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Abstrat

The e�ieny of three methodologies to simulate Lévy-frailty opulas (a sublass of Marshall�

Olkin opulas) built from α-stable Lévy subordinators is investigated. We ompare a method

based on the reursive formula for general exhangeable Marshall�Olkin opulas, the simulation

of the involved α-stable subordinator on a �ne grid, and the simulation of the approximation

of the α-stable subordinator by a ompound Poisson proess. We measure e�ieny in terms

of omputational speed, onsidering di�erent values for the dimension of the opula and the

parameter α of the subordinator.

Keywords: Lévy-frailty opula; stable Lévy subordinator; Marshall�Olkin distribution.

1 Introdution

In this work we fous on Lévy-frailty opulas [18, 17, 19, 20℄. These onstitute the extendible subfamily

of Marshall�Olkin opulas. The Marshall-Olkin distribution is based on the intuitive idea of a system

in�uened by exogenous shoks [21, 3℄. It is onstruted via fatal shoks, ausing extintion times of

elements in a system. Due to their stohasti properties, suh as exponential marginals, as well as

an intuitive onstrution, Marshall�Olkin distributions beame of interest in di�erent appliations.

Besides, they are not absolutely ontinuous. When exhangeable, they assign positive probability to

the event that several omponents take the same value. In addition, having extreme-value survival

opulas, they are useful in appliations in extreme-value theory (see [13℄).

∗
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the improvement of it. In addition, they are grateful to Kathrin Glau and German Bernhart for their help in the

estimation of the quality of the approximation in the last tehnique.
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2 Mathematial bakground and simulation strategies

Lévy-frailty opulas are based on a stohasti model with onditionally independent and identially

distributed omponents (.f. [17, Chapter 4℄). This has massive advantages in simulation ompared to

more general Marshall�Olkin opulas. They impose dependene between initially independent expo-

nential random variables through �rst-passage times of Lévy subordinators and their analytial form

is parameterized in terms of the Laplae exponent of the involved Lévy subordinator. Through this

researh we exemplary onsider Lévy-frailty opulas built from an α-stable Lévy subordinator. The

onvenient Laplae exponent of this family makes the resulting opula analytially tratable. α-stable

distributions follow a heavy tailed distribution with non-existing �rst moment. More information and

further referenes an be found in [1, 4, 23℄.

We ompare three simulation tehniques to simulate Lévy-frailty opulas. We present our results in

terms of simulation e�ieny, measured by omputational time, and ompare the algorithms taking

into onsideration di�erent dimensions of the opula and di�erent values for the index of stability α.

In the �rst tehnique we use a reursive algorithm to simulate exhangeable Marshall�Olkin opulas.

In the seond method we simulate the α-stable subordinator on a �ne grid and mimi the anonial

onstrution of the Lévy-frailty model. In the last ansatz, we approximate the α-stable subordinator

by a ompound Poisson proess. Besides the obvious use in Monte Carlo studies involving Lévy-frailty

opulas, another appliation is the e�ient simulation of the exponential funtional of an α-stable

Lévy subordinator. Distributional properties of random numbers of suh type have been studied in a

number of papers (see, e.g., [8℄).

The paper is organized as follows: Setion 2 realls the mathematial bakground and desribes the

simulation algorithms used. In Setion 3 we present the results that show the omputational time of

eah algorithm to simulate Lévy-frailty opulas built from an α-stable Lévy-subordinator as well as

an overview on the general omparison of the tehniques. Setion 4 onludes.

2 Mathematial bakground and simulation strategies

Throughout this investigation the variables (X1, . . . ,Xd) are interpreted as lifetimes, hene we de-

sribe the dependene between them using survival funtions. The link between a survival funtion

and a (survival) opula is given by the analogous version of Sklar's Theorem [25℄, stating that a

multivariate survival funtion F̂ (x1, . . . , xd) := P(X1 > x1, . . . ,Xd > xd) an be split into its survival

marginal funtions, F̂1, . . . , F̂d, and a opula Ĉ : [0, 1]d → [0, 1]:

F̂ (x1, . . . , xd) = Ĉ(F̂1(x1), . . . , F̂d(xd)), (x1, . . . , xd) ∈ R
d.

