
c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Pairing SDN with Network Virtualization:
The Network Hypervisor Placement Problem

Andreas Blenk, Arsany Basta, Johannes Zerwas, Wolfgang Kellerer
Chair of Communication Networks

Department of Electrical and Computer Engineering
Technische Universität München, Germany

Email: {andreas.blenk,arsany.basta,johannes.zerwas,wolfgang.kellerer}@tum.de

Abstract—A network virtualization hypervisor for Software
Defined Networking (SDN) is the essential component for the
realization of virtual SDN networks (vSDNs). Virtualizing soft-
ware defined networks enables tenants to bring their own
SDN controllers in order to individually program the network
control of their virtual SDN networks. A hypervisor acts as
an intermediate layer between the tenant SDN controllers and
their respective virtual SDN networks. The hypervisor consists
of the network functions that are necessary for virtualization, e.g.,
translation or isolation functions. For scalability, the hypervisor
can be realized via multiple physically distributed instances each
hosting the needed virtualization functions. In this way, the
physical locations of the instances, which realize the hypervisor,
may impact the overall performance of the virtual SDN networks.
Network virtualization adds new dimensions to the general SDN
controller placement problem. This paper initiates the study of the
network hypervisor placement problem (HPP). The HPP targets
the following questions: How many hypervisor instances are
needed? Where should the hypervisor instances be placed in the
network? For our study of the HPP, we provide a mathematical
model that solves the HPP for a case where node and link capacity
constraints are not considered. We propose four latency metrics
for optimizing placement solutions based on our model for vSDNs.
Covering a real network topology, our evaluation quantifies the
trade-offs between the new metrics when used as objectives.
Furthermore, we analyze the impact of the physical network
topology on the optimization results and identify potentials for
improvement, e.g., in terms of runtime.

I. INTRODUCTION

Network virtualization (NV) is seen as a key enabler
to improve the resource efficiency of today’s communica-
tion networks by sharing network resources between multiple
tenants [1]. Software Defined Networking (SDN) introduces
flexible and dynamic programming of networks at run time [2].
Combining NV and SDN provides the benefits of both con-
cepts. Receiving their own virtual SDN network (vSDN),
tenants can bring their own controllers in order to run their
individual network operating systems that are specifically
designed for their networking demands. For instance, the
programmability of slices (virtual networks) is an integral
part of the future 5G network architecture [3]. Further, for
the Network Functions Virtualization (NFV) use case, virtual
SDN networks provide the means to dynamically interconnect
virtual network functions flexibly at runtime.

In order to virtualize SDN networks, recent work has
proposed solutions that introduce a network virtualization

layer [4], [5], or network hypervisor 1. The network hypervisor,
or shortly hypervisor, consists of one or multiple instances
that are hosting the virtualization functions, e.g., isolation
functions, translation functions, or abstraction functions. For
example, isolation functions monitor and isolate the control
traffic between tenant controllers. This is needed to prevent
one tenant controller to overload a switch, thus impacting
the network performance of other tenants. Accordingly the
hypervisor sits logically between the physical SDN networks,
where the vSDNs are hosted, and the tenant controllers, which
may run an individually designed network operating system for
each vSDN.

In non-virtualized SDN networks, the SDN controller
performance and the design of the control plane can have
a significant impact on the network performance [6], [7].
In particular, a low flow setup latency is important for the
SDN network performance. High control plane latencies can
lead to state inconsistencies of applications that are running
on top of SDN controllers [8]. Accordingly, when deploying
SDN networks, the distribution of the control plane should be
taken into account. Besides the impact of the implementation,
the placement of the decision logic for non-virtualized SDN
networks, i.e., the SDN controllers, can significantly impact
the decision latency [9]. A large amount of work has already
been proposed to solve the controller placement problem
efficiently [9], [10], [11], [12], [13]. The existing research
optimizes the controller placement for different metrics, e.g.,
control plane latency and resilience, and for different network
types, e.g., wide area networks (WANs). As multiple virtual
SDN networks are co-existing in a virtual SDN environment,
the demands and needs of each tenant for SDN network
performance can directly be applied to the network hypervisor
placement problem.

