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1. Introduction

Magnetic Resonance Imaging (MRI) is a volumetric imaging technique that is widely used
in radiology to examine the anatomy and physiology of the human body. Since its in-
vention in 1971 by Peter Lauterbur [1], MRI has evolved to an indispensable technique for
diagnosis and staging of a large variety of disorders. To acknowledge the fundamental im-
portance of MRI in medicine, Peter Lauterbur and Peter Mansfield, who played a key role
in the development of MRI, were awarded the 2003 Nobel Prize in Physiology or Medicine
for their "discoveries concerning magnetic resonance imaging".

MRI is based on the principles of Nuclear Magnetic Resonance (NMR), which describes
the absorption and dissipation of electromagnetic radiation by atomic nuclei under the
presence of a static magnetic field. In NMR, a Radio Frequency Pulse (RF-pulse) is used to
disrupt the equilibrium state of the nuclei. The measured signal, when the nuclei are re-
turning to the equilibrium state, provides information about the molecular structure and
the environment of the nuclei. NMR and also MRI, typically, operate in the Megahertz-
regime. Thus, in contrary to other volumetric imaging techniques such as computer to-
mography or positron emission tomography, MRI avoids harmful ionizing radiation.

The great strength of MRI is its remarkable flexibility. A series of RF-pulses and mag-
netic field gradient pulses, also called pulse sequence, are used to manipulate the contrast.
For example in neuroimaging, a 71 weighted pulse sequence exhibits an excellent con-
trast between Gray Matter (GM) and White Matter (WM). In 75 weighted images, Cere-
brospinal Fluid (CSF) and many types of brain lesions appear hyperintense. Moreover, to
differ between CSF and lesions, a Fluid Attenuated Inversion Recovery (FLAIR) contrast
is typically employed that attenuates CSF while lesions remain hyperintense. The FLAIR
contrast for example plays a key role in the diagnosis and staging of the autoimmune
disease multiples sclerosis [2]. Apart from those, there are many more contrasts in MRI;
to name but a few, proton density weighting is used for example to examine ligaments
[3], susceptibility weighted imaging can be applied to detect hemorrhages [4], and Blood
Oxygenation Level Dependent (BOLD) contrast is used for functional MRI [5].

The focus of this thesis lies on another special MRI technique, called Diffusion Weighted
Imaging (DWI). DWI is the only noninvasive imaging method that enables estimating the
molecular self-diffusion of water within the surrounding biological tissue [6, 7]. Mag-
netic field gradients are used to impart a phase shift to the NMR signal, which is only
partially reversed by a second magnetic field gradient with opposite polarity, because the
water molecules undergo Brownian motion or diffusion [8]. In a liquid, diffusion can be
well described with a Gaussian Ensemble Average Propagator (EAP), which predicts the
probability that a proton moves by a certain displacement in a certain time. However, in
biological tissue, the motion of the protons is hindered or restricted by cell membranes
and compartments of different size. Therefore, measuring diffusion allows for investigat-
ing the microstructural properties of tissues on micrometer scale, which is far below the
imaging resolution of MRIL
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The diffusion of water in biological tissue can be quantified by various diffusion mod-
els. Among the first of these models was Diffusion Tensor Imaging (DTI), which assumes
non-restricted, Gaussian diffusion [9, 10]. Rotationally invariant diffusion metrics that are
derived from the Diffusion Tensor (DT), such as Mean Diffusivity (MD) and Fractional
Anisotropy (FA), are widely used in clinics, especially for the staging of acute stroke [11].
However, it has been reported that diffusion in the human brain is generally non-Gaussian
[12-14]. Therefore, more sophisticated diffusion models were developed, for example Dif-
fusion Kurtosis Imaging (DKI) [15] which is an extension of DTI and uses additional pa-
rameters to describe the non-Gaussianity of the EAP.

Apart from modeling the diffusion, DWTI s also of special importance to study the orga-
nization of the central nervous system. The anisotropic diffusion of water in white matter
is exploited to compute an atlas of the structural connectivity of the brain, the so called
connectome. The human connectome project, that was recently launched by the National
Institutes of Health (USA), focuses on this topic. Similarly, the European Union launched
the human brain project, a large 10-year scientific research project with more than one bil-
lion euros of funding. These projects aim for a better understanding of the anatomical and
functional connectivity of the human brain, which will hopefully also facilitate research in
brain disorders such as dyslexia, autism, Alzheimer’s disease, or schizophrenia [16-19].

Unfortunately, DWI is an intrinsically low Signal to Noise Ratio (SNR) imaging applica-
tion for two reasons. On the one hand, the diffusion encoding requires a fairly long time,
resulting in a prolonged Echo Time (TE) and a strong 75 weighting. On the other hand,
the diffusion weighting gradients themselves attenuate the signal. Moreover, all data pro-
cessing in DWI is typically based on the magnitude of the complex MR signal, because
the signal’s phase is spoiled by motion encoding of the intracranial pulsatility [20], eddy
currents and susceptibility induced phase. Magnitude processing, however, results in an
unequal noise distribution with positive, nonzero mean. Therefore, if the DWI signals
are close to the background noise level, the measured amplitude is significantly biased by
the positive noise floor [21]. Such overestimations reduce the image contrast and yield
distorted values for diffusion measures like the MD and FA derived from magnitude data.

The problem of the low SNR in DWI is addressed from several angles in this thesis.
Initially, the impact of noise on the estimation accuracy and precision of the DKI model is
systematically investigated in chapter 3. It is shown, that the effect of noise can be very het-
erogeneous and depends on many impact factors, such as the SNR but also the underlying
tissue, the acquisition scheme and the reconstruction techniques. This is especially a prob-
lem for multi-center studies, where often different hardware and even different acquisition
schemes are used and consequently, an accurate quantitative comparison is hampered by
different noise induced biases.

However, these problems could be avoided when considering real-valued MR images
which requires to determine the phase of the MR signal accurately. Therefore, in chapter 4,
a novel phase correction technique is proposed which significantly reduces the signal bias
and enhances the image contrast at low SNR.

A special characteristic of DWI is its motion sensitivity, which is why primarily single
shot sequences are used. In neuroimaging, particularly the intracranial pulsatility [20] is
encoded in the signal’s phase causing phase variations that hamper segmented k-space
readout techniques. The data acquisition in DWI is commonly based on a 2D single-shot
EPI sequence with Stejskal-Tanner diffusion preparation, that only reaches relatively poor




SNR.

Recently, three novel DWI pulse sequences were reported, i.e. Simultaneous Multi-Slice
Echo Planar Imaging (SMS-EPI) [22, 23], Multi-Slab Echo Planar Imaging (MS-EPI) [24]
and Diffusion-Weighted Steady State Free Precession (DWSSFP) [25], which try to over-
come the motion induced phase variations. Although these sequences provide an im-
proved SNR efficiency over conventional 2D Echo Planar Imaging (EPI), they are also ac-
companied by certain artifacts or disadvantages, such as g-factor penalties in SNR [26],
slab boundary artifacts [27] or signal loss due to remaining phase inconsistencies.

Therefore, in chapter 5, a framework is proposed to compare the SNR efficiencies of the
new DWI pulse sequences to better weigh their pros and cons. An important prerequisite
for the SNR efficiencies comparison is the accurate prediction of the diffusion weighted
signal. Contrary to a Stejskal Tanner (ST) preparation, modeling the Diffusion-Weighted
Steady State Free Precession (DWSSFEP) signal is highly complex. Consequently, the accu-
racy of different analytical signal models for the pulsed DWSSFP are compared and a new
accurate model is proposed.

In chapter 6, a new processing technique of the complex DWI signal is adopted which
goes beyond the measurement of the diffusion induced signal attenuation. Whereas in the
past, the aforementioned phase variations were considered as concomitant phenomena,
it is shown here, that it is possible to quantify the intracranial pulsatility using a conven-
tional DWI acquisition. This allows for a joint estimation of the brain microstructure and
the brain pulsatility and may add valuable information for disorders such as peripheral
vascular disease, dementia, brain tumor or traumatic brain injury [20].

In summary, this thesis aims for both, improving the data quality in DWI and increasing
the information that is extracted from it. This includes work in the areas of data acquisition,
data preprocessing and data quantification.







Outline

Outline

This thesis is structured as follows:

¢ In chapter 2, the basics of NMR are described including the origin of the magnetic
moment of atomic nuclei, the polarization in a static magnetic field, the interaction
of the magnetic moments with an RF-pulse, and the Bloch equations. Thereafter,
the influence of coherent and incoherent motion on the NMR signal is explained
and different diffusion models are introduced. Finally, the principles of MRI are
presented, starting with the spatial encoding, followed by a brief description of MRI
pulse sequences in general and a more detailed explanation of Echo Planar Imaging
(EPI) as it is the most commonly used readout technique in DWI. The chapter closes
with the explanation of typical artifacts observed in EPI images.

¢ In chapter 3, the precision and bias of the DKI model estimation are systematically
analyzed. A weighted linear least squares fitting algorithm is used as well as differ-
ent acquisition schemes including several multi-shell schemes, a Diffusion Spectrum
Imaging (DSI) , and a compressed sensing reconstruction of an undersampled DSI
scheme. Monte Carlo simulations are performed to study the 3D distribution of the
apparent kurtosis coefficient. Experimental data were acquired from one healthy
volunteer with multiple repetitions using the same acquisition schemes as for the
simulations.

¢ In chapter 4, a novel phase correction technique is proposed that yields real-valued
diffusion data and maintains a Gaussian noise distribution. Simulations of the noise
propagation in the echo planar imaging reconstruction chain are conducted to ob-
tain the spatial noise correlation in the image. The resulting correlation patterns are
used to determine optimized filter kernels to estimate the true phase of the signal
in each voxel. Furthermore, an outlier detection technique is adopted to replace the
real value by the magnitude in case of substantial signal loss due to incorrect phase
correction. The benefits of the new method are demonstrated on Monte Carlo simu-
lations, DWI data acquired from healthy volunteer experiments, estimated parame-
ters of the diffusion kurtosis imaging model, and the model-free diffusion spectrum
imaging technique.

¢ In chapter 5, a framework to compare different DWI sequences in terms of SNR
and SNR efficiency is provided, and applied to a typical whole brain DWI scenario.
The most widely used pulse sequence for DWI, based on 2D single-shot EPI readout
with Stejskal-Tanner diffusion preparation, only reaches relative poor SNR. Modern
pulse sequences try to overcome the limited SNR and SNR efficiency of this tech-
nique. On the one hand, simultaneous multi-slice sequences provide higher SNR
efficiency. On the other hand, multi-shot techniques reach for higher SNR using a
segmented k-space acquisition. Promising multi-shot DWI techniques are 3D multi-
slab EPI sequence and 3D diffusion weighted steady state free precession sequence.
In this chapter, the SNR efficiencies of all three new sequences are compared to con-
ventional 2D EPI. Moreover, existing analytical models for pulsed diffusion weighted
steady state free precession sequences are systematically analyzed and a new accu-
rate model is presented.
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* In chapter 6, a novel phase filtering method is proposed to extract a meaningful
phase from DWIs, which allows for inferring information of the intracranial pulsatil-
ity of the brain. Initial results from phantom and volunteer experiments are shown
and the repeatability of the new technique is investigated.

¢ In chapter 7, the results of this thesis are briefly summarized.

Each of the chapters 3 to 6 comprises a separate introduction and discussion, where ex-
isting literature and methods are introduced and compared with the results of this thesis,
respectively.




2. Principles of Magnetic Resonance Imaging

In this chapter, the principles of MRI are described beginning the signal formation based
on NMR. Thereafter the effects of coherent and incoherent motion on the NMR signal is
shown. Finally the actual volumetric imaging technique MRI is introduced.

2.1. Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is describes the phenomenon that atomic nuclei in
a static magnetic field can absorb or emit electromagnetic radiation at certain resonance
frequencies. This effect was first discovered by Isidor Rabi [28] in 1938 and he was awarded
the Nobel Prize in Physics "for his resonance method for recording the magnetic properties
of atomic nuclei" in 1944.

2.1.1. Angular Momentum and Magnetic Moment
Classical Notion

Considering a point mass with a charge ¢ and mass m rotating about an axis with the
velocity ¢. The angular momentum L of this charge is defined as the cross product of its
position vector 7 and its momentum m#.

L=mix7 2.1)

It will be shown now, that this rotating charge ¢ generates a magnetic moment (more pre-
cisely magnetic dipole moment) ji, which is a measure that determines the torque exerted
on an object in a static magnetic field. It is defined as the volume integral over the cross
product of 7 and the current density ;.

ﬁ:;///vfxf(F)dV 2.2)

The current density j at a point 7 can be written as the product of the volume charge
density p and the velocity 7.

j=pv (2.3)
Using 2.3 and the assumption of the point mass, 2.2 can an be simplified to:
P
f=garx0. (2.4)

A comparison of 2.1 and 2.4 reveals that ji can be expressed with the factor v = 5L~ and L.

q —
= T 2.
2m (2.5)

=



2. Principles of Magnetic Resonance Imaging

The factor 7 is called the gyromagnetic ratio which links the angular momentum L of a
charge with its magnetic moment /i. In conclusion, an angular momentum L of a charge is
always associated with a magnetic moment /i and vice versa.

Quantum Mechanical Notion

In this section quantum mechanical operators are printed in bold to differentiate them from
the classical representation. In quantum mechanics two different types of angular momen-
tum exist. First, the orbital angular momentum L as the quantum mechanical counterpart
to the classical notion of angular momentum. Second, the spin S which is a intrinsic form
of angular momentum of elementary particles, composite particles and atomic nuclei. Both
add to the total angular momentum J.

J=S+L (2.6)

As in the classical case, the ratio between the total angular momentum of a charge and its
magnetic dipole moment /i is described by the gyromagnetic ratio .

n=n] (2.7)

However, in addition to the classical definition of ~ as given in 2.5, a dimensionless factor,
the so called g-factor, needs to be introduced because the two types of angular momentum

exhibit a different impact on fi.
7=95- 2.8)
m
In the simple case of an electron the g-factor accounts for the different magnetic moments
induced by the orbital angular momentum (g = 1) and the spin (¢ ~ 2). If both, S and L

contribute to J the g-factor can be calculated following the formula of Landé [29].

Magnetic Moments of Nuclei

On the contrary to electrons, nuclei are no elementary particles. They consist of the pro-
tons and the neutrons which belong to the particle family of the baryons. As electrons,
baryons have a spin of % However, baryons are also no elementary particles. They exhibit
an internal structure of quarks (which are elementary particles according to current knowl-
edge) resulting in g-factors of 5.59 for the proton and -3.83 for the neutron. In addition,
protons and neutrons are about 1800 times heavier than electrons which results, despite
their higher g-factors, in a gyromagnetic ratio almost 3 magnitudes smaller.

Typically the total angular momentum of nuclei is termed I. There are nuclei with I =0
where all contributions of angular momentum cancel out. This is the case for all nuclei
with even number of protons and neutrons, because the pairing of nucleons of the same
type is energetically most favorable if their spins are oriented antiparallel. All other stable
nuclei have a nonzero angular momentum I in the ground state and, hence, exhibit a mag-
netic moment ji. The gyromagnetic ratio of these nuclei depends on their atomic structure
where positive and negative values are possible. Nuclei with high gyromagnetic ratios
and thus with a strong NMR signal are for example: 'H, 3He, "Li, 13C, 1°F, 2*Na, and 3!P.

By far the most important isotope for MRI is 'H because it is present in biological tissues
in great abundance, mostly in form of water and fat. Additionally, 'H has the highest
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gyromagnetic ratio (y = 2.675 x 108 J T~!) of all stable nuclei. Appart from 'H, ?*Na and
31P are also naturally abundant in the human body. The feasibility of 23Na imaging on
humans for stroke and tumor detection has been shown [30]. Moreover injectable solutions
containing hyperpolarized !3C can be used to investigate the biochemical metabolism [31].
However, imaging of non hydrogen nuclei is primarily a research technique at present.
This thesis focuses on 'H only and all examples and calculations given in the next sections
refer to this specific case.

2.1.2. Macroscopic Magnetization in the Presence of a Static Magnetic Field

In the presence of a static magnetic field By, the ground energy state of 'H splits into two
levels due to the Zeeman effect [32]. The energy level Fy, with parallel alignment of the
proton’s spin and By, is energetically lower than the energy state E; | with antiparallel
alignment. The energy difference AE between the two states can be described with the
gyromagnetic ratio v and the absolute value of the static magnetic field B.

AFE = EN, - ETT = h")/Bg (29)

The ratio between the number of protons occupying the parallel state and the antiparallel
state can be described with a Boltzmann distribution

—AFE
% = eFBT | (2.10)
Nyy
AFE
~ 1+—  (AE<kgT) | (2.11)
kT

where kpT is the thermal energy of the proton. Assuming that Nj is the total number of
protons and ANis the spin excess describing how many more spins populate the parallel
state than the antiparallel state, Eq. 2.11 can then be rewritten to

1N0+AN7 AFE

—— = —_— 2.12
2 Ng — AN + kT (2.12)
Under the the assumption of AE <« kgT, Eq. 2.12 can be solved to AN.
1 _AFE
AN = 2N 7 (2.13)

Recalling Eq. 2.7, the magnetic moment of one proton equals y; = /7. Finally the macro-
scopic magnetization M, can be calculated as the product of the spin excess and ;.

1
My = §h7AN (2.14)
242
vh
= N B 2.15
1T D0 (2.15)

My is identical to the sum of all magnetic moments y; of the spin ensemble. Since the
energy difference AFE is small compared to the thermal energy kg7 the spin excess is
very small. For a field strength of 1.5 T the spin excess is only about 5 out of a million.
Nevertheless the huge amount of spins even within grams of matter creates a measurable
macroscopic magnetization, which is the basis of all NMR experiments.
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Figure 2.1.: Schematic illustration of the precessing transverse magnetization. The chang-
ing magnetic flux induces a voltage in the receive coil.

2.1.3. Dynamics of the Magnetic Moments

Without loss of generality, let the static magnetic field By point in the positive z direction
where the absolute value of Eo is denoted Bj.

By = Byé.. (2.16)

Consequently also the macroscopic magnetization M in the equilibrium state, points in the
positive z-direction. In agreement with Eq. 2.14. the absolute value of M is denoted M.

Unfortunately it is extremely difficult to measure 1/ in the equilibrium state because it is
static and magnetometers usually lack the required sensitivity. Hence in NMR experiments
M is tipped into the transverse plane where it is precessing around By. The frequency of
this precession is called Larmor frequency wy which is proportional to By or, equivalently,
the energy difference AE of the two spin states.

wo = 'YBO (217)
AE

= — 2.18

: (2.18)

The transverse component M, of M creates a changing magnetic flux in a receive coil
placed next to the measured object as illustrated in Fig. 2.1. This changing magnetic flux
induces a voltage in the receive coil which represents the actual NMR signal. After M
is tipped into the transverse plane, different relaxation processes start, which lead to a
recovery of the equilibrium state. The dynamics of the M, will be described in detail in
the next sections.

Rotating reference frame and B field

Changing the orientation of the macroscopic magnetization M, either away or towards
the parallel alignment with By, changes the internal energy of the protons because either

10
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more or less spins occupy the favorable energy state (parallel orientation). The macro-
scopic magnetization M can be rotated using a RF-pulse with the Larmor frequency wy.
The physical mechanism to add energy is the stimulated absorption and to dissipate en-
ergy is the stimulated emission [33]. The quantum mechanical interaction of a two-level-
system and the RF-pulse can be described by the Rabi cycle [34]. However, as most of the
phenomena in NMR, classical physics can be used to described the rotation of M.
Assuming a quadrature transmission coil, which creates a circular polarized magnetic
field B with the frequency €2, the amplitude B and the phase offset ®. The effective field
B including By and B; can be defined as
Begt = By - €. + Bicos(Qt 4 ®) - &, — sin(Qt + @) - &,] . (2.19)
In the early days of NMR also a coil arrangement producing a linear polarized radio fre-
quency field was used but it is less efficient and rarely used anymore. To understand the
impact of the RE-pulse on M it is helpful to change in a rotating reference frame where &,
and €, rotate around €, with the frequency (2. All variables in the rotating reference frame
are marked with a prime to distinguish from the system at rest. In the rotating reference

0/

the effective magnetic field B ; changes to

Blg = Bo(1 — 5120) - €] + Bi[cos(®) - €, — sin(P) - €] . (2.20)

In the rotating reference frame, the transverse component of B/; is at rest and its ori-

entation only depends on the constant phase offset {2 which is typically called RF phase.

Moreover there is a fictitious magnetic field term — W%Bo - €, which counteracts B - €,. The

derivation of this term can be found for example in [35]. In favor of clarity, ® is set to zero

in the following equations because it corresponds to a simple rotation of the coordinate
system. In the case of resonance 2 = wy, the effective field B;’H can be simplified to:

Béff — Bléﬁ

i (2.21)

Each magnetic moment /i, which is oriented perpendicular to Eéﬁ, experiences a torque,
resulting in the following equation of motion

M .

Assuming a rectangular RF-pulse with amplitude By and duration 7ry, the differential
equation 2.22 can be solved to:

M (B, rr) = Mo[sin(yB1mrr) - € + cos(yBimrr) - €] . (2.23)
It can be seen from Equation 2.23, that the RE-pulse rotates M around €,- The amount of
rotation is described by the so called flip angle a.

o = yB1TRF (2.24)

Especially in MRI, the frequency spectrum of a RF-pulse is very important, either for spa-
tial selectivity RE-pulse (see section 2.3.1) or chemical (spectral) selectivity. In the case of

11
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small flip angles, the excitation profile of a RF-pulse can be well described by the Fourier
transform of the pulse shape in time. For instance, the previous example of a rectangu-
lar pulse results in a sinc function in the frequency space. Such a rectangular RF-pulse
is also called hard pulse and exhibits a broad frequency spectrum around wy. However,
for higher flip angles (i.e. over the range of 30°-180°) the Fourier relationship between the
pulse shape and the excitation profile begins to fail [36, p. 43] due to nonlinear effects
in the Bloch equations (see section 2.1.3). Thus, higher flip angles require iterative algo-
rithms, like the Shinnar Le Roux algorithm (SLR), to determine the shape of the RF-pulse
[37].

Relaxation of the Magnetization

After the application of a RE-pulse on M, the spin ensemble relaxes back to the equilib-
rium state. There are two fundamental relaxation mechanisms in NMR. First, the recovery
of the longitudinal magnetization M, to M -€,. Usually the spin ensemble is in an energet-
ically higher state and needs to dissipate energy which occurs by stimulated emission. The
transition is induced by magnetic field fluctuations due to thermal motion of neighbour-
ing nuclei in the lattice. Therefore the relaxation of M. is also called spin-lattice relaxation.

The rate of growth %2 is proportional to the difference of the equilibrium value M, and
M.
dM 1
= _—(My— M, 2.25
i@ T (Mo ) (2.25)

The differential equation 2.25 can be solved to

M. (t) = M.(0)eTr + My(1—eT1) | (2.26)

where M, (0) is the initial value of M, and 7} is a tissue or material parameter which
describes the time until M. (t) recovered to about 0.63M/, assuming M (0) = 0.

The second relaxation mechanism describes the decay of the transverse magnetization
M, towards the equilibrium value zero. This decay is caused by little field inhomo-
geneities on the micro- and nanoscale. Thermal motion within the spin ensemble leads
to an individual phase accumulation of each spin, resulting in destructive interference.
The decay does not involve energetic transitions and no energy is transferred to the lattice.
Thus, the relaxation of M is called spin-spin relaxation. The following equation for the
exponential decay of M| can be derived analogous to 2.25.

MJ_(t) = MJ_(O)@TZ. (227)

The tissue or material parameter 75 describes the time in which M, (t) decays to approx-
imately 0.37M/ (0). The spin-spin relaxation involves those field fluctuations which meet
resonance condition and, thus, cause a spin flip, as well as those field fluctuations which
do not meet this condition. Consequently, the spin-lattice relaxation cannot be faster than
the spin-spin relaxation, or with respect to the relaxation times, 75 < T7.

In addition to microscopic magnetic field fluctuations, there is a second effect causing
a decay of M. A static background field also causes dephasing of the spin ensemble,
and thus increase the decay of M| . This additional relaxation mechanism is described by
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2.1. Nuclear Magnetic Resonance

another exponential decay constant 75. Although there is no guarantee that a inhomoge-
neous magnetic field results in an exponential decay of M |, in most cases it is a sufficient
model [35, p. 57]. The overall decay of M is called Free Induction Decay (FID) and in-
volves both effects T» and T3. The corresponding overall decay time is called 77

1 1 1
== 4 2.28
Ty T3 * T, (2.28)

It will be shown later that the dephasing effect due to 7% can be reversed using a so
called Spin Echo (SE). However, the decay due to 75 is a thermodynamical process and is
irreversible.

Bloch Equations

The dynamics of M can be described with the Bloch equations [38]. They describe the
interaction of the spin ensemble with the magnetic fields By(t) and B (t) as well as the
relaxation of the longitudinal and the relaxation magnetization, M, and M .

dM - - 1 1
— =M x B{t) + — (Mo = M) - & — (M, - & + M, - &) (2.29)
1 2

There exists no complete analytical solution for the Bloch equations. However, in MRI the
duration of a RF-pulse is usually short compared to the relaxation times 77 and T5. That
is why a separate treatment of RF-pulse and relaxation is sufficient in many cases. Cor-
responding analytical solutions for the effect of an RF-pulse and for the relaxation of the
spin ensemble were shown in the previous two sections. However, an accurate prediction
of M can only be achieved by numerically solving the Bloch equations.

The Spin Echo

A NMR sample or a voxel in MRI typically exhibits a spectrum of different Larmor fre-
quencies because of background B, inhomogeneity, susceptibility differences or chemical
shifts. Consequently the local field Bjoc,1(7) of each spin can deviate by the off-resonance
A By from the constant field By.

Blocal(F) = By + ADBy (7?> (230)

The off-resonance A B is typically dependent on the position " of the spin. The dephasing
effect of AB can be reversed using a refocusing pulse. Following the excitation pulse
(Fig. 2.2b) each spin accumulates phase according to its local Larmor frequency vBjscqi
(Fig. 2.2¢). After the time 7, a refocusing pulse is applied, which rotates the spins by 180°
around B, (Fig. 2.2d) such that the "faster" spins are now behind the "slower" spins (Fig.
2.2e). As aresult, after the time 27 all spins have the same phase again as illustrated in 2.2f.
This effect was first reported by Hahn and Maxwell and is called Spin Echo (SE) [39, 40].
It is also possible to create an echo with more than two RF-pulses, for example using three
subsequent 90° pulses which is called Stimulated Echo (STE) [41].
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Figure 2.2.: Schematic illustration of the creation of a spin echo: a) equilibrium state, b) ex-
citation pulse flipping M. into transverse plane, c) dephasing of the spins due
to static background field, d) the refocusing pulse is mirroring the magnetiza-
tion about the y/ axis, e) the "slow" spins are now in front of the "fast" spins f)
formation of the spin echo.

2.2. Motion in NMR

In the previous section 2.1.3, it was shown that the dephasing of the spins due to a static
backround field can be reversed using a SE. This, however, requires the spins to be at rest
with respect to the static Bjocq(7), which is generally not the case. On the one hand, all par-
ticles undergo Brownian motion which is a random process of particles that depends on
their thermal energy and their mobility [8]. There is no correlation between the Brownian
motion trajectory of different particles, which is why this type of motion is called incoher-
ent or diffusion. On the other hand, all spins or parts of them can follow the same motion
trajectory, which is called coherent motion. Types of coherent motion are, for example,
translation, rotation or pulsation.

If a spin moves through an inhomogeneous magnetic field during a SE preparation, the
spin will accumulate a net phase shift compared to another spin which is at rest. The
reason is that the field ABy(7), which the spin experiences before and after the refocus-
ing pulse, is not identical. In the case of coherent motion, all spins experience the same
phase shift, and therefore the phase of the NMR signal is shifted by the same amount.
However, in the case of incoherent motion, all spins accumulate a different phase shift,
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2.2. Motion in NMR

resulting in destructive interference and attenuation of the signal’s amplitude. To counter
this effect, the use of a train of refocusing pulses with short spacing in between each other
was suggest by Carr and Purcell [6] and further improved by Meiboom and Gill [42]. This
train of refocusing pulses is widely used in MRI, and is named after the inventors, CPMG
sequence.

Although modern NMR spectrometers or MRI scanners offer a very homogenous back-
ground field, there are some cases where susceptibility differences in the scanned object,
e.g. between different tissue types, can induce field gradients that cause diffusion atten-
uation of the SE signal. Solid-air interfaces can lead to significant signal attenuation in
porous media NMR. Also in the case of in-vivo MRI, diffusion effects can predominate
over Ty, for instance in regions around small vessels, particularly at high field [43]. How-
ever, most often, diffusion effects due to background gradients can be neglected in MRIL
Instead, artificial magnetic field gradients, which are induced by additional coils, are ap-
plied to the spins and the resulting signal attenuation is analyzed to obtain insights about
the microstructure of the underlying object or tissue.

2.2.1. Self Diffusion

Classical Diffusion is defined as net movement of atoms or molecules from regions with
high concentration to regions with low concentration. According to Fick’s first law the
molar flux .J is proportional to the gradient of the molar concentration c;(7)

J = DVe;(), (2.31)

where D is the diffusion coefficient [44]. Further, Fick’s second law predicts the change of
the concentration ¢; (7, t) in time.

OM (7, 1)

— 2. (=
T DV*¢;(T,t) (2.32)

In the notion of Fick’s law, D describes the diffusivity of a certain solute (e.g. ethanol) in a
certain solvent (e.g. water). However, the focus of this thesis is the so called self diffusion
where no macroscopic gradient of ¢;(7) exists. In this case D is called the self diffusion
coefficient describing the diffusion of a certain substance in itself. Einstein derived an ex-
pression for D by introducing the conditional probability P (|, t) that a particle starting
at position 7 will move to position 7’ after the time ¢ [33] Einstein solved the partial dif-
ferential equation of Fick’s second law 2.32 using P(7 |7/, t) instead of ¢;(7, t) leading to a
Gaussian probability distribution.

P(7 |7 t) = (47 Dt) /% exp(—

) (2.33)

Unfortunately the conditional probability P(7 |7’,t) is extremely difficult to measure be-
cause diffusion lengths within typical NMR relaxation times are very small and far below
the resolution limit of MRI. A more useful definition is the average probabﬂlty P(R,t) of
all protons within the sample to move by the displacement R = 7/ — 7. P(R,t) can be
calculated by substituting 7/ = 7+ R in 2.33, multiplying with the probability P() to find
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2. Principles of Magnetic Resonance Imaging

a proton at location 7, and integrating over all possible start positions .
P(R,1) = / P(F|7 + R, t)P(7) dF (2.34)
v

The definition of P(R, ) given in 2.34 is called the EAP, and is widely used in diffusion
weighted NMR and DWL. It is important to note, that the EAP definition is valid for any
arbitrary conditional probability P(7 |7/, ) and it is not limited to the Gaussian shape in
2.33. However, when assuming a Gaussian P(7 |7’,t) the Mean Squared Displacement
(MSD) (R2) after the time ¢ can be used as a measure of the diffusivity D of the particles.

(R?) = / - P(R,t)R* dR (2.35)
= 6Dt (2.36)

2.2.2. The Bloch Torrey Equations

A more general approach to describe the time dependent behavior of the magnetization
M was made by Torrey [45]. The effect of free Gaussian diffusion was accounted for by
introducing additional terms in the Bloch equations (see section 2.1.3, Eq. 2.29).

dM

dt

— M x B(t) + %(Mo —M,)-& — é(Mz - & + M, -&,) + DV?M (2.37)
Equation 2.37 is called Bloch-Torrey equation where D is the diffusion coefficient. Unfor-
tunately there is no general analytic solution of 2.37. However, an important special case
is the signal evolution of M () which was tipped into the transverse plane by an excita-
tion pulse. In that case, the longitudinal magnitization can be neglected. Following this
approach, equation 2.37 is evaluated using the rotating reference frame and the following
assumptions are made:

* 1: There are no B fields except for a perfect, instantaneous 90° excitation pulse and
a arbitrary number of perfect, instantaneous 180° refocusing pulses which keep all
magnetization in the transverse plane.

¢ 2: The magnetic field B’ in the rotating reference frame is approximated by a con-
stant magnetic field offset A By and a time varying magnetic field gradient G *()in z
direction. G *(t) is generated by special gradient coils, which can create an arbitrary
gradient in space of the z-component of the magnetic field, to encode diffusion (the
gradient coils are also used for the spatial encoding, see chapter 2.3). The star in
G*(t) indicates the "effective gradient" that the spins experience, as the polarity has
to be flipped each time a refocusing pulse is applied.

B' = (ABy+G*(t)-7) - é! (2.38)

¢ 3: The transverse magnetization is expressed with a complex number where the real
part corresponds to the ¢ axis and the imaginary part corresponds to the €, axis.