The aim of this paper is to analyze di�erent numerial tehniques to simulate Lévy-frailty opu-

las. Lévy subordinators, {Λt}t≥0, are a.s. non-dereasing Lévy proesses. Examples are the Poisson

proess, the IG-proess, and the Gamma proess, among others. Lévy subordinators an be har-

aterized through their Laplae transform. The Laplae exponent of a subordinator Λ is denoted

Ψ : [0,∞) → [0,∞) and the Laplae transform of Λ satis�es E[e−xΛt ] = e−tΨ(x), x ≥ 0, t ≥ 0. The

Lévy�Khinthine formula (see [16, 14, 15℄) provides a losed-form expression for the Laplae exponent

of a Lévy subordinator:

Ψ(x) = µx+

∫

(0,∞]

(
1− e−tx

)
ν(dt), x ≥ 0,
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2 Mathematial bakground and simulation strategies

where µ ≥ 0 is a non-negative drift and ν is the Lévy measure of the Lévy subordinator, satisfying

ν(B) := E [|{s ∈ (0, 1] : ∆Λt 6= 0, ∆Λt ∈ B}|] , B ∈ B((0,∞]), (1)

suh that

∫

(0,1] tν(dt) < ∞ and ν ((0, ǫ]) < ∞, ∀ǫ > 0. B(·) is the Borel σ-algebra and {∆Λt :=

Λt − Λt−}t≥0 the jump proess of {Λt}t≥0. A Lévy subordinator Λ is said to be α-stable, α ∈ (0, 1),
if it has zero drift µ = 0 and Lévy measure ν(dt) = α

Γ(1−α) t
−(1+α)

1{t≥0}dt. The Lévy measure is

absolutely ontinuous with respet to the Lebesgue measure and its Laplae exponent is given by

Ψ(x) = xα =
α

Γ(1− α)

∫ ∞

0

(
1− e−xt

)
t−(1+α)dt, x ≥ 0.

For a more detailed bakground on Lévy subordinators, we refer the reader to [4, 5, 23, 6, 10, 22℄.

Lévy-frailty opulas were introdued in [18℄. They are haraterized by the Laplae exponent of a

Lévy subordinator. More preisely, let Ψ be the Laplae exponent of a Lévy-subordinator Λ satisfying

Ψ(1) = 1. Then, the assoiated Lévy-frailty opula is de�ned as

CΨ(u1, . . . , ud) :=

d∏

i=1

u
Ψ(i)−Ψ(i−1)
(i) , (2)

where u(1) < . . . < u(d) is the ordered sequene of u1, . . . , ud ∈ [0, 1].
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(a) Lévy-frailty opula built from

0.1-stable Lévy subordinator
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(b) Lévy-frailty opula built from

0.5-stable Lévy subordinator
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Figure 1 Satterplots of 500 samples of a two dimensional Lévy-frailty opula built from an α-stable

Lévy subordinator with indexes α = 0.1, α = 0.5, and α = 0.9. We observe that the

dependene dereases in α.

Simulation Methodologies

The �rst simulation tehnique presented in this work is based on the simulation of exhangeable

Marshall�Olkin opulas. Although there are di�erent ways to haraterize suh opulas (see, e.g.,

[19, 20℄), within this work we de�ne them using d-monotone sequenes. A sequene {a0, a1, . . . , ad−1}
satisfying the ondition (−1)j∆jak ≥ 0, k = 0, 1, . . . , d − 1, j = 0, 1, . . . , d − k − 1, where ∆ is

the di�erene operator ∆ak := ak+1 − ak, k ∈ N0, is alled d-monotone. Let {a0, . . . , ad−1} be a

3



2 Mathematial bakground and simulation strategies

d-monotone sequene with a0 = 1. Then, the family of exhangeable Marshall�Olkin (eMO) opulas

is de�ned as eMO := {
∏d

i=1 u
ai−1

(i) }, where u(1) ≤ u(2) ≤ . . . ≤ u(d) is the ordered list of u1, . . . , ud ∈

[0, 1]. A ompletely monotone sequenes, {ak}k∈N0 , satis�es the stronger ondition (−1)j∆jak ≥ 0,
k, j ∈ N0. If a d-monotone sequene an be extended to a ompletely monotone sequene, then

one an derive the extendible subfamily of the Marshall�Olkin distribution. This subfamily an be

onstruted via �rst-passage times of Lévy subordinators and onstitutes the stohasti model behind

Lévy-frailty opulas

Xk := inf{t > 0 : Λt ≥ Ek}, k ∈ {1, . . . , d}, d ∈ N, (3)

where {Ek}k∈N is a sequene of i.i.d. unit exponential random variables and {Λt}t≥0 is an independent

Lévy subordinator with Ψ(1) = 1.