As already mentioned, in case of virtualized SDN net-
works, the hypervisor processes all network control traffic
exchanged between tenant controllers and their virtual SDN
networks. In particular for long-propagation-delay WANs, the
hypervisor instances have to be distributed for scalability
reasons. As for non-virtualized SDN networks, an unplanned
hypervisor placement may lead state inconsistencies of the
applications of the tenants [8]. The locations of the distributed
hypervisor instances can affect the control plane latency of the
individual vSDNs. In case of the SDN controller placement

1Note that we use the term hypervisor for simplicity. However, this term
should not be confused with server virtualization, which is not addressed in
this paper.



problem, it has been shown that not every physical SDN
node has to be served by one controller. This means that a
minor number of SDN controller suffices to serve specific use
cases [9]. Similar to the SDN controller placement problem,
it has accordingly to be determined how many hypervisor
instances are needed and where to place them inside the
network. Hence, the decision where to place the hypervisor(s)
has to be seriously considered in order to provide the best
possible performance for vSDNs.

Our contributions are to initiate the study of the network
hypervisor placement problem (HPP) for virtualized SDN
networks. We provide a first mathematical model for the HPP.
Given an SDN network topology with possible hypervisor
locations and a number of vSDNs, the model can be used
to determine the number of hypervisor instances and their lo-
cations. Unlike the initial SDN controller placement problem,
we propose four latency performance metrics. Two metrics are
proposed to quantify the performance per virtual SDN network.
Via simulations for a real network topology, we quantify the
trade-offs between the four optimization metrics.

The remainder of this paper is structured as follows. In
Section II, we introduce and illustrate the HPP. In Section III,
we identify and summarize related work. In Section IV, we
outline our models to solve HPP. Section V presents our
simulation results for a real network topology. Finally, we draw
conclusions in Section VI.

II. NETWORK HYPERVISOR PLACEMENT PROBLEM

The network hypervisor placement problem (HPP) deals
with two fundamental questions:

1) How many hypervisor instances are needed?
2) Where should the hypervisor instances be placed?

Figure 1 illustrates the HPP for one vSDN network. The
tenant controller location and the locations of the vSDN
network elements are given. The blue solid line illustrates
the connection between the vSDN controller (C) and the
hypervisor (H). The green dashed lines show the connections
between the hypervisor and the corresponding vSDN nodes
(V). Note that not all physical SDN nodes are used by the
vSDN tenant. Accordingly, only the populated physical SDN
nodes and the tenant location have to be taken into account
for the HPP. During vSDN network operation, control traffic
is only transmitted via the physical paths that connect the
populated nodes with the hypervisor. The control plane latency
between a tenant controller and one vSDN node is the sum
of the latency of the path connecting the vSDN node with
the hypervisor and the latency of the path connecting the
hypervisor with the controller.

III. RELATED WORK

In the context of SDN virtualization, there are several
research areas which are related to the HPP. We first introduce
the classical controller placement problem and then analyze
extensions with respect to different metrics. We further shortly
outline how the general facility location problem, virtual
network embedding, and network function virtualization are
related to the hypervisor placement problem.
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Physical node

Virtual node
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Fig. 1. Exemplary hypervisor placement. Hexagons show the physical
network locations. Small dashed lines indicate the physical connections.
Controller (C) connects via hypervisor (H) to vSDN nodes (V)

SDN Controller Placement Problem In general, the
design of the SDN control plane leads to the questions of
how many controllers are required and where to place them.
This controller placement problem (CPP) has been initiated by
Heller et al. [9]. In the following, we outline related work to
the CPP with focus on optimization metrics, which are load,
latency, and resilience.