M, = M, +iM, (2.39)
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2.2. Motion in NMR

* 4: The trajectory 7(t) describes the coherent motion of the spin ensemble.
Rewriting 2.37 with the given assumptions yields:

dM - M
dtL = —iyM | (ABy + G*(t) - 7(t) ) — TL + DV?M, . (2.40)
2

The ansatz to solve the partial differential equation 2.40 can be found in [45-47]. Here only
the solution is shown

M (#) = e(~t/T) o(~i78Bot) o(~ig (£7(1)) (D) (2.41)

where the first term describes the signal attenuation due to spin-spin relaxation, the second
term describes the phase shift due to the constant magnetic field offset A By, the third term
describes a phase shift ¢4(t,7(t)) due to the gradient field and coherent motion, and the
fourth term describes the signal attenuation due to incoherent motion or diffusion, where
the coefficient b is called b-value and will be described in detail later.

The phase ¢4(t,7(t)) can be written as the sum of all phase contributions the spin en-
semble has experienced along the trajectory 7(t).

t —
B (t,7(1)) = /0 Gt )7t dt (2.42)

Expanding the trajectory 7(t’) in a Taylor series yields

nopn) ot

belt) =7 > [ Gy (2.43)
i=0 70

where (") corresponds to the moments of the trajectory, the starting position #?), the

velocity ), the acceleration ?) and higher order moments. For each moment of the

trajectory a so called gradient moment M,, can be defined.

—y t —
M, =L [ Gy ar (2.44)
n. Jo
The phase shift of the spin ensemble can now be simply written as the sum of the moments
of the trajectory multiplied by the corresponding gradient moment.

dg(t) = Zn: 7" M, (2.45)
1=0

The zero order gradient moment Mo, also called gradient area, is simply the integral of the
gradient field over time and the resulting phase shift only depends on the starting position
70. Usually G*(t') is chosen such that My = 0 at the TE when the NMR signal is sampled.
Otherwise there would be an additional signal attenuation because not all spins exhibit
the same phase. Let ¢.(t) be the phase shift caused only by coherent motion described by
all nonzero moments.

de(t) = f: 7™M, (2.46)

=1
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2. Principles of Magnetic Resonance Imaging

Often ¢.(t) is only a concomitant phenomenon of the spatial or diffusion encoding but it
can also be used to investigate the motion trajectory that the spin ensemble has taken. For
example, comparing the phase of the NMR signal with and without the application of a
bipolar gradients can reveal the velocity of the spins, assuming that higher order moments
are negligible. This technique is called velocity or flow encoding.

The solution of the Bloch-Torrey equation 2.41 also describes the attenuation of the sig-
nal’s amplitude due to incoherent motion. The exponential decay is defined by the diffu-
sion constant D and the b-value b. The b-value can be calculated for an arbitrary sequence
of effective magnetic field gradients G *(t) [45-47] which is typically called diffusion en-

coding scheme.
2

t /ot
" / ( G* (") dt”) ' (2.47)
0 0

A diffusion encoding schemes can be used to investigate microstructural features of the
underlying tissue or sample. For example, a bipolar gradient with certain b-value is ap-
plied after the excitation pulse and the corresponding signal attenuation of S(b) is derived
by a comparison with the non-diffusion weighted signal S(b = 0). Assuming that diffu-
sion is truly Gaussian, the diffusion coefficient D can be calculated, using both the b-value

and signal attenuation.
1 S(b=0)

In conclusion, diffusion encoding schemes can be employed to quantitatively investigate
the diffusion behavior of NMR active nuclei.

2.2.3. The Stejskal Tanner Pulse Preparation

In the beginning of diffusion weighted NMR [6, 39] constant magnetic field gradients in
combination with a SE were used to obtain a diffusion weighted signal. Although this
method is very time efficient, the presence of a constant gradient during signal acquisi-
tion is not compatible with spatial encoding in MRI (see section 2.3.1), and it introduces a
strong T decay before and after the SE. Thus, only pulsed diffusion weighted gradients
are used in DWIL. By far the most widely used diffusion encoding scheme is the so called
ST preparation [48]. The ST preparation uses two pulsed diffusion weighting gradients
with the same polarity, separated by a 180° refocusing pulse as illustrated in Figure 2.3.
In principle, also bipolar gradients can be used for diffusion encoding but the advantage
of using a SE is a typically higher SNR because the signal only decays with 75 instead of
T5. To determine the expected signal attenuation of the ST preparation, the b-value has to
be calculated according to equation 2.47. Assuming two rectangular gradient pulses in an
arbitrary direction with the gradient strength G, the duration ¢ and the temporal spacing
A (typically called the diffusion time or the mixing time) as illustrated in Figure 2.3, the
b-value of the ST preparation is given by

é A A+
b= 22 { / (#)2at + / 52t + / 6+ A — 2t | | (2.49)
0 1 A

= 2G*(A—4/3). (2.50)
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Figure 2.3.: Schematic illustration of the Stejskal Tanner (ST) diffusion encoding scheme.
a) Chronological order of RF-pulses and diffusion encoding gradients. b) Ex-
emplary simulated signal curves with and without diffusion preparation, in-
cluding T3 effects. The refocusing pulse is assumed to work instantaneous. In
addition the pure 75 signal decay is plotted to highlight the effect of the spin
echo. c) Phase diagrams for 18 exemplary spins at 6 different time points of
the ST sequence: Firstly, directly after the excitation pulse where all spins are
coherent, secondly prior to the first diffusion gradient where the static back-
ground field causes initial dephasing, thirdly prior to refocusing pulse where
the spins are completely dephased due to the first diffusion weighting gradi-
ent, fourthly after the refocusing pulse where spins have been flipped around
the x-axis, fifthly after the second diffusion gradient where the first gradient
moment is zero again, and finally, at the time of the spin echo, where the spins
exhibit incomplete phase reversal due to incoherent motion.
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Under realistic conditions, the gradient amplitude cannot be ramped up instantaneously
and equation 2.49 is only an approximate solution. Assuming a linear ramp of the gradient
amplitude over the time € yields [49]:

b=~>G*(A—5/3+€/30 —562/6). (2.51)

2.2.4. Non Gaussian diffusion

The analytical solution of the Bloch—-Torrey equation to describe the effect of diffusion in
the presence of magnetic field gradients, which was shown in the previous sections 2.2.2
and 2.2.3, presumes the EAP to be Gaussian. Hence, the diffusion-weighted signal for
a distinct diffusion encoding direction is expected to decay mono-exponentially with the
b-value.

This is in general not the case for biological tissue [12-15] because the motion of the
water molecules is restricted by cell membranes and compartments of different size. In
the field of DWI two concepts have been introduced to describe the interaction of diffus-
ing atoms or molecules with obstacles, namely hindered diffusion and restricted diffusion.
The former assumes that diffusion of a substance, e.g. water, is slowed down by a va-
riety of obstacles but still exhibits a Gaussian EAP and thus the NMR signal still decays
exponentially with b [14, 50]. The extra-axonal space of WM is a typical example for hin-
dered diffusion as it is mostly connected and diffusion is approximately Gaussian [51]. On
the other hand, restricted diffusion means that the motion of the atoms or molecules is
limited to a certain volume due to boundaries in the medium [52]. In this case, the shape
EAP becomes constant at long diffusion times A because the maximum displacement is in-
trinsically limited by the restricting volume. On the contrary, the displacement predicted
by the Gaussian model exceeds the size of the restricting volume. A typical example of
restricted diffusion is the intra-axonal space in WM as the axon’s myelin sheath can be
considered impermeable to water over typical diffusion times A [14, 53]. Examples of the
EAP for free, hindered and restricted diffusion are depicted in Figure 2.4 assuming mixing
times ranging from 5ms to 30 ms and a diameter of the restricting volume of 10 pm. The
EAP of free and hindered diffusion broadens with increasing A maintaining the Gaussian
shape while the EAP of restricted diffusion exhibits a constant triangular shape for high
A. Consequently, in case of restricted diffusion, the attenuation of the NMR signal due to
diffusion does not steadily increase with A but reaches plateau.

In MRI the imaging volume is split into multiple small volumes, called voxel, where
the NMR signal from each voxel can be measured separately (see section 2.3). As the fol-
lowing descriptions are closely related to Diffusion Weighted Imaging (DWI) rather than
NMR, the term voxel is used instead of sample. The voxel size in DWI is typically in the
millimeter range or slightly below while the molecular displacement within realistic mix-
ing times is in the micrometer range. Thus the diffusion signal measured in DWI is the
ensemble average of a large variety of microstructural features, potentially exhibiting free
and hindered diffusion as well as the highly non-gaussian restricted diffusion. Which of
the three diffusion types dominates can also depend on the diffusion encoding scheme,
e.g. in case of a ST preparation the mixing time A and the b-value. Moreover multiple
tissue types can contribute to the same voxel which is called partial volume effect.

In conclusion a mono exponential decay with b and D is a highly simplified concept but

20



2.2. Motion in NMR

it can be very useful to roughly quantify diffusion. However, to account for the complexity
of biological tissue, in DWI, the term Apparent Diffusion Coefficient (ADC) is often used
for the exponential decay constant instead of D. Thus, the ADC is the diffusion coefficient
one would calculate if the EAP were Gaussian.
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Figure 2.4.: Simulation comparing the EAP for free diffusion, hindered diffusion and
restricted diffusion using different mixing times A. The following param-
eter were chosen for the simulation: free diffusion, D = 3 x 1072 m?s~!
corresponding to diffusion coefficient of water at body temperature [54, p.
43]; hindered diffusion, D = 1.2 x 1072 m?s~!; restricted diffusion D =

3 x 1072 m?s™! and diameter of the restricting volume was 10 pm.

restricted diffusion|

2.2.5. Diffusion Models

By far the most widely used model to quantify diffusion in the human brain is the DTI
model [9]. This technique uses a three-dimensional (3D) second order diffusion tensor
with 6 independent parameters to describe the directional dependence of the ADC as an
ellipsoid. However, as pointed out in the previous section (2.2.4) the neuronal tissue ar-
chitecture is highly complex and thus the DTI model may be oversimplifying [55]. Conse-
quently newer diffusion models extend beyond the concept of the ADC trying to describe
also non-Gaussian diffusion.

Multi-tensor fitting is a simple extension of DTI to handle crossing fibers in WM. The
measured signal is assumed to originate from different compartments, e.g. two crossing
fiber bundles, where each compartment is characterized by one DT respectively [56, 57].
In some implementations a third compartment with isotropic diffusion is added to allow
partial volume fractions of GM or CSF [57]. However, as discussed before, the ADC con-
cept is incapable of accurately modeling the diffusion signal of the highly restricted intra-
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axonal space [53]. Therefore, the Composite Hindered and Restricted Model of Diffusion
(CHARMED) model only uses a DT to describe the diffusion weighted signal from extra-
axonal space [58]. In contrary to multi-tensor fitting, the diffusion weighted signal of each
fiber population is modeled assuming restricted diffusion within cylindrically bounded
volumes. While the multi-tensor approach only requires a single shell High Angular Res-
olution Diffusion-weighted Imaging (HARDI) acquisition [56], CHARMED requires dif-
fusion encoding schemes with multiple b-values. An expansion of CHARMED is used
in the AxCaliber model for estimation of the axon diameter distribution [59]. In AxCal-
iber, only single fiber population is assumed and restricted diffusion is modeled assuming
axons (cylinders) with multiple diameters. The population fraction of the axon diameter
is approximated by a gamma distribution. Since AxCaliber requires DWIs with multiple
b-values and multiple mixing times A, typically only one diffusion encoding direction is
measured which is aligned perpendicular to the fiber orientation [59].

In Neurite Orientation Dispersion and Density Imaging (NODDI) [60], the axons are
modeled as one-dimensional (1D) sticks with Gaussian diffusion parallel to the sticks and
no diffusion perpendicular to the sticks. However, the orientation of the sticks is dispersed,
following a Watson distribution, where the orientation dispersion index characterizes the
the amount of dispersion. Consequently, only the component of the diffusion encoding
gradient aligned parallel to a stick causes Gaussian diffusion attenuation (see Eq. 2.47 or
2.49). The signal of the intra-axonal volume fraction corresponds to the sum over all sticks
and therefore equals a multiexponential decay in the b-value. Further, the extra-axonal
volume fraction is modeled by hindered diffusion, using again a DT and CSF contamina-
tion is addressed by a third component with isotropic Gaussian diffusion.

Modeling the diffusion signal of WM is a very active field of research and many more
multi-compartment models do exist. A contemporary comparison of the performance of
multi-compartment diffusion models can be found in Ferizi et al. [61].

Recently Jensen et al. introduced DKI [15], which extends the DTI model by a second
order Taylor expansion in the b-value to characterize the non-Gaussian fraction of diffu-
sion. This additional term can be described by a 3D 4th order Diffusion Kurtosis Tensor
(DKT), adding 15 further independent coefficients to the DTI model. Therefore the DKI
model is parametrized by altogether 22 elements: the non-diffusion-weighted signal, the 6
independent elements of the DT and the 15 independent elements of the DKT.

Finally, there exist g-space methods, which estimate the EAP by exploiting its Fourier re-
lationship with the so called g-space [62] (see section 2.2.5). In Diffusion Spectrum Imaging
(DSI) altogether 6-dimensional data is acquired, three image dimensions and three g-space
dimensions, to reconstruct the EAP for each voxel respectively [63]. As there is no explicit
diffusion model assumed, g-space methods are often considered to be "model-free" [55].

In the following sections, the DTI and DKI model as well as the DSI technique are de-
scribed in more detail as they are extensively used in this thesis.
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Diffusion Tensor Imaging

The DTI model is an elegant way to describe anisotropic diffusion using a 3D second order
diffusion tensor D. The diffusion weighted signal S(b, 7, D) equals

3
S(b, i1, D) = Spexp (—b > ninjDZ-J) , (2.52)

ij=1

where S is the non-diffusion-weighted signal, D; ; is a coefficient of the diffusion tensor
D, b is the b-value and n;, n; are coefficients of an arbitrary unit vector 7. The diffusion
tensor D is symmetric because the signal attenuation is independent of the polarity of the
diffusion encoding gradient.

Dsc:c Dzy D:cz
D= |Dy,, Dy, D,. (2.53)
sz Dzy Dzz
The ADC in the direction 7i is given by
3
ADC(ii,D) = > nin;D;; . (2.54)
ij=1

Several rotationally invariant diffusion metrics can be derived from the DT, including MD
and FA, which are used extensively to analyze structural integrity of neuronal tissue [64—
66]. MD is used to characterize average diffusivity within a voxel and has the same unit as
D or ADC. It is given by the trace of D divided by three

13

MD=-> D;,;, 2.55

3 ; : (2.55)
which is equivalent to the average of the eigenvalues (A1, A2, A3) of D. On the other hand,
FA is a dimensionless quantity to describe the anisotropy of diffusion, ranging from zero

to one.
3 [(A —MD)? + (A2 — MD)? + (A3 — MD)?
FA =/ - . 2.56
\/;\/ (/\12 + )\22 + )\32) ( )
Fig. 2.5 depicts 3D-plots surface plots of the ADC for four different DTs with the corre-
sponding eigenvalues A\, A2 and A3. All four examples exhibit a very similar value for
MD, although the shape of the ADC is very different. A comparison of Fig. 2.5b and ¢
demonstrates, that also FA is not an unambiguous metric to describe the DT. Although the
MD and FA values are very similar, the ADC plot in Fig. 2.5b and c look very different.
Therefore, it has been reported, that the eigenvalues itself or combinations of eigenvalues,
such as radial diffusivity

D, =2 ; As (2.57)
or axial diffusivity
D=, (2.58)

may be more specific to WM pathology [50, 67].
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Figure 2.5.: a-d: Surface plots of the ADC for four different DTs. The corresponding eigen-
values of the DTs as well as MD and FA values are given in the table below.

Diffusional kurtosis imaging

The DKI model parametrizes the MR signal S(b,7) with the non-weighted signal Sy, the
symmetric second-order diffusion tensor Dpkr and the symmetric 4th order kurtosis ten-
sor W

. & b (G Dig g

S(b, 7, D, W) = Sy exp <_bi§::1 niniD; j + G <; 3 ) m-%l::l nmjnknlwwkl> , (2.59)
where 71 is an arbitrary unit vector. Because both tensors are fully symmetric, D and W
have 6 and 15 independent coefficients respectively. Basically all metrics of the DTI model
can be derived from Dpki1. However, they should not be directly compared as they belong
to two different models. Therefor, to avoid confusion in the notation, the index "DKI" is
added to DTI metrics related to a DKI fit. The Apparent Kurtosis Coefficient (AKC) of the
DKI model is defined similarly to ADC, and is used to quantify the non-Gaussianity of
diffusion in direction 7.

2 3
Z nin gy Wik (2.60)

AKC(7i) = (
i3,k 1=1

MDpki )
ADCpki(7)

To increase accuracy and precision of the DTpk; and DKT estimation, several constraints
have been proposed to ensure that ADCpg; and AKC lie within a physically acceptable
range [68-70]. Particularly negative values of the ADCpk; and AKC are considered as
physically not plausible (a negative ADC is also not plausible for the DTI model). Fur-
thermore, a third constraint has been proposed by Veraart et al. [68] enforcing the MR
signal S(b,7, D, W) to monotonically decrease with b. The mathematical formulations of
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2.2. Motion in NMR

the contraints are given by

1. ADCpi(7,D) > 0 V]|i|=1, (2.61)
2. AKC(7,D,W) > 0 V]i|=1, (2.62)
3

IA

3. AKC(b,i,D,W) V0 <b<bpas, |7 =1, (2.63)

ADCpxi(b, i1, D)b

where by,,q, is the highest b-value in the diffusion encoding scheme. Basically, constraints
#1 and #2 can be fulfilled by enforcing positive definiteness of the DT and DKT using
nonlinear fitting methods [70]. Unfortunately the commonly used Linear Least Squares
(LLS) and Weighted Linear Least Squares (WLLS) fitting techniques are not capable to
implicitly impose positive definiteness of the DT and DKT. However, explicit constrains
of ADCpg; and AKC for a finite number of directions can be used for LLS or WLLS fitting
instead [69, 71].

Several rotationally invariant, scalar metrics for DKI exist, including different kinds of
mean values such as MK (spherical average AKC), ME (ellipsoidal average AKC), MZ (av-
erage AKC in the scaled inherent coordinate system) [72], directional metrics such as radial
kurtosis (AKC ) and axial kurtosis (AKC) [73] as well as extreme values like maximum
kurtosis (AKCmax) and minimum kurtosis (AKCpin) [72]. While MK and ME can only be
computed numerically [72], there exist a simple closed form solution for MZ. To calcu-
late MZ, W must be transformed into the eigenspace of D yielding W. Assuming that the
columns of the orthogonal matrix P correspond to the eigenvectors of D, the coefficients
of W can be calculated as

Wi = Z Wir o gt 0 PiriP i PPy (2.64)
/ k/ l/

It is shown in Qi et al. [72] that MZ is given by

MZ = (2.65)

(MDpxk1)? (Wi W2222+W3333 Witas  Wirzs  Waogs
5 22 2 U ARV VLI V5 VRS v v

where \j, \a, A3 correspond to the eigenvalues of D. Since W is already transformed into
the eigenspace of D, AKC;; and AKC can be defined similarly to the DTI model (see Egs.
2.57,2.58) [73].

MD 2 .
AKC| = ()\BKI)WHH (2.66)
1
y .
AKC, = (MDpki) W2§22 W3§33 (2.67)
2 A2 32

The accurate extreme values AKCpax and (AKCpin) can be calculated using the D-
eigenvalues of W [74]. However, as the calculation of the D-eigenvalues is computationally
very demanding, Kelvin-eigenvalues [74] of W are a computationally simple alternative
to derive an upper and lower bounds for AKCpax and AKCpin.
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2. Principles of Magnetic Resonance Imaging

Diffusion Spectrum Imaging and the Narrow Gradient Pulse Approximation

In the previous sections, certain assumptions were made to model the diffusion-weighted
signal. While empirical models like DTT or DKI (see sections 2.2.5 and 2.2.5) assume that
the signal can be described by a higher order polynomial, multi compartment models such
as CHARMED, AxCaliber or NODDI assume a certain tissue composition (see section
2.2.4). However, it is unlikely that any of these models can accurately describe the dif-
fusion weighted signal originating from biological tissue because of its high complexity.
Ferizi et al. noted that "even in regions of tissue with supposedly the simplest geometry
the models required to explain the data are surprisingly complex" [61]. An alternative
approach to address this problem are "model-free" g-space methods which try to directly
estimate the EAP.

All g-space methods have in common that the diffusion encoding gradient pulses are
assumed to be instantaneous § < A which is typically called the "narrow pulse approxi-
mation" [47]. Now a ST preparation is assumed where both gradient pulses are separated
by the mixing time A. Each gradient pulse points in direction G with the gradient ampli-
tude |G| and the duration §. The first gradient pulse imparts to each spin at position 7 the
phase shift 76(G - 7). A spin that moves from position 7 to 7’ at the time of the second
gradient pulse A will experience a phase shift of v6G - (7 — 7').

Analogous to section 2.2.1, P(r) is the probability to find a spin at position 7 and
P(7 |7, t) is the conditional probability of a spin to move from 7 to 7’. Using the phase
shift y6G - (7F—7") given in the previous paragraph, the diffusion weighted signal § (G,6,7)
can be calculated as

S(G,5,A) = So / / P(F)P(7 |7, A) exp (iv6G - [F — 7)) di'di ,  (2.68)
VJ—x

where S is the non-diffusion-weighted signal. The bound of the first integral in Eq. 2.68 is
the sample volume (or voxel volume) and the bound of the second integral is infinite since
there is no limit assumed for the displacement (from a mathematical point of view, there
are of course practical limits). Recalling the definition of the EAP

P(R, 1) = / P(7 |7+ R, t)P(F) dF (2.69)
|4
with B =7/ — 7, Eq. 2.68 can be rewritten to
S(G.5,A) = So / P(R. ) exp (i76G - B) dR . 2.70)

Eq. 2.70 is equivalent to a Fourier transform of P(R,t) where

1

o v6G (2.71)

q=
can be defined to describe the reciprocal g-space, given by

S(7,A) = SoF '[P(R,A)] = So / P(R,t)exp (i2nq- R) dR . (2.72)
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2.3. Magnetic Resonance Imaging

It is important to note that both P(R,t) and the Fourier transform of P(R, t) are positive,
real valued functions [63]. However, Sy is generally complex valued, and more important,
coherent motion can result in significant phase shifts in S(q, A). Consequently, the inverse
operation to obtain the EAP from the sampled DWI data usually requires the magnitudes
of Sp and S(q, A).

B I o
P(R,8) = (o /_ 15(7, A)| exp (1277 - B) d{ . 2.73)

A typical g-space method is the DSI technique where discrete values of S(g, A) are sam-
pled on a 3D Cartesian grid and the EAP is computed using a discretized version of Eq.
2.73 [63]. However, there are several problems which hamper an accurate estimation of
the EAP. First of all, it is very challenging to satisty 6 < A because the available gradi-
ent amplitude and slew rate of MRI systems is limited [55, 75]. If the narrow gradient
pulse approximation is violated, the measured displacement reflects only the differences
between the average position of the spins during the first and the second gradient pulse
respectively [76]. Consequently, the measured displacement of restricted diffusion seems
underestimated [77]. However, it has been shown, that longer gradient pulses do not nec-
essarily affect the measured fiber orientation [63]. A second issue of DSI is the limited
support of the discrete g-space signal which results in truncation artifacts, namely a con-
volution of the true EAP with the Fourier transform of the windowing function (typically
a rectangular window) [78, 79]. These truncation artifacts can be addressed for example
using filter functions, e.g. a Hanning window, or deconvolution algorithms [80]. Finally,
a general problem, that not only applies to DSI, is the absolute value operation in Eq.
2.73, which causes a positive signal bias as the Gaussian noise distribution is changed to
an unequal noise distribution with nonzero mean. Consequently, the accuracy of the es-
timated EAP is reduced. An alternative real valued reconstruction technique which can
significantly reduce the noise induced bias is proposed in section 4.

2.3. Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a volumetric imaging technique that is based on
NMR. The imaging volume is split into many sub-volumes, called voxel, which are ar-
ranged on a regular grid in 3D space. In MRI the principles of NMR are used to create a
certain tissue contrast and a spatial encoding technique is applied to determine the NMR
signal for each voxel separately. The advantage of MRI compared to other volumetric
imaging techniques, such as computer tomography, is the excellent soft tissue contrast
and the avoidance of ionizing radiation.

2.3.1. Spatial Encoding

The wavelength in air, corresponding to the Larmor frequency of protons at 3 T, is about
2.35m. Spatially resolved sensor arrays, which are for example used in computer tomogra-
phy or positron emission tomography, are inapplicable in MRI. Instead, each MRI scanner
is equipped with three gradient coils to create an arbitrary magnetic field gradient G of the
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2. Principles of Magnetic Resonance Imaging

B, component of the magnetic field B. The components of the gradient G are denoted G,
Gy and G. If such a gradient field is applied, B. can be calculated as

B, = 7 G, (2.74)
= 2G; +yGy +2G. (2.75)

where z, y, z are the spatial coordinates and G, G, and G, are the gradient amplitudes of
the three coils (these gradient coils are the same being used for the diffusion encoding). As
a result, the local Larmor frequency w(r) is spatially dependent.

w(F) = wy +1GF (2.76)

Note that in the above equation the local off-resonance yABy(7) is assumed to be zero.
There are two different approaches for spatial encoding in MRI. On the one hand, magnetic
field gradients in combination with spatially selective RE-pulses are used to excite only a
certain volume, e.g. a single slice, which is typically called slice encoding. On the other
hand, the NMR signal can be Fourier encoded using the magnetic field gradients and the
image is reconstructed by an inverse Fourier transform. Both techniques are explained in
detail in the following sections.

Slice encoding

According to Eq. 2.76, w(7) is constant in all planes perpendicular to G if a magnetic field
gradient is applied. On the other hand w(7) increases linearly with |G| in the direction
parallel to G. Let wgp be the carrier frequency and Awgp the bandwidth of a rectangular
RF-pulse in the frequency domain. If a slice encoding gradient és is applied all spins
which are located in the slice given by Eq. 2.77 are on-resonant with the RF-pulse.

Awgp
2

A ;
TR < wo+ (G - 7) < wrp +

WRF — (2.77)

The position and orientation of the slice is dependent on és and wrp, and the slice thick-
ness As depends on |G| and Awpp.

As— B9 (2.78)

7\@

However, in reality a perfectly rectangular shaped RF-pulse in the frequency domain is un-
realistic because it requires a sinc-shaped envelope of (theoretically) infinite length in the
time domain (see section 2.1.3). Apart from practical considerations such as the duration
of the RF-pulse there are other limitations including the maximum amplitude or the duty
cycle of the RF-amplifier and more important Specific Absorption Rate (SAR) restrictions.
The latter describes the energy absorption by the scanned subject as it leads to heating of
the underlying tissue [81]. There are certain restrictions, depending on the scanned body
region, to avoid potential tissue damage. Moreover, the computation of RF-pulses with a
certain slice profile and with higher flip angles is nontrivial as the nonlinearity of the Bloch
equations needs to be taken into account (see section 2.1.3) [37]. Therefore, the slice pro-
file of an RF-pulse is always a compromise between several impact factors and it is never
exactly rectangular.
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Fourier encoding

In the previous section 2.3.1 it was described how a single slice can be excited by a RE-
pulse. In this section, the in-plane spatial encoding is explained. Assuming the slice
encoding direction is z and S(z,y) is the NMR signal originating from spins located at
position (x,y) in the excited slice. The signal induced in a nearby coil is the integral of
S(x,y) over all x and y (the spatial sensitivity profile of the receive coil is neglected).

S = //J:o S(z,y) dedy (2.79)

Now, a first gradient pulse is applied in  direction with the amplitude G, and the duration
7, and a second gradient pulse is applied in y direction with the amplitude G, and the
duration 7,. The two gradient pulses impart a phase shift ¢(z, y) onto S(z,y)

P(x,y) = Y(GaTaz + Gy1yy) - (2.80)

The signal S(G, 7., Gy, 7y), induced in the nearby coil, now depends on the amplitude
and duration of the applied gradient pulses.

+oo
S(Gyy o, Gy, 7y) = // S(x,y) exp(—iy[Gomer + Gy1yy]) dedy (2.81)

In fact, Eq. 2.81 bears a close resemblance to Eq. 2.70 which was used to describe the
connection between g-space and EAP. In this sense, the k-space S(k, k) can be defined
as the reciprocal space of S(z,y) with

1

kry = —vGu7y, (2.82)
2
1

ky, = %’VGyTy. (2.83)

The signal induced in the nearby coil S(k,, k,) can be calculated as the Fourier transform
of S(z,vy).

400 .
Skasky) = FIS@p)] = [ [ S, g)em ) oy (2.84)

However, in a MRI experiment S(k,, k:y) is sampled and an inverse Fourier transform is
applied to obtain S(z, y).

+00 .
S(z,y) = F S (ke ky)] = / / Sk, ey )e 2 keathey) G ke, (2.85)

It is important to note, that Fourier encoding is not restricted to two dimensions. There
exist plenty of 3D sequences where the RF-pulse excites the whole imaging volume and
the third dimension is Fourier encoded too.
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2. Principles of Magnetic Resonance Imaging

Discretization

Because during a MRI scan only a finite number of S(k,, k,) can be sampled, a discretized
version of the Fourier transform is needed in Eq. 2.85. The definition of the discrete Fourier
transform can be found in many signal processing or MRI books, e.g. in Bracewell et al.
[78] or Bernstein et al. [36]. Here, only the 1D case is described because the approach is
identical for higher dimensions. Let J and K be the indices for N discrete coefficients S ;
in image space and N discrete coefficients Sk in k-space. The Kth element of the Discrete
forward Fourier Transformation (DFT) is defined as

N-1 )
—i2nJK

Sk =Y S~ K=0,12,..,N—-1, (2.86)
J=0

and the Jth element of the Inverse Discrete forward Fourier Transformation (IDFT) is given
by

2 J K
J

L V-1
= — =0,1,2,... N -1 . 2.87
Sy NKXZ:OSKe N 0,1,2,..., (2.87)

The normalization factor 1/N is needed to ensure that a consecutive application of a DFT
and a IDFT result in the same values as before. However, the factor 1/N can be arbitrarily
distributed to DFT and IDFT as long as the product of both fractions yields 1/N. The Egs.
2.86 and 2.87 still lack a relation to physical units, namely the grid size in image space Ax
and in k-space Ak. To determine the relation for Az and Ak, the integrals of the continuous
Fourier transform, given in Egs. 2.84 and 2.85 are directly discretized for the 1D case. The
continuous variables = and £ are replaced by their discrete representations x ; and k.

x; = JAx (2.88)
kx = KAk (2.89)

To maintain the symmetry of the integral, the number of discrete values N is chosen to be
odd with

N=2M+1 MecN. (2.90)
Discretizing the continuous Fourier transform, given in Eq. 2.84, for the 1D case yields

M
S(KAk)= > S(JAz)e 2r/asKakny (2.91)
J=—M

and analogously, the continuous inverse Fourier transform, given in Eq. 2.85, results in

M
S(JAz) = Y S(KAk)e?™/ATEARAL (2.92)
K=—M

A comparison of Egs. 2.91 and 2.92 with the definition of DFT and IDFT in Egs. 2.86 and
2.87 reveals

1
Azdk =~ . (2.93)
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Based on Eq. 2.93, two important conclusions can be drawn. The resolution Ax in a Fourier
encoded dimension depends on the highest k-value AkN. Therefore, an increase in reso-
lution requires longer gradient pulses or higher gradient amplitudes. Also the coverage
AxzN in a Fourier encoded dimension, typically called Field Of View (FOV), is inverse
proportional to the grid size in k-space Ak.

Frequency and Phase Encoding

In the previous section, the IDFT was introduced to transform the discrete k-space signal,
which is regularly sampled on a Cartesian grid into the image space. Although there are
many non-Cartesian readout techniques such as spiral, radial or propeller [82-84], Carte-
sian sampling schemes are by far the most common, mainly due to the computationally
simple reconstruction.