The onstrution in Equation (3) is the main tool of the seond simulation tehnique presented in this

paper. [20, Theorem 3.2℄ proves that the survival opula behind (X1, . . . ,Xd), d ≥ 2, built in (3) is

the exhangeable Marshall�Olkin opula from (2). For eah ompletely monotone sequene {ak}k∈N0

there exists a unique Lévy subordinator satisfying ak = Ψ(k + 1)−Ψ(k), see [20, Theorem 3.4℄.

Algorithm 1 (Simulation of eMO opulas)

Due to the link ak = Ψ(k+1)−Ψ(k) between Lévy-frailty opulas and (its superlass of) exhangeable

Marshall�Olkin opulas, we an use any algorithm for eMOs to simulate a Lévy-frailty opula with

Laplae exponent Ψ. Exhangeable Marshall�Olkin distributions an be simulated reursively; after-

wards, the margins are transformed to uniform distributions on [0, 1]. Intuitively, onsider a system

with d funtional omponents. This system is a�eted by external shoks that destroy the omponents.

First of all, it is simulated how long it takes until the �rst shok ours. By min-stability, this is an

exponentially distributed waiting time whose intensity is the sum of all shoks' intensities. Then, it is

simulated how many omponents are destroyed by this shok. The number H of omponents destroyed

at the �rst event follows a disrete probability distribution given by

P(H = k) =

(
d
k

) ∑k−1
j=0(−1)j

(
k−1
j

)
ad−k+j

∑d−1
j=0 aj

, 1 ≤ k ≤ d ∈ N.

By exhangeability, it is not needed to know whih omponents are destroyed, so we an assume

w.l.o.g. that the last H omponents are destroyed, and we randomly permute the omponents in the

very last step. By min stability, we an proeed identially with the subsystem having d−H funtional

omponents. This proedure is alled reursively until all omponents are destroyed. A pseudo ode

for this algorithm and its formal justi�ation an be found in [20, pp. 135�136℄.

Algorithm 2 (Simulating the α-stable Lévy subordinator on a grid)

This algorithm is based on Equation (3). We simulate the α-stable Lévy subordinator on a �ne grid,

with dt denoting the size of eah step in time. The simulation of paths of an α-stable subordinator is

ahieved via the umulative sum of independent (dt)
1
α S(α)-distributed random variables, i.e.

Λt+dt = Λt + (dt)
1
α S(α), α ∈ (0, 1), t ≥ 0, (4)
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2 Mathematial bakground and simulation strategies

where S(α) is an α-stable random variable independent of the previously drawn ones. The �rst passage-

times are omputed via

Xk = inf{t > 0 : Λt ≥ Ek},

where {Ek}k=1,...,d are unit exponential i.i.d. random variables. Clearly, there exists a disretization

bias, so the �ner one hooses the grid, the more aurate is the simulation. However, onsidering a

�ner grid has an immediate in�uene on the omputational e�ort.

There is a pratial onsideration that an be taken into aount. Instead of heking whether the

subordinator Λt reahes the barriers Ek, k = 1, . . . , d, at every node of the disretized temporal path,

one an �rst sample the vetor (E1, . . . , Ed) and sort it afterwards to E(1) < . . . < E(d). This way,

the ondition in Equation (2) does not have to be heked more than one through the whole temporal

path, i.e. as soon as Λt > E(k), we obtain X(k), k = 1, . . . , d, and we ontinue analyzing when

Λt∗ > E(k+1), t
∗ > t until we obtain (X(1), . . . ,X(d)). Applying the order statistis of (E1, . . . , Ed) on

(X(1), . . . ,X(d)), X(k) = X|E(k)=E
k̃
= X

k̃
, k̃ = 1, . . . , d, we get (X1, . . . ,Xd). The advantage of this

pre-ordering is visible for big values of the dimension d (see Figure 2).
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Figure 2 Computational e�ort (logarithmi) of Algorithm 2 depending on whether the vetor

(E1, . . . , Ed) has been sorted or not. The advantage is visible for big values of the di-

mension d.

The last tehnique onsidered is based on the simulation of an approximation of the α-stable sub-

ordinator; a suitable ompound Poisson proess. Considering a sequene of i.i.d. random variables

{Yk}k≥1 and a standard Poisson proess {Nt}t≥0, independent of {Yk}k≥1, the ompound Poisson

proess, {Xt}t≥0, an be represented as Xt =
∑Nt

k=1 Yk. For details on ompound Poisson proesses

we refer the reader to [23, 24, 1℄. From the Lévy�It� deomposition we know that Lévy subordinators

an be written as

Λt = µ t+

∫ t

0

∫

x>0
xmλ(ds, dx),

5



2 Mathematial bakground and simulation strategies

where x = ∆Λt ∈ [0,∞) represents the size of jumps of the jump proess {∆Λt := Λt − Λt−} and

mΛ(ω; [0, t] ×A) := |(s,∆Λs(ω) ∈ [0, t] ×A)|, A ⊂ (0,∞], ∀ω ∈ Ω,

is a random jump measure, see [23, Theorem 19.3℄. Therefore, Lévy subordinators an be expressed

as a ombination of a deterministi drift proess {µ t}t≥0 and jumps (so alled big jumps with ab-

solute jump size bigger than ε ≥ 0 and small jumps with absolute jump size smaller than ε ≥ 0).
Sine subordinators are �nite variation proesses, i.e.

