
of paralogs of experimentally identified KATs across different tissues,
which implies that tissue-specific preferences of lysine acetylation
sites are not a result of tissue-specific KAT expression. Similarly, we
indicated that while many kinases mediate phosphorylation in all tis-
sues, there are also kinases that operate in a tissue-specific manner,
and these tissue-specific kinase preferences are not correlated with
tissue-specific kinase expression.

All these findings imply the existence of tissue-specific kinases and
phosphatases and the existence of tissue-specific KATs and KDACs
able to differentiate between various types of local structural envi-
ronments beyond mere amino acid content in sequence and spatial
environments.

These observations eventually directed us to perform phosphory-
lation site prediction in a tissue-specific manner to obtain an im-
proved performance in comparison to existing prediction approaches.
We have developed the novel comprehensive approach, TSPhoPred
that performs a high-quality tissue-specific phosphorylation site pre-
diction based on various informative features including structural
characteristics of phosphorylation sites in addition to sequence-based
properties. We also utilized experimental structures along with pre-
dicted structures to obtain more accurate predictions. Indeed, the re-
sults pointed out that experimental structures along with the encod-
ing for linear amino acid content achieved the highest performance
for certain tissues. Functional annotations were also used which did
not make any significant contribution to the accuracy of predictions.
To benefit the influence of functional annotations, the prediction can

89
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be performed on a negative set generated from the entire rat pro-
teome containing also non-phosphorylated proteins. However, note
that this approach would bring the overhead of high false negative
rate. Comparison with an existing tool on independent testing indi-
cated that TSPhoPred outperformed in all tissues in terms of true pos-
itive rates, and overcame the drawbacks of existing prediction mod-
els with low sensitivity and high specificity. Supportively, the cross-
tissues prediction analysis demonstrated that the primary models per-
formed the highest phosphorylation site prediction performance on
primary tissues in almost all tissues. This finding proves originality of,
and the necessity for tissue-specific phosphorylation site prediction.

Given the facts that acetylation and phosphorylation play roles
in disease signaling pathways, and kinases and KATs are potential
drugs against many diseases including cancer, we emphasize the im-
portance of tissue-specific drug target designs. Altogether, this thesis
provides a different aspect for the evolution of post-translational mod-
ifications.

The availability of tissue-specific glycosylation sites also enables a
comprehensive analysis of tissue-specific glycosylation sites both in
sequence and structural manners (Kaji et al., 2012). Further research
is needed to perform the methods we defined and applied in this
thesis on the dataset of tissue-specific glycosylation sites. As more
tissue-specific post-translational modification sites are identified ex-
perimentally, more signals would be detected through our investiga-
tion approaches. In addition, our prediction approach can be applied
on tissue-specific lysine acetylation sites using the analyzed features
in Chapter 2, where we would expect to outperform the existing meth-
ods for lysine acetylation site prediction.
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Figure 28: Two sample logo analysis of LASs in different tissues in the
LAS1D dataset (See Figure 29 – Figure 44 for high resolution
graphs).
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Figure 29: Two sample logo analysis of LASs from the LAS1D dataset in
brain.

Figure 30: Two sample logo analysis of LASs from the LAS1D dataset in
brown fat.
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Figure 31: Two sample logo analysis of LASs from the LAS1D dataset in
heart.

Figure 32: Two sample logo analysis of LASs from the LAS1D dataset in
intestine.
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Figure 33: Two sample logo analysis of LASs from the LAS1D dataset in
kidney.

Figure 34: Two sample logo analysis of LASs from the LAS1D dataset in
liver.
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Figure 35: Two sample logo analysis of LASs from the LAS1D dataset in
lung.

Figure 36: Two sample logo analysis of LASs from the LAS1D dataset in
muscle.
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Figure 37: Two sample logo analysis of LASs from the LAS1D dataset in
pancreas.

Figure 38: Two sample logo analysis of LASs from the LAS1D dataset in
perirenal fat.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



100 appendix

Figure 39: Two sample logo analysis of LASs from the LAS1D dataset in
skin.

Figure 40: Two sample logo analysis of LASs from the LAS1D dataset in
spleen.
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Figure 41: Two sample logo analysis of LASs from the LAS1D dataset in
stomach.

Figure 42: Two sample logo analysis of LASs from the LAS1D dataset in
testis fat.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



102 appendix

Figure 43: Two sample logo analysis of LASs from the LAS1D dataset in
testis.

Figure 44: Two sample logo analysis of LASs from the LAS1D dataset in
thymus.
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Figure 45: 1D environment of LASs from the LAS3D dataset in different
tissues.
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Figure 46: 3D environment of LASs from the LAS3D dataset in different
tissues.
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Figure 47: Pure 3D environment of LASs from the LAS3D dataset in differ-
ent tissues.
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Figure 48: Secondary structure analysis of LASs and the residues surround-
ing them from the LAS3D dataset in different tissues. Ratios rep-
resented with shades of blue and red show the normalized num-
ber of LASs found in a particular secondary structure divided by
the normalized number of non-LASs found in the corresponding
structure. Non-significant ratios (p-value > 0.01) are represented
with white cells. No structural preferences of LASs could be ob-
served in testis fat.
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Figure 49: SCOP class analysis of LASs and the residues surrounding them
in different tissues in the LAS3D dataset. Ratio represented with
shades of blue show the normalized number of LASs found in
a particular protein structural class divided by the normalized
number of non-LASs found in the corresponding class. Black cir-
cles represent significant p-values (p < 0.01).
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Figure 50: Global and tissue-specific occurrence of acetylated proteins from
the LAS3D dataset in protein domains. Domains with a corrected
p-value < 0.05 are considered significant.
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Figure 51: Two sample logo analysis of global PTSs in the PS1D-70 dataset
(A) and in the PS3D-90 dataset (B), 3D (C) and pure 3D (D) envi-
ronments of PTSs in the PS3D-90 dataset.
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Figure 52: Two sample logo analysis of global PYSs in the PS1D-70 dataset
(A) and in the PS3D-90 dataset (B), 3D (C) and pure 3D (D) envi-
ronments of PYSs in the PS3D-90 dataset.
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Figure 53: Two sample logo analysis of PSSs in different tissues in the PS1D-
70 dataset (See Figure 54 - Figure 70 for high resolution graphs).
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Figure 54: Two sample logo analysis of PSSs from the PS1D-70 dataset in
blood.

Figure 55: Two sample logo analysis of PSSs from the PS1D-70 dataset in
brain.
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Figure 56: Two sample logo analysis of PSSs from the PS1D-70 dataset in
brainstem.

Figure 57: Two sample logo analysis of PSSs from the PS1D-70 dataset in
cerebellum.
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Figure 58: Two sample logo analysis of PSSs from the PS1D-70 dataset in
cortex.

Figure 59: Two sample logo analysis of PSSs from the PS1D-70 dataset in
heart.
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Figure 60: Two sample logo analysis of PSSs from the PS1D-70 dataset in
intestine.

Figure 61: Two sample logo analysis of PSSs from the PS1D-70 dataset in
kidney.
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Figure 62: Two sample logo analysis of PSSs from the PS1D-70 dataset in
liver.

Figure 63: Two sample logo analysis of PSSs from the PS1D-70 dataset in
lung.
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Figure 64: Two sample logo analysis of PSSs from the PS1D-70 dataset in
muscle.

Figure 65: Two sample logo analysis of PSSs from the PS1D-70 dataset in
pancreas.
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Figure 66: Two sample logo analysis of PSSs from the PS1D-70 dataset in
perirenal fat.

Figure 67: Two sample logo analysis of PSSs from the PS1D-70 dataset in
spleen.
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Figure 68: Two sample logo analysis of PSSs from the PS1D-70 dataset in
stomach.

Figure 69: Two sample logo analysis of PSSs from the PS1D-70 dataset in
testis.
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Figure 70: Two sample logo analysis of PSSs from the PS1D-70 dataset in
thymus.
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Figure 71: Two sample logo analysis of PTSs in different tissues in the PS1D-
70 dataset.
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Figure 72: Two sample logo analysis of PYSs in different tissues in the PS1D-
70 dataset.
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Figure 73: Two sample logo analysis of PSSs in different tissues in the PS3D-
90 dataset.
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Figure 74: Two sample logo analysis of PTSs in different tissues in the PS3D-
90 dataset.
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Figure 75: Two sample logo analysis of PYSs in different tissues in the PS3D-
90 dataset.
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Figure 76: 3D environment of PSSs from the PS3D-90 dataset in different
tissues.
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Figure 77: 3D environment of PTSs from the PS3D-90 dataset in different
tissues.
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Figure 78: 3D environment of PYSs from the PS3D-90 dataset in different
tissues.
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Figure 79: Pure 3D environment of PSSs from the PS3D-90 dataset in differ-
ent tissues.
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Figure 80: Pure 3D environment of PTSs from the PS3D-90 dataset in differ-
ent tissues.
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Figure 81: Pure 3D environment of PYSs from the PS3D-90 dataset in differ-
ent tissues.
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Figure 82: Disorder region analysis of PSSs and the residues surrounding
them from the PS1D-70 dataset in different tissues. A. Ratio rep-
resented with shades of blue and red shows the normalized num-
ber of PSSs found in disorder regions divided by the normalized
number of non-PSSs found in disorder regions. Non-significant
ratios (p-value > 0.05) are represented with white cells. B. Ra-
tio represented with shades of blue and red shows the normal-
ized number of PSSs found in ordered regions divided by the
normalized number of non-PSSs found in ordered regions. Non-
significant ratios (p-value > 0.05) are represented with white cells.
A and B are not complement of each other, because some phos-
phorylation sites with unknown regions also exist.
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Figure 83: Disorder region analysis of PTSs and the residues surrounding
them from the PS1D-70 dataset in different tissues. A. Ratio rep-
resented with shades of blue and red shows the normalized num-
ber of PTSs found in disorder regions divided by the normalized
number of non-PTSs found in disorder regions. Non-significant
ratios (p-value > 0.05) are represented with white cells. B. Ra-
tio represented with shades of blue and red shows the normal-
ized number of PTSs found in ordered regions divided by the
normalized number of non-PTSs found in ordered regions. Non-
significant ratios (p-value > 0.05) are represented with white cells.
A and B are not complement of each other, because some phos-
phorylation sites with unknown regions also exist.
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Figure 84: Disorder region analysis of PYSs and the residues surrounding
them from the PS1D-70 dataset in different tissues. A. Ratio rep-
resented with shades of blue and red shows the normalized num-
ber of PYSs found in disorder regions divided by the normalized
number of non-PYSs found in disorder regions. Non-significant
ratios (p-value > 0.05) are represented with white cells. B. Ra-
tio represented with shades of blue and red shows the normal-
ized number of PYSs found in ordered regions divided by the
normalized number of non-PYSs found in ordered regions. Non-
significant ratios (p-value > 0.05) are represented with white cells.
A and B are not complement of each other, because some phos-
phorylation sites with unknown regions also exist.
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Figure 85: Secondary structure analysis of PSSs and the residues surround-
ing them from the PS3D-90 dataset in different tissues. Ratios rep-
resented with shades of blue and red show the normalized num-
ber of PSSs found in a particular secondary structure divided by
the normalized number of non-PSSs found in the corresponding
structure. Non-significant ratios (p-value > 0.05) are represented
with white cells.
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Figure 86: Secondary structure analysis of PTSs and the residues surround-
ing them from the PS3D-90 dataset in different tissues. Ratios rep-
resented with shades of blue and red show the normalized num-
ber of PTSs found in a particular secondary structure divided by
the normalized number of non-PTSs found in the corresponding
structure. Non-significant ratios (p-value > 0.05) are represented
with white cells.
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Figure 87: SCOP class analysis of serine phosphorylation sites and the
residues surrounding them in different tissues in the PS3D-90