If a two-dimensional (2D) Cartesian readout is used, two perpendicular directions that
span the FOV are defined, the Frequency Encoding (FE) direction and the Phase Encoding
(PE) direction. Now, a combination of gradients in PE and FE direction are used to sample
one line in k-space as illustrated in Fig. 2.6. After the excitation pulse, a dephasing gradient
in FE direction is applied to shift the position in k-space from the center to the edge. The
purpose of the prephasing gradient is to prepare the magnetization such that the whole FE
line in k-space can be sampled in the subsequent readout. At the same time a PE gradient
is applied to select one line k-space. Next, the FE gradient, also called readout gradient,
is applied while the Analog-Digital-Converter (A /D) samples the selected line in k-space.
This method is repeated with different PE gradients until the full 2D k-space is covered.
As already mentioned, Fourier encoding is also possible in all three dimensions, simply by
adding a second PE axis. Next, the gradient amplitude and duration of the PE and readout
gradients are calculated. Let Ax be the isotropic voxel size and N = 2M + 1, M € N the
matrix size assuming a quadratic FOV with edge length NAz. According to Eq. 2.93 the
grid size in k-space Ak is given by
1
- NAz *
For practical reasons, the duration 7pg of all PE gradients is typically set to a constant value
and the gradient area is scaled by the amplitude. Using the definition of the k-space given

in Eq. 2.82 the, amplitude Gpg(n) of the PE gradient that encodes the nth k-space line, can
be calculated as

Ak

(2.94)

2mn
=——— n=-M,-M+1,. . M—-1,M . 2.
GPE(n) ’}/NAZUTPE n M, +1,.. ) ( 95)
The readout gradient is typically parametrized using the readout bandwidth Av of the
A/D. Consequently the increment in k-space in the time 1/Av must equal Ak (which is

given by 1/[N Az]) and the amplitude of the FE gradient Ggg can be calculated as
G = —1— - (2.96)

It is important to note that typically, only the constant part of the readout gradient is used
to sample data since otherwise the grid size in k-space Ak would not be equidistant any-
more. Consequently, the gradient area of the ramp has to be included in the dephasing
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Figure 2.6.: Schematic illustration of one phase encoding step. After the excitation pulse,
a dephasing gradient (FE direction) and a PE gradient to prepare the actual
Cartesian readout. Next, one line in k-space is sampled while the FE gradient
is activated. This procedure is repeated with different PE gradients until the
full 2D k-space is covered.

gradient. However, very rapid imaging sequences use a technique called ramp sampling
where almost the complete readout gradient is used to acquire data. In this case, the k-
space data need to be regridded prior to IDFT [36, p. 506 ff.] or a non-uniform technique
must be used [85].

Partial Fourier

The Fourier transform has an important property for real valued functions. If a function
a(x), is real valued and a(x) is the corresponding Fourier transform of a(z) then a(x) is a
Hermitian function with

Q>

a(—z) =a(x) . (2.97)

That means in the case of MR], if the image space is real valued then only half of the k-space
needs to be sampled because the missing part can be calculated as the complex conjugate of
the first half. Unfortunately, the NMR signal is generally not real valued. Phase variations
¢(7) are for example caused by B, inhomogeneity, eddy currents or motion encoding (see
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section 2.2.2). However, these phase variations ¢(7) are most often smooth and therefore
can be sufficiently described by low frequencies in k-space.

In Partial Fourier undersampling, only one half of k-space is fully sampled and the other
half is only partially sampled. The degree of partial Fourier is typically described by the
portion of the sampled data, e.g. 5/8 Partial Fourier. The missing part of the data is
most simple replaced by zeros or otherwise, a Partial Fourier reconstruction algorithm is
applied. Partial Fourier reconstruction techniques try to correct for ¢(7) using the symmet-
rically sampled data and subsequently synthesize the missing data based on the conjugate
symmetry [86, 87]. If ¢(7) is sufficiently smooth, Partial Fourier results only in a SNR
penalty since less data was sampled, e.g. the SNR of a 5/8 Partial Fourier acquisition is
only \/5/78 = 79 % compared to a full k-space sampling. However, if ¢(*) cannot be well
approximated by the symmetrically sampled part of the k-space, significant artifacts can
arise. In DWI, velocity encoding of intracranial pulsatility [20] and subject motion can
lead to very inhomogeneous phase pattern due to the high gradient moments of the diffu-
sion sensitizing gradients (see section 2.2.2). Consequently, only moderate partial Fourier
undersampling is usually used (e.g. default at GE scanners is 7/8).

2.3.2. Pulse Sequences in Magnetic Resonance Imaging

A MRI pulse sequence is a series of RF-pulses, gradient pulses and readout windows. A
pulse sequence can be used to create a large variety of different contrasts. Most widely
used in MRI are Ti-weighted, T>-weighted and proton density weighted contrasts. The
first two contrasts are based on the relaxation times 77 and 75, where T7-weighting re-
sults in a high signal originating from short 7 species and T>-weighting results in a high
signal originating from long 75 species. To the contrary in proton density imaging, the
pulse sequence is designed such that the relaxation times have only a very weak influence
on the signal and the contrast is mainly determined by the density of spins. There exist
many more contrasts in MRI, most important for this thesis, the diffusion contrast (see
sections 2.2.1, 2.2.2, 2.2.3) but also others such as susceptibility weighted contrast (7%) [4],
angiographic contrast [88], BOLD contrast (75 weighting) [5] and many more.

Apart from the desired contrast, MRI pulses sequence can be also categorized in two
groups, namely Gradient Echo (GRE) and SE based sequences. In this section, a short
description for both types is provided. Subsequently, the EPI readout technique is intro-
duced, as it is most commonly used in DWI.

Gradient Echo Sequences

GRE is a class of rapid pulse sequences, which do not have a refocusing pulses to create
a SE. The first GRE sequence was called Fast Low-Angle Shot (FLASH) [89] GRE, which
substantially reduced the acquisition times, using low flip angles and short TRs. GRE
sequences are widely used in MRI, especially for high resolution 3D volume imaging. As-
suming a Cartesian readout scheme, a typical GRE sequence consists of a dephasing gradi-
ent in FE direction, a PE gradient, possibly a rephasing gradient in slice encoding direction
(depending on what kind of RF-pulse is used) and a subsequent readout gradient to ac-
quire one k-space line (see section 2.3.1). However, there are three types of GRE sequences
differing in the way how the remaining transverse magnetization is handled.
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In an unbalanced Steady State Free Precession (SSFP) sequence, the PE gradients are
compensated after the readout and a constant spoiler gradient is applied. Because the
gradient area of each TR interval is constant, a steady state of the magnetization is created.
The signal evolution of an unbalanced SSFP sequence can be explained with the theory
of Coherence Pathways (CPs) [90]. The magnetization which is dephased by the spoiler
gradient is split into three CPs by the next RF-pulse: one which is not effected by the RF-
pulse, one which is flipped into longitudinal direction by the RF-pulse and one which is
refocused by the RF-pulse. Subsequent RE-pulses split each CP in three more and so on
and so forth. This results in a very high number of CPs, all contributing to the measured
signal. Consequently, an unbalanced SSFP is not purely 77 weighted as CPs of previous
excitations contribute some 75 weighting as well. An unbalanced SSFP with a very large
spoiler gradient can also be employed for DWI which is investigated in section 5.2.1.

In a Spoiled Gradient Echo (SPGR) sequence, the remaining transverse magnetization
is perfectly spoiled and therefore the image can be purely 77 weighted. In this case only
longitudinal magnetization remains over subsequent excitations. After a certain number
of excitations pulses, a longitudinal steady state is reached where the T’ recovery within
one TR interval is the same as the decrease of longitudinal magnetization by the RF-pulse.
The optimal flip angle, where the traverse magnetization is maximized, is called Ernst

angle agmst [91]. .

QEmst = arccos(e Tt ). (2.98)
A challenge of SPGR is the actual spoiling of the transverse magnetization after the read-
out, since otherwise the 7 contrast would be contaminated by additional SEs and STEs
of previous excitations. A commonly used spoiling technique is called RF-spoiling, where
analogous to unbalanced SSFP the PE gradients are rephased and an additional constant
spoiler gradient is applied with the result that the gradient area is constant for each TR
interval. In addition, the phase of the RF-pulse is modulated following a certain algorithm
such that an almost perfectly spoiled signal is created [92, 93]. Apart from the 7} weighted
contrast, SPGR sequences with longer TEs can also yield a 75 weighting, which is used for
example in susceptibility weighted imaging [4] or functional MRI [5].

A third GRE sequence is Balanced Steady State Free Precession (bSSFP) where the gradi-
ent area of all axis is zero during each TR interval resulting in a very different steady state
compared to unbalanced SSFP [94]. A bSSFP exhibits the highest signal of all GRE with a
contrast approximately proportional to 75 /7). In contrary to unbalanced SPGR and SPGR,
the signal of bSSFP heavily depends on the off-resonance A Bjy which can be described by
the Frequency Response Function (FRF). The FRF describes the transverse magnetization
as a function of the dephasing angle 6 over one TR interval, defined as

0 = yABTR . (2.99)

In Fig. 2.7 the examples of the FRF are plotted for flip angles ranging from 2° to 90° and
relaxation times typical for WM in the human brain. The FRF for flip angles of 15°, exhibits
a significant drop of the signal at § = —n § = 7, which is called the stop band. However, for
6 in between —7 and 7, there is a plateau with high signal, which is called the pass band.
Consequently, in case of too high B inhomogeneity, bSSFP exhibits banding artifacts at
locations where § = —7 or § = w. Nevertheless, bSSFP is a very rapid sequence with a
strong SNR and it is fairly insensitive to motion due to the nulling of the gradient area in
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each TR interval. Because of these properties, bSSFP is for example widely used in cardiac
MRI [95].

O 1 1 1
-2 0 2

0in rad

Figure 2.7.: FRF of a bSSFP sequence showing the absolute value of the normalized trans-
verse magnetization |M | |/Mj as function of the dephasing angle #. The relax-
ation times, 77 = 1330 ms, 75 = 110ms and flip angles ranging from 2° to 90°
were assumed.

Finally, there is a GRE based sequence, called Magnetization-Prepared Rapid Gradient-
Echo Imaging (MP RAGE) which is not based on a steady state but uses an inversion
prepulse to enhance the T’ contrast [96]. MP RAGE is widely used in neuroimaging as it
yields an excellent WM to GM contrast.

Spin Echo Sequences

MRI pulse sequences which use one or more refocusing pulses belong to the class of SE
sequences. In the most simple case of a single SE sequence, an excitation pulse with a flip
angle of 90° is applied and after the time 7 a refocusing pulse with a flip angle of 180°
is used to form a SE at the time TE = 27 (see section 2.1.3) where one line in k-space is
acquired (see section 2.3.1). In contrary to GRE sequences the signal at the TE is truly 75
weighted because off-resonance effects are compensated by the refocusing pulse.

The major advantage of SE sequences is the flexibility to obtain all three main MRI con-
trasts, 77, T and proton density weighting. However, the disadvantage of single SE se-
quence as described before is the very low acquisition efficiency since each k-space line re-
quires one SE preparation. Moreover a substantial waiting time between two consecutive
excitation pulses is needed to allow the longitudinal magnetization to recover. Therefore
SE sequences are usually used in the 2D mode and multiple slice locations are interleaved
within a TR interval to increase the time for 7 recovery. Nevertheless, the efficiency of
a single SE sequence is still low. A significantly faster SE sequence is RARE, sometimes
also called Turbo Spin Echo (TSE), where a train of refocusing pulse is employed to pro-
duce multiple consecutive SEs [97]. As illustrated in Fig. 2.8, at each SE a different line in
k-space is encoded where the signal decays with 75. The number of refocusing pulses or
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Figure 2.8.:

Sequence diagram of a Rapid Acquisition with Relaxation Enhancement
(RARE) sequence. After the excitation pulse, a train of refocusing pulses forms
multiple SE where one k-space line is encoded at each echo respectively. The
PE gradients are reversed after each echo, for the reason that the total gradient
among all segments is constant. The gradients before and after the refocusing
pulses, called crusher gradients, ensure that only magnetization which was
initially flip into the transverse plane by the excitation pulse contributes to the
measured signal.
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the number of segments in RARE is typically called turbo factor, accounting for the fact
that the acquisition time can be approximately reduced by this factor compared to a sin-
gle SE sequence. There are three rules, suggested by Carr and Purcell [6] well as Meiboom
and Gill [42], therefore named CMPG conditions, which increase the robustness of a RARE
against B inhomogeneity:

e Condition 1: The phase of the excitation pulse is shifted by 7/2 with respect to the
refocusing pulses.

¢ Condition 2: The time between consecutive refocusing pulses is constant and twice
as long as the time between the excitation pulse and the first refocusing pulse.

¢ Condition 3: The phase that is being accumulated between two consecutive refocus-
ing pulses is constant (therefore the gradient area of each segment must be constant).

RARE sequences are widely used in MRI due to their high flexibility regarding the image
contrast. There are also 3D versions, usually using very long echo trains with a technique
called echo stabilization, where the refocusing flip angle is modulated to obtain a more
constant signal of the echoes [98].

Echo Planar Imaging

Echo Planar Imaging (EPI) is one of the fastest imaging techniques in MRI [99], capable
to acquire a single 2D image within tenth of seconds. In EP]I, a series of bipolar readout
gradients is employed to generate a GRE train yielding a much faster sampling rate than
the SE train of a RARE. The EPI readout technique can be used for almost all MRI contrasts
including 71, T> and T3. Due to the very high acquisition speed, EPI set the stage for new
MR applications, such as DWI or functional MRI. The biggest disadvantage of EPI is the
very high sensitivity to off-resonance effects, such as By inhomogeneity (see section 2.3.3),
Eddy currents (see section 2.3.3) and chemical shifts, but also concomitant magnetic fields
(see section 2.3.3) and system imperfections such as mismatched gradient group delays
and gradient amplifier hysteresis [36]. Although there exist segmented k-space EPI tech-
niques for 2D and for 3D, in DWI, most often a ST diffusion preparation with a subsequent
single shot 2D EPI readout is used. The term single shot implies, that the complete image is
encoded with a single EPI echo train. The reason why a single shot readout is preferable in
DWI is the motion encoding of the diffusion sensitizing gradients which can lead to phase
inconsistencies between k-space segments belonging to different diffusion preparations.
However, alternative acquisition techniques for DWI are investigated in chapter 7.

In Fig. 2.9 an exemplary sequence diagram of a 2D single shot EPI sequence with a
ST preparation is shown, based on the implementation on a MR750w (GE Healthcare,
Milwaukee,WI). Below, all gradient pulses, RF-pulses and readout windows are explained
in the chronological order given in Fig. 2.9:

¢ RF1: This is a nonspatial, frequency selective RF-pulse to excite only the fat in the
imaging volume.

* Gyspl: The spoiler gradient Gysp1 is used to dephase the previously excited fat
signal. Due to its different chemical shift compared to water, fat would result in
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Figure 2.9.: Sequence diagram of a single shot 2D EPI sequence with a ST diffusion prepa-
ration. All gradients, RF-pulses and readout windows are marked and corre-
sponding explanations can be found in the text next to this figure.
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ghosting artifacts (see section 2.3.3) due to the EPI readout. The fat suppression
technique shown here is called fat saturation but also other methods such as spectral,
spatial water excitation [100] or Short Tau Inversion Recovery (STIR) [101] can be
used.

RF2, G,s1: RF2 is a slice selective 90° excitation pulse with the corresponding slice
selective gradient G;s1.

Gxd1, Gyd1, G.d1: First diffusion weighting gradient of the ST preparation, simul-
taneously applied on all three gradient axes. The diffusion encoding direction corre-
sponds to the vector addition of the G, G, and G, component.

delayl: This delay is used to ensure, that the SE occurs when the k-space center is
sampled during the readout.

Gxcl, Gycl, G,cl: This is the first crusher gradient which is simultaneously applied
on all axes. Crusher gradients are used to account for potential B; inhomogeneity.
Together with the second crusher gradient Gxc2, Gyc2, G,c2 it is ensured that only
the CP that is being refocused contributes to the measures signal. The CP which
is not affected by the RF-pulse is twice dephased by the crusher gradients and the
CP rotated into the longitudinal direction does not contribute to the signal anyways.
Further, new magnetization, which is flipped into the transverse plane by an imper-
fect refocusing pulse is dephased by the second crusher gradient. Note, that the size
of G,c1 is smaller than G,c2 because the gradient area of the slice rephasing gradient
and the gradient area of the first crusher gradient are added together.

G,s2: Slice selective gradient for the refocusing pulse. Note that, a symmetric refo-
cusing pulse does not require a slice rephasing gradient.

Gxc2, Gy2, G,c2: The second crusher gradients after the refocusing pulse.

Gxd2, Gyd2, G,d2: Second diffusion weighting gradient of the ST preparation, si-
multaneously applied on all three gradient axes.

Gydel, Gydel: Dephasing gradients in FE and PE direction. The trajectory of the
dephasing gradients from the k-space center to the lower right corner is shown in
Fig. 2.10. Note that partial Fourier in PE direction is used and therefore the area of
the PE dephaser is smaller than the area of the FE dephaser.

GxFE1-G4FE40,acql-acq40, GyPE1-GyPE39: The actual EPI readout train consisting
of the readout gradients Gy\FE1-GFE40 where the polarity of gradients with an odd
number is negative and with an even number is positive, the corresponding data
acquisition windows acql-acq40 and the small PE gradients GyPE1-GyPE39, called
blips, which shift the position in k-space to the next line. The corresponding k-space
trajectory is shown in Fig. 2.10. Note that in the given example, two undersampling
techniques, Partial Fourier (see section 2.3.1) and parallel imaging are used. Parallel
imaging allows for a for a coherent undersampling of the data—in this example only
every second line is sampled—where the missing data is reconstructed using infor-
mation about the sensitivities of a multi-coil receiver array [26, 102, 103]. Moreover
ramp sampling is used to reduce the duration the readout gradients [104].
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* G, spl: Spoiler gradient to dephase remaining transverse magnetization.
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Figure 2.10.: k-space trajectory of the single shot 2D EPI sequence as shown in 2.9. Parallel
imaging with an acceleration factor of 2, ramp sampling and partial Fourier
in PE direction are used.

As shown in Fig. 2.9, the diffusion preparation takes a fairly long time, resulting in a
significant 75 weighting of the signal. This 75> weighting is unwanted in DWI as it reduces
the SNR. In MRI sequences with long echo trains, such as EPI or RARE, the weighting of
the signal is dominated by the weighting of the k-space center. Therefore the TE is defined
as the time when the k-space center is acquired. Consequently a diffusion weighted single
shot 2D EPI, is highly optimized for a TE as short as possible, involving techniques such
as Partial Fourier, parallel imaging and ramp sampling. However, these efforts are limited
by the SNR loss due to the reduced sampling time—the SNR is proportional to the square
root of the sampling time [105]—and in case of parallel imaging by the so called g-factor
penalty on the SNR, which limits the amount of undersampling [26, 103]. The reduction
of T, weighting in DWI is also one of the reasons why the maximal gradient strength of
MRI scanners is continuously increasing [106]. Furthermore, ramp sampling and parallel
imaging also have significant impact on the off-resonance artifacts in EPI images as they
reduce the so called Echo Spacing (ESP) which is defined as the time between the echo
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center of two consecutive readout gradients of the EPI train. Details can be found in section
2.3.3.

2.3.3. Sources of Artifacts in MRI
Convolution artifacts

An important property of the Fourier transform is that a convolution in one domain is
equivalent to a simple multiplication in the other. The convolution of two functions f(x)
and g(z) is defined as

“+00

f@) g = [ fw-agle) o’ (2.100)

—00

and the corresponding Fourier transform is defined as

F(f(@)*g(x)) = F(f(x))F(G()) . (2.101)

In MR, the k-space is usually sampled, for a given image resolution Az, from —1/(2Ax) to
1/(2Ax). Consequently the reconstructed image is a convolution of the true image with a
sinc function (the Fourier transform of a rectangular sampling window). The side lobes of
the sinc cause ringing artifacts, particularly near sharp edges, which is also called trunca-
tion artifacts or Gibbs ringing (after Josiah Willard Gibbs). Gibbs ringing is generally less
pronounced for high resolution, because the frequency of the sinc function is increased and
the lobes are narrower. Gibbs ringing artifacts can be also reduced using window functions
with a smoother Fourier transform, which however, reduces the effective resolution.

In MRI sequences with a long readout train, such as RARE or EP]I, the window function
is dominated by 75 or T35 decay. As a result, these sequences typically suffer from addi-
tional blurring of the image and a reduced effective resolution, depending on the length
of the echo train and the relaxation times of the tissue. 3D RARE sequences often exhibit
a very long readout train, and therefore, echo stabilization techniques are used to obtain a
more constant signal amplitude [98].

Aliasing artifacts

According to the Nyquist-Shannon sampling theorem, the sampling frequency f; must be
twice as high as the difference between the highest frequency f,., and the lowest f,;, in
the signal [107, 108].

fs Z 2<fma:c - fmm) (2102)

If this condition is violated, aliasing occurs because different frequencies of the signal be-
come indistinguishable in the sampled data. In MRI the theorem can be formulated as

1
< — ; .
Aky = Tmazr — Tmin (2 103)

where %4, and x,,;, are the spatial coordinates of the spins with furthest distance from
each other. If this condition is violated, the signal originating from spins at different po-
sitions can become indistinguishable and overlap in image space. The area or the volume
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which is covered by the Fourier encoding is called Field Of View (FOV) and corresponds
to the inverse k-space grid size A#kz. Spins that exceed the FOV on one end erroneously
alias into the FOV on the opposite site.

It is important to note, that only spins that induce a signal in the receive coils can cause
aliasing. Consequently, one method to avoid aliasing are spatially selective RF-pulses
which excite only spins within the FOV. Moreover, many receive coils, e.g. phased array
coils, exhibit a very narrow sensitivity profile. Thus, spins outside this sensitivity profile
cannot cause aliasing. Furthermore, if a Cartesian readout scheme is used, Ak, in FE di-
rection can be simply reduced by increasing the sampling frequency of the A/D without
any loss of time or SNR, which is called oversampling. Therefore, aliasing is typically only
a problem in PE direction. Finally, parallel imaging methods can be used to unalias vox-
els which violate the Nyquist-Shannon sampling theorem at the cost of potential g-factor
penalty in SNR [26, 103].

In non-Cartesian readout schemes, such as spiral or radial, the points in k-space are not
spaced equidistantly. As a result, aliasing artifacts of non-Cartesian readout schemes often
look more similar to noise or blurring, rather than the coherent aliasing artifacts obtained
for Cartesian readout schemes.

By inhomogeneity

Almost all in-vivo MRI systems with a field strength of more than 0.5 T rely on super-
conducting magnets. When the magnetic field is first ramped up, the root mean squared
B, inhomogeneity can be up to 50 ppm of the static magnetic field strength [109] within
the so called Diameter Spherical Volume (DSV). For a human scanner the DSV diame-
ter is typically about 45 cm [109]. When the magnet is commissioned, there are typically
two techniques to homogenize the magnetic field. On the one hand, ferromagnetic el-
ements are strategically placed around the magnet which is called passive-shimming or
ferroshimming. On the other hand, some MRI scanners are additionally equipped with
superconducting shim coils to further improve homogeneity of the magnetic field. Typi-
cally the field homogeneity of the empty magnet finally reaches about 1.5 ppm within the
DSV volume [109].

However, as soon as an object is placed in the magnet, the homogeneity of the magnetic
field is perturbed by the magnetic response of the specific object. This magnetic responds
can be described by the unitless volumetric susceptibility coefficient x. The magnetic field
By that the spins experience during an MRI or NMR experiment differs from the static
field Eempty of the empty magnet by the factor (1 + x).

Bo = Bempty(1 + X) (2.104)

It can be seen from Eq. 2.104, that susceptibility induced B, inhomogeneity scales with the
field strength of the magnet. In MRI, especially tissue-air interfaces can cause significant
magnetic field perturbations since air is slightly paramagnetic (x = 0.3 ppm) while biolog-
ical tissue is typically diamagnetic (xy = —9.2 ppm). Although many modern MRI scanners
are equipped with higher order shim coils, the spatial distribution of susceptibility in-
duced magnetic field perturbations is usually too inhomogeneous to be fully corrected.
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Regarding head imaging, especially air cavities, such as the sinuses, the nasal cavity, the
ear channels or the jaw, cause significant By inhomogeneity.

Basically, an inhomogeneous By field results in an increased 75 decay and a reduced
SNR of the FID. In a bSSFP sequence, off-resonance can also cause banding artifacts as
shown in Fig. 2.7. Additionally, some MRI sequences, such as spiral or EPI, suffer from
severe blurring or geometrical distortions because of By inhomogeneity. Since EPI is the
most commonly used readout technique for DWI, off-resonance effects are described in
more detailed below.

In EPI, geometrical distortions occur predominantly in PE direction [110]. The reason is,
that the timespan between the acquisition of two consecutive k-space points in FE direction
is far smaller than in PE direction (see Fig. 2.10). Off-resonance effects can be understood
using the following example, assuming the k-space signal Sy (k, k) that corresponds to
the image space signal S(z,y) = Sod(x—x0)d(y—yo) of one spin at position z, yo, where k&,
is the FE direction k, is the PE direction. Due to the off-resonance A By, the k-space exhibits
a phase gradient mpok, in PE direction because the PE lines are sampled consecutively in
time and therefore, the spin accumulates phase. Now, S, (k,, k) is calculated as the Fourier
transform of S(z,y).

+oo X
Sk(ka ky) = So / / 0(a — 20)d(y — yo)e T thuytmnok) drdy - (2.105)

— Soe*iQW(kzx0+kyy0+mBOky) ) (2106)
The effect of m py can be corrected by the coordinate transform y(, = yo + mpgo.
Sk (ky, ky) = Spe2m(kamothyyo) (2.107)

This example demonstrates the effect of a phase gradient m gy in the acquired k-space data
which causes a shift of the spins in image space. The shift can be quantified with the
bandwidth per pixel A f,, which is defind as

1

Afo=NTar

(2.108)

where At is the time between the sampling of two consecutive points in k-space and N
is the corresponding matrix size. For the EPI case, 6t is equivalent to ESP. For example,
assuming a matrix size of 100 and an ESP of 0.5ms, the corresponding bandwidth per
pixel is Af,, = 20 Hz. That means that a off-resonance of YABy = 20 Hz results in a shift
of a voxel. For example at 3T, the off-resonance in the brain can easily exceed 100 Hz in
some regions. It is important to note that these spatial shifts can also occur in FE direction.
However, the effect is much less pronounced because 1/At corresponds to the receiver
bandwidth which is typically several ten thousand Hz.

If the By inhomogeneity ABy(7) is spatially inhomogeneous, geometrical distortions
occur because spins with different Larmor frequencies are shifted differently. Fig. 2.11a
depicts an undistorted T, weighted slice of the brain in axial orientation. The correspond-
ing fieldmap, given by vBy(7)/(2), is shown in Fig. 2.11b. The fieldmap exhibits multiple
maxima originating from air cavities, including the nasal cavity (marked with 1), the ear
channels (marked with 2) and the sinuses (marked with 3). Severe image distortions can
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in HZ
100

Figure 2.11.: EPI distortions of an axial slice assuming ESP = 0.6 ms, matrix size in-plane
96 x 96, and an isotropic resolution of 2.5 mm. a: Undistorted 7> weighted
image, b: Corresponding By fieldmap to a, c: Image distortions assuming the
PE direction is Anterior-Posterior (AP), d: Image distortions assuming the PE
direction is Left-Right (LR).

be seen in the corresponding EPI images, for PE in AP direction (Fig. 2.11c), or in LR direc-
tion (Fig. 2.11d). In regions with a strong gradient in the fieldmap, image compression or
image stretching can be observed in the PE direction. As a result, there are also significant
fluctuations of the image intensity, because either the signal of multiple voxels is erro-
neously compressed to one voxel, or the signal in some regions is erroneously stretched
over multiple voxels, leaving a hole with low intensity.

Several techniques have been proposed to correct for off-resonance induced EPI distor-
tions, such as fieldmap based approaches [111], reverse gradient techniques [112, 113],
or point spread function methods [114, 115]. Although geometrical accuracy can be sig-
nificantly improved, especially with the latter to methods, regions of severe image com-
pression are still challenging because the unwarping operation is not well conditioned.
Geometrical distortions can also be reduced in the acquisition by keeping the effective ESP
as short as possible. Particularly, the spatial resolution and the parallel imaging acceler-
ation factor have a large impact on the geometrical distortions. On the one hand, higher
spatial resolutions require longer readout gradients which lengthens the ESP. On the other

44



2.3. Magnetic Resonance Imaging

hand, the effective ESP can be shortened by the parallel imaging acceleration factor r, be-
cause only every rth line is sampled reducing the readout time and potential phase errors.
However, shortening the ESP by using higher gradient strengths for the readout is usually
technically but also physiologically limited due to peripheral nerve stimulation [116].

Eddy currents

According to Faraday’s law of induction, all conductive materials respond to changes of
the magnetic flux with an opposing field. This opposing field results from eddy currents
which are, for example induced in the gradient coils itself, but also in elements of the
receive coils or other conductive materials. In MRI, eddy currents are generated during
the ramps of the gradient pulses and therefore, increase with higher gradient amplitudes
and faster slewrates.

The spacial distribution of the eddy current field B, (7, t) is typically described in a Tay-
lor expansion [36, p. 320].

Bo(7t) = by(t) + 7 Ge + ... (2.109)

The first term by(t) is typically called By eddy currents, the second term G. is called linear
eddy currents and all other terms are called higher order or nonlinear eddy currents.

The time evolution of eddy currents can be modeled in good approximation by an expo-
nential decay [117]. However, on a commercial scanner, the decay constants can vary from
a few microseconds up to multiple seconds depending on the resistance and inductance
of the circuits, where the eddy currents are induced [36, p. 318-322]. Therefore, the time
evolution of the eddy current field is a superposition of multiple exponential decays.

The increase and decrease of the gradient field generates eddy currents with opposite
sign. Consequently, eddy currents arising from trapezoidal gradient pulses partially can-
cel, depending on the plateau time. Unfortunately in DWI, the plateau time of the diffu-
sion weighting gradients is typically very long compared to the imaging gradients. Con-
sequently, eddy currents arising from the ramp up of the gradient have partially decayed
already, so that eddy currents from the ramp down cannot be fully eddy compensated. As
a result, some eddy currents from the diffusion weighting gradients usually persist during
the readout.

Eddy currents can cause image artifacts, particularly in sequences with long echo trains,
such as EPI or RARE. For example in EPI, eddy currents arising from the alternating po-
larity of the readout gradients, can create a mismatch of odd and even lines in k-space,
which results in ghosting artifacts. Moreover in DWI, the eddy currents originating from
the diffusion weighting gradients generate an off-resonance field which can cause geomet-
rical distortions in the same way as By inhomogeneity (see section 2.3.3). There are three
typical distortion patterns induced by eddy currents. On the one hand, a By eddy current
results only in a shift of the imaging object in PE direction. On the other hand, a linear
eddy current in PE or FE direction cause shearing and scaling of the imaging object in PE
direction, respectively. Moreover, these eddy current induced distortions highly depend
on the diffusion encoding gradients, and therefore, can be different for each DWIL

Several techniques have been developed to reduce eddy currents. Most important are
shielded gradient coils, which can reduce the eddy current amplitude by one to two orders
of magnitude [118]. Furthermore, waveform preemphasis is a widely used technique,
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where the waveform that is input to the gradient coil is modified such that subsequent
eddy currents are canceled. Additionally, in some cases, the gradient amplitude can be
derated in favor of a longer gradient pulse, which also reduces the eddy currents. Fi-
nally, some eddy current effects can be corrected in the post processing. For example, the
mismatch between odd and even lines in EPI can be corrected using a reference scan, or
eddy current induced geometrical distortions from the diffusion encoding gradients can
be corrected with an affine registration on an undistorted image.

Concomitant field terms

In section 2.3.1, it is shown that the gradient coils of an MRI scanner generate a spatially
varying z-component B, of the magnetic field B(7).

B, =x2G; +yGy + 2G., (2.110)

However, the Maxwell equations V - B=0andVxB =0 (assuming free space, i.e.
no sources are present) require that a spatial gradient of B, is accompanied by spatial
gradients in the B, and B, component. Consequently, in the presence of a magnetic field
gradient, the Larmor frequency is not given by B, but must be calculated as

w=y/B2+ B2+ B2 . 2.111)

Assuming gradient coils with a cylindrical symmetry, the Taylor series of |§ ()| until the
second order [119] is given by

1
2By

?+y”

|B(7)| = By + 2Gs + yG,, + 2G., + .

(G?EZQ + Gzz2 + Gg G.G,xz — GyGZyz).
(2.112)
The last terms in parentheses are called concomitant field terms which cause an additional,
spatially varying phase shift when a gradient is applied. In contrary to By inhomogeneity,
the concomitant field scales with the inverse field strength 1/B0 and therefore, are less of
a problem at 3 T. Moreover, in DWI of the brain, the FOV is typically rather small and the
slice orientation is typically close to axial which significantly reduces the EPI distortions
due to the concomitant field [120].
Similar to By inhomogeneity, EPI distortions arising from the concomitant field can be
corrected in the post processing. However, the concomitant field is independent of the

imaging object, and therefore generally easier to handle than B, inhomogeneity [120].
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3. Bias and precision analysis of DKI for
different acquisition schemes

The content of this chapter was published in the scientific journal Magnetic Resonance in
Medicine (MRM) and it was recently made available as early view [121]. The manuscript
was entitled "Bias and precision analysis of DKI for different acquisition schemes".