∫

(0,1] t v(dt) < ∞, and in ase of α-stable Lévy

subordinators µ = 0, α-stable Lévy subordinators an be approximated in the following way:

Λε
t ≈

∑

s<t

∆Λs 1{∆Λs≥ε} + E

[
∑

s<t

∆Λs 1{0<∆Λs<ε}

]

3

=

∑

s<t

∆Λs 1{∆Λs≥ε} +
α ε1−α

(1− α) Γ(1 − α)
t. (5)

Note that the term

α ε1−α

(1−α) Γ(1−α) t now serves as drift µ t. Next, we need the Lévy measure and the

Laplae transform of the approximating proess Λε
t . The Lévy measure ontains the information of

the average number of jumps in unit time and the magnitude of jumps. The intensity is given by:

∫ ∞

ε

α

Γ(1− α)
t−(1+α)dt =

1

Γ(1− α)

(

ε−α − lim
t→∞

t−α
)

=
ε−α

Γ(1− α)
.

Lemma 1 (Charateristis of the approximating ompound Poisson proess)

Let {Λt}t≥0 be an α-stable Lévy subordinator and let {Λε
t}t≥0 be the approximation desribed in Equa-

tion (5). Then, the Lévy measure of Λε
t is given by

νε(dt) :=
ε−α

Γ(1− α)
·
εα α

t1+α
1{t≥ε} dt, 0 ≤ ε ≪ 1, α ∈ (0, 1). (6)

Proof

ν(dt) =
α

Γ(1− α) t1+α
1{t≥0} dt ≈

α · ε−α · εα

Γ(1− α) t1+α
1{t≥ε} dt

=
ε−α

Γ(1− α)
︸ ︷︷ ︸

intensity of jumps

·
εα α

t1+α
1{t≥ε} dt = νε(dt),

3

Note that

E

[

∑

s<t

∆Λs 1{0<∆Λs<ε}

]

=

∫ t

0

∫

[0,∞)

x1{0<∆Λs<ε} ν(dx)ds

=

∫ t

0

∫

[0,∞)

x
α

Γ(1− α)
x
−(1+α)

dxds

=
α ε1−α

(1− α) Γ(1− α)
· t.

6



2 Mathematial bakground and simulation strategies

where

εα α
t1+α 1{t≥ε} is the density of the Pareto distribution (see, e.g., [2℄). �

We onlude that the ompound Poisson approximation of an α-stable subordinator is based on a

sum of big jumps following a Pareto distribution and the expeted value of the small jumps as drift.

Let us now ompute the Laplae exponent of the approximated proess {Λε
t}t≥0.

Lemma 2 (Laplae exponent of the approximating ompound Poisson proess)

Let {Λε
t}t≥0 be the approximated subordinator of the α-stable subordinator desribed in Equation (5).

Then, the Laplae exponent of Λε
t is given by

Ψε(x) =
(1− α) Γ(1 − α, ε x)xα + α ε1−α x+ (1− α) ε−α (1− e−ε x)

α ε1−α + (1− α) ε−α (1− e−ε) + (1− α) Γ(1 − α, ε)
, (7)

suh that Γ(·) is the Gamma funtion and Γ(·, ·) the upper inomplete Gamma funtion

4

.

Proof

Λε
t =

∑

s<t

∆Λs 1{∆Λs≥ε} +
αε1−α

(1− α)Γ(1 − α)
· t

where big jumps,

∑

s≤t∆Λs1{∆Λs≥ε}, follow the Pareto distribution.

