Simulation-based, high-dimensional stochastic optimization

application in robust topology optimization under large material uncertainties

Fachgebiet für Kontinuumsmechanik p.s.koutsourelakis@tum.de

MascotNum Workshop on Computer Experiments and Meta-models for Uncertainty Quantification ETH Zurich, April 24 2014

Motivation

- uncertainties $\theta \in \mathbb{R}^{n_{\theta}}$, $n_{\theta} >> 1$
- design/control variables $\boldsymbol{d} \in \mathcal{D} \subset \mathbb{R}^{n_d}$, $n_d >> 1$
- Goal Syochastic Optimization: Can we *efficiently* optimize w.r.t *d* and some output utility U(θ, d):

$$V(oldsymbol{d}) = \int U(oldsymbol{ heta},oldsymbol{d})\pi(oldsymbol{ heta}) \, doldsymbol{ heta}$$

Motivation

Designing materials at the micro/atomistic level

$$V(\mathbf{d}) = \int U(\mathbf{\theta}) rac{\mathbf{e}^{-eta W(\mathbf{ heta};\mathbf{d})}}{Z} \ d\mathbf{ heta}$$

- V(d): macroscopic/thermodynamic property
- d: design parameters (e.g. potential form, order of interactions)
- $W(\theta; d)$: interatomic potential
- θ : atomistic configuration

Stochastic topology optimization:

• Controlling statistics of the random material properties (Sternfels, PSK 2011).

$$V(\mathbf{d}) = \int U(\theta) p(\theta|\mathbf{d}) d\theta$$

Controlling geometry/spatial distribution of materials with random properties.

$$V(\mathbf{d}) = \int U(\mathbf{\theta}, \mathbf{d}) p(\mathbf{\theta}) \ d\mathbf{\theta}$$

Optimize the *expected* utility V(d):

$$V(oldsymbol{d}) = \int U(oldsymbol{ heta},oldsymbol{d})\pi(oldsymbol{ heta})\,doldsymbol{ heta}$$

- Why is this interesting?
 - Suppose U(θ, d) = 1_A(θ, d) is the indicator function of some response event A, e.g. failure, then:

min or $maxV(d) \equiv min$ or max the probability of failure

Optimize the *expected* utility V(d):

$$V(oldsymbol{d}) = \int U(oldsymbol{ heta},oldsymbol{d})\pi(oldsymbol{ heta})\,doldsymbol{ heta}$$

- Why is this interesting?
 - Suppose U(θ, d) = || u(θ, d) u_{target} || where u_{target} is a desired response, then:

 $minV(\mathbf{d}) \equiv$ stochastic control

Motivation

Deterministic optimization

- There is a wealth of techniques adapted to PDE-settings (e.g. adjoint formulations)
- Their direct transition to the stochastic setting is infeasible/impractical.

Stochastic Approximation (Robbins & Monro 1951)

Perform gradient ascent i.e.:

$$\boldsymbol{d}^{(k+1)} = \boldsymbol{d}^{(k)} + \alpha_k \hat{\boldsymbol{J}}(\boldsymbol{d}^{(k)})$$

where:

•
$$\alpha_k > 0, \, \alpha_k \to 0, \, \sum_{k=0}^{\infty} \alpha_k = +\infty \text{ and } \sum_{k=0}^{\infty} \alpha_k^2 < +\infty.$$

• $\hat{J}(d^{(k)}) =$ unbiased estimator $\left(\frac{\partial V}{\partial d} = \int \frac{\partial U(\theta, d)}{\partial d} \pi(\theta) d\theta\right)$ (i.e. with Monte Carlo and a single θ -sample

Approach

Optimize the *expected* utility V(d):

$$V(oldsymbol{d}) = \int U(oldsymbol{ heta},oldsymbol{d})\pi(oldsymbol{ heta}) \; doldsymbol{ heta}$$

We adopt a *probabilistic inference* approach (*Müller 1999*) in the joint $\theta \times d$ space ^a:

$$\mathcal{D}(\boldsymbol{ heta}, \boldsymbol{d}) \propto \mathcal{U}(\boldsymbol{ heta}, \boldsymbol{d}) \pi(\boldsymbol{ heta})$$

Note that the **d**-coordinates of (θ, d) samples from $p(\theta, d)$ will concentrate on the maxima of V.