3.1. Introduction

In section 2.2.5 the Diffusion Kurtosis Imaging (DKI) diffusion model is introduced which
describes the non-Gausianity of diffusion in biological tissue [15]. Regarding the data
acquisition for DKI, the most common approach is a multi-shell acquisition scheme com-
prising: one or more b=0-images, two to five concentric spherical shells in g-space, a fixed
number of non-collinear diffusion directions per shell ranging from 15 (the minimum for
the DKT) to 32 (9,20-22) and maximum b-values ranging from 2000 s/mm? to 3000 s/mm?
[122]. Widely used is a 5-shell acquisition scheme, first introduced by Lu et al. [13], with a
uniform b-value spacing of the shells, 30 non-collinear directions, and a total of 150 DWIs.
However, Poot et al. showed an optimized DKI acquisition scheme based on a Cramér Rao
lower bound analysis [123] which includes 3 shells with 25, 45, 70 directions and corre-
sponding b-values of 700 s/mm?, 1000 s/mm?, 2800 s/ mm? respectively [68]. Furthermore
a general enhancement for multi-shell acquisition schemes has been reported by jointly
maximizing the angular incoherence of the directions of all shells [124, 125]. Besides the
multi-shell acquisition schemes, also DSI sampling schemes (see section 2.2.5) have been
used for DKI [126]. To shorten the very long acquisition times of DSI a technique called
Compressed Sensing Diffusion Spectrum Imaging (CS-DSI) was introduced which under-
samples the Cartesian grid and uses a Compressed Sensing (CS) algorithm to reconstruct
the full g-space [126, 127]. In addition to recovering the signal of only partially measured
samples, CS can also be used to recover inaccurately sampled data, e.g. noise corrupted
data [128]. This can be employed to address the low SNR of DWIs which represents a
problem for DKI in two respects: First, it causes low precision of the derived scalar metrics
and second, it causes a significant bias to the derived kurtosis metrics due to the Rician
distribution of the noise, as processing is commonly done on magnitude data [68, 71, 129].
Several approaches have been carried out to counter these problems. A comparison be-
tween LLS fitting and WLLS showed that the precision of the estimation of the DKT can be
increased without introducing additional bias if the weights for the WLLS fitting routine
are carefully chosen [71]. Furthermore, Maximum Likelihood Estimation (MLE) has been
used to significantly reduce the bias of the DKT [68, 70]. However, a crucial requirement
for MLE is the knowledge of the correct noise amplitude, which is often non-uniform due
to parallel imaging effects [129, 130]. As a result accuracy and precision of MLE estimators
often suffer from incorrect estimation of the noise amplitude [71]. Additionally correction
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for susceptibility induced imaging distortions, subject motion, or eddy current induced
geometric deformations can alter the noise distribution.

Previous work extensively investigated the performance of conventional estimators like
LLS and WLLS as well as more sophisticated estimators like MLE to fit the DKI model
[68, 71, 129]. It has been found that a low SNR causes a positive bias of scalar DKI met-
rics like mean Kurtosis. In this work the most common estimator WLLS is used and the
3D distribution of the AKC in terms of bias and precision is analyzed. For this study
Monte Carlo simulations are conducted using different voxel types as well as real data
experiments involving complex averaging of multiple repetitions as ground truth. The
correlation between the anisotropy of a voxel and the stability of the DKI model will be
investigated because failed fits in DKI metrics are often seen in high FA regions like the
corpus callosum [15, 123]. In addition different state-of-the-art acquisition schemes are
systematically compared in terms of precision and resulting bias regarding the DKI model
and the influence of denoising using averaging or CS is investigated.

3.2. Methods

3.2.1. Data Acquisition

DWTI acquisitions were obtained from one healthy volunteers. The study protocol was in
line with the Declaration of Helsinki and was approved by a local ethical review board.
The data were acquired with a 3T GE MR750 scanner, with a maximum gradient strength
of 50mTm~! (GE Healthcare, Milwaukee, WI) using a ST diffusion preparation and a
single-shot 2D EPI readout train. The imaging volume was recorded with a matrix size
of 96 x 96 x 16 and an axial oriented 24 x 24 x 4 cm?® scan volume, covering the brain at
the level of the corpus callosum. Further acquisition parameters were: isotropic resolution
2.5mm, TE = 80.7ms, TR = 1800 ms, ESP = 0.592 ms, effective readout bandwidth per pixel
1930 Hz. A 32-channel head coil was used with parallel imaging factor 2 in the phase-
encoding direction and Sensitivity Encoding (SENSE) reconstruction [26].

DWIs with 5 different acquisition schemes in g-space were obtained with a maximal
b-value of 3000mm?s~!. Two versions of the 5-shell acquisition scheme based on Lu
et al. (9) with 30 directions and corresponding b-values of 600 mm?s~!, 1200 mm?s~!
1800 mm? s, 2400 mm?s~! and 3000 mm? s~ were acquired. The first version features
collinear directions for the 5 shells and is referred to as c5shell (Fig. 3.1a). In the second
version the directions are distributed to maximize angular incoherence [125], referred to as
mibshell (Fig. 3.1b). Furthermore two versions of the 3-shell acquisition scheme from Poot.
et al. [123] with 25, 40, and 75 directions for the three shells and corresponding b-values
of 750mm?s~!, 1070 mm?s~! and 3000 mm?s~! were acquired. The first version features
3 shells where the directions for each shell are distributed homogeneously but there is no
coupling between the shells, referred to as r3shell (Fig. 3.1c). In the second version the
directions are distributed to maximize angular incoherence [125], referred to as mi3shell
where 10 repetitions of this scheme were acquired. Finally an 11-cube DSI acquisition
scheme with 514 DWIs on a spherically bounded Cartesian grid was acquired, referred
to as fDSI. The DSI scheme was also used to derive a uniformly randomly undersampled
DSI (uDSI) dataset comprising only 150 DWIs (Fig. 3.1d). Furthermore, a single-shell DTI

7
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acquisition scheme with 60 directions and a maximum b-value of 1000 mm?s~! was ac-
quired. Interspersed b=0-images every 20 DWIs were acquired for retrospective motion
correction.

@ g-space center @ g-space center
@ 1. shell 30 directions, |7 |=0.45 @ 1. shell 30 directions, |7 |=0.45
2. shell 30 directions, |7 |=0.63 2. shell 30 directions, |7 |=0.63 @ g-space center
3. shell 30 directions, |7 [=0.78 3. shell 30 directions, |7 |=0.78 @ 1. shell 25 directions, |7 |=0.5
@ 4. shell 30 directions, |7 [=0.89 ® 4. shell 30 directions, |7 |=0.89 2. shell 40 directions, |7 |=0.6 0.2 04 0.6 0.8
@ 5. shell 30 directions, |7 [=1.00 @ 5. shell 30 directions, |7 |=1.00 @ 3. shell 75 directions, |7 |=1.0 |ﬁ |

Figure 3.1.: DKI acquisition schemes in g-space. The vector 77 = ¢/|¢mas| corresponds to
¢ normalized by the maximum g-value among all acquisition scheme |Gz |-
The x, y, z axes correspond to the n;, n,, n, and the color bar shows the ab-
solute value of |ii|. The corresponding b-value would be defined as: |7]? times
maximal b-value of the acquisition. (a) mibSshell, 5 shell acquisition scheme
with 30 directions per shell, equidistant spacing of the shells in b-space, all
150 directions are arranged to maximize angular incoherence (b) c5shell, same
as a) but directions are collinear (c) mi3shell, 3-shell acquisition scheme with
increasing number of directions per shell and an optimized spacing for DKI,
directions are arranged to maximize angular incoherence, the r3shell scheme
is not shown as it looks very similar, (d) uniformly randomly uDSI scheme ar-
ranged on 11 x 11 x 11 Cartesian grid in g-space with 150 sample points. The
colored points are sampled with the corresponding g-value whilst the small
grey points are not sampled (due to undersampling).

3.2.2. Data Preprocessing

All interspersed b=0-volumes were coregistred on the first b=0-volume using an affine
transformation to compensate for motion during the acquisition. Subsequently all DWIs
were corrected employing the same transformation parameters as those being used for the
closest b0-images. As simulation results indicated an increase of bias if magnitude aver-
aging is used, complex averaging of 9 repetitions of the mi3shell scheme was utilized to
create a “bronze standard”. Prior to averaging, phase correction of the DWIs were car-
ried out following the method of Prah et al. [131] using a quadratic filter kernel of size 3.
The magnitude of the complex averaged data was taken, as WLLS can only be applied to
positive real valued data. The resulting bronze standard exhibits a significantly reduced
bias and increased precision comparable to data with an SNR almost three times higher.
However, the bronze standard is not a perfect ground truth for two reasons. On the one
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3. Bias and precision analysis of DKI for different acquisition schemes

hand, there is a remaining bias due to potentially imperfect phase correction and the ab-
solute value operation after complex averaging. On the other hand, DKI itself exhibits
a model error, as it does not provide a full description of the diffusion-weighted signal.
Moreover, this model error also depends on the acquisition scheme. In addition to the 6
schemes already described in section data acquisition (c5shell, mi5shell, r3shell, mi3shell,
fDSI, uDSI) two further datasets were derived. Firstly a magnitude average of 9 repeti-
tions of the mi3shell scheme (the same data used for the bronze standard) referred to as
mi3shell9ma and secondly a CS reconstruction of the uDSI scheme referred to as csDSI
[126]. Details of the CS reconstruction are described below. Separation of intracranial vol-
ume from soft tissue was performed by an automated brain extraction algorithm (FSL,
BET) [132]. Further, segmentation into WM, grey matter GM and CSF was approximated
using an absolute thresholding approach on the MD and FA maps computed from the
single-shell DTI dataset. All voxels with MD > 1.8 x 107? m?s~! were considered as CSF,
all voxels with MD < 1.8 x 107?m?s~! and FA < 0.2 were considered as GM, and the
remaining voxels were considered as WM [133, 134].

3.2.3. Undersampling and CS Reconstruction

Given the undersampled g-space signal y, CS-DSI computes the data x in the reciprocal
propagator space (EAP) by solving

min ([|Az = yll2 + Arv [TVE)[[1 + Awav [Ywavz|:) (3.1)

with A = MF (where M is the undersampling operator mask and F' is Fourier trans-
form), TV and Uy 4y the sparsifying transforms into total variation and wavelet domain,
respectively, and Ary and Ay 4y the corresponding weights.

Eq. 3.1 can be solved using an iterative shrinkage-thresholding algorithm (ISTA) [127,
135]. In each iteration for a given iterate x the residual z between the sampled data y and
the Ax is calculated.

z=y— Az (3.2)

Next a gradient descent is applied using the adjoint operator A (which is identical to the
inverse Fourier transform) to the residual z.

w=A%z 4z (3.3)

Finally the next iterate 2’ is calculated by applying the denoising operators 77y and nw av
on w.

2" = nwav nrv(w))] (3.4)

The denoising operators 17y and nw 4y are defined as

nrv(w) = w—oryVTV(w) (3.5)
Vw
T = div[ = _
VTV (w) div (va’> (3.6)
nwav(w) = Uyay 1T (Tyayw) (3.7)
T(w) = w —sgn(w)oway if [w'| > owav (3.8)
0 else '
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3.2. Methods

where o7y and ow 4y are weighting parameters that control the amount of denoising.
A empirical optimization of the denoising parameters for DKI resulted in o7y = 1 and
oway = 0.2

In this work a uniform random undersampling pattern comprising 150 g-space points
out of 514 was used (Fig. 3.1). For the pattern generation, point symmetry of g-space was
employed to sample at most one of the two central symmetric points to increase angu-
lar resolution. Before CS reconstruction each acquired DWI was copied to its antipodally
symmetric counterpart in g-space. This ensures real valued data in the EAP due to Hermi-
tian symmetry of g-space and it enforces the ISTA algorithm to check data consistency also
for the virtual antipodally symmetric counterpart in each iteration. Furthermore random
translations in the EAP space were used for each iteration to improve performance of the
wavelet denoising [127].

3.2.4. DKI fitting

The DKI model was fitted using a WLLS routine that was implemented in Matlab (Math-
Works, Natick, MA). The WLLS weights were chosen as the squared values of the pre-
dicted signal of a DKI fit obtained by a LLS estimator [71, 136]. To allow AKC values only
within physically acceptable range, constraints #1 and #2 (see Eqs. 2.61 and 2.62) were
imposed in all acquisition directions as described in section 2.2.5. The linearly constrained
problem was solved using quadratic programming . The third constraint #3 (see Eq. 2.63),
enforcing the signal to be monotonically decreasing for all acquisition directions was not
used as it was found to not significantly improve the fit.

The average of the AKC was calculated in the scaled inherent coordinate system and is
denoted MZ as described in section 2.2.5. The Radial Kurtosis (AKC ) was calculated nu-
merically in the scaled inherent coordinate system as the average AKC over 60 uniformly
spaced directions pointing perpendicular to the main eigenvector of the DTpky. The Ax-
ial Kurtosis (AKC|) was calculated as the AKC in the direction of the main eigenvector.
The extrema, Minimum Kurtosis (AKC,,in) and Maximum Kurtosis (AKCpax) were also
calculated numerically, using 1024 uniformly distributed directions on a sphere.

3.2.5. Simulations

To assess the performance of the different acquisition schemes, Monte Carlo simulations,
assuming Rician noise, were carried out. Three sets of DTpky and DKT coefficients were de-
rived from the real data acquisition to serve as inputs for the simulations as shown in Fig.
3.2a-c. For this purpose three different voxel types were defined empirically using the DTI
model: a GM voxel with eigenvalues A1, A2, A3 from 0.5 x 107 m?s™ 1 t0 1.0 x 109 m?s~!,
a low-FA WM voxel with eigenvalues A1, Ay from 0.3 x 1072 m?s™! to 0.7 x 1079 m?s~!
and A3 from 1.0 x 1079m?s ! to 1.5 x 1079 m?s™!, and a high-FA WM voxel with eigen-
values A\j, Ao from 0.2 x 1072 m?s™ ! t0 0.5 x 1072 m?s™ ! and A3 from 1.5 x 102 m?s~! to
2.5 x 1072 m? s~ 1. The definition of these thresholds ensured, that only very similar vox-
els are assigned to one of the 3 voxel types respectively. The DTI model was fitted to the
single-shell dataset. All voxels corresponding to one of the three types were identified and
a DKI fit was applied to those voxels using all DWIs (2454 volumes). Next, the coefficients
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3. Bias and precision analysis of DKI for different acquisition schemes

z-ADC
z-ADC

Figure 3.2.: Simulated DKI voxels. The DKI fits were transformed into principal eigen-
vector system of the DTI fit and averaged resulting in: (a) the GM voxel, (b)
the low-FA WM voxel and (c) the high-FA WM voxel. Upper row: The 3D
plots show the ADC using the spatial axes X, y, z and the AKC using the color-
coding shown in the color bar. Lower row: In an exemplary FA map, the three
voxel pools as defined in the simulation study are depicted. The corresponding
scalar DTI and DKI metrics can be found in table 1.

of the DTpkr and the DKT were transformed into the principal eigenvector system of the
DTpkr and averaged, resulting in three sets of DTpk; and DKT coefficients.

Out of the DTpgy and DKT coefficients, g-space data was synthesized for the same acqui-
sition schemes described in data preprocessing section and altogether 4800 noise instances
for 6 SNR levels ranging between 10 and 20 were created, where for each noise instance
the DTpk; and DKT were randomly rotated to eliminate orientation effects. The fitting of
the DKI model to the simulated data was done with the same WLLS routine and the same
parameters as the real data. An overview of some DTI and DKI metrics of the simulated
voxels is given in Table 3.1.

3.3. Results

3.3.1. Simulations

In Fig. 3.3, the different acquisition schemes are compared in terms of the bias of the AKC
(Fig. 3.3a), and the bias of the resulting kurtosis metrics as a function of SNR (Fig. 3.3b-m).
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Figure 3.3.: Mean bias of 4800 noise instances for the simulated GM, low-FA WM and high-
FA WM voxels as obtained using eight different acquisition schemes. (a) Sur-
face plot of the bias for SNR = 10 where the spatial axes describe the eigenvec-
tors of the DT, and the color reflects the bias of the AKC. (b-m) Diagrams of the
bias for the scalar DKI metrics MZ, AKC |, AKC||, AKCpax for 6 different SNR
levels ranging from 10 to 20.
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GM voxel low FA voxel high FA voxel
MD 0.78 X 1072 m?%s 0.77 X 1072 m¥s 0.86 X 1072 m%s
FA 0.17 0.50 0.79
Mz 0.56 0.97 1.40
AKC, 0.59 1.26 2.05
AKC,, 0.54 0.65 0.53
AKC, ... 0.52 0.65 0.53
AKC 0.62 1.43 2.15

max

Table 3.1.: Scalar DKI metrics MDpg1, FApxi, MZ, AKC |, AKC);, AKChin and AKCpax of
the 3 simulated voxels as depicted in Fig. 3.2.

The bias, calculated as the mean of the difference between 4800 noise instances and the true
value of the corresponding metric, varied strongly across the direction within the voxel,
the voxel types and the different acquisition schemes. In Fig. 3.3a the angular dependency
of the bias within the voxel is illustrated as a 3D surface plot for the lowest simulated SNR
of 10. A strong anisotropy of the bias distribution for the low- and high-FA voxel can be
observed. While the polar regions of the voxels exhibit an overestimation of the AKC, the
equatorial regions show a nominal underestimation in some cases. In Fig. 3.3b-m the bias
of the scalar DKI metrics is depicted in more detail. Regarding the GM voxel, MZ (Fig.
3.3b) is overestimated and, as expected, the bias decreases the higher the SNR. The metrics
AKC and AKC)| (Fig. 3.3¢,h) are not very well defined for the GM voxel and there is
only a very small anisotropy in the AKC distribution of the ground truth (Fig. 3.2a). Fig.
3.3e,h show, however, that AKC,; is heavily overestimated while AKC} is slightly underes-
timated except for the csDSI and the mi3shell9ma dataset. This tendency of overestimating
AKC) and underestimating AKC increases substantially (in accord with Fig. 3.3a) with
higher FA (Fig. 3.3f-i). Actually, the bias on MZ (Fig. 3.3c,d) becomes more negative the
higher the anisotropy because the negative bias of AKC; outweighs the positive bias of
AKC). There is an apparent inconsistency between the results of Fig. 3.3a and Fig. 3.3b-m.
For example, the GM voxel in Fig. 3.3a does not show any negative bias at all, but there
are cases of negative AKC | in Fig. 3.3e. The reason for this is the different way in which
the DKI metrics are calculated over the 4800 noise instances. For the plot in Fig. 3.3a,
the orientation of the DTpkj is ignored because the random rotation of each noise instance
is simply reversed before averaging. For the plots of Fig. 3.3b-m the orientation of the
DTpkg is used to determine the parallel and the orthogonal directions of the fiber. Obvi-
ously, any misalignment of the DTpk; can increase the bias of AKC|| and AKC . However,
for experimental data the true orientation of the DTpk; will be unknown, and we should
expect a bias behavior as shown in Fig. 3.3b-m. Based on the Monte Carlo simulation,
comparison of the different acquisition schemes in terms of bias performance revealed a
heterogeneous picture with no advantage for one specific scheme. Overall, the bias of
the different schemes varies for the two most common DKI metrics MZ (Fig. 3.3b-d) and
AKC (Fig. 3.3e-g) by about 0.15 and 0.2 respectively. This corresponds to a relative error
in MZ ranging between 11 % (high-FA voxel) and 26 % (GM voxel) and in AKC ;| between
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14 % (high-FA voxel) and 35 % (GM voxel).

The 9 fold averaged mi3shell9ma dataset creates a significantly different bias compared
to all other datasets, namely a strong overestimation of MZ and AKC (Fig. 3.3b,e) for
the GM voxel, an overestimation of MZ (Fig. 3.3c), yet almost no bias of AKC (Fig. 3.3f)
for the low-FA WM voxel, almost no bias for MZ (Fig. 3.3d) and slight negative bias of
AKC, (Fig. 3.3g) for the high-FA WM voxel. Further, AKC|, is generally overestimated.
This can be explained by the averaging operation in image space, which changes the noise
distribution prior to the nonlinear logarithmic operation and the subsequent WLLS fitting
routine. The CS reconstruction of the csDSI dataset changes the bias compared to the uDSI
dataset towards the bias of mi3shell9ma dataset. This is expected, as the data also undergo
a denoising step in image space before the WLLS fitting. The impact of the maximized an-
gular incoherence of the mi5shell and mi3shell datasets on the bias is rather small. Some
deviations between mi5shell and the c5shell dataset can be observed for the high FA voxel
where the angular resolution of the c5shell dataset may be too small (Fig. 3.3d,g). A com-
parison of the 3-shell and 5-shell schemes shows a very similar bias behavior. There is
a slightly smaller bias of the 3-shell schemes for the GM voxel (Fig. 3.3b,h). The bias of
AKCpax (Fig. 3.3k-m) was positive for all data sets and noise levels. It increased with
anisotropy and decreased with the number of sampling points in the corresponding data
sets. The CS denoising of the csDSI dataset clearly reduced the bias of AKCp,ax compared
to the uDSI dataset and therefore increases stability. The 3-shell schemes and the csDSI per-
formed similarly to one another but clearly better than the 5-shell and the uDSI schemes,
especially for the two anisotropic voxel types. Moreover, maximization of angular inco-
herence reduced the bias of AKCpax slightly for mi3shell and significantly for mi5shell,
compared to their conventional counterparts r3shell and c5shell. In Fig. 3.4, the different
acquisition schemes are compared in terms of the resulting precision as a function of the
SNR. The precision is calculated as the Standard Diviation (SD) of 4800 noise instances
for each acquisition scheme and each SNR level. In Fig. 3.4a, the angular dependency of
the precision within the voxel is illustrated as a 3D surface plot for the lowest simulated
SNR of 10. While the SD is very homogeneous for the GM voxel, the low-FA WM voxel
generates a band around the equator with increased SD. The high-FA voxel reveals a very
narrow band around the equator with an almost tenfold higher SD at the corresponding
pole of the voxel. In general there is a significant decrease in precision for MZ (Fig. 3.4b-d)
the more anisotropic the voxel is. The SD approximately doubles for the high-FA voxel
relative to the GM voxel. In fact, the SD of AKC, (Fig. 3.4e-g) increases by as much as
400 %, while the SD of AKC| (Fig. 3.4h-j) is halved. Overall, the kurtosis tensor seems to
be highly unstable for very anisotropic voxels such as the high-FA WM voxel. As a result,
the AKC around the equatorial region dominates the precision also for MZ and causes the
increased SD for anisotropic relative to isotropic voxels (Fig. 3.4b-d).

A comparison of the precision across the different acquisition schemes reveals the 3-shell
as preferable among acquisition schemes with a comparable number of data points. Re-
garding MZ and the GM voxel (Fig. 3.4b), it is even slightly better than the full DSI dataset
with more than 3 times as many data points. For the two anisotropic voxels (Fig. 3.4c,d)
the SD of MZ is similar for the 3-shell and full DSI but still better than the 5-shell, uDSI
and CS-DSI datasets. CS denoising reduces the SD compared to the uDSI dataset, i.e. it
increases the stability of the kurtosis estimation. This effect, however, is more pronounced
for the two anisotropic voxels as well as for the two directional metrics AKC, and AKC,
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Figure 3.4.: Mean Standard Diviation (SD) of 4800 noise instances for the simulated GM,
low-FA WM and high-FA WM voxels as obtained using eight different acqui-
sition schemes (a) Surface plot of the SD for SNR = 10, where the spatial axes
describe the eigenvectors of the DT, and the color reflects the SD of the AKC (b-
m) Diagrams of the SD for the scalar DKI metrics MZ, AKC |, AKCH, AKCax
for 6 different SNR levels ranging from 10 to 20.
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Figure 3.5.: RMSE of 4800 noise instances for the simulated GM, low-FA WM and high-FA
WM voxels as obtained using eight different acquisition schemes (a) Surface
plot of the RMSE for SNR = 10, where the spatial axes describe the eigenvectors
of the DT, and the color reflects the SD of the AKC (b-m) Diagrams of the SD for
the scalar DKI metrics MZ, AKC |, AKC||, AKCpmax for 6 different SNR levels
ranging from 10 to 20.
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(Fig. 3.4f,g,i,j). The maximization of angular incoherence generally increases precision of
the DKI estimation, where the increase is more distinct for the anisotropic voxels. In sum-
mary, among all datasets having a comparable number of data points, the 3-shell schemes
performed best in terms of precision, followed by csDSI and mi5shell on the second rank
as well as the c5shell and uDSI dataset on the last rank. In Fig. 3.5, the different acquisi-
tion schemes are compared in terms of the resulting Root Mean Squared Error (RMSE) to
evaluate the total error arising from the biased expectation value (Fig. 3.3) and the vari-
ance around this value (Fig. 3.4). The RMSE is highest in the equatorial regions of the
anisotropic voxels (Fig. 3.5a). A comparison of Fig. 3.3a, 4a, 5a reveals the variance in
these regions as the predominant contribution to the RSME. To the contrary the RMSE of
the polar regions seems to be rather bias dominated. The dependency of the RMSE from
the SNR is different for mi3shell9ma and c¢sDSI compared the other datasets (Fig. 3.5b-j),
as they exhibit a different noise distribution, and thus a different bias. As a result, the
RMSE of metrics is bias dominated for low SNR and variance dominated for high SNR
(Fig. 3.5b,c.e).

3.3.2. Volunteer experiments

bronze
standard

mi3shell9ma mi3shell miSshell fDSI uDSI csDSI

Figure 3.6.: Parametric DKI maps of a volunteer data including MZ, AKC,, AKC;, and
AKCpax for the six different acquisition schemes.

In Fig. 3.6 the parametric maps of the different kurtosis metrics of a representative slice
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from the volunteer data sets are shown. In favor of clarity, only the maximum angular in-
coherence versions mi3shell and mi5shell of the multi shell schemes are shown, as r3shell
and cbshell look very similar. Even though the bronze standard (mi3shell, 9 fold com-
plex averaged) is based on 1400 DWIs, there are still some instabilities of MZ, AKC; and
AKCpax recognizable, in particular in regions with very high FA like the corpus callosum.
This is expected as the Monte Carlo simulations indicated that the DKI model is highly
unstable in areas of high anisotropy. Comparing the MZ and AKC maps of the 4 datasets
that have a comparable number of raw data points, the mi5shell and uDSI datasets appear
noisier in particular in GM regions. The AKC|| maps confirm this observation, exhibiting
more outliers for the 5-shell and uDSI datasets. The GM/WM contrast of AKC; is rather
low in all acquisition schemes. The extremal metric AKCpax provides information about
the stability of the DKT independent of a particular direction, because noise leads to a
random overestimation of the AKC in an arbitrary direction, and AKC values above 3 are
considered to be not physiologically plausible. CS reconstruction increases the stability of
the DKT resulting in fewer outliers and a less bright appearance of AKCp,ax compared to
the uDSI dataset.
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Figure 3.7.: Error maps of the scalar DKI metrics MZ, AKC |, AKCH and AKCpax relative
to the bronze standard.
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In Fig. 3.7, difference maps of the mi3shell9ma, mi3shell, mi5shell, fDSI, uDSI, and cs-
DSI datasets with respect to the bronze standard are shown. The difference maps for the
mi3shell9ma dataset are a special case, as the source data is identical with the bronze stan-
dard and only the post processing technique, complex averaging or magnitude averaging,
is different. As a result, the noise of the two datasets is correlated and the difference reveals
the bias of the WLLS estimator without being spoiled by the variance, assuming the bronze
standard is true. A comparison with the simulation results in Fig. 3.3 show a very good
agreement with a strong overestimation of AKC|; in the center where the SNR is lowest.
Assessment for the other datasets is more complicated as bias and variance are overlaid.
Nevertheless, in agreement with the simulations, negative bias can be found in white mat-
ter regions for MZ and more predominant for AKC, . To the contrary AKC|, is heavily
overestimated. Comparison of the acquisition schemes reveals lower bias in the mi3shell
dataset. We hypothesize that this is mainly due to the identical acquisition scheme (not
the identical data) used for the bronze standard and mi3shell, yielding an identical model
erTor.
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Figure 3.8.: ERMSE diagrams relative to the bronze standard for the GM, WM, full brain
voxel compartments and the DKI metrics MZ, AKC |, AKC, and AKCpax.

In Fig. 3.8 the RMSE of the different datasets relative to the bronze standard is shown.
Although use of the RMSE has the weakness of mixing precision errors and bias errors, it
allows a rough estimation of the performance of the different acquisition schemes. Com-
pressed sensing reduced the RMSE particularly for AKC; and WM. Also maximizing the
angular incoherency improved the RMSE. A comparison between all datasets shows the
lowest RMSE for the mi3shell where even the f{DSI dataset with 3 times more data exhibits
a clearly higher RMSE. When focusing on the two most important metrics MZ and AKC |,
the csDSI dataset performes slightly better than the mi5shell and the c5shell performs the
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worst. As discussed above, it is very likely that the RMSE evaluation favors the mi3shell,
as the corresponding DKI model error is identical to the bronze standard. This explains
why the mi3shell outperforms even the fDSI dataset.

3.4. Discussion

Simulations

Monte Carlo simulations are a very powerful technique to investigate the noise behavior
of DWI models and have been extensively used for DKI [68, 70, 71, 129]. In these cases the
synthetic data was created using the bi-exponential diffusion model [137]. In the present
work we derived DTpky and DKT coefficients from real data experiments with a very high
number of DWIs (2454) and averaging of similar voxels. According to our experience, this
real data driven approach to create synthetic diffusion data is more suitable for anisotropic
voxels. The analysis of the noise behavior of the DKI model should not be limited to
mean kurtosis although this is the most commonly used DKI metric. The simulations
demonstrated, that the precision and the bias of the AKC can be highly heterogeneous
within a voxel. In contrast to previous work [68, 70, 71, 129] we also observed a negative
bias of the AKC perpendicular to the fiber direction while the bias parallel to the fiber
direction was always positive (Fig. 3.3). The precision of the fitted AKC also depends on
the direction within the voxel and is significantly lower in the radial direction than in the
axial direction. Overall, parametric maps of the DKI model have an inhomogeneous bias
and precision depending on the voxel type and the SNR. This effect causes instabilities of
the DKI model in high-FA regions such as the corpus callosum.

Denoising

CS has proved its potential to significantly shorten the lengthy data acquisition of DSI [126,
127, 138]. It has been shown in this work, that the denoising inherent to the CS technique
can also improve precision of the estimation of DKI metrics. However we also observed
a substantial change of the bias including both increase and decrease when CS was used.
Even averaging, as the simplest form of denoising, resulted in a substantial change of the
bias. This behavior can be explained with the nonlinear logarithmic operation prior to
solving the least squares equation in WLLS (or LLS). This implicates that all preprocessing
steps that involve interpolation may affect the noise distribution and thus the bias when
WLLS is used as estimator. Since the DKI model is particularly vulnerable to a low SNR
with its effect on the bias, this should be taken into account when quantitatively comparing
DKI metrics.

b-value dependence of the DKI Model

The bias of a DKI metric is an accurate quantity in an idealized Monte Carlo Simulation,
where the simulated voxel conforms perfectly to the DKI model. However in reality this is
not the case. The measured diffusion-weighted signal is the ensemble average over a va-
riety of microstructural configurations. Hence, the signal decay as a function of b will not
perfectly match the DKI model. This aforementioned DKI model error strongly depends
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on the chosen acquisition scheme, even if noise is neglected. The effect is well known from
the DTI model, where ADC depends on the maximum b-value [73]. In the case of the DKI
it is even more pronounced, as multiple b-values are used. Even if the maximum b-value
is identical, a different distribution of the b-values in the radial direction may lead to dif-
ferent DKI model parameters because model errors may be more pronounced in certain
b-value regimes. We conclude that this effect is the main reason for the significantly lower
RMSE of the mi3shell scheme compared to other datasets, because the bronze standard
was based on the same acquisition scheme.

Acquisition schemes

The simulation results as well as the real data experiments demonstrated that the 3-shell
acquisition schemes (mi3shell, r3shell) of Poot et al. [123] is favorable in terms of precision.
Further the use of the CS reconstruction generally improves precision of the DKI estima-
tion compared to the uDSI dataset. Certainly DSI has the advantage of being more flexible
and of providing a direct transformation into the propagator space with the use of the
Fourier transform [63]. Moreover, the maximization of the angular incoherence of multi
shell acquisition schemes also improves precision of the DKI estimation. Overall, the bias
of the DKI metrics is less dependent on the acquisition scheme compared to previously
discussed preprocessing steps such as denoising.
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4. Phase Sensitive Reconstruction of
Diffusion Weighted Images

The content presented in this chapter was submitted to the scientific journal Magnetic
Resonance in Medicine (MRM) in October 5th 2015. The manuscript was entitled "Real
Valued DWI using Decorrelated Phase Filtering" and it was accepted on December 24th
2015 [139]. However, the production process of the article was not finished when this
thesis was submitted.

4.1. Introduction

More recent diffusion models, such as DKI [15], neurite orientation dispersion and density
imaging [60], composite hindered and restricted model of diffusion [58], and AxCaliber
[59] assume non-Gaussian diffusion because the motion of the water molecules is restricted
or hindered by structures within the tissue. These models usually require b-values above
1000 s mm 2, extending beyond the validity range of the Gaussian diffusion model. Apart
from modeling the diffusion in single voxels, DWI also considers the structural connec-
tivity of the brain. Fiber tracking requires high spatial and angular resolution [140, 141]
to resolve the fine structures of the human brain [106]. Several methods have been pro-
posed to determine the Orientation Distribution Function (ODF) of the fibers within a
voxel. These can be model-dependent techniques such as high angular-resolution diffu-
sion imaging [56], or the model-free approach called DSI [63]. DSI needs particularly high
b-values, typically above 6000s mm~2, to reduce truncation effects when calculating the
EAP (see section 2.2.5).