From the Lévy�Khinthine formula,

Ψ̂ε(x) = µx+

∫

(0,∞]
(1− e−tx)νε(dt)

=
αε1−α

(1− α) Γ(1− α)
x+

α

Γ(1− α)

∫

(0,∞]
(1− e−t x)

1

t1+α
1{t>ε}dt =

note that 1− e−t x =
∫ t

0 xe
−x ydy,

=
α ε1−α

(1− α) Γ(1 − α)
x+

α

Γ(1− α)

∫

(ε,∞]

[∫ t

0
xe−x ydy

]
1

t1+α
dt,

4

The upper inomplete Gamma funtion is de�ned as

Γ(b, s) :=

∫ ∞

s

u
b−1

e
−u

du, R(b) > 0, s ∈ Z,

that satis�es Γ(b) = Γ(b, 0).

7
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now we hange the order of the integrals,

=
αε1−α

(1− α) Γ(1− α)
x+

α

Γ(1− α)

∫ ε

0

[∫ ∞

ε

1

t1+α
dt

]

xe−x ydy

+
α

Γ(1− α)

∫ ∞

ε

[∫ ∞

y

1

t1+α
dt

]

xe−x ydy

=
αε1−α

(1− α) Γ(1− α)
x+

ε−α

Γ(1− α)

∫ ∞

0
xe−x ydy +

α

Γ(1− α)

x

α

∫

(ε,∞]
y−αe−x ydy,

hoosing x y = u,

=
α ε1−α

(1− α) Γ(1 − α)
x+

ε−α

Γ(1− α)
(1− e−ε x) +

x

Γ(1− α)

∫ ∞

ε x

u−α

x1−α
e−udu

=
α ε1−α

(1− α) Γ(1 − α)
x+

ε−α

Γ(1− α)
(1− e−ε x) +

xα

Γ(1− α)
Γ(1− α, ε x).

Note that Ψε(1) = 1, and

Ψ̂ε(1) =
α ε1−α

(1− α) Γ(1 − α)
+

ε−α

Γ(1− α)
(1− e−ε) +

Γ(1− α, ε)

Γ(1− α)
,

therefore,

Ψε(x) =
Ψ̂ε(x)

Ψ̂ε(1)

=
(1− α) Γ(1 − α, ε x)xα + α ε1−α x+ (1− α) ε−α (1− e−εx)

α ε1−α + (1− α) ε−α (1− e−ε) + (1− α) Γ(1 − α, ε)
. �

Algorithm 3 (Approximation by a ompound Poisson subordinator)

In this approah we approximate the α-stable Lévy subordinator by a ompound Poisson proess. We

simulate its jumps via a Pareto distribution and replae small jumps by their expeted value; a term

onsidered as drift. We simulate the proess in (5) and we ompute the �rst-passage times by (3).

The pseudo ode for this algorithm is given in [20, page 151℄. The drift and intensity are given by

µ =
α ε1−α

(1 − α) Γ(1 − α)
, β =

ε−α

Γ(1− α)
,

and the parameters of the jump distribution are θ = (κ, α), where κ > 0 is the sale parameter and

α ∈ (0, 1) the shape parameter of the Pareto distribution.

8



2 Mathematial bakground and simulation strategies

Remark 1

It is possible to generate Pareto distributed (pd) random numbers from generalized Pareto distribution

(gpd) available in most simulation softwares. The relation between both distributions is given by

gpd(x;µ, σ, ξ) = gpd

(

x;κ,
κ

α
,
1

α

)

= pd(x;κ, α),

µ ∈ (−∞,∞) is the loation parameter, σ ∈ (0,∞) the sale parameter, and ξ ∈ (−∞,∞) the shape

parameter of the generalized Pareto distribution. Standard referenes for the Pareto distribution and

the generalized Pareto distribution are [2, 11℄.

Sine in Algorithm 3 the Lévy-frailty opula is simulated using an approah that is based on an

approximation, we analyze the quality of the approximation in the following lemma.

Lemma 3 (Di�erene of the opula and its approximation)

Let CΨε be the Lévy-frailty opula parameterized in terms of Ψε. Then the quality of the approximation

between CΨε and CΨ is given by

ε ≤

(
δ(1 − α)Γ(1 − α, 1)

4(d − 1)

) 1
1−α

⇒ ‖CΨε − CΨ‖∞ ≤ δ, δ ≥ 0, ε ≥ 0. (8)

Proof

We need to �nd ε = ε(δ, α, d) > 0 that satis�es

‖CΨε(u1, . . . , ud)− CΨ(u1, . . . , ud)‖∞ = sup
u1,...,ud∈[0,1]

|CΨε(u1, . . . , ud)− CΨ(u1, . . . , ud)| ≤ δ. (9)

Reall that {ak = Ψ(k + 1) − Ψ(k) = (k + 1)α − kα}k∈N0 is a ompletely monotone sequene, i.e.,

(−1)j∆jak ≥ 0, k = 0, 1, . . . , d, j = 0, 1, . . . , d− k − 1, so it is a dereasing sequene, i.e.