Load and Latency. Heller et al. [9] initiated the study
on the CPP with a proposed brute force solution. They in-
troduce the average and the maximum (worst case) latency
as evaluation metrics for the CPP solutions. They evaluate
the impact of different placements on the latency metrics for
real network topologies. Yao et al. [13] extend the problem
by considering limited capacity of network elements. They
show that considering limited capacities is needed to avoid
an overload of network elements. [14] provides a detailed
mathematical model of the controller placement. The model
allows to simultaneously determine the number, the type, and
the location of the controllers. A game theory-based scheme
is provided that runs distributed on each controller instance
in [12]. Each node that can act as a controller decides whether
an additional controller is required. The scheme can ensure the
optimal number of controllers and the appropriate locations.
Xiao et al. [15] provide a method to deal with SDN in WANs.
The network is divided into several sub-domains by the use
of spectral clustering. The controller placement is then solved
for each of these domains. To measure the performance in the
domains, metrics for the spectral clustering are introduced.
In their evaluation, the authors compare spectral clustering
algorithm to optimizing for average latency.

Resilience. Multiple different concepts exist that extended
the classical CPP with respect to resilience [16], [17], [18],
[19], [20], [11]. In general, they mostly analyze the trade-
offs between the classical CPP metrics and resilience [20].
However, our initial study does not consider resilience for the
hypervisor placement.

Facility Location Problem. From a mathematical point
of view the Facility Location Problem (FLP) is similar to the
CPP. In [21] an overview of different types of the FLP and
several models is given. Pirkul and Jayamaran [22] provide
a mixed integer program for a multi-commodity capacitated
version of the FLP. They propose an LP relaxation and a
heuristic algorithm, which reduce the solution time for larger
problems. Campbell [23] describes several types of the discrete
version of the FLP and provides mathematical formulations of



the problems. The proposed models are adapted and applied to
the model for the hypervisor placement problem in this paper.

Virtual Network Embedding. Regarding the embedding
of virtual SDN networks, Fischer et al. [24] give an overview
and classify different Virtual Network Embedding (VNE)
algorithms. They present metrics for the VNE and create a
taxonomy for the algorithms. For the embedding of virtual
SDN networks, [25] proposes different algorithms (greedy,
simulated annealing). Both algorithms can optimize for either
a latency metric or load-balancing. The authors show that there
is a trade-off between the metrics. Additionally the impact of
the embedding of the controller node on the performance is
shown. However, the performance study does not consider the
placement of the hypervisor instances.

Network Function Virtualization. Luizelli et al. [26]
propose a formulation for the embedding of virtual network
function chains on a network infrastructure. The proposed
model targets a minimum number of virtual network functions
to be mapped on the substrate. Their evaluation metrics mainly
considered infrastructure resource utilization, e.g., CPU, as
well as end-to-end latency of the embedded function chains.
However, the proposed model does not incorporate the char-
acteristics of SDN networks, moreover virtual SDN networks.

IV. HPP FORMULATION

In this section, a generic Mixed Integer Linear Program
(MILP) formulation for the HPP is introduced where limiting
capacities of physical nodes or edges are not considered. The
problem is formulated as a path-flow, undirected, and non-
splittable model. Four different objectives are evaluated as vari-
ations to the model. The objectives target several measures for
the latency between virtual SDN networks and their respective
controllers.

A. Sets and Parameters

First, the problem definition is described mathematically.
The virtual SDN network embedding and the controller place-
ment are assumed to be given. The problem solution focuses on
the placement of the hypervisor(s), i.e., hypervisor instances.
An overview of the problems’ sets and parameters is presented
in Table I.

1) Substrate: We are considering a substrate network
G = (V,E). The set V represents the physical nodes, which
correspond to locations. The physical nodes are connected by
a set of undirected edges E. At each physical node (location)
v ∈ V , there can be none, one or multiple virtual nodes
embedded.

2) Hypervisor Locations: H ⊆ V is the set of possible
hypervisor locations, whereby the hypervisors can be co-
located with the physical SDN nodes. In the simplest case
H , equals V . However, a selection of candidate locations for
the hypervisor can be done as well. The number of hypervisors
that need to be set is denoted by the constant Q.