Unfortunately, increasing the diffusion weighting and spatial resolution significantly re-
duces the SNR of DWIs. While the intrinsic noise acquired by each channel of the MR
hardware is Gaussian-centered around zero [105], DWI usually post-processes the magni-
tude of the complex MR signal only. Hence, the noise distribution alters to a noncentral
chi distribution [142, 143] with a positive expectation value. In the case of a single channel
acquisition or complex channel combination, the noncentral chi distribution reduces to the
so-called Rician distribution [144, 145]. If the SNR is sufficiently high (i.e., > 5), the impact
of the Rician distribution can be neglected, because the probability distribution can be well
approximated by a Gaussian (Fig. 4.1a), providing a fairly accurate expectation value (Fig.
4.1b).

However, for SNRs significantly below 5, the non-Gaussian noise distribution intro-
duces positive bias in the measured signal, and a noise floor even if the true signal is zero
[21] (Fig. 4.1a, b). Hence, depending on the SNR of individual voxels, diffusion models
that are fitted to the magnitude data tend to be biased as shown in the previous chapter 3
using the example of DKI. Furthermore, the magnitude data lose contrast in the low SNR
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regime because the expectation value has lower dynamic range than the true value (Fig.
4.1c¢).

The bias, introduced by non-Gaussian noise in DWI, can be corrected by several tech-
niques. These techniques can be roughly divided into two categories: those that directly
modify the acquired DWIs [147-150] and those that account for the noise distribution in
the fitting algorithm of the individual diffusion model [68, 129, 151]. However, both classes
of techniques require precise knowledge of the noise parameter, which is challenging for
multiple reasons [129]. First, the noise in MRI images is non-stationary if parallel imaging
is used. Second, because of physiological noise, the temporal and local SNRs can be signif-
icantly different; therefore, the noise parameter is difficult to estimate in the time domain.
Third, unlike thermal noise, physiological noise depends on the amplitude of the MR sig-
nal [152]. Consequently the noise in DWI also depends on the b-value. Finally, most of
the post-processing steps, such as partial Fourier reconstruction, motion and eddy current
correction, change the noise distribution in an unexpected way. Consequently, the uncer-
tainty of the noise parameter estimation reduces the estimation accuracy and precision of
the true DWI signal and the true parameters of the diffusion model, respectively.

It is important to note that the above correction techniques are magnitude based and
may only cope with the bias. The contrast loss is not well-handled, simply because the
full dynamic range of the complex signal is irretrievably lost when the absolute value has
been computed. Alternatively, a Phase Correction (PC) real-valued data reconstruction
can be used [24, 131, 153-161]. PC techniques try to estimate the true phase of the DWI
that is not compromised by noise and subtract it from the complex DWI. Theoretically, the
remaining imaginary part can be discarded as pure noise, while the real part contains all
relevant image information. PC-DWI maintains the Gaussian noise distribution of the MR
signal and introduces no bias, but remains challenging because the estimation of the true
image phase is heavily spoiled by eddy currents and motion effects (both bulk motions
and intracranial pulsatility) [20]. There are two general categories of PC techniques: those
that assume smooth phase and estimate the true, noise free phase of the DWI by filtering
[131, 153, 156, 158-161] and those employing an additional phase navigator [24, 154, 155,
157]. The latter are typically used for segmented k-space acquisitions. However, additional
acquisition time [24, 155, 157] or significant oversampling of the k-space center [154] is
needed.

The crucial step in filter-based approaches is the design of the filter itself. If the phase
is sufficiently smooth, a larger filter provides a more accurate estimate of the true phase,
resulting in a more Gaussian noise distribution and reducing the bias. However, the phase
may not be slowly varying, especially during certain phases of the cardiac cycle when
the pulsatile motion is maximized. In such cases, the PC fails and unwanted signal loss
occurs. Previously reported PC techniques have limited the strength of filtering, e.g. the
size of the filter kernel, which compromises between bias reduction and the robustness to
local phase variations. In this study, a new PC method is proposed, which minimizes the
smoothness requirements on the phase and maximizes the efficiency of the bias correction.
Previously methods do not consider how the noise properties of the raw signal propagate
through typical EPI reconstruction pipelines. Here, the method of Prah et al. [131] is
improved, using a neighborhood correlation of the noise in the reconstructed complex
image. Moreover, a data-driven outlier detection method is presented, which replaces
the PC results of certain voxels with their corresponding magnitude values if the phase
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Figure 4.1.: Simulated properties of Rician distributed data. a: Noise distributions either
for zero true signal or SNRs of 0.5, 1, 2, and 5; b: Comparison between the
expectation value of Rician-distributed data and the true value; c: Michelson
Contrast C between signals o and g with C' = (a — ) /(a+ ) [146], o >  and
SNR = SNR(«). The contrast of the expectation value is compared with the
contrast of the true signal assuming Rician noise. Note that the larger the con-
trast C, the smaller is signal 3. This figure illustrates how the dynamic range
of the expectation value of magnitude data narrows in low SNR situations.
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is strongly inhomogeneous. The bias reduction and sensitivity to phase inhomogeneity of
the new PC method are evaluated in Monte Carlo simulations. Based on healthy volunteer
experiments, the robustness of the new method is demonstrated on the DWI data itself, the
estimated DKI model parameters, and the model-free DSI technique. The vulnerability to
phase errors, quality of the bias correction, and contrast in the DWIs are compared with
those of Prah et al.’s [131] method and with traditional magnitude processing.

4.2. Methods

4.2.1. Noise propagation in the EPI reconstruction pipeline

a k odd/even re- zero IDFT
“Space correction sampllng filling
data (OEC) (RS) (zF) paralleli 'mag'“g Noise
correlation with
OEC +IDFT ZF + IDFT RS + IDFT ZF +RS + IDFT neighbors
0.2
0.15
0.1
OEC + ZF + IDFT OEC + RS + IDFT OEC + ZF + RS + IDFT

0.05
PE direction

0
FE dlrectlon -0.05

Figure 4.2.: Typical processing pipeline of diffusion weighted EPI data; b: Noise correla-
tion kernel, assuming a k-space grid size of 256 x 80 (FE x PE). Other condi-
tions are oversampling factor = 2, ramp sampling enabled, partial Fourier in
the PE direction = 7/8, and final grid size in image space = 96 x 96.

Fig. 4.2 schematically depicts a typical processing pipeline for EPI data. Eddy currents
and gradient amplifier delays introduce a mismatch between the odd and even k-space
lines, yielding a zero-order phase term and a shift of the k-space center where the latter
corresponds to a first order phase term in image space. Both the zero and the first order
phase term are determined from reference scans and the k-space data is corrected by an
IDFT in the FE direction, phase correction by a linear polynomial and subsequent DFT.
To maintain the echo spacing as short as possible, ramp sampling is used. Hence, the
k-space data require resampling to match the Cartesian grid. This step can also handle
potential oversampling in FE direction, which is used to avoid aliasing. In typical DWI,
the TE is minimized by partial Fourier in the PE direction and the data is most simply
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reconstructed by zero filling. Finally, the actual image is resolved by IDFT in all Fourier-
encoded dimensions. In the event of parallel imaging, the corresponding reconstruction
must be conducted either in k-space prior to IDFT, e.g., GRAPPA (37), or in the image
space after IDFT, e.g., SENSE (38).

Monte Carlo simulations were conducted to analyze the noise propagation through the
EPI reconstruction pipeline assuming perfect amplifiers such that the noise between neigh-
boring k-space points is perfectly uncorrelated. The following simulation parameters were
used: 10000 noise instances, k-space grid size 256 x 80 (FE x PE), oversampling factor 2,
ramp sampling enabled, 7/8-partial Fourier in the PE direction with zero filling, and final
grid size in image space 96 x 96. The Odd/Even Correction (OEC) was performed with
an arbitrary first-order polynomial in the FE direction. From the simulation results, the
noise correlation kernel was calculated for different combinations of OEC, resampling and
zero filling (Fig. 4.2b-h). No noise correlations were introduced by IDFT and OEC. Con-
sequently, the correlation coefficient of the center voxel was unity (self-correlation) and
of all other voxels was zero (Fig. 4.2b). IDFT is a linear, orthogonal transformation and
thus cannot introduce correlations. OEC adds a phase gradient in image space which is
independently performed on each voxel. On the other hand, zero filling and resampling,
which are linear but non-orthogonal transforms, did introduce noise correlations in PE and
FE direction respectively (Fig. 4.2c-h). However even if both, resampling and zero filling,
were applied the diagonal neighbors were almost completely uncorrelated (Fig. 4.2e,h).
If parallel imaging in image space is used [26], correlations among the aliased voxels are
introduced but the correlations among directly neighboring voxels are not altered. Note
that the noise correlation is shift invariant as the thermal noise is independent of position
[105].

4.2.2. Decorrelated phase correction

For a perfect PC of a DWI, the true phase of the signal in each voxel must be known. Un-
fortunately, the measured signal is a superposition of the object signal and noise, compro-
mising the estimation of the true phase. Thus, if one would simply subtract the measured
phase from the signal, this would be identical to an absolute value operation, rendering the
PC obsolete. To overcome this problem, Prah et al. suggested the following PC approach
[131]:

¢ Step 1: Filter the complex DWIs using a kernel in image space.

* Step 2: Extract the phase of the filtered DWIs.

¢ Step 3: Subtract the phase of the filtered images from the original DWIs.
¢ Step 4: Post-process the real part of the data only.

The effectiveness of PC depends on the correlation of the estimated phase with the mea-
sured noise in the voxel. Referring to Fig. 4.2, larger boxcar kernels can reduce the influ-
ence of the center voxel and its highly correlated neighbors on the phase estimation and
therefore reduce the resulting noise bias. Unfortunately, large filter kernels at the same
time are more sensitive to local phase variations limiting their accuracy. In this study, the
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Figure 4.3.: Filter kernels used for estimating DWI phases: B3: size = 3 boxcar kernel,
G3F1: size = 3 Gaussian kernel with a Full Width Half Maximum (FWHM) =1
1/pixel, G3F1H: identical to G3F1 but with center set to zero (hole filter), Opt3:
size = 3 kernel optimized with respect to the noise correlation (Fig. 4.2b), B5:
size = 5 boxcar kernel, G5F2: size 5 Gaussian kernel with FWHM = 2 1/pixel,
G5F2H: G5F2 but with the center set to zero (hole filter), Opt5: size = 5 kernel
optimized with respect to the noise correlation (Fig. 4.2b).

performance of multiple existing kernels is evaluated, namely, boxcar kernels [131], Gaus-
sian kernels, newly proposed Gaussian kernels with zero-weighted center voxel ("hole
filter"), and empirically optimized, decorrelated kernels. For determination of the opti-
mized filter kernels, the results from Fig. 4.2 were used to assign small weights to highly
correlated neighbors and vice versa. An overview of the tested filter kernels and their
corresponding abbreviations is depicted in Fig. 4.3.

4.2.3. Outlier detection and replacement

If the local phase in a DWI exceeds a certain level of inhomogeneity, the PC becomes
corrupted and unwanted signal loss occurs. To detect these errors a simple thresholding
method is derived:

¢ Step 1: Estimate the global noise amplitude o.

¢ Step 2: Compute the difference maps AMR of the magnitude and real-valued images
smoothed by a 3 x 3 boxcar kernel.

¢ Step 3: Detect outliers by thresholding AMR with o7 = ko (where k > 0).
¢ Step 4: Replace detected outliers with the magnitude data.

After PC, the imaginary part should theoretically contain pure noise. Applying the ro-
bust estimator Median Absolute Deviation (MAD) to the imaginary part of all voxels in
all DWIs, the global noise amplitude o is determined (step 1), corresponding to 1.4826 x
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MAD [162]. MAD offers a singular advantage: a signal erroneously assigned to the imag-
inary part under failed PC exerts less impact on the o estimation than on the standard
deviation. In principle, a voxel-wise estimation of ¢ is also possible, but global estimation
seemed sufficient for our present purpose. The filtering of AMR in step 2 is motivated by
the clustering of errors in typical PC. Even when the local phase gradients exceed a cer-
tain limit, the corresponding second derivative remains smooth. On the contrary, noise is
only weakly correlated among neighboring voxels, as discussed above. For the smoothed
AMR maps in the PC error detection (step 3), thresholds of o7 = 20 and o7 = 2.50 were
chosen empirically. Assuming Gaussian noise, the probability that a voxel with zero true
signal randomly exceeds o is approximately 4 %for or = 20 and 0.3 % for or = 2.50.
Because the likelihood of truly zero signals in all voxels within the kernel is very low, the
probabilities of exceeding the thresholds by noise alone are rather smaller. If the threshold
is exceeded, the real part of the voxel is replaced by the magnitude (step 4).

4.2.4. Simulating accuracy and robustness of the phase correction

The biases in the magnitude data and the real-valued data after PC with various filter
kernels (see Fig. 4.3) were evaluated in Monte Carlo simulations. SNR levels were ranged
from 0 to 3 at 0.1 intervals. The amplitude and phase of the true signal were assumed
constant across the kernel size. Although this approach is highly simplified, it reasonably
estimates the expected signal bias. In the simulations, 10000 noise instances were created,
each of matrix size 256 x 80 (FE x PE). Correlated noise was introduced by applying the
resampling matrix and by zero-filling 16 lines in the PE direction. The 96 x 96 matrix was
subsequently subjected to IDFT. A constant signal was added to the correlated noise to
match the desired SNR. PC under the different filter kernels was implemented, and the
signal expectation value was computed as the mean of the real part taken over all voxel
and noise instances. To ensure that the full filter kernel was applied to each voxel, the
two-voxel-wide ribbon at the edge of the matrix was discarted.

To investigate potential errors arising from kernel filtering, additional simulations were
conducted assuming a linear phase gradient and constant amplitude across the kernel size.
This simplified approach cannot capture nonlinear phase variations but reasonably esti-
mates the phase errors as functions of the SNR and phase gradient. 10000 noise instances
were simulated for all filter kernels, 3 SNR levels (infinite, 5, and 1), and 20 phase gradients
(ranging from zero to w/voxel). The orientation of the phase gradient was randomly ro-
tated to cancel orientation effects. Finally, the RMSE of the estimated phase was calculated
over all noise instances.

4.2.5. Data Acquisition

Diffusion-weighted imaging acquisitions were obtained from two healthy volunteers. The
study protocol complied with the Declaration of Helsinki and was approved by a local
ethical review board. The data were acquired with a 3T GE MR750, maximum gradient
strength gmax of 50mT m~! (GE Healthcare, Milwaukee, WI), using a single-spin-echo ST
diffusion preparation and a single-shot EPI readout train [48]. The first acquisition (ACQ1)
comprised 10 repetitions of a 3-shell scheme suggested by Poot et al. [123] with 25, 35,
and 70 directions per shell, and corresponding b-values of 750 smm~2, 1070 s mm~2 and
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3000s mm~2. The second acquisition (ACQ2) comprised 4 repetitions of an 11-cube DSI
acquisition scheme with 514 DWIs [63] on a spherically bounded Cartesian grid and a

maximum b-value of 8000 s mm 2.

DWIs were recorded with matrix sizes of 96 x 96 x 17 (ACQ1) and 96 x 96 x 11 (ACQ?2),
and axial-oriented scan volumes of 24 x 24 x 4.25 DWIs were recorded with matrix sizes
of 96 x 96 x 17 (ACQI1) and 96 x 96 x 11 (ACQ?2), and axial-oriented scan volumes of
24 x 24 x 4.25 cm? (ACQ1) and 24 x 24 x 2.75 cm® (ACQ2) covering the brain at the cor-
pus callosum level. Further acquisition parameters were isotropic resolution 2.5 mm, TE =
80.7ms (ACQ1) and TE = 105.1 ms (ACQ2), TR 1800 ms (ACQ1) and TR 1700 ms (ACQ2),
ESP = 0.592 ms and ramp sampling (ramp up/down time 72 ps, plateau time 368 us). A
32-channel head coil (MR Instruments Incorporated, Minneapolis, MN, USA) was used
with a parallel imaging factor of 2 in the PE direction and SENSE reconstruction (39).
Retrospective motion correction was computed from interspersed b = 0 images acquired
every 20 DWIs. PC and outlier detection and replacement were applied prior to motion
correction.

4.2.6. DKI fitting

To investigate the impact of real-valued data on the accuracy of quantitative DWI, the
DKI model was adopted, which is heavily error-prone to Rician bias [68]. The DKI model
was fitted to the real-valued data and to the magnitude data of acquisition ACQ1. LLS or
WLLS estimators require two steps: the rejection of negative values, e.g. by replacing them
with a fixed positive value, and a logarithmic operation. As these processes would destroy
the Gaussian noise distribution, a Nonlinear Least Squares (NLS) [163] fitting routine was
used for the real-valued data. The NLS was implemented in Matlab (MathWorks, Natick,
MA) using an interior-point optimization algorithm [164], initialized by the solution of a
LLS estimator running on magnitude data. Furthermore, to ensure a robust fitting, the
ADC and the AKC were constrained to be positive in all acquisition directions to increase
robustness of the fit [69, 71] (see constraints #1 and #2 in section 2.2.5). The average AKC
was calculated in the scaled inherent coordinate system and is denoted MZ, following the
nomenclature of [72] (see section 2.2.5 for details).

4.2.7. EAP calculation

The influence of PC on the EAP was determined from DSI acquisition ACQ2. To enforce
Hermitian symmetry and real-valued signal of the EAP, each point in g-space was cal-
culated as the average of the four acquired repetitions and their antipodally symmetric
counterparts. The matrix size of the g-space was increased from 11 to 31 by zero-filling fol-
lowed by 3D DFT, yielding the EAP. Finally, the results of the magnitude and real-valued
data were compared by projecting the EAP onto the axial, coronal, and sagittal planes.
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Figure 4.4.: Results of Monte Carlo simulations for evaluating bias reduction and vulner-
ability to local phase variations of the kernel-based PC: a: Logarithmic plot
of the expectation values of magnitude and real-valued data versus SNR. Data
are normalized by the expectation value of the magnitude data at zero true sig-
nal; b: Bar plot showing the expectation value of the noise floor (true signal is
zero). Values are normalized by the expectation value of the magnitude data.
The gray bars to the right are the averaged noise floors of ACQ1, derived for
a small ribbon outside the brain in the FE direction; c: Standard deviations of
magnitude and real-valued data versus SNR. The true SD of the added noise
was 1; d—f: RMSEs of the estimated phases of different filter kernels versus the
background phase gradient. Results are plotted for infinite SNR, SNR = 5, and
SNR = 1.
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4.3. Results

4.3.1. Simulations

Fig. 4.4 presents the simulation results of the magnitude and real-valued data using dif-
ferent phase filtering kernels. As anticipated, the expectation value of the real-valued data
is lower than that of the magnitude data and closer to the true signal. The performance of
the filtering kernels well agrees with the amount of remaining noise correlation. The ex-
pectation values begin diverging from the true signal at SNR ~ 1.5 for G3F1-filtered data,
~ 1 for B3 and G5F2 data, ~ 0.5 for B5 and G3F1H data, and ~ 0.2 for Opt3 and G5F2H
data (Fig. 4.4a). Interestingly, the real-valued data filtered through Opt3, G5F2H, and par-
ticularly Opt5 are slightly negatively biased in the very low SNR regime. There are two
opposing effects: the positive bias introduced by the remaining noise correlations and the
false attenuation caused by the variance of the estimated phase. However, the negative
bias is much smaller than the positive bias of the magnitude data. A major contributor
to the DWI contrast is the level of the noise floor (Fig. 4.4b), defined as the expectation
value of the true zero signals. The kernel B3 suggested by Prah et al. [131] reduces the
noise floor to approximately 46 % of the magnitude data, while the G3F1H kernel with
the same size reduces it to 21 %. The optimized kernel Opt3 achieves 11 % of the nomi-
nal noise floor, indicating an almost fourfold improvement over B3. Finally, the perfectly
decorrelated kernel Opt5 reduces the noise floor to almost zero. The gray bars to the right
of the colored bars in Fig. 4.4b show the averaged noise floors of ACQ]1, derived in a small
ribbon outside the brain in FE direction. The very good agreement with the simulated re-
sults proves that the MR scanner generates near-perfect Gaussian noise and validates the
simulation assumptions. Fig. 4.4c plots the SDs of the magnitude and real-valued data at
different SNR levels. In the low SNR regime, the remaining noise correlation leads to a
Rician-shaped distribution with a reduced SD, except in highly decorrelated kernels such
as Opt3 and Optb. In these cases, the SD slightly increases under the increased variance of
the filtered phase (as mentioned above).

In the second Monte Carlo simulation, the impact of local phase variations on the accu-
racy of PC was investigated at different SNR levels (infinite, 5, and 1). The RMSE of the
estimated phase is plotted in Fig. 4.4d-f. Note, that 7 is the highest possible RMSE of the
estimated phase. Under infinite SNR conditions, PC performs very accurately up to a cer-
tain value of the phase gradient, after which it immediately breaks down. The threshold
itself depends on multiple factors but is dominated by the kernel size. In general, size 3
kernels perform better than size 5 kernels. A hole filter further reduces the threshold as it
discards some of the meaningful phase information; namely, the phase value of the central
voxel. Moreover, Gaussian kernels perform better than boxcar kernels probably because
they possess circular symmetry. Therefore, each voxel is weighted proportionally to its dis-
tance from the central voxel. The simulations at lower SNR (Fig. 4.4e,f) yielded smoother
profiles but showed similar overall behavior. In summary, the approximate thresholds of
B3 (and G3F1H), Opt3, and Opt5 are about 2rad, 1.7rad and 1.2 rad, respectively. Recalling
the results of the bias analysis (Fig. 4.4a, b), the noise floors of kernels B3, G3F1H, Opt3,
and Opt5 (relative to the magnitude data) range from almost zero to about 46 %. To present
an uncluttered analysis, hereafter the experimental explorations are limited to these four
kernels.
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mag Q3 G3F1H Opt3 Opt5

Figure 4.5.: Representative DWIs after PC. a—e: 10-fold average of a DWI with b =
3000 s mm~2 from acquisition ACQ], calculated from both magnitude and real-
valued data for kernels B3, G3F1H, Opt3, and Opt5; f-i: AMR maps of b—e; jn:
4-fold average of a DWI with b = 8000smm~?2 from acquisition ACQ2, calcu-
lated from both magnitude and real-valued data for kernels B3, G3F1H, Opt3,
and Opt5; and o-r: AMR maps of k—n.
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4.3.2. Volunteer experiments

Fig. 4.5 shows the averaged DWIs of ACQ1 and ACQ2, with b-values of 3000s mm™!
and 8000s mm™!, respectively, determined in both magnitude reconstruction and PC. It
is important to note that averaging is not required for PC but is conducted only for vi-
sualizing the bias reduction. In ACQ1, some regions (particularly those containing CSF)
appear darker in the PC DWIs (Fig. 4.5b—e) than in the magnitude DWIs (Fig. 4.5a). This
is expected because the CSF signal rapidly decays with increasing b, reaching almost zero
at b = 3000smm~!. Further, the corresponding SNR map in Fig. 4.5f, indicates that the
SNR in the CSF regions is very close to zero with the result that the Rician bias domi-
nates (see Figs. 4.1 and 4.4). The bias reduction of our approach (especially in the CSF
region) is demonstrated in the relative AMR maps (Fig. 4.5f-i), defined as the difference
between magnitude and real part after PC and divided by the magnitude. Consistent with
the simulations, the intensity of the relative AMR maps increases from kernel B3 to kernel
Opt5. Similar trends are observed in ACQ2; here, however, the increased contrast in the
DWIs (Fig. 4.5jn) is even more significant, as the SNR is lowered by the longer TE and
the higher b-value (Fig. 4.5m), increasing the proportion of the noise floor in the signal.
Consequently, the relative AMR maps exhibit much more complex patterns in ACQ2 (Fig.
4.50-1) than in ACQ1.

A major problem of real-valued DWI is the unwanted signal loss arising from incorrect
PC. For example, Fig. 4.6a shows a DWI from ACQ1 with a highly inhomogeneous phase
profile (Fig. 4.6b). This phase pattern probably results from both pulsatile motion and a
small left-right rotation of the subject’s head during the diffusion encoding. Three regions
with very high phase gradients are indicated by arrows. Within these regions, signal loss
occurs in the real part (Fig. 4.6¢c), and bright spots appear in the relative AMR maps (Fig.
4.6d). The phase gradient in the region marked with a yellow arrow (Fig. 4.6b) is ap-
proximately 2rad per voxel. According to the simulations (Fig. reffig:PhaseCor4d-f), this
gradient approximates the threshold level of B3 and G3F1H but is above that of Opt3 and
Opt5. Consequently, the latter two kernels show the highest signal loss with Opt5 yielding
by far the worst results. These errors are also evident in the imaginary part of the data (Fig.
4.6g), which exhibits obvious structure rather than pure noise. Outlier detection improves
these results at both thresholds o7 = 20 (Fig. 4.6f) and or = 2.50 (Fig. 4.6g), where the
pink areas indicate the regions of PC failure.

Fig. 4.7 maps the fraction of outliers across all DWIs. In general, there were fewer
outliers in ACQ1 (Fig. 4.7b-i) than in ACQ2 (Fig. 4.7k-r) because of the lower SNR and
the increased motion encoding in ACQ2. Overall, the number of outliers increased in the
order B3 < G3F1H < Opt3 < Opt5, consistent with the simulation results. Typically, the
outliers were concentrated in regions close to the ventricles, where intracranial pulsatility
is likely to be highest. Even at the smaller threshold (o7 = 20), the outlier fractions rarely
exceeded 6 % for the most sensitive kernel Opt5. Therefore, this threshold was adopted in
further analysis. Additional outlier maps using PC with filtering kernel Opt3 and o7 = 20,
showing all slices of ACQ1 and ACQ2 as well as a third data set with full brain coverage,
can be found in Appendix A.1.

Besides analyzing the performance of PC on the actual DWI data, we also investigated
the effect of PC on the estimation of DKI metrics. Panels a—e of Fig. 4.8 compare the MZ
maps of the magnitude and real-valued data in the slices shown in Fig. 4.7a—i. Despite the
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o

outlier outlier
o

Figure 4.6.: Representative DWI with b = 3000s mm~?2 from ACQ1, exhibiting very strong
phase inhomogeneity. PC was conducted for kernels B3, G3F1H, Opt3, and
Opt5: a: DWI magnitude; b: DWI phase; ¢, h, m, and r: Real part of the PC
data; d, h, m, and r: corresponding AMR maps; g, j, 0, and t: Imaginary part of
the PC data; f, k, p, and u: Outliers marked in pink on smoothed AMR maps
with or = 20; g, 1, q, and v: Outliers marked in pink on smoothed AMR maps
with or = 2.50.

75



4. Phase Sensitive Reconstruction of Diffusion Weighted Images

B3 G1F1H Opt3 Opt5

Figure 4.7.: Maps indicating the fraction of outliers exceeding threshold or among all
DWIs for kernels B3, G3F1H, Opt3, and Opt5. The slices are those shown in
Fig. 6. a—d: ACQ1, o7 = 20; e-h: ACQ1, or = 2.50; i-1: ACQ2, o7 = 20; and
m-o0: ACQ2, o = 2.50.
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fact, that there is no appropriate ground truth provided, difference maps between magni-
tude and PC reconstruction reveal some significant changes (Fig. 4.8f-i). MZ seems gen-
erally overestimated and overestimation increases toward the center of the image which
is consistent with recent reports [71, 129]. This result is plausible as the sensitivity of the
receiver coil reduces in the central regions, lowering the SNR. The CSF seems highly over-
estimated in the ventricles which is also in agreement with recent reports [71, 129]. Theo-
retically, the kurtosis in the ventricles should approximate zero as CSF is a liquid; thus, it
should diffuse in a Gaussian manner. Besides the ventricles, two additional areas (marked
with red arrows) appear to be heavily overestimated. Comparisons with Fig. 4.8a-i reveal
that these spots correspond to larger numbers of PC outliers. Panels j—m of Fig. 4.8 present
the same MZ maps but with the outlier data replaced by the magnitude data. As unveiled
in the corresponding difference maps (Fig. 4.8n—q), the spots marked in Fig. 4.8f-i are
introduced by incorrect PC rather than Rician bias. This indicates good performance of
the outlier correction and the applicability of PC to highly sensitive diffusion metrics such
as kurtosis. Comparing Fig. 4.8n—q, a steady increase in the difference maps from B3 to
Opt5 can be observed, mirroring the reduced Rician bias. However we cannot exclude,
that a small portion of the apparent overestimation of MZ (Fig. 4.8n—q) is still caused by
remaining errors in PC.

Finally, the performance of PC is evaluated on the DSI data acquired in ACQ2. Fig. 4.9a
presents a colored fractional anisotropy map in the coronal plane. This map plots the ODF
in each voxel, thus revealing the fiber orientation. Fig. 4.9b displays the axial, coronal, and
sagittal projections of the EAP at five representative voxels (labeled V1-V5 in Fig. 4.9a).
Overall, the real-valued data exhibit broader probability distributions than the magnitude
data. This is a direct result of the enhanced contrast in the real-valued DWIs. The fiber
crossings in V1 (axial and coronal), V2 (coronal and sagittal), and V3 (axial) are barely
recognizable in the magnitude image but are well resolved in the real-valued images. The
orientation of the corpus callosum in V4 is also much clearer in the real-valued images. The
EAP distribution of voxel V5 in the CSF is much narrower in the magnitude data because
the rapidly decaying CSF signal in g-space is significantly broadened by the noise floor.
Judging from the similar axial and coronal orientation of the EAP in V4 and V5 under
Opt3 and Optb, real-valued data also better resolve the partial volume effects compared
with the magnitude data.

4.4. Discussion

Compared with the method of Prah et al. [131], decorrelated phase correction signifi-
cantly reduces the Rician bias, whereas it only slightly increases the sensitivity to local
phase variations. The major advantage of kernel-based PC is its simple computation. The
method completes within seconds on a standard computer, even when processing numer-
ous DWIs. PC is applied directly after the EPI reconstruction and is invulnerable to noise
distribution changes in post-processing, such as motion correction or non-stationary noise
introduced by parallel imaging. While Prah et al.’s [131] approach with a boxcar filter
kernel reduces the positive noise floor to approximately 46 % of the magnitude data, the
proposed decorrelated filter kernel Opt3 reduces it to approximately 11 %. Using the larger
filter kernel Opt5, almost zero noise floor was reached, but at the cost of additional outliers.
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Figure 4.8.: a-e: Parametric MZ maps of the magnitude and real-valued data using kernels

B3, G3F1H, Opt3, and Opt5. The slices are those shown in Figs. 6 and 7; f-i:
MZ difference maps between magnitude and real-valued data; j-m: Parametric
MZ maps of real-valued data with outlier replacement (o7 = 20); n—-q: MZ
difference maps between magnitude data and real-valued data with outlier
replacement (o7 = 2.50).
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Figure 4.9.: a: FA map of a coronal slice of ACQ2. Fiber directions are indicated in the
ODFs of each voxel. Five voxels (labeled V1-V5) are analyzed in detail. b:
Projections of the absolute value of the EAP into the axial, coronal, and sagittal
planes of voxels V1-V5, computed from magnitude and real-valued data using
kernels B3, G3F1H, Opt3, Opt5, and outlier replacement (o7 = 20).

This improvement was achieved by considering the noise correlations in the MR images,
introduced by non-orthogonal transforms in the EPI processing pipeline. Consequently,
the noise in each imaging voxel was correlated not only to itself but also to neighboring
voxels. Because only linear transforms were employed, the object signal and the noise can
be treated separately, and thus noise propagation was independent of the imaging object.

It is important to note that the decorrelated kernels Opt3 and Opt5 depend on the spe-
cific acquisition protocol and the specific EPI reconstruction chain. It was shown that re-
sampling introduces noise correlations in FE direction and Partial Fourier in PE direction
(see Fig. 4.2) while the odd/even correction and SENSE reconstruction have no impact
on the local noise correlation. Using Monte Carlo simulations, a noise correlation pat-
tern was computed and the optimized kernels were derived empirically such that small
weights were assigned to highly correlated voxels and vice versa. However, the correla-
tion pattern depends on the acquisition and reconstruction parameters and therefore the
optimized kernels may need to be adapted to the individual case. Especially nonlinear
partial Fourier reconstruction techniques (such as homodyne reconstruction [86], POCS
[87]) and parallel imaging in k-space (e.g., GRAPPA [103]) may also have a significant im-
pact on the correlation pattern. Nevertheless, reducing the weights of the center voxel of
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the kernel, as well as of its direct neighbors, and increasing the weights of the diagonal
neighbors seemed fairly general rules to reduce the bias.