1 = a0 ≥ a1 ≥ . . . ≥ ak ≥ . . .

Let us onsider the bivariate ase in (9):

sup
u1,u2∈[0,1]

∣
∣
∣u(1)u

a1,ε
(2) − u(1)u

a1
(2)

∣
∣
∣ = sup

u1,u2∈[0,1]
u(1)

∣
∣
∣u

a1,ε
(2) − ua1(2)

∣
∣
∣ ≤

∣
∣
∣u

a1,ε
(2) − ua1(2)

∣
∣
∣ ≤ δ,

and note that,

sup
u1,...,ud∈[0,1]

|CΨε(u1, . . . , ud)−CΨ(u1, . . . , ud)|

= sup
u1,...,ud∈[0,1]

∣
∣
∣u(1)u

a1,ε
(2) · . . . · u

ad−1,ε

(d) − u(1)u
a1
(2) · . . . · u

ad−1

(d)

∣
∣
∣

≤
∣
∣
∣u

ad−1,ε

(d) − u
ad−1

(d)

∣
∣
∣+

∣
∣
∣u

ad−2,ε

(d−1) − u
ad−2

(d−1)

∣
∣
∣+ . . . +

∣
∣
∣u

a1,ε
(2) − ua1(2)

∣
∣
∣ .
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2 Mathematial bakground and simulation strategies

Let us now work with one of the terms on the sum above:

∣
∣
∣u

ak,ε
(k+1) − u

ak
(k+1)

∣
∣
∣. We apply the mean value

theorem, onsidering f(x, t) = xt. Then,

|f(x, y1)− f(x, y2)| ≤

∣
∣
∣
∣
∣

sup
t∈[y1,y2]

∂

∂t
f(x, t)(y1 − y2)

∣
∣
∣
∣
∣
=

∣
∣xt log(x)(y1 − y2)

∣
∣ , y1 > y2 ∈ R.

Sine x ∈ [0, 1],

|f(x, y1)− f(x, y2)| ≤
∣
∣xt log(x)

∣
∣ |y1 − y2| ≤ |y1 − y2| .

Now hoosing y1 = ak,ε and y2 = ak:

∣
∣
∣u

ak,ε
(k+1) − u

ak
(k+1)

∣
∣
∣

≤ |ak,ε − ak|

=

∣
∣
∣
∣
∣

αε1−α + (1− α)ε−α
(
e−ε·k(1− e−ε)

)

αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ (1− α, ε)

+
(1− α) [Γ (1− α, ε(k + 1)) (k + 1)α − Γ (1− α, εk) kα]

αε1−α + (1− α)ε−α(1 − e−ε) + (1− α)Γ (1− α, ε)
− [(k + 1)α − kα]

∣
∣
∣
∣
,

note that Γ (1− α, ε(k + 1)) ≤ Γ (1− α, εk),

≤

∣
∣
∣
∣
∣

αε1−α + (1− α)ε−α
(
e−ε·k(1− e−ε)

)
+ (1− α)Γ (1− α, εk) [(k + 1)α − kα]

αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ (1− α, ε)

− ((k + 1)α − kα)| ,

sine Γ(1− α, εk) ≤ Γ(1− α, ε) and e−εk ≤ 1,

≤

∣
∣
∣
∣

αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ (1− α, ε) [(k + 1)α − kα]

αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ (1− α, ε)
− ((k + 1)α − kα)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

αε1−α + (1− α)ε−α(1− e−ε) + [(k + 1)α − kα]
[
−αε1−α − (1− α)ε−α(1− e−ε)

]

αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ (1− α, ε)

∣
∣
∣
∣
∣
,

we apply now the triangular inequality,

≤

∣
∣αε1−α

∣
∣+ |(1− α)ε−α(1− e−ε)|+

∣
∣[(k + 1)α − kα]

[
−αε1−α − (1− α)ε−α(1− e−ε)

]∣
∣

|αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ (1− α, ε)|
,

reall that (k + 1)α − kα ≤ 1,

≤
2αε1−α + 2(1 − α)ε−α(1− e−ε)

αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ(1 − α, ε)

(∗)

≤ ,
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2 Mathematial bakground and simulation strategies

due to αε1−α → 0 and (1− α)ε−α(1− e−ε) → 0 when ε ց 0, the denominator beomes

αε1−α + (1− α)ε−α(1− e−ε) + (1− α)Γ(1 − α, ε) → (1− α)Γ(1 − α, ε),

so,

(∗)

≤
2αε1−α + 2(1 − α)ε−α(1− e−ε)

(1− α)Γ(1− α, ε)
,

sine α ∈ (0, 1) and Γ(1− α, ε) ≥ Γ(1− α, 1),

≤
2ε1−α + 2ε−α(1− e−ε)

(1− α)Γ(1 − α, 1)
,

w.l.o.g. we an onsider ε ∈ [0, 1], so (1− e−ε) =
∑∞

n=1(−1)n+1 εn

n! ≤ ε,

≤
4ε1−α

(1− α)Γ(1− α, 1)
.