dataset. Ratio represented with shades of blue shows the normal-
ized number of PSSs found in a particular protein structural class
divided by the normalized number of non-PSSs found in the cor-
responding class. Black circles represent significant p-values (p <
0.05).

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



appendix 137

Amoebiasis

Arrhythmogenic right ventricular cardiomyopathy (ARVC)

Systemic lupus erythematosus

Tight junction

Viral carcinogenesis

Viral myocarditis

global muscle
Tissues

P
a
th
w
a
ys

0.0000

0.0025

0.0050

0.0075

0.0100
p-values

Figure 88: KEGG pathway analysis of the threonine phosphorylated pro-
teins from the PS1D-70 dataset. Pathways with a corrected p-
value < 0.01 in each tissue are considered significant.

Biosynthesis of amino acids

Carbon metabolism

Fc gamma R-mediated phagocytosis

Glycolysis / Gluconeogenesis

Metabolic pathways

Tight junction

Viral myocarditis

global muscle stomach
Tissues

P
at
hw
ay
s

0.0000

0.0025

0.0050

0.0075

0.0100
p-values

Figure 89: KEGG pathway analysis of the tyrosine phosphorylated proteins
from the PS1D-70 dataset. Pathways with a corrected p-value <
0.01 in each tissue are considered significant.
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Figure 90: Global and tissue-specific occurrence of serine phosphorylated
proteins from the PS3D-90 dataset in protein domains. Domains
with a corrected p-value < 0.05 are considered significant.
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Figure 91: Global and tissue-specific occurrence of threonine phosphory-
lated proteins from the PS3D-90 dataset in protein domains. Do-
mains with a corrected p-value < 0.05 are considered significant.
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Figure 92: Global and tissue-specific occurrence of tyrosine phosphorylated
proteins from the PS3D-90 dataset in protein domains. Domains
with a corrected p-value < 0.05 are considered significant.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



appendix 139

Tissue Sequence motif Motif score

Global AcK-X-L-X-X-X-X-X-K 25.60

L- AcK 16

AcK-L 16

G-AcK 13.91

AcK-X-I 16

AcK-I 16

AcK-F 16

AcK-X-F 15.65

AcK-Y 16

F-AcK 14.57

I-AcK 12.07

Y-AcK 15.11

F-X-AcK 10.61

F-X-X-X-AcK 10.27

A-AcK 10.22

F-X-X-X-X-AcK 10.39

L-X-AcK 9.89

I-X-AcK 9.86

V-AcK 9.74

AcK-V 9.35

I-X-X-AcK 9.24

L-X-X-AcK 8.97

AcK-X-X-X-X-X-X-X-X-L 9.34

Y-X-X-AcK 8.84

AcK-X-X-F 7.83

AcK-X-L 7.45

AcK-X-X-X-X-F 8

L-X-X-X-X-X-X-X-X-AcK 7.72

L-X-X-X-X-X-X-X-AcK 6.89

F-X-X-AcK 7.28

AcK-X-X-X-X-X-X-X-L 7.31

L-X-X-X-X-X-X-X-X-X-AcK 7.25

AcK-X-X-X-X-X-X-L 8.17

F-X-X-X-X-X-X-X-X-AcK 7

AcK-X-V 6.70

F-X-X-X-X-X-X-X-X-X-AcK 7.35

AcK-X-X-I 7

AcK-X-X-X-X-X-X-X-X-F 6.99

AcK-X-X-X-X-X-F 6.26

Y-X-X-X-X-X-AcK 6.41

Brain AcK-X-I 16

AcK-F 16

AcK-Y 12.40

AcK-L 11.72

F-AcK 11.11

L-AcK 10.09

F-X-AcK 11.04

AcK-X-F 9.04

F-X-X-X-X-AcK 9.41

AcK-X-V 9.10

Y-X-AcK 8.77

L-X-AcK 7.03

F-X-X-X-AcK 9.01

I-AcK 7.16

AcK-I 8.48
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F-X-X-X-X-X-X-AcK 7.56

L-X-X-AcK 7.87

I-X-X-AcK 7.90

AcK-X-L 8.27

Brown fat F-AcK 7.42

D-X-X-AcK 6.43

AcK-X-F 6.18

G-AcK 6.58

Heart AcK-F 10.80

AcK-X-I 9.91

L-AcK 9.86

L-X-AcK 9.69

AcK-L 6.72

AcK-I 8.54

L-X-X-X-X-AcK 6.55

F-X-X-X-X- AcK 6.65

M-X-X-X-X-X-X-X-AcK* 7.44

AcK-Y-X-X-X-X-X-X-L* 14.31

Intestine G-AcK 11.20

E-X-AcK-Y* 17.69

AcK-L 8.40

AcK-X-I 7.21

AcK-X-V 7.56

L-AcK 8.08

Kidney L-X-AcK 11.21

AcK-X-I 16

AcK-F 16

AcK-X-L-X-X-X-X-X-K 21.62

L-AcK 15.95

AcK-L 16

AcK-X-F 11.73

AcK-Y 9.76

I-X-AcK 9.00

V-X-AcK* 9.81

F-X-AcK 9.46

Y-X-AcK 9.74

F-AcK 7.46

AcK-I 9.74

AcK-X-X-L* 7.22

L-X-X-AcK 7.38

F-X-X-X-AcK 7.94

AcK-X-X-X-X-X-X-X-X-L 8.20

AcK-X-X-F 7.70

AcK-X-X-X-X-I 7.52

AcK-X-X-I* 7.62

AcK-X-X-X-X-L* 7.82

Liver AcK-F 13.15

L-X-AcK 10.82

AcK-L 14.37

AcK-X-I 8.97

L-X-X-X-X-AcK 7.06

AcK-X-F 8.82

AcK-X-L 6.91

AcK-Y 7.22

F-X-X-X-X-AcK 6.77

AcK-X-X-X-X-F 7.41

AcK-X-X-X-F 8.37
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F-X-X-X-AcK 8.67

L-AcK 10.06

F-X-X-X-X-X-X-AcK 7.33

L-X-X-X-X-X-X-X-X-X-AcK 7.32

Y-X-AcK 8.14

F-X-AcK 7.92

AcK-X-X-X-L 6.83

AcK-X-X-X-X-X-L 6.45

Lung AcK-Y 11.14

F-AcK 11.35

G-AcK-X-X-X-D* 19.03

AcK-F 9.80

AcK-X-I 9.03

L-AcK 8.80

AcK-L 8.94

G-AcK 8.99

Muscle L-X-AcK 8.42

AcK-Y 7.72

L-X-X-X-X-AcK 7.75

D-X-AcK* 7.16

AcK-X-I 7.55

D-X-X-X-X-X-X-AcK-X-L* 14.10

D-X-X-AcK 7.65

Pancreas AcK-L 7.97

AcK-X-A 6.20

Perirenal fat AcK-Y 6.05

L-X-X-X-X-AcK 6.13

F-AcK 7.21

Skin AcK-Y 11.54

L-X-AcK 11.94

AcK-F 10.73

L-AcK 9.71

L-D-X-AcK* 13.42

AcK-X-I 8.37

AcK-X-L 12.81

AcK-L 7.06

AcK-X-X-Y* 6.03

Spleen AcK-Y 7.36

G-AcK 7.88

F-AcK 6.32

AcK-X-A 6.05

AcK-X-I 6.32

Stomach L-X-AcK 15.35

AcK-X-I 16

AcK-F 11.64

AcK-L 10.04

AcK-X-F 7.39

F-X-X-X-X-AcK 8.48

L-AcK 9.98

AcK-Y 7.52

G-AcK 16

AcK-X-X-X-X-X-X-X-F 7.49

AcK-X-X-X-X-X-L 8.70

AcK-I 8.55

V-X-AcK-X-L* 15.81

Y-AcK 7.76

F-X-X-X-X-X-X-X-X-X-AcK 7.43
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F-X-X-X-AcK 8.46