The crucial challenge of PC is estimating the correct phase as errors lead to unwanted
signal loss. However in recent studies, the impact of incorrect PC was not investigated in
detail [131, 161]. In the present study, the influence of local phase gradients on the phase
estimation accuracy was analyzed in Monte Carlo simulations. Phase estimation using
a filter kernel proved highly robust, with no significant error, up to a certain threshold.
Above this threshold, the phase estimation failed. In rare cases, failure of PC was also
observed in the real data experiments ACQ1 and ACQ2, even under a size 3 kernel. To
detect PC failure, a simple thresholding method was devised, based on smoothed AMR
maps. If a voxel in these maps exceeds a certain threshold o7, defined as a multiple of the
global noise amplitude o, it is considered an outlier. The fraction of the outliers among all
DWIs was generally small but very spatially inhomogeneous. Outliers tended to be con-
centrated in small clusters, especially in regions close to the ventricles. Therefore it seems
very likely that PC failure primarily occurs by motion encoding of intracranial pulsatility,
which generates phase gradients exceeding the tolerance of the filter kernels. However,
even for the perfectly decorrelated kernel Opt5, the outlier fraction in these regions never
significantly exceeded 6 %. In all voxels exceeding the threshold, the real value was re-
placed by the magnitude. There are two potential drawbacks when using the magnitude
for outlier voxels, since the absolute value operation introduces a positive bias. On the
one hand, incorrect phase estimation may be more pronounced in certain diffusion en-
coding directions resulting in an angular inhomogeneous noise bias and potentially false
anisotropy measures. On the other hand, the noise bias may be spatially inhomogeneous
across the image volume since incorrect phase estimation occurs more often in specific re-
gions of the brain, e.g. next to the ventricles. However, it is important to note, that not
replacing the real value by the magnitude, would cause a negative signal bias due to in-
correct PC resulting in a much higher angular and spatial inhomogeneity. Even applying
PC with the most robust kernels, e.g. size 3 boxcar or size 3 Gaussian, rather than using the
magnitude seemed not favorable as there was still a remaining signal loss in some cases.
Moreover among the detected outliers, there were many voxels having a SNR not prone
to Rician bias whereas an error in PC may cause a severe underestimation of the signal. In
conclusion, it seems that the magnitude replacement is so far the best method to handle
potential outlier voxels.

There are two major benefits of real-valued data: more accurate fitting of diffusion mod-
els and increased contrast of DWIs in the low SNR regime. In this study, the former was
demonstrated on the DKI model, which is highly vulnerable to Rician bias [68]. Although
WLLS estimators are popular for their low computational cost, they are unsuitable for
exponential models and real-valued data because the log transform of negative values is
undefined. Consequently, we adopted an NLS estimator [163], which directly handles real-
valued data and fully exploits the PC technique. The results are consistent with those of
previous studies [68, 71], indicating that the AKC was overestimated due to Rician bias
contributions. The AKC was reduced by NLS fitting of the PC data, particularly in the
center of the brain where the SNR is minimized. However, in certain small regions of PC
failure, the AKC was erroneously underestimated by the use of real-valued data. These re-
gions matched those marked by the outlier detection. By replacing the values of all outlier
voxels by their magnitudes, the erroneous underestimation of MZ could be eliminated.

80



4.4. Discussion

The influence of PC data on the EAP was investigated using DSI data. The reduction
of the noise floor in the DWISs resulted in a broadening of the EAP and increased angular
resolution. Fiber crossings that were at most barely visible in the EAP of the magnitude
data were better delineated in the real-valued data, and the delineation improved as the
noise floor was lowered. Moreover, truncation artifacts in the EAP due the limited support
of the discrete g-space signal were reduced by PC in some cases (especially CSF voxels).
However, some advantages of the real-valued data were sacrificed because the magnitude
of the EAP was computed in the last processing step as the EAP still contained a significant
portion of negative signal after DFT due truncation effects. Windowing functions such as
the Hanning filter could be applied prior to DFT to reduce these artifacts [63], but this
would also blur the EAP. Thus, more sophisticated EAP reconstruction techniques, such
as deconvolution [80], compressed sensing [126], and constrained spherical polar Fourier
expansion [165], may realize the full potential of real-valued data.

Recent advances in Simultaneous Multi-Slice (SMS) have almost tripled the number of
DWIs acquired per unit time (see also section 5). However, SMS increases the 7' saturation
and the g-factor penalty of parallel imaging [22, 23], thereby reducing the SNR of single
DWIs (see Fig. 5.11 in section 5). Furthermore, the Human connectome project has set new
standards in terms of image resolution pushing it to 1.5 mm and below [106, 166] which
also significantly reduce the SNR per DWI. The greatest benefits of PC can be expected
in the low SNR regime, where real-valued data significantly reduce the noise floor and
increase the dynamic range. For the same reason, real-valued data increase the usefulness
of higher b-values, allowing deeper insights into tissue microstructure.
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5. Comparison of the SNR efficiency of
Diffusion weighted Imaging sequences

The content presented in this chapter is based in parts on the master thesis of Benjamin Fiir-
sich, entitled "Investigating the Applicability of Diffusion Weighted Steady State Free Pre-
cession MRI Pulse Sequences in Neuro-Imaging" which was supervised during the work
on this dissertation [167]. The work of Benjamin Fiirsich, however, was substantially ex-
tended by a novel DWSSFP signal model and comprehensive simulations. A journal paper
of this work is in preparation.

5.1. Introduction

As mentioned in previous chapters, the data acquisition in DWI is most commonly based
on a ST diffusion preparation [48] and a subsequent single-shot 2D EPI readout. Although
commercially available, in vivo MRI scanners feature high performance gradients systems
with a maximal gradient strength of up to 80mTm ™! per axis, the diffusion encoding
still requires a significant portion of time. As a result, DWIs often suffer from low SNR
because the images are not only diffusion weighted but also heavily 7> weighted due to a
long TE. Significant efforts have been made to further improve the gradient hardware and
the receive coils to increase the SNR [106, 166].

An alternative approach is the use of new diffusion weighted pulse sequences which
sample the Magnetic Resonance (MR) signal more efficiently and, therefore, improve the
SNR per unit time compared to a ST preparation with a 2D EPI readout. One option is the
increase of the simultaneously excited volume and the use of a segmented k-space readout
rather than a single shot trajectory. In this case, a larger amount of spins share the time
consuming ST preparation and the image volume is constructed from multiple Fourier
encoded segments. Unfortunately, the diffusion preparation does not only encode the
incoherent motion of the spins as an attenuation of the signal’s amplitude, but also encodes
the coherent motion as a shift in the signal’s phase (see section 2.2). Therefore, bulk motion
and the intrinsic pulsatility of the brain cause a complex, individual phase pattern in image
space for each diffusion preparation (see section 6). As a result, different k-space segments
can exhibit phase inconsistencies resulting in signal loss when the segments are jointly
reconstructed. Recently, three techniques have been proposed to overcome this problem.

In Simultaneous Multi-Slice Echo Planar Imaging (SMS-EPI), several spatially separated
slices are excited simultaneously, using a multiband excitation pulse followed by a ST
preparation and a single shot 2D EPI readout [168]. The signal originating from the dif-
ferent slices is separated using parallel imaging reconstruction techniques [22, 26, 103]. A
second method is called Multi-Slab Echo Planar Imaging (MS-EPI), where a slab of several
consecutive slices is excited and a 3D segmented k-space encoding scheme is used to sam-
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ple the data [24, 169, 170]. A 2D phase navigator is acquired to correct for phase variations
between the different k-space segments.

A third technique, called DWSSFP, uses a different type of diffusion preparation, based
on the rapid application of RF-pulses and diffusion weighting gradient pulses, resulting
in a steady-state of the signal [171, 172]. Promising results have been reported in vivo
and particularly ex vivo with excellent detection of anisotropy and improved SNR over
conventional 2D EPI [25, 173-178].

All three techniques have large potential to improve the SNR efficiency of DWI but they
are also accompanied by several disadvantages. For example, unaliasing the simultane-
ously excited slices in SMS-EPI can cause g-factor penalties and, therefore, the acceleration
factor in slice direction is limited [23]. MS-EPI suffers from slab boundary effects due to
imperfect RF-pulses [27] and DWSSFP has to deal with motion induced phase errors [25].

To weigh the pros and cons of the different techniques, a comparison of the expectable
SNR efficiency is needed. In this study, a framework is provided to analyze the SNR ef-
ficiency of the different DWI sequences with respect to conventional 2D EPI. This frame-
work is applied to a typical DWI setup assuming typical relaxation times for WM and GM
as well as state of the art scanner hardware. In recent studies, individual techniques, such
as SMS-EPI [23] or MS-EPI [179] were compared with conventional 2D EPI. However, a
general analysis of the SNR efficiency of all mentioned sequences for a whole brain DWI
acquisition and a wide range of resolutions and b-values is missing.

Moreover, the signal model of a pulsed DWSSFP sequence is investigated in depth as
it is a requirement for an accurate comparison of the SNR efficiency. Quantifying diffu-
sion using DWSSFP is challenging because in contrast to the ST diffusion preparation, the
signal model of DWSSFP is highly complex, even when assuming nonrestricted Gaussian
diffusion. The signal can be described as the sum of multiple Coherence Pathways (CPs)
where each CP has a well defined b-value [180]. Unfortunately, the contribution of each
CP to the overall signal depends on the relaxation parameters 77 and 7> as well as on the
sequence parameters TR and flip angle. Nevertheless, the quantification of the ADC has
been reported, either by additional mapping of 7} and 75 [174, 177, 178, 181] or by using
the double-echo approach [182].

Kaiser et al. [171] derived the first analytical solution describing the diffusion sensitiv-
ity of DWSSFP assuming a constant gradient and nonrestricted Gaussian diffusion. This
solution is represented by a Fourier integral that is further simplified by the assumption
of symmetric Fourier coefficients. Wu and Buxton generalized the model of Kaiser et al.
to the case of pulsed gradients [172]. However, Freed et al. reported that the assump-
tion of symmetric Fourier coefficients can lead to a highly inaccurate description of the
signal [183], particularly for short TRs and low flip angles [177, 183]. Therefore, Freed et
al. derived an accurate solution accounting for the correct coupling between positive and
negative Fourier modes. However, constant gradients were assumed again. To use the
model of Freed et al., the pulsed gradient were approximated by a constant gradient with
the same gradient area per TR [177]. In addition, a completely different approach, the two-
transverse approximation, was reported by Buxton, where only CPs with two periods in
the transverse plane are considered to contribute to the signal [181].

None of the described models is capable of calculating the accurate solution for the
pulsed DWSSFP sequence because either the coupling between positive and negative
Fourier modes is not accounted for correctly or the pulsed gradient is approximated by a
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constant gradient. It was also noted in a recent DWSSFP review paper that “the issue of
accuracy of the Kaiser model in vivo has not been explored in depth” [180]. In this work,
the error of each model is investigated for recently reported in vivo and ex vivo imaging
scenarios using Random Walk Simulation (RWS) as ground truth. Moreover, an accurate
signal model is presented by combining the approaches of Wu and Buxton [172] and Freed
et al. [183].

5.2. Theory and Methods

5.2.1. Analytic Models of a Diffusion-Weighted Steady State Free Precession
Sequence

In contrast to the ST preparation where the signal is spoiled after each TR (Fig. 5.1a), the
signal model of DWSSFP uses a steady state of the magnetization. In Fig. 5.1b, the signal
curve of a DWSSFP sequence is shown for two successive TR intervals. The DWSSFP
teatures two different signal components, one immediately after the RF pulse, called Sgip,
and one right before the RF pulse, called Scq,,, Where both components are separated by
the diffusion weighting gradient. Sgip decreases with T, whereas Se,, typically increases
as it is being refocused—75 decay and the refocusing of the static background field effects
work against each other where the refocusing effect usually dominates. Although the Sgip
signal is generally higher, it has lower sensitivity to diffusion [181]. Consequently, Secho
is used in diffusion experiments. Note that it is not possible to reduce the amplitude of
the diffusion gradient to zero to receive a non-diffusion-weighted signal because Sgip and
Secho Would overlap in this case resulting in a bSSFP sequence (see section 2.3.2).

Modeling the DWSSFP signal is substantially more complex compared to the ST prepa-
ration. Seqno 1S a superposition of multiple SE and STE, which can be described by the
theory of CPs [90]. The diffusion sensitivity of each CP can be calculated with the theory
of Stejskal and Tanner [48], using the corresponding mixing time A of the CP as well as the
amplitude G of the diffusion encoding gradient and its duration 7. Also CPs with multiple
consecutive ST preparations are possible and the diffusion effects add up. Unfortunately,
the contribution of each CP to S.q,, depends on the relaxation times 77 and 7% of the un-
derlying tissue. As a result, the diffusion sensitivity is a function of the diffusion gradient
parameters G and 7, the sequence parameters TR and flip angle « as well as the relaxation
times 77 and 75, making the conventional b-value concept inapplicable.

The model of Kaiser et al.

Kaiser et al. [171] derived the first analytical solution for the DWSSFP signal in the pres-
ence of a constant magnetic field gradient by solving the Bloch-Torrey equations (see sec-
tion 2.2.2) [38, 45]. This model is referred herein as the KBE model. Assuming Gaussian
diffusion, the general solution can be written as a Fourier series with symmetric Fourier
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Figure 5.1.: Sequence diagram and signal evolution of a: the ST diffusion preparation, and
b: the DWSSFP. No imaging gradients are shown.
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coefficients.
+00 t
Mo(0,) = —k;mbkEM(t)sm[(mm) 0| (5.1)
+00 t
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The damping terms E ;(t) and Ej () are defined as

t 1
Bia(t) = exp (- — 3Dg2(TRPR) | (5.4)

t 1 t t)? t\?
Ey i, (t) = exp (—T2—3Dg2'y2(TR)3 {3k2m—l—3k (ﬁ) + (ﬁ) }) , (6.5

where by, and ¢, are the corresponding Fourier coefficients to the Fourier mode &, 6 is the
precession angle over one TR, and g is the amplitude of the constant gradient. In practical
imaging conditions, the voxel size is typically in the millimeter range and the diffusion
weighting gradient is sufficiently strong to uniformly distribute the precession angle ¢
from 0 to 27 [172, 184]. Furthermore, typically only Spip (t = 0) and Secho (t = TR) are
of interest because at all other times the signal is additionally dephased by the diffusion
weighting gradient. Evaluating Eqs. 5.1 and 5.2 using the assumptions of practical imag-
ing conditions results in

1 27

SFDKBE = o Jy My (0,0) do = bo , (5.6)
1 27

SechoKBE = o A My(G,TR) df = blEng(t) . (5.7)

Note that the integral over M (6, 0) and M, (6, TR) from 0 to 27 is zero for all coefficients by,
and, therefore, only M, (6,0) and M, (6, TR) contributes to Spip and Secho respectively. The
phases of Spip and Secho depend on the orientation of the B field in the rotating reference
frame, or in other words, the phase of the RF pulse. In this example, B; points to the x
direction. For clarity, the description of all signal models investigated in this study are
restricted to Sgrp and Seqn, Where the additional index denotes the name of the model.

It is described in [171], that the Fourier coefficients b5, can be calculated by a recursion
equation assuming that the positive and negative modes decay equally in the presence of
diffusion. Solving this recursion equation (not shown, see [171]) yields the coefficients b_;
and bg

b My(1 — E10(TR)) (1 — F1E> _5(TR)) sina 58
(r — F1s)
b_l _ Mo(]_ — El’o(TR)> <F1 — EQ@(TR)) sin av (59)
(r — F1s)

87



5. Comparison of the SNR efficiency of Diffusion weighted Imaging sequences

where
r = 1—E10(TR)cosa+ Eyo(TR)Es,_1(TR)( cosa — E1(TR)) , (5.10)
s = By »(TR)(1— E19(TR)cosa) + By _1(cosa — Eyo(TR)) , (5.11)
and
F=K-VK2-L (5.12)
with

1-— Elyl(TR) COs o — E270(TR)E27,1(TR) <E1’1(TR) — COS a) 513
- Es_5(TR)(cos o + 1)(1 — E11(TR) ’ ©-13)

_ Ey(TR)
L = By (TR (5.14)

Egs. 5.6-5.14 present a fairly complex but easy to compute closed form solution of the KBE
model yielding SFID,KBE and Secho,KBE'

The model of Wu and Buxton

Wu and Buxton generalized the KBE approach to pulsed gradients [172]. This model is
referred herein as the WB model. At time ¢ after each RF-pulse, a gradient pulse of ampli-
tude G and duration 7 is applied. In the derivation of Wu and Buxton, the TR is divided
into three segments: segment one is ¢t = [0..€|, segment two is ¢ = [e..e + 7], and segment
three is t = [e + 7..TR]. Continuity constraints are imposed at the boundaries of each seg-
ment to derive a solution similar to the KBE model. It is shown in [172] that Sgip wp and

Secho,WB equal

SrpkBE = bows » (5.15)
SechokBE = b_1wsEyR(TR) | (5.16)
where
EVB(t) = exp (-1{1 _ D(WG)%%) (5.17)
Egv,f(t) = Hypexp (—;2 — D(yrG)*(k + 1)275) (5.18)
Hy = exp (DG (r(k+ g) +e(2k+1)]) (5.19)

The calculation of b_; wg and by wg is identical to the KBE model but the damping terms
E}’Y,CB(TR) and EgY,f(TR) must be used instead of E ;(t) and E5 (t) for Eqs. 5.6-5.14. The
full derivation of the WB model can be found in [172] and a simplified solution for e = 0
in [181].
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5.2. Theory and Methods

The model of Freed et al.

Freed et al. reported that the assumption of the symmetry for the Fourier coefficients by,
is wrong [183] and leads to significant errors at low a and short TRs. Thus, a different
recursion equation was derived to account for the correct coupling between positive and
negative Fourier modes. This model is referred to as FR model. Like the KBE model, the
FR model assumes a constant gradient with the amplitude g. According to [183], Sriprr
and Seqho Fr are given by

SepFrr = bofr (5.20)
SechofR = b1 mRE2(TR) . (5.21)
The damping terms E ;(t) and Es ;(t) are identical with the KBE model but the Fourier
coefficients by, rr and are computed using a different recursion equation. Solving this re-

cursion equation (not shown, details can be found in [183]), yields the new coefficients
b_1 rr and by rr

—sin OzMo (1 — EL()(TR))

b , 5.22
0FR Ap—o + E2 _1(TR)Cr—or1 622
boirr = —TiborR , (5.23)
where
1
Ay = 5(ELO(TR) —1)(1+cosa) , (5.24)
1
Br = 5(Eio(TR)+1)(1—cosa) , (5.25)
The term r; is given in a truncated continued fraction notation
1 E» 0(TR)Cg=1
o= ; 5.27
' B 1(TR)Bi—g Bj—1 627
where z; is the truncated continued fraction
n
x = s : (5.28)
.o+
2 d; + e
with ny, is the numerator
_ 2
= Ey _(TR)E3 ;—1(TR)A; Bi—1 7 (5.29)
By,
dy, is the denominator
Ey _;._1(TR)E, (TR)B,.C
de = (Ax — By) + 22 k—1( )Bz,k( ) B Clt1 (5.30)
k+1
and ey, is the extra term
o — _ Eoi(TR) By, -1 (TR) By Cli1 (5.31)

Bi11
In agreement with [177, 183], the truncation of Eq. 5.28 at | = 6 resulted in a very accurate
estimate of 1 up to several decimal places.
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5. Comparison of the SNR efficiency of Diffusion weighted Imaging sequences

Combining the KBE, WB, and FR models

With the generalization of the KBE model to pulsed gradients, Wu and Buxton introduced
the new damping terms E}'B(TR) and EYB(TR) to account for the length 7, amplitude G,
and the position € of the g}adient pulse [172]. On the other hand, Freed et al. derived
a different recursion equation to account for the correct coupling between the positive
and negative Fourier modes [183]. Both improvements are independent of each other.
Consequently, it seems natural to combine both approaches, i.e. solving the recursion
equation derived from Freed et al. with the damping terms suggested by Wu and Buxton.
This newly proposed model is referred to as the KWF model where Sgip xwr and Secho rr
are given by

SEDKWE = boKWE (5.32)
Secho KWF = bfl,KWFE;V D, (5.33)

The coefficients by xwr and b_; xwr can be calculated with Eqgs. 5.22-5.33 but using the
damping terms EYV,E and E;V,f The complete model is presented in appendix A.2.
The two-transverse periods approximation

Buxton derived a fairly simple approximation for Seq,, based on a partition analysis, re-
ferred to as the 2TP model [181]. Assuming that the main contribution to Seqo results
primarily from CPs having only two transverse periods, Secho 2P can be calculated as

Secho2tP = Msg + MstE (5.34)
with

Msg = (5.35)

Q1 Mo(1 — K1)(Ks)?sina\ (1 — cosa
( 1 Ol—KllcosZz )( 2 )’
(Q1)*Mo(1 — K1) K (K3)?(sin o)®

M: = .
STE 2(1 — Kjcosa)(l —Q1Kjcosa) ' (5:36)

where Mgk and Msrg correspond to the signal originating from SEs or STEs with two trans-
verse periods, respectively. The terms K, K5, and (); are given by

Ky = exp (—F;Il{) ) (5.37)
Ky = exp (—g) ) (5.38)
Q = exp(—TR(*yGT)QD). (5.39)

5.2.2. Random Walk Simulation

A Random Walk Simulation (RWS) was implemented to investigate the accuracy of the
different analytical models of the DWSSFP signal as well as its sensitivity to coherent mo-
tion.
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For that purpose, NV spins were randomly positioned within an artificial voxel, where
each spin n had a position vector Z,, and a magnetization vector Mn, as shown in Fig. 5.2.
After each time step At = 100ys, M,, is updated to account for the Tj and T relaxation,
dephasing by the diffusion weighting gradient, and rotation by the RF pulses. The rota-
tion of M, is assumed instantaneous. The position of each spin is updated to account for
coherent and incoherent motion. Nonrestricted, Gaussian diffusion, which is a sort of inco-
herent motion, was implemented by an individual shift AZ,, of the spins” position Z,,. The
coefficients of the vectors Az, were randomly generated following a Gaussian probability
distribution with the standard deviation orws given by

orws = V2DAt | (5.40)
with the result that the mean squared displacement (AZ#2) (see section 2.2.1) equals
(AZ%) = 6DAt . (5.41)

Basically, also anisotropic incoherent motion, as defined in the DTI model, could be sim-
ulated with the RWS by assigning individual orws to each spatial axis. However, in the
present work, the analysis was restricted to isotropic diffusion. Moreover, coherent mo-
tion was implemented in the RWS assuming a motion trajectory Z(¢) which described the
time evolution of the center of mass of all spins. The motion trajectory Z(¢) was split into
discrete shifts AZ(t) which were simultaneously applied to all spins at each time step At.

/" Update on every time N\
step At
position vectors magnetization vectors
_ e .
ted Xn M, DWSSFP signal
N simulate
L,J |a random walk T1, T2 relaxation N _
particles (diffusion simulation) (Bloch equations) z Mn
. . =1
coherent motion gradient .dephasmg L
(e.g. diffusion)
RF-pulse, rotation
(Bloch equations)

- J

Figure 5.2.: Flow chart of the random walk simulation. N particles are simulated, each

with a position vector Z,, and a magnetization vector M,,. Every iteration &, is
updated allowing for incoherent motion (diffusion) and coherent motion and
M, is updated allowing for relaxation, rotation (RF pulses), and dephasing
(gradients pulses).

Random walk simulation to investigate the impact of intracranial pulsatility

Motion trajectories of the thalamus region, which were reported by Soelinger et al. [185],
were used to investigate the influence of intracranial pulsatility on the steady state of the
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5. Comparison of the SNR efficiency of Diffusion weighted Imaging sequences

DWSSFP signal. The RWS signal was computed for a time period of 4s with N = 100000
spins, assuming a constant heart rate of 60 bpm. The other simulation parameters were:
G =3mTm !, 7 = 8ms, @« = 30°, TR = 25ms, 7} = 830ms, 75 = 80ms and D =
0.7 x 1072 m?s~!. Three different simulation runs with the diffusion weighting gradients
pointing in AP, LR and Superior-Inferior (SI) direction were conducted.

Random walk simulation to investigate the accuracy of analytical DWSSFP models

The transient phase of the DWSSFP signal was assumed to last from ¢ = 0 to ¢t = 577,
and 200 TRs past the transient phase were simulated. The signal of the RWS, i.e., Spip rws
and Sgchorws Was calculated as the average of M, over N = 1000000 spins, directly after
the RF-pulse (Spip,rws) or directly before the RE-pulse (Secho,rws). Furthermore, Sgp rws
and (Secho,rws) Were averaged over all 200 TRs past the transient phase to increase the
numerical stability.

5.2.3. Comparison of the analytical DWSSFP models

The analytical models, described in section 5.2.1, were investigated for three parameter
sets used in recent publications (Table 5.1). The first set S1 was used by Miller et al. for ex
vivo whole brain imaging [174], the second set S2 was used by Bieri et al. for in vivo ADC
quantification of the knee cartilage [177], and the third set S3 was used by O'Halloran et al.
for in vivo whole-brain imaging [25]. In the simulations, either D is varied from 0 m?s~!
to 2 x 107?m? s~ ! or « is varied from 2° to 178° assuming all other parameters to be fixed.
To apply the KBE and FR models to pulsed gradients, the approximation suggested by
Bieri et al. [177] was used, where the pulsed gradient is replaced by a constant gradient
(constant gradient approximation) of the same gradient area (G = TRg). Note that the
position ¢ of the diffusion gradient pulse does not affect Spip or Secho as the mixing time
for each CP is independent of €. The accuracy of signal Suna, predicted by the analytical
models was evaluated first by direct comparison to the ground truth signal Srws, second
by the relative error 65, defined as

Sana - SRWS

08 = (5.42)
Srws
and third, using the relative error of the diffusion sensitivity do
59 — Jana — ORWS (5.43)
ORWS
with
Sana >
00ana = log| =—F5—= ] » 5.44
ana g(Sana(G:()) ( )
SRWS )
So = log|—2"RWS ) 5.45
RWS g(SRWS(G:O) (5.45)

where S;na(G = 0) or Sgpws(G = 0) is the signal of the DWSSFP sequence having the
same parameters as Sana O Srws but with D set to zero. Note, this is only possible in a
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S1 S2 S3
T, 340 ms 1200 ms 1100 ms
T, 45 ms 50 ms 75 ms
TR 42 ms 15 ms 26.5 ms
a 37° 14° 37°
G 40 mT/m 40 mT/m 40 mT/m
T 16.7 ms 2.5ms 6.5 ms
q 668 mT ms m™! 100 mT ms m™ 260 mT ms m™!
D 0.1x10°mm?/s 1.5x10°mm?/s 0.7 x10° mm?/s

Table 5.1.: Overview over the parameter sets S1, S2, and S3 which are investigated in this
study to determine the accuracy of the analytical models of the DWSSFP signal.
The tissue and sequence parameters are denoted as follows: relaxation times T}
and T», repetition time TR, flip angle «, amplitude of the gradient pulse G, du-
ration of the gradient pulse 7, diffusion weigthing ¢ given by G and diffusion
coefficient D.

simulation environment and in practice a very small diffusion gradient is used to obtain
an almost non-diffusion weighted image. The definition used for the diffusion sensitivity
o is similar to the definition of the b-value for a ST preparation. However, as already
mentioned, in contrast to the ST preparation, the diffusion sensitivity of DWSSFP also
depends on T3, T3, o, and TR (see definition of the effective b-value in the next section).

5.2.4. Comparison of the SNR efficiency of DWI sequences
The signal to noise ratio in MRI

According to Edelstein et al. [105], the SNR per voxel in an MRI image can be defined as

SNR = W, pV /N - Toeq SNMR - (5.46)

where p is the proton density, V' is the voxel volume, N is the number of shots (excitations)
used to encode the MRI image, T,.q is sampling time per shot, S\mr is the normalized
NMR signal depending on the sequence parameters as well as the relaxation parameters
of the scanned tissue, and ¥, is the so called system SNR in units of Hz!/?2mm~!. The
factor ¥, includes all hardware related impact factors such as the quality factor of the coil,
the local sensitivity of the coil or the coil array, amplifiers, temperature and more. It is
important to note, that in Eq. 5.46 a uniform encoding of k-space is assumed. In case
of non-Cartesian encoding schemes, the SNR also depends on the k-space trajectory, the
scanned object and the reconstruction technique [186].

Relative SNR efficiency

When comparing the SNR efficiency of different DWI sequences, it seems sensible to as-
sume the same system SNR U, voxel volume V/, spin density p and relaxation times 7}
and T5. According to Eq. 5.46, this leaves three impact factors on the SNR, namely N, T,¢q
and Snymr which can vary between the sequences. However, not only the SNR of an image
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is important but also the time needed to acquire it. Therefore, the SNR per scan scan time
SNR/Tscan is a very useful quantity to describe the efficiency of a sequence. As the accu-
rate SNR for a specific parameter set V, p, 71 and 75 is not known, a normalized quantity
is derived to compare the efficiency of different sequences.

Figure 5.3.: Scan volume (red) and simultaneously excited volume (blue) for a: 2D EPI, b:
SMS-EPI, ¢: MS-EPI and d: DWSSFP.

A substantial difference between 2D EPI, SMS-EPI, MS-EPI and DWSSEP is the simul-
taneously exited volume Ve as illustrated in Fig. 5.3. In case of MS-EP], a slab of N,
slices is simultaneously exited and Ng,}, phase encoding steps in slice direction are needed
to Fourier encode the slab volume. Consequently, the SNR and also the SNR/Tican will
be increased by a factor of /Nyj,, compared to a 2D EPI because the sampling time per
volume (or per spin) is 6 times longer. It is important to note, that the overall scan time
is not increased in this case since the TR, given by the time interval of two consecutive
RF-pulses exciting the same volume, is reduced at the same time by a factor of Ngjap. This
is the reason why 3D sequences are typically more efficient than 2D sequences. Similarly,
in SMS-EPI the TR can be reduced by the multiband factor MB and the gained time can
be used to acquire MB repetitions, increasing the SNR/7s.an by a factor of vMB. How-
ever, in case of SMS-EPI the SNR of a single DWI is not increased. The influence of the
simultaneously exited volume V¢ (the blue area in Fig. 5.3) on 7 can be accounted for by
introducing the volume efficiency v

‘/EXC
)
‘/scan

(5.47)

v =
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where Vican corresponds to the complete volume covered by the DWI scan (the red area in
Fig. 5.3).

The proportion of the sampling time spent on acquiring data and the TR can also vary
between the different sequences. If Tiq is the duration of the readout window of one shot,
the sampling efficiency x can be defined as

N - Tacq
= . 5.48
X=\ "R (5.48)

Finally, the normalized SNR efficiency 7 can be written as the product of v, x and Sxmr,
where each of the factors can range between zero and unity. Assuming all spins are in ther-
mal equilibrium, Symr = 1 corresponds to the signal measured directly after application
of a 90° excitation pulse.

N = UXSNMR (5.49)

The focus in this work is the potential gain in SNR efficiency compared to conventional
2D EPIL Thus, the relative SNR efficiency 7 is defined as

Ml = —— (5.50)
12DEPI

where mpgpy is the SNR efficiency corresponding to a 2D EPI sequence.

Apart from 7, the SNR of a single image is also important in DWI because most often the
magnitude of the complex signal is processed. Thus, a higher SNR results in less bias due
to non-Gaussian noise distribution [21] (see also chapters 3 and 4). The SNR of a single
image is proportional to 1 except for SMS-EPI because the efficiency gain is achieved by
magnitude averaging of multiple repetitions or by acquiring DWIs with a higher number
of directions and b-values. Unfortunately, this does not reduce the aforementioned bias.
Therefore, relative SNR (rSNR) is defined identical to 7, but divided by v/MB if SMS-EPI
is used.

Scan parameters for the simulation and optimization

To compare the different sequences, a fixed maximal gradient strength G = 50mTm™!
was assumed which corresponds to a modern MRI scanner like the 3T GE MR750 (GE
Healthcare, Milwaukee, WI). Two different tissue types were considered, White Matter
(WM) with (77 = 1330ms, 7> = 110 ms), and Gray Matter (GM) (77 = 830ms, 7> = 80 ms).
The thickness of the scan volume was set to 120 mm (Fig. 5.3) which is typically large
enough to cover the full brain.

Fig. 5.4a presents the timing of the simulated EPI sequence used in the SNR efficiency
comparison. The duration of RF-pulses, fat saturation and spoiler gradients were selected
according to the implementation of a DWI EPI sequence on a 33 T MR750. The duration of
the readout section of the EPI sequences was set to a fixed value of T,cq g1 = 30 ms in which
a full slice or a full phase encoding step in slice direction has to be acquired. A substantially
longer readout time is usually not favorable as off-resonance effects and 75 signal decay
can lead to significant image artifacts (see section 2.3.3). To achieve high resolutions in
that time frame, parallel imaging may need to be used [26, 103]. The delay time Tyelay,Ep1
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111/\/—\ A/—\ /)

fatsat excitation  diffusion  pre refocus-refocusing  diffusion readout spoiler
pulse gradient1 ingdelay  pulse gradient 2 gradient
Tfat Texc 8EPI Tdelay,EPl Trefoc 8EPI Tacq,EPI Tspoil
10ms 5ms individual 5ms 5ms individual 30 ms 2 ms

b

excitation diffusion readout excitation
pulse gradient pulse
Texc TSSFP Tacq,SSFP Texc
5ms individual individual 5ms

Figure 5.4.: Sequence timing of a: the EPI sequences and b: the DWSSFP sequence. 2D-
EPI, SMS-EPI and MS-EPI share the same timing. The duration of sequence
elements marked with "individual" is optimized for a specific resolution and
b-value.

between the first diffusion weighting gradient and the refocusing was set to 5ms which
is a typical value to ensure, that the k-space center is acquired at the time the SE occurs.
Although Tyelayepr may be adjusted to the image resolution, Partial Fourier and parallel
imaging acceleration factors, here a fixed value was used for simplicity. The duration of
the diffusion gradients ¢ was calculated based on the formula of Stejskal-Tanner assuming
rectangular gradient pulses [48] (also see section 2.2.3).