^a $U(\boldsymbol{\theta}, \boldsymbol{d})$ is assumed positive or in general bounded from below

the good:

- uniform treatment as a probabilistic inference problem
- inferring the density p(d) rather than a single-point estimate d* can provide useful information about sensitivity of the solution

the bad:

- we have to work on the joint space $\theta \otimes d$
- standard inference tools (e.g. plain vanilla Monte Carlo) can be very demanding in terms of forward runs.
- multiple local optima of V(d)

We discuss two alternatives:

- Adaptive Sequential Monte Carlo
- Variational Bayes

Sequential Monte Carlo:

A combination of Importance sampling and MCMC that provides a particulate approximation $\{(\theta^{(i)}, \mathbf{d}^{(i)}), \mathbf{W}^{(i)}\}_{i=1}^{N}$ (Doucet 2001):

$$p(heta, oldsymbol{d}) \propto U(heta, oldsymbol{d}) \pi(oldsymbol{ heta}) pprox \sum_{i=1}^{N} oldsymbol{W}^{(i)} \delta_{oldsymbol{ heta}^{(i)}}(oldsymbol{ heta}) \delta_{oldsymbol{d}^{(i)}}(oldsymbol{d})$$

almost sure convergence of expectations of p-measurable functions

Adaptive Sequential Monte Carlo

We operate on a *sequence* of distributions (from simple to complicated) (Amzal et al 2003, Johansen et al 2006, Kück et al. 2006):

$$oldsymbol{
ho}_{\gamma}(oldsymbol{ heta},oldsymbol{d}) \propto oldsymbol{U}^{\gamma}(oldsymbol{ heta},oldsymbol{d}) \pi(oldsymbol{ heta}), \quad \gamma \in [0,1]$$

We operate on a *sequence* of distributions (from simple to complicated):

$$oldsymbol{
ho}_{\gamma}(oldsymbol{ heta},oldsymbol{d}) \propto oldsymbol{U}^{\gamma}(oldsymbol{ heta},oldsymbol{d}) \pi(oldsymbol{ heta}), \quad \gamma \in [0,1]$$

Adaptive SMC (PSK, J. Comp. Phys. 2009, Sternfels, PSK, Int. J. Mult. Comp. Eng 2010):

- If γ increases slowly, we do too many forward runs (cost)
- If γ increases too fast we loose accuracy (accuracy)

Adaptive SMC

- Generate initial particle population $\{(\boldsymbol{\theta}^{(i)}, \boldsymbol{d}^{(i)}), W^{(i)}\}_{i=1}^{N}$ from $\pi_{\gamma=0} \equiv p(\boldsymbol{\theta})$. Set $\gamma_{current} = 0$.
- Iterate until $\gamma_{current} = 1$.
 - **Reweight**: Find γ_{next} based on the relative reduction in the Effective Sample Size *ESS* :

$$w^{(i)} = W^{(i)} \frac{\pi_{\gamma_{next}}(\boldsymbol{\theta}^{(i)}, \boldsymbol{d}^{(i)})}{\boldsymbol{p}_{\gamma_{current}}(\boldsymbol{\theta}^{(i)}, \boldsymbol{d}^{(i)})}, \quad ESS = \frac{(\sum_{i=1}^{N} w^{(i)})^2}{\sum_{i=1}^{N} (w^{(i)})^2}$$

- **Resample:** If *ESS* drops below a specified threshold (typically N/2), then resample.
- **Rejuvenate:** Move particles using a $p_{\gamma_{next}}$ -invariant MCMC kernel:
 - We employed a Metropolis-adjusted Langevin (MALA) sampler which implies calculation of *U* as well as derivatives $\frac{\partial f}{\partial a}$
 - These were calculated using adjoint formulations
- Set γ_{current} = γ_{next}

Verification

$$\ddot{\mathbf{x}}(t) + \omega_0^2 \mathbf{x}(t) = f(t)$$

- uncertainties $\theta \sim U(0, 2\pi)^{200}$: $f(t) = \sum_{k=1}^{n_{\theta}=200} \sqrt{2S(\omega_n)\Delta\omega_k} \cos(\omega_k t + \theta_k)$
- design variable $d = \omega_0$
- utility $U(\theta, \mathbf{d}) = e^{\frac{1}{T} \int_0^T x^2(t) dt}$

Verification

$$\ddot{x}(t) + \omega_0^2 x(t) = f(t)$$

- uncertainties $\theta \sim U(0, 2\pi)^{200}$: $f(t) = \sum_{k=1}^{n_{\theta}=200} \sqrt{2S(\omega_n)\Delta\omega_k} \cos(\omega_k t + \theta_k)$
- design variable $d = \omega_0$
- utility $U(\boldsymbol{\theta}, \boldsymbol{d}) = e^{\frac{1}{T} \int_0^T x^2(t) dt}$