3) Virtual SDN Networks: The set M represents the vir-
tual networks. On the given substrate network, |M | virtual
networks are embedded. Each virtual network m ∈ M has
|Nm| virtual SDN nodes, with Nm ⊆ V . The physical node
cm ∈ V defines the location of the SDN controller of the
virtual network m.

TABLE I. SETS AND PARAMETERS

Substrate Network G = (V,E)

Physical Node w ∈ V
Possible Hypervisor Node v ∈ H ⊆ V
Number of Hypervisors Q

Virtual Network m ∈M
Virtual Node of Virtual Network m n ∈ Nm ⊆ V
Virtual Controller of Virtual Network m cm ∈ V
Demand of Virtual Network m d ∈ Dm

Cost for Path d ∈ Dm via v ∈ H φm,d,v

4) Demands and Paths: Each virtual node of a virtual
network m ∈ M needs a control link to the corresponding
controller. Since the control link has to pass through the SDN
hypervisor, there are |Nm| control link demands for each
virtual network. The set of the demands is Dm. A demand
d = (n, cm) ∈ Dm is specified between a virtual SDN node
n and the corresponding controller cm. For each demand d
and a potential hypervisor node, the shortest path is computed
between the virtual node and its controller, which traverses the
potential hypervisor node. The cost for the path of demand
d via hypervisor node v is the summed cost φm,d,v of the
traversed links. A path where source node, intermediate node
and destination node have the same location, has cost 0.

B. Variables

For each possible hypervisor location there is a binary
variable xv that indicates if a hypervisor instance is placed
on the physical node v ∈ H . For each demand d and possible
hypervisor node v there is a binary selection variable ym,d,v . If
ym,d,v = 1, then the path of demand d via hypervisor instance
at v is selected. The binary variable zw,v indicates if physical
node w ∈ V is controlled by the hypervisor instance v ∈ H .

C. Constraints

In the following the constraints are imposed.

1) Hypervisor installation: Constraint (1) ensures that the
number of placed hypervisor instances is Q:∑

v∈H
xv = Q. (1)

2) Path selection: For each demand of all virtual SDN
networks on the substrate, exactly one path has to be selected.
This is ensured by Constraint (2):∑

v∈H
ym,d,v = 1 ∀m ∈M, ∀d ∈ Dm. (2)

Constraint (3) sets a hypervisor node v to be chosen in case
a path that includes this hypervisor node is selected. The sum
over all demands of all virtual network is intended to reduce
the total constraints’ space. It addresses the two boundaries,
where no demands from all virtual networks select a hypervisor
node v as well as all demands from all virtual networks decide
for this hypervisor node. At least one demand in all virtual
networks is required to set the selection of the hypervisor node.∑

m∈M

∑
d∈Dm

ym,d,v ≤
(∑
m∈M

|Dm|
)
xv ∀v ∈ H. (3)



3) Physical Node Assignment: We assume that a physical
SDN node is controlled by only one hypervisor instance.
This assumption aims at avoiding control conflicts or state
inconsistencies that may occur if an SDN switch has multiple
controllers. Constraint (4) sets a hypervisor node v to be the
controller of the physical SDN node w where the virtual node
n that belongs to demand d is embedded, i.e., w = n(d):

ym,d,v ≤ zw,v ∀m ∈M, ∀d ∈ Dm, ∀w ∈ V, ∀v ∈ H. (4)

Constraint (5) ensures that each physical SDN node is con-
trolled by a single hypervisor instance:∑

v∈H
zw,v ≤ 1 ∀w ∈ V. (5)

D. Latency Metrics/Objectives

Average and maximum latency are often used metrics in
the area of controller placement. Both are extended to the HPP.
Furthermore, two additional metrics are provided. Appropriate
constraints and objectives are presented if needed to optimize
for a particular metric:

1) Maximum (Worst Case) Latency: This metric targets the
worst case latency, i.e., minimize the latency of the demand
that has the longest path among all vSDNs:

Lmax = max
m∈M,d∈Dm

∑
v∈H

ym,d,vφm,d,v. (6)

Equation (6) can be formulated in the model by adding a
constraint to represent the maximum latency as a continuous
variable w:∑

v∈H
ym,d,vφm,d,v ≤ w ∀m ∈M, ∀d ∈ Dm. (7)

The actual objective is to minimze the maximum latency:

minw. (8)

2) Average Latency: This metric targets a minimum aver-
age latency over all demands from all virtual networks:

Lavg =
1∑

m∈M
|Dm|

∑
m∈M

∑
d∈Dm

∑
v∈H

ym,d,vφm,d,v. (9)

The corresponding objective is:

minLavg, (10)

whereby no additional constraints need to be defined.

3) Average-Maximum Latency: This metric targets the
worst case latency per vSDN. It considers the maximum
latency of each vSDN and aims at a minimum average of all
considered maximum values:

Lavg,max =
1

|M |
∑
m∈M

max
d∈Dm

∑
v∈H

ym,d,vφm,d,v. (11)

To optimize for this latency, |M | new continuous variables wm
representing the maximum latency of a virtual network m are
required. The variables wm are set to the maximum latency of
vSDN m by the constraint:∑

v∈H
ym,d,vφm,d,v ≤ wm ∀m ∈M, ∀d ∈ Dm. (12)

TABLE II. EVALUATION SETTINGS

Parameter Values

no. of vSDNs |M | 1, 3, 5, 7, 10, 15, 20, 40, 70, 100, 140

no. of virtual nodes per vSDN |Nm| uniformly distributed 2...10

controller location for each vSDN cm uniformly selected from v ∈ V
virtual node location ni ∈ Nm uniformly selected from v ∈ V
runs per model 200

HPP objectives Max, Avg, AvgMax, MaxAvg

The actual objective is:

min
1

|M |
∑
m∈M

wm. (13)

4) Maximum-Average Latency: This metric targets the av-
erage latency per vSDN. It considers the average latency of
each vSDN and aims at a minimum for the maximum of all
considered averages:

Lmax,avg = max
m∈M

1

|Dm|
∑
d∈Dm

∑
v∈H

ym,d,vφm,d,v. (14)

Similar to Section IV-D1, a continuous variable w represent-
ing the maximum average latency of all virtual networks is
required:

1

|Dm|
∑
d∈Dm

∑
v∈H

ym,d,vφm,d,v ≤ w ∀m ∈M. (15)

The actual objective is:

minw. (16)

V. ANALYSIS OF ATT NORTH AMERICA FOR SINGLE
HYPERVISOR

We investigate the trade-offs between all metrics when they
are applied as an objective for placing a single hypervisor
instance (Q = 1). The chosen network is the ATT North
America topology [27], which consists of 25 nodes. We
demonstrate the impact of different evaluation setups on the
outcome of all four optimization objectives.

A python-based framework using Gurobi [28] was imple-
mented for all four models. The parameter settings are given
in Table II. As explained in Section II, not all physical nodes
have to be used by a vSDN tenant. Accordingly, we evaluate
the HPP for different numbers |M | of vSDN networks. We call
this the vSDN network density. For example, for |M | = 1 only
one virtual SDN network is considered during the hypervisor
placement while |M | = 140 means that 140 virtual SDN
networks are considered. For all vSDN networks m ∈M , we
assume that the virtual nodes and their controllers are given
as an input. The number of virtual nodes |Nm| per vSDN m
is uniformly distributed between 2 and 10. The vSDN node
locations are uniformly selected from all available physical
network locations V . For each vSDN, the controller location
cm is also uniformly selected from all physical network
locations V . Each setting is repeated 200 times for varying
vSDN networks for statistical evidence.
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Fig. 2. Hypervisor placement considering the four objective metrics (Q = 1, |M | = 140).
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Fig. 3. Hypervisor placement considering the four objective metrics for increasing number of vSDNs (Q = 1, |M | = [1, 140]).