F-AcK 7.06

F-X-X-X-X-X-X-AcK 7.48

AcK-X-X-X-X-X-X-X-X-X-F* 7.79

L-X-X-X-X-X-AcK 7.40

L-X-X-X-X-AcK 7.06

I-X-X-X-X-X-X-X-X-X-AcK* 7.73

L-X-X-X-X-X-X-X-X-X-AcK 7.97

L-X-X-X-X-X-X-X- AcK 9.57

AcK-X-X-X-X-X-X-L 8.39

AcK-X-M* 7.38

AcK-X-X-X-X-X-F 6.97

I-X-X-X-X-X-X-X-AcK* 6.80

I-X-X-X-X-X-AcK* 7.01

I-X-X-X-X-AcK* 6.03

AcK-X-X-X-X-X-X-I* 7.01

AcK-X-X-X-X-X-X-X-X-F 6.19

Testis AcK-L 11.97

AcK-F 11.86

L-AcK 7.63

AcK-X-F 11.83

F-X-X-X-X-AcK 9.71

L-X-AcK 7.95

AcK-Y 8.28

F-X-AcK 8.46

AcK-X-L 10.71

AcK-X-X-F 8.54

AcK-X-X-X-X-X-X-X-F 8.34

F-X-X-X-X-X-X-X-X-X-AcK 7.30

Y-X-X-AcK* 7.92

F-X-X-X-AcK 8.41

L-X-X-X-X-AcK 10.48

AcK-X-I 13.09

AcK-X-V 7.4

L-X-X-X-X-X-AcK 9.5

L-X-X-X-X-X-X-X-AcK 6.79

AcK-X-X-X-X-X-X-L 8.93

AcK-X-X-X-X-X-X-X-L 8.86

L-X-X-X-X-X-X-AcK* 8.11

AcK-X-X-X-X-X-X-X-X-X-L* 9.39

AcK-X-X-X-X-X-X-Y* 7.47

F-AcK 6.79

AcK-X-X-X-X-X-L 6.18

L-X-X-X-AcK* 6.73

AcK-X-X-X-X-X-X-X-Y* 6.7

Testis fat AcK-F 7.95

AcK-X-I 6.92

AcK-L 6.97

L-X-AcK 8.25

L-AcK 7.39

Thymus G-AcK 10.38

AcK-X-I 14.04

L-AcK 8.89

F-AcK 8.52

AcK-Y 7.42

AcK-L 6.59

AcK-X-F 6.74
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AcK-I 6.56

AcK-F 7.05

AcK-X-X-X-X-X-I* 6.02

Table 12: Summary of sequence motifs associated with LASs in the LAS1D
dataset. Motifs in bold correspond to tissue-specific motifs. Motifs
in bold with stars (*) are not observed in global LASs. AcK and X
represent acetylated lysine residues and wildcard residues, respec-
tively. Only statistically significant motifs are shown (p < 0.000001).
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Tissue Sequence motif Motif score

Global K-X-X-X-X-X-AcK-X-X-X-X-X-X-X-X-D 8.40

AcK-X-D-X-X-X-X-X-K 9.76

AcK-F-X-X-X-X-K 8.19

K-X-D-X-X-X-X-X-AcK 9.67

K-X-X-X-X-X-AcK-X-X-X-T 7.44

D-X-X-AcK 4.07

AcK-X-X-X-X-X-X-X-K 3.77

K-X-X-X-X-AcK-X-X-X-X-X-X-X-X-X-F 10.94

K-X-X-X-X-AcK 6.05

R-X-X-X-X-X-X-X-X-X-AcK 3.80

K-X-X-X-X-X-X-X-AcK 3.93

AcK-X-X-X-X-K 4.74

G-X-X-X-AcK 4.53

K-X-X-X-T-X-AcK 7.25

K-X-AcK 3.39

AcK-X-K 4.28

Brain K-F-X-X-X-X-AcK* 8.02

AcK-F-X-X-X-X-K 7.95

AcK-X-X-F-X-X-X-X-K* 7.02

K-X-X-X-X-X-X-X-AcK 3.59

K-X-X-X-X-X-AcK 3.46

E-X-AcK-V* 8.81

AcK-X-X-X-X-X-X-X-A* 3.83

AcK-X-X-X-X-X-K* 3.67

K-X-X-X-X-X-X-X-X-AcK 4.29

AcK-X-X-X-X-X-X-R* 4.11

Brown fat F-X-X-X-X-X-X-AcK* 3.30

F-AcK 3.33

K-X-X-X-X-X-X-X-AcK 3.54

Heart M-AcK* 4.12

E-X-AcK* 4.38

K-X-X-X-X-X-AcK-X-X-X-X-E* 6.90

K-X-X-X-X-X-X-X-AcK 3.25

G-X-X-X-X-X-X-X-X-X-AcK-X-X-X-K* 7.80

Intestine No motif

Kidney R-X-X-X-X-X-X-X-X-X-AcK 4.49

K-X-X-X-X-X-AcK 3.70

AcK-X-X-X-X-X-K 3.37

K-X-X-X-X-X-X-X-AcK-X-X-R* 7.15

L-X-AcK-X-X-X-K* 7.04

Liver D-X-X-X-X-AcK* 3.33

D-X-X-X-X-X-AcK* 3.09

Lung AcK-X-X-R* 3.29

AcK-X-D-X-X-X-X-X-K 6.37

Muscle K-X-X-X-X-X-AcK 3.79

AcK-X-X-X-X-X-K 4.53

K-X-X-X-X-X-X-X-X-AcK 4.64

AcK-X-X-X-X-X-X-X-X-K* 4.01

Pancreas S-X-X-X-X-AcK 3.05

Perirenal fat No motif

Skin F-AcK 3.34

L-X-X-X-L-X-AcK* 6.39

AcK-X-X-Y* 3.25

Spleen S-X-X-X-X-AcK 3.27

AcK-X-X-X-X-X-K 3.52

K-X-X-X-X-X-X-X-AcK 3.22
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AcK-X-X-X-X-K 3.24

K-X-X-X-X-X-AcK 3.45

AcK-X-X-X-X-X-X-X-X-R 3.07

Stomach No motif

Testis D-X-X-AcK 3.66

P-X-X-X-X-X-X-X-AcK* 3.70

R-X-X-X-X-X-X-X-X-X-AcK 3.53

Testis fat No motif

Thymus F-AcK 3.82

AcK-X-X-X-X-X-X-X-X-R 3.76

K-X-X-X-X-X-X-X-AcK 3.27

R-X-X-X-X-X-X-X-X-X-AcK 3.30

AcK-X-I* 3.42

AcK-G* 3.05

Table 13: Summary of sequence motifs associated with LASs in the LAS3D
dataset. Motifs in bold correspond to tissue-specific motifs. Motifs
in bold with stars (*) are not observed in global LASs. AcK and X
represent acetylated lysine residues and wildcard residues, respec-
tively. Only statistically significant motifs are shown (p < 0.001).
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Tissue # of LASs # of non-LASs Solvent accessibility B-factor scores

Global 2218 8777

Brain 959 4827

Brown fat 416 1877

Heart 584 2177

Intestine 365 2215
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Kidney 1116 5361

Liver 680 3241

Lung 741 4129

Muscle 581 2213

Pancreas 227 1313
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Perirenal fat 190 981

Skin 473 2718

Spleen 377 2327

Stomach 862 4621

Testis 882 4811
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Testis fat 232 1329

Thymus 604 3594

Table 15: Accessibility and B-factor analysis of LASs in different tissues.
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Tissue AA Motif Motif Score

Blood S pS-P 16.00

pS-X-E 14.09

R-X-X-pS 11.21

pS-D-X-E 15.39

T pT-P 8.34

Y No motif

Global S R-pS-X-S-P 42.91

R-S-X-pS-P 42.66

pS-P-X-X-S-P 47.48

R-pS-X-S 32.00

S-P-pS 32.00

S-P-X-X-pS-P 44.63

S-X-X-X-pS-P 32.00

pS-X-X-X-S-P 32.00

pS-X-S-P 32.00

R-X-X-S-X-pS 32.00

R-X-X-pS-P 29.14

R-S-X-pS 32.00

pS-P-X-X-X-R 29.66

pS-D-E-E 42.17

pS-P-X-X-X-K 29.59

pS-E-X-E-X-D 41.24

pS-X-D-E-X-E 41.09

pS-D-D-E 42.37

pS-P-X-R 27.24

pS-D-X-E-D 38.52

pS-E-E-E 40.94

pS-D-X-E 32.00

pS-X-X-S-P 32.00

R-X-X-X-pS-P 23.53

R-X-X-pS-X-E 32.00

pS-S-P 32.00

R-X-pS-X-S 32.00

pS-P-X-X-X-X-X-X-X-X-R 24.71

pS-X-D-E 32.00

R-X-G-pS 27.54

S-P-X-pS 32.00

pS-D-E-D 36.13

pS-P-X-X-X-X-X-X-X-X-K 24.11

pS-P-X-X-X-X-X-X-X-X-E 30.68

pS-X-E-E 25.67

pS-X-X-D-X-X-E 25.24

pS-D-X-D-X-E 32.83

pS-X-X-X-X-D-X-E 28.13

R-X-X-pS-X-X-X-X-E 26.21

R-X-X-X-X-X-X-X-pS-P 23.89

E-E-X-X-X-X-X-X-X-pS 26.96

R-R-X-pS 28.19

S-P-X-X-pS-X-X-X-X-R 38.18

R-X-X-S-X-X-pS 32.00

pS-P-R 25.82

pS-X-X-X-X-E-E 23.71

pS-D-D-D 37.75

R-X-X-S-P-X-X-X-X-X-pS 31.03

R-X-X-S-X-X-X-X-X-pS 29.73

pS-P-X-X-X-X-X-X-X-R 25.89
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pS-R-X-X-S 32.00