So, if we get the value of ε suh that

4ε1−α

(1−α)Γ(1−α,1) ≤
δ

d−1 , δ ∈ R, then

sup
u1,...,ud∈[0,1]

|CΨε(u1, . . . , ud)− CΨ(u1, . . . , ud)|

≤
∣
∣
∣u

θd−1,ε

(d) − u
θd−1

(d)

∣
∣
∣+

∣
∣
∣u

θd−2,ε

(d−1) − u
θd−2

(d−1)

∣
∣
∣+ . . .+

∣
∣
∣u

θ1,ε
(2) − uθ1(2)

∣
∣
∣

≤ (d− 1)
4ε1−α

(1 − α)Γ(1− α, 1)
≤ δ. �

Figure 3 desribes how the parameter ǫ performs depending on the values of δ, the index α of the

stable subordinator, and dimension d of the opula.
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(a) α = 0.1.

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5
x 10

−5

δ

ε

 

 
d=10
d=25
d=50
d=100

(b) α = 0.25.
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Figure 3 Behavior of the parameter ε in terms of δ in Equation (8) for di�erent values of the pa-

rameter α and dimension of a opula, d.

11



3 Results of our simulation study

3 Results of our simulation study

We now analyze the e�ieny of the algorithms desribed in the previous setion. First, we study the

omputational times for eah algorithm for di�erent dimensions d and parameters α. Afterwards, we

ompare the e�ieny of the three algorithms. We analyze the average time of a sample of k = 100 000
senarios, i.e. we simulate k times the involved opula and ompute the average time

5

. We hoose

α = 0.1, α = 0.25, and α = 0.5 to inlude di�erent dependene levels.

Algorithm 1

α = 0.1 α = 0.25 α = 0.5

d CpTime (s)

2 0.0003 0.0003 0.0004

5 0.0010 0.0012 0.0021

10 0.0033 0.0045 0.0104

20 0.0129 0.0193 0.0641

Table 1 Computational time for Algorithm 1 for di�erent d and α. For higher dimensions and bigger

values of α, the algorithm beomes omputationally more expensive.

Obviously, the e�ort is inreasing in d, just as expeted. One an also observe that for bigger values

of α, i.e. for weaker dependene between the elements in the system, the time required to simulate the

opula is bigger. This an be explained by the fat that in ases with strong dependene the probability

to destroy more elements at one is bigger, so that the algorithm requires less reursions.

Algorithm 2

This algorithm simulates the α-stable Lévy subordinator on a disrete grid and afterwards omputes

the �rst-passage times via Xk := inf {t > 0 : Λt ≥ Ek} (see Table 2).

Algorithm 3

We approximate the α-stable Lévy subordinator by a ompound Poisson proess (see Table 3).

5

Computational times were omputed using Matlab R2009a on a 2.4 GHz PC.
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3 Results of our simulation study

CpTime (s) (dt = 10−3
) CpTime (s) (dt = 10−4

)

d α = 0.1 α = 0.25 α = 0.5 α = 0.1 α = 0.25 α = 0.5

2 0.0017 0.0016 0.0012 0.0135 0.0134 0.0105

5 0.0017 0.0016 0.0013 0.0136 0.0137 0.0106

10 0.0017 0.0016 0.0013 0.0136 0.0141 0.0106

20 0.0017 0.0016 0.0013 0.0136 0.0141 0.0107

Table 2 Computational time for Algorithm 2 for di�erent d and α. The paths of the α-stable Lévy

subordinator are generated on a grid with step size dt. There are no signi�ant di�erenes

regarding the dimension and the parameter α of the opula. However, the omputational

time inreases when we onsider a �ner grid.