A. Is there a dominant location for the network hypervisor
under different objectives?

We start by comparing the different objectives with respect
to the geographical locations of the hypervisor nodes. The four
Figures 2(a)-(d) show the resolved SDN hypervisor locations
for each objective metric in case |M | = 140. The size of a
circle of a node represents the frequency of how often the node
is selected as the optimal hypervisor location over 200 runs. A
physical node location that is colored white with the smallest
possible size indicates that the node is never selected for the
hypervisor location.

Figure 2(a) depicts the results for minimizing the maximum
latency. The hypervisor location converges to the network
node 15, which lies in the sparse part of the network. As
the maximum latency is mostly impacted by long switch
to controller links, the hypervisor location is accordingly
biased with the longer links connecting between the east and
west parts of the network. Figure 2(b) shows two dominant
hypervisor locations towards the center of the network (node
9 and 13). In contrast to solving the model for the maximum
latency, minimizing the average latency considers all controller
to virtual node connections of all vSDNs. As the vSDNs
are randomly distributed, the hypervisor locations converge to
the more populated part of the network, i.e., the east of the
network. Figure 2(c) illustrates the hypervisor locations with a
minimum average-maximum latency. As this model considers
the average of the maximum latency of all vSDNs, more
physical locations (node 9, 12, 13, 15, 16) for the hypervisor
are optimal among the 200 runs. It can be observed that
the hypervisor locations are overlapping with the locations
as shown in Figure 2(b). Finally, minimizing the maximum-
average latency, shown in Figure 2(d), considers the maximum
of the average latency within each vSDN. This model results
again in more candidate locations for the hypervisor (node 2,
9, 11, 12, 13, 15, 16). The dominant hypervisor location is the
same as in Figure 2(a).

To conclude, we can observe that only a subset of nodes are
resolved as candidate hypervisor locations under the given in-
put parameters. Besides, the candidate hypervisor locations are
neighboring. When average-maximum and maximum-average
are considered as objectives, more nodes are providing an
optimal solution for the hypervisor location.

B. How does the vSDN network density influence the hyper-
visor placement?

Figure 3 shows the impact of the vSDN density, i.e.,
number |M | of vSDNs. While the x-axis shows the vSDN
density, the y-axis shows the numbers of the network nodes.
Again, the size of the circles indicate how often a location is
chosen among 200 runs.

In case of a single vSDN network (|M | = 1), all physical
nodes are selected at least one time as a hypervisor location
within the 200 runs. This can be explained by the fact that
just one vSDN network with 7 nodes on average is placed
randomly among the network. This single vSDN determines
the hypervisor location for all metrics. Accordingly, more
potential hypervisor locations are optimal for each individual
run. With an increasing vSDN density, the solutions converge
to deterministic hypervisor location(s). As |M | increases, more
vSDN networks are generated with a possibly large geograph-
ical distribution. Since these vSDNs are spread with a higher
probability among the physical network, the topology of the
physical network determines an upper bound for the latencies.
For instance, when minimizing the maximum latency, the
hypervisor locations are mostly determined by the long links
from east to west.

To conclude, the vSDN network density has to be con-
sidered for the hypervisor placement. In case of higher den-
sities, less positions may have to be considered as potential
hypervisor locations under the given input procedure. This
observation can be used to predetermine a set of potential
hypervisor locations, i.e., to decrease the size of the set H . As
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Fig. 4. Each metric is evaluated while varying the model objective [Lmax,
Lavg , Lavg,max, Lmax,avg] (Q = 1, |M | = [1, 140]).

a result, the runtime of online algorithms for the HPP might
be improved, which is considered as future work.

C. What are the trade-offs between the objective metrics?

To show the trade-offs between the four objective metrics in
more detail, we calculate the values of the other three metrics
for each optimization of an objective accordingly. Figures 4(a)-
(d) show the average of all metrics with 95% confidence
intervals. In general, optimizing the model for a particular
metric also leads to the best solution with respect to the metric.
For instance, optimizing maximum latency achieves the best
solution for Lmax, while optimizing average latency achieves
the best solution for Lavg . This proofs the correctness of the
proposed model.