For all three EPI sequences, 2D EPI, SMS-EPI and MS-EPI the same timing for the ST
preparation and readout module was assumed. The implementation of SMS-EPI and MS-
EPI may be longer due to more complicated RF-pulses or phase navigators needed to cor-
rect for phase inconsistencies between different k-space segments. However, in this work,
the best possible scenario was assumed to evaluate the capabilities of the new sequences.
Potential drawbacks will be discussed later.

A DWSSEFP is less common for in vivo imaging of the brain and, thus, the sequence
timing was kept rather simple (Fig. 5.4b). One TR includes only a RF-pulse, a diffusion
weighting gradient and a readout segment. In a more realistic scenario, navigators would
be necessary to correct for motion induced phase variations [25].

The signal Snwmr gpr of the EPI sequences with ST preparation was calculated assuming
a spoiled SE sequence with a 90° excitation pulse and a 180° refocusing pulse [187].

1TE - TR -TR —TE
SNMR EPT = Mo (1 — 2exp <2> + exp ( )) exp (7) (5.51)
' T T T3

The SNR efficiency n of a SE EPI sequence is optimized as follows. The sampling ef-
ficiency x is constant since the duration of the ST preparation and the readout section is
tixed but the volume effiency v can be increased by increasing the simultaneously excited
volume V.. However, at the same time, Snmr gp1 is reduced as the shorter TR results in an
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WM (TE=80) | |
GM (TE=80)
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Figure 5.5.: SNR efficiency of a spoiled SE for WM and GM as a function of the TR, assum-
ing a TE of 80 ms.

increased 7' saturation. Fig. 5.5 demonstrates that an optimal TR ~ 1.47} exists, where 7 is
maximized. Two different cases were simulated for MS-EP], a first version where the slab
thickness was chosen such that the aforementioned optimal TR is reached and a second
version with TR = 4 ms because this TR was reported to be a good compromise between
SNR efficiency and slab boundary artifacts [27]. To avoid discretization effects, noninteger
values for the number of slices per slab were allowed. Regarding SMS-EPI, the simulation
was restricted to MB = 3 and MB = 4 as higher multiband factors are problematic due to
g-factor penalties [22].

b in s/mm? 999 2000 3003 3993 4998 5990 6987 8006
tin ms 6,1 9,6 13,2 16,6 20,3 23,5 26,2 28,7
Tocqssep i MS 14,0 15,0 16,0 17,0 18,0 19,0 20,5 21,0
TR in ms 25,1 29,6 34,2 38,6 43,3 47,5 51,7 54,7
ain® 30 30 31 31 33 34 35 36

SR ssFP 0,060 0055 0050 0046 0042 0039 003 0,034
n 0,045 0039 0034 0031 0027 0025 0023 0,021

Table 5.2.: Overview over the optimized DWSSFP parameters for WM.

The optimization of the DWSSFP is more complicated because the diffusion sensitivity
depends in addition to the diffusion gradient (G, 7) also on o and TR, as well as tissue
relaxation times 7 and T». Thus, a traditional b-value is not well defined. However, an
effective b-value bes that reflects the diffusion sensitivity for a distinct tissue type can be

defined as

Ssspp(G, 7, a, TR, Ty, Ts, D)
beit = 5.52
ot = Sesrp(G, 7,0, TR, T}, To, D = 0) (5.52)
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where Ssspp(G, 7, a, TR, T1,T5, D) corresponds to the diffusion weigthed DWSSFP sig-
nal and Ssspp(G, 7,0, TR, T1,T5, D = 0) is the signal of the same sequence but with D
set to zero [176]. As already mentioned, setting D to zero is only possible in a sim-
ulation environment and in practice, a very small diffusion gradient has to be used
to obtain an almost non-diffusion weighted image. The optimal DWSSFP sequence
parameters were determined empirically by calculating Ssspp(G, 7, o, TR, T, T3, D) and
Sssep (G, 7,0, TR, T1, To, D = 0) with the KWF model for a wide range of parameters: 7
from 1 ms to 30 ms in intervals of 0.1 ms, T,cq gpr from 5 ms to 30 ms in intervals of 0.5 ms and
a from 5° to 90° in intervals of 1°. The parameter set yielding the highest SNR efficiency
n and matching the wanted begs 1 % was selected. The optimized DWSSFP parameters
for WM and GM and b between 1000 s mm~2 and 8000 s mm 2 can be found in table 5.2
and 5.3 respectively. The efficiencies of all sequences were investigated for b-values, or in
case of DWSSFP effective b-values, ranging from 300 s mm ™2 to 8000 s mm ™2 in intervals of
200smm~? and for slice thicknesses ranging from 0.5 mm to 3 mm in intervals of 0.1 mm.

b, in s/mm? 998 2005 2997 3993 4998 5993 6988 7985
tin ms 5,0 7,9 11,0 14,2 17,3 20,7 23,5 25,8
Tocqssep iN MS 16,5 17,5 19,5 20,0 22,0 23,0 24,5 26,5
TR in ms 26,5 30,4 35,5 39,2 44,3 48,7 53,0 57,3
ain® 28 27 28 28 28 30 31 32

S ssrp 0062 0059 0055 0052 0048 0046 0043 0,041
n 0049 0044 0041 0037 003 0031 0029 0,028

Table 5.3.: Overview over the optimized DWSSFP parameter for GM.

5.3. Results

5.3.1. Accuracy of analytic DWSSFP models

Fig. 5.6 presents simulation results, comparing the DWSSFP signal predicted by the an-
alytical models and the RWS for the three parameter sets S1, S2 and S3 (Table 5.1). D
is ranging from O0m?s™! to 2 x 1072 m? s~! while all other parameters are held constant.
As the diffusion sensitivity of Spip (Fig. 5.6a—c) is much smaller than Seq,, (Fig. 5.6d-f),
the analysis is focused on the latter. Overall, the KWF model seems accurate as dSecho (Fig.
5.6g—1) and 0oecho (Fig. 5.6j-1) are very low, and the remaining errors are most likely caused
by the variance of the RWS. However, the accuracy of all other analytical models strongly
depends on the sequence and tissue parameters.

The WB model seems very accurate for S1 with 0Sech, and doecho (Fig. 5.6g,j) of almost
zero because the higher modes are strongly attenuated by the damping terms E}'’(TR)
and E;’Y,E(TR) (Egs. 5.17 and 5.18) owing to the small 75/TR of 0.9 and the strong diffu-
sion weighting (§ = 668 mT msm™!) in S1. Consequently, the false assumption in the WB
model that positive and negative modes decay equally affects S1 only slightly. Solely in
the case of very small D, EYY,E(TR) and E;’Y,E(TR) decrease, and hence, Seepo (Fig. 5.6g)
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Figure 5.6.: Simulation results comparing the RWS signal with the analytical models for
parameter sets S1 to S3, with D ranging from 0m?s~! to 2 x 107" m?s71. a-c:
Skip d—f: Secho 8—h: dSecho, the relative error of Seepo. i—k: d0eeho, the relative

error of the diffusion sensitivity oecho-
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is slightly overestimated and e, is underestimated (Fig. 5.6j). In S1, the KBE and FR
models overestimate Se, with D (Fig. 5.6g) and consistently underestimate o, at about
10 % (Fig. 5.6j). This is attributed to the constant gradient approximation that leads to
particularly high errors in the b-value for short CPs. However, the short CPs dominate the
signal of S1 because of the small 75 /TR and the strong diffusion weighting. This attenu-
ates the longer CPs. For the same reason, the approximate 2TP model performs very well,
even better than the KBE and FR models (Fig. 5.6g,j), because CPs with more than two
transverse periods are suppressed.

The situation is inverted for S2 because of the greater 75 /TR ~ 3.3, the lower diffusion
weighting (¢ = 100mT msm™1!), and lower a = 14°. This leads to the coupling of modes
[183] and lower signal portion for short CPs. Consequently, the errors owing to the con-
stant gradient approximation are negligible and the FR and KWF models are very accurate,
whereas the KBE and WB models overestimate Se.h, with D (Fig. 5.6h) and consistently
underestimate oo at about 20 % (Fig. 5.6k).

Finally, S3 lies between S1 and S2 with 75 /TR ~ 2.8, a = 37°, and a moderate diffusion
weighting of ¢ = 260mT msm~!. Consequently both sources of error, the constant pulse
approximation and the coupling of the modes, contribute equally to the error of the signal,
leaving only the KWF model being accurate (Fig. 5.6i,1). The 2TP model seems unsuitable
for both S2 and S3 as Joecho significantly exceeds 20 %.

Figure 5.7 shows the simulation results for o between 2° to 178° and fixed values for
all other sequence and tissue parameters in Table 5.1. The differences in Sgp (Fig. 5.7a—)
between models are very small for all given parameter sets and the analysis is limited
to Secho again (Fig. 5.7d—f). The KWF model seems accurate for the full range of o with
almost zero §Secho (Fig. 5.7g—i) and doecho (Fig. 5.7j-1). In general, low o seems to increase
the coupling of the modes, which leads to the large errors of the KBE and WB models,
but it decreases the effect of the constant gradient approximation resulting in small errors
for the FR model (Fig. 5.7g-1). On the contrary, for high «, the coupling of the modes
is negligible but the constant gradient approximation leads to significant errors. The 2TP
model is only sufficiently accurate in the very low « regime because the contributions of
CPs with more than two transverse periods significantly increase with « (Fig. 5.7d-1).

5.3.2. Motion sensitivity of the DWSSFP signal

The intrinsic motion sensitivity is the biggest challenge of a DWSSFP sequence for in vivo
application. Therefore, the RWS was used to investigate the disruption of the steady
state caused by intracranial pulsatility in the thalamus region as reported in [185]. In
Fig. 5.8, Secho is plotted with and without the influence of coherent motion assuming
bett = 1500smm~2 and diffusion encoding directions LR (Fig. 5.8a), AP (Fig. 5.8b) and
SI (Fig. 5.8¢c). In case the diffusion encoding gradient points in LR direction, Sep, is only
slightly reduced when comparing the plots with motion and without motion (Fig. 5.8a).
However, in AP and SI direction, Secho is substantially fluctuating and the amplitude is
in average reduced by about 30 % and 40 %, respectively (Fig. 5.8b,c). The potential sig-
nal loss of the DWSSFP sequence is not included in the subsequent efficiency comparison
because it strongly depends on the specific brain region and the selected sequence param-
eters.
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Figure 5.7.: Simulation results comparing the RWS signal with the analytical models for
parameter sets S1 to S3, with a ranging from 2° to 178°. a-c: Spp d—f: Secho
g-h: 6Secho, the relative error of Secpo. i—k: d0echo, the relative error of the
diffusion sensitivity gecho-
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Figure 5.8.: RWS simulation results of Sec,, as a function of the time assuming pulsatile
brain motion of the thalamus as reported in [185]. Parameters for the RWS
were: a = 30°, TR = 25ms, a = 30°, T} = 830ms, 75 = 80ms, G = 35mTm !,
T = 8ms, b = 1500smm ™2 and a heartbeat of 60 bpm. a: Diffusion encod-
ing in LR direction, b: Diffusion encoding in AP direction, and ¢: Diffusion
encoding in SI direction.

5.3.3. Efficiency comparison of DWI sequences

Fig. 5.9a depicts the relative SNR efficiency 7, over the simulated parameter space of
all slice thicknesses and all b-values assuming WM as the underlying tissue. For all EPI
sequences, 7y increases steadily with decreasing slice thickness and increasing b-value.
The reason is the prolonged TR and the reduced 7} saturation which either results from
a higher number of shots needed to cover the volume or from the longer diffusion en-
coding time. The behavior of the DWSSFP is similar for different slice thicknesses but
different regarding be because 7,0 peaks at roughly begr = 2000s mm ™2, and then, slightly
decreases for higher begs. A comparison of 7, among the sequences reveals MS-EPI with
TR = 1160 ms as the most efficient sequence. This is plausible because the TR was opti-
mized for the best possible 7 that a spoiled SE sequence can achieve (see Fig. 5.5).
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Figure 5.9.: Relative SNR efficiency gain 7, of SMS-EPI (MB = 3 and 4), MS-EPI (TR =
1.16 ms and 4 ms), and DWSSFP assuming tissue parameters typically observed
in WM (T1 = 830ms, Ty = 80ms, D = 0.7 x 1072 m?s71). a: Color plots of 7
as a function of the slice thickness and the b-value, b: Line plots of 7, for
betf = 1000s mm ™2, begr = 3000s mm ™2 and b = 8000 s mm~2 as a function of
the slice thickness, c: Line plots of 7 for slice thicknesses of 1 mm, 2 mm and
3mm as a function of the b-value.
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Figure 5.10.: Relative SNR efficiency gain 7, of SMS-EPI (MB = 3 and 4), MS-EPI (TR
= 1.86 ms and 4 ms), and DWSSFP assuming tissue parameters typically ob-
served in GM (T} = 1330ms, 75 = 110ms, D = 0.75 x 1072 m?s~1). a: Color
plots of 7, as a function of the slice thickness and the b-value, b: Line plots
of Nyel for begr = 1000smm ™2, begg = 3000s mm 2 and begg = 8000s mm 2 as
a function of the slice thickness, ¢: Line plots of 7, for slice thicknesses of

1mm, 2mm and 3 mm as a function of the b-value.
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For a detailed comparison, 7 is plotted in Fig. 5.9b as a function of the slice thick-
ness for different b-values. These plots correspond to vertical lines in Fig. 5.9a at b =
1000 s mm~—2, 3000 s mm 2 and 8000 s mm 2. Overall, the results for all three b-values seem
very similar and the slice thickness has by far the greatest impact. SMS-EPI (MB = 3, 4) and
MS-EPI (TR = 1160 ms) provide a very similar performance for a slice thickness between
from 2 mm to 3 mm. However for slice thicknesses smaller than 2 mm SMS-EPI (MB = 3, 4)
quickly reaches the maximum possible 7] of v MB. DWSSFP and MS-EPI (TR = 4000 mm)
exhibit an essentially lower 7, at high slice thicknesses than SMS-EPI (MB = 3, 4) and MS-
EPI (TR = 1160 mm). However for slice thicknesses lower than about 1 mm, DWSSFP and
and MS-EPI (TR = 4000 mm) outperform both SMS-EPI sequences, because they don’t
have an intrinsic limit of 7. In Fig. 5.9c 7, is plotted as a function of the b-value corre-
sponding to three horizontal lines in the color plots of Fig. 5.9a at slice thicknesses 1 mm,
2mm and 3mm. Basically, the previous observations are confirmed. SMS-EPI (MB = 3,
4) and MS-EPI (TR = 1160 ms), provide almost identical performance at 3 mm because T}
saturation limits the potential gain in SNR efficiency. At 2mm slice thickness, SMS-EPI
(MB = 4) and MS-EPI are still very similar, but SMS-EPI (MB = 3) falls behind especially
at higher b-values. Finally, at 1 mm slice thickness, MS-EPI (TR = 1160 ms) exhibits its full
potential with 7, reaches about 2.8 at high b-values whereas all other sequences achieve
at most 7y = 2.

Fig. 5.10 shows the same analysis as Fig. 5.9 but for GM tissue instead of WM tissue.
The conclusions are very similar compared to WM. However, the possible benefit of the
new DWI sequences are generally smaller because of the longer 7 of GM and therefore,
stronger saturation effects. Consequently, the optimal TR for a spoiled gradient echo is
about 1.86 ms for GM compared to TR = 1.16 ms for WM.

Fig. 5.11 depicts the rSNR as a function of the b-value or the slice thickness. The results
demonstrate that the rSNR does not increase for SMS-EPI. On the contrary, in case of large
slice thicknesses, the rSNR is even smaller than one, indicating a lower SNR than con-
ventional 2D EPIL This can be explained by the increased 7T saturation due to the shorter
TR. However for small slice thicknesses below 2 mm this effect is negligible and the rSNR
yields almost 1. Overall this saturation effect is more pronounced in GM (Fig. 5.11d-e)
than in WM (Fig. 5.11a-c) due to the longer 77 of GM.

5.3.4. Discussion
Analytic DWSSFP models

The errors of different analytical models for pulsed DWSSFP sequences were evaluated
for three recently published parameter sets S1, S2 and S3 [25, 174, 177] using a RWS sim-
ulation as ground truth. Previously reported models are very accurate in some parameter
regimes, e.g. the WB model for low 75 /TR (parameter set S1) and high «, or the FR model
for high 75 /TR and low « (parameter set S2). However, none of the existing models was
found accurate for parameter set S3. The proposed KWF model, which combines the im-
provements of Wu and Buxton [172] and Freed et al. [183] to the original KBE model [171],
yielded accurate solutions for all three parameter sets. Despite the lack of theoretical proof
of the accuracy of the KWF model, the simulation results of the three scenarios suggest
that the KWF model generally is the accurate analytical solution to predict the signal of
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Figure 5.11.: Relative SNR gain, rSNR, of SMS-EPI (MB = 3 and 4), MS-EPI (TR = 1.86 ms
and 4 ms), and DWSSFP. a: rSNR at b = 3000 s mm~? as a function of the slice
thickness for WM, b: rSNR at at a slice thickness of 1 mm as a function of the
b-value for WM, c: rSNR at at a slice thickness of 3 mm as a function of the b-
value for WM, d: rSNR at b = 3000 s mm 2 as a function of the slice thickness
for GM, e: 1SR at at a slice thickness of 1 mm as a function of the b-value for
GM, and £: rSNR at at a slice thickness of 3 mm as a function of the b-value
for GM.

the pulsed DWSSFP sequence. The approximate 2TP solution, suggested by Buxton [181],
was overall the least accurate model with significant errors at high «. However, the 2TP
model can be sufficiently accurate at very low « and high 75 /TR (e.g. parameter set S1).
Moreover, 2TP is computationally very simple and contrary to the other models presented
here, the 2TP model can also be used for non-Gaussian diffusion signals where each CP is
handled as an ST preparation [173].

Efficiency comparison of DWI sequences

A framework was presented to compare SNR efficiencies of DWI sequences with different
types of diffusion preparations, e.g. conventional ST preparation or a diffusion weighted
steady state, but also with different readout techniques such as 2D, SMS, multi-slab or 3D.
The framework was used to compare the SNR efficiency gains of several recently reported
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DWI sequences, i.e. MS-EPI, SMS-EPI and DWSSFP, over conventional 2D EPI. For the
comparison, a modern MR scanner with a maximum gradient strength of 50 mT m~! was
assumed, as well as a fixed value of 12 cm for the FOV in slice encoding direction, which
is typically sufficient to cover the human brain. Two significant impact factors on the
potential SNR efficiencies gains were identified, namely the b-value and the slice thickness,
because both directly influence the TR and therefore the T} saturation.

Overall the slice thickness or the resolution—most often isotropic voxels are used in
DWI—had a substantially larger impact on the SNR efficiency gain than the b-value. For
moderate slice thicknesses between 2 mm and 3 mm, SMS-EPI with MB = 3 and MB = 4
achieved similar results like MS-EPI with optimal TR. However, at slice thicknesses sub-
stantially below 2 mm, the SNR efficiency gain of SMS-EPI is limited to vMB. A further
increase of MB is difficult, because SMS-EPI relies on parallel imaging reconstruction to
separate the simultaneously excited slices, which can cause a g-factor penalty in SNR.
Modern multi-channel receive coils and controlled aliasing using blipped CAIPIRINHA
[23, 188] can reduce the g-factor to almost one for MB = 3 and an in-plane acceleration
of 2 [22]. However, MB higher than 4 seems challenging in DWI as the potential gain in
SNR efficiency may be overcompensated by the g-factor penalty. Another disadvantage
of SMS-EPI is the limited possibility to apply parallel imaging in-plane, since the g-factors
resulting from SMS and Fourier encoding add up. Consequently, very high resolution are
difficult to reach and may require segmented k-space acquisition schemes [189].

At slice thicknesses of 1.5mm and below, MS-EPI may be an interesting alternative.
With an optimal TR, MS-EPI clearly outperformed SMS-EPI and achieved gains in SNR
efficiency of 2 and higher, which is in good agreement with recent reports based on sim-
ulations and real data experiments [24, 179]. In MS-EP], the different slices of a slab are
separated by Fourier encoding, resulting in no additional g-factor compared to SMS-EPL
Therefore higher in-plane acceleration factors may be used to achieve higher resolutions
with less distortions because the effective ESP is reduced (see section 2.3.3). However, the
crucial challenge of MS-EP1 is the excitation profile of the slab. Even optimized RF-pulses
cause unwanted excitation of neighboring slabs and insufficient signal at the edges of the
slabs resulting in so called slab boundary artifacts due to inhomogeneous 7' saturation
[179]. Because slab boundary artifacts are more severe for short TRs, the optimal case of
TR = 1.471 may be difficult to reach. Several techniques have been reported to correct the
slab profile in the post processing, such as slab profile encoding [27], bandpass filtering
or adjusted slab weighting [179]. Nevertheless, for very thin slices around 1 mm, MS-EPI
with a TR = 4000 ms may be an interesting option. On the one hand, the SNR efficiency
gains exceeded those of SMS-EPI and on the other hand, slab boundary artifacts in WM or
GM seem negligible according to Van et al. [27].

A second challenge of MS-EPI are phase inconsistencies between different k-space seg-
ments. To avoid a potential signal cancellation, additional 2D phase navigator images are
acquired after the readout of the actual DWI data. However, recalling the inhomogeneity
of the image phase of DWIs that was observed in chapter 4 and 6 (e.g. Fig. 4.6), it seems
questionable whether a 2D phase navigator can acquire sufficient information to reliably
correct for phase variations in very thick slabs. Therefore, the possible SNR efficiency gain
of MS-EPI may be also limited by the slab thickness. Alternatively, cardiac reordering
and online reacquisition of DWISs that exhibit significant phase vaiations, could be used to
minimize phase inconsistencies between different k-space segments [170].
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The DWSSFP sequence generally achieved similar SNR efficiency gains as MS-EPI with
TR = 4000ms. However the motion sensitivity is an even bigger challenge for DWSSFP
because it is a 3D sequence which requires also a 3D phase navigator and additionally
the steady state can be disrupted by coherent motion. The latter was investigated in this
work for the thalamus region in the human brain using a random walk simulation and
motion parameters reported by Sollinger et al. [185]. While the steady state was very sta-
ble for diffusion encoding in LR direction, significant signal loss in AP and SI direction
was observed. Consequently, erroneous signal loss due to coherent motion could be easily
confused with an anisotropic diffusion. Further, this signal loss may also be spatially in-
homogeneous as pulsation motion of the brain is more pronounced in certain regions (see
chapter 6). It is important to note, that the signal loss due to the disruption of the steady
state and signal loss due to phase inconsistencies of different k-space segments are differ-
ent effects. While phase inconsistencies of different k-space segments can be addressed
by phase navigators, the signal loss due to disruption of the steady state is irretrievable
because multiple CPs have accumulated different phases and destructive interference oc-
curs already at the time of the data acquisition. O’Halloran et al. proposed a real time
correction for first order phase terms in image space by measuring the signal with a 3D
navigator and applying a corresponding correction gradient prior to the next RF-pulse
[190]. However, this method can be used only to address rigid body motion rather than
pulsatile brain motion which is highly nonlinear. Further, several post processing strate-
gies were developed to account for motion induced signal loss including, 3D navigators,
cardiac reordering and binning and low pass filtering yielding DTI results comparable to
EPI acquisitions [25, 190]. Unfortunately, the k-space center was heavily oversampled in
these cases, reducing the SNR efficiency far below the results that were presented in this
work. Taking into account the highly complex reconstruction and the still not fully solved
problem of the motion sensitivity, DWSSFP seems not favorable for in vivo DWI of the
brain compared to the other novel DWI sequences such as SMS-EPI or MS-EPI. On the
other hand, excellent DWI results of DWSSFP have been reported ex-vivo where motion is
not an issue and the relaxation times are more favorable for this sequence type [176].
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6. Measurement of the brain pulsatility using
DWI

The content presented in this chapter is based in parts on two conference abstracts which
were submitted to the 23rd Annual Meeting of the ISMRM 2015 and the 21st Annual Meet-
ing of the OHBM 2015 [160, 191]. These conference abstracts were awarded the "Summa
Cum Laude Award" and "Merit Award", respectively.

6.1. Introduction

It was pointed out in the previous chapter that data processing in DWI is most often based
on the magnitude of the complex MR signal, and the inherent phase of the signal is dis-
carded as it is considered to be spoiled by different sources. However, one of these sources
for a non-zero phase of DWIs is the pulsatile motion of the brain itself [185], which is
encoded by the diffusion sensitizing gradients.

Changes in the biomechanical properties of the brain, typically accompanied by changes
of the brain pulsatility, however, are of potential importance for disorders such as periph-
eral vascular disease, dementia, brain tumor or traumatic brain injury [20]. Therefore,
measuring the brain pulsatility can be a valuable tool to assess the stage of these disorders.
Three primary techniques can be used to measure the brain pulsatility [20]: continuous
intracranial pressure monitoring, transcranial Doppler ultrasound and MRI. The first is
an invasive technique, which requires placement of pressure sensors in the brain. While
Doppler ultrasound techniques are typically restricted to 2D images, MRI can also provide
3D information of the brain pulsatility.

Velocity encoding is a well-known technique in the field of MRI [192], however, it is
usually used for the measurement of blood flow, featuring a much higher velocity than
brain pulsatility. In Sollinnger et al. [185], a technique called cine displacement encoding
was used to measure the brain pulsatility, which, however, can take more than half an
hour.

Here, a new technique is proposed to process the complex signal of DWIs in order to
extract a meaningful phase, which allows for inferring information of the pulsation of the
brain. This novel approach enables joint examination of the brain’s microstructure and
pulsatile motion, without increasing scan time as compared to regular DWI.

6.2. Methods

6.2.1. Phase filtering pipeline to extract pulsatile brain motion

The signal’s phase ¢ of a DWI originates from multiple sources and can be described as a
sum of a constant offset ¢y, the susceptibility induced phase ¢,, the eddy current induced
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Figure 6.1.: Schematic description of the proposed phase filtering technique to extract in-
formation of the pulsatile motion of the brain from DWIs. In step 1 and 2
constant phase components which are independent of the diffusion encoding,
such as ¢g and ¢,, are filtered out. After smoothing the DWIs (Step 3) and un-
wrapping the phase (Step 4), linear phase components caused by (linear) eddy
currents or rigid body motion, are filtered out. Finally nonlinear eddy currents
are accounted for by steps 8 and 9, leaving only phase components originating
from nonlinear motion.
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phase, split in a linear term ¢eqqy)in and a nonlinear term ¢eqdyn, and motion induced
phase, split in a rigid motion term ¢motion rigia and a nonrigid motion term Gmotion,nonrigid
note that the eddy current term ¢gq4y1in accounts for By eddy currents and linear edd

y eddy, y y
currents with respect to section 2.3.3).

¢ = ¢o+ be + ¢eddy,lin + Qbeddy,nl + ¢moti0n,rigid + ¢m0tion,nonrigid (61)

The constant offset ¢, is primarily caused by the RF-pulse, which imparts a phase onto
the spins while they are flipped into the transverse plane, but also amplifier delays and
different signal transit times in the receive coils can contribute. Susceptibility differences
in the tissue, or tissue—-air interfaces, result in different local Larmor frequencies (see sec-
tion 2.3.3). However, these differences in the local Larmor frequency are constant in time,
and thus the phase component ¢, is typically negligible because the ST diffusion prepa-
ration is based on a Spin Echo (SE) and off-resonance effects cancel. The terms @eqdy,lin
and geddyn account for linear and nonlinear eddy currents which are generated by the
diffusion encoding gradients (see section 2.3.3). The eddy current field is not constant but
decays exponentially in time. Therefore, off-resonance effects due to eddy currents do not
fully cancel in a SE. Furthermore, the eddy current field depends on the diffusion encoding
gradient and therefore, the terms @eqdylin and Peddyn vary between the DWIs. Moreover,
rigid body motion but also non rigid motion, such as brain pulsatility, is encoded by the
diffusion sensitizing gradients, resulting in the phase terms ¢motionrigia @d @motion,nonrigid-

Fig. 6.1 schematically depicts a phase filtering technique which aims to extract the phase
component @motion,nonrigid, Which is assumed to be caused primarily by pulsatile motion of
the brain. This phase filtering technique involves the following steps:

¢ Step 1: Smoothing of all b=0 volumes with a 3D size 3 boxcar kernel.

* Step 2: Subtract the phase of the closest filtered b=0 volume from the DWIs. This
step removes the phase components ¢y and ¢,.

¢ Step 3: Smoothing of all DWIs with a 2D size 3 boxcar kernel.

¢ Step 4: Unwrapping of the phase using a robust, best path algorithm suggested by
Abdul-Rahman et al. [193].

¢ Step 5: Masking a three voxel wide ribbon at the edge of the brain.
¢ Step 6: Fitting a 2D first order polynomial to the masked and unwrapped phase.

¢ Step 7: Subtract the phase pattern that was calculated from the polynomial fit in step
6, from the unwrapped phase of the DWIs. This step removes the phase components

¢eddy,lin and Qbmotion,rigid-

¢ Step 8: Smoothing of the phase maps with a 3D size 5 boxcar kernel and computing
the nonlinear component ¢eqdy,n1 by fitting the phase of each voxel with a 3D second
order polynomial in g-space.

* Step 9: Subtract the nonlinear phase component ¢eqdy,n from the phase of the DWIs
after linear correction (Step 7) yielding the phase maps émotionnonrigia- This step re-
moves the phase component @eddy,ni-
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The phase components ¢g and ¢, are typically very smooth and constant for all b = 0
volumes and all DWIs. Thus, ¢¢ and ¢, can can be easily removed using the b = 0 volumes
(steps 1 and 2), which are not affected by motion encoding og the gradients gradients. The
DWIs are smoothed (step 3) to increase the robustness of the unwrapping algorithm (step
4). In step 5, a small ribbon at the edge of the brain is masked, where no or only very little
pulsatile motion of the brain is expected. The phase values of the voxels, belonging to the
masked area, are used to apply a 2D first order polynomial fit in image space (Step 6). The
zero order term of this polynomial either accounts for a By shift due to eddy currents or
translational motion of the head which is encoded by the diffusion sensitizing gradients. In
case of translational motion, the displacement vector of all spins is the same, and hence, the
corresponding phase shift spins is the same for all voxels too. The first order terms of the
polynomial corresponds to a phase gradient which can either originate from linear eddy
currents or from rotational motion of the head. Note, that rigid motion is a combination of
translational motion and rotational motion. To better understand the motion encoding of
a rotation, let R be the rotation matrix by an angle 6 about the z axis

1 0 0
R=1|0 cosf —sinf| . (6.2)
0 sinf cos@

Moreover, let z, y and z be the coordinates of a spin before the rotation. Now, the displace-
ment vector A7’ of the rotation can be calculated as

x T 0
A=y | -R|ly | = y(l—cosh)+ zsinb . (6.3)
z z —ysinf + z(1 — cos @)

Typical rotation angles of a subject during the scan do not exceed a few degrees. There-
fore, the small-angle approximation (sinf# = 6 and cosf = 1) can be applied and Eq. 6.3
simplifies to
0
A= | 26 . (6.4)
—y0

Now a ST preparation is assumed, parametrized by the diffusion weighting gradient G
with the duration §, and mixing time A. If the subject performs a rotational movement in
between the diffusion encoding gradients, each voxel is displaced by A7. The correspond-
ing phase shift A¢.ot can be calculated as

Aot = ¥0G - AF = 7460 (Gyz — GLy) . (6.5)

It can be seen in Eq. 6.5 that the phase shift Agrqt resulting from rotational motion corre-
sponds to a phase gradient in image space.