Sampling in 200 + 1 = 201 dimensions

Optimization in the presence of Uncertainty

 $||T(\mathbf{x}_0;\boldsymbol{\theta}, \boldsymbol{d}) - T_{target}^{(2)}||^2$

- What if we are really interested in the global maximum?
- State augmentation (Brooks et al. 1995):

$$p(\theta_1, \theta_2, \dots, \theta_M, \boldsymbol{d}) \propto \prod_{m=1}^M U(\theta_m, \boldsymbol{d}) \pi(\theta_m)$$

• Note that the marginal w.r.t. the design variables d is:

$$\int p(heta_1, heta_2,\ldots, heta_M,oldsymbol{d})d heta_{1:M} \propto V^M(oldsymbol{d})$$

• The adaptive SMC scheme discussed can be readily adjusted

• What if we had more design variables d?

Two design variables

Figure: M = 1: Sampling in 1,002 dimensions

Two design variables - State augmentation

Figure: M = 5: Sampling in 5,002 dimensions

• utility
$$U(\theta, d) = e^{-\frac{\|T(\mathbf{x}_0; \theta, d) - T_{target}\|^2}{2\sigma^2}}$$

 $(\tau_{target = 35})$

Figure: M = 1: Sampling in 1,001 dimensions

• cost: 7, 200 calls to the forward model (particles N = 100, iterations 33)

 The simulation is embarrassingly parallelizable but still the cost is quite significant.

• Can we use *less-expensive* but *less-accurate* forward models?

Approximate solvers for reducing cost

Adaptive SMC

• Sequence 1 (use the coarse model to drive you close to the solution):

 $p_{\gamma_1}(oldsymbol{ heta},oldsymbol{d}) \propto U_{ ext{coarse}}^{\gamma_1}(oldsymbol{ heta},oldsymbol{d})\pi(oldsymbol{ heta}), \quad \gamma_1\in [0,1]$

• Sequence 2 (correct for the discrepancies between coarse and fine models):

$$oldsymbol{
ho}_{\gamma_2}(oldsymbol{ heta},oldsymbol{d}) \propto U_{ ext{coarse}}^{1-\gamma_2}(oldsymbol{ heta},oldsymbol{d}) U_{ ext{fine}}^{\gamma_2}(oldsymbol{ heta},oldsymbol{d}) \pi(oldsymbol{ heta}), \quad \gamma_2 \in [0,1]$$

- More levels can readily be added
- It suffices that the *coarse* model drives the sampling in the "right direction". The less approximate it is the larger the savings.

One design variable - Sampling in 1,001 dimensions

Approximate solvers for reducing cost

Heat diffusion in a random medium

$$\nabla \cdot (-\lambda(\mathbf{x})\nabla T(\mathbf{x})) = 0 \qquad \mathbf{a} \equiv q \qquad \mathbf{a} = \mathbf{a}$$

• utility
$$U(\boldsymbol{\theta}, \boldsymbol{d}) = e^{-\frac{\|T(\mathbf{x}_{0}; \boldsymbol{\theta}, \boldsymbol{d}) - T_{target}^{(1)}\|^{2}}{2\sigma^{2}}} + 6e^{-\frac{\|T(\mathbf{x}_{0}; \boldsymbol{\theta}, \boldsymbol{d}) - T_{target}^{(2)}\|^{2}}{2\sigma^{2}}}$$

 $(T_{target}^{(1)} = 35, T_{target}^{(2)} = 70)$

Coarse (10 \times 10) vs. Fine (200 \times 200)

One design variable - Sampling in 1,001 dimensions

Deterministic topology optimization

Shape/topology optimization:

min_d compliance(
$$d$$
) = $b^T u(d)$
such that:
 $K(d)u(d) = b$ (governing equation)
 $\int d(x) dx = V_0$, (volume fraction)
 $d(x) \in [0, 1]$
 $d(x) = \begin{cases} 1, material \\ 0, void \end{cases}$

Figure: Adjoint-based gradient optimization - O(100) forward runs

Shape/topology optimization:

 $c(\boldsymbol{d}, \boldsymbol{\theta}) = \boldsymbol{b}^{T} \boldsymbol{u}(\boldsymbol{d}, \boldsymbol{\theta})$ $\boldsymbol{K}(\boldsymbol{d}, \boldsymbol{\theta}) \boldsymbol{u}(\boldsymbol{d}, \boldsymbol{\theta}) = \boldsymbol{b} \quad \text{(governing equation)}$ $\int d(\boldsymbol{x}) \, d\boldsymbol{x} = V_{0}, \quad \text{(volume fraction)}$ $\boldsymbol{d}(\boldsymbol{x}) \in [0, 1]$

$$d(\mathbf{x}) = \begin{cases} 1, & material \\ 0, & void \\ \boldsymbol{\theta} \sim \pi(\boldsymbol{\theta}), & (random material properties) \end{cases}$$

Stochastic topology optimization

Targeted design: $\max_{\boldsymbol{d}} \int e^{-\frac{1}{2}|c(\boldsymbol{d},\boldsymbol{\theta})-c_{target}|^2} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$ such that: $\boldsymbol{K}(\boldsymbol{d},\boldsymbol{\theta})\boldsymbol{u}(\boldsymbol{d},\boldsymbol{\theta}) = \boldsymbol{b} \quad \text{(governing equation)}$ $\int d(\boldsymbol{x}) d\boldsymbol{x} = V_0, \quad \text{(volume fraction)}$ $d(\boldsymbol{x}) \in [0,1]$ $\boldsymbol{\theta} \sim \pi(\boldsymbol{\theta})$

Our goal is to infer:

$$p(heta, oldsymbol{d}) \propto U(heta, oldsymbol{d}) \pi(heta) o p(oldsymbol{d}) \propto V(oldsymbol{d}) = \int U(heta, oldsymbol{d}) \pi(heta) \, d heta$$

Variational inference attempts to *approximate* $p(\mathbf{d})$ with a density $q^*(\mathbf{d})$ (belonging to an appropriate family of distributions Q) such that (Bishop 2006):

• In the joint space $\theta \otimes d$, we seek $q(\theta, d)$ that minimizes the KL-divergence with the target joint density $p(\theta, d) = \frac{U(\theta, d)\pi(\theta)}{Z}$

• Minimizing the Kullback-Leibler divergence is equivalent to maximizing :

$$\begin{aligned} \mathcal{F}(q) &= E_q \left(\log \frac{U(\theta, \boldsymbol{d}) \pi(\theta)}{q(\theta, \boldsymbol{d})} \right) \\ &= E_q (\log U(\theta, \boldsymbol{d})) + E_q (\log \pi(\theta)) - E_q (\log q) \end{aligned}$$

- Difficult term: $E_q(\log U(\theta, d))$
- Easy/Tractable terms: $E_q(\log \pi(\theta)), E_q(\log q)$

Assumption 1: Mean field approximation (Wainwright & Jordan, 2008):

$$q(\theta, \mathbf{d}) = q_1(\theta)q_2(\mathbf{d})$$

• Assumption 2: Family of approximating distributions $\boldsymbol{q} \in \mathcal{Q}$ are *multivariate Gaussians* $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{S})$.

• <u>Assumption 3</u>: Linearization - E.g. $U(\theta, d) = e^{-\frac{1}{2}|c(\theta, d) - c_{target}|^2}$:

where $\mathbf{G}_{\theta} = \frac{\partial c}{\partial \theta}$ and $\mathbf{G}_{d} = \frac{\partial c}{\partial d}$ available with minimal cost from adjoint-PDE.

Algorithm:

$$\mathcal{F}(q) = E_q(\log U(\theta, \boldsymbol{d})) + E_q(\log \pi(\theta)) - E_q(\log q)$$

- 0. Initialize $q(\theta) \equiv \mathcal{N}(\mu_{\theta}, \mathbf{S}_{\theta})$ and $q(\mathbf{d}) \equiv \mathcal{N}(\mu_{\mathbf{d}}, \mathbf{S}_{\mathbf{d}})$
- 1. Set $\theta_0 = \mu_{\theta}$, $d_0 = \mu_d$ and linearize $c(\theta, d)$ around (θ_0, d_0) .
- 2. Fixed-point iterations for $q(\theta), q(\mathbf{d})^{a}$:

$$\begin{split} \mathbf{S}_{\boldsymbol{d}}^{-1} &= \mathbf{G}_{\boldsymbol{d}}^{T} \mathbf{G}_{\boldsymbol{d}} \\ \mathbf{S}_{\boldsymbol{\theta}}^{-1} &= \mathbf{G}_{\boldsymbol{\theta}}^{T} \mathbf{G}_{\boldsymbol{\theta}} + \hat{\mathbf{S}}^{-1} \\ \mathbf{S}_{\boldsymbol{d}}^{-1} \boldsymbol{\mu}_{\boldsymbol{d}} &= \mathbf{G}_{\boldsymbol{d}}^{T} (c_{0} - c_{target} - \mathbf{G}_{\boldsymbol{d}} \mathbf{d}_{0}) + \mathbf{G}_{\boldsymbol{\theta}} (\boldsymbol{\mu}_{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}) \\ \mathbf{S}_{\boldsymbol{\theta}}^{-1} \boldsymbol{\mu}_{\boldsymbol{\theta}} &= \mathbf{G}_{\boldsymbol{\theta}}^{T} (c_{0} - c_{target} - \mathbf{G}_{\boldsymbol{\theta}} \boldsymbol{\theta}_{0}) + \mathbf{G}_{\boldsymbol{d}} (\boldsymbol{\mu}_{\boldsymbol{d}} - \boldsymbol{d}_{0}) + \hat{\mathbf{S}}^{-1} \hat{\boldsymbol{\mu}} \end{split}$$

3. Goto 1. until convergence

^{*a*}Assuming $\pi(\boldsymbol{\theta}) \equiv \mathcal{N}(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{S}})$

• What about high-dimensional d (or θ)?

- high-dimensional Gaussian
- quality of KL-divergence decays as measure of proximity
- What about any regularization?

where \boldsymbol{W} contains basis/features/vocabulary

• Hierarchical heavy-tailed prior:

$$p(y_j|\tau_j) \equiv \mathcal{N}(0,\tau_j^{-1})$$

$$p(\tau_j) \equiv Gamma(\alpha,\beta), \quad j = 1,\ldots,n$$

- Automatic Relevance Determination priors (ARD, MacKay 1994)): $\tau_j \rightarrow \infty$ then $y_j \rightarrow 0$ (i.e. feature *j* is inactive)
- Closely related to LASSO (Tibshirani 1996), Compressive Sensing (Candés et al 2006, Donoho et al 2006)

$$\mathcal{F}(q, \boldsymbol{W}) = E_q\left(\log \frac{U(\theta, \boldsymbol{y})\pi(\theta)}{q(\theta, \boldsymbol{y}, \tau)}\right) + E_q\left(\log p(\boldsymbol{y}|\tau)p(\tau)\right)$$

where $q(\theta, \mathbf{y}, \tau) = q(\theta)q(\mathbf{y})q(\tau)$

Update equations for $q(\theta, \mathbf{y}, \tau)$:

$$\begin{vmatrix} q(\tau_j) \equiv Gamma(\alpha_j, \beta_j), \alpha_j = \alpha + \frac{1}{2}, \ \beta_j = \beta + \frac{1}{2} E_{q(y)}(y_j^2) \\ \mathbf{S}_{y}^{-1} = \mathbf{W}^T \mathbf{G}_{d}^T \mathbf{G}_{d} \mathbf{W} + E_{q(\tau)}(\mathbf{T}), \quad \mathbf{T} = diag(\tau_j) \\ \mathbf{S}_{\theta}^{-1} = \mathbf{G}_{\theta}^T \mathbf{G}_{\theta} + \hat{\mathbf{S}}^{-1} \\ \mathbf{S}_{y}^{-1} \mu_{y} = \mathbf{W}^T \mathbf{G}_{d}^T (c_0 - c_{target} - \mathbf{G}_{d} \mathbf{W} y_0) + \mathbf{G}_{\theta} (\mu_{\theta} - \theta_0) \\ \mathbf{S}_{\theta}^{-1} \mu_{\theta} = \mathbf{G}_{\theta}^T (c_0 - c_{target} - \mathbf{G}_{\theta} \theta_0) + \mathbf{G}_{d} \mathbf{W} (\mu_{y} - y_0) + \hat{\mathbf{S}}^{-1} \hat{\mu} \end{aligned}$$

Sparse Variational Inference

$$\underbrace{\boldsymbol{d}}_{N\times 1} = \underbrace{\boldsymbol{W}}_{N\times n} \underbrace{\boldsymbol{y}}_{n\times 1}$$

Can we find a concise vocabulary W i.e. $n \ll N$?

- Sparse Coding (Olshausen & Field 1996, Lewicki & Sejnowski 2000)
- Given $q(\theta, \mathbf{y}, \tau)$, what is the best **W**?

$$\mathcal{F}(q, \mathbf{W}) = -\frac{1}{2} (c(\theta_0, \mathbf{W} \mathbf{y}_0) - c_{target})^2 \\ -\frac{1}{2} \mathbf{W}^T \mathbf{G}_d^T \mathbf{G}_d \mathbf{W} : \mathbf{S}_{\mathbf{y}} + \dots$$

Algorithm:

$$\mathcal{F}(q, oldsymbol{W}) = E_q \left(\log rac{U(heta, oldsymbol{y}) \pi(heta) p(oldsymbol{y}| au) p(au)}{q(heta, oldsymbol{y}, au)}
ight)$$

0. Initialize \boldsymbol{W} , $q(\theta) \equiv \mathcal{N}(\mu_{\theta}, \boldsymbol{S}_{\theta})$ and $q(\boldsymbol{y}) \equiv \mathcal{N}(\mu_{\boldsymbol{y}}, \boldsymbol{S}_{\boldsymbol{y}})$, $q(\tau)$.

- 1. Set $\theta_0 = \mu_{\theta}$, $\mathbf{d}_0 = \mathbf{W} \mu_{\mathbf{y}}$ and linearize $c(\theta, \mathbf{d})$ around (θ_0, \mathbf{d}_0) .
- 2. Fix **W**, update $q(\theta)$, $q(\mathbf{y})$, $q(\tau)$

3. Fix $q(\theta)$, $q(\mathbf{y})$, $q(\tau)$, update W:

Cost: 1 forward call

Cost: 1 forward call

$$\mathbf{W} \leftarrow \mathbf{W} + \eta \frac{\partial \mathcal{F}}{\partial \mathbf{W}}$$

such that $\sum_{i=1}^{N} W_{ij}^2 = 1, j = 1, \dots, n$

4. Goto 1. until convergence

Shape/topology optimization:

min_d such that:

compliance(\mathbf{d}) = $\mathbf{b}^T \mathbf{u}(\mathbf{d})$ hat:

 $\begin{array}{l} \pmb{K}(\pmb{d})\pmb{u}(\pmb{d}) = \pmb{b} \quad (\text{governing equation}) \\ \int d(\pmb{x}) \ d\pmb{x} = V_0, \quad (\text{volume fraction}) \\ d(\pmb{x}) \in [0, 1] \end{array}$

 $d(\boldsymbol{x}) = \begin{cases} 1, & material \\ 0, & void \end{cases}$

• Equality constraint h(d) = 0: probabilistic enforcement

Target density: $p(\theta, \mathbf{d}) \propto U(\theta, \mathbf{d}) \pi(\theta) e^{-\frac{h(\mathbf{d})^2}{2\epsilon^2}}, \quad \epsilon \to 0$

Deterministic topology optimization

Figure: Deterministic topology optimization - O(100) forward runs

Stochastic topology optimization

- dim(d) = 5120 (design variables), $dim(\theta) = 5120$ (random variables)
- $\log heta \sim N(\mu_{ heta}, \mathbf{\Sigma}_{ heta})$
 - $C.O.V.[\theta_i] = 1$
 - $\Sigma_{\theta} = Cov[\log \theta(\mathbf{x}_i), \log \theta(\mathbf{x}_j)] = e^{-|\mathbf{x}_i \mathbf{x}_j|/l_0}$
 - $l_0 = 0.1$ (correlation length)

• Volume constraint: $\int d(\mathbf{x}) d\mathbf{x} = 0.4$

Figure: Initial W - DCT basis vectors

. . .

$$\mathcal{F}(q, oldsymbol{W}) = E_q\left(\lograc{U(heta,oldsymbol{y})\pi(heta)
ho(oldsymbol{y}| au)
ho(au)}{q(heta,oldsymbol{y}, au)}
ight)$$

Figure: Evolution of Variational bound $\mathcal{F}(q, W)$

Table: Evolution of basis vectors in W

Figure: Evolution of $\mu_d = E_q(d)$

(a) deterministic

Figure: Deterministic vs. (Variational) Stochastic

- Stochastic optimization poses significantly more challenges than uncertainty propagation when *thousands* of random and design variables are present.
- We advocate a probabilistic inference treatment
- Sequential Monte Carlo tools offer a general and (asymptotically) exact strategy
- Variational inference techniques offer more efficeint but approximate solutions
- Sparse Bayesian Learning can lead to significant dimensionality reduction and facilitate/expedite solution