In Figure 3 we have observed that the hypervisor loca-
tions for the different objectives, e.g., for average-maximum
latency and average latency, are overlapping. As a result of
the geographically overlapping locations, Figure 4(a)-(d) show
the same behavior with respect to all metrics. The results of
optimizing average-maximum and average latency are close
together for all latency metrics. Respectively, the results for
optimizing maximum and maximum-average are close together
for all metrics as well.

To investigate this behavior in more detail, Figures 5(a)-(f)
show the cumulative distribution function for Lmax and Lavg
for all objectives. We compare the behavior for |M | = 1,
|M | = 3, and |M | = 140 between each objective.

For |M | = 1, all models have the same latency results for
the maximum latency as shown in Figure 5(a). This means
that for all models the hypervisor location is placed on the
path having the maximum latency for the particular vSDN
network. For the average latency, optimizing for average and
maximum-average latency leads to better results. Here, the
model optimizes for all paths and does not stop when the
maximum latency of one path is reached.

Figures 5(c)-(d) already show a trade-off between the
models for |M | = 3. In particular for the objectives maximum
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Fig. 5. Metrics comparison with all objectives for one hypervisor instance.

latency and average latency, a clear gap exists. In contrast to
|M | = 1, optimizing for multiple vSDNs leads to different
effects. In detail, optimizing for maximum and maximum-
average as well as optimizing for average and average-
maximum show results that are close together with respect
to Lmax and Lavg .

For |M | = 140, as shown in Figure 5(e)-(f), a clear trade-
off between optimizing for maximum or maximum-average
and average or average-maximum can be observed. Further-
more, the resulting latencies are varying less for |M | = 140
when comparing to |M | = 3. In particular for Lmax, the
optimization leads to a small number of latency values, as
indicated by the vertical process of the CDF. We can conclude
that the trade-offs between the optimizations of the different
metrics depend on the density of the vSDN networks, i.e.,
their number and their locations. Furthermore, with increasing
density, the values of the metrics are varying less among all
objective optimizations.

D. What is the solving runtime for different objective metrics?

Figure 6 shows the solving runtime when optimizing for
each objective. For an increasing vSDN density, the runtime for
all objectives increases and a gap between the different models
can be observed. Optimizing for an average-maximum latency
shows the largest runtime, while optimizing for the average
latency shows the lowest runtime. In general, one factor for the
different runtime is the number of constraints needed for each
objective. Minimizing the average-maximum latency and max-
imum latency results in the highest number of constraints. The
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Fig. 6. Solution runtime for different objectives (Q = 1, |M | = [1, 140])

other factor is the complexity of the objective. For example, the
objective for optimizing maximum latency consists of only a
single value. In contrast, the objective for optimizing average-
maximum latency, which has the worst runtime, considers each
vSDN additionally. While optimizing for maximum latency
and maximum-average latency show comparable runtime and
latency performance, both are candidates for optimizing for
maximum latency solely.

VI. CONCLUSION

In this paper, we initiate the study of the placement of SDN
network hypervisor instances that enable virtual SDN networks
(vSDNs). We call this the network hypervisor placement prob-
lem (HPP). A good hypervisor placement is essential for the
design of virtual SDN networks as it impacts the control plane
latency of the vSDNs. Poor control plane performance for SDN
networks can lead to state inconsistency and scalability issues.
We provide an initial optimization model to determine the
number of needed hypervisor instances and their respective
network locations. Additionally, we introduce four metrics
covering the latency property of SDN and network virtualiza-
tion. Our results show performance trade-offs when optimizing
for different latency metrics. Furthermore, the number and
locations of vSDNs, what we call vSDN density, also impacts
the optimization results in terms of hypervisor placement and
resulting latency values. Our basic study outlines the impor-
tance of fundamental aspects when optimizing virtualized SDN
environments. For future work, we are currently analyzing the
impact of placing multiple hypervisor instances.
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