α = 0.1 α = 0.25 α = 0.5

d CpTime (s) ε δ CpTime (s) ε δ CpTime (s) ε δ

2 0.0002 10−3
0.0218 0.0002 10−4

0.0175 0.0003 10−6
0.0132

5 0.0002 10−4
0.0110 0.0002 10−5

0.0080 0.0008 10−7
0.0167

10 0.0002 10−4
0.0247 0.0002 10−5

0.0181 0.0011 10−7
0.0375

20 0.0002 10−4
0.0522 0.0002 10−5

0.0381 0.0044 10−8
0.0251

Table 3 Computational time for Algorithm 3 for di�erent d and α. We onsider di�erent values

of ε in order to get aurate results regarding δ. Regarding the dimension, when α is

small, the di�erenes are not signi�ant. However, when the dependene beomes weaker,

i.e. α inreases, the algorithm beomes more expensive in d. Conerning α, for stronger

dependene the algorithm is faster.
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3.1 Overall omparison

3.1 Overall omparison

We an observe that, besides very small dimensions, Algorithm 1 is the slowest, independent of α.

It is, however, the only algorithm without disretization bias. If we ompare Algorithms 2 and 3,

we an onlude that the third algorithm is more e�ient than the seond one, regardless of the

size of the time step in Algorithm 2. The reason resides in how eah algorithm heks the anonial

ondition given in Equation (3). Note that the algorithm based on simulating the ompound Poisson

proess heks this anonial ondition only when the proess jumps, while the tehnique based on

simulating the α-stable subordinator heks at eah disrete point of the grid until the ondition is

satis�ed. So the omputational e�ort in the last method is lower than in the seond one. Besides

the heaper omputational ost of Algorithm 3, it has another advantage ompared to Algorithm 2.

While in Algorithm 2 one an not determine the auray of the results, in the ase of the last

simulation tehnique the auray is given in terms of δ, i.e. one an �x the aimed value for δ and

depending on this value, ompute the value of ε. Due to the low omputational e�ort of Algorithm 3,

we additionally simulate high-dimensional opulas and study the resulting omputational times.

α = 0.1 α = 0.25 α = 0.5

d CpTime (s) ε δ CpTime (s) ε δ CpTime (s) ε δ

50 0.0002 10−5
0.0169 0.0003 10−6

0.0175 0.0354 10−9
0.0204

100 0.0003 10−5
0.0349 0.0003 10−6

0.0353 0.0528 10−9
0.0413

Table 4 Computational times for the simulation of Lévy-frailty opulas in high dimensions using

Algorithm 3. The omputational ost is higher for bigger opulas when the index α takes

values lose to 0.5. The di�erenes are not signi�ant for small values of α. Regarding the

dependene level, the algorithm is slower when α gets lose to 0.5.

Appliation: The exponential funtional of a Lévy subordinator

We onsider an example, where the simulation of Lévy-frailty opulas built from α-stable subordi-

nators (in large dimensions) is applied. In [12℄ it is proven that an exponential funtional of a Lévy

subordinator, in its terminal value, onverges in distribution to the arithmeti mean of a sum of

dependent variables that follow the Marshall�Olkin distribution:

lim
dր∞

X1 + . . . +Xd

d

L
= I∞,

where the random variable I∞ =
∫∞
0 e−Λtdt is the exponential funtional of a Lévy subordinator Λ

(standard referenes on exponential funtional of Lévy subordinators an be found in, e.g., [9, 7℄).

Therefore, the presented algorithms an be used to simulate the underlying Lévy-fraity opulas in high

dimensional ases and thus analyze the behavior of the exponential funtional of Lévy subordinators.
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4 Conlusion

4 Conlusion

We studied the e�ieny of three algorithms to simulate Lévy-frailty opulas built from α-stable sub-

ordinators. We measured the e�ieny in terms of omputational time. We ompared the algorithms

in di�erent dimensions d and for di�erent parameters α. With respet to the dimension, one an

observe that the �rst method (an unbiased approah based on exhangeable Marshall�Olkin distribu-

tions) is faster for small opulas. Studying the results for di�erent values of α, this algorithm is also

more e�ient when α gets smaller, i.e. for opulas with strong dependene. The seond algorithm

simulates the α-stable Lévy subordinator in a �ne grid and mimis the anonial onstrution given

in Equation (3). We simulated opulas onsidering di�erent dimensions, dependene levels, and time

disretizations. The last tehnique approximates the α-stable subordinator by a ompound Poisson

proess, having Pareto distributed jumps and a suitable drift. In this ansatz, it is possible to ontrol

the disretization error, as shown analytially. The results obtained do not show signi�ant di�erenes

regarding simulation time for α = 0.1 and α = 0.25, but when α = 0.5, the algorithm needs more

time to sample the opula. This di�erene beomes even more pronouned when onsidering higher

dimensions, e.g. d = 50 and d = 100.
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