pS-X-D-D 25.14

pS-X-E-D 23.76

pS-P-X-X-R 29.37

D-X-D-pS 26.27

R-X-X-S-X-X-X-pS 27.96

pS-X-X-R-X-X-S 30.42

pS-X-X-X-X-X-R-X-X-S 32.00

R-R-X-X-pS 22.50

pS-X-D-X-D 24.57

R-X-X-X-X-X-X-X-X-X-pS-P 23.31

R-X-pS-S 25.08

S-P-X-X-X-X-X-X-X-pS-X-X-X-X-X-X-X-X-R 36.27

R-X-X-S-X-X-X-X-pS 25.99

D-D-X-X-X-X-X-pS 23.79

S-P-X-X-X-X-X-X-X-X-pS-X-X-X-X-X-X-X-R 36.22

pS-X-S-X-X-X-X-X-X-R 22.55

D-X-X-X-X-X-X-X-X-pS 16.00

R-X-X-S-X-X-X-X-X-X-pS-X-X-X-L 29.67

R-X-X-X-X-X-X-X-X-pS-P 22.04

pS-X-X-X-X-R-X-X-S 32.00

R-X-pS-P 22.31

pS-X-S-X-D 22.76

pS-P 16.00

pS-X-X-X-X-X-X-X-X-X-D 16.00

pS-X-X-X-X-X-X-X-D-X-E 23.40

pS-X-X-X-X-X-X-X-X-X-R 16.00

R-X-X-X-pS-X-X-X-X-X-X-S 23.60

P-X-X-X-X-X-X-X-X-X-pS-X-X-X-X-X-X-R-X-X-S 35.57

R-X-X-pS 16.00

S-X-X-X-X-X-X-X-X-X-pS-X-X-X-X-X-X-X-R 23.09

pS-X-D-X-X-D 26.06

R-X-pS 16.00

pS-X-X-D 16.00

pS-X-X-E-E 25.76

pS-X-X-X-X-X-X-X-X-R 15.65

R-X-S-X-pS 22.64

D-X-X-X-X-X-X-X-X-X-pS 13.87

S-X-X-X-X-X-X-X-pS-X-X-X-D 21.07

R-X-X-X-X-X-X-X-pS 13.28

pS-X-X-X-X-X-X-X-E-X-E 19.05

R-X-X-X-X-X-X-X-X-X-pS 12.49

pS-X-X-R 14.65

D-X-X-X-X-X-X-pS 11.28

pS-X-X-X-X-X-X-D 12.54

R-X-X-X-X-X-X-pS 11.29

pS-X-X-X-X-X-R 10.74

R-X-X-X-X-pS 10.75

K-X-pS 10.65

D-X-X-X-pS 9.84

pS-X-X-X-X-X-X-R 9.66

pS-X-X-K 9.74

K-X-X-X-X-X-X-X-pS 9.77

pS-R 8.13

pS-D 8.62

pS-X-X-X-X-X-X-X-R 7.88

pS-X-X-E 8.37

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



appendix 153

pS-X-R 8.27

pS-X-X-X-X-K 8.36

pS-X-X-S 8.02

P-X-X-X-X-X-X-pS 6.02

pS-X-X-X-R 6.10

pS-X-X-G 6.32

T pT-P-P 32.00

pT-P-E 23.30

pT-X-S-P 24.71

pT-S-P 32.00

pT-P 16.00

S-X-pT 15.65

pT-X-X-X-X-E 13.33

pT-X-S 8.42

pT-X-D 9.06

S-X-X-pT 7.56

pT-D-X-E 12.85

Y pY-X-X-X-E 6.76

pY-D 6.78

pY-X-X-S 6.03

Brain S pS-P-E* 24.35

R-X-X-pS-P 23.65

E-X-X-X-X-X-X-X-X-pS-P* 23.69

pS-P-X-X-E* 22.98

pS-P 16.00

pS-D-D-E 44.19

pS-D-X-E 30.32

R-X-X-pS 16.00

pS-X-E-D 22.36

pS-E-X-E 30.18

pS-X-E 16.00

pS-X-D-D 25.74

R-X-pS 15.95

pS-X-D 13.97

pS-X-S-P 28.00

E-X-X-X-X-pS* 13.64

D-X-X-X-X-pS 11.67

R-X-X-X-X-X-X-pS 11.57

pS-X-X-X-X-X-X-X-X-D* 11.61

pS-X-X-X-X-X-X-X-X-R 10.42

pS-X-X-X-X-X-X-X-X-E* 10.41

R-X-X-X-X-X-X-X-X-pS 9.81

E-X-X-X-X-X-X-X-X-pS* 8.35

pS-X-X-X-X-E 11.02

pS-X-X-X-X-R 8.34

R-X-X-X-X-X-X-X-pS 7.64

pS-X-X-X-X-X-R 8.94

R-X-X-X-X-pS 7.36

R-X-X-X-X-X-X-X-X-X-pS 6.26

pS-X-X-X-X-X-X-X-X-K* 6.05

pS-X-X-X-R 7.50

K-X-pS 6.40

E-X-X-X-X-X-pS 6.41

pS-X-X-E 6.12

E-X-X-X-X-X-X-X-pS 6.06

T pT-P-P 25.98

pT-P 16.00
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pT-S-P 20.41

pT-X-X-X-X-E 6.94

Y No motif

Heart S R-X-X-pS-P 26.15

pS-P-X-X-X-R 22.71

pS-D-E-E 38.96

R-X-X-pS 16.00

pS-P 16.00

pS-X-D-E 22.41

R-pS 11.21

pS-D-X-D 17.52

pS-E-X-E 14.14

pS-X-X-X-X-X-X-X-X-R 6.95

R-X-X-X-X-X-X-X-X-pS 6.29

E-pS 6.68

T No motif

Y No motif

Intestine S R-X-X-pS-P 31.26

pS-P-X-X-X-X-R 30.31

R-X-X-X-X-X-X-X-X-pS-P 24.63

pS-D-D-E 41.11

R-R-X-X-pS 22.15

pS-D-E-E 40.90

pS-P-X-X-X-R 23.47

pS-D-X-E 29.48

R-X-X-X-pS-P 22.17

R-X-X-pS 16.00

pS-P 16.00

R-pS-X-S 22.02

pS-D-X-D 30.72

pS-E-X-E 32.00

R-X-X-X-X-X-X-X-X-X-pS 16.00

pS-X-X-R 16.00

R-X-pS 16.00

pS-X-X-X-X-X-X-X-X-X-R 14.29

pS-X-X-X-X-X-X-X-R 12.08

pS-R 12.38

pS-X-D 11.79

pS-X-X-X-R 10.46

R-X-X-X-X-X-X-X-pS 11.63

pS-X-X-X-X-R 10.95

E-X-X-X-X-X-X-X-pS 9.48

pS-X-X-X-X-X-X-E 8.77

R-X-X-X-X-X-X-pS 8.31

R-X-X-X-pS 8.50

R-pS 6.89

R-X-X-X-X-X-pS 6.17

pS-X-X-X-X-X-X-R 6.35

T pT-P-P 22.82

pT-P 14.91

Y No motif

Kidney S R-X-X-pS-P 30.61

pS-P-X-X-X-X-R 29.10

pS-D-D-E 41.79

pS-D-E-E 40.00

pS-P 16.00

R-R-X-pS 24.51

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



appendix 155

pS-E-X-E 29.30

R-X-R-X-X-pS* 22.03

R-pS-X-S 22.06

pS-X-E-D 25.75

D-pS-D* 30.11

pS-X-D-D 24.74

R-X-X-pS 13.99

pS-X-X-X-X-X-X-X-D 13.67

R-X-pS 11.95

pS-X-X-X-X-X-X-X-X-X-R 11.49

D-X-X-X-X-pS 9.93

R-X-X-X-pS 8.80

R-X-X-X-X-X-X-pS 9.88

D-X-X-X-X-X-X-pS 7.51

R-X-X-X-X-X-X-X-pS 8.24

pS-X-X-X-R 9.50

E-X-X-X-X-X-X-X-pS 6.72

pS-X-X-X-X-E 7.22

R-X-X-X-X-X-X-X-X-X-pS 7.45

pS-X-X-X-X-R-X-X-S 13.06

D-X-pS* 6.06

pS-X-X-X-X-X-X-X-X-R 6.53

T pT-P 16.00

Y No motif

Liver S pS-P-X-X-X-X-R 22.35

pS-P 16.00

pS-D-D-E 40.42

R-X-X-pS 16.00

pS-D-X-E 32.00

pS-X-X-X-X-D* 16.00

pS-X-X-X-X-R 10.45

R-X-pS 9.72

pS-X-X-X-X-X-X-X-D 10.04

R-pS 8.52

E-pS 7.30

pS-X-X-X-X-X-X-X-R 7.12

pS-X-X-X-X-X-X-X-X-X-R 6.63

R-X-X-X-X-X-X-X-X-pS 6.30

T pT-P 16.00

Y No motif

Muscle S R-X-X-pS 16.00

pS-P 12.55

pS-D-X-E 29.26

E-X-X-X-X-X-X-X-pS 8.56

pS-X-X-D 7.53

pS-X-X-X-X-E 6.61

T pT-P 7.78

Y No motif

Lung S pS-P-X-X-X-X-R 32.00

R-X-X-pS-P 28.55

pS-P-X-X-X-R 24.74

pS-P-X-X-X-X-X-X-X-X-R 22.97

R-R-X-pS 25.01

pS-D-D-E 40.92

R-X-X-X-pS-P 24.26

pS-D-E-E 38.79

R-X-X-pS-X-E 22.52
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pS-P-X-X-K 23.01

pS-D-X-E 29.48

R-pS-X-S 24.63

pS-P 16.00

R-X-X-pS 16.00

R-X-pS 16.00

pS-D-X-D 32.00

pS-X-X-X-X-X-X-X-X-R 16.00

R-X-X-S-X-pS 23.45

R-X-X-X-X-X-X-X-pS 16.00

pS-X-X-X-X-R-X-X-S 22.71

pS-X-X-X-X-X-X-X-X-X-R 15.48

R-X-X-X-pS 16.00

pS-E-X-E 30.53

pS-X-X-X-X-X-R 13.73

R-X-X-X-X-X-X-pS 14.75

R-pS 10.78

pS-X-X-R 11.79

pS-X-X-X-X-X-X-E 10.92

R-X-X-X-X-X-X-X-X-pS 11.27

pS-X-X-X-R 10.98

R-X-X-X-X-X-X-X-X-X-pS 12.40

pS-R 10.51

pS-X-X-X-X-X-X-X-R 10.52

D-pS* 9.36

K-X-X-pS* 10.49

R-X-X-X-X-X-pS 9.23

E-X-X-pS 8.28

pS-X-X-X-X-R 8.48

pS-X-X-X-X-X-X-D 7.13

pS-X-X-X-X-X-X-X-K* 6.44

T pT-P-P 22.72

pT-P 16.00

Y No motif

Pancreas S pS-D-X-E 29.53

R-X-X-pS 13.67

pS-E-E* 20.99

pS-X-D-D 15.45

pS-P 8.98

pS-X-X-E 8.18

D-X-X-X-X-pS 7.00

T No motif

Y No motif

Perirenal fat S pS-P 16.00

pS-D-D-E 40.21

pS-D-X-E 31.05

R-X-X-pS 16.00

pS-X-E 13.36

pS-X-D-D 21.17

D-X-X-X-X-X-X-pS 10.15

R-pS 10.86

pS-X-D 8.77

pS-X-X-R 7.30

E-X-X-X-X-X-X-X-pS 7.08

R-X-X-X-X-X-X-X-X-pS 8.04

pS-X-X-E 6.03

T pT-P 16.00
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Y No motif

Spleen S R-X-X-pS-P 26.33

pS-P-X-X-X-X-X-R* 25.31

P-X-pS-P* 23.39

pS-P 16.00

pS-D-D-E 45.40

pS-D-E-E 38.28

R-R-X-pS 25.72

pS-E-X-E-X-D 38.08

pS-D-X-E 30.72

R-X-X-pS 16.00

pS-E-X-E 31.65

pS-D-X-D 32.00

R-pS 16.00

pS-X-X-X-X-X-X-R 14.65

pS-X-D 13.74

pS-X-X-R 13.28

R-X-X-S-X-X-pS 17.85

R-X-pS 10.67

E-X-E-X-X-X-X-X-pS* 18.65

pS-X-X-X-X-X-E* 9.81

pS-X-X-X-R 10.24

pS-R 10.12

R-X-X-X-X-X-X-X-pS 10.28

pS-X-X-X-X-X-R 10.02

pS-X-X-X-X-X-X-X-X-X-R 9.79

E-X-X-pS 8.19

pS-X-X-X-X-X-X-X-X-X-E* 8.51

pS-X-X-X-X-X-X-X-R 7.41

R-X-X-X-pS 9.24

E-X-X-X-X-X-pS 6.65

E-X-X-X-X-X-X-X-pS 7.24

T pT-P-P 25.31

pT-P 16.00

pT-D 6.28

Y No motif

Stomach S R-X-X-pS-P 26.03

R-X-X-X-pS-P 24.24

R-X-X-pS-X-X-D* 22.47

pS-P-X-X-X-R 23.53

R-X-X-pS 16.00

K-X-X-X-X-X-pS-P* 22.31

pS-D-E-E 38.25

pS-P 16.00

pS-D-D-E 39.91

R-X-pS 16.00

pS-X-X-X-X-X-X-X-X-R 14.95

R-pS 12.52

pS-D-X-D 21.24

pS-X-X-X-X-R 11.93

R-X-X-S-X-pS 18.87

R-X-X-X-X-X-X-pS 10.69

pS-X-X-R 9.79

pS-D-X-E 18.71

pS-X-X-X-X-X-X-X-X-X-R 8.20

R-X-X-X-X-X-X-X-X-pS 8.60

pS-X-X-X-X-X-R 7.32
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R-X-X-X-X-X-X-X-pS 7.93

pS-X-X-X-R 7.87

R-X-X-X-X-X-X-X-X-X-pS 6.57

T pT-P 16.00

Y No motif

Testis S R-X-X-pS-P 26.22

pS-P-X-X-X-X-R 24.33

pS-P-X-X-X-X-K* 22.92

pS-D-D-E 38.49

pS-P 16.00

pS-D-X-E 32.00

R-X-X-pS 16.00

pS-E-X-E 32.00

pS-D-X-D 26.98

pS-X-E-X-L* 19.10

R-pS 11.41

pS-X-X-X-X-X-X-X-X-X-R 10.30

pS-X-X-X-X-X-X-X-X-X-D 9.05

pS-X-X-X-X-X-X-R 9.06

pS-X-X-R 8.16

R-X-X-X-X-X-X-pS 8.70

K-X-X-pS-X-X-X-X-X-X-X-X-X-E* 15.87

pS-X-X-X-X-E 7.29

R-X-X-X-X-pS 6.42

T pT-P-P 26.54

pT-P 16.00

pT-D 7.64

Y No motif

Thymus S R-X-X-pS-P 28.88

pS-P-X-X-X-X-R 25.51

pS-P-X-R 23.29

pS-P-X-X-K 22.13

pS-D-D-E 43.35

pS-P-X-X-X-X-X-X-X-R 22.36

pS-D-E-E 46.21

pS-P 16.00

R-R-X-pS 26.74

pS-E-X-E-X-D 39.88

pS-E-X-E 30.91

R-X-X-pS 16.00

pS-D-X-E 32.00

pS-R-S* 22.56

pS-D-X-D 32.00

R-X-X-S-X-pS 23.74

pS-X-X-X-X-D-E* 22.91

R-X-pS 16.00

D-E-X-X-X-X-X-X-X-pS* 22.00

D-D-X-X-X-X-X-pS 26.94

R-X-X-X-X-X-X-X-pS 14.68

pS-X-X-X-X-R-X-X-S 22.40

pS-X-D 14.00

pS-X-X-X-X-X-X-X-X-X-R 12.85

E-E-X-X-X-X-X-X-X-pS 17.79

pS-X-X-X-X-X-R-X-X-S 17.79

pS-X-E 10.30

pS-X-X-R 10.84

R-pS 11.15
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R-X-X-X-X-X-X-X-X-pS 10.51

pS-X-X-X-R 10.90

R-X-X-X-X-X-X-X-X-X-pS 10.57

D-X-X-X-X-X-X-pS 9.88

R-X-X-X-X-X-X-pS 9.75

R-X-X-X-pS 8.87

pS-X-X-X-X-X-X-R 8.34

E-X-pS* 7.61

R-X-X-X-X-X-pS 7.24

pS-X-X-X-X-R 8.03

pS-X-R 8.44

K-X-X-X-X-pS* 8.08

pS-X-P* 7.68

pS-X-X-X-X-E 7.84

T pT-P-P 26.36

pT-P 16.00

Y No motif

Table 16: Sequence motifs of all phosphorylation sites at 70% sequence simi-
larity with the p < 0.000001 significance threshold. The motif score
represents the sum of the negative log probabilities used to fix
each position of the motif. The higher the motif score, the more
statistically significant the corresponding motif is.
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AA/Pos -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

G n/n n/n n/n n/+ -/n +/+ -/n n/n n/n n/n n/n n/n
S +/+ +/n +/+ +/+ +/+ +/+ n/+ +/+ +/+ +/+ n/+ n/n
T n/n +/n +/n +/+ +/n +/n -/n n/n -/n n/n n/n -/n
Y n/+ +/+ +/n +/+ +/n +/n -/n -/- -/n -/n n/- -/n
C -/n -/n -/- -/- -/n -/n -/n -/n -/n -/n -/- -/-
N n/n n/n n/n -/- n/- n/- -/- n/- n/n n/n n/n n/n
Q -/n n/n n/n -/n n/n -/n -/- -/- -/- -/n n/- -/-
K +/n +/n +/- +/n n/- n/n -/- -/- n/- -/- n/n +/n
R +/n +/n +/n +/- +/- +/n -/- -/- n/- n/- n/- +/+
H n/n n/n -/- -/- -/n -/- -/n -/- -/n -/n -/- -/-
D n/+ n/+ n/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+
E +/+ +/n +/n n/+ n/+ n/+ +/n +/+ +/+ +/+ +/+ +/+
P n/n n/n n/- -/n n/n -/n +/+ +/+ n/- n/n +/+ n/n
A n/n n/+ n/+ -/n n/n n/n -/- -/n n/n n/n n/n n/n
W -/- n/n n/n -/n n/n n/n n/n -/n -/n n/n -/n n/n
F -/n -/n -/n -/n -/n -/n n/- -/- n/- -/- -/n n/n
L -/n -/- -/n -/- -/n n/- -/- -/- -/- +/- -/- -/-
I n/- n/n -/- -/- -/n -/- -/- -/- -/- n/n -/n -/-

M n/n n/n -/- n/n n/n n/n -/- -/n n/n n/n n/n n/n
V -/- -/- -/- -/- -/n -/- -/- -/- -/- n/- -/- -/-

Table 17: Two sample logo comparison of phosphorylation sites between our
study and the study of Lundby et al. in brain. “+” and “-” represent
enrichment and depletion of amino acids at a particular position,
respectively, whereas “n” represents the lack of depletion or en-
richment. Numerator of each fraction in each cell corresponds to
the finding in our study, whereas denominator corresponds to the
observation in the study of Lundby et al. 58.8% of the cases over-
lap in both studies (n/n, +/+, -/-). In 27.5% of the cases we found
a particular amino acid enriched/depleted in the corresponding
position, and the study by Lundby et al. found no signal, whereas
in 12.1% of the cases it is vice versa.
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AA/Pos -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

G n/n -/- n/n n/+ n/n +/n -/n n/n n/- n/n n/- n/n
S n/n n/n n/n n/n +/+ +/n -/+ +/+ n/n n/n -/n n/-
T +/n n/n +/n +/n +/n +/+ -/n n/n -/- -/- n/n -/-
Y n/n +/n +/n n/- n/n +/n -/- -/n -/n -/n n/n n/n
C -/- -/n -/n -/n -/n -/n -/n -/n -/n -/n -/n -/n
N -/n -/n n/n -/n n/n n/n -/n n/n n/n n/n n/n n/n
Q n/n n/n -/- n/n +/n -/- -/n -/- -/n -/- n/n n/n
K +/+ n/n +/n n/- -/- n/- -/- -/n n/- -/n n/n +/+
R +/n +/+ +/+ +/- +/- +/n -/- -/- n/- n/- +/n +/n
H -/n n/n -/n n/n -/n -/n -/n -/n -/- -/n n/n n/n
D +/+ n/+ n/n n/+ n/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+
E n/+ n/+ n/+ n/+ n/+ n/+ +/+ +/+ +/+ +/+ +/+ +/+
P +/n n/n n/n n/n n/n -/n +/n +/n +/+ n/n +/n n/n
A n/n n/n n/n n/n n/- n/n -/n -/- -/- -/- -/n n/n
W n/n -/n n/n n/n n/n n/n -/- -/n n/n n/n -/n n/n
F -/- n/- n/n -/n n/n n/- n/- -/- n/n n/n n/n n/n
L -/- n/n -/n -/n -/- n/n -/- -/- -/n +/+ n/- -/-
I -/- n/n n/n -/n -/- -/- -/- -/- -/n +/n -/n -/n

M n/n n/- n/n n/n n/- n/n n/- -/n n/- n/n n/n n/n
V -/n -/- n/n -/n n/n -/- -/- n/n -/- n/- -/n -/-

Table 18: Two sample logo comparison of phosphorylation sites between our
study and the study of Lundby et al. in testis. “+” and “-” represent
enrichment and depletion of amino acids at a particular position,
respectively, whereas “n” represents the lack of depletion or en-
richment. Numerator of each fraction in each cell corresponds to
the finding in our study, whereas denominator corresponds to the
observation in the study of Lundby et al. 57.5% of the cases over-
lap in both studies (n/n, +/+, -/-). In 29.2% of the cases we found
a particular amino acid enriched/depleted in the corresponding
position, and the study by Lundby et al. found no signal, whereas
in 12.1% of the cases it is vice versa.
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Tissue # of PSS # of non-PSS Solvent accessibility B-factor scores

Global 423 4162

Blood 38 625

Brain 122 1758

Brainstem 81 1318

Cerebellum 82 1411
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Cortex 93 1483

Heart 44 668

Intestine 69 1139

Kidney 66 1062

Liver 97 1305
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Lung 73 1216

Muscle 95 889

Pancreas 10 349

Perirenal fat 56 850

Spleen 73 1330
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Stomach 66 1107

Testis 45 922

Thymus 65 1154

Table 19: Accessibility and B-factor analysis of PSS in different tissues in the
PS3D-90 dataset.
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Tissue # of PTS # of non-PTS Solvent accessibility B-factor scores

Global 140 3790

Blood 6 567

Brain 26 1597

Brainstem 13 1223

Cerebellum 16 1281
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Cortex 17 1399

Heart 10 652

Intestine 10 1146

Kidney 9 1002

Liver 22 1179
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Lung 6 1176

Muscle 51 847

Pancreas 3 319

Perirenal fat 8 796

Spleen 7 1280
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Stomach 13 1128

Testis 4 848

Thymus 5 1110

Table 20: Accessibility and B-factor analysis of PTS in different tissues in the
PS3D-90 dataset.
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Tissue # of PYS # of non-PYS Solvent accessibility B-factor scores

Global 46 2804

Blood 2 397

Brain 4 1159

Brainstem 2 829

Cerebellum 3 906
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Cortex 3 974

Heart 5 452

Intestine 3 788

Kidney 2 731

Liver 3 918
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Lung 6 834

Muscle 27 602

Pancreas 0 276 Not applicable Not applicable

Perirenal fat 3 557

Spleen 4 949

Stomach 2 727
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Testis 1 661 Not applicable

Thymus 2 826

Table 21: Accessibility and B-factor analysis of PYS in different tissues in the
PS3D-90 dataset.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



B I B L I O G R A P H Y

Basu, A. et al. (2009). “Proteome-wide prediction of acetylation sub-
strates.” In: Proc Natl Acad Sci U S A 106.33, pp. 13785–90.

Baxa, C. A., R. S. Sha, M. K. Buelt, A. J. Smith, V. Matarese, L. L.
Chinander, K. L. Boundy, and D. A. Bernlohr (1989). “Human
adipocyte lipid-binding protein: purification of the protein and
cloning of its complementary DNA.” In: Biochemistry 28.22, pp. 8683–
90.

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.
Weissig, I. N. Shindyalov, and P. E. Bourne (2000). “The Protein
Data Bank.” In: Nucleic Acids Res 28.1, pp. 235–42.

Berndsen, C. E., T. Tsubota, S. E. Lindner, S. Lee, J. M. Holton, P. D.
Kaufman, J. L. Keck, and J. M. Denu (2008). “Molecular func-
tions of the histone acetyltransferase chaperone complex Rtt109-
Vps75.” In: Nat Struct Mol Biol 15.9, pp. 948–56.

Blom, N., S. Gammeltoft, and S. Brunak (1999). “Sequence and structure-
based prediction of eukaryotic protein phosphorylation sites.” In:
J Mol Biol 294.5, pp. 1351–62.

Blom, N., T. Sicheritz-Ponten, R. Gupta, S. Gammeltoft, and S. Brunak
(2004). “Prediction of post-translational glycosylation and phos-
phorylation of proteins from the amino acid sequence.” In: Pro-
teomics 4.6, pp. 1633–49.

Breiman, R. F. (2001). “Vaccines as tools for advancing more than
public health: perspectives of a former director of the National
Vaccine Program office.” In: Clin Infect Dis 32.2, pp. 283–8.

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K.
Bealer, and T. L. Madden (2009). “BLAST+: architecture and ap-
plications.” In: BMC Bioinformatics 10, p. 421.

Chen, X., S. P. Shi, S. B. Suo, H. D. Xu, and J. D. Qiu (2014). “Pro-
teomic analysis and prediction of human phosphorylation sites
in subcellular level reveal subcellular specificity.” In: Bioinformat-
ics.

Chen, Y. C., K. Aguan, C. W. Yang, Y. T. Wang, N. R. Pal, and I.
F. Chung (2011). “Discovery of protein phosphorylation motifs
through exploratory data analysis.” In: PLoS One 6.5, e20025.

Chen, Z., X. J. Chen, M. Xia, H. W. He, S. Wang, H. Liu, H. Gong,
and Y. B. Yan (2012). “Chaperone-like effect of the linker on the
isolated C-terminal domain of rabbit muscle creatine kinase.” In:
Biophys J 103.3, pp. 558–66.

Chou, M. F. and D. Schwartz (2011). “Biological sequence motif dis-
covery using motif-x.” In: Curr Protoc Bioinformatics Chapter 13,
Unit 13 15–24.

Choudhary, C., C. Kumar, F. Gnad, M. L. Nielsen, M. Rehman, T. C.
Walther, J. V. Olsen, and M. Mann (2009). “Lysine acetylation
targets protein complexes and co-regulates major cellular func-
tions.” In: Science 325.5942, pp. 834–40.

175

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



176 Bibliography

Choudhary, C., B. T. Weinert, Y. Nishida, E. Verdin, and M. Mann
(2014). “The growing landscape of lysine acetylation links metabolism
and cell signalling.” In: Nat Rev Mol Cell Biol 15.8, pp. 536–50.

Clements, A., A. N. Poux, W. S. Lo, L. Pillus, S. L. Berger, and R. Mar-
morstein (2003). “Structural basis for histone and phosphohistone
binding by the GCN5 histone acetyltransferase.” In: Mol Cell 12.2,
pp. 461–73.

Consortium, The UniProt (2014). “Activities at the Universal Protein
Resource (UniProt).” In: Nucleic Acids Research 42.D1, pp. D191–
D198.

Damle, N. P. and D. Mohanty (2014). “Deciphering kinase-substrate
relationships by analysis of domain-specific phosphorylation net-
work.” In: Bioinformatics 30.12, pp. 1730–8.

Dou, Y., B. Yao, and C. Zhang (2014). “PhosphoSVM: prediction of
phosphorylation sites by integrating various protein sequence at-
tributes with a support vector machine.” In: Amino Acids 46.6,
pp. 1459–69.

Duan, Guangyou and Dirk Walther (2015). “The Roles of Post-translational
Modifications in the Context of Protein Interaction Networks.” In:
PLoS Comput Biol 11.2, pp. 1–23.

Durek, P., C. Schudoma, W. Weckwerth, J. Selbig, and D. Walther
(2009). “Detection and characterization of 3D-signature phospho-
rylation site motifs and their contribution towards improved phos-
phorylation site prediction in proteins.” In: BMC Bioinformatics 10,
p. 117.

Durek, P., R. Schmidt, J. L. Heazlewood, A. Jones, D. MacLean, A.
Nagel, B. Kersten, and W. X. Schulze (2010). “PhosPhAt: the Ara-
bidopsis thaliana phosphorylation site database. An update.” In:
Nucleic Acids Res 38.Database issue, pp. D828–34.

Fan, W., X. Xu, Y. Shen, H. Feng, A. Li, and M. Wang (2014). “Predic-
tion of protein kinase-specific phosphorylation sites in hierarchi-
cal structure using functional information and random forest.”
In: Amino Acids 46.4, pp. 1069–78.

Fillingham, J., J. Recht, A. C. Silva, B. Suter, A. Emili, I. Stagljar, N.
J. Krogan, C. D. Allis, M. C. Keogh, and J. F. Greenblatt (2008).
“Chaperone control of the activity and specificity of the histone
H3 acetyltransferase Rtt109.” In: Mol Cell Biol 28.13, pp. 4342–53.

Gao, J. and D. Xu (2010). “The Musite open-source framework for
phosphorylation-site prediction.” In: BMC Bioinformatics 11 Suppl
12, S9.

Gao, J., J. J. Thelen, A. K. Dunker, and D. Xu (2010). “Musite, a tool for
global prediction of general and kinase-specific phosphorylation
sites.” In: Mol Cell Proteomics 9.12, pp. 2586–600.

Geiss-Friedlander, R. and F. Melchior (2007). “Concepts in sumoyla-
tion: a decade on.” In: Nat Rev Mol Cell Biol 8.12, pp. 947–56.

Gene Ontology, Consortium (2015). “Gene Ontology Consortium: go-
ing forward.” In: Nucleic Acids Res 43.Database issue, pp. D1049–
56.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



Bibliography 177

Gnad, F., J. Gunawardena, and M. Mann (2011). “PHOSIDA 2011:
the posttranslational modification database.” In: Nucleic Acids Res
39.Database issue, pp. D253–60.

Grotenbreg, G. and H. Ploegh (2007). “Chemical biology: dressed-up
proteins.” In: Nature 446.7139, pp. 993–5.

Henriksen, P., S. A. Wagner, B. T. Weinert, S. Sharma, G. Bacinskaja, M.
Rehman, A. H. Juffer, T. C. Walther, M. Lisby, and C. Choudhary
(2012). “Proteome-wide analysis of lysine acetylation suggests its
broad regulatory scope in Saccharomyces cerevisiae.” In: Mol Cell
Proteomics 11.11, pp. 1510–22.

Hjerrild, M., A. Stensballe, T. E. Rasmussen, C. B. Kofoed, N. Blom,
T. Sicheritz-Ponten, M. R. Larsen, S. Brunak, O. N. Jensen, and
S. Gammeltoft (2004). “Identification of phosphorylation sites in
protein kinase A substrates using artificial neural networks and
mass spectrometry.” In: J Proteome Res 3.3, pp. 426–33.

Hornbeck, P. V., J. M. Kornhauser, S. Tkachev, B. Zhang, E. Skrzypek,
B. Murray, V. Latham, and M. Sullivan (2012). “PhosphoSitePlus:
a comprehensive resource for investigating the structure and func-
tion of experimentally determined post-translational modifications
in man and mouse.” In: Nucleic Acids Res 40.Database issue, pp. D261–
70.

Hou, T., G. Zheng, P. Zhang, J. Jia, J. Li, L. Xie, C. Wei, and Y. Li (2014).
“LAceP: lysine acetylation site prediction using logistic regression
classifiers.” In: PLoS One 9.2, e89575.

Hubbard, S. J. and J. M. Thornton (1993). “’NACCESS’, computer pro-
gram.” In:

Huttlin, E. L., M. P. Jedrychowski, J. E. Elias, T. Goswami, R. Rad,
S. A. Beausoleil, J. Villen, W. Haas, M. E. Sowa, and S. P. Gygi
(2010). “A tissue-specific atlas of mouse protein phosphorylation
and expression.” In: Cell 143.7, pp. 1174–89.

Iakoucheva, L. M., P. Radivojac, C. J. Brown, T. R. O’Connor, J. G.
Sikes, Z. Obradovic, and A. K. Dunker (2004). “The importance of
intrinsic disorder for protein phosphorylation.” In: Nucleic Acids
Res 32.3, pp. 1037–49.

Imamura, H., N. Sugiyama, M. Wakabayashi, and Y. Ishihama (2014).
“Large-scale identification of phosphorylation sites for profiling
protein kinase selectivity.” In: J Proteome Res 13.7, pp. 3410–9.

Jakob, B., J. Splinter, S. Conrad, K. O. Voss, D. Zink, M. Durante,
M. Lobrich, and G. Taucher-Scholz (2011). “DNA double-strand
breaks in heterochromatin elicit fast repair protein recruitment,
histone H2AX phosphorylation and relocation to euchromatin.”
In: Nucleic Acids Res 39.15, pp. 6489–99.

Joosten, R. P., T. A. te Beek, E. Krieger, M. L. Hekkelman, R. W.
Hooft, R. Schneider, C. Sander, and G. Vriend (2011). “A series
of PDB related databases for everyday needs.” In: Nucleic Acids
Res 39.Database issue, pp. D411–9.

Kaji, H. et al. (2012). “Large-scale identification of N-glycosylated pro-
teins of mouse tissues and construction of a glycoprotein database,
GlycoProtDB.” In: J Proteome Res 11.9, pp. 4553–66.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



178 Bibliography

Kanehisa, M., S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S.
Kawashima, T. Katayama, M. Araki, and M. Hirakawa (2006).
“From genomics to chemical genomics: new developments in KEGG.”
In: Nucleic Acids Res 34.Database issue, pp. D354–7.

Khoury, G. A., R. C. Baliban, and C. A. Floudas (2011). “Proteome-
wide post-translational modification statistics: frequency analysis
and curation of the swiss-prot database.” In: Sci Rep 1.

Kim, S. C. et al. (2006). “Substrate and functional diversity of lysine
acetylation revealed by a proteomics survey.” In: Mol Cell 23.4,
pp. 607–18.

Kobe, B., T. Kampmann, J. K. Forwood, P. Listwan, and R. I. Brinkworth
(2005). “Substrate specificity of protein kinases and computational
prediction of substrates.” In: Biochim Biophys Acta 1754.1-2, pp. 200–
9.

Kreegipuu, A., N. Blom, and S. Brunak (1999). “PhosphoBase, a database
of phosphorylation sites: release 2.0.” In: Nucleic Acids Res 27.1,
pp. 237–9.

Kuhn, Max (2008). “Building predictive models in R using the caret
package.” In: Journal of Statistical Software 28.5, pp. 1–26.

Laborde, E. (2010). “Glutathione transferases as mediators of signal-
ing pathways involved in cell proliferation and cell death.” In:
Cell Death Differ 17.9, pp. 1373–1380.

Levy, E. D., S. W. Michnick, and C. R. Landry (2012). “Protein abun-
dance is key to distinguish promiscuous from functional phos-
phorylation based on evolutionary information.” In: Philos Trans
R Soc Lond B Biol Sci 367.1602, pp. 2594–606.

Li, T., P. Du, and N. Xu (2010). “Identifying human kinase-specific
protein phosphorylation sites by integrating heterogeneous infor-
mation from various sources.” In: PLoS One 5.11, e15411.

Li, W. and A. Godzik (2006). “Cd-hit: a fast program for clustering
and comparing large sets of protein or nucleotide sequences.” In:
Bioinformatics 22.13, pp. 1658–9.

Li, X. D., Y. J. Yang, Y. J. Geng, J. L. Zhao, H. T. Zhang, Y. T. Cheng,
and Y. L. Wu (2012). “Phosphorylation of endothelial NOS con-
tributes to simvastatin protection against myocardial no-reflow
and infarction in reperfused swine hearts: partially via the PKA
signaling pathway.” In: Acta Pharmacol Sin 33.7, pp. 879–87.

Li, Y., M. Wang, H. Wang, H. Tan, Z. Zhang, G. I. Webb, and J. Song
(2014). “Accurate in silico identification of species-specific acetyla-
tion sites by integrating protein sequence-derived and functional
features.” In: Sci Rep 4, p. 5765.

Linding, R., L. J. Jensen, F. Diella, P. Bork, T. J. Gibson, and R. B. Rus-
sell (2003). “Protein disorder prediction: implications for struc-
tural proteomics.” In: Structure 11.11, pp. 1453–9.

Linding, R., L. J. Jensen, A. Pasculescu, M. Olhovsky, K. Colwill,
P. Bork, M. B. Yaffe, and T. Pawson (2008). “NetworKIN: a re-
source for exploring cellular phosphorylation networks.” In: Nu-
cleic Acids Res 36.Database issue, pp. D695–9.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



Bibliography 179

Lu, Z., Z. Cheng, Y. Zhao, and S. L. Volchenboum (2011). “Bioinfor-
matic analysis and post-translational modification crosstalk pre-
diction of lysine acetylation.” In: PLoS One 6.12, e28228.

Lundby, A. et al. (2012a). “Proteomic analysis of lysine acetylation
sites in rat tissues reveals organ specificity and subcellular pat-
terns.” In: Cell Rep 2.2, pp. 419–31.

Lundby, A., A. Secher, K. Lage, N. B. Nordsborg, A. Dmytriyev, C.
Lundby, and J. V. Olsen (2012b). “Quantitative maps of protein
phosphorylation sites across 14 different rat organs and tissues.”
In: Nat Commun 3, p. 876.

Maksimoska, J., D. Segura-Pena, P. A. Cole, and R. Marmorstein (2014).
“Structure of the p300 histone acetyltransferase bound to acetyl-
coenzyme A and its analogues.” In: Biochemistry 53.21, pp. 3415–
22.

Manni, S., J. H. Mauban, C. W. Ward, and M. Bond (2008). “Phospho-
rylation of the cAMP-dependent protein kinase (PKA) regulatory
subunit modulates PKA-AKAP interaction, substrate phosphory-
lation, and calcium signaling in cardiac cells.” In: J Biol Chem
283.35, pp. 24145–54.

McGuffin, L. J., K. Bryson, and D. T. Jones (2000). “The PSIPRED pro-
tein structure prediction server.” In: Bioinformatics 16.4, pp. 404–
5.

Miller, M. L. et al. (2008). “Linear motif atlas for phosphorylation-
dependent signaling.” In: Sci Signal 1.35, ra2.

Morrison, R. S., Y. Kinoshita, M. D. Johnson, T. Uo, J. T. Ho, J. K.
McBee, T. P. Conrads, and T. D. Veenstra (2002). “Proteomic anal-
ysis in the neurosciences.” In: Mol Cell Proteomics 1.8, pp. 553–60.

Murzin, A. G., S. E. Brenner, T. Hubbard, and C. Chothia (1995).
“SCOP: a structural classification of proteins database for the
investigation of sequences and structures.” In: J Mol Biol 247.4,
pp. 536–40.

Needleman, S. B. and C. D. Wunsch (1970). “A general method appli-
cable to the search for similarities in the amino acid sequence of
two proteins.” In: J Mol Biol 48.3, pp. 443–53.

Obenauer, J. C., L. C. Cantley, and M. B. Yaffe (2003). “Scansite 2.0:
Proteome-wide prediction of cell signaling interactions using short
sequence motifs.” In: Nucleic Acids Res 31.13, pp. 3635–41.

Okanishi, H., K. Kim, R. Masui, and S. Kuramitsu (2013). “Acetylome
with structural mapping reveals the significance of lysine acetyla-
tion in Thermus thermophilus.” In: J Proteome Res 12.9, pp. 3952–
68.

Olsen, J. V. and M. Mann (2013). “Status of Large-scale Analysis of
Post-translational Modifications by Mass Spectrometry.” In: Mol
Cell Proteomics 12.12, pp. 3444–3452.

Ostlund, G., T. Schmitt, K. Forslund, T. Kostler, D. N. Messina, S.
Roopra, O. Frings, and E. L. Sonnhammer (2010). “InParanoid 7:
new algorithms and tools for eukaryotic orthology analysis.” In:
Nucleic Acids Res 38.Database issue, pp. D196–203.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



180 Bibliography

Patel, J., R. R. Pathak, and S. Mujtaba (2011). “The biology of lysine
acetylation integrates transcriptional programming and metabolism.”
In: Nutr Metab (Lond) 8, p. 12.

Porollo, A. and J. Meller (2007). “Prediction-based fingerprints of
protein-protein interactions.” In: Proteins 66.3, pp. 630–45.

Poux, A. N. and R. Marmorstein (2003). “Molecular basis for Gcn5/PCAF
histone acetyltransferase selectivity for histone and nonhistone
substrates.” In: Biochemistry 42.49, pp. 14366–74.

Recht, J. et al. (2006). “Histone chaperone Asf1 is required for histone
H3 lysine 56 acetylation, a modification associated with S phase
in mitosis and meiosis.” In: Proceedings of the National Academy of
Sciences 103.18, pp. 6988–6993.

Rojas, J. R., R. C. Trievel, J. Zhou, Y. Mo, X. Li, S. L. Berger, C. D. Al-
lis, and R. Marmorstein (1999). “Structure of Tetrahymena GCN5

bound to coenzyme A and a histone H3 peptide.” In: Nature
401.6748, pp. 93–8.

Roskoski R., Jr. (2015). “A historical overview of protein kinases and
their targeted small molecule inhibitors.” In: Pharmacol Res 100,
pp. 1–23.

Sadoul, K., J. Wang, B. Diagouraga, and S. Khochbin (2011). “The
tale of protein lysine acetylation in the cytoplasm.” In: J Biomed
Biotechnol 2011, p. 970382.

Saunders, N. F., R. I. Brinkworth, T. Huber, B. E. Kemp, and B. Kobe
(2008). “Predikin and PredikinDB: a computational framework
for the prediction of protein kinase peptide specificity and an
associated database of phosphorylation sites.” In: BMC Bioinfor-
matics 9, p. 245.

Schwartz, D. and S. P. Gygi (2005). “An iterative statistical approach
to the identification of protein phosphorylation motifs from large-
scale data sets.” In: Nat Biotechnol 23.11, pp. 1391–8.

Schwartz, P. A. and B. W. Murray (2011). “Protein kinase biochemistry
and drug discovery.” In: Bioorg Chem 39.5-6, pp. 192–210.

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ram-
age, N. Amin, B. Schwikowski, and T. Ideker (2003). “Cytoscape:
a software environment for integrated models of biomolecular
interaction networks.” In: Genome Res 13.11, pp. 2498–504.

Shao, J., D. Xu, L. Hu, Y. W. Kwan, Y. Wang, X. Kong, and S. M. Ngai
(2012). “Systematic analysis of human lysine acetylation proteins
and accurate prediction of human lysine acetylation through bi-
relative adapted binomial score Bayes feature representation.” In:
Mol Biosyst 8.11, pp. 2964–73.

Sirover, M. A. (2012). “Subcellular dynamics of multifunctional pro-
tein regulation: mechanisms of GAPDH intracellular transloca-
tion.” In: J Cell Biochem 113.7, pp. 2193–200.

Su, M. G. and T. Y. Lee (2013). “Incorporating substrate sequence mo-
tifs and spatial amino acid composition to identify kinase-specific
phosphorylation sites on protein three-dimensional structures.”
In: BMC Bioinformatics 14 Suppl 16, S2.

Suo, S. B., J. D. Qiu, S. P. Shi, X. Y. Sun, S. Y. Huang, X. Chen, and
R. P. Liang (2012). “Position-specific analysis and prediction for

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]



Bibliography 181

protein lysine acetylation based on multiple features.” In: PLoS
One 7.11, e49108.

Suo, S. B., J. D. Qiu, S. P. Shi, X. Chen, S. Y. Huang, and R. P. Liang
(2013). “Proteome-wide analysis of amino acid variations that in-
fluence protein lysine acetylation.” In: J Proteome Res 12.2, pp. 949–
58.

Suo, S. B., J. D. Qiu, S. P. Shi, X. Chen, and R. P. Liang (2014). “PSEA:
Kinase-specific prediction and analysis of human phosphoryla-
tion substrates.” In: Sci Rep 4, p. 4524.

Team, R. Development Core (2009). R: A Language and Environment for
Statistical Computing.

ThermoFisher Scientific. https://www.thermofisher.com/de/de/home/
life-science/protein-biology/protein-biology-learning-

center/protein-biology-resource-library/pierce-protein-

methods/overview-post-translational-modification.html.
Trost, B. and A. Kusalik (2011). “Computational prediction of eukary-

otic phosphorylation sites.” In: Bioinformatics 27.21, pp. 2927–35.
— (2013). “Computational phosphorylation site prediction in plants

using random forests and organism-specific instance weights.” In:
Bioinformatics 29.6, pp. 686–94.

Tyanova, S., J. Cox, J. Olsen, M. Mann, and D. Frishman (2013). “Phos-
phorylation variation during the cell cycle scales with structural
propensities of proteins.” In: PLoS Comput Biol 9.1, e1002842.

UniProt, Consortium (2010). “The Universal Protein Resource (UniProt)
in 2010.” In: Nucleic Acids Res 38.Database issue, pp. D142–8.

Vacic, V., L. M. Iakoucheva, and P. Radivojac (2006). “Two Sample
Logo: a graphical representation of the differences between two
sets of sequence alignments.” In: Bioinformatics 22.12, pp. 1536–7.

Villen, J., S. A. Beausoleil, S. A. Gerber, and S. P. Gygi (2007). “Large-
scale phosphorylation analysis of mouse liver.” In: Proc Natl Acad
Sci U S A 104.5, pp. 1488–93.

Wang, Benlian, Han Wei, Lakshmi Prabhu, Wei Zhao, Matthew Mar-
tin, Antja-Voy Hartley, and Tao Lu (2015). “Role of Novel Ser-
ine 316 Phosphorylation of the p65 Subunit of NF-?B in Differ-
ential Gene Regulation.” In: Journal of Biological Chemistry 290.33,
pp. 20336–20347. eprint: http://www.jbc.org/content/290/33/
20336.full.pdf+html.

Wang, M., M. Weiss, M. Simonovic, G. Haertinger, S. P. Schrimpf, M.
O. Hengartner, and C. von Mering (2012). “PaxDb, a database of
protein abundance averages across all three domains of life.” In:
Mol Cell Proteomics 11.8, pp. 492–500.

Weinert, B. T., S. A. Wagner, H. Horn, P. Henriksen, W. R. Liu, J. V.
Olsen, L. J. Jensen, and C. Choudhary (2011). “Proteome-wide
mapping of the Drosophila acetylome demonstrates a high de-
gree of conservation of lysine acetylation.” In: Sci Signal 4.183,
ra48.

Wijk, K. J. van, G. Friso, D. Walther, and W. X. Schulze (2014). “Meta-
Analysis of Arabidopsis thaliana Phospho-Proteomics Data Re-
veals Compartmentalization of Phosphorylation Motifs.” In: Plant
Cell 26.6, pp. 2367–2389.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]

https://www.thermofisher.com/de/de/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-post-translational-modification.html
https://www.thermofisher.com/de/de/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-post-translational-modification.html
https://www.thermofisher.com/de/de/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-post-translational-modification.html
https://www.thermofisher.com/de/de/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-post-translational-modification.html
http://www.jbc.org/content/290/33/20336.full.pdf+html
http://www.jbc.org/content/290/33/20336.full.pdf+html


182 Bibliography

Xue, Y., X. Gao, J. Cao, Z. Liu, C. Jin, L. Wen, X. Yao, and J. Ren (2010).
“A summary of computational resources for protein phosphory-
lation.” In: Curr Protein Pept Sci 11.6, pp. 485–96.

Yao, C. et al. (2013). “Role of Fas-associated death domain-containing
protein (FADD) phosphorylation in regulating glucose homeosta-
sis: from proteomic discovery to physiological validation.” In:
Mol Cell Proteomics 12.10, pp. 2689–700.

Zhao, Y. and O. N. Jensen (2009). “Modification-specific proteomics:
strategies for characterization of post-translational modifications
using enrichment techniques.” In: Proteomics 9.20, pp. 4632–41.

Zhao, Y., X. Li, X. Sun, Y. Zhang, and H. Ren (2012). “EMT pheno-
type is induced by increased Src kinase activity via Src-mediated
caspase-8 phosphorylation.” In: Cell Physiol Biochem 29.3-4, pp. 341–
52.

[ July 10, 2016 at 22:13 – classicthesis version 4.2 ]


	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	INTRODUCTION
	1 Introduction
	1.1 Experimental Methods
	1.2 Acetylation
	1.3 Phosphorylation
	1.4 Computational Methods
	1.5 Thesis Motivation and Outline


	Tissue-Specific Sequence and Structural Environments of Lysine Acetylation Sites
	2 Tissue-Specific Sequence and Structural Environments of Lysine Acetylation Sites
	2.1 Materials and Methods
	2.1.1 Data collection and preprocessing
	2.1.2 Sequence (1D) environments of acetylated and reference (non−acetylated) lysine residues
	2.1.3 Lysine acetylation sites with known 3D structure
	2.1.4 Statistics
	2.1.5 Three-dimensional (3D) environments of acetylated and reference (non-acetylated) lysine residues
	2.1.6 Conservation analysis of lysine acetylation sites
	2.1.7 Structural features of lysine acetylation sites
	2.1.8 Analysis of structural folds and functional domains
	2.1.9 KEGG pathway analysis
	2.1.10 Abundance of KAT paralogs

	2.2 Results and Discussion
	2.2.1 Global and tissue-specific sequence motifs of lysine acetylation sites
	2.2.2 Global and tissue-specific sequence motifs of lysine acetylation sites in proteins with known 3D structure
	2.2.3 Spatial environments of lysine acetylation sites
	2.2.4 Evolutionary conservation of lysine acetylation sites
	2.2.5 Tissue-specific structural properties of lysine acetylation sites
	2.2.6 Proteins containing acetylated lysines are involved in tissue-specific biological pathways

	2.3 Conclusion


	Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites
	3 Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites
	3.1 Materials and Methods
	3.1.1 Datasets of phosphorylated and reference (non-phosphorylated) sites
	3.1.2 Identification of sequence motifs
	3.1.3 Obtaining 3D structures of phosphorylated proteins
	3.1.4 Statistics
	3.1.5 Spatial (3D) environments of phosphorylated and reference (non-phosphorylated) serine/threonine/tyrosine residues
	3.1.6 Structural properties of phosphorylation sites
	3.1.7 Analysis of structural folds and functional domains
	3.1.8 KEGG pathway analysis
	3.1.9 Kinase analysis
	3.1.10 Tissue-specific expression of kinases

	3.2 Results and Discussion
	3.2.1 Analysis of sequence motifs of global phosphorylation sites
	3.2.2 Tissue-based analysis of sequence motifs of phosphorylated sites
	3.2.3 Tissue-based analysis of phosphorylation sequence motifs in proteins with known 3D structure
	3.2.4 Tissue-specific spatial motifs of phosphorylation sites
	3.2.5 Structural properties of phosphorylation sites
	3.2.6 Phosphorylated proteins take part in tissue-specific biological pathways
	3.2.7 Kinases target tissue-specific phosphorylation sites

	3.3 Conclusions


	Prediction of Tissue-Specific Phosphorylation Sites by Integrating Sequence- and Structure-Based Features
	4 Prediction of Tissue-Specific Phosphorylation Sites by Integrating Sequence- and Structure-Based Features
	4.1 Materials and Methods
	4.1.1 Data collection and preprocessing
	4.1.2 Training and independent test sets
	4.1.3 Feature extraction
	4.1.4 Machine learning
	4.1.5 Prediction performance assessment
	4.1.6 Comparing with existing tools

	4.2 Results and Discussions
	4.2.1 Predictive performance of sequence environments surrounding phosphorylation sites
	4.2.2 KNN scores as features
	4.2.3 Influence of spatial amino acid content and structural environment of phosphorylation sites on prediction
	4.2.4 The contribution of functional annotations on phosphorylation prediction
	4.2.5 Predictive performance of the random forest model on tissue-specific phosphorylation sites
	4.2.6 Prediction on independent test data
	4.2.7 Cross-tissues performance evaluation on independent testing
	4.2.8 Performance comparison with the existing prediction tools

	4.3 Conclusions


	Summary
	5 Summary

	Appendix
	A Appendix
	Bibliography