According to Eq. 6.1, only the phase components ¢eddy,nt aNd @motion nonrigid are left after
the linear phase correction in step 7. To estimate geqqyn (step 8), the assumption is used,
that pulsatile brain motion is nearly periodic and the predominant cause of ¢motion,nonrigid-
Therefore, ¢motionnonrigid cancels in average as will be shown next. Let 7/ p(t) be a periodic
motion trajectory and let G, (t) be the effective gradient trajectory corresponding to a ST
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preparation (see section 2.37). Recalling the solution of the Bloch-Torrey equation, which
describes the effect of coherent motion (see Eq. 2.42), the phase shift A¢p can be calculated
as

to+A+6 , ,
ortto) =7 [ G ()t (66)
0

where % is the time at the beginning of the first diffusion weighting gradient. In the time
between the two gradient pulses, from ¢t =ty + d tot = tg + A, there is no active gradient
in a ST preparation. Therefore, the formulation in Eq. 6.6 can be split in two integrals.

to+0 to+A+48
bpto) =7 [ Gr)e(t)dt vy [ G @)t a ©7)
to to+A
The second gradient pulse is identical to the first gradient pulse but has the opposite effec-
tive polarity (the true polarity is the same but the refocusing pulse changes the sign of the
effective polarity). As a result, Eq. 6.7 can be rewritten to

to+0
op(t) = [ @) Fe(t) = (¢ + )] at 68)

It can be seen from Eq. 6.8, that the temporal mean of ¢p(t) must be zero because the
temporal means of 7p(t') and of 7p(t' + A) are identical. Consequently, if one acquires a
sufficient number of DWIs at a random time with respect to the periodicity of 7p (), the
phase contributions due periodic motion cancel in average. Note that this is only the case,
if cardiac gating is not used because otherwise 7'p(t) and g&,(t) would not be independent
of each other (also see the next section 6.2.2).

An empirical model is used to estimate the phase components ¢eqdyn Originating from
nonlinear eddy currents, assuming that deviations from the model, which are caused by
Pmotionnonrigid, cancel in average. Let ., ¢, and ¢, be the g-space coordinates of a ST prepa-
ration as defined in section 2.2.5. The phase ¢eqdyn Of the signal in each voxel originating
from nonlinear eddy currents is modeled with a 3D second order polynomial in the g-space
domain, given by

eddynl = C1¢z + Caqy + C3qz + Caqaty + C50eq= + Coqyqz + Crqs + Csq,, + Coqs  (6.9)

where (' to Cy corresponds to the nine coefficients of the polynomial. Although this ap-
proach results in a fairly high number of free parameters, i.e. nine times the voxel count,
the problem is still well conditioned as long as the number of volumes in the DWI ac-
quisition is sufficiently high. Moreover the phase ¢eqdyni is expected to be rather smooth.
Therefore, to impose smoothness of the coefficient maps C; to Cy and to increase robust-
ness of the fit, the phase is smoothed with a 3D size 5 boxcar kernel prior to the fitting of
the polynomial. A positive side effect of this smoothing operation is, that the phase val-
ues of neighboring slices are included into the fit of each voxel too. Each slice is typically
acquired in a single shot 2D EPI acquisition, and thus, all voxels within this slice share the
same ST preparation and the same motion encoding at the same time in the cardiac cy-
cle. However, if no cardiac gating is used, the ST preparation of a neighboring slice likely
happens at a different time in the cardiac cycle. That is why including voxels from neigh-
boring slices into the fit on the one hand decreases resolution of coefficient maps C; to
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(9, but on the other hand increases statistical certainty that phase components originating
from pulsatile brain motion cancel in average.

The phase ¢eqdyni is synthesized for each voxel in each DWI using coefficients C; to C.
Finally in step 9, deddy,n is subtracted from the linearly corrected phase in step 7, resulting
in the phase maps @motion nonrigid- In brain imaging, it is assumed that the predominant
source of Pmotion,nonrigid 8 the pulsatile brain motion.

6.2.2. Quantitative metrics

In conventional MR flow measurement techniques, multiple images with the same flow
sensitizing gradients, e.g. a bipolar gradient, are acquired at different times of the cardiac
cycle. However, in a typical diffusion acquisition scheme, the directions are distributed
such that angular incoherence is maximized [125]. Further, cardiac gating is most often
not used, and the DWIs are therefore randomly distributed over the cardiac cycle (the
random distribution is also a requirement for step 8 as described in the previous section).

Although the motion encoding direction for each DWI is different and the time of the
cardiac cycle when the DWIs are acquired is unknown, the Mean Absolute Velocity (MAV)
can be calculated as follows. Assuming that the motion trajectory between the beginning
of the first gradient pulse and the end of the second gradient pulse can be well approx-
imated by a linear term, each phase @motion nonrigid €an be associated with a velocity vp
using the first order magnetic moment M; of the ST preparation of each DWI respectively
(see section 2.2.2).

¢motion,nonrigid

L T (6.10)

It is important to note, that vp is the projected velocity, into the direction of the diffusion
encoding gradient G and the true velocity vector ¥ is unknown. Assuming an acquisition
with N DWIs and vp(n) is the projected velocity for the nth volume, MAYV is given by

f N
=~ 2 (6.11)

The correction factor £ compensates for the random orientation between G and 7. £ can be
derived as follows. Let 7 be a unit vector given in spherical coordinates

sin fcosp
= sinfsinp | . (6.12)
cosf

Assuming that 77 is randomly rotated around a second unit vector with fixed orientation,
e.g. in positive x direction, such that the projection of 7 is given by

sin fcosp 1
sinfsinp |- 0] . (6.13)
cosf) 0

114



6.2. Methods

Now & can be calculated as

_ a7 _
JT S | sin @ cos psin 0] dfdyp

¢ (6.14)

Note that there is no loss of generality by assuming a fixed orientation of the second unit
vector, because the surface integral in Eq. 6.14 covers the full sphere anyways.

The directionality of the brain pulsatility is investigated as well. A set of 60 unit vectors
Um, Which are uniformly spaced on the surface of a sphere, are used to determine the
main direction of the pulsatile motion. For each vector ,,, all [vp(n)| are weighted by the
projection of G,, of the nth DWI onto i,,, and averaged, yielding ¢,

G
|Gl

1 N
Om = N nz::l lvp(n)|t, - (6.15)

Finally, the direction corresponding to the largest ¢,, value is assumed to be the main
direction of the pulsatile motion in each voxel.

6.2.3. Data acquisition

DWI acquisitions were obtained from an oil phantom and one healthy volunteer. The
data were acquired with a 3T GE MR750 scanner, with a maximum gradient strength
of 50mT m™! (GE Healthcare, Milwaukee, WI) using a ST diffusion preparation and a
single-shot 2D EPI readout train. The imaging volume was recorded with a matrix size
of 96 x 96 x 16 and an axial oriented 24 x 24 x 4 cm® scan volume, covering the brain at
the level of the corpus callosum. Further acquisition parameters were: isotropic resolution
2.5mm, TE = 80.7ms, TR = 1800 ms, ESP = 0.592 ms. A 32-channel head coil was used with
parallel imaging factor 2 in the phase-encoding direction and SENSE reconstruction [26].
A diffusion encoding scheme with five shells and 30 collinear directions directions per
shell was used as illustrated in section 3, Fig. 3.1. Ten repetitions of this diffusion encoding
scheme were acquired for the volunteer scan and one repetition for the phantom scan.

Figure 6.2.: Standard Diviation (SD) maps of the signal’s phase, calculated for each voxel
over all DWIs for the a representative slice of the phantom acquisition. a: be-
fore linear correction (step 4), b: after linear correction (stepp 7) and c: after
nonlinear correction (step 9).
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6.3. Results

In Fig. 6.2, the phase variation between the different DWIs of the phantom scan was in-
vestigated using Standard Diviation (SD) maps. The SD of the phase was calculated voxel
by voxel over all DWIs before the linear correction at step 3 (Fig. 6.2a), after the linear
correction in step 7 (Fig. 6.2b), and after the nonlinear correction in step 9 (Fig. 6.2c). The
SD was substantially reduced by the linear correction. However, there were some fairly
well defined regions where the phase still seemed to deviate between the DWIs (Fig. 6.2b).
After the nonlinear correction step 9 the remaining regions with increased SD completely
vanished (Fig. 6.2c), which indicates, that phase components originating from nonlinear
eddy currents can be accurately described by the proposed model (see Eq. 6.9).

Fig. 6.3 depicts the same SD maps as shown Fig. 6.2, for 14 slices of the volunteer
experiment. Before the linear correction, the SD was ranging from about 3 rad to 5rad and
there was no maximum in the center where pulsatile brain motion is expected to be highest
(Fig. 6.3a). The picture changed significantly after the linear correction step 4 (Fig. 6.3b).
Overall the SD was substantially reduced, and the highest SD could then be observed in
the center around the ventricles. Moreover, the passage from one slice to the following one,
was much smoother, which is expected because brain pulsatility does not stop or change
at a certain slice. However, the phase still appeared to be spoiled, especially at the edges
of the brain, where pulsatile motion is not anticipated. After application of the nonlinear
phase correction step 9, the SD at the edges of the brain reduced to almost zero and the
origin of the brain pulsatility seemed to be very well defined at the center of the brain.

Fig. 6.4 depicts maps of the coefficients C; to Cy of the nonlinear phase correction for
one slice of the in vivo acquisition. The larger image in each subfigure corresponds to a
joint reconstruction of all 10 repetitions. To the contrary, the smaller coefficient maps in
the subfigures, numbered from 1 to 10, were computed separately for each repetition to
investigate the repeatability of the nonlinear phase correction. The coefficient maps C to
C3 (Fig. 6.4a-c), which correspond to the linear terms ¢,, ¢, and ¢., seemed very stable
over all repetitions, especially coefficient map C; and C3 (Fig. 6.4a,c). The maps for C
and C3 both exhibit a diagonal symmetry while C> seemed to have a horizontal or vertical
symmetry. This is remarkable, because the gradient coils in = and y direction are based on
the same design (Golay pair design [35, p. 844]), while the gradient coil in z direction is
different (Maxwell pair design [35, p. 842]). On the other hand a quantitative comparison
reveals that C'; and C have a very similar range between -1 and 1 while C3 ranges from -2
to 2.

The coefficient maps C4 to Cg corresponding to the crossterms ¢,q,, ¢.¢. and g,q. are
presented in Fig. 6.4d-f. Overall the coefficient maps are slightly less stable compared to
(1 to C3, but the same pattern can be still clearly recognized in each repetition. C4 and Cs
exhibit a very similar patter with negative coefficients in the left and positive in the right
and Cj exhibits a pattern with positive values a the top and negative values below.

Finally the coefficient maps C7 to Cy belonging to the quadratic terms ¢2, qg and ¢?
are depicted in Fig. 6.4g-i. Only C7 seems stable over all repetitions while there were
significant variations for Cy and particularly for Cy, also repetitive pattern can still be
found. Moreover, the coefficients C7 are distributed between about -4 to 4 which is the
highest range among all coefficients.

Overall, the nonlinear correction seems to work fairly well, because the same pattern in
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Figure 6.3.: Standard deviation maps of the signal’s phase, calculated for each voxel over
all DWIs, for 14 slices of the in-vivo acquisition. a: before linear correction (step
4), b: after linear correction (stepp 7) and c: after nonlinear correction (step 9).

the coefficient maps are found for different repetitions. The shape of these patterns does
not indicate, that they originate from pulsatile brain motion or any other type of motion.
However, pulsatile brain motion seems to slightly distort the estimation of the coefficients
in some cases, leading to variations between the different repetitions. These distortions
can found especially in the center of the brain where pulsatile brain motion is expected to
be highest.

Fig. 6.5a presents MAV maps of one slice of the in vivo acquisition. Again, the larger
map to the left is computed using all 10 repetitions jointly and the smaller maps to the
right, numbered 1 to 10, are computed for each repetition separately. The maps show an
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Figure 6.4.: Maps showing the fitted coefficients C; to Cy for one slice of the in-vivo acqui-
sition. The coefficients C'| to Cy are used to compute the phase components
Peddynt, Which are caused by nonlinear eddy currents. The larger image in the
left of each subfigure was calculated using all 10 repetitions jointly, while only
one repetition was used for the smaller images as indicated by the numbers 1
to 10. a: C1 (qz), b: C2 (qy), ¢ T3 (qz), d: Cy (qxqy), € Cs (4292), £ Cs (9y42), 8
C7 (¢3), h: Cg (), and i: Cy (g2).

area of higher MAV values, which is shaped similar to a pentagon. In the center of this
pentagon, the MAV is highest and varies over the repetitions from about 0.4mms™! to
0.6mms~'. This variation is likely caused by a nonuniform distribution of the DWIs over
the cardiac cycle. Therefore, in some repetitions, the active period of pulsatile brain motion
may be weighted to high, and in other repetitions to low. On the other hand, the shape
of the aforementioned pentagon seems very stable and there are little features which are
consistent in all repetitions. For example, there is a little buggle at the corner to the left,
which can be observed in all repetitions. Also, the lower side edge is consistently bent
innerwards. Moreover, below the lower edge of the pentagon is a little maximum which
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T B

Figure 6.5.: a: MAV maps of the brain for one slice of the in-vivo acquisiton. Left, using
a joint reconstruction of all 10 repetitions (1500 DWIs), right right using each
repetition (150 DWIs) separately, as indicated by the numbers 1 to 10. b: Di-
rectional velocity maps of the brain for one slice of the in-vivo acquisiton. The
intensity encodes MAV and the color encodes the direction as indicated by the
colorbars below. Left, using a joint reconstruction of all 10 repetitions (1500
DWIs), right right using each repetition (150 DWIs) separately, as indicated by
the numbers 1 to 10.

appears in all repetitions.

The MAV maps also exhibit a clear left-right symmetry which is expected because of the
symmetry of the human brain. This symmetry can be observed in the directional velocity
maps in 6.5b as well. The stability over the repetitions is significantly worse for the direc-
tional maps compared to the MAV maps. Especially in repetitions 4 and 9, the directional
maps seem to be distorted with respect to the joint reconstruction. Despite the lower sta-
bility, the directionality of the measured brain pulsatility seems overall plausible. While
motion in SI direction dominates in the center, at the left and the right edge, the predomi-
nant direction is LR. The aforementioned small spot below the lower edge of the pentagon,
seems to be caused by motion in AP direction. It is not clear yet, whether this maximum
originates from pulsatile brain motion, or maybe from scanner vibrations, which would
also be plausible at the back of the head.
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6.4. Discussion

A novel filtering technique was presented to extract quantitative information of the pul-
satile motion of the brain from DWIs. Several phase components, which are superimposed
with the phase originating from pulsatile brain motion, are sequentially removed, such as
constant offsets, susceptibility induced phase, bulk motion induced phase, as well as linear
and nonlinear eddy currents. The SD over the phase of all DWIs was used to investigate
the spatial distribution of the phase variations. With each filtering step, the phase vari-
ations reduced significantly except for the regions around the ventricles, where pulsatile
motion is expected to be highest [185].

In contrary to cine displacement encoding techniques [185] which are cardiac gated and
sample the cardiac cycle equidistantly in time, DWIs are typically randomly distributed
over the cardiac cycle. The randomness was exploited for estimating nonlinear eddy cur-
rents, where the assumption that phase contributions due to pulsatile motion cancel in
average, was used. Since the accurate time of the cardiac cycle was not known, the novel
metric MAV was introduce to quantify pulsatile motion. The computed MAV maps ap-
pear qualitatively similar compared to the results from Sollinger et al. [185], where a cine
displacement encoding techniques was used. Also quantitatively, the MAV seem plausi-
ble compared to those results [185]. However, both techniques would need to be applied
to the same subject for an accurate quantitative comparison. So far, the results are very
encouraging but more data needs to be acquired to fully validate the proposed filtering
technique.

An opened question is the origin of the phase patterns ¢eqqyn Which are assumed to
result from nonlinear eddy currents (see Fig. 6.4). Although the proposed nonlinear cor-
rection seems to work well to estimate these phase patterns, their structure is actually too
small to be caused from the gradient coils or other conductive material in the body of the
scanner. Eddy currents in elements of the receive coils may be one explanation because, be-
cause the receive coil is placed very close to the head. However, the fairly high coefficients
C+7, which describes the quadratic term ¢2, contradict the assumption of eddy currents be-
cause according to the Lenz’s rule, opposing changes of the magnetic field should induced
opposing eddy currents. On the other hand, the quadratic term ¢?2 is reminiscent of the
concomitant field (see section 2.3.3). However, phase terms originating from the concomi-
tant field of the diffusion encoding gradients should fully cancel out in a ST preparation.
Therefore, further research is needed to clarify the origin of these nonlinear phase pat-
terns. Especially more experiments with static oil phantoms may be useful because of the
low diffusivity of carbon hydrogen chains compared to water. Therefore, the eddy current
effects of the gradients could be investigated independent from diffusion effects.

An advantage of the proposed filtering technique is that it works with conventional DWI
data. Therefore, the microstructure of the brain and the brain pulsatility can be investi-
gated jointly. There is, however, a lower limit for the number of DWIs, which are required
for the nonlinear phase correction. For acquisition with less than about 100 DWIs, the re-
quirement, that the phase induced by pulsatile motion cancels, may be not fulfilled. An
alternative to increase robustness of the filtering technique, is to record the cardiac cycle
during the measurement such that each DWI can be associated with the accurate time of
the cardiac cycle. This knowledge could be incorporated into the estimation of nonlinear
eddy current induced phase as well as the estimation of the MAV maps or more sophisti-
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cated models of the brain pulsatility.

In conclusion, DWIs offer more information than magnitude based models provide. The
feasibility to quantify the pulsatile motion of the brain using conventional DWI data was
demonstrated in this work. In future work, more sophisticated models of the pulsatile
brain motion may allow to derive also bio-mechanical features such as elasticity [194].
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7. Conclusion

The work presented in this thesis contributes to the advancement of Diffusion Weighted
Imaging (DWI) in the areas of data acquisition, data preprocessing and data quantification.
In particular the problematic of low Signal to Noise Ratio (SNR) in DWI was addressed.
Conventional magnitude processing leads to an overestimation of the signal’s amplitude
at low SNR. Consequently, estimated diffusion model parameters are systematically bi-
ased which reduces the comparability of quantitative DWI metrics. Moreover, magnitude
processing also reduces the contrast of DWIs at low SNR which, for example, hampers the
estimation of fiber orientation or the identification of fiber crossings in the human brain.

In chapter 3, the impact of low SNR on the estimation of Diffusion Kurtosis Imaging
(DKI) model parameters was extensively investigated assuming a Weighted Linear Least
Squares (WLLS) fitting algorithm. The results were published as a full paper, entitled "Bias
and precision analysis of DKI for different acquisition schemes" in Magnetic Resonance in
Medicine [121]. It was reported by Veraart et al., that magnitude processing generally re-
sults in an overestimation of the Apparent Kurtosis Coefficient (AKC) [68, 71, 129]. How-
ever, the results presented here indicated that the bias of the AKC can be highly hetero-
geneous and dependent on the tissue type and the orientation of the diffusion encoding
gradient. Negative and positive bias were observed in both, simulation and in-vivo ex-
periments. The impact of the diffusion encoding scheme on the AKC estimation accuracy
seemed rather small in the simulation results. However, in in vivo experiments, the esti-
mated AKC seemed to depend on the diffusion encoding scheme, even if the maximum
b-value was the same. It was concluded that this behavior is predominantly caused by
imperfections of the DKI model, which are more pronounced in certain b-value regions.
Consequently, the model induced error not only depends on the maximum b-value, which
is for example the case in Diffusion Tensor Imaging (DTI) [73], but also on the distribution
of the b-values in radial direction. Moreover, the diffusion encoding scheme had a large
impact on the precision of the DKI model parameters. Overall, a 3-shell scheme, suggested
by Poot et al. [123], performed best but also an undersampled Diffusion Spectrum Imaging
(DSI) acquisition with subsequent Compressed Sensing (CS) reconstruction [126] provided
a good precision of the parametric DKI maps. It was further shown that denoising meth-
ods performed on magnitude data, such as CS or even simple averaging, can substantially
change the signal bias. In conclusion, an accurate quantification of the DKI model based
on magnitude data seemed difficult and motivated the development of a preprocessing
method to obtain real valued data.

In chapter 4, a novel Phase Correction (PC) technique was adopted which avoids mag-
nitude processing and significantly reduces the noise induced bias in DWI. The results
were published as a full paper, entitled "Real Valued Diffusion-Weighted Imaging Using
Decorrelated Phase Filtering" in Magnetic Resonance in Medicine [139]. PC in DWIs is
generally challenging because the motion encoding of intracranial pulsatility can result in
spatially very inhomogeneous phase pattern, which hampers the estimation of the signal’s
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true phase in each voxel. Recently, Prah et al. demonstrated that real-valued diffusion-
weighted images can be obtained by using a spatial box-car filter to estimate the phase
distribution of the complex images and apply a corresponding transformation to shift the
signal to the real part [131]. The bias reduction of Prah et al’s technique scales with the
kernel size which is unfortunately at the expense of a significantly increased sensitivity
to local phase variations that can lead to unwanted signal loss. In this thesis, Prah et
al.’s approach was extended using improved filter kernels that consider the spatial noise
correlations that are introduced in the image reconstruction chain, e.g. by regridding or
Partial Fourier. Compared to Prah et al.’s technique, the performance of size 3 kernels
could be improved by a factor of 4, and an optimized size 5 kernel even achieved virtually
zero bias. Additionally, an outlier estimation method was proposed where voxels with
potentially incorrect PC are identified in their majority and the real value is replaced by
the magnitude value. The necessity of such an outlier detection and correction technique
for quantitative DWI was demonstrated on parametric maps of the DKI model. Incorrect
PC resulted in a local, erroneous underestimation of MZ, which could have been easily
confused with pathology. However, when the real values of detected outlier voxels were
replaced with the magnitude, these erroneous underestimations completely vanished. A
very promising application of PC is DSI, as the SNR is typically very low because high
b-values are required [63]. Compared to magnitude processing, PC achieved a better de-
lineation of features in the Ensemble Average Propagator (EAP), e.g. fiber crossings, and
the delineation improved as the noise floor was lowered. Overall, the proposed phase cor-
rection technique can significantly improve the quality of DWI data yielding both, a better
contrast and a more accurate estimation of diffusion model parameters.

In chapter 5, a comprehensive framework was presented to systematically compare the
SNR efficiency of different DWI sequences. This framework was used to evaluate the SNR
efficiency of recently reported DWI sequences, i.e. Multi-Slab Echo Planar Imaging (MS-
EPI), Simultaneous Multi-Slice Echo Planar Imaging (SMS-EPI) and Diffusion-Weighted
Steady State Free Precession (DWSSFP), for brain imaging. In this comparison, a modern
MR scanner with a maximum gradient strength of 50 mT m~! was assumed. For the given
setup, the slice thickness had the largest impact on the SNR efficiency because the Repe-
tition Time (TR) increases with the number of slices. The spoiled sequences with Stejskal
Tanner (ST) diffusion preparation reached the highest SNR efficiency at about 1.477. If the
TR drops below this value, the SNR efficiency is reduced due to 77 saturation. For mod-
erate slice thicknesses between 2 mm and 3 mm, SMS-EPI achieved comparable results to
MS-EPI with an optimal TR. However, the maximum efficiency gain of SMS-EPI is intrin-
sically limited to the square root of the multiband acceleration factor MB. Unfortunately,
MB factors higher than three are problematic because the separation of the simultaneously
excited slices causes a g-factor penalty which may exceed potential gains in SNR efficiency
[22, 23]. Simulation results in this work indicated that for slice thicknesses significantly
below 2mm, MS-EPI may be a valuable alternative because it does not rely on parallel
imaging in the reconstruction process. A publication of this work is currently in prepara-
tion.

Apart from SMS-EPI and MS-EPI, the potential of the pulsed DWSSFP was evaluated
for in vivo application on the brain. At first, the accuracy of DWSSFP signal models, that
were reported in literature, was evaluated for different parameter sets using random walk
simulations as ground truth. Since none of these models predicted the DWSSFP signal
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correctly for all parameters sets, a new, accurate model was proposed. A random walk
simulation was also used to investigate the motion sensitivity of DWSSFP based on the
pulsatility profile of the thalamus region in the brain as reported in Séllinger et al. [185]. It
was found that the pulsatile motion of the brain can substantially disrupt the steady state,
causing an unwanted signal loss. In addition, the calculated SNR efficiency of DWSSFP
was generally smaller than MS-EPI and outperformed SMS-EPI only for slice thicknesses
significantly smaller than 1 mm. Therefore, it was concluded that MS-EPI and SMS-EPI
are favorable over DWSSFP for in vivo DWI of the brain. However, encouraging results
of DWSSFP have been reported for in vivo DWI of the knee cartilage [177, 182], and most
important, for ex vivo DWI of the brain [174, 176].

In chapter 6, a novel phase filtering method was proposed that extracts the signal’s phase
of DWIs that originates from the pulsatile motion of the brain. It was motivated by the fact
that magnitude processing not only yields distorted values of the diffusion weighted sig-
nal [21], but also discards potentially valuable information about the brain pulsatility [20].
Intermediate results of this work were submitted to the 23rd Annual Meeting of ISMRM
2015 and the 21st Annual Meeting of the OHBM 2015 where it received a "Summa Cum
Laude Award" and a "Merit Award", respectively [160, 191]. For quantitative evaluation
of the brain pulsatility, the novel metric Mean Absolute Velocity (MAV) was introduced,
which describes the mean velocity of the brain tissue. The results were very encouraging
and a comparison of the MAV maps with literature results seemed qualitatively and quan-
titatively plausible [185]. The major advantage of the proposed filtering technique is that
it works with conventional DWI data. Therefore, the microstructure of the brain and the
brain pulsatility can be investigated jointly. In future work, this technique may be used for
extracting also bio-mechanical features such as elasticity from DWI data [194].

In summary, this thesis contributed to the data acquisition in DWI with a system-
atic comparison of the SNR efficiency of different diffusion preparation and readout
approaches. Also, the diffusion encoding scheme was investigated to maximize the esti-
mation accuracy and precision of DKI model parameters. In the area of data preprocessing,
a novel PC technique was adopted that substantially reduces the signal bias and increases
the image contrast. Moreover, a compressed sensing algorithm was optimized for denois-
ing the DWI data to increase the precision of subsequent processing steps. In the field
of data quantification, different fit routines for the DKI model were implemented and
analyzed. On top of this, a new phase filtering technique was proposed which allows for
quantifying not only the diffusivity of the tissue from DWI data, but also the brain pulsatil-
ity. The methods that were adopted in this thesis increase the data quality and quantity in
DWI, pushing the limits of this fascinating technology to explore human brain.
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A. Appendix
A.1. Phase correction - additional outlier maps
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Figure A.1.: Maps indicating the fraction of outliers exceeding threshold o7 = 20 among
all DWIs for kernel Opt3 and all slices in ACQ2.
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Figure A.2.: Maps indicating the fraction of outliers exceeding threshold or = 20 among
all DWIs for kernel Opt3 and all slices in ACQL.

128



A.1. Phase correction - additional outlier maps
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Figure A.3.: Maps indicating the fraction of outliers exceeding threshold o7 = 20 among
all DWIs for kernel Opt3. The underlying dataset is a full DSI acquisition, with
2.5 mm isotropic resolution, maximum b-value of 3000 s mm 2 and full brain
coverage.
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A. Appendix

A.2. The KWF model

The following equations describe the novel KWF model as suggested in chapter 5. Ac-
cording to Kaiser et al. the general solution of the DWSSFP signal with can be written as a
Fourier series. The KWF model uses the same approach.

400 t
M,(0,t) = — brEok(t)sin | (k+ = | 0 (A1)
k;oo K2R K TR> }
400 t
M,(0,t) = bpEo p(t)cos || k+ — | 0 (A.2)
v k:z_:oo sl K TR) }
“+oo
M.(6,t) = Mo+ > cpBEyx(t)coskd (A.3)
k=—00

The damping terms E{%VF(t) and Eg‘,éVF(t) for pulsed diffusion gradients can be calculated
following the approach of Wu and Buxton [172].

EXVE() = exp (—Ti ~ DGR (A4)
1
ExNF(t) = Hopexp (7Ti — D(y7G)*(k + 1)275) (A.5)
2
Hyj = exp (D(’}/TG)Q[T(]C + %) + e(2k + 1)}) (A.6)

Skp (t = 0) and Seeho (¢ = TR) can be derived from Egs. A.2 and A.1 using the assumptions
of practical imaging conditions as shown in section 5.2.1.

1 27

SFIDKWE = 2 Jy M, (0,0) do = by , (A7)
1 27

Secho,KWF = % 0 My(evTR) df = blEQ,k(t) . (AS)

Freed et al. suggested a recursion equation (not shown, details can be found in [183]) to
obtain the coefficients b_; xwr and by xwr-

—sinaMo(1 — Ey0(TR))

b = , A9
OKWE Ap—o + Ez 1 (TR)Cr=o11 (A9)
b_ixwr = —r1boxwr , (A.10)
where
1
Ap = 5(E1o(TR) ~1)(1 +cosa) , (A11)
1
B, = 5(ELO(TR) +1)(1 —cosa) , (A.12)
C, = A+ By . (A.13)
The term r; is given in a truncated continued fraction notation
1 E30(TR)Cr—q
= 4+ == Al4
' By _1(TR)Br—o By A1
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A.2. The KWF model
where z; is the truncated continued fraction
n
T = s , (A.15)
ot
2 d; + ¢
with ny, is the numerator
_ 2
= Ey _(TR)Eg ;—1(TR)A; Bi—1 7 (A.16)
By,
dy, is the denominator
FEy _1_1(TR)ES ,(TR)B
de = (Au— By) + 9, k—1( )Bz,k( )BiCr 11 (A17)
k+1
and ey, is the extra term
E Eo 1 B
= 9.k(TR) By, _—1(TR) By, Cl41 _ (A18)

By

The simulation results in chapter 5 indicated, that the KWF model is accurate solution of
the Bloch-Torrey equation [45] assuming a steady state with pulsed diffusion gradients

(pulsed DWSSEFP).
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Abbreviations List

1D one-dimensional.
2D two-dimensional.

3D three-dimensional.

A/D Analog-Digital-Converter.

ADC Apparent Diffusion Coefficient.
AKC Apparent Kurtosis Coefficient.
AKC , Radial Kurtosis.

AKCmax Maximum Kurtosis.
AKCin Minimum Kurtosis.

AKC|, Axial Kurtosis.

AP Anterior-Posterior.

BOLD Blood Oxygenation Level Dependent.
bSSFP Balanced Steady State Free Precession.

CHARMED Composite Hindered and Restricted Model of Diffusion.

CP Coherence Pathway.

CS Compressed Sensing.

CS-DSI Compressed Sensing Diffusion Spectrum Imaging.
CSF Cerebrospinal Fluid.

DFT Discrete forward Fourier Transformation.
DKI Diffusion Kurtosis Imaging.

DKT Diffusion Kurtosis Tensor.

DSI Diffusion Spectrum Imaging.

DSV Diameter Spherical Volume.
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Abbreviations List

DT Diffusion Tensor.

DTI Diffusion Tensor Imaging.

DWI Diffusion Weighted Imaging.

DWSSFP Diffusion-Weighted Steady State Free Precession.

EAP Ensemble Average Propagator.
EPI Echo Planar Imaging.
ESP Echo Spacing.

FA Fractional Anisotropy.

FE Frequency Encoding.

FID Free Induction Decay.

FLAIR Fluid Attenuated Inversion Recovery.
FLASH Fast Low-Angle Shot.

FOV Field Of View.

FRF Frequency Response Function.

FWHM Full Width Half Maximum.

GM Gray Matter.
GRE Gradient Echo.

HARDI High Angular Resolution Diffusion-weighted Imaging.
IDFT Inverse Discrete forward Fourier Transformation.

LLS Linear Least Squares.
LR Left-Right.

MAD Median Absolute Deviation.

MAV Mean Absolute Velocity.

MB Multiband acceleration factor for SMS-EPI.
MD Mean Diffusivity.

ME Ellipsoidal average AKC.
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Abbreviations List

MK Spherical average AKC.

MLE Maximum Likelihood Estimation.

MP RAGE Magnetization-Prepared Rapid Gradient-Echo Imaging.
MR Magnetic Resonance.

MRI Magnetic Resonance Imaging.

MS-EPI Multi-Slab Echo Planar Imaging.

MSD Mean Squared Displacement.

MZ Average AKC in the scaled inherent coordinate system.

NLS Nonlinear Least Squares.
NMR Nuclear Magnetic Resonance.

NODDI Neurite Orientation Dispersion and Density Imaging.

ODF Orientation Distribution Function.

OEC Odd/Even Correction.

PC Phase Correction.

PE Phase Encoding.

RARE Rapid Acquisition with Relaxation Enhancement.
RF-pulse Radio Frequency Pulse.

RMSE Root Mean Squared Error.

RWS Random Walk Simulation.

SAR Specific Absorption Rate.
SD Standard Diviation.

SE Spin Echo.

SENSE Sensitivity Encoding.

Sl Superior-Inferior.

SLR Shinnar Le Roux algorithm.
SMS Simultaneous Multi-Slice.

SMS-EPI Simultaneous Multi-Slice Echo Planar Imaging.
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Abbreviations List

SNR Signal to Noise Ratio.

SPGR Spoiled Gradient Echo.
SSFP Steady State Free Precession.
ST Stejskal Tanner.

STE Stimulated Echo.

STIR Short Tau Inversion Recovery.

TE Echo Time.
TR Repetition Time.
TSE Turbo Spin Echo.

uDSI undersampled DSI.

WLLS Weighted Linear Least Squares.
WM White Matter